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 Encoding information into the timing patterns of action potentials, or spikes, is a strategy 

used broadly in neural circuits. This type of coding scheme requires downstream neurons to be 

sensitive to the temporal patterns of presynaptic inputs. Indeed, neurons with temporal filtering 

properties have been found in a wide range of sensory pathways. However, how such response 

properties arise was previously not well understood. The goal of my dissertation research has 

been to elucidate how temporal filtering by single neurons contributes to the behavioral ability to 

recognize timing patterns in communication signals. 

 I have addressed this question using mormyrid weakly electric fish, which vary the time 

intervals between successive electric pulses to communicate. Fish detect these signals with 

sensory receptors in their skin. In the majority of species, these receptors fire a single spike in 

response to each electric pulse. Spiking receptors faithfully encode the interpulse intervals in 

communication signals into interspike intervals, which are then decoded by interval-selective 

midbrain neurons. Using in vivo intracellular recordings from awake fish during sensory 

stimulation, I found that short-term depression and temporal summation play important roles in 



 xii 

establishing single-neuron interval selectivity. Moreover, the combination of short-term 

depression and temporal summation in the circuit resulted in greater diversity of interval tuning 

properties across the population of neurons, which would increase the population’s ability to 

detect temporally patterned communication signals. Indeed, I found that the responses of single 

interval-selective neurons were sensitive to subtle variation in the timing patterns of a specific 

communication display produced by different individuals. 

 A subset of mormyrid species has sensory receptors that produce spontaneously 

oscillating potentials. How the electrosensory system of these species established sensitivity to 

temporally patterned communication signals was completely unknown. Using in vivo 

extracellular recordings, I demonstrated that these receptors encode sensory stimuli into phase 

resets, which is the first clear instance of information coding by oscillatory phase reset. 

Furthermore, the ongoing oscillations conferred enhanced sensitivity to fast temporal patterns 

that are only found in the communication signals of a large group of fish. Behavioral playback 

experiments provided further support for the hypothesis that oscillating receptors are specialized 

for detecting communication signals produced by a group of conspecifics, which is a novel role 

for a sensory receptor. These findings demonstrate that temporal pattern sensitivity, which was 

previously thought to be a central processing problem, can also arise from peripheral filtering 

through a novel oscillatory phase reset mechanism. 

  

 



Chapter 1 

 

Multiplexed temporal coding of electric communication signals in 

mormyrid fishes 

 
 
 
 
 
 

 

 

This chapter contains a previously published manuscript: 

Baker C.A., Kohashi T., Lyons-Warren A.M., Ma X., and Carlson B.A. (2013) Multiplexed 

temporal coding of electric communication signals in mormyrid fishes. The Journal of 

Experimental Biology 216:2365-2379. 

 

Author contributions for the above citation:  

C.A.B., T.K., A.M. L.-W., X.M., and B.A.C. contributed to the writing of the manuscript.  

 

  

1



 
ABSTRACT 

The coding of stimulus information into patterns of spike times occurs widely in sensory 

systems. Determining how temporally coded information is decoded by central neurons is 

essential to understanding how brains process sensory stimuli. Mormyrid weakly electric fishes 

are experts at time coding, making them an exemplary organism for addressing this question. 

Mormyrids generate brief, stereotyped electric pulses. Pulse waveform carries information about 

sender identity, and it is encoded into submillisecond-to-millisecond differences in spike timing 

between receptors. Mormyrids vary the time between pulses to communicate behavioral state, 

and these intervals are encoded into the sequence of interspike intervals within receptors.  Thus, 

the responses of peripheral electroreceptors establish a temporally multiplexed code for 

communication signals, one consisting of spike timing differences between receptors and a 

second consisting of interspike intervals within receptors. These signals are processed in a 

dedicated sensory pathway, and recent studies have shed light on the mechanisms by which 

central circuits can extract behaviorally relevant information from multiplexed temporal codes. 

Evolutionary change in the anatomy of this pathway is related to differences in electrosensory 

perception, which appears to have influenced the diversification of electric signals and species. 

However, it remains unknown how this evolutionary change relates to differences in sensory 

coding schemes, neuronal circuitry, and central sensory processing. The mormyrid electric 

communication pathway is a powerful model for integrating mechanistic studies of temporal 

coding with evolutionary studies of correlated differences in brain and behavior to investigate 

neural mechanisms for processing temporal codes.
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INTRODUCTION 

Neurons transmit information with trains of action potentials, or spikes. The relationship 

between spikes and the information they represent is referred to as a neural code (Perkel and 

Bullock, 1968). Information can be encoded in the spike trains of single neurons or in the activity 

of a population of neurons. Scientists trying to understand a neural code are faced with two 

challenges: first, how is stimulus information encoded by the circuit, and second, how is this 

information decoded by postsynaptic neurons? The study of sensory systems in a wide range of 

animal models has revealed a variety of neural codes (Churchland and Sejnowski, 1992; Rieke et 

al., 1997), including rate codes, place codes, population codes, and sparse codes. Here we focus 

on temporal codes, in which the precise timing of action potentials carries information 

(Lestienne, 2001; Theunissen and Miller, 1995). Temporal codes have been implicated in the 

processing of somatosensory (Jones et al., 2004), olfactory (Laurent, 1997), gustatory (Di 

Lorenzo et al., 2009), visual (Victor and Purpura, 1996), auditory (Decharms and Merzenich, 

1996), vestibular (Sadeghi et al., 2007), mechanosensory lateral line (Goulet et al., 2012), and 

electrosensory stimuli (Carlson, 2008b). 

A sensory system can employ multiple types of codes (Ainsworth et al., 2012). For 

instance, the barn owl auditory system computes two sound localization cues, using a rate code 

for interaural level differences and a temporal code for interaural timing differences (Konishi, 

1993). In addition, central circuits often convert information from one type of code to another 

(Groh, 2001). For example, the temporal code of the barn owl is converted into a place code 

within the hindbrain (Carr and Konishi, 1990). Finally, information about multiple stimulus 

features can be transmitted simultaneously through a single pathway by encoding information 

about each feature at different timescales of neural activity. Such a coding scheme is called 

3



temporal multiplexing and it is found in visual, olfactory, auditory, electrosensory, and 

hippocampal pathways (Friedrich et al., 2004; Middleton et al., 2011; Panzeri et al., 2010). 

Temporal multiplexing is an efficient way for neural circuits to increase information 

transmission without requiring additional neurons. 

The rich sensory coding literature provides numerous examples of temporal coding. 

However, with notable exceptions (i.e. coding for interaural timing differences in birds, reptiles, 

and mammals), we still know relatively little about the circuitry and synaptic mechanisms by 

which temporal codes are decoded by central neurons. Mormyrid weakly electric fishes represent 

an ideal system for addressing this problem because: (1) they employ two different temporal 

codes in a single circuit (temporal multiplexing); (2) the circuit is accessible for in vivo and in 

vitro electrophysiology and imaging; (3) spike timing can be easily manipulated in behaviorally 

relevant ways both in vivo and in vitro; (4) the behavioral significance of the multiplexed 

temporal codes is clear; and (5) evolutionary change in this circuit allows for a comparative 

approach that links changes in neural circuitry to differences in behavior. From the perspective 

of the central nervous system, there is no difference between the electrosense and other 

modalities – all stimuli are represented as patterns of spiking. Therefore, the mechanisms by 

which mormyrids process temporally coded information are relevant to understanding basic 

principles for how any neural circuit can solve this problem. 
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ELECTRIC SIGNALS IN MORMYRID FISHES COMMUNICATE SENDER IDENTITY 

AND BEHAVIORAL STATE 

 

Two components of electrocommunication: EOD and IPI 

Mormyrids produce an electric organ discharge (EOD) to communicate and actively 

sense their environment (Hopkins, 1986). These fish have three types of electroreceptors in their 

skin: mormyromasts are used for active sensing, ampullary receptors for passive sensing, and 

knollenorgans for communication (Bell, 1989; Bennett, 1965; Szabo and Fessard, 1974; Zakon, 

1986). Communication in mormyrids consists of the discrete EOD produced with variable 

interpulse intervals (IPIs; Fig. 1). The EOD waveform is species-specific, and in some species it 

provides additional identifying information such as sex, maturity and dominance status 

(reviewed in Carlson, 2002a). EOD waveforms can vary in polarity, number of phases, duration 

of each phase, inflection, rise/fall times, and total duration (Hopkins, 1980; Hopkins, 1981). The 

number of phases varies from one to four, and the duration ranges from <200 µs in some species 

to >30 ms in others (Arnegard et al., 2010; Carlson et al., 2011; Sullivan et al., 2000).  

Signaling fish vary IPIs to communicate their behavioral state, such as dominance, 

submission, aggression, and courtship. IPIs can range from just under 10 ms to several seconds 

(Carlson, 2002a; Hopkins, 1986). Several temporal patterns of IPI sequences have been 

identified: irregular random patterns, regularized patterns, pauses in signaling called cessations, 

and bursts of short-interval pulses (reviewed in Carlson, 2002a). Carlson and Hopkins (2004b) 

demonstrated at least three categorically distinct burst signals in Brienomyrus brachyistius called 

scallops, accelerations, and rasps, with each signal hypothesized to play different behavioral 

roles. Wong and Hopkins (2007) reported an additional signal in B. brachyistius called a creak.  
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Figure 1. Mormyrid electrocommunication consists of a fixed electric organ discharge (EOD) produced 
at variable interpulse intervals (IPIs). Top: EOD waveforms recorded from the 21 known species within 
the Ivindo River of Gabon reveal that the waveforms are species-specific and span a wide range of 
durations (modified from Carlson et al., 2011). In each case, EOD waveforms from different individuals 
of the same species are normalized to the same peak-to-peak height, superimposed, and aligned to the 
head-positive peak (except for Paramormyrops sp. ‘TEN’, for which waveforms are aligned to the 
head-negative peak). Bottom: 10 s of a raw electrical recording from an isolated Brienomyrus 
brachyistius. The spike-like nature of the EODs is evident, and the amplitude changes throughout the 
recording as a result of the fish moving with respect to the recording electrode. Below, the raw recording 
has been converted into a plot that illustrates the sequence of IPIs over time.
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Like rasps, creaks appear to function as a male courtship signal. Wong and Hopkins (2007) also 

described electrical duetting during courtship and spawning in B. brachyistius, in which males 

and females alternately generate rasps and bursts, respectively. 

Additional IPI patterns include preferred latency or echo responses, in which a fish emits 

its own EOD at a defined interval after the EOD of another fish, and preferred latency avoidance, 

in which fish avoid a specific range of latencies (Arnegard and Carlson, 2005; Bauer and 

Kramer, 1974; Bell et al., 1974; Heiligenberg, 1976; Kramer, 1974; Kramer, 1978; Lucker and 

Kramer, 1981; Russell et al., 1974). The social significance of these signals is not known, though 

hypotheses include jamming avoidance, active jamming, dominance/submission, and sexual 

recognition. Other IPI patterns may serve functions such as schooling, group cohesion, and adult-

young interactions (Arnegard and Carlson, 2005; Hopkins, 1977; Moller, 1976; Westby and 

Kirschbaum, 1978).  

 

Electric signal generation 

The EOD is produced by an electric organ located at the base of the tail (reviewed in 

Bass, 1986a; Bennett, 1971; Caputi et al., 2005). Individual cells, called electrocytes, act as 

batteries in series such that when they are activated synchronously their action potentials 

summate to produce the EOD. The morphology and physiology of the electrocytes determine 

EOD waveform (reviewed in Hopkins, 1999), and steroid hormones act directly on the 

electrocytes to establish EOD sex differences (Bass, 1986b; Bass and Volman, 1987; Freedman 

et al., 1989). 

EOD production is controlled by a central electromotor command network (Fig. 2) 

composed of the command nucleus (CN), medullary relay nucleus (MRN), and bulbar command-  
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Figure 2. Neuroanatomy of the knollenorgan electrosensory (red), electromotor (blue), and corollary 
discharge (purple) pathways. Excitatory connections are indicated by arrows and inhibitory connections 
by punctate terminals. Knollenorgan electroreceptors project somatotopically to the hindbrain nucleus of 
the electrosensory lateral line lobe (nELL), which projects to two nuclei of the torus semicircularis: the 
exterolateral nucleus (EL) and the medioventral nucleus (MV). Each EOD command originates in the 
command nucleus (CN). CN projects to the medullary relay nucleus (MRN), which in turn innervates the 
electromotor neurons in the spinal cord that innervate the electric organ. CN output is influenced by 
excitation from the precommand nucleus (PCN) and the dorsal posterior thalamic nucleus (DP), both of 
which receive inhibition from the ventroposterior nucleus (VP). When CN initiates an EOD, it sends a 
copy of this signal to the bulbar command-associated nucleus (BCA), which projects to MRN and to the 
mesencephalic command-associated nucleus (MCA), which mediates inhibition of the motor pathway 
through VP, and inhibition of the KO sensory pathway through the sublemniscal nucleus (slem). ELL, 
electrosensory lateral line lobe; OB, olfactory bulb; tel, telencephalon; val, valvula of the cerebellum.
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associated nucleus (BCA) (Bell et al., 1983; Grant et al., 1986). MRN projects to the 

electromotor neurons (EMNs) in the spinal cord, which innervate the electrocytes of the electric 

organ (Bennett et al., 1967; Grant et al., 1986). Neurons in CN, MRN, and EMN are extensively 

connected by gap junctions both within and between nuclei to promote synchronous activation of 

electrocytes (Bennett et al., 1967; Bennett et al., 1963; Elekes et al., 1985; Elekes and Szabo, 

1985; Grant et al., 1986). EOD production is primarily influenced by excitatory inputs to CN 

from the midbrain precommand nucleus (PCN) and the dorsal posterior thalamic nucleus (DP) 

(Bell et al., 1983; Carlson, 2002b; Carlson, 2003; Carlson and Hopkins, 2004a; von der Emde et 

al., 2000). 

The electromotor command network also gives rise to a corollary discharge pathway that 

provides motor-related inputs to electrosensory pathways. This corollary discharge is initiated in 

BCA, which projects to the paratrigeminal command-associated nucleus and mesencephalic 

command-associated nucleus (MCA) (Bell et al., 1983; Carlson, 2002b). MCA in turn projects to 

the sublemniscal nucleus (slem), which delivers inhibition onto neurons in the electrosensory 

hindbrain that blocks responses to the fish’s own EOD (Bell and Grant, 1989). DP and PCN also 

receive corollary discharge-mediated inhibition from the dorsal portion of the ventroposterior 

nucleus (VP) of the torus semicircularis, which receives input from MCA (Carlson, 2002b; 

Carlson, 2003; Carlson and Hopkins, 2004a; von der Emde et al., 2000). This recurrent inhibition 

appears to regulate EOD output (Carlson and Hopkins, 2004a). 
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Playback experiments reveal the behavioral significance of EOD waveform and IPI 

patterns   

Electric signals are easy to record, manipulate, and play back, allowing investigators to 

present modified versions of natural signals to identify the specific signal components relevant to 

any given behavior. Such studies reveal that mormyrids vary in their ability to discriminate 

temporal variation in EOD waveform (Carlson et al., 2011). There are two subfamilies of 

mormyrids, the Mormyrinae and Petrocephalinae (Fig. 3) (Sullivan et al., 2000). A specific 

lineage of mormyrines called ‘clade A’ can detect small phase shifts in the EOD waveform, as 

small as 2 µs in Pollimyrus adspersus (Paintner and Kramer, 2003). By contrast, most non-clade 

A species are unable to detect even maximal phase shifts in the EOD waveform, and this 

perceptual difference is related to key anatomical differences in their peripheral and central 

electrosensory systems (Carlson et al., 2011).  

The functional significance of EOD waveform variation for electric communication has 

been addressed in several behavior studies on clade A species, which suggest a key role for the 

EOD in species recognition and mate choice (Arnegard et al., 2006; Feulner et al., 2009; 

Hopkins and Bass, 1981; Machnik and Kramer, 2008; Markowski et al., 2008). In species with 

sex differences in EODs, the male EOD is always longer than the female EOD (Carlson and 

Arnegard, 2011; Hopkins, 1986). In Marcusenius macrolepidotus, EOD duration correlates with 

male body length, and longer EODs elicit more male aggression than shorter EODs, suggesting 

that the EOD in this species may be an honest indicator of size (Hanika and Kramer, 2005). 

Pollimyrus isidori and Gnathonemus petersii can be trained to distinguish individual differences 

in EOD waveform (Graff and Kramer, 1992), and M. macrolepidotus appear to recognize 

familiar individuals on this basis (Hanika and Kramer, 2005). 
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Figure 3. Evolutionary change in the knollenorgan electrosensory system (modified from Carlson et al., 
2011). The cladogram on the left illustrates the transition from a relatively small exterolateral nucleus 
(EL, green) to an enlarged EL with separate anterior and posterior subdivisions (ELa/ELp, magenta). 
Normalized EL sizes of each branch are shown to the right (median ± range). A parsimonious 
reconstruction suggests that ELa/ELp evolved twice, once in the lineage leading to clade A within the 
subfamily Mormyrinae and once in the lineage leading to Petrocephalus microphthalmus within the 
subfamily Petrocephalinae. The locations of knollenorgans on the body surface (red dots) and 50 μm 
horizontal sections of the midbrain highlighting EL and ELa/ELp from four different species are shown at 
the far right (these species are underlined in the cladogram). Scale bars are 1 mm for the fish outlines, and 
300 μm for the brain sections.
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Playback experiments have also revealed the critical role of IPIs in social behavior. G. 

petersii display more aggression towards a playback electrode delivering IPI patterns recorded 

from attacking fish than from resting fish (Kramer, 1979). In addition, G. petersii approached a 

playback electrode more often when a natural sequence of IPIs was presented than when a 

randomized sequence of the same IPIs was presented (Teyssedre and Serrier, 1986). Therefore,  

the precise serial ordering of IPIs, and not just overall IPI distribution, appears to carry important 

information. Species differences in IPI patterns may even mediate species recognition in some 

cases (Kramer and Kuhn, 1994). IPIs may be particularly important for species recognition in 

non-clade A species that cannot detect EOD waveform variation (Carlson and Arnegard, 2011). 

 

PERIPHERAL CODING OF COMMUNICATION SIGNALS: TWO TEMPORAL 

CODES, ONE CIRCUIT 

Electrocommunication signals are detected by peripheral sensory receptors called 

knollenorgans (KOs) (Derbin and Szabo, 1968; Franz, 1921). The locations of KOs on the body 

surface are remarkably diverse (Fig. 3). In clade A species, KOs are widely distributed across the 

head, back, and underbelly of the fish (Carlson et al., 2011; Harder, 1968). In one clade A genus, 

Mormyrus, KOs are also found on the side of the body (Harder, 1968). In most petrocephaline 

species, however, KOs are clustered into distinct rosettes, with one rosette near the eye, one near 

the gill, and one near the base of the pectoral fin (Carlson et al., 2011; Harder, 1968; Lavoué et 

al., 2004; Lavoué et al., 2010). Two petrocephaline species are exceptional in having a broad 

distribution of KOs similar to clade A (Carlson et al., 2011; Lavoué et al., 2010). Finally, the 

only non-clade A mormyrine genus, Myomyrus, is unique in having an intermediate pattern, with 
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a single rosette near the back of the head and a relatively sparse distribution of receptors across 

the head, back, and underbelly (Carlson et al., 2011). 

Each KO consists of a canal in the epidermis that opens into a chamber lined with 

flattened epithelial cells (Derbin and Szabo, 1968). The canal is filled with a plug of loose 

epithelial cells, which adds a series capacitance to the organ (Zakon, 1986). This capacitance, 

along with the parallel resistive properties of the surrounding skin, makes the organ AC-coupled, 

establishing tuning to the high frequencies that characterize the power spectra of EODs (Bennett, 

1965; Lyons-Warren et al., 2012a). Inside the chamber are one to ten sensory cells (up to 40 in 

petrocephaline rosettes) (Derbin and Szabo, 1968; Harder, 1968; Szabo, 1965). A single 

myelinated afferent fiber branches to innervate all sensory cells within a KO (Derbin and Szabo, 

1968; Jørgensen, 2005). 

Our understanding of KO stimulus encoding is limited to studies of broadly distributed 

KOs in clade A species, which generate spike-like potentials in response to electrosensory 

stimuli (Bennett, 1965). The rosette-type KOs of petrocephalines do not appear to spike; instead, 

they continuously oscillate at up to 3 kHz (Harder, 1968). How rosette-type KOs encode electric 

signals remains unknown. 

Clade A KOs are tuned to frequencies roughly matching the power spectrum of the 

species-specific EOD (Hopkins, 1981), and their sensitivity increases with increasing pulse 

duration (Lyons-Warren et al., 2012a). Variation in duration tuning among KOs may establish a 

population code for pulse duration at low intensities, when signaling fish are at a distance 

(Lyons-Warren et al., 2012a). At higher intensities, however, when signaling fish are close by 

and most of the receptors are responsive, a temporal code is used for encoding duration (Hopkins 

and Bass, 1981; Lyons-Warren et al., 2012a). 

13



KOs spike with a latency of ~100 ms in response to positive changes in voltage across the 

skin, or inward current (Bennett, 1965). Because they are AC-coupled, KOs respond both to the 

onset of positive voltage steps and to the offset of negative voltage steps. Since each KO faces 

“out” towards the surrounding water, KOs on opposite sides of the body point in opposite 

directions. Thus, for any given electrical potential, KOs on one side of the body will receive an 

inward current whereas KOs on the other side of the body will receive an outward current, and 

this results in differences in spike timing between receptors on opposite sides of the body. For 

instance, in response to a positive voltage step applied to one side of the body, ipsilateral KOs 

will spike at the onset, whereas contralateral KOs will spike at the offset. These observations led 

Hopkins and Bass (1981) to propose a start-stop temporal code for EOD waveform, in which 

KOs on one side of the body respond to the start of a signal, KOs on the opposite side of the 

body respond to the end of the signal, and the difference in spike timing between them encodes 

signal duration. More complex, multiphasic signals, such as natural EODs, would result in 

different subsets of KOs responding to different stimulus edges, depending on stimulus intensity 

at the receptor pore (Fig. 4). Therefore, spike timing differences, in the submillisecond-to-

millisecond range, between KOs represent the EOD waveform. 

KO afferents follow stimulation rates up to 500 Hz, corresponding to interspike intervals 

of 2 ms (Bell and Grant, 1989). The shortest IPI observed in signaling fish is just below 10 ms 

(Carlson, 2002a; Hopkins, 1986), meaning KOs faithfully represent the timing of each EOD with 

a single, phase-locked spike. Therefore, interspike intervals, on the order of tens of milliseconds 

to seconds, within each KO represent the IPIs in electrocommunication signals. 

The responses of peripheral receptors thus establish two distinct temporal codes for 

electrocommunication signals: differences in spike timing between KOs code for EOD  
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Spike timing differences
code for EOD waveform

Interspike intervals code
for EOD interval

1 ms

Figure 4. Temporal multiplexing of electrocommunication signals by knollenorgans. This schematic 
representation shows a train of EOD stimuli at the bottom, with the responses of different knollenorgans 
to these stimuli above. Each row represents a different knollenorgan and each tick mark indicates the 
timing of an individual spike. The location of each knollenorgan on the body surface with respect to the 
electric field determines which edge of the EOD waveform it will respond to, and the spikes are color-
coded for the edge (arrows) to which the knollenorgan is responding. Spike timing differences between 
different knollenorgans represent EOD waveform, whereas interspike intervals within each knollenorgan 
represent EOD intervals.
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waveform, and interspike intervals within KOs code for IPI (Fig. 4). Both of these temporal 

codes are similar to those used in other sensory systems. For example, sound localization, 

echolocation, localization of tactile stimuli, and visual motion detection rely on response timing 

differences between different sensory receptors, and timing sequences within a stimulus are used 

for the discrimination of tactile texture, and the pitch, timbre, and rhythm of speech (Cariani, 

2001). Whereas the importance of temporal coding in sensory systems is clear, our 

understanding of how these temporal codes are processed is still developing. 

The use of different time scales and different temporal coding schemes to encode 

multiple features of communication signals by KOs is a textbook example of temporal 

multiplexing (Panzeri et al., 2010). Another example of multiplexing occurs in the zebrafish 

olfactory bulb, where mitral cells represent general odor category in the precise phase-locking of 

spikes to oscillatory field potentials, and specific odor identity in non-phase-locked spike rates 

(Friedrich et al., 2004). Analyzing mitral cell output with low temporal resolution provides 

information about precise odor identity, whereas analyzing with higher temporal resolution 

provides information about broad odor category. Temporal filtering of mitral cell output in the 

telencephalon therefore allows for the extraction of odor identity without distorting the code for 

odor category (Blumhagen et al., 2011). We will see that a similar computation is performed in 

the KO pathway. 

  

A SENSORY PATHWAY DEVOTED TO COMMUNICATION BEHAVIOR 

Electrocommunication signals are processed by a dedicated sensory pathway (Fig. 2). KO 

afferent fibers conduct at 40 m/s to the ipsilateral nucleus of the electrosensory lateral line lobe 

(nELL) in the hindbrain (Enger et al., 1976a), where corollary discharge inhibition blocks 
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responses to the fish’s own EOD (Bell and Grant, 1989; Zipser and Bennett, 1976). That is, each 

time an EOD motor command is generated, nELL neurons receive inhibition that prevents them 

from responding to sensory input. In this manner, the KO pathway is dedicated to processing 

communication signals: responses to the fish’s own EOD never get past the hindbrain (Carlson, 

2008a). 

The axons of nELL neurons project bilaterally through the lateral lemniscus to the 

midbrain torus semicircularis (Fig. 2), homologue of the mammalian inferior colliculus 

(Nieuwenhuys et al., 1998). These axons conduct at 15 m/sec (Amagai et al., 1998; Enger et al., 

1976a; Enger et al., 1976b). The main projection from nELL is to the exterolateral nucleus (EL), 

although en route the ascending axons give off small branches that terminate in the medioventral 

nucleus (MV) (Amagai et al., 1998; Enger et al., 1976a; Enger et al., 1976b; Friedman and 

Hopkins, 1998). 

The structure of the mormyrid EL can take one of two forms (Fig. 3). In clade A, EL is 

subdivided into anterior (ELa) and posterior (ELp) regions (Xu-Friedman and Hopkins, 1999). In 

most petrocephalines and in the non-clade A mormyrine genus Myomyrus, however, the EL is a 

relatively small, homogeneous structure lacking any apparent subdivisions (Carlson et al., 2011). 

A subdivided ELa/ELp has been found in one non-clade A species, Petrocephalus 

microphthalmus (Carlson et al., 2011). Interestingly, this species also has broadly distributed 

KOs typical of clade A, and it is the only known petrocephaline with the ability to discriminate 

variation in EOD waveform. 

Virtually nothing is currently known about the circuitry and physiology of EL, whereas 

we are starting to understand quite a bit about ELa/ELp (Fig. 5). The axons of nELL neurons 

terminate in ELa, which contains two cell types: large GABAergic inhibitory interneurons and  
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Figure 5. ELa and ELp microcircuitry overlaid on a horizontal Nissl section through the midbrain of 
Brienomyrus brachyistius (schematic cells are not to scale). As nELL axons enter ELa, they synapse 
directly onto adendritic large cells before following a convoluted path to synapse onto adendritic small 
cells. Large cells are entirely intrinsic to ELa, providing inhibitory input onto small cells via a large 
calyx-like terminal. Small cells are hypothesized to act as time comparators that integrate inhibition from 
one side of the body with excitation from the opposite side of the body to recode the peripheral spike 
timing differences that code for EOD waveform. ELa small cells project to multipolar cells in ELp. The 
microcircuitry within ELp is less well understood, although there are extensive excitatory and inhibitory 
interactions among the multipolar cells. Temporal filtering of small cell outputs by the circuit in ELp 
establishes tuning to the peripheral spike timing differences that code for IPI.
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small excitatory projection neurons (Friedman and Hopkins, 1998; George et al., 2011; Mugnaini 

and Maler, 1987a; Szabo et al., 1975). Local circuitry within ELa performs the first stages of 

EOD waveform analysis (Lyons-Warren et al., 2012b; Xu-Friedman and Hopkins, 1999). ELa 

sends its only outputs to the adjacent ELp, where the first stages of IPI analysis occurs (Carlson, 

2009). ELp projects to the isthmic granule nucleus (IG), which in turn projects back to ELp and 

to the valvula cerebellum (Finger et al., 1981; Haugede-Carre, 1979). The role of the feedback 

projection from IG to ELp is not yet understood. The IG-valvula connection is thought to be the 

main pathway by which electrocommunication information reaches the cerebellum (Russell and 

Bell, 1978). Horseradish peroxidase injections into ELp also retrogradely labeled small 

perilemniscal neurons in the caudal midbrain and neurons in the rostral midbrain in an area 

ventral to the torus longitudinalis (Finger et al., 1981), although the functions of these putative 

inputs to ELp are not known. 

ELp also projects bilaterally to the subpræeminential nucleus (SPE) and ipsilaterally to 

the inferior olive and MV (Haugede-Carre, 1979). MV therefore receives a direct projection 

from the nELL, as well as an indirect projection via EL (Fig. 2). MV projects to the optic tectum 

(Wullimann and Northcutt, 1990), homologue of the mammalian superior colliculus 

(Nieuwenhuys et al., 1998). The function of the MV-optic tectum pathway is currently unknown; 

however, the optic tecta of many taxa contain spatial maps of multiple sensory modalities. 

Therefore, one hypothesis is that MV plays a role in localizing signaling fish (Friedman and 

Hopkins, 1998). MV may also provide a minor projection to the KO region of the valvula 

cerebellum (Finger et al., 1981). Responses to electrosensory stimuli can be recorded in the 

telencephalon (Prechtl et al., 1998), and at least some of these responses are likely mediated by 

the KO pathway. It remains unknown how electrosensory information from KOs may reach the 
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telencephalon, although a projection from the valvula cerebellum has been described (Wullimann 

and Rooney, 1990). Clearly, much remains to be learned about the processing of 

electrocommunication signals after ELp. 

The KO pathway contains several anatomical specializations characteristic of time-

coding circuits. First, the channel for processing communication signals is dedicated to this task 

and it remains segregated from other electrosensory pathways. Second, the timing of sensory 

events is encoded by precisely time-locked spikes in KO receptors, nELL axons, and ELa large 

cells (Amagai et al., 1998; Bennett, 1965; Friedman and Hopkins, 1998). Third, both nELL and 

ELa contain large adendritic neurons (Amagai et al., 1998; Szabo and Ravaille, 1976). Larger 

neurons are required to maintain axons with large diameters, which conduct impulses with 

greater velocity than axons of smaller diameter (Waxman, 1980). The heavy myelination of 

nELL axons further aids in increasing conduction velocity. In addition, larger neurons have 

lower input resistance and greater ability to generate current, thereby resulting in neurons that are 

less susceptible to voltage fluctuations caused by stray currents (Carr and Friedman, 1999). 

However, larger neurons require a larger synaptic current, which is achieved by large synaptic 

terminals and gap junctions onto the large cells of both nELL and ELa (Bell and Russell, 1978; 

Mugnaini and Maler, 1987a; Mugnaini and Maler, 1987b; Szabo and Ravaille, 1976; Szabo et 

al., 1983). Larger synaptic endings also transmit with lower temporal jitter (Trussell, 2008), and 

electric coupling through gap junctions further helps preserve timing information by reducing 

transmission time. Another, although less well understood, specialization common to time-

coding pathways is an abundance of calcium-binding proteins (Carr and Friedman, 1999). These 

proteins may decrease presynaptic levels of calcium soon after synaptic transmission to shorten 

postsynaptic potentials, or to prevent the buildup of harmful loads of calcium as a byproduct of 
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large synaptic currents (Friedman and Kawasaki, 1997). The large cells of nELL and ELa are 

immunoreactive to the calcium-binding proteins calretinin and calbindin, with precise staining 

patterns varying across species (Friedman and Kawasaki, 1997). Additional specializations that 

contribute to timing preservation in auditory pathways include AMPA-receptor splice variants 

with exceptionally fast kinetics and high calcium permeability, voltage-gated potassium 

channels, and large, fast inhibitory postsynaptic currents (Trussell, 1997), although similar 

features have not yet been found in the KO pathway. 

 

SENSORY FILTERING AND TEMPORAL SHARPENING 

Sensory-evoked spikes are relayed by KO afferents to the ipsilateral nELL (Fig. 2), 

where they terminate with large club endings onto large, adendritic, spherical neurons via mixed 

chemical-electrical synapses (Bell and Grant, 1989; Bell and Russell, 1978; Denizot et al., 1987; 

Mugnaini and Maler, 1987b; Szabo and Ravaille, 1976; Szabo et al., 1983). Each KO afferent 

contacts three to eleven nELL cells, and an estimated three to four afferents converge onto each 

nELL cell (Bell and Grant, 1989). 

In addition to excitation from KO afferents, nELL cells receive GABAergic inhibitory 

input from the slem via small boutons that terminate on the soma and axon initial segment (Bell 

et al., 1981; Denizot et al., 1987; Mugnaini and Maler, 1987b; Szabo et al., 1983). The slem 

receives input from MCA and thereby mediates corollary discharge-driven inhibition of nELL 

neurons (Fig. 2), which blocks sensory responses for a brief window of time immediately after 

production of the fish’s own EOD (Zipser and Bennett, 1976). The effects of this corollary 

discharge-driven inhibition can be seen downstream of the nELL, as stimuli delivered during a 

period of about 3 ms starting immediately after the production of each EOD do not elicit 
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electrosensory responses in the EL or KO region of the valvula (Amagai, 1998; Bennett and 

Steinbach, 1969; Russell and Bell, 1978; Szabo et al., 1979; Zipser and Bennett, 1976). 

Behavioral studies have confirmed that fish are less sensitive to electrosensory stimuli occurring 

within 1.5 ms after the fish’s own EOD (Moller, 1970). 

Broad somatotopy is evident in the KO projections to nELL, such that afferents arising 

from the dorsal surface of the skin terminate ventrally, and those from the ventral surface 

terminate dorsally (Bell and Russell, 1978; Maler et al., 1973a; Maler et al., 1973b). Further, 

afferents from the head project to the rostral nELL, and those from the tail project to the caudal 

nELL. Accordingly, the latency of potentials in response to sensory stimulation is shortest in the 

rostral nELL and longest in the caudal nELL. A matching latency gradient is present in the 

corollary discharge potentials recorded at different locations within the nELL (Bell and Grant, 

1989). Thus, the corollary discharge is effective at blocking KO responses to the fish’s own 

EOD, with anatomical adjustments accounting for differences in conduction time from KOs on 

different parts of the body. The duration of mormyrid EODs spans a wide range across species 

(Fig. 1), and it remains to be determined whether the window of corollary discharge-driven 

inhibition varies in relation to species differences in EOD duration. Another open question is 

whether nELL projections to the midbrain incorporate compensatory delays to account for the 

differences in latency from KOs on the tail compared to those on the head. 

The nELL has been considered to simply relay spike times from peripheral receptors to 

the midbrain. However, comparing the microcircuitry within nELL with other sensory pathways 

suggests that the temporal codes established by KOs may be sharpened in nELL. First, the 

convergence of multiple time-locked inputs has been proposed to enhance temporal precision by 

reducing jitter in the postsynaptic neuron (Carr et al., 1986a; Kawasaki et al., 1988). Such a 
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mechanism has been implicated in the sharpening of phase-locking in auditory pathways (Joris et 

al., 1994; Sullivan and Konishi, 1984). When n correlated inputs converge onto a single neuron, 

the jitter of the response of the postsynaptic neuron should be reduced by 1/√n (Calvin, 1983). 

This hypothesis was tested in the mouse auditory brainstem by Xu-Friedman and Regehr (2005), 

who found that convergence of multiple inputs onto single postsynaptic neurons reduces jitter, 

with the degree of jitter reduction determined by the number, strength, and timing of inputs. The 

spherical soma and long, thin initial segment of nELL cells may also contribute to enhancing 

their temporal precision. An electron-dense undercoating thought to represent the spike-initiation 

zone occurs distally on the initial segment (Mugnaini and Maler, 1987b). Thus, synaptic currents 

must traverse a region of low input resistance (large adendritic soma) followed by a region of 

high input resistance (“uncoated” proximal initial segment) before reaching the spike initiation 

zone. This may provide a mechanism to “discard” synaptic inputs not arriving in sufficient 

synchrony with other inputs (Maler et al., 1981). Neurons with similar morphology have been 

found in the time coding pathways of multiple, distantly related species of wave-type weakly 

electric fish (Carr et al., 1986b; Kawasaki and Guo, 1996; Maler et al., 1981). Further, 

convergence of multiple synaptic inputs onto such neurons is associated with postsynaptic 

reductions in temporal jitter (Carr et al., 1986a). Thus, convergence of multiple inputs onto 

spherical somas with long initial segments and distal spike-initiation zones could represent a 

general adaptation for temporal coding. 
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DETERMINING SENDER IDENTITY: A CIRCUIT FOR PROCESSING 

SUBMILLISECOND SPIKE TIMING DIFFERENCES  

In species with an ELa/ELp, the axons of nELL cells project bilaterally to the ELa (Figs. 

2, 5), with ~60% of the axons arising contralaterally and ~40% arising ipsilaterally (Amagai et 

al., 1998; Bell et al., 1981; Bell and Grant, 1989; Enger et al., 1976b; Friedman and Hopkins, 

1998; Szabo et al., 1983). At least some of the nELL cells bifurcate, giving rise to bilateral ELa 

projections (Friedman and Hopkins, 1998). The nELL-ELa projections show no obvious 

somatotopy (Bell and Maler, 2005; Friedman and Hopkins, 1998). In addition to incoming nELL 

axons, ELa contains large GABAergic inhibitory interneurons and small projection neurons 

(Friedman and Hopkins, 1998; Mugnaini and Maler, 1987a). The large cells of Brienomyrus 

brachyistius are adendritic, measure 9-18 µm in diameter, and are predominately located in the 

medial portion of ELa, where incoming nELL axons enter the nucleus (Friedman and Hopkins, 

1998; George et al., 2011). Interestingly, the large cells of Gnathonemus petersii have dendrites 

(Mugnaini and Maler, 1987a), indicating important species differences in ELa  microcircuitry. In 

both species, small cells are adendritic, measure 3-7 µm in diameter, and are distributed 

throughout ELa (Amagai et al., 1998; Friedman and Hopkins, 1998; George et al., 2011; 

Mugnaini and Maler, 1987a). 

