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ABSTRACT OF THE DISSERTATION 

Assessment of Real-World Upper Limb Activity in Adults with Chronic Stroke 

by 

Ryan R. Bailey 

Doctor of Philosophy in Movement Science 

Washington University in St. Louis, 2015 

Professor Catherine E. Lang, Chair 

Hemiparesis is a common motor impairment following stroke that leads to disability.  The goal 

of stroke-related physical rehabilitation is to reduce the severity of motor-related disability in 

hopes that improved motor capacity (i.e. what one can do) will generalize to improved motor 

performance (i.e. what one actually does) in everyday activities.  Recent studies have 

demonstrated that motor capacity and motor performance are distinct domains of motor function, 

but few have objectively measured motor performance.  Furthermore, even though many studies 

have demonstrated that motor capacity is only moderately associated with motor performance, 

few studies have examined other factors that might influence motor performance.  The purpose 

of this dissertation was to characterize motor performance, and potential modifying factors of 

motor performance, in nondisabled adults and adults with chronic stroke, and to develop and 

validate a novel, accelerometry-derived assessment methodology to quantify motor performance. 

Using wrist-worn accelerometry, we characterized duration of upper limb (UL) activity that 

occurred in everyday environments (i.e. real-world activity) as an index of motor performance.  

We also characterized several potential modifying factors of UL activity [i.e. self-reported time 

spent in sedentary activity, cognitive impairment, depressive symptomatology, number of 

comorbidities, living arrangement, age, motor capacity, pre-stroke hand dominance, and 
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Activities of Daily Living (ADLs) status].  Increased self-reported time spent in sedentary 

activity was associated with decreased UL activity in nondisabled adults.  Decreased motor 

capacity and dependence in ADLs were associated with decreased UL activity in adults with 

chronic stroke.  These results identify potential factors that could be targeted during 

rehabilitation in patient populations.  Additionally, duration of UL activity obtained from 

nondisabled adults could be used as a referent value for setting outcome goals for patients with 

UL impairment. 

We also developed and validated a novel, accelerometry-based methodology to quantify real-

world bilateral UL activity.  This methodology was first validated in a laboratory setting in 

nondisabled adults.  We derived two accelerometry-based metrics to quantify intensity of 

bilateral UL activity and contribution of each UL to activity.  The accelerometry-derived metrics 

distinguished between high- and low-intensity UL activity, and between UL activities that were 

completed using both ULs versus one UL.  The accelerometry-derived metrics were also strongly 

correlated with secondary measures (i.e. convergent validity was established). 

Having established the validity of the accelerometry-based methodology, we characterized real-

world bilateral UL activity during a “typical” day in nondisabled adults and adults with chronic 

stroke.  We demonstrated that duration and intensity of UL activity were lower in adults with 

stroke than in nondisabled adults, and that UL activity was more lateralized (i.e. unaffected UL 

activity exceeded affected UL activity) in adults with stroke.  We also demonstrated that motor 

capacity and motor performance were not associated in a subset of adults with stroke. 

Taken together, our results suggest that motor capacity and motor performance are distinct 

domains of motor function that should be assessed separately.  Furthermore, factors other than 
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motor capacity should be identified and targeted during rehabilitation to improve motor 

performance above that which can be obtained by improvement in motor capacity alone.
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1.1 Introduction 
Stroke is a cardiovascular disease that affects 7 million Americans, and occurs at a rate of 

~800,000/year.1  Upper limb (UL) hemiparesis is common after stroke, and results in impaired 

motor function that often persists greater than 6 months post-stroke.2  Impaired motor function 

leads to disability in performing daily activities (e.g. self-care, cooking, shopping), where an 

individual must depend on a caregiver for assistance.3,4  Disability, in turn, leads to decreased 

quality of life and life satisfaction in individuals with stroke4-7 and increased caregiver burden 

(e.g. emotional distress, negative feelings, loss of social and leisure activities).8,9  Furthermore, 

stroke-related disability imposes a significant economic burden on individuals and society.  In 

1990, the average lifetime cost per person of first strokes in the United States was $103,576.10    

Lost earnings in the United States due to stroke-related morbidity totaled $10.4 billion,10 and is 

expected to exceed $760 billion by the year 2050.11 

Physical rehabilitation is often sought to reduce the severity of stroke-related UL disability and 

the accompanying functional, psychosocial, and economic consequences.  An important goal of 

physical rehabilitation is to reduce the impact of motor impairment and to restore overall 

function through effective interventions.  This is often accomplished through intensive 

rehabilitation in clinical or research settings (e.g. constraint-induced movement therapy,12 task-

specific training,13 and robot-assisted training14).  Structured clinical and research settings, 

however, differ greatly from the unstructured ebb-and-flow of daily activity that makes up 

everyday life (i.e. real-world activity).  It is important, therefore, to ensure that improvements in 

motor function observed inside the clinic or research laboratory generalize to everyday activity 

that occurs outside of the clinic.    
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1.2 Motor Capacity versus Motor Performance 
In considering the impaired UL specifically, one must distinguish between two domains of motor 

function: capacity and performance.15  Motor capacity is characterized by motor function that 

occurs under structured conditions (e.g. inside the clinic or laboratory) whereas motor 

performance is characterized by motor function that occurs under unstructured conditions (e.g. 

home, work, the community).  A common goal of rehabilitation is to improve motor capacity 

through rehabilitation interventions, with the assumption that improved motor capacity will lead 

to improved motor performance during real-world activity.   

There is sufficient data, however, to challenge this assumption, as indicated by the following 

studies.  In two separate laboratory-based studies, participants with stroke used their unaffected 

UL to complete a motor task during spontaneous task conditions despite being able to complete 

the task using their affected UL during forced-use conditions.16,17  In a hospital setting, 

participants did not increase daily activity of their affected UL after 3 weeks of inpatient 

rehabilitation, despite improved UL motor capacity as measured by standardized clinical 

assessments.18  In an out-patient setting, increased motor capacity as measured by a Functional 

Capacity Evaluation was only weakly associated with economic predictors of return to work.19  

From these studies, one may infer that structured clinical- and laboratory-based assessments of 

UL motor capacity may not accurately predict motor performance.  For this reason, both motor 

capacity and motor performance should be measured in order to assess recovery of motor 

function after stroke. 

1.3 Assessment of Motor Capacity 
Motor capacity can be measured inside the laboratory or clinic using several approaches.  Inside 

the laboratory, kinematic parameters of UL movement (e.g. velocity, acceleration, accuracy, 
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efficiency) can be objectively measured using electromagnetic- or video-based motion capture 

systems.  These systems depend on accurate placement of markers on body surfaces that are then 

tracked in three-dimensional space as an individual performs a task.  Results from kinematic 

analyses have been used to identify compensatory movements and to predict later capacity in 

adults with stroke.  For example, kinematic analysis of UL movement identified how movements 

of the trunk and proximal arm were used to compensate for distal arm impairment during 

reaching and grasping tasks in adults with stroke.20,21  Kinematic analysis also showed that 

shoulder active range of motion at 1 month post-stroke predicted motor capacity at 3 months.22 

Inside the clinic, standardized assessments (e.g. Action Research Arm Test,23 Fugl-Meyer 

Assessment24) are used to measure gross and fine motor skills during the performance of 

structured tasks.  Use of standardized assessments is important for several reasons.  First, the 

structured nature of standardized assessments allows motor capacity to be objectively scored, 

independent of the tester administering the assessment.  Second, recovery of motor capacity can 

be measured by examining changes in assessment scores over time.  Third, assessment scores for 

an individual with stroke can be compared to “normal values” obtained from nondisabled adults; 

thus, an individual’s motor capacity can be compared to normative data during the course of 

recovery.  Standardized assessment scores can also be useful because of their ability to predict 

motor capacity at a later time.  For example, a score ≥ 11 on the Fugl-Meyer Assessment 

measured 2 weeks post-stroke was predictive of recovery of dexterous motor control (as 

measured by the Action Research Arm Test) at 6 months.25  Similarly, Fugl-Meyer Assessment 

scores measured at 1 month explained 86% of variance of the Fugl-Meyer Assessment score 

measured at 6 months.26  
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Two major limitations exist, however, with laboratory- and clinic-based assessment of UL motor 

capacity.  The first limitation is that real-world motor performance is not assessed.  Laboratory-

based motion capture systems are too large and expensive to be practically used inside a patient’s 

home or work environment, and placement of markers is likely to be burdensome to the wearer.  

Standardized clinical assessments are also limited because they measure motor function during a 

structured task or a limited set of tasks.  Naturalistic human movement is extremely variable 

within and across individuals,27,28 such that a structured clinical assessment cannot possibly 

capture the complexity of movement that occurs during real-world activity.      

The second limitation is that both kinematic analysis and standardized clinical tests assess 

unilateral UL motor capacity.  Typically, motor capacity of the affected and unaffected ULs is 

measured separately and then compared. This is of great concern because the majority of real-

world UL activity consists of both ULs working together to complete a task (i.e. bilateral UL 

activity).29  Some of this bilateral UL activity consists of symmetrical bilateral movements, 

where the kinematic, temporal, and spatial parameters of both ULs are similar.  Most 

simultaneous UL activity, however, consists of complementary UL activity, where the ULs 

cooperate to complete a task (e.g. one hand stabilizes a piece of paper while the other hand holds 

a pen to write).30  A small number of standardized clinical assessments measure bilateral UL 

motor capacity (e.g. Chedoke Arm and Hand Activity Inventory,31 Motor Assessment Scale32), 

but the patient’s score reflects the amount of assistance the patient requires to complete a task 

rather than parameters of UL movement. In order for laboratory- and clinic-based assessments to 

measure motor performance, they must be able to assess real-world motor activity as it occurs 

naturally.  This is not possible, however, because it would not be practical to instrument an 

individual’s home with expensive equipment nor would it be feasible for a therapist to observe a 
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patient for 24 hours a day.  At best, laboratory- and clinic-based assessments can only reflect 

one’s capacity for motor function during the completion of structured tasks.  

1.4 Assessment of Motor Performance 
Motor performance of real-world UL activity is a challenging construct to measure.  Because it 

cannot be easily captured using laboratory-based methods or standardized clinical assessments, 

many self-report questionnaires have been developed to assess motor function during the 

performance of real-world activity.  Examples of self-reported real-world UL activity include the 

ABILHAND, the Stroke Impact Scale (Hand Function and ADL subscales), and the Motor 

Activity Log.  The ABILHAND33 is a self-report assessment that consists of 23 bilateral 

activities rated on a 3-point Likert scale according to task difficulty, and has low-to-moderate 

agreement (r=0.38-0.49) with various tests of motor capacity.34  For the Stroke Impact Scale 

Hand and ADL subscales,35 5 and 10 UL activities, respectively, are rated on a 5-point Likert 

scale according to task difficulty.  The Stroke Impact Scale has much better agreement with tests 

of motor capacity (i.e. the Fugl-Meyer Assessment, r=0.81).36  The Motor Activity Log37 

consists of 28 items describing common activities of daily living that are rated on two 5-point 

Likert scales describing amount and quality of movement during UL tasks, and is correlated with 

the Stroke Impact Scale-Hand Function Subscale (r=0.72). 

Two major concerns exist regarding the validity of self-report measures to assess motor 

performance.  First, validity of self-report assessments is established, in part, by demonstrating 

convergent validity (i.e. a strong correlation) with other measures of UL function.  When those 

other measures of UL function are standardized clinical assessments of motor capacity, self-

report assessments tell us little about their validity for measuring real-world motor performance. 

Second, the validity of self-report assessments can be affected by report bias due to social 
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approval (e.g. desire to please one’s therapist or doctor, or embarrassment over not completing 

more activity at home38) or cognitive impairment following stroke (e.g. impaired comprehension, 

memory recall, attention39-41).  Self-report bias has been explored in the field of physical activity, 

where low-to-moderate correlations exist between the majority of self-report assessments and 

direct measures of physical activity (e.g. pedometry, accelerometry, heart rate monitoring), and 

is likely to influence self-reported ratings of UL function after stroke.42  Given the limitations of 

self-report assessments, an objective method for measuring real-world motor performance is 

needed. 

1.5 Accelerometry 
Wrist-worn accelerometry has emerged as a useful method for quantifying real-world motor 

performance. Piezoresistive, piezoelectric, and differential capacitive accelerometers are the 

most common types of accelerometers.43  Regardless of the type used, each is an inertial sensor 

that detects linear acceleration in one orthogonal direction using a sensing element (i.e. a seismic 

mass attached to a mechanical suspension system or a seismic mass encapsulated between two 

electrodes).  When the seismic mass moves due to human movement, voltage proportional to the 

applied acceleration is generated and converted to an electrical signal which is then filtered, 

wave-form rectified, and converted to a unit called an “activity count” (1 count = 0.001664g, see 

Appendix A for additional information).44  When multiple sensors are housed within a single 

device, acceleration in all 3 orthogonal directions can be measured.  Activity counts across axes 

can then be summed over user-defined “epochs” (e.g. 1 second, 1 minute) to quantify the total 

amount of activity that occurred over a given period of time (e.g. 24 hours). Although 

accelerometers can now be worn on the wrists to measure UL motor performance, they were 

initially developed to be worn on the hip to measure real-world physical activity. 
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1.5.1 Hip-Worn Accelerometry 
In the early 2000s, hip-worn accelerometry emerged as a gold-standard for estimating energy 

expenditure during physical activity that occurs in real-world environments.43  This is possible 

because accelerometers measure acceleration, and acceleration is proportional to force.44  If force 

is accepted as a surrogate for energy expenditure, then it is possible to estimate energy 

expenditure using acceleration.  Prior to the use of hip-worn accelerometers, direct measures of 

energy expenditure included doubly-labeled water45 and the maximal volume of oxygen 

consumption46 (i.e. VO2 Max) to quantify physical activity.  These methods are expensive and 

require instrumented equipment to measure how levels of oxygen and carbon dioxide change 

during physical activity performed inside a laboratory setting.  Because energy expenditure as 

measured by accelerometry explains a large amount of the variance in energy expenditure 

measured by doubly-labeled water47 (R2>0.74) and maximal oxygen consumption48,49 (R2=0.62-

0.89), accelerometry is accepted as an objective tool for measuring physical activity.  

Additionally, due to its small size and portability, hip-worn accelerometry allows for 

unobstructed measurement of real-world physical activity.50     

1.5.2 Wrist-Worn Accelerometry 
Due to the flexibility that hip-worn accelerometers provide for measuring real-world physical 

activity, wrist-worn accelerometry was evaluated early-on for its effectiveness in measuring 

energy expenditure.  Studies showed that energy expenditure as measured by wrist-worn 

accelerometry was less accurate than energy expenditure as measured by hip-worn 

accelerometry,51,52 likely because acceleration of the ULs exceeds acceleration at the hip during 

laboratory tests of energy expenditure (e.g. treadmill running).  Despite this limitation, wrist-

worn accelerometry has become a useful tool for quantifying real-world UL motor performance.  

Wrist-worn accelerometry cannot distinguish UL movements that are intentional (e.g. getting 
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dressed) from unintentional (e.g. arm-swing while walking); nevertheless, it serves as a useful 

index of real-world motor function.53  Due to the inability to distinguish between intentional and 

unintentional motor performance, real-world UL movement that is measured by accelerometry is 

referred to as real-world UL activity. 

1.6 Quantifying Real-World Upper Limb Activity 

1.6.1 Validation 
Real-World UL activity as measured by accelerometry has been validated in adults with and 

without stroke through a variety of approaches.  Studies have demonstrated that 1) duration of 

movement as measured by wrist-worn accelerometry is strongly correlated with observer-

recorded duration of movement during the performance of standardized laboratory activities 

(r=0.93);54 2) UL movement as measured by wrist-worn accelerometry is strongly correlated 

with electrogoniometry-measured movement(r=0.94);55 3) wrist-worn accelerometry can 

discriminate adults with stroke from those without stroke,55,56 and between the affected and 

unaffected ULs of adults with stroke;56-58 4) wrist-worn accelerometry is sensitive to change over 

time;59-61 and 5) metrics of real-world UL activity are moderately-to-strongly correlated with 

standardized clinical assessments (r=0.40-0.62) and self-reported assessments of motor 

performance (r=0.52-0.61; see Lang et al. (2013) for review62). 

1.6.2 Metrics 
Historically, real-world upper limb activity has been quantified using one of two accelerometry-

derived metrics: duration of UL activity or intensity of UL activity. When measuring duration of 

UL activity, each second of accelerometry data is dichotomized into “activity” or “no activity” 

based on whether an activity count was recorded for a given sample.54  Seconds of “activity” can 

then be summed to determine total duration of UL activity.  This approach has been used to 
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demonstrate that duration of daily affected and unaffected UL movement can be as low as 3.0 

and 4.5 hours, respectively, immediately following stroke63, and 2.4 and 5.3 hours one year later 

(compared to 5.1 and 5.4 hours in nondisabled adults).64 Other studies have reported similar 

values for duration of UL activity in adults with stroke.56,64,65   

When measuring intensity of UL activity, activity counts for each sample of acceleration data are 

summed for a given period of time (e.g. 1 minute) and then averaged over a 24 hour period, or 

simply summed over 24 hours.55  Studies have demonstrated that activity counts are lower in 

adults with stroke than in nondisabled adults,66 and that activity counts in adults with stroke are 

lower in the affected UL than in the unaffected UL.18,58 

While informative, the approaches described above are similar to standardized clinical 

assessments of motor capacity in that they measure unilateral UL activity and then compare 

activity between limbs.  This is a major limitation because the majority of real-world UL activity 

consists of bilateral actions,29,30 and reporting duration or intensity of unilateral UL activity does 

not provide information on how the ULs are used together.  In an effort to account for bilateral 

UL activity, calculating the ratio of UL activity between limbs (i.e. affected-to-unaffected or 

non-dominant-to-dominant UL activity) has been suggested.61  Using this approach, a ratio of 1 

indicates that UL activity is equivalent between limbs, and ratios less than 1 indicate decreased 

UL activity of the affected limb related to the unaffected limb.   

Like duration and intensity of unilateral UL activity, the ratio of UL activity is responsive to 

changes in motor capacity over time,61,67 and can discriminate between adults with and without 

stroke.58,63  Although this approach provides some information about the relative contribution 

from each UL during real-world UL activity, it does so incompletely.  For example, if the 
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affected UL is active for 3 hours and the unaffected UL is active for 6 hours during a 24 hour 

period, the use ratio would be 0.5 (3 hours / 6 hours = 0.5).  This value could be obtained if both 

ULs were active simultaneously during the 24 hour period, or if the ULs were unilaterally active 

during the 24 hour period.  Thus, calculating the ratio of UL activity does not accurately reflect 

actual bilateral UL activity.   

Despite the obvious limitation of the above-mentioned accelerometry-derived metrics for 

assessing bilateral UL activity, calculating duration, intensity, or the ratio of affected-to-

unaffected UL activity provides useful information about real-world UL motor activity that can 

be compared against motor capacity as measured by standardized clinical assessments.  Scores 

on tests of motor capacity are, in most cases, only moderately associated with real-world UL 

activity (r=-0.45-0.62),62 which indicate that motor capacity only partially explains real-world 

motor performance.   

Factors in addition to motor capacity, therefore, likely influence how the affected UL is used 

during real-world motor performance.  Identification of these additional factors is important 

because they could be targeted for intervention in order to improve real-world motor 

performance when improvement in motor capacity plateaus. One study demonstrated that real-

world UL activity was lower in adults with stroke who were dependent in self-care activities than 

in adults who were independent,63 but no other studies have examined factors that might 

influence real-world UL activity.  Factors such as sedentary activity,68 cognitive impairment,69 

depressive symptomatology,70 the additive effect of comorbidities,71 age,72 and living 

arrangement73 (i.e. living alone versus with others) are associated with overall physical activity 

in nondisabled adults.  These same factors are often present in the rehabilitation population, and 

should be examine for their influence on real-world UL activity.  Chapters 2 and 3 of this 
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dissertation examine potential modifying factors of UL activity in adults with chronic stroke and 

in nondisabled adults.  

