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The Gram-positive bacterium Streptococcus pyogenes is a remarkably successful 

pathogen, capable of infecting numerous tissue sites within its human host. The ability of S. 

pyogenes to invade these different niches is, in part, due to the species’ ability to monitor various 

physical and chemical signals in its environment and alter its transcriptional profile in response 

to these differential conditions. As a member of the lactic acid bacteria, S. pyogenes has a simple 

fermentative metabolism and relies exclusively on a combination of homo-lactic and mixed acid 

fermentation as a means of generating energy in the cell. As a consequence of its fermentative 

metabolism, S. pyogenes produces several organic acid end products that, over time, accumulate 

in the surrounding environment, causing a substantial reduction in pH. Thus, growth of the 

bacterium itself results in a significant remodeling of its local tissue environment. It also 

indicates that over the course of infection, it must both adapt to its self-inflicted acid stress as 

well as exploit alternative carbon sources for survival. Although pH has been identified as a 

signal utilized by S. pyogenes to induce global transcriptional changes, the specific regulatory 

mechanisms behind this transcriptional remodeling have largely remained unclear. To further 
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characterize the process of S. pyogenes’ pH adaptive response we have identified several novel 

pH-sensitive transcriptional regulators and analyzed their contribution to gene expression and S. 

pyogenes pathogenesis.  

The malic enzyme pathway, which allows the cell to utilize malate as a carbon source for 

growth, consists of four genes in two adjacent operons, with the regulatory TCS MaeKR being 

required for the expression of the genes encoding a malate permease (maeP) and malic enzyme 

(maeE). Results show that expression of the maePE operon is influenced independently by 

external malate concentrations and pH in a MaeK-dependent mechanism. The ME genes are 

additionally regulated by a unique CcpA-independent form of catabolite repression which 

involves the PTS proteins PtsI and HPr. Furthermore, in vivo experiments demonstrate that loss 

of any individual ME gene has a significant effect on the outcome of a soft tissue infection. 

 The secreted toxins SPN and SLO have been shown to contribute to S. pyogenes 

cytotoxicity and virulence in multiple models of pathogenesis, however little information is 

known about the specific regulatory mechanism that control expression of these toxins. Our work 

has determined that the growth-phase pattern of expression of the spn/slo operon is regulated by 

environmental pH. Additionally, this regulation requires both the CovRS two-component system 

as well as an additional protein, RocA. Additional data suggests that RocA does not function as a 

traditional histidine kinase, despite high structural and sequence homology to known histidine 

kinases such as CovS. However, all three regulatory proteins are required for the pH-mediated 

regulation of this virulence operon.
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Overview of Streptococcus pyogenes and streptococcal diseases 

Streptococcus pyogenes (GAS) is a Gram-positive, chain forming bacterium that is able 

to invade numerous different tissue sites within the host. S. pyogenes, a strict human pathogen, is 

responsible for numerous superficial and systemic diseases and is believed to cause a wider 

range of human diseases than any other bacterial pathogen (3-7).  

 S. pyogenes primarily causes superficial, self-limiting infections of the skin (impetigo) 

and throat (pharyngitis) (3, 7, 8). These diseases are typically limited to the initial site of 

infection and do not invade deeper tissues. S. pyogenes is the most common causative agent of 

pharyngitis, with approximately 600 million cases annually (11). The symptoms of pharyngitis 

include a sore throat and sudden onset fever. The sore throat is due to inflammation of the tonsils 

and pharynx, often with patchy exudates and enlarged lymph nodes (11). Pharyngitis is typically 

spread directly from person-to-person contact through nasal secretion or saliva droplets from 

infected individuals. Incidence of pharyngitis is highest in crowded places, such as schools, 

where approximately 15% of school children will contract the disease in developed countries 

(12). Impetigo is caused by a S. pyogenes infection of the skin, leading to the formation of large 

pustules that, once ruptured, will form thick, honey-colored scabs (11). This disease is spread by 

direct skin contact and is most often seen in children living in tropical or subtropical climates and 

in areas with poor hygiene (11). Despite the increasing numbers of antibiotic resistant pathogens, 

S. pyogenes remains sensitive to penicillin, and this is generally the first line of treatment for 

these superficial infections (13). 
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Less frequent than the superficial infections of the skin and throat, S. pyogenes can also 

breach the epithelial barriers to cause a number of invasive diseases. These types of infections 

have a high morbidity and mortality rate, where approximately 8-23% of invasive infections lead 

to death within 7 days (14-16). The most common systemic diseases caused by S. pyogenes are 

cellulitis and bacteremia (11). Although less common, S. pyogenes can also cause necrotizing 

fasciitis and streptococcal toxic shock syndrome (STSS) (17). In the case of necrotizing fasciitis, 

antibiotic treatment with penicillin has little effect on the spread of the disease, suggesting that 

the release of bacterial toxins, not growth of the bacteria itself, is the main contributor of this 

disease (18). The main treatment for necrotizing fasciitis is surgical debridement of infected 

tissue, however mortality rates for this type disseminating disease is quite low (less than 20%) 

(11, 14-16). 

Figure 1. Pathogenesis of S. pyogenes. Diagram of host tissue sites and the resulting diseases caused. 
Adapted from (9).  
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 Additionally, prior S. pyogenes infections can lead to a number of postinfectious 

sequelae, which include diseases such as acute rheumatic fever (ARF) and acute 

poststreptococcal glomerulonephritis (APSGN) (7, 11, 12). ARF, which can occur as a result of 

an untreated pharyngeal infection, can cause inflammation of the joints, heart, or neurological 

symptoms (17, 19). ARF is a major source of morbidity and mortality worldwide, causing long-

term damage to the heart (rheumatic heard disease or RHD). As a result, RHD is the most 

common cause of pediatric heart disease worldwide, with over 2.4 million cases in children ages 

5 to 14 (11, 19). APSGN results from an immune complex-mediated disorder that affects the 

kidneys. Symptoms of this disease include edema, hypertension, and urinary sediment 

abnormalities (11). Globally, there are over 470,000 cases diagnosed annually, with the highest 

rates seen in children in undeveloped countries (11). However, unlike ARF, with proper medical 

care, long-term damage from APSGN is rare (11).  

 

Streptococcus pyogenes Pathogenesis 

 S. pyogenes’ ability to successfully invade numerous tissue sites within its human host is, 

in part, due to its ability to produce a wide array of virulence factors throughout the infection 

cycle. These virulence factors, which include surface attached and secreted proteins, enable the 

bacterium to both inflict tissue damage to the host cells as well as evade the onslaught of 

immune factors produced by the host. The following sections will explore the function of several 

of the major virulence factors in S. pyogenes and their role in pathogenesis. 
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Surface-associated virulence factors 

Lipoteichoic acid (LTA) 

The first step required for S. pyogenes to successfully invade host tissue is to adhere to 

human cells. Adherence is thought to be a two-step process, beginning with LTA.  Bound to the 

surface of the bacterial cell, LTA is an amphiphilic polymer of glycerol phosphate containing 

glucose and D-alanine substitutes (10, 11, 20). It’s thought that these polymers are involved in 

weak hydrophobic interactions with various host cell components. This initial interaction 

between the bacterial and host cell can then allow long-distance attachments and higher-affinity 

binding events (21).  

 

Figure 2. Virulence factors produced by S. pyogenes. The bacterium produces over 40 virulence 
secreted and surface exposed factors that contribute to adherence, tissue damage, and immune 
evasion. Adapted from (7).  



	
  
	
  

6	
  

M protein 

 The surface-attached M protein is one of the most well characterized virulence factors 

produced by S pyogenes. It is a fibrillar protein made up of α-helical coiled-coil dimers and is 

attached to the cell wall through the function of sortase and an LPXTG motif (21-24). S. 

pyogenes strains are classified by emm types, which are identified by the hypervariable region of 

the N-terminal sequence of the protein (21). Following the hypervariable region is a set of four 

repeat regions (A-D), where the A repeats are hypervariable and the B regions are semivariable 

(21, 22).  Different hypervariable A regions from different M proteins have been shown to bind 

to C4b-binding protein (C4BP), plasminogen, IgA and IgG, and factor H (25). The B regions are 

necessary for binding to fibrinogen and IgG (22). The highly conserved C region can also bind 

factor H, as well as human serum albumin (HSA) and the host cell ligand CD46 (26, 27).  

 Due to its ability to interact with a number of human proteins, M protein contributes to S. 

pyogenes pathogenesis in multiple ways. Through binding to components of the extracellular 

matrix (ECM) such as fibronectin, it aids in adherence to epithelial cells and keratinocytes (28-

33). In addition, it prevents phagocytosis by binding complement-inhibitory proteins C4BP, 

factor H, and factor H-like protein 1 (34-36). In vivo studies have shown that M protein is 

required for full virulence in subcutaneous mouse models of invasive disease (37).  

 

Hyaluronic capsule 

Encoded by the hasABC operon, S. pyogenes expresses a hyaluronic capsule, composed 

of polymers of glucuronic β-1, 3-N-acetylglucosamine (11). This capsule is structurally identical 

to the hyaluronic acid expressed on host cells and connective tissue, providing protection to the 

bacteria through molecular mimicry (17). Additionally, the thick capsule blocks immunological 
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access to surface epitopes, inhibits host complement proteins and antimicrobial peptides, and 

prevents phagocytosis (38-41). In vivo studies have shown that S. pyogenes requires capsule for 

full virulence in both mouse and nonhuman primate models of invasive disease (42-46). 

 

C5a peptidase 

 Encoded by the gene scpA, the C5a peptidase is a serine protease expressed on the 

surface of all GAS strains (47-51). ScpA, a subtilin-like protease, is produced as a 125 kD 

proenzyme, which is then cleaved to produce the active protease (11, 21, 52). The enzyme 

cleaves C5a, a chemotactic peptide of the complement system that is involved in neutrophil 

recruitment and stimulation (21, 53). In this manner, C5a peptidase interferes with the host 

phagocyte recruitment at the site of infection. Additionally, in vivo studies using a C5a peptidase 

loss of function mutant show that the mutant was deficient in colonization of the mouse 

nasopharynx compared to WT (10, 54).  

 

Streptococcal inhibitor of complement (SIC) 

 SIC, one of the most polymorphic bacterial proteins known, is a 31 kDa protein that 

interferes with complement-mediated lysis by inhibiting the binding of the membrane attack 

complex (MAC) onto bacterial cell membranes (7, 55). Given that S. pyogenes is highly resistant 

to complement-mediated lysis due to its thick cell wall, the main contribution of SIC to S. 

pyogenes pathogenesis is likely not interference with MAC. Rather, SIC is able to disrupt other 

branches of the innate immune system including cathelicidin LL-37, α-defensins, and lysozyme 

(56-58).  
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Secreted virulence factors 

 SpeB 

The cysteine protease SpeB is secreted as a 40kD zymogen, which is then 

autocatalytically cleaved into a 28kD active form. SpeB is one of the most abundantly produced 

virulence factors and its expression is regulated by numerous growth phase and nutritional cues, 

including carbohydrate availability, NaCl concentrations, and pH (59, 60). SpeB has broad-

spectrum protease activity and has been shown to degrade a number of host proteins. Host targets 

of its protease activity include IgG, chemokines, complement protein C3b, and ECM 

components including fibrinogen (61-64). In addition, SpeB activity is responsible for cleaving 

several bacterial proteins, including other virulence factors such as SPN, SLO, M protein, and 

streptokinase, among others (61, 65, 66). For these reasons, the complex role of SpeB in 

promoting disease is unclear and varies by strain and by animal model.  

 

Streptokinase (Ska) 

Ska is a secreted enzyme that converts plasminogen (which is coated on the surface of the 

bacterial cell through the actions of several plasminogen binding M proteins (PAM)) to plasmin, 

the active form of the protein (67-71). Once active, plasmin functions as a broad-spectrum serine 

protease and is able to degrade blood clots, ECM components, and activate metalloproteases 

(72). As S. pyogenes is strictly a human pathogen, Ska is highly specific for human plasminogen. 

In vivo studies using humanized mice (transgenic for human plasminogen) have shown that Ska 

and acquisition of active plasmin is necessary for dissemination of the bacteria (73).  
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Superantigens 

 Different strains of S. pyogenes produce a variety of phage-encoded superantigens 

proteins called the streptococcal pyogenic exotoxins (Spe). This family of proteins includes 

SpeA, SpeC, SpeG, SpeH, SpeJ, SpeK, SpeL, streptococcal superantigen A (SSA), and the 

streptococcal mitogenic exotoxin Z (SmeZ) (7). Production of these superantigens is associated 

with severe bacterial diseases such as STSS and necrotizing fasciitis (7, 74). Superantigens bind 

to the β-chain of CD4+ T cells and MHC class II molecules on B cells, monocytes, and dendritic 

cells (7, 75, 76), thereby resulting in an overstimulation of the host inflammatory response and 

production of large amounts of TNFα, IL-1β, IL-2, and IFNγ (7, 77). The release of these 

cytokines results in a drop in blood pressure and multi-organ failure, the classic hallmarks of 

STSS (7, 11).   

 

Streptolysin S (SLS) 

 SLS is a β-hemolysin produced by the majority of S. pyogenes strains during stationary 

phase growth (78, 79) and is responsible for the beta-hemolysis seen on blood-agar plates, a 

classic marker for clinical identification. SLS is encoded in a highly conserved nine-gene operon 

comprised of genes sagA-I (78, 79). SLS contributes to S. pyogenes pathogenesis by lysing a 

large number of host cells, including lymphocytes and erythrocytes, among others (80). In vitro 

data suggests that SLS contributes to pathogenesis through cytotoxicity, stimulation of host 

inflammatory cells, and inhibition of phagocytosis (81). In vivo, SLS is required for full 

virulence in a murine model of necrotizing soft tissue infection, as infection with an SLS-

deficient mutant resulted in decreases in bacterial burden, neutrophilic inflammation, and tissue 

necrosis (79).  
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SPN, SLO, and Cytolysin mediated translocation  
 

  

 

The streptococcal NAD+ glycohydrolase (SPN) is a 52kDa secreted protein that, when 

delivered into the host cell cytosol, cleaves β-NAD+ into nicotinamide and ADP-ribose (1, 82, 

83). There are two important features that make SPN’s enzymatic activity unique from other 

classes of NAD+ cleaving enzymes. First, SPN has been shown to be a strict NAD+ 

glycohydrolase and is unable to further catalyze the products from the initial reaction (1). 

Second, SPN is capable of cleaving β-NAD+ at an incredibly high rate, thus causing rapid 

depletion of β-NAD+ stores within the host cell (1, 82).  

Recent studies analyzing the various alleles of spn have shown that this gene is evolving 

under positive selection, leading to a separation of two distinct subtypes, NADase positive which 

retains the glycohydrolase activity, and an NADase negative form (82, 84). Little is known as to 

the specific role of the NADase negative subtype in pathogenesis, but there is a correlation 

between SPN subtypes and tissue tropism. S. pyogenes primarily causes superficial infection of 

the skin or throat. Epidemiological evidence has shown that there are subpopulations of S. 

pyogenes that specialize in infections at only one of these two tissue sites (skin-specialists and 

Figure 3. β-NAD+ cleavage. β-NAD+ is cleaved to form nicotinamide and ADP-
ribose. Adapted from (1) 
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throat-specialists) (85). In addition, there is a third subpopulation that can infect both tissue types 

(generalists) (85). An analysis of series of 113 clinical isolates demonstrated that skin or throat 

specialists were more likely to encode the NADase negative spn allele while  generalist strains 

encoded the NADase positive spn allele (84). Recent work from the Caparon lab has also shown 

that both NADase active and inactive forms of SPN are cytotoxic to host cells, indicating that 

SPN’s contribution to S. pyogenes pathogenesis involves a secondary mechanism beyond β-

NAD+ depletion (82). 

The spn gene is the first gene in a 3-gene operon, which also includes the genes for 

immunity factor of SPN (IFS) and Streptolysin O (SLO). IFS is a small, cytosolic  

protein that binds to the active site of SPN, blocking its enzymatic activity while in the  

 

bacterial cell (86). The third gene in this operon, slo, produces a cholesterol-dependent cytolysin 

SLO. This protein, when secreted, contributes to pathogenesis in several ways. First, SLO 

functions as a cholesterol dependent cytolysin. This class of proteins binds to cholesterol rich 

areas of host membranes, oligomerizes, and inserts itself into cell membranes to form pores (87). 

In this way, SLO contributes to cytotoxicity of host cells. 

 Secondly, a specific interaction between SPN and SLO allows for the translocation of 

SPN directly into host cell cytosols (83, 88-91). This process, termed cytolysin-mediated 

Figure 4. The spn operon. Organization of the spn operon in S. pyogenes. 
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translocation (CMT), involves a complex series of interactions between SPN and SLO and a 

great deal of work in the Caparon lab has been performed to elucidate the mechanism behind this 

delivery system. From this work, several important details have been discovered about this 

process.

 

 

 

 

First, CMT is highly specific for these two proteins. Replacement of SLO with the closely 

related cytolysin PFO does not allow SPN translocation (90). Second, SPN appears to be the 

only substrate involved in CMT (83, 89). Additionally, it has been shown that SLO pore 

formation is not necessary for SPN translocation to occur (90). Finally, recent work from our lab 

has established that SPN translocation can occur through a cholesterol-insensitive mode of 

Figure 5. Cytolysin mediated translocation. SPN, IFS, and SLO are expressed during the 
exponential phase of growth. In the bacterial cytosol, IFS binds to the SPN active site, blocking 
its NADase activity. SPN and SLO are secreted through the sec machinery into the extracellular 
milieu. After the bacteria adhere to the host cell, SLO monomers oligomerize and form pores in 
the host cell membrane. The interaction between SPN and SLO at the membrane enables SPN to 
be translocated into the host cell cytosol. Image courtesy of S. Chandrasekaran.  
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membrane binding that requires both SPN and SLO for membrane binding (91). It has also been 

shown that both proteins play a role in cytotoxicity, as loss of either protein has reduced 

virulence in cultured epithelial cells and in vivo in a mouse model of soft tissue infection (83, 

88). Taken together, these studies demonstrate that both SPN and SLO play an important role in 

the pathogenesis of S. pyogenes. 

 

Metabolism of Streptococcus pyogenes  

 S. pyogenes is a member of the group Lactobacillacea or lactic acid bacteria (LAB). This 

group is characterized as lacking an electron transport chain (ETC) and TCA cycle. Instead, 

these bacteria rely solely on a mix of homolactic and mixed acid fermentation as a means of 

generating energy in the cell (92). S pyogenes is able to utilize a number of different carbon 

sources for growth, which can be obtained through several different pathways. 