As nELL axons enter ELa, they first contact one to three large cells with large, cup-like 

endings giving rise to mixed chemical-electrical synapses (Mugnaini and Maler, 1987a; Szabo et 

al., 1983). Each nELL axon then follows a long and tortuous path, traveling for up to an 

additional 7 mm after the first synapse onto a large cell (Friedman and Hopkins, 1998). As an 

nELL axon winds through the ELa, it makes small en passant mixed chemical-electrical 

excitatory endings onto dozens of small cells, although the majority of these endings are made by 
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the last 1-2 mm of the axon (Friedman and Hopkins, 1998; Xu-Friedman and Hopkins, 1999). 

Large cells project directly to small cells with a more restricted terminal field, giving rise to large 

GABAergic calyceal synapses that envelop the small cell somas (Friedman and Hopkins, 1998; 

George et al., 2011; Mugnaini and Maler, 1987a). Sensory stimulation elicits a time-locked 

action potential in both nELL axons and large cells at a latency of ~2.5-3 ms and with low jitter 

following a stimulus edge, reflecting the “on” or “off” responses of KOs (Amagai et al., 1998; 

Friedman and Hopkins, 1998). Taken together, these findings suggest that small cells receive 

delayed excitatory input via an nELL axon, and time-locked inhibitory input via a large cell (Fig. 

5). 

ELa small cells are hypothesized to perform analysis of the small spike timing 

differences between peripheral receptors that represent EOD waveform. Several lines of 

evidence support this hypothesis. First, ELa is the first station in the KO pathway where 

information from opposite sides of the body converges (Szabo et al., 1983), and small cells 

appear to be the only cells in ELa that receive inputs from different receptive fields (Friedman 

and Hopkins, 1998; Xu-Friedman and Hopkins, 1999). Second, small cells are adendritic, and 

time comparator neurons in other circuits are typically adendritic or have minimally branching 

dendritic arbors (Carr et al., 1986a; Carr and Konishi, 1990; Grothe, 2003; Matsushita and 

Kawasaki, 2004). Third, variation in nELL axon lengths to small cells function as delay lines 

(Friedman and Hopkins, 1998), similar to the delay lines found in certain sound localization 

circuits (Carr, 1993). Fourth, the large calyceal ending onto small cells presumably makes the 

inhibitory transmission fast and reliable, as seen in the excitatory calyx of Held in the 

mammalian auditory system (Nicol and Walmsley, 2002). Fifth, anatomical specializations for 

preserving timing information disappear at small cells (Friedman and Kawasaki, 1997; Xu-
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Friedman and Hopkins, 1999). Finally, ELp neurons that receive input from small cells are tuned 

to pulse waveform (Amagai, 1998). 

These various lines of evidence led Friedman and Hopkins (1998) to propose a delay-line 

anti-coincidence detection mechanism for small cell encoding of stimulus duration. In this 

model, each small cell receives inhibition elicited by one edge of a stimulus pulse and delayed 

excitation elicited by the other edge (Fig. 6). A given small cell will respond only if the 

excitatory and inhibitory inputs are not coincident, i.e. if the two inputs are separated in time.  

The relative timing of these inputs is determined by the duration of the stimulus pulse as well as 

the length of the axonal delay to the small cell. For short stimulus durations, inhibition in 

response to the trailing stimulus edge will block the delayed excitation in response to the leading 

edge, but for longer durations, the delayed excitation will arrive before the inhibition (Fig. 6). 

Therefore, this model predicts that each small cell will only respond to stimuli longer than a 

certain minimum duration, and variation in axonal delay across the population of small cells will 

establish variation in this minimum duration (Fig. 6). Under this model, then, small cells would 

recode peripheral timing differences into a population code, with the number of responding small 

cells increasing with increasing stimulus pulse duration. 

Unfortunately, small cells are extremely difficult to record from so that direct tests of this 

model have not yet been possible (Amagai et al., 1998; Friedman and Hopkins, 1998; Xu-

Friedman and Hopkins, 1999). However, we recently developed a novel fluorescence-based 

method for obtaining targeted extracellular recordings from small cell axons (Lyons-Warren et 

al., in press). Preliminary results suggest that variably delayed excitation and precisely timed 

inhibition in response to different stimulus edges are indeed important in establishing small cell 

responses, but that multiple excitatory inputs to small cells, as well as relatively short axonal   
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Figure 6. Friedman-Hopkins model for small cell duration tuning (modified from Xu-Friedman and 
Hopkins, 1999). Knollenorgans on one side of the body surface (pink) respond to the upward edge of a 
square pulse, and this gives rise to an excitatory input to a small cell via an nELL axonal delay line (Δt). 
Knollenorgans on the other side of the body surface (blue) respond to the downward edge, and this gives 
rise to an inhibitory input to the small cell via an ELa large cell. This is just one example of many 
possible receptive field organizations of the excitatory and inhibitory inputs to small cells. The responses 
of small cells to stimuli of different durations are determined by the length of the excitatory axonal delay 
(below). For short duration stimuli, inhibition in response to stimulus offset blocks the delayed excitation 
in response to stimulus onset. For pulses that are longer than the excitatory delay, however, the delayed 
excitation arrives before the inhibition, and the small cell responds. Different small cells receive 
excitatory input with different delays, establishing variation in the minimum pulse duration that can elicit 
a response. As a result, increasing pulse duration leads to the progressive recruitment of small cells with 
longer axonal delays, and pulse duration is reflected in the total number of responding cells.
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delays to some cells, make for more complicated patterns of tuning than predicted by the 

Friedman-Hopkins model (Lyons-Warren et al., 2012b). This scenario would result in a 

distributed population code, with the identity of responsive small cells, and not just total number, 

reflecting EOD waveform (Fig. 7). This would represent a novel mechanism for recoding 

submillisecond timing differences, distinct from avian sound localization pathways that use 

delay-line coincidence detection to convert a temporal code into a place code, as well as  

mammalian sound localization pathways that use binaural excitation combined with monaural 

inhibition to convert a temporal code into a rate code (Köppl, 2009; Schnupp and Carr, 2009). 

Small cell axons project topographically to ELp, with medial small cells projecting 

medially and lateral small cells projecting laterally (Friedman and Hopkins, 1998). The anatomy 

of ELp indicates that it is a region of substantial local processing. First, ELp neurons, with 

somatic diameters of 6-14 µm, exhibit widely branching dendritic arbors spanning up to 200 µm 

in diameter (George et al., 2011; Xu-Friedman and Hopkins, 1999), suggesting extensive 

synaptic integration. Second, ELp contains inhibitory GABAergic interneurons (George et al., 

2011). Third, in addition to their extrinsic projections, the axons of individual ELp neurons give 

rise to collaterals that project throughout the nucleus (George et al., 2011; Xu-Friedman and 

Hopkins, 1999). Fourth, ELp neurons exhibit a range of response latencies to sensory 

stimulation: some neurons respond in a time-locked manner 7-9 ms after a stimulus, whereas 

others respond with variable latencies of 12-20 ms, longer than would be expected from a direct 

excitatory input from ELa (Amagai, 1998). Fifth, multiple phases of excitation and inhibition can 

often be seen in intracellular recordings from ELp neurons (Carlson, 2009; George et al., 2011; 

Xu-Friedman and Hopkins, 1999). Finally, paired whole-cell recordings in vitro reveal extensive 

synaptic connections among ELp neurons (Ma et al., 2013).  
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ELa ELp

EOD interval 10 ms

Figure 7. Multiplexed temporal codes are converted into distributed population codes in ELa/ELp. EOD 
waveform is represented by the pattern of responsive neurons across the population of small cells in ELa, 
and both EOD waveform and EOD interval are represented by the pattern of responsive neurons across 
the population of multipolar cells in ELp. Five different EOD waveforms are shown, from top to bottom: 
Brienomyrus brachyistius EOD, reversed polarity B. brachyistius EOD, elongated B. brachyistius EOD, 
Stomatorhinus ivindoensis EOD, Paramormyrops sp. ‘VAD’ EOD. Nine model small cells are shown and 
for each of the five EOD waveforms, pink indicates responding cells and black indicates non-responding 
cells. Each EOD waveform results in a unique pattern of responsiveness across the population of small 
cells. This information is sent to ELp, where multipolar cells respond selectively to EOD waveform as 
well as EOD interval. Nine model multipolar cells are shown and for the five EOD waveforms and three 
different EOD intervals (from left to right: long, medium, and short), yellow indicates responding cells 
and black indicates non-responding cells. Each possible combination of EOD waveform and EOD interval 
results in a unique pattern of responsive neurons across the population of multipolar cells.
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Extracellular single unit recordings in ELp suggest two cell types based on responses to 

single pulses (Amagai, 1998). Type I cells respond with high probability at latencies of 7-9 ms 

and their responses increase with increasing stimulus duration, being minimally affected by 

stimulus polarity or amplitude. In contrast, Type II cells have a low response probability, weaker 

time locking, latencies >12 ms, selectivity for a limited range of stimulus durations and 

intensities, and strong preferences for stimulus polarity. The sensitivity of ELp neurons to 

stimulus pulse duration, amplitude, and polarity reveals that the information necessary for 

identifying signaling fish, as well as determining their distance, location, and orientation are 

present in the spike timing differences of KOs. 

  

DETERMINING THE BEHAVIORAL STATE OF THE SENDER: MULTIPLE 

MECHANISMS FOR TEMPORAL FILTERING OF INTERSPIKE INTERVALS 

In addition to pulse waveform, ELp neurons are also tuned to IPI (Fig. 8), owing to 

temporal filtering of incoming small cell spike trains (Carlson, 2009; George et al., 2011). Thus, 

stimulus information encoded into interspike intervals in the periphery is retained during the 

processing of spike timing differences in ELa. Low-pass tuning describes preferential responses 

to long intervals (low frequencies), high-pass tuning describes preferential responses to short 

intervals (high frequencies), band-pass tuning describes preferential responses to intermediate 

intervals, and band-stop tuning describes preferential responses to short and long, but not 

intermediate, intervals. Low-pass and high-pass tuning curves vary widely in shape, and band-

pass and band-stop tuning curves vary widely in best/worst interval and bandwidth (Carlson, 

2009; George et al., 2011). As a result, diversity of interval tuning across the population of ELp 

neurons results in the recoding of IPIs into a distributed population code in which IPI is reflected   
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Figure 8. IPI tuning of ELp neurons in response to electrosensory stimulation in vivo. Data from three 
different neurons are shown (data from Carlson, 2009). Intracellular recordings show responses to, from 
left to right, 100, 50, and 10 ms IPIs, with stimulus trains shown underneath each recording trace. On the 
far right, tuning curves show the normalized average spike rate and postsynaptic potential amplitude as a 
function of stimulus IPI in response to 10 repetitions of each stimulus (details on stimulus presentation 
and tuning curve generation can be found in Carlson, 2009).
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in the identity of responsive neurons, much like the population code of EOD waveform in ELa. 

Thus, both temporal codes, spike timing differences that code for EOD waveform and interspike 

intervals that code for IPI, are sequentially converted into distributed population codes in this 

circuit. The resulting sensitivity of ELp neurons to EOD waveform and IPI means that both 

components are represented in the identities of responsive neurons (Fig. 7). 

Some ELp neurons are also responsive to changes in IPI, with response magnitude 

depending on whether IPIs are increasing or decreasing (Carlson, 2009). This preference arises 

from hysteresis, or the degree to which responses to particular IPIs are affected by preceding 

IPIs. Some neurons in each tuning class exhibit a large amount of hysteresis, whereas others 

exhibit little to none. Thus, the responses among ELp neurons can provide information about the 

direction of IPI change as well as the specific IPI sequence, resulting in selective responses to 

communication signals such as scallops, rasps, and accelerations (Carlson, 2009). 

GABAergic inhibition plays an important role in IPI tuning. Blocking GABAA, but not 

glycine, receptors caused increases in the amplitude, latency to maximum depolarization, and 

duration of synaptic responses to single pulse stimulation (George et al., 2011). These effects 

occurred regardless of the neurons’ IPI tuning, demonstrating that neurons of all tuning classes 

receive inhibition. Furthermore, blocking inhibition caused a general shift towards high-pass 

tuning: the majority of low-pass, band-pass, and band-stop neurons switched to high-pass tuning, 

and most high-pass neurons experienced a sharpening of their high-pass tuning. Therefore, the 

interaction of excitation and inhibition is essential in establishing IPI tuning diversity among 

ELp neurons. 

Similar selectivity of central neurons to temporal patterns of sensory stimulation has been 

documented in several auditory and electrosensory pathways (Edwards et al., 2002; Fortune and 
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Rose, 1997b; Grothe, 1994; Huetz et al., 2009; Marsat and Maler, 2010; Pluta and Kawasaki, 

2010; Rose and Capranica, 1983). Given the prevalence of temporal coding across sensory 

systems, an understanding of central mechanisms for temporal filtering in these systems should 

provide fundamental insight into general issues in sensory processing. A variety of synaptic 

mechanisms have been proposed to give rise to temporal filtering properties in single neurons 

(Fig. 9). Temporal summation, in which responses evoked by successive stimuli overlap in time, 

has been hypothesized to produce interval tuning (Edwards et al., 2007; Rose et al., 2011). 

Temporal summation of excitation can cause increased responses to short intervals, whereas 

temporal summation of inhibition can cause decreased responses to short intervals (Fig. 9). 

Short-term synaptic plasticity, or a change in synaptic strength with repeated stimulation, has 

also been implicated in interval tuning (Buonomano, 2000; Edwards et al., 2007; Edwards et al., 

2008; Fortune and Rose, 2000; Klyachko and Stevens, 2006; Rose and Fortune, 1999; Zucker 

and Regehr, 2002). Short-term synaptic plasticity occurs on the timescale of tens of milliseconds 

to several minutes, and can result in increases or decreases in synaptic strength, called facilitation 

and depression, respectively (Zucker and Regehr, 2002). Facilitation of excitation or depression 

of inhibition at short stimulation intervals could produce high-pass responses, whereas 

facilitation of inhibition or depression of excitation could produce low-pass responses (Fig. 9). 

Finally, differences in the relative timing of excitatory and inhibitory inputs has also been 

hypothesized to underlie interval tuning (Edwards et al., 2008; Grothe, 1994). If inhibition is 

delayed with respect to excitation, then repeated stimulation at short intervals could cause 

excitation to overlap with inhibition evoked by previous stimuli, resulting in an attenuation of 

response characteristic of low-pass tuning (Fig. 9). This scenario requires the latency of 

excitation and inhibition to be fixed during repeated stimulation. By contrast, high-pass tuning   
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Figure 9. Multiple synaptic mechanisms can establish IPI tuning. Different excitatory (green) and 
inhibitory (magenta) responses to short-interval stimulation (ticks) can give rise to different summated 
synaptic responses (black). In this simple model, summed responses are determined by subtracting the 
inhibitory response from the excitatory response. Temporal summation, in which synaptic responses to 
successive stimuli overlap in time, can establish IPI tuning. When excitation lasts longer than the 
stimulation interval, temporal summation leads to an increase in response characteristic of high-pass 
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tuning. Conversely, temporal summation of inhibition occurs when inhibition lasts longer than the 
stimulation interval, causing a decrease in response characteristic of low-pass tuning. Short-term synaptic 
depression, or a decrease in synaptic strength with repeated stimulation, of inhibition can produce high-
pass tuning, and depression of excitation can produce low-pass tuning. Facilitation, or an increase in 
synaptic strength with repeated stimulation, of excitation can result in high-pass tuning, whereas 
facilitation of inhibition can result in low-pass tuning. Finally, the relative timing of excitation and 
inhibition can establish interval-tuned responses. If excitation and inhibition occur near-coincidently, the 
response to a single stimulus would be small. Increasing latency of inhibition with repeated stimulation 
could result in high-pass tuning. On the other hand, if the latencies of excitation and inhibition were fixed, 
and inhibition was delayed with respect to excitation, stimulation at short intervals could cause excitation 
to coincide with inhibition elicited by previous stimuli, resulting in low-pass tuning.  
 
 
could result if the latency to excitation or inhibition changes with repeated stimulation. For 

instance, if excitation and inhibition occur near-simultaneously in response to a single pulse, the 

resulting synaptic response would be small. If, however, repeated stimulation increased 

inhibitory latency, then larger responses giving rise to high-pass tuning could result (Fig. 9). 

In ELp, in vitro whole-cell recordings have revealed that temporal summation of 

excitation and inhibition plays a major role in establishing single-neuron tuning to temporal 

patterns of presynaptic input, and computational modeling reveals that all major classes of IPI 

tuning can be established by just this one mechanism (George et al., 2011). However, this study 

also revealed that the IPI tuning of a small subset of ELp neurons may be influenced by short-

term synaptic depression (George et al., 2011). Somewhat surprisingly, in vivo and in vitro 

studies currently underway have uncovered widespread short-term depression in both excitatory 

and inhibitory pathways to ELp neurons (Baker et al., 2012). Differences in the relative 

magnitude and time course of depression in excitatory and inhibitory pathways may contribute to 

interval tuning as well as directional sensitivity to changes in interval. Short-term depression is 

also prevalent in avian and mammalian auditory time-coding pathways (MacLeod, 2011).   

In addition to synaptic mechanisms, intrinsic membrane properties of postsynaptic 

neurons can contribute to temporal filtering (Hutcheon and Yarom, 2000; Mehaffey et al., 
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2008b). First, the membrane itself passively filters high-frequency fluctuations in membrane 

potential. In ELp, membrane time constants are widely distributed between 5 and 25 ms 

(Kohashi et al., 2012), suggesting that short IPIs within the behaviorally relevant range are 

differentially filtered. Further, neurons with longer time constants would be more affected by 

temporal summation, and they would be able to integrate over multiple non-coincident inputs. 

Such a scenario could give rise to the longer latency and more highly variable responses of the 

Type II ELp neurons described by Amagai (1998). Second, voltage-gated channels in the 

postsynaptic cell can shape synaptic responses (O'Donnell and Nolan, 2011). The significance of 

low-threshold voltage-sensitive channels in temporal coding is particularly well described in 

auditory brainstem neurons where timing information is highly preserved (Brown and 

Kaczmarek, 2011; Kuba, 2007; Trussell, 1999). Calcium-activated potassium channels (Ellis et 

al., 2007) as well as voltage-sensitive channels (Carlson and Kawasaki, 2006; Fortune and Rose, 

1997a; Fortune and Rose, 2003; Mehaffey et al., 2008a) are suggested to shape frequency tuning 

and stimulus selectivity in response to electrosensory stimuli in wave-type electric fish. Current 

studies are investigating the contribution of similar mechanisms to interval tuning in ELp 

(Kohashi et al., 2012). The diversity of interval tuning and hysteresis among ELp neurons is 

likely due to complex interactions between temporal summation, short-term synaptic plasticity, 

and intrinsic membrane properties. Having multiple such “free parameters” may establish a 

higher dimensionality of “coding space” in which to represent multiple behaviorally relevant 

stimulus features in a single circuit. 

Finally, although current evidence points to extensive processing of communication 

signals within ELp, many questions about the nature of these local circuit interactions remain. 

Excitatory and inhibitory network interactions among IPI-tuned neurons could act in several 
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ways to shape IPI tuning (Fig. 10). For example, combining inputs from one low- and one high-

pass neuron onto a single postsynaptic neuron can establish band-pass, band-stop, or all-pass  

tuning, depending on the excitatory/inhibitory nature of the inputs. Furthermore, sharpening of 

low- or high-pass tuning can result when excitatory and inhibitory inputs converge. 

 

SENSORY MULTIPLEXING AND THE EVOLUTION OF SIGNALS AND SPECIES 

Evolutionary change in nervous systems can have profound effects on processes that 

influence species diversification (Carlson, 2012; Carlson and Arnegard, 2011). Communication 

signals play an essential role in mate choice. As a result, signal divergence can establish 

reproductive isolation between populations, thereby reinforcing this divergence and promoting 

speciation (Hoskin and Higgie, 2010). For signal divergence to result in reproductive isolation, 

however, receivers must have the perceptual ability to detect signal variation. The evolution of 

novel perceptual abilities can therefore open up new dimensions of signal variation for mate 

choice, which can drive increased rates of species diversification and signal evolution (Carlson, 

2012; Carlson and Arnegard, 2011). For example, if two populations of the same species become 

geographically isolated, their mating signals may diverge over time due to processes such as 

genetic drift, local adaptation to different environments, or reproductive character displacement. 

If receivers can detect the difference, then members of the two populations will be less likely to 

mate if they later come into contact, and selection may then act to drive further signal divergence 

to prevent hybridization. Indeed, the evolution of distributed KOs and ELa/ELp in clade A (Fig. 

3) established the novel ability to discriminate temporal variation in EOD waveform, which 

fueled dramatic increases in the rates of species diversification and EOD evolution (Carlson et 

al., 2011). A similar process may have resulted from evolutionary change in the auditory system  
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Figure 10. Convergence of high- and low-pass tuning can establish diverse temporal filters. The tuning 
curves of model neurons (purple) that receive synaptic inputs from one high-pass (magenta) and one 
low-pass (blue) neuron are shown. Excitatory connections are indicated by ‘+’ and inhibitory connections 
are indicated by ‘-’, and the tuning of each postsynaptic neuron is determined by a simple addition of ‘+’ 
tuning curves and subtraction of ‘-’ tuning curves. A variety of different types of interval tuning, including 
high-pass, low-pass, band-pass, band-stop, and all-pass, can be created by different combinations of 
high-pass and low-pass excitation and inhibition.
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of frogs (Ryan, 1986) and the visual system of cichlid fishes (Seehausen et al., 2008; Terai et al., 

2006). Importantly, the evolution of EOD waveform coding established temporal multiplexing in 

the KO electrosensory system (Fig. 4), thereby adding increased dimensionality to 

electrocommunication. This evolutionary change and its effects on mormyrid diversity 

underscore a primary advantage of temporal multiplexing: increased information transmission 

within a single channel. 

 

FUTURE DIRECTIONS 

Evolutionary change in nervous systems provides a powerful tool for employing 

comparative approaches to study neural mechanisms of behavior, as it allows for a direct 

comparison between differences in behavior with differences in neural circuitry (Carlson, 2012). 

However, we have only scratched the surface in understanding evolutionary change in the KO 

sensory system. How do the rosette KOs of non-clade A species encode electric signals? How 

does EL process these signals? Does EL have the large cells and small cells of ELa, the 

multipolar cells of ELp, or completely different cell types? Are there axonal delay lines in EL? 

Many important questions remain about the coding of electrocommunication signals in 

clade A species. For example, how is information about signaler location and orientation 

(Schluger and Hopkins, 1987) extracted from the spatiotemporal pattern of KO responses? How 

are signals from multiple fish differentiated? How is signal coding affected by changes in the 

relative positions of sender and receiver? What are the roles of MV and the ELp-IG feedback 

loop in processing communication signals? How do downstream targets, including the 

cerebellum and optic tectum, process information from ELp and MV, and how do they modulate 

the fish’s own EOD production? The answers to these questions will contribute to our 
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understanding of not only mormyrid electrocommunication, but to sensory processing of 

temporally coded information in general.

40



REFERENCES 

Ainsworth, M., Lee, S., Cunningham, M. O., Traub, R. D., Kopell, N. J. and Whittington, 
M. A. (2012). Rates and rhythms: a synergistic view of frequency and temporal coding 
in neuronal networks. Neuron 75, 572-83. 

 

Amagai, S. (1998). Time coding in the midbrain of mormyrid electric fish. II. Stimulus 
selectivity in the nucleus exterolateralis pars posterior. J Comp Physiol A 182, 131-43. 

 
Amagai, S., Friedman, M. A. and Hopkins, C. D. (1998). Time coding in the midbrain of 

mormyrid electric fish. I. Physiology and anatomy of cells in the nucleus exterolateralis 
pars anterior. J Comp Physiol A 182, 115-30. 

 
Arnegard, M. E. and Carlson, B. A. (2005). Electric organ discharge patterns during group 

hunting by a mormyrid fish. Proc Biol Sci 272, 1305-14. 
 

Arnegard, M. E., Jackson, B. S. and Hopkins, C. D. (2006). Time-domain signal divergence 
and discrimination without receptor modification in sympatric morphs of electric fishes. 
J Exp Biol 209, 2182-98. 

 

Arnegard, M. E., McIntyre, P. B., Harmon, L. J., Zelditch, M. L., Crampton, W. G., Davis, 
J. K., Sullivan, J. P., Lavoue, S. and Hopkins, C. D. (2010). Sexual signal evolution 
outpaces ecological divergence during electric fish species radiation. Am Nat 176, 335-
56. 

 
Baker, C. A., Ma, X. and Carlson, B. A. (2012). Differences in short-term synaptic depression 

of excitatory and inhibitory pathways contribute to temporal pattern recognition. In 10th 
International Congress of Neuroethology. College Park, MD. 

 
Bass, A. H. (1986a). Electric organs revisited: Evolution of a vertebrate communication and 

orientation organ. In Electroreception,  (ed. T. H. Bullock and W. Heiligenberg), pp. 13-
70. New York: John Wiley and Sons. 

 
Bass, A. H. (1986b). Species differences in electric organs of mormyrids: substrates for species-

typical electric organ discharge waveforms. J Comp Neurol 244, 313-330. 
 

Bass, A. H. and Volman, S. F. (1987). From behavior to membranes: testosterone-induced 
changes in action potential duration in electric organs. Proc Natl Acad Sci USA 84, 
9295-9298. 41



Bauer, R. and Kramer, B. (1974). Agonistic behavior in mormyrid fish: latency-relationship 
between the electric discharges of Gnathonemus petersii and Mormyrus rume. 
Experientia 30, 51-52. 

 

Bell, C. C. (1989). Sensory coding and corollary discharge effects in mormyrid electric fish. 
Journal of Experimental Biology 146, 229-253. 

 
Bell, C. C., Finger, T. E. and Russell, C. J. (1981). Central connections of the posterior lateral 

line lobe in mormyrid fish. Exp Brain Res 42, 9-22. 
 

Bell, C. C. and Grant, K. (1989). Corollary discharge inhibition and preservation of temporal 
information in a sensory nucleus of mormyrid electric fish. J Neurosci 9, 1029-44. 

 
Bell, C. C., Libouban, S. and Szabo, T. (1983). Pathways of the electric organ discharge 

command and its corollary discharges in mormyrid fish. J Comp Neurol 216, 327-38. 
 

Bell, C. C. and Maler, L. (2005). Central neuroanatomy of electrosensory systems in fish. In 
Electroreception,  (ed. T. H. Bullock C. D. Hopkins A. N. Popper and R. R. Fay). New 
York: Springer Science & Business Media. 

 

Bell, C. C., Myers, J. P. and Russell, C. J. (1974). Electric organ discharge patterns during 
dominance related behavioral displays in Gnathonemus petersii (Mormyridae). J Comp 
Physiol 92, 201-228. 

 

Bell, C. C. and Russell, C. J. (1978). Termination of electroreceptor and mechanical lateral line 
afferents in the mormyrid acousticolateral area. J Comp Neurol 182, 367-82. 

 
Bennett, M. V. (1965). Electroreceptors in mormyrids. Cold Spring Harb Symp Quant Biol 30, 

245-62. 
 

Bennett, M. V., Pappas, G. D., Aljure, E. and Nakajima, Y. (1967). Physiology and 
ultrastructure of electrotonic junctions. II. Spinal and medullary electromotor nuclei in 
mormyrid fish. J Neurophysiol 30, 180-208. 

 

Bennett, M. V. L. (1971). Electric organs. In Fish Physiology,  eds. W. S. Hoar and D. J. 
Randall), pp. 347-491. London: Academic Press. 

42



Bennett, M. V. L., Aljure, E., Nakajima, Y. and Pappas, G. D. (1963). Electrotonic junctions 
between teleost spinal neurons: electrophysiology and ultrastructure. Science 141, 262-
264. 

 

Bennett, M. V. L. and Steinbach, A. B. (1969). Influence of electric organ control system on 
electrosensory afferent pathways in Mormyrids. In Neurobiology of Cerebellar 
Evolution and Development,  (ed. R. Llinas), pp. 207-14. Chicago, Ill.: American 
Medical Association. 

 
Blumhagen, F., Zhu, P., Shum, J., Scharer, Y. P., Yaksi, E., Deisseroth, K. and Friedrich, 

R. W. (2011). Neuronal filtering of multiplexed odour representations. Nature 479, 493-
8. 

 
Brown, M. R. and Kaczmarek, L. K. (2011). Potassium channel modulation and auditory 

processing. Hearing Research 279, 39-42. 
 

Buonomano, D. V. (2000). Decoding temporal information: A model based on short-term 
synaptic plasticity. J Neurosci 20, 1129-41. 

 
Calvin, W. H. (1983). A stone's throw and its launch window: timing precision and its 

implications for language and hominid brains. J Theor Biol 104, 121-35. 
 

Caputi, A. A., Carlson, B. A. and Macadar, O. (2005). Electric organs and their control. In 
Electroreception,  (ed. T. H. Bullock C. D. Hopkins A. N. Popper and R. R. Fay), pp. 
410-451. New York: Springer Science & Business Media, Inc. 

 

Cariani, P. A. (2001). Temporal coding of sensory information in the brain. Acoust Sci & Tech 
22, 77-84. 

 
Carlson, B. A. (2002a). Electric signaling behavior and the mechanisms of electric organ 

discharge production in mormyrid fish. J Physiol Paris 96, 405-19. 
 

Carlson, B. A. (2002b). Neuroanatomy of the mormyrid electromotor control system. J Comp 
Neurol 454, 440-55. 

 
Carlson, B. A. (2003). Single-unit activity patterns in nuclei that control the electromotor 

command nucleus during spontaneous electric signal production in the mormyrid 
Brienomyrus brachyistius. J Neurosci 23, 10128-36. 

43



Carlson, B. A. (2008a). Reafferent control in electric communication. In Encyclopedia of 
Neuroscience,  eds. M. D. Binder N. Hirokawa U. Windhorst and M. C. Hirsch), pp. 
3368-3373. New York: Springer. 

Carlson, B. A. (2008b). Temporal coding in electroreception. In Encyclopedia of Neuroscience,  
(ed. M. D. Binder N. Hirokawa U. Windhorst and M. C. Hirsch), pp. 4039-4044. New 
York: Springer. 

 
Carlson, B. A. (2009). Temporal-pattern recognition by single neurons in a sensory pathway 

devoted to social communication behavior. J Neurosci 29, 9417-28. 
 

Carlson, B. A. (2012). Diversity matters: The importance of comparative studies and the 
potential for synergy between neuroscience and evolutionary biology. Archives of 
Neurology 69, 987-993. 

 

Carlson, B. A. and Arnegard, M. E. (2011). Neural innovations and the diversification of 
African weakly electric fishes. Commun Integr Biol 4, 720-5. 

 
Carlson, B. A., Hasan, S. M., Hollmann, M., Miller, D. B., Harmon, L. J. and Arnegard, M. 

E. (2011). Brain evolution triggers increased diversification of electric fishes. Science 
332, 583-6. 

 
Carlson, B. A. and Hopkins, C. D. (2004a). Central control of electric signaling behavior in the 

mormyrid Brienomyrus brachyistius: segregation of behavior-specific inputs and the 
role of modifiable recurrent inhibition. Journal of Experimental Biology 207, 1073-84. 

 
Carlson, B. A. and Hopkins, C. D. (2004b). Stereotyped temporal patterns in electrical 

communication. Anim Behav 68, 867-878. 
 

Carlson, B. A. and Kawasaki, M. (2006). Stimulus selectivity is enhanced by voltage-
dependent conductances in combination-sensitive neurons. J Neurophysiol 96, 3362-
3377. 

 

Carr, C. E. (1993). Processing of temporal information in the brain. Annu Rev Neurosci 16, 223-
43. 

 
Carr, C. E. and Friedman, M. A. (1999). Evolution of time coding systems. Neural Comput 

11, 1-20. 

44



Carr, C. E., Heiligenberg, W. and Rose, G. J. (1986a). A time-comparison circuit in the 
electric fish midbrain. I. Behavior and physiology. J Neurosci 6, 107-19. 

 
Carr, C. E. and Konishi, M. (1990). A circuit for detection of interaural time differences in the 

brain stem of the barn owl. J Neurosci 10, 3227-46. 
 

Carr, C. E., Maler, L. and Taylor, B. (1986b). A time-comparison circuit in the electric fish 
Eigenmannia midbrain II. Functional morphology. J Neurosci 6, 1372-1383. 

 
Churchland, P. S. and Sejnowski, T. J. (1992). The Computational Brain. Cambridge, MA: 

MIT Press. 
 

Decharms, D. C. and Merzenich, M. M. (1996). Primary cortical representation of sounds by 
the coordination of action potential timing. Nature 381, 610-613. 

 
Denizot, J. P., Clausse, S., Elekes, K., Geffard, M., Grant, K., Libouban, S., Ravaille-Veron, 

M. and Szabo, T. (1987). Convergence of electrotonic club endings, GABA- and 
serotoninergic terminals on second order neurons of the electrosensory pathway in 
mormyrid fish, Gnathonemus petersii and Brienomyrus niger (Teleostei). Cell Tissue 
Res 249, 301-309. 

 
Derbin, C. and Szabo, T. (1968). Ultrastructure of an electroreceptor (knollenorgan) in the 

mormyrid fish Gnathonemus petersii. I. J Ultrastruct Res 22, 469-484. 
 

Di Lorenzo, P., Chen, J.-Y. and Victor, J. D. (2009). Quality time; Representation of a 
multidimensional sensory domain through temporal coding. J Neurosci 29, 9227-9238. 

 
Edwards, C. J., Alder, T. B. and Rose, G. J. (2002). Auditory midbrain neurons that count. 

Nature Neuroscience 5, 934-936. 
 

Edwards, C. J., Leary, C. J. and Rose, G. J. (2007). Counting on inhibition and rate-dependent 
excitation in the auditory system. J Neurosci 27, 13384-92. 

 
Edwards, C. J., Leary, C. J. and Rose, G. J. (2008). Mechanisms of long-interval selectivity in 

midbrain auditory neurons: roles of excitation, inhibition, and plasticity. J Neurophysiol 
100, 3407-16. 

45



Elekes, K., Ravaille, M., Bell, C. C., Libouban, S. and Szabo, T. (1985). The mormyrid 
brainstem II. The medullary electromotor relay nucleus: an ultrastructural horseradish 
peroxidase study. Neuroscience 15, 417-430. 

 

Elekes, K. and Szabo, T. (1985). The mormyrid brainstem III. Ultrastructure and synaptic 
organization of the medullary 'pacemaker' nucleus. Neuroscience 15, 431-444. 

 
Ellis, L. D., Mehaffey, W. H., Harvey-Girard, E., Turner, R. W., Maler, L. and Dunn, R. J. 

(2007). SK channels provide a novel mechanism for the control of frequency tuning in 
electrosensory neurons. Journal of Neuroscience 27, 9491-9502. 

 
Enger, P. S., Libouban, S. and Szabo, T. (1976a). Fast conducting electrosensory pathway in 

the mormyrid fish, Gnathonemus petersii. Neurosci Lett 2, 133-6. 
 

Enger, P. S., Libouban, S. and Szabo, T. (1976b). Rhombo-mesencephalic connections in the 
fast conducting electrosensory system of the mormyrid fish, Gnathonemus petersii. An 
HRP study. Neurosci Lett 3, 239-43. 

 

Feulner, P. G., Plath, M., Engelmann, J., Kirschbaum, F. and Tiedemann, R. (2009). 
Electrifying love: electric fish use species-specific discharge for mate recognition. Biol 
Lett 5, 225-8. 

 

Finger, T. E., Bell, C. C. and Russell, C. J. (1981). Electrosensory pathways to the valvula 
cerebelli in mormyrid fish. Exp Brain Res 42, 23-33. 

 
Fortune, E. S. and Rose, G. J. (1997a). Passive and active membrane properties contribute to 

the temporal filtering properties of midbrain neurons in vivo. J Neurosci 17, 3815-25. 
 

Fortune, E. S. and Rose, G. J. (1997b). Temporal filtering properties of ampullary 
electrosensory neurons in the torus semicircularis of Eigenmannia: evolutionary and 
computational implications. Brain Behav Evol 49, 312-23. 

 

Fortune, E. S. and Rose, G. J. (2000). Short-term synaptic plasticity contributes to the temporal 
filtering of electrosensory information. J Neurosci 20, 7122-30. 

 
Fortune, E. S. and Rose, G. J. (2003). Voltage-gated Na+ channels enhance the temporal 

filtering properties of electrosensory neurons in the torus. J Neurophysiol 90, 924-9. 

46



Franz, V. (1921). Zur mikroskopischen Anatomie der Mormyriden. Zool Jahrb Anat Abt 1, 119-
129. 

 
Freedman, E. G., Olyarchuk, J., Marchaterre, M. A. and Bass, A. H. (1989). A temporal 

analysis of testosterone-induced changes in electric organs and electric organ discharges 
of mormyrid fishes. J Neurobiol 20, 619-34. 

 
Friedman, M. A. and Hopkins, C. D. (1998). Neural substrates for species recognition in the 

time-coding electrosensory pathway of mormyrid electric fish. J Neurosci 18, 1171-85. 
 

Friedman, M. A. and Kawasaki, M. (1997). Calretinin-like immunoreactivity in mormyrid and 
gymnarchid electrosensory and electromotor systems. J Comp Neurol 387, 341-57. 