1.6.3 Activity Classification 
In an attempt to account for bilateral UL activity, computer-derived algorithms have been used to 

categorize UL activity based on accelerometry data collected from many body segments (e.g. 

wrists, upper arm, torso, and lower limbs).  One approach attempted to categorize UL activity 

into “active” (e.g. stirring with a spoon) and “passive” (stabilizing the bowl) categories and 

subcategories.74  Depending on the subcategory, this approach achieved low-to-high agreement 

between accelerometry-derived and observer-derived categorizations (percent agreement: 24%-

100%).  Unfortunately, this approach did not differentiate between unilateral and bilateral UL 

activity.  A different approach sought to identify 20 specific tasks (e.g. washing, eating, brushing 

teeth) from UL accelerometry data.75  Similar to the above approach, unilateral UL activity was 

not distinguished from bilateral UL activity.  Furthermore, the algorithm could only identify 20 

tasks; this is a limitation because real-world activity consists of many more than 20 tasks.   

The limitations of computer-based activity classification algorithms described above can likely 

be attributed to the variation that exists in human movement.  Previous research has 

demonstrated that in healthy adults, movement patterns vary across repetitions of the same task 

within individuals as well as between individuals.27,28  Kinematic and kinetic patterns of UL 

movement are even more variable in adults with stroke than in adults without stroke,76-78 

therefore it is unlikely that an activity classification algorithm can be developed to identify every 

possible UL task in adults with stroke.   

1.6.4 Bilateral UL Activity 
A methodology to objectively measure bilateral UL activity is needed.  Building on previous 
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research approaches, chapters 4 and 5 of this dissertation propose a novel accelerometry-based 

methodology that quantifies two parameters of real-world UL activity: the intensity of bilateral 

UL activity and the contribution from both ULs to activity.  Instead of quantifying the duration 

or intensity of one UL relative to the contralateral UL for a given time period (e.g. 24 hours), this 

methodology quantifies activity intensity and the contribution from both ULs for each second of 

UL activity to answer the question, “How are the upper limbs used during real-world activity?”   

1.7 Significance for Rehabilitation 
The data obtained from the proposed studies will provide valuable information for rehabilitation 

researchers and clinicians.  First, if factors can be identified that are associated with real-world 

UL activity, they can be targeted for intervention to further improve real-world UL activity 

beyond that which is obtained by improvement in motor capacity alone.  Second, the potential 

ability to quantify real-world bilateral UL activity is important because it can allow researchers 

and clinicians to 1) determine if patients are practicing their exercise programs at home, 2) 

determine if gains made in therapy translate into improvements at home, and 3) objectively 

quantify real-world UL activity that otherwise goes unmeasured.  This knowledge has significant 

implications for how to improve motor performance in adults with chronic stroke who 

experience hemiparesis. 

1.8 Specific Aims 
The overall purpose of this dissertation is to characterize real-world UL activity in adults with 

chronic stroke and nondisabled adults and to identify potential modifying factors of UL activity 

in adults with chronic stroke and nondisabled adults.  Additionally, a novel accelerometry-based 

methodology is proposed and tested for its ability to quantify real-world bilateral UL activity in 

adults with chronic stroke and nondisabled adults. 
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Specific Aim 1 (Chapter 2): 

Characterize duration of dominant UL activity during a typical day and potential modifying 

factors of UL activity in nondisabled adults. 

Hypothesis 1a: Decreased duration of dominant UL activity will be associated with 

increased time spent in sedentary activity, severity of cognitive impairment, depressive 

symptomatology, number of comorbidities, and age. 

Hypothesis 1b: Duration of dominant UL activity will be lower in adults who live with 

others compared to adults who live alone. 

Specific Aim 2 (Chapter 3): 

Characterize duration of affected UL activity during a typical day and potential modifying 

factors of UL activity in adults with chronic stroke. 

Hypothesis 2a: Decreased duration of affected UL activity will be associated with 

increased time spent in sedentary activity, severity of cognitive impairment, depressive 

symptomatology, number of comorbidities, age, and with decreased motor capacity. 

Hypothesis 2b: Duration of affected UL activity will be lower in adults who live with 

others compared to adults who live alone and in adults whose nondominant side was 

affected by stroke. 

Specific Aim 3 (Chapter 4): 

Examine the validity of an accelerometry-based methodology to assess bilateral UL activity in 

nondisabled adults during the performance of 8 everyday tasks. 
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Hypothesis 3a: The Bilateral Magnitude, an accelerometry-derived measure of bilateral 

UL intensity, will distinguish between high- and low- intensity tasks. 

Hypothesis 3b: The Magnitude Ratio, an accelerometry-derived measure of the 

contribution of each UL to activity, will distinguish between unilateral and bilateral tasks. 

Specific Aim 4 (Chapter 5): 

Characterize bilateral UL activity during a typical day in nondisabled adults and adults with 

chronic stroke. 

Hypothesis 4a: The Bilateral Magnitude and Magnitude Ratio will be greater in 

nondisabled adults than in adults with chronic stroke. 

Hypothesis 4b: In adults with stroke, increased median Magnitude Ratios will be 

associated with increased motor capacity. 
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Chapter 2: Upper Limb Activity in Adults: 
Referent Values Using Accelerometry 
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2.1 Abstract 
The goal of physical rehabilitation following upper limb (UL) impairment is functional 

restoration of the UL for use in daily activities. Because capacity for UL function may not 

translate into real-world activity, it is important that assessment of real-world UL activity be 

used in conjunction with clinical measures of capacity. Accelerometry can be used to quantify 

duration of UL activity outside of the clinic.  The purpose of this study was to characterize hours 

of UL activity and potential modifying factors of UL activity (sedentary activity, cognitive 

impairment, depressive symptomatology, additive effects of comorbidities, cohabitation status, 

and age). Seventy-four community dwelling adults wore accelerometers on bilateral wrists for 25 

hours and provided information on modifying factors.  Mean hours of dominant UL activity was 

9.1 ± 1.9 hours and the ratio of activity between the non-dominant and dominant ULs was 0.95 ± 

0.06.  Decreased hours of dominant UL activity was associated with increased time spent in 

sedentary activity.  No other factors were associated with hours of dominant UL activity.  These 

data can be used to help clinicians establish outcome goals for patients given pre-impairment 

level of sedentary activity, and to track progress during rehabilitation of the ULs. 
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2.2 Introduction 
Upper limb (UL) impairment as a result of illness or injury results in significant financial and 

functional deficits, many of which have long-lasting consequences.  Workers’ compensation 

claims for upper limb injuries exceed $500 million.1  Hemiparesis following stroke, a condition 

that affects the ULs, contributes to increased mortality and Medicare costs.2  For individuals with 

severe rheumatoid arthritis (RA), another condition that affects the ULs, the cumulative cost per 

patient per decade approaches $200,000.3  Actual costs of UL impairments are likely much 

higher when indirect costs, such as loss of work time, psychological stress, and increased 

likelihood of repeated injury, are considered.4-6  Functional deficits of traumatic UL injury result 

in decreased independence in activities of daily living (ADLs) and decreased quality of life that 

can persist from 1-4 years post-injury.5,7  Disability in activities of daily living due to 

hemiparesis following stroke persists beyond 6 months in 54% of people who participate in 

inpatient rehabilitation,8 and functional capacity decreases over time in persons with RA.9  

Effective rehabilitation of the ULs following impairment can improve functional outcomes, 

assist people in returning to gainful employment, and reduce costs. 

Paramount to effective UL rehabilitation is appropriate assessment of UL function within the 

clinic and outside in the real-world environment.  A common assumption is that increased 

capacity for UL function, as measured by clinical assessments (e.g. Jebsen-Taylor Hand 

Function Test, Action Research Arm Test, etc.), translates into increased real-world functional 

activity. There is an absence of data, however, to support this assumption.  In inpatient settings, 

increased capacity did not result in improved performance outside of therapy sessions.10  

Likewise, in outpatient settings, clinical assessment of capacity (e.g. Functional Capacity 

Evaluation) was only weakly associated with economic predictors of return to work.11  Clinical 
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assessments may not accurately measure real-world performance, which is the outcome of most 

interest when the goal is functional recovery.   In order to measure real-world performance, 

additional tools are necessary to assess UL function outside the clinic in an objective and reliable 

way.  One such tool is the accelerometer. 

Accelerometry can be used as an index of UL activity, defined as movement of the UL outside 

the clinic to complete functional and non-functional tasks.  Accelerometry has been used to 

quantify hours of UL activity in individuals with stroke during inpatient and outpatient 

rehabilitation.10,12-14  The validity and reliability of accelerometers to measure UL activity is 

well-established and correlates well with tests of UL function.12,13,15-19  Furthermore, 

accelerometry is a useful substitute for self-report measures because it can reduce or eliminate 

reporting biases associated with self-report.20,21 

The technology now exists to track UL activity in patients as they undergo rehabilitation, but 

data on UL activity from a referent sample of adults has not yet been gathered.  Some data on UL 

activity are available, but sample sizes have been small17,22,23 and limited to healthy participants 

aged 65-78.10,22,24  Furthermore, there has been no investigation or control for factors that may 

influence UL activity.  Studies have examined general physical activity by using hip-worn 

accelerometers as participants go about their day-to-day activities.  Known factors associated 

with decreased general physical activity include increased time spent in sedentary activity,25,26 

cognitive impairment,27 depression,28 additive effects of comorbidities,29,30 and increased 

age.31,32  Additionally, the association between living alone and decreased general physical 

activity is inconclusive.32-35  These same factors, which are often present in the rehabilitation 

population, may also influence UL activity; their association with duration of UL activity needs 

to be explored.  
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The purpose of this study, therefore, was to characterize hours of UL activity and potential 

modifiers of UL activity in a comprehensive sample of adults. We sampled a broad range of ages 

because upper limb impairment is a consequence of many conditions that affect adults of all 

ages.  We hypothesized that decreased hours of UL activity would be associated with increased 

time spent in sedentary activity, severity of cognitive impairment, depressive symptomatology, 

number of comorbidities, and older ages. We also hypothesized that hours of UL activity would 

be greater in participants living alone.  Referent data on hours of UL activity that accounts for 

the effect of modifying factors will provide clinicians with targeted values of UL activity for 

individual patients, given their unique pre-impairment demographic, social, and health 

characteristics.  Overall, these data will help clinicians and patients set rehabilitation goals as 

well as track progress during rehabilitation of the ULs following impairment. 

2.3 Methods 

2.3.1 Participants 
Seventy-four community-dwelling adults were recruited from the St. Louis metropolitan area 

through a community-based recruitment organization. Participants were enrolled who were 1) 

age 30 and older, and 2) able to follow commands.  Participants were excluded if they had a self-

reported history of a neurological condition or physical impairment of the UL.  The Human 

Research Protection Office of Washington University approved the protocol for this study.  

Informed consent was obtained from all participants prior to data collection. 

2.3.2 Study Protocol 
This cross-sectional study was conducted at the Neurorehabilitation Lab at Washington 

University School of Medicine as well as the homes of study participants. Participants attended a 

one-hour office visit where they provided demographic information as well as social and medical 
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histories, and completed self-report questionnaires on general physical activity, cognition, and 

depressive symptomatology. Next, accelerometers were placed on both wrists proximal to the 

head of the ulna to ensure capture of distal movement that might occur when more proximal 

joints were maintained relatively still (e.g. writing).  Participants were asked to wear the 

accelerometers for the subsequent 25 hours, including sleep, while they went about their typical, 

daily routine.   

Periods of sleep were included for several practical reasons.  First, in order for accelerometry to 

be used by busy clinicians, analyzing data must be a user-friendly and efficient process.  Tight 

schedules limit clinicians’ ability to identify and subtract sleep time from accelerometry output.  

Second, deciding what constitutes non-functional movement (e.g. a tick or jerk) during quiescent 

periods is subjective.  Movement during a nap or nighttime may be associated with functional 

movements such as an unconscious scratch or reaching for a glass of water and would be lost it if 

was removed because the subject was “asleep.” Third, asking participants to remove the 

accelerometers during sleep would have increased the likelihood that participants would forget to 

replace them upon waking.   

Twenty-five hours was chosen because it has been used in previous studies17,23 and was a 

practical compromise between sufficient wearing time and participant willingness to wear the 

accelerometers.  A subset (n = 5) of participants wore the accelerometers for a second 25 hour 

period, separated by at least 1 week, and demonstrated that UL activity values were reliable 

(ICC(3,k) = 0.93, p = 0.01) and a good estimate of UL activity during an average day.  At the 

conclusion of the 25 hour period, participants were queried to ensure that the accelerometers 

were worn for the entire period.  Additionally, accelerometry data was visually inspected to 

verify that participants wore the accelerometers for 25 hours. 
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2.3.3 Measures 
The primary outcome measure was hours of UL activity, as determined by accelerometry data.  

Wireless accelerometers (GT3X+ Activity Monitor, ActiGraph, Pensacola, FL) were used to 

quantify the duration of UL movement that occurred during the wearing period. The GT3X+ 

Activity Monitor contains a tri-axis, solid state digital accelerometer that detects acceleration in 

three planes. The accelerometer is small (4.6cm x 3.3cm x 1.5cm), waterproof, sensitive to -6 to 

+6 g-force, and contains 512 MB of internal storage. Acceleration was sampled at 30 Hz.  The 

amount of acceleration that occurs per sample is measured in activity counts (0.001664g/count).  

For individual axes, sample activity counts were integrated for each second of data. Next, for 

each second of data, activity counts across the 3 axes were combined into a single value, called a 

vector magnitude, using the following equation: √(X2 + Y2 + Z2).  Using a technique similar to 

that described by Uswatte et al.,14 seconds where the vector magnitude was greater than or equal 

to 2 were categorized as “movement.”  Seconds where the vector magnitude was less than 2 were 

categorized as “non-movement.”  Seconds of movement were summed to determine hours of UL 

activity for the dominant and non-dominant ULs.  Percent of UL activity was calculated by 

dividing the hours of UL activity by length of time the accelerometers were worn.  The ratio of 

hours of UL activity between the non-dominant and dominant ULs was also calculated.  

Predictor variables believed to potentially modify UL activity included time spent in sedentary 

activity, cognitive impairment, depressive symptomatology, number of comorbidities, 

cohabitation status, and age. 

Sedentary activity was measured using levels A and B of the Physical Activity Scale,36 a self-

report measure that quantifies general physical activity during a typical 24-hour weekday.  

Activities are grouped into 9 levels that represent differing activity intensities measured by 
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metabolic equivalents (METs). Time spent in Levels A (0 – 0.9 METS) and B (1.0 – 1.4 METs) 

were summed to determine time spent in sedentary activity, and activities included sleeping, 

reading, watching television, listening to music, and meditating.  The Physical Activity Scale is 

strongly correlated with activity measured by activity diary (r = 0.74, p < 0.01).36  

Cognitive impairment was measured using the Short Blessed Test, a test of cognitive function 

that screens for impairment in memory, orientation, and concentration.  Errors on 6 items are 

scored and weighted with a total possible score of 28. Scores of 0-4 indicate normal cognition, 5-

9 indicate questionable impairment, and 10 or more indicate impairment consistent with 

dementia.37,38 

Depressive Symptomatology was measured using the Center for Epidemiological Studies-

Depression Scale, which characterizes depressive symptomatology in the general population. 

Twenty items are scored on a four-point Likert scale (total score = 60).  Higher scores indicate 

greater depressive symptomatology.39-41 

Number of Self-Reported Comorbidities was obtained via self-report using a checklist of 

common medical conditions.  Checklists improve memory recall of health conditions relative to 

open- and free-response methods.42,43  The number of comorbidities was used as a potential 

modifier of UL activity instead of specific conditions because the additive effect of 

comorbidities was the factor of interest.29,30 

Cohabitation status, obtained from the social history, determined if participants lived alone or 

with other people.  Age, obtained from a demographic questionnaire, was our final predictor 

variable.  Additional descriptive information was also collected according to routine laboratory 

procedures (e.g. demographics, handedness, etc.). 

30 
 



2.3.4 Data Analyses 
Data were downloaded from each accelerometer, and subsequently processed using MATLAB 

R2011B (Mathworks, Natick, MA) software. A custom-written program was used to 

dichotomize each second of accelerometry data into periods of movement or non-movement, and 

to calculate hours of UL activity, percent of UL activity, and ratio of UL activity. 

Statistical analyses were performed using IBM SPSS Statistics 19 and the criterion for statistical 

significance was p < 0.05. Descriptive statistics of each variable of interest were computed. 

Predictor variables were assessed for normality using Kolmogorov-Smirnov tests.  Examination 

of residuals was performed visually as well as using Cook’s distance.  Time spent in sedentary 

activity and depressive symptomatology scores were log-transformed because they were right-

skewed.  Pearson correlation analyses were used to examine relationships between the outcome 

variable and continuous predictor variables.  Cognitive impairment scores and number of 

comorbidities violated the parametric assumption of a normal distribution despite log 

transformation, and Spearman correlation analyses were used.  Based on our sample size, 

correlation coefficients greater than 0.24 were significant at p < 0.05 and coefficients greater 

than 0.30 were significant at the p < 0.01 level. Correlation coefficients 0.60 and higher were 

considered to be strong, between 0.30 – 0.59 were moderate, and 0.29 and lower were weak.44  

Mann-Whitney U tests were used to examine the difference in UL activity between participants 

who were and were not working.  A paired samples t-test was used to examine differences in 

hours of UL activity between participants based on hand dominance, and an independent samples 

t-test was used to examine differences in hours of UL activity based on cohabitation status. 
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 2.4 Results 
Demographic information and categorical predictor variables are presented in Table 2.1.  

Because there was no difference in hours of dominant UL activity between participants not 

working (9.1 ± 2.0) and the 12 participants who were working (9.0 ± 2.1, p = 0.83), all 

participants were grouped together for subsequent analyses.  All participants wore the 

accelerometers for the entire recording period (mean 25.0 hours, range: 24.3-26.0 hours). No 

technical problems with the accelerometers were reported.   

Table 2.1 Demographic information and categorical  
predictor variables 

Variable Value 
Age (Years)  
   Mean ± SD 54 ± 11 
   Range 30-83 
Gender, n(%)   
   Male  35 (47%) 
   Female  39 (53%) 
Race, n(%)    
   White  30 (40%) 
   African American 44 (60%) 
Hand Dominance, n(%)    
   Right  62 (84%) 
   Left  12 (16%) 
  
Work Status, n(%)  
   Not working 62 (84%) 
   <20 hours 7 (10%) 
   Part-time 4 (5%) 
   Full-time 1 (1%) 
Cohabitation Status, n(%)  
   Lives alone 27 (36%) 
   Lives with others 47 (64%) 
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Descriptive statistics of outcome variables and remaining continuous predictor variables are 

reported in Table 2.2.  Hours of dominant UL activity was greater than hours of non-dominant 

UL activity (p < 0.001), though the absolute difference between extremities was only 30 minutes.  

Because Pearson correlations were excellent between dominant and non-dominant UL activity, 

between dominant and non-dominant percent of UL activity, and between UL activity and 

percent of UL activity (for all values, r ≥ 0.96, p < 0.001), dominant UL activity was selected as 

the outcome variable for analyses of potential modifiers.  The variability of the ratio of UL 

activity was very small despite a large range in hours of UL activity (Table 2.2).  Figure 2.1 

illustrates the absence of a relationship between hours of dominant UL activity and the ratio of 

UL activity (r = 0.08, p = 0.51). 

