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ABSTRACT OF THE DISSERTATION

The Dynamic Brain in Action: Cortical Oscillations and Coordination Dynamics

by

Mahmood Hoseini

Doctor of Philosophy in Physics

Washington University in St. Louis, 2016

Professor Ralf Wessel, Chair

Cortical oscillations are electrical activities with rhythmic and/or repetitive nature gener-

ated spontaneously and in response to stimuli. Study of cortical oscillations has become

an area of converging interests since the last two decades and has deepened our under-

standing of its physiological basis across different behavioral states. Experimental and

modeling work has taught us that there is a wide diversity of cellular and circuit mecha-

nisms underlying the generation of cortical rhythms. A wildly diverse set of functions has

pertained to synchronous oscillations but their significance in cognition should be better

appraised in the more general framework of correlation between spike times of neurons.

Oscillations are the core mechanism in adjusting neuronal interactions and shaping tem-

poral coordination of neural activity.

In the first part of this thesis, we reviewed essential features of cortical oscillations in

membrane potentials and local field potentials recorded from turtle ex vivo preparation.

Then we developed a simple computational model that reproduces the observed features.

xi



The modeling investigation suggests a plausible underlying mechanism for rhythmoge-

nesis through cellular and circuit properties. The second part of the thesis is on tem-

poral coordination dynamics quantified by ”signal” and ”noise” correlations. Here we

presented another computational model to show how temporal coordination and syn-

chronous oscillations can be sewn together. More importantly, identifying the biophysi-

cal ingredients that are necessary for a network to reproduce the observed coordination

dynamics.
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Preface

Cortical oscillations are neuronal activities spontaneous or evoked by stimulus with a

rhythmic structure. They were discovered by Hans Berger using first recorded electroen-

cephalogram about 150 years ago. Later on, oscillations were observed throughout dif-

ferent regions of the brain at all spatial resolutions, from single-cell membrane potentials

to large-scale neural traces. The recent resurgence of interest in cortical oscillations is

a result of our progress in generating them under controlled situations, rather than just

monitoring, and invasive and noninvasive studies under physiological and pathological

conditions suggested that neural oscillations implement cognitive processes such as sen-

sory representations, attentional selection, and dynamical routing/gating of information.

Although much is known about rhythmogenesis mechanisms in archicortex and entrohi-

nal cortex, little evidence is available to suggest a rhythmogenesis mechanism for cortical

oscillations. What is known is that specific type of neurons within the cortex are capable

of firing tonic spikes and, in addition, interaction of inhibitory neurons with each other or

with excitatory neurons cause oscillations to appear. However, it is not obvious how do

oscillations change with changes in microcircuit architecture, or to what extent individual

neuronal properties impact oscillatory activity.

One functional implication of oscillations is that they may impact neuronal spike times

through affecting their synaptic inputs, however, remained to be uncover is the detail of

this influence. This question is particularly difficult because of the immense recurrent
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connections in the network. Interconnections suggest that neural activity is coordinated

across multiple spatial and temporal scales. Moreover, the strength of coordination de-

pends on other factors such as activity level, network state, and so on. Addressing neural

coordination is important since it has implications for cortical function; in one hand weak

coordination corresponds to a larger degree of freedom while, on the other hand, stronger

coordination supports signal propagation. These competing factors set up coordination

magnitude in active cortical circuits. Much effort has been into determining coordination

level in different preparation using various signal especially recorded spike trains, but

little is known about the mechanisms that are responsible for the realized level of cortical

coordination and its dynamics. In this draft we try to address these questions especially

the one regarding underlying mechanisms.

In the first chapter of this thesis, we attempt to provide a quick introduction to the concept

of oscillations, and discuss some major works that have been performed in this area of

inquiry. We introduce different frequency bands along with their functional implications,

then we review properties of single neurons that influence the emergence of oscillations.

Moreover, basic synaptic circuit mechanisms and network architectures underlying the

generation of cortical oscillations are presented.

In chapter two we characterize essential features of cortical oscillations in terms of dura-

tion and dominant frequency. We will show that they occur by short episodes in time,

and each episode has a different dominant frequency, lasts for a variable duration, and

its phase doesn’t expand linearly with time. Nonetheless, our investigation reveals that

oscillations, though variable, are coherent among distant regions in the presence of even

weak interconnection and, therefore, can be used as a communication signal.
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Chapter three presents a computational model intended to reproduce essential features of

synchronous oscillations. Experimental observation has indicated that synchronous oscil-

lations are concomitant with irregular and sparse firing discharges in individual neurons.

In addition, they occur intermittently by short episodes in time. We show that interneu-

rons that act on a very slow time scale are responsible in abolishing network oscillations.

Chapters four and five uncover the temporal coordination dynamics in membrane poten-

tial and local field potential recordings respectively. Stimulus onset induces a transient

increase in noise correlation which subsequently declines to an intermediate, but signifi-

cantly larger than ongoing, value. Modeling inquires show that two factors are essential

in this dynamics; synaptic adaptation and network structure.

Last chapter, six, is a collection of open questions I’ve came across during my research

but I never had time to thoroughly investigate them. Some of those seem very promising

and their study might deepen our knowledge about neuronal circuits and their functions.

These are presented with the hope that others will pick them up and piece them together.
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Chapter 1

Neuronal oscillations in cortical

networks

1.1 Introduction

Cortical oscillations are electrical activities with rhythmic and/or repetitive nature gener-

ated spontaneously and in response to stimuli. The discovery goes back to Hans Berger

(1873-1941), who recorded the first electroencephalogram [1]. A century later, a surge of

interest has led to an extensive study of cortical rhythms from various perspectives. This

study offers an excellent venue to investigate how collective network dynamics emerge

from the interplay between cellular biophysics and synaptic circuits. Coherent oscilla-

tions may play a role in spatiotemporal coordination and communication between neu-

ronal populations simultaneously engaged in a cognitive process [2, 3].

Cortical oscillations occur intermittently by short episodes in time [4] while confined to

a local population of cells [5]. Large amplitude slow oscillations are observed in quiet

sleep [6], while awake behaving animals show a desynchronized state [7]. The remained
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mystery of network oscillations is that while they are present, spike discharges of cortical

cells are highly irregular [8, 9], hence not so obvious how coherent oscillations emerge

in network-level activity. Functional implications of rhythms regarding neuronal spike

timing should be evaluated, rather than focusing on rhythms per se. In this framework

coherent oscillations provide a channel for neurons and neuronal populations to commu-

nicate through seemingly random spiking discharges [2, 10].

In this chapter, I attempt to provide a quick and general introduction to the concept of os-

cillations and review some major works that have been performed in this area of inquiry

(For a more detailed review of what has been presented here see Wang, 2010 [11]). In the

first part of this review, I introduce different frequency bands commonly used in litera-

ture. Then I cover three properties of single neurons–phase response curve, subthreshold

membrane oscillations, and resonance–that influence the emergence of oscillations, and

may help us in digesting their functional implications. Next section is on the primary

synaptic circuit mechanisms and network architectures underlying the generation of cor-

tical network oscillations. Here, I present a theoretical framework for describing weakly

synchronous network-level rhythms in which single cells fire action potentials irregularly

and sparsely. Finally, the last section summarizes some general insights that we have

gained from experimental and theoretical studies.
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1.2 Oscillation frequency bands

Recording neuronal activity with a high temporal resolution, such as local field potential

(LFP) of electrocorticogram, indicates that a variety of brain rhythms contribute in dis-

parate behavioral states during wakefulness. Here is a very brief description of our major

understanding.

1. Slow oscillations (< 1 Hz) Slow oscillations of up and down states are the dominant

pattern during non-REM (slow-wave) sleep [12] which might play a role in memory con-

solidation [13, 14]. Large-amplitude slow rhythms are generated by all cell types repeti-

tively switching between two membrane potential states: an up-state where neurons are

depolarized at about ∼ 65 mV and fire at a low rate, and a down-state where neurons

are hyperpolarized by 10 – 15 mV [15]. It is worth mentioning that a strong slow-wave

oscillation at frequencies below 2 Hz is a striking feature of anesthesia [7].

2. Theta rhythm Theta (4 – 8 Hz) Theta rhythm has been observed in the neocortex [16]

and was found to be enhanced during working memory [17]. Hippocampal theta rhythm

is believed to play a critical role in the formation and retrieval of episodic and spatial

memory [18].

3. Beta rhythm (15 – 30 Hz) Beta rhythm was initially observed in the primary motor

cortex during ”readiness” but vanished at the initiation of a movement [19]. Further

studies confirmed the idea that beta rhythm is associated with preparation and inhibitory

control in the motor system [20] and top-down signaling [21].

4. Gamma rhythm (30 – 80 Hz) Gamma rhythm has found to co-occur in temporally

inter-nested with theta rhythms in the hippocampus [22] and also in spiking activity of
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neurons in the primary visual cortex [23, 24]. These rhythms are a fingerprint of atten-

tion [25, 26] and are usually referred to as ”hypervigilance rhythms” [27]. Gamma-band

synchronization between neural ensembles may play a role in the integration of sensory

information [28, 29].

5. Ultrafast oscillations (> 100 Hz) Ultrafast rhythm has been found in the cerebellum,

hippocampus, and neocortex [30–32] during wakefulness and non-REM sleep.

1.3 Interplay between neuronal populations

Recent technological advancements have led to the accumulation of a wealth of our knowl-

edge about brain rhythms during behavior. Simultaneously recording of local field po-

tential and single units from wake behaving animals made it possible to evaluate the

timing of single-cell spiking activity relative to LFP oscillations. Moreover, optogenetic

provides the opportunity to record and, more importantly, selectively manipulate spe-

cific cell types (pyramidal cells or different subclasses of GABAergic interneurons) in

vivo [33, 34]. This yields valuable information about how they interact with each other

and also with network-level rhythms. Results indicate that some subclass of cortical cells

displays intrinsic oscillations through various sets of voltage-gated and calcium-gated

channels. In this journey, mathematical analysis and neuronal network modeling pro-

vide complementary tools for understanding the dynamic behavior of cortical circuits.

What are the cellular mechanisms of cortical rhythmogenesis? One prominent hypothe-

sis is that synchronous rhythms emerge through mutual excitatory connections. This idea

gained support from accumulating experimental and computational studies on epilepsy,
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where synaptic inhibition blockade led to extremely synchronous neural firings [35]. How-

ever, Wang and Rinzel [36, 37] showed, in modeling studies, that mutually inhibitory

synaptic interactions are capable of synchronizing a population of GABAergic neurons.

This complemented our understanding that synchronous oscillations can emerge via the

interplay of excitation and inhibition [38]. Both the interneuronal and the excitatory-

inhibitory network motifs critically depend on synaptic inhibition, not merely to control

the overall network excitability but to temporally shape cortical network activity patterns

during behavior.

1.4 Single neuron intrinsic property may affect network

rhythms

Due to diverse active ion channels, different cell types display a variety of subthreshold

membrane response dynamics and spike firing patterns. In fact synchronization of a neu-

ral ensemble greatly depends on the type and dynamics of ionic channels in its constituent

cells. Oscillations shared by a neuronal population provide synchronized inputs to indi-

vidual cells, and the way single neurons adjust the timing of their action potentials in

response to periodic synaptic inputs determines whether the network displays persistent

stable rhythms or not. Besides, the frequency of network-wide discharges is essentially

determined by resonance properties of individual cells. What do we now know about the

interplay between single neuron dynamics and network synchronization? Which aspects

of cellular responses are relevant to network oscillations? Here I review three of these

elements.
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1.4.1 Phase response properties

In neuron with ”type II” phase response curve, if a depolarizing pulse is applied before

it fires a spike, it induces a phase advance (making it fire earlier) [39, 40]. However, a

pulse current may delay the phase of the next spike when applied soon after the spike

discharge in this type of cells. On the other hand, in a ”type I” phase response, regard-

less of perturbation timing, the induced phase shift is always advanced. However, the

amount of phase shift depends on the timing of the pulse perturbation [40, 41]. Type I

and type II phase response curves can be produced by the same set of ion channels but

with quantitatively different properties [42]. Now different scenarios can be explored by

coupling neurons with similar or dissimilar phase properties. For type I neuron coupled

with another type I neuron, the cell that fires earlier causes a phase-advance by the other

cell that fires later. This acts against reducing the relative phase difference between the

two. Hence, it is not straightforward to ascertain intuitively synchronization by mutual

excitation between type I neurons. While coupling type II neurons readily can exhibit

synchronized spiking.

1.4.2 Subthreshold membrane potential oscillations

In recent years subthreshold oscillations have been observed in many cell types, from

hippocampus [43] to neocortex [44] and olfactory bulb [45]. A wealth of literature sup-

ports the idea that subthreshold membrane potential oscillations have ionic channel ori-

gin which includes a voltage-gated Na+ and K+ current interaction. Subthreshold oscil-

lations naturally emerge as a result of interaction between a fast positive feedback (INa
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current) and a slower negative feedback (IK current). The oscillation frequency is con-

trolled by the activation kinetics of K+ currents [46]. Selective expression of a subset of

these currents provides a powerful means for generating membrane oscillations at dis-

tinct frequencies which show itself in large-scale population activity.

1.4.3 Resonance

The interplay of passive and active properties makes a cell to bandpass filter its input cur-

rents as respond maximally at a preferred input frequency [47]. Resonance is intuitively

expected when single neurons are damped oscillators, or more generally when there are

two opposing processes, hence display an intrinsic preferred frequency [48]. It has been

shown that pyramidal cells resonate in the theta frequency range while fast-spiking in-

terneurons have a resonance in the gamma-band. Apparently, this suggests differential

roles of these two major cell types in theta- versus gamma-frequency network oscilla-

tions [49].

1.5 Network mechanisms for rhythmogenesis

Excitatory principal neurons and inhibitory interneurons are the building blocks of any

neuronal network. Phase reduction theory provides a general mathematical framework

for studying synchrony of neuronal oscillators [39, 50]. The idea is that, if the synaptic

coupling is weak enough, their effect can be well captured by the average over the oscil-

lation period. Specifically, consider two oscillatory neurons with an intrinsic period of T0

(frequency f = 1
T0

), described by their respective phases φ1 and φ2 varying between 0 and

7



2π. The equations for describing the dynamics of the two interacting neurons are given

by
dφ1

dt
= 2π f + H(φ1 − φ2) (1.1)

dφ2

dt
= 2π f + H(φ2 − φ1) (1.2)

with H(φ1, φ2) as the interaction between neurons. The interaction function is given by

the average of the product of synaptic current from cell 2 to cell 1, Isyn(φ1, φ2), and phase

response curve of cell 1, Z(φ1), over an oscillatory period.

H(φ1, φ2) =
1

2πCm

∫ π

−π
dφ.Z(φ + φ1 − φ2)Isyn(φ + φ1 − φ2, φ) (1.3)

Where the synaptic current from cell 2 to cell 1 is defined by

Isyn(φ1, φ2) = gsyn.s2(φ2).[V1(φ1)−Vsyn] (1.4)

where V1 is the voltage of cell 1, s2 is the gating variable for the synaptic current, and Vsyn

is the synaptic reversal potential. Subtracting equs.1.1 and 1.2, and replacing Φ = φ1− φ2

results in
dΦ
dt

= H(Φ)− H(−Φ) = Hodd(Φ) (1.5)

where Hodd(Φ) is the odd part of the interaction function. At steady-state phase locking,

Φss, relative phase should not change over time and, therefore, Hodd(Φ) should be zero.

Furthermore, the slope of Hodd determines the steady-state stability. Now depending on

the synaptic currents and phase response curves, a neuronal network might show stable

synchronous dynamics.
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In general, three types of synchronization mechanisms are conceivable: i) recurrent ex-

citation between principal neurons, ii) mutual inhibition between interneurons, and iii)

feedback inhibition through the excitatory-inhibitory circuits. Here I review each of these

mechanisms.

1.5.1 Recurrent excitation between principle neurons

It has been shown that type II neurons are synchronized by sufficiently fast synapses [39]

and the presence of voltage-gated K+ currents enhances synchrony by mutual excitatory

connections [51]. For type I neurons, even fast excitation does not generate phase-locking

synchrony [39]. Indeed, type I neurons typically show anti-phase behavior with excita-

tory coupling [39].

A key insight from the theoretical analysis is that the time course of synaptic current

is crucial for synchrony to emerge. Therefore, AMPA excitatory currents, with a decay

time constant τsyn in the millisecond range, is suitable for synchronizing slow rhythms at

low frequencies [39, 52]. Experimental studies confirmed this prediction by showing that

AMPA synapses are sufficient for synchronizing 5- to 10-Hz rhythms [53]. However, an

excitatory-excitatory mechanism is insufficient for synchronizing at faster rhythms, such

as gamma (30 – 80 Hz) oscillations.

1.5.2 Mutual inhibition between interneurons

A network of inhibitory interneurons provides a mechanism for gamma-band synchro-

nization in spiking activity [54, 55]. Moreover, drugs that slowed down the kinetics of
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GABAA receptor-mediated synaptic currents led to lower oscillation frequency [54]. At

first glance, it seems paradoxical that reciprocal inhibition can make coupled neurons to

fire synchronously, but it is a plausible mechanism for synchrony [56]. Consider a pair

of coupled interneurons interacting by a reciprocally fast synaptic inhibition. Depending

on the initial condition, if one neuron fires, it effectively suppresses the other and when

this inhibition wanes over time, the other neuron becomes active and suppresses the first

neuron in turn. In this scenario, coupled inhibitory neurons tend to fire out-of-phase

with each other. Under a different initial condition, however, neurons can simultaneously

fire action potentials, undergo inhibition together, and escape from it synchronously [56].

Whether an inhibitory neural network displays each of these two behaviors depends on

the details of active neural properties and synaptic kinetics [57].

As mentioned above, different synaptic subtypes are suitable for synchronizing circuit

rhythms at various frequency ranges. While GABAB inhibitory synapses (τsyn ∼ 100 ms)

are suitable to synchronize spike discharges at low frequencies, GABAA receptors (τsyn ∼

5 ms) can synchronize fast rhythms in the gamma frequency band.

1.5.3 Excitatory-inhibitory circuit

It has been shown that network oscillation emerges naturally in an excitatory-inhibitory

circuit if recurrent connections are strong and inhibition is slower or delayed relative

to excitation [38]. The mechanism is that when fast excitation depolarizes other neu-

rons in the network, slower inhibition will gradually take off and eventually bring down

population activity. Silencing excitatory neurons, the excitatory drive to interneurons

wanes, then inhibition gradually decays and the network is ready to start the next cycle
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anew [58,59]. In excitatory-inhibitory circuits, two regimes were identified [39,60]. In the

first regime, interneurons are sufficiently activated by external inputs and, thus, exhibit

a phase advance in reference to excitatory neurons. The dominant frequency of oscilla-

tions is comparable to single neuron firing rates. In the other regime, recurrent excitatory

inputs mainly excite interneurons and, therefore, interneurons lag behind excitatory cells.

In local cortical circuits of the intact brain, both the interneuronal network mechanism and

the excitatory-inhibitory feedback loop mechanism are present, and cause synchronized

rhythms synergistically [39, 61]. Depending on the strength and topology of the connec-

tions, each of these mechanisms can be dominant. For example, a mutual inhibitory cir-

cuit is typically dominant against excitatory-inhibitory circuit [39,62]. These mechanisms

may be redundant to some extent. But this ensures the robustness of synchronous oscilla-

tions and, moreover, they complement each other by generating synchronous oscillations

in different frequency bands, which seems to be useful in different brain states/functions.

1.6 Synchronous rhythms with irregular and sparse spik-

ing

As mentioned above, understanding network oscillations is fraught with difficulty in

part because of the temporally irregular spiking activity in individual neurons. While

synchronous oscillations are present at network-level, individual spiking is highly irreg-

ular [63–67], such that it can be approximated with a random Poissonian process. How

network-level rhythm appears while its constituent units are randomly spiking? To an-

swer this, we need to understand the physical basis of network-level signals (such as LFP
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and EEG) and how they relate to the electrical activity of single cells. LFP appears to re-

flect the weighted sum of neural synaptic inputs within a narrower spatial extent with a

radius of ∼ 200 µm [68] rather than spiking output [69–72]. Despite all the progress has

been made in this area, the relationship between LFP and spiking activity has remained a

controversy in the neuroscience community.

During cortical rhythms, cells fire at much lower rates (∼ 5 Hz for pyramidal cells; ∼ 30

Hz for interneurons) relative to the frequency of LFP oscillations [65]. Thus, How do LFP

rhythms emerge out of random and sparse spiking output of constituent single-cells?

Modeling studies have shown that irregular and sparse neural firing can cause LFP rhythms

if the rhythmic modulation of single-cell firing probability is negligible [52]. This has

been illustrated experimentally for hippocampal pyramidal cells during gamma oscilla-

tions [73]. A series of works [52, 74, 75] has shown that if cortical neurons are bombarded

with a large amount of background synaptic noise, they fire Poisson-like spike trains.

Now if a population of such neurons randomly connected by delayed synaptic interac-

tions, a surge of background noise can make pyramidals to fire stronger than usual, gener-

ating IPSPs that occur after a delay which hyperpolarizes neurons synchronously. When

this inhibition wanes, another depolarizing and hyperpolarizing can happen, leading to a

collective oscillation. Given that the transmission latency is of the order of a few millisec-

onds, this mechanism explains very fast oscillations (∼ 200 Hz). However, heterogeneity

of the neurons, transmission delays, and synaptic time course and, moreover, distance de-

pendence of synaptic transmission delays can cause rhythms with diverse frequencies to

appear [52, 76–79]. Furthermore, in a network of coupled excitatory-inhibitory neurons,

12



rhythms can predominantly emerge from an interneuronal mechanism or an excitatory-

inhibitory mechanism [52] and it can be shown that the latter causes slower oscillations

than the former one (∼ 40 Hz versus ∼ 200 Hz) [52].

It is again worth emphasizing that because the oscillatory component is significantly

smaller than the noise, single-cell spikes remain highly irregular, and no sensible cor-

relation is detectable between the mean firing rate of neurons and the network oscillation

frequency. Therefore, the presence of LFP oscillation coexists with Poisson-like spike dis-

charges of single cells. Theoretical analysis shows that the frequency of a collective net-

work rhythm is determined by both the synaptic properties and single cell’s membrane

properties [52]. One important feature that has remained to be answered is the underly-

ing mechanism for the intermittency of the rhythms. In chapter 3 I show that including a

second type of inhibitory neurons (LTS interneurons) make this possible. The proposed

mechanism is very intuitive, the interaction of excitatory and one of the interneuron types

(FS interneurons) makes oscillations to appear, this synchronized inputs feed into LTS

neurons and depolarize them, and in turn, they inhibit the whole network. Through this

mechanism, oscillations appear and last for a short period of time.

1.7 Concluding Remarks

In this chapter, I started with an elementary introduction to the physiological basis of

synchronous oscillations such as gamma and theta rhythms. Over the last two decades,

our understanding of mechanisms and functional implications of the rhythms has been

remarkably deepened. We have learned that a wide diversity of cellular and circuit mech-

anisms underlie the generation of rhythms in various frequency bands. A dearth of work
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argues about the significance of single neuron properties–such as type I or type II phase

response dynamics, resonance, pacemaker properties, voltage-gated sodium and potas-

sium channels–on network oscillations. Years of research indicates the critical role of

synaptic inhibition and its time course on circuit synchronization through either mutual

inhibition in an interneuronal network or feedback inhibition in a reciprocal loop between

excitatory and inhibitory neural populations.

One possibility to reconcile irregular and sparse neural firing with LFP rhythms is that

rhythms can emerge from strong feedback synaptic interactions in an asynchronous cir-

cuit with a highly stochastic spiking activity of individual cells. Therefore, rhythms pro-

duced by a network of cortical circuits can be in the ultrafast band (∼ 100 Hz) while

single cells fire irregularly in a sparsely (< 10 Hz) manner. An increasing number of

recent studies have documented long-distance coherence as a tool for remote regions to

communicate [2, 80–83]. About the source of irregularity, it is worth mentioning that it

can be due to a strict balance between excitation and inhibition [84–86].

Last but not least, the advance of new techniques such as high-density multielectrode

recording and two-photon calcium imaging has provided a unique opportunity to record

simultaneously many single cells. Such data has the potential to uncover the role of input

synaptic currents and output spiking on the spatiotemporal patterns of network oscil-

lations. Furthermore, it will inspire more sophisticated mathematical models of neural

circuit dynamics. The challenge is not only technical but also conceptual since cortical

neural circuits and their dynamics are astonishingly complex, that cannot be described

solely in terms of current mathematical tools. Therefore, I believe that new mathematical

tools have to be developed to grasp, the inherently high-dimensional, nature of cortical

neural circuits.
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Chapter 2

Characterizing Evoked Oscillations in

Primary Visual Cortex of Turtles

This work is in preparation for the Journal of Neurophysiology:

Mahmood S. Hoseini, Jeff Pobst, Ralf Wessel.

Department of Physics Campus Box 1105 Washington University St. Louis Missouri

63130-4899 USA
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2.1 Abstract

Functional roles of oscillations in cognition are still a matter of debate in neuroscience

community. Bursts of oscillations are generally thought to be a core mechanism by

which remote brain regions can communicate. Using time-frequency analyses of lo-

cal field potentials (LFPs) and membrane potentials (Vm) recorded from turtle primary

visual cortex (V1), we found large variability in spectral and temporal properties of

oscillations. Results indicate a broad distribution of durations (ranges up to ∼3 s) and

peak frequencies with little or no interdependence of these distributions. Furthermore,

our results show that, over the time window of a given epoch, oscillations in both LFP

and Vm are not autocoherent that means the phase doesn’t persist linearly in time. In

addition, consistent with previous studies on phase coherency, evoked oscillations are

more coherent than ongoing oscillations while in Vm no significant difference between

two epochs has been observed. In conclusion, this study supports the possibility of os-

cillations being used by remote brain regions for communication despite their variable

nature.

Keywords: Coherent oscillations, Visual cortex, multi-electrode array (MEA), local field

potential (LFP), membrane potential (Vm)

2.2 Introduction

Rhythmic oscillations have been found in many species and brain structures (for a review

see [11]). They were discovered in cat neocortex [27], rat hippocampus and auditory
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cortex [65, 87], human motor cortex and olfactory bulb [19, 88], and visual and auditory

cortices of monkeys [89, 90], to name a few. Furthermore, oscillations exist even in brain

slices [55,64,91,92]. Despite being studied extensively, the functional significance of oscil-

lations is unclear and a topic of debate in the neuroscience community. A long-standing

hypothesis (communication through coherence) is that oscillations provide temporal win-

dows for long-range communication between multiple distant regions [2, 3, 93–96].

To serve as a communication signal and, moreover, feature binding [28, 97], neuronal os-

cillations need to be reliable and co-vary among remote regions. The aim of this study is to

characterize oscillations in V1 and address whether oscillations in primary visual cortex

of turtles are coherent enough to serve as a clock signal. One intriguing question to in-

vestigate is the relationship between local filed potential (LFP) and single-cell membrane

potential oscillations. This exploration provides clues on the source, and possible func-

tional implications, of oscillations. Although some experimental studies [82,98–101] have

proposed the existence of a consistent LFP-Vm relationship more recent studies [102, 103]

rule out this hypothesis.

To address these questions, we recorded ex vivo from primary visual cortex in turtles

using extra- and intracellular electrodes. In line with previous works [104, 105], large

variability of the duration and peak frequency of oscillatory bursts has been observed.

Moreover, a large variation is found between electrodes and preparations. Despite large

stimulus-induced and time-dependent variability, oscillations show a strong coherence at

the stimulus onset, which justifies their application as a communication signal. Further-

more, qualitative discrepancies between single-cell membrane potential and LFP oscilla-

tions are discussed.
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2.3 Materials and methods

2.3.1 Ex-vivo eye-attached whole-brain preparation

Adult red-ear turtles (Trachemys scripta elegans) were used in this study. Procedures

used in this study were approved by the Washington University Institutional Animal

Care and Use Committee and conform to the guidelines of the National Institutes of

Health on the Care and Use of Laboratory Animals. Rapid decapitation was performed

after anesthetization with Propofol (10 mg/kg) as described in Ziolo and Bertelsen 2009

[106].