 
Friedrich, R. W., Habermann, C. J. and Laurent, G. (2004). Multiplexing using synchrony in 

the zebrafish olfactory bulb. Nat Neurosci 7, 862-71. 
 

George, A. A., Lyons-Warren, A. M., Ma, X. and Carlson, B. A. (2011). A diversity of 
synaptic filters are created by temporal summation of excitation and inhibition. J 
Neurosci 31, 14721-34. 

 

Goulet, J., van Hemmen, J., Jung, S., Chagnaud, B., Scholze, B. and Engelman, J. (2012). 
Temporal precision and reliability in the velocity regime of a hair-cell sensory system: 
the mechanosensory lateral line of goldfish, Carassius auratus. J Neurophysiol 107, 
2581-2593. 

 
Graff, C. and Kramer, B. (1992). Trained weakly electric fishes Pollimyrus isidori and 

Gnathonemus petersii (Mormyridae, Teleostei) discriminate between waveforms of 
electric pulse discharges. Ethol 90, 279-292. 

 
Grant, K., Bell, C. C., Clausse, S. and Ravaille, M. (1986). Morphology and physiology of the 

brainstem nuclei controlling the electric organ discharge in mormyrid fish. J Comp 
Neurol 245, 514-30. 

 
Groh, J. M. (2001). Converting neural signals from place codes to rate codes. Biol Cybern 85, 

159-65. 
 

47



Grothe, B. (1994). Interaction of excitation and inhibition in processing of pure tone and 
amplitude-modulated stimuli in the medial superior olive of the mustached bat. J 
Neurophysiol 71, 706-21. 

 

Grothe, B. (2003). New roles for synaptic inhibition in sound localization. Nature Reviews 
Neuroscience 4, 1-11. 

 
Hanika, S. and Kramer, B. (2005). Intra-male variability of its communication signal in the 

weakly electric fish, Marcusenius macrolepidotus (South African form), and possible 
functions. Behavior 142, 145-166. 

 
Harder, W. (1968). Die beziehungen zwischen electrorezeptoren, elektrischem organ, 

seitenlinienorganen und nervensystem bei den mormyridae (Teleostei, Pisces). 
Zeitschrift fur vergleichende Physiologie 59, 272-318. 

 
Haugede-Carre, F. (1979). The mesencephalic exterolateral posterior nucleus of the mormyrid 

fish Bryenomyrus niger: efferent connections studied by the HRP method. Brain Res 
178, 179-84. 

 
Heiligenberg, W. (1976). Electrolocation and jamming avoidance in the mormyrid fish 

Brienomyrus. J Comp Physiol 109, 357-372. 
 

Hopkins, C. D. (1977). Electric communication. Bloomington: Indiana Univ. Press. 
 

Hopkins, C. D. (1980). Evolution of electric communication channels of mormyrids. Behav Ecol 
Sociobiol 7, 1-13. 

 
Hopkins, C. D. (1981). On the diversity of electric signals in a community of mormyrid electric 

fish in West Africa. Amer Zool 21, 211-222. 
 

Hopkins, C. D. (1986). Behavior of Mormyridae. In Electroreception,  (ed. T. H. Bullock and 
W. Heiligenberg), pp. 527-576. New York: John Wiley & Sons. 

 
Hopkins, C. D. (1999). Design features for electric communication. J Exp Biol 202, 1217-28. 

 
Hopkins, C. D. and Bass, A. H. (1981). Temporal coding of species recognition signals in an 

electric fish. Science 212, 85-7. 
48



Hoskin, C. J. and Higgie, M. (2010). Speciation via species interactions: the divergence of 
mating traits within species. Ecology Letters 13, 409-420. 

 
Huetz, C., Philibert, B. and Edeline, J.-M. (2009). A Spike-timing code for discriminating 

conspecific vocalizations in the thalamocortical system of anesthetized and awake 
guinea pigs. J Neurosci 29, 334-350. 

 
Hutcheon, B. and Yarom, Y. (2000). Resonance, oscillation, and the intrinsic frequency 

preferences of neurons. Trends in Neurosciences 23, 216-222. 
 

Jones, L. M., Depireux, D. A., Simons, D. J. and Keller, A. (2004). Robust temporal coding in 
the trigeminal system. Science 304, 1986-1989. 

 
Jørgensen, J. M. (2005). Morphology of electroreceptive sensory organs. In Electroreception 

(ed. T. H. Bullock, C. D. Hopkins, A. N. Popper and R. R. Fay), pp. 47-67. New York, 
NY: Springer Science & Business Media. 

 
Joris, P. X., Carney, L. H., Smith, P. H. and Yin, T. C. (1994). Enhancement of neural 

synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the 
characteristic frequency. J Neurophysiol 71, 1022-36. 

 
Kawasaki, M. and Guo, Y. (1996). Neuronal circuitry for comparison of timing in the 

electrosensory lateral line lobe of the African wave-type electric fish Gymnarchus 
niloticus. Journal of Neuroscience 16, 380-391. 

 
Kawasaki, M., Rose, G. and Heiligenberg, W. (1988). Temporal hyperacuity in single neurons 

of electric fish. Nature 336, 173-6. 
 

Klyachko, V. A. and Stevens, C. F. (2006). Excitatory and feed-forward inhibitory 
hippocampal synapses work synergistically as an adaptive filter of natural spike trains. 
PLoS Biol 4, e207. 

 

Kohashi, T., Ma, X. and Carlson, B. A. (2012). Passive and active membrane properties 
contribute to temporal selectivity for communication signals in mormyrid electric fish. 
In 10th International Congress of Neuroethology. College Park, MD. 

 

Konishi, M. (1993). Listening with two ears. Sci Am 268, 66-73. 

49



Köppl, C. (2009). Evolution of sound localization in land vertebrates. Curr Biol 19, R635-R639. 
 

Kramer, B. (1974). Electric organ discharge interaction during interspecific agonistic behavior 
in freely swimming mormyrid fish. J Comp Physiol 93, 203-235. 

 
Kramer, B. (1978). Spontaneous discharge rhythms and social signalling in the weakly electric 

fish Pollimyrus isidori (Cuvier et Valenciennes) (Mormyridae, Teleostei). Behav Ecol 
Sociobiol 4, 61-74. 

 
Kramer, B. (1979). Electric and motor responses of the weakly electric fish, Gnathonemus 

petersii (Mormyridae), to play-back of social signals. Behav Ecol Sociobiol 6, 67-79. 
 

Kramer, B. and Kuhn, B. (1994). Species recognition by the sequence of discharge intervals in 
weakly electric fishes of the genus Campylomormyrus (Mormyridae, Teleostei). Anim 
Behav 48, 435-445. 

 

Kuba, H. (2007). Cellular and molecular mechanisms of avian auditory coincidence detection. 
Neuroscience Research 59, 370-376. 

 
Laurent, G. (1997). Olfactory processing: Maps, times, and codes. Curr. Opin. Neurobiol. 7, 

547-553. 
 

Lavoué, S., Hopkins, C. D. and Toham, A. K. (2004). The Petrocephalus (Pisces, 
Osteoglossomorpha, Mormyridae) of Gabon, Central Africa, with the description of a 
new species. Zoosystema 26, 511-535. 

 

Lavoué, S., Sullivan, J. P. and Arnegard, M. E. (2010). African weakly electric fishes of the 
genus Petrocephalus (Osteoglossomorpha: Mormyridae) of Odzala National Park, 
Republic of the Congo (Lékoli River, Congo River basin) with description of five new 
species. Zootaxa 2600, 1-52. 

 
Lestienne, R. (2001). Spike timing, synchronization and information processing on the sensory 

side of the central nervous system. Prog Neurobiol 65, 545-91. 
 

Lucker, H. and Kramer, B. (1981). Development of a sex difference in the preferred latency 
response in the weakly electric fish, Pollimyrus isidori (Cuvier et Valenciennes) 
(Mormyridae, Teleostei). Behav Ecol Sociobiol 9, 103-109. 

50



Lyons-Warren, A. M., Hollmann, M. and Carlson, B. A. (2012a). Sensory receptor diversity 
establishes a peripheral population code for stimulus duration at low intensities. J Exp 
Biol 215, 2586-600. 

 

Lyons-Warren, A. M., Kohashi, T., Mennerick, S. and Carlson, B. A. (2012b). It’s not a 
coincidence: A novel mechanism for processing submillisecond spike timing 
differences. In 10th International Congress of Neuroethology. College Park, MD. 

 

Lyons-Warren, A. M., Kohashi, T., Mennerick, S. and Carlson, B. A. (2013). Retrograde 
fluorescent labeling allows for targeted extracellular single-unit recording from 
identified neurons in vivo. J Vis Exp 76, e3921. 

 

Ma, X., Kohashi, T. and Carlson, B. A. (2013) Extensive excitatory network interactions shape 
temporal processing of communication signals in a model sensory system. J. 
Neurophysiol., doi:10.1152/jn.00145.2013. 

 

Machnik, P. and Kramer, B. (2008). Female choice by electric pulse duration: attractiveness of 
the males' communication signal assessed by female bulldog fish, Marcusenius 
pongolensis (Mormyridae, Teleostei). J Exp Biol 211, 1969-77. 

 

MacLeod, K. M. (2011). Short-term synaptic plasticity and intensity coding. Hearing Research 
279, 13-21. 

 
Maler, L., Karten, H. J. and Bennett, M. V. L. (1973a). The central connections of the anterior 

lateral line nerve of Gnathonemus petersii. J Comp Neurol 151, 67-84. 
 

Maler, L., Karten, H. J. and Bennett, M. V. L. (1973b). The central connections of the 
posterior lateral line nerve of Gnathonemus petersii. J Comp Neurol 151, 57-66. 

 
Maler, L., Sas, E. K. B. and Rogers, J. (1981). The cytology of the posterior lateral line lobe of 

high frequency weakly electric fish (Gymnotidae): Dendritic differentiation and synaptic 
specificity in a simple cortex. J Comp Neurol 195, 87-139. 

 
Markowski, B., Baier, B. and Kramer, B. (2008). Differentiation in electrical pulse waveforms 

in a pair of sibling Dwarf Stonebashers Pollimyrus castelnaui and P. marianne: possible 
mechanisms and functions (Mormyridae, Teleostei). Behaviour 145, 115-135. 
 

51



Marsat, G. and Maler, L. (2010). Neural heterogeneity and efficient population codes for 
communication signals. J Neurophysiol 104, 2543-2555. 

 
Matsushita, A. and Kawasaki, M. (2004). Unitary giant synapses embracing a single neuron at 

the convergent site of time-coding pathways of an electric fish, Gymnarchus niloticus. 
Journal of Comparative Neurology 472, 140-155. 

 
Mehaffey, W. H., Ellis, L. D., Krahe, R., Dunn, R. J. and Chacron, M. J. (2008a). Ionic and 

neuromodulatory regulation of burst discharge controls frequency tuning. Journal of 
Physiology-Paris 102, 195-208. 

 
Mehaffey, W. H., Maler, L. and Turner, R. W. (2008b). Intrinsic frequency tuning in ELL 

pyramidal cells varies across electrosensory maps. J Neurophysiol 99, 2641-55. 
 

Middleton, J., Yu, N., Longtin, A. and Maler, L. (2011). Routing the flow of sensory signals 
using plastic responses to bursts and isolated spikes: experiment and theory. J Neurosci 
31, 2461-2473. 

 

Moller, P. (1970). 'Communication' in weakly electric fish, Gnathonemus niger (mormyridae) I. 
Variation of electric organ discharge (EOD) frequency elicited by controlled electric 
stimuli. Anim Behav 18, 768-786. 

 

Moller, P. (1976). Electric signals and schooling behavior in a weakly electric fish, Marcusenius 
cyprinoides L. (Mormyriformes). Science 193, 697-9. 

 
Mugnaini, E. and Maler, L. (1987a). Cytology and immunocytochemistry of the nucleus 

extrolateralis anterior of the mormyrid brain: possible role of GABAergic synapses in 
temporal analysis. Anat Embryol (Berl) 176, 313-36. 

 
Mugnaini, E. and Maler, L. (1987b). Cytology and immunocytochemistry of the nucleus of the 

lateral line lobe in the electric fish Gnathonemus petersii (Mormyridae): evidence 
suggesting that GABAergic synapses mediate an inhibitory corollary discharge. Synapse 
1, 32-56. 

 

Nicol, M. J. and Walmsley, B. (2002). Ultrastructural basis of synaptic transmission between 
endbulbs of Held and bushy cells in the rat cochlear nucleus. J Physiol 539, 713-23. 

52



Nieuwenhuys, R., ten Donkelaar, H. J. and Nicholson, C. (1998). The meaning of it all. In 
The Central Nervous System of Vertebrates, vol. 3 (ed. R. Nieuwenhuys H. J. ten 
Donkelaar and C. Nicholson), pp. 2135-2195. Berlin: Springer-Verlag. 

 

O'Donnell, C. and Nolan, M. F. (2011). Tuning of synaptic responses: an organizing principle 
for optimization of neural circuits. Trends Neurosci 34, 51-60. 

 
Paintner, S. and Kramer, B. (2003). Electrosensory basis for individual recognition in a weakly 

electric, mormyrid fish, Pollimyrus adspersus (Gunther, 1866). Behav Ecol Sociobiol 
55, 197-208. 

 
Panzeri, S., Brunel, N., Logothetis, N. K. and Kayser, C. (2010). Sensory neural codes using 

multiplexed temporal scales. Trends Neurosci 33, 111-20. 
 

Perkel, D. and Bullock, T. H. (1968). Neuronal coding. Neurosci Res Prog Bull 6, 221-348. 
 

Pluta, S. R. and Kawasaki, M. (2010). Temporal selectivity in midbrain electrosensory neurons 
identified by modal variation in active sensing. J Neurophysiol 104, 498-507. 

 
Prechtl, J. C., von der Emde, G., Wolfart, J., Karamursel, S., Akoev, G. N., Andrianov, Y. 

N. and Bullock, T. H. (1998). Sensory processing in the pallium of a mormyrid fish. 
Journal of Neuroscience 18, 7381-7393. 

 
Rieke, F., Warland, D., de Ruyter van Steveninck, R. and Bialek, W. (1997). Spikes: 

Exploring the Neural Code. Cambridge, MA: The MIT Press. 
 

Rose, G. and Capranica, R. R. (1983). Temporal selectivity in the central auditory system of 
the leopard frog. Science 219, 1087-1089. 

 
Rose, G. J. and Fortune, E. S. (1999). Frequency-dependent PSP depression contributes to low-

pass temporal filtering in Eigenmannia. J Neurosci 19, 7629-39. 
 

Rose, G. J., Leary, C. J. and Edwards, C. J. (2011). Interval-counting neurons in the anuran 
auditory midbrain: factors underlying diversity of interval tuning. J Comp Physiol A 
Neuroethol Sens Neural Behav Physiol 197, 97-108. 

 

53



Russell, C. J. and Bell, C. C. (1978). Neuronal responses to electrosensory input in mormyrid 
valvula cerebelli. J Neurophysiol 41, 1495-1510. 

 
Russell, C. J., Myers, J. P. and Bell, C. C. (1974). The echo response in Gnathonemus petersii 

(Mormyridae). J Comp Physiol 92, 181-200. 
 

Ryan, M. J. (1986). Neuroanatomy influences speciation rates among anurans. Proc Natl Acad 
Sci USA 83, 1379-1382. 

 
Sadeghi, S. G., Chacron, M. J., Taylor, M. C. and Cullen, K. E. (2007). Neural variability, 

detection thresholds, and information transmission in the vestibular system. J Neurosci 
27, 771-81. 

 
Schluger, J. H. and Hopkins, C. D. (1987). Electric fish approach stationary signal sources by 

following electric current lines. J Exp Biol 130, 359-67. 
 

Schnupp, J. W. H. and Carr, C. E. (2009). On hearing with more than one ear: lessons from 
evolution. Nat Neurosci 12, 692-697. 

 
Seehausen, O., Terai, Y., Magalhaes, I. S., Carleton, K. L., Mrosso, H. D. J., Miyagi, R., van 

der Sluijs, I., Schneider, M. V., Maan, M. E., Tachida, H. et al. (2008). Speciation 
through sensory drive in cichlid fish. Nature 455, 620-627. 

 
Sullivan, J. P., Lavoue, S. and Hopkins, C. D. (2000). Molecular systematics of the African 

electric fishes (Mormyroidea: teleostei) and a model for the evolution of their electric 
organs. J Exp Biol 203, 665-83. 

 
Sullivan, W. E. and Konishi, M. (1984). Segregation of stimulus phase and intensity coding in 

the cochlear nucleus of the barn owl. J Neurosci 4, 1787-99. 
 

Szabo, T. (1965). Sense organs of the lateral line system in some electric fish of the 
Gymnotidae, Mormyridae and Gymnarchidae. J Morphol 117, 229-49. 

 
Szabo, T., Enger, P. S. and Libouban, S. (1979). Electrosensory systems in the mormyrid fish, 

Gnathonemus petersii : special emphasis on the fast conducting pathway. J Physiol 
(Paris) 75, 409-20. 

54



Szabo, T. and Fessard, A. (1974). Physiology of electroreceptors. In Handbook of Sensory 
Physiology, Vol. III Pt. 3,  (ed. A. Fessard), pp. 59-124. Berlin, Heidelberg, New York: 
Springer-Verlag. 

 

Szabo, T. and Ravaille, M. (1976). Synaptic structure of the lateral line lobe nucleus in 
mormyrid fish. Neurosci Lett 2, 127-131. 

 
Szabo, T., Ravaille, M., Libouban, S. and Enger, P. S. (1983). The mormyrid 

rhombencephalon: I. Light and EM investigations on the structure and connections of 
the lateral line lobe nucleus with HRP labelling. Brain Res 266, 1-19. 

 
Szabo, T., Sakata, H. and Ravaille, M. (1975). An electrotonically coupled pathway in the 

central nervous system of some teleost fish, Gymnotidae and Mormyridae. Brain Res 95, 
459-74. 

 
Terai, Y., Seehausen, O., Sasaki, T., Takahashi, K., Mizoiri, S., Sugawara, T., Sato, T., 

Watanabe, M., Konijnendijk, N., Mroso, H. D. J. et al. (2006). Divergent selection on 
opsins drives incipient speciation in Lake Victoria cichlids. PLOS Biology 4, e433. 

 
Teyssedre, C. and Serrier, J. (1986). Temporal spacing of signals in communication, studied in 

weakly-electric mormyrid fish (Teleostei, Pisces). Behav Processes 12, 77-98. 
 

Theunissen, F. and Miller, J. P. (1995). Temporal encoding in nervous systems: a rigorous 
definition. J Comput Neurosci 2, 149-62. 

 
Trussell, L. O. (1997). Cellular mechanisms for preservation of timing in central auditory 

pathways. Curr Opin Neurobiol 7, 487-92. 
 

Trussell, L. O. (1999). Synaptic mechanisms for coding timing in auditory neurons. Annu Rev 
Physiol 61, 477-496. 

 
Trussell, L. O. (2008). Central synapses that preserve auditory timing. In The Senses: A 

Comprehensive Reference,  eds. A. I. Basbaum A. Kaneko G. M. Shepherd and G. 
Westheimer), pp. 587-602. San Diego, CA: Academic. 

 
Victor, J. D. and Purpura, K. P. (1996). Nature and precision of temporal coding in visual 

cortex: a metric-space analysis. J Neurophysiol 76, 1310-1326. 

55



von der Emde, G., Sena, L. G., Niso, R. and Grant, K. (2000). The midbrain precommand 
nucleus of the mormyrid electromotor network. J Neurosci 20, 5483-95. 

 
Waxman, S. G. (1980). Determinants of conduction velocity in myelinated nerve fibers. Muscle 

Nerve 3, 141-50. 
 

Westby, G. W. M. and Kirschbaum, F. (1978). Emergence and development of the electric 
organ discharge in the mormyrid fish, Pollimyrus isidori. J Comp Physiol A 127, 45-49. 

 
Wong, R. Y. and Hopkins, C. D. (2007). Electrical and behavioral courtship displays in the 

mormyrid fish Brienomyrus brachyistius. J Exp Biol 210, 2244-52. 
 

Wullimann, M. F. and Northcutt, R. G. (1990). Visual and electrosensory circuits of the 
diencephalon in mormyrids: an evolutionary perspective. J Comp Neurol 297, 537-52. 

 
Wullimann, M. F. and Rooney, D. J. (1990). A direct cerebello-telencephalic projection in an 

electrosensory mormyrid fish. Brain Res 520, 354-7. 
 

Xu-Friedman, M. A. and Hopkins, C. D. (1999). Central mechanisms of temporal analysis in 
the knollenorgan pathway of mormyrid electric fish. J Exp Biol 202, 1311-8. 

 
Xu-Friedman, M. A. and Regehr, W. G. (2005). Dynamic-clamp analysis of the effects of 

convergence on spike timing. I. Many synaptic inputs. J Neurophysiol 94, 2512-25. 
 

Zakon, H. H. (1986). The electroreceptive periphery. In Electroreception,  (ed. T. H. Bullock 
and W. Heiligenberg), pp. 103-156. New York: John Wiley & Sons. 

 
Zipser, B. and Bennett, M. V. (1976). Interaction of electrosensory and electromotor signals in 

lateral line lobe of a mormyrid fish. J Neurophysiol 39, 713-21. 
 

Zucker, R. S. and Regehr, W. G. (2002). Short-term synaptic plasticity. Annu Rev  
Physiol 64, 355-405. 

56



Chapter 2 
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shape interval tuning in midbrain neurons 
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ABSTRACT  

A variety of synaptic mechanisms can contribute to single-neuron selectivity for temporal 

intervals in sensory stimuli. However, it remains unknown how these mechanisms interact to 

establish single-neuron sensitivity to temporal patterns of sensory stimulation in vivo. Here we 

address this question in a circuit that allows us to control the precise temporal patterns of 

synaptic input to interval-tuned neurons in behaviorally relevant ways. We obtained in vivo 

intracellular recordings under multiple levels of current-clamp from midbrain neurons in the 

mormyrid weakly electric fish Brienomyrus brachyistius during stimulation with electrosensory 

pulse trains. To reveal the excitatory and inhibitory inputs onto interval-tuned neurons, we then 

estimated the synaptic conductances underlying responses. We found short-term depression in 

excitatory and inhibitory pathways onto all interval-tuned neurons. Short-interval selectivity was 

associated with excitation that depressed less than inhibition at short intervals, as well as 

temporally summating excitation. Long-interval selectivity was associated with long-lasting 

onset inhibition. We investigated tuning after separately nullifying the contributions of temporal 

summation and depression, and found the greatest diversity of interval-selectivity among neurons 

when both mechanisms were at play. Furthermore, eliminating the effects of depression 

decreased sensitivity to directional changes in interval. These findings demonstrate that variation 

in depression and summation of excitation and inhibition helps establish tuning to behaviorally 

relevant intervals in communication signals, and that depression contributes to neural coding of 

interval sequences. This work reveals for the first time how the interplay between short-term 

plasticity and temporal summation mediates the decoding of temporal sequences in awake, 

behaving animals.
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INTRODUCTION  

Many circuits contain neurons tuned to particular timing sequences in sensory stimuli 

(Rose and Capranica, 1983; Grothe, 1994; Fortune and Rose, 1997a; Edwards et al., 2002; Sakai 

et al., 2009; Pluta and Kawasaki, 2010; Goel and Buonomano, 2014). Single-neuron temporal 

tuning reflects a combination of presynaptic tuning, synaptic filtering, and postsynaptic filtering. 

Two synaptic mechanisms that have been implicated in establishing temporal filtering in vivo are 

short-term depression (Fortune and Rose, 2000) and temporal summation (Rose et al., 2011). 

However, it is difficult to precisely determine the relative contributions of various synaptic 

filtering mechanisms to interval tuning in vivo because temporal filtering by presynaptic neurons 

makes the relationship between stimulus intervals and presynaptic input patterns unknown. In 

vitro slice recordings, which allow precise control of presynaptic stimulation, have also revealed 

that short-term plasticity (Klyachko and Stevens, 2006) and temporal summation (George et al., 

2011) act as temporal filters of synaptic input. However, in vitro preparations sever connections 

between neurons thereby disrupting the natural spatiotemporal pattern of inputs. Furthermore, 

pharmacologically blocking inhibition may release presynaptic excitatory inputs from their 

natural inhibition, making it difficult to isolate the relative contributions of excitation and 

inhibition to single-neuron temporal selectivity under natural conditions. 

Here we study the interactions of excitation and inhibition in interval-tuned neurons in 

vivo in a circuit that allows precise control of presynaptic timing. Mormyrid electric fish are ideal 

for studying synaptic mechanisms of temporal filtering because the interspike intervals of 

presynaptic inputs onto interval-tuned neurons precisely follow the interpulse intervals in 

sensory stimuli. Moreover, these intervals can be varied in ways that fish would naturally 

experience. Mormyrids vary the intervals between successive electric organ discharges (EODs) 
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to communicate (see Carlson, 2002 for review). Natural interpulse intervals (IPIs) range from 

approximately ten to hundreds of milliseconds (Hopkins, 1986), and the ability to accurately 

detect and decode rapidly changing temporal patterns of EODs is essential for social interactions 

(Carlson, 2002). 

 Electric communication signals are processed by a dedicated sensory pathway (Xu-

Friedman and Hopkins, 1999; Baker et al., 2013). Electroreceptors in the skin fire one time-

locked spike in response to each EOD (Bennett, 1965). This spike pattern is relayed to the 

hindbrain nucleus of the electrosensory lateral line lobe, which in turn projects to the anterior 

exterolateral nucleus (ELa) of the midbrain torus semicircularis. ELa sends its only output to the 

adjacent posterior exterolateral nucleus (ELp) while preserving the IPIs of the sensory stimulus 

(Carlson, 2009). ELp neurons respond selectively to particular IPIs and thus act as temporal 

filters of afferent spike patterns (Carlson, 2009).  

 In the current study, we present electrosensory stimulation to awake, behaving fish, 

record responses of single ELp neurons to IPI trains under multiple levels of current-clamp, and 

estimate the excitatory and inhibitory synaptic conductances underlying IPI tuning. This method 

maintains the intact neural circuit and allows direct comparison of the strength and time course 

of excitation and inhibition to study the relative contributions of short-term synaptic plasticity 

and temporal summation in establishing interval selectivity.   
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MATERIALS AND METHODS 

Animals. We used a total of 45 Brienomyrus brachyistius (5.0-9.0 cm in standard length) 

of both sexes in this study. We acquired the fish through the aquarium trade and housed them in 

groups with a 12h:12h light:dark cycle, water conductivity of 200-400 µS/cm, and temperature of 

25-29° C. We fed the fish live black worms four times per week. All procedures were in 

accordance with the guidelines established by the National Institutes of Health and were 

approved by the Institutional Animal Care and Use Committee at Washington University in St. 

Louis. 

Surgery. The surgical procedure has been described previously (Carlson, 2009; Lyons-

Warren et al., 2013b). Briefly, fish were anesthetized in a solution of 300 mg/L tricaine 

methanesulfonate (MS-222) and paralyzed with an intramuscular injection of 100 µL of 3 

mg/mL gallamine triethiodide (Flaxedil). We then respired the fish with 100 mg/L MS-222. 

Before surgery, we applied a drop of 0.4% lidocaine local anesthetic to the incision site. Next we 

glued a head post to the skull and performed a craniotomy to expose ELp. Following surgery, we 

switched respiration to freshwater and allowed the fish to recover from anesthesia before 

beginning the recording session. We monitored the fish’s anesthetized state with a pair of 

electrodes external to the electric organ to record the fictive EOD generated by the electromotor 

neurons (Carlson, 2009). The fictive EOD is silenced during anesthesia; the return of fictive 

discharges at regular intervals signals that the fish has recovered. At the end of the recording 

session, the fish was anesthetized with 100 mg/L MS-222 respiration until no fictive EOD could 

be recorded, and then the fish was killed by freezing. 

 Intracellular whole-cell recordings. We obtained intracellular whole-cell current-clamp 

recordings following previously published methods (Rose and Fortune, 1996; Carlson, 2009). 
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We filled glass micropipettes of 20-40 MΩ resistance with a tip solution containing the 

following (in mM): 100 CH3CO2K, 2 KCl, 1 MgCl2, 5 EGTA, 10 HEPES, 20 KOH, and 43 

biocytin. We filled the pipette shank with the same solution except that we replaced biocytin 

with D-mannitol (Carlson, 2009). Initial seals were >1 GΩ. Intracellular recordings were 

amplified 10x and low-pass filtered (cut-off frequency=10 kHz) through an Axopatch 200B 

amplifier (Molecular Devices) and digitized at a sampling rate of 97.7 kHz (Tucker-Davis 

Technologies; model RX8). We saved recordings using custom-made software for Matlab 7 

(Mathworks). 

 Stimulus presentation. We delivered electrosensory stimuli through electrodes positioned 

at the perimeter of the recording chamber. For transverse stimulation to the fish, stimuli were 

delivered between three vertically oriented electrodes on one side of the chamber and three 

vertically oriented electrodes on the other side of the chamber. For longitudinal stimulation to the 

fish, stimuli were delivered between two vertically oriented electrodes on the front of the 

chamber and two vertically oriented electrodes on the back of the chamber (Lyons-Warren et al., 

2013b). Stimuli consisted of monophasic square electric pulses. After establishing a recording, 

we first stimulated with single pulses while varying pulse duration (0.5-1.5 ms), intensity (1-100 

mV/cm), polarity (normal or reversed), and orientation (transverse or longitudinal to the fish) to 

identify the combination of features that elicited maximal postsynaptic potential (PSP) responses 

from a given neuron. We then delivered all stimuli to that neuron using this combination of 

features, varying only the interpulse intervals (as in Carlson, 2009). We discarded responses to 

stimulus pulses delivered 2-5 ms after a fictive EOD, since a corollary discharge at the level of 

the hindbrain blocks sensory responses occurring within this window (Bell and Grant, 1989). 
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 Data analysis. We removed spikes from recording traces using a linear extrapolation 

method (Hedwig and Knepper, 1992). First, we smoothed the derivative of the recorded trace 

using a moving average filter with width of 0.5 ms. We defined spike start as the point where the 

smoothed derivative first exceeded the prestimulus mean + 4SD, and spike end as the point 

where the smoothed derivative decreased below the prestimulus mean - 1SD. We chose four SD 

for the spike start to avoid identifying fast PSPs as spikes, and one SD for the spike end to ensure 

capturing as much of the spike as possible. If the smoothed derivative did not cross the spike end 

threshold, we used the first minimum in the smoothed derivative up to 8 ms after the spike start 

as the spike end. Such a wide window was necessary to accommodate variation in neurons’ 

responses, which depend not only on intrinsic membrane properties but also where on the 

membrane the patch recording is located. To remove the spikes, we linearly extrapolated the 

membrane potential between spike start and spike end.  

 We averaged responses to 10 repetitions of each stimulus presented. Next we determined 

the membrane’s resting potential (RP) by averaging the potential over a 50 ms window 

immediately preceding the stimulus. We measured the PSP amplitude by finding the maximum 

potential in a window starting 3 ms after stimulus pulse offset and ending immediately before the 

onset of the next pulse. We chose 3 ms as the start of the measurement window because the 

latency of electrosensory responses in ELa, the primary input to ELp, is ~3 ms (Amagai, 1998; 

Carlson, 2009). If the maximum potential occurred after delivery of the next pulse, we increased 

the measurement window by 3 ms while ignoring the stimulus artifact. We subtracted the RP 

from the maximum potential to yield the PSP amplitude. For presentation purposes, we removed 

the stimulus artifact by linearly extrapolating the membrane potential from the time of pulse 

onset to 0.5 ms after pulse offset. 
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We assessed tuning to interpulse intervals (IPIs) in 72 neurons using scanning IPI stimuli. 

We presented two scan stimuli; one consisted of a sequence of decreasing then increasing 

intervals (200 to 10 ms IPIs followed by 10 to 200 ms IPIs; see Fig. 1), and the other consisted of 

a sequence of increasing then decreasing intervals. These IPI scan stimuli are similar to 

frequency sweeps used to quantify response properties of the central auditory systems of many 

animals (e.g., Carrasco and Lomber, 2011; Williams and Fuzessery, 2012; Geis and Borst, 2013). 

We measured the PSPs elicited by each pulse in the two scan stimuli, and then averaged the PSPs 

in response to the same IPI. We also evaluated IPI tuning in nine neurons using trains of 10 

pulses delivered at constant IPI ranging from 10 to 100 ms. We averaged responses to the 2nd-

10th pulses in the train to obtain the neuron’s response to each IPI (Carlson, 2009; George et al., 

2011; Ma et al., 2013). We collected both scanning IPI and constant IPI tuning curves from two 

neurons, and in both cases the scanning and constant IPI tuning curves were in agreement with 

one another. 

 High-pass neurons respond best to short intervals, low-pass neurons respond best to long 

intervals, band-pass neurons respond best to intermediate intervals, and band-stop neurons 

respond best to short and long, but not intermediate, intervals (Carlson, 2009). To generate 

tuning curves, we normalized responses to each IPI by dividing by the maximum response (Fig. 

1). If PSPs to all IPIs were negative (i.e., below the neuron’s resting potential), we multiplied all 

PSPs by -1 before normalizing by the maximum response. If the normalized responses to all IPIs 

remained above 0.85, we classified the neuron as all-pass (Carlson, 2009; George et al., 2011; 

Ma et al., 2013). Otherwise, we fit tuning curves with both Gaussian and sigmoidal functions to 

characterize IPI tuning (Groh et al., 2003). If the r2 values of both the Gaussian and the sigmoidal 

fits were < 0.5, we classified the neuron’s tuning as complex. Since Gaussian and sigmoidal 
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curves can fit low- and high-pass tuning curves equally well, we used an r2
sigmoid/r2

Gaussian ratio of 

0.85 as a cutoff for comparing the goodness of sigmoid and Gaussian fits (Groh et al., 2003). If 

at least one r2 was > 0.5, we used the ratio of the r2 values to determine tuning. If r2
sigmoid/r2

Gaussian 

> 0.85, we classified the neuron as high-pass if the ratio of the sigmoid slope to the sigmoid 

amplitude was negative, and low-pass if this ratio was positive. If r2
sigmoid/r2

Gaussian < 0.85, we 

classified the neuron as band-pass if the Gaussian amplitude was positive and band-stop if the 

Gaussian amplitude was negative. For tuning curves in which all PSPs were originally negative, 

we classified tuning as the opposite of the result of the fits to account for the reversed sign.  

 From the scanning IPI stimuli used to assess tuning, we also quantified the degree of 

sensitivity to direction of IPI change. Changes in IPI are common characteristics of mormyrid 

electric communication signals (Carlson, 2002; Carlson and Hopkins, 2004; Wong and Hopkins, 

2007). To quantify the degree of sensitivity to direction of IPI change, we calculated a scan 

direction-selectivity index (DSI). We started by normalizing the PSPs elicited by a scan stimulus 

to the maximum PSP. If the maximum potential in response to a particular IPI was below the 

neuron’s resting potential, we set the response to that IPI to 0. This step was necessary to limit 

the range of the DSI from 0 to 1. For a single scan stimulus, we next found the difference 

between the PSP evoked by a given IPI when presented during the decreasing portion of the 

scan, and that evoked by the same IPI when presented during the increasing portion of the scan. 

We took the sum of the absolute values of these differences across all IPIs and divided by the 

total number of IPIs (n=12 IPIs). We then averaged the DSI across the two scan stimuli 

(increasing then decreasing scan, and decreasing then increasing scan). When the PSPs in 

response to each IPI are identical regardless of scan direction, the DSI equals 0 (no directional 
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selectivity), and when the PSPs in response to each IPI are equal to the maximum response in 

one direction and zero in the other direction, the DSI equals 1 (maximal directional selectivity). 

 To investigate the influence of temporal summation on IPI tuning and scan directional 

selectivity, we removed its effects from our PSP measurements. From the maximum potential 

evoked by each stimulus pulse, we subtracted the minimum potential that occurred between the 

time of the maximum potential and the time of the stimulus pulse. The results provide an 

estimate of the membrane potential changes evoked only by each pulse while minimizing the 

lingering effects of responses to previous pulses. To assess the validity of this method, we 

compared the results to measurements of true summation for the second PSP in 10 ms and 100 

ms IPI trains. To measure true summation, we subtracted the change in membrane potential of 

the single-pulse response at the time of the second PSP from the amplitude of the second PSP. 

We then normalized the second PSP amplitudes resulting from each summation removal method 

to the first PSP amplitude in the train. We compared the results of the two methods in 40 neurons 

for which responses to both 10 ms and 100 ms IPIs were available. Our summation removal 

method resulted in three outlier neurons in which the 10 ms IPI PSPs were greatly overestimated, 

and one outlier neuron in which the 100 ms IPI PSPs were greatly overestimated relative to the 

true summation removal method. After removing these outliers, we found a linear correlation 

between the normalized PSPs using our summation removal method and the normalized PSPs 

using the true summation removal method at 10 ms IPIs (y=0.54x+0.88, r2=0.24, F(1,34)=11, 

p=0.0025) as well as 100 ms IPIs (y=0.46x+0.66, r2=0.28, F(1,34)=13, p=0.00099). Based on these 

results, we performed our summation removal method on the PSPs used to determine each 

neuron’s IPI tuning and scan directional selectivity to determine the contribution of temporal 

summation to these two properties. We did not include the four outlier neurons in this analysis. 
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In general, our summation removal method (median normalized PSP=1.25, range=0-4.2) 

tended to modestly overestimate 10 ms IPI PSPs relative to the true summation removal method 

(median normalized PSP=0.93, range=-0.09-4.0; Wilcoxon matched-pairs test, Z(36)=2.3, 

p=0.03). There was no difference between the results of the two methods for 100 ms IPIs 

(Wilcoxon matched-pairs test, Z(36)=1.7, p=0.084). Therefore, our method of removing 

summation may overestimate PSP amplitudes at short intervals but not long intervals. The net 

effect of this error would be a tendency to exaggerate the high-pass nature of summation-

removed responses. Since we found that minimizing the effects of summation reduced the 

number of high-pass neurons (see Fig. 8), the possibility that we overestimated neurons’ high-

pass characteristics means that there may have actually been fewer high-pass responses if we 

could have more accurately assessed tuning without summation. Thus, this error is conservative, 

as accounting for this modest overestimation could only lend added support to our conclusion 

that temporal summation is important for producing high-pass responses (see Results). 