Table 2.2 Mean, standard deviation, and range of outcome  
variable and other predictor variables 

Variable Mean ± 
SD 

Range 

Hours of UL Activity   
   Dominant 9.1 ± 1.9 4.4 – 14.2 
   Non-dominant 8.6 ± 2.0 4.1 – 15.5 
   Ratio (non-dom/dom) 0.95 ± 0.06 0.79 – 1.1 
Percent of UL Activity   
   Dominant (%) 36.2 ± 7.8 17.7 – 56.8 
   Non-dominant (%) 34.5 ± 8.0 16.5 – 61.9 
Sedentary Activity† (hours) 11.8 ± 2.7 7 – 20 
Cognitive Impairment 2.0 ± 2.9 0 – 10 
Depressive Symptomatology 8.9 ± 7.8 0 – 35 
Number of Comorbidities† 1.4 ± 1.5 0 – 6 

†Determined by self-report 
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Figure 2.1 Scatterplot of ratio of UL activity versus hours of dominant 
UL activity. Despite variability in hours of dominant UL activity, the 
duration of activity between extremities is roughly equal, as indicated 
by a narrow range in the ratio of UL activity. 

Hours of dominant UL activity was moderately correlated with time spent in sedentary activity 

(Fig. 2.2a, r = -0.36, p < 0.01). Correlations for hours of dominant UL activity versus cognitive 

impairment (ρ = 0.20, p = 0.09), depressive symptomatology (Fig. 2.2b, r = 0.11, p = 0.37), 

number of comorbidities (ρ = -0.12, p = .32), and age (Fig. 2.2c, r = -0.002, p = 0.988) were not 

significant.  There was no difference in hours of dominant UL activity based on cohabitation 

status (p = 0.85).  Secondary analyses indicated that there was no association between the ratio of 

UL activity and sedentary activity, cognitive impairment, depressive symptomatology, number 

of self-reported comorbidities, and age (for all values, r and ρ < 0.13, p > 0.27).  
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Figure 2.2 Scatterplots of hours of dominant UL activity 
versus time spent in sedentary activity (a), depressive 
symptomatology (b), and age (c). Time spent in sedentary 
activity, but not depressive symptomatology or age, was 
associated with hours of UL activity. 
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2.5 Discussion 
Hours of UL activity during a typical day for community-dwelling adults was quantified using 

accelerometry in this study.  Mean UL activity was 9.1 ± 1.9 hours and 8.6 ± 2.0 hours for 

dominant and non-dominant ULs, respectively.  The ratio of UL activity (0.95 ± 0.06) indicates 

that the duration of UL activity between extremities was roughly equal, though quality of 

movements likely differed between extremities (e.g. stabilizing a bowl with one hand while 

stirring with the other hand).  Potential modifiers of UL activity were examined for their 

association with hours of UL activity.  In accordance with one of our hypotheses, decreased 

hours of UL activity was associated with increased time spent in sedentary activity.  Hours of UL 

activity, however, was not associated with cognitive impairment, depressive symptomatology, 

number of comorbidities, or age, nor was there a difference in hours of UL activity between 

participants living alone versus with others. 

These referent data build on previous studies that quantified the amount of arm activity in 

smaller samples of healthy, older adults10,22-24 by categorizing hours of UL activity in a larger 

sample of adults of various ages.  These data also indicate that time spent in sedentary activity 

may influence hours of UL activity.  Other factors, that one might assume could influence UL 

activity, did not.  Our results can now be used in conjunction with measures of UL functional 

capacity within the clinic to help clinicians set goals for individual patients as well as track 

progress during rehabilitation. 

The ratio of UL activity is a valuable measure of function because it reflects activity of one limb 

relative to the other limb and accounts for general physical activity that affects both 

extremities.13  General physical activity (e.g. walking) is accounted for because it likely affects 

both extremities equally.12  A lower ratio of UL activity indicates increased asymmetry in 
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duration of activity between the extremities, and in a clinical population, suggests decreased 

functionality of the limb in question.  Our data indicate that the ratio of UL activity is a robust 

metric of real-world UL function in persons without UL impairment because its range and 

variability were relatively small in contrast with the range and variability in hours of UL activity.  

Additionally, the mean ratio of UL activity in our sample was similar to that in a sample of 

middle-aged adults (0.94),23 and our range was similar to mean ratios reported in smaller samples 

of healthy, older adults (0.79 – 1.17).10,22,24   

Only time spent in sedentary activity was associated with hours of UL activity, despite reported 

associations between general physical activity and the predictor variables chosen for exploration 

in this study. Time spent in sedentary activity is easily measured by self-report in the clinic and 

could be considered when identifying a post-rehabilitation target value for hours of UL activity.  

Individual goals for post-rehabilitation hours of UL activity could be adjusted to be consistent 

with pre-impairment levels of sedentary activity.  Independent of the amount of expected or 

actual hours of UL activity that occurs as a result of rehabilitation, hours of UL activity of the 

impaired limb should be approximately 95% of the unimpaired UL activity when recovery has 

occurred, as indicated by the ratio of UL activity.  

Cognitive impairment, depressive symptomatology, and number of self-reported comorbidities 

were not associated with hours of UL activity in our sample, even though studies show that these 

factors are associated with decreased general physical activity.29,45,46  A possible reason for the 

lack of association between these factors and hours of UL activity is that our sample did not 

contain a wide distribution of values for some factors.  The range of scores for cognitive 

impairment and number of comorbidities was low (Table 2.2). The range of scores for depressive 

symptomatology was larger, but still not associated with hours of UL activity (Figure 2.2b).  In 
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the clinic, patients often complete assessments that screen for cognitive impairment, depression 

and comorbidities.  Our data suggest that low to moderate levels of cognitive impairment, 

depressive symptomatology, and comorbidities are not associated with hours of UL activity, and 

may not affect post-impairment hours of UL activity. 

Two additional potential modifiers were unexpectedly unrelated to UL activity.  First, there was 

no difference in hours of UL activity between participants living alone and those living with 

others (Table 2.1).  We hypothesized that participants living alone would have higher UL 

activity, possibly as a result of increased domestic demands that cannot be completed by a 

partner or children.  The data indicate that this is not the case.  This finding is consistent with 

two studies that show no difference in levels of general physical activity between persons living 

alone versus with other people,33,34 but not with two other studies.32,35  Second, there was no 

association between hours of dominant UL activity and age.  We hypothesized that decreased 

hours of UL activity would be associated with increased age because other studies demonstrated 

that decreased general physical activity is associated with increased age.31,47,48  These disparate 

findings may be explained by the possibility that aging adults exchange more vigorous activities 

for less vigorous activities that require similar hours of UL activity. In sum, our data indicate that 

hours of UL activity is not associated with cohabitation status or age.   

As accelerometer technology becomes more wide-spread, clinicians can use this tool to set 

specific goals, such as increasing a low ratio of UL activity, or achieving a ratio of UL activity in 

the referent range of 0.79 – 1.1.  These data can help clinicians modify expectations of hours of 

UL activity based on pre-impairment, self-reported time spent in sedentary activity, but not self-

reported cognitive impairment or depressive symptomatology.  For example, consider a patient 

who receives care from a hand therapist following a traumatic injury to the hand.  The patient 
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reports spending a large amount of time in sedentary activity prior to sustaining the injury.  The 

therapist should reduce the outcome goal for hours of UL activity to less than 9 hours because 

increased time spent in sedentary activity is associated with decreased UL activity. Similarly, the 

therapist can track the change in the ratio of UL activity over time.  If the patient’s initial ratio is 

0.50 and increases to 0.80, the therapist can be confident that movement of the impaired limb has 

increased from 50% to 80% of movement of the unimpaired limb during the course of 

rehabilitation. 

Beyond the clinical implications of this study, the methods and tools used in this study will be 

useful for rehabilitation researchers.  The use of accelerometry to measure duration of UL 

activity could replace assessments that require significant administration time as well as 

eliminate reporting biases associated with self-report questionnaires.  Some manufacturers offer 

accelerometers that transmit real-time data, which could be used to engineer systems that provide 

patients feedback to enhance performance as activity occurs.  Additionally, as technology 

continues to improve and devices become more compact, it may be possible to place 

accelerometers on individual digits to capture skilled finger movements. 

2.5.1 Limitations 
Given the observational nature of this study, only association, not causation, between potential 

modifying factors and hours of UL activity can be determined. A prospective study examining 

the relationship between hours of UL activity and modifying factors would be necessary to 

determine causation. Second, the time spent in sedentary activity and number of comorbidities 

were obtained via self-report and may have been subjected to reporting bias.  Future studies 

could more accurately quantify time spent in sedentary activity using wrist-worn accelerometry, 

once thresholds corresponding to sedentary activity have been validated.  In order to accurately 
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capture the number of comorbidities experienced by each study participant, data from 

participants’ medical charts could be used.  This was not feasible in the present study, however, 

because participants were recruited from the community and not from a single health 

organization.   

A final comment is that most study participants were not employed.  Patients with significant UL 

impairments are likely to not be working, therefore these findings generalize well to a 

rehabilitation population.  It is possible that UL activity may differ for individuals who work.  

Hours of UL activity in a working population should be determined. 

2.5.2 Conclusions 
This study reported data on hours of UL activity in a comprehensive sample of community-

dwelling adults and explored the associations between hours of UL activity and factors that could 

have potentially modified hours of UL activity.  These referent values provide objective 

information on real-world UL activity that has previously been available only through self-report 

assessments. Hours of UL activity and the ratio of UL activity reflect the amount of real-world 

movement that occurs outside the clinic, and can be used by clinicians in conjunction with 

clinical assessments of UL function to set outcome goals and evaluate treatment progress for 

rehabilitation of the ULs.  
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Chapter 3: Real-World Affected Upper Limb 
Activity in Chronic Stroke: An Examination 
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3.1 Abstract 
Background: Despite improvement in motor function after intervention, adults with chronic 

stroke experience disability in everyday activity.   Factors other than motor function may 

influence affected upper limb (UL) activity.  Objective: To characterize affected UL activity and 

examine potential modifying factors of affected UL activity in community-dwelling adults with 

chronic stroke.  Methods: Forty-six adults with chronic stroke wore accelerometers on both ULs 

for 25 hours and provided information about potential modifying factors (time spent in sedentary 

activity, cognitive impairment, depressive symptomatology, number of comorbidities, motor 

dysfunction of the affected UL, age, activities of daily living (ADL) status, and living 

arrangement).  Accelerometry was used to quantify duration of affected and unaffected UL 

activity.  The ratio of affected-to-unaffected UL activity was also calculated.  Associations 

within and between accelerometry-derived variables and potential modifying factors were 

examined.  Results: Mean hours of affected and unaffected UL activity were 5.0 ± 2.2 and 7.6 ± 

2.1 hours, respectively.  The ratio of affected-to-unaffected UL activity was 0.64 ± 0.19, and 

hours of affected and unaffected UL activity were strongly correlated (r=0.78).  Increased 

severity of motor dysfunction and dependence in ADLs were associated with decreased affected 

UL activity. No other factors were associated with affected UL activity.  Conclusions: Severity 

of motor dysfunction and ADL status should be taken into consideration when setting goals for 

UL activity in people with chronic stroke.  Given the strong, positive correlation between 

affected and unaffected UL activity, encouragement to increase activity of the unaffected UL 

may increase affected UL activity.  
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3.2 Introduction 
Despite participation in rehabilitation regimens, paresis of the affected upper limb (UL) after 

stroke results in impaired motor function (e.g. coordination, strength) that persists for more than 

six months in a majority of people.1   The focus of many physical rehabilitation approaches, such 

as constraint-induced movement therapy (CIMT),2 task-specific training,3 and robot-assisted 

training,4  is to improve motor function of the affected UL because early recovery of UL function 

is a strong predictor for later recovery.5  Even with improvements in motor function following 

intervention, adults with chronic stroke continue to experience disability in everyday activity,6  

which indicates that additional factors influence real-world use of the affected UL.  If these 

additional factors can be identified, they can be targeted as part of treatment intervention to 

further increase affected UL activity.  

Many factors, including sedentary activity, cognitive impairment, depression, multiple 

comorbidities, and age, are associated with reduced levels of physical activity and increased 

levels of disability in nondisabled adults7-11 and adults with stroke,12-16 and could potentially 

modify affected UL activity.  We recently examined the relationship between these potential 

modifying factors and UL activity in nondisabled adults, and demonstrated that only the amount 

of time spent in sedentary activity was associated with activity of both ULs.17 It is important to 

know if similar relationships exist in adults with chronic stroke.   

Additional factors related to stroke, including dependence in Activities of Daily Living (ADL),18 

whether the dominant UL was affected by stroke,19 and severity of motor dysfunction,20 are 

associated with affected UL motor function as measured by clinical tests, and might also 

influence affected UL activity in adults with chronic stroke. Furthermore, living with others 

compared to living alone is associated with better perceived general health,21 and could influence 
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UL activity.  The association between these factors and affected UL activity in chronic stroke has 

not yet been explored. 

It is also important to distinguish real-world activity (i.e. activity that occurs in an individual’s 

home, work, and community settings) from rehabilitation-related activity that occurs inside 

hospital or clinical settings.  In clinical settings, rehabilitation approaches that target the affected 

UL (e.g. CIMT and robot-assisted training) often require the affected UL to be used in a way that 

the limb is not typically used outside of the clinic.  This is done because it is expected that gains 

made in therapy will translate into increased use of the affected UL in real-world settings.  To 

ascertain if this translation truly occurs, affected UL activity needs to be measured in both real-

world and clinical settings. 

The purpose of this cross-sectional study was to characterize real-world affected UL activity, and 

potential modifying factors of affected UL activity, in community-dwelling adults with chronic 

stroke.  We hypothesized that increased time spent in sedentary activity, cognitive impairment, 

depressive symptomatology, number of comorbidities, age, and severity of motor dysfunction 

would be associated with decreased real-world affected UL activity.  We also hypothesized that 

real-world affected UL activity would be greater in participants who lived alone, and who were 

independent in ADLs. 

3.3 Methods 

3.3.1 Participants 
Data from forty-six adults with chronic stroke were examined in this study.   Participants were 

enrolled in a randomized control trial (NCT 01146379) between April 2011 and December 2013.  

The randomized control trial examines the dose-response effect of task-specific training on UL 
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function in adults with mild-to-moderate chronic stroke.  Only baseline (i.e. pretreatment) data 

were analyzed for this study.  Participants were recruited from the Cognitive Rehabilitation 

Research Group and the Brain Recovery Core databases at Washington University School of 

Medicine.  These databases contain contact information for patients with stroke admitted to 

Barnes Jewish Hospital or The Rehabilitation Institute of St. Louis in St. Louis, Missouri, USA, 

who consented to being contacted for potential participation in future research studies.  

Participants were also recruited from the community via word of mouth and flyers.  All 

participants provided informed consent for participation in the randomized control trial, which 

was approved by the Human Research Protection Office at Washington University in St. Louis. 

Inclusion criteria at time of consent included 1) ischemic or hemorrhagic stroke as determined by 

a stroke neurologist, 2) cognitive skills sufficient to participate, determined by a score of 0-1 on 

items 1b and 1c of the National Institutes of Health Stroke Scale (NIHSS),22  3) mild to moderate 

unilateral UL weakness, defined by a score of 1-3 on item 5 of the NIHSS, 4) ability to actively 

move the affected UL, determined by an Action Research Arm Test (ARAT, see Measures 

section of Methods for description) score of 10-49,23 and 5) ability to provide informed consent.  

Exclusion criteria included 1) inability to follow commands, 2) psychiatric diagnosis, 3) current 

participation in stroke treatment (e.g. therapy, botox), 4) other neurological diagnosis, and 5) 

pregnancy. 

3.3.2 Procedure 
Participants completed a one-hour office visit at the Neurorehabilitation Lab at Washington 

University School of Medicine in St. Louis, where they provided demographic and medical 

information.  Accelerometers were used to record duration of UL activity, and were placed on 

both wrists, proximal to the ulnar styloid, at the beginning of the office visit.  Participants 
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completed a battery of study assessments that measured potential modifying factors of affected 

UL activity. Participants were then instructed to wear the accelerometers for the subsequent 24 

hours while they went about their normal daily routines, with permission to remove the devices 

when bathing or showering.  Participants returned the accelerometers on a subsequent visit, at 

which time accelerometry data were visually inspected to ensure that patients wore the 

accelerometers during the designated wearing period. 

3.3.3 Measures 

Accelerometry-Derived Variables that Quantify UL Activity 
Real-world activity of the ULs was captured using accelerometers.  The GT3X Activity Monitor 

(Actigraph; Pensacola, Florida) measures acceleration in three axes with a dynamic range of ± 6 

gravitational units.  Data is stored on an on-board microchip that can be downloaded at a later 

time.  Due to its small (38 x 37 x 18 mm) size and portability, the GT3X Activity Monitor is 

ideal for measuring activity that occurs in real-world settings.  Use of accelerometry to measure 

real-world UL activity in people with stroke has established validity and reliability.24-26   

Acceleration was sampled in all three axes at 30Hz.  Raw acceleration was integrated into 1 

second samples, and converted into activity counts (0.001664g/count) using ActiLife 6 software 

(ActiGraph; Pensacola, FL).  Data were then processed using MATLAB R2011b (Mathworks; 

Natick, MA).  A custom-written program combined activity counts from all three axes into a 

single value, called the vector magnitude, using the following equation: √(x2 +y2 + z2).  Vector 

magnitudes were calculated for each second of activity.   Vector magnitude values were then 

dichotomized into two categories using a filter threshold.17,27  Seconds when the vector 

magnitude was ≥2 were defined as “activity,” and seconds when the vector magnitude was <2 

were defined as “no activity.”  Seconds of activity were summed to determine hours of affected 
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and unaffected UL activity.  The activity ratio was calculated by dividing hours of affected UL 

activity by hours of unaffected UL activity.17,27 

Two accelerometry-derived variables quantify real-world affected UL activity: hours of affected 

UL activity and the activity ratio.  Hours of affected UL activity directly reflects duration of real-

world affected UL activity.   The activity ratio, which is also referred to in the literature as the 

“ratio of more- to-less-impaired arm acceleration,”24 reflects affected UL activity with respect to 

unaffected UL activity.  Importantly, the activity ratio is stable (mean ± SD = 0.95 ± 0.06) and 

independent of hours of UL activity in nondisabled adults (r = 0.08).17   

Potential Modifiers of UL Activity 
Factors hypothesized to modify affected UL activity included time spent in sedentary activity, 

cognitive impairment, depressive symptomatology, number of comorbidities, severity of stroke-

induced motor dysfunction, age, ADL status, and living arrangement (see Introduction). 

 Time spent in sedentary activity during a typical weekday, quantified in hours, was assessed 

using the Physical Activity Scale, a valid self-report measure of daily physical activity.28,29  

Sedentary activity was defined as activity of 1.4 METS (Metabolic Equivalent of Task30) or less, 

and includes activities such as sleeping, reading, and watching television.  

Cognitive impairment was quantified using the Short Blessed Test, a cognitive screening test 

used to assess memory, orientation, and concentration.31  This tool has been used to assess 

cognitive impairment in adults with stroke.13,32,33  Errors on six questions are weighted (total 

score = 28), with higher scores indicating more-impaired cognition.  Scores ≥6 indicate probable 

cognitive impairment.34 
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Depressive symptomatology was assessed using the Center for Epidemiological Studies 

Depression Scale, a screening test for depression and depressive disorder35 that has been 

validated for use in adults with stroke.36,37  Twenty questions are scored on a 4-point Likert scale 

(total score = 60), with higher scores indicating increased depressive symptomatology.   Scores ≥ 

16 indicate probable clinical depression.35,38 

Number of comorbidities was obtained using a checklist of common medical conditions.  Self-

reported recall of health conditions is more accurate with checklists than with open- or free-

response methods.39,40 

Severity of stroke-induced motor dysfunction was assessed using the ARAT, a performance-

based assessment with established reliability that quantifies the capacity to reach, grasp, 

move/manipulate, and release objects (total score = 57).41-43  Higher scores indicate less motor 

dysfunction.    

Age was obtained from the recruitment databases.  ADL status (i.e. independent versus 

dependent for bathing, grooming, or dressing) and living arrangement (i.e. lives with others 

versus alone) were collected via self-report.   