 

Carbohydrate Utilization 

 The majority of carbohydrates that S. pyogenes can utilize are transported into the cell 

through the actions of the phosphotransferase (PTS) pathway. Like most bacteria, the preferred 

carbohydrate for S. pyogenes is glucose, which can be brought into the cell and phosphorylated 

via the PTS system, where it then shuttles to the Embden-Meyerhof-Parnas pathway (92, 93). 

The breakdown of one glucose molecule through this pathway leads to the formation of two 

molecules of ATP, NADH and pyruvate (92). Further metabolism of pyruvate via homolactic 

and mixed acid fermentation allows for the re-oxidation of the NADH formed during glycolysis 

(92). In the absence of glucose, S. pyogenes is able to utilize alternative carbohydrates such as 
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galactose. Similar to glucose, galactose utilization begins with uptake and phosphorylation 

through the PTS pathway. However, unlike glucose, the phosphorylated galactose molecule is 

broken down through the tagatose pathway, leading to formation of two three-carbon sugars, 

glyceraldehyde-3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP) (94). From there, 

these 3-carbon sugars are able to reenter the Embden-Meyerhof pathway for conversion to 

pyruvate.  

 

Homolactic and Mixed Acid Fermentation 

 Lacking a complete TCA cycle and ETC, S.  pyogenes relies exclusively on a simple 

fermentative metabolism as a means of regenerating NAD+ necessary for additional rounds of 

glycolysis. The simplest and most well-known pathway for this is homolactic fermentation, the 

conversion of pyruvate to lactate via the enzyme lactate dehydrogenase (LDH) (95). In this 

pathway, each molecule of pyruvate is converted to lactate and one molecule of NADH is 

oxidized (92, 95). The enzymatic activity of LDH is influenced by the intracellular levels of 

fructose 1,6-bisphosphate, meaning that homolactic fermentation is generally only utilized when 

high levels of glucose are present (92, 95, 96).  

As an alternative to homolactic fermentation, S. pyogenes can also undergo mixed acid 

fermentation, a pathway that begins with the conversion of pyruvate into acetyl-CoA. In 

S. pyogenes this conversion is performed by the oxygen-sensitive enzyme pyruvate formate lyase 

(PFL), which converts pyruvate into acetyl-CoA and formate (92, 96). PFL, in addition to being 

sensitive to oxygen, is also inhibited by low intracellular levels of G3P and DHAP (92). 
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Therefore, homolactic fermentation is the predominant pathway utilized by S. pyogenes in high 

glucose environments. The pool of acetyl-CoA must be broken down further to regenerate 

NAD+. This is achieved via the enzymes acetaldehyde dehydrogenase (ADH) and ethanol 

dehydrogenase (EDH), where ethanol is the end product of the pathway (92, 96). Alternatively, 

acetyl-CoA can be converted into acetate through the enzymes phosph otransacetylase (PTA) 

and acetate kinase (AckA). Although the PTA/AckA pathway does not allow for the oxidation of 

NADH, it does produce one molecule of ATP (92, 96). In this way, mixed acid fermentation 

enables the cell to balance its redox neutrality, as well as benefit from an additional source of 

ATP.  

  

 

Figure	
  6.	
  Fermentation	
  pathways	
  in	
  S.	
  pyogenes.	
  Pyruvate,	
  which	
  is	
  formed	
  by	
  the	
  upper	
  
glycolytic	
  pathway,	
  is	
  catabolized	
  via	
  homolactic	
  or	
  mixed	
  acid	
  fermentation.	
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Metabolism of Alternative Carbon Sources 

 Within the group of LAB, several pathways are present for the catabolism of various 

amino acids. In S. pyogenes the arginine deiminase (ADI) pathway has been shown to benefit the 

bacterium in several different capacities. This pathway enables the conversion of arginine to 

ornithine, ammonia, carbon dioxide, and one molecule of ATP (97, 98). Studies have shown that 

arginine can be utilized by the bacterium for growth, and that the production of ammonia acts as 

a buffering agent to counter the acid stress, which is a consequence of mixed acid fermentation 

(98, 99). Additionally, recent work from the Caparon lab has shown that the ADI pathway 

contributes to pathogenesis in a murine model of inflammatory infection of cutaneous tissue 

(99). It was shown that infection with S. pyogenes stimulates iNOS expression in cultured 

macrophages and that this innate immune response could be modulated by the availability of 

arginine. Therefore, the depletion of arginine via ArcA (the first enzyme involved in the ADI 

pathway) prevents production of NO�, allowing for enhanced virulence of S. pyogenes. 

 

Transcriptional regulation in Streptococcus pyogenes 

The ability of S. pyogenes to colonize and persist within its human host is dependent 

upon its capacity to acquire nutrients from the surrounding environment while evading host 

immune factors. The infection cycle of this pathogen begins with the initial colonization of the 

skin or throat, penetration into subcutaneous tissues, and, in the case of invasive disease, 

dissemination through the blood to secondary sites of infection (100). To survive and persist 

within each location the bacterium needs to adjust to numerous changes in the environment such 

as glucose levels, protein concentrations, pH, osmolarity, and temperature (100-102). 
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Throughout this infection cycle the bacterium must also negotiate a delicate balance between the 

damage inflicted on the host as a result of the virulence factors being produced and the immune 

response that this damage induces. Analysis of transcriptome changes of several bacterial 

pathogens throughout their infection cycle has suggested that careful spatial and temporal 

expression of virulence factors is important to the overall success of the pathogen’s survival 

(103). Toxin production enables the bacterium to gain access to nutrients within the tissue, with 

cell damage being a side effect of their production. As a result, a certain level of tissue damage, 

and therefore immune stimulation, must occur, however, excessive toxin production could prove 

to be detrimental to the bacterium because of the immune response that is triggered.  

 

While S. pyogenes lacks alternative sigma factors, it encodes a number of two-component 

systems (TCS) and stand-alone response regulators that control global gene expression in 

response to numerous physical and environmental signals (4, 101, 104-111). The following 

sections will explore several of the most well characterized of these transcriptional regulators. 

 

 

Figure 7. S. pyogenes virulence factors are expressed in a tightly regulated temporal and spatial 
pattern. (A) Virulence factors involved in adherence and host immune evasion are necessary during the 
initial stages of infection. (B) During the middle stages antiphagocytic factors such as M protein and 
hyaluronic capsule are highly expressed. (C) During an invasive infection numerous surface-bound and 
secreted virulence factors are expressed that cause direct damage to host tissue. Adapted from (10).  
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CovRS 

The S. pyogenes genome contains 13 different TCSs (3, 11, 105) that are made up of a 

sensor histidine kinase (HK) and its corresponding response regulator (RR) (see Figure 8). The 

HK protein has an extracellular sensor domain and a cytosolic kinase domain, which are linked 

together by the protein’s transmembrane domain. When a 

signal (or substrate) interacts with the sensor domain of the 

HK, this triggers activation of the autokinase domain, leading 

to autophosphorylation of the protein at a conserved histidine 

residue in the cytosolic domain. From there, the phosphate 

gets transferred directly to a conserved aspartate residue on 

the RR, leading to its activation as a DNA binding protein 

(112). This form of transcriptional regulation is very 

common in bacteria, as it allows for the cell to rapidly 

adapt to a particular environmental signal by altering the 

expression of a    specific subset of genes.  

Of the 13 identified TCS encoded by S. pyogenes, the control of virulence regulatory 

system (CovRS) is the best characterized. In this system, CovS acts as the sensor HK and CovR 

is its reciprocal RR (3, 11, 105). The function of the CovRS TCS is thought to mostly control 

genes involved in general stress response. Numerous environmental signals have been shown to 

trigger CovRS activation including increased temperature, low pH, high salt concentrations, high 

Mg2+ levels, LL-37, and iron starvation (105, 113-115). The covRS regulon includes up to 15% of 

the total genes in S. pyogenes and has been shown to be essential for survival in various stress 

conditions (2, 113, 116, 117).  

Figure 8. Bacterial two-component 
system (TCS).  
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CovR acts largely as a repressor of gene expression and is thought to bind and repress 

genes in both a phosphorylated and a nonphosphorylated state (118). It has been hypothesized 

that CovR acts on one subset of its regulon when phosphorylated and another subset of genes 

when in a nonphosphorylated state (118). The CovRS regulon includes a significant number of 

known virulence factors such as SpeB, Ska, SPN, SLO, Ig-degrading enzymes, and DNases, 

among others (116, 119). An important thing to note is that while CovRS acts as a repressor for 

most virulence factors, it is an activator for SpeB expression (11, 116).  

Strains incurring mutations leading to inactivation of either CovR or CovS are associated 

with hypervirulence in mice and invasive disease (11, 116, 120). This is likely due to the 

overexpression of numerous virulence factors that aid in tissue destruction and immune evasion 

(116, 121). In particular, covRS mutants are highly resistant to phagocytosis and neutrophil 

killing due to high productions of hyaluronic capsule, SIC, SpeA, Ska, and C5a peptidase (116).  

Figure	
  9.	
  CovRS	
  regulon.	
  CovRS	
  responds	
  to	
  multiple	
  environmental	
  signals	
  and	
  modulates	
  
expression	
  of	
  several	
  virulence	
  factors	
  involved	
  in	
  growth	
  and	
  adaptation.	
  Adapted	
  from	
  (2)	
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Mga 

 In addition to its 13 TCS, S. pyogenes encodes several stand-alone response regulators. 

One of the most well characterized of the stand-alone response regulators in S. pyogenes, Mga is 

a global transcriptional regulator and is responsible for positive regulation of target genes during 

exponential growth (11, 101, 109). Although the mga gene is present in all serotypes, there are 

two allelic variants of the gene. These variants have been linked to tissue tropism, where the 

mga-1 allele is found mostly in throat-specialists and mga-2 is associated with skin- specialists or 

“generalists” (85, 109).    

Figure 10. Model for dissemination of CovRS mutants. Spontaneous mutations in the covRS 
operon during invasion of subepithelial tissue can lead to enhanced resistance to neutrophil killing. 
These resistant mutants can then go on to invade deeper tissue, leading to systemic infection. 
Adapted from (3).   
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Numerous growth phase and environmental signals are associated with Mga regulation 

including CO2, temperature, and iron levels (122-124). Recent work has demonstrated that 

phosphorylation and inactivation of Mga can occur through interactions with proteins of the 

phosphotransferase system (PTS) (125, 126). This information provides a direct link between 

sugar metabolism and Mga activity.  

Mga is associated with controlling expression of genes involved in colonization of host 

tissue and immune evasion. Genes directly activated by Mga (i.e. Mga directly binds to the 

promoters of these targets) are referred to as the “core” Mga regulon. Target genes within this 

group include adhesins (such as M protein, M-like proteins, fibronectin- and collagen-binding 

proteins), immune modulators (C5a peptidase, SIC, and Ig-binding proteins), and the mga gene 

itself (101, 106, 126). Beyond this core set, there are numerous other target genes whose 

expression is indirectly affected by Mga. These indirect targets can include virulence factors 

such as the hasABC capsule synthesis locus and speB, as well as genes involved in metabolism 

such as several PTS genes (106, 127). Additionally, there is a large amount of variation within 

the Mga regulon, indicating a significant amount of strain-specific regulation (109, 127). Since 

Mga is involved in the activation of several of the major S. pyogenes virulence factors, its role in 

virulence has been studied in detail. It has been shown that loss of mga results in defects in 

adherence to host cells, as well as an attenuation of virulence in murine models of invasive 

disease (128-131).    

 

RopB 

 Another well-characterized stand-alone response regulator in S. pyogenes is RopB, first 
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identified as a positive regulator of the secreted virulence factor SpeB (132). Regulation by 

RopB is linked to growth phase, controlling gene expression during stationary phase of growth 

(101, 133, 134). Analyses of the role of RopB in transcriptional regulation has shown that 

deletion of this regulator has a pleiotropic effect, altering the expression of genes involved in 

virulence, metabolism, and stress response among others (135-138). This varied response is 

likely, in part, an indirect effect, as RopB itself is a regulator of a number of uncharacterized 

transcriptional regulators (133, 139). Further complicating the role of RopB regulation in S. 

pyogenes is the fact that there is a great deal of strain specificity in the RopB regulon, with speB 

being one of the few genes that is consistently controlled by this regulator in multiple strains 

(133, 136). 

 Currently, the mechanism of activation for RopB is also unclear. RopB is classified as a 

member of the Rgg family of transcriptional regulators. In Gram-positive bacteria, this family is 

associated with quorum sensing via interactions with oligopeptide pheromones (133). However, 

no evidence has been reported to indicate that RopB is involved in a quorum sensing mechanism 

(133). Finally, the contribution of RopB to S. pyogenes pathogenesis is also unclear at this time. 

Despite both direct and indirect regulation of numerous virulence factors, there have been 

conflicting reports on the effects of RopB inactivation on virulence (135, 138, 140). These 

results are, at least partially, the result of the strain-specific nature of the RopB regulon (133). 

 

CcpA 

 In Gram-positive bacteria, carbon catabolite repression (CCR) is largely under the control 

of the transcriptional repressor CcpA. CCR ensures that the bacterial cell maximize its fitness 
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through the hierarchical utilization of carbon sources (141-143). In the presence of a preferred 

carbon source such as glucose, the molecule will be rapidly taken into the cell and degraded 

through the glycolytic pathway, leading to high intracellular concentrations of fructose-

bisphosphate (FBP). The fluctuation of this metabolic intermediate affects the enzymatic activity 

of the protein HprK.  

HprK, a protein found exclusively in Gram-positive bacteria, is a dual kinase/phosphatase 

whose role is to control the phosphorylation of the PTS protein HPr (142-144). In Gram-

positives, HPr can be phosphorylated on either of two conserved residues. HprK controls 

phosphorylation of HPr on a specific serine residue, Ser46 in S. pyogenes (143, 145). At high 

FBP concentrations, HprK functions as a kinase, phosphorylating HPr at Ser46. This P~Ser-HPr 

acts as a cofactor for CcpA, binding to the CcpA dimer and inducing a structural change that is 

required for CcpA to bind target promoter DNA (146). When in its active conformation, CcpA 

will bind to catabolic-responsive elements (cre) sites, acting largely as a repressor of gene 

expression (144, 146).   

CcpA has been shown to control up to 20% of the total genome of S. pyogenes. Global 

transcriptional analysis of the CcpA regulon has shown that, in addition to controlling alternative 

catabolic operons, it controls expression of a number of virulence factors including speB, sagA, 

and cfa (147, 148). Additionally, although a significant portion of the CcpA regulon includes 

glucose-regulated genes, there is a subset of genes that appear to be regulated by CcpA 

independently of glucose concentrations (148). This information suggests that there is a second, 

currently unknown, catabolite-sensing pathway involved in CcpA regulation. 
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LacD.1 

LacD.1 was identified initially through a genetic screen as a negative regulator of the 

cysteine protease SpeB. It was determined that this protein repressed SpeB expression in 

response to neutral pH, high salt concentrations, and carbohydrate availability (60, 149). LacD.1 

is annotated as a tagatose bisphosphate aldolase, an enzyme involved in the catabolism of lactose 

and galactose (150). In S. pyogenes there are two Lac loci, Lac1 (which includes LacD.1) and 

Lac2 (149, 151). The lac1 locus contains several truncated genes, making it unable to utilize 

lactose and galactose, but has evolved into a regulatory locus via LacD.1 (151). Conversely, the 

Lac2 locus has maintained full-length genes and is able to utilize lactose and galactose, but does 

not have any reported regulatory activity (151).  

The specific mechanism that LacD.1 uses to regulate genes remains unclear, but it has 

been shown that this protein does not require its enzymatic activity for this regulation (149). It 

does, however, require the ability to bind to the glycolytic intermediates G3P and DHAP (149). 

This information has led to the hypothesis that LacD.1 functions to regulate genes in response to 

carbohydrate availability. Further indication of this includes the fact that a significant number of 

genes in S. pyogenes that are regulated by glucose levels are also part of the LacD.1 regulon 

(148). These include virulence genes like SpeB, as well as genes involved in various metabolic 

processes (148).  

 

CodY 

 The global transcriptional regulator CodY is involved in controlling gene expression in 

response to amino acid starvation (102, 152, 153). CodY, which has been shown to control 17% 
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of the total genome through direct and indirect regulation, is activated by high levels of GTP and 

branched chain amino acids (BCAA) (102, 111). In the presence of high concentrations of these 

substrates, CodY is able to bind to DNA target promoters with high affinity, leading to 

repression of target genes. Conversely, when these substrates are present in low levels, as would 

be expected during starvation conditions, CodY is inactivated, leading to enhanced transcription 

of the CodY regulon. Genes identified as being regulated by CodY include transcriptional 

regulators such as covRS, mga, and codY itself (152). Additionally, numerous virulence factors 

are repressed by CodY including DNases, M protein, capsule synthesis, cytolysins SLO and 

SLS, and several proteases, among others (152, 153). This has led to the hypothesis that the main 

function of CodY is to alleviate starvation by allowing the bacterial cell to produce proteins that 

can aid in dissemination and macromolecular breakdown, thus providing the bacteria access to 

additional sources of nutrients during an infection (111, 153) 
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Aim and Scope of Thesis 

The aim of this thesis was to provide insights into the convergence of metabolism and 

virulence in the pathogenic bacterium Streptococcus pyogenes. In particular, we sought to 

identify regulatory mechanisms utilized by Streptococcus pyogenes in response to remodeling of 

its local tissue environment during an infection. As a lactic acid bacterium, S. pyogenes utilizes a 

mix of homolactic and mixed acid fermentation to produce energy in the cell. As a result, several 

organic end products are produced and secreted, thus affecting the pH of the surrounding 

environment. In order for the bacteria to survive over time, it must adapt to late stage conditions 

of low pH and glucose depletion. Although it has been established that both carbohydrate 

availability and environmental pH are triggers for global transcriptome remodeling in this 

bacterium, the specific regulatory pathways controlling these transcriptional responses are 

largely unknown. 

To that end, the work presented here will characterize several novel mechanisms by 

which S. pyogenes is able to adapt to its self-induced acid stress and carbohydrate depletion. The 

research in this thesis will describe two separate regulatory systems, one controlling an 

alternative catabolic pathway and one controlling an important pair of cytotoxic proteins, both of 

which are controlled by environmental pH. Taken together, this work provides greater insight 

into adaptive mechanisms utilized by S. pyogenes during late stages of growth. 
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SUMMARY 
 

The ability of Streptococcus pyogenes to infect different niches within its human host 

most likely relies on its ability to utilize alternative carbon sources. In examining this question, 

we discovered that all sequenced S. pyogenes strains possess the genes for the malic enzyme 

(ME) pathway, which allows malate to be used as a supplemental carbon source for growth. ME 

is comprised of four genes in two adjacent operons, with the regulatory two-component MaeKR 

required for expression of genes encoding a malate permease (maeP) and malic enzyme (maeE). 