The brain was surgically removed from the skull with the right eye attached and con-

tinuously perfused with artificial cerebral spinal fluid bubbled with 5% carbogen. The

anterior half of the right eye was removed to provide a clear path to project images onto

the retina (fig.2.1A). Starting from the left olfactory bulb, a rostral-caudal incision was

made along the medial cerebral hemisphere allowing us to unfold the cortex and expose

the ventricular surface of the visual cortex. Afferent synapses remain intact in surgery

since the geniculocortical axons pass beneath the dorsal ventricular ridge (DVR), pass

through the pyramidal cell layer of the dorsal cortex and make synapses on the apical

dendrites of the pyramidal cells as well as interneurons (fig.2.1B).

2.3.2 Visual stimuli

For the included studies, three methods of visual stimulation were used. i) For LED

stimulation, a red LED (Kingbright, 640 nm) was connected to the output of a National
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Figure 2.1: Experimental setup and raw data. A: Experimental set up using a monitor and mirror. The
visual stimuli are presented on a monitor. The image reflects off a mirror and through a lens to form a
picture on the retina of the turtle’s hemisected eye. The multi-electrode array is placed in the unfolded
cortex. B: A side view of the cortex showing lateral geniculate nucleus (LGN) axons passing through and
then below the cellular layer of the cortex. The dendrites of one pyramidal cell are included to show the
spatial extent of the dendritic arbors. In red are the electrodes from the MEA. C: Visual responsiveness
across the electrode array for one of the preps. Each square represents an electrode. The background color
for each square indicates the visual responsiveness with black being 0 and white being 1. The electrodes
labelled in red have a visual responsiveness above the threshold, 0.75, to be included in analyses, and the
electrodes labelled in blue had subthreshold responsiveness. D: Five simultaneous raw extracellular voltage
recordings from electrodes in responses to natural movie stimulation. E: Relative power of a voltage trace.
A 2 s sample recorded voltage trace in response to 50 ms red LED flash is shown. The power of this signal
(red curve in middle inset) divided by the baseline power of the signal before stimulus onset averaged over
many trials (dotted curve in middle inset) gives us the relative power (bottom inset).
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Instruments BNC-2090 terminal block connected to a National Instruments PCI-6024E

DAQ board. This output was controlled with a custom LabView program on a computer

running Windows 7. ii) For monitor/mirror stimulation (fig.2.1A), a 19” LCD monitor

(Samsung model Syncmaster T190) displayed the stimuli. This image was reflected off a

mirror located across room above the tissue, and focused on the retina with a lens placed

above the tissue. iii) For projector stimulation, an AAXA P4 X projector combined with

a system of lenses (Edmund Optics) to project images generated by a custom software

package directly onto the retina. Both monitor/mirror and projector stimulation was

provided using software written in python on a computer running Ubuntu 10.4. Visual

stimuli included black dots moving on a white screen, red LED flashes, brief (100 – 250

ms) whole-field and sub-field flashes (red or white), sustained (10 s) gray screen, a natu-

ralistic movie (CatCam), a motion-enhanced movie (Gallant), and a phase-shuffled version

of the same movie.

2.3.3 MEA recordings and data acquisition

Data were collected at 30 kHz using the Cerebus data acquisition system by Blackrock Mi-

crosystems. Two different styles of microelectrode arrays were used for our LFP record-

ings. For some recordings, we used a 96-channel array (10-by-10 square grid, 400 µm

inter-electrode spacing, 500 µm electrode length, no corner electrodes, Blackrock Mi-

crosystems). For others, we used an array of shank electrodes (44 array of shank elec-

trodes with 8 recording sites on each electrode, 300 µm and 400 µm x and y distance

between shanks and 100 µm between recording sites along a shank). We attached either

array to a post fastened to a micro-manipulator (Sutter, MP-285) and inserted the array to

a depth of 500 µm starting from the ventricular side of the unfolded cortex such that the
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plane of electrodes was parallel to the dorsal surface of cortex. We recorded wide-band

(0.7 Hz to 15 kHz) extracellular voltages relative to a silver chloride pellet electrode in the

tissue bath (fig.2.1D).

2.3.4 Determining visually responsive electrodes

Since visual responses do not show up on all the electrodes, it is necessary to systemati-

cally determine which electrodes to include as visually responsive. For this purpose we

quantify the level of spontaneous activity on each electrode by averaging over windows

immediately before presenting the stimulus. Doing the same quantification for a window

immediately following the onset of the stimulus, the normalized difference of these two

quantities is our measure of visual responsiveness. We classify an electrode as visually

responsive if this ratio is greater than 0.75 (fig.2.1C).

2.3.5 Intracellular Recordings

Whole-cell current clamp recordings were done by patch pipettes (4 – 8 MΩ), pulled from

borosilicate glass and filled with a standard electrode solution (in Mm; 124 KMeSO4, 2.3

CaCl2 − 2H2O, 1.2 MgCl2, 10 HEPES, 5 EGTA) adjusted to pH 7.4 at room temperature.

Cell patching was done under a dual interference contrast microscope (Olympus) with

intracellular activity, membrane potential Vm, recorded using an Axoclamp 900 A ampli-

fier, digitized by a data acquisition panel (National Instruments PCIe-6321), sampling at

10 kHz. Simultaneously recorded cells were located less than 300 µm apart. We excluded

cells that did not display stable resting membrane potentials.
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2.3.6 Data analysis

Burst Detection

To detect bursts of fluctuations in the LFP and Vm, we filtered the raw signal using 9

different 10 Hz wide pass-bands from 10 to 100 Hz. We then took the Hilbert transform of

each of these filtered signals and normalized it by dividing by its mean value. Finally,

we created a new array by taking the maximum value from all 9 normalized Hilbert

transforms at every time step. This new array indicates whether there was substantial

activity in any of the 9 pass-bands we considered. This array was used to look for bursts

of oscillation. To do so we looked at all the crossing of both a high threshold (6 STD)

and a low threshold (4 STD). Each time the signal crosses the high threshold becomes

part of a burst, and the onset (and offset) of each burst is defined by extending forward

(and backward) in time from the high threshold crossing until there is more than to the

next low threshold crossing. The data used for burst duration distributions came from

recordings including a mixture of visually evoked and dark periods.

Relative power

We examined visually evoked LFP and Vm responses to look for trends in the frequency

profiles. Our primary measure of power at a given frequency is the relative power. The

relative power is the power during a 2 s period after a stimulus onset divided by a baseline

power (fig.2.1E). The baseline power was calculated by taking the average of the power

spectral densities of all the 2-second periods before the stimulus onsets, during which

any recorded activity was not visually evoked. To calculate the power spectral densities,
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we down sampled our LFP recordings to 3 kHz and then performed multitaper (3 tapers)

spectral estimations of 500 ms sliding windows (sliding by 50 ms) covering the 2 s periods.

The average of these sliding windows were used as the powers to then calculate relative

powers.

Peak frequency

To allow for the detection of peaks in relative power at more than one frequency for a

single trial, we looked at more than simply the maximum value in the relative power.

Instead, we started with all local maxima in relative power, and called the maxima peak

frequencies if they met three conditions: 1) there must be a neighborhood around that

frequency in which the relative power at some higher frequency (and lower frequency

unless the neighborhood includes 0 Hz) was at most 1/4 the relative power of the puta-

tive peak frequency, 2) in this neighborhood, the putative peak frequency must have the

highest relative power, and 3) the relative power at the putative peak frequency must be

at least 4 (the evoked power must be at least 4 times the baseline power).

Wavelet transform

The Fourier transform of a signal allows us to have frequency components with the high-

est resolution. However, the uncertainty principle limits the temporal resolution we ob-

tain. We know what frequency components exist in the signal but we do not know where

in time different components are triggered. To get information on temporal dynamics of
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the signal we have to give forfeit frequency precision. Wavelet, short-time Fourier, trans-

form is designed for this purpose. The wavelet transform is suitable for analyzing non-

stationary time series that contain power modulation at many different frequencies [107].

The time series signal is first multiplied by a window function, also called wavelet func-

tion, and the resulting signal is Fourier transformed to render the time-frequency content.

∫ in f

−in f
dτ.X(τ)ψ∗(τ − t, f ) = R(t, f )exp(jφ(t, f )) (2.1)

where X(τ) is the signal to be transformed and the (*) indicates the complex conjugate.

For our wavelet function we used the Morlet wavelet, consisting of a plane wave modu-

lated by a Gaussian:

ψ(t− τ, f ; s) = π−1/4exp(
−(t− τ)2

2s2 )exp(j2π f t) (2.2)

in which τ and s are center and temporal extent of the window function.

Analysis of the phase of the oscillations

To characterize phase distributions, voltage traces were sliced offline from -2 to 2 s from

stimulus onset and padded with enough zeros to avoid edge effects of the wavelet trans-

formation. The Morlet wavelet at 29 scales from 1.5 to 193 Hz provides us with instan-

taneous phase and amplitude across time and frequency. Based on results from previous

studies (see Lakatos et al., 2007 [96] and references therein), six frequency bands were

defined and used to quantify phases across trials in either a single or simultaneously

recorded signals.
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Single voltage trace: phase trajectories can be plotted in polar coordinate with radius as

the amplitude and phase of the complex numbers during time. We define a frequency

component that can be modelled as a sinusoidal function with a fixed phase as an auto-

coherent signal. To compare the phase of a voltage signal to a pure sinusoidal signal, we

define residual phase, φres(t, f ) = φ(t, f )− 2πmod(t, 1/ f ). If this quantity is not changing

over time, signal in auto-coherent and parametric trajectories with residual phase in a

polar plot should be confined in a sector of space while otherwise a random trajectory

can be seen and signal is not auto-coherent. To quantify localization of the trajectories in

phase portraits circular variation (CiV) is defined as,

CiV( f ) = 1− ΣtR(t, f )exp(jφres(t, f ))
ΣtR(t, f )

(2.3)

CiV is always normalized to be between zero and one with zero for the most coherent

(sinusoidal) and one for signal with completely random phase drift [108, 109].

Simultaneous voltage traces: To characterize phase locking between simultaneously recorded

signals in each frequency band, phase concentration, R(t, f ), was calculated and averaged

for 2 s before and 2 s after stimulus onset. At a given frequency and time, R(t, f ) can be

defined as,

R(t, f ) = cos(φ2(t, f )− φ1(t, f )) (2.4)

in which φi is instantaneous phase of the signal i = 1, 2 [96,100,110]. The phase concentra-

tion ranges from -1 to 1; with positive value for phase locking and negative for anti-phase

locking. Higher absolute values indicate that the observations are more closely clustered

around the mean than the values closer to zero.
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2.4 Results

2.4.1 Overview

Taking the power spectral density (PSD) of the voltage signal can be useful to learn about

the spectral properties during that time, but there are a few drawbacks to simply looking

at the PSD. Typically when looking at an evoked response or any event of neural activity,

were interested in how that activity is different than the ongoing spontaneous activity.

If we simply look at the PSD we dont get this information. For instance, if there was

a consistent ongoing high power in a band near 80 Hz, then seeing that peak during a

period of evoked activity would not indicate that any information was carried by that

high power. Also, if one wishes to look at the changes in power of many electrodes, one

might be misled by different electrodes having different impedances. To deal with these

issues, we use relative power (see Materials and methods).

2.4.2 Variability in oscillatory bursts

The relative power at a given frequency represents the extent to which the power in that

frequency has increased beyond an average baseline level calculated from periods with-

out stimuli. Our analyses indicate that there isnt a systematic change in the relative pow-

ers and no recurrent feature is visible (fig.2.2). The top plot shows 1 s LFP voltage traces in

response to 50 ms red LED flashes with their relative power shown immediately at their

bottom. Relative powers for 30 more trials are shown at the third row which pin points

two important features of the oscillations. First of all, the relative power often has peaks
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Figure 2.2: Variability in oscillatory bursts of LFPs. Recordings from four nearby electrodes in response
to 50 ms red LED flashes. The top plot shows one-second voltage traces with their relative power plotted
for that single trial in second row. Beneath that, the relative power is shown for 30 more trials and the last
row is the average relative powers over all trials.

within narrow frequency bands, and multiple peaks can be present simultaneously. It is

useful to think of each peak as being generated by some neural circuit. Second, several

types of variability worth mentioning:

i) trial-to-trial variability: Each set of 30 repeated trials demonstrate that there can be sig-

nificant trial-to-trial variability. While there is, consistently, an increase in power at some

low frequency, the sharpness of the peak frequencies, and the centers of those peaks vary

from trial to trial. Often, there are certain frequencies that have high relative powers in
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most trials but not all. This suggests that there is a neural network that is typically acti-

vated by the given stimulus, but occasionally it is either inactive or overwritten by a more

active network motif.

ii) electrode-to-electrode variability: For a single trial, peaks in relative power are often

shared with nearby electrodes, but different peaks may see their maximal relative power

at different electrodes. In some instances two distant electrodes may share peaks that do

not show up on electrodes in between. In some data sets, it appears that one subset of

electrodes tends to have a specific peak frequency, while another subset tends to have a

different peak frequency. These electrode subsets often overlap. More detailed correla-

tion exists between electrodes in the time domain using narrow filters corresponding to

the frequency bands identified by the relative power plots.

To gain insight into the role of membrane potential, Vm, oscillations in the oscillations ob-

served in collective LFP signals, we investigated relative power of Vm traces (fig.2.3). The

top plot shows 1 s voltage traces in response to the movie with their relative power shown

in second row. Beneath that, relative powers for 20 more trials are shown along with their

averages plot in the last row. Aforementioned type of variability is still present in Vm

oscillations but with a remarkable difference in the frequency. Low frequency oscillations

are more prevalent in Vm than LFP.

Other type of variability not indicated by this plot is stimulus-to-stimulus variability.

There can be a huge variability in relative power peaks in response to different stimuli

presented (data not shown). All this variability types indicate the versatile functional

roles of oscillatory bursts in information processing in visual cortex.
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Figure 2.3: Variability in oscillatory bursts of membrane potential recordings. Recordings are from
four cells in response to a naturalistic ten-second movie. The top plot shows one-second voltage traces with
their relative power plotted for that single trial in second row. Third row shows the relative power for 20
more trials, which indicates that oscillations are likely to occur at lower frequencies (< 20 Hz). The last row
is the average relative powers over all trials with a gamma-like profile.

2.4.3 Duration and peak frequency distribution

Understanding oscillation variability roles in cognitive processes requires characterizing

properties of oscillatory epochs. This also helps in constructing computational models.

Considering the synchronizing role for neuronal oscillations in the brain raises a question
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Figure 2.4: Variable duration and peak frequency distributions in LFPs. A: Burst duration distributions
for a single electrode from twelve different turtles. They have been arranged by column, purely by visual
inspection, to demonstrate a few recurring features: a broad, gamma-like distribution peaked at duration
near 1 s; a narrow distribution with most bursts being less than 1 s; bimodal distributions; and three other
distributions without any particular common feature simply to further illustrate the diversity of burst du-
ration distributions. B: This shows the distribution of the bursts from 53 turtles (339 electrodes) combined.
The contribution from each turtle is colored differently from the others near it, by simply cycling through
8 colors. C: Distributions of relative power peak frequencies for a single electrode from twelve different
turtles. Again a few recurring features are: a broad distribution of peak frequencies primarily between 10
Hz and 40 Hz; a narrow distribution less than 20 Hz; a narrow distribution less than 20 Hz along with occa-
sional peak frequencies covering a broad range of frequencies; and three additional distributions to further
demonstrate the diversity of peak frequency distributions.

about the existence of a characteristic duration and frequency for oscillation epochs. Neu-

ronal rhythms should last as far as the brain is processing information while frequency

should remain unchanged.
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Using Hilbert transform (see Materials and methods, Burst detection), we explored pat-

terns appeared in burst duration profiles (fig.2.4A). Burst duration distributions for a set

of 12 electrodes (fig.2.4A) are arranged by column, just by visual inspection, to demon-

strate a few recurring distributions: a broad, gamma-like distribution peaked at duration

near 1 s; a narrow, exponential-like distribution with most bursts being less than 1 s; bi-

modal distributions with most bursts being less than 2 s; and three other distributions

without any particular common feature simply to further illustrate the diversity of burst

duration distributions. Distributions from 53 turtles (total 339 electrodes) are combined

(fig.2.4B). The contribution from each turtle is colored differently from the others near it,

by simply cycling through 8 colors.

The speculation is that there could be space dependence for oscillation features. Since we

recorded from a slightly different location each time, we would end up with a different

duration profile. Another possibility could be the different internal state of the brain at

the time of presenting the stimulus. Brain response is a complex interaction of inputs from

sensory system with the spontaneous activity (internal state) of the brain at that time. As

far as we don’t have any control on the internal state, even presenting the same stimulus

would lead to different responses.

Variable duration doesn’t hurt on its own especially when durations are an order of mag-

nitude longer than the time scale on which neuronal circuit process information and os-

cillations can still be used as a means for long range communication. However, variable

frequency could have an adverse impact on this function of oscillations in the cortex. We

examined visually evoked LFP responses to look for patterns in the frequency profiles.

Our primary measure of power at a given frequency is the relative power. Using our

approach (see Materials and methods, Peak frequency) we were able to detect multiple
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peaks in relative power at more than one frequency for a single trial. Our analysis in-

dicates that relative power peak frequencies for a single electrode from twelve different

turtles show a noticeable variability (fig.2.4C). Profiles have been arranged to demonstrate

a few recurring features: a broad distribution of peak frequencies primarily between 10

Hz and 40 Hz with a gamma-like distribution; a very narrow distribution less than 20 Hz;

a narrow distribution less than 20 Hz along with occasional peak frequencies covering a

broad range of frequencies; and three additional distributions to further demonstrate the

diversity of distributions.

To trace back the variability occurring in LFP signals to the oscillation in membrane po-

tentials, we did the same exact analysis on Vm signals (fig.2.5). Duration profiles are vari-

able with some recurrent features (fig.2.5A). Though, two important differences between

burst profiles in LFP and Vm worth mentioning: Vm oscillations (i) are generally shorter

(< 3 s), and (ii) show more frequent very brief durations (sharp peak at low durations).

Combined duration still shows the same profile (fig.2.5B). Moreover, peak frequency pro-

files are diverse (fig.2.5C) with some recurrent features and, still, more prevalent low

frequency oscillations.

2.4.4 The phase drift within an epoch of oscillation

A largely controversial topic in oscillation literature is that whether oscillations act as

a ”clock” signal, by which information can be transferred among remote regions in the

brain. Evaluation of the phase of the oscillation epochs might shed light on this question

[66, 93, 108, 111]. A deterministic mechanism leads to auto-coherent oscillations; in which

phase unfolds linearly with expanded time. It then provides a unique reference time
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Figure 2.5: Variable duration and peak frequency distributions in membrane potentials. A: Burst
duration distributions for twelve different cells. Columns are arranged to demonstrate a few recurring
features: a narrow distribution with most bursts being less than 1 s; a very narrow distribution with a
sharp peak at low durations; a more slowly decaying distribution; and three others without any particular
common feature. B: This shows the distribution of the bursts from all cells combined and stacked on each
other. C: Distributions of relative power peak frequencies for twelve different cells. Again a few recurring
features are: a broad distribution primarily between 10 Hz and 50 Hz; a narrower distribution with a
sharp peak at low frequencies; a broad distribution with all frequencies equally likely to occur; and three
additional profiles to further demonstrate the diversity of peak frequency distributions.

for precise temporal encoding of visual information. On the other hand, having phase

not evolving as a sinusoid makes aforementioned straightforward interpretation rather

too complex. However, it leaves the temporal coordination functionality of oscillations

possible on very short window of time. Nonetheless, this test helps us to keep or rule out

many proposed rhythmogenesis mechanisms.
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To this end, we use a time-frequency analysis method first proposed by Burns et al. [108].

Their analyses for the data from monkey V1 have indicated that gamma-band oscillations

dont have the properties of a clock signal. Moreover, they showed that EEG signals in al-

pha rhythms are auto-coherent. They used circular variation (see Materials and methods;

CiV) as a measure of localization of parametric paths in phase space. The CiV is the ratio

of average complex coefficients from CGT normalized by average amplitudes of the co-

efficients. A CiV close to zero indicates that trajectories are localized in a sector of space

and phase is nearly conserved, an auto-coherent oscillation. The other limit, CiV close to

one, implies that the phase path is wandering all over the space and oscillations are not

auto-coherent.

A 4 s LFP trace (fig.2.6A) along with its power spectrum (fig.2.6B) in response to a 10 ms

red LED flash triggered at 1 s is shown. Spectrum shows elevated power for a wide range

of frequencies (5 – 110 Hz). Phase portraits, with residual phases, are plotted in polar co-

ordinates for 9 frequency bands from 10 to 100 Hz with the increment of 10 Hz (fig.2.6C).

Radius of the trajectories is amplitude of the coefficients, which is actually square root of

the power, and their phase is the residual, sine wave phase subtracted, phase of the co-

efficients. Except for alpha-band all other CiV values are very large and close to one that

indicate oscillations in gamma-band aren’t auto-coherent. Since auto-coherent oscilla-

tions have been observed in rat hippocampus on shorter time scales (< 100 ms) [112,113],

we tested CiV values during just elevated power, from 1 to 1.5 s, and results remained

unchanged.

Summarizing CiV values over all recording sessions (3146) gives widely distributed his-

tograms from 0.3 to 1 in alpha-band with slightly left-skewed distributions and rather

34



500 ms

500 µV

1 2 3

Time (s)

50

100

Fr
eq

ue
nc

y 
(H

z)
  

15

0

30

CiV = 0.44 CiV = 0.82 CiV = 0.83

CiV = 0.95 CiV = 0.91 CiV = 0.99

CiV = 0.97 CiV = 0.95 CiV = 0.99

10.0 Hz

A B

C

D
20.0 Hz 30.0 Hz

40.0 Hz 50.0 Hz 60.0 Hz

0.5 1.0
CiV

71.4 Hz 81.1 Hz 90.9 Hz

Figure 2.6: Phase drift of oscillation epochs in LFPs. A: A 4 s voltage trace from one of the extracellular
electrodes. A 10 ms red flash is triggered at 1 s. B: Power spectrum of the signal for frequencies less than
100 Hz. It shows an increase in power at the onset of the stimulus. C: Parametric phase portraits of the data
shown in A for frequencies from 10 to 100 Hz with the increments of 10 Hz. CiVs are shown at the top of the
polar plots. D: CiV histograms for alpha and gamma rhythms for all recording sessions. Each inset is a CiV
histogram, at the frequency listed on its top, for 3146 of 2 s LFP recordings in response to 10 ms red LED
flashes. Broad distribution of CiVs in alpha-band (10 – 30 Hz) fails to reject auto-coherent of oscillations.
In contrast, very sharp distribution of CiVs in gamma-band (30 – 100 Hz) indicates that oscillations aren’t
auto-coherent.

sharper histograms in gamma band (fig.2.6C). CiV in gamma-band are significantly dif-

ferent from zero (ttest; P < 0.001) and therefore oscillations arent auto-coherent, while

ttest fails to reject auto-coherent of alpha-band oscillations (P = 0.12). These results, in

line with those presented in Burns et al. [108], suggest that alpha-band oscillations can
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Figure 2.7: Phase drift of oscillation epochs in membrane potentials. A: A 4 s voltage trace of a cell in
response to a naturalistic movie started at 1 s. B: Power spectrum of the signal for frequencies less than 100
Hz. It shows an increase in power in low frequencies (< 20 Hz) at the onset of the stimulus. C: Parametric
phase portraits of the data shown in A for frequencies from 10 to 100 Hz with the increments of 10 Hz.
CiVs are shown at the top of the polar plots. D: CiV histograms for the given frequencies. Each inset is a
CiV histogram for 297 trials of intracellular recordings in response to the movie. Broad profile of CiVs in
gamma-band (30 – 100 Hz) fails to reject auto-coherent of oscillations. In contrast, alpha-band oscillations
are auto-coherent (P < 0.001)

play as a clock signal in order to synchronize distal brain regions and help to bind fea-

tures of visual stimuli. This raises the question that to what extent these features originate

from membrane potentials? Or is there any relationship between oscillations occurring in

these two disparate scales? To answer these questions, we analyzed phase of oscillation

epochs in Vm traces. A 4 s response to a movie triggered at 1 s is shown (fig.2.7A) along

with its power spectrum (fig.2.7B) and phase portraits in 9 frequency bands (fig.2.7C).
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Summarized histograms for 297 trials (fig.2.7D) show a broader distribution in compar-

ison to LFP signals (fig.2.6D). Vm CiV histograms show that alpha-band oscillations are

auto-coherent (ttest; P < 0.001) while gamma-band isn’t (ttest; P = 0.34). This gives us

little clue on Vm oscillation’s impact on LFP signals and this may happen due to disparate

microcircuit structures, different types of neurons and neuronal properties, dendritic non-

linearity, and etc.

2.4.5 Communication through coherence

So far, we have shown that oscillations show variable instantaneous amplitude, frequency,

and phase. So the question that arises is that what are the functional implications of neu-

ronal oscillations? One prominent theory is that neuronal oscillations offer a mechanism

for neuronal communication by coherence between the oscillations in the sending and re-

ceiving populations [2, 10, 99, 100]. Oscillations induce rhythmic excitability fluctuations

and this opens up a window of opportunity for neuronal groups to communication. The

necessary condition for this hypothesis to work is that the opening of their communica-

tion windows should be coordinated between the groups. Under this condition, outputs

of the sending groups would reach to the target group at the prefect time and they elicit a

significant response in it. Temporal coordination happens through frequency and phase

matching of oscillations in recording sites. Our analysis indicates that stimulus-induced

oscillations has more power across all frequency bands (data not shown) are more co-

herent that ongoing oscillations (fig.2.8). Phase concentration value, with 0 for random

phase, 1 for phase locked, and -1 for completely anti-phase locked signals (see Materials

and methods; Analysis of the phase of the oscillations), shows significant increase from

ongoing to evoked epoch (ttest2; all P << 0.001). Two points worth mentioning; first

37



0.2

0.2

0.6

1.0

1.0 - 2.2 Hz

0.2

0.2

0.6

1.0

2.3 - 4.3 Hz

0.2

0.2

0.6

1.0

4.8 - 9.3 Hz

0.2

0.2

0.6

1.0

10.0 - 24 Hz

Ongoing Evoked
0.2

0.2

0.6

1.0

R

25.0 - 49 Hz

0.2

0.2

0.6

1.0

52.0 - 100 Hz

Figure 2.8: Stimulus-induced oscillations in LFP are more coherent that ongoing oscillations. Phase
concentration, R, has shown for six frequency bands across 30 trials for one LFP channel averaged over 2
s windows. Green circles are for ongoing and red circles for evoked epoch. Individual trials are shown in
low opacity and the averages in higher opacity. Phase concentration increases significantly for all frequency
bands (1 – 2.2 Hz, 0.73 to 0.92; 2.3 – 4.3 Hz, 0.49 to 0.83; 4.8 – 9.3 Hz, 0.32 to 0.77; 10 – 24 Hz, 0.18 to 0.86; 25
– 49 Hz, 0.13 to 0.73; 52 – 100 Hz, 0.08 to 0.43; all P << 0.01).

all values are positive and no anti-phase locking has been observed, and second, largest

increase is seen in gamma band activity (25 – 49 Hz, 0.13 to 0.73; 52 – 100 Hz, 0.08 to 0.43).

Our results, in line with other works [96, 114], justify one assumption of communication

through coherence theory.

To test this hypothesis on membrane potential traces, we did the same time-frequency

analysis on simultaneously recorded membrane potentials. First of all, power increases
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Figure 2.9: Stimulus-induced oscillations in membrane potentials do not show a significant increase in
the phase concentration. Stimulus-induced oscillations in membrane potentials do not show a significant
increase in the phase concentration. Same format as (fig.2.8 )(1.0 – 2.2 Hz, 0.49 to 0.46, P = 0.74; 2.3 – 4.3
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significantly for the two lowest frequency bands, and (data not shown). This is in agree-

ment with the low-pass filtering properties of neuronal membranes. However, phase con-

centration does not show significant increases across any of the frequency bands (fig.2.9).