 Synaptic conductance estimation. We estimated the synaptic conductances underlying 

neural responses following established methods (i.e., Wehr and Zador, 2003; Priebe and Ferster, 

2005; Higley and Contreras, 2006; Monier et al., 2008; Gittelman et al., 2009), which are based 

on solving the membrane equation 

Cm
dVm
dt

= ge(Vm −Ve )+ gi (Vm −Vi )+ gleak (Vm −Vrest )+ Iinj ,   (2.1) 

where Cm is the membrane capacitance, dVm/dt is the change in membrane potential over time, 

Vrest is the resting membrane potential, Iinj is the injected current, Ve and Vi are the excitatory and 

inhibitory reversal potentials, respectively, and ge, gi, and gleak are the excitatory, inhibitory, and 

leak conductances, respectively.  
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We first measured the input resistance (Rm) and membrane time constant (τm) by fitting a 

double exponential to each neuron’s response to a 100 ms, -0.10 nA current pulse, as described 

by Gittelman et al. (2009). We then used these values to calculate the membrane capacitance (Cm 

= τm/Rm).  

Next we obtained intracellular recordings of responses to single stimulus pulses, constant 

IPI trains (10 ms and 100 ms IPIs), and scanning IPI trains (10-200 ms IPIs) at multiple levels of 

current clamp (0 to -0.20 nA). We estimated the capacitive current (Icap) according to  

Icap =Cm
dVm
dt

.     (2.2) 

Using the equation 

     
Vm =

1
gT
(Iinj − Icap )+Vrev ,    (2.3) 

where Vm is the membrane potential, gT is the total conductance, and Vrev is the synaptic reversal 

potential, we created plots of (Iinj – Icap) vs. Vm for the different levels of current clamp at each 

time point in the recording. The inverse of the slope of the best-fit line at each time point yields 

gT. The baseline gT represents gleak, and was found by taking the inverse of the median slope of 

best fits over the 50 ms prestimulus period. We then calculated the synaptic conductance (gsyn) 

throughout the recording as gT - gleak.  

Next we defined a baseline (Iinj - Icap) vs. Vm curve, with y-intercept equal to the median 

of the y-intercepts of the best fits during the prestimulus period, and slope equal to the inverse of 

gleak. The intersection of the baseline curve with the best-fit line at each time point during the 

recording yields Vrev at that time point. Following the simplification that the synaptic current is 0 

nA at Vrev, equations for ge and gi can be written as 
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ge = gsyn
(Vi −Vrev )
(Vi −Ve )      (2.4) 

and
 

gi = gsyn
(Ve −Vrev )
(Ve −Vi )

.         (2.5) 

We used a Ve of 0 mV and a Vi of -106 mV, which was the calculated reversal potential for 

potassium based on our intracellular electrode solution and extracellular Hickman’s ringer 

solution. 

Because this method is based on the cell’s I-V linearity, spikes necessarily violate this 

linearity and cause error in conductance estimation that cannot be overcome through spike 

removal (Guillamon et al., 2006). Therefore, we discarded current-clamp levels containing 

spikes. However, if fewer than three current-clamp levels were spike-free for a given neuron, we 

removed spikes by ignoring the portion of the recording trace from 2 ms before spike start to 2 

ms after spike end before averaging across ten stimulus repetitions. Spike start and end criteria 

were as described for spike removal. If this process resulted in gaps (due to the presence of 

spikes in all repetitions) or large edge effects (due to throwing out portions of some repetitions), 

we excluded the file from synaptic conductance estimation. If fewer than three current-clamp 

levels passed these criteria, we excluded the neuron from synaptic conductance estimation. An 

additional inclusion criterion required a RP of at least -40 mV at 0 nA current injection.  

Recordings from 48 of 83 neurons passed our inclusion criteria. The excluded recordings 

contained neurons from all tuning classes, and there were no differences in the tuning 

distributions of excluded vs. included neurons (Χ2
(5)=6.3, p>0.25). Furthermore, there were no 

differences between included and excluded recordings in terms of resting membrane potential 

(Student’s t-test, t(81)=1.9, p=0.068), membrane time constant (Student’s t-test, t(81)=-1.8, 
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p=0.077), or input resistance (Student’s t-test, t(81)=-0.87, p=0.39). We therefore conclude that 

our inclusion criteria did not bias the tuning or the passive membrane properties of the neurons 

analyzed in this study. 

We median filtered synaptic conductances with a filter width of 1 ms. To assess the 

goodness of the linear fits giving rise to the conductance estimates, we calculated the skewness 

of the linear r2 distribution for each estimate according to  

skewness(X) = n
(n−1)(n− 2)

Xi − X
σ

"

#
$

%

&
'

3

i=1

n

∑ ,   (2.6) 

where n is the number of points, is the mean, and σ is the standard deviation of the r2 

distribution. Distributions clustered near 1 had negative skewness values, whereas distributions 

clustered near 0 had positive skewness values. If the skewness was >-1, we used only those 

conductance values at points where the r2 of the I-V fits were greater than the median r2. 

Skewness values ranged from -40 to 0.9 across all conductance estimates, with 20% of estimates 

having skewness values <-1.  

 In several neurons (n=10 neurons), the median-filtered synaptic reversal potential 

decreased below the inhibitory reversal potential, most likely due to a poor space clamp. In these 

cases, we set ge = 0 nS and gi = gsyn at the points where Vrev < Vi, since the responses at these 

points were most likely dominated by inhibition. 

Conductance estimations are based on a linear, isopotential neuron. While this method 

may cause slight underestimation of conductance magnitudes, it should not affect the time course 

(Wehr and Zador, 2003). We have tried to minimize these effects by comparing excitatory and 

inhibitory conductances within the same neuron and by normalizing conductance magnitudes 

before comparisons across neurons. Further, although cable attenuation may cause inhibitory 

X
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conductances to be slightly more underestimated than excitatory conductances (Wehr and Zador, 

2003), we focused on differences between neuron types. Therefore, our comparisons should hold 

despite any systematic errors in estimation. Another potential source of error in our estimates 

would be the presence of voltage-gated conductances. Although we have no definitive evidence 

for voltage-gated conductances in ELp, we have tried to minimize potential effects by limiting 

our analysis to points in which the current-voltage relationship was roughly linear.  

 To quantify synaptic conductances, we measured the peak magnitudes evoked by 

stimulus pulses as the maximum conductance in a window starting 3 ms after stimulus pulse 

offset to immediately before onset of the next pulse. To determine onset and offset latencies of 

responses to single pulses, we first smoothed conductances using a median filter with width of 2 

ms. Then the point at which the filtered conductance exceeded the prestimulus mean + 3SD 

defined the onset, and the point at which the filtered conductance decreased below the 

prestimulus mean + 1SD defined the offset. In some cases, two phases of conductance increases 

were present. If the filtered conductance crossed the onset threshold 5 ms or less after the offset 

of the first phase, we recorded the onset and offset of a second phase. We measured conductance 

duration by subtracting conductance onset from offset; in neurons with two phases, we measured 

the duration as the offset of the second phase minus onset of the first phase. For presentation 

purposes, we removed the stimulus artifact by linearly extrapolating the conductance estimates 

from the time of stimulus onset to 0.5 ms after stimulus offset. 

 To estimate the dynamics of short-term depression, we removed the effects of temporal 

summation from conductance estimates. From each conductance peak elicited by a stimulus 

pulse we subtracted the minimum conductance that occurred between the time of the peak and 

the time of the preceding peak, starting with the second pulse in a train. The results provide an 
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estimate of the conductance changes evoked only by each pulse while minimizing the lingering 

effects of responses to previous pulses. To assess the validity of this method, we compared the 

results to measurements of true summation for the second conductance peak in 10 ms IPI trains. 

To measure true summation, we subtracted the conductance value of the single-pulse response 

that occurred at the time of the second conductance peak elicited by the 10 ms IPI train from the 

second conductance peak. We then normalized the second conductance amplitudes resulting 

from each summation removal method to the amplitude of the first peak conductance in the train. 

We found a linear correlation between the results of the two methods for 10 ms IPI excitatory 

(y=0.79x+0.13, r2=0.68, F(1,40)=85, p<0.000001) and inhibitory (y=0.72x+0.16, r2=0.54, 

F(1,40)=46, p<0.000001) conductances.  

To quantify the time course and degree of response decay (estimated conductances) or 

depression (estimated conductances with effects of summation removed) evoked by 10 ms IPI 

stimulus trains, we first normalized peak conductances to the conductance evoked by the first 

pulse. We then fit the normalized conductances with a single exponential function described by  

      y = ae
−t
τ + b ,     (2.7) 

where t is the time of stimulus pulses. For our normalized data that by definition equal 1 at t=0 

ms, we can simplify this equation to  

        y = a(e
−t
τ −1)+1 .     (2.8) 

The coefficient (a) of the best fit gives a measure of the magnitude of decay/depression and the 

time constant (τ) gives a measure of the time course of decay/depression. We restricted τ to 

between 0 and 90 ms, corresponding to the range of stimulus times used. We restricted a to 

between 0 and 1. If a fit resulted in a=0, indicating no decay, we did not use the corresponding τ. 

This situation occurred in two band-pass neurons; however, after the effects of summation were 72



removed, a was greater than 0. Since we limited the data in the fit to the stimulus times used, the 

resulting a and τ reflect the decay/depression observed during the presented stimuli, and not 

necessarily steady-state values. Conductances that decay or depress faster will have a smaller τ, 

and conductances that decay or depress to a greater degree will have a larger a. 

 To study the effects of depression, we estimated what synaptic conductance responses 

would be in the absence of plasticity by convolving conductances evoked by single-pulse stimuli 

with IPI trains. First, for single-pulse conductances in which points with poor linear I-V fits were 

discarded, we linearly interpolated between the remaining points to recover a trace with the 

original uniform sampling rate. Next we defined the single-pulse conductances as the time point 

at which the stimulus occurred until the end of the recording (200 ms). We then convolved the 

single-pulse conductances with a 10-ms IPI train. To quantify the time course and degree of the 

resulting summation of conductances, we fit a single exponential described by 

y = a(1− e
−t
τ )+ b      (2.9) 

to the normalized peak responses to a 10 ms IPI train, where t is the time of stimulus pulses. For 

our normalized data that by definition equal 1 at t=0 ms, the offset term b is equal to 1. The 

coefficient (a) and time constant (τ) of the best fit give a measure of the degree and time course, 

respectively, of temporal summation. We restricted τ to between 0 and 90 ms based on the 

stimulus times used, and we restricted a to between 0 and the maximum normalized conductance 

minus 1. 

 To estimate IPI tuning in the absence of plasticity, we convolved single-pulse 

conductances with the same IPI stimuli used to characterize tuning in each neuron. We then put 

these conductances into the membrane equation to estimate the membrane potential that would 
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result. We measured PSPs from the estimated membrane potential and characterized IPI tuning 

as described for recorded potentials. 

Statistics. We performed all statistical tests in Statistica 6.1 (StatSoft, Inc.). Parametric 

tests included Student’s t-test, paired t-test, one-way ANOVA, and repeated-measures ANOVA. 

Nonparametric tests included Wilcoxon matched-pairs test and observed vs. expected frequency 

χ2.  

74



RESULTS 

We obtained intracellular whole-cell recordings from 83 ELp neurons during presentation 

of electrosensory pulse trains with IPIs ranging from 10-200 ms (Fig. 1). Recordings from 48 

neurons yielded conductance estimates that fit our inclusion criteria (see Materials and Methods). 

Their tuning curves were classified as high-pass (n=15 neurons), low-pass (n=23 neurons), band-

pass (n=4 neurons), band-stop (n=3 neurons), complex (n=2 neurons), or all-pass (n=1 neuron). 

We did not consider complex or all-pass tuned neurons in any subsequent analysis. We have 

included band-pass and band-stop neurons in population data to give an accurate representation 

of the diversity of responses of ELp neurons. However, we focused our analysis primarily on 

responses from high- and low-pass neurons since the majority of ELp neurons fall into one of 

these two categories (Carlson, 2009; George et al., 2011; Kohashi and Carlson, 2014).  

High- and low-pass neurons responded differently to short-interval stimulation. At short 

IPIs, high-pass neurons exhibited increased synaptic response amplitudes, whereas low-pass 

neurons exhibited decreased response amplitudes (Fig. 1) (Carlson, 2009). In some cases, the 

responses of high- and low-pass neurons to long-interval stimuli also varied depending on the 

direction of interval change, as we describe in detail later. A variety of synaptic mechanisms 

have been shown to give rise to such temporal sensitivity (Baker et al., 2013), including temporal 

summation (George et al., 2011; Rose et al., 2011), short-term depression (Fortune and Rose, 

2000; Klyachko and Stevens, 2006), and facilitation (Klyachko and Stevens, 2006). The relative 

timing of excitatory and inhibitory inputs has also been hypothesized to play a role (Grothe, 

1994; Edwards et al., 2008). Here we address the extent to which these various synaptic 

mechanisms interact to generate temporal filtering of behaviorally relevant synaptic input 

patterns in an intact sensory midbrain circuit.  
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Figure 1. ELp neurons vary in their tuning to stimulus interval. Recorded membrane potential (Vm) in 
response to a scan of decreasing then increasing interpulse intervals (IPIs) (left) and tuning curve (right) 
for a high-pass (A), low-pass (B), band-pass (C), and band-stop (D) neuron. Tick marks below the 
recording traces indicate stimulus times. Tuning curves were generated by averaging postsynaptic 
potential (PSP) amplitudes in response to the same IPI during a decreasing-increasing train and an 
increasing-decreasing train, then normalizing by the maximum average response. These curves were then 
fit with both a Gaussian and a sigmoidal function. Neurons were classified as high-pass or low-pass if  

76



 

r2
sigmoid/r2

Gaussian > 0.85, and as band-pass or band-stop if this ratio was < 0.85 (see Materials and Methods). 
The sigmoidal (high- and low-pass) or Gaussian (band-pass and band-stop) fit is shown for each neuron.  
 
 
Excitatory and inhibitory synaptic conductances experience rate-dependent decreases in 

magnitude 

The increased PSP amplitudes at short intervals that characterize high-pass responses 

could result from weakened inhibition or strengthened excitation. Conversely, the decreased PSP 

amplitudes at short intervals that characterize low-pass responses could result from strengthened 

inhibition or weakened excitation. To reveal the excitatory and inhibitory conductances evoked 

by IPIs ranging from 10 to 200 ms, we recorded intracellular responses of seven high-pass and 

ten low-pass neurons to electrosensory pulse trains of increasing and decreasing IPIs at multiple 

levels of holding current (Fig. 2A), and then estimated the underlying synaptic conductances 

(Fig. 2B,C). We found that the peak magnitude of both excitatory (Fig. 2D) and inhibitory (Fig. 

2E) conductances decreased at short intervals in all neurons, with the shortest intervals resulting 

in the smallest conductances. 

Excitation was significantly more reduced at short IPIs in low-pass neurons compared to 

high-pass neurons (Fig. 2D; repeated-measures ANOVA, interaction between tuning and IPI, 

F(11,15)=6.3, p<0.000001). In contrast to excitation, inhibition was similarly reduced in the two 

groups of neurons during short IPIs (Fig. 2E; repeated-measures ANOVA, interaction between 

tuning and IPI, F(11,15)=0.38 p=0.96). Notably, the amplitudes of inhibitory conductances were 

reduced compared to single-pulse responses even at the longest IPI tested (200 ms) in both 

groups of neurons.  

 Since the differences between high- and low-pass neurons were greatest at the shortest 

intervals tested, we next sought to characterize synaptic conductance dynamics during a train of  
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Figure 2. Excitatory and inhibitory conductances decrease at short intervals in response to IPI scans. (A) 
The membrane potential (Vm) recorded from a high-pass neuron during a decreasing-increasing IPI scan 
under three levels of current-clamp. (B-C) The excitatory (gE) (B) and inhibitory (gI) (C) synaptic 
conductances estimated from the potentials recorded in (A). Notice that the peak amplitudes decrease at 
short IPIs. (D-E) Average peak excitatory (D) and inhibitory conductances (E) normalized to single-pulse 
responses for high- and low-pass neurons. Error bars represent SEM. * p<0.000001, repeated-measures 
ANOVA, interaction between tuning and IPI.
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10 electrosensory pulses at a constant 10 ms IPI, which corresponds to approximately the 

minimum IPI a single fish produces (Hopkins, 1986). We then compared these responses to the 

synaptic conductances evoked by 100 ms IPIs. In 42 ELp neurons, we recorded intracellular 

responses at multiple levels of holding current (Fig. 3A) and estimated the underlying synaptic 

conductances (Fig. 3B). A plot of normalized PSPs evoked by 10 ms IPIs reveals the diversity of 

responses of ELp neurons, with the PSPs of some neurons increasing or decreasing to various 

degrees (Fig. 3D). The synaptic conductance estimates resulting from these PSPs revealed 

widespread reduction of the magnitudes of both excitation and inhibition in neurons of all tuning 

classes (Fig. 3E,F). These decreases were rate-dependent, with greater conductance decreases 

during 10 ms IPIs compared to 100 ms IPIs (Fig. 3C,G-I). 

 

Inhibition depresses more than excitation in high-pass neurons 

We next investigated how the dynamics of decreasing excitation and inhibition related to 

IPI tuning. In general, high-pass neurons received inhibitory inputs that decreased more than 

excitatory inputs during the 10 ms IPI train (Fig. 4B,C; repeated-measures ANOVA, interaction 

between excitation/inhibition and pulse time, F(9,11)=4.7, p=0.000031). To quantify the degree 

and time course of the decay of conductance magnitudes during 10 ms IPI trains, we fit the 

normalized peak conductances evoked by the stimulus train with a single exponential function 

(see Materials and Methods). The resulting time constant (τ) gives a measure of how quickly the 

conductance decreased, with smaller τ indicating faster decay. The amplitude (a), or coefficient, 

of the fit gives a measure of the magnitude of decay, with larger a indicating decay to a greater 

degree.  

The greater decrease in inhibition compared to excitation in high-pass neurons was due to  
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Figure 3. Interval-tuned neurons receive excitatory and inhibitory inputs that decrease to varying degrees 
during 10 ms IPIs. (A) The membrane potentials (Vm) recorded from a low-pass ELp neuron in response 
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Figure 4. Excitation depresses less than inhibition at short intervals in high-pass neurons. (A) The 
membrane potential (Vm) recorded from a representative high-pass neuron in response to a 10 ms IPI 
train. (B) The excitatory (gE) and inhibitory (gI) synaptic conductances underlying the responses shown 
in (A). (C) Normalized synaptic conductances during a 10 ms IPI train in high-pass neurons (n=13 
neurons). * p<0.0001, repeated-measures ANOVA, interaction between excitation/inhibition and pulse 
time. (D) Normalized synaptic conductances during the 10 ms IPI train after removing the effects of 
temporal summation (see Materials and Methods) for high-pass neurons. * p<0.01, repeated-measures 
ANOVA, interaction between excitation/inhibition and pulse time. (E-F) Bar graphs of average time 
constants (E) and amplitudes (F) of exponential fits to normalized observed and summation-removed 
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SEM. 
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inhibition that tended to decay faster (smaller τ in Fig. 4E) and to a greater degree (larger a in 

Fig. 4F) than excitation. However, conductances rarely returned to baseline levels between the 

peaks evoked by each pulse in the 10 ms IPI train (Fig. 4B), indicating that temporal summation 

of conductance changes to previous pulses likely influenced the peak conductances. Therefore, to 

determine the extent to which summation affected the degree and time course of conductance 

changes, we removed the effects of summation from the 2nd-10th peak conductances by 

subtracting the minimum conductance value occurring between the measured peak and the 

preceding peak. We then normalized these summation-removed peak values by the peak elicited 

by the first pulse in the train and fit these data with single exponential functions (see Materials 

and Methods). The results provide an estimate of the actual short-term depression of excitation 

and inhibition, with the confounding effects of temporal summation removed.  

Inhibition depressed more than excitation in high-pass neurons (Fig. 4D; repeated-

measures ANOVA, interaction between excitation/inhibition and pulse time, F(9,11)=3.0, 

p=0.0036). Accordingly, inhibition tended to depress faster (smaller τ in Fig. 4E) and to a greater 

degree (larger a in Fig. 4F) than excitation. Six of 13 high-pass neurons (46%) received 

excitation that depressed more slowly and to a lesser degree than inhibition, five neurons (39%) 

received excitation that depressed to a lesser degree than inhibition, and the remaining two 

neurons (15%) received excitation that depressed more slowly than inhibition. Therefore, all 

high-pass neurons fit a depression model for high-pass tuning: with inhibition depressing more 

quickly and/or to a greater degree than excitation, depolarization of the neurons’ membrane 

potentials increased with repeated stimulation (Fig. 4A). 

These data also suggest a role for temporal summation of excitation in establishing high-

pass responses. The differences between excitation and inhibition were greater for the 
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normalized observed conductances (Fig. 4C) than for the normalized conductances after 

summation was removed (Fig. 4D). This finding indicates that temporal summation must have 

contributed to the observed differences in excitation and inhibition shown in Figure 4C. Most 

likely, the slower depression of excitation (Fig. 4E) allowed for greater summation of excitation 

compared to inhibition during short IPIs, leading to excitation that decreased less overall than 

inhibition (Fig. 4C).  

 

Excitation depresses more than inhibition in most, but not all, low-pass neurons  

In general, low-pass neurons received excitatory and inhibitory inputs that decreased 

similarly during 10 ms IPIs (Fig. 5B,C; repeated-measures ANOVA, interaction between 

excitation/inhibition and pulse time, F(9,20)=1.5, p=0.15).  Excitation tended to decrease more 

quickly (smaller τ in Fig. 5E) than inhibition, although excitation and inhibition decreased with 

similar amplitudes of decay (Fig. 5F) in low-pass neurons. However, we found that low-pass 

neurons varied in the relative balance of excitatory and inhibitory decreases. Seven of 22 low-

pass neurons (32%) received excitation that decreased more quickly (τe < τi) and to a greater 

degree than inhibition (ae > ai). Six neurons (27%) received excitation that decreased more 

quickly than inhibition, and three neurons (14%) received excitation that decreased to a greater 

degree than inhibition. The remaining six low-pass neurons (27%), however, received excitation 

that decreased more slowly (τe > τi) and to a lesser degree than inhibition (ae < ai).  

After removing the effects of temporal summation, we found that excitation and 

inhibition tended to depress similarly in low-pass neurons during 10 ms IPIs (Fig. 5D; repeated-

measures ANOVA, interaction between excitation/inhibition and pulse time, F(9,20)=1.3, p=0.23). 

Accordingly, the depression time constants (Fig. 5E) and amplitudes (Fig. 5F) were similar for  
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Figure 5. Excitation and inhibition depress similarly at short intervals in low-pass neurons. (A) The 
membrane potential (Vm) recorded from a representative low-pass neuron in response to a 10 ms IPI train. 
(B) The excitatory (gE) and inhibitory (gI) synaptic conductances underlying the responses shown in (A). 
(C) Normalized synaptic conductances during a 10 ms IPI train in low-pass neurons (n=22 neurons). (D) 
Normalized synaptic conductances during the 10 ms IPI train after removing the effects of temporal 
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(E) and amplitudes (F) of exponential fits to normalized observed and summation-removed (“depression 
only”) conductances during 10 ms IPI trains in low-pass neurons. Error bars represent SEM.
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excitation and inhibition in low-pass neurons. However, low-pass neurons actually varied in the 

balance of relative depression of excitation and inhibition. Three of 22 low-pass neurons (14%) 

received excitation that depressed more quickly and to a greater degree than inhibition, six 

neurons (27%) received excitation that depressed more quickly than inhibition, and five neurons 

(23%) received excitation that depressed to a greater degree than inhibition. Therefore, almost 

two-thirds of low-pass neurons fit a depression model for low-pass tuning: since excitation 

depressed to a greater degree and/or more quickly than inhibition, the neurons’ membrane 

potentials decreased with repeated stimulation (Fig. 5A). The remaining eight neurons (36%), 

however, received excitation and inhibition that were inconsistent with this depression model for 

low-pass tuning. In these neurons, excitation depressed more slowly and to a lesser degree than 

inhibition. Factors other than differences in depression of excitatory and inhibitory pathways 

must therefore contribute to low-pass tuning in this group of neurons. 

 

Temporal summation of excitation contributes to high-pass tuning 

A previous in vitro and computational study of ELp neurons demonstrated a role for 

temporal summation of excitation and inhibition in establishing IPI tuning (George et al., 2011). 

Indeed, removing the effects of summation from observed conductance values revealed that 

summation of excitation contributed to differences in excitatory and inhibitory decreases during 

short-interval responses in high-pass neurons (compare Fig. 4D with Fig. 4C). Temporal 

summation of excitatory or inhibitory conductances will occur if the durations of the respective 

conductance changes are longer than the stimulation interval. Therefore, excitation that lasts 

longer than inhibition would result in greater temporal summation of excitation at short intervals, 

which could contribute to high-pass responses. Likewise, inhibition that lasts longer than 
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excitation would result in greater summation of inhibition, which could contribute to low-pass 

responses at short intervals (Baker et al., 2013).  

A neuron’s membrane capacitance will cause PSPs to last longer than the underlying 

conductance changes, which will lead to further temporal summation. To investigate the role of 

the initial durations of excitation and inhibition in establishing interval tuning, we collected 

responses to single electrosensory stimulus pulses. Comparing the PSPs evoked by single pulses 

to those evoked by 10 ms IPI trains in high-pass neurons supports a role for temporal summation 

of excitation in producing larger-amplitude synaptic responses at short intervals (Fig. 6A). A 

single stimulus pulse elicits two depolarizing phases separated by a hyperpolarization. This kind 

of response was frequently observed in high-pass neurons. The initial depolarization evoked by 

the second pulse in the 10 ms train overlaps in time with the later depolarization evoked by the 

first pulse, resulting in a greater depolarization. In this way, temporal summation of depolarizing 

PSPs contributes to establishing high-pass responses. 

To study the contributions of excitation and inhibition to these responses, we estimated 

the synaptic conductances underlying single-pulse responses in 13 high-pass neurons. We found 

that high-pass neurons received excitatory and inhibitory inputs of similar durations (Fig. 6D; 

paired t-test, t(12)=-0.11, p=0.91). These balanced durations indicate that the two conductances 

should summate at a similar range of IPIs, such that summation of excitation and inhibition 

partially counteract each other.  

Interestingly, the amplitude of inhibition in response to single pulses was significantly 

larger than excitation in high-pass neurons (Fig. 6E; paired t-test, t(12)=-2.8, p=0.016). Stronger 

inhibition than excitation in response to the onset of a stimulus train would serve to initially limit  
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excitatory postsynaptic responses. However, in response to short-interval stimulus trains, this 

strong inhibition will depress more than excitation (Fig. 4D), leading to high-pass tuning due to 

increased relative excitation that is further enhanced by the effects of temporal summation (Fig. 

6A).  

 

Long-lasting onset inhibition contributes to low-pass tuning 

Comparing the PSPs in response to 10 ms IPI trains to those elicited by single pulses in 

low-pass neurons reveals a potential role for long inhibition in establishing decreased synaptic 

responses at short intervals (Fig. 6B,C). Single pulses evoked an initial long-lasting 

hyperpolarization that drastically reduced the baseline potential on top of which subsequent PSPs 

occurred, resulting in a net hyperpolarization. The time course of recovery of PSPs during the 

stimulus train roughly followed the time course of the single-pulse hyperpolarization (Fig. 

6B,C). These effects were seen in low-pass neurons that fit a low-pass depression model, i.e., 

excitation depressed faster and/or to a greater degree than inhibition in response to 10 ms IPIs 

(Fig. 6B). These same effects were also observed in low-pass neurons whose 10 ms IPI 

conductances did not fit a depression model (Fig. 6C). Synaptic conductance estimates of single-

pulse responses in 22 low-pass neurons revealed that inhibition lasted significantly longer than 

excitation in low-pass neurons (Fig. 6D; paired t-test, t(22)=-3.9, p=0.00083). There was no 

difference in the amplitudes of excitatory and inhibitory single-pulse conductances in low-pass 

neurons (Fig. 6E; paired t-test, t(22)=-0.05, p=0.96). 

On average, inhibition lasted ~10 ms longer than excitation in low-pass neurons (Fig. 

6D), indicating that inhibitory conductances should summate at slightly longer IPIs than 

excitatory conductances. This longer inhibition did not translate into greater effects of 
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summation on inhibitory vs. excitatory conductances at 10 ms IPIs, however (Fig. 5). Further, 

notice that after the long-lasting hyperpolarization in response to the first pulse in a 10 ms IPI 

train, PSPs of low-pass neurons gradually recovered instead of continuing to hyperpolarize as 

would occur due to summation if this long-lasting inhibition followed each pulse (Fig. 6B,C). It 

is likely that the strong depression of both excitation and inhibition in low-pass neurons (Fig. 

5D,F) acts to limit the extent of temporal summation. Therefore, it appears that long-lasting 

onset inhibition that reduces excitatory responses to subsequent pulses is an important 

contributor to low-pass tuning, regardless of whether differences in short-term depression of 

excitation and inhibition enhance this tuning.  

 

Passive membrane properties do not play a major role in establishing interval tuning 

Differences in the effects of temporal summation between high- and low-pass neurons 

could be influenced by passive membrane properties (Fortune and Rose, 1997b). We estimated 

the membrane time constant, capacitance, and input resistance of each neuron by fitting a double 

exponential to responses to a 100 ms, -0.10 nA current step (see Materials and Methods). We 

found no differences in the membrane time constant (Student’s t-test, t(33)=-0.49, p=0.63; 

mean=7.5 + 0.6 ms), membrane capacitance (Student’s t-test, t(33)=-0.087, p=0.93; mean=74 + 6 

pF), or input resistance (Student’s t-test, t(33)=0.48, p=0.63; mean=119 + 11 MΩ) between high- 

and low-pass neurons. Therefore, differences in the observed effects of summation between 

high- and low-pass neurons are influenced primarily by the properties of their inputs and not by 

the passive properties of their membranes. 
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Differences in the relative timing of excitation and inhibition do not contribute to interval 

tuning 

The relative timing of excitation and inhibition has been proposed to play a role in 

interval tuning (Grothe, 1994; Edwards et al., 2008; Baker et al., 2013). We compared the times 

of the excitatory and inhibitory peak conductances in response to each pulse in a 10 ms IPI train. 

Inhibitory conductances reached their maximum significantly later (by ~0.6 ms) than excitatory 

conductances (repeated-measures ANOVA, effect of excitation/inhibition, F(1)=7.0, p=0.012) 

with no systematic differences between tuning groups (effect of tuning, F(1)=0.001, p=0.98; 

interaction between tuning and excitation/inhibition, F(1,31)=0.31, p=0.58; interaction between 

tuning and pulse time, F(9,15)=0.40, p=0.93). The latency of PSPs evoked by 10 ms IPI trains 

tended to increase with repeated stimulation (repeated-measures ANOVA, effect of pulse time, 

F(9)=2.0, p=0.039), but there were no differences between high- and low-pass neurons (effect of 

tuning, F(1)=0.89, p=0.35; interaction between pulse time and tuning, F(9,33)=0.29, p=0.98). While 

the relative timing of inputs certainly contributes to an individual neuron’s responses, we did not 

find evidence that systematic variation in relative timing plays a major role in establishing 

different patterns of interval tuning in ELp. 

 

Short-term depression is essential for diversity in interval tuning 

 By subtracting the effects of temporal summation from excitatory and inhibitory 

conductances, we have demonstrated that summation of excitation contributes to producing high-

pass responses (Fig. 4). To provide an estimate of what responses would occur in the absence of 

depression, we convolved single-pulse conductances with 10 ms IPI trains, and then used the 

membrane equation to estimate the resulting membrane potentials (see Materials and Methods). 
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The results allowed us to investigate how temporal summation alone (without depression) would 

influence the responses of ELp neurons (Fig. 7). The membrane potentials resulting from 

convolved conductances typically decreased drastically with repeated stimulation (Fig. 7A). 

Convolutions of synaptic conductances resulted in excitation and inhibition that gradually 

increased due to temporal summation (Fig. 7B), with the extent of summation varying across 

neurons. 

 Without depression, excitation would summate significantly more than inhibition at 10 

ms IPIs in high-pass neurons (Fig. 7C; repeated-measures ANOVA, interaction between 

excitation/inhibition and pulse time, F(9,11)=2.7, p=0.0078). In contrast, inhibition would 

summate significantly more than excitation in low-pass neurons (Fig. 7D; repeated-measures 

ANOVA, interaction between excitation/inhibition and pulse time, F(9,11)=35, p<0.001). 

However, the magnitude of the difference in summation of excitation vs. inhibition was far 

greater for low-pass neurons than for high-pass neurons (compare Fig. 7D with Fig. 7C), 

reflecting the longer onset inhibition of low-pass neurons (Fig. 6D).  

To quantify the time course and degree of summation of the convolved conductances, we 

fit an exponential function to the normalized responses (see Materials and Methods). The 

resulting time constant of the fit is smaller for convolved conductances that summate faster, and 

the resulting amplitude of the fit is greater for convolved conductances that summate to a greater 

extent.  

Convolved excitatory conductances tended to summate more quickly (smaller τ in Fig. 

7E) than inhibitory conductances in high-pass neurons, although the two conductances reached a  

similar level of summation (Fig. 7F). In contrast, inhibition tended to summate to a greater extent 

(larger a in Fig. 7F) than excitation in low-pass neurons, even though the two inputs summated  
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Figure 7. Convolutions of single-pulse conductances reveal that, without depression, excitation would 
summate more than inhibition in high-pass neurons, whereas inhibition would summate more than 
excitation in low-pass neurons. (A) The recorded membrane potential (“Vm recorded”) and the membrane 
potential resulting from conductance convolutions (“Vm from convolutions”) of a high-pass neuron in 
response to a 10 ms IPI stimulus train. (B) The estimated (“gI estimated”) and convolved (“gI 
convolved”) inhibitory conductances of the same neuron in (A) in response to a 10 ms IPI train. (C-D) 
Normalized convolved synaptic conductances during a 10 ms IPI train for high-pass (C) and low-pass (D) 
neurons. * p<0.01, repeated-measures ANOVA, interaction between excitation/inhibition and pulse time. 
(E-F) Bar graphs of the average time constants (E) and amplitudes (F) of single exponential fits to 
normalized convolved excitatory and inhibitory conductances. Error bars represent SEM. 
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with similar time courses (Fig. 7E). These results are in line with the findings of the single-pulse 

balance of excitation and inhibition in the two groups of neurons. Low-pass neurons experienced 

longer inhibition that, in the absence of depression, would summate more than excitation. High-

pass neurons received excitatory and inhibitory inputs of similar durations that, in the absence of 

depression, would summate roughly equally. However, summation of onset inhibition that is of 

larger magnitude than onset excitation (see Fig. 6E) would lead to inhibition-dominated 

responses in high-pass neurons.  

 

Depression and temporal summation both contribute to diversity of IPI tuning 

We have shown that both temporal summation and depression of excitation and inhibition 

contribute to the increasing synaptic response amplitudes of high-pass neurons and the 

decreasing synaptic response amplitudes of low-pass neurons at short intervals. Next we sought 

to evaluate the relative contributions of each mechanism in generating the diversity of IPI tuning 

observed among ELp neurons. To reveal the contribution of depression to IPI tuning, we 

convolved single-pulse conductances with the same IPI stimuli used to characterize tuning in 

each neuron and then used the membrane equation to estimate the resulting membrane potentials. 

We then measured the PSPs of the estimated membrane potentials in response to each stimulus 

pulse, and generated tuning curves as described in Materials and Methods. The results provide an 

estimate of each neuron’s tuning in the absence of depression.  

The averaged tuning curves of the responses without depression in both tuning groups 

decreased sharply at short intervals, with PSPs at the shortest intervals dropping below neurons’ 

resting potentials (“summation only” curves in Fig. 8A,B). The results therefore reveal the 

importance of short-term depression in establishing high-pass tuning. After removing the effects  
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Figure 8. With temporal summation alone or depression alone, tuning among the population of ELp 
neurons would shift toward low-pass. (A-B) Tuning curves of observed PSPs, PSPs after summation 
removal (“depression only”), and PSPs estimated from conductance convolutions (“summation only”) in 
response to IPI stimuli from high-pass (A) and low-pass (B) neurons. Error bars represent SEM. (C) The 
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percentage of neurons (n=36 neurons) classified as each tuning type using the observed PSPs, the PSPs 
estimated from conductance convolutions, and the PSPs after summation removal. Reported p-values are 
the results of Χ2

 observed vs. expected frequency tests. 
 
 
of depression, no neurons were classified as high-pass. The majority (n=7/12 neurons; 58%) of 

high-pass neurons became low-pass, three (25%) neurons became band-pass, and the remaining 

two neurons (17%) became band-stop after removing depression. In contrast, the majority 

(n=14/19 neurons; 74%) of low-pass neurons were still classified as low-pass after removing 

depression. Of the remaining low-pass neurons, three (16%) became band-stop, one (5%) 

became band-pass, and one (5%) became complex after removing depression. These results 

suggest that without depression, the balance of excitation and inhibition would produce primarily 

low-pass responses. Thus, removing the effects of depression caused a significant shift toward 

low-pass tuning and away from high-pass tuning among the population of ELp neurons (Fig. 8C; 

Χ2
(4)=18, p<0.0013).  