Analysis of transcription indicated that expression of maeP and maeE are induced by both malate 

and low pH, and induction in response to both cues is dependent on the MaeK sensor-kinase. 

Furthermore, both maePE and maeKR are repressed by glucose, which occurs via a CcpA-

independent mechanism. Additionally, malate utilization requires the PTS transporter EI enzyme 

(PtsI), as a PtsI- mutant fails to express the ME genes and is unable to utilize malate. Virulence 

of selected ME mutants was assessed in a murine model of soft tissue infection. MaeP-, MaeK-, 

and MaeR- mutants were attenuated for virulence, whereas a MaeE- mutant showed enhanced 

virulence as compared to wild type. Taken together, these data show that ME contributes to S. 

pyogenes’ carbon source repertory, that malate utilization is a highly regulated process, and that 

a single regulator controls ME expression in response to diverse signals. Furthermore, malate 

uptake and utilization contribute to the adaptive pH response and ME can influence the outcome 

of infection. 
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INTRODUCTION 
 

Although it has a relatively small genome (approx. 1.8 Mbp), the pathogenic Gram-positive 

bacterium Streptococcus pyogenes has a remarkable ability to adapt to a variety of human 

tissues. This trait allows it to cause numerous diseases ranging from superficial and self-limiting 

infections in soft tissues like the skin (impetigo) and pharynx (pharyngitis) to more problematic 

infections at a number of diverse anatomical sites (1). Understanding the complex regulatory 

interactions that allow it to adapt to these diverse environments provides a unique opportunity to 

gain insight into how a pathogen can efficiently employ a relatively limited genetic repertory to 

maximize its ability to cause disease.   

An important question is how S. pyogenes uses its limited metabolic potential to grow 

efficiently in diverse tissues. Considerable evidence has accrued to suggest that the patterns by 

which S. pyogenes exploits available growth substrates are intimately associated with both 

temporal and compartment-specific patterns of virulence gene expression (2-4). As a lactic acid 

bacterium, S. pyogenes relies exclusively on fermentation via the homo-lactic and mixed acid 

pathways to generate energy (5-7). However, the specific carbon sources it preferentially utilizes 

in different tissues, the temporal patterns with which these are consumed, and how these patterns 

impact regulation of virulence gene expression are not well understood.   

One approach to gain insight into conditions encountered during infection has involved 

comparison of the S. pyogenes transcriptome between organisms recovered from various models 

of infection to organisms cultured under different in vitro conditions.  In general, these studies 

have revealed that at the latter time points of infection, patterns of gene expression most closely 

resemble those observed in vitro in environments of low pH (pH 6.0-6.5) and low concentrations 

of glucose (8-10). These two conditions are likely related, as the fermentation of glucose by 
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lactic acid bacteria results in the highest rates of production of acidic end products including 

lactate, acetate and formate (6, 7). This suggests that S. pyogenes’ choice of carbon source results 

in a significant remodeling of its local tissue environment. It also indicates that over the course 

of infection, it must both adapt to its self-inflicted acid stress as well as exploit alternative carbon 

sources. In this regard, transcriptome profiling revealed that one of the most highly differentially 

activated gene clusters under conditions of acid stress, glucose starvation, and in murine soft 

tissue encodes a putative operon of two genes predicted to function in the catabolism of malate 

(10), annotated as the malic permease (maeP) and the malic enzyme (maeE) (Fig. 1A).  

The di-carboxylic organic acid malate is found in abundance in tissue and in the 

environment, so it is not surprising that numerous malate degradation pathways have been 

identified among both prokaryotic and eukaryotic organisms (11-17). In lactic acid bacteria, two 

distinct pathways have been identified that make very different contributions to physiology. The 

most common of these is malolactic fermentation (MLF), which allows for the conversion of 

malate into lactate through the function of the malolactic enzyme (MLE). Typically, MLF does 

not contribute to growth yields, but does play an important role in maintenance of ATP pools 

during starvation and in protection from acid killing (18-21). Since malate is a stronger acid than 

lactate, its decarboxylation by MLF results in alkalization of the cytoplasm and the resulting pH 

gradient drives the malate/lactate antiporter coupled to ATP synthesis (7, 18-21).  
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Figure 1. The malic enzyme (ME) pathway in S. pyogenes. (A) The arrangement of the 
open reading frames that comprise the ME locus of S. pyogenes are shown by large arrows. 
Gene names are shown below and the genomic loci listed within the open reading frames are 
based on the genome of S. pyogenes HSC5 (23). Known (black font) and predicted (grey 
font) regulatory elements of the intergenic region of S. pyogenes and Enterococcus faecalis 
JH2-2 (Ef JH2-2, (58)) and Lactobacillus casei BL23 (Lc BL23, (15)) are shown below. 
Arrows indicate sites in DNA bound by MaeR, while sites bound by CcpA are boxes labeled 
“cre” (catabolite regulatory element). Numbers below indicate intergenic distances in 
numbers of base-pairs. (B) Schematic of the ME pathway. The subcellular localization, 
function and reactions catalyzed by the various components of the ME pathway that are 
listed in the Figure are shown.   
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Less commonly found is an alternative degradation pathway that converts malate to pyruvate 

and carbon dioxide (18) that is known as the malic enzyme (ME) pathway (Fig. 1B). A unique 

feature of ME is that, unlike MLF, it enables cells to utilize malate as a carbon source for growth 

(16, 18). However, while the MLF system has been extensively studied, the regulation and 

physiological significance of the ME pathway is not as well understood. Studies in several lactic 

acid species, including Enterococcus faecalis, Streptococcus bovis, and Lactobacillus casei (13, 

15, 17, 22), have indicated that ME requires 4 genes organized into two adjacent operons (Fig. 

1A). These include the maePE operon that encodes the transmembrane permease (maeP) and 

cytosolic malic enzyme (maeE). Expression of these genes is dependent on the adjacent two-

component system (TCS), which includes a sensor histidine kinase (maeK) and response 

regulator (maeR) (15, 17, 18).  This similar organization is observed in the S. pyogenes 

chromosome (Fig. 1A), and as noted above, maePE is upregulated by acid stress and infection in 

S. pyogenes. In addition, examination of the S. pyogenes profiling data shows that both the 

maePE operon and the adjacent TCS had similar patterns of regulation, suggesting that these two 

systems function together (10).  

Interestingly, while other ME operons are activated by malate (15, 17, 18) and repressed by 

glucose (15, 17), regulation by pH has only been described for Lactobacillus casei (18). Whether 

this system is regulated by pH in other bacterial species that contain a functional ME pathway, 

and the physiological role of this regulation is not understood. Rather, pH regulation is more 

commonly associated with the MLF pathway, where it is associated with acid resistance (20, 21). 

Examination of the S. pyogenes genome has not revealed the presence of MLF genes (23) so the 

significance of pH regulation of the ME pathway and whether it compensates for MLF in acid 

tolerance is not clear. In this study, we examined the contribution of malate catabolism and its 
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unique pattern of regulation to S. pyogenes physiology and virulence. This analysis revealed that 

S. pyogenes has a functional ME pathway, that catabolism of malate contributes to growth and 

that its regulation shares some similarities with other lactic acid bacteria, but also has several 

unique features. Finally, we show that the presence or absence of ME genes can influence 

virulence in a murine model of soft tissue infection.   
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RESULTS 
 
ME is necessary for S. pyogenes malate-enhanced growth. It is unclear why the ME pathway 

in S. pyogenes is regulated by pH, as MLF and not ME is typically associated with acid-stress 

resistance in other lactic acid species (20, 21). However, S. pyogenes lacks the genes necessary 

for MLF (23), so the contribution of the ME pathway to streptococcal physiology was 

investigated. The malic enzyme uses NAD+ to oxidize malate to produce CO2, NADH and 

pyruvate (Fig. 1B). Since pyruvate can be further metabolized to produce ATP, the signature 

function of ME is to allow cells to utilize malate as a carbon source for growth (16). To test this 

growth phenotype, S. pyogenes HSC5 was cultured overnight in a carbohydrate-reduced medium 

(C medium) in the presence or absence of 0.5% malate. Although cultures had comparable 

growth rates in both conditions (t1/2 = 56 min. and 63 min., respectively), 0.5% malate enhanced 

growth yields by approximately 50% (Fig. 2A). Additionally, pH measurements of cell-free 

supernatants taken throughout growth indicate that malate utilization does not alter the pH of the 

media compared to unmodified C medium (Fig. S2A). This is due to the fact that, unlike when 

grown in media supplemented with glucose, when grown on malate, the bacteria utilize mixed 

acid fermentation, producing large amounts of formate, which has a much higher pKa than the 

lactate commonly produced (Fig. S2B).   

In-frame deletion mutants in maeP (malate permease), maeE (malic enzyme), maeK 

(malate sensor kinase), and maeR (malate response regulator) were constructed and were found 

to have identical growth characteristics to wild type in unmodified C medium. However, all 

mutants failed to shown an increased growth yield the in the presence of malate (Fig. 2B). 

Malate concentrations were measured from cell-free  
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Figure 2. ME mutants are deficient in malate catabolism. (A) WT bacteria were tested for 
malate utilization by measuring growth over the course of 16 hrs of cultures grown in either 
unmodified C medium or C medium supplemented with 0.5% malate. Data are presented as 
means and standard deviations from 3 independent experiments. (B and D) WT and ME mutants 
were grown in unmodified C medium or C medium supplemented with 0.5% malate. Following 
16 hrs of incubation, growth yields were measured by OD600. Data are presented as the means 
and standard deviations from 3 independent experiments. (C and E) Malate concentrations from 
cell-free culture supernatants from over-night cultures of WT or ME mutants grown in C medium 
supplemented with 0.5% malate were measured (see Methods). Data are presented as percent 
remaining (compared to initial concentration) and are represented as means and standard 
deviations from 3 biological samples analyzed in duplicate. Asterisks indicate significant 
differences (***, P < .001) compared to WT in C medium. 
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supernatants of overnight cultures grown in 0.5% malate to determine malate consumption by 

wild type (WT) and the four ME mutants. WT cultures exhibited an approximately 80% 

reduction from the initial concentration of 37.3 mM, while malate concentrations were 

unchanged by growth of the mutants (Fig. 2C). With the exception of maeE, it was not possible 

to express the ME genes from a plasmid for complementation. As an alternative, allelic 

replacement was used to restore the full-length maeK gene in a ∆MaeK mutant background to 

make the reversion strain MaeKR. In this way, we were able to complement at least one gene 

from each operon. Complementation of maeE and reversion of maeK restored both enhanced 

growth yields in the presence of malate (Fig. 2D) and consumption of malate (Fig. 2E). 

 
 

Expression of ME genes is dependent on malate and requires MaeK. In other lactic acid 

bacteria, expression of ME requires both the presence of malate and the ME TCS (15, 17, 18). 

To determine if this common regulatory mechanism is also utilized in S. pyogenes an analysis of 

transcript levels of ME genes using real time RT-PCR was performed. The results indicated that 

during the exponential phase of growth (OD600 = 0.2), maeE and maeP were highly upregulated 

in the presence of malate by 100- and 200-fold, respectively (Fig. 3A). This response was 

dependent on MaeK, as transcript levels were equivalent in the presence or absence of malate. 

Restoration of the protein in a MaeKR reversion strain also restored malate induced transcription 

(3A). Transcription of maeK and maeR was also increased in the presence of malate in WT cells, 

with both genes showing an approximately 3-fold increase compared to unmodified media (Fig. 

3B).  
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Glucose regulation of ME is CcpA-independent. Malate catabolism in other lactic acid 

bacteria is repressed by glucose, indicating this pathway is regulated through a mechanism of 

carbon catabolite repression (CCR) (15, 17). CCR allows the bacteria to metabolize preferable 

carbon sources in the environment, usually through transcriptional repression of genes involved 

in the processing of alternative, and less favorable carbon sources (reviewed in (35-37)). A key 

transcriptional regulator of global CCR in Gram-positive bacteria is CcpA (35), which has been 

shown to regulate ME in response to glucose in both Lactobacillus casei and Enterococcus 

faecalis (15, 17). To test for CCR regulation of the ME pathway in S. pyogenes, transcription of 

the four ME genes was analyzed in the absence or presence of glucose (0.2%) by real time RT-

PCR. Results showed a significant repression of 4-6-fold (log2 scale) for all four ME genes (Fig. 

4), consistent with observations in other lactic acid species (15, 17). However, in contrast to 

these other species, repression occurred independently of CcpA, as the addition of glucose still 
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Figure 3. MaeK regulates malate-dependent expression of maePE. (A) WT, MaeK-, and 
MaeKR strains were grown in C medium supplemented with 0.5% malate until exponential 
phase (OD600 of 0.2). Total RNA was isolated and used for real time RT-PCR analysis of 
maeP and maeE transcripts. (B) WT bacteria were grown in C medium supplemented with 
0.5% malate as described before. Total RNA was isolated and used for real-time RT-PCR 
analysis of maeK and maeR transcripts. Data presented for all genes are the ratios of 
transcript abundance in modified medium to that of unmodified C medium and represent the 
means and standard deviations of 3 biological samples, each analyzed in triplicate. 
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repressed expression of all ME genes in a CcpA- mutant (Fig. 4) (38). Repression does have the 

characteristics of CCR, as glucose was repressive even in the presence of malate (Fig. 4), 

indicating that S. pyogenes has adopted a CcpA-independent CCR mechanism for regulation of 

malate catabolism.   

 

 

 

 

 

 

 

 

 
 
 

 

 

 

Malate catabolism is regulated by PTS-mediated phosphorylation. An alternative mechanism 

of CCR in bacteria is known as induction prevention, which is dependent on the sugar 

phosphotransferase (PTS) system and the phosphorylation state of a conserved histidine residue 

of the phosphocarrier protein HPr (36), which in the case of S. pyogenes is His15 (39). If the ME 

loci are controlled by a mechanism similar to induction prevention, then cells unable to produce 

P~His-HPr should be unable to utilize malate. To test this hypothesis, two mutants were 

-5

-4

-3

-2

-1

0

Glucose
Glucose+Malate

maeP   maeE    maeK    maeR maeP   maeE    maeK    maeR
WT                          CcpA-

   
  R

el
at

iv
e T

ra
ns

cr
ip

tio
n

(F
ol

d-
ch

an
ge

, l
og

2 
M

od
./U

nm
od

.)

Figure 4. Carbon catabolite repression of ME genes is CcpA independent. WT 
and CcpA- bacteria were grown in C medium supplemented with 0.2% glucose until 
exponential phase (OD600 of 0.2). Total RNA was isolated and used for real-time RT-
PCR analysis of the individual mae transcripts. Data are presented as the ratios of 
transcript abundance in modified media to that in unmodified C medium and 
represent the means and standard deviations derived from 4 biological samples, each 
analyzed in triplicate. 
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constructed. The first is an allelic exchange mutant with a swap of a chloramphenicol cassette 

with ptsI, which encodes EI, the enzyme responsible for phosphorylation of the His15 site within 

the HPr protein. The second mutant contains a single amino-acid substitution in HPr, replacing 

His15 with alanine, which has been shown to maintain HPr capability to be phosphorylated at 

Ser46 and is functional for sugar transport, but lacking in the ability to participate in regulation 

(HPrH15A) (36, 40, 41).  

When grown in the presence of malate, both the PtsI- mutant and the HPrH15A mutant have 

a significant growth defect compared to WT, resulting in a reduced growth rate and lower final 

culture density (Fig. 5A and 5B). To verify that this growth defect was specific for malate 

utilization and not a general defect in all conditions, strains were also grown in unmodified C 

medium, as well as in C medium supplemented with 0.2% maltose (a non-PTS sugar) (34). 

Comparisons of final yield from overnight cultures demonstrate that growth of both the PtsI- and 

HPrH15A mutants are similar to WT in unmodified media (Fig. 5B). In addition, upon 

supplementation of maltose, all three strains showed an identical increase in growth (Fig. 5B). 

Thus, mutations that block formation of P~His-HPr are deficient in malate utilization, but are 

still able to utilize non-PTS carbon sources.   

Expression of the ME genes was then examined in the presence of malate and it was 

discovered that when compared to WT, the HPrH15A mutant had a substantial reduction in 

transcript levels for all four ME genes (Fig 5C). Taken together, these data demonstrate that the 

ME pathway in S. pyogenes is repressed by glucose through a mechanism similar to induction 

prevention. 
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Figure 5. Carbon catabolite 
repression of ME genes controlled 
by P~His-HPr. WT, PtsI-, and HPr 
H15A strains were grown in 
unmodified C medium or C medium 
plus 0.5% malate. (A) Growth of 
WT and PTS mutants in malate-
supplemented medium was 
measured by OD600 over the course 
of 16 hrs. Data presented is from a 
representative experiment. (B) WT 
and PTS mutants were grown in 
unmodified C medium or C medium 
supplemented with 0.5% malate. 
Following 16 hrs of incubation, 
growth yields were measured by 
OD600. Data are presented as the 
means and standard deviations from 
3 independent experiments. 
Asterisks indicate significant 
differences (*, P < .05) compared to 
WT in C medium. (C) WT and 
HPrH15A strains were grown in C 
medium supplemented with 0.5% 
malate until exponential phase 
(OD600 of 0.2). Total RNA was 
isolated and used for real-time RT-
PCR analysis of transcript 
abundance of the individual mae 
transcripts. Data are presented as 
ratios of transcript abundance of 
HPrH15A to that of WT and represent 
the means and standard deviations 
derived from 3 biological samples, 
analyzed in triplicate. 
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pH regulation of ME is independent of malate, but dependent on maeK. Prior transcriptional 

profiling revealed that maeP and maeE are among the genes most highly regulated by pH in S. 

pyogenes (10). Additionally, growth of WT cells in acidified media was enhanced with the 

addition of malate, demonstrating that malate catabolism can occur in a low pH environment 

(Fig. S3). To further characterize the role of environmental pH on the ME pathway, WT S. 

pyogenes was grown in C medium buffered to either low (pH 6.0) or neutral (pH 7.5) pH and 

transcription of the ME genes was analyzed by real time RT-PCR. When compared to 

unbuffered medium and in the absence of the addition of malate, growth at low pH, but not 

neutral pH, enhanced abundance of the maeP and maeE transcripts by approximately 10- and 20-

fold, respectively (Fig. 6A). Neither low nor high pH environments altered expression of maeK 

or maeR when compared with unmodified media (Fig. 6B). However, MaeK itself was required 

for the enhanced expression of maeP and maeE, as the abundance of these transcripts did not 

increase in the MaeK- mutant during growth at low pH, but regulation was restored in the MaeKR 

strain (Fig. 6C). Finally, to address the hierarchy of stimuli between malate and pH, quantitative 

RT-PCR was performed on cells in the presence of both high malate (0.5%) concentrations and 

neutral pH and compared to malate alone. Results show that, for both maeP and maeE, 

transcription is dramatically increased in the presence of 0.5% malate, and that this enhanced 

expression is unaffected by the pH of the media (Fig. 6D). Overall, this data shows that mae gene 

expression is regulated by environmental pH, and that this regulation is mediated through MaeK 

and is independent of malate regulation.  
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Figure 6. pH regulation of ME is malate-independent, but requires MaeK. (A) WT bacteria were 
grown in C medium buffered to pH 6.0 or pH 7.5 until exponential phase (OD600 of 0.2). Total RNA 
was isolated and used for real-time RT-PCR analysis of the individual mae transcripts. Data are 
presented as the ratios of transcript abundance in buffered media to that in unmodified C medium and 
represent the means and standard deviations derived from 3 biological samples, each analyzed in 
triplicate. (B) WT, MaeK-, and MaeKR strains were grown in C medium pH 6.0 and total RNA was 
isolated as described before and used for real-time RT-PCR analysis of maeP and maeE transcripts. 
Data are presented as ratios of transcript abundance in buffered media to that in unmodified C medium 
and represent the means and standard deviations derived from 3 biological samples, each analyzed in 
triplicate. (C) WT bacteria were grown in C medium plus 0.5% malate or C medium plus 0.5% malate 
buffered to pH 7.5 and total RNA was isolated as described before and used for real-time RT-PCR 
analysis of maeP and maeE transcripts. Data are presented as ratios of transcript abundance in modified 
medium to that in unmodified C medium and represents the means and standard deviations derived 
from 3 biological samples, each analyzed in triplicate. 
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Loss of MaeE causes enhanced virulence in vivo. The in vitro experiments presented in this 

work were done with bacterial cultures grown in C medium, which is characterized as having 

low carbohydrate concentrations and high salt and peptide levels (10). It has been demonstrated 

previously that these conditions are highly analogous to the in vivo milieu of carbon sources 

within the murine soft tissue environment (10). Additionally, malate, being one of the 

intermediate products of the citric acid cycle, is abundant in host tissue (42). Therefore, the fact 

that S. pyogenes is able to utilize malate in vitro when added to C medium lends strong support 

that it can also be utilized in vivo during host tissue infections.  