This result is intuitive since membrane potentials aren’t used for communication between

neurons or neuronal groups.
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2.5 Discussion

This study is a comprehensive assessment of neuronal oscillations of turtle V1 cortex in

terms of their power, duration, peak frequency, and phase. Results indicate that a huge

variability exists among electrodes and trials. This can be attributed to the information

processing happening in underlying neuronal circuits and the state of the cortex at that

time. A large variability can be seen from stimulus-to-stimulus as well (data not shown).

Huge variability seen in duration and peak frequencies disallows straightforward func-

tional roles for oscillations. Phase drift in oscillations adds to this complexity and, hence,

makes our interpretations more difficult. Delightfully, coherency increases at the onset of

stimulus that justifies the possibility of neuronal oscillations involve in information trans-

mission from one region to the other. This increase in coherency, along with power, gives

us clues on deciphering functional roles of oscillations in the brain.

2.5.1 How oscillations are generated?

The simplest mechanism that can generate oscillations in any frequency band of LFPs is

a network of cells rhythmically firing at that frequency. However, experimental works

suggest that neurons fire irregularly [25, 65] and sparsely [65, 66, 115] even when oscilla-

tions are present in LFP signals of the network. Theoreticians showed that auto-coherent

oscillations emerge in a population of inhibitory neurons [36, 37]. These early models

indicated that recurrent interaction among inhibitory cells is the key underlying mecha-

nism for the emergence of oscillations [57]. Numerous models included both excitatory
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and inhibitory cells have been proposed for generating oscillations especially in gamma

bands [52, 74, 79, 116].

2.5.2 Oscillations are variable in duration and frequency

Its very well known that a network of neurons activated generates, intrinsically, rhyth-

mic oscillations [117, 118], which has shown to vary considerably between recording

sites [119–122]. Large stimulus-dependent variability in frequency agrees with compu-

tational models [54, 123]. Now it is the time to answer the question that what impact,

if any, these oscillations can have on the activity of neuronal groups and modulate their

responses. As stated earlier, if oscillations were used for timing, not only its duration

should be long enough, but also its peak frequency should be approximately constant.

To examine peak frequency variability, continuous LFP and Vm recordings were used to

calculate relative power across trials (fig.2.2 and fig.2.3) and its profile is characterized

(fig.2.4C and fig.2.5C). The same analysis has been done for burst durations (fig.2.4 and

fig.2.5A, B). Distributions were diverse with some recurrent features showing up for some

recording sites.

2.5.3 Phase drift in oscillations

Oscillations are always modelled such that their phase expands linearly with time like a

pure sinusoid signal. To test this assumption, we did a time-frequency analysis of the

recorded voltage traces using wavelet decomposition. Our observation indicates that

phase evolution of the signal does not obey a linear dependence in time and it’s rather

more complicated. This observation, per se, calls into question the properties of a ”clock”
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signal during visual stimulation. However, two points worth mentioning. First of all,

temporally unstructured dynamics could be resolved on shorter time scales of 100 ms

on which gamma oscillations could be a clock signal. Second, analysis doesn’t reject the

possibility of low frequency rhythms to be auto-coherent and being used as a universal

reference time. This raises a very important question that what are the functional roles

of gamma-band oscillations? Moreover, what approaches should be taken to evaluate

functional roles of oscillations in general?

2.5.4 Communication through coherence

During past two decades a surge of research on oscillations has happened on how cortical

oscillations may contribute to cognitive functions [124–126]. One hypothesis for the role

of neural oscillations is the concept of phase coding [95, 127, 128]. This hypothesis states

that timing of spikes with respect to the phase of an ongoing network oscillation car-

ries information about the presented stimulus. Another essential role has been conceived

for a rhythmic oscillation is being a clock signal [2, 28, 94]. In this view, communication

through coherence theory, brain uses oscillations for precise temporal encoding and for

this purpose phase of the oscillations should be conserved during evoked response [2,10].

Communication through coherence is based on the realization that oscillations modu-

late neuronal excitability and therefore provide a window of opportunity for the sending

group to have a large impact on the target neurons [2]. This makes frequency match of

oscillatory activity incredibly critical and, hence, leaving communication impossible if

frequencies in different areas are too disparate. This is because the relationship between

excitable periods in different populations of neurons would vary over time. There exist a
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very rich literature suggesting that, despite lack of regularity, oscillations have shown co-

variance among remote neuronal groups [10,82,96,99,100,103,129–131]. This in principle

means the existence of an active frequency-matching mechanism in the cortex. Our data

demonstrate, as well, that stimulus presentation resets the phase of ongoing oscillations

and boost the ”predictability” of the activity in neuronal populations. Needless to say,

power enhancement makes oscillations more perceivable to remote neuronal groups.

Some studies, on the other hand, show that gamma-band activity is a stochastic process

and too random to serve as a clock signal for synchronizing brain regions over the length

of the stimulus [105,108,111]. Their experimental results [105] indicate that gamma activ-

ity has an identical temporal structure in both awake and anesthetized monkeys and their

modeling results, in line with others [132], suggest that gamma-band dynamics could be

replicated in a recurrent network with Poisson-distributed inputs and is unlikely to be

a reference time. To resolve this old-standing controversy and evaluate the importance

of oscillations in neuronal circuit, a real-time analysis should be taken while controlling

the occurrence of them [133]. Using this approach while the animal is performing a task,

roles of oscillations can be explored.
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3.1 Abstract

Local field potential (LFP) recordings from spatially distant cortical circuits reveal epis-

odes of coherent gamma oscillations that are intermittent, and of variable peak fre-

quency and duration. Concurrently, single neuron spiking remains largely irregular

and of low rate. The underlying potential mechanisms of this emergent network ac-

tivity have long been debated. Here we reproduce such intermittent ensemble oscilla-

tions in a model network, consisting of excitatory and inhibitory model neurons with

the characteristics of regular-spiking (RS) pyramidal neurons, and fast-spiking (FS)

and low-threshold spiking (LTS) interneurons. We find that fluctuations in the exter-

nal inputs trigger reciprocally connected and irregularly spiking RS and FS neurons

in episodes of ensemble oscillations, which are terminated by the recruitment of the

LTS population with concurrent accumulation of inhibitory conductance in both RS

and FS neurons. The model qualitatively reproduces experimentally observed phase

drift, oscillation episode duration distributions, variation in the peak frequency, and

the concurrent irregular single-neuron spiking at low rate. Furthermore, consistent

with previous experimental studies using optogenetic manipulation, periodic activa-

tion of FS, but not RS, model neurons causes enhancement of gamma oscillations. In

addition, increasing the coupling between two model networks from low to high re-

veals a transition from independent intermittent oscillations to coherent intermittent

oscillations. In conclusion, the model network suggests biologically plausible mech-

anisms for the generation of episodes of coherent intermittent ensemble oscillations

with irregular spiking neurons in cortical circuits.

46



3.2 Introduction

LOCAL FIELD POTENTIAL (LFP) recordings from cortical tissue have long revealed

short epochs of periodic voltage fluctuations [31, 65]. Such recorded voltage fluctuations

reflect the superposition of synchronized oscillatory local extracellular currents from spik-

ing neurons and/or synaptic inputs within the recording volume determined by the LFP

reach [134, 135].

The LFP oscillations are ubiquitous across different cortical areas, species, and behavioral

and cognitive context [3, 136–138]. Despite this diversity in origin, cortical LFP oscilla-

tions tend to share four commonly observed features. First, for the population of neurons

located within the LFP recording volume of an electrode, single neuron spiking is sparse

(i.e., firing rate is smaller than oscillation frequency) [139–142] and irregular, both during

epochs of oscillations and in the absence of oscillations [25]. Second, throughout an epoch

of elevated spectral power, the phase of the oscillation is not conserved, i.e., not autoco-

herent [108, 111]. Third, the duration and the power spectral density (PSD) distribution

of LFP oscillations vary from epoch to epoch [65, 105], as well as for different conditions

of sensory stimulation [115, 143, 144]. Fourth, the fluctuating aspects of LFP oscillations

covary across spatially separate cortical recording sites [82].

The ubiquity of LFP oscillations raises the question as to what these mesoscopic emergent

phenomena reveal about the underlying cortical microcircuits. In other words, what com-

bination of biophysical ingredients of a model network can generate the four common

features of emergent cortical oscillations? Numerous network models of varying levels

of complexity have reproduced subsets of the listed four features of cortical LFP oscil-

lations [134, 145, 146]. For instance, detailed model networks of irregularly and sparsely
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spiking neurons generated oscillations [52, 74, 75, 79]. However, these important investi-

gations did not address intermittency and autocoherence. At a higher level of abstraction,

a recurrent network consisting of one excitatory and one inhibitory node generated inter-

mittent oscillations of variable durations and peak frequencies [105], but, by design of

a rate model, these investigations did not speak to the nature of neuronal spiking. To

the best of our knowledge, despite the vast literature on the mechanisms of cortical os-

cillations [11], no computational model has captured simultaneously the four important

features of observed cortical oscillations, i.e., irregular and sparse spiking, phase drift,

epoch-to-epoch variations, and coherence across multiple networks.

Here, we propose underlying mechanisms for cortical oscillations that explain all ob-

served features simultaneously. To this end, we investigated a model network consisting

of regular-spiking (RS) pyramidal neurons, fast-spiking (FS) interneurons, low-threshold

spiking (LTS) interneurons, and stochastic external inputs. With the use of biologically

plausible parameters, the model network spontaneously generated intermittent epochs

of activity oscillations with evolving phase, while model neurons spiked sparsely and ir-

regularly. Durations and peak frequencies varied from epoch to epoch, but covaried for

two networks with sufficient coupling.
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Figure 3.1: Model network with recurrent connections and synaptic dynamics. A: schematic represen-
tation of network structure. Each regular-spiking (RS) and low-threshold spiking (LTS) neuron can connect
to all other neurons. In contrast, fast-spiking (FS) neurons can inhibit RS and FS but not LTS neurons. B:
gating variable dynamics for three selected synapses. They are normalized in such a way that the area
under the curve equals the membrane time constant.

Table 3.1: Neuron and network properties

Parameter Description Value
Vleak Leakage reversal potential -70 mV
Vthr Threshold membrane potential -59 mV
Vreset Reset membrane potential -70 mV
VE Excitation reversal potential 0 mV
VI Inhibition reversal potential -80 mV
τE

re f RS refractory time 2 ms
τ I

re f FS and LTS refractory time 1 ms
τl Delay time constant 0.5 ms
τE

m Excitatory membrane time constant 20 ms
τ I

m Inhibitory membrane time constant 10 ms
CE Excitatory membrane capacitance 0.2 nF
CI Inhibitory membrane capacitance 0.1 nF
dt Simulation time step 0.05 ms
∆t Time bin size 0.5 ms
NRS Number of RS pyramidals 2000
NFS Number of FS pyramidals 250
NLTS Number of LTS pyramidals 250
Pc Connection probability 0.2
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Table 3.2: Synaptic parameters

Synaptic conductances (nS)
PPPPPPPPPpost-

pre- RS FS LTS

RS 0.25 3.80 3.80
FS 0.30 4.00 4.00

LTS 0.30 0.0 4.00
Rise time constant (ms)

PPPPPPPPPpost-
pre- RS FS LTS

RS 1.0 0.5 5.0
FS 0.2 0.5 5.0

LTS 0.2 - 5.0
Decay time constant (ms)

PPPPPPPPPpost-
pre- RS FS LTS

RS 5 5 50
FS 1 5 50

LTS 1 - 50
Leakage conductance (nS)

10 12.5 20

3.3 Materials and methods

3.3.1 Model Network

We consider a model network of 2,000 RS pyramidal neurons, 250 FS interneurons, 250

LTS interneurons and external inputs (fig.3.1A). The network structure resembles corti-

cal feedback triads [147]. Specifically, each RS and LTS neuron can connect to all other

neurons. In contrast, FS neurons can connect to other RS and FS neurons, but not to

LTS neurons [148]. The main differences between the two groups of interneurons, be-

sides projecting to different targets, are 1) LTS neurons operate on much longer time
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scales [148–150], and 2) LTS neurons tend not to spike as frequently as FS neurons, since

they need coordinated input from RS cells [151, 152]. We implemented these distinc-

tions through different synaptic time constants and leak conductances. Of the possi-

ble connections, constrained by the network structure, a subset of connections is cho-

sen with probability, Pc, thus generating a network with sparse and random connec-

tivity. As a result, each model neuron obtains on average 400 excitatory and 100 in-

hibitory connections from within the network. In addition, each neuron has 800 exci-

tatory connections from private external inputs with a given total firing rate [52]. Mem-

brane potentials and action potentials of model neurons of each type are simulated as

leaky integrate-and-fire neurons, with the subthreshold dynamics of the membrane po-

tential Vi of neuron i given by C dVi(t)
dt = Iext + Ileak + Isyn, where C is the membrane

capacitance, Ileak = gleak(V − Vleak) is the leak current (gleak is leak conductance), and

Isyn = gsynS(t)(V − Vsyn) is the synaptic current due to excitatory and inhibitory inputs

from within the network (gsyn is synaptic conductance and S is the gating variable) (Ta-

ble3.1). The external excitatory input, Iext, is conductance based and has the same dy-

namics as the excitatory synapses of connections within the network. The synaptic gating

variable S(t) = [τm/(τd − τr)](exp[−(t− τl)/τd]− exp[−(t− τl)/τr]) describes the time

course of synaptic conductance change (fig.3.1B). The normalization constant ensures that

the time integral of the synaptic gating variable equals the membrane time constant, and

thus varying the synaptic time constant does not affect the time integral of the synaptic

current. This normalization ensures the balance of excitation and inhibition. When the

membrane potential of a neuron exceeds a threshold, the neuron fires an action potential,

and the membrane potential resets and stays at the rest value for duration of the refractory

period. The spike train of neuron i is given by the time series ηi(t). The numerical values

in Table3.2 are matched with experimental values for synaptic time scales [153–157] and
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conductances [158, 159]. A model neuron receives external inputs with total firing rate

of 6 and 8 kHz to RS and FS/LTS neurons. This external input can be delivered using a

different number of synaptic connections.

Considering 800 excitatory synaptic inputs makes each synapse to deliver an independent

Poisson pulse train with mean rate of 7.5 Hz for RS and 10 Hz for FS and LTS neurons. For

simplicity, the Poisson to Binomial distribution approximation is used. Synaptic conduc-

tance for external inputs is 1.75 nS for RS and 2.0 nS for FS and LTS neurons. All model

parameters are defined, and their values are given in Table3.1 and 3.2. Simulations were

performed using Eulers method with a time step of 0.05 ms. Simulations were carried out

for 4 s in real time unless stated otherwise.

3.3.2 Analysis of Simulation Results

Single-neuron spike trains. The sparseness of spiking is evaluated by comparing the distri-

bution of single-neuron mean firing rates with the dominant frequency of the oscillation.

The irregularity of spiking is evaluated via the interspike interval (ISI) distribution of the

spike trains ηi(t). For a Poisson pulse train we expect an exponential decay of the ISI

distribution (for ISIs larger than the refractory period) and a coefficient of variation (CV)

with a value near one. The CV is defined as the SD divided by the mean ISI. For a bursting

spike train, the CV can be larger than one because of two completely different time scales

present in the spike train. In contrast, a regular spike train has a CV value near zero.

Synchrony. To quantify the level of synchrony among the spike trains ηi(t) within the

model network we bin the time, ∆t = 0.5 ms. From the spike train of neuron i, we get

the instantaneous firing rate ri(t), i.e., the number of spikes within a time bin divided
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by the bin size. From this, the network instantaneous firing rate is r(t) = ΣN
i=1ri(t). Op-

erationally, this quantity is derived by summing the number of spikes from all neurons

within a time bin. We then compare the variance var[r(t)/N] of the network instanta-

neous firing rate normalized by the network size against the population-averaged vari-

ance 1
N ΣN

i=1var[ri(t)] of the variance of instantaneous firing rates from individual spike

trains [160, 161]. Thus, we define the synchrony measure

κ2(N) =
var[ r(t)

N ]
1
N ΣN

i=1var[ri(t)]
(3.1)

For fully synchronous spike trains this measure equals one and is independent of network

size. In contrast, for asynchronous spike trains, κ(N) takes on values between zero and

one and, importantly, varies linearly with the inverse of the square root of the network

size, κ(N) ∼ κ(∞) + α√
N

where α is a constant [162].

Oscillations. We evaluate the level of oscillations in the network activity from the PSD via

Fourier transform of the network instantaneous firing rate. Calculations are performed

using the multitaper method [98,163]. In general, time bins, ∆t, must be much larger than

the simulation time steps and much smaller than the period of the oscillations in network

activity. Results are robust for time bins between 0.5 and 2 ms. To identify an episode

of oscillation in network instantaneous firing rate signal, we first took the points in the

time-frequency space that have at least one-half of the maximum power at any frequency

between 20 and 100 Hz. Among these, points are accepted that are above three times the

SD of a 5-Hz frequency band around it. Now neighboring points form an epoch. This

procedure allows us to estimate the time duration and peak frequency of an oscillation

episode.
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Autocoherence. Complementary to evaluating the amplitude of a frequency component, it

is informative to evaluate its residual phase, which is the difference between the phase

of the analyzed frequency component and the phase of a pure sinusoidal function of the

same frequency. To obtain the phase of the analyzed frequency component, the network

instantaneous firing rate r(t) is convolved with a Gabor filter

ψ(t; τ, f ) =
1

σ
√

2π
e−

(t−τ)2

2σ2 e−j2π f t (3.2)

and the resulting function is Fourier transformed (j is the square root of -1 not an index)

Gx(t, f ) =
∫ ∞

−∞
dτx(τ)ψ(τ − t, f ) = R(t, f )ejφ(t, f ) (3.3)

This continuous Gabor transform [164] yields the amplitude R(τ, f ) and the phase φ(τ, f )

of the network instantaneous firing rate r(t) in each time-frequency point. The circular

variation

CiV( f ) = 1− |ΣtR(t, f )ejφ(t, f )

ΣtR(t, f )
| (3.4)

where phase residual φr(τ, f ) is the difference between phase of the signal and phase of

a pure sinusoidal signal with that frequency, φr(τ, f ) = φ(τ, f ) − φsinusoidal(τ, f ) where

φsinusoidal(τ, f ) = 2π f mod[τ, (1/ f )]. As an example, complex Gabor transform of a pure

sinusoidal (autocoherent) signal results in a circle trajectory phase portrait. Time evo-

lution of the signal manifest itself in the circular counterclockwise rotation of the state

on that circle around the origin. Subtracting φsinusoidal, which corresponds to a clockwise

rotation in the reference coordinate, will result in one single point in the phase space as ex-

pected, since we started with an autocoherent signal. Circular variation (CiV) quantifies

the localization of the residual phase in the phase portrait and is a criterion for the degree
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of autocoherence of that frequency component [165]. The values of CiV are bounded by

zero and one, with zero for the most coherent oscillation (pure sinusoidal) and one for

random signals [108].

3.4 Results

3.4.1 Overview

To gain insight into what combination of cellular and/or circuit mechanisms can gener-

ate cortical oscillations, we investigated a model network motivated by cortical neurons,

synapses, and circuits. Here we focus on four important features of experimentally ob-

served cortical oscillations: irregular and sparse spiking, intermittent network oscillations

with phase drift, epoch-to-epoch variations in network oscillations, and coherence across

multiple networks. The model network consists of 2,000 RS excitatory neurons, 250 FS in-

terneurons, 250 LTS interneurons, and excitatory external inputs (fig.3.1A). Connectivity

is sparse and random (see Materials and methods) such that each model neuron receives

on average 400 excitatory and 100 inhibitory connections from within the network, plus

800 excitatory connections from private external inputs. Each external input is simulated

as an independent Poisson pulse train with mean rate of 7.5 Hz to pyramidal neurons and

10 Hz to interneurons.
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Figure 3.2: Spiking is irregular and asynchronous on average. A: distribution of time-averaged firing
rates for excitatory (red) and inhibitory (blue) neurons. For clarity, the distributions of inhibitory LTS and
FS neurons are merged. Average firing rates are 6 Hz for RS, 23 Hz for LTS, and 34 Hz for FS neurons. B:
distribution of coefficients of variation (CVs) for excitatory (red) and inhibitory (red) neurons. The mean
CVs are 0.80 for RS and 0.81 for LTS and FS neurons combined. C: interspike interval (ISI) distributions for a
few excitatory (red) and inhibitory (blue) neurons on the right tail of time-averaged mean rate distribution
in A. D: synchrony measure κ(N) as a function of network size N. The linear increase with the inverse of
the square root of the network size indicates the asynchrony of individual spike trains.

3.4.2 Single-Neuron Spiking is Sparse, Irregular, and Asynchronous

In response to the continuing external stochastic inputs and the inputs from the resulting

spiking activity of other neurons from within the network, all neurons spike sparsely and

irregularly (fig.3.2 and fig.3.3A). Time-averaged firing rates vary from neuron to neuron.

Firing rates are distributed within the range of∼ 1 and 20 Hz (mean = 6 Hz; maximum =

25 Hz) for RS excitatory neurons, whereas firing rates for inhibitory neurons range from

∼ 10 to 50 Hz (mean = 23 Hz for LTS and 34 Hz for FS; maximum = 50 Hz) (fig.3.2A).
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The CV values are distributed around slightly below one (fig.3.2B). The interspike inter-

val distributions for all neurons decay approximately exponentially (fig.3.2C), as expected

for Poisson pulse trains, thus indicating irregular spiking. To evaluate the level of corre-

lation among the spike trains, we use the synchrony measure κ(N) (see Materials and

methods). This measure is defined as the ratio of the variance of the population-averaged

instantaneous firing rate and the average variance of the instantaneous firing rates from

individual spike trains. Simulated spike trains in our model yield values of κ(N) < 1 and,

importantly, scale with network size according to κ(N) ∼ κ(∞) + α√
N

(fig.3.2D). Both ob-

servations are characteristics of asynchronous spiking. This conclusion is further corrob-

orated by the similarity of the results for network spike trains and shuffled spike trains. It

is important to note, however, that the synchrony measure κ(N) is a time-averaged (total

simulation time) measure and thus does not speak to transient correlations among spike

trains.

3.4.3 Network Oscillations Are Intermittent

To evaluate the possibility of transient epochs of oscillations, we looked beyond the in-

dividual spike trains ηi(t) (fig.3.3A) and analyzed the network instantaneous firing rate.

Unlike the individual spike trains, this measure of network activity reveals significant

oscillatory temporal structure (fig.3.3B). A time-resolved Fourier transform (see Materi-

als and methods) reveals elevated power in narrow frequency bands for short periods of

time (fig.3.3C). Importantly, however, spiking remains sparse. Even at the highest peak in

network instantaneous firing rate near 70 Hz, < 5% of the neurons spiked during a given

time bin (0.5 ms). Thus, visual inspection of a subset of spike trains (fig.3.3A) offers little

information about epochs of network oscillations.
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Figure 3.3: Irregular asynchronous spiking is consistent with intermittent oscillations of network ac-
tivity A: raster plots of spikes for 160 RS, 20 FS, and 20 LTS neurons, respectively. Irregular spiking for all
three types of neurons is apparent by visual inspection. B: network instantaneous firing rate r(t) = ΣN

i=1ri(t)
reveals oscillations in this continuous variable. An episode of oscillation starts at around 1.75 s and lasts
for about 100 ms. C: power spectrum of the network instantaneous firing rate shows an episode of elevated
power between 1.75 and 1.85 s in time and around 70 Hz in frequency.

In contrast, the network instantaneous firing rates for the RS and FS populations of neu-

rons (fast time scale), and the dynamics of inhibitory synaptic conductance (slow time

scale), are informative about the underlying mechanisms of the population dynamics

(fig.3.4). Qualitatively, the intermittent oscillations of network activity arise through the

following sequence of biophysical interactions. First, stochastic fluctuations in the spike
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Figure 3.4: Dynamics of intermittent oscillations represented in three continuous model variables. A
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firing rates (dark green). The recurrent interaction between RS and FS neurons mediates oscillations. The
coordinated activity of RS neurons activates LTS neurons. Because of the long decay of LTS synaptic con-
ductances in other neurons, the population-averaged conductance accumulates. This accumulation causes
a decline in RS and FS activity, which in turn terminates the oscillatory RS and FS activity. The vanishing
coordinated activity in RS neurons causes a decline in LTS activity (light green). In this parametric plot the
state of the network at a certain time is represented by a dot within 3-dimensional space spanned by the
150-Hz low-pass-filtered RS and FS instantaneous firing rates and the population- averaged LTS conduc-
tance in all neurons. Dots are plotted for 500 ms with time increments of ∆t = 0.5 ms. Time increases from
dark green to light green.

occurrence of the external inputs to the RS and FS neurons activate these groups of neu-

rons. Second, from the thus transiently increased RS/FS activity and the recurrent in-

teraction between RS/FS neurons, an oscillation in network activity emerges. Third, the

increased synchrony of RS excitatory inputs to LTS neurons causes an increased activity

of this group of inhibitory neurons during the oscillation. Fourth, the long synaptic decay

time (50 ms) of LTS inhibitory synaptic conductances (fig.3.1B) causes a gradual build-up

of inhibitory synaptic conductances in all neurons. Fifth, the increasing inhibitory synap-

tic conductance has two biophysical effects: 1) all membrane potentials drift closer to

the inhibitory reversal potential of -80 mV and away from the spiking threshold of -59
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Figure 3.5: Dependence of oscillations on synaptic time constants. A and B: peak frequency decreases
with increasing FS rise time and with increasing decay time. For time constants used in this work see
Table3.2, except τFS

rise = 1.5 ms in B. C and D: LTS synaptic time constants do not impact peak frequency.
Parameters are based on Table3.2, except τFS

rise = 1.5 ms. E and F: average duration of oscillation epochs
increases with increasing LTS rise time and decay time.

mV; and 2) all effective membrane time constants decrease. Sixth, both effects reduce the

spiking probabilities in all neurons and thus terminate the epoch of network oscillation.

Consistent with this description of mechanisms, the oscillation peak frequency decreases

with increasing FS synaptic rise or decay time constant (fig.3.5A and fig.3.5B), whereas

LTS synaptic rise and decay time constants do not impact the oscillation peak frequency

(fig.3.5C and fig.3.5D). However, LTS biophysical parameters determine the duration of
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oscillatory epochs (fig.3.5E and fig.3.5F). LTS decay time impacts the duration of episodes

in the following way. Synaptic current is defined by Isyn = gsynS(t)(V −Vsyn), where the

gating variable, S(t) (see Materials and methods), includes the normalization constant,

τm/(τd − τr), which is chosen so that the time integral of the gating variable is equal to

the membrane time constant [52]. This normalization was adopted to keep the balance

between excitation and inhibition. Varying the synaptic time constants does not affect the

time integral of a postsynaptic current but reduces the peak postsynaptic current. Thus,

increasing synaptic time constants of LTS neurons, either τr or τd, reduces the LTS peak

postsynaptic current. Therefore, more spikes in LTS are needed to terminate oscillations.

Thus increasing synaptic time constants of LTS neurons leads to longer-lasting oscilla-

tions.

3.4.4 The Phase Drifts Within an Epoch of Oscillation

The stochastic nature of the generation of network oscillations in this model raises the

question whether a resulting epoch of network oscillation resembles a sinusoid with a

fixed phase. To address this question, we employed the continuous Gabor transform (see

Materials and methods) to evaluate the difference between the phase of the analyzed fre-

quency component and the phase of a pure sinusoidal function of the same frequency.