Additional self-reported demographic and health characteristics (i.e. education, employment, 

hand dominance, side affected by stroke, time since most-recent stroke, number of strokes) were 

collected according to routine clinical practice, and where appropriate, examined to see if they 

influenced potential modifiers of affected UL activity (i.e. moderating effects were examined). 

3.3.4 Statistical Analysis 
Statistical analyses were performed using IBM SPSS Statistics for Windows, Version 21 (IBM 

Corp., Armonk, NY).  All data were checked for normality using Shapiro-Wilk tests and 
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variance was assessed using Levene’s test.44  Means and standard deviations were calculated for 

normally-distributed variables, and medians and interquartile ranges (IQR) were calculated for 

non-normally-distributed variables.  Correlation analyses (Pearson, Spearman, and biserial44) 

were used to examine associations among and between hours of affected UL activity, hours of 

unaffected UL activity, the activity ratio, and potential modifiers of affected UL activity.  

Correlation coefficients <0.30 were weak, between 0.30 and 0.60 were moderate, and ≥0.60 were 

considered strong.45  Independent t-tests were used to examine differences in hours of affected 

and unaffected UL activity; and to examine differences in hours of affected UL activity and the 

activity ratio based on ADL status, living arrangement, and whether the dominant versus the 

nondominant UL was affected.  All significance tests were two-tailed and criteria for 

significance was set at alpha = 0.05. 

3.4 Results 
Forty-six subjects participated in this study.  Mean age was 60 ± 11 years.  Sex (male: n=30/46), 

race (African American: n=24/46; Caucasian: n=22/46), and side affected by stroke (dominant: 

n=24/46) were well-represented across participants.   The median time since most-recent stroke 

was 0.9 (IQR = 1.4) years, and the median number of strokes was 1 (IQR = 1).  Participants wore 

the accelerometers for the designated wearing period (median: 24.9 hours, IQR:  1.55 hours).  No 

technical problems with the accelerometers were observed. 

Descriptive statistics of potential modifiers of affected UL activity are provided in Table 3.1. 

Participants spent 63% (15.8/25 hours) of their time during a typical weekday in sedentary 

activity.  Scores for self-reported cognitive impairment, depressive symptomatology, number of 

comorbidities, and age exhibited a broad range of values.  All participants experienced motor 

dysfunction of the affected UL, as indicated by Action Research Arm Test scores.  A majority of 
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participants were independent in ADLs and lived with others.  The dominant UL was affected in 

approximately half of study participants.  

 Table 3.1 Descriptive statistics of, and correlations between, potential modifiers, hours of 
affected UL activity, and the activity ratio (n=46, except as noted) 

Potential Modifiers Mean ± SD or 
Median (IQR) 

Range Correlations 

   Hours of 
Affected UL 

Activity 

Activity 
Ratio 

Hours of Sedentary Activity† 15.8 ± 4.0 6 – 23 0.00 0.27 
Cognitive Impairment† 2 (7) 0 – 28 -0.09 0.17 
Depressive Symptomatology 9 (17) 0 – 52 0.15 0.18 
Number of Comorbidities 3 (2) 0 – 7 -0.02 -0.08 
Motor Dysfunction of    
   Affected UL 

36 (15) 10 – 48 0.49* 0.63* 

Age 60 ± 11 32 – 83 0.00 -0.02 
    N (%)    
ADL Status (independent) 37 (80)    
Living Arrangement (lives    
   with others) 

34 (74)    

Dominant UL Affected 24 (52)    
†Assessment scores were missing for some participants; for Hours of Sedentary Activity, 
n = 36; for Cognitive Impairment, n = 45   
*p < 0.01 
Abbreviations: ADL = Activities of Daily Living, UL = Upper Limb 

Hours of affected UL activity (5.0 ± 2.2, range: 0.8-10.4) were significantly less than hours of 

unaffected UL activity (7.6 ± 2.1, range: 2.0-11.6, p < 0.01).  Hours of affected UL activity were 

positively associated with hours of unaffected UL activity (r = 0.78, p < 0.01), as illustrated in 

Figure 3.1.  The activity ratio was 0.64 ± 0.19 (range: 0.32-1.00). 
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Figure 3.1 Scatterplot of hours of affected versus unaffected 
UL activity. The correlation between the two variables was 
strong (r=0.78).  

  

Correlation coefficients between potential modifiers and both hours of affected UL activity and 

the activity ratio are provided in Table 3.1.  Severity of motor dysfunction of the affected UL 

was moderately associated with hours of affected UL activity, and strongly associated with the 

activity ratio.  Correlation coefficients between the remaining potential modifiers listed in Table 

3.1 and both hours of affected UL activity and the activity ratio were weak and lacked 

significance (for all values, p > 0.12).  Affected UL activity was greater in participants who were 

independent in ADLs (5.4 ± 2.1 hours) than in participants who received assistance for bathing, 

grooming, or dressing (3.0 ± 1.3 hours, p < 0.01, Figure 3.2a).  The activity ratio also was greater 

in participants who were independent in ADLs (0.68 ± 0.18) than in participants who received 

assistance (0.48 ± 0.13, p < 0.01, Figure 3.2b).  For living arrangement, there was no difference 

between participants who lived alone versus those who lived with others in hours of affected UL 
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activity (mean difference: 0.09 hours, p = 0.9) or the activity ratio (mean difference: 0.02, p = 

0.78). 

 

Figure 3.2 ADL status versus real-world affected UL activity. 
Each symbol represents a single subject.  Horizontal lines represent 
mean values.  Hours of affected UL activity (a) and the activity 
ratio (b) were significantly higher in participants who were 
independent for bathing, grooming, or dressing than in participants 
who were dependent. 
*p< 0.01 
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Secondary analyses explored the relationship between additional stroke-related variables and 

both hours of affected UL activity and the activity ratio to see if the additional stroke-related 

variables influenced the correlations described above (i.e. moderating effects were examined).  

Time since most-recent stroke and number of strokes were not correlated with either hours of 

affected UL activity or the activity ratio (for all values, ρ < 0.23, p >0.60).  There was no 

difference in hours of affected UL activity based on whether the dominant UL was affected 

(mean difference: 0.75 hours, p=0.25).  The activity ratio was higher, however, in participants 

whose dominant UL was affected (0.70 ± 0.18) than in participants whose nondominant UL was 

affected (0.57 ± 0.18, p = 0.02).  Statistical tests investigating the relationship between potential 

modifiers and the activity ratio were therefore re-examined while controlling for whether the 

dominant UL was affected using partial correlations; no significant changes in correlation 

coefficients or t-test statistics were observed.  Last of all, the association between ADL status 

and motor dysfunction of the affected UL was examined because both modifiers were associated 

with accelerometry-derived variables.  The biserial correlation between ADL status and severity 

of motor dysfunction of the affected UL was not significant (r = -0.32, p = 0.12). 

3.5 Discussion 
The purpose of this study was to characterize real-world affected UL activity, and examine 

potential modifiers of UL activity, in community-dwelling adults with chronic stroke.  Hours of 

affected UL activity were strongly correlated with hours of unaffected UL activity (r = 0.78), 

even though duration of affected UL activity was 2.6 hours less than unaffected UL activity.  

That the affected UL was less active than the unaffected UL was confirmed by an activity ratio 

of 0.64 ± 0.19.  The activity ratio was higher in participants whose dominant UL was affected 

than in participants whose nondominant UL was affected; whether the dominant UL was 
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affected, however, did not confound associations between the activity ratio and potential 

modifiers of affected UL activity.  In accordance with our hypotheses, increased severity of 

motor dysfunction and dependence in ADLs were associated with decreased hours of affected 

UL activity and activity ratios.  The participants’ time spent in sedentary activity, cognitive 

impairment, depressive symptomatology, number of comorbidities, age, and living arrangement 

were not associated with hours of affected UL activity or the activity ratio.  

Our findings confirm that real-world activity of both affected and unaffected ULs is lower in 

adults with chronic stroke than in adults without stroke, where real-world activity of the 

dominant and nondominant ULs averages 9.1 and 8.6 hours, respectively.17  Michielsen et al. 

also found that activity of the ULs in adults with chronic stroke (unaffected UL: 5.3 hours, 

affected UL: 2.4 hours) was lower than in nondisabled adults (dominant UL: 5.4 hours, 

nondominant UL: 5.1 hours).46  The authors acknowledge that the inconvenience of wearing 

their accelerometry-based system (consisting of 5 accelerometers across the thighs, trunk, and 

ULs) may have resulted in underestimation of real-world UL activity in their sample, which 

likely explains the difference in hours of affected and unaffected UL activity observed between 

this study and theirs.   

While it is known that activity of both ULs is reduced immediately after stroke,47 it is alarming 

that unaffected UL activity remains reduced in chronic stroke (7.6 hours compared to 9.1 hours 

of dominant UL activity in nondisabled adults).17   Even though only one UL is affected at the 

level of impairment (i.e. hemiparesis), both ULs are affected at the level of activity in everyday 

life.  The strong correlation between hours of affected and unaffected UL activity in our study 

indicates that decreased affected UL activity is associated with decreased unaffected UL activity.    

This phenomenon may be explained by the fact that many daily activities are performed 
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bilaterally, and require both ULs to work together (e.g. stacking boxes, stabilizing a piece of 

paper with one hand while writing with the other hand). 48,49  Hence, reduced affected UL 

activity might lead to reduced unaffected UL activity.  Viewed from the opposite direction, the 

correlation suggests that affected UL activity might be increased by increasing activity of the 

unaffected UL because of the bilateral nature of everyday tasks.  If such a causal relationship 

exists, increasing unaffected UL activity in order to increase affected UL activity could be an 

alternative intervention strategy for patients who do not respond to, or meet entry criteria for, 

other interventions, such as CIMT or robotic-assisted therapy.  Furthermore, it would address the 

issue of reduced unaffected UL activity in chronic stroke. 

Whether the dominant versus nondominant UL is affected should also be considered when 

addressing real-world affected UL activity.  This study demonstrated greater activity ratios in 

participants whose dominant UL was affected than in participants whose nondominant UL was 

affected.  This finding is consistent with studies that demonstrated less motor impairment,19 and 

greater recovery after bilateral arm training,50 of the affected UL in chronic stroke patients whose 

dominant UL was affected.  As a whole, these results suggest that people whose nondominant 

ULs are affected by stroke may need more encouragement to use their affected ULs. 

Increased severity of motor dysfunction was associated with decreased hours of affected UL 

activity and decreased activity ratios.   That better motor function and increased real-world 

affected UL activity are associated is unsurprising, given the positive relationship observed 

between tests of motor ability (e.g. Fugl-Meyer Assessment) and global function (i.e. Functional 

Independence Measure).20,51,52  On the other hand, the associations between ADL status, and 

both hours of affected UL activity and the activity ratio are not as straightforward.  While it is 

reasonable to assume that dependence in ADLs can occur as a result of UL motor dysfunction, it 
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is not the sole contributor to dependence in ADLs.  Paresis of the lower limb, poor balance, and 

cognitive status, among other factors, can also contribute to dependence in ADLs.  Interventions 

other than increasing motor function of the affected UL, such as use of adaptive equipment, 

might allow a person to be independent in ADLs while indirectly contributing to increased 

affected UL activity (e.g. use of adaptive equipment could encourage use of both ULs to 

complete many tasks).   

Time spent in sedentary activity, cognitive impairment, depressive symptomatology, number of 

comorbidities, age, and living arrangement were not associated with hours of affected UL 

activity or the activity ratio.  In nondisabled adults, these same factors were not associated with 

hours of real-world UL activity, with the exception of time spent in sedentary activity, which 

showed a modest correlation (r = -0.36).17  In the present study, the parameters used to assess 

time spent in sedentary activity, hours of affected UL activity, and the activity ratio were 

sufficiently broad to detect correlations, had they existed.  The range of values for cognitive 

impairment, depressive symptomatology, number of comorbidities, and age were also broad, and 

would have demonstrated significant correlations with either hours of affected UL activity or the 

activity ratio, had they existed.  Regarding living arrangement, even though previous research 

indicates that living alone offers protective effects against self-perceived morbidity and poor 

health status,21 living arrangement was not associated with affected UL activity in study 

participants.   While the factors described above are associated with physical activity12-16 and 

perceived general health,21 they were not associated with real-world affected UL activity.  Goals 

related to affected UL activity therefore need not be reduced in the presence of these factors.    
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3.5.1 Limitations 
Because of its observational design, the main limitation of this study is its inability to 

demonstrate a cause-effect relationship between potential modifying factors and real-world 

affected UL activity.  A longitudinal design would be necessary to demonstrate such a 

relationship.  A second limitation is that accelerometry is a useful index of UL function in daily 

life, rather than a direct quantification of function itself.  As used here, accelerometry cannot 

distinguish between volitional (i.e. reaching) and non-volitional (i.e. arm-swing during gait) 

movements.  The effect of this on our data would be to possibly inflate the duration of UL 

activity, but would not likely influence the activity ratio.  With advances in technology, this 

weakness will likely be rectified.  Despite this inherent limitation at present, accelerometry is one 

of the best tools available for objectively measuring UL activity in real-world settings. 

3.5.2 Conclusions 
This study characterized real-world affected UL activity in community-dwelling adults with 

chronic stroke, and examined associations between affected UL activity and numerous factors 

hypothesized to modify affected UL activity.  Increased severity of motor dysfunction and 

dependence in ADLs were associated with decreased hours of affected UL activity and decreased 

activity ratios, and should be considered when designing treatment interventions and setting 

goals to improve real-world affected UL activity in adults with chronic stroke.  Because real-

world affected and unaffected UL activity were strongly correlated, increasing real-world 

activity of the unaffected UL could be a potential strategy for increasing affected UL activity in 

adults with chronic stroke, and deserves further exploration. 
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4.1 Abstract 
Background: The use of both upper extremities (UE) is necessary for the completion of many 

everyday tasks.  Few clinical assessments measure the abilities of the UEs to work together; 

rather, they assess unilateral function and compare it between affected and unaffected UEs.  

Furthermore, clinical assessments are unable to measure function that occurs in the real-world, 

outside the clinic.  This study examines the validity of an innovative approach to assess real-

world bilateral UE activity using accelerometry.  Methods: Seventy-four neurologically intact 

adults completed ten tasks (donning/doffing shoes, grooming, stacking boxes, cutting playdough, 

folding towels, writing, unilateral sorting, bilateral sorting, unilateral typing, and bilateral typing) 

while wearing accelerometers on both wrists.  Two variables, the Bilateral Magnitude and 

Magnitude Ratio, were derived from accelerometry data to distinguish between high- and low-

intensity tasks, and between bilateral and unilateral tasks.  Estimated energy expenditure and 

time spent in simultaneous UE activity for each task were also calculated.  Results: The Bilateral 

Magnitude distinguished between high- and low-intensity tasks, and the Magnitude Ratio 

distinguished between unilateral and bilateral UE tasks.  The Bilateral Magnitude was strongly 

correlated with estimated energy expenditure (ρ = 0.74, p < 0.02), and the Magnitude Ratio was 

strongly correlated with time spent in simultaneous UE activity (ρ = 0.93, p < 0.01) across tasks.  

Conclusions: These results demonstrate face validity and construct validity of this methodology 

to quantify bilateral UE activity during the performance of everyday tasks performed in a 

laboratory setting, and can now be used to assess bilateral UE activity in real-world 

environments. 

  

69 
 



4.2 Introduction 
Upper extremity (UE) function is necessary for the performance of many everyday tasks.  Some 

tasks are performed using symmetrical movements between the UEs where kinetic and kinematic 

parameters are matched (e.g. carrying a heavy object).1  Other tasks are performed unilaterally 

(e.g. typing with one hand).  Most tasks, including many “unilateral” tasks, actually occur in 

between these two extremes.  Classified as bilateral complimentary activity, these tasks require 

both extremities to work together to accomplish a goal even though one extremity may be 

“functionally inactive.” An example of this is writing, where one hand is used to stabilize a piece 

of paper while the other hand manipulates a pen to write on the paper.  Because most everyday 

tasks are completed using bilateral actions, bilateral UE function should be assessed in patients 

with UE impairment receiving rehabilitation services.   

Surprisingly, few clinical assessments measure bilateral UE function.  Many assessments 

measure UE function of the impaired extremity and compare it to function of the unimpaired 

extremity (e.g. Action Research Arm Test, Jebsen-Taylor Hand Function Test).2  Some 

assessments use bilateral tasks to measure UE function.  The Chedoke Arm and Hand Inventory,3 

for example, measures the ability to use both UEs to complete a task, but scoring is determined 

by the amount of assistance required to complete the task rather than any inherent characteristic 

of motor ability (e.g. speed, intensity).  A further limitation of clinical assessments is that they do 

not measure free-living or real-world UE activity, defined as use of the UEs outside of the clinic 

to complete functional and non-functional tasks.  For practical reasons, a clinician cannot 

personally track the activity of a patient 24 hours a day.  Self-report measures of physical activity 

may be used to overcome this barrier, but self-reported activity is known to vary greatly with 

direct measures of activity4 for many reasons, including desire for social approval5 and cognitive 
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impairment.6  Clearly, existing clinical assessments are insufficient for measuring real-world 

bilateral UE function following UE impairment. 

In an effort to measure real-world UE function, accelerometry has been introduced as an 

objective method to quantify real-world UE activity in healthy7 and patient8 populations.  While 

accelerometry cannot distinguish arm movements that are functional (e.g. getting dressed) from 

non-functional (e.g. arm swing while ambulating), they serve as a useful index of real-world UE 

function (i.e. UE activity).9  Accelerometry has been used to quantify duration and intensity of 

UE activity of individual extremities, as well as duration and intensity of one extremity relative 

to the other extremity.  This approach is the same as that described for clinical assessment: 

unilateral activity of each UE is assessed separately and then compared.   Unfortunately, UE 

activity of one extremity relative to the other extremity is not the same thing as bilateral UE 

activity.  

As a result of these challenges, this study examined the validity of an innovative approach that 

uses accelerometry data to quantify bilateral UE activity during the performance of every-day 

tasks.  Participants completed 10 everyday tasks while wearing accelerometers.  Two variables 

were calculated from the accelerometry data, the Bilateral Magnitude and Magnitude Ratio, to 

reflect bilateral activity intensity and the contribution of each UE to activity.  We hypothesized 

that these variables would distinguish high intensity tasks from low intensity tasks, and bilateral 

tasks from unilateral tasks.  We also hypothesized that the variables would be associated with 

estimated energy expenditure and time spent in activity when both UEs were simultaneously 

active. 
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4.3 Methods 

4.3.1 Participants 
Participants for this cross-sectional study were recruited through HealthStreet, a community-

based effort of the Institute of Clinical and Translational Sciences at Washington University 

School of Medicine in St. Louis between May and September 2012.  Inclusion criteria were (a) 

age > 30 years, (b) ability to follow commands, and (c) dwelling in the community.  Exclusion 

criteria were (a) self-reported history of a neurological condition and (b) self-reported history of 

significant UE impairment.  This study was approved by the Human Research Protection Office 

of Washington University and conformed to the Declaration of Helsinki.  A total of 74 adults 

provided written informed consent, participated in the study, and were compensated for their 

time.   

4.3.2 Procedure 
Participants completed a one-hour office visit at the Neurorehabilitation Lab at Washington 

University School of Medicine, where they provided demographic information, including self-

reported hand dominance.  Accelerometry was used to measure UE activity during task 

performance.  The validity and reliability of accelerometry to measure UE activity is well-

established.8,10-13  The GT3X+ Activity Monitor (Actigraph, Pensacola, FL) contains a solid 

state, digital accelerometer that is capable of measuring acceleration along three axes, contains 

512 MB of internal storage, and has ± 6g dynamic range.  Acceleration was sampled at 30 Hz.  

Two accelerometers (one on each UE) were placed on distal forearms, proximal to the styloid 

process of the ulna, which allowed both proximal (i.e. upper arm) and distal (i.e. forearm) 

movements to be captured.  Small movements of the hands and fingers that occur in isolation of 

more proximal segments, as occurs when one types on a computer but rests the forearms on a 

72 
 



table surface, may be missed by accelerometers worn at the wrists; thus, wrist-worn 

accelerometry may slightly underestimate the actual amount of UE activity that occurs during 

task performance.  