Thus, it was of interest to determine if malate utilization and the ME pathway play a role 

in virulence. To assess this, a murine soft tissue model was used. Briefly, approximately 107 

bacteria were injected subcutaneously into the flank of immunocompetent hairless mice. 

Infection of WT S. pyogenes HSC5 produces a localized necrotic lesion and formation of an 

escher within 24 hours, but does not cause a systemic infection (33). Lesion size increases over 

time, peaking in size at day 3 post-infection (32). Measurement of the lesion area over time is 

therefore used as a marker for virulence in this model. For this analysis, mice were infected with 

WT, MaeP-, MaeE-, MaeK-, or MaeR- strains and lesion areas were compared 3 days post-

infection. Mice infected with strains MaeK-, MaeR-, and MaeP- all formed lesions that were 

significantly smaller than WT (Fig. 7). Conversely, mice infected with the MaeE- strain formed 

lesions that were significantly larger than WT (Fig. 7). These results demonstrate that malate 

catabolism is an important factor during a soft tissue infection, and that the loss of individual ME 

genes can have differential effects on the outcome of an infection. 
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Figure 7. Loss of MaeE causes hypervirulence in vivo. Hairless SKH1 mice were infected subcutaneously with 
WT or individual ME mutant strains and the resulting lesions formed at day 3 post-infection were measured. Each 
symbol plotted represents the value derived from an individual animal. Data shown are pooled from at least 2 
independent experiments with the mean and standard deviation indicated. Differences between groups were tested 
for significance using the Mann-Whitney U test (* P < 0.05, ** P < 0.01). 
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DISCUSSION 
 

In this study we have shown that the ME genes of S. pyogenes allow the bacterium to use 

malate as a carbon source for growth. Additionally, we have shown that this pathway is 

subjected to regulation by both positive and negative signals, including glucose, malate, and pH. 

The former of these is via PTS-mediated phosphorylation, while the latter two signals are 

recognized by the MaeKR regulatory system. Finally, these data show that loss of any individual 

mae gene can alter the outcome of a soft tissue infection in mice, suggesting that the ability to 

transport and utilize malate are both key processes in pathogenesis.  

Regulation of ME gene expression in S. pyogenes was found to share features in common 

with other bacterial species (15, 17, 18). Most notably is that they are induced by malate and that 

induction requires the MaeKR TCS. A prior analysis of the maePE and maeKR promoter regions 

in L. casei identified the DNA-binding site for MaeR as a series of direct repeats and a similar 

site is shared among other lactic acid bacteria, including S. pyogenes (Fig. S1) (15, 17). Another 

common feature to ME pathway regulation is that all species repress ME gene expression in the 

presence of glucose, a regulatory mechanism known as carbon catabolite repression (CCR) (36, 

37, 43). However, in S. pyogenes, glucose-mediated regulation of the ME loci functions 

independently of the major carbon catabolite protein CcpA. In support of this finding is the fact 

that, unlike the other characterized lactic acid bacteria, the promoter region in S. pyogenes lacks 

any identifiable cre sites (Fig. 1, Fig. S1) (15, 35, 43, 44).  

Instead, an alternative method of CCR, induction prevention, is likely regulating ME 

genes in S. pyogenes. Evidence to support this idea includes the fact that multiple genetic strains 

that are unable to form P~His-HPr (either through loss of the EI enzyme or direct mutation of 

HPr) are likewise deficient in ME transcription and malate utilization. This method of regulation, 
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therefore, enables the cell to activate ME genes only in the presence of a high concentration of 

P~His-HPr. During normal growth utilizing preferred carbohydrates, levels of intracellular 

P~His-HPr would likely be low (36, 45). This is due to either rapid accumulation of P~Ser-HPr 

or transfer of the phosphate group on P~His-HPr to downstream PTS transporters to allow 

uptake of PTS sugars. In this way, the bacterium is able to preferentially utilize a number of 

available PTS sugars before turning on the alternative ME pathway.   

In order for this form of regulation to be controlling ME expression, it requires a transfer 

of the phosphate from P~His-HPr to an ME regulatory protein. Phosphorylation of non-PTS 

protein by P~His-HPr is known to occur in a variety of species (for review see (36)) and often 

involves a PTS regulatory domain (PRD)- containing protein. Currently, the only non-PTS 

protein shown to act as a phosphate acceptor from P~His-HPr in S. pyogenes is the 

transcriptional regulator Mga (46). This protein has been characterized as containing several 

unique, but related, PRD domains (PRD_Mga) and previous work has shown that P~His-HPr is 

able to phosphorylate specific residues within these domains in vitro (46, 47). Although Mga has 

been shown to regulate a large number of target genes (3, 4, 47, 48), the ME cluster has not yet 

been identified as part of its regulon. Alternatively, there are two additional transcription 

regulators in S. pyogenes HSC5 predicted to include a PRD_Mga domain (Paluscio and Caparon, 

unpublished), both within the RofA family of regulators (46, 49-51). It remains possible that one 

of these proteins may be necessary for ME gene expression. One likely mechanism for this 

regulation would be that the phosphate from the P~His-HPr gets transferred to one of the PRD 

transcriptional regulators, which then allows this protein to bind to the promoter region of 

maeKR and induce its expression. Further evidence to support this hypothesis is the presence of 

several putative regulatory elements within the mae promoter region of S. pyogenes (Fig. S1), 
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which are absent from the promoters of the other lactic acid bacteria. These sequences may serve 

as binding sites for one of the PRD-containing regulatory proteins mentioned above. 

This work also demonstrated that the maePE operon is regulated by a pH-dependent 

mechanism, whereby acidic pH induces transcription of these genes and neutral pH is inhibitory. 

In S. pyogenes, it appears that, in addition, the MaeKR TCS was necessary for this regulation, as 

the loss of MaeK prevents the pH-dependent expression of maePE seen in wild type cells. 

Interestingly, this work is the first to identify a signal other than malate that is recognized by the 

MaeKR regulatory system. Though uncommon, MaeK is not the first transcriptional regulator 

identified that is able to respond to multiple extracellular signals. In Escherichia coli, the cad 

operon is regulated by CadC, which recognizes both acidic pH and lysine to induce transcription 

of the cad genes (52, 53). In Streptococcus mutans the AguR protein, which controls the 

expression of the agmatine deiminase system (AgDS), recognizes acidic pH and agmatine (54, 

55). An important distinction between CadC, AguR, and MaeK is that former two proteins 

require both signals to be present in order to allow for activation and transcription of their target 

genes. This work has shown, however, that MaeK functions in the presence of either signal and 

does not require both for transcriptional activation. Nonetheless, given that all three proteins 

respond to multiple signals, one of which is low pH, they may all share some similar 

mechanisms of activation. It is hypothesized that for both CadC and AguR the acidic pH 

environment induces a conformational change in the protein, and this change then allows for 

binding of the substrate (lysine and agmatine, respectively) (53, 54). Likewise, in the presence of 

acidic pH, MaeK may undergo a conformational change that induces activation of the protein. 

However, unlike CadC and AguR, the MaeK protein likely has a separate malate sensor domain 

that can bind malate in the presence or absence of acidic pH. This mechanism would predict that 
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MaeK has two distinct regions required for signal recognition and that either can control the 

activity of the protein. 

The identification of a pH-dependent response for ME expression is of particular interest 

due to the metabolism of the bacterium. S. pyogenes is a member of the lactic acid bacteria, a 

group that relies on a mix of homolactic and mixed acid fermentation as a means of generating 

energy in the cell (6, 56). Over time, in the presence of rapidly metabolized carbohydrates such 

as glucose, high concentrations of organic acid end products will accumulate (Fig. S2) (5, 6, 56, 

57). In this way, there is a direct link between carbohydrate availability and pH, with depletion 

of glucose leading to a corresponding reduction of the surrounding pH. In this respect, low pH 

could function as an early warning signal for changes in carbohydrate availability. Thus, low pH 

may function as an inducer of expression for multiple alternative catabolic operons, and is likely 

not exclusive to malate catabolism alone. Additionally, the MaeKR TCS may be necessary for 

controlling this pH adaptive response for these other catabolic operons.  

Taken together, this work demonstrates that under conditions of low glucose or acidic 

pH, malic acid catabolic genes are highly expressed. Given that these signals are amongst those 

that S. pyogenes encounters at specific points in a soft tissue infection (8-10, 57), the question of 

whether this alternative metabolic pathway was important for virulence was of particular interest. 

Although all of the ME mutants have similar phenotypes in vitro, a loss of growth on malate, the 

mechanism to cause this deficiency is different for each strain. All three attenuated strains are 

unable to transport extracellular malate into the cell (either through deletion of the malate 

transporter gene or loss of maeP expression in an MaeK- or MaeR- mutant). Alternatively, a 

MaeE- mutant is able to transport malate into the cell, but cannot convert this molecule into 

pyruvate. This differentiation may, in part, explain the in vivo phenotypes observed.  
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In this case, it remains possible that malate may serve a secondary, as yet unknown, 

benefit to the bacterial cell independent of increased pyruvate concentrations. Thus, the ability of 

a MaeE- mutant to allow uptake of malate may allow for this unused malate to be shuttled into an 

alternative pathway, ultimately serving to benefit S. pyogenes during infection. Alternatively, 

MaeP-, MaeK-, and MaeR- mutants would be depleted of any internal malate accumulation, and 

this loss would ultimately decrease fitness for the cells compared to a WT or a MaeE- mutant. In 

this case, it remains possible that malate may serve a secondary, as yet unknown, benefit to the 

bacterial cell independent of increased pyruvate concentrations. Thus, the ability of a MaeE- 

mutant to allow uptake of malate may allow for this unused malate to be shuttled into an 

alternative pathway, ultimately serving to benefit S. pyogenes during infection. Alternatively, 

MaeP-, MaeK-, and MaeR- mutants would be depleted of any internal malate accumulation, and 

this loss would ultimately decrease fitness for the cells compared to a WT or a MaeE- mutant.  

Another possibility is that the accumulation of intracellular malate in the MaeE- mutant may 

cause the mis-regulation of virulence factor expression, leading to enhanced virulence.   In 

preliminary studies, we have found that while expression of the SpeB cysteine protease does not 

differ between WT and the MaeE- and MaeP- mutants (Fig. S4A), the addition of malate alters 

the temporal pattern of SpeB expression in both mutants as compared to WT (Fig. S4B).  Since 

this alteration in SpeB expression is similar between the two mutants, it cannot explain the 

enhanced virulence of the MaeE- mutant. However, it does support the possibility that alterations 

to malate metabolism can result in changes in patterns of virulence factor expression.  Further 

analyses of virulence factor expression will be required in order to determine is specific factors 

are specifically mis-regulated in the MaeE- mutant and whether these factor are responsible for 

hypervirulence. This work does, however, provide novel insights into the unique regulatory 
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mechanisms utilized by S. pyogenes for malate degradation, as well as demonstrate for the first 

time the importance of this alternative metabolic pathway on influencing pathogenesis.   
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Figure S1. Schematic representation of ME promoter regions in lactic acid bacteria. 
Predicted functional domains of the (A) promoter are compared to those of 

 (B) and  (C) [1, 2]. Predicted elements are 
shown in grey, while those elements that have been confirmed experimentally are shown 
in black.  Sites are as follows: (+1), transcription start site; (SD), Shine-Delgarno; (-10), 
the -10 promoter region; (mbs), MaeR-binding sites. Degenerate binding sites are 
indicated by dotted arrows. Translational start codons are shown in bold font. Predicted cre 
sites are highlighted in gray.  
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Figure S2. Additional characterization of growth in malate-supplemented media.  (A) WT 
bacteria were grown in unmodified C medium, C medium plus 0.5% malate, or C medium plus 0.2% 
glucose over the course of 8 hrs. Samples were removed every 2 hrs and analyzed for growth (OD600, 
left axis) and pH was determined in cell-free supernatants (right axis). Data are presented as means 
and standard deviations from 3 biological samples. (B) Lactate and formate concentrations from 
cell-free culture supernatants from over-night cultures of WT cells grown in C medium, C medium 
supplemented with 0.5% malate, or C medium supplemented with 0.2% glucose were measured (see 
Methods). Data are presented as percent of total organic acid concentrations measured and are repre-
sented as means and standard deviations from at least 2 biological samples analyzed in triplicate.
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Figure S3. Growth at low pH.  WT bacteria were tested for malate utilization by mea-
suring growth over the course of 16 hrs of cultures grown in either unmodified C medium 
or C medium plus 0.5% malate, both buffered to pH 6.0. Data are presented as means and 
standard deviations from 3 independent experiments.
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Figure S4. SpeB activity of ME mutants. (A) SpeB activity of WT and ME mutants grown in the 
presence or absence of 0.5% malate. Protease activity is apparent as a zone of clearance around 
colonies plated on protease indicator plates. (B) Quantification of SpeB activity of WT and ME 
mutants grown in the presence of 0.5% malate. Data presented are the means and standard devia-
tions from 2 independent experiments as determined in (8).
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Table S1. Strains used in this study
Strain Relevant Genotype Mutated Locia Plasmid Descriptionb Reference
S. pyogenes
HSC5 wild-type none wild-type Port, et al. (2013)
CKB206 ccpA 02310 none in-frame deletion of ccpA Kietzman, et al. (2010)
EP184 maeP 04180 none in-frame deletion of maeP This work
EP120 maeE 04185 none in-frame deletion of maeE This work
EP121 maeK 04175 none in-frame deletion of maeK This work
EP122 maeR 04170 none in-frame deletion of maeR This work
EP212 maeP, maeE 04180, 04185 none in frame deletion of maeP in maeE strain This work
EP92 ptsI::cat 05585 none Cam, allelic replacement of ptsI with cat This work
EP132 ptsHH15A 05590 none allelic replacement of WT ptsH with ptsHH15A This work
EP160 maeE pEP66 Complementation of maeE This work
EP161 maeE pABG5 empty vector This work
EP181 MaeKR none restoration of maeK This work
a. Loci are based on the genome HSC5 (Port et al. 2013) and follow the formate L897_xxxxx, where xxxxx are numbered
b. antibiotics are abbreviated as follows: chloramphenicol (Cam)

Table S2. Primers used in this study
Name Sequenceab Template Plasmid Description
maeP 5' F (BamHI) GGCGGATCCGAGAGGTTGTGACAACAATCATAGATACC HSC5
maeP 5' R AAATAGCTGTTTGAGGCATTTTCTTGCTTATTGTTT HSC5
maeP 3' F AATGCCTCAAACAGCTATTTTAAGAATTATTTTTAGTTAATCCAA HSC5
maeP 3' R (EcoRI) GGCGAATTCCGCAGTACCATCACTGATAACTGC HSC5
maeE 5' F (BamHI) GCCGGATCCTTAACATGAACCCAGTGGAAGCAGC HSC5
maeE 5' R ACCTGACGCTAAGGGCAAGTTGACCTAATTGATTTTTCAT HSC5
maeE 3' F ACTTGCCCTTAGCGTCAGGTCGGTAGTCCTTAAATCATAG HSC5
maeE 3' R (EcoRI) GCCGAATTCGAAAACTGGAAAGATTGACGCAACAAGAC HSC5
maeK 5' F (BamHI) GCCGGATCCTATTTTGCCATGCTTTTGAATGCTC HSC5
maeK 5' R GTTGCCCTCCAACTGGCCCATAAACGTAGTGGTTTTTCAT HSC5
maeK 3' F ATGGGCCAGTACACCTTATGTAGGAGGGCAACATGAACGT HSC5
maeK 3' R (EcoRI) GCCGAATTCCTTCGCAAGGAATATGCTGAGCACG HSC5
maeR 5' F (BamHI) GCCGGATCCTTCAACATGATCAGAATCATTTAATCAGCC HSC5
maeR 5' R GACGGCCAACGGGATCATCTTCAATGATTAAAACGTTCAT HSC5
maeR 3' F AGATGATCCCGTTGGCCGTCCCTATCGCGTG HSC5
maeR 3' R (EcoRI) GCCGAATTCGCCAAGGCCTTACTTCCAGATGAGA HSC5
maeE F (EcoRI) GCCGAATTCTCCAAACCAATAAAAAGAGAGGTATTTCCT HSC5
maeE R (ClaI) GCCATCGATGCTTCTACTTATTTTGTGATTTAAAGTATAACTTTCTC HSC5
HPr F (BamHI) GCGGATCCGCTCTAGCGTTTTGGTGATAGAAGC HSC5
HPr R (BamHI) GCGGATCCCGTCTTGTGCAGCTTGGAGTG HSC5
HPr H15A F TCACATTGTTGCAGAAACAGGTATTGCTGCGCGTCCAGCG HSC5
HPr H15A R CGCTGGACGCGCAGCAATACCTGTTTCTGCAACAATGTGA HSC5
maeP RT F CCGATGTTACTTGGAATGGTTTGTG
maeP RT R CGACTCCTGTAATGGCACTGTAACC
maeE RT F TCATATTCCTGTTTTCCATGACGATC
maeE RT R CTGTCACTTTCGTAGCACCTGCTG
maeK RT F CGTCAAAACGCAATTATACCCTGTCT
maeK RT R CCAGCTTTATCTACCACAAATACGGC
maeR RT F GGCAATGGGATTCAATTTTTGGAG
maeR RT R CTGTTGGATGCTTTCTTGAAAGCG
a. Engineered restriction sites are underlined
b. Engineered mutation sites are in bold italics

RT primers for maeE

RT primers for maeK

RT primers for maeR

pEP78

pEP50

pEP51

primers for in-frame deletion of maeP

primers for in-frame deletion of maeE

primers for in-frame deletion of maeK

primers for in-frame deletion of maeR

RT primers for maeP

pEP56

primers for complementation of maeE

pEP52

pEP66

primers for His15 to Ala point mutation in ptsH

Table S3. Plasmids used in this study
Plasmid (Resistance)a Description Reference
pGCP213 (Erm) temperature-sensitive shuttle vector, used for allelic replacement Nielsen et al. (2012)
pCRK (Kan) temperature-sensitive shuttle vector, used for allelic replacement Le Breton et al. (2013) 
pABG5 (Kan, Cam) shuttle vector, used for ectopic expression Meehl et al. (2005)

pEP78 (Kan) pCRK:: maeP This work
pEP50 (Erm) pGCP213:: maeE This work
pEP51 (Erm) pGCP213:: maeK This work
pEP52 (Erm) pGCP213:: maeR This work
pGCP793 (Erm, Cam) pGCP213:: ptsI::cat Port et al. (2014)
pEP56 (Erm) pGCP213::ptsHH15A This work
pEP66 (Kan, Cam) pABG5:: maeE (for MaeE complementation) This work
pEP74 (Kan) pCRK::maeK (for MaeK restoration) This work
a. Antibiotics are abbreviated as follows: kanamycin (Kan), chloramphenicol (Cam), erythromycin (Erm)
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MATERIALS AND METHODS 
 
Bacterial strains, media, and growth conditions. The Escherichia coli strain TOP10 

(Invitrogen) was used for cloning using standard molecular biology techniques. The 

Streptococcus pyogenes strain HSC5 (23) and mutant derivatives were utilized in this study. 