We use CiV to quantify the localization of residual phase in the phase portrait. The CiV

is a measure for the degree of phase drift of that frequency component, with zero for the

most coherent oscillation (pure sinusoidal) and one for signals with random phase. For

all epochs of network oscillations tested, phase portrait trajectories for given frequency

bands between 20 and 100 Hz fill out the space with a significant nonzero CiV (fig.3.6).
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CiV = 0.88  f = 20 Hz CiV = 0.96  f = 30 Hz CiV = 0.74  f = 40 Hz

CiV = 0.69  f = 50 Hz CiV = 0.85  f = 60 Hz CiV = 0.88  f = 70 Hz

CiV = 0.67  f = 80 Hz CiV = 0.49  f = 90 Hz CiV = 0.41  f = 100 Hz

Figure 3.6: The phase is not constant within an epoch of oscillation. Displayed are phase portraits of
one oscillation epoch for frequencies in the gamma range (20 – 100 Hz). The oscillation epoch had a peak
frequency of 70 Hz and a duration of 200 ms. A phase portrait for a given frequency value is a parametric
plot of the residual phase (represented by the angle) and the amplitude (radius) at consecutive points in
time (parameter). Circular variation (CiV) is a measure for the degree of phase drift of that frequency
component. The CiV values and the given frequency are shown above each graph. For comparison, a
perfect sine wave at the given frequency would result in a point on this graph and a vanishing CiV value.
In contrast, signals with a random phase result in a CiV value of 1.

This observation indicates that, over the time window of a given epoch of network oscil-

lation, the phase is not constant. The network oscillation is not autocoherent.

3.4.5 Epochs of Oscillations Are Variable

To what extent do the features of network oscillations vary from epoch to epoch? This

question too is motivated by the stochastic nature of network oscillation generation. To

address this question, we detected epochs of oscillations in a long simulation (60 s) and
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Figure 3.7: Epochs of oscillations vary in duration and peak frequency. A: epoch durations are dis-
tributed around 74± 51 ms (mean± SD; the mean is indicated by the vertical yellow broken line). B: epoch
peak frequencies are distributed around 94± 11 Hz (mean ± SD). C: epoch peak frequency and duration
are unrelated. Values for a total number of 200 epochs are shown.

characterized each epoch in terms of its duration and peak frequency (see Materials and

methods). For the model parameters chosen, the epoch durations are normally distributed

with a mean of 74 ms (fig.3.7A). The duration distribution depends on LTS biophysical

parameters (fig.3.5E and fig.3.5F). The peak frequencies are normally distributed around a

mean of 94 Hz (fig.3.7B). As described above (fig.3.5A and fig.3.5B), peak frequencies de-

pend on the FS synaptic rise or decay time constants. Epoch duration and peak frequency

of network oscillations are not correlated (fig.3.7C).

3.4.6 The Role of FS Neurons in Rhythmogenesis

The recurrent interaction between RS and FS neurons has long been thought to be the core

mechanism for the generation of network oscillations [36, 116, 166, 167]. To evaluate the

role of each neuron type in this model (fig.3.1A), we stimulated RS or FS neurons through

a 40% decrease in their leak conductance (pulses with 0.5- and 5-ms rise and decay time)

repeated at regular intervals of 8 or 40 Hz frequency (fig.3.8A). First, we verified that this

level of leak conductance modulation is sufficient to cause a corresponding increase in the
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Figure 3.8: The role of RS/FS neurons in network rhythmogenesis. A: alpha function leak conductance
modulation pulses with 0.5- and 5-ms rise and decay times modulate network spontaneous firing rate of
uncoupled networks. B: schematic representation of the periodic leak conductance modulation of RS and FS
neurons. C: low-frequency modulation of RS cells causes a significant relative power increase (P = 0.002)
in a 4-Hz frequency band around stimulation frequency, 8 Hz. To compute the power we use multitaper
power spectral density with 3 tapers, 500-ms time window sliding by 50 ms. Relative power in the given
frequency is defined as the ratio of power in a 4-Hz frequency range around the given frequency to the
total power from 0 to 100 Hz. Black bar is for no modulation case (baseline), and green is in the presence of
periodic modulation. Error bars are calculated over 25 repetitions of the simulation. D: 40 Hz modulation
of RS neurons does not have a significant (P = 0.23) impact of the relative power at high frequencies
centered around 40 Hz. E: low-frequency leak conductance modulation of FS interneurons does not cause
a significant (P = 0.91) change in relative power around 8 Hz. F: stimulating FS neurons at gamma-band
frequencies significantly (P � 0.01) increases relative power in gamma-band frequencies. *Significant
difference between two bars or values.

network instantaneous firing rate in isolated RS and FS neurons (fig.3.8A). We then eval-

uated the impact of the imposed leak conductance modulation on network activity in the

network with all possible connections intact (fig.3.8B). Modulating RS leak conductance

at 8 Hz caused a small, but significant (P = 0.002; 2-sample t-test distribution), increase

in network activity in the 6- to 10-Hz frequency band (fig.3.8C). Modulation of RS leak

conductance at 40 Hz had no significant effect (P = 0.23) on network activity in the 38-

to 42-Hz frequency band (fig.3.8D). Qualitatively, the modulation-induced correlated RS

activity triggers LTS spiking, which, in turn, produces extended inhibition (50 ms decay
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time) of both RS and FS neurons. As a result, the LTS inhibition largely suppresses the

drive-evoked RS spiking response. Modulating FS leak conductance, in contrast, evokes

a different set of biophysical mechanisms. Periodic modulation of FS leak conductance at

8 Hz has little effect (P = 0.91) on the network activity in the 6- to 10-Hz range (fig.3.8E).

With the short decay time (5 ms) of FS inhibition, the impact of FS inhibition on RS spik-

ing is much shorter than the period of modulation (120 ms), thus leaving most of the RS

spiking to be dominated by stochastic external input. The situation changes for 40-Hz

modulation of FS leak conductance. This rate of modulation significantly (P � 0.01)

increased the power of the network activity in the 36- to 42-Hz range (fig.3.8F). Qualita-

tively, at 40 Hz modulation and with the decay time (5 ms) of FS inhibition, the external

input-evoked RS spiking undergoes sinusoidal fluctuations. This observation highlights

the impact of periodic FS activity on network rhythmogenesis.

3.4.7 Coherent Oscillations Emerge Dynamically in Coupled Networks

As described above, the stochastic nature of rhythmogenesis causes fluctuations in occur-

rence, phase, duration, and frequency content of oscillation episodes. Such fluctuations

raise the question to what extent intermittent oscillations in two networks covary. To ad-

dress this question, we constructed two identical networks but with independent external

inputs and varied the coupling between the two networks (fig.3.9A).

Within each network, of all possible connections, con- strained by the network structure

(fig.3.1A), a subset of connections is chosen with probability, Pc = 0.2. This procedure

generates sparse and random connectivity within each network. Parameters are tuned
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Figure 3.9: Oscillations covary in networks with modest coupling. A: schematic representation of two
networks with all possible connections and internetwork coupling. Internetwork coupling is similar to in-
tranetwork connection, but with different connection probability. B: coherence plot between two networks
as a function of frequency and the ratio of inter- to intranetwork probabilities for a 4-s simulation. C: max-
imum amplitude of network instantaneous firing rate as a function of the ratio of inter- to intranetwork
probabilities.

(fig.3.5A and fig.3.5B) so that each network generates intermittent oscillations at frequen-

cies around 100 Hz. Coupling between the two networks is constrained by the same rules

of the network structure. A subset of connections between the two networks is chosen

from the possible connections with internetwork probability that ranges from 0 to 0.2.

The coupling between the two networks, quantified as the ratio of inter- to intranetwork

connection probability, ranges from zero (two independent networks of 2,500 neurons

each) to one (one network of 5,000 neurons).
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As expected, in uncoupled networks local activity fluctuations within each network trig-

ger independent episodes of ensemble oscillations resulting in vanishing coherence val-

ues, which were calculated over the 4-s simulation time (fig.3.9B). However, a small in-

crease in the coupling between the two networks causes a sharp rise in the coherence of

the two network activities in the frequency range around 100 Hz. This is despite the fact

that the two networks receive independent external inputs. In conclusion, coherent os-

cillations emerge dynamically in two networks with modest reciprocal coupling. Above

some intermediate coupling, the coherence decreases with increasing coupling. This is be-

cause, in our model, inhibitory (FS and LTS) neurons have a larger time-averaged firing

rate than excitatory (RS) neurons (fig.3.2A). Thus the coupling between the two networks

decreases the overall excitation-to-inhibition ratio, which in turn decreases the overall

network activity (fig.3.9C) and thus reduces coherence.

3.5 Discussion

In this model investigation we have shown that intermittent ensemble oscillations can

arise from the interaction of excitatory RS and inhibitory FS and LTS neurons, while sin-

gle neuron spiking remains largely irregular and sparse. The recurrent interaction be-

tween the RS and FS neurons provides a generative mechanism of oscillation. Periodic

activation of FS, but not RS, model neurons causes enhancement of gamma oscillations.

The emerging correlated RS spiking during an oscillation activates LTS neurons. The long

LTS synaptic decay time causes an accumulation of inhibitory synaptic conductances in

all neurons, which eventually terminates the ensemble oscillation. The stochastic nature

of ensemble oscillation causes a phase drift during an epoch of oscillation, and a large
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variability in durations and peak frequencies from epoch to epoch. Importantly, how-

ever, oscillations largely covary for two networks with sufficient coupling.

3.5.1 Discrete and Continuous Variables Interact in the Network

The dichotomy between discrete irregular single-neuron spiking and continuous net-

work activity lies at the core of cortical oscillations [52, 74, 75]. First, the firing rate of

individual neurons is typically much smaller than the dominant oscillation frequency

[5, 65, 66, 115]. Second, discrete spike events are transformed into continuous variables,

such as the synaptic gating variable and the membrane potential. Third, the continuous

variables determine the probability of single-neuron spiking. Fourth, in a large popula-

tion of neurons, the probability of single-neuron spiking translates into network instan-

taneous firing rates. In conclusion, at the level of continuous variables, the network dy-

namic is fully described within the three-dimensional state space spanned by the instan-

taneous firing rates of RS, FS neurons, and LTS-mediated slow inhibitory conductances

in all neurons (fig.3.4).

3.5.2 Fast Negative Feedback Generates Oscillations

The biophysical mechanisms of sparse pyramidal neuron spiking during gamma oscilla-

tion have been explored in recent studies emphasizing the role of spike frequency adapta-

tion and global inhibition [168] as well as shunting inhibition [169,170]. Pharmacological

blockade of inhibition disrupts oscillations [36, 116, 166, 167, 171, 172]. Our model results

(fig.3.8F) corroborate the need for inhibition in rhythmogenesis and further predict how

the FS synaptic rise and decay time constants impact the oscillation frequency (fig.3.5A
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and fig.3.5B). The oscillation of the continuous variables is, however, the result of the

convolution of discrete and stochastic spike events. The stochastic nature of rhythmoge-

nesis results in phase drifts during an epoch of oscillation (fig.3.6). In other words, the

phase of an oscillation is not conserved during the elevated power of an oscillation. This

lack of autocoherence has been observed in LFP recordings from primary visual cortex of

monkeys [105,108]. In addition, the stochastic nature of rhythmogenesis results in a large

epoch-to-epoch variability in peak frequencies (fig.3.7B), largely similar to the variability

examined in primary visual cortex [105].

Optogenetic manipulation of barrel cortex in vivo showed that light-driven periodic (40-

Hz) activation of FS neurons amplifies oscillations in the gamma range, whereas similar

activation of RS had no such effect [92]. Our model reproduces this experimental obser-

vation (fig.3.8D and fig.3.8F) and thus, consistent with investigations of a more complex

model [173], emphasizes the role of FS neurons in rhythmogenesis.

3.5.3 Slow Negative Feedback Terminates Oscillations

Synchronous RS activity during an oscillation recruits LTS neurons, and their slowly ac-

cumulating inhibition eventually terminates the oscillation (fig.3.4). Because of the under-

lying stochastic spiking, accumulation of activity too is stochastic, which translates into

a distribution of oscillation epoch durations (fig.3.7A). Such duration variability is qual-

itatively similar to what has been observed in primary visual cortex [105]. On average,

the duration of an oscillation epoch increases with increasing LTS synaptic time constants

(fig.3.5E and fig.3.5F). With biologically plausible LTS synaptic time constants, the model

generated oscillation durations of up to a few hundred milliseconds (fig.3.7A). Because
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the network stops fulfilling all four features for very large LTS synaptic time constants,

additional mechanisms would have to be explored for longer durations. Importantly,

our model makes the experimentally testable prediction that optogenetic activation of

LTS neurons after the onset of an oscillation will shorten the duration of that oscillation

epoch.

Finally, our model investigation raises an important question about the FS and LTS con-

nectivity (fig.3.1A). Our simulations show that, in the presence of FS-to-LTS connections

of sufficient strength, spontaneously started oscillations continue indefinitely, while the

peak frequency distribution remains largely unchanged (data not shown). The qualitative

change in network behavior from intermittent to continuous as a function of FS-to-LTS

synaptic conductance occurs within a narrow range between 4.0 nS (intermittent oscilla-

tions) and 4.7 nS (continuous oscillations).

The key mechanisms of oscillation termination are the accumulation of activity and the

resulting negative feedback. The LTS neurons are but one biophysical implementation of

the termination mechanism. Alternatively, oscillation termination can be accomplished

by nonlinear transfer functions [174], possibly implemented by the nonlinear properties

of dendrites and synapses [175,176]. Memmesheimer [174] has shown that incorporating

supralinear dendritic enhancement of synchronous inputs leads to the generation of inter-

mittent sharp-wave ripples (200 Hz). This poses the question for future studies whether

coexistence of these two mechanisms, slow inhibition and nonlinear transfer function,

renders intermittent oscillations more robust. The model presented here shows that in-

termittency can arise due to the network structure rather than single-neuron property.

However, the model is not robust. Intermittent oscillations arise from small volumes

within the multidimensional parameter space.
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For completeness, we discuss two important features of network models with nonlin-

ear components, robustness and degeneracy. First, an exhaustive scan of the ∼ 25-

dimensional parameter space is computationally extremely expensive and is beyond the

scope of the present paper. Nevertheless, network behavior is robust with respect to small

variations of connection probability (from 30% up to 50%) and synaptic conductances for

AMPA and GABA channels (∼ 10% around the values given in Table3.2). Second, the

fact that, in networks with nonlinear elements multiple combinations of parameters can

give rise to the same output, is well established in network theory and nonlinear dynam-

ics, was introduced in neuroscience with a detailed model simulation [177], and received

further intellectual support in the analytic investigation of a simple model [147]. An ex-

haustive scan of the parameter space in search for degeneracy is beyond the scope of this

manuscript.

3.5.4 Oscillations Covary for Coupled Networks

The stochastic nature of rhythmogenesis and the resulting variability in phase, peak fre-

quency, and duration raise questions as to the potential coordination of oscillations across

multiple networks. Regardless of the observed variability and the fact that phase does not

unfold linearly with extended time, it is thought crucial for two networks to be able to off-

set differences in oscillation frequencies. In this manner, networks can initiate and main-

tain oscillations as communication means between distant neuronal groups [2,80–83]. We

have shown that oscillations between distant regions remain robustly coordinated despite

significant variations in their internal dynamics. Our results indicate that a wide range of

frequencies could be exploited as mechanisms for information transmission between two

networks with recurrent connections during perceptual and cognitive processing.
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3.5.5 Simulating Important Features of Cortical Oscillations

Numerous previous theoretical investigations have offered physical intuition about in-

dividual aspects of rhythmogenesis in cortical circuits [36, 79, 173, 178–180]. Here we

highlight selected examples. 1) A spiking model was designed to generate ensemble

oscillations in the presence of irregular and sparse spiking, but did not reproduce the in-

termittency of rhythms [52]. 2) Another spiking model included spike timing-dependent

plasticity and displayed the transition between different frequency bands [181]. However,

the degree of synchronization of spikes during network oscillations was inconsistent with

the experimentally observed irregular and sparse spiking. 3) Clustered connections have

been proposed to generate slow dynamics and high variability in a network of spiking

neurons [182]. This model, however, does not reproduce intermittent ensemble oscilla-

tions with variable peak frequencies. 4) electroencephalogram (EEG) model net- works

(not spiking) generate intermittent oscillations [105, 183–186]. However, by design (not

spiking), these EEG models do not speak to irregular and sparse spiking.

In contrast, the spiking model proposed here, for the first time, reproduces five important

features of observed cortical oscillations: 1) irregular and sparse spiking, 2) phase drift

during an epoch of oscillation, 3) intermittent oscillations, 4) epoch-to-epoch variations

in peak frequency and duration, and 5) coherence across multiple networks.

In addition, the model makes two testable predictions. First, our model predicts a lack

of connections from FS to LTS neurons. Experimental observations in hippocampus [148,

187] support this prediction. In cortex, the connectivity from FS to LTS neurons could be

tested experimentally in the following two ways: 1) search for physiological connections

via dual whole cell recordings in a slice of cortex and 2) search for anatomical connections
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via electron microscopic survey (connectomics) of a piece of cortical tissue. Second, the

model predicts that optogenetic hyperpolarization of LTS neurons would transform os-

cillations from intermittent to more continuous. This experiment could be refined by trig-

gering the optogenetic manipulation of LTS neurons on a detected oscillation (for online

oscillation detection, see, for instance, [133]). The prediction is that oscillation-triggered

hyperpolarization of LTS neurons would increase oscillation episode duration, whereas

oscilla- tion-triggered depolarization of LTS neurons would decrease oscillation episode

duration.
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4.1 Abstract

Cortical sensory responses are highly variable. This variability can be correlated across

neurons (due to some combination of dense intracortical connectivity, cortical activity

level, and cortical state), with fundamental implications for population coding. Yet the

interpretation of correlated response variability (or noise correlation) has remained

fraught with difficulty, in part because of the restriction to extracellular neuronal spike

recordings. Here, we measured response variability and its correlation at the most mi-

croscopic level of electrical neural activity, the membrane potential, by obtaining dual

whole-cell recordings from pairs of cortical pyramidal neurons during visual process-

ing. We found that during visual stimulation, correlated variability adapts towards an

intermediate level and that this correlation dynamic is mediated by intracortical mech-

anisms. A model network with external inputs, synaptic depression, and structure

reproduced the observed dynamics of correlated variability. These results establish

that intracortical adaptation self-organizes cortical circuits towards a balanced regime

at which network coordination maintains an intermediate level.

4.2 Introduction

Sensory cortex is not simply one layer in a feedforward network; it receives strong in-

puts from thalamus, but intracortical feedback dominates cortical circuitry (fig.4.1a). This

tangle of cortical connections causes neural activity to be coordinated across multiple spa-

tial and temporal scales [188, 189]. Moreover, in a given cortical network, the strength of

this coordination can vary with activity level and network state [84, 190–194], which is

76



Figure 4.1: Investigating the dynamics of correlated variability in recurrent circuits of visual cortex.
(a) Feedforward thalamocortical network subject to sensory inputs (magenta). Coordination between pairs
of cortical neurons (black) is determined by convergence patterns in thalamic inputs (green). (b) A more re-
alistic, interaction-dominated thalamocortical network, in which the inputs to any one cortical neuron arise
primarily from other cortical neurons. Coordination is thus a function of both feedforward and recurrent
inputs. (c) The level of cortical coordination affects cortical function, and it is unknown if and how this
changes with sensory stimulation. (d) We simultaneously recorded the membrane potentials from pairs of
cells, as well as the nearby LFP, during ongoing and visually-evoked activity in a densely-interconnected
thalamocortical network. (e) Pairwise membrane potential recordings provided a measure of cortical coor-
dination across stimulus conditions that avoids the pitfalls of spike data.

considered to have implications for cortical function [195–198]. For example, weak co-

ordination corresponds to a larger library of words available to the spatiotemporal code,

while stronger coordination supports signal propagation (fig.4.1c). The realized level of

coordination in active cortical circuits is expected to represent a balance between such

competing system needs. Two unanswered questions concerning coordination continue

to block our path to understanding sensory processing in cerebral cortex. First, what are

the levels of cortical coordination during sensory processing, and to what extent do these

levels change with varying stimulus conditions (fig.4.1c)? Second, what mechanisms are

responsible for the realized level of cortical coordination and its changes?
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Recording the spike trains from pairs of neurons for repeated presentations of an iden-

tical stimulus and evaluating the level of correlated response variability (or noise corre-

lation) has remained the work horse of investigating cortical coordination (see [84, 199]

for reviews). This spike-based approach is popular in part because of the relative ease

of obtaining spiking responses from pairs of neurons in intact brains. Reported values

of spike-based noise correlation tend to be significantly nonzero, but results have varied

across studies [84, 191, 199–201]. Furthermore, the interpretation of cortical coordination

from spike data is littered with complications, including a spike-rate dependence of noise

correlation values [199,202], the underrepresentation of sparse-spiking neurons, and pos-

sible biases introduced by the spike-sorting process [199, 203]. In conclusion, the impor-

tant study of cortical coordination, including its relation to mechanisms and function,

has been restricted by its focus on spike recordings, and continues to represent an unmet

challenge in systems neuroscience.

In response to this need, we investigated the dynamics of correlated response variability

at the level of the membrane potential by obtaining dual whole-cell recordings from pairs

of cortical pyramidal neurons during visual processing (fig.4.1d), e. We found a high level

of trial-to- trial membrane potential response variability. Further, correlated variability in

the gamma band range of membrane potential fluctuations increased at stimulus onset,

but returned to pre-stimulus values during continued visual stimulation. A brief visual

stimulus, triggering persistent cortical activity, elicited a similar dynamic of correlated

variability, thus implicating an intracortical mechanism. A model network with small-

world connectivity, external inputs, and synaptic depression reproduced the observed

dynamics of correlated variability, and further indicated that network oscillations play a

crucial role. Taken together, these results establish adaptation towards an intermediate
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level of coordination as a fundamental principle of cortical organization during visual

processing.

4.3 Results

To quantify response variability and its correlation across neurons, we recorded the mem-

brane potential (V) from 19 pairs of pyramidal neurons in visual cortex of the turtle

ex vivo eye-attached whole-brain preparation during visual stimulation of the retina

(fig.4.1d). Ongoing activity in turtle visual cortex was largely quiet. In contrast, visual

stimuli evoked barrages of postsynaptic potentials in cortical pyramidal neurons that

were accompanied by extensive fluctuations in the nearby local field potential recording

(fig.4.1e), indicating strong concurrent network activity.

4.3.1 Pyramidal neuron membrane potential visual responses are highly

variable

Single-neuron membrane potential responses to repeated movie presentations varied from

trial to trial, with a response variability magnitude that exceeded the trial-averaged mean

response (fig.4.2a). Importantly, the magnitude of the response variability was qualita-

tively unchanged when the visual stimulus consisted of brief flashes, which evoked long-

lasting responses in visual cortex (fig.4.2b). This stimulus invariance of the trial-to-trial

response variability indicates an intra-thalamocortical origin of the network activity and

the resulting membrane potential fluctuations.
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Figure 4.2: Dynamics and complexity of trial-to-trial response variability. (a) Single-trial responses
(low opacity) and across-trial average responses (high opacity) for two simultaneously-recorded neurons.
Stimulus is naturalistic movie (see Methods). Single trials artificially aligned for clarity. (b) Same as in
(a), but for a different pair of cells, and stimulus is 150 ms red (640 nm) whole-field flash, with onset at
magenta arrow, (see Methods). (c) Single-trial response from cell in (a). Inset: high-frequency activity
nested within the broader depolarization. (d) Average relative power spectrum (evoked power divided by
ongoing) of residuals for red traces in (a) for the transient (blue) and steady-state (green) epochs. Shaded
regions indicate ±95% confidence intervals by bootstrapping method. (e) Trial-averaged gamma (20 – 100
Hz) power for each of 37 pairs. Each dot represents the across-trial average gamma power for one pair for
that epoch. Dark (light) lines connecting dots represent (in)significant changes in gamma power for that
pair across epochs. Across-epoch significance for each pair determined by comparing bootstrap intervals.
Asterisks above line connecting two epochs indicates results of Wilcoxon signed-rank significance test for
difference in populations of values for those epochs (**: 0.001 < P < 0.01; ***: P < 0.001; no asterisk and
gray line: P > 0.05). Two outliers truncated for clarity.
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For any given trial of visual stimulation, the evoked membrane potential fluctuations

were large and consisted of high-frequency fluctuations nested within broader deflections

(fig.4.2c). To quantify the frequency content of the response fluctuations we first calcu-

lated the membrane potential residual (Vr), which is the single-trial membrane potential

recording from which the trial-averaged membrane potential time series has been sub-

tracted. We then divided the evoked residuals into two analysis windows: the transient

(200 to 600 ms after stimulus onset) and steady-state (800 to 2800 ms after stimulus onset)

windows (Supplementary Information 1). Finally, we calculated the relative power spec-

tral density (rP), which is the power spectral density of the membrane potential residual

for the transient or steady-state window divided by its trial-averaged counterpart from

the ongoing window (2 s prior to stimulus onset).

This analysis revealed four important features concerning the spectral content of the

residual membrane potential fluctuations and of the trial-to-trial response variability.

First, evoked power of residual membrane potential fluctuations in the 0.1 to 100 Hz range

typically increased by two orders of magnitude compared to ongoing activity (fig.4.2d,

fig.S4.2). Second, the frequency content of the membrane potential residual varied across

trials (as indicated by the broad confidence bands in (fig.4.2d). Third, the relative power

spectral density typically consisted of a prominent peak located approximately in the 4

to 10 Hz theta range and a broader, but distinct, distribution in the 20 to 100 Hz gamma

range. Fourth, for both movies and flashes, gamma power increased from the ongoing to

the transient window, and significantly decreased from transient to steady-state (fig.4.2e).

Gamma power of the transient activity varied drastically across cells.
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Together, these data establish that cortical pyramidal neuron membrane potential visual

responses (i) have complex temporal dynamics, (ii) are highly variable from trial to trial,

and (iii) differ from neuron to neuron (fig.4.2).

4.3.2 Correlated variability adapts during visual stimulation

The complex and extensive variability of membrane potential visual responses (fig.4.2)

and the interconnected nature of cortical circuits (fig.4.1b) raised the question to what

extent the response variability is correlated across pyramidal neurons. To address this

question, we calculated the Pearson correlation coefficient between residual membrane

potential fluctuations for each trial and window of interest, i.e., the ongoing, transient,

and steady-state windows. We focused on gamma-band (20 – 100 Hz) activity, which

captures the fast, nested membrane potential fluctuations (fig.4.2c, inset; fig.4.3a), and see

Supplementary Information 2). This band of activity is thought to be associated with nar-

row windows of opportunity for spiking, determining the precise timing of spikes within

a broader depolarization (see [204] for a review). Trial-averaged correlation coefficients

(CC) for ongoing activity were broadly distributed across pairs of pyramidal neurons

(fig.4.3b), and the population average (〈CC〉) was significantly nonzero (〈CC〉 = 0.03,

P = 0.006, one-sided t-test). During the transient period (200 to 600 ms after movie on-

set) trial-averaged correlation coefficients increased significantly compared to ongoing

values (fig.4.3b), to an elevated population average of 〈CC〉 = 0.11 (P = 2.9e − 4 for

ongoing–transient comparison, Wilcoxon signed-rank test). In the steady-state period,

i.e., during continued movie presentation, trial-averaged correlation coefficients returned

to near-ongoing values (〈CC〉 = 0.041, P = 1.6e− 4 for transient–steady-state compari-

son, P > 0.05 for ongoing–steady-state comparison).
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Figure 4.3: Evoked gamma band correlated variability appeared to be modulated by internal mech-
anisms. (a) Examples of gamma band (20 - 100 Hz) residual membrane potential pairs for several trials
(same pair as in (fig.4.2a)). (b) Trial-averaged CC values for each of 22 pairs, 20 - 100 Hz, extended visual
stimulation (see Methods). Each dot represents the across-trial average CC value for one pair for that epoch.
Colored (white) dots represent values (not) significantly different from zero (one-sided t-test). Otherwise,
same as in (fig.4.2e). (c) Same as in (b), but for 17 pairs, and brief visual stimulation (see Methods). The
population-average CC was significantly nonzero during all epochs (〈CC〉 = 0.029, P = 0.004 ongoing,
〈CC〉 = 0.096, P = 3.44e − 6 transient, 〈CC〉 = 0.041, P = 1.50e − 6 steady-state, one-sided t-test), and
increased significantly from the ongoing to transient epochs (P = 0.001 for ongoing-transient comparison,
Wilcoxon signed-rank test), before relaxing to near ongoing values during the steady-state (P = 0.002 for
transient–steady-state comparison, P = 0.189 for ongoing–steady-state comparison, Wilcoxon signed-rank
test). (d) Across-trial average transient CC vs. average ongoing CC for each pair, for all stimuli. Error bars
indicate 95% confidence intervals by bootstrapping method. Red line indicates significant linear regression
fit (r2 = 0.10, P = 0.035). (e) Same as (d), but for steady-state epoch (r2 = 0.15, P = 0.016).
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These results were largely robust with respect to choices of window sizes and gaps be-

tween windows (see Supplementary Information 1 and fig.S4.1). These changes in cor-

related variability primarily reflected changes in phase synchrony in the gamma band

residual activity of simultaneously-recorded neurons (see Supplementary Information 3

and fig.S4.4). In contrast, low-frequency (0.1 – 20 Hz) CC values followed a different

dynamic (fig.S4.3a, b) and were not significantly related to gamma-band CC (see Supple-

mentary Information 2 and fig.S4.3c – e).