Participants performed eight UE tasks.  The tasks were chosen to encompass a variety of UE 

movement patterns, including unilateral activity, symmetrical bilateral activity (where temporal, 

kinetic, and kinematic parameters were similar between UEs), and complementary bilateral 

activity (where the UEs were used in an asymmetrical but cooperative fashion to complete a 

task), that might be performed in real-world environments.1  Tasks included donning/doffing 

shoes, grooming, stacking boxes, cutting playdough, folding towels, writing, sorting items into a 

tackle box, and typing.  Some participants completed typing and sorting tasks predominantly 

one-handed (i.e. unilateral), while others completed the tasks using both hands (i.e. bilateral), 

resulting in ten tasks that were analyzed.  A brief description of each task is given in Table 4.1.  

Task order was randomized using a custom-written program in MATLAB R2011b (Mathworks, 

Natick, MA), and task performance was video-recorded.  
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Table 4.1 Description of upper extremity tasks 

Task Description 
Shoes Donning and doffing shoes, including tying laces if 

applicable. 
Grooming Tasks requiring bilateral UE activity that occurs around the 

head (e.g. combing/styling hair, removing/replacing earrings, 
mimed make-up application, shaving in front of a mirror). 

Boxes Transferring boxes (0.91 kg; 24 cm x 15 cm x 9.5cm) 
between shelves located at shoulder- and waist-heights.  

Cutting Cutting playdough on a cutting board using a knife and fork. 
Towels Folding large bath towels and placing them into a pile. 
Writing Writing a short story on a piece of paper using a pencil. 
Unilateral Sorting Sorting small objects into a tackle box with one hand using a 

3 point pinch (3-jaw-chuck). 
Bilateral Sorting Sorting small objects into a tackle box with both hands using 

a 3 point pinch (3-jaw-chuck). 
Unilateral Typing Typing a short story on a laptop computer using one hand. 
Bilateral Typing Typing a short story on a laptop computer using both hands.  

    

To approximate movement patterns that might occur during real-world activity, participants were 

instructed to complete each task in a self-selected manner until the task was completed, which 

took between one and two minutes.  Because participants were allowed to complete tasks in a 

self-selected manner, participants performed Bilateral Typing and Bilateral Sorting using a 

variety of symmetrical and complementary actions.  For example, some participants were skilled 

typists who used both hands to type in a symmetric manner, while others were less skilled and 

typed by using the index fingers of both hands in a hunt-and-peck fashion.  For Bilateral Sorting, 

some participants sorted objects using both hands at the same time, while others sorted objects 

by either using one hand at a time or using one hand continuously and occasionally using the 

other hand to help. 
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Participants wore the accelerometers for the next 24 hours while they went about their normal, 

daily routine at home.  Summary analysis of accelerometry data collected during the 24 hours is 

reported elsewhere14 and is not provided within this manuscript.  Accelerometers were returned 

to the Neurorehabilitation Lab at the conclusion of the wear period, where accelerometry data 

were downloaded to a computer using ActiLife 6 proprietary software (ActiGraph, Pensacola, 

FL).  ActiLife 6 software band-pass filters acceleration data between frequencies of 0.25 – 2.5 

Hz, removes the effect of gravity, down-samples 30 Hz data into one second intervals by 

summing acceleration across samples, and converts acceleration into units called Activity Counts 

(1 Activity Count = 0.001664g = 0.0163m*s-2).15  Activity Counts for each task and each 

participant can be found in an online data repository at 

http://digitalcommons.wustl.edu/open_access_pubs/2901/.  ActiLife 6 was also used to visually 

inspect accelerometry data to ensure that the accelerometers functioned properly during the 

recording period.   

4.3.3 Variables of Interest 
Accelerometry data were used to calculate two primary variables of interest, the Magnitude Ratio 

and Bilateral Magnitude.  Figure 4.1 illustrates how data were processed and primary variables 

calculated for one task to assist in explanation of the methods described below.  Accelerometry 

data were exported from ActiLife 6 to MATLAB R2011b, and variables of interest were 

calculated using a custom-written program.  First, for each second of data, activity counts across 

the three axes were combined into a single value, called a vector magnitude, using the equation: 

√(x2 + y2 + z2) (Fig. 4.1A).8  This was done separately for each UE. Second, vector magnitudes 

were smoothed using a 5-sample moving average to reduce the variability of vector magnitude 

amplitudes (Fig. 4.1B).   
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Figure 4.1 Example of data processing for one participant and one task, Grooming.  
A. Vector magnitude (measured in activity counts) for the dominant and 
nondominant UEs.  B. Vector magnitudes were smoothed using a 5-sample moving 
average, resulting in decreased amplitudes.  C. The Bilateral Magnitude (measured 
in activity counts) was calculated for each second of activity.  D.  The Magnitude 
Ratio was calculated for each second of activity.  E & F. Histograms of Bilateral 
Magnitude and Magnitude Ratio values, respectively.  The median values are 
identified by arrows. 
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Third, smoothed vector magnitudes were isolated for each task and were used to calculate the 

Bilateral Magnitudes and the Magnitude Ratios for each second of activity.  We considered 

multiple options to quantify bilateral UE activity, but chose these primary variables because they 

most directly and intuitively reflected the constructs of interest, i.e. how the UEs are used 

together to accomplish tasks. 

The Bilateral Magnitude reflects the intensity of activity across both UEs, and was calculated by 

summing the smoothed vector magnitude of the nondominant and dominant UEs for each second 

of activity (Fig. 4.1C).  Bilateral Magnitude values of 0 indicate that no activity occurred, and 

increasing Bilateral Magnitude values indicate increasing intensity of bilateral UE activity.   

The Magnitude Ratio reflects the ratio of acceleration between UEs. It was calculated for each 

second of activity by 1) adding one activity count to the smoothed vector magnitude of both 

UEs, 2) dividing the smoothed vector magnitude of the nondominant UE by the smoothed vector 

magnitude of the dominant UE, and 3) log-transforming the calculated values  (Fig. 4.1D).  The 

addition of one activity count was done to prevent dividing by zero for seconds when the 

dominant UE was inactive (i.e. denominator = 0).  Log-transformation using a natural logarithm 

was performed to prevent positive skewness of untransformed ratio values greater than 1.0.8  

Magnitude Ratio values of 0 indicate equivalent activity contribution from both UEs;  positive 

values indicate more nondominant UE activity and negative values  indicate more dominant UE 

activity, relative to the opposite extremity.   

After calculating the Bilateral Magnitude and Magnitude Ratio for each second of each task, 

seconds when no activity in either extremity occurred (i.e. the Bilateral Magnitude was equal to 

zero) were removed for statistical analysis.  Thus, only seconds when activity occurred in at least 
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one extremity are reflected in the results.  Seconds when no activity occurred were removed from 

statistical analysis because the purpose of this accelerometry-based methodology is to quantify 

bilateral UE activity when UE activity occurs, and inclusion of time when no activity occurred 

would influence statistical analyses. 

In order to establish convergent validity of the primary variables, secondary variables were 

calculated that were expected to correlate with the primary variables.  Secondary variables 

included Estimated Energy Expenditure and Time Spent in Simultaneous Activity.  Estimated 

Energy Expenditure for each task was obtained from the 2011 Compendium of Physical 

Activities,16 which provides MET (Metabolic Equivalent of Task) values for various activities. 

One MET is defined as the amount of energy expended at rest, and equals 1.0 kcal*kg-1*h-1.  

MET values from 0-3 indicate light intensity activity, from 3-6 indicate moderate intensity 

activity, and above 6 indicates vigorous intensity activity.17,18  This secondary variable was 

expected to correlate with the Bilateral Magnitude.   

Time Spent in Simultaneous Activity was defined as the percentage of time that both UEs were 

simultaneously active, and was calculated by dividing the number of seconds when the smoothed 

vector magnitudes of both UEs were simultaneously greater than 0 activity counts by the number 

of seconds when the smoothed vector magnitude of either UE was greater than 0 activity counts.  

Put more simply, Time Spent in Simultaneous Activity was calculated by dividing the number of 

seconds that both UEs were active by the number of seconds that at least one UE was active.  

Time Spent in Simultaneous Activity was expected to correlate with the Magnitude Ratio 

because these variables quantify bilateral UE activity in different, but related, ways (i.e. duration 

of simultaneous UE activity vs. ratio of acceleration between UEs). 
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In eight cases, few (n=6) of the left-handed participants used their nondominant UE to complete 

tasks, even though all right-handed and half of the left-handed participants used their dominant 

UE to complete the same tasks.  These cases are consistent with studies showing that left-handed 

adults complete some tasks with the nondominant UE more frequently than right-handed 

adults.19,20  For these eight cases, the inverse of the Magnitude Ratio values were used to correct 

for this inconsistency. 

4.3.4 Statistics 
Statistical analyses were performed using IBM SPSS Statistics for Windows, Version 21 (IBM 

Corp., Armonk, NY).  All variables at all stages of analysis were assessed for normality using 

Kolmogorov-Smirnov tests.  Despite log transformation, all variables were not normally 

distributed; therefore, median values were calculated for participant- and sample-level analyses. 

For each task and each participant, median Bilateral Magnitude (Fig. 4.1E) and median 

Magnitude Ratio (Fig. 4.1F) values were computed.  Sample-level statistics were then calculated.  

For each task, the median and interquartile range of the median Bilateral Magnitude, median 

Magnitude Ratio, and Time Spent in Simultaneous Activity were computed.  Outlying values 

were investigated but not removed because their effect on calculated median values was 

minimal.   

Spearman correlation analyses were used to examine relationships between primary and 

secondary variables across all tasks.  The correlation between the median Bilateral Magnitude 

and Estimated Energy Expenditure was examined using sample-level data because Estimated 

Energy Expenditure values were constant within tasks.  The correlation between the median 

Magnitude Ratio and Time Spent in Simultaneous Activity was examined two ways: 1) using 

sample-level data for consistency with the approach used for the median Bilateral Magnitude and 
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Estimated Energy Expenditure, and 2) using participant-level data to examine if the association 

was maintained across participants.  We computed the median and interquartile range of the 

correlations coefficients across participants because the values were not normally distributed.  

Correlation coefficients 0.60 and higher were considered to be strong, between 0.30 - 0.59 were 

moderate, and 0.29 and lower were weak.21 

4.4 Results 

4.4.1 Participants 
Participants had a mean age of 54 (SD 11) years.  Sex (female: n=39/74) and race (African-

American: n=44/74, White: 30/74) were well-represented. The majority of participants were 

right-hand dominant (n=62/74). Video-recordings of task performance were available for all but 

five typing tasks due to camera misplacement.  No technical problems with the accelerometers 

occurred during the recording period.   

4.4.2 Analysis of Primary and Secondary Variables 
Results for one participant, with a focus on a single task (Grooming), are presented first to 

facilitate understanding of sample-level data. The Magnitude Ratio and the Bilateral Magnitude 

both varied during the 70 seconds of task performance (Fig. 4.2A).  Median values for each 

variable were calculated (see Figs. 4.1E, 4.1F, and 4.2A) to represent the bilateral UE activity of 

the task as a whole.  Overall, this task was performed at a relatively high intensity (median 

Bilateral Magnitude = 333.21 activity counts), and the dominant UE was slightly more active 

than the nondominant UE (Magnitude Ratio = -0.16).   Compared to Grooming, this participant 

performed some tasks more unilaterally as indicated by large, negative, median Magnitude 

Ratios (e.g. Writing & Cutting), and performed other tasks at both higher (e.g. Boxes) and lower 

(e.g. Cutting) intensities (Fig. 4.2B). 
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Figure 4.2 Example data for a single participant.  A. Scatterplot illustrating the 
relationship between the Magnitude Ratio and Bilateral Magnitude (measured in 
activity counts) for each second of data (filled circles) for one task, Grooming.  
The median value of both variables is indicated by the red ‘X.’  B. Scatterplot 
illustrating how the different tasks compare to Grooming with respect to median 
Bilateral Magnitude and median Magnitude Ratio values.  The median Magnitude 
Ratio for Bilateral Sorting and Bilateral Typing deviated from 0, despite these 
being bilateral tasks.  For Bilateral Sorting, the participant used her nondominant 
UE to complete half of the task before using both UEs together.  For Bilateral 
Typing, the participant frequently used her dominant UE to press the “Backspace” 
key, even though she used both UEs to type in a hunt-and-peck fashion.    
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Median and interquartile range values of primary variables for all participants are presented in 

Table 4.2.  Median Bilateral Magnitudes ranged from 5.63 to 463.36, indicating that the tasks 

were performed along a continuum of low to high bilateral UE intensity.  Similarly, median 

Magnitude Ratio values ranged from -4.68 (Unilateral Sorting) where the dominant UE was used 

almost exclusively to complete the task, to 0.01 (Shoes & Towels) where both UEs contributed 

equivalently to task performance.  

Table 4.2 Median and interquartile range of median Bilateral Magnitudes and median 
Magnitude Ratios for each task 

Activity (n*) Bilateral Magnitude Magnitude Ratio  
 Median (IQR) 

Shoes (74) 281.32 (133.72) 0.01 (0.18) 
Grooming (74) 309.69 (153.04) -0.05 (0.28) 

Boxes (74) 463.36 (78.27) -0.05 (0.20) 
Cutting (74) 50.39 (33.82) -1.43 (1.19) 
Towels (74) 426.60 (100.80) 0.01 (0.14) 
Writing (74) 5.63 (6.56) -1.95 (0.96) 

Unilateral Sorting (38) 109.41 (30.19) -4.68 (0.20) 
Bilateral Sorting (36) 186.08 (183.06) -0.14 (0.65) 
Unilateral Typing (9) 19.09 (22.42) -2.99 (1.50) 
Bilateral Typing (60) 10.15 (12.58) -0.39 (0.93) 

*n=number of observations for each task, see Methods  
Abbreviations: IQR, interquartile range 

The middle 50 percent (25th to 75th percentiles) of median Bilateral Magnitude and median 

Magnitude Ratio values for each task across all participants are displayed in Figure 4.3.  For the 

majority of tasks, median Bilateral Magnitudes and median Magnitude Ratios varied greatly 

across participants, indicating that the same task was performed very differently among 

individual participants.  Despite the variability observed within tasks, tasks one might assume to 

be performed at higher intensities (e.g. Boxes) had high median Bilateral Magnitudes relative to 
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tasks one might assume to be performed at lower intensities (e.g. Writing).  Similarly, tasks one 

might assume to be performed with equal contribution from both UEs (e.g. Shoes) had median 

Magnitude Ratios near 0, while tasks that one might assume to be performed predominantly with 

the dominant hand (e.g. Unilateral Sorting) had large, negative, median Magnitude Ratios. 

 

Figure 4.3 Sample data across all tasks.  Values are the middle 50% (25 – 75 
percentiles) of median Bilateral Magnitude (vertical bars, measured in activity counts) 
and median Magnitude Ratio (horizontal bars) values.  Differences between tasks and 
variability within tasks are evident. 

   

Values of secondary variables for each task across all participants are presented in Table 4.3.  

Estimated Energy Expenditure was low to moderate for the ten tasks. Nine out of ten tasks were 

categorized as light-intensity tasks (i.e. MET values less than 3), while one task (Boxes) was 

categorized as moderate intensity (MET values between 3 and 6).  Both UEs were 
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simultaneously active for a majority of tasks as indicated by a high percentage of Time Spent in 

Simultaneous Activity, while few tasks were completed relatively one-handed (e.g. Writing, 

Unilateral Sorting) as indicated by a low percentage. 

Table 4.3 Values for Estimated Energy Expenditure and Time Spent in Simultaneous 
Activity for each task 

Activity (n*) Estimated Energy 
Expenditure† 

Percent of Time Spent in 
Simultaneous Activity  

 Median (IQR) 
Shoes (74) 2.50 100.00 (0.00) 

Grooming (74) 2.00 100.00 (0.00) 
Boxes (74) 3.30 100.00 (0.00) 
Cutting (74) 2.00 94.25 (21.72) 
Towels (74) 2.00 100.00 (0.00) 
Writing (74) 1.30 8.75 (16.11) 

Unilateral Sorting (38) 2.50 8.89 (11.16) 
Bilateral Sorting (36) 2.50 98.31 (32.03) 
Unilateral Typing (9) 1.30 26.74 (35.61) 
Bilateral Typing (60) 1.30 62.68 (47.47) 

*n=number of observations for each task, see Methods 
†As measured by MET values  
Abbreviations: IQR, interquartile range 

Spearman correlations were calculated between primary and secondary variables across all tasks.  

Estimated Energy Expenditure was strongly correlated with the median Bilateral Magnitude (ρ = 

0.74, p < 0.02).  Time Spent in Simultaneous Activity was strongly correlated with the median 

Magnitude Ratio.  This was true when correlations were examined using sample-level data (ρ = 

0.93, p < 0.01) and participant-level data (median ρ = 0.73, IQR = 0.28; correlation coefficients 

> 0.71 were significant at p < 0.05). 
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4.5 Discussion 

4.5.1 General 
The purpose of this study was to examine the validity of using the Bilateral Magnitude and 

Magnitude Ratio to quantify bilateral UE activity during the performance of everyday tasks.  

Visual inspection of Figure 4.3 provides face validity for the primary variables Bilateral 

Magnitude and Magnitude Ratio.  Higher median Bilateral Magnitude values were observed for 

tasks where the UEs were used more intensively (e.g. Boxes, Towels) than when the UEs were 

used less intensely (e.g. Writing, Cutting).  Median Magnitude Ratio values close to 0 occurred 

during tasks when both UEs contributed equally to task performance (e.g. Boxes, Towels), while 

large, negative Magnitude Ratios occurred during tasks when the dominant UE was 

predominantly used (e.g. Writing & Unilateral Sorting). 

Strong correlations between primary and secondary variables were also demonstrated; that is, 

construct validity for the Bilateral Magnitude and Magnitude Ratio as metrics of real-world 

bilateral UE activity has been established.  The strong correlation between median Bilateral 

Magnitudes and Estimated Energy Expenditure indicates that the Bilateral Magnitude is related 

to task intensity, which was expected given that activity intensity and activity magnitude are 

related measurements (i.e. intensity = magnitude per unit of time).  The strong correlation 

between median Magnitude Ratios and Time Spent in Simultaneous Activity was also expected 

because both serve as indices of bilateral UE activity.  The strong correlations between primary 

and secondary variables across tasks also indicate that the Bilateral Magnitude and the 

Magnitude Ratio quantify UE activity independently of the task performed.  These data 

demonstrate validity of this methodology to quantify bilateral UE activity that occurs during the 

performance of everyday activity.   
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Methods that attempt to assess bilateral UE activity by calculating unilateral activity and then 

computing the ratio of activity between UEs provide an incomplete understanding of bilateral 

UE activity.  For example, if both UEs are active for 12 hours each during a 24 hour period, the 

ratio of activity duration would be 1.0 (e.g. 12 hours/12 hours = 1.0).  This value, however, could 

be obtained if both extremities were simultaneously active for 12 hours (i.e. bilateral activity), or 

if the extremities were unilaterally active for 12 hours each.  In this situation, the ratio of activity 

duration does not provide accurate information about bilateral UE activity. Similarly, if the ratio 

of activity intensity during a 24 hour period were calculated, a similar situation would arise. In 

contrast, the methodology described in this study provides quantitative information on intensity 

of bilateral UE activity and the contribution of each UE to activity, when activity occurs.  This is 

illustrated in Figure 4.2A, where one can appreciate that the intensity of bilateral UE activity and 

the contribution of each UE to activity varies over time.     