Strains were grown in Todd Hewitt broth (THYB) with 0.2% yeast extract (Difco) or C medium 

(24). C medium was adjusted to pH 7.5 as described previously (24). Routine growth conditions 

utilized sealed culture tubes incubated at 37°C under static conditions. Streptococcal strains 

grown on solid medium containing 1.4% Bacto agar (Difco) were cultured in a sealed jar with a 

commercial gas generator (GasPak catalogue no. 70304, BBL). For experiments utilizing malate 

supplementation, filter sterilized 5% (w/v) stock solution buffered to pH 7.0 with NaOH (Sigma) 

was used to add malate (Sigma) to a final concentration of 0.5% to the media. For experiments 

utilizing glucose or maltose supplementation, filter sterilized 20% (w/v) stock solution was used 

to add glucose or maltose (Sigma) to a final concentration of 0.2% to the media. For experiments 

utilizing buffered media, 1M stock solutions of HEPES (pH 7.5) or MES (pH 6.0) (both obtained 

from Sigma) were added to a final concentration of 0.1M to the media. All media used were 

sterilized in an autoclave prior to supplementation. When appropriate, antibiotics were added at 

the following concentrations: erythromycin 1 mg/mL, kanamycin 250 mg/mL, chloramphenicol 

3 mg/ml. 

 

Construction of mutants. All references to genomic loci are based on the genome of HSC5 

(23). In-frame deletion mutations in the genes encoding MaeP (L897_04180), MaeE 

(L897_04185), MaeR (L897_04170), and MaeK (L897_04175), as well as the modified allele 

for HPr (L897_05590) (Table S1) were generated using allelic replacement and the PCR primers 
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listed in Table S2. The deletion alleles were transferred to the HSC5 chromosome using the 

allelic replacement vector pGCP213 (25) as described (26) and listed in Table S3. Each deletion 

allele was obtained through overlap extension PCR (27) using the primers listed in Table S2. All 

molecular constructs and chromosomal structures of all mutants were verified using PCR and 

DNA sequencing (Genewiz, South Plainfield, NJ) using oligonucleotide primers (IDT, 

Coralville, IA) of the appropriate sequences.  

 

Complementation of ME mutants. To complement the maeE in-frame deletions, DNA 

fragments containing maeE from HSC5 in the absence of its promoter was amplified using the 

primers listed in Table 2 and inserted under control of the rofA promoter in pABG5 as previously 

described (28). The resulting plasmid, pEP66, was then used for ectopic expression of MaeE, 

(Table S3). For complementation of the maeK in-frame deletion, a reversion strategy was used to 

restore the wild-type locus in the MaeK- mutant background. A DNA fragment containing the 

maeK open reading frame and flanking regions was amplified from HSC5 using primers listed in 

Table S2 and inserted into the plasmid pCRK (29). The resulting plasmid, pEP74, was then used 

to create the strain MaeKR as described previously (30) (Table S1). 

 

Metabolic assays. Malate, lactate, and formate concentrations were measured using 

commercially available kits (Sigma). Briefly, cultures of each individual strain tested were 

grown overnight in C medium with the appropriate supplement added (see text). Cultures were 

then subjected to centrifugation, filtered through 0.22 μm filters (Millipore), and then assessed 

per manufacturer’s protocol. Data shown are the means and standard deviation from duplicate 
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determination of three separate biological samples prepared from at least 2 independent 

experiments. 

 

Isolation of RNA and transcript analysis. Transcript abundance of selected genes was 

analyzed as previously described (31). Briefly, overnight cultures were diluted 1:25 into fresh C 

medium with the appropriate supplement added (see text) and harvested at mid-log phase (OD600 

0.2). Total RNA was isolated using Qiagen RNeasy Mini kit per the manufacturer’s protocol. 

RNA was subjected to reverse transcription (RT) using iScript (Bio-Rad) per manufacturer’s 

protocol. RT-PCR analysis of cDNA samples were performed using iQ SYBR Green Supermix 

(Bio-Rad) and the primers listed in Table S2. Relative transcript abundance was determined 

using the ΔΔCt method using recA transcript as a standard and are presented in comparison to 

unmodified C media or in comparison to wild type. The data shown are the means and the 

standard deviation from triplicate determinations of at least two separate biological samples 

prepared from at least two independent experiments. 

 

Infection of mice. As previously described (32, 33), 5-to-6-week-old female SKH1 hairless mice 

(Charles River Labs) were injected subcutaneously with approximately 107 CFU of S. pyogenes 

of the strains indicated in the text. Following infection, the resulting ulcers formed were 

documented over a period of several days by digital photography and lesion areas measured as 

previously described (32). Data presented is pooled from at least two independent experiments 

with at least 10 mice per experimental group.  
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Growth rate calculations. Indicated bacterial strains were back-diluted 1:50 into 1 mL of fresh 

C medium (unmodified or altered as indicated in text) and their growth monitored at 37°C using 

a Tecan Infinite M200 Pro plate reader. During growth the plate was shaken every 10 minutes 

for 30s, followed by a 5s wait period and measurement of the OD600. Data was normalized 

relative to uninoculated media and growth rates calculated as described previously (34). Growth 

rates are reported as doubling time (t1/2) and were determined from a series of 7 time points 

collected over a 60 minute period that defines the peak rate of growth, which typically occurred 

prior to the culture reaching 15-30% of max OD600. Growth yields were calculated from the 

maximum OD600 reached by the culture and are expressed as a percentage relative to the wild 

type strain under identical conditions.  The average doubling time and percent growth yield was 

calculated from each replicate from at least three independent experiments. 

 

Statistical analyses. Differences between mean values obtained for wild type and mutant strains 

in in vitro assays were tested for significance using the Student’s t-test. For infection of mice, 

differences in lesion area between wild type and individual mutants were tested for significance 

using the Mann-Whitney U test. Computation of test statistics utilized Instat (version 3.1) and 

Prism (version 6.0) from Graphpad Software (San Diego, CA).  For all tests, the null hypothesis 

was rejected for P < 0.05. 
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SUMMARY 

The interaction between the NAD+ glycohydrolase SPN and the cholesterol dependent 

cytolysin SLO allows for delivery of SPN directly into host cells by a process known as 

cytolysin-mediated translocation (CMT). It has also been shown that both proteins play a role in 

cytotoxicity, as loss of either protein has reduced virulence in cultured epithelial cells and in vivo 

in a mouse model of soft tissue infection. Taken together, these studies demonstrate that both 

SPN and SLO play an important role in pathogenesis of S. pyogenes. And although these 

secreted proteins have been shown to be involved in virulence of S. pyogenes, little information 

is known about how the bacterium regulates their expression. Analysis of expression patterns for 

these genes demonstrated that both are growth-phase regulated, with peak expression at 

exponential phase. Additionally, this temporal expression pattern is controlled by environmental 

pH, where acidic pH has a repressive effect on expression of both genes. Through a transposon 

mutagenesis screen a novel regulator of the spn operon, RocA, a predicted histidine kinase, was 

identified. An analysis of the RocA protein revealed that, although it does function as a 

transcriptional repressor of the spn operon, it is not a histidine kinase. Finally, RocA, along with 

the two-component system CovRS, is shown to be essential for the pH regulation of the spn 

operon.  Taken together, this work sheds light on a regulatory mechanism utilized by S. pyogenes 

during adaptation to acid stress. 
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INTRODUCTION 

An important factor in the colonization of host tissue by a pathogen is the ability to 

monitor changes in their surrounding environment and adapt as needed for survival. This 

adaptation is often seen at the level of transcription, resulting in careful spatial and temporal 

expression patterns of a number of proteins, including virulence factors. Identifications of 

conditions that control gene expression in vitro is, therefore, a useful tool for understanding the 

potential regulatory cues sensed by the bacteria during an infection in vivo. 

The Gram-positive bacterium Streptococcus pyogenes is an incredibly versatile pathogen, 

capable of colonizing numerous sites within the human host and causing a variety of clinical 

diseases. These diseases range from mild, self-limiting infections such as impetigo and 

pharyngitis, to invasive and systemic diseases including toxic shock and necrotizing fasciitis (1-

3). The ability of S. pyogenes to successfully infect multiple niches in the human body is the 

result of careful monitoring of variations in environmental stimuli, which, in turn, lead to global 

transcriptional changes in the bacterium (4-6). The regulatory cues that can lead to this 

transcriptional remodeling include temperature, pH, osmolarity, and nutrient availability, among 

others (5-8) 

As a lactic acid bacterium (LAB), S. pyogenes is solely dependent on a simple 

fermentative metabolism to generate energy in the cell (9, 10). A by-product of this metabolism 

is the production of several organic acid end products that, over the course of growth, 

accumulate in high concentrations in the surrounding area (9, 10). This autoacidification process 

is significant for several reasons. First, it has been established that pH is a signal used by the 

bacterium to induce global transcriptional changes (7, 11, 12). Second, transcriptome studies 

have shown that the local tissue environment during later stages of infection is both low in 
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glucose and low in pH (7). Therefore, understanding the regulatory mechanisms utilized by S. 

pyogenes in response to variations in environmental pH will provide insight into important 

adaptive strategies that the bacterium must use in vivo in infected tissue.  

S. pyogenes is known to produce a large number of secreted virulence factors that can 

affect host cellular functions in numerous ways (1-3, 13-17). One important secreted factor is the 

NAD+ glycohydrolase, SPN. Upon delivery into the host cell cytosol, SPN is able to cleave β-

NAD+ into nicotinamide and adenosine diphosphoribose (ADPr) (14, 18, 19). The process by 

which SPN is able to gain access to the host cytosol is a complex process known as cytolysin-

mediated translocation (CMT) (20-22). CMT also requires the cholesterol dependent cytolysin 

Streptolysin O (SLO) for the direct translocation of SPN across the host cell membrane (20-22). 

It has also been established that both proteins play a role in pathogenesis, as loss of either protein 

has reduced virulence in cultured epithelial cells and in vivo in a mouse model of soft tissue 

infection (20, 23, 24). While a significant amount of work has been done in understanding the 

complex process of CMT, as well characterizing SPN’s effects on the host cell (14, 18, 20-22, 

25), little is known about how the bacterium regulates the expression of these important toxins. 

While S. pyogenes lacks alternative sigma factors, it encodes a number of two-component 

systems (TCS) and stand-alone response regulators, many of which are influenced by both 

growth phase and environmental conditions (5, 6, 26-32). One of the most well characterized 

transcriptional regulators in GAS is the two-component system (TCS) CovRS. This system 

exerts its effect during late exponential and stationary growth, functioning mostly as a repressor 

of a number of surface-adhered and secreted virulence factors in response to multiple 

environmental stimuli including Mg2+, temperature, pH, and the cathelicidin LL-37 (27, 33-38). 
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CovRS is one of the most well studied TCSs in S. pyogenes and is known to control up to 15% of 

the total genes in this bacterium, including spn and slo (33, 35, 38). 

spn is the first gene in a 3-gene operon that includes ifs (immunity factor for SPN) and 

slo (19, 25, 39). While both SPN and SLO are secreted, IFS is a bacterial cytosolic protein that 

binds to SPN’s active site to block its enzymatic activity within the bacterial cell (39). From few 

global transcription studies it has been established that expression of the spn/slo operon is 

associated with exponential phase of growth (4, 30), indicating that it is growth-phase regulated, 

however, the signal controlling this expression remains unclear. Additionally, while it is known 

that spn and slo are repressed by CovRS, it is not known if this is through direct or indirect 

regulation. Moreover, it remains unknown if any additional transcriptional regulators control the 

spn operon.  

In this study we examined the regulatory mechanism controlling the growth phase 

regulation of the spn/slo operon. The analysis revealed that expression of the spn operon is 

controlled by pH and that this regulation requires both the CovRS system as well as a stand-

alone transcriptional regulator, RocA.  
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RESULTS 

Expression of spn and slo is controlled by pH. As a lactic acid bacterium, S. pyogenes growth 

in broth culture can have a significant effect on the pH of the medium. Growth in a glucose-rich 

medium such as THY results in a substantial reduction in environmental pH from a starting point 

of 7.4 to a low of approximately 5.4 (Fig. 1A).  

 

 

 

 

 

 

 

 

 

Transcriptional expression of the spn/slo operon is associated with the exponential phase 

of growth (4, 30), when culture pH is still near neutral (Fig. 1B). To provide more cumulative 

data on the pattern of transcriptional expression of this operon, WT cells were inoculated into 

fresh THY medium and samples were collected at seven distinct time points throughout the 

growth cycle and transcript abundance of spn and slo were measured (Fig. 1B). Both spn and slo 

had similar patterns of expression, with induction beginning during early exponential phase 

(OD600 of 0.2), peaking at mid-exponential phase (OD600 of 0.5), and then rapidly turned off as 

cells entered late exponential/stationary phase (OD600 of 1.0).  This late phase in the growth cycle 

correlated with the culture pH dropping to an acidic level of approximately 6.0-6.5 (Fig. 1B). 

Figure 1. Growth-phase expression of spn and slo. (A) WT S. pyogenes was grown in THY 
medium over the course of 8 hours. Samples were removed at various time points and analyzed 
for growth (OD600, left axis) and pH of cell-free supernatants were measured (right axis). (B) 
Transcript abundance of spn and slo (left axis) and pH of cell-free supernatants (right axis) 
were measured at specified stages of growth (OD600, x-axis). Results are presented as mean and 
standard deviations from at least 2 biological samples analyzed in triplicate. 
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These data led to the hypothesis that transcription of the spn operon is regulated by 

environmental pH, where acidic pH is a repressive signal on transcription of these genes.  

 

  

 

 

 

To test this, WT cells were grown in THY medium buffered to a range of pHs from 7.5 to 

6.0. Cell-free supernatants from these overnight cultures were collected and analyzed by Western 

blot for expression of both SPN and SLO protein levels (Fig. 2A). Supernatants from cultures 

buffered to pH 7.5 had substantially more SPN and SLO than samples from cultures grown in 

unmodified THY. Conversely, growth in THY medium buffered to pH 6.5 or 6.0 repress protein 

Figure 2. Expression of spn and slo is regulated by pH. (A and B) WT S. pyogenes was grown 
in THY buffered to specified pH and SPN and SLO protein was measured from cell-free 
supernatants by Western blot (A) or NADase activity (B). (C and D) Transcript abundance of spn 
and slo was measured from WT cells grown in THY buffered to pH 6.0 (C) or 7.5 (D). For analysis 
total RNA was isolated from cultures at exponential phase (C) or stationary phase (D). 
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expression to undetectable levels. As a control to show that general protein secretion is not 

affected, supernatants were also tested for levels of SpeB protein, which has been shown to be 

positively regulated by low pH (Fig. 2A) (7). As a second measure of SPN production, cell-free 

supernatants from cultures grown in unmodified THY or THY buffered to neutral (7.5) or acidic 

(6.0) pH were collected and analyzed for β-NAD+ glycohydrolase (NADase) activity (Fig. 2B). 

Results of this analysis show that, compared to unmodified THY, neutral buffered media 

enhanced NADase activity 2- to 3-fold, while acidic buffered media reduced NADase activity 2-

fold. As a negative control, overnight supernatants of strain HSC5 (which produces an NADase 

negative version of SPN) (18). All together, this data demonstrates that low pH is a repressive 

signal for SPN and SLO expression and that production of these proteins can be enhanced by 

buffering the medium to a neutral pH.  

 To determine whether the pH regulation of SPN and SLO was occurring at a 

transcriptional or post-transcriptional level, WT cells were grown in buffered THY medium and 

samples were collected at a specific stage of growth and transcript abundance of the spn and slo 

genes were measured (Fig. 2 C and D). WT cells were grown in either acidic buffered THY (pH 

6.0) to mid-exponential phase (OD600 of 0.5) or in neutral buffered THY to late 

exponential/stationary phase (OD600 of 1.2). Results of this analysis show that growth in acidic 

media represses transcription of both spn and slo at exponential phase approximately 4-fold (log2 

value) compared to cells grown in unmodified THY (Fig. 2C). Additionally, late 

exponential/stationary phase cells grown in neutral buffered media had 4- to 6-fold (log2 value) 

increased transcript abundance compared to cells grown in unmodified THY (Fig. 2D). Taken 

together, these results demonstrate that pH is an environmental signal controlling the growth 
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phase expression of the virulence genes spn and slo, where low pH is a repressive signal for 

transcription of this operon.  