The observed dynamics of gamma band correlated variability in response to continuous

visual stimulation could be imposed by the spatiotemporal structure of the stimulus, or

alternatively, could be intrinsic to the thalamocortical system. To distinguish between

these two hypotheses, we recorded from 16 pyramidal neuron pairs while presenting

brief flashes (1 – 200 ms) of light, which evoked responses lasting several seconds in the

visual cortex (fig.4.2b). We found that across the population of all pairs, CC values for

responses to brief stimuli were not significantly different from those for extended stimuli

(P > 0.05, Wilcoxon rank-sum test, for all epochs, see Supplementary Information 4,

and fig.S4.5). Importantly, the same dynamics of correlated variability were observed

for brief stimuli (〈CC〉 = 0.03, P = 0.003 ongoing, 〈CC〉 = 0.11, P = 3.0E−5 transient,

〈CC〉 = 0.041, P = 0.006 steady-state, one-sided t-test; P = 6.4E−4 for ongoing–transient

comparison, P = 0.020 transient–steady-state comparison, P > 0.05 ongoing–steady-

state comparison, Wilcoxon signed-rank test, (fig.4.3c). The similarity of the dynamics

of correlated variability for brief and extended stimuli implicates a mechanism that is

stimulus-invariant and likely to be intracortical in origin.
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Figure 4.4: Changes in CC are related to changes in the shape of relative power spectra. (a) Absolute
value of change in CC (evoked minus ongoing) vs. absolute value of geometric mean of change in gamma
power, for each pair, for transient (top), and steady-state (bottom) epochs. (b) Top: same as in (fig.4.2d), but
confidence bands omitted for clarity. For each cell, the peak power index (M), is defined as the maximum
relative power value in the gamma range (rPmax), divided by the average over the gamma range (rPavg).
Bottom: M for all recorded cells (brief and continuous stimulation), for transient (blue) and steady-state
(green) epochs. (c) Same as in (a), but for absolute value of geometric mean of change in M, for all cells. If
present, red lines indicate significant linear regression fit (P < 0.05).

The evidence of an intracortical origin of correlated variability suggested to us that the

correlated variability of ongoing activity for a given pair should be predictive of its cor-

related variability in response to visual stimulation. Indeed, we found that CC values

during the ongoing epoch were significantly related to CC values for both evoked epochs

(r = 0.38, P = 0.03, transient vs. ongoing, (fig.4.3d); r = 0.39, P = 0.02, steady-state vs.

ongoing, (fig.4.3e), Pearson correlation). This observation suggests a close link between

the underlying mechanisms that determine ongoing and evoked correlated variability,

with connectivity being one candidate mechanism [205, 206].
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4.3.3 Correlated variability is related to the network state

Recent experimental and computational work suggests that the level of coordination be-

tween pairs of neurons might be shaped not only by anatomical connectivity, but also

by network activity level and network state [84, 190–194]. We therefore asked how well

network activity level and/or network state could explain the observed dynamics of cor-

related variability.

As a proxy for network activity level, we inferred the level of presynaptic spiking activity

using the average gamma power in residual membrane potentials. As a population, the

gamma power dynamic (fig.4.2e) was qualitatively similar to that of CC (fig.4.3b), c. In

contrast, for a given pair of cells, the geometric mean of the absolute change in power√
|∆P1|.|∆P2| was not related to the magnitude of the change in CC amplitude for the

ongoing–to–transient transition (r = 0.28, P = 0.10, Pearson correlation). The two quanti-

ties were however related for the transient–to–steady-state transition (r = 0.40, P = 0.017,

Pearson correlation) (fig.4.4b). In conclusion, changes in network activity levels alone did

not fully explain the changes in gamma band correlated variability.

Next, we sought a measure of the network state. Specifically, we focused on the degree

of action potential synchrony as an indicator of network state. Computational work has

shown that synchronous network spiking can generate prominent subthreshold mem-

brane potential fluctuations in a narrow frequency band [52]. Here, we used a measure of

power spectrum peakiness in the 20 to 100 Hz range as a proxy for synchronous network

spiking. The residual relative power spectra (rP) of some cells tended to contain peaks in

the gamma band during the transient epoch, which were often smaller or absent in the

steady-state (fig.4.2d, fig.S4.2). To quantify this aspect of the power spectrum for each
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cell and epoch, we defined the quantity M as the ratio of the maximum relative power

in the gamma range (rPmax) to the average relative gamma power (rPavg) (fig.4.4b, top).

Across the population of cells, M varied continuously, and the population average (〈M〉)

decreased significantly from transient to steady-state (〈M〉 = 1.65 transient, 〈M〉 = 1.54

steady-state, P = 2.2E−4 for transient–steady-state comparison) ((fig.4.4b), bottom). For

the population of pairs, we found that the geometric mean of the absolute change in M,√
|∆M1|.|∆M2|, was significantly related to the amplitude of the change in CC (r = 0.40,

P = 0.02 ongoing–to–transient; r = 0.41, P = 0.01 transient–to–steady-state, Pearson

correlation, where ∆M = Mtrans − 1 for the ongoing–transient transition) (fig.4.4c). In

conclusion, for a given pair of cells, the change in network state, measured as a change in

gamma spectrum peakiness, was a good indicator of the change in correlated variability.

4.3.4 Synaptic time constants, synaptic depression, and synaptic clus-

tering together mediate the dynamics of correlated variability

What biophysical mechanisms could mediate the experimentally-observed response prop-

erties (i.e., across-trial variability (fig.4.2a, b), subthreshold gamma oscillations (fig.4.2c,

fig.4.3a), the dynamics of correlated variability (fig.4.3) and its network state dependence

(fig.4.4))? To address this question, we investigated a model network (see Methods) of

800 excitatory and 200 inhibitory leaky integrate-and-fire neurons, with Poisson process

external inputs to all excitatory neurons (fig.4.5a). Excitatory-to-excitatory and excitatory-

to-inhibitory connections had small-world connectivity, with 5% connection probability.

Inhibitory-to-inhibitory and inhibitory-to-excitatory synapses were random, with 20%

connection probability. An increase in the external input rate mimicked the stimulus. We
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Figure 4.5: A model network strengthens the internal mechanism hypothesis, suggesting crucial roles
for network oscillations. (a) The model network was composed of 800 excitatory LIF neurons with small-
world connectivity, and 200 randomly-connected inhibitory LIF neurons (not depicted). All excitatory neu-
rons received Poisson external inputs, and the stimulus was modeled as a gradual increase in the external
input rate (see Methods). (b – c) Same as in fig.4.2b, c, but two excitatory model neurons randomly-selected
from the network (see Methods). (d) Same as in fig.4.2d, but for forty pairs of excitatory neurons, generated
from twenty neurons randomly-selected from the network.

selected a set of synaptic rise and decay times [11,52] that were consistent with gamma os-

cillations in the instantaneous network firing rate when the network was subject to strong

external drive. Motivated by previous experiments (ref#21 in Shew et al. 2015) and mod-

els (ref#14 in Shew), we implemented adaptation via short-term synaptic depression with

recovery (see Methods). Armed with this battery of mechanisms and structural complex-

ity, we simulated the network spiking in response to repeated stimulus presentations (20

trials).
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The model network reproduced the experimentally observed response variability and

gamma oscillations. The simulated membrane potentials from randomly-selected excita-

tory model neurons revealed fluctuations and across-trial response variability (fig.4.5b)

that were qualitatively similar to what we observed from recorded membrane potentials

of pyramidal neurons (fig.4.2a, b). Furthermore, the gamma band residuals of simulated

membrane potentials (fig.4.5c) largely resembled the experimentally-observed residual

subthreshold gamma oscillations (fig.4.3a). Residual power spectra were peaked in the

gamma range (fig.S4.6a, top), at frequencies that coincided with peaks in the spectra of

the instantaneous network firing rate (fig.S4.6a, bottom). Due to synaptic depression with

slow recovery, the model also reproduced the eventual decrease in the total gamma power

in membrane potential residuals (fig.S4.6b), and in the amplitudes of gamma-band peaks

in the residual membrane potential and population spike rate spectra (fig.S4.6a).

In addition, the model network reproduced the experimentally-observed dynamics of

correlated variability. The simulated correlated variability increased significantly from

ongoing to transient (〈CC〉 = 0.003 ongoing, 0.146 transient, P = 3.6E−8 for ongoing–

transient comparison) (fig.4.5d), a trend that was consistent with our experimental results

(fig.4.3b), c. Furthermore, mediated by synaptic depression, correlated variability de-

creased significantly from transient to steady state (〈CC〉 = 0.10 steady-state, P = 1.49E−6

for transient–steady-state comparison, P = 3.6E−8 for ongoing–steady-state comparison)

(fig.4.5d). In contrast, when synaptic depression was absent, correlated variability in-

creased from transient to steady state (fig.S4.7a).

As observed in experiment, this dynamic of correlated variability depended crucially on

network activity oscillations. When synaptic time constants for excitation and inhibition
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were chosen to be identical (see Methods and Supplementary Information 5), the stim-

ulus instead pushed the network into a regime of asynchronous activity, as evidenced

by the population spike-rate and residual membrane potential power spectra (fig.S4.6c).

This had little effect on the overall network activity level and gamma power dynamics

(fig.S4.6d). Correlated variability, however, was very weakly modulated by the stimu-

lus (fig.S4.7b), in contrast with our experimental results (fig.4.3b), c. This dependence

on network oscillations had a synaptic basis: in the synchronous network, not only were

correlations between synaptic conductances stronger than those in the asynchronous net-

work, the lag between excitation and inhibition was larger, allowing for a longer window

of opportunity for synaptic input correlations to be manifested in pairs of membrane po-

tentials [84, 190] (fig.S4.8). In conclusion, changes in network oscillations, rather than

network activity levels alone, determine the changes in correlated variability.

The network oscillation dynamic described here is not the only one capable of repro-

ducing the experimentally-observed dynamics of correlated variability. For example, a

similar randomly-connected network generates oscillations that either invade the entire

network or are absent, and the CC dynamic can be reproduced by abolishing the oscil-

lation early in the transient window via strong synaptic depression (data not shown).

This oscillation dynamic is inconsistent with the experimental results, in which gamma

oscillations were strongest during the transient epoch, but persisted in the steady-state

(fig.4.3a, fig.4.4a, fig.S4.4a). In contrast, the small-world network reproduces the correct

network oscillation temporal dynamics (fig.4.5c, fig.S4.6a, bottom, fig.S4.9a). Further-

more, the spatial arrangement of connections introduced by the small-world architecture

adds a spatial dimension to the dynamics of network activity (see Supplementary Infor-

mation 5, fig.S4.9a). Soon after stimulus onset, when synaptic connections are near their

default strength, oscillatory spiking is largely coherent across the network of excitatory
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neurons. However, because of synaptic depression and the distance-dependence of con-

nections, the network dynamically subdivides, and coherent oscillations proceed among

spatially separate groups of neurons in the steady-state. This spatiotemporal dynamic

predicts a dependence of CC temporal dynamics on distance between neurons (fig.S4.9b,

c).

Taken together, these results strengthen the hypothesis that the experimentally-observed

dynamics of correlated variability are primarily driven by the dynamics of thalamocor-

tical network oscillations. As such, synaptic time constants and synaptic depression are

two intrinsic parameters relevant to correlated variability. Constraining the model to also

produce a realistic network oscillation temporal dynamic reveals an additional role for

synaptic clustering.

4.4 Discussion

To study how cortical coordination evolves during visual processing, we measured cor-

related variability between the membrane potentials of pyramidal neuron pairs in turtle

visual cortex during ongoing and visually-evoked activity. This approach provides an

exceedingly rare and much-needed view into the subthreshold events underlying coor-

dinated spiking activity [84], and importantly, is uncorrupted by issues associated with

spike-based investigations. For example, the process for targeting cells for recording is

agnostic to the cells spike rates, and this study thus gives voice to the dark neurons that

overwhelmingly populate the cortex [207], but are rarely represented in the vast literature

on correlated variability. By supplementing our experimental approach with a model net-

work investigation, we further addressed the relative contribution of the thalamocortical
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network to the dynamics of correlated variability, and identified relevant network vari-

ables.

We found that both extended and brief visual stimulation evoked large, low-frequency

membrane potential fluctuations (fig.4.1e), with nested gamma-band (20 – 100 Hz) oscil-

lations (fig.4.2c and fig.4.3a), both of which varied significantly from trial to trial (fig.4.2a

and b, fig.4.3a). This gamma-band variability was significantly correlated across the pop-

ulation of pairs in a given window of activity (fig.4.2b and c). It is reasonable to ask

whether this is at all relevant to sensory processing, given that cortical neurons transmit

spikes, and not subthreshold fluctuations. Previous work suggests it is. First, the fluctu-

ations themselves are important for interpreting spiking activity in networks of sparse-

spiking neurons; subthreshold gamma oscillations define narrow windows in which a

given neuron is most likely to fire, and thus determine precise spike timing [204,208]. Sec-

ond, the across-trial variability of these fluctuations constrains that of the spiking activ-

ity [209]; spiking responses can be no more reliable than the corresponding subthreshold

activity. Finally, if and when neurons do spike in this visually-evoked high conductance

state, the spike correlations will be shaped by state-induced changes in response gain,

distance from threshold, and subthreshold correlations [84]. In fact, this last relationship

may be supralinear [210], meaning that small changes in subthreshold correlated variabil-

ity can have major repercussions for supra-threshold coordination.

What determines the strength of correlations in these single-trial deviations for a given

pair of neurons? Anatomical connectivity is one obvious candidate, but what are the rel-

ative contributions from feedforward and recurrent connections (fig.4.1b)? Recent work

has shown that the coupling of the spiking activity of a neuron with that of the population

is stimulus-invariant [191, 192], suggesting a crucial role for intracortical connectivity. In
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agreement with this, we found that gamma band correlated variability for ongoing and

evoked activity was significantly related, for both the non-adapted (transient, fig.4.2e)

and adapted (steady-state, fig.4.2f) conditions. In addition, although all pairs of neurons

were separated by less than 300 microns, and therefore likely received similar sensory

inputs [211], correlated variability was broadly-distributed across the population during

a given window of activity (fig.4.3b and c). This variability suggests that the sparse con-

nectivity of the cortex dramatically affects the distribution of pairwise correlations [190].

Indeed, alternate network models with higher connectivity were unable to reproduce this

variability (data not shown).

Connectivity was not the only relevant parameter; for most pairs of neurons, and for the

population as a whole, gamma band correlated variability increased with visual stimula-

tion, but then relaxed to near ongoing values, despite persistent activity (fig.4.2). That is,

for a given network (i.e., an anatomical arrangement of feedforward and recurrent con-

nections), the level of coordination was not static. This was true for responses to both

extended and brief stimulation (fig.4.3b and c) suggesting the dynamic did not reflect a

change in the statistics of the sensory inputs. Previous experimental work implicates the

cortical state: coordination in spiking activity [191, 192], synaptic inputs [121, 194], and

membrane potentials [208] appear to be related to network synchrony. Accordingly, we

found ample experimental and computational evidence implicating an evolving network

state. Specifically, changes in correlated variability across epochs were related to changes

in properties of the power spectra (fig.4.4b and c), and reflected a phase synchrony dy-

namic (fig.S4.4) consistent with a network adapting from a ”disinhibited” to a ”balanced”

state [110]. In addition, the model revealed a strong relationship between network spike-

rate oscillations and gamma-band correlated variability (Supplementary Information 5),
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and also demonstrated the synaptic basis: synaptic current correlations and the lag be-

tween excitation and inhibition are larger for pairs of neurons in a synchronous network

than for those in an asynchronous network (Supplementary Information 5, fig.S4.8). As

such, our experimental results relating correlated variability to network state are in simul-

taneous agreement with multiple experimental studies of cortical activity across a variety

of preparations and spatial scales, and importantly, demonstrate this principle in action at

the level of the membrane potential during sensory processing. Moreover, our model re-

sults confirm computational predictions relating synaptic current dynamics to membrane

potential correlations [84,190], and extend previous work by demonstrating the effects of

synaptic clustering and adaptation.

Gamma band correlated variability decreased from transient to steady-state, yet remained

significantly nonzero (fig.4.2d and fig.4.3c). While vanishingly-small values would theo-

retically support greater response fidelity [195], this realized steady-state value may re-

flect the level of neuronal interaction necessary for cortical function (e.g., feature bind-

ing [212], effective signal propagation [85], and general cognitive function [129]). In other

words, cortical coordination during sensory processing is maintained at an intermediate

level (i.e., less than that during the initial response phase, but larger than zero) that rep-

resents the ideal balance between competing cortical needs (fig.4.1c). This balanced state

can be maintained across stimulus conditions by intrinsic adaptation mechanisms.

Previous studies have described a stimulus-induced abolition of low-frequency corre-

lated variability in membrane potential [208] and membrane potential–LFP [201] pairs

in visual cortex. We observed no such decrease (fig.S4.3a, b). This discrepancy may be

partially explained by the nature of ongoing activity. In these previous studies, visual

stimulation interrupted large-amplitude, low-frequency events that were coherent across
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electrodes and had random phase relative to stimulus onset. These fluctuations largely

remained in residual traces, likely influencing pre-stimulus correlated variability. In con-

trast, these spontaneous bursts of activity occurred relatively infrequently in our exper-

iments (fig.4.1e, fig.4.2a and b). To reproduce this quiescent –to– active sensory-evoked

dynamic, we limited the inputs to our model neurons to those from external stimulation,

and stimulus-triggered, yet internally-generated events. Our model could likely be mod-

ified to reproduce the results of these other works by adding a shared background fluc-

tuation [84]. This brute-force implementation would not be very illuminating, however;

spontaneous events can be strikingly similar to evoked [205, 206, 213], and may therefore

represent activity in the same microcircuits, triggered by events usually hidden from the

experimenter. Reproducing spontaneous events in a manner that is consistent with their

possible sources is beyond the scope of this study.

Here, we have focused on fundamental properties of the cortex (anatomical and emer-

gent) that are likely to strongly influence correlated variability. Future work can more

definitively assess the relative contributions to cortical coordination from various in-

tracortical and extracortical sources not addressed here, such as strong inhibitory feed-

back [214, 215], thalamic adaptation [216, 217], unequal adaptation of excitatory and in-

hibitory cortical synapses [218], and the (time-varying) statistics of neuronal activity in

the early visual pathway (e.g., correlations across thalamic inputs [219, 220]), to name

a few. Of particular interest are top-down influences (e.g., attention), which have been

shown to impact spike-count correlations in awake, behaving preparations [221,222]. Our

results predict that such higher-order inputs may impact correlated variability by influ-

encing the network state. It will be interesting to test this hypothesis, and to determine

the synaptic basis of the interaction if confirmed. Further, it is crucial to test for a rela-

tionship between subthreshold correlated variability and psychophysical performance,
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which will require a behavioral assay. As dual whole-cell recordings in awake, behaving

preparations (possibly combined with other recording modalities in multiple areas) be-

come increasingly common, future experiments can be designed to address these exciting

questions.

4.5 Methods

4.5.1 Surgery

All procedures were approved by Washington Universitys Institutional Animal Care and

Use Committees and conform to the guidelines of the National Institutes of Health on

the Care and Use of Laboratory Animals. Seventeen adult red-eared sliders (Trachemys

scripta elegans, 150 – 1000 gr) were used for this study. Turtles were anesthetized with

Propofol (2 mg Propofol/kg), then decapitated. Dissection proceeded as described before

[223, 224]. In brief, immediately after decapitation, the brain was excised from the skull,

with right eye intact, and bathed in cold extracellular saline (in mM, 85 NaCl, 2 KCl, 2

MgCl2 *6H2O, 20 Dextrose, 3 CaCl2 − 2H2O, 45 NaHCO3 ). The dura was removed from

the left cortex and right optic nerve, and the right eye hemisected to expose the retina.

The rostral tip of the olfactory bulb was removed, exposing the ventricle that spans the

olfactory bulb and cortex. A cut was made along the midline from the rostral end of

the remaining olfactory bulb to the caudal end of the cortex. The preparation was then

transferred to a perfusing chamber (Warner RC-27LD recording chamber mounted to PM-

7D platform), and placed directly on a glass coverslip surrounded by Sylgard. A final cut

was made to the cortex (orthogonal to the previous and stopping short of the border
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between medial and lateral cortex) allowing the cortex to be pinned flat, with ventricular

surface exposed. Multiple perfusion lines delivered extracellular saline, adjusted to pH

7.4 at room temperature, to the brain and retina in the recording chamber.

4.5.2 Intracellular Recordings

For whole-cell current clamp recordings, patch pipettes (4 – 8 MΩ) were pulled from

borosilicate glass and filled with a standard electrode solution (in mM; 124 KMeSO4 , 2.3

CaCl2 − 2H2o, 1.2 MgCl2 , 10 HEPES, 5 EGTA) adjusted to pH 7.4 at room temperature.

Cells were targeted for patching using a dual interference contrast microscope (Olympus).

Simultaneously recorded cells were located less than 300 microns apart, and all cells were

located within 300 microns of an extracellular recording electrode. Intracellular activity

was collected using an Axoclamp 900 A amplifier, digitized by a data acquisition panel

(National Instruments PCIe-6321), and recorded using a custom Labview program (Na-

tional Instruments), sampling at 10 kHz. We excluded cells that did not display stable

resting membrane potentials. The visual cortex was targeted as described below.

4.5.3 Extracellular Recordings

Extracellular recordings were achieved with tungsten microelectrodes (MicroProbes heat

treated tapered tip), with approximately 0.5 MΩ impedance. Electrodes were slowly ad-

vanced through tissue under visual guidance using a manipulator (Narishige), while

monitoring for activity using custom acquisition software (National Instruments). Ex-

tracellular activity was collected using an A-M Systems Model 1800 amplifier, band-pass
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filtered between 1 and 20,000 Hz, digitized (NI PCIe-6231), and recorded using custom

software (National Instruments), sampling at 10 kHz.

4.5.4 Identification of Visual Cortex

We used a phenomenological approach to identify the visual cortex, described previously

[225]. In general, this region was centered on the anterior lateral cortex, in agreement

with voltage-sensitive dye studies [226, 227]. Anatomical studies identify this as a region

of cortex receiving LGN projections [211].

4.5.5 Visual Stimulation

Whole-field flashes were presented using either a red LED (Kingbright, 640 nm), mounted

to a manipulator and positioned 1 – 5 cm above the retina, or a projector-lens system

(described below). The mean LED light intensity (irradiance) at the retina was 60 W/m2.

For one turtle, we used these same LEDs in conjunction with 200 micron optical fibers

(Edmund Optics) to project sub-field flashes (1 – 200 ms) onto the visual streak. Other

stimuli were presented using using a projector (Aaxa Technologies, P4X Pico Projector),

combined with a system of lenses (Edmund Optics) to project images generated by a

custom software package directly onto the retina. The mean irradiance at the retina was

1 W/m2 . This system was used to present brief (100 – 250 ms) whole-field and sub-field

flashes (red or white), sustained (10 s) gray screen, a naturalistic movie (Catcam) a motion-

enhanced movie (courtesy Jack Gallant), and a phase-shuffled version of the same movie

(courtesy Jack Gallant and Woodrow Shew). In all cases, the stimulus was triggered using

a custom Labview program (National Instruments).
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The preparation was in complete darkness before and after each stimulus presentation.

Flashes lasted between 1 ms and 150 ms, with at least 20 s between flashes. Movies lasted

either 10 s or 20 s, and were shown at least 12 times, with at least 30 s between the end

of one presentation and the beginning of the next. We presented extended visual stimuli

(movies) while recording from 19 pairs, and brief stimuli (diffuse flashes) while recording

from 16 pairs.

4.5.6 Signal Processing

In all analyses, only cells with 12 or more visual stimulation trials were included. Raw

data traces were down-sampled to 1000 Hz. Because action potentials in turtle cortical

pyramidal neurons are relatively wide, spike waveforms still contributed to the band-

pass filtered intracellular recordings. To remove these, an algorithm was used to detect

spikes, and the membrane potential values in a 20 ms window centered on the maximum

of each spike were replaced via interpolation. Finally, the traces were filtered (20 Hz

lowpass or 20 – 100 Hz bandpass Butterworth filter).

4.5.7 Cross-correlation Analysis

For each single-trial voltage trace, the residual (V r or deviation from the average activity)

was found by subtracting the across-trial average time series from the single-trial time

series:

Vr = V− < V >trials (4.1)
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Residuals were then separated into three epochs: the ongoing epoch (defined to be the

two seconds prior to the onset of visual stimulation), the transient epoch (200 to 600 ms

after stimulus onset), and the steady-state epoch (800 to 2800 ms after stimulus onset;

fig.4.2a). For each pair of simultaneously-recorded cells, the Pearson correlation between

residual pairs was then calculated for each epoch and trial. The results were averaged

across all trials, resulting in the trial-averaged correlated variability (CC) for each pair

and epoch:

CCepoch =<
cov(Vepoch

r,1 .Vepoch
r,2 )√

var(Vepoch
r,1 ).var(Vepoch

r,2 )
>trials (4.2)

Because the correlated variability of spike counts been shown to depend on the size of

the window used for calculations [203], we repeated the above process for three other

sets of choices for epoch window sizes and gaps between epochs (see Supplementary

Information 1).

The significance of CC for a given pair and epoch was determined by bootstrapping; CC

was considered to be significantly nonzero if the average value± the 95% confidence level

from bootstrapping did not include zero. Similarly, CC for two epochs were considered to

be significantly different from one another if the bootstrapping intervals did not overlap.

For the population of pairs, we determined the significance of the population-average

CC for a given epoch using the one-sample t-test (that is, by comparing to a zero-mean

normal distribution with the same standard deviation). We tested for a significant change

in population CC values across two epochs by applying the Wilcoxon signed-rank test to

the two sets of CC values.

We also compared CC for responses to brief and extended visual stimulation. First,

pairs were segregated according to the stimulus presented, resulting in 17 flash and 22
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extended-stimulus pairs. The two resulting sets of trial-averaged CC values were then

compared using the Wilcoxon rank-sum test.

4.5.8 Power Analysis

For each trial and cell, we extracted a 5.8 s window of activity (with epoch windows

and gaps between epochs as described above, plus 500 ms windows on eac end to avoid

filtering artifacts in the ongoing and steady-state epochs), and calculated the residual

time series as described above. For each residual trace, we performed wavelet analy-

sis in Matlab using software provided by C. Torrence and G. Compo (available at URL:

http://paos.colorado.edu/research/wavelets/, [107]). This resulted in a power time se-

ries for each cell, for multiple frequencies. For each frequency below 100 Hz, we averaged

the time series across each epoch to obtain the average power at each frequency for each

epoch. We then averaged across trials. For each pair, we also averaged across all frequen-

cies in the gamma range (20 - 100 Hz), and plotted the resulting trial-averaged gamma

power (P) in each epoch to inspect for trends across the population (fig.4.2e). We tested

for significant changes in a given pair and across the population using the same methods

as those described for CC values.