 To evaluate the contribution of temporal summation to producing the observed diversity 

of IPI tuning, we minimized its effects by removing lingering effects of responses to previous 

pulses from PSP amplitudes. From the maximum membrane potential evoked by each pulse in an 

IPI train, we subtracted the minimum membrane potential within a window starting with the 

stimulus pulse offset and ending with the peak potential evoked by that pulse (see Materials and 

Methods). We found that temporal summation was critical for establishing high-pass responses 

(compare “observed” with “depression only” curves in Fig. 8A). Without summation, only one 

(8%) of 12 high-pass neurons was classified as being high-pass. Five high-pass neurons (42%) 

were classified as band-pass tuned, three (25%) were classified as low-pass tuned, and three 

(25%) were classified as complex tuned. Compared to high-pass neurons, removing the effects of 

summation in low-pass neurons had minimal effects on tuning (compare “observed” with 
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“depression only” curves in Fig. 8B). The majority (17/19 neurons; 89%) of low-pass neurons 

remained low-pass tuned, with one (5%) neuron becoming high-pass tuned and one (5%) neuron 

becoming band-pass tuned. Without the effects of summation, tuning shifted toward low-pass 

and away from high-pass (Fig. 8C; Χ2
(8)=19, p<0.00095).  

Taken together, these results suggest that temporal summation and depression each 

contribute to establishing multiple tuning types, but that the greatest diversity of tuning occurs 

when summation and depression are both acting. Summation and depression are equally 

effective at producing low-pass responses, suggesting an inherent bias toward producing low-

pass responses in the initial balance of excitation and inhibition as well as the degree of 

depression of inputs. A combination of summation and depression is essential for establishing 

high-pass tuning and generating a greater diversity of IPI tuning among the population of ELp 

neurons. 

 

Depression increases sensitivity to directional changes in IPI 

 The responses of some ELp neurons are sensitive to the direction of interval change (Fig. 

9A,B) (Carlson, 2009). In the low-pass neuron shown in Figure 9, the amplitude of the PSPs 

evoked by the shortest and the longest intervals delivered depends upon the direction of interval 

change (Fig. 9C). To determine how depression and summation contribute to this directional 

sensitivity, we calculated a scan direction-selectivity index (DSI) for recorded PSPs 

(“observed”), PSPs estimated from convolved conductances (“summation only”), and 

summation-removed PSPs (“depression only”) in response to IPI scans (see Materials and 

Methods). The scan DSI ranges from 0 (no direction-selectivity) to 1 (maximum direction-

selectivity). ELp neurons exhibited a range of DSI (range=0.07-0.33), with no differences among  
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Figure 9. Depression increases selectivity for direction of interval change. (A) The membrane potential 
(Vm) recorded from a low-pass neuron in response to a decreasing then increasing IPI scan stimulus. (B) 
Close-up of the responses to short intervals of the recording trace in (A). Numbers below the stimulus 
tick marks indicate the IPI in ms. (C) A plot of the PSP amplitudes of the neuron in (A) versus IPI for the 
decreasing (black) and increasing (grey) portion of the scan stimulus. The scan direction-selectivity index 
(DSI) for this neuron was 0.33. (D) Bar graph of the average scan DSI for observed PSPs, PSPs estimated 
from conductance convolutions (“summation only”), and PSPs after summation removal (“depression 
only”). Because there were no differences in DSI among high-pass, low-pass, band-pass, and band-stop 
neurons, neurons from all tuning groups were combined. The reported p-value is the result of a Tukey 
post-hoc test following a repeated-measures ANOVA.
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the tuning groups (one-way ANOVA, F(3)=0.56, p=0.64). Therefore, we combined high-pass, 

low-pass, band-pass, and band-stop neurons to investigate the effects of depression and 

summation. We limited our analysis only to neurons in which the results of our summation 

removal method were linearly correlated with those of the true summation removal method at 

both 10 ms and 100 ms IPIs (see Materials and Methods).  

Minimizing the effects of depression and summation significantly affected the scan DSI 

(repeated-measures ANOVA, F(2)=13, p=0.00002). The DSI of the PSPs resulting from 

summation only (without depression) was significantly smaller than that of the observed PSPs 

(Fig. 9D; Tukey post-hoc test, p=0.0085). This decrease in DSI was mostly due to the summating 

effects of inhibition that drove the estimated PSPs below neurons’ resting potentials. In contrast, 

there was no difference between the DSIs of the observed PSPs and the PSPs resulting from 

depression only (without summation) (Fig. 9D; Tukey post-hoc test, p=0.12). These results 

suggest that short-term depression contributes to the sensitivity of ELp neurons to changes in IPI.   
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DISCUSSION  

Our findings provide insight into the interactions between excitation and inhibition that 

contribute to behaviorally relevant interval tuning in vivo (Table 1). The strong responses of 

high-pass neurons at short intervals resulted from a combination of inhibition that depressed 

more than excitation, and temporal summation of excitation (Fig. 10B). By contrast, the weak 

responses of low-pass neurons at short intervals resulted from long-lasting inhibition, with an 

additional contribution from excitation that depressed more than inhibition in the majority of 

neurons (Fig. 10C,D). Without short-term depression, low-pass tuning would dominate in ELp 

and neurons would be less sensitive to IPI sequences. On the other hand, without temporal 

summation, tuning would also shift toward low-pass but sensitivity to interval change would be 

unaffected. Therefore, the combination of short-term depression and temporal summation 

produces a more diverse range of interval tuning than either mechanism alone. Furthermore, 

depression in ELp increases the circuit’s ability to code for changing IPI sequences. Thus, both 

mechanisms working together enhance the ability of the circuit to detect communication signals, 

which are characterized both by their IPIs and by directional changes in IPIs (Carlson, 2002). 

Our results provide the first description of how different synaptic mechanisms can interact in 

vivo to establish neurons that code for behaviorally relevant stimulus intervals. 

Low-pass neurons received inhibition that was longer than excitation, whereas high-pass 

neurons received inhibition and excitation of similar durations. The duration of conductance 

changes can be affected not just by receptor/channel kinetics, but also by the relative timing and 

locations of synaptic inputs along the dendritic tree. Multiple, slightly asynchronous inhibitory 

inputs arriving at different locations on the postsynaptic membrane might give rise to weaker, 

but longer-lasting conductance changes than a few synchronous inputs arriving at the same  
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Mechanism High-pass responses Low-pass responses 

Short-term 

depression 
More depression of inhibition 

More depression of excitation 

(usually, but not always) 

Temporal 

summation 
More summation of excitation  More summation of inhibition 

Onset duration 
Equal for excitation and 

inhibition 
Longer inhibition 

Onset strength Stronger inhibition 
Equal for excitation and 

inhibition 

 
Table 1. Mechanisms contributing to excitatory-inhibitory integration underlying high-pass and low-pass 
tuning. 
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Figure 10. Schematic of ELp circuitry and synaptic mechanisms contributing to interval tuning. (A) An 
ELp neuron (black) receives excitatory (green) inputs from ELa and from other ELp neurons, as well as 
inhibitory (magenta) inputs from other ELp neurons. (B) High-pass tuning is associated with excitation 
that depresses less than inhibition, leading to more temporal summation of excitation than inhibition. 
Excitation and inhibition elicited by the first stimulus pulse are indicated by thin lines. The summed 
response is the result of adding excitatory and inhibitory traces. (C) The majority of low-pass neurons fit 
a depression model in which excitation depresses more than inhibition. Onset inhibition that lasts longer 
than onset excitation also contributes to low-pass responses. (D) A subset of low-pass neurons does not 
fit a depression model for low-pass tuning; instead, excitation depresses less than inhibition. Onset 
inhibition that lasts longer than onset excitation contributes to these neurons’ low-pass responses.
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location. Multiple studies have reported the effects of spatiotemporal activation of excitatory 

dendritic inputs on somatic potentials (i.e., Branco et al., 2010; Oviedo and Reyes, 2012; Abbas 

et al., 2013). Many additional parameters could affect the duration of conductance changes, 

including vesicle release dynamics, the distribution, density, and subunit composition of 

postsynaptic receptors, and ion channel kinetics (Euler and Denk, 2001; Farrant and Nusser, 

2005).  

Differences in the degrees of depression of excitation and inhibition also contributed to 

interval tuning. In addition to GABAergic inhibition from local interneurons (George et al., 

2011), ELp neurons receive excitation from ELa small cells (Friedman and Hopkins, 1998; 

Lyons-Warren et al., 2013a) and from other ELp neurons (Ma et al., 2013) (Fig. 10A). A 

feedback projection from the isthmic granule nucleus also terminates onto ELp neurons 

(Haugedé-Carré, 1979); however, the nature of this input is unknown. Nevertheless, the large 

dendritic arborizations of ELp neurons and the relatively high probability of excitatory 

connections between pairs of ELp neurons suggest that they integrate a large number of inputs 

(Xu-Friedman and Hopkins, 1999; George et al., 2011; Ma et al., 2013). Recently, paired in vitro 

recordings revealed short-term depression at single excitatory connections between ELp neurons, 

with no differences in the amount of depression in relation to presynaptic or postsynaptic IPI 

tuning (Ma et al., 2013).  

Therefore, three hypotheses for the origin of the observed differences in depression of 

excitation and inhibition arise. First, since excitatory connections between ELp neurons 

depressed similarly regardless of IPI tuning (Ma et al., 2013), inhibitory synapses could depress 

to varying degrees onto different neurons. Differences in depression of inhibition onto a 

presynaptic excitatory input could then create apparent differences in excitatory depression.  
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A second hypothesis is that all local ELp connections depress uniformly, but excitatory 

synapses from ELa depress with varying dynamics. Any variation in inhibitory depression would 

then reflect differences in the inputs from ELa onto inhibitory neurons. Paired intracellular 

recordings of ELp neurons along with their inhibitory or ELa inputs would be necessary to 

characterize depression at these two types of synapses. Multiple studies have reported that the 

same output neuron can form synapses whose type and degree of short-term plasticity depends 

on the target cell (see Blackman et al., 2013 for review). The observed range of time courses and 

degrees of depression of both excitation and inhibition onto ELp neurons could result from 

diversity in depression of ELa inputs as well as diversity in depression of local inhibitory 

connections.  

A third hypothesis for differences in the degree of depression of excitation and inhibition 

is based on local ELp network interactions. Excitatory connections are more likely to occur 

between ELp neurons of the same tuning class, and single excitatory connections between ELp 

neurons depress to similar degrees regardless of presynaptic or postsynaptic IPI tuning (Ma et al., 

2013). Since the spike output of high-pass neurons increases with short-interval stimulation 

(Carlson, 2009), the convergence of many excitatory high-pass inputs onto a high-pass neuron 

could keep the excitatory conductance higher during repeated stimulation, even with depression. 

Furthermore, the majority of low-pass neurons received excitatory inputs that depressed more 

than inhibitory inputs at short intervals. Since the spike output of low-pass neurons decreases 

with short-interval stimulation (Carlson, 2009), the convergence of many excitatory low-pass 

inputs onto a low-pass ELp neuron could cause a rapid reduction in excitatory conductance 

during repetitive stimulation. Thus, the observed depression of synaptic conductances in ELp 
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neurons may reflect the compounding effect of depression at many synapses within the local ELp 

circuitry.  

ELp neurons exhibit large, spiny dendritic arbors that can span up to 200 µm in diameter 

(Xu-Friedman and Hopkins, 1999; George et al., 2011). Passive electrical properties owing to 

morphology, as well as active dendritic conductances, can influence linear and non-linear 

synaptic integration along dendrites (Magee, 2000; Gulledge et al., 2005; London and Hausser, 

2005). We have not yet looked in detail for morphological differences between ELp neurons of 

different tuning types, but previous anatomical studies have not revealed any obvious 

morphological classes of ELp neurons (George et al., 2011; Ma et al., 2013). We did not find any 

differences in passive membrane properties with respect to IPI tuning in this study. Furthermore, 

we minimized possible contributions from active conductances by obtaining recordings in 

hyperpolarized current-clamp levels, and by limiting our conductance estimates to portions of the 

responses in which the current-voltage relationship was linear. However, active dendritic 

processing could be another factor that might further shape IPI tuning beyond the synaptic 

mechanisms we described. Calcium imaging and glutamate- or GABA-uncaging experiments 

would be necessary to reveal possible contributions of active dendritic processing to IPI tuning. 

Neurons sensitive to temporal patterns in sensory stimuli have been identified in the 

auditory midbrains of frogs (Alder and Rose, 1998) and bats (Grothe, 1994), cat auditory cortex 

(Sakai et al., 2009), and the electrosensory midbrain of wave-type weakly electric fish (Fortune 

and Rose, 1997a), which evolved an electrosensory system independently from the mormyrid 

fish we studied. Interval-selective neurons in frog midbrains are tuned to the intervals between 

successive sound pulses (Alder and Rose, 1998), which vary across (but not within) distinct 

types of communication calls (Allen, 1973). Short-interval tuning in these neurons appears to 
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arise from interactions between inhibition and enhancement of excitation, whereas long-interval 

tuning can arise from different combinations of mechanisms: the relative timing of excitation and 

inhibition, depression of excitation, or summation or enhancement of excitation, without a role 

for inhibition (Edwards et al., 2008; Rose et al., 2011). Neurons that are selective for slow beat 

rates (2-8 Hz) in wave-type electric fish midbrains get their temporal sensitivity through 

depression of excitation as well as passive electrical filtering and voltage-dependent 

conductances (Rose and Fortune, 1999; Fortune and Rose, 2000). Whether inhibition also 

contributes to this tuning remains unknown.  

In contrast to frog auditory and wave-type electric fish neurons, ELp neurons are 

involved in decoding intervals ranging from approximately ten up to hundreds of milliseconds 

(Hopkins, 1986). Mormyrid electric communication signals typically consist of a decrease then 

increase in IPI, with distinct signals differing in the precise temporal sequence of IPIs (Carlson 

and Hopkins, 2004). Therefore, neural representations of the IPIs present in the wide range of 

signals used as well as the direction of IPI change is necessary for discriminating signals with 

different social functions. The combination of temporal summation and depression results in 

greater diversity of IPI tuning and sensitivity to direction of IPI change than either mechanism 

alone. Detecting direction of changing temporal patterns may not be as important for 

distinguishing frog communication signals or sinusoidal beat rates in wave-type electric fish, 

such that those circuits may be able to employ fewer synaptic mechanisms to achieve the 

required temporal sensitivity. 

Although excitatory-inhibitory interactions, short-term synaptic plasticity, and temporal 

summation have all been implicated in interval tuning, our study is the first to reveal how these 

multiple synaptic mechanisms interact in midbrain sensory neurons to establish behaviorally 
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relevant interval tuning in vivo. It remains to be seen how variations in the balance of depression 

and summation in excitatory and inhibitory pathways arise in ELp neurons. Future studies of IPI 

tuning in ELp will seek to identify the contribution of network dynamics and local dendritic 

computations to this behaviorally relevant information processing.  
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ABSTRACT 

In many sensory pathways, central neurons serve as temporal filters for timing patterns in 

communication signals. However, how a population of neurons with diverse temporal filtering 

properties codes for natural variation in communication signals is unknown. Here we addressed 

this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals 

between successive electric organ discharges to communicate. These fish produce an 

individually stereotyped signal called a scallop, which consists of a distinctive pattern of 

approximately eight to twelve interpulse intervals. We manipulated the temporal structure of 

natural scallops during behavioral playback and in vivo electrophysiology experiments to probe 

the temporal specificity of scallop recognition. We found that fish’s electric signaling behavior 

was sensitive to the precise temporal structure of scallops, such that presenting time-reversed, 

randomized, or jittered versions increased behavioral response thresholds. Next, using in vivo 

intracellular recordings and discriminant function analysis, we found that the responses of 

interval-selective midbrain neurons were also sensitive to the precise temporal structure of 

scallops. Subthreshold changes in membrane potential recorded from single neurons could be 

used to discriminate natural scallops from time-reversed and randomized sequences, but not from 

jittered sequences. However, spiking responses resulted in better discrimination of natural vs. 

jittered scallops than subthreshold responses. Pooling the responses of multiple neurons also 

improved discriminability. Finally, we found that the responses of single neurons were sensitive 

to inter-individual variation in scallop sequences. Collectively, these results demonstrate how a 

population of interval-selective neurons contributes to the detection of behaviorally relevant 

temporal patterns.  
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INTRODUCTION 

Timing patterns in sensory stimuli carry information in the communication signals of a 

wide range of animals. For instance, the time intervals between successive sound pulses are 

species-specific in frogs and insects (Loftus-Hills and Littlejohn, 1971; Pollack, 2000). Short 

silent intervals during human speech play a role in phoneme discrimination (Diehl and 

Lindblom, 2004). Previous studies have shown that circuits process these types of temporal 

patterns with central neurons that are selective for particular timing intervals (Rose and 

Capranica, 1983; Grothe, 1994; Fortune and Rose, 1997b; Edwards et al., 2002; Sakai et al., 

2009; Pluta and Kawasaki, 2010; Goel and Buonomano, 2014). These response properties have 

been shown to arise from synaptic mechanisms such as temporal summation and short-term 

synaptic plasticity (Fortune and Rose, 2000; George et al., 2011; Rose et al., 2011; Baker and 

Carlson, 2014), as well as from intrinsic postsynaptic membrane properties (Fortune and Rose, 

1997a; Trussell, 1999; Fortune and Rose, 2003; Carlson and Kawasaki, 2006; Kohashi and 

Carlson, 2014). Whereas we now have a good understanding of how circuits can establish single-

neuron temporal selectivity, how a population of neurons with a diverse range of temporal 

filtering properties contributes to the detection of natural timing patterns is unknown.  

Here we investigate how a population of interval-selective midbrain neurons mediates the 

detection of temporally patterned communication signals. We use mormyrid weakly electric fish 

because the timing patterns in their communication signals have clear behavioral relevance, and 

because interval-selective neurons are easily accessible for in vivo electrophysiological 

recordings (e.g., Carlson, 2009; Baker and Carlson, 2014). Mormyrids vary the time intervals 

between successive electric pulses called electric organ discharges (EODs) to communicate (see 

Carlson, 2002 for review). At least three quantitatively distinct temporal patterns of pulses have 
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been linked to different social contexts in our study species, Brienomyrus brachyistius (Carlson 

and Hopkins, 2004). All three of these signals consist of a rapid decrease followed by a gradual 

increase in interpulse intervals (IPIs). One signal in particular, called a scallop, exhibits low 

within-individual variability, such that each individual appears to produce a distinctive scallop 

pattern that is slightly different from another individual’s scallop (Serrier and Moller, 1989; 

Carlson and Hopkins, 2004). Scallops therefore present a valuable opportunity to test the 

specificity of temporal pattern recognition by this sensory pathway. 

Electric communication signals are processed by a dedicated sensory pathway (Xu-

Friedman and Hopkins, 1999; Baker et al., 2013). Sensory receptors called knollenorgans fire a 

single, time-locked spike in response to each EOD (Bennett, 1965). Afferents relay these spikes 

to the hindbrain nucleus of the electrosensory lateral line lobe (nELL), where corollary discharge 

inhibition blocks responses to the fish’s own EODs (Bell and Grant, 1989). Axons from nELL 

project to the anterior exterolateral nucleus (ELa) of the midbrain torus semicircularis. ELa sends 

its only output to the posterior exterolateral nucleus (ELp), where sensitivity to interpulse 

intervals arises (Carlson, 2009). The interspike intervals in presynaptic inputs to ELp exactly 

match the IPIs in sensory stimuli. ELp neurons transform this temporal code for IPI into a 

population code, with neurons exhibiting a wide range of interval selectivity (Carlson, 2009; 

George et al., 2011; Ma et al., 2013; Baker and Carlson, 2014; Kohashi and Carlson, 2014).  

In the present study, we measure behavioral and single-neuron responses to natural and 

manipulated versions of natural scallops to understand the temporal precision of signal detection. 

We demonstrate that fish are behaviorally sensitive to millisecond variations in natural timing 

patterns, and we subsequently ask whether the responses of interval-selective midbrain neurons 

contain the information necessary to resolve these variations in temporal patterns.   

114



	  

MATERIALS & METHODS 

Animals. Eighty-one B. brachyistius ranging from 5.0-9.2 cm in standard length of both 

sexes contributed data to this study. Fish were housed in tanks with a 12 h light/dark cycle, water 

conductivity of 200-400 µS/cm, and water temperature of 25-29oC. We fed the fish live black 

worms four times per week. Fish were obtained through the aquarium trade. All procedures were 

in accordance with National Institutes of Health guidelines and were approved by the 

Institutional Animal Use and Care Committee at Washington University in St. Louis. 

Scallop stimulus generation. We chose six scallops as standard stimuli: one scallop from 

each of three males, and one scallop from each of three females (Fig. 1A). These stimuli were 

taken from scallops identified in (Carlson and Hopkins, 2004). Four of these scallops consisted 

of 11 interpulse intervals (IPIs; F1, F2, M2, M3), one consisted of 14 IPIs (F3), and one 

consisted of 10 IPIs (M1). To test the importance of the scallop’s temporal structure, we 

generated start-shifted versions, in which we maintained the natural order of IPIs, but 

systematically varied the starting IPI. For instance, in a scallop with 11 IPIs, one start-shifted 

stimulus consisted of the second through eleventh IPIs followed by the first IPI. Another 

stimulus consisted of the third through eleventh IPIs followed by the first and second IPIs, and so 

on for all possible versions. To further test the temporal precision of scallop detection, we 

generated five temporal manipulations of natural scallops: time-reversed sequences, in which the 

IPI order of the natural scallop was reversed; randomized sequences, in which the IPI order was 

randomized on each stimulus presentation; and three sequences with added jitter. We generated 

sequences with 1, 3, or 5 ms jitter by adding a value drawn randomly from a Gaussian 

distribution centered at 0, with predefined standard deviation (1, 3, or 5 ms, respectively). We 

added an independently drawn jitter value to each pulse in the sequence on each stimulus 
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presentation, such that jitter values were independent across pulses within a stimulus, and across 

stimulus presentations. 

Behavioral playback experiments. To test behavioral responses to scallops, we recorded 

fish’s EOD output during presentation of natural and manipulated scallop sequences using 

previously described methods (Carlson et al., 2011). Briefly, we placed a rectangular plastic 

chamber (4.1 x 4.1 x 20.3 cm) in the middle of a singly housed fish’s home tank (20.3 x 25.4 x 

40.6 cm). Most fish entered the chamber voluntarily within ~5 min. If fish were not within the 

chamber after 5 min, we guided fish into the chamber with a net. Netted caps were placed over 

each end of the chamber to keep the fish inside during the experiment. Fish were then allowed an 

additional 10 minutes to acclimate to the chamber. A pair of Ag/AgCl electrodes oriented 

horizontally on both sides of the chamber delivered the stimulus, and a pair of Ag/AgCl 

electrodes oriented vertically on both ends of the chamber recorded the fish’s EOD output. We 

delivered 20 repetitions of a single scallop stimulus consisting of bipolar square electric pulses of 

2 ms duration, with 30 s between stimulus presentations to reduce habituation. We randomized 

stimulus order within and across fish. All stimuli were generated in Matlab 7 (Mathworks), 

digital-to-analog converted at a rate of 195.31 kHz (RX8, Tucker-Davis Technologies), and 

attenuated (PA5, Tucker-Davis Technologies) before delivery to the analog stimulus isolator 

(Model 2200, A-M Systems).  

To record fish’s EOD output, we amplified electrical activity 100 times before band-pass 

filtering (0.1 Hz – 20 kHz) (Model 1700, A-M Systems), digitizing at 97.7 kHz (RX8, Tucker-

Davis Technologies), and saving using custom software in Matlab. We computed the spike 

density function (SDF) by convolving each EOD time with a Gaussian of 200 ms width (Carlson 

and Hopkins, 2004), and then averaging over stimulus presentations. We measured the fish’s 
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baseline EOD rate by averaging the SDF over a window starting 0.2 s after the start of the 5 s 

prestimulus period and ending 0.2 s before stimulus onset.  

To investigate how fish respond to natural and start-shifted scallop stimuli, we measured 

the maximum EOD rate that occurred in a window starting 0.1 s before stimulus onset up to 2.1 s 

after stimulus offset. To measure behavioral response thresholds, we defined a behavioral 

response from the fish as an increase in EOD rate exceeding the prestimulus mean + 3 standard 

deviations that occurred between 0.1 s before stimulus onset up to 2.1 s after stimulus offset. For 

each stimulus, we varied the intensity until we found the weakest intensity (to the nearest dB) to 

which the fish responded. We defined this intensity as the behavioral response threshold. The 

actual threshold stimulus intensity (in mV/cm) was determined using a calibration curve obtained 

by recording in the center of the playback chamber. We then normalized threshold intensities (in 

mV/cm) in response to manipulations of the same natural scallop to the threshold intensity for 

the natural scallop, and averaged across scallops before averaging across fish. 

 Whole-cell recordings. We prepared fish for in vivo recordings from ELp as described 

previously (Carlson, 2009; Lyons-Warren et al., 2013; Baker and Carlson, 2014). Briefly, fish 

were anesthetized in 300 mg/L tricaine methanesulfonate (MS-222) and paralyzed with an 

intramuscular injection of 100 µL of 0.1 mg/mL gallamine triethiodide (Flaxedil). We positioned 

the fish on a platform with lateral supports and respirated the fish with 100 mg/L MS-222 during 

surgery. We placed a drop of 0.4% lidocaine on the skin overlying the incision site, and then 

made an incision to uncover the skull overlying ELp. Next we glued a head post to the skull 

before using a dental drill and forceps to remove a rectangular piece of skull covering ELp. We 

placed the ground electrode on the nearby cerebellum. Following surgery, we switched 

respiration to freshwater and allowed the fish to recover from anesthesia. We monitored the 
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fish’s anesthetized state with a pair of electrodes oriented parallel to the fish’s electric organ to 

record the fictive EOD produced by the electromotor neurons (Carlson, 2009). Anesthesia 

silences the fictive EOD, such that the return of fictive discharges indicates that the fish has 

recovered from anesthesia. At the end of the recording session, the fish’s respiration was 

switched back to 100 mg/L MS-222 until no fictive EOD could be recorded, and then the fish 

was killed by freezing. 

 We obtained intracellular, whole-cell patch recordings in current-clamp using previously 

published methods (Rose and Fortune, 1996; Carlson, 2009; Baker and Carlson, 2014). Briefly, 

we used a Flaming/Brown micropipette puller (Model P-97, Sutter Instruments Co.) to fabricate 

glass patch micropipettes of resistances of 20-40 MΩ. We backfilled the pipette tip with a 

solution containing (in mM): 100 CH3CO2K, 2 KCl, 1 MgCl, 5 EGTA, 10 HEPES, 20 KOH, and 

43 biocytin. We filled the pipette shank with the same solution except we replaced biocytin with 

D-mannitol (Carlson, 2009; Baker and Carlson, 2014). Initial seals were >1 GΩ. Recordings 

were amplified 10 times and low-pass filtered (cutoff frequency = 10 kHz) using an Axopatch 

200B amplifier (Molecular Devices), digitized at a rate of 97.7 kHz (Tucker Davis Technologies, 

model RX8), and saved using custom software in Matlab 7. 

 We delivered electrosensory stimulation using electrodes positioned around the perimeter 

of the recording chamber. Three vertically oriented electrodes on both sides of the chamber 

delivered stimulation transverse to the fish. Two vertically oriented electrodes at the front and 

back of the chamber delivered stimulation longitudinal to the fish (Lyons-Warren et al., 2013). 

We used stimuli consisting of monopolar square electric pulses. Stimuli were generated in 

Matlab, digital-to-analog converted at a rate of 195.31 kHz (RX8, Tucker-Davis Technologies), 
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and attenuated (PA5, Tucker-Davis Technologies) before delivery to the analog stimulus isolator 

(Model 2200, A-M Systems).  

After obtaining a recording, we first varied the duration (0.2-2 ms), intensity (3-71 

mV/cm), polarity (normal or reversed), and stimulus orientation (transverse or longitudinal to the 

fish) of a single pulse to elicit maximal postsynaptic potential (PSP) amplitudes from each 

neuron. All subsequent stimuli delivered during a recording then used these parameters while 

varying only the IPIs (Carlson, 2009; Baker and Carlson, 2014). We discarded responses to 

stimulus repetitions in which stimulus pulses occurred within 2-5 ms after a fictive EOD, since 

corollary discharge inhibition in the hindbrain blocks sensory responses within this window (Bell 

and Grant, 1989).  

Data analysis. We removed spikes from recording traces and measured PSP amplitudes 

as described previously (Baker and Carlson, 2014). Briefly, to remove spikes, we first defined 

spike start as the point where the smoothed (moving average filter with width of 0.5 ms) 

derivative of the recorded potential first exceeded the prestimulus mean + 4SD, and spike end as 

the point where the smoothed derivative decreased below the prestimulus mean – 1SD. If the 

smoothed derivative did not meet our spike end criterion, we instead defined the spike end as the 

first minimum in the smoothed derivative up to 8 ms after the spike start. We measured the 

neuron’s resting potential (RP) by first averaging the spike-removed traces over 10 presentations 

of the same stimulus, and then averaging the potential over a 50 ms window immediately 

preceding the stimulus. We measured PSP amplitudes by subtracting the RP from the maximum 

potential (after spike-removal) that occurred between 3 ms after each stimulus pulse up to the 

time of the next pulse. For presentation purposes, we removed the stimulus artifact from 
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recordings by linearly extrapolating the potential between the time of pulse onset to 0.5 ms after 

pulse offset.  

We measured the membrane time constant (τm) and input resistance (Rm) by fitting each 

neuron’s response to a 100 ms, -0.10 nA current pulse with a double exponential function, as 

previously described (Gittelman et al., 2009; Baker and Carlson, 2014). We then estimated 

membrane capacitance (Cm) according to 

Cm =
τm
Rm

.     (3.1) 

Next we determined IPI tuning by collecting responses to scanning IPI stimuli consisting 

of IPIs ranging from 10-200 ms, and generating IPI tuning curves as previously described (Baker 

and Carlson, 2014). Briefly, we normalized PSP amplitudes in response to each IPI by the 

maximum PSP amplitude. If the normalized amplitudes to all IPIs were greater than 0.85, we 

classified the neuron as all-pass (i.e., no IPI tuning). Otherwise, we used sigmoidal and Gaussian 

fits to the tuning curves to classify IPI tuning as high-pass, low-pass, band-pass, or band-stop 

(Baker and Carlson, 2014). If a neuron’s tuning did not fit any of these classes, we classified it as 

complex.  

We next collected responses to natural and manipulated scallop stimuli. For each neuron, 

we randomly selected a natural scallop from our library. We then presented 10 repetitions each 

of the natural sequence, a time-reversed sequence, randomized sequences, and sequences with 1, 

3, and 5 ms of added jitter. We randomized stimulus presentation order. Next we presented 10 

additional repetitions of the natural scallop sequence. We repeated this procedure with another 

randomly selected scallop until we had presented manipulations of all six scallops, or until we 

lost the recording. We measured the PSPs evoked by each stimulus pulse on each repetition.  
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Inclusion criteria included 1) the RP remained below -40 mV throughout the recording; 

and 2) the RP varied < 5 mV throughout the recording. Fifty-six of 60 neurons fit these criteria. 

Two of the excluded neurons were high-pass and two were low-pass. The RP, membrane 

capacitance, and membrane time constant of the four excluded neurons were within the range of 

those of the included neurons. For the 56 included neurons, there were no differences in RP (one-

way ANOVA, F(3)=0.68, p=0.57; mean -57.3 + 0.4 mV), membrane capacitance (one-way 

ANOVA, F(3)=1.1, p=0.36; mean 86.7 + 10.2 pF), or membrane time constant (one-way 

ANOVA, F(3)=0.46m p=0.71; mean 12.0 + 1.2 ms) across IPI tuning groups.  

Discriminant function analysis. To assess the degree to which the responses of single 

ELp neurons could be used to distinguish among natural and manipulated scallop sequences, we 

used discriminant function analysis (DFA). DFA defines a set of functions to group multivariate 

data by maximizing inter-group variance while minimizing intra-group variance (Cooley and 

Lohnes, 1971). These functions can then be used to assign independent data to one of the pre-

defined groups. We used the PSPs evoked by the second through the last pulse in each stimulus 

as variables, and we used the PSPs measured on each stimulus presentation as a single 

observation. Occasionally our method of adding jitter resulted in a negative IPI (i.e., the jitter 

value to add was more negative than -1 times the natural IPI). This happened almost exclusively 

for 5 ms jitter sequences. In these cases, we threw out the neuron’s responses to that particular 

stimulus repetition. Thus, we had 10 observations each for natural, time-reversed, randomized, 1 

ms jitter-added, and 3 ms jitter-added sequences, and 5-10 observations for 5 ms jitter-added 

sequences in all neurons. We used the manipulation type as the grouping variable. To determine 

the discriminability of spiking responses, we performed DFA using the number of spikes in 

response to each stimulus pulse instead of PSP amplitude.  
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To determine whether ELp responses are sensitive to individual variation in scallops, we 

performed DFA on a neuron’s responses to the four natural scallops in our library with the same 

number of IPIs. We used scallop ID as the grouping variable. For this analysis, we used the 

responses of only neurons from which we had responses to all four natural scallops as well as 

responses to repeated presentations of all four scallops. This allowed us to use an independent set 

of responses to each scallop to test the classification accuracy of the discriminant functions. 

To implement DFA, we used a built-in discriminant function classifier 

(ClassificationDiscriminant.m) in Matlab. We also used a built-in function (mahal.m) to 

calculate Mahalanobis distances between each of 10 responses to the repeated natural sequence 

and the centroid of each manipulation group. To assess the discriminability of responses to 

natural, time-reversed, and randomized sequences, we assigned each of 10 responses to the 

repeated natural scallop to the group (natural, time-reversed, or randomized) with the smallest 

Mahalanobis distance. To assess the discriminability of responses to natural and jittered 

sequences, we assigned each of 10 responses to the natural repeated scallop to the group (natural, 

1 ms jitter-added, 3 ms jitter-added, or 5 ms jitter-added) with the smallest Mahalanobis distance. 

To study the discriminability of responses to natural sequences from different individuals, we 

assigned each of 10 repetitions to the natural repeated scallop to the group with the smallest 

Mahalanobis distance. 

Next we investigated how classification performance may be affected by pooling 

responses of multiple neurons together. We used only classification probabilities for the scallop 

for which we had responses from the largest number of neurons (M3; n=35 neurons). From the 

single-neuron classification probabilities, we calculated group probabilities according to  

p(i
k
∏

i
∑ | k) ,     (3.2) 
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where p(i|k) is the probability that the responses of neuron i are classified as stimulus k. We 

calculated group classification probabilities for groups of two, three, four, and five neurons for 

classification in three instances: 1) natural vs. time-reversed and randomized scallop sequences, 

2) natural vs. jittered scallop sequences, and 3) four different natural scallops. Group 

probabilities could be undefined if the denominator was 0. In these infrequent cases we did not 

record a probability for that particular group. We fit the resulting classification accuracy vs. 

group size with a logarithmic function according to 

y = a ln(x)+ b ,     (3.3) 

where y is the classification probability, x is group size, and a and b are constants. 

 Statistics. All statistical tests were performed using Statistica (StatSoft). Parametric tests 

included single-sample t-tests, paired t-tests, one-way ANOVA, and repeated-measures 

ANOVA. Non-parametric tests included Spearman’s rank test. Significance level for all tests was 

p < 0.05.  
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RESULTS 

Fish’s electric signaling behavior is sensitive to the temporal structure of scallops 

 To begin to understand the importance of the temporal structure of the stereotyped 

scallop signal, we first performed behavioral playback experiments in which we recorded fish’s 

electric signaling activity in response to scallops. Our stimulus set consisted of one scallop 

recorded from each of three females, and one scallop recorded from each of three males (Fig. 

1A). We measured fish’s maximum electric organ discharge (EOD) rates in response to 20 

repetitions of each scallop presented at the same intensity (291 mV/cm) (Fig. 1B). Response 

strengths depended on the scallop (repeated-measures ANOVA, F(5,30)=2.7, p=0.039), with fish 

responding most strongly (mean= 20.6 + 1.4 Hz) to the scallop consisting of the largest number 

of IPIs (F3, 14 IPIs) and least strongly (mean = 16.9 + 1.4 Hz) to the scallop consisting of 

smallest number of IPIs (M1, 10 IPIs). Therefore, the difference in response strengths could be 

due to different numbers of IPIs in the natural scallops instead of slight differences in the 

temporal structure of each scallop.  

The latency of fish’s maximum EOD rate also depended on the scallop (repeated-

measures ANOVA, F(5,30)=5.5, p=0.011), and was positively correlated with the latency of the 

minimum IPI in each scallop (linear regression, r2=0.72, p=0.033) (black points in Fig. 1C). A 

similar relationship held for responses to time-reversed sequences of natural scallops (linear 

regression, r2=0.81, p=0.014) (blue points in Fig. 1C). These results reveal that the temporal 

structure of the scallop affects fish’s electric signaling. 

 We further tested the relationship between the scallop timing pattern and fish’s responses 

by presenting start-shifted versions of natural scallops. Start-shifted versions preserved the order 

of the IPIs in the scallop, but varied where in the signal the stimulus started. For instance, for a  
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Figure 1. The timing of behavioral responses is sensitive to scallop temporal structure. (A) Our library of 
natural scallop patterns consisted of one sequence recorded from each of three females (F1-3) and from 
each of three males (M1-3). Each point represents the interpulse interval (IPI) vs. time of each electric 
pulse in the scallop. (B) Electric organ discharge (EOD) rate recorded from one fish in response to a 
scallop (F1) presented at time = 0 s. Tick marks below the EOD rate curve represent the time of each 
pulse in the stimulus. The red vertical line represents the time of the minimum IPI in the stimulus. (C) 
Latency to fish’s maximum EOD rate vs. latency to minimum IPI of the stimulus for natural and time-
reversed scallops. Each point represents the average across seven fish in response to each natural scallop 
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in (A). Error bars represent S.E.M. Lines are the results of a linear regression (natural scallops: r2=0.72, 
p=0.033; time-reversed scallops: r2=0.81, p=0.014.)  (D) Same as (B) for a start-shifted version of the F1 
scallop. This stimulus consisted of the ninth through eleventh IPIs of the F1 scallop followed by the first 
through eighth IPIs. (E) The latency to fish’s maximum EOD rate vs. the latency to the minimum IPI for 
start-shifted sequences of all six natural scallops. Each point represents the average across seven fish and 
error bars represent S.E.M.  