 

 

 

 

 

Deletion of RocA uncouples spn and slo from pH regulation. A random mutagenesis screen 

was performed in order to identify potential regulators involved in controlling the expression of 

the spn/slo operon in response to low pH. We screened approximately 2000 transposon mutants 

for production of SPN, measured by NADase activity of culture supernatants, after growth in 

THY pH 6.0. Within the mutant library, two independently derived transposon mutants were 

discovered to have high NADase activity in acidic THY. These mutants both had a transposon 

disruption in a gene (L897_06555) annotated in the HSC5 genome as a putative histidine kinase 

(Fig. 3A) (40). A BLAST search for related genes in S. pyogenes lead to the identification of the 

Figure 3. Deletion of RocA uncouples spn and slo from pH regulation. (A) Schematic of the 
genomic region containing the rocA gene (L897_06555) in S. pyogenes. Green arrows indicate 
location of transposon insertion sites. (B and C) The S. pyogenes RocA- mutant was grown in 
THY buffered to specified pH and SPN and SLO protein was measured from cell-free 
supernatants by Western blot (C) or NADase activity (D). 
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unknown kinase as the gene rocA, a highly conserved gene present in all sequenced strains of S 

pyogenes. RocA was first identified as a transcriptional regulator and was shown to act as a 

positive regulator for the covRS operon in JRS4 (40). Examination of the genomic region around 

rocA is that it appears to be a stand-alone histidine kinase (Fig. 3A), which is unusual as these 

proteins are usually part of a two-component system where both genes are encoded in a single 

operon (41). However, this is not the case for this gene of interest.  

 To verify that the rocA disruption is responsible for the SPN over-expression phenotype, 

a strain was made with an in-frame deletion of rocA in a WT background. This strain, RocA-, 

was then tested for altered expression patterns for both SPN and SLO.  RocA- cells were grown 

overnight in THY unmodified or buffered to pH 7.5, 6.5, or 6.0 and supernatants were collected 

for Western blot analysis. The results show that, under all conditions tested, RocA- causes 

overproduction of both SPN and SLO protein (Fig. 3B). As a second measure of SPN expression, 

WT and RocA- strains were grown overnight in THY, THY pH 7.5, or THY pH 6.0 and 

supernatants were collected and measured for NADase activity. The results demonstrated that the 

RocA- strain had consistently high NADase activity compared to WT under all pH conditions 

(Fig. 3C). Thus, loss of the RocA protein uncouples SPN and SLO from pH regulation. To 

restore pH repression of SPN and SLO the rocA gene was expressed ectopically on a plasmid 

under a constitutive promoter. This plasmid (pRocA) was then used to transform  

both WT and a RocA- mutant and NADase activity of supernatants from overnight cultures 

grown in unmodified THY medium was measured. Surprisingly, over-expression of RocA 

repressed SPN production by 80% in unmodified media (Fig. 4A). Thus, over-expression of 

RocA can repress SPN in the absence of any pH signal.  
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RocA is a transcriptional repressor 

of spn and slo. As a putative histidine 

kinase, RocA would be predicted to be 

part of a TCS and, therefore, is likely a 

transcriptional regulator. To test this, 

total RNA from WT and RocA- strains 

grown in unmodified THY was 

collected and transcript abundance of 

spn and slo were measured by 

quantitative RT-PCR (Fig. 4B). The 

results show that loss of RocA causes 

an increase in transcript of both genes 

approximately 10-fold compared to 

WT. Additionally, when RocA was 

then ectopically expressed on a plasmid 

(pRocA) in either a WT or a RocA- 

background, transcript levels were 

dramatically reduced nearly 10-fold 

compared to the non-complemented 

strains (Fig. 4B). Additionally, it is 

important to note that this experiment was performed with cells grown in unmodified THY, 

indicating that overexpression of RocA alone is sufficient to repress transcription of spn and slo 

and does not require a strong acidic pH signal to induce this repression. Taken together, this data 

Figure 4. RocA is a transcriptional repressor of spn 
and slo. (A) NADase activity of cell-free supernatants 
from WT and RocA- cultures containing indicated 
plasmid was measured. (EV, empty vector) (B) Total 
RNA from exponential phase cultures slo of WT and 
RocA- strains containing indicated plasmid was 
isolated and transcript abundance of spn and was 
measured. Data presented is means and standard 
deviation from 3 biological replicates measured in 
triplicate. 
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shows that RocA is a transcriptional repressor of spn and slo and can function independently of a 

pH signal. 

 

RocA is not a histidine kinase. Given how little this protein has been studied at this point, we 

sought to further characterize its functional activity. Previously, it has been hypothesized that 

RocA is a histidine kinase (42). Using structural prediction software (43), we obtained a putative 

structure of the cytoplasmic domain of the RocA protein. Histidine kinases (HK) are 

characterized as having three domains, the extracellular sensor domain (which vary among the 

different proteins), a transmembrane domain, and a cytosolic enzymatic domain. These last two 

domains are highly conserved among HKs (44). An examination of the cytoplasmic domain of 

RocA revealed that there was four histidine residues scattered throughout this domain (H247, 

H315, H387, H437) (Fig. 5A). To identify the key histidine residue necessary for RocA’s 

function, single point mutations were made by directed mutagenesis using the pRocA plasmid, 

converting His to Ala independently at all four positions. These new constructs (pRocAH247A, 

pRocAH315A, pRocAH387A, pRocAH437A) were transformed into the RocA- mutant and tested for 

protein expression and NADase activity (Fig. 5 B and C). The results show that all four pRocA 

mutant were able to repress SPN and SLO expression to similar levels as the WT pRocA, 

indicating that all four histidine mutants are dispensable for RocA regulatory function. 
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RocA repression of SPN and SLO requires CovRS. Given that RocA was initially identified 

as a regulator of the covRS operon (40), and that the CovRS TCS is a known regulator of the 

spn/slo operon (33, 35, 38), it was of interest to investigate if RocA-mediated regulation of spn 

and slo involved CovRS. To test this, in-frame deletion mutants of covR or covS were made 

individually in a WT background and these mutants were tested for altered SPN production by 

SPN 

SpeB 

Figure 5. RocA is not a functional histidine kinase. (A) Structural prediction of RocA’s 
cytoplasmic domain with individual histidine residues highlighted in red. (B and C). pRocA mutant 
constructs were tested for regulation of SPN by NADase activity (B) and Western blot (C).  
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measuring NADase activity of culture supernatants (Fig. 6). Results showed that deletion of 

either gene lead to significantly higher levels of NADase activity than WT, indicating that both 

CovR and CovS are required for repression of SPN. This finding was in agreement with previous 

reports of CovRS regulation of the spn/slo operon and appeared identical to a RocA- mutant (33, 

35, 38). Lastly, to evaluate the contribution of either protein in the RocA regulatory pathway, the 

plasmid pRocA was transformed into both CovR- and CovS- and these strains were tested for 

SPN production. NADase activity of overnight supernatants from cultures grown in unmodified 

THY broth from strains RocA-, CovR-, CovS-, plus their pRocA complemented strains. The 

results show that over-expression of RocA on pRocA can only complement the RocA- mutant, 

but neither of the Cov deletion mutants (Fig. 6). Thus, all three components are required for 

repression of the spn/slo operon.    

 

 

 

 

 

 

 

 

 

 

Figure 6. RocA repression of SPN requires CovRS NADase activity of cell-free 
supernatants from WT and mutant and complemented strains was measured. 
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DISCUSSION 

 In this study we have shown that the virulence factors SPN and SLO, which are co-

transcribed together with the protein IFS in a single operon, are expressed in a growth-phase 

pattern of expression, with their peak transcript abundance occurring during exponential phase. 

In addition, we have shown that this pattern of regulation is controlled by environmental pH, 

where exposure to acidic conditions can repress transcription of this operon and, conversely, 

maintenance of a neutral pH can extend transcription through to stationary phase. Furthermore, 

we have identified the transcriptional regulator RocA, in addition to the global regulatory TCS 

CovRS, as being required for this pH-mediated response. Finally, we have shown that while 

RocA is, in fact, a transcriptional regulatory protein, it is likely not a functional histidine kinase 

as previously reported. Taken together, these data shed light on the specific growth-phase 

regulation of several important virulence factors and further characterizes the contribution of 

RocA in S. pyogenes pathogenesis. 

 Growth-phase expression of virulence factors is a common regulatory strategy used by 

multiple pathogenic bacterial species (10, 31, 45). Often times this growth-phase regulation is 

linked to metabolism. For example, in S. pyogenes, the catabolite control protein CcpA regulates 

a number of virulence factors including the cysteine protease SpeB and the lactate oxidase gene 

lctO in response to carbohydrate availability (46). The transcriptional regulator CodY, which 

recognizes branched chain amino acids, is responsible for the growth-phase regulation of the 

virulence factors pel and sagA (6). We can now add the genes spn and slo to this group. As a 

lactic acid bacterium, S. pyogenes ferments glucose, leading to the formation of multiple organic 

acids which, when secreted into the environment, cause a significant drop in pH (9, 10, 31, 45, 
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47). Thus, as glucose is consumed, there is a corollary drop in environmental pH. In this way, pH 

is an indirect metabolic signal for the bacterial cell. 

 This work also provides new information on the role of RocA and its involvement with 

the CovRS TCS. Although RocA is a highly conserved protein present in all sequenced S. 

pyogenes strains, few studies have been done to characterize this protein and it’s role in virulence 

regulation and pathogenesis. Previous studies have identified RocA as a regulator of hasA, which 

is necessary for capsule synthesis (40, 42), although this is attributed to the fact that RocA is a 

regulator of CovR, which is known to repress capsule synthesis genes (27). There is, however, 

data that suggests that RocA’s role in transcriptional regulation extends beyond interactions with 

CovRS. A proteomics study to identify regulatory targets of RocA identified approximately 30 

proteins whose expression were significantly altered in a RocA null mutant compared to WT 

(42). Of these 30 targets, only one third of them were determined to be part of the CovRS 

regulon. In addition, the majority of these RocA targets, most of which are repressed by the 

protein, are involved in metabolism (42). Thus, RocA’s main contribution to the cell may be as a 

key metabolic regulator. As previously mentioned, there are a few well-characterized metabolic 

regulators in S. pyogenes known to respond to various nutritional cues such as glucose, 

carbohydrates, and amino acid starvation (5, 6, 28, 46). An important next step in the study of 

RocA would be to determine what conditions or signals it responds to. The work presented here 

suggests that pH may be one of those signals, but, like CovRS (34, 36, 38), RocA may recognize 

multiple environmental cues. 

 In addition to identifying the conditions that trigger RocA activation, there is also the 

question of how RocA is functioning as a transcriptional regulator. The work presented here 

demonstrates that RocA is not a functional histidine kinase, as all histidine residues within the 
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cytoplasmic domain of the protein are dispensable for function. This conclusion is further 

supported by previous findings that the RocA protein sequence lacks several key residues 

necessary for function in other known histidine kinases (40). Additionally, analysis of the 

sequence of the predicted ATPase domain of the protein also revealed mutations to key residues 

necessary for enzymatic activity (E. Paluscio and M. Caparon, unpublished). Taken together, this 

information suggests that RocA may not possess any enzymatic activity. Additionally, no DNA 

binding domains have been identified in RocA, yet there is strong evidence from this work and 

other that indicate this protein is involved in transcriptional regulation of multiple target genes 

(40, 42). 

  Given that RocA maintains strong homology to other bacterial histidine kinases, but 

lacks the specific residues necessary for phosphorylation, a possible hypothesis is that RocA is a 

functional pseudokinase. Pseudokinases can be described as proteins that are classified as part of 

a specific enzyme group based on sequence or structural homology, but lack any enzymatic 

activity (48). Pseudokinases, which are found in all domains of life, are thought to function in 

signaling pathways in several specific ways, including as modulators of kinase and phosphatase 

activity (49-52). In the case of RocA and regulation of the spn operon, we hypothesize that this 

protein is affecting the phosphorylation state of CovR through modulation of CovS’s enzymatic 

activity.  

CovS has been shown to maintain both kinase and phosphatase activity (53), thus altering 

the phosphorylation state of CovR. Additionally, it has been suggested that CovR’s 

phosphorylation state determines its regulatory function, including which target promoters it can 

bind to and whether it functions to enhance or repress transcription of its target genes (27, 53, 

54). It is possible that for regulation of spn, and possibly additional genes, the interaction 
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between RocA and the CovRS system is necessary for sufficient transcriptional repression. The 

concept of a TCS requiring auxiliary proteins for signal transduction is a common mechanism 

among both Gram-positive and Gram-negative species and has been associated with a variety of 

cellular processes from cell division to virulence factor regulation (50, 51, 55-57). The precise 

mechanism by which this is occurring to regulate the growth phase expression of the spn/slo 

operon remains unclear. However, the work presented here has established that this regulation is 

controlled by environmental pH and provides new insights into virulence gene regulation in S. 

pyogenes.  
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MATERIALS AND METHODS 

 
Bacterial strains, media, and growth conditions. The Escherichia coli strain TOP10 

(Invitrogen) was used for cloning using standard molecular biology techniques. The 

Streptococcus pyogenes strain JOY3 (18), which is an NADase positive version of the strain 

HSC5 (58), and mutant derivatives were utilized in this study. Strains were grown in Todd 

Hewitt broth (THYB) with 0.2% yeast extract (Difco). Routine growth conditions utilized sealed 

culture tubes incubated at 37°C under static conditions. Streptococcal strains grown on solid 

medium containing 1.4% Bacto agar (Difco) were cultured in a sealed jar with a commercial gas 

generator (GasPak catalogue no. 70304, BBL). For experiments utilizing buffered media, 1M 

stock solutions of HEPES (pH 7.5) or MES (pH 6.0) (Sigma) were added to a final concentration 

of 0.1M to the media. All media used were sterilized in an autoclave prior to supplementation. 

When appropriate, antibiotics were added at the following concentrations: erythromycin 1 

mg/mL, kanamycin 250 mg/mL, spectinomycin 100mg/mL. 

 

 

Mutagenesis strategy. Transposon mutagenesis utilized a modified version of Tn4001 

containing a spectinomycin resistance cassette (59). Construction of a transposon mutant library 

was conducted as described previously (59). For mutants of interest, the transposon insertion site 

was mapped by arbitrary PCR as described (60). Briefly, DNA flanking the transposon insertion 

site is enriched through two rounds of amplification using primers specific to the 5’ end of the 

transposon and nonspecific primers that can anneal to random sites within the bacterial 

chromosome. The first round of PCR was performed using primers ARB1 (5’- 

GCCGACCGCTGGACTGTACG- 
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NNNNNNNNNNGTAGC) and OUT3 ((5’- GCGTGCCTACACGTGTCG). The second round 

of PCR utilized 5μL of the first-round product as the template and PCR primers ARB2 (5’- 

GCCGACCGCTGGACTGTACG) and OUT1 (5’-GTCCTCCTGGGTATGT- 

TTTT). Second round PCR products were purified and sequenced using primer OUT1. 

 

 

Directed mutagenesis and complementation. All references to genomic loci are based on the 

genome of HSC5 (58). In-frame deletion mutations in the genes encoding RocA (L897_06555), 

CovR (L897_01565), and CovS (L897_01570) (Table 1) were generated using allelic 

replacement and the PCR primers listed in Table 2. The deletion alleles were transferred to the 

HSC5 chromosome using the allelic replacement vector pGCP213 (61) as described (62) and 

listed in Table 3. Each deletion allele was obtained through overlap extension PCR (63) using the 

primers listed in Table 2. All molecular constructs and chromosomal structures of all mutants 

were verified using PCR and DNA sequencing (Genewiz, South Plainfield, NJ) using 

oligonucleotide primers (IDT, Coralville, IA) of the appropriate sequences. To complement the 

rocA in-frame deletions, DNA fragments containing rocA from HSC5 in the absence of its 

promoter and including an HA tag at the C-terminal end of the protein was amplified using the 

primers listed in Table 2 and inserted under control of the rofA promoter in pABG5 as previously 

described (39). The resulting plasmid, pEP85, was then used for ectopic expression of RocA-HA 

(Table 3). The four RocA mutants (H247A, H315A, H387A, H437A) were made from the WT 

rocA sequence in pEP85 using the Quikchange XL II mutagenesis kit (Agilent Technologies). 
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Analysis of protein expression. SPN production was measured by a fluorometric assay 

measuring β-NAD+ glycohydrolase activity of cell-free supernatants as described (20). Specific 

activity of each strain is reported relative to wild type as described (19). Expression of SPN and 

SLO protein was measured from cell-free supernatants as described (22). For all experiments, 

samples were normalized to OD600 of overnight cultures. 

 

 

Isolation of RNA and transcript analysis. Transcript abundance of selected genes was 

analyzed as previously described (64). Briefly, overnight cultures were diluted 1:25 into fresh 

THY medium with the appropriate supplement added (see text) and harvested at the OD600 

indicated in the text. Total RNA was isolated using Qiagen RNeasy Mini kit per the 

manufacturer’s protocol. RNA was subjected to reverse-transcription (RT) using iScript (Bio-

Rad) per manufacturer’s protocol. RT-PCR analysis of cDNA samples were performed using iQ 

SYBR Green Supermix (Bio-Rad) and the primers listed previously (7). Relative transcript 

abundance was determined using the ΔΔCt method using recA transcript as a standard and are 

presented in comparison to unmodified THY media or in comparison to wild type. The data 

shown are the means and the standard deviation from triplicate determinations of at least two 

separate biological samples prepared from at least two independent experiments. 
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Table 1. Strains used in this study
Strain Relevant Genotype Mutated Locia Plasmid Descriptionb Reference
S. pyogenes
JOY3 SPNJ4 00945 none wild-type Chandresakaran, et al. (2013)
HSC5 none NAD+ glycohydrolase negative Port, et al. (2013)
EP154 ∆rocA 06555 none in-frame deletion of rocA This work
EP155 ∆covS 01570 none in-frame deletion of covS This work
EP156 ∆covR 01565 none in-frame deletion of covR This work
EP177 SPNJ4 00945 pABG5 This work
EP180 ∆rocA 06555 pABG5 This work
EP178 ∆covS 01570 pABG5 This work
EP179 ∆covR 01565 pABG5 This work
EP181 SPNJ4 00945 pEP85 This work
EP182 ∆rocA 06555 pEP85 This work
EP183 ∆covS 01570 pEP85 This work
EP184 ∆covR 01565 pEP85 This work
EP185 ∆rocA 06555 pEP86 This work
EP186 ∆rocA 06555 pEP87 This work
EP187 ∆rocA 06555 pEP88 This work
EP188 ∆rocA 06555 pEP89 This work

a. Loci are based on the genome HSC5 (Port et al. 2013) and follow the formate L897_xxxxx, where xxxxx are numbered
b. antibiotics are abbreviated as follows: chloramphenicol (Cam)
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Chapter IV 
 
 

Alterations of CcpA Activation has Significant Effects 
on the Outcome of a Streptococcus pyogenes Infection 
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SUMMARY 

Streptococcus pyogenes can infect a number of different tissue types within the human 

host. Successful adaptation to these varying environments is, in part, due to the bacterium’s 

ability to sense changes in environmental signals and rapidly alter its gene expression profile in 

response to these changes. Carbon catabolite repression (CCR) allows the bacteria to metabolize 

preferable carbon sources in the environment, usually through transcriptional repression of genes 

in the processing of alternative, and less favorable, carbon sources. The key transcriptional 

regulator of CCR in S. pyogenes is CcpA. This protein has been shown to be a global regulator of 

gene expression, affecting transcription of genes involved in both carbon metabolism as well as a 

number of known virulence factors. The majority of the identified CcpA-regulated genes are 

upregulated in the absence of the protein, demonstrating that the main role of CcpA is in 

repression of target genes. A great deal of work has been done to characterize the role of CcpA 

in S. pyogenes pathogenesis, however, all of these previous studies utilize CcpA null mutants. 