Approaches that categorize UE activity using computer-based algorithms provide important 

information about UE activity, but not specifically about bilateral UE activity. Using 

accelerometry data, Schasfoort et al.13 categorized UE activity into active and passive functional 

categories using multiple accelerometers placed on the thighs, trunk, and forearms with moderate 

to high accuracy.  While data from both forearms was utilized by their algorithm to identify 

activity, no distinction was made between unilateral and bilateral activity.   

Using a different approach, Bao & Intille22 used five accelerometers placed on the ankle, thigh, 

hip, forearm, and upper arm to identify 20 specific UE tasks, including several performed 

exclusively with the UEs (e.g. scrubbing, eating).  As in the previous example, bilateral activity 

was not distinguished from unilateral activity.  Additionally, the algorithm was developed to 

identify only 20 tasks, which is a limiting factor because real-world activity consists of many 
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more than 20 tasks.  Furthermore, previous research23,24 has demonstrated that movement 

patterns across repetitions of the same task vary within individuals, which affects the accuracy of 

algorithms that are designed to identify specific tasks.25,26  Because movement patterns vary 

within individuals, one might also assume that movement patterns vary across individuals.  

Examination of the variability across participants for the median Bilateral Magnitude (see Fig. 

4.3), median Magnitude Ratio (see Fig. 4.3), and Time Spent in Simultaneous Activity (see 

Table 4.3) confirms this assumption.   

The methodology described in this study does not share the limitations outlined above because 

the Bilateral Magnitude and Magnitude Ratio quantify bilateral UE intensity and the contribution 

of each UE to activity when activity occurs, and is not limited to performance of specific tasks.  

Furthermore, only two accelerometers are needed to calculate the Bilateral Magnitude and 

Magnitude Ratio, which is an important consideration because wearing fewer accelerometers 

may improve wearing compliance in patient populations.27 

4.5.2 Possible Applications 
Analysis of UE activity using the Bilateral Magnitude and the Magnitude Ratio provides 

information about both the intensity of bilateral UE activity and relative contribution of each UE 

to activity performance.  When the Bilateral Magnitude and Magnitude Ratio are calculated for 

known periods of time, such as during occupational or physical therapy treatment sessions, 

bilateral UE activity can be assessed within and across sessions to see if increases occur.  

Similarly, the Bilateral Magnitude and Magnitude Ratio can be calculated for activity that occurs 

outside of the clinic (e.g. while a patient is at home).  The values can then be compared across 

time to see if increases occur.  If increases do not occur, either across treatment sessions or 

across periods of real-world activity, a clinician may conclude that the treatment approach being 
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used is not effective and that another one should be selected.  Conversely, if values increase over 

time, evidence is provided that the treatment approach is effective in increasing UE activity.  In 

this way, accelerometry-based measures of bilateral UE activity can be used in conjunction with 

clinical tests to assess recovery of UE function and real-world UE activity. 

4.5.3 Limitations 
One limitation of this study is that small, observed finger movements in some participants may 

not have been recorded by the wrist-worn accelerometers, despite the established validity of 

accelerometers for measuring UE activity.8,10-13  This potential underestimation of actual activity 

likely occurred because some hand movements can be made when the wrist and forearm are held 

still while the fingers move, as occurs in skilled typing.  Many UE tasks, however, require 

coordinated movement of the fingers, hands, and forearm, as occurs when moving a computer 

mouse or reaching for and grasping a cup.  This type of multi-joint activity will be captured by 

wrist-worn accelerometers.  Additionally, the lack of recorded accelerometry data may have also 

resulted from the filtering algorithms utilized by the ActiLife software.  If fine motor tasks are 

being studied, then the sensitivity of body-worn sensors and associated software for detecting 

small movements should be verified.  This situation has a low probability of occurring in 

neurologic patient populations where large UE movements accompany fine-motor finger 

movements due to the inability to individuate joint movements.28   

A second limitation is that validation of the methodology described in this study is limited to 

tasks performed in a laboratory setting. This first stage of validation, however, is consistent with 

approaches used by other researchers.  Both Uswatte10 and Schasfoort13 initially validated their 

methodologies using standardized laboratory tasks before applying their methodologies to real-

world activity.  Having demonstrated construct validity in this study, future studies will use the 
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described methodology to examine real-world bilateral UE activity in healthy and patient 

populations.  This will allow for comparison with existing accelerometry-based approaches (i.e. 

duration, intensity, and ratio of UE activity during a 24 hour period). 

A final limitation is that participants performed sorting and typing tasks differently.  Some tasks 

were performed unilaterally while others were performed bilaterally.  Furthermore, participants 

performed bilateral tasks using a variety of symmetrical and complementary actions. In 

hindsight, this oversight was actually appropriate because in the real-world, the same task is 

performed differently within and across individuals.  Importantly, the Magnitude Ratio was able 

to distinguish tasks performed using predominantly one extremity from those performed using 

both extremities.   

4.5.4 Conclusion 
This study establishes the validity of an innovative methodology using accelerometry to assess 

bilateral UE activity during the performance of everyday tasks.  The ability to quantify intensity 

of bilateral UE activity and the contribution of each UE to activity for real-world activity can be 

used by researchers and clinicians to select intervention approaches and evaluate the 

effectiveness of rehabilitation interventions.  This is especially important in patient populations 

where bilateral UE function is impaired due to neurologic or orthopedic injury.  Assessment of 

real-world bilateral UE activity can now be used in conjunction with clinical tests of function 

and patient-centered outcome measures to assess recovery of bilateral UE function in patient 

populations.   
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5.1 Abstract 
Background.  Motor capability is commonly assessed inside the clinic, but motor performance 

in real-world settings (i.e. outside of the clinic) is seldom assessed because measurement tools 

are lacking.  Objective.  To quantify real-world bilateral upper limb (UL) activity in nondisabled 

adults and adults with stroke using a recently-developed accelerometry-based methodology.  

Methods.  Nondisabled adults (n=74) and adults with chronic stroke (n=48) wore accelerometers 

on both wrists for 25-26 hours.  Motor capability was assessed using the Action Research Arm 

Test (ARAT).  Accelerometry-derived variables were calculated to quantify intensity of bilateral 

UL activity (i.e. Bilateral Magnitude) and the contribution of both ULs to activity (Magnitude 

Ratio) for each second of activity.  Density plots were used to examine each second of bilateral 

UL activity throughout the day.  Results.  Nondisabled adults demonstrated equivalent use of 

dominant and nondominant ULs, indicated by symmetrical density plots and a median 

Magnitude Ratio of -0.1 (Interquartile Range: 0.3) where a value of 0 indicates equal activity 

between ULs. Bilateral UL activity intensity was lower (p<0.001) and more lateralized in adults 

with stroke as indicated by asymmetrical density plots and a lower median Magnitude Ratio (-

2.2, Interquartile Range: 6.2, p<0.001).  Density plots were similar between many stroke 

participants who had different ARAT scores, indicating that real-world bilateral UL activity was 

similar despite different motor capabilities. Conclusions.  Quantification and visualization of 

real-world bilateral UL activity can be accomplished using this novel accelerometry-based 

methodology, and complements results obtained from clinical tests of function when assessing 

recovery of UL activity following neurologic injury. 
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5.2 Introduction 
Many daily tasks require that both upper limbs (ULs) work together in a complementary fashion 

to accomplish a goal (e.g. writing with one hand while stabilizing a piece of paper with the other 

hand).1,2  As such, recovery of bilateral UL function after stroke is desirable.  In order to assess 

bilateral UL function, valid and reliable measures are required.  Kinematic analyses are 

commonly used in laboratory settings to assess UL movement parameters (e.g. velocity, 

accuracy, efficiency),3,4 while standardized assessments (e.g. Jebsen Hand Function Test,5  

Action Research Arm Test6) are commonly used in clinical settings to measure UL function. 

These approaches assess motor capabilities (i.e. what a person “can do”) in structured research 

and clinical settings, but they do not measure motor performance (i.e. what a person actually 

does) in unstructured environments (e.g. at home, work, and in the community.  The distinction 

between capability and performance has been shown in previous studies where participants were 

more likely to use their non-paretic limb during spontaneous task conditions (i.e. motor 

performance) despite adequate motor capability of the paretic UL observed during forced-use 

conditions.7,8  Thus, motor capability and motor performance are different constructs and should 

be assessed separately.9 

One approach to measuring motor performance is the use of self-report questionnaires.  

Unfortunately, self-report questionnaires can be subject to report bias due to cognitive 

impairment following stroke (e.g. impaired comprehension, memory recall, and attention10-12) 

and social desirability (e.g. desire to please the doctor or therapist, embarrassment over not 

completing more activity13).  Furthermore, often only moderate correlations are observed 

between self-reported and direct measurement (e.g. heart rate monitoring, double-labeled water, 

accelerometry) of physical activity.14 
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As an alternative to self-report questionnaires, wrist-worn accelerometry has emerged as a tool to 

assess motor performance that occurs throughout the day.  We refer to this activity as real-world 

UL activity to emphasize that it occurs outside of structured settings.15  The small size and 

portability make it possible for accelerometers to be worn while individuals go about their day-

to-day activities.  Although one cannot determine the specific actions performed from 

accelerometry recordings, (e.g. cutting with a fork and knife vs. writing16), it nevertheless is a 

useful index of real-world UL function.17  To date, accelerometry has been used to quantify 

duration and intensity of daily UL activity of the ULs separately, and then compare UL activity 

between limbs.17-21  While this practice provides general information about how active one limb 

is relative to the other (e.g. paretic UL relative to the non-paretic UL), it does not provide 

information about how both ULs are used together during task performance. 

Recently, we developed an accelerometry-based methodology that quantifies bilateral UL 

activity by calculating two variables, the Bilateral Magnitude and the Magnitude Ratio, to 

respectively quantify intensity of bilateral UL activity and the contribution of each UL to 

activity, on a second-by-second basis.16  Using tasks performed in a laboratory setting, these 

variables were able to distinguish high-intensity tasks from low-intensity tasks, and tasks that 

were completed using both hands from tasks that were completed relatively one-handed.  This 

methodology has potential use for measuring bilateral UL activity in real-world settings.  

The purpose of the current study was to examine real-world bilateral UL activity in nondisabled 

adults and adults with chronic stroke as they went about their normal, daily routine.  We 

examined both summary statistics and second-by-second values for the Bilateral Magnitude and 

Magnitude Ratio because we hypothesized that second-by-second values would vary greatly with 

respect to the summary statistics.  Using density plots to visualize each second of data, we show 
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that bilateral UL activity varies throughout the day and that bilateral UL activity differs between 

nondisabled adults and adults with chronic stroke. 

5.3 Methods 

5.3.1 Participants 
Nondisabled adults and adults with chronic stroke participated in this cross-sectional study.  

Nondisabled adults were recruited through HealthStreet, a community-based recruitment 

program operated by Washington University School of Medicine in St. Louis. Inclusion criteria 

were 1) age > 30 years, 2) ability to follow commands, and 3) dwelling in the community.  

Exclusion criteria included a self-reported history of neurological condition or significant UL 

impairment. 

Adults with chronic stroke participated in a randomized controlled trial (NCT 01146379) 

investigating the dose-response effect of task-specific training on UL function.  Adults with 

stroke were recruited from the Cognitive Rehabilitation Research Group and the Brain Recovery 

Core databases at Washington University School of Medicine in St. Louis, which contain contact 

information for adults with stroke who consented to being contacted for participation in research 

studies.  This study analyzed only pretreatment (i.e. baseline) data.   

Inclusion criteria were 1) diagnosis of an ischemic or hemorrhagic stroke, 2) sufficient cognitive 

skills to participate as determined by a score of 0-1 on items 1b and 1c of the National Institutes 

of Health Stroke Scale (NIHSS),22 3) unilateral UE weakness defined by a score of 1-3 on item 5 

of the NIHSS, 4) motor capability as determined by a score of 10-48 on the Action Research 

Arm Test (ARAT, max score = 57 and indicates normal motor ability),6,23 5) dwelling in the 

community, and 6) at least six months poststroke.  Exclusion criteria included 1) inability to 
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follow 2-step commands, 2) psychiatric diagnosis, 3) other neurological diagnosis, and 4) 

pregnancy.   

All participants provided informed consent and were compensated for their time.  This study was 

approved by the Human Research Protection Office of Washington University and conformed to 

the Declaration of Helsinki. 

5.3.2 Procedure 
Participants completed a 1-2 hour lab visit.  They provided demographic and health information 

and completed study assessments that examined factors related to UL activity, which have been 

reported elsewhere.15,24  Specific factors of interest for the present study included self-reported 

hand dominance (pre-stroke hand dominance for adults with stroke), and motor capability of the 

paretic UL (as measured by the ARAT).  Accelerometers were placed on both wrists, proximal to 

the ulnar styloid.  Accelerometers were initialized and synchronized using ActiLife 6 proprietary 

software (ActiGraph, Pensacola, FL).  Participants were instructed to wear the accelerometers for 

the subsequent 24 hours (including sleep) while they went about their normal, daily routines, 

with permission to remove the devices when bathing or showering.  Accelerometers were 

returned to the lab during a subsequent visit. 

5.3.3 Accelerometry 
Wrist-worn accelerometry has established validity and reliability for measuring UL activity in 

nondisabled adults and adults with stroke.19,20,25,26  GT3X+ Activity Monitors (Actigraph, 

Pensacola, FL) were used to measure activity.  These wireless devices are small (38 x 37 x 18 

mm), contain a solid-state accelerometer that has a dynamic range of ± 6 gravitational units, and 

store data locally.  Accelerations were recorded along three axes at 30 Hz.  Accelerometry data 

were downloaded using ActiLife 6 software, which band-pass filtered data between frequencies 
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of 0.25-2.5 Hz, used a proprietary process to remove acceleration due to gravity, down-sampled 

data to 1 Hz (i.e. one second) samples, and converted acceleration into activity counts 

(0.001664g/count).27  ActiLife 6 was also used to visually inspect the accelerometry data to 

ensure that the accelerometers functioned properly during the recording period.   

5.3.4 Primary Variables of Interest 
Accelerometry data were used to calculate two primary variables of interest: the Bilateral 

Magnitude and the Magnitude Ratio.  The Bilateral Magnitude quantifies the intensity of activity 

across both ULs, whereas the Magnitude Ratio quantifies the contribution of each UL to activity.  

Validation of these variables as measures of bilateral UL activity and a description of how they 

are calculated has been reported previously.16  Briefly, accelerometry data were exported from 

ActiLife 6 software to MATLAB R2011b (Mathworks; Natick, MA) and processed using 

custom-written software.  For each second of data, accelerations were combined across axes into 

a single vector magnitude value using the equation √(x2 + y2 + z2).  The Bilateral Magnitude was 

calculated for each second of activity by summing the vector magnitude of both ULs.16  Bilateral 

Magnitude values of 0 indicate that no activity occurred across either UL, while increasing 

Bilateral Magnitude values indicate increasing UL activity intensity. 

The Magnitude Ratio was calculated for each second of activity by dividing the vector 

magnitude of one UL by the vector magnitude of the contralateral UL.16  For nondisabled adults, 

the nondominant UL was divided by the dominant UL; for adults with stroke, the paretic UL was 

divided by the non-paretic UL.  The calculated values were then transformed using a natural 

logarithm to prevent skewness of positive, untransformed values.20  Magnitude Ratios could not 

be accurately calculated for seconds when unilateral UL activity occurred (because 0 would 

appear in the numerator or denominator), therefore seconds when unilateral dominant/non-
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paretic UL activity occurred were assigned a constant value of -7 while seconds when unilateral 

nondominant/paretic UL activity occurred were assigned a value of +7.  Magnitude Ratio values 

of 0 indicate that both ULs contributed equally to activity.  Negative values indicate more 

dominant/non-paretic UL activity relative to the nondominant/paretic UL, while the opposite is 

true for positive values. Because examination of UL activity was the purpose of this study, 

seconds when neither UL was active (i.e. the Bilateral Magnitude was equal to 0) were removed 

from analysis. 

5.3.5 Secondary Variables of Interest 
Four secondary variables were calculated: duration of 1) dominant/non-paretic unilateral, 2) 

nondominant/paretic unilateral, 3) simultaneous, and 4) total UL activity, to summarize general 

UL activity that occurred during a typical day.  Data were dichotomized into “active” or “not 

active” based on whether or not an activity count was recorded for each second.  Unilateral UL 

activity was defined as seconds when only one UL was active, and simultaneous UL activity was 

defined as seconds when both ULs were active.  Duration of total UL activity was obtained by 

summing the duration of unilateral and simultaneous UL activity, thus reflecting the duration of 

time when either UL was active. 

5.3.6 Statistics and Examination of Accelerometry-Derived Variables 
IBM SPSS Statistics for Windows, Version 21 (IBM Corp., Armonk, NY) was used.  Normality 

of accelerometry-derived variables was assessed using Kolmogorov-Smirnov tests.  For 

individual-level data, median values for the Bilateral Magnitude and Magnitude Ratio were 

calculated because these variables were not normally distributed.  For group-level data, summary 

statistics (i.e. means and standard deviations or medians and interquartile ranges (IQR)) were 

calculated for each variable.  Note that the IQR represents the range of the middle 50% of data 
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values for a given variable.  Parametric (i.e. independent samples t-tests) and non-parametric (i.e. 

Pearson’s chi-Square tests, Mann-Whitney U tests) analytical tests were used to examine 

relationships among demographic variables within and between groups, and differences in study 

variables between groups.  Differences in study variables within groups based on hand 

dominance (nondisabled adults) and side affected by stroke (adults with stroke) were also 

examined.  Spearman correlations were used to investigate the association between motor 

capability (i.e. ARAT scores) and primary variables of interest.  All tests of significance were 

two-tailed and the criterion for significance was alpha < 0.05. 

Two-dimensional density plots were created using bivariate histograms to examine the Bilateral 

Magnitude (y-axis, bin width: 20 activity seconds) and Magnitude Ratio (x-axis, bin width: 0.2 

units) for each second of real-world UL activity.  The duration (i.e. number of seconds) with 

which a given Bilateral Magnitude-Magnitude Ratio combination occurred is depicted by color.  

Increasing Bilateral Magnitude values indicate increasing intensity of UL activity across one 

limb (unilateral activity) or both limbs (simultaneous activity).  Magnitude Ratio values of -7 

depict seconds when dominant/non-paretic unilateral UL activity occurred and values of +7 

depict seconds when nondominant/paretic unilateral UL activity occurred.  Magnitude Ratios 

from -6 to +6 depict seconds when simultaneous UL activity occurred.  A Magnitude Ratio of 0 

indicates equal contribution from both ULs.  Increasing negative values indicate increasing 

dominant/nonparetic UL activity relative to the contralateral limb, while increasing positive 

values indicate increasing nondominant/paretic UL activity relative to the contralateral limb.   
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5.4 Results 

5.4.1 Description of Participants 
Accelerometry data were available for 74 non-disabled adults and 48 adults with stroke.  

Demographic information and stroke-specific characteristics are displayed in Table 5.1.  Adults 

with stroke were 5 years older on average than nondisabled adults (p=0.01).  There were no 

differences in sex, race, or hand dominance between groups (for all values, X2<2.7, p>0.10).  

Stroke subjects can be characterized as having mild-to-moderate deficits, based on ARAT scores.  

Median time since most-recent stroke was 0.9 (IQR: 1.3) years, and median number of strokes 

was 1 (IQR 0).  Nondisabled adults wore accelerometers for 25.0 (IQR: 0) hours and adults with 

stroke wore accelerometers for 26.0 (IQR: 0) hours (p<0.001).   