 

scallop consisting of 11 IPIs, one start-shifted version consisted of the second through eleventh 

IPIs followed by the first IPI. If fish’s responses indeed depend on when the minimum IPI occurs 

in the signal, we should observe a relationship between the latency of the minimum IPI and the 

latency of fish’s maximum EOD rate. We recorded the time of fish’s responses to all possible 

start-shifts of all six natural scallops (Fig. 1D). Response latencies were positively correlated 

with the latencies of the minimum IPI in the stimulus for minimum IPI latencies longer than ~0.2 

s (linear regression, r2=0.84-0.98, p=0.000003-0.0096 across all six natural scallops) (Fig. 1E). 

This means that as long the minimum IPI occurred ~200 ms or later after the start of the 

sequence, the timing of fish’s responses tracked the time of the minimum IPI. These results 

further demonstrate fish’s behavioral sensitivity to the temporal structure of scallops.  

Next we sought to test the temporal precision of scallop detection by asking by how 

much we could change the scallop pattern before affecting the strength of fish’s behavioral 

responses. To test how changes in the order of scallop IPIs affected behavioral responses, we 

generated time-reversed and randomized sequences (Fig. 2A). Randomized sequences of scallop 

IPIs were generated independently for each stimulus presentation. We recorded fish’s responses 

to natural, time-reversed, and randomized sequences of all six scallops presented at the same 

intensity (291 mV/cm), and found no differences in fish’s maximum EOD rate in response to the 

three types of sequences (mean across all sequences = 18.6 + 0.2 Hz; repeated-measures 

ANOVA, F(2,12)=0.72, p=0.51).   
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Figure 2. Temporal manipulations of natural scallops increase behavioral response thresholds. (A) 
Time-reversed (ii) and a randomized (iii) version of the natural M2 scallop (i). Each point represents the 
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Next we measured behavioral response thresholds for natural, time-reversed, and 

randomized scallops in 17 fish. We varied stimulus intensity in 1 dB increments until the fish no 

longer responded with an increase in EOD rate that exceeded the prestimulus mean EOD rate + 

3SD. The lowest intensity that evoked a response from the fish was defined as the behavioral  

response threshold. We hypothesized that behavioral response thresholds would be more 

sensitive to temporal manipulations of scallops than the isointensity responses. 

Behavioral responses thresholds for natural scallops ranged from 0.6-22.7 mV/cm (N=17 

fish). Because response thresholds were variable across days within and also across fish, we 

normalized thresholds for time-reversed and randomized sequences to those for natural scallops. 

We found that behavioral response thresholds were on average ~3 times higher for time-reversed 

and randomized sequences than for natural sequences (single-sample t-test against 1; time-

reversed: t(16)=3.0, p=0.0088; randomized: t(16)=3.1, p=0.0063) (Fig. 2B). This means that time-

reversed and randomized signals had to be ~3 times more intense than natural signals to elicit a 

response. These results reveal that the IPI order, and not just overall IPI composition, of natural 

scallops is important for fish’s responses.  

 Each individual produces its own scallop pattern that is slightly different from other 

individuals’ scallops (Serrier and Moller, 1989; Carlson and Hopkins, 2004). This suggests that 

the electrosensory system cannot use a single template for recognizing scallops, but instead must 

be able to handle slight intra-individual variation. To investigate how changing the precise IPIs 

in natural scallops affects behavioral responses, we added jitter to each pulse in a natural scallop. 

To do so, we randomly drew a value from a Gaussian distribution centered around 0 and with SD 

of 1, 3, or 5 ms, and added this value to the time of each pulse in the natural scallop (Fig. 2C). 

Jitter values were added independently to each pulse in a stimulus during each presentation such 
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that the jittered stimulus was slightly different on each presentation. The overall effect resulted in 

IPIs that were sometimes shorter and sometimes longer than those in the natural scallop.  

We first recorded fish’s responses to natural and jittered sequences of all six scallops 

presented at the same intensity (291 mV/cm). There were no differences in fish’s maximum 

EOD rate in response to natural, 1 ms jitter-added, 3 ms jitter-added, and 5-ms jitter-added 

sequences (mean across all sequences = 18.7 + 0.2 Hz; repeated-measures ANOVA, F(3,18)=0.98, 

p=0.42).  

Next we measured behavioral response thresholds to natural and jitter-added sequences. 

Thresholds to natural scallops ranged from 0.6-6.2 mV/cm (N=10 fish). We found that 

behavioral response thresholds were elevated 2-3-fold for jittered sequences compared to natural 

sequences (single-sample t-test against 1; 1 ms jitter: t(9)=2.9, p=0.018; 3 ms jitter: t(9)=2.9, 

p=0.017; 5 ms jitter: t(9)=3.6, p=0.0060) (Fig. 2D). These results reveal that fish are behaviorally 

sensitive to the precise intervals in scallops.  

 

Interval-selective midbrain neurons respond differently to scallops 

 The IPIs in electric communication signals are precisely encoded at the periphery and 

preserved by the ascending electrosensory system until activity reaches the midbrain posterior 

exterolateral nucleus (ELp), where single neurons are selective for particular IPIs (see Baker et 

al., 2013 for review). To begin to understand how this population of IPI-selective neurons 

contributes to fish’s behavioral sensitivity to scallop temporal structure, we obtained in vivo 

intracellular whole-cell recordings from 56 ELp neurons during electrosensory stimulation with 

scallop stimuli (Fig. 3). IPI tuning was classified as high-pass (n=20) (e.g., Fig. 3A), band-stop  
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membrane potential (Vm) recording from a high-pass neuron in response to a natural scallop (M3). The 
trace represents the membrane potential averaged over 10 stimulus presentations. Tick marks below the 
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neuron.
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(n=8) (e.g., Fig. 3B), band-pass (n=7) (e.g., Fig. 3C), low-pass (n=16) (e.g., Fig. 3D), complex 

(n=3), or all-pass (n=2). 

 Neurons responded differently to the same scallop sequences depending on their IPI 

tuning (Fig. 3) (Carlson, 2009). High-pass neurons produced the largest postsynaptic potential 

(PSP) amplitudes during the shortest IPIs in the scallop (Fig. 3A). Band-stop neurons produced  

the largest PSP amplitudes during the shortest and longest IPIs in the scallop (Fig. 3B). Band-

pass neurons produced the greatest PSP amplitudes in response to intermediate IPIs in the scallop 

(Fig. 3C). Low-pass neurons produced the largest PSP amplitudes in response to the longest IPIs 

of the scallop (Fig. 3D). In some neurons, the PSP amplitudes depended on direction of IPI 

change, such that response amplitudes to the same IPIs were slightly different for natural and 

time-reversed sequences of the same scallop (Fig. 3A, B, D). This wide variety of response 

properties arises from a combination of synaptic mechanisms, including temporal summation and 

short-term depression, as well as intrinsic membrane properties (George et al., 2011; Baker and 

Carlson, 2014; Kohashi and Carlson, 2014). Thus ELp neurons act as temporal filters for electric 

communication signals. 

 

 Responses of single interval-selective neurons are sensitive to changes in the order of 

intervals in scallops 

   We recorded the intracellular responses of ELp neurons to natural, time-reversed, 

randomized, and jittered sequences of the same six scallops that we used in the behavior 

experiments. For each neuron, we measured the PSP amplitudes evoked by each pulse on every 

stimulus presentation, and then used the PSP amplitudes in response to the second through last 

pulse in discriminant function analysis (DFA). We used responses to all six stimulus sequences 
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(natural, time-reversed, randomized, jitter: 1 ms, jitter: 3 ms, and jitter: 5 ms) to define 

discriminant functions. We then used these functions to classify the neuron’s responses to 10 

independent presentations of the natural scallop.  

 To test whether subthreshold responses of individual neurons could be used to distinguish 

natural from time-reversed and randomized scallops, we used the discriminant functions to 

classify responses to each of 10 presentations of the natural scallop as one of these three 

sequences (Fig. 4A, B). Across all neurons, responses to natural scallops were correctly 

classified with a probability of 0.63 + 0.03, which was significantly more frequently than 

predicted by chance (single-sample t-test against 0.33, t(55)=11, p<0.000001) (Fig. 4C). 

Responses to natural scallops were incorrectly classified as time-reversed (single-sample t-test 

against 0.33, t(55)=-9.1, p<0.000001) and randomized (single-sample t-test against 0.33, t(55)=-7.1, 

p<0.000001) sequences significantly less frequently than predicted by chance (Fig. 4C).  

Interestingly, classification performance depended on IPI tuning (one-way ANOVA, 

F(3)=3.2, p=0.032) (Fig. 4D). Band-stop responses were significantly better than high-pass 

(Tukey post-host test, p=0.044) and low-pass (Tukey post-hoc test, p=0.025) responses in 

classifying natural vs. time-reversed and randomized scallops. Nevertheless, neurons in all 

tuning classes correctly classified natural scallops significantly more frequently than expected by 

chance (single-sample t-test against 0.33, high-pass: t(19)=6.4, p=0.000004; band-stop: t(7)=11, 

p=0.000011; band-pass: t(6)=3.4, p=0.016; low-pass: t(15)=5.6, p=0.000052) (Fig. 4D). These 

results demonstrate that the IPI selectivity of ELp neurons results in responses that can be used to 

distinguish changes in the order of IPIs in natural temporal patterns. 
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Figure 4. The responses of single neurons are sensitive to changes in the order of intervals in scallops. 
(A) Discriminant function analysis (DFA) results for responses to natural, time-reversed, and randomized 
scallop (F2) sequences in a high-pass neuron with high classification accuracy. PSP amplitudes evoked by 
the second through last pulse in each of 10 stimulus presentations of natural, time-reversed, randomized, 
and jittered sequences were used to define the discriminant functions. We then used these functions to 
classify responses to 10 additional presentations of the natural scallop (grey circles) as natural, time-
reversed, or randomized sequences based on Mahalanobis distances from group centroids. All 10 of this 
neuron’s responses to the repeated natural scallop were correctly classified as belonging to the natural 
sequence. Each point reflects the neuron’s responses to one stimulus presentation. The neuron’s ID is 
given in the bottom right corner of the plot. (B) Same as (A) for a low-pass neuron with low classification 
accuracy. One of 10 of this neuron’s responses to the repeated natural scallop was correctly classified. (C) 
Probabilities of classification of natural scallop responses as natural, time-reversed, and randomized 
sequences for all neurons. *, single-sample t-test against chance (0.33), p<0.000001. (D) Probability of 
correct classification by IPI tuning. Complex (n=3 neurons) and all-pass (n=2 neurons) were excluded 
from this analysis. *, single-sample t-test against chance (0.33), p<0.02. **, one-way ANOVA, Tukey 
post-hoc test, p<0.05. Red horizontal bars in (C, D) represent the average across neurons and error bars 
represent S.E.M.
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Responses of single band-stop neurons are sensitive to changes in the precise intervals in 

scallops 

 Next, we used the previously defined discriminant functions to classify responses to each 

of 10 presentations of natural scallops as natural or jittered sequences (Fig. 5A, B). In general, 

the responses of single ELp neurons could not be used to correctly identify natural sequences 

significantly more frequently than predicted by chance (single-sample t-test against 0.25, t(55)=-

0.21, p=0.83) (Fig. 5C). However, classification accuracy again depended on IPI tuning (one-

way ANOVA, F(3)=4.3, p=0.01), with band-stop neurons performing significantly better than 

band-pass (Tukey post-hoc test, p=0.011) and low-pass (Tukey post-hoc test, p=0.022) neurons 

(Fig. 5D). Indeed, only band-stop neurons correctly classified natural scallops more frequently 

than predicted by chance (single-sample t-test against 0.25, t(7)=3.8, p=0.0070). These results 

demonstrate that the responses of only one IPI tuning class can be used to distinguish changes in 

the precise intervals in natural temporal patterns. 

 

Spikes increase discriminability of responses to natural versus jittered scallops 

 We have shown that subthreshold PSP amplitudes in single neurons can be used to 

discriminate between natural timing patterns and some artificial versions of these patterns. 

However, these subthreshold changes in membrane potential are not transmitted to downstream 

neurons; only spiking activity is. To investigate how spiking may affect the discriminability of 

single-neuron responses, we counted the number of spikes elicited by each pulse during every 

presentation of natural, time-reversed, randomized, and jittered scallop sequences. Thirteen 

neurons produced spikes often enough to provide sufficient variation for DFA to work. For each 

neuron, we used the spike counts in response to the second through the last pulse of natural,   
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Figure 5. The responses of single band-stop neurons are sensitive to changes in the precise intervals in 
scallops. (A) DFA results for responses to natural and jittered scallop (F2) sequences in a high-pass 
neuron with high classification accuracy (same neuron as in Fig. 4A). PSP amplitudes evoked by the 
second through last pulse in each of 10 stimulus presentations of natural, time-reversed, randomized, and 
jittered sequences were used to define the discriminant functions. We then used these functions to classify 
responses to 10 additional presentations of the natural scallop (grey circles) as natural or jittered 
sequences based on Mahalanobis distances from group centroids. Five of 10 of this neuron’s responses to 
the repeated natural scallop were correctly classified. Each point reflects the neuron’s responses to one 
stimulus presentation. The neuron’s ID is given in the bottom right corner of the plot. (B) Same as (A) for 
a low-pass neuron with low classification accuracy (same neuron as in Fig. 4B). One of 10 of this 
neuron’s responses to the repeated natural scallop was correctly classified. C) Probabilities of 
classification of natural scallop responses as natural and jittered sequences for all neurons. (D) 
Probability of correct classification by IPI tuning. Complex (n=3 neurons) and all-pass (n=2 neurons) 
were excluded from this analysis. *, single-sample t-test against chance (0.25), p<0.01. **, one-way 
ANOVA, Tukey post-hoc test, p<0.03. Red horizontal bars in (C, D) represent the average across neurons 
and error bars represent S.E.M.
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time-reversed, randomized, and jittered sequences to define the discriminant functions that 

maximized the separability of the responses to each manipulation. We then used these functions 

to classify responses to 10 independent presentations of the natural scallop. 

Spiking activity was no better than subthreshold PSPs at classifying natural vs. time-

reversed and randomized scallops (paired t-test, t(13)=-0.76, p=0.46) (Fig. 6B). On average, the 

responses of spiking neurons correctly classified natural scallop sequences with a probability of  

0.55 + 0.07, which was significantly more frequent than predicted by chance (single-sample t-

test against 0.33, t(12)=3.2, p=0.0078). Classification accuracy for natural vs. time-reversed and 

randomized sequences was not correlated with the average number of spikes per sweep over all 

stimuli (Spearman R=-0.085, t(11)=-0.28, p=0.78).  

In contrast, spikes resulted in significantly better classification performance than PSP 

amplitudes for natural vs. jittered scallops (paired t-test, t(13)=2.3, p=0.037) (Fig. 6C). In this 

subset of neurons, using spikes resulted in correct classification of natural sequences with a 

probability of 0.25 + 0.05, compared to 0.17 + 0.05 using PSPs. However, classification 

accuracy using spikes was equal to that predicted by chance. Classification accuracy for natural 

vs. jittered sequences was not correlated with average spikes per sweep over all stimuli 

(Spearman R=-0.44, t(11)=-1.6, p=0.13). These results demonstrate that spiking activity can 

enhance the discriminability of single-neuron responses to natural vs. jittered temporal patterns.  

 

Pooling classification probabilities of multiple neurons improves accuracy 

 We have shown that the responses of individual ELp neurons can be used to correctly 

classify natural vs. time-reversed and randomized scallop sequences, but that the responses to 

natural vs. jittered sequences are generally less discriminable. However, the electrosensory  
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system does not have to rely solely on the output of any one ELp neuron to detect scallops. 

Rather, downstream neurons could integrate the output of multiple ELp neurons to identify 

temporally patterned communication signals. Therefore, we wanted to study how classification 

performance would be affected if we pooled the responses of multiple ELp neurons together. We 

used Bayesian updating with single-neuron classification probabilities to estimate the probability 

of correct classification of natural vs. time-reversed and randomized sequences for all possible 

combinations of two, three, four, and five neurons. We used the single-neuron classification 

probabilities for the natural scallop to which we had responses from the most neurons (M3, n=35 

neurons).  

The probability of correct classification of natural vs. time-reversed and randomized 

scallop sequences increased as the responses of more neurons were combined (Fig. 7A). 

Combining the classification probabilities of five neurons resulted in an average correct 

classification probability of 0.96. These data were well fit with the logarithmic function, 

y=0.18ln(x)+0.67 (r2=0.99) (Fig. 7A). According to our fit, 100% accuracy would be possible 

with between six and seven neurons.  

 The probability of correct classification of natural vs. time-reversed and randomized 

scallop sequences increased from 0.66 + 0.05 using single neurons (n=35 neurons) to 0.82 + 0.01 

using pairs (n=591 pairs) of neurons. To determine whether the IPI tuning of constituent neurons 

may affect classification, we compared the probability of correct classification for pairs 

consisting of all possible tuning compositions (Fig. 7B). Band-stop neurons formed pairs that 

tended to have the highest probability of correct classification (Fig. 7B). This finding is 

consistent with band-stop neurons having significantly greater correct classification probabilities 

than neurons of other tuning types (Fig. 4D). In general, pairs of neurons of different tuning  
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represents the function y=0.06*ln(x)+0.29 (r2=1.0). (D) Same as (B) for classification accuracy of natural 
vs. jittered scallop sequences.
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classes had significantly higher correct classification probabilities for natural vs. time-reversed 

and randomized sequences than pairs of neurons of the same tuning class (independent t-test, 

t(522)=-2.5, p=0.014).  

 Pooling probabilities from groups of neurons also improved classification accuracy for 

natural vs. jittered scallops (Fig. 7C). However, using the classification probabilities of even five 

neurons resulted in a probability of correct classification of only 0.38. The relationship between  

classification probabilities and the number of neurons in a group was well fit with the function, 

y=0.06ln(x)+0.29 (r2=1.0) (Fig. 7C). This equation predicts that a group of even 100 neurons 

would result in classification probability of 0.57, which is still lower than the single-neuron 

correct classification probability of natural vs. time-reversed and randomized scallops. 

Pooling responses from just two neurons resulted in correct classification of natural vs. 

jittered sequences significantly more frequently than that predicted by chance (single-sample t-

test, t(589)=6.1, p<0.000001). Band-stop neurons tended to form pairs with the highest 

classification probabilities (Fig. 7D), but there was no significant difference in the probability of 

correct classification of natural vs. jittered sequences for pairs of similarly vs. dissimilarly tuned 

neurons (independent t-test, t(522)=-0.34, p=0.73). Collectively, these results indicate that, even 

though pooling classification probabilities of multiple ELp neurons improves accuracy, 

responses to natural sequences are still less discriminable from responses to jittered sequences 

than from responses to time-reversed and randomized sequences. 
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Responses of single interval-selective neurons are sensitive to individual variation in 

scallops 

Next we wanted to understand how single-neuron sensitivity to manipulated scallops 

relates to sensitivity to natural variation in scallops. In 15 neurons, we collected responses to 10 

repetitions of four natural scallops, each from a different individual. We used the PSP amplitudes 

evoked by the second through last pulse in each scallop to define discriminant functions that 

maximally separated responses to the four scallops. We then used these functions to classify 

responses to 10 independent presentations of each of the same four natural scallops (Fig. 8A).  

On average, the probability of correct classification across neurons was 0.64 + 0.05, 

which was significantly higher than that predicted by chance (single-sample t-test against 0.25, 

t(14)=8.8, p<0.000001). The probability of correct classification for all scallops was significantly 

higher than chance (single-sample t-test, F1: t(14)=7.6, p=0.000003; F2: t(14)=4.7, p=0.00037; M2: 

t(14)=4.2, p=0.00086; M3: t(14)=7.4, p=0.000003), with no significant differences in correct 

classification probability across the four scallops (repeated-measures ANOVA, F(3,42)=1.9, 

p=0.14).  

Correct classification probability for different individuals’ scallops was positively 

correlated with correct classification probability for natural vs. time-reversed and randomized 

scallops (Spearman R=0.66, t(13)=3.2, p=0.0069). In contrast, there was no relationship between 

correct classification probability for different individuals’ scallops and correct classification 

probability for natural vs. jittered scallops (Spearman R=0.35, t(13)=1.3, p=0.20). Therefore, 

neurons that were good at discriminating natural from time-reversed and randomized scallops 

were also good at discriminating among scallops from different individuals.  
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Figure 8. The responses of single neurons are sensitive to individual variation in scallops. (A) DFA results 
for responses to natural scallop sequences from four different individuals (F1, F2, M2, M3) in a high-pass 
neuron with high classification accuracy. PSP amplitudes evoked by the second through last pulse in each 
of 10 stimulus presentations of the four scallops were used to define the discriminant functions. We then 
used these functions to classify responses to 10 additional presentations of each natural scallop (open 
symbols) as one of the four natural scallops based on Mahalanobis distances from group centroids. All 10 
repetitions of the F2 and M3 scallops were correctly classified, and seven of 10 repetitions of the F1 and 
M2 scallops were correctly classified. Each point reflects the neuron’s responses to one stimulus 
presentation. The neuron’s ID is given in the upper left corner of the plot. (B) Probabilities of correct 
classification by scallop. Each point represents the probability for one neuron. Red horizontal bars in 
represent the average across neurons and error bars represent S.E.M. *, single-sample t-test vs. chance 
(0.25), p<0.001. (C) Probability of correct classification vs. number of neurons in a group for natural 
scallops. We used Bayesian updating to estimate classification probabilities for all possible combinations 
of single-neuron probabilities from the responses of 15 neurons to the same four scallops. The red line 
represents the function, y=0.20ln(x)+0.67 (r2=0.97).
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Pooling the responses of multiple neurons further enhanced the discriminability of natural 

scallops (Fig. 8C). Combining the classification probabilities of five neurons resulted in an 

average correct classification probability of 0.96. These data were well fit with the logarithmic 

function, y=0.20ln(x)+0.67 (r2=0.97) (Fig. 8C). According to our fit, 100% accuracy would be 

possible with between five and six neurons. These results are very similar to those obtained for 

the discrimination of natural vs. time-reversed and randomized scallops in single neurons.  
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DISCUSSION 

Our results demonstrate that fish are behaviorally sensitive to millisecond timing 

variations in natural scallop patterns. This sensitivity is due at least in part to a population of 

midbrain neurons that serve as temporal filters for electric communication signals. The output of 

single interval-selective neurons can be used to correctly discriminate natural scallop patterns 

from changes in the order of IPIs, demonstrating that the order of IPIs, and not just overall IPI 

composition, is important for scallop detection. Although the subthreshold responses of single 

neurons are less sensitive to small changes in the precise IPI durations within a scallop, spikes 

could improve discriminability. Furthermore, the discriminability of natural scallop patterns from 

artificial variations could be improved by pooling the responses over multiple neurons. 

Remarkably, there is enough information present in the subthreshold responses of single neurons 

to distinguish among scallops produced by different individuals. Collectively, these results 

provide an illustration of how a population of interval-selective neurons can contribute to the 

detection of behaviorally relevant temporal patterns in sensory stimuli.  

Although we had a limited sample size on which to test sensitivity to natural scallop 

variation, correct classification probabilities for scallops from different individuals were 

correlated with those for natural vs. time-reversed and randomized scallops. Thus we can infer 

that the observed range of single-neuron sensitivities to natural vs. time-reversed and randomized 

scallops reasonably reflects the ELp population’s sensitivity to individual variation in scallop 

patterns. The ability of single ELp neurons to provide enough information to discriminate among 

scallops from different individuals is in line with similar findings in auditory and electrosensory 

pathways. The spiking responses of auditory receptors and higher-order neurons in the 

grasshopper, as well as those of songbird field L neurons, can be used to discriminate among 
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conspecific songs produced by different individuals (Machens et al., 2003; Wang et al., 2007; 

Ronacher et al., 2008). Likewise, the spiking responses of hindbrain electrosensory neurons in 

wave-type weakly electric fish, which evolved their electric sense independently of mormyrids, 

can be used to discriminate between courtship signals from different individuals (Marsat and 

Maler, 2010). However, to our knowledge all previous studies of neural discrimination have used 

spike trains recorded from extracellular recordings. Here we show that subthreshold PSPs can be 

used to discriminate among natural and artificial temporal sequences in communication signals.  

From a purely information-theoretic perspective, graded membrane potential changes in 

response to sensory stimuli contain more information than spikes (de Ruyter van Steveninck and 

Laughlin, 1996; Juusola and French, 1997; Haag and Borst, 1998; Dhingra and Smith, 2004). 

Accordingly, spike threshold has been shown to play an important role in sharpening single-

neuron stimulus selectivity in visual, auditory, and somatosensory cortices (Priebe and Ferster, 

2008). As responses become more sharply tuned for particular stimulus features, their ability to 

provide enough information to discriminate among different stimuli might be expected to 

decline. However, in the fly visual system, spikes have been shown to improve discriminability 

if they amplify particular characteristics of the graded responses (Kretzberg et al., 2001). 

Therefore, it cannot be taken as a given that graded, subthreshold responses will always 

outperform spiking responses on stimulus discrimination measures.  

In our recordings, just under one-quarter (n=13/56) of ELp neurons fired spikes regularly 

enough to allow DFA. We found that spikes significantly improved discrimination of natural vs. 

jittered scallops, but not discrimination of natural vs. time-reversed and randomized scallops. 

Classification performance for natural vs. jittered stimuli using PSPs was much lower than that 
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for natural vs. time-reversed and randomized scallops, suggesting that spikes could increase 

discriminability of stimuli that are not well discriminated by PSPs.   

 Discriminability based on PSPs improved when we pooled the classification probabilities 

of multiple neurons. For pairs of neurons, we found an effect of IPI tuning, with pairs consisting 

of two neurons in different IPI tuning classes performing better than pairs with similar IPI 

tuning. Several studies have reported that a population of neurons with heterogeneous response 

properties can result in better discrimination performance than a population of neurons with 

homogeneous response properties (Shamir and Sompolinsky, 2006; Chelaru and Dragoi, 2008; 

Osborne et al., 2008; Holmstrom et al., 2010; Marsat and Maler, 2010;  but see Schneider and 

Woolley, 2010). However, a combination of heterogeneity and homogeneity in olfactory mitral 

bulb cells provided the most benefits to stimulus encoding, and the optimal combination of 

heterogeneous vs. homogeneous neural responses depended on the stimulus (Tripathy et al., 

2013).  

ELp neurons exhibit a great deal of diversity in responses to IPIs. We classify these 

responses into six categories (i.e., high-pass, low-pass, band-pass, band-stop, complex, and all-

pass) based on quantitative measures of PSP amplitudes evoked by IPIs (Carlson, 2009; George 

et al., 2011; Baker and Carlson, 2014). However, even within these tuning classes, responses are 

variable with respect to parameters such as bandwidth, best IPI, sensitivity to direction of IPI 

change, and intrinsic excitability (Carlson, 2009; George et al., 2011; Ma et al., 2013; Baker and 

Carlson, 2014; Kohashi and Carlson, 2014). Given that neural heterogeneity increases 

discriminability in a variety of other systems, it is likely that such diversity in ELp enhances the 

ability of population responses to detect and classify temporally patterned communication 

signals. 
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The improvement in classification probability by pooling responses over many neurons 

suggests that downstream neurons could integrate the output of multiple ELp neurons to achieve 

high discriminability between natural temporal patterns. Our method of pooling probabilities 

considered the responses of each neuron with equal weights. However, neurons could achieve 

even better performance than predicted here by adjusting synaptic weights accordingly (Shamir 

and Sompolinsky, 2006; Barbour et al., 2007). For instance, a neuron receiving one input with 

high classification accuracy and another input with low classification accuracy could assign a 

stronger weight to the better performing input. One such mechanism that could facilitate changes 

in synaptic weights is spike-timing-dependent plasticity (Feldman, 2012). Therefore, the ability 

of single ELp neurons to detect natural, behaviorally relevant temporal patterns could be 

enhanced by integrating responses from multiple neurons of different IPI tuning classes, and/or 

by adjusting the relative synaptic weights of different ELp neurons onto downstream targets.  

How and where such integration of ELp responses might take place remains an open 

question. ELp sends projections to the midbrain isthmic granule nucleus, which in turn projects 

back to ELp as well as to the valvula cerebellum (Haugede-Carre, 1979; Finger et al., 1981). ELp 

also projects to the subpraæeminential nucleus, inferior olive, and the medioventral nucleus of 

the midbrain, which is hypothesized to be involved in spatial analysis of signaling fish 

(Haugede-Carre, 1979; Friedman and Hopkins, 1998). Future in vivo electrophysiology 

experiments will be necessary to understand the roles of the isthmic granule nucleus, the 

subpraæeminential nucleus, and the inferior olive in electric communication signal analysis.  

We found that single-neuron responses were sensitive to individual variation in scallop 

patterns. PSP amplitudes from single neurons could be used to discriminate among scallops from 

different individuals with a probability of 0.64 + 0.05, with discriminability improving even 
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further when responses of multiple neurons were combined. Therefore, the information 

necessary to resolve individual differences in scallops is present in the population output of ELp. 

However, whether fish behaviorally discriminate individual differences in scallops remains to be 

determined. The individually stereotyped EOD waveform contains identifying information such 

as species, sex, and dominance status, and can even be used to identify individuals in some 

species (Graff and Kramer, 1992; Friedman and Hopkins, 1996; Carlson, 2002; Hanika and 

Kramer, 2005). Combining the stereotyped EOD waveform with individually characteristic 

scallop pattern could facilitate individual recognition. Another potential function of stereotyped 

scallop patterns could be to signal information such as fitness. Since scallops are hypothesized to 

play a role in aggressive encounters (Carlson and Hopkins, 2004), these individually distinctive 

temporal patterns could be used to “size up” a competitor. Whether discrimination of inter-

individual differences in scallops would provide any benefit to the fish remains to be seen.  

Here we explored how a population of neurons encodes one particular electric 

communication signal. However, mormyrids produce at least three additional types of temporal 

patterns during social encounters called accelerations, rasps, and creaks, which all consist of a 

larger number of IPIs than scallops (Carlson and Hopkins, 2004; Wong and Hopkins, 2007). The 

ability of single ELp neurons to distinguish between individual scallops consisting of only 10 

IPIs suggests that these neurons would likely also be able to distinguish between different classes 

of communication signals (Carlson and Hopkins, 2004). Furthermore, neurons with different IPI 

tuning properties have been shown to respond differently to accelerations and rasps (Carlson, 

2009). Since ELp neurons are involved in detecting more than just scallop sequences, it is 

possible that neurons whose responses poorly discriminated scallop variation may instead be 

better suited to discriminate between (or among) accelerations or rasps. It will be necessary to 
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investigate population coding of these additional communication displays to gain a fuller 

understanding of how interval-selective neurons in ELp mediate the detection of the full range of 

behaviorally relevant temporal patterns in communication signals.  
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Chapter 4 

 

Oscillatory phase reset: a novel mechanism for peripheral sensory 

coding 

 

 

 

 

 

 

This chapter contains a version of a manuscript currently under review: 

Baker C.A., Huck K.R., and Carlson B.A. Peripheral sensory coding through oscillatory phase 

reset in weakly electric fish. (under review at eLIFE) 
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ABSTRACT  

Here we address how evolutionary divergence in sensory perception relates to differences 

in the physiological coding of sensory stimuli. Evolutionary changes in the electrosensory 

systems of mormyrid fishes enabled some species to detect subtle variations in electric 

communication signals. Species sensitive to waveform variation have peripheral sensory 

receptors that respond to an electric pulse with a single, time-locked spike. These receptors 

encode signal waveform into spikes at signal onset in some receptors, and spikes at signal offset 

in other receptors. This coding scheme preserves the precise timing cues necessary for waveform 

discrimination. In contrast, the receptors of species insensitive to waveform variation produce 

spontaneous potentials that continuously oscillate at frequencies of 1-3 kHz. However, it was 

previously unknown how these oscillatory receptors encode electric communication signals. 

Using extracellular recordings, we found that oscillating receptors responded to an electric pulse 

by resetting the phase of their oscillations. These phase resets did not preserve the precise timing 

information necessary for signal waveform discrimination, but they did encode the information 

necessary for detecting and locating signal sources. In addition, we found that a species that 

independently evolved waveform sensitivity also evolved spiking receptors. Thus, different 

perceptual capabilities correspond to different mechanisms for the peripheral encoding of 

stimuli. Futhermore, whereas spiking receptors were most sensitive to stimulus frequencies 

matching the power spectra of signals produced by conspecific individuals, oscillating receptors 

were most sensitive to frequencies that were only found in the collective signals of large groups 

of individuals. During behavioral playback experiments, a species with oscillating receptors 

responded more strongly to group communication signals than did a species in the same genus 

with spiking receptors. High-frequency receptor oscillations may therefore be an adaptation for 
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detecting group communication signals. Our findings provide the first evidence for peripheral 

sensory coding through an oscillatory phase-reset mechanism.   
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INTRODUCTION  

 Evolutionary change in sensory systems can have profound effects on sensory perception 

and behavior (Carlson and Arnegard, 2011; Carlson, 2012; Baldwin et al., 2014). Recently, we 

documented a striking example of evolutionary change in the electrosensory systems of weakly 

electric fish (Carlson et al., 2011). Modifications in the anatomy of sensory receptors and the 

associated brain pathway that processes electric communication signals resulted in a newfound 

ability to detect subtle variations in these signals. This perceptual expansion led to a dramatic 

increase in the rates of signal evolution and species diversification. However, how these 

anatomical and perceptual differences relate to physiological differences in the underlying 

information processing mechanisms was unknown. Here we investigate how evolutionary 

change in sensory perception relates to differences in peripheral sensory coding mechanisms. 

Mormyrid fish communicate by producing a stereotyped, species-specific electric organ 

discharge (EOD) at variable interpulse intervals (see Carlson, 2002 for review). Some species 

can detect subtle variation in EOD waveforms, whereas others cannot (Carlson et al., 2011). 

Mormyrids have peripheral sensory receptors in their skin, called knollenorgans, that detect 

electric signals. In species sensitive to EOD waveform variation, these receptors are broadly 

distributed across the fish’s head, back, and underbelly (Carlson et al., 2011). These receptors 

fire a single, time-locked spike in response to an electric pulse in all species that have been 

studied (Bennett, 1965; Harder, 1968; Hopkins and Bass, 1981; Lyons-Warren et al., 2012). 

Spiking receptors encode electric pulse duration into spike-timing differences, with some 

receptors responding to pulse onset and others to pulse offset (Hopkins and Bass, 1981). These 

timing differences are then compared in the midbrain (Friedman and Hopkins, 1998; Lyons-

Warren et al., 2013).  
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The frequency sensitivity of spiking receptors tends to match peak frequencies in the 

power spectra of conspecific EODs (Hopkins, 1981; Bass and Hopkins, 1984; Lyons-Warren et 

al., 2012). Peripheral sensory receptors whose maximal sensitivity corresponds to a principal 

feature present in the signal they detect are considered “matched filters” (Wehner, 1987). 

Spiking receptors thus appear to be matched filters for conspecific EODs. Theoretically, matched 

filters in the periphery should reduce signal-processing demands on the central nervous system.  

In contrast, species insensitive to EOD waveform variation have receptors that produce 

spontaneously oscillating potentials at frequencies of 1-3 kHz (Harder, 1968). These receptors 

are clustered into three groups, called rosettes, on each side of the head (Harder, 1968; Lavoue et 

al., 2004; Lavoue et al., 2010; Carlson et al., 2011). It is not known how oscillatory receptors 

encode electric communication signals. 

Oscillations (~0.5-600 Hz) in neural activity are widespread throughout the brains of 

many animals, including humans, and have been hypothesized to play a role in sleep, attention, 

memory, motor output, and sensory coding (Buzsaki and Draguhn, 2004; Thut et al., 2012; 

Canavier, 2015). Oscillations could facilitate multiplexed signal coding, in which spikes carry 

information depending on the phase of the oscillation during which they occur (Thut et al., 

2012). Another effect of oscillations could be to enhance communication between neural 

populations during periods of synchronized excitability (Thut et al., 2012). Additional 

hypothesized functions include signal gating, feature binding, and cross-modal integration (Thut 

et al., 2012), although a clear functional role for electrical oscillations has remained elusive 

(Canavier, 2015).  

To gain insight into the neural basis of differences in perceptual abilities among species, 

here we investigate for the first time how oscillating receptors encode electric stimuli. Using 
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extracellular recordings, we compare spiking and oscillating receptor responses to electric 

pulses. Our findings reveal a novel phase-reset mechanism for signal detection in oscillating 

receptors. This is the first demonstration of information coding by oscillatory phase resets at the 

periphery. These phase resets did not encode pulse waveform, explaining why species with 

oscillating receptors cannot behaviorally discriminate EOD waveform variation. Furthermore, 

we provide physiological and behavioral evidence that oscillating receptors respond most 

strongly to communication signals with fast temporal patterns that can only be produced by large 

groups of conspecifics, suggesting that oscillating receptors may be specialized for group signal 

detection.