But, given the fact that CcpA acts mostly as a repressor of target genes, these previous studies 

are unable to demonstrate the significance of CcpA function on metabolism and pathogenesis. To 

provide a more complete analysis of CcpA function, we have designed a constitutively active 

CcpA protein, CcpAT307Y. Both a CcpA- and CcpAT307Y mutants were then tested for altered 

virulence in a soft tissue infection and in a vaginal mucosal colonization model. Both CcpA 

mutants displayed altered virulence phenotypes in both models of infection. Further 

characterization of the effects of these mutants on pathogenesis may lead to new insights into the 

role of CcpA regulation in S. pyogenes. 
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INTRODUCTION 

Carbon catabolite repression (CCR) is the mechanism by which bacteria preferentially 

metabolize one carbon source over another from their environment, primarily through 

transcriptional repression of genes necessary for processing alternative, and less favorable, 

carbon sources. The key transcriptional regulator of CCR in low G+C Gram-positive bacteria is 

the catabolite control protein A (CcpA) (1-4). In addition to controlling metabolic genes, CcpA 

has been identified as a regulator of several virulence factors in a number of pathogenic bacterial 

species (2, 5-8). This indicates that nutrient availability is linked to virulence factor production 

and pathogenesis.  

In the bacterium Streptococcus pyogenes, CcpA has been shown to be a global regulator of 

gene expression, affecting transcription of approximately 20% of the total genome. S. pyogenes 

is known to cause a wide variety of infections at numerous different tissue sites within the human 

host (9-13). The diseases caused by S. pyogenes range from mild and self-limiting infections 

such as impetigo and pharyngitis, to systemic and life threatening diseases such as cellulitis and 

necrotizing fasciitis, as well as serious postinfection sequelae such as rheumatic fever and 

glomerulonephritis (9, 10, 12, 14). The ability of S. pyogenes to infect a number of different 

tissue types within the human host is, in part, due to the bacterium’s ability to sense changes in 

environmental signals and rapidly alter its gene expression profile in response to these changes 

(15-21). Several studies have demonstrated the ability of S. pyogenes to integrate various 

environmental cues as a mechanism for global gene expression changes. These signals include 

temperature, osmolarity, pH, and nutrient availability (17, 22-24). 

Lacking functional alternative sigma factors, S. pyogenes transcription is under the control of 

a number of two component systems and stand-alone response regulators to control gene 



	
  
	
  

123	
  

expression in response to various signals (17, 22, 25-31). Several of these regulators are known 

to control gene expression in response to specific nutritional cues. RelA, CodY, and RopB are all 

global transcription regulators whose function is linked to amino acid catabolism (29, 30, 32-34). 

However, in addition to regulating a number of metabolic genes, all three regulators control a 

number of virulence factors (29, 30, 32, 33). LacD.1, which was first identified as a regulator of 

the cysteine protease SpeB, functions in response to the levels of the glycolytic intermediates 

glucose-6-phosphate and dihydroxyacetone phosphate, indicating that it too functions as a 

regulator of carbon catabolic control (35, 36). Additionally, it’s been shown that glucose 

concentrations can have a global effect on gene expression in S. pyogenes, affecting both 

alternative catabolic operons and numerous virulence factors, and this response largely 

controlled through CcpA  (5, 7, 8, 37).  Taken together, this data indicates that nutrient 

availability and virulence factor production are intimately linked through the actions of multiple 

global regulatory pathways.  

 Numerous studies have been undertaken to assess the global effects of CcpA regulation and 

its contributions to pathogenesis (2, 5-8). From these studies, several important pieces of 

information have been derived. First, microarray analysis has shown that, although a significant 

number of CcpA-regulated genes are also glucose-regulated genes, there is also a subset of genes 

regulated by CcpA only, demonstrating that CcpA function is controlled by glucose-dependent 

and -independent signals (5). Second, although CcpA primarily acts as a transcriptional 

repressor, expression of a small subset of genes, including the major virulence factor SpeB, is 

positively regulated by CcpA (2, 5). Finally, loss of the ccpA gene results in an attenuated 

virulence phenotype in a murine model of soft tissue infection (2, 5). Transcriptional analysis of 

CcpA-regulated genes during the course of a 7-day infection with either WT or the CcpA- mutant 



	
  
	
  

124	
  

showed temporal misregulation of targets in the mutant strain including both metabolic and 

virulence genes. In particular, patterns of misregulation were most strongly associated with 

earlier time points, suggesting that CcpA regulation is crucial during the early stages of 

colonization (5). Additionally, the CcpA- mutant has also been shown to be defective in 

asymptomatic mucosal carriage using a murine vaginal colonization model, and this defect was 

primarily attributed to the dysregulation of the lactate oxidase gene lctO (13). Taken together, 

these data demonstrate the significant and complex role that CcpA regulation has in controlling 

the outcome of infection in multiple tissue environments.  

 A caveat to these data, however, is that these studies were limited to utilization of a ccpA 

null mutant for analyses, which provides information exclusively on the effects of the loss of 

CcpA function. Therefore, to further analyze the effect of CcpA activation and its role in 

pathogenesis, we designed and tested a constitutively active mutant allele of CcpA, CcpAT307Y. 

The constitutively repressive activity of the CcpAT307Y mutant was verified by analyzing 

transcript levels of a series of known CcpA targets in vitro. The CcpAT307Y over-activation 

mutant was then tested in vivo using two different mouse models of disease, subcutaneous soft 

tissue infection and vaginal mucosal colonization and compared to WT and CcpA-. The results 

indicate that over-activation of CcpA causes attenuation of virulence in soft tissue, but allows for 

extended carriage during asymptomatic mucosal colonization.  
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RESULTS 

Construction of CcpA “super repressor”.  In WT S. pyogenes CcpA functions as a repressor 

of gene expression in the presence of high glucose concentrations (Fig. 1). When glucose is 

abundant, it is rapidly taken up into the cell and metabolized through the glycolytic pathway 

(38). During this process there is a high intracellular concentration of the glycolytic intermediate 

fructose-bis-phosphate (FBP). FBP levels in the cell influence the enzymatic activity of the 

protein HprK, which can act as both a kinase and a phosphatase to control the phosphorylation 

state of the phosphocarrier protein HPr (38, 39). At high FBP levels, HprK functions as a kinase 

to phosphorylate HPr at the serine 46 residue (38, 39). This serine-phosphorylated form (P~Ser-

HPr) then functions as a cofactor for CcpA activation. The binding of two molecules of P~Ser-

HPr to the CcpA dimer induce a conformational change, shifting the two CcpA molecules from  

 

 

 

Figure	
  1.	
  CcpA	
  and	
  carbon	
  catabolite	
  repression.	
  Glucose	
  is	
  rapidly	
  metabolized,	
  
resulting	
  in	
  high	
  levels	
  of	
  the	
  glycolytic	
  intermediate	
  FBP.	
  FBP	
  stimulates	
  the	
  kinase	
  
activity	
  of	
  the	
  protein	
  HprK,	
  leading	
  to	
  formation	
  of	
  P~Ser-­‐HPr.	
  The	
  interaction	
  of	
  the	
  
CcpA	
  dimer	
  with	
  P~Ser-­‐HPr	
  induces	
  a	
  conformational	
  change	
  in	
  the	
  CcpA	
  dimer,	
  
allowing	
  CcpA	
  to	
  bind	
  DNA	
  promoters	
  at	
  cre	
  sites.	
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an open and inactive conformation to a closed conformation, which can then bind to DNA at 

specific promoter sites (Fig. 1, 2A) (40).  

We sought to create a constitutively active form of CcpA through the mutation of a single 

amino acid, Thr 307. Previously, the crystal structure of CcpA from the Gram-positive bacterium 

Bacillus megaterium was solved (40). That work identified a series of amino acids found at the  

 

dimer interface that were involved in the structural rearrangement of the CcpA dimer upon 

P~Ser-HPr binding. In particular, they found that replacing the Thr with an amino acid with a 

bulky side group would mimic P~Ser-HPr binding and force the CcpA dimer into its active, 

closed conformation absent any cofactor binding (40). In S. pyogenes this key residue is Thr307. 

Figure	
  2.	
  Design	
  of	
  constitutively	
  active	
  CcpA.	
  (A)	
  WT	
  CcpA,	
  in	
  the	
  absence	
  of	
  
glucose,	
  remains	
  in	
  an	
  open	
  conformation	
  and	
  is	
  unable	
  to	
  bind	
  DNA.	
  In	
  the	
  presence	
  of	
  
glucose,	
  a	
  high	
  quantity	
  of	
  serine	
  phosphorylated	
  HPr	
  is	
  formed.	
  The	
  interaction	
  of	
  
P~Ser-­‐HPr	
  with	
  CcpA	
  switches	
  the	
  regulator	
  into	
  the	
  closed	
  conformation,	
  which	
  can	
  
then	
  bind	
  DNA.	
  (B)	
  Mutation	
  of	
  the	
  Thr	
  307	
  residue	
  of	
  CcpA	
  to	
  Tyr	
  forces	
  the	
  CcpA	
  
dimer	
  into	
  its	
  closed	
  conformation,	
  mimicking	
  P~Ser-­‐HPr	
  cofactor	
  binding.	
  CcpAT307Y	
  
functions	
  independently	
  from	
  glucose	
  concentrations	
  and	
  is	
  active	
  under	
  all	
  conditions.	
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Therefore, through directed mutagenesis the threonine residue was replaced with a tyrosine to 

create the mutant CcpAT307Y (Fig. 2B).  

 

CcpAT307Y is constitutively active in the absence of glucose signal. To test for growth defects 

of the CcpA- and CcpAT307Y, both strains plus WT were cultured overnight in both a glucose rich 

media (THY)  (Fig. 3A) and a low carbohydrate media (C medium) (Fig. 3B). Growth in THY 

medium was identical to WT for both CcpA- 

and CcpAT307Y, indicating that in glucose 

rich conditions these mutants have no 

growth defects. When comparing growth in 

C medium, both WT and CcpA- mutant 

strains grew at a similar rate and reached a 

final OD600 of 0.40, however the CcpAT307Y 

mutant had a slight growth defect and 

reached a final OD600 of 0.35. 

To test for the functionality of the 

CcpAT307Y mutant, real time RT-PCR was 

performed on a series of known CcpA 

target genes (2, 5). Previously published 

work identified the lactate oxidase gene 

lctO as being repressed by CcpA in response to glucose (5). For this analysis WT, CcpA-, and 

CcpAT307Y strains were grown in unmodified C medium or C medium supplemented with 0.2% 

glucose. Transcript levels were measured from cells grown to exponential phase and normalized 

Figure	
  3.	
  Growth	
  of	
  CcpA	
  mutants	
  in	
  vitro.	
  Growth	
  
of	
  WT	
  and	
  CcpA	
  mutants	
  were	
  grown	
  in	
  (A)	
  rich	
  
media	
  (THY)	
  or	
  (B)	
  minimal	
  medium	
  (C	
  medium).	
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to WT in unmodified C medium (Fig. 4A). The addition of glucose resulted in a  10-fold 

reduction in transcript abundance in WT cells, yet had no effect in a CcpA- strain, indicating that 

glucose-dependent CcpA-activation is responsible for lctO repression.  

Furthermore, the CcpAT307Y strain, 

displayed constitutively low lctO transcript 

abundance compared to WT regardless of 

glucose content, demonstrating that this 

CcpAT307Y mutant is able to repress genes in 

the absence of a glucose signal.  

 Although CcpA primarily acts as a 

repressor of gene expression, in some cases 

it can enhance transcription (2, 5). One gene 

that is positively regulated by CcpA is speB, 

the gene that encodes the SpeB cysteine 

protease (2). WT and the two CcpA strains 

were grown in C medium and transcript 

levels were measured from cells at 

stationary phase, when speB is maximally 

expressed (Fig. 4B). As previously 

published, the CcpA- strain displayed reduced transcript levels compared to WT. Interestingly, 

the CcpAT307Y mutant displayed an approximately 50-fold increase in speB transcript compared to 

WT. Taken together, these data indicate that the CcpAT307Y mutant is constitutively active, and 

depending on the target gene, it induces either hyper-repression or hyper-activation. 

Figure	
  4.	
  CcpAT307Y	
  is	
  constitutively	
  active	
  in	
  the	
  
absence	
  of	
  glucose	
  signal.	
  WT,	
  CcpA-­‐,	
  and	
  
CcpAT307Y	
  strains	
  were	
  grown	
  in	
  C	
  medium	
  with	
  or	
  
without	
  glucose	
  to	
  exponential	
  phase	
  (OD600	
  of	
  
0.2).	
  Total	
  RNA	
  was	
  isolated	
  and	
  used	
  for	
  real-­‐time	
  
RT-­‐PCR	
  analysis	
  of	
  lctO	
  (A)	
  or	
  speB	
  (B)	
  transcript.	
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CcpAT307Y is attenuated in a murine soft tissue infection. Loss of CcpA is associated with 

attenuation in a murine soft tissue infection model (5). Therefore, we sought to investigate the 

effects of constitutive CcpA repression on virulence in this mouse model.   For this analysis mice 

were infected with WT, CcpA-, or CcpAT307Y and lesion areas were compared at day 3-post 

infection (Fig. 5A and B). Comparison of lesion sizes shows that infections with either CcpA 

mutants formed significantly smaller lesions than a WT infection. Additionally, lesions were 

dissected at day 3 and tissue was plated to count bacterial CFU (Fig. 5C). Although the CcpA- 

mutant had significantly reduced CFU, the CcpAT307Y mutant, however, had similar CFU to WT 

at day 3 despite the strong attenuation phenotype seen with the lesion data. Taken together, this 

data shows that although both the CcpA- mutant and the CcpAT307Y mutant are attenuated in 

lesion formation, however, only the CcpA- strain has reduced CFU, suggesting that the cause of 

the attenuation of these two strains is unique for each strain. 
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Figure	
  5.	
  CcpA	
  mutants	
  have	
  reduced	
  virulence	
  in	
  soft	
  tissue	
  infections.	
  
Hairless	
  SKH1	
  mice	
  were	
  infected	
  subcutaneously	
  with	
  WT,	
  CcpA-­‐,	
  or	
  
CcpAT307Y	
  and	
  the	
  resulting	
  lesions	
  formed	
  (A)	
  and	
  CFU	
  (B)	
  were	
  measured	
  
at	
  day	
  3	
  post-­‐infection.	
  Data	
  shown	
  are	
  pooled	
  from	
  2	
  independent	
  
experiments.	
  Differences	
  between	
  groups	
  were	
  tested	
  for	
  significance	
  using	
  
the	
  Mann-­‐Whitney	
  U	
  test	
  (**	
  P	
  <	
  0.01,	
  ***	
  P	
  <	
  0.001).	
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CcpA mutants have differential phenotypes in murine mucosal colonization model. In 

addition to causing inflammatory infections of the skin, S. pyogenes can asymptomatically 

colonize mucosal tissue (13). Recently, a model of asymptomatic carriage in the murine vaginal 

mucosa was developed and it was shown that a CcpA- mutant was attenuated in this system (13).  

 

 

 

 

This finding demonstrated that CcpA regulation was essential for long-term mucosal 

colonization of S. pyogenes. Given this information, the next question to address is what effects a 

CcpAT307Y mutant will have on mucosal colonization. WT, CcpA-, or  CcpAT307Y strains were 

vaginally inoculated into pre-estrogenized C57BL/6J mice and colonization was monitored by 

counting viable CFU from vaginal washes collected over the course of 60 days. WT S. pyogenes 

Figure	
  6.	
  CcpA	
  mutants	
  have	
  differential	
  phenotypes	
  in	
  mucosal	
  colonization	
  model.	
  
Estrogenized	
  C57BL/6J	
  mice	
  were	
  vaginally	
  inoculated	
  at	
  day	
  0	
  with	
  1x106	
  CFU	
  of	
  
streptomycin-­‐resistant	
  WT,	
  CcpA-­‐,	
  or	
  CcpAT307Y	
  mutants.	
  Vaginal	
  washes	
  were	
  collected	
  at	
  
the	
  time	
  points	
  indicated	
  and	
  processed	
  for	
  determination	
  of	
  CFU.	
  Each	
  symbol	
  represents	
  
the	
  mean	
  and	
  standard	
  error	
  of	
  the	
  mean	
  derived	
  from	
  at	
  least	
  5	
  mice	
  per	
  group.	
  A	
  
repeated	
  measure	
  analysis	
  was	
  used	
  to	
  compare	
  mutants	
  to	
  WT.	
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maintained a high level of colonization through day 22, after which there was a rapid drop in 

CFU (Fig. 6). The CcpA- mutant displayed an immediate drop in CFU, leading to complete 

clearance by day 12 (Fig. 6). Conversely, the CcpAT307Y mutant had a distinct phenotype than 

either WT or CcpA-. CFU from the CcpAT307Y mutant dropped several logs over the first 14 days, 

but maintained higher numbers than the CcpA- mutant. Interestingly, the CcpAT307Y mutant 

displayed extended carriage, with approximately 105 CFU detected at day 60 post inoculation, 

long after WT was cleared (Fig. 6). This data indicates that enhanced CcpA activity is beneficial 

to the bacteria during mucosal colonization.  
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DISCUSSION 

For a pathogenic bacterial species such as Streptococcus pyogenes, precise spatial and 

temporal expression of virulence factors is essential for the pathogen to achieve maximum 

fitness in host tissue. Disruption of various regulatory pathways, leading to misregulation of 

numerous target genes, has been shown to be detrimental for the bacterium (2, 13, 18, 41, 42). In 

S. pyogenes, the catabolite repressor protein CcpA has been established as an important growth 

phase-dependent regulator that is responsible for controlling a large number of metabolic and 

virulence genes (2, 5). Although multiple studies have explored the role of CcpA through loss of 

function mutants, this study sought to characterize the effects of CcpA activation on 

pathogenesis. 