Table 5.1 Demographic and stroke-specific characteristics of nondisabled adults 
(n=74) and adults with stroke (n=48) 

  Variable Nondisabled Adults Adults with Stroke 
 Mean ± SD or % (n) 
Age, years 54.3 ± 11.3 59.7 ± 10.9 
Sex, female 53% (39) 38% (18) 
Race  . 
   African-American 59% (44) 50% (24) 
   Caucasian 41% (30) 48% (23) 
   Asian  2% (1) 
Hand Dominance, right 84% (62) 88% (42) 
Side Affected by Stroke, right  58% (28) 
Dominant Side Affected  54% (26) 
Action Research Arm Test  31.3 ± 119 
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5.4.2 Primary Variables of Interest 

Nondisabled Adults 
Data for three individual participants are first presented to facilitate interpretation of the Bilateral 

Magnitude, Magnitude Ratio, and the density plots.  Figure 5.1A displays data for a participant 

whose median Bilateral Magnitude was 98.3 activity counts (IQR: 128.5) and median Magnitude 

Ratio was -0.49 (IQR: 7.47), indicating that he performed a great deal of low-intensity UL 

activity and dominant UL activity slightly exceeded nondominant UL activity.  The magnitude of 

the IQRs indicate that second-by-second Bilateral Magnitude and Magnitude Ratio values varied 

greatly with respect to median values; this is also illustrated by the spread of values in Figure 

5.1A.  Dominant unilateral activity (left-side of figure) slightly exceeded nondominant unilateral 

UL activity (right side of figure), and low-intensity (i.e. Bilateral Magnitude < 200 activity 

counts) unilateral activity occurred often (i.e. red color).  The majority of total UL activity 

consisted of simultaneous UL activity (middle of figure).  Patterns of activity between ULs were 

similar as indicated by the roughly-symmetrical appearance of the middle portion of Figure 

5.1A.  
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Figure 5.1 Density plots showing 25 hours of real-world bilateral upper limb 
activity in three nondisabled adults.  A: Total UL activity (9.6 hours) was low in 
this participant. B: Total UL Activity (11.9 hours) and median Bilateral 
Magnitude and median Magnitude Ratio values were higher in this participant.  C: 
Total UL Activity (13.7) and median Bilateral Magnitude and Magnitude Ratio 
values were highest in this participant.  Despite differences in total UL activity, 
each density plot was symmetrical in overall shape indicating that patterns of 
dominant and nondominant UL activity were similar.      
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Figure 5.1B provides data from a second participant whose median Bilateral Magnitude was a 

little higher (141.6 activity counts, IQR: 194.5) and median Magnitude Ratio was closer to 0 (-

0.13, IQR: 2.63).  Figure 5.1C displays a third example participant whose median Bilateral 

Magnitude was even higher (152.2 activity counts, IQR: 128.4) and median Magnitude Ratio 

was nearly 0 (-0.06, IQR: 1.30).  Figures 5.1B and 5.1C are closer to symmetry than 5.1A, 

though the differences are slight.  This pattern of slightly asymmetrical to nearly pure symmetry 

was consistent across the 74 non-disabled adults.   

Three additional features of the density plots require explanation.  First, the “rounded” or “bowl-

shaped” bottoms of the density plots occur when activity is of low intensity and one UL is 

moving at a relatively greater intensity than the opposite UL.  The rims of the bowl shape 

represent increasing intensity of activity, where one hand is accelerating and the other is 

relatively but not completely still.  An example of this would be sorting objects with one hand 

while the other secures the container.16   Second, the “warm glow” in the bottom center of each 

plot indicates that real-world dominant and nondominant UL activity is often closely matched to 

perform activities of low-to-moderate intensity.  Examples of such activity include cutting food 

with a knife and fork and sorting small objects using both hands.16  Third, the “concavity” that 

occurs when the Magnitude Ratio approaches 0 as the Bilateral Magnitude increases occurs 

when UL activity becomes increasingly symmetrical and intense as a result of shared kinematic 

and kinetic properties between ULs.  Examples of this kind of activity include folding towels and 

placing an object on a shelf with both hands.16 

Group-level data for nondisabled adults are presented in the upper half of Table 5.2.  Group 

median values indicate that a large portion of real-world UL activity consisted of low intensity 

activity that was completed using both ULs to a similar degree.  Interquartile range values for the 
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Bilateral Magnitude (median: 176.5, IQR: 34.3 activity counts) and the Magnitude Ratio 

(median: 2.66, IQR: 1.53) demonstrate that the middle 50% of second-by-second values varied 

with respect to median values.  Within-group analysis indicated that neither the median Bilateral 

Magnitude (Mann Whitney U Test: U=349.0, Z=-0.3, p=0.5) nor the median Magnitude Ratio 

(Mann Whitney U Test: U=306.0, Z=-01.0 p=0.3) differed based on whether nondisabled adults 

were right- (n=62) or left-hand (n=12) dominant. 

Table 5.2 Values of accelerometry-derived variables for nondisabled adults (n=74) 
and adults with stroke (n=48)   

Variable Nondisabled 
Adults 

Adults with 
Stroke 

p-value 

Primary Variables of Interest Mean ± SD  
   Median Bilateral Magnitude  136.2 (36.6)  82.4 (27.6) <0.001† 
   Median Magnitude Ratio -0.1 (0.3)  -2.2 (6.2) <0.001† 
    
Secondary Variables of Interest Median (IQR)  
   Unilateral UL Activity, hours    
      Dominant/Non-Paretic   1.9 ± 0.5  3.4 ± 1.2 <0.001‡ 
      Nondominant/Paretic  1.5 ± 0.5 0.8 ± 0.5 <0.001‡ 
   Simultaneous UL Activity, hours  7.2 ± 1.9  4.1 ± 1.7 <0.001‡ 
   Total UL Activity, hours  10.7 ± 2.1  8.4 ± 2.2 <0.001‡ 

†p-value obtained using Mann Whitney U test 
‡p-value obtained using independent samples t-test 
Abbreviations: UL, upper limb 
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Adults with Stroke 
Data for six individual participants with stroke are presented in Figure 5.2.  The left half of 

Figure 5.2 displays data for participants with a paretic dominant UL and the right half displays 

data for participants with a paretic nondominant UL.  Each row displays data for participants 

with lower (top row), moderate (middle row), and higher (bottom row) motor capability as 

indicated by ARAT scores. Figure 5.2A shows data for a participant with low motor capability 

(ARAT=10) whose median Bilateral Magnitude was 89.7 (IQR: 116.0) activity counts and 

median Magnitude Ratio was -7.0 (IQR: 5.85), indicating that real-world UL activity for this 

participant was of low-intensity and completed mostly with the nonparetic UL.   The 

interquartile range also indicates that second-by-second values varied with respect to median 

values.  Visual inspection of the density plot reveals that both unilateral and simultaneous 

activity consisted mainly of nonparetic UL activity (Magnitude Ratio from -7 to 0).  Paretic UL 

activity during unilateral (Magnitude Ratio =7) and simultaneous activity (Magnitude Ratios 

from 0 to +6) was low.  
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Figure 5.2 Density plots showing 26 hours of real-world bilateral upper limb 
activity in 6 adults with stroke. Participants in the left-side column had paretic 
dominant ULs, while participants in the right-side column had paretic 
nondominant ULs.  Individual data are displayed from participants with lower (A: 
ARAT=10, B: ARAT=10), moderate (C: ARAT=36, D: ARAT=38), and higher 
motor capabilities (E: ARAT=46, F: ARAT=48).  Despite higher ARAT scores, 
the participants in C & D have similar density plots to the participants in A & B.   
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Figure 5.2B shows data for another participant with the same motor capability (ARAT=10), 

similar median Bilateral Magnitude (77.3 activity counts, IQR: 98.9) and Magnitude Ratio (-7.0, 

IQR: 6.03) values, but whose non-dominant side was affected by stroke.  Figures 5.2A and 5.2B 

are similar.    

Figures 5.2C and 5.2D show data from participants with moderate motor capabilities, affected on 

the dominant (Figure 5.2C; ARAT=36; median Bilateral Magnitude= 77.5 activity counts, IQR: 

111.6; median Magnitude Ratio= -7.0, IQR: 6.0), and non-dominant sides (Figure 5.2D; 

ARAT=38; median Bilateral Magnitude=66.3 activity counts, IQR: 87.0; median Magnitude 

Ratio= -7.0, IQR: 6.20), respectively.  Despite greater motor capabilities, the data in Figures 

5.2C and 5.2D look very similar to those in 5.2A and 5.2B.     

Figures 5.2E and 5.2F show data from participants with higher motor capabilities, affected on the 

dominant (Figure 5.2E; ARAT=46; median Bilateral Magnitude= 86.6 activity counts, IQR: 

115.8; median Magnitude Ratio= -0.80, IQR: 5.24) and non-dominant sides, (Figure 5.2F; 

ARAT=48; median Bilateral Magnitude=133.4 activity counts, IQR: 186.6; median Magnitude 

Ratio=-0.5, IQR: 3.65), respectively.  These statistics and the more symmetrical density plots 

more closely resemble data from non-disabled individuals in Figure 5.1.  In additional to 

engaging in more simultaneous UL activity, the participant in Figure 5.2F also performed UL 

activity at greater intensities.   

Group-level statistics, displayed in the upper half of Table 5.2, support visual examination of 

Figure 5.2.  Median Bilateral Magnitude values in adults with stroke were lower than in 

nondisabled adults, indicating lower intensity of real-world UL activity.  Median Magnitude 

Ratio values in adults with stroke were more negative than in nondisabled adults, indicating 

109 
 



increased activity of the nonparetic UL relative to the paretic UL.  Interquartile range values for 

the Bilateral Magnitude (median: 115.9 activity counts, IQR: 34.3) and the Magnitude Ratio 

(median: 6.62, IQR: 1.2) demonstrate that the middle 50% of second-by-second values varied 

with respect to median values.   

Differences were seen in one of the two primary variables based on whether the participants’ 

pre-stroke dominant UL was affected by stroke.  There were no differences in median Bilateral 

Magnitude values between participants with paretic dominant (n=26) versus nonparetic dominant 

(n=22) ULs (Mann Whitney U Test: U=225.0, Z=-1.3, P=0.2).  The median Magnitude Ratio 

was more negative, however, in participants with a paretic nondominant UL (median: -5.0, IQR: 

5.6) than a paretic dominant UL (median: -0.88, IQR: 2.5; Mann Whitney U Test: U=148.5, Z=-

2.9, p<0.01).  Motor capability (ARAT score) was weakly correlated28 with median Bilateral 

Magnitude values (rs=0.30, p=0.04) and moderately correlated with median Magnitude Ratio 

values (rs=0.66, p<0.001; Figure 5.3).  Visual analysis of Figure 5.3, however, illustrates that 

33% (16/48) of participants had a median Magnitude Ratio of -7 (i.e. at least 50% of total UL 

activity consisted of unilateral nonparetic UL activity) despite variable ARAT scores (range: 10-

42), which underscores the distinction between capability and performance. 
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Figure 5.3 Scatterplot of ARAT score versus the median Magnitude Ratio for 
adults with stroke.  Median Magnitude Ratio values were more negative in 
participants with a paretic nondominant UL (black circles) than in participants 
with a paretic dominant UL (red squares).  There were 5 participants with a 
Magnitude Ratio of -7 and an ARAT score of 10.  Despite a Spearman correlation 
of 0.66, 16/48 (33%) participants had a median Magnitude Ratio of -7, indicating 
that at least 50% of total UL activity consisted of nonparetic unilateral UL 
activity.  The vertical hatched bar specifies the middle 50% (i.e. 25th and 75th 
percentiles) of median Magnitude Ratio values in nondisabled adults. 

 

5.4.3 Secondary Variables of Interest 
Additional variables that quantified duration of UL activity by group are displayed in the lower 

half of Table 5.2.  Duration of unilateral dominant/nonparetic UL activity was greater in adults 

with stroke than in nondisabled adults, while duration of unilateral nondominant/paretic UL 

activity was less.   Simultaneous UL activity made up 67% (7.2/10.7 hours) of total UL activity 

in nondisabled adults, but only 49% (4.1/8.4 hours) of total UL activity in adults with stroke. 

Even though nondisabled adults wore the accelerometers for 1 hour less (25 vs. 26 hours), 
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duration of simultaneous and total UL activity were greater in nondisabled adults than in adults 

with stroke.   

5.5 Discussion 
This study quantified real-world bilateral UL activity during a typical day in nondisabled adults 

and adults with chronic stroke using wrist-worn accelerometry.   We calculated summary 

statistics that demonstrated that intensity of bilateral UL activity (Bilateral Magnitude) was 

lower, and bilateral UL activity was more lateralized (the Magnitude Ratio was more negative), 

in adults with stroke than in nondisabled adults.  Examination of individual- and group-level 

descriptive statistics (i.e. median and interquartile ranges) for Bilateral Magnitude and 

Magnitude Ratio values confirmed our hypothesis that second-by-second values varied greatly 

with respect to summary statistics.  Visual representation of second-by-second UL activity using 

density plots supported this finding as well.  Furthermore, the density plots clearly show that 

patterns of real-world bilateral UL activity differed between nondisabled adults and adults with 

stroke, and importantly, between adults with stroke despite similar motor capabilities.   

It was striking that in nondisabled adults, the dominant and nondominant ULs were active to a 

similar degree.  This trend was observed in individual- and group-level (see Table 5.2) data.  

This observation challenges the assumption that the nondominant UL is used only to assist the 

dominant UL.  Our results do not dispute the laboratory findings of others indicating increased 

dominant UL accuracy during the performance of dynamic tasks (e.g. manipulating) and 

increased nondominant UL accuracy during the performance of static tasks (e.g. stabilizing),29,30 

or that the dominant UL can execute complex tasks more efficiently than the nondominant UL.31  

Rather, our results extend these laboratory results to provide evidence that complementary, 
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usually simultaneous actions of the ULs make up a significant portion of real-world, everyday 

UL activity. 

It was not surprising that real-world bilateral UL activity was less symmetrical (lower Magnitude 

Ratios) and less intense (lower Bilateral Magnitudes) in adults with stroke compared to 

nondisabled adults.  Inside the laboratory, Han et al.8 demonstrated increased use of the 

nonparetic UL during a spontaneous reaching task.  Similarly, Uswatte et al.17 used 

accelerometry to calculate the ratio of paretic-to-nonparetic UL movement in adults with stroke 

and demonstrated that duration of paretic UL movement was less than nonparetic UL movement 

(i.e. ratio of paretic-to-nonparetic movement = 0.56).  Uswatte et al.’s observation has now been 

confirmed across many studies.20,21,32  The lower duration of simultaneous UL activity and 

higher duration of non-paretic unilateral UL activity in adults with stroke compared to 

nondisabled adults in this study is a further indication that real-world bilateral UL activity is 

reduced in adults with stroke.   

At first glance, one may wonder if the reduction in bilateral UL activity is a direct result of the 

severity of paretic UL motor dysfunction.  While we observed moderate associations between 

ARAT scores and median Bilateral Magnitude and Magnitude Ratio values, we also observed 

similar density plots from participants with varying ARAT scores.  These results imply that 

motor capabilities are not necessarily a direct reflection of real-world performance, and may be 

an objective quantification of the phenomenon of learned non-use described by Taub and 

others.15,33-35  The findings here from people living in the community are consistent with findings 

from an inpatient rehabilitation setting,36 where improvements in paretic UL motor function, as 

measured by clinical tests of function, were not associated with increased daily use of the paretic 

UL, as measured by accelerometry.  Together, our results and others highlight the critical point 
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that objective quantification of real-world performance is imperative in both rehabilitation 

research and clinical practice.   

Pre-stroke hand dominance affected real-world bilateral UL activity in this study.  Paretic UL 

activity was lower than nonparetic UL activity to a greater degree (i.e. median Magnitude Ratios 

were more negative) in participants with a paretic nondominant UL.  We speculate that this was 

because participants still had full functional use of their dominant UL to complete daily activity 

and therefore were less motivated to use their paretic nondominant UL, whereas individuals 

whose dominant UL was affected by stroke were more motivated to regain functional use of their 

dominant UL.  A similar explanation was given by Harris and Eng37 after observing less 

impairment in the paretic UL of adults with chronic stroke when the dominant side was affected.  

These explanations are also consistent with our earlier observation that duration of paretic UL 

activity was greater in adults whose dominant UL was affected (i.e. ratio of paretic-to-nonparetic 

UL activity = 0.70) than in adults whose nondominant UL was affected (ratio = 0.57).15   

5.5.1 Limitations 
Three limitations may alter the interpretation of our data.  First, adults with stroke wore the 

accelerometers for 1 hour longer than did nondisabled adults for practical reasons.  Despite the 

longer wearing duration, we still observed clear differences between groups.  It is possible that 

the magnitude of those differences likely would have been greater had nondisabled adults worn 

the accelerometers for an additional hour.  Second, despite ActiLife 6’s 0.25-2.5 Hz filter, abrupt 

accelerations while a passenger in a moving car were recorded during preliminary tasks 

(unpublished data), resulting in potential overestimation of UL activity.  The risk of 

overestimation is small, however, because the participants in this study spent a majority of their 

time in sedentary activity.15,24  Third, the effect of walking on UL activity was not reported in 
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this study.  Because walking was included, the values presented here might be considered 

overestimations of real-world UL activity, though overestimation is likely to be low due to the 

sedentary nature of the participants.  There are distinct advantages related to cost, availability of 

accelerometers, patient and clinician compliance, and simplifying data processing when only 

wrist-worn accelerometers are used.  Future research, however, should examine the effect of 

walking on real-world UL activity.  

5.5.2 Conclusion  
Simultaneous UL activity makes up a significant portion of daily activity in nondisabled adults.  

This finding alone has significant implications for how interventions are selected and delivered 

to patients with stroke (e.g. task-specific training with both hands instead of just one).  Results 

from community-dwelling participants with stroke highlight the importance of assessing UL 

activity outside of the clinic, and not simply motor capability inside the clinic or laboratory.  If 

the goal of rehabilitation following stroke is to improve daily function, then UL activity in a 

patient’s real-world environment must be assessed.  We show that this can feasibly be 

accomplished via calculation of the Bilateral Magnitude, Magnitude Ratio, and density plots 

obtained from accelerometry data.  Finally, measuring real-world UL activity over time will help 

patients, clinicians, and researchers assess recovery of real-world UL motor performance. 
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Chapter 6: Summary of Major Findings 
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6.1 Major Findings 
Chapter 2 characterized the duration of UL activity during a typical day and potential modifying 

factors of UL activity in nondisabled adults.  Our results showed that UL activity in nondisabled 

adults for the dominant and nondominant ULs was 9.1 ± 1.9 hours and 8.6 ± 2.0 hours, 

respectively.  Furthermore, duration of dominant and nondominant UL activity were strongly 

correlated (r = 0.96).  We also demonstrated that the ratio of activity duration between the ULs 

(i.e. the Activity Ratio, 0.95 ± 0.06) was a robust metric, as evidenced by its narrow standard 

deviation and independence from duration of dominant UL activity, and may be useful in 

distinguishing between individuals with and without UL impairment.  As hypothesized, self-

reported time spent in sedentary activity was moderately associated with duration of UL activity.  

Contrary to our hypotheses, cognitive impairment, depressive symptomatology, number of 

comorbidities, age, and living arrangement were not associated with duration of dominant UL 

activity. 

Chapter 3 characterized the duration of UL activity during a typical day and potential modifying 

factors of UL activity in adults with chronic stroke.  Our results showed that duration of affected 

UL activity was strongly correlated with duration of unaffected UL activity (r = 0.78), even 

though duration of affected UL activity (5.0 ± 2.2 hours) was 2.6 hours lower than unaffected 

UL activity (7.6 ± 2.1 hours).  The Activity Ratio was 0.64 ± 0.19 across all participants, but was 

lower in participants whose pre-stroke nondominant UL was affected.  As hypothesized, lower 

motor capacity and dependence in ADLs were associated with decreased duration of affected UL 

activity.  Contrary to our hypotheses, self-reported time spent in sedentary activity, cognitive 

impairment, depressive symptomatology, number of comorbidities, age, and living arrangement 

were not associated with duration of affected UL activity. 
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Chapter 4 examined the validity of an accelerometry-based methodology to quantify bilateral UL 

activity using two accelerometry-derived variables: the Bilateral Magnitude and the Magnitude 

Ratio.  Our results showed that during the performance of 8 everyday tasks performed inside the 

laboratory, median Bilateral Magnitudes were higher for high-intensity tasks and lower for low-

intensity tasks.  Median Magnitude Ratios approximated a value of 0.0 (indicating equal 

contribution from both ULs) for tasks completed using both hands, while large, negative values 

(indicating increased activity of the dominant UL relative to the nondominant UL) were 

observed for tasks completed using mainly the dominant UL.  Additionally, for each task, strong 

correlations were observed between the median Bilateral Magnitude and Estimated Energy 

Expenditure (rs = 0.74), indicating that the Bilateral Magnitude is related to activity intensity.  