160



	  

MATERIALS AND METHODS  

Animals. Fifteen Brevimyrus niger (standard length [SL] = 5.9-8.6 cm), seventeen 

Pollimyrus adspersus (SL = 6.2-8.6 cm), twenty Petrocephalus microphthalmus (SL = 6.3-8.0 

cm), twenty Petrocephalus tenuicauda (SL = 5.5-9.0 cm), and five Petrocephalus soudanensis 

(SL = 8.0-10.0 cm) contributed data to this study. We used fish of both sexes. All fish were 

acquired through the aquarium trade except for P. microphthalmus, which were obtained from 

Lac Zilé, Gabon. EODs and receptor frequency tuning data from Brienomyrus brachyistius came 

from a previously published study (Lyons-Warren et al., 2012). In the lab, we housed fish in 

conspecific-only group tanks with 12h:12h light:dark cycle, water conductivity of 200-400 

µS/cm, and temperature of 25-29°. We fed the fish live black worms four times per week. 

Species of the genus Petrocephalus are extremely difficult to obtain. Therefore, to minimize the 

number of fish used in our physiological recordings, we collected just enough data to detect a 

robust pattern, which in some cases happened at a low sample size (e.g. n=3 in Fig. 5, 6). All 

procedures were in accordance with the guidelines established by the National Institutes of 

Health and were approved by the Institutional Animal Care and Use Committee at Washington 

University in St. Louis. 

 Receptor recordings. Extracellular recordings from single receptors were obtained using 

previously reported methods (Bennett, 1965; Hopkins and Bass, 1981; Lyons-Warren et al., 

2012). Briefly, we anesthetized fish in 300 mg/L tricaine methanesulfonate (MS-222, Sigma-

Aldrich, St. Louis, MO) and then paralyzed and electrically silenced fish with 20-80 µL of 0.1 

mg/mL gallamine triethiodide (Flaxedil, Sigma-Aldrich). We then placed the fish in a 20 x 12.5 

x 45 cm chamber filled with freshwater and positioned the fish on a plastic platform with lateral 

supports. We respirated the fish with freshwater through a pipette tip in the fish’s mouth while 
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monitoring the fish’s electromotor output using a pair of electrodes placed next to the fish’s tail 

(Carlson, 2002). Flaxedil silences the EOD, but external electrodes can be used to record fictive 

EOD motor commands from spinal electromotor neurons. After the fish had completely 

recovered from anesthesia, as indicated by the return of fictive EODs, we began the recording 

session. After receptor recordings, fish were allowed to recover completely from paralysis before 

being returned to their home tank. 

We used electrodes made from borosilicate capillary glass (o.d. = 1 mm, i.d. = 0.5 mm; 

A-M Systems, Everett, WA, USA). We bent the last ~1 cm of the electrode to a 30 degree angle 

and polished the tip using the flame from a Bunsen burner. We filled the electrode with tank 

water and placed it in an electrode holder with a Ag-AgCl wire connected to the headstage of the 

amplifier. We placed the electrode next to, but not quite touching, individual receptors. The fish 

remained completely under water for the entire recording session. Extracellular activity was 

referenced to ground, amplified 10 times (Neuroprobe Model 1600, A-M Systems), digitized at a 

rate of 97.7 kHz (RP2.1, Tucker-Davis Technologies, Alachua, FL, USA), and saved using 

custom software in Matlab 7.0 (MathWorks, Natick, MA, USA). Spiking responses and some 

oscillating responses were also low-pass filtered (cut-off frequency = 100 kHz) during recording.  

We obtained simultaneous recordings from pairs of oscillating receptors using the same 

glass electrodes as single-receptor recordings. Extracellular activity was referenced to ground, 

amplified 100 times, band-pass filtered (0.3 – 20 kHz) (Model 1800, A-M Systems), digitized at 

a rate of 97.7 kHz (RP2.1, Tucker-Davis Technologies), and saved in Matlab. We selected one 

spontaneously oscillating receptor in each rosette, for a total of 14 possible pairs across six 

rosettes. In one P. tenuicauda, we collected five one-second simultaneous recordings of 

spontaneous activity in 13 pairs of rosettes. We were unable to see the left and right 
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nackenrosettes at the same time under our microscope in this fish, so we could not obtain 

simultaneous recordings from this pair of rosettes. In another P. tenuicauda, we obtained 

simultaneous recordings from six pairs of rosettes. 

For differential recordings, we used a differential electrode consisting of a pair of Ag-

AgCl wires separated by 5 mm. Each wire had a diameter of 0.635 mm and uninsulated tip 

length of 2 mm. We oriented the electrode pair perpendicular to the skin, with the recording 

electrode next to the skin and reference electrode farther away. Electrical activity was amplified 

100 times and band-pass filtered (0.3-5 kHz) (Model 1800, A-M Systems), digitized at a rate of  

97.7 kHz (RP2.1, Tucker-Davis Technologies), and saved using custom software in Matlab 7.0. 

Stimulus delivery. All stimuli were generated in Matlab, digital-to-analog converted at a 

rate of 195.31 kHz (RP2.1, Tucker-Davis Technologies), and attenuated (PA5, Tucker-Davis 

Technologies) before delivery to the current input of the amplifier (Neuroprobe Model 1600, A-

M Systems). The amplifier then delivered constant-current stimuli through the monopolar 

recording electrode referenced to ground (Lyons-Warren et al., 2012). We used a bridge balance 

to minimize the stimulus artifact.  

To study how receptors encode electric pulse waveform, we recorded responses to 10 or 

25 repetitions of monopolar square pulses of durations ranging from 0.01 to 5 ms. We used both 

positive and negative polarities at an intensity within the behaviorally relevant range that reliably 

elicited responses from each receptor (10-18 nA in P. adspersus, 18 nA in B. niger, 32 nA in P. 

microphthalmus, and 45-100 nA in P. tenuicauda). 

We also delivered previously recorded conspecific EOD waveforms. For each receptor, 

we randomly selected an EOD stimulus from a library of 10 conspecific EOD waveforms. We 
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presented 10 repetitions of both normal (head-positive) and reversed polarity waveforms at 

intensities ranging from 6-312 nA.  

To measure frequency tuning in spiking receptors, we presented 15 repetitions of 90-ms 

duration sinusoidal stimuli of frequencies ranging from 0.1-50 kHz with 5 ms cosine-squared on- 

and off-ramps. Because we could not separate a continuously oscillating response from a 

continuously oscillating stimulus artifact, we had to use different stimuli to measure frequency 

tuning in oscillating receptors. We presented 10 repetitions of single-cycle bipolar sine wave 

stimuli of frequencies ranging from 0.2-84 kHz to measure frequency tuning of oscillating 

receptors. We also delivered single-cycle bipolar sine wave stimuli at durations equal to 

multiples (¼, ½, 1, 2, 4) of each receptor’s spontaneous oscillation period. We used both positive 

(peak leading trough) and negative (trough leading peak) polarities at three stimulus intensities 

(10, 32, and 100 nA) in P. tenuicauda. In P. soudanensis we used positive and negative polarity 

stimuli at 32 nA.   

To study how spiking and oscillating receptors encode interpulse intervals (IPIs) in 

communication signals, we presented 10 repetitions of a pair of monopolar square pulses, with 

each pulse 0.2 ms in duration. We used IPIs ranging from 0.3 to 13 ms. For oscillatory receptors, 

we also used IPIs equal to multiples (¼, ½, 1, 2, 4, 8) of each oscillating receptor’s intrinsic 

oscillation period. We used both positive and negative polarities at an intensity that reliably 

elicited responses in each receptor (6-10 nA in P. adspersus, 7-10 nA in B. niger, 18 nA in P. 

microphthalmus, and 10-100 nA in P. tenuicauda).  

Data analysis. To quantify the responses of spiking receptors, we detected spikes by 

finding the peak voltage that crossed a manually set threshold specific to each receptor. We 

measured interspike intervals as the difference in time between consecutive spikes. To measure 
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the responses of oscillating receptors, we first median filtered the recordings using a filter width 

of 0.1 ms. Next we detected the first seven oscillatory peaks after stimulus offset on each 

stimulus sweep, which allowed us to measure the first six post-stimulus oscillation periods. 

Imperfections in artifact balancing had no impact on the detection and measurement of spiking 

responses. However, sometimes it was unclear whether the first post-stimulus oscillatory peak 

was contaminated by artifact. To assess whether the stimulus artifact affected the first post-

stimulus oscillation peak, we compared the first post-stimulus period to the average of the 

following five post-stimulus periods. If the first period was less than 85% or more than 115% of 

the average of the next five periods, we concluded that the artifact interfered with the first post-

stimulus peak and instead used the second post-stimulus peak for all measurements.  

The time between the first and second post-stimulus peaks represented the post-stimulus 

oscillation period. We measured the oscillation amplitude by first averaging the voltage values of 

the first two post-stimulus oscillatory peaks, and then subtracting the voltage value at the 

intervening oscillatory trough. Next we calculated the angle (φ, in radians) of the oscillatory 

phase reset as  

,     (4.1) 

where lat is the latency of the first post-stimulus peak (time of peak minus time of stimulus 

offset) and p is the first post-stimulus period. We then used these values across repetitions to 

calculate the vector strength (r), a measure of phase-locking, according to 
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where n is the number of stimulus repetitions. The vector strength is a normalized measure of 

phase-locking that equals 1 when the constituent angles are perfectly in phase with one another, 

and 0 when the constituent angles are completely random relative to one another.  

We recorded spontaneous activity of each receptor five times for one second each. For a 

given spiking receptor, we measured the interspike intervals on each repetition and then averaged 

across recordings. For oscillating receptors, we averaged the fast Fourier transform (FFT) of the 

oscillatory activity across five repetitions, and then used the peak of the averaged FFT as the 

receptor’s spontaneous oscillation frequency. We used the inverse of the spontaneous oscillation 

frequency as the spontaneous oscillation period. We measured the spontaneous oscillation 

amplitude of each receptor by subtracting the voltage at each oscillatory trough from the voltage 

of the preceding oscillatory peak, and then averaging these amplitude values across the 

spontaneous recordings. If spontaneous activity was recorded more than once from the same 

receptor, we averaged measurements across all recordings. 

We measured frequency tuning in spiking receptors following previously described 

methods (Lyons-Warren et al., 2012). We defined a response as at least one more spike/sweep 

during the 90 ms stimulus period than during the 90 ms prestimulus period. We determined a 

receptor’s threshold by finding the lowest intensity at which the receptor responded to a given 

frequency. The frequency with the lowest threshold was defined as the receptor’s best frequency. 

We generated normalized tuning curves by setting threshold intensities as dB relative to the 

threshold intensity at the best frequency. For oscillating receptors, we generated tuning curves by 

plotting vector strength versus stimulus frequency. We defined the best frequency as the 

frequency with the highest vector strength. In three of eight oscillating receptors, the best 

frequencies in response to positive and negative polarity stimuli differed slightly. In these cases, 
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we determined the receptor’s best frequency by averaging the best frequencies to each stimulus 

polarity. 

To study how spiking receptors encode electric pulse waveform, we averaged the time of 

the first spike that occurred after stimulus onset (positive polarity stimuli) or stimulus offset 

(negative polarity stimuli). The difference in average spike times elicited by the two polarity 

stimuli was defined as the spike-timing difference. Since receptors on opposite sides of the body 

experience stimuli of opposite polarities, this procedure is equivalent to measuring the difference 

in spike times between receptors on opposite sides of the body evoked by the same stimulus 

(Hopkins, 1981). For a comparable measurement in oscillatory responses, we subtracted the 

average time of the first peak that occurred after the offset of the negative polarity pulse from the 

average time of the first peak that occurred after the onset of the positive polarity pulse for pulse 

durations longer than 0.5 ms. For shorter stimulus durations (<0.5 ms), we measured the 

difference in the times of the first oscillatory peaks that occurred after stimulus offset for each 

stimulus polarity. This procedure is equivalent to measuring the difference in oscillatory peak 

times between receptors on opposite sides of the body evoked by the same stimulus. To quantify 

the degree of oscillation amplitude enhancement, we first measured all prestimulus oscillation 

amplitudes on each recording trace, and then averaged across all repetitions of the same stimulus. 

Next we measured the poststimulus oscillation amplitude on each recording trace and averaged 

across all repetitions of the same stimulus. Lastly, we divided the mean poststimulus oscillation 

amplitude by the mean prestimulus oscillation amplitude for each pulse duration.  

Since the peak power frequency of a single-cycle bipolar sine wave is slightly lower than 

the inverse of the wave’s duration, we used Welch’s power spectral density in Matlab to compute 
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the power spectrum of each single-cycle sine wave. We took the peak of the power spectrum as 

the frequency of each stimulus. 

We measured the difference in the phases of oscillatory resets evoked by opposite 

polarity stimuli by first averaging the recorded potential across stimulus repetitions, and then 

measuring the first post-stimulus period and the latency of the first post-stimulus peak. We used 

these values to calculate the difference in the phase (Δφ) of oscillatory reset between responses 

to opposite polarity pulses according to 

    (4.3) 

where latN is the latency of the first peak, and pN is the first period, respectively, evoked by the 

negative polarity stimulus, and latP is the latency of the first peak, and pP is the first period, 

respectively, evoked by the positive polarity stimulus.  

To measure spiking responses to paired pulses, we measured the interspike intervals 

between the spikes elicited by the onset (positive polarity stimuli) or offset (negative polarity 

stimuli) of each pulse. If no spikes occurred in response to the second pulse, no interspike 

intervals were recorded. For clarity, stimulus artifacts were removed from the recording traces 

shown in Figs. 5A and B by drawing a straight line from the times of stimulus onset or offset 

plus 0.03 ms. In oscillating receptors, the stimulus artfact at the shortest IPIs tested obscured 

responses to the first pulse in the pair. To circumvent this issue, we first averaged oscillatory 

responses across stimulus presentations. Next we measured the time interval between the first 

oscillatory peak that followed a single pulse and the first oscillatory peak that followed the 

second pulse in the pair. This method is equivalent to measuring the time interval between the 

first peaks following each pulse in the pair. We also measured the vector strength and 
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poststimulus oscillation amplitude following the second pulse in the pair. We normalized mean 

poststimulus oscillation amplitudes by dividing by the mean poststimulus oscillation amplitude 

following a single pulse of 0.2 ms with the same polarity.  

EOD recording and analysis. EODs were amplified 20-100 times, band-pass filtered (1 

Hz – 50 kHz) (BMA-200, CWE Inc., Ardmore, PA, USA), digitized at a rate of 195 kHz (RP2.1, 

Tucker Davis Technologies), and saved using custom software in Matlab 7.0. We measured total 

EOD durations using previously defined criteria (Carlson et al., 2000). EOD power spectra were 

computed using Welch’s power spectral density estimate in Matlab.   

IPI recordings. To measure the IPIs generated by single fish and groups of fish, we 

recorded 20 minutes of electrical activity from a species with spiking receptors (P. 

microphthalmus) and a congeneric species with oscillating receptors (P. tenuicauda). For single-

fish recordings, fish were removed from their home tank and placed into a 15 x 17 x 31 cm 

plastic chamber with a single recording electrode in which the positive and negative terminals 

were separated by 20 cm. Fish were allowed to acclimate for at least 10 minutes before the 

recordings. For group recordings, we placed four vertically oriented electrodes suspended with 

the reference terminal up (16.5 cm from the top of the tank) in the home tank (61 x 76 x 61 cm) 

of each species. Each electrode was located one-third of the distance between tank walls (i.e., at 

the vertices of nine equally sized rectangles). We placed the electrodes in the tank and allowed 

fish to acclimate to them overnight before starting the recordings. We amplified electrical 

activity 100 times before band-pass filtering (0.1 Hz – 20 kHz) (Model 1700, A-M Systems) and 

digitizing at 97.7 kHz (RX8, Tucker-Davis Technologies). We detected EODs as points where 

the rectified recorded potential exceeded a threshold of 0.6 mV. Data were saved using custom 

Matlab software. For the histograms shown in Fig. 7B, C, E and F, we used the recording from 
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just one of the four electrodes. Single-fish and group tank recordings took place between 1700 

and 1900. 

Behavioral playback experiments. To test whether species with different receptor 

physiologies exhibited different behavioral responses to IPIs, we recorded fish’s EOD output in 

response to a train of 10 conspecific EODs at a constant IPI (0.3-100 ms) using previously 

described methods (Carlson et al., 2011). Briefly, we removed one fish from its group tank and 

placed it into a 10 gallon tank with a cylindrical plastic chamber (5 cm diameter x 13.2 cm) in 

the middle of the tank. If the fish was not inside the chamber at the end of a 30-minute 

acclimation period, we guided the fish into the chamber with nets. Netted caps were then placed 

over each end of the chamber to keep the fish inside during the experiment. Fish were then 

allowed an additional five-minute acclimation period before starting the experiment. A pair of 

electrodes oriented horizontally along the inside walls of the chamber delivered the stimulus, and 

a pair of electrodes oriented vertically at either end of the chamber recorded the fish’s EOD 

output. For each fish, we randomly selected a conspecific EOD waveform stimulus from a 

library. To generate the IPI train stimuli, we first defined the start and end of the EOD as the first 

and last points, respectively, where the absolute value of the waveform exceeded 0.5% of the 

maximum peak-to-peak amplitude. We then concatenated 10 identical EODs together, adding 

zero padding as necessary in between EODs to achieve the desired IPIs. If the duration of the 

EOD was longer than the IPI, we truncated the EOD at the IPI. We presented only normal (head-

positive) polarity stimuli. All stimuli were generated in Matlab, digital-to-analog converted at a 

rate of 195.31 kHz (RX8, Tucker-Davis Technologies), and attenuated (PA5, Tucker-Davis 

Technologies) before delivery to the analog stimulus isolator (Model 2200, A-M Systems).  
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To record fish’s EOD output, we amplified electrical activity 100 times before band-pass 

filtering (0.1 Hz – 20 kHz) (Model 1700, A-M Systems) and digitizing at 97.7 kHz (RX8, 

Tucker-Davis Technologies). We collected a fish’s responses to 20 repetitions of each IPI train 

and to a single EOD stimulus, with one minute between trials to reduce habituation. We 

randomized stimulus order. To quantify responses, we recorded the time of each EOD produced 

by the fish, and then computed the spike-density function (SDF) by convolving each EOD time 

with a Gaussian of 200 ms width (Carlson and Hopkins, 2004). We then averaged the SDF 

across stimulus repetitions. Next we measured the fish’s baseline response by averaging the 

resulting EOD rate over a window starting 200 ms after the start of the 5 sec prestimulus period 

and ending 200 ms before stimulus onset. Because mormyrids can respond to electric stimuli 

with increases or decreases in their EOD rate (Moller et al., 1989; Post and von der Emde, 1999; 

Carlson et al., 2011), we measured the maximum and minimum of the SDF that occurred 

between stimulus onset and one second following stimulus offset. We subtracted the baseline 

discharge rate from these two values to get the maximum increase in EOD rate and the maximum 

decrease in EOD rate in response to the stimulus.    

Statistics. We used circular statistics to measure mean angles + S.E.M. of phase 

modulations of oscillatory receptor responses (Batschelet, 1981). We used the parametric 

second-order Hotelling test for paired circular data to compare oscillatory phase modulations 

elicited by normal and reversed polarity EODs (Zar, 1999). We used repeated-measures ANOVA 

in Statistica 6.1 (StatSoft, Tulsa, OK, USA) to compare behavioral responses to IPI stimuli 

across two species. We used Spearman’s rank test in Statistica 6.1 to compare spontaneous 

oscillation amplitudes and frequencies, as well as spontaneous and stimulus-evoked oscillation 

amplitudes in response to square pulses in oscillatory receptors.  
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RESULTS  

Spontaneous receptor activity 

 We obtained extracellular recordings of spontaneous activity from the sensory receptors 

of five species of mormyrids (Fig. 1). This sample included three species with broadly 

distributed receptors, including Petrocephalus microphthalmus, whose receptor physiology was 

previously unknown. P. microphthalmus is behaviorally sensitive to EOD waveform variation, 

but it appears to have evolved this ability independently of other species with broadly distributed 

receptors (Carlson et al., 2011). Our extracellular recordings revealed that the receptors of P. 

microphthalmus indeed fire spikes (Fig. 1A), just like other mormyrids with broadly distributed 

receptors and EOD waveform sensitivity. Across three species, spiking receptors had median 

spontaneous interspike intervals ranging from 0.7 to 195 ms (Fig. 1B).  

We recorded spontaneous oscillations from rosette receptors of two species (Fig. 1C, D). 

In Petrocephalus tenuicauda, the amplitude of oscillatory activity varied from 0.04-6.1 mV. We 

only measured the frequency of spontaneous activity if the oscillation amplitude was at least 2.5 

times baseline noise (> 0.1 mV). Forty-nine of 69 (71%) receptors in P. tenuicauda met these 

criteria (see example in Fig. 1C). These receptors had a median oscillation frequency of 1.7 kHz.   

We recorded spontaneous activity from three rosette receptors in Petrocephalus 

soudanensis. These receptors had spontaneous oscillation amplitudes of 0.09, 0.4, and 1.9 mV, 

and frequencies of 2.1, 2.6, and 2.5 kHz, respectively. Thus, receptors of P. soudanensis tended 

to have shorter spontaneous oscillation periods than those of P. tenuicauda (Fig. 1D).   

Oscillating receptors are organized into three rosette clusters on each side of the head 

(Harder, 1968; Lavoue et al., 2004; Lavoue et al., 2010; Carlson et al., 2011). The augenrosette is 

found near the eye, the nackenrosette dorsal to the gill cover, and the kehlrosette ventral to the  
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Figure 1. The peripheral sensory receptors of some mormyrid species fire spikes, whereas the receptors of 
other species produce spontaneously oscillating potentials. (A) An extracellular recording of spontaneous 
spikes from a receptor of Petrocephalus microphthalmus. (B) Box plots of spontaneous interspike 
intervals in the receptors of three species. (C) An extracellular recording of spontaneously oscillating 
receptor potentials in Petrocephalus tenuicauda. (D) Box plots of spontaneous oscillation periods in the 
receptors of two species. 
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gill cover (Fig. 2A). In one P. tenuicauda, we obtained spontaneous recordings from every 

receptor of the right augenrosette (Fig. 2B). Spontaneous oscillation amplitudes ranged from 

0.04-5.2 mV. Spontaneous oscillation amplitude was largest in the center of the rosette, and 

progressively decreased towards the periphery. Spontaneous oscillation frequencies ranged from 

1.0-2.1 kHz. Oscillation frequency and amplitude were not significantly correlated (Spearman 

R=0.27, t(22)=1.3, p=0.21), although frequencies tended to be highest near the center of the 

rosette (Fig. 2B). 

 

Spontaneous oscillations of different receptors are not synchronized  

 To determine whether the oscillations of receptors in different rosettes were synchronized 

with one another, we collected simultaneous recordings from pairs of receptors in two P. 

tenuicauda. In one fish, we recorded from 13 pairs of receptors, each located in a different 

rosette (see Fig. 2C). To assess the degree of synchrony between receptors, we computed the 

cross-correlation, which measures the correlation between two waveforms as a function of the 

relative delay between them. In general, oscillatory activity was not synchronized across 

receptors (see example in Fig. 2D). Across all 13 pairs, maximum cross-correlation coefficients 

ranged from 0.02-0.8. The plot of cross-correlation coefficient vs. time lag has peaks at the 

relative delays at which the two recordings are in phase with one another, and troughs at the 

relative delays at which the two recordings are perfectly out of phase with one another (Fig. 2D). 

These peaks and troughs are regularly spaced, creating a continuous beat pattern. These beats are 

present in the plot because the frequencies of the two constituent signals are different, and their 

phases are not synchronized, leading to a rhythmic pattern of constructive and destructive 

interference. This is the behavior expected for two independent oscillators, and it was observed  
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Figure 2. Oscillatory activity is not synchronized across receptors. (A) Receptor locations on the right 
side of one P. tenuicauda are illustrated as black dots (receptor size not to scale). (B) An approximate map 
of all 32 receptors in the right augenrosette of one P. tenuicauda. This map comes from a different fish 
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than shown in (A). (C) Simultaneous extracellular recordings from a receptor in the left nackenrosette and 
a receptor in the right nackenrosette of one P. tenuicauda. Vertical dashed lines indicate the times of 
troughs in the top recording trace for comparison with the bottom recording trace. (D) The cross-
correlation coefficient vs. time lag for the paired recording in (C), for time lags between -100 and 100 ms. 
(E) Differential extracellular recordings from a position centered over the right nackenrosette (black) and 
a position 2 mm posterior (red) in one P. tenuicauda. The recording and reference terminals of the 
electrode were separated by 5 mm. (F) Power spectra for the differential recordings shown in (E). Only 
the frequency range where peaks occurred is shown (~1.7-2.1 kHz). 
 
 
in every pair-wise recording. In another P. tenuicauda, we recorded from six pairs of receptors 

and found similar results, with maximum cross-correlation coefficients ranging from 0.05-0.2.  

 To determine whether the oscillations of individual receptors within rosettes were 

synchronized, we recorded spontaneous activity with a differential electrode pair centered over a 

single rosette. The differential electrode allowed us to record local field potentials resulting from 

multiple receptors. Beats were present in these recordings (see example in Fig. 2E), indicating 

that our electrode was in fact recording activity from multiple sources with different frequencies. 

Indeed, at least three distinct peaks were present in the power spectrum of this recording (black 

trace in Fig. 2F). Recording activity at a position 2 mm posterior to this location led to the loss of 

two of these peaks and the addition of two new peaks in the power spectrum, suggesting that the 

electrode was recording activity from a distinct, but overlapping population of receptors 

compared to the previous location (red traces in Fig. 2E and F). Qualitatively similar results were 

seen in differential recordings from additional rosettes. Therefore, in agreement with a previous 

report (Harder, 1968), the oscillatory activity of individual receptors is not correlated within or 

across rosettes.  
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Electric pulses elicit time-locked spikes in spiking receptors, and phase resets in oscillating 

receptors 

To understand how receptors encode electric stimuli, we recorded receptor responses to 

monopolar square pulse stimuli (Fig. 3). We delivered both positive and negative polarity pulses 

to mimic the stimulation that receptors on opposite sides of the body would naturally experience 

in response to the same stimulus (Hopkins and Bass, 1981). As shown previously, spiking 

receptors responded with a single time-locked spike in response to inward current transients  

(Bennett, 1965), which occur at the onset of a positive polarity pulse and at the offset of a 

negative polarity pulse (Fig. 3A, B). The probablility that a spiking receptor would respond 

depended on pulse duration, with pulses longer than ~0.02 ms reliably eliciting a spike (Fig. 3C). 

Spike probability was high for pulse durations within the range of total durations of conspecific 

EODs (horizontal bars in Fig. 3C). 

Oscillating receptors responded to monopolar square electric pulses with phase resets and 

amplitude increases (Fig. 3E, F). The degree of amplitude enhancement relative to prestimulus 

amplitudes depended on pulse duration (Fig. 3G). Phase resets and amplitude increases occurred 

both in receptors with high-amplitude spontaneous oscillatory activity as well as in receptors 

with little to no spontaneous oscillations. At the stimulus duration that elicited the maximum 

oscillation amplitude in each receptor, there was a positive correlation between spontaneous and 

stimulus-evoked oscillation amplitudes (Spearman R=0.90, t(3)=3.6, p=0.037). 

 

Spiking receptors encode pulse duration, whereas oscillating receptors do not 

Spiking receptors encoded square pulse duration into differences in spike times between 

receptors. For instance, the differences in spike times elicited by each polarity of a square pulse  
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Figure 3. Spiking receptors encode pulse duration, whereas oscillating receptors do not. (A) Extracellular 
recordings from a spiking receptor in B. niger to positive polarity (black) and negative polarity (red) 
monopolar square pulses of 0.10 ms duration. A single time-locked spike occurs at the onset of a positive 
polarity pulse, and at the the offset of a negative polarity pulse. Spikes are indicated by open arrowheads 
and the stimulus artifact is indicated by closed arrowheads. Traces from five stimulus repetitions are 
superimposed. The difference in the times (Δt) of spikes to positive and negative polarity stimuli is 0.10 
ms. (B) Responses of the same receptor as shown in (A) for a monopolar square pulse of 0.20 ms  
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duration. The spike-timing difference (Δt) is 0.20 ms. (C) Spike probability vs. square pulse duration for 
responses to positive polarity stimuli for spiking receptors of three species. Horizontal bars indicate the 
behaviorally relevant ranges of total durations measured in 10 conspecific electric organ discharge (EOD) 
waveforms. (D) Spike-timing differences between responses to positive and negative polarity stimuli vs. 
square pulse duration for the same receptors in (C). (E) Responses of an oscillating receptor in P. 
tenuicauda to positive (black) and negative (red) polarity monopolar square pulses of 0.10 ms duration. 
The difference in the time of oscillatory peaks (Δt) elicited by opposite polarity stimuli is 0.25 ms. (F) 
Responses of the same receptor as shown in (E) for a monopolar square pulse of 0.20 ms duration. The 
oscillation timing difference (Δt) is 0.23 ms. (G) Evoked oscillation amplitudes normalized to prestimulus 
oscillation amplitudes vs. square pulse duration for oscillating receptors. Curves for each receptor are 
shown in grey, and the averages across receptors are shown in black. The horizontal bar indicates the 
range of total durations of 10 conspecific EODs. (H) Oscillation-timing differences between responses to 
positive and negative polarity stimuli vs. square pulse duration for the same receptors shown in (G). (I) 
Extracellular recordings from an oscillating receptor in P. tenuicauda in response to a head-positive 
(“normal polarity”) conspecific EOD waveform (black) and the reversed polarity waveform (red). 
Stimulus intensity was 316 nA. Traces from five stimulus repetitions are superimposed. (J) Same as (I) 
for EOD stimuli at 32 nA. (K) Vector strength vs. phase difference of oscillatory responses to opposite 
polarity conspecific EODs in P. tenuicauda. Each point represents the mean of responses from 6 
receptors. Vector strength was averaged across stimulus polarity within each receptor before averaging 
across receptors. Error bars represent S.E.M. Closed circles indicate phase resets that were significantly 
different for normal vs. reversed polarity EODs (Hotelling test for paired circular data, F>Fcrit=6.9, 
p<0.05).  The stimulus intensities that evoked significantly different phase resets for opposite polarity 
EODs were 56, 178, and 316 nA. One intervening intensity (100 nA) did not result in significantly 
different phase resets. No stimulus intensities below 56 nA elicited oscillatory resets to significantly 
different phases. (L) Phase differences between responses to positive and negative polarity stimuli vs. 
square pulse duration for oscillatory responses to monopolar square electric pulses.  
 
 
of durations 0.10 and 0.20 ms were exactly 0.10 and 0.20 ms, respectively (Fig. 3A and B). 

Across all spiking receptors, this spike-timing difference perfectly matched pulse duration for 

pulses longer than ~0.1 ms, and as short as 0.05 ms in Pollimyrus adspersus (Fig. 3D). At shorter 

durations, however, the spike-timing differences no longer accurately reflected pulse duration. 

Importantly, spike-timing differences precisely represented square pulse duration over the 

behaviorally relevant ranges for total EOD duration in each species (horizontal bars in Fig. 3D), 

indicating that spiking receptors can faithfully encode the waveform durations found in 

conspecific signals. These results confirm previous studies on the encoding of pulse waveform 

by spiking receptors (Hopkins and Bass, 1981; Lyons-Warren et al., 2012). Such precise coding 

of timing cues mediates the demonstrated ability of species with spiking receptors to detect EOD 
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waveform variation (Hopkins and Bass, 1981; Arnegard et al., 2006; Machnik and Kramer, 

2008; Feulner et al., 2009; Carlson et al., 2011). 

 In oscillatory receptors, the phase resets elicited by square pulses depended on stimulus 

polarity (Fig. 3E, F). Positive and negative polarity square pulses elicited phase resets that 

differed by ~180° (Fig. 3E, F). This phase difference was constant regardless of pulse duration, 

both throughout and beyond the behaviorally relevant range (Fig. 3L). To determine whether 

oscillating receptors could encode pulse duration in a manner similar to the spike-timing 

differences of spiking receptors, we measured the difference in times of oscillatory peaks evoked 

by opposite polarity pulses (Fig. 3E, F). For pulse durations exceeding receptors’ intrinsic 

oscillation periods (~0.5 ms), the phase could be reset in response to each stimulus edge. In these 

instances, we measured the oscillation-timing difference elicited by the onset of a positive 

polarity pulse and the offset of a negative polarity pulse. These oscillation-timing differences 

precisely reflected square pulse duration (Fig. 3H). However, pulses of shorter durations (<0.5 

ms) did not elicit phase resets to each stimulus edge, since these durations are shorter than 

receptors’ intrinsic oscillation periods. For these stimulus durations, we measured the oscillation-

timing differences after stimulus offset (e.g. Fig. 3E, F). We found that oscillation-timing 

differences did not accurately encode pulse durations shorter than ~1 ms (Fig. 3H), reflecting 

phase resets to the leading edge of the pulse that differ by ~180° regardless of pulse duration 

(Fig. 3E, F, L). This means that oscillatory responses could not encode pulse durations found in 

conspecific EODs (black bar in Fig. 3H). These observations help shed light on the inability of 

fish with oscillating receptors to resolve slight EOD waveform variation. Species with oscillating 

receptors cannot detect waveform variation because the necessary cues are not encoded at the 
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periphery. However, oscillating receptors would be able to encode the direction of the stimulus 

based on which receptors reset to a peak first, owing to differences in polarity. 

To confirm that oscillatory phase differences of ~180° also occurred in response to 

natural EOD waveforms, we presented previously recorded conspecific EODs at varying 

intensities to oscillating receptors (Fig. 3I, J). We measured the vector strength and phase 

differences for responses to opposite polarity stimuli. The vector strength is a measure of phase-

locking that ranges from 0 (phase is random across repetitions) to 1 (identical phase across 

repetitions). At each intensity, we compared the phases elicited by each polarity using the 

parametric second-order Hotelling test for paired circular data (Zar, 1999). At intensities (56, 

178, 316 nA) for which the phase resets evoked by opposite polarity EODs were significantly 

different, phase differences were always ~180° (filled circles in Fig. 3K). Stimulus intensities of 

100 nA and less than 56 nA did not elicit oscillatory resets to significantly different phases (open 

circles in Fig. 3K; see example in Fig. 3J). 

 

Frequency sensitivity of spiking receptors is matched to the power spectra of conspecific 

EOD waveforms 

Spiking receptors have been reported to be most sensitive to the frequencies occuring in 

conspecific EOD waveforms (Hopkins, 1981; Bass and Hopkins, 1984; Lyons-Warren et al., 

2012). To confirm this finding in our test species, we compared the frequency sensitivity of 

individual spiking receptors to the power spectra of conspecific EODs (Fig. 4A, B, D). We 

collected threshold frequency tuning curves as described previously (Lyons-Warren et al., 2012). 

We defined a spiking response to a constant-frequency stimulus as at least one more spike/sweep 

during the 90 ms stimulus than during the 90 ms prestimulus period. We decreased the intensity  
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with oscillating receptors (P. tenuicauda and P. soudanensis), plotted head-positive up with normalized 
peak-to-peak heights. (B-C) Average power spectra of EODs from species with spiking receptors (B) and 
of species with oscillating receptors (C). (D) Frequency tuning curves for representative spiking receptors 
from four species. Constant-frequency stimuli were 90 ms in duration. Threshold was determined as the 
lowest intensity stimulus that elicited a spiking response. Thresholds were defined as dB relative to the 
threshold at each receptor’s best frequency. Open symbols indicate stimuli for which there was no 
response from the receptor at the intensity shown, but responses to higher intensities were not recorded. 
(E) Frequency tuning curves for a representative oscillating receptor from P. tenuicauda at three 
intensities. Stimuli were single-cycle bipolar sine waves with positive polarity (peak preceding trough). 
Vector strength was used as a measure of phase-locking across responses. Vector strength equals 1 when 
the phase of the oscillatory reset is the same for each stimulus presentation and 0 when the phase of 
oscillatory reset is completely random for each stimulus presentation. (F) Average receptor best frequency 
vs. average conspecific EOD peak power frequency for all six species studied. Best frequencies were 
averaged across responses to positive and negative (trough preceding peak) polarity stimuli in oscillating 
receptors. We used the best frequencies at 10 nA in P. tenuicauda. Closed symbols denote species with 
spiking receptors and open symbols denote species with oscillating receptors. (G) Vector strength of 
oscillating responses to positive polarity single-cycle bipolar sine stimuli at multiples of receptors’ 
spontaneous oscillation periods at three intensities in P. tenuicauda. Each point in (F) and (G) represents 
the average across receptors where appropriate, and error bars represent S.E.M.  
 

of the stimulus until the receptor no longer produced a response. We defined a receptor’s 

threshold as the lowest intensity that elicited a response. We defined a receptor’s best frequency 

as the frequency with the lowest threshold. 

In general, spiking receptors had the lowest thresholds in the frequency range 

approximately corresponding to the frequencies with the highest power in conspecific EODs 

(compare Fig. 4D with Fig. 4B). For spiking receptors, best frequencies varied widely across 

species and correlated with the peak power frequencies of conspecific EODs. On average, the 

best frequencies of spiking receptors were within one octave of the peak power frequencies of 

conspecific EODs (filled symbols in Fig. 4F). These findings support the interpretation of 

spiking receptors as matched filters for conspecific EODs. 
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Frequency sensitivity of oscillating receptors is not matched to the power spectra of 

conspecific EOD waveforms   

 To test whether the frequency sensitivity of oscillating receptors is also matched to the 

power spectra of conspecific EOD waveforms, we collected frequency tuning curves in two 

species. Due to the oscillatory nature of both stimulus artifact and response, we could not use the 

same 90 ms constant-frequency stimuli that we used to characterize frequency tuning in spiking 

receptors. Instead, we presented single-cycle bipolar sine waves at three intensities and measured 

the vector strength of phase resets at stimulus offset. We defined an oscillating receptor’s best 

frequency as the frequency that elicited the largest vector strength.  

 In general, oscillating receptors were most sensitive to frequencies well below the peak 

power frequency in conspecific EODs (compare Fig. 4E with black trace in Fig. 4C). On 

average, the best frequencies of oscillating receptors were more than two octaves below the peak 

power frequencies of conspecific EODs (open symbols in Fig. 4F). These data indicate that, in 

contrast to spiking receptors, oscillating receptors do not represent matched filters for 

conspecific EODs.  