In this study we have developed a constitutively active form of CcpA to use as a tool to 

explore the role of catabolite repression on virulence in multiple tissue environments. In vitro 

transcription levels of two known CcpA target genes demonstrated that the mutant, CcpAT307Y, is 

a functional protein, capable of either constitutive repression or constitutive activation of gene 

expression, depending on the target gene. In vivo experiments demonstrate that misregulation of 

the CcpA regulon, in either a CcpA- or CcpAT307Y mutant, alters the outcome of both the soft 

tissue infection and mucosal carriage. In the case of the inflammatory soft tissue model, both 

CcpA mutants displayed reduced virulence, but only CcpA- was impaired in growth. In the 

vaginal mucosal, CcpA- displayed reduced carriage compared to WT. Conversely, the CcpAT307Y 

mutant had an extended carriage phenotype, indicating that excessive catabolite repression may 

be beneficial for the bacterium in this environment. 

The finding that both CcpA mutants are strongly attenuated in a soft tissue infection 

demonstrates the importance of proper temporal control of gene expression to maximize fitness 
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of the bacteria. CcpA-mediated regulation is a dynamic process, linking gene expression to the 

constant changes in nutrient availability. Loss of this regulatory system, either through loss of or 

hyper-activation of CcpA, appears to be equally detrimental to pathogenesis of S. pyogenes. 

However, the specific causes of this attenuation appear to be distinct for each of the CcpA 

mutants.  

The CcpA- infection lead to reduced lesion areas and fewer recoverable CFUs from lesion 

tissue compared to WT. This finding indicates that the CcpA- mutant displayed a growth defect 

in vivo that was not observed in vitro, and this defect most likely contributed to the attenuation 

phenotype. One possible cause of this defect is that a CcpA- infection induces an altered host 

response, leading to more efficient clearance of the bacteria. Preliminary investigations into host 

immune response during infection have found that the loss of CcpA resulted in a significant 

alteration in cytokine response during infection (C. Kietzman and M. Caparon, unpublished). In 

particular, TNFα was significantly upregulated in a CcpA- infection compared to WT (C. 

Kietzman and M. Caparon, unpublished). This finding suggests that a CcpA- mutant may be 

deficient in producing an as-yet-unknown immune modulating virulence factor, resulting in a 

robust TNFα response and more efficient bacterial clearance.  

Conversely, an infection with CcpAT307Y created smaller lesions than WT, but had 

equivalent amounts of recoverable bacteria from lesion tissue as WT. In this case, the observed 

attenuation may be due to repression of one or more virulence factors necessary for the tissue 

damage and necrosis that occurs when skin lesions develop. One possible candidate responsible 

for this is the cytolysin Streptolysin S (SLS), which is both repressed by CcpA and is associated 

with tissue damage and lesion formation (43-47). In a CcpAT307Y infection SLS would 

theoretically be constitutively repressed, and without this key virulence factor, less tissue damage 



	
  
	
  

135	
  

would likely occur. It also remains possible that the attenuation of the CcpAT307Y mutant is the 

result of excessive repression of multiple virulence factors, including SLS.  

Similar to skin infections, the two CcpA mutants displayed distinct phenotypes when 

infecting the murine vaginal mucosa. The CcpA- mutant’s rapid depletion and clearance is 

similar to what has been seen previously for this mutant in mucosal tissue (13). In that work the 

authors demonstrate that the lack of successful colonization is due to over-production of LctO, 

leading to toxic levels of hydrogen peroxide production (13). The CcpAT307Y mutant, however, 

displayed an initial loss of CFU early in colonization, but had an extended carriage greater than 

both the CcpA- strain and WT. This pattern suggests that CcpA-mediated repression may be 

detrimental during early stages of mucosal colonization, but beneficial for long-term 

colonization. It has been suggested that the bacterial cells could be in a metabolically inactive 

state during long-term carriage (13) and, if this were the case, repression of transcription for a 

large set of genes would allow the cell to conserve energy and possibly persist longer in the 

tissue.  
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MATERIALS AND METHODS 

Bacterial strains and growth conditions. Standard molecular cloning techniques utilized the 

Escherichia coli strain TOP10 (Invitrogen). Cultures were grown in Luria-Bertani medium at 

37°C. Streptococcus pyogenes strain HSC5 (48) and mutant derivatives were utilized in this 

study. Strains were grown in Todd Hewitt broth (THYB) with 0.2% yeast extract (Difco) or C 

medium, adjusted to pH 7.5 as described previously (49). Routine growth conditions utilized 

sealed culture tubes incubated at 37°C under static conditions. Streptococcal strains grown on 

solid medium containing 1.4% Bacto agar (Difco) were cultured in a sealed jar with a 

commercial gas generator (GasPak catalogue no. 70304, BBL). For experiments utilizing glucose 

supplementation, filter sterilized 20% (w/v) stock solution was used to add glucose (Sigma) to a 

final concentration of 0.2% to the media. All media used were sterilized in an autoclave prior to 

supplementation. When appropriate, antibiotics were added at the following concentrations: 

erythromycin 1 mg/mL. 

 
Construction of mutants. All references to genomic loci are based on the genome of HSC5 

(48). The mutant strain CcpA- was described previously (2). The modified allele for CcpA 

(L897_02310), CcpAT307Y, was generated using the Quikchange XL II mutagenesis kit (Agilent 

Technologies) and the PCR primers CcpA T307Y F (5’-

GTGCTGTTAGCATGCGGATGTTGTATAAAATCATGAACAAAAGAAGAGT) and CcpA 

T307Y R (5’-ACTCTTCTTTGTTCATGATTTTATACAACATCCGCATGCT- AACAGCAC) 

to create plasmid pEP44. The modified allele was transferred to the HSC5 chromosome using the 

allelic replacement vector pGCP213 (50) as described (51). All molecular constructs and 

chromosomal structures of all mutants were verified using PCR and DNA sequencing (Genewiz, 
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South Plainfield, NJ) using oligonucleotide primers (IDT, Coralville, IA) of the appropriate 

sequences.  

 

Isolation of RNA and transcript analysis. Transcript abundance of selected genes was 

analyzed as previously described (52). Briefly, overnight cultures were diluted 1:25 into fresh C 

medium with the appropriate supplement added (see text) and harvested at mid-log phase (OD600 

0.2). Total RNA was isolated using Qiagen RNeasy Mini kit per the manufacturer’s protocol. 

RNA was subjected to reverse-transcription (RT) using iScript (Bio-Rad) per manufacturer’s 

protocol. RT-PCR analysis of cDNA samples were performed using iQ SYBR Green Supermix 

(Bio-Rad). RT-PCR primers for lctO and speB reported previously (2). Relative transcript 

abundance was determined using the ΔΔCt method using recA transcript as a standard and are 

presented in comparison to wild type. The data shown are the means and the standard deviation 

from triplicate determinations of at least two separate biological samples prepared from at least 

two independent experiments. 

 
Infection of mice. Infection of murine subcutaneous tissue was conducted as described 

previously (53, 54). Briefly, 5-to-6-week-old female SKH1 hairless mice (Charles River Labs) 

were injected subcutaneously with approximately 107 CFU of S. pyogenes of the strains indicated 

in the text. Following infection, the resulting ulcers formed were monitored over a period of 

several days by digital photography and lesion areas measured as previously described (53). Data 

presented is pooled from at least two independent experiments with at least 10 mice per 

experimental group. The ability of strains to maintain asymptomatic colonization of the murine 

vaginal mucosa was measured in C57BL/6 mice, as previously described (13). Colonization was 
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assessed at selected time points over the course of 60 days by monitoring recoverable CFUs in a 

50μL vaginal wash. Data presented was collected from a single infection of 3-5 mice per strain. 
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CONCLUSIONS 
 
 Streptococcus pyogenes is an extremely versatile bacterium, as it can colonize numerous 

different tissue types within the human host as well as induce an inflammatory or 

noninflammatory infection (1-3). A key factor for this versatility lies in the bacterium’s ability to 

monitor various environmental signals in the surrounding tissues and rapidly alter its global 

transcriptome to adapt itself for survival in a particular niche (4-8).  

Through comparisons of gene expression patterns observed in infected tissue to 

expression patterns from various in vitro growth conditions, it was previously determined that 

the infected tissue environment is low in glucose and is low in pH (10). Additionally, these two 

metabolic cues are linked due to the simple fermentative metabolism present in S. pyogenes (11-

14). Glucose fermentation results in the production of a large amount of organic acid end 

products, which accumulate in the local environment and cause a significant drop in pH of the 

surrounding tissue (11-13). Additionally, both pH and glucose levels have been shown to be 

signals utilized by the bacterium to induce global transcriptional changes (10, 15), however the 

specific mechanism by which these signals are sensed by the various regulatory pathways 

remains largely unclear. The aim of this work was to identify these regulatory pathways and 

elucidate their role in S. pyogenes pathogenesis. The major findings of this work include: 1) S. 

pyogenes is able to utilize malate as an alternative carbon source through the malic enzyme 

pathway, 2) regulation of the ME pathway in S. pyogenes is distinct from other LAB in that it is 

positively regulated by low pH and is controlled by a CcpA-independent form of catabolite 

repression, 3) loss of any ME genes can alter the outcome of an infection, 4) temporal expression 

of the virulence factors SPN and SLO is controlled by environmental pH, 5) pH regulation of spn 

and slo require the two-component system CovRS and the protein RocA, 6) RocA is not a 
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histidine kinase as previously reported in the literature, but is involved in a transcriptional 

regulatory pathway that includes CovR and CovS, and 7) constitutive activation of CcpA alters 

the outcome of disease in two different mouse models, leading to a unique phenotype distinct 

from either a WT or CcpA- infection.  

These studies provide new insights into the relationship between metabolism and pathogenesis in 

S. pyogenes. In particular, it explores the effects of carbon source utilization on local tissue 

remodeling and the regulatory mechanisms that the bacterium uses to adapt to these specific 

changes.  

During the initial stages of a soft tissue infection, glucose levels are at their highest. The 

available glucose will be rapidly taken into the bacterial cell and metabolized, leading to 

repression of alternative catabolic operons through both CcpA-dependent and –independent 

pathways. Also during the early stages of infection the bacterial cells will begin to produce and 

secrete toxins SPN and SLO, among others, to induce local tissue damage and cytotoxicity. Over 

time, as glucose continues to be metabolized, both the concentration of glucose as well as the pH 

begins to decrease. In response to these signals, alternative catabolic genes, such as the malic 

enzyme genes, are expressed, as the cell needs to scavenge for alternative carbon sources. At this 

point, malate is abundant at the site of infection, likely being released from host cells due to the 

expression of several cytotoxic proteins, including SPN and SLO. While the acidic pH induces 

expression of the ME genes, it simultaneously acts as a signal to turn off expression of spn and 

slo, and this regulation is carried out via RocA and CovRS. Finally, upon depletion of glucose, 

CcpA repression is relieved, allowing for expression of genes necessary for late stages of 

colonization and dissemination.  
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FUTURE DIRECTIONS 

Determine the regulatory pathway involved in activation of malic enzyme expression 

 The work presented here has established that the malic enzyme genes are under a form of 

catabolite repression known as induction prevention, and this process is mediated through a 

phosphorelay system that includes the general PTS proteins EI (encoded by the gene ptsI) and 

HPr. What is currently unknown is the intermediate step between formation of P~His-HPr and 

expression of the maeKR and maePE operons. Determination of the missing link in this 

regulatory pathway will provide new insights into alternative carbon catabolite repression 

pathways beyond the heavily studied CcpA side of catabolite repression. 

One possible scenario is that the phosphate from P~His-HPr would be transferred to 

another, currently unknown, transcriptional regulator, which then leads to activation of 

transcription of the MaeKR regulatory operon. It has been shown in S. pyogenes and a number of 

other bacteria that the phosphate from P~His-HPr can be directly transferred to regulatory 

proteins containing a conserved PRD domain (16, 17).  

In S. pyogenes there are three transcriptional regulators predicted to contain PRD 

domains: Mga, RofA, and an uncharacterized RofA-like protein (RALP). Preliminary data 

indicates that neither Mga nor RofA are required for ME expression or malate utilization (data 

not shown). Work is currently in progress to investigate the third RALP protein as the possible 

intermediate regulator in this regulatory pathway.  

An alternative possibility is that a different, non-PRD regulator, or a PRD regulator not 

identified via genome annotation or BLAST searches is involved in malate catabolism. We 

currently plan to employ a transposon screen to unbiasedly identify mutants that are unable to 

utilize malate. We predict to find known genes including all four malate utilization genes (maeE, 
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maeP, maeK and maeR), as well as HPr and PtsI, and any novel genes, including possible 

transcriptional regulators.  A more direct way to identify this potential regulator would be to 

perform a pull-down experiment using the mae promoter region to see what binds to the DNA 

sequence, followed by mass spectrometry analysis to identify these proteins.  

A final possible hypothesis is that the transcriptional regulator in question is MaeK itself. 

I find this unlikely due to the lack of a PRD domain. However, this is still a possibility that 

should be tested. The most direct way to do his would by an in vitro kinase assay to look for the 

direct transfer of the phosphate from P~His-HPr to MaeK.  

 

 

Determination of RocA’s functional activity 

 There has been limited work done on RocA and its role in transcriptional regulation and 

virulence. The work presented here refutes the previously published data suggesting that RocA is 

a functional histidine kinase, but supports the findings that RocA interacts with the CovRS TCS. 

The next step in understanding this regulatory circuit would be to determine what, if any, 

enzymatic activity the RocA protein has. Structural prediction software (18) categorizes RocA as 

a histidine kinase, based in part on the presence of a putative ATPase domain, among other 

features. Data presented here has established that this protein is not functioning as a histidine 

kinase, as mutating all histidine residues within the predicted cytoplasmic domain does not affect 

RocA’s regulatory activity on SPN and SLO expression. It is also unlikely that the predicted 

ATPase domain is functional, as several key residues necessary for its enzymatic activity are 

absent in the sequence of RocA. However, these findings have not yet been verified 
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biochemically. What is clear is that RocA is a necessary part of the regulatory system controlling 

the spn operon in response to pH.  

 

The next step in this process will be to determine how RocA, CovR, and CovS work 

together to coordinate the regulation of this virulence operon. One possibility that I find most 

intriguing is that RocA functions as a pseudokinase, a protein that structurally resembles a kinase 

but is lacking any enzymatic activity. Pseudokinases are present in all domains of life (9, 19-24) 

and all known pseudokinases function in at least one of four mechanisms to modulate cellular 

activity (see Fig. 1). Perhaps the most likely mechanism for RocA’s function is modulation of 

Figure	
  1.	
  Mechanism	
  of	
  action	
  for	
  pseudokinases.	
  All	
  identified	
  pseudokinases	
  
have	
  been	
  associated	
  with	
  at	
  least	
  one	
  of	
  the	
  four	
  activities:	
  Modulation	
  of	
  
kinase/phosphatase	
  activity,	
  competitive	
  inhibitor	
  for	
  substrate	
  binding,	
  anchor	
  
protein	
  for	
  substrate	
  localization,	
  or	
  scaffold	
  protein	
  for	
  signal	
  integration.	
  
Adapted	
  from	
  (9).	
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the phosphorylation of CovR (Modulator). It’s been shown in previously published work that 

CovR’s activity is dependent on its phosphorylation state, where different subsets of genes are 

repressed by CovR depending on its phosphorylation state (6, 25). Additionally, CovS is known 

to maintain both kinase and phosphatase activity (6, 25). Therefore, the next step in this work 

should be to analyze the phosphorylation state of CovR in the presence or absence of RocA.  

 Finally, it is highly probable that RocA controls the expression of numerous genes in S. 

pyogenes. Recent work on RocA function suggests that this protein may also function as a 

regulator of a subset of genes independent from the CovRS regulon (26). Additionally, many of 

the genes that were identified as being part of the RocA regulon are metabolic genes (26), 

suggesting that RocA may be an as-yet unidentified metabolic regulator. To verify this and to 

characterize the complete RocA regulon, a microarray or RNA-Seq experiment would provide an 

in depth analysis of RocA’s contribution to  

transcriptional regulation and virulence. Of particular interest would be to test a WT and RocA 

mutant grown in buffered media, either neutral or acidic. If, in fact, RocA is a key regulator for 

acid stress response there is likely many more genes being regulated by this protein. I think this 

is just the beginning of the RocA story and it has the potential to provide some really interesting 

and novel findings, particularly in relation to CovRS. 

 

 

 

Analyzing the effect of CcpA activation on fitness and pathogenesis 

One avenue to explore with the CcpA mutants is to study the effects of CcpA-mediated 

regulation on growth and metabolic fitness. CcpA is a global regulatory protein and is the 
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primary regulator for most of the proteins in the main glycolytic pathway (15) and yet growth of 

either of the CcpA mutants was unaffected in vitro under the conditions tested. An interesting 

follow-up to those initial experiments would be to test WT and CcpA mutants in a range of 

conditions and with several different carbohydrate substrates. Multiple aspects of cell growth 

could be measured under these conditions such as final yield, growth rate, metabolic 

intermediates, and fermentation end products. Evaluating these different measurements could 

provide insights into CcpA regulation and how this control is affecting the overall fitness of the 

bacteria. 

When considering the effects of CcpA regulation on virulence, the data presented in this 

work establishes that both the CcpA- and CcpAT307Y mutants were severely attenuated in a mouse 

model of soft tissue infection. It’s been shown previously that CcpA regulates a number of 

known virulence factors, some of which have immune modulatory function (15, 27). S. pyogenes 

has been shown to induce a number of inflammatory cytokines within the host during an 

infection, and work from the Caparon lab has shown that the loss of CcpA results in a significant 

alteration in cytokine response during infection. In particular, TNFα was shown to play an 

important role in controlling virulence in a CcpA- infection (C. Kietzman and M. Caparon, 

unpublished). The previous studies indicate that the loss of CcpA repression has a measurable 

effect on transcriptional regulation and host immune response throughout the course of an 

infection. An important next step in understanding CcpA and its role in pathogenesis will 

therefore be to measure host immune factors during a soft tissue infection with the super-

repressor CcpAT307Y. In particular, we will look for alterations in inflammatory cytokines by 

ELISA or real time RT-PCR, as a more robust immune response may be responsible for the 

attenuation in the CcpAT307Y mutant. 
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