We next inspected for a relationship between changes in CC and changes in gamma

power for a given pair. For the ongoing–to–transient and transient–to–steady-state tran-

sitions, we calculated the change in trial-averaged gamma power for each neuron

∆Pepoch1→epoch2
neuron = Pepoch2

neuron − Pepoch1
neuron (4.3)
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and took the geometric mean of the absolute values:

√
|∆P1.∆P2|

epoch1→epoch2
=

√
|∆Pepoch1→epoch2

1 .∆Pepoch1→epoch2
2 | (4.4)

For each pair, we plotted the absolute value of the average change in CC vs. the result,

and performed linear regression analysis (fig.4.4a).

For each cell, we also obtained the relative power spectrum (rP) for the transient and

steady-state epochs, defined to be the trial-averaged evoked spectrum divided by the

trial-averaged ongoing spectrum (fig.4.2d, fig.S4.6a, c): rPepoch
neuron = Pepoch

neuron/Pongoing
neuron . Sec-

ond, to obtain the peakiness of the relative power spectrum within the gamma range for

each cell, we divided the maximum value of rP in the gamma range by the average value

in the gamma range to obtain the peak ratio (Mepoch
neuron) (fig.4.4b, similar to [208]):

Mepoch
neuron =

[max(rPepoch
neuron)]gamma

[avg(rPepoch
neuron)]gamma

(4.5)

(where Mongoing
neuron = 1). We then calculated the change in peak ratios across epochs:

∆Mepoch1→epoch2
neuron = Mepoch2

neuron −Mepoch1
neuron (4.6)

and then the geometric mean of the absolute values for each simultaneously-recorded

pair (
√
|∆M1.∆M2|). Finally, we inspected for a relationship between

√
|∆M1.∆M2| and

changes in CC for a given pair (fig.4.4c) as described above for changes in power.
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4.5.9 Phase Concentration Analysis

For each residual trace in a given trial, we used wavelet analysis (described above) to

calculate the phase of each signal as a function of time and frequency. We then averaged

over all frequencies in the gamma range (20 - 100 Hz) to obtain the gamma phase time

series for each trace (φi(t)). For each pair of residuals, we calculated the cosine of the

phase difference, and averaged over each epoch to obtain the phase concentration (R) for

each epoch and trial:

Rtrial
epoch =< cos[φ1(t)− φ2(t)] >trial

epoch (4.7)

We then averaged over all trials and analyzed the results for pairwise and population

trends using the same methods as those described for CC values (fig.S4.4b). We also

inspected for a relationship between changes in CC and changes in R for a given pair

(fig.S4c) as described above for changes in power.

4.5.10 Network Models

To investigate the roles of network properties in our experimental results, we imple-

mented a model network of 800 excitatory and 200 inhibitory leaky-integrate- and- fire

neurons. Excitatory-excitatory connections had small-world connectivity [219, 228] (with

5% connection probability), and all other connections were random (with 5% excitatory-

inhibitory, and 10% inhibitory-excitatory and inhibitory-inhibitory connection probabil-

ity). Each nonzero entry in the connection weight matrix was drawn from a Gaussian

distribution with mean value 1.
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The dynamics of the membrane potential (V) of each neuron evolved according to

τm
dV(t)

dt
= −gL[V(t)− EL] + Isyn(t) (4.8)

where the membrane time constant τm = 50 ms (excitatory neurons), 25 ms (inhibitory),

and the leak conductance gL = 10 nS (excitatory), 5 (inhibitory). The leak reversal po-

tential EL for each neuron was a random value between -70 and -60 mV, drawn from

a Gaussian distribution. The reversal potentials for the synaptic current Isyn(t) were

EGABA = −68 mV, and EAMPA = 50 mV.

The synaptic current for each synapse type (between presynaptic neurons of type X and

postsynaptic neurons of type Y) had three relevant time course parameters: delay (τLX ,

that is, the lag between presynaptic spike time and beginning of conductance waveform),

rise time (τYX
R ), and decay time (τYX

D ). Synaptic conductances were modeled as products

of time-varying gating variables (SYX) and maximum conductances (gYX ). Following a

presynaptic spike at time 0, the gating variable dynamics were described by

SYX(t) =
τm

(τYX
D − τYX

R )
[exp(−(t−τLX)/τYX

D ) − exp(−(t−τLX)/τYX
R )] (4.9)

with time constants (in ms) τLE = 1.5, τEE
R = 0.2, τEE

D = 1.0, τ IE
R = 0.2, τ IE

D = 1.0,

τLI = 1.5, τ I I
R = 1.5, τ I I

D = 6.0, τEI
R = 1.5, τEI

D = 6.0. Maximum conductance values (in

nS) were gEE = 1.0, gIE = 6.0, gEI = 30, gI I = 30. In response to a presynaptic spike, the

weight (W) of a synapse depressed and recovered according to

dWij(t)
dt

= −
Wij(t)
τdepress

.δ(t− tsp
j ) +

W0
ij −Wij(t)

τrecover
(4.10)
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with depression time constant τdepress = 30 ms, recovery time constant τrecover = 1500 ms

and tsp
j is the spiking time in presynaptic neuron jth. Depression and recovery time con-

stants were chosen to give reasonable activity time courses for low-frequency (0 – 20 Hz)

membrane potentials. The spike threshold for each neuron was -40 mV. A neuron reset to

-59 mV after spiking, and was refractory for 2 ms (excitatory) and 1 ms (inhibitory).

All excitatory neurons received Poisson external inputs. During ongoing activity, the

external input rate to each neuron was 25 Hz. The stimulus was modeled as a gradual

increase to 500 Hz; the input rate was increased by 95 Hz at stimulus onset, and by an

additional 95 Hz every 50 ms for 200 ms. This gradual increase provided more realistic

low-frequency membrane potentials than did a single step function stimulus, but did not

qualitatively impact the results. The gating variables for external inputs had the same

parameters as for excitatory-excitatory connections, and maximum conductances were

gE = 4 nS.

Each trial was 5.8 s in duration, with stimulus onset at 2.7 s, and the time step was 0.05

ms. The ongoing epoch was defined to be 2200 ms to 200 ms before stimulus onset, the

transient epoch 0 ms to 400 ms after stimulus onset, and the steady-state epoch 600 ms to

2600 ms after stimulus onset. The additional 500 ms at the beginning and end of each trial

ensured there were no wavelet filtering artifacts in the ongoing and steady-state epochs.

We then randomly selected 20 excitatory neurons, and generated 40 V-V pairs from these

twenty. Because action potential rates were higher in this model network than in ex-

periment, and because action potentials can affect V-V noise correlations, we substituted

test neurons for these network neurons before doing the calculation (see Supplementary

Information 6). Test neurons were identical to network neurons, but all synaptic conduc-

tances were multiplied by a factor of 0.5, and spike threshold was raised to -30 mV, which
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was sufficient to eliminate all action potentials. Thus, a test neuron membrane potential

acted as a network sub-sampler, representing the response to re-scaled versions of inputs

to the corresponding network neuron. For each pair of test neurons, we then calculated

the same parameters as for experimental neuron pair (CC, R, etc.). We also calculated

cross correlations as a function of lag for residual synaptic conductance traces (fig.S4.8).

This process was identical to that described for the (zero lag) Pearson correlation coeffi-

cient described above, but was performed for all lags in ±50 ms.

For each trial, we calculated the instantaneous spike rate of all excitatory neurons in the

network. We then calculated the power spectra of the transient and steady state spike

rates using wavelet filtering, and averaged over all trials (fig.S4.6), as described above.

To investigate the dependence on distance between neurons, we repeated the above anal-

ysis for this model using two alternate sets of randomly-selected neurons. First, we ran-

domly selected 20 neurons from a group of 100 neighboring neurons. Second, we used a

smaller group of 20 neighboring neurons (see Supplementary Information 5, and fig.S4.9).

In addition, we implemented two alternate model versions (see Supplementary Informa-

tion 5, and fig.S4.6, S4.7, S4.8). In one, we eliminated synaptic adaptation. In the other,

we maintained synaptic adaptation, but tuned synaptic time courses to give an asyn-

chronous transient epoch (τLX = 1.5 ms, τYX
R = 0.2 ms, τYX

D = 1.0 ms for all X and Y). (In

the absence of adaptation, this version was also asynchronous in the steady-state.)
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4.6 Supplementary Materials

4.6.1 Supplementary Information 1: windows of activity chosen for

analysis

When relating two measures of cortical coordination (e.g., correlated variability and net-

work state), the ideal approach would be to determine both measures for the same dataset.

Unfortunately, some experimental methods for recording large-scale population activity

(e.g., microelectrode array, or MEA, recordings) and those for recording pairs of mem-

brane potentials (pairwise whole-cell recordings) are not easily implemented in the same

region of cortex simultaneously. Furthermore, determining the network state requires a

large number of neuronal avalanches, and therefore recording times that often surpass

the amount of time a typical whole-cell patch remains stable. As such, we motivated our

choice of windows for this study based on the results of a previous study of population

activity in the same preparation [225].

In this previous work, the ”transient” epoch for a given preparation was defined by the

total network activity over all trials. Briefly, the activity at each electrode was band-pass

filtered to give the local field potential (LFP), the absolute value of the resulting trace

was divided by its standard deviation, and all such traces from responsive electrodes

were summed to give the network activity for a single trial. All trials were overlaid,

the 90th percentile envelope was calculated, and the transient epoch was defined to be

the full-width at half-max of this envelope. The ”v”isually-driven steady-state” began

at the end of the transient epoch, and ended with the stimulus. The transient epoch

was calculated on a prep-by-prep basis, and across all preparations, lasted 423± 202 ms
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(mean ± SD). For nine preparations and four different stimuli, the transient epoch was

shown to be supercritical, and the visually-driven steady-state critical. There were not

enough ongoing avalanches to determine the pre-stimulus state.

Translating this result into window choices for this study involved two additional con-

siderations. First, the resting membrane potential of a neuron affects the amplitude of

depolarization for a given level of synaptic input. As such, taking the absolute value and

overlaying trials to calculate the 90th percentile envelope, as above, for a pair of neurons

may not be a viable approach. Second, noise correlation distributions (for spike data) de-

pend on window size, and so the three epochs should be of comparable duration. That is,

a transient epoch of around 400 ms, and a steady-state epoch of nearly 10 s would not be

appropriate. With this in mind, we chose the same epochs for all recorded pairs: the on-

going and steady-state epochs were chosen to be 2 s in duration, and the transient epoch

400 ms. Due to the observed variability in the previous study, epochs were separated by

200 ms (with the end of the ongoing epoch coinciding with stimulus onset, 4.2a).

These choices have implications for our assumptions about the network state during each

epoch. Specifically, the transient epoch as defined in this study is presumed to be in gen-

eral supercritical, but this has not been shown explicitly for this window choice. Further-

more, the label of ”critical” is only valid for the full visually-driven steady-state from the

previous study (see above), and the steady-state epoch as defined in this study is a subset

of that activity. As such, we work under the somewhat weaker assumption that the cortex

is supercritical during the transient epoch, and is adapting toward criticality during the

steady-state (although it may not yet be critical).
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To test the robustness of our results, we repeated the analysis for three other sets of epoch

windows and gaps: the windows described above, but with a 300 ms gap between stim-

ulus onset and beginning of transient epoch (fig.S4.1a, b), 1 s windows for all epochs

with no gaps (fig.S4.1c, d), and 400 ms windows for all epochs, with 1 s gaps (fig.S4.1e,

f). For all choices, the population trends were approximately the same, suggesting that

the observed noise correlations generally reflect those of ”pre-stimulus” activity, ”early”

response, and ”late” response. For a given epoch, however, across-population variability

did decrease somewhat with increasing window size (e.g., compare fig.S4.1d and f), and

so the increase in variability from ongoing to transient epochs in the original set of choices

may be partially due to this effect.

4.6.2 Supplementary Information 2: spectral content of residual traces,

frequency bands chosen for analysis, and low-frequency results

For each cell, we calculated the across-trial average power for the ongoing, transient,

and steady-state epochs using the wavelet transform (see Methods). Across cells, visual

stimulation (either brief or extended) evoked a broad-band increase in residual power in

the transient epoch (fig.S4.2a). Residual power generally decreased in the steady-state,

but was still elevated above ongoing levels (fig.S4.2b). The height and location of peaks

in residual relative power (rP) spectra varied across cells; for most cells (and for both

response epochs), the peak frequency was in the 0.1 – 20 Hz range (fig.S4.2c). The size

of the peaks (quantified by M100 = rPmax/rPavg, calculated by considering all frequencies

below 100 Hz) were generally large in the transient epoch, and varied continuously across

cells (fig.S4.2d). Note that this definition for M100 is slightly different from that for M
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Figure S4.1: Results for various choices of epoch windows and gaps between epochs. Vertical scales
are the same for a, c, e, and for b, d, f. Bars and asterisks linking epochs indicate results of tests for signifi-
cance of changes in values across epochs (Wilcoxon signed-rank test): light bars correspond to insignificant
changes (P > 0.05), * to 0.01 < P < 0.05, ** to 0.001 < P < 0.01, *** to P < 0.001. (a) Correlated variabil-
ity (as in 4.2d) for epoch windows (in ms) ongoing = 2000, transient = 400, steady-state = 2000, with 0 ms
between then end of the ongoing epoch and stimulus onset, 300 ms between stimulus onset and the start
of the transient epoch, and 200 ms between the end of the transient epoch and the start of the steady-state
epoch, for extended (left) and brief (right) stimuli, 0.1 – 20 Hz. Hereafter, these choices are indicated by, e.g.
epochs = (2000, 400, 2000), gaps = (0, 300, 200). (b) Same as in (a), but for 20 – 100 Hz. (c, d) Same as in (a,
b), but for epochs = (1000, 1000, 1000), gaps = (0, 0, 0). (e, f) Same as in (a, b), but for epochs = (400, 400,
400), gaps = (800, 200, 1000).

(used in Results and 4.4b, c), which is calculated using only frequencies in the 20 – 100 Hz

range.
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For the remainder of our analysis, we treated high- and low-frequency activity sepa-

rately. There were three primary motivations for doing so. First, a recent study of V-LFP

correlated variability (CC) in primate V1 found that low-frequency CC was stimulus-

modulated, and high-frequency CC was not [201]. Second, it is a long-standing hy-

pothesis that different frequency bands in cortical activity represent distinct functionali-

ties [11, 229, 230], suggesting it is more reasonable to separate low and high frequencies

than to analyze broad-band activity. Finally, after separately calculating CC for low (0.1

– 20 Hz) and high (20 – 100 Hz) frequencies, we observed that the two sets of CC val-

ues were not significantly correlated (fig.S4.3c), suggesting correlated variability of the

two bands was independently modulated by visual stimulation. We refer to the high-

frequency component as ”gamma activity”, although the bounds of gamma activity vary

across studies.

Population-averaged correlated variability (〈CC〉) for low frequencies gradually increased

from ongoing to transient to steady-state for extended (〈CC〉 = 0.175 ongoing, 0.203 tran-

sient, 0.275 steady-state, P = 0.758 for ongoing–to–transient, P = 0.046 for transient–to–

steady-state, P = 0.016 for ongoing–to–steady-state transition, Wilcoxon signed-rank test,

fig.S4.3a) and brief (〈CC〉 = 0.125 ongoing, 0.175 transient, 0.181 steady-state, P > 0.05 for

all across-epoch comparisons, Wilcoxon signed-rank test, fig.S4.3b) stimulation, although

the modulation was stronger for extended.
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Figure S4.2: Spectral properties of residual evoked activity vary across cells. (a) Across-trial average
relative power (rP, evoked divided by ongoing) for individual cells (blue lines), and across-cell average
(black) for the transient epoch. (b) Same as in (a), but for steady-state epoch. (c) Distribution of peak
frequencies in the 0.1 – 100 Hz range for all cells for the transient (blue) and steady-state (green) epochs. (d)
Same as in (c), but for M100, the ratio of of rPmax to rPavg for each cell.

4.6.3 Supplementary Information 3: Modulation of phase relationship

by visual stimulation

In this study, we use the correlated variability of gamma band residual traces as a measure

of coordination between neurons. For pairs of analog signals, another popular measure

is the phase difference6. This alternative measure is (non-trivially) related to correlation,

and indeed, we did observe that some residual pairs tended to be more phase-locked

during the transient than during the steady-state epoch (fig.S4.4a). To relate the results of

our study to previous work, then, we also calculated the phase concentration of residual

gamma band pairs (R), defined to be the cosine of the difference in phase angles for two

residual traces, averaged over a window of interest, and then averaged over all trials (see
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Figure S4.3: Low– (0.1 – 20 Hz) and high– (20 – 100 Hz) frequency correlated variability were indepen-
dent, and were modulated differently by visual stimulation. (a) Correlated variability (CC) trajectories
for 0.1 – 20 Hz bandpass-filtered data, for extended visual stimuli (compare with 4.3b). (b) Same as in (a),
but for brief flashes (compare with 4.3c). (c - e) Across-trial average gamma band (20 – 100 Hz) CC vs. low-
frequency (0.1 – 20 Hz) CC for each recorded pair (for both brief and extended stimuli), for the ongoing (c),
transient (d), and steady-state (e) epochs. All linear regression fits insignificant (P > 0.05).

Methods). The phase concentration takes a value of +1 for a pair of perfectly in-phase

signals, -1 for perfectly out-of-phase signals, and 0 for two signals with random phase.

We found that across the population of all pairs (including both brief and extended stim-

uli), the average phase concentration (〈R〉) followed the same dynamics as 〈CC〉 (〈R〉 =

0.030 ongoing, 0.056 transient, 0.029 steady-state; P = 3.70E−4 for ongoing–transient

comparison, P = 6.50E−5 for transient–steady-state comparison, P = 0.97 for ongoing–

transient comparison, Wilcoxon signed-rank test, fig.S4.4b). Moreover, changes in CC

were significantly related to changes in R (r = 0.733, P = 1.70E−7 for ongoing–to–

transient transition, r = 0.712, P = 5.48E−7 for transient–to–steady-state transition, Pear-

son correlation, fig.S4.4c).
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Figure S4.4: Changes in correlated variability reflect changes in phase relationship between residual
traces. (a) Top: single-trial residual trace pair (same cell pair as in 4.2b, c). Bottom: close-up of transient
and steady-state activity. (b) Same as in 4.2d, but for phase concentration (R) of gamma band residual pairs,
for all recorded pairs. (c) Change in CC vs. change in R across epochs for gamma band residual pairs for
ongoing–to–transient transition (top) and transient–to–steady-state transition (bottom). Red lines indicate
significant linear regression fit (r2 = 0.537, P = 1.70E−7 for ongoing–to–transient transition, r2 = 0.507,
P = 5.48E−7 for transient–to–steady-state transition).

4.6.4 Supplementary Information 4: comparison of responses to brief

and extended visual stimulation

To investigate the dependence of correlated variability on the nature of the stimulus, we

utilized both brief and extended visual stimulation (see Methods and Results). Briefly, we

recorded from 19 pairs while presenting extended stimuli (lasting 10 s or longer), and 16

pairs while presenting brief (lasting 10 – 150 ms) subfield or whole-field flashes.

We compared the results in two ways. First, for each response epoch, we compared the

sets of CC values for the extended and brief stimuli using the Wilcoxon rank-sum test (the

distributions are visualized using histograms in fig.S4.5). For both epochs and frequency
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bands, the two sets of values were not significantly different (P > 0.05, Wilcoxon rank-

sum test), suggesting feedforward sensory input plays at best a small role in determining

noise correlation strength across the population. Low-frequency values were larger for

extended stimuli (see Supplementary Information 2), but not significantly so. Second, we

qualitatively compared the across-epoch CC dynamics for the two stimulus types (see

Results). In general, stimulus modulation of low-frequency CCs was weaker for brief

stimuli (see Supplementary Information 2; fig.S4.3a, b), but for gamma band CCs, the

dynamics were essentially the same (fig.4.3b, c).

It is important to note that in response to brief flashes, input to the cortex from the lateral

geniculate nucleus (LGN) can continue beyond the duration of the stimulus. Specifically,

previous work in turtle retina indicates that brief (220 ms) sub-field flashes of 646 nm

light can evoked depolarization and spiking in retinal ganglion cells up to 200 ms af-

ter stimulus offset [231]. Thus, for a typical brief flash used in this study (e.g., 150 ms)

it is possible that some sensory inputs to cortex persist during the steady-state epoch.

There is no evidence, however, that persistent retinal responses to brief flashes last on

the order of seconds. Furthermore, previous work has concluded that the AMPA- and

NMDA-mediated EPSPs and GABA-mediated IPSPs that dominate persistent responses

(to electrical stimulation of either cortex or LGN fibers) in turtle cortex are intracortical in

origin, and distinct from excitatory LGN inputs [232]. As such, we assume that the vast

majority of steady-state activity in response to brief visual stimulation can be attributed

to intracortical feedback.
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Figure S4.5: Correlated variability is similar for responses to brief flashes and extended visual stimuli.
(a-f) Distributions of CC values for extended stimuli (black) and brief flashes (red), for the ongoing (a, d),
transient (b, e), and steady-state (c, f) epochs, for 0.1 – 20 Hz (top row) and 20 – 100 Hz (bottom row) activity.
P > 0.05 for all pairs of distributions (Wilcoxon rank-sum test).

4.6.5 Supplementary Information 5: additional model results

In order to better understand our model results, we implemented three versions of the

small-world network: the model described in Results, in which adaptation was tuned

to closely reproduce the experimental results (hereafter referred to as the ”synchronous”

model, fig.S4.6); a model identical to the synchronous model, but with synaptic adap-

tation removed (”synchronous, no adaptation”); and a model that was identical to the

synchronous model, but with excitatory and inhibitory time constants tuned to result in

an asynchronous post-stimulus state (”asynchronous” model, see Methods).

Residual membrane potential relative power spectrum peaks reflect network spike rate oscillations.

In the experimental data, the relative power spectra of many cells had clear peaks in the

gamma (20 – 100 Hz) spectrum (fig.4.2d, fig.S4.2a, b). This was also true of cells in the

synchronous model (fig.S4.6a, top). Moreover, the location of the peak in the simulated
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Figure S4.6: Residual membrane potential relative power spectrum peaks reflect network spike rate
oscillations. (a b) Synchronous model. (c-d) Asynchronous model. (a) Top: relative power (evoked di-
vided by ongoing) in residual membrane potential traces for one randomly-selected model neuron for the
transient (blue) and steady-state (green) epochs. Bottom: power in network spike rate for the transient
(blue) and steady-state (green) epochs. Dark lines indicate across-trial averages, bands indicate 95% confi-
dence intervals (via bootstrapping, see Methods). (b) Same as in fig.4.5a, but for 20 randomly-selected pairs
from SWA model. (c - d) Same as (a b), but for AWA model.

data coincided with the frequency of the network spike-rate oscillation (fig.S4.6a, bottom).

In the asynchronous network, the network spike rate power spectrum did not contain

prominent peaks (fig.S4.6c, bottom), and peaks in the membrane potential spectra were

smaller than those in the synchronous network (fig.S4.6c, top). In both networks, total

gamma power in residual membrane potential traces followed trajectories similar to that

observed in experiment (fig.S4.6b, d, compare to 4.2e), and generally reflected the average

network spike rate in the two evoked epochs (fig.S4.9a).
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Together, these results suggest the across-epoch changes in gamma power observed in ex-

perimental membrane potential residuals reflect changes in the level of network spiking

activity, and that peaks in the gamma spectrum reflected oscillations in the network spike

rate.

Network spike rate oscillations increase correlated variability, and synaptic adaptation reduces cor-

related variability by abolishing these oscillations. We used the synchronous, no adaptation

and asynchronous models to further test the relationship between network oscillations

and membrane potential correlated variability. In the synchronous, no adaptation model,

the population-averaged correlated variability (〈CC〉) increased from ongoing to transient

(as with the synchronous model), and continued to increase from transient to steady-state

(〈CC〉 = 0.163 transient, 0.314 steady-state, P = 3.57E−8 for transient–steady-state com-

parison, Wilcoxon signed-rank test, fig.S4.7a), as network oscillations became increas-

ingly coherent. In the asynchronous model, 〈CC〉 significantly increased from ongoing to

transient (〈CC〉 = 0.002 ongoing, 0.033 transient, P = 1.5E−4 ongoing–transient compar-

ison, Wilcoxon signed-rank test, fig.S4.7b), although the change was much smaller than

in the synchronous model (fig.4.5d). And in sharp contrast to the synchronous model,

synaptic adaptation did not have a significant impact on 〈CC〉 (〈CC〉 = 0.028 steady-state,

P = 0.48, Wilcoxon signed-rank test). Thus, gamma-band membrane potential correlated

variability in the model network is inextricably linked to network spike rate oscillations.

Network oscillations determine synaptic input correlations. As described in the Results and

Discussion sections, membrane potential correlations are strongly influenced by correla-

tions in synaptic inputs. As such, we investigated correlated variability between excita-

tory (ge–ge CC), and inhibitory (gi–gi CC) synaptic conductances for pairs of excitatory
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Figure S4.7: Network spike rate oscillations increase gamma-band membrane potential correlated
variability, and synaptic adaptation reduces correlated variability by abolishing oscillations. (a) Same as
in fig.4.5d, but for synchronous model without synaptic adaptation. Removing synaptic depression causes
oscillations to become increasingly coherent, and correlated variability increases further from transient to
steady-state. (b) Same as in (a), but for asynchronous model with synaptic adaptation. In the absence of
network oscillations, the initial increase in correlated variability is much smaller, and CC does not decrease
significantly from transient to steady-state, despite synaptic depression.

neurons the model, as well as correlations between excitatory and inhibitory conduc-

tances (ge–gi CC). Because CC can be shaped by the lag between excitation and inhi-

bition, we calculated g-g CC as a function of lag. To better understand how these are

shaped by network oscillations, we did this for the synchronous and asynchronous mod-

els (described above), using 40 pairs generated from 20 neurons randomly-selected from

the entire network. For the synchronous model, we the same neurons and trials as in the

Results section.

For both models, ge–ge 〈CC〉 was relatively small during both the transient and steady-

state epochs (and larger for the synchronous than asynchronous model, fig.S4.8a). In

contrast, gi–gi CC was large for both models (and larger for the synchronous model), and

only decreased slightly from transient to steady-state (fig.S4.8b). The disparity between

correlations for these two conductance types likely reflects the stronger, more densely
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interconnected, and spatially-independent inhibitory synapses (see Methods), and is con-

sistent with earlier experimental recordings of excitatory and inhibitory conductances

during gamma oscillations [233, 234].

Strong gi–gi (and/or ge–ge) correlations alone are not sufficient to guarantee large mem-

brane potential correlations; if excitation and inhibition are perfectly phase-locked, they

will cancel at the level of the membrane potential, resulting in small membrane poten-

tial correlations. In the synchronous model, ge–gi CC was large, and peaked at -6 ms

(fig.S4.8c, d, left), indicating a lag between the two conductances. In the asynchronous

model, ge–gi CC was smaller, and peaked instead at -2 ms (fig.S4.8c, d, right). The dy-

namics of correlated variability in the synchronous model can thus be understood in the

context of synaptic inputs. During the transient epoch, excitatory inputs to pairs of neu-

rons are weakly, but significantly correlated. Inhibitory inputs are much more strongly

correlated with one another, and also with the excitatory inputs. Crucially, the lag be-

tween excitation and inhibition allows for a ”window of opportunity” during each cycle

of the oscillation in which ge–ge and gi–gi correlations are independently manifested in

pairs of membrane potentials. During the steady-state, correlations between inhibitory

inputs and between inhibitory and excitatory inputs are only moderately reduced. How-

ever, correlations between excitatory inputs have decreased to near zero for many pairs,

and thus V-V correlations across the population decrease significantly.