 At stimulus intensities of 10 nA, where tuning was sharpest, the best frequencies (0.8-2.5 

kHz) of these receptors roughly corresponded to their intrinsic oscillation frequencies (1.5-2.0 

kHz), suggesting that their frequency tuning resulted from resonance with their intrinsic 

oscillations. To test this hypothesis, we also delivered single-cycle bipolar sine waves at 

multiples of each unit’s intrinsic oscillation period. Indeed, oscillatory responses were strongest 

for stimulus durations matching each receptor’s spontaneous oscillation period (Fig. 4G).   
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Spiking receptors encode interpulse intervals into interspike intervals 

 Electric communication signals consist of the EOD produced at variable interpulse 

intervals (IPIs). Whereas the stereotyped EOD waveform can contain identifying information 

such as species and sex, the interpulse intervals convey behavioral state (see Carlson, 2002 for 

review). Spiking receptors have previously been reported to respond to IPIs as short as 2 ms 

(Bell and Grant, 1989). To investigate IPI coding in the three species with spiking receptors 

included in this study, we presented receptors with a pair of 0.2 ms duration monopolar square 

pulses at a range of IPIs (Fig 5A, B).  

 The probability that a receptor fired a spike in response to the second pulse in the pair 

decreased at the shortest intervals tested (Fig. 5B, C). The minimum IPI at which spikes could  

reliably be elicited varied slightly across species (Fig. 5C). Importantly, receptors of all species 

reliably fired spikes at the reported minimum IPIs produced by individual fish (~8 ms) (Hopkins, 

1986; Carlson, 2002).  

 In agreement with previous studies (Bell and Grant, 1989; Baker et al., 2013), spiking 

receptors encoded IPIs into interspike intervals within receptors, with the interspike intervals 

exactly matching the IPI (Fig. 5A, D). This relationship held for IPIs as short as 1 ms in P. 

adspersus and P. microphthalmus, and as short as 0.3 ms in Brevimyrus niger. Shorter IPIs failed 

to evoke spikes in response to the second pulse due to receptors’ refractory periods (Fig. 5B, C), 

which is why data points below these values are missing from Fig. 5D. These findings 

demonstrate that spiking receptors can faithfully encode the IPIs generated by individual 

signaling fish into interspike intervals within single receptors.  
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186



	  

recordings in (A-B). (C) The probability that a receptor fired spikes to both positive polarity pulses in a 
pair vs. interpulse interval for spiking receptors from three species. (D) Interspike interval vs. positive 
polarity interpulse intervals for the same spiking receptors shown in (D). The receptors of P. adspersus 
and P. microphthalmus did not fire spikes in response to both pulses when interpulse intervals were 
shorter than 1 ms, so there are no data points at these intervals. (E) Extracellular recordings from an 
oscillating receptor in P. tenuicauda in response to a single pulse (top) and to a pair of pulses with 3.0 ms 
interpulse interval (bottom). Responses to each stimulus presentation are shown in grey and the average 
across stimulus presentations is shown in black. The interoscillation interval, defined as the time interval 
between the first poststimulus oscillatory peak evoked by the single pulse and that evoked by the second 
pulse in the pair, was 3.0 ms. The interoscillation interval was measured from the average trace. (F) Same 
as (E) for 0.30 ms interpulse interval. The interoscillation interval was 0.18 ms. (G) Interoscillation 
interval vs. interpulse interval for the responses of oscillating receptors of P. tenuicauda to positive 
polarity stimuli. Each point in (C), (D), and (G) represents the mean across receptors and error bars 
represent S.E.M. 
 
 
Oscillating receptors encode interpulse intervals into interoscillation intervals and 

amplitude increases 

 Oscillating receptors responded to paired pulses with phase resets and amplitude 

increases in response to each pulse in the pair (bottom panels in Fig. 5E, F). At the shortest 

intervals (0.3 ms) tested, the stimulus artifact of the second pulse obscured the oscillatory 

response to the first pulse (Fig. 5F). Thus, to investigate how oscillating receptors encode IPIs, 

we measured interoscillation intervals as the time between the first oscillatory peak following a 

single-pulse stimulus and the first oscillatory peak following the second pulse in the paired 

stimulus (Fig. 5E, F). This method was equivalent to measuring the time interval between 

oscillatory peaks evoked by each pulse in the pair, but it allowed us to measure the 

interoscillation intervals at the shortest intervals where the oscillatory response is obscured by 

stimulus artifact. Interoscillation intervals accurately represented the IPI for intervals of ~1 ms 

and longer (Fig. 5E, G). At shorter IPIs, the interoscillation interval did not reliably match the IPI 

(Fig. 5F, G). Importantly, interoscillation intervals accurately encoded IPIs over the range 

produced by individual fish (>8 ms) (Hopkins, 1986; Carlson, 2002).  
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 Interestingly, the amplitude of oscillations evoked by a pair of pulses also depended on 

the IPI (Fig. 6A, B). To facilitate comparisons across and within receptors, we normalized 

oscillation amplitudes evoked by the second pulse in the pair to those evoked by a single pulse. 

At the highest intensity tested, oscillation amplitudes were attenuated relative to single-pulse 

responses for IPIs below 1 ms (black curve in Fig. 6C). As stimulus intensity decreased, 

however, oscillation amplitudes became selectively enhanced in response to 0.5 ms IPIs (Fig. 

6C). At the lowest intensity tested, oscillation amplitudes evoked by 0.5 ms IPIs were about 40% 

greater than those evoked by single pulses (light grey curve in Fig. 6C). Phase-locking, as 

measured by the vector strength of oscillatory responses to the second pulse in the pair, also 

depended on IPI and stimulus intensity (Fig. 6E). As the intensity decreased, responses became 

more sharply selective for IPIs around 0.5 ms, which is near the intrinsic oscillation periods 

(0.47-0.99 ms) of receptors in the species tested. This is suggestive of resonance, in which 

stimulating an oscillating receptor with a pair of pulses separated by the receptor’s intrinsic 

oscillation period results in stronger responses.  

 To test this hypothesis, we presented receptors with IPIs equal to multiples of their 

intrinsic oscillation periods (Fig. 6D, F). As stimulus intensity decreased, oscillatory responses 

became more selective for IPIs equal to the intrinsic oscillation period (Fig. 6D). In contrast, 

oscillation amplitudes were attenuated relative to single-pulse responses for IPIs shorter than the 

intrinsic oscillation period (Fig. 6D). At the lowest intensity tested, the vector strength was also 

highest for IPIs matching receptors’ intrinsic oscillation periods (light grey curve in Fig. 6F). 

 Collectively, these results indicate that, while oscillating receptors encode IPIs into 

interoscillation intervals, the oscillations also exhibit the interesting property of enhanced 

responses for IPIs matching their intrinsic oscillation periods. These oscillatory periods,  
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receptor in P. tenuicauda in response to a pair of monopolar square pulses of 0.2 ms duration and 0.50 ms 
interpulse interval. We measured the oscillation amplitude for each stimulus repetition as the mean voltage 
of the first two poststimulus oscillatory peaks minus the voltage at the intervening trough. We then 
averaged amplitudes across all repetitions of the same stimulus. (B) Same as in (A) for an interpulse 
interval of 5.0 ms. (C) Oscillation amplitude evoked by the second pulse in pair normalized to the 
amplitude evoked by a single pulse vs. interpulse interval for the responses of oscillating receptors in P. 
tenuicauda at three stimulus intensities. Data shown are for positive polarity pulses. (D) Same as (C) for 
interpulse intervals corresponding to multiples of oscillating receptors’ intrinsic oscillation periods. (E) 
Vector strength vs. interpulse interval for oscillating responses to positive-polarity stimuli at three intensi-
ties in the same receptors shown in (C, D). (F) Same as (E) for interpulse intervals corresponding to 
multiples of oscillating receptors’ intrinsic oscillation periods. Each point in (C-F) represents the mean 
across receptors and error bars represent S.E.M.
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however, are at least one order of magnitude shorter than the IPIs that could be produced by a 

single fish. Why would some species of mormyrids have receptors that are maximally sensitive 

to signals too short to be produced by individual fish? 

 

Oscillating receptors produce the strongest responses at submillisecond IPIs present in 

communication signals recorded from a group of fish 

 Even though the minimum IPI a single fish can produce is approximately 8 ms, a large 

group of signaling fish may collectively produce much shorter IPIs. Could the high-frequency 

oscillations in rosette receptors be tuned to these shorter IPIs? To test this hypothesis, we first 

recorded 20 minutes of electric signaling from individual fish of a species with spiking receptors 

(P. microphthalmus) (e.g., Fig. 7A) and from individual fish of a species from the same genus 

with oscillating receptors (P. tenuicauda) (e.g., Fig. 7D). We recorded EOD times as the times at 

which the rectified recorded potential crossed a predefined threshold. We then calculated IPIs as 

the time between successive EODs (insets in Fig. 7A, D). Next we recorded electrical activity 

from group tanks of each of the same two species (Fig. 7B, E). Indeed, group signals contained 

much shorter IPIs than single-fish signals (compare Fig. 7B with 7A, and Fig. 7E with 7D; note 

different time scales).     

 To determine whether spiking and oscillating receptors could encode the very short IPIs 

in group signals, we compared receptor response strengths with the IPIs recorded from a group 

of the corresponding species (Fig. 7C, F). The spiking receptors of P. microphthalmus responded 

faithfully to intervals of ~3 ms and longer (Fig. 7C). However, these receptors could not respond 

to the submillisecond intervals present in signals recorded from a group of this species (Fig. 7C). 

In contrast, oscillating receptors responded most strongly to 0.5 ms IPIs, which are found only in  
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calculation. We recorded the electric signaling activity from a single fish and recorded the time of each 
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superimposed on the interpulse interval histogram from (B). Note the expanded data range in the x-axis.   
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Each point represents the mean across three receptors and error bars represent S.E.M. (D-E) Same as in 
(A-B) for a congeneric species with oscillating receptors (P. tenuicauda). (F) Normalized oscillation 
amplitudes of three P. tenuicauda receptors (black; y-axis on right; same data as in Fig. 6C at 10 nA) vs. 
interpulse interval superimposed on the interpulse interval histogram from (E). Note the expanded data 
range in the x-axis. Each point represents the mean across three receptors and error bars represent S.E.M. 
 

group signals (Fig. 7F). These IPIs are too short for spiking receptors to encode (compare Fig. 

7C and F). Thus, one advantage for species with high-frequency, oscillating receptors may be the 

ability to detect very short IPIs in group communication signals that spiking receptors cannot 

encode due to refractoriness.  

 

Behavioral responses of a species with oscillating receptors reveal tuning to submillisecond 

IPIs 

 If oscillating receptors facilitate detection of communication signals produced by a group 

of individuals, then species with oscillating receptors should exhibit selective behavioral 

responses to submillisecond IPIs, and species with spiking receptors should not. To test this 

hypothesis, we performed behavioral playback experiments in which we presented a single fish 

with a train of 10 conspecific EODs at constant IPIs ranging from 0.3–100 ms (Fig. 8). We 

recorded the fish’s electric signaling activity, and then compared the fish’s EOD output evoked 

by IPI stimuli to that evoked by a single conspecific EOD.  

 In general, mormyrids respond to electric signals by increasing or decreasing their rate of 

EOD production (Moller et al., 1989; Post and von der Emde, 1999; Carlson et al., 2011; Lyons-

Warren et al., 2012). Accordingly, we measured the maximum increase in EOD rate and the  

maximum decrease in EOD rate that occurred between stimulus onset and 1 s after stimulus 

offset. We found that behavioral responses depended on the IPI of the stimulus (Fig. 8). A 

species with oscillating receptors produced the strongest EOD rate increases at the shortest and  
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longest IPIs tested (P. tenuicauda in Fig. 8A). The shortest IPIs (< 5 ms) correspond to those 

found only in signals recorded from groups of fish.  

 The pattern of behavioral responses of a congeneric species with spiking receptors (P. 

microphthalmus in Fig. 8A) was significantly different (repeated-measures ANOVA, interaction 

between species and IPI, F(6,12)=3.4, p=0.0048) from that of the species with oscillating 

receptors. The species with spiking receptors produced the greatest EOD rate increases for IPIs 

in the intermediate range of those tested, which roughly correspond to the minimum IPI 

produced by individual fish.  

 In general, the species with oscillating receptors tended to produce weaker EOD rate 

decreases in response to the IPI stimuli than to single pulses (negative y-values in Fig. 8B). In 

contrast, the species with spiking receptors tended to produce stronger EOD rate decreases for 

IPI stimuli than for single EODs (positive y-values in Fig. 8B). Accordingly, there was a 

significant effect of species in a repeated-measures ANOVA (F(1)=18, p=0.0012). However, 

there was no interaction effect between species and IPI for EOD rate decreases (F(6,12)=1.0, 

p=0.43).  

 These results lend support to our hypothesis that the high-frequency activity of oscillating 

receptors may mediate detection of submillisecond IPIs that are only present in the 

communication signals produced by a large group of individuals. These very short IPIs elicit 

stronger responses in oscillating receptors and greater EOD rate increases in species with 

oscillatory receptors. Since spiking receptors cannot encode these submillisecond IPIs, we 

propose that these oscillations are an adapation for detecting large groups of conspecifics.  
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DISCUSSION  

 Here we describe for the first time a novel mechanism for peripheral sensory coding, in 

which sensory receptors with spontaneous, high-frequency oscillatory activity encode stimuli 

into phase resets. These resets provide information about pulse timing and polarity, but not signal 

waveform, consistent with the inability of these fish to behaviorally detect EOD waveform 

variation (Carlson et al., 2011). Further, oscillating receptors are most sensitive to 

submillisecond IPIs that match their oscillation period (0.47-0.99 ms). This sensitivity is 

remarkable for two reasons. First, these submillisecond IPIs are too short for spiking receptors to 

reliably encode. Second, these IPIs are much shorter than those produced by individual fish, 

suggesting increased sensitivity to the communication signals produced by groups of individuals. 

Indeed, playback experiments demonstrated that a species with oscillating receptors responded 

strongly to submillisecond IPIs matching in the range of enhanced receptor sensitivity. Thus, this 

novel peripheral coding mechanism may represent an adaptation for detecting communication 

signals from large groups of fish.  

Oscillatory electrical activity is widespread in neural networks (Buzsaki and Draguhn, 

2004). Resets in the phase of ongoing oscillations have also been widely reported, and are 

hypothesized to play a role in attention, memory, cross-modal integration, motor control, and 

speech processing (Axmacher et al., 2006; Llinas, 2009; Gross et al., 2013; Thorne and Debener, 

2014; Frey et al., 2015). Functionally, phase resets could serve to align ongoing activity to an 

event or periodic stimulus, or to facilitate coupling between independent oscillators (Canavier, 

2015). Many studies have linked phase resets in ongoing cortical oscillations to perceptual 

performance, suggesting an important role for phase resets in sensory processing (Thorne and 

Debener, 2014). However, whether these phase resets encode specific information about a 
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sensory stimulus or instead serve a modulatory function remains to be determined (Lakatos et al., 

2009). Futhermore, all phase resets previously described occur in central circuits and involve 

oscillations of much lower frequencies (<100 Hz) than those (1-3 kHz) in the sensory receptors 

we describe here (Harder, 1968; Thut et al., 2012; Canavier, 2015). Using in vivo extracellular 

recordings of single receptors, we demonstrate that phase resets in the periphery enable detection 

of and entrainment to very fast temporal patterns in communication signals. Sensitivity to 

temporal patterns has previously been shown to involve network interactions in a wide range of 

central circuits (Klug et al., 2012; Buonomano, 2014). Here we show that electrical oscillations 

in sensory receptors can act as peripheral filters for temporal patterns.  

Spiking receptors are most sensitive to stimulus frequencies near those in conspecific 

EODs (Hopkins, 1981; Bass and Hopkins, 1984; Lyons-Warren et al., 2012), consistent with 

these receptors functioning as matched filters (Wehner, 1987). Moreover, the precisely timed 

spikes in these receptors enable discrimination of waveform variation (Hopkins and Bass, 1981; 

Carlson et al., 2011), which would facilitate signaler identification. In fact, studies on species 

with spiking receptors have revealed sensitivity to individual differences in conspecific EODs 

(Graff and Kramer, 1992; Hanika and Kramer, 2005). Collectively, these results support the 

hypothesis that spiking receptors are specialized for detecting communication signals produced 

by individual fish, and encoding the information necessary to identify the sender.  

In contrast, oscillating receptors exhibit matched filters not for EOD waveforms, but for 

IPI patterns in group signals. A receptor’s oscillation frequency is predictive of its frequency 

tuning. However, oscillating receptors are tuned to much lower frequencies than the peak power 

frequencies of conspecific EODs. Furthermore, these oscillation frequencies confer enhanced 

sensitivity to IPIs that can only be produced by groups of fish. Therefore, the oscillatory 
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encoding mechanism may result in fundamentally different functionality than the spiking 

mechanism. Whereas spiking receptors are specialized for detecting signals from individuals, 

oscillating receptors appear specialized for detecting signals from a large group.     

These differences in receptor physiology and tuning may relate to differences in social 

behavior. Species in the lineage with oscillatory receptors have been reported to school as adults 

and prefer open water (Nichols and Griscom, 1917; Hopkins, 1980, 1981; Chapman et al., 1996; 

Lavoue et al., 2004; Lavoue, 2012), unlike other species, which have generally been described as 

solitary and territorial, and prefer areas with dense vegetation and detritus (Nichols and Griscom, 

1917; Hopkins, 1980, 1981; Hopkins and Bass, 1981; Chapman et al., 1996; Friedman and 

Hopkins, 1996; Lavoue, 2012). In single-species lab tanks, P. tenuicauda and P. soudanensis 

form open-water shoals and schools, respectively, while B. niger, P. adspersus, and B. 

brachyistius are generally solitary and seek shelter, which they aggressively defend against 

intruders (unpub. obs.). Thus, the increased sensitivity of peripheral receptors for communication 

signals produced by groups of conspecifics may mediate the detection and localization of shoals 

or schools in fish’s native habitats. In addition, the inability of fish in this lineage to detect subtle 

EOD variation is associated with reduced EOD diversity among species compared to other 

mormyrids (Lavoue et al., 2008; Carlson et al., 2011). However, P.microphthalmus presents an 

important exception to the apparent relationship between behavior and sensitivity to EOD 

variation. These fish, with spiking receptors and associated sensitivity to EOD waveform 

variation, form schools both in laboratory and natural settings (Lavoue et al., 2004). Field studies 

will be necessary to more fully understand how behavioral and ecological differences between 

species may have selected for different peripheral coding strategies and the perceptual abilities 

they confer. 
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Electrical oscillations appear to be a common feature of electroreceptors. Indeed, the 

spiking receptors of mormyrids exhibit damped oscillations in spike probability following an 

electrical stimulus (Bennett, 1965, 1967; Roth and Szabo, 1972). However, these oscillations are 

too small to be recorded at the pore of the receptor and do not appear to occur spontaneously. 

Instead, these oscillations likely help establish electrical tuning to frequencies in conspecific 

EOD waveforms (Bennett, 1967). Similarly, oscillations in other types of electroreceptors, 

including the tuberous receptors of wave-type gymnarchid and gymnotiform electric fish, are 

hypothesized to confer electrical tuning to a fish’s own EOD frequency for electrolocation and 

communication (Bennett, 1965, 1967; Hopkins, 1976; Viancour, 1979; Watson and Bastian, 

1979; Kawasaki, 2001, 2005). Spontaneous, noisy oscillations in paddlefish ampullary 

electroreceptors are hypothesized to contribute to prey detection (Neiman and Russell, 2001; 

Neiman and Russell, 2011).  

Oscillatory electrical activity also occurs in non-mammalian auditory hair cells, where it 

serves as a frequency tuning mechanism (Fettiplace and Fuchs, 1999). Of particular relevance 

are frog saccular hair cells, in which differences in spontaneous spiking vs. oscillatory electrical 

activity are linked to differences in the density of three types of potassium channels (Rutherford 

and Roberts, 2009). Pharmacology and/or intracellular recordings from receptor sensory cells 

will be necessary to determine whether similar mechanisms contribute to high-frequency 

oscillations in some mormyrid species and spikes in other species. Importantly, the oscillations 

observed in rosette receptors of mormyrids are distinct from oscillations in hair cells and other 

electroreceptors due to their larger amplitudes and higher frequencies, as well as the fact that 

they use phase resets to encode information. The phase resets reported here are the first to be 

observed in any oscillating sensory receptor.  
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The entirety of our knowledge of the coding of electric communication signals in 

mormyrids had been limited to species with broadly distributed receptors (see Baker et al., 2013 

for review), which fire spikes in all species that have been studied. The sensitivity of these fish to 

EOD waveform variation is due in part to the precise encoding of timing cues in EODs by 

spiking receptors. Receptors on one side of the body fire spikes at pulse onset, and receptors on 

the other side of the body fire spikes at pulse offset (Hopkins and Bass, 1981). These spike-

timing cues in receptors on opposite sides of the body are compared in a midbrain region called 

the anterior exterolateral nucleus (ELa), in which excitation and inhibition from different 

receptive fields establish single-neuron selectivity for stimulus pulse durations (Friedman and 

Hopkins, 1998; Lyons-Warren et al., 2013). These duration-selective neurons project to the 

posterior exterolateral nucleus (ELp), where single-neuron selectivity for interpulse intervals 

arises (Carlson, 2009). Notably, species with receptors organized into rosettes have a smaller 

exterolateral nucleus (EL) that is not subdivided into anterior and posterior regions (Carlson et 

al., 2011). In all three species that have been studied, rosette receptors produce high-frequency 

oscillations (Harder, 1968, this study). How electric communication signals are processed 

centrally in the EL of these species remains unknown. 

Central processing of oscillatory receptor inputs could play a role in distinguishing self-

generated stimuli from external stimuli while selectively maximizing sensitivity to external 

stimuli. In the absence of an electric stimulus, the spontaneous oscillations across receptors are 

asynchronized. When the fish emits its own EOD, receptors in all rosettes will experience stimuli 

of identical polarity based on the direction of current flow through the receptors (Hopkins, 1986). 

This means that oscillations in all receptors will reset to the same phase in synchrony. In this 

case, subtracting the oscillatory responses of receptors on opposite sides of the body would result 

199



	  

in cancellation. In contrast, in the presence of an external electric stimulus, receptors on opposite 

sides of the body will experience opposite polarity stimuli, and will reset to opposite phases. In 

this case, subtraction of opposite-phase responses would increase oscillation amplitudes relative 

to single-receptor oscillations, thus potentially increasing sensitivity to external signals.  

The electrosensory system could implement such a subtraction mechanism if oscillatory 

receptors on one side of the body mediate excitation, and receptors on the opposite side mediate 

inhibition onto central neurons. In response to the fish’s own signals, excitation would arrive 

coincidentally with inhibition, thus cancelling responses. This proposed mechanism would also 

provide the information necessary to locate external signal sources. Stimuli coming from one 

direction would elicit maximal excitation from one side of the body and minimal inhibition from 

the other side of the body, whereas stimuli from the other direction would elicit minimal 

excitation and maximal inhibition. The directionality would presumably be reversed in the 

opposite hemisphere, leading to a reversed directional preference. Given the excitatory-inhibitory 

interactions found in the ELa circuit of species with broadly distributed receptors (Friedman and 

Hopkins, 1998; Lyons-Warren et al., 2013), such an excitatory-inhibitory interaction could occur 

in a homologous circuit within the midbrain EL. 

The mormyrid family contains two subfamilies called Mormyrinae and Petrocephalinae 

(Sullivan et al., 2000). The majority of mormyrine species have broadly distributed receptors, 

ELa/ELp, and behavioral sensitivity to EOD waveform variation (Carlson et al., 2011). In 

contrast, most petrocephaline species have receptors organized into rosettes as well as an EL 

midbrain region, and they are not sensitive to EOD waveform variation (Carlson et al., 2011). 

Although the available evidence indicates that EL is ancestral to ELa/ELp, it remains unclear 

whether spiking or oscillating receptors are ancestral (Carlson et al., 2011). The sister taxon to 
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mormyrids, Gymnarchus, has synchronously oscillating tuberous electroreceptors tuned to their 

own wave-type EOD frequencies (Kawasaki, 2005). The knollenorgan receptors in mormyrids 

are also tuberous, suggesting that oscillations may be the ancestral condition in mormyrids. 

The only petrocephaline that has both broadly distributed receptors and ELa/ELp is P. 

microphthalmus, and it can also detect EOD waveform variation (Carlson et al., 2011). 

Therefore, this represents a striking case of parallel evolution in which a perceptual ability arose 

twice independently, once in Mormyrinae and once in P. microphthalmus (Carlson et al., 2011). 

Here we demonstrate that the broadly distributed receptors of P. microphthalmus fire spikes, and 

that these spiking receptors display similar physiological properties to the spiking receptors of 

three mormyrine species, which are likewise similar to spiking receptors previously described in 

at least seven additional mormyrine species (Bennett, 1965; Harder, 1968; Hopkins, 1981; 

Arnegard et al., 2006). Thus, we demonstrate correlated evolutionary changes in peripheral 

sensory physiology, neuroanatomy, and perception. These results suggest that parallel, 

independent evolution of a perceptual ability relates to parallel, independent evolution of its 

sensory basis. 

 In addition to describing the sensory basis for a major perceptual difference among 

species, our results provide the first illustration of information coding by modulations of ongoing 

oscillations at the periphery. These results lay the groundwork for future investigations into 1) 

the cellular mechanisms responsible for generating continuous high-frequency oscillations and 

phase resets in sensory receptors, 2) cellular and network mechanisms for central processing of 

oscillatory modulations, and 3) differences in ecology and/or social behavior among species with 

different peripheral coding strategies.  
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Chapter 5 

 

Conclusions and future directions 
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SUMMARY AND SIGNIFICANCE 

 The temporal patterns of spikes play important information coding roles in sensory 

processing, motor control, and spatial navigation (Lestienne, 2001; Huxter et al., 2003; Tang et 

al., 2014). However, how neural circuits process these kinds of timing codes was not well 

understood. I addressed this question using a combination of behavior and in vivo 

electrophysiology in mormyrid weakly electric fishes. Some mormyrid species decode 

temporally patterned electric communication signals with midbrain neurons that are selective for 

particular time intervals (Carlson, 2009). In this dissertation, I demonstrated that short-term 

depression and temporal summation of excitation and inhibition contribute to single-neuron 

interval-selectivity. I showed that using only depression or only summation to establish interval-

selectivity would result in less diversity in tuning properties across the population, which would 

presumably negatively impact the circuit’s ability to detect behaviorally relevant variation in 

communication signals. I also showed that the responses of single interval-selective neurons 

were sensitive enough to be able to discriminate between a particular communication display 

produced by different individuals. Finally, I described how a subset of mormyrid species 

establishes temporal sensitivity at the periphery through ongoing electrical oscillations. These 

oscillations were most sensitive to timing patterns produced by only large groups of fish. A 

species with oscillating receptors also exhibited strong behavioral responses to group temporal 

patterns, suggesting that oscillating receptors may be specialized for detecting communication 

signals produced by a large group of conspecifics, which is a novel function for a sensory 

receptor. In summary, I have demonstrated how temporal pattern recognition can be mediated by 

excitatory-inhibitory interactions in central neurons, as well as a novel mechanism for temporal 

pattern recognition in the periphery.  
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FUTURE DIRECTIONS    

 EOD coding in ELp. Spiking knollenorgan electroreceptors use temporal multiplexing to 

encode communication signals. Electric organ discharge (EOD) waveform is encoded into spike-

timing differences between receptors, which are then decoded by duration-selective neurons in 

the anterior exterolateral nucleus (ELa). Interpulse intervals (IPIs) are encoded into interspike 

intervals within receptors, which are then decoded by interval-selective neurons in the posterior 

exterolateral nucleus (ELp). ELa sends its only output to ELp, which means that information 

about IPI arriving in ELp has already been filtered for waveform. The ELa projections to ELp 

are topographical, suggesting the potential for some gradient in pulse duration coding in ELp 

(Friedman and Hopkins, 1998). To more fully understand central processing of electric 

communication signals, it will be necessary to understand how the responses of ELp neurons 

depend on pulse duration as well as IPI. In vitro calcium imaging of ELp responses to a range of 

pulse durations and IPIs would be the best approach to elucidate how population output reflects 

EOD waveform and IPI. Understanding how the combination of EOD and IPI are encoded is 

applicable to understanding how the knollenorgan pathway handles communication signals 

coming from more than one fish. 

 Cellular mechanisms underlying differences in excitatory and inhibitory effects in ELp. I 

have shown that ELp neurons receive excitation and inhibition with a range of strengths and 

durations, as well as degrees and time courses of short-term depression (Baker and Carlson, 

2014). It remains to be determined whether these differences reflect presynaptic variation, 

postsynaptic variation, or some combination. In particular, ELp neurons exhibit large dendritic 

arbors (Xu-Friedman and Hopkins, 1999; George et al., 2011; Ma et al., 2013). It is becoming 

clear that dendritic structure can influence synaptic integration, such that the same temporal 
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pattern of inputs can have different postsynaptic effects depending on dendritic location (e.g., 

Branco and Hausser, 2011). Therefore, it will be interesting to determine how the observed 

differences in excitation and inhibition in high- and low-pass ELp neurons arise. For instance, is 

the longer onset inhibition in low-pass neurons due to asynchronous inputs that spread out in 

time, differences in postsynaptic GABA receptor properties, and/or differences in dendritic 

filtering? Do ion channel densities, kinetics, or composition vary along dendritic branches?  

GABA and glutamate uncaging experiments in vitro would be necessary to understand the 

contribution of dendritic filtering to IPI sensitivity in ELp. 

Processing of electric communication signals downstream from ELp. ELp sends 

projections to the isthmic granule nucleus (IG), the subpraæeminential nucleus, the inferior olive, 

and the medioventral nucleus (MV). IG in turn sends a feedback projection to ELp. The 

medioventral nucleus is hypothesized to play a role in spatial analysis of communication signals 

(Haugede-Carre, 1979; Friedman and Hopkins, 1998), and the inferior olive is hypothesized to 

play a role in the timing and learning of motor output (De Zeeuw et al., 1998). However, how the 

targets of ELp contribute to the processing of communication signals is completely unknown.  

The function of the IG-ELp feedback remains to be determined. One putative role for this 

pathway could be the modulation of ELp responses depending on social environment. For 

instance, modulation via IG could be a way for fish to selectively tune out or tune into signals 

coming from a particular individual when multiple signalers are present. 

A general feature of sensory circuits is the parallel processing of information (Gasser and 

Erlanger, 1929; Nassi and Callaway, 2009; Recanzone and Cohen, 2010; Rossler and Brill, 

2013). Furthermore, as information ascends within a pathway, it is represented by fewer neurons 

that are more selective for particular stimulus features (Barlow, 1972). Given these principles, I 
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hypothesize that at some stage in the electrosensory pathway, single neurons may be selective for 

different classes of communication signals, with some cells responding only to scallops, some 

only to accelerations, and some only to rasps. Furthermore, since EOD waveform can contain 

identifying information, higher-level neurons could even be selective for scallops from dominant 

males, who have longer EODs than submissive males, as just one example. In vivo 

electrophysiological recordings from downstream targets will be essential to understanding how 

the population code for EOD and IPI established in ELp is transformed and used to guide 

behavior. 

 Do fish use individually stereotyped scallops to recognize individuals? Scallop sequences 

are individually stereotyped (Serrier and Moller, 1989; Carlson and Hopkins, 2004), and here I 

have shown that single ELp neurons are sensitive to individual variation in scallop patterns. 

Whether fish use this information remains unknown. Each individual’s EOD waveform is also 

stereotyped, and in some species, individuals can be identified on the basis of EOD alone 

(Crawford, 1992; Friedman and Hopkins, 1996). Therefore, combining the stereotyped EOD 

waveform with individually characteristic scallop patterns could facilitate individual recognition.  

Scallops have been hypothesized to play a role in aggressive encounters (Carlson and 

Hopkins, 2004). We studied scallop detection in Brienomyrus brachyistius, which is highly 

territorial and aggressive. Territorial animals often respond more strongly to encounters with a 

stranger than with a known neighbor (Ydenberg et al., 1988). Therefore, advertising and 

recognizing individual identity could help prevent escalations between territorial neighbors that 

do not present a threat (Temeles, 1994). In mormyrids, the ability to use both EOD waveform 

and IPI patterns to gain information about the sender could facilitate neighbor-stranger 

recognition. Individual recognition could be tested in the lab by observing fish’s reactions to a 
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known neighbor’s electric signals and to a stranger’s electric signals. Increased aggression 

towards communication signals from strangers would provide evidence for individual 

recognition. The separability of the EOD and IPI would allow further testing of the role of each 

component to such recognition. 

 Species recognition in species with rosette receptors. The stereotyped EOD waveform 

has been hypothesized to play a role in species recognition (reviewed in Baker et al., 2013). 

Species with broadly distributed receptors, which fire spikes in all species studied, have been 

shown to exhibit behavioral sensitivity to subtle EOD waveform variation (Carlson et al., 2011). 

In contrast, species with rosette receptors are behaviorally insensitive to EOD waveform 

variation (Carlson et al., 2011). In all species studied, rosette receptors produce continuously 

oscillating potentials that do not encode the timing cues necessary to resolve waveform variation 

(Chapter 4, Harder, 1968). Accordingly, these species also exhibit less variation in EOD 

waveform (Lavoue et al., 2008). Therefore, these fish must use other cues to recognize 

conspecifics, such as IPI (Carlson and Arnegard, 2011) or even vision. The lineage with rosette 

receptors evolved an enhanced visual system relative to other mormyrids (Stevens et al., 2013), 

and they tend to have black spots on their skin that may be species-specific (Lavoue et al., 2008; 

Lavoue et al., 2010). These findings suggest that species with oscillating receptors may rely 

more heavily on vision for species recognition than species with spiking receptors. Whether 

species with rosette receptors may use IPIs for species recognition could be tested by observing 

behavioral responses to playback of natural and shuffled IPI sequences recorded from 

conspecifics and heterospecifics. Whether these species may also or instead use vision for 

species recognition could be tested by observing behavioral responses to an electrically silenced 

conspecific or heterospecific behind a clear enclosure.  
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 IPI coding in EL. Species with rosette receptors do not have ELa and ELp; instead, they 

have a smaller exterolateral (EL) region that is not subdivided (Carlson et al., 2011). How 

electric communication signals are processed in EL is completely unknown. ELa is 

distinguishable from ELp due to the abundance of heavily myelinated axons from the nucleus of 

the electrosensory lateral line lobe (nELL) that serve as delay lines to small cells (Friedman and 

Hopkins, 1998). Small cells integrate this delayed excitation with direct inhibition to establish 

selectivity for stimulus pulse duration (Friedman and Hopkins, 1998; Lyons-Warren et al., 2013). 

This processing contributes to fish’s behavioral sensitivity to subtle EOD waveform variation 

(Carlson et al., 2011). In contrast, species with rosette receptors and EL cannot detect subtle 

waveform variation (Carlson et al., 2011), which is at least partly due to the fact that phase resets 

in oscillating receptors do not encode the timing cues necessary to resolve waveform variation 

(Chapter 4). Therefore, it is reasonable to conclude that EL likely lacks the axonal delay lines 

from nELL that contribute to duration selectivity. Whether EL contains large cells, small cells, 

and multipolar cells remains to be determined. However, since EL is smaller than ELa/ELp, 

species with EL may also be less sensitive to precise temporal patterns than species with ELp. 

Anatomical studies using tracers and immunohistochemistry will be necessary to reveal EL 

circuitry. Further, analysis of temporal patterns in the communication signals of species with EL 

will be necessary to determine whether they also use displays consisting of distinct IPI patterns. 

 Coevolution of sensory receptors and central pathways. In Chapter 4, I demonstrated that 

evolution of the perceptual ability to resolve slight EOD waveform variation was correlated with 

evolution of peripheral sensory physiology and central neuroanatomy. Receptor recordings from 

several additional species will be important for further understanding the coevolution of 

peripheral receptors and associated central neuroanatomy. Mormyrids can be subdivided into two 
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subfamilies, Mormyrinae and Petrocephalinae. All but two species in the Petrocephalinae 

subfamily have rosette receptors; the remaining two have broadly distributed receptors (Carlson 

et al., 2011). One of these two species, Petrocephalus microphthalmus, also has ELa/ELp, and I 

showed that its receptors also fire spikes, in line with other species with distributed receptors and 

ELa/ELp. Petrocephalus zakoni is the only other petrocephaline species known to have broadly 

distributed receptors; however, it also has the smaller, undivided EL midbrain region (Carlson et 

al., 2011). In addition, all known species in the genus Myomyrus (Mormyrinae subfamily) have 

an intermediate receptor distribution, with one cluster of receptors on each side of the head and 

several broadly distributed receptors, along with a smaller, undivided EL (Carlson et al., 2011). 

Whether Myomyrus spp. and P. zakoni are sensitive to EOD variation is unknown. Studies of 

EOD perception and receptor physiology in these species will be essential to more completely 

understanding the relationship between peripheral encoding, neuroanatomy, and perception.   

 

CONCLUSIONS 

 In this thesis I have demonstrated two divergent mechanisms for temporal pattern 

recognition. One approach is to precisely encode timing patterns in the periphery and then use 

excitatory-inhibitory interactions in central neurons to extract behaviorally relevant temporal 

cues. An alternative approach is to use electrical oscillations to establish temporal pattern 

sensitivity in the periphery. Previously, the filtering of temporal information was thought to be a 

purely central processing problem. In my thesis I have shown that temporal pattern recognition 

can also arise from peripheral filtering through a novel oscillatory phase reset mechanism. These 

results are broadly relevant to understanding information processing, sensory coding, and the 

evolution of sensory circuits.  
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