Strong correlations were also observed between the median Magnitude Ratio and percentage of 

time spent in simultaneous UL activity (rs = 0.93), indicating that the Magnitude Ratio is a 

measure of bilateral UL activity.  These strong correlations existed across tasks, indicating that 

the Bilateral Magnitude and Magnitude Ratio quantified UL activity independently of the task 

performed, and are thus useful metrics of bilateral UL activity.   

Chapter 5 used the methodology developed in Chapter 4 to characterize bilateral UL activity 

during a typical day in nondisabled adults and adults with chronic stroke.  Our results showed 

that both the median Bilateral Magnitude and the median Magnitude Ratio were lower in adults 

with stroke than in nondisabled adults, indicating that real-world UL activity intensity is lower 

and that activity is less bilateral in adults with stroke.  Examination of density plots and 

secondary variables (i.e. duration of unilateral, simultaneous, and total UL activity) indicated that 

real-world UL activity was symmetrical between the ULs in nondisabled adults, but lateralized 

(i.e. unaffected UL activity was greater) in adults with stroke.  Further examination of the results 
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revealed that 33% of adults with stroke used only their unaffected UL for a majority of real-

world UL activity, and this occurred across a wide range of motor capacity scores.  These results 

highlight the distinction between motor capacity and motor performance.  Last of all, median 

Magnitude Ratios were lower in adults with stroke whose pre-stroke nondominant UL was 

affected, which mirrors the results in Chapter 3 regarding lower Activity Ratios in adults whose 

nondominant side was affected by stroke. 

6.2 Limitations 
Across all studies, limitations include sample selection, limitations inherent to accelerometry, 

procedural use of accelerometers, and not controlling for lower limb activity.  

First of all, generalizability of our findings is limited based on the criteria used to select our 

participant samples.  The majority of nondisabled adults were not working.  The few who did 

work were employed in office-based jobs.  As such, our research findings may not generalize to 

adults who work full-time, or to adults who work in non-office environments (e.g. hospital-based 

employment, manual labor, etc.), and should be explored in future studies.  The results from our 

nondisabled adults do, however, generalize to the rehabilitation population who are often not 

working.  Regarding adults with stroke, the participants enrolled in our studies were at least 6 

months post-stroke, had at least minimal motor capacity, and were cognitively intact (i.e. normal 

to mild-cognitive impairment).  Our findings may not generalize to adults in the acute or 

subacute stages of stroke, who have no motor capacity of the affected UL, or who have 

moderate-to-severe cognitive impairment.   

Secondly, limitations inherent to accelerometry must be acknowledged.  Accelerometers detect 

movement, regardless of the source.  For this reason, it is not possible to distinguish between 
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intentional and non-intentional movements, and thus real-world UL activity, our index of motor 

performance, may actually slightly overestimate intentional activity.  Furthermore, it is possible 

that intentional UL activity may be underestimated in cases where wrist-worn accelerometry 

does not detect fine motor activity of the digits and hand.  For example, across all study 

participants in Chapter 4, we were unable to detect fine motor activity that occurred in 7% 

(38/549) of tasks because participants held their wrist still while their hand manipulated objects 

when typing, writing, or cutting (unpublished data).  Because most UL activities are performed 

across multiple UL segments and joints (e.g. reaching for a cup to take a drink requires 

coordinated movement of the upper arm, forearm, wrist, hand and digits), omission of UL 

activity due to isolated fine motor movements is likely minimal.  As accelerometry technology 

improves and the devices become smaller, the ability to detect fine motor movements using 

accelerometry will be improved.  An additional concern is that non-human-movement (e.g. 

acceleration in a car) could have been detected by the accelerometers, also resulting in an 

overestimation of intentional activity.  Because ActiLife software band-pass filtered the 

accelerometry data to isolate and exclude non-human movement from analysis, this threat to 

validity was minimized.1 

Thirdly, procedural use of accelerometry may influence our results.  We collected data over a 25-

26 hours period.  If UL activity during that period differed from “typical” everyday activity for 

some reason, our results could be biased.  For this reason, it is recommended that 3-5 days of 

accelerometry data be collected.2  This is a long time for participants to wear multiple devices, 

and may lead to decreased compliance.3,4 We chose to collect data during a 25-26 hour period to 

improve adherence to the wearing protocol.  In Chapter 2, we demonstrated that UL activity was 

reliable across two separate 25-hour periods in a subset of participants.  Additionally, the 
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majority of study participants reported that compared to a “typical” day, their activity during the 

accelerometry monitoring period was “the same” or only “slightly more than normal” 

(unpublished data), indicating that our accelerometry data were valid. 

Last of all, we were not able to control for UL activity that occurred due to arm swing when 

walking.  It is desirable to control for UL activity due to walking because it could inflate values 

of UL activity.  We attempted to control for UL activity due to walking in our studies, but were 

unsuccessful in adults with stroke.  For all studies, participants wore accelerometers on both 

upper and both lower limbs.  We developed an algorithm to identify periods of walking based on 

lower limb accelerometry data (see Appendix B).  Our algorithm accurately identified walking 

98% of the time in nondisabled adults when applied to known periods of walking.  In adults with 

stroke, however, accuracy was only 50%. For consistency across studies, we included walking 

because we were unable to accurately detect walking in adults with stroke.  It is unlikely that 

inclusion of UL activity when walking biased the results reported in our studies.  Another study 

of adults with stroke has already shown the Activity Ratio to be similar between analyses where 

walking was first excluded and then included from analysis.3  This is consistent with the results 

obtained for nondisabled adults in our studies (unpublished data, see Appendix B).  Similarly, 

the median Bilateral Magnitude and Magnitude Ratio values did not differ in a clinically 

meaningful way when walking was included versus excluded in our studies, suggesting that 

inclusion of walking did not bias our results for nondisabled adults (unpublished data, see 

Appendix B).  Based on these findings and because walking activity is lower in adults with 

stroke than in nondisabled adults,5 it is unlikely that the results for adults with stroke were biased 

by including periods of walking in the analysis. 
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6.3 Clinical Implications and Significance 
The most significant contribution of this dissertation is the development of an accelerometry-

based methodology to objectively quantify real-world UL activity in a clinically-relevant 

manner.  Across Chapters 2, 4, and 5 we obtained “referent values” for several metrics of UL 

activity in nondisabled adults.  These referent values can be used to either set outcome goals 

related to UL activity for patients with UL impairment or used as a reference point to gauge 

recovery of UL motor performance.  The methodology can also be used at different time points 

(e.g. baseline assessment, weekly treatment sessions, discharge assessment) to track changes in 

real-world UL activity over time.  This latter point is especially important because it can help the 

clinician determine if the selected intervention leads to improved motor performance; if not, then 

the clinician might choose to modify the intervention.  An additional benefit of the 

accelerometry-based methodology is the production of density plots, which allow for 

visualization of real-world UL activity.  The density plots could be a useful tool for clinicians to 

use with patients in order to provide visual feedback about how patients use their ULs 

throughout the day. 

The study in Chapter 5 emphasized the distinction between motor capacity and motor 

performance in adults with stroke, and highlighted why both domains of motor function must be 

assessed.  Motor capacity, as measured by clinical tests of function, was only moderately 

associated with motor performance, as measured by wrist-worn accelerometry.  Despite this 

moderate correlation, one-third of adults with stroke used their unaffected UL for at least half of 

total UL activity; furthermore, motor performance was low in these adults despite a wide range 

of motor capacities.  These results not only underscore the need to assess motor capacity and 

motor performance separately, but they also highlight the need to identify factors in addition to 
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motor capacity that can be targeted for intervention to improve motor performance above that 

which can be obtained by improvements in motor capacity alone. 

Chapters 2 and 3 explored several potential modifying factors of real-world UL activity in 

nondisabled adults and in adults with stroke.  We demonstrated that self-reported time spent in 

sedentary activity was inversely associated with duration of UL activity to a moderate degree in 

nondisabled adults but not in adults with stroke.  This factor might be a useful rehabilitation 

target to improve real-world motor performance in patient populations that experience UL 

impairment other than stroke, and should be explored.  In adults with stroke, we demonstrated 

that decreased motor capacity and dependence in ADLs were associated with decreased UL 

activity.  Motor capacity is a common target of intervention in patients with stroke because it is 

often considered a surrogate measure of real-world motor performance.  The ability to perform 

ADLs is often addressed by occupational therapists, but usually is not the sole focus of 

intervention during acute and subacute rehabilitation for practical reasons (e.g. short hospital 

stays, the patient or family members want treatment sessions to focus on issues other than 

ADLs).  Our data, along with another study,6 suggest that more attention should be given to the 

ability to perform ADLs.  It is unlikely that the difference in duration of affected UL activity (i.e. 

2.4 hours) between adults with stroke who are dependent versus independent for ADLs in 

Chapter 3 is wholly attributable to ADL status.  Instead, it is possible that adults with stroke who 

are independent in ADLs approach other tasks throughout the day with the same ingenuity and 

creativeness that they use to complete ADLs (e.g. using compensatory strategies or adaptive 

equipment), and it is this factor rather than independence in ADLs that explains the difference in 

real-world UL activity.  This should be explored in future studies.  Other modifying factors 

should also be identified and explored for their potential influence on real-world UL activity. 
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The studies in Chapters 3 and 5 highlighted two additional clinical implications: both ULs are 

“affected” after stroke and pre-stroke hand dominance influences real-world UL activity.  

Duration of both dominant and nondominant UL activity in adults with stroke was lower than 

activity in either UL in nondisabled adults.  This suggests that both ULs are “affected” after 

stroke at the level of everyday performance, though the nonparetic UL is “affected” less so than 

the paretic UL.  This should come as little surprise because previous studies have demonstrated 

that after stroke, the nonparetic UL is slightly impaired at multiple levels: decreased strength,7 

impaired dexterity and coordination,8 altered kinematic parameters of movement (e.g. velocity, 

trajectory),9 and poorer performance on simulated activities of daily living.8,10 

Pre-stroke hand-dominance also matters.  In our studies, we demonstrated that both the Activity 

Ratio and the median Magnitude Ratio were lower in adults whose pre-stroke nondominant UL 

were affected by stroke, indicating that these participants used their paretic UL less than did 

participants whose dominant UL was affected by stroke at the level of real-world motor 

performance.  Previous studies have demonstrated similar findings at the level of motor capacity: 

UL strength and Wolf Motor Function Test scores were lower in the paretic limb of adults whose 

nondominant side was affected by stroke.11,12  We hypothesize that this occurs because adults 

whose nondominant UL was affected by stroke still have functional use of their dominant UL 

and therefore may be less inclined to use their paretic, nondominant UL; adults whose dominant 

UL was affected by stroke, however, might be more inclined to regain functional use of their 

paretic, dominant UL.  Taken together, these findings suggest that individuals whose 

nondominant side is affected by stroke have an increased risk of experiencing impaired motor 

capacity and motor performance, and may benefit from special attention during rehabilitation.  
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6.4 Suggestions for Future Studies 
Based on the findings across studies, the most practical question that needs to be explored is, 

“Does motor performance change as a result of rehabilitation?”  Re-worded in more measurable 

terms, “Does rehabilitation-related improvement in motor capacity generalize to improved real-

world UL activity?”  This question is currently being examined as part of a randomized clinical 

trial (NCT 01146379, PI: C.E. Lang) that is investigating the dose-response effect of task-

specific training on motor capacity and motor performance.  This is an important question that 

needs to be answered because if the time and money invested in rehabilitation does not lead to 

improved motor performance, then those resources should be invested elsewhere.   

In an attempt to improve motor performance, two additional questions should be investigated: 

“What other factors influence real-world UL activity,” and “Can treatment intervention be 

administered differently to improve real-world UL activity?”  We examined only a few of many 

factors that could potentially modify UL activity.  Additional social (e.g. social networks), 

psychological (e.g. personality, mood), and physiological (e.g. pain) factors should be identified 

and explored to determine if motor performance can be improved when these factors are targeted 

for intervention.  

Furthermore, it might be possible to deliver interventions differently in order to improve real-

world motor performance.  Theories of health behavior posit that long-lasting behavioral change 

can occur when a person is made accountable for their actions.13 Additionally, health behavior 

theories identify individual (e.g. self-efficacy), interpersonal (e.g. social support), and 

environmental (e.g. built environment, policy, culture) factors that can be targeted as part of 

intervention to effect behavioral change.13  Borrowing from these theories, greater improvement 

in motor capacity and self-reported motor performance was observed in adults with stroke when 
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behavioral interventions (e.g. self-monitoring of daily UL use, completing a behavioral contract 

with a therapist to practice at home, weekly telephone calls from the therapist) were combined 

with “traditional” motor neurorehabilitation interventions compared to neurorehabilitation 

interventions alone.14  Incorporation of different behavioral intervention approaches should be 

examined for their ability to improve motor performance above that which can be obtained by 

traditional neurorehabilitation alone. 

A final recommendation regarding future studies is that UL activity due to walking should be 

quantified and examined.  This might be accomplished through a pedometer, or hip- or ankle-

worn accelerometers that are specifically designed to detect walking that can be time-synched 

with UL accelerometers.  Many scholars in the research arena believe that it is important to 

control for UL activity due to arm swing when walking.  We acknowledge their concerns, but 

also recognize that stroke is a cardiovascular disease and people with stroke have very low levels 

of physical activity,15 which places them at risk for a recurrent stroke.16  Therefore, we 

encourage any walking activity that people with stroke perform, and welcome the challenge to 

identify UL activity due to walking during these periods.    

129 
 



6.5 References 
1. Hawk L. ActiGraph Data Conversion Process.  

https://help.theactigraph.com/entries/21702957-ActiGraph-Data-Conversion-Process. 
Accessed January 14, 2015. 

 
2. Welk GJ. Principles of design and analyses for the calibration of accelerometry-based 

activity monitors. Med Sci Sports Exerc. 2005;37(11 Suppl):S501-511. 
 
3. Uswatte G, Giuliani C, Winstein C, Zeringue A, Hobbs L, Wolf SL. Validity of 

accelerometry for monitoring real-world arm activity in patients with subacute stroke: 
evidence from the extremity constraint-induced therapy evaluation trial. Arch Phys Med 
Rehabil. 2006;87(10):1340-1345. 

 
4. Barak S, Wu SS, Dai Y, Duncan PW, Behrman AL. Adherence to accelerometry 

measurement of community ambulation poststroke. Phys Ther. 2014;94(1):101-110. 
 
5. Michael KM, Allen JK, Macko RF. Reduced ambulatory activity after stroke: the role of 

balance, gait, and cardiovascular fitness. Arch Phys Med Rehabil. 2005;86(8):1552-1556. 
 
6. Thrane G, Emaus N, Askim T, Anke A. Arm use in patients with subacute stroke 

monitored by accelerometry: association with motor impairment and influence on self-
dependence. J Rehabil Med. 2011;43(4):299-304. 

 
7. McCrea PH, Eng JJ, Hodgson AJ. Time and magnitude of torque generation is impaired 

in both arms following stroke. Muscle & Nerve. 2003;28(1):46-53. 
 
8. Desrosiers J, Bourbonnais D, Bravo G, Roy PM, Guay M. Performance of the 

'unaffected' upper extremity of elderly stroke patients. Stroke. 1996;27(9):1564-1570. 
 
9. Yarosh CA, Hoffman DS, Strick PL. Deficits in Movements of the Wrist Ipsilateral to a 

Stroke in Hemiparetic Subjects. J Neurophysiol. 2004;92(6):3276-3285. 
 
10. Wetter S, Poole JL, Haaland KY. Functional implications of ipsilesional motor deficits 

after unilateral stroke. Archives of Physical Medicine and Rehabilitation. 
2005;86(4):776-781. 

 
11. Harris JE, Eng JJ. Individuals with the dominant hand affected following stroke 

demonstrate less impairment than those with the nondominant hand affected. 
Neurorehabil Neural Repair. 2006;20(3):380-389. 

 
12. McCombe Waller S, Whitall J. Hand dominance and side of stroke affect rehabilitation in 

chronic stroke. Clin Rehabil. 2005;19(5):544-551. 
 
13. Bandura A. Health promotion by social cognitive means. Health Educ Behav. 

2004;31(2):143-164. 
 

130 
 



14. Taub E, Uswatte G, Mark VW, et al. Method for enhancing real-world use of a more 
affected arm in chronic stroke: transfer package of constraint-induced movement therapy. 
Stroke. 2013;44(5):1383-1388. 

 
15. Rand D, Eng JJ, Tang PF, Jeng JS, Hung C. How active are people with stroke?: use of 

accelerometers to assess physical activity. Stroke. 2009;40(1):163-168. 
 
16. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart Disease and Stroke Statistics--2012 

Update: A Report From the American Heart Association. Circulation. 2012;125(1):e2-
e220. 

131 
 



Appendix A 
Activity Counts result from summing filtered accelerometry data into user-defined periods of 

time called “epochs.”  Using a proprietary algorithm, Actigraph GT3X+ accelerometers 

(Actigraph, Pensacola, FL) were used in our studies to calculate the change in acceleration with 

respect to time for each sample of data by converting the analog acceleration signal to a digital 

value, and then dividing by the sampling rate.  In performing these mathematical operations, 

acceleration is converted into an activity count, where 1 activity count = 0.001664g = 

.0163m/sec2.1  As such, activity counts per sample are a proportional measure of acceleration 

rather than a direct measure of acceleration.  Activity counts per sample can then summed over a 

user-defined epoch using Actilife 6 software (Actigraph, Pensacola, FL).  As a result, activity 

counts per epoch reflect intensity of upper limb movement as a function of acceleration.  

Activity counts were chosen as the output unit across studies in this dissertation because of their 

accepted use in studies using accelerometry and because it is an intuitive measurement unit for 

clinicians.  We do recognize, however, that “g” or “m/sec2” would be more intuitive for an 

engineering audience. 

Actilife 6 software further processes the accelerometry data using a digital filter to band-limit 

acceleration data to the frequency range of 0.25 to 2.5 Hz to discriminate human motion from 

non-human motion (e.g. fluorescent lights, car- and elevator-based movement, etc.).  A recent 

study demonstrated that arm and leg movements during walking in healthy, young men 

1 Hawk L. ActiGraph Data Conversion Process.  https://help.theactigraph.com/entries/21702957-ActiGraph-Data-
Conversion-Process. Accessed January 14, 2015. 
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(mean age: 25 years) occurred at frequencies near 1 Hz.2  Because the participants in our studies 

were much older and some had experienced stroke, the frequency of movement in participants is 

unlikely to have exceeded 1 Hz.  As such, the band-pass filter applied to the acceleration data in 

our studies was appropriate for capturing human movement.  

2 Wagenaar RC, van Emmerik RE. Resonant frequencies of arms and legs identify different walking patterns. J 
Biomech. 2000;33(7):853-861. 
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Appendix B 
We attempted to control for UL activity due to arm swing when walking by analyzing 

accelerometry data obtained from ankle-worn accelerometers.  For nondisabled adults, walking 

was defined as ≥ 5 seconds of continuous activity across both lower limbs that was ≥ 100 activity 

counts.  These parameters correctly identified walking 98% of the time when applied to known