The distance-dependence of correlated variability reflects the spatiotemporal dynamics of network

spiking. The results in the main text were calculated for forty pairs generated from 20 neu-

rons randomly-selected from the entire network of 800 excitatory neurons. We tested the
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Figure S4.8: Network oscillations shape synaptic input correlated variability. (a c) Correlated variabil-
ity of synaptic conductances as a function of lag for the transient (blue) and steady-state (green) epochs,
for the synchronous (left) and asynchronous (right) models (average +/- standard deviation, with average
taken over trials and pairs, and standard deviation taken over pairs). Results calculated for inputs to forty
pairs generated from twenty neurons randomly-selected from 800 excitatory neurons. Correlated variabil-
ity is calculated for pairs of excitatory (a) and inhibitory (b) synaptic conductances, and for excitatory-
inhibitory synaptic conductance pairs (c). (d) Close-up view of (c). Red lines indicate maximum transient
CC values, and lag at which the maxima occur. In general, synaptic conductance correlations are stronger
(have larger maximum amplitude) in the synchronous model. Crucial to membrane potential correlations
is the larger excitatory lag in the synchronous model (6 ms vs. 2 ms, (d)).

dependence of CC dynamics on average distance between neurons by repeating the anal-

ysis for 20 neurons randomly-selected from a group of 100 neighboring neurons (fig.S4.9b,

top), and also for 20 neighboring neurons (fig.S4.9c, top).
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Figure S4.9: The distance-dependence of V-V CC reflects the spatiotemporal dynamics of network
spiking. (a) Evoked spiking activity for all 800 excitatory neurons (arranged in order of neuron number,
or location in network) for one trial. Blue and green regions indicate transient and steady-state epochs,
respectively. Scale bar indicates 200 ms. (b) Top: twenty neurons were randomly-selected from 100 neigh-
boring neurons in the network. Bottom: Same as in fig.4.5d, but for neurons selected from cluster of 100. (c)
Top: twenty neighboring neurons were selected from the network. Bottom: Same as in fig.4.5d, but pairs
generated from 20 neighboring neurons.

For pairs from the group of 100 neurons, evoked 〈CC〉 was larger than when neurons

were selected from the entire excitatory network (〈CC〉 = 0.192 transient, 0.144 steady-

state, fig.S4.9b, bottom). Values were larger still for pairs generated from 20 neighbor-

ing neurons (〈CC〉 = 0.294 transient, 0.237 steady-state, fig.S4.9c, bottom). In addition,
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across-population CC variability for a given evoked epoch decreased with pool size. In-

terestingly, the modulation of 〈CC〉 by adaptation (that is, the proportional decrease in

〈CC〉 from transient to steady-state) also decreased: 〈CC〉 decreased by 31.5% for neurons

selected from the entire excitatory network, by 25% for those selected from the group

of 100, and by 19% for the group of 20. This reflected the spatiotemporal dynamics of

network spiking activity. During the transient epoch, spiking activity tended to be corre-

lated across the network (thus increasing CC even for pairs of neurons separated by large

distances). While adaptation reduced network spiking levels and correlated spiking gen-

erally, brief episodes of coherent spiking activity often appeared during the steady-state,

during which spiking was far more correlated among nearby neurons than across the

population (fig.S4.9a). Thus, correlated variability decreased from transient to steady-

state for most pairs, but was more strongly diminished for distant pairs.

4.6.6 Supplementary Information 6: Use of ”test neurons” to calculate

correlated variability in a model network

Individual neurons in our model network had much higher post-stimulus spike rates than

those recorded in experiment. Because of the limited network size, this higher spike rate

was necessary to generate large avalanches of activity. That is, a large number of synaptic

inputs were required to bring a neuron to spike threshold, and in this small network,

those inputs necessarily came from a larger percentage of the total network than in a

more realistic sparse-spiking network. This is a common issue with small LIF networks

[56]. Importantly, this higher spike rate has implications for calculating V-V correlated

variability: replacing spikes requires interpolation, which tends to mask synaptic inputs.
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We sought to avoid this issue while maintaining reasonable simulation times. Therefore,

to calculate CC for a pair of neurons in this network, we fed re-scaled versions of the

synaptic conductances to ”test” LIF pairs. Specifically, all conductances were multiplied

by 0.75. In addition, the spike threshold of test neurons was -30 mV (vs. -40 mV in net-

work neurons), thus reducing the probability to spike. Test neurons were identical to

network neurons in all other respects. Thus, test neurons subsampled network spiking

activity without reaching action potential threshold. All reported CC values for the model

were calculated using such test pairs. In this way, each neuron in the model network can

be thought to represent the net spiking output of a small cluster of neurons in a large,

more sparse-spiking network. This implicitly assumes that individual cortical neurons

fire sparsely and variably across trials, but clusters of such neurons are more reliable.

We have (unpublished) MEA data that loosely supports this assumption. Specifically, a

given stimulus presentation tends to evoke a rhythmic LFP oscillation at a given electrode

(suggesting synchronous activity near the electrode tip), yet spikes recorded from the

same electrode (corresponding only to neurons very near the electrode) are sparse when

present. In addition, the receptive field defined by spiking activity tends to be correlated

with that defined by the LFP, suggesting that each sparse-spiking unit in the cluster fol-

lows a similar dynamic when spiking. This is consistent with a picture of a relatively

reliable cluster of neurons composed of sparse-spiking and less reliable individual units.

This is a common experimental observation, and is captured by LIF network models such

as the ones used in this study [52].
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5.1 Abstract

Neural response in sensory cortex to repeated stimulus presentation is highly variable.

The trial-to-trial variability and the extent to which this variability is shared among

neurons have a strong impact on the population coding accuracy. To investigate the

nature/source of this variability, we recorded local field potential (LFP) in the primary

visual cortex (V1) of turtles in response to naturalistic movies. We found that across-

trial average captures a large fraction of the variability in early part of the responses

while across-electrode average is a better estimator of both ongoing activity and late

part of the responses. In addition, recordings show a strong correlated variability (or

”noise correlation”) that transiently increases with the stimulus onset. More impor-

tantly, we found that LFPs have a strong, shared fluctuations that accounting for them

markedly reduces correlated variability. Our model investigations indicated that intra-

cortical adaptation self-organizes cortical circuits towards a balanced regime at which

network dynamically subdivides into clusters that leads to experimentally-observed

variability and an intermediate coordination level.

5.2 Introduction

The response of neurons in visual cortex to repeated stimulus presentations is highly

variable. This trial-to-trial variability can be as large as the response itself [209, 235, 236].

Cortical neurons can generate highly reliable spike trains [237], therefore variability of

their output is more likely due to variability in their synaptic inputs [209, 238]. Synaptic

inputs must be, at least partially, shared across neurons due to the interconnected nature
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of the cortex [84, 199]. To crack the code of sensory processing in the cortex, it is essential

to understand how response variability arises, to what extent it is shared across neuronal

populations, and what factors influence it. Indeed, the presence of variability has pro-

found implications for the brain computational power [239], while excessive variability

poses a fundamental problem for information processing [240].

Stimulus presentation elicits variable responses in lateral geniculate nucleus [241] and

the variability is carried out to the cortex [242]. However, cortical responses are shown

to be more variable than LGN [243] and, therefore, there should exist other sources of

variability intrinsic to the cortex. A portion of the variability is due to processes internal to

single neurons, such as transmission noise in synapses and channel noise in membranes

[244]. A factor that influences cortical response, but it is not known to the experimenter,

is the state of the cortex [245, 246]. The cortex can exhibit a continuum of states from

strong synchronization to complete desynchronization [247, 248], which are not linked

to the visual stimulus [245].Despite being studied extensively, the relative contribution of

cortical states in response variability is still unclear [249]. How does it affect the variability

in population response during visual processing?

To gain insight on response variability and its correlation structure, we recorded local

field potential (LFP) with a microelectrode array in primary visual cortex. Network state

estimation using the LFP enabled us to decompose response variability into stimulus-

dependent and network-state dependent components. Our results indicated that, except

early phase of the response, shared fluctuations (due to network state) could explain a

larger portion of the response variability relative to the stimulus itself. Moreover, cor-

related variability significantly increases with stimulus onset and then adapts toward an
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intermediate level. Indeed, correcting the neural responses for the effects of network-state

highlights this dynamics more.

5.3 Results

To quantify response variability and its correlation, we recorded population neural ac-

tivity (local field potential, LFP) using a microelectrode array (MEA) inserted into the

geniculo-recipient dorsal cortex (visual cortex) of the turtle eye-attached whole-brain ex

vivo preparation during visual stimulation of the retina (fig.5.1a). Unlike ongoing ac-

tivity, evoked responses are characterized by extensive fluctuations across MEA. Visual

responsive channels were identified and used for analyses (fig.5.1b, see Methods).

5.3.1 Across-trial average captures most of the variability in transient

epoch

We recorded neural activity from 11 turtle eye-attached whole-brain ex vivo preparations

while presenting continuous visual stimulation (see Methods). LFP responses to repeated

presentations of extended stimuli varied from trial to trial, with a response variability

magnitude as large as trial-averaged mean response (fig.5.2c). What factors contribute to

the variations from the mean response?
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Figure 5.1: Variability in the transient epoch has a different nature than ongoing and steady-state. (a)
Our experimental set up for experiments done with a monitor and mirror. The visual stimuli are presented
on a monitor. The image reflects off a mirror and through a lens to project on the retina of the turtle’s
hemisected eye. The MEA is placed in the unfolded cortex. (b) Visual responsiveness across the MEA. Each
square represents an electrode. The background color for each square indicates the visual responsiveness
with black being 0 and white being 1. The electrodes labeled in red have a visual responsiveness above
the threshold, 0.75, to be included in analyses. Electrodes labeled in blue showed weak responses and
excluded from later analyses. (c) Single-trial responses for two electrodes are shown (black) with their
across-trial averages (gray) and their difference as residuals (violet) during three epochs; ongoing (yellow),
transient (blue), and steady-state (green). Across-trial average captures single-trial features during the
transient epoch while averaging washes out features of the other two epochs. (d) Across-electrode average
is shown (black) with shared fluctuations (cyan) estimated for the epochs. Shared fluctuation trace explains
slow changes during ongoing and steady-state, while it remains almost constant during transient epoch.
(e) Accounting for shared fluctuations leads to less variable signals. Shown are residuals shown in (c) after
accounting for the shared component. (f) Portion of the variability explained by each component–across-
trial average (gray), shared fluctuation (cyan), and private noise (red)–during the three epochs. Across-trial
average explains a large fraction of the total variability during transient epoch, while shared fluctuations
have a greater contribution during the other two epochs. (g) Variability explained by the shared fluctuations
is related to the ratio power in low-frequency (< 20 Hz) band in ongoing and steady-state(ongoing: ρ =

0.32, P < 1E−6, Spearman’s test; transient: ρ = 0.03, P = 0.61; steady-state: ρ = 0.31, P < 1E−6).

Using the amplitude of deflections, we identified responsive channels to include in sub-

sequent analyses (see Methods). To quantify sources of variability, we first calculated

the LFP residual, which is the single-trial LFP recording from which the trial-averaged

LFP time series has been subtracted (fig.5.1c). We then divided the evoked residuals into

two analysis windows: the transient (200 to 600 ms after stimulus onset) and steady-state

(800 to 2800 ms after stimulus onset) windows (fig.5.1c, see Methods, and see Supple-

mentary Information 1). We used single-trial across-channel average residual LFPs to

decompose neuronal activity into network-state dependent (shared) and private noise

components (fig.5.1d, see Methods). We used Gaussian-process factor analysis (GPFA)

model to estimate smooth, low-dimensional neural trajectory as shared noise compo-

nent [245, 246, 250]. Finally, we subtract shared noise component from the residuals

131



(fig.5.1e) and, then, we calculated the variability explained by each component across

epochs, trials, and channels (see Methods).

The analysis revealed two important features concerning the fraction of variability ex-

plained by three components–across-trial average, shared fluctuation, and private noise–

in LFPs during natural vision. First, across-trial average captures a great portion of the

variability during the transient epoch (fig.5.1f; ongoing: 19%, 30%, 51% for across-trial av-

erage, shared fluctuations, and private noise respectively, ANOVA, P < 1E−6; transient:

40%, 14%, 46%, ANOVA, P < 1E−5; steady-state: 26%, 40%, 34%, ANOVA, P = 0.1). It

indicates that dynamics of the transient epoch can be largely explained by the statistics

of the thalamic inputs to the cortex [190,202,238,251,252]. Second, stimulus-independent

components mainly drive the dynamics in steady-state epoch (fig.5.1f), and, more impor-

tantly, network-state captures most of the variability in residual LFPs. This indicates that

there might exist more than one state (a condition called bi- or multistability), and visual

stimulation may just switch the state of the brain dynamics [205,206,253,254]. These con-

clusions held for 8/11 turtles and 3 types of visual stimuli (n=13 data sets; naturalistic

movie and motion enhanced movies as well as its phase shuffled version; see fig.S5.1),

demonstrating the generality of the observations. Furthermore, results were largely ro-

bust with respect to the choices of window sizes and gaps between windows (see fig.S5.2).
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5.3.2 Accounting for the global fluctuations reduces noise correlations

during ongoing and steady-state epoch

The interconnected nature of cortical circuits suggests that variability is to some extent

correlated among recorded signals [191, 199, 201]. It remained to be elucidated, how-

ever, to what extent the shared variability structure was explained by the shared fluctu-

ations. To address this question, we calculated trial-average correlation coefficient (CC)

between residual LFPs, with and without correcting for global fluctuations, for each trial

and window of interest, i.e., the ongoing, transient, and steady-state windows. We took

into account the full frequency range (0.7 – 100 Hz; see (see Supplementary Information

2) and fig.S5.3). Population-average CCs (〈CC〉) distributed broadly and were signifi-

cantly nonzero across all epochs (0.51, 0.31, 0.62, P < 1E−23, ANOVA; fig.5.2a; see fig.S5.4

and fig.S5.5). Moreover, they decreased significantly with the spatial separation between

electrodes (fig.5.2c).

Correcting for the shared fluctuations markedly reduces the amplitude of correlations

(0.05, 0.17, 0.09, P = 0.005, ANOVA; fig.5.2b) while they still decrease significantly with

the spatial separation between electrodes (fig.5.2d). There are three noticeable features

comparing CC amplitudes before and after accounting for the shared fluctuations. First,

accounting for the shared fluctuations reduces CC values for all epochs. Second, ongoing

and steady-state CCs are more heavily influenced due to high fraction of variance cap-

tured by the GPFA model. Third, CCs increase significantly from ongoing to transient

and then decrease from transient to steady-state, in agreement with membrane potential

data (see chapter 4). More importantly, correcting for the global fluctuations strengthens
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Figure 5.2: Accounting for shared fluctuations reduces noise correlation amplitude but doesn’t change
its structure. (a) Noise correlation significantly decreases from ongoing to transient and then recovers
back during steady-state. (b) Noise correlation amplitudes markedly decreased after correcting for the
shared fluctuations. (c) Noise correlation decreases with spatial separation between the electrodes (ongoing:
ρ = −0.43, P < 0.001, Spearman’s test; transient: ρ = −0.3, P = 0.01; steady-state: ρ = −0.57, P <<
0.001). (d) Correcting for the shared fluctuations doesn’t alter distance dependence of noise correlations
(ongoing: ρ = −0.29, P = 0.01; transient: ρ = −0.32, P = 0.008; steady-state: ρ = −0.42, P < 0.001). (e)
Population-averaged phase concentration roughly shows the same temporal dynamics as noise correlation.
(f) Accounting for the shared fluctuations causes 〈R〉 to show a significant increase at the stimulus onset.
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this observation (residual CCs: 2/16 show a transient increase; after accounting for the

global fluctuations: 12/16 show a transient increase; see fig.S5.5a, b).

5.3.3 Correlated variability follows network oscillation dynamics

It has been hypothesized that the coordination between pairs of neurons might be shaped

by the amount of phase synchrony as well as anatomical connectivity [190, 191, 194]. We

therefore asked how well correlated variability dynamics could be explained by the net-

work phase synchrony. For a pair of analog signal, a popular measure is the phase con-

centration, which is defined by the cosine of the phase difference of analog signals ( [110];

see Methods and chapter 4).

We calculated cosine of phase difference between a pair of residuals, or residuals while

accounting for the shared fluctuations, across epochs and frequency bands. Then trial-

average phase concentration, R, is obtained by taking average over all trials and window

of interest. The phase concentration takes a value of +1 for a pair of perfectly in-phase

signals, -1 for perfectly out-of-phase signals, and 0 for two signals with random phase dif-

ference. Our results indicated that population-average phase concentration (〈R〉) follows

the same dynamics as 〈CC〉 for residuals (0.32, 0.33, 0.43, P << 0.001, ANOVA; fig.5.2e)

as well as residuals corrected for global fluctuations (0.12, 0.20, 0.11, P < 0.001, ANOVA;

fig.5.2f). Moreover, changes in CC were significantly related to changes in R for residuals

(ongoing–to–transient transition: ρ = 0.58, P << 0.001 Spearman’s test; transient–to–

steady-state transition: ρ = 0.54, P << 0.001; see fig.S5.6a) as well as residuals corrected

for global fluctuations (ongoing–to–transient transition: ρ = 0.68, P << 0.001; transient–

to–steady-state transition: ρ = 0.65, P << 0.001; see fig.S5.6b).
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5.3.4 Synaptic clustering mediates the nature of response variability

What biophysical mechanisms could mediate the experimentally-observed response prop-

erties (i.e., nature of variability across epochs fig.5.1f), the dynamics of correlated vari-

ability (fig.5.2a, b) and of phase concentration (fig.5.2e, f)? To address this question, we

investigated a model network of 800 excitatory and 200 inhibitory leaky integrate-and-

fire neurons distributed randomly over the surface of a unit sphere, with Poisson process

external inputs to all neurons (see Methods). Excitatory neurons make synapses to their

neighbor excitatory cells with a Gaussian distribution decaying with spatial separation

between neurons, with 10% connection probability (fig.5.3a). The rest of the connections

were random (fig.5.3b). Synaptic weights are drawn from a gamma distribution with a

long tail [255].

An increase in the external input rate mimicked the stimulus. Synaptic currents obey

alpha function dynamics with reasonable sets of rise and decay times ( [52,58]; see Meth-

ods). We implemented adaptation via short-term synaptic depression with recovery (see

Methods). Defining LFPs as the summation over synaptic currents to a population of

excitatory neurons, we simulated the network in response to 20 repeated stimulus pre-

sentations. Using GPFA model, we estimated the network-state across three epochs and

subtracted it from the individual LFPs to get private noise traces. This network repro-

duces the fraction of variance explained by each component (fig.5.3c) and correlation be-

tween global fluctuation’s share and low frequency power (see fig.S5.7).
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Figure 5.3: A network with clustered architecture reproduces experimentally-observed nature of vari-
ability and noise correlation. (a) E-to-E connections are clustered with sporadic long-range connections.
Excitatory synaptic connections to a given excitatory cell are shown with connection strength indicated in
the thickness of the line. Black bars indicate the imaginary electrodes. (b) Inhibitory inputs to the excita-
tory cell shown in (a). I-to-E connections are homogenously random such that an inhibitory neuron can
project to any excitatory cell. (c) Portion of the variability explained by each component during the three
epochs. Across-trial average explains a large fraction of the total variability during transient epoch, while
shared fluctuations have a greater contribution during steady-state (ongoing: 41%, 5%, 54% for across-trial
average, shared fluctuations, and private noise respectively, ANOVA, P << 0.001; transient: 57%, 7%,
36%, ANOVA, P << 0.001; steady-state: 9%, 30%, 61%, ANOVA, P << 0.001). (d) Noise correlation sig-
nificantly increased from ongoing to transient and then decays during steady-state. (e) Noise correlation
amplitudes markedly decreased, especially during steady-state, after correcting for the shared fluctuations.
The correction highlights transient 〈CC〉 increase with stimulus onset. (f) Noise correlation decreases with
spatial separation between the electrodes (ongoing: ρ = −0.81, P << 0.001, Spearman’s test; transient:
ρ = −0.14, P = 0.34; steady-state: ρ = −0.20, P = 0.17). (g) Correcting for the shared fluctuations doesn’t
alter distance dependence of noise correlations (ongoing: ρ = −0.49, P < 0.001; transient: ρ = −0.08,
P = 0.59; steady-state: ρ = −0.53, P < 0.001). (h) Population-averaged phase concentration roughly shows
the same temporal dynamics as 〈CC〉 in (d). (i) Accounting for the shared fluctuations reduces 〈R〉 during
steady-state and causes 〈R〉 to show a significant increase with the stimulus onset.

Our investigations, in line with our previous study (see chapter 4), indicated that experi-

mental observations could be reproduced if network has the following features. First, ex-

citation and inhibition should have different time course. When synaptic time constants

for excitation and inhibition were chosen not to be identical, the lag between excitation

and inhibition provides a window of opportunity in which synaptic input correlations

could be manifested in pairs of recordings [84, 190]. This causes an increase in noise cor-

relation as well as phase concentration (fig.5.3d, e, h, and i). Changes in noise correlation

are tightly related to the changes in phase concentration (see fig.S5.6a, b). Second, two

factors are responsible for the significant 〈CC〉 decrease from transient to steady-state

epoch, synaptic depression and clustering structure. Synaptic depression diminishes net-

work activity level by weakening interactions, which yields that coherent oscillations oc-

cur within one or a few clusters during steady-state epoch (see chapter 4). Clustering
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architecture of the network, together with synaptic depression, abolishes oscillations in

the network and causes a decrease in 〈CC〉 values via the following mechanism. Stimu-

lus onset triggers oscillations that invade the whole network and that has two impacts,

(i) causes an upward modulation in 〈CC〉 since oscillations are coherent and (ii) causes

across-trial average to capture a large fraction of variability during transient epoch since

this amplification is consistent across trials. Moreover, clustering architecture introduces a

spatial dimension into the network and reproduces distance dependence of CCs (fig.5.3f,

g). Consistent with this view, a homogenous random network was able to explain the

different nature of response variability but not the dynamics of 〈CC〉 or 〈R〉 (see fig.S5.8).

Third, gamma distribution of the synaptic weights doesn’t change any of the results ex-

cept the amount of variability seen in 〈CC〉 and 〈R〉. In other words, a similar network

with uniform distribution of weights, but still with clustered architecture, was able to

reproduce the results.

In conclusion, model investigations strengthen the hypothesis that thalamocortical oscil-

lation are the key factor in reproducing experimental observations and, more importantly,

clustering architecture shapes spatiotemporal dynamics of neural responses. Correlated

variability follows network oscillation dynamics, such that constraining network model

to produce realistic temporal dynamics of oscillations yields to transient increase in 〈CC〉.

Therefore, synaptic time constants, synaptic clustering, and synaptic depression are in-

trinsic parameters relevant in reproducing experimental data.
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5.4 Discussion

Neural responses in visual cortex markedly vary from trial to trial under similar stimu-

lus condition. To study the source of the trial-to-trial variability and the extent to which

it is shared between neurons, we recorded ongoing and visually-evoked activity in tur-

tle eye-attached whole-brain ex-vivo preparations. Our analysis showed that the nature

of variability is different between ”early” and ”late” responses. Immediately after stim-

ulus onset, across-trial average is good estimator of individual single-trial LFP signals,

while single-trial LFP of both ongoing and late evoked responses for continued visual

stimulation can be better explained by across-channel average of that trial. This study

provides a crucial evidence to strengthen the hypothesis that cortex may have more than

one stable state, and visual stimulation may just perturb it while intracortical interactions

shape neural responses [205, 206, 253, 254]. Furthermore, in a computational model, we

identified minimal network parameters–synaptic time constants, synaptic clustering, and

synaptic depression–necessary to reproduce the key aspects of the experiment.

Neural responses are typically studied by taking across-trial averages. However, this ap-

proach fails if the neural responses are more a reflection of internal processing rather than

sensory stimulus drive. From this viewpoint, internal state of the brain modulates single-

trial neural responses in a similar manner and leads to the emergence of shared fluctu-

ations. To estimate the global fluctuations, a latent variable method (GPFA) has shown

to be greatly useful [250]. This analysis is particularly helpful in reconciling the appar-

ent controversy about the amplitude of correlated variability. Strikingly different results

for correlated variability has been reported [195, 200, 222, 256–259], which cannot be ex-

plained with differences in firing rate (e.g. see Smith and Kohn, 2008; Ecker et al., 2010).
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Moreover, LFP has proven as a powerful indicator of the network-wide fluctuations that

can pave the way for spike-train factorization into stimulus-dependent and independent

components [245]. Estimation of network-state is more accurate in our study relative to

previous work [245] by using a more sophisticated model and, importantly, by including

the full grid of LFP signals. Our results demonstrate that GPFA model can extract the hid-

den information in the LFP to decouple these components (fig.5.1c, d) and provides the

opportunity to quantify the contribution of each component in the trial-to-trial variability

of the responses (fig.5.1f). We found that across-trial average explains a large fraction of

variability during early part of the response while shared fluctuation captures a larger

ratio of the variability for both ongoing activity and late responses (fig.5.1e).

How does shared fluctuation impact the amplitude and structure of correlated variabil-

ity? There exists a long-standing controversy about the amplitude of noise correlation

during wakefulness and anesthesia. Noise correlation amplitude during anesthesia is an

order of magnitude larger than wakefulness [256, 260], even for the studies conducted in

the same preparation under similar stimulus condition [256, 259]. Accounting for shared

fluctuations alters noise correlation amplitude but not structure and alleviates the strik-

ing differences between the level of noise correlation during wakefulness and anesthe-

sia [246]. Ecker and colleagues reported that accounting for the shared fluctuations rec-

onciles this. Not surprisingly, our results indicate a significant decrease in amplitude by

accounting for shared fluctuations (fig.5.2a, b), while correlation structure remains un-

changed (fig.5.2c, d). While the raw correlation shows a significant increase with stimu-

lus onset, accounting for shared fluctuations strengthens this trend (fig.5.2a, b). Moreover,

our findings indicate that phase concentration was modulated similarly and, indeed, this

is non-trivially related to correlation (fig.5.2e, f).
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What combination of biophysical ingredients of a model network can generate the experi-

mentally-observed features? We addressed this question by developing a network of

leaky integrate-and-fire neurons. The investigation revealed that time course of the synap-

tic currents, synaptic depression and recovery, and network architecture are the relevant

underlying variables. Reasonable synaptic time constants cause ensemble oscillations to

appear through the interaction of excitatory and inhibitory neurons [52, 58]. Stimulus

onset triggers coherent oscillations and it leads to the observed dynamics in both noise

correlation (fig.5.3d, e) and phase concentration (fig.5.3h, i). Synaptic depression reduces

activity level as well as interaction strength between the neurons. Therefore, later in time,

spatially confined surge of activity happens within one or a few of the clusters. As a re-

sult, noise correlation decreases as well as phase concentration. In addition, clustering

architecture of the network provides a substrate for the neurons to influence their tar-

gets within the same cluster even after the operation of synaptic depression. Having less

clustered connections leads to more global oscillations during ongoing and steady-state

epochs, which impairs the temporal dynamics of noise correlation and phase concentra-

tion.

Here, we focused on the nature of variability during early and late visual responses and

we noticed that shared fluctuations are more prominent during late responses. This sug-

gests a crucial role for intracortical connectivity during this phase of the response. There-

fore, it is reasonable to ask whether accounting for the shared component can either im-

prove or impair discriminability of stimuli. Future experiments can be designed to ad-

dress this question while, for the simulated network, a linear decoder seems suitable [196]

to quantify the change in information due to amplitude change in noise correlation by ac-

counting for the shared fluctuations.
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5.5 Methods

5.5.1 Ex vivo eye-attached whole-brain preparation

All procedures were approved by the Institutional Animal Care and Use Committees of

both Washington University and University of Arkansas, and conform to the guidelines

of the National Institutes of Health on the Care and Use of Laboratory Animals. Adult

red-eared sliders (Trachemys scripta elegans, 150 – 1000 g weight, 12 – 15 cm carapace

length) were studied. First turtles were anesthetized with Propofol (2 mg Propofol/kg),

then decapitated and the brain was removed surgically from the skull with eyes and optic

nerve intact. Right eye was hemisected to expose the retina and bathed in cold extracel-

lular saline (in mM, 85 NaCl, 2 KCl, 2 MgCl2 ∗ 6H2O, 20 Dextrose, 3 CaCl2 − 2H2O, 45

NaHCO3, bubbled with 95% O2 and 5% CO2). Two cuts were made to make unfold the

cortex, thus facilitate the subsequent insertion of the microelectrode array. Recordings

began 2 – 3 h after induction of anesthesia.

5.5.2 Microelectrode array measurements

Wideband (0.7 Hz – 15 kHz) extracellular voltages are recorded at 30 kHz sample rate

(Blackrock Microsystems, Cerebus) using two different electrode arrays. The first was

a 96-channel MEA (1010 square grid, 400 µm inter-electrode spacing, 500 µm electrode

length, no corner electrodes, Blackrock Microsystems). This array was inserted to a depth

of 250 – 500 µm using a micromanipulator (Sutter, MP-285) with the plane of electrodes

parallel to the dorsal surface of the cortex. The second array was a three-dimensional (3D)
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grid of electrodes (448 grid, 16 shanks, 8 electrodes per shank, 300 µm inter-shank spacing,

100 µm inter-electrode spacing on each shank, Neuronexus) and was inserted to a depth

such that electrodes spanned the cortex from the ventricular to the dorsal surface. We

analyzed data from maximum of one electrode per shank. With post-processing filtering

(bandpass 5 – 100 Hz) we extracted the local field potential (LFP).

5.5.3 Visual stimuli

Visual stimuli were delivered with either a video projector (Aaxa Technologies, P4X Pico

Projector) or an LCD monitor (Samsung 19”, 1, 440× 900 pixels, contrast ratio=20,000:1,

response time = 2 ms) to the retina (fig.5.1a). Visual stimuli are: a naturalistic movie

(”CatCam”), a motion-enhanced movie (courtesy Jack Gallant), black moving dots on a

white background, and uniform black to gray transition. The mean irradiance at the retina

was 1 W/m2 for the projector and 20 mW/m2 for the monitor. In all cases, the stimulus

was triggered using a custom Labview program (National Instruments).

5.5.4 Identifying responsive channels

To identify responsive channels and include them in analyses, we quantify the level of

spontaneous activity on each electrode by averaging over a 4 s time window preceding

to stimulus onset. Then we take responses over a 4 s window immediately following the

onset of the stimulus, and we define the normalized difference of these two quantities as

a measure of responsiveness. We classify an electrode as visually responsive if the ratio is

greater than 0.75 (fig.5.1b).
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5.5.5 Gaussian-Process Factor Analysis

Gaussian-Process Factor Analysis (GPFA) has been proposed as a method to extract smooth,

low dimensional neural trajectories in single-trial simultaneously recorded spike trains19.

This low-dimensional trajectory reflects slow time evolution of the internal state of the

network and, therefore, it captures a portion of the variability that is shared among many

of the neurons. GPFA has several advantages over existing dimensionality reduction

methods that have been used to extract neural trajectories (e.g. principle component anal-

ysis [261, 262]). The main advantage, in our opinion, is that GPFA has a noise model em-

bodied and thus can distinguish between spiking noise and neural state variability (for a

complete discussion see Yu et al. 2009).

GPFA models the neural data with a low-dimensional Gaussian distribution corrupted

with private noise.

Ytrial
j (t) =< Ytrial

j (t) >trial +Cj.Xtrial(t) + ηtrial
j (t) (5.1)

where Ytrial
j (t) is the single-trial response recorded for neuron j, < Ytrial

j (t) >trial is across-

trial average as a stimulus impact estimate on each, Xtrial(t) is the network state, Cj is the

coefficient that determines the strength of network state impact on each neuron, and ηtrial
j

is the private noise signal. The network states at different time points are related through

Gaussian processes, Xtrial ∼ N(0, Qtrial) with Qtrial as covariance matrix, which implies

that the network state trajectories should be smooth. The parameters of the GPFA model

can be fit using expectation-maximization (EM) algorithm in such a way that it maximizes

the probability of the observed data [250], Ytrial
j (t).
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LFP traces can be used to estimate global network fluctuations [245]. However, since LFP

has a significant component of activity due to stimulus presentation, we subtracted the

mean LFP across repeated trials from each trial’s data to obtain residuals and then use

residuals to compute the network state.

5.5.6 Explained variability

Variability explained by across-trial average response is given by [263, 264]

VE = 1−
var(Ytrial

j − < Ytrial
j >trial)

var(Ytrial
j )

(5.2)

In similar manner variability explained by the global noise component is defined by

VE = 1−
var(Ytrial

j − Cj.Xtrial)

var(Ytrial
j )

(5.3)

5.5.7 Correlated variability Analysis

As mentioned above, for each single-trial LFP, the residual (or deviation from the average

activity) calculated by subtracting the across-trial average time series from the single-trial

time series. Network state is estimated using the residuals and were subtracted from

residuals to get the private noise signals, ηtrial
j (t). Traces were then separated into three

epochs: the ongoing epoch (defined to be the two seconds prior to the onset of visual

stimulation), the transient epoch (200 to 600 ms after stimulus onset), and the steady-state

epoch (800 to 2800 ms after stimulus onset). Then Pearson correlation between pairs of
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responsive channels was calculated for each epoch and trial. The results were averaged

across all trials, resulting in the trial-averaged correlated variability (CC) for each pair

and epoch. The significance of CC values for a given pair and epoch was determined by

either one-sided or two-sided t-test.

5.5.8 Phase Concentration Analysis

For each trial and cell, we extracted a 5.8 s window of residuals and residuals with net-

work state subtracted. To avoid filtering artifacts at the beginning and end of the sig-

nal we padded it with two 500 ms traces and later on dropped it. For each trace, we

performed wavelet analysis in Matlab using software provided by C. Torrence and G.

Compo [107] (available at URL: http://paos.colorado.edu/research/wavelets/). This re-

sulted in a series for the phase of each signal as a function of time and frequency. We then

averaged over the entire frequency range (0.7 – 100 Hz) to obtain the phase time series

for each trace, φi(t). For each pair, we calculated the cosine of the phase difference, and

averaged over each epoch to obtain the ”phase concentration” for each epoch and trial:

Rtrial
epoch =< cos[φ1(t) − φ2(t)] >trial

epoch. We then averaged over all trials and analyzed the

results for pairwise and population trends using the same methods as those described

for CC values. The phase concentration varies between -1 and +1 with +1 for a pair of

perfectly in-phase signals, -1 for perfectly out-of-phase signals, and 0 for two signals with

random phase difference.
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5.5.9 Computational model

We simulated a two-dimensional model network of 800 excitatory and 200 inhibitory LIF

neurons. All neurons are distributed randomly on the surface of a unit sphere (in order

to have periodic boundary condition). Excitatory-to-excitatory projections were made be-

tween nearby neurons with a probability that has 0.1 maximum and decay like a Gaussian

with spatial separation of the neurons. All other connections were established randomly

without any spatial constraint. Synaptic weights are drawn from a gamma distribution

with a very long tail [58]. The dynamics of the membrane potential (Vi) of each neuron

evolved according to

τm
dVi(t)

dt
= −gL[Vi(t)− EL] + Isyn(t) (5.4)

where the membrane time constant τm = 100 ms (excitatory neurons), 50 ms (inhibitory),

and the leak conductance gL = 10 nS (excitatory), 5 (inhibitory). The leak reversal potential

EL for each neuron was a random value between -70 and -60 mV, drawn from a Gaussian

distribution. The reversal potentials for the synaptic current Isyn(t) were EGABA = -68 mV,

and EAMPA = 50 mV. The spike threshold for each neuron was -40 mV. A neuron reset to

-59 mV after spiking, and was refractory for 2 ms (excitatory) and 1 ms (inhibitory).

The synaptic current is given by IYX
syn(t) = gYX.SYX(t)(V(t) − Esyn), where gYX is the

maximum conductance and gating variable, S(t), following a presynaptic spike at time 0

is described by

SYX(t) =
τm

(τDYX − τRYX)
[exp(−(t− τLX)/τDYX)− exp(−(t− τLX)/τRYX)] (5.5)
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Where for each synapse type (between presynaptic neurons of type X and postsynaptic

neurons of type Y) had three relevant time course parameters: delay (τLX, that is, the

lag between presynaptic spike time and beginning of conductance waveform), rise time

(τRYX), and decay time (τDYX). Values are listed in table 1. In response to a presynaptic

Table 5.1: Network parameters

Delay(ms) Rise(ms) Decay(ms) Max conduc.(nS)
E-to-E 1.5 0.2 1.0 1.0
E-to-I 1.5 0.2 1.0 30.0
I-to-E 1.5 1.5 6.0 6.0
I-to-I 1.5 1.5 6.0 30.0

spike, the weight (WYX) of a synapse depressed and recovered according to

dWYX(t)
dt

= −WYX(t)
τdepress

δ(t− tsp
X ) +

W0
YX −WYX(t)

τrecover
(5.6)

With depression time constant τdepress = 30 ms and recovery time constant τrecover = 1.5 s.

External Poissonian inputs are fed into the all excitatory. During ”ongoing” activity, the

external input rate to each neuron was 175 Hz. The stimulus was modeled as a sudden

increase to 875 Hz at stimulus onset time. The gating variables for external inputs had

the same parameters as for E-to-E connections, and maximum conductances were gE = 4

nS. Each trial was 5.8 s in duration, with stimulus onset at 2.7 s, and the time step was

0.05 ms. The ongoing epoch was defined to be 2.2 s to 0.2 s before stimulus onset, the

transient epoch 0 s to 0.4 s after stimulus onset, and the steady-state epoch 0.6 s to 2.6 s

after stimulus onset. The additional half a second at the beginning and end of each trial

ensured there were no wavelet filtering artifacts in the ongoing and steady-state epochs.
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5.6 Supplementary Materials

5.6.1 Supplementary Information 1: windows of activity chosen for

analysis

We motivated our choice of windows based on the results of a previous study of popu-

lation activity performed on the same data set [225]. In this previous work, the absolute

value of LFP signals was divided by its standard deviation and network activity were

defined as the summation of these traces from responsive electrodes. All trials were over-

laid, the 90th percentile envelope was calculated. The transient epoch was defined to be

the full-width at half-max of this envelope and steady-state was defined to start at the

end of the transient epoch. The transient epoch was calculated on a prep-by-prep basis,

and across all nine preparations (total of 13 datasets), lasted 423± 202 ms (mean± SD).

Since noise correlation distributions depend on window size, therefore, for this study the

three epochs should be of comparable duration. A 2 s ongoing window before stimulus

onset, a transient epoch of around 400 ms, and a 2 s steady-state epoch were chosen. Due

to the observed variability in the previous study, epochs were separated by 200 ms in

such a way that the end of the ongoing epoch coinciding with stimulus onset. We test

the robustness of our results by performing the analysis for three 1 s windows for all

epochs with and without gaps (see fig.S5.2). The transient increase in correlated variabil-

ity and phase concentration is independent of the window size and they actually reflect

the internal dynamics of the cortex during visual processing.

150



Figure S5.1: Stimulus explains a higher fraction of response variability during transient epoch across
13 data sets out of 16 total. Data sets are organized into two columns each with 8 rows. Each column
has three sub-columns for representing three epochs; i.e. ongoing, transient, and steady-state. Overall,
across-trial average captures larger portion of the variability during transient, while network state is a
more important source of variability during steady-state.
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Figure S5.2: Variability explained by different components is robust with the choice of gap and win-
dow size. Top row is shown in fig.5.1f for the 2 s, 400 ms, and 2 s window sizes for ongoing, transient and
steady-state with 200 ms gaps in between. Second row is pie charts for the windows with equal size (1 s)
with 200 ms gaps in between. Third row is for equal 1 s windows without any gap in between. Across all
the cases transient owe a large fraction of its variability to across-trial average and network-state plays a
significant role during the steady-state. Overall results are robust to the choice of window size and gap.

5.6.2 Supplementary Information 2: frequency bands chosen for anal-

ysis

We separated the full (0.7 – 100 Hz) range into low-frequency (0.7 – 20 Hz) and high-

frequency (20 – 100 Hz) bands because of two primary motivations. First, a common

point of view in neuroscience community is that different frequency bands accomplish

different tasks in the brain [11, 31, 125, 230]. This suggests that it is more reasonable to

analyze low- and high-frequency bands separately. Second, it has been hypothesized that
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Figure S5.3: Splitting frequency range into two separate low- and high-frequency bands. (a) Variability
explained by each component during epochs for two different frequency bands. Results presented in the
main text is still valid for the low-frequency band but not for the high-frequency band. (b) 〈CC〉 in low
(top) and high-frequency (bottom) bands before (left) and after (right) accounting for the network-state.
Low-frequency 〈CC〉 changes dramatically by correcting for the network-state while high-frequency 〈CC〉
is insensitive to that.

correlated variability of V-LFPs in primate visual cortex in low-frequency band is stimu-

lus dependent while high-frequency component is independent of the stimulus presen-

tation [201]. However, we found that low-frequency results closely resemble results pre-

sented in fig.5.1 and fig.5.2, and 〈CC〉 amplitudes dramatically reduced by the impact of

network-state. Moreover, high-frequency 〈CC〉 values do not decrease significantly with

accounting for the network-state.
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without any gap in between. Dramatic decrease in ongoing 〈CC〉 before correcting for the network-state
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excluded and, meanwhile, an indication that network-state correction is necessary.
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p-value. (b) The format is the same as in (a) for simulated data.
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Chapter 6

Open questions and additional topics

6.1 Introduction

I believe a scientific research is a collection of small items coming together and neatly fit-

ting like the pieces of a puzzle. This line of research typically starts with a big question

and achieved knowledge is squeezed in the frame of the question. However, sometimes

researchers come across pieces that they don’t know where they belong to. Those un-

knowns, though hinder our understanding progress, may help us identify new phenom-

ena and might spike new discoveries. Like any other graduate student, I’ve struggled

to identify and pursue some of these leads but at the time of writing this draft, I still

am clueless where they can take us. Therefore, I try to address some of those ideas in

this chapter. Whats presented in this chapter is a collection of ”cool stuff” that could be

connected together and/or to our current knowledge to see what the underlying picture

is.
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6.2 Whcih LFP frequencies are more informative?

6.2.1 Motivation

Local field potential (LFP) origin is a long-standing debate [265]. LFPs are thought to re-

flect population synaptic potentials [266,267], and other types of slow activity unrelated to

synaptic events, such as spike afterpotential [268,269], and voltage-dependent membrane

oscillations [270]. LFPs consist of a range of frequencies that may originate from distinct

neural processes [271, 272] and can be related to various cognitive processes [273, 274].

However, our knowledge about which frequency components of LFP are most important

for encoding sensory stimuli is very limited [98,265,271,275]. To address this question, we

measure the amount of information conveyed by changes in power of LFPs at different

frequencies [275], and then determine which frequencies carry independent (redundant)

information and may originate from distinct (similar) neural processes.

6.2.2 Methods

Signals recorded from primary visual cortex of turtle eye-attached whole brain ex-vivo

preparations are preprocessed (filtered and denoised). Three 1 s windows are identified

(see chapter 4 for more information) as ongoing (before stimulus onset), transient (imme-

diately after stimulus onset), and steady-state (seconds after stimulus onset). Now each

epoch is divided to 4 non-overlapping windows of length 250 ms. The neural signals in

each window is considered to be elicited by what has shown on the screen up to that time

and, therefore, each window is considered the response to a different ”stimulus” [275].
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Then we use Chronux toolbox in MatLab to assess the power spectrum r f at each fre-

quency f , independently for each trial and responsive channel. The power spectrum is

obtained using multi-taper method [276] with default settings.

Now the amount of information conveyed by the change in power of neural signals at

different frequencies, r f , can be calculated using Shannon mutual information (MI)

I(S; R f ) = ΣsP(s)Σr f P(r f |s)log2(
P(r f |s)
P(r f )

) (6.1)

in which P(s) is the probability of showing stimulus s and is equal to the inverse of num-

ber of stimuli (4 in our case), P(r f |s) is the probability of observing power r at frequency

f for a given stimulus s, and P(r f ) = ΣsP(r f |s). I(S; R f ) is the amount of information in

bits gained about stimulus from observing response in a single-trial of one channel.

6.2.3 Results

Mutual information is computed separately for each epoch across different frequencies

(fig.6.1). Here’s a series of remarks obtained from fig.6.1. First, most of the preparations

show a decay of MI with frequency. it indicates that low frequencies convey more infor-

mation than gamma-band frequencies. Second, since during ongoing epoch no stimulus

is shown, MI should be zero. Actually we obtained very small MI for most of the prepa-

rations 19/24. I expect that correcting MI for biases will lead to insignificant MI for all the

preparations. Third, transient epoch explains stimulus much better than steady-state for

17 preparations out of 24. This conclusion is consistent with what presented in chapter

5, where we should that stimulus captures a larger portion of signal variability during

transient epoch. Fourth, there is a large variability across preparations unlike monkey
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Figure 6.1: Transient epoch carries more information across all frequencies especially > 30 Hz. Shown
are MI across three epochs (yellow: ongoing, blue: transient, and green: steady-state) from 24 preparations.
MI for most of the cases, 19/24, are larger during transient epochs than steady-state across whole frequency
range. There is a large variability across preparations. Two preparations show a large peak at low frequen-
cies with a very steep decay, four of them show a clear peak at around ∼ 30 Hz with a gentle decrease as
frequency increases, and for the reset of the cases MI shows a gentle decrease in the whole frequency range.
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data [275]. Two preparations show a large peak at low frequencies with a very steep de-

cay, four of them show a clear peak at around∼ 30 Hz with a gentle decrease as frequency

increases, and for the reset of the cases MI shows a gentle decrease in the whole frequency

range.

What remains to investigate is the potential relationship between this variable MI patterns

and any measure of variability in neural activity, persumably coefficient of variation [275].

Another route to pursue is to compute the information content of signals (across-trial

average trace) and/or noises (deviations from across-trial average) and compare them

against (fig.6.1) to see if any pattern emerges. Significance of the MI can be obtained

by shuffling trials and channels and it helps to determine the confidence level of our

conclusions.

6.3 The joint information carried by two different LFP fre-

quencies

6.3.1 Methods

We showed that single-frequency MI have a variable behavior. Now this arises several

exciting questions. To what extent information content of different frequency bands are

redundant? Do we gain less uncertainty when combining together the power r f1 and r f2

at two different frequencies? The MI analysis can simply extended using joint probability
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of the powers r f1 and r f2 :

I(S; R f1 , R f2 = ΣsP(s)Σr f1
,r f2

P(r f1 , r f2 |s)log2(
P(r f1 , r f2 |s)
P(r f1 , r f2)

) (6.2)

where P(r f1 , r f2 |s) is the probability of observing powers r f1 and r f2 at frequencies f1 and

f2 for a given stimulus s; and P(r f1 , r f2) = ΣsP(r f1 , r f2 |s).

6.3.2 Results

We computed power spectrum of the signals across epochs, channels, trials, and non-

overlapping time windows, then we quantified joint MI (fig.6.2) across epochs (columns)

for 6 of the preparations (rows). Here’s a list of conclusions we reach from fig.6.2. First,

intuitively, joint MI shows a very small value during ongoing epoch. Second, joint MI

shows negative values for various combination of frequencies. I suspect that this is due

to bias in our procedure and can be corrected using different techniques [277]. Third,

gamma-band frequencies, ∼ 30 – 100 Hz have a high joint MI amplitude, which indicates

that individual frequencies carry independent information. However, I think this hap-

pens due to higher information content of individual component and, therefore a correc-

tion with that element in mind seems necessary. Fourth, two frequency bands separated

by ∼ 30 – 40 Hz show a small joint MI (off-diagonal elements) which implies that the two

frequency bands are strongly correlated. Fifth, most importantly near-diagonal elements

show modular patterns which persist through all of our recordings. Bias correction might

lead to similar module with an indication that frequencies within a module are generated

through similar neural processes.
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Figure 6.2: Joint MI reveals underlying neural processes for different frequencies. Joint MI across
epochs (columns) for 6 of the preparations (rows). Ongoing epoch has a small joint MI in comparison to
the other two epochs. Near-diagonal modules indicate that those frequencies may be generated through
similar neural processes. Other structures reveal how correlated the frequency bands are.
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6.4 Does critical state of avalanches explain coordination

dynamics?

6.4.1 Introduction

Variability has been shown, both theoretically and experimentally, to be maximized while

network is operating near critical state [278, 279]. Critical state is characterized by scale

free probability distributions of neuronal avalanches under various preparations and con-

ditions [280–282]. In chapters 4 and 5, we found that noise correlation, in both LFPs and

Vms, show a transient increase with stimulus onset. An unanswered question is whether

this dynamics can be related to the state of the cortex at each epoch. In other words, does

supercriticality indicate a higher coordination relative to critical or subcritical states? Do

global coherent oscillations triggered at stimulus onset, which invade the whole network,

cause a transient increase in noise correlation? What are the roles of synaptic adaptation

in organizing the network into a critical state with more spatially confined oscillations?

6.4.2 Methods

To address this question we used the two-dimensional model network presented in chap-

ter 5. Briefly, neurons are distributed randomly on the surface of a unit sphere with local

excitatory-to-excitatory projections while all other connections are established randomly

without any spatial constraint. Synaptic weights are drawn from a gamma distribution

with a very long tail. The synaptic currents are given by an alpha function with their time
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Figure 6.3: Criticality state may explain coordination amplitude in the network. Transient epoch shows
a super-critical distribution of avalanche sizes while steady-state epoch demonestrates a powe-law distri-
bution with xmin = 4 and α = 1.9. White dots are generated with a hypothetical power-law distribution
with given parameters. Gray distribution in both panels is for shuffled spike trains.

constants based on experimental studies. In response to a presynaptic spike, the weight

of a synapse depresses and recoveres exponentially.

External Poissonian inputs are fed into the all excitatory. The stimulus was modeled

as a sudden increase at stimulus onset time. The transient epoch was defined as a 1-s

window immediately after stimulus onset, and the steady-state epoch as a 1-s window

after transient epoch. Then, we quantified probability distribution of avalanche sizes and

durations for each epoch separately to see if they demonestrate any power-law behaviour.

6.4.3 Results

We ran the clustered network for many trials (∼ 200) and for each trial we quantified size

of the avalanches started during transient and steady-state epochs, and then we plotted

the distribution function of them (fig.6.3). Fig.6.3 left indicates that transient epoch fre-

quently has very large avalanches, an indication of super-critical network. On the other
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hand, fig.6.3 right demonestrate a power-law distribution during steady-state epoch, an

critical network signature. Moreover, noise correlation shows a significantly larger value

during transient epoch, therefore it is tempting to tie state of the network to coordina-

tion dynamics. However, more careful approaches show be taken to show that they don’t

just jointly emerge, but rather are correlated. Also, our model provides an opportunity

to explore to what extent network parameters are relevant. For example, is the gamma

distribution of synaptic weights necessary for the network to exhibit this behaviour? or

how strength and size of the clusters impact our results?
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Epilogue

In this thesis, we studied characteristic features of cortical oscillation in primary visual

cortex of turtle eye-attached ex vivo preparations. We showed that intermittent oscilla-

tions arise from an interconnected ensemble of pyramidals and two types of inhibitory

cells. Our investigations revealed that oscillations are the core mechanism in sculpting

the coordination among a population of neurons, and moreover, a leaky integrate-and-

fire network with clustered architecture is able to reproduce experimentally-observed dy-

namics with a biophysically plausible set of parameters. Last but not least, we showed

that correcting for the global ”noise” reduces the amplitude of correlations but doesn’t

affect its structure.

In chapter 2 we found that cortical oscillations occure by short episodes in time, and each

episode has a different dominant frequency and lasts for a variable duration. We also

showed that within each episode phase doesn’t expand linearly with time. All of this im-

plies that oscillations aren’t reliable enough to be used as a ”clock” signal and enable com-

munication between remote brain regions. However, further investigation revealed that

oscillations, though variable, are coherent among distant regions in the presence of even

weak interconnection. Therefore, they are still imaginable to be used as a communication

tool. Chapter 3 suggested that all the features, especially intermittency, is achievable in a

network with two types of fast and slow inhibitory populations.
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Spatio-temporal dynamics of coordination has gained widespread interest in neuroscience

community as a framework for understanding the nature and underlying mechanisms of

population coding in the brain. In chapter 4 we uncover the temporal coordination dy-

namics in membrane potential recordings. Stimulus onset induces a transient increase in

noise correlation among cell’s membrane potentials. More time into the stimulus, noise

correlation declines to an intermediate value which is still significantly larger than ongo-

ing epoch. Our modeling investigation revealed that two factors seem to a play an essen-

tial role in this dynamics; synaptic adaptation and network structure. Synaptic adaptation

reduces the level of activity in the network and clustered architecture prevent network

from having global oscillations. Oscillations are confined to spatially restricted clusters

and, therefore, noise correlation amplitude decreases.

Finally, in chapter 5 we studied sources of trial-to-trial variability in neural responses. We

found that across-trial average captures a large fraction of the variability in early part of

the responses while across-electrode average is a better estimator of both ongoing activ-

ity and late part of the responses. In addition, recordings show a strong noise correlation

that transiently increases with the stimulus onset. More importantly, we found that LFPs

have a strong, shared fluctuation that accounting for them markedly reduces the ampli-

tude of noise correlation. Our model investigations indicated that intracortical adaptation

self-organizes cortical circuits towards a balanced regime at which network dynamically

subdivides into clusters that leads to experimentally-observed variability and an inter-

mediate coordination level.

Overall, while offering a profound insight on the interaction of oscillations and coor-

dination in neural networks, we believe that this line of scientific inquiry is capable of
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inducing a promising approache in studying both oscillations and temporal coordina-

tio. Hopefully, future investigations will help us better understand information coding

schemes in the brain.
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cillations in the hippocampus of the behaving rat.,” Neuron, vol. 37, pp. 311–22, jan
2003.

[67] M. Jarvis and P. Mitra, “Sampling properties of the spectrum and coherency of se-
quences of action potentials,” Neural Computation, vol. 13, no. 4, pp. 717–749, 2001.

[68] D. Xing, C.-I. Yeh, and R. M. Shapley, “Spatial spread of the local field potential and
its laminar variation in visual cortex,” The Journal of Neuroscience, vol. 29, no. 37,
pp. 11540–11549, 2009.

[69] U. Mitzdorf et al., Current source-density method and application in cat cerebral cortex:
investigation of evoked potentials and EEG phenomena. American Physiological Society,
1985.

[70] A. Rauch, G. Rainer, and N. K. Logothetis, “The effect of a serotonin-induced disso-
ciation between spiking and perisynaptic activity on bold functional mri,” Proceed-
ings of the National Academy of Sciences, vol. 105, no. 18, pp. 6759–6764, 2008.

[71] L. Avitan, M. Teicher, and M. Abeles, “Eeg generatora model of potentials in a vol-
ume conductor,” Journal of Neurophysiology, vol. 102, no. 5, pp. 3046–3059, 2009.

176



[72] F. A. Khawaja, J. M. Tsui, and C. C. Pack, “Pattern motion selectivity of spiking out-
puts and local field potentials in macaque visual cortex,” The Journal of Neuroscience,
vol. 29, no. 43, pp. 13702–13709, 2009.

[73] M. J. Richardson, N. Brunel, and V. Hakim, “From subthreshold to firing-rate reso-
nance,” Journal of Neurophysiology, vol. 89, no. 5, pp. 2538–2554, 2003.

[74] N. Brunel and V. Hakim, “Fast global oscillations in networks of integrate-and-fire
neurons with low firing rates.,” Neural Computation, vol. 11, pp. 1621–1671, apr 1999.

[75] N. Brunel, “Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons.,” Journal of Computational Neuroscience, vol. 8, no. 3, pp. 183–208,
2000.
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theta oscillations govern cognitive processes.,” International Journal of Psychophysi-
ology, vol. 39, pp. 241–8, jan 2001.

[125] L. M. Ward, “Synchronous neural oscillations and cognitive processes,” Trends in
Cognitive Sciences, vol. 7, pp. 553–559, dec 2003.

[126] C. S. Herrmann, M. H. Munk, and A. K. Engel, “Cognitive functions of gamma-
band activity: memory match and utilization,” Trends in Cognitive Sciences, vol. 8,
pp. 347–355, aug 2004.
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[269] G. Buzsáki, “Theta oscillations in the hippocampus,” Neuron, vol. 33, no. 3, pp. 325–
340, 2002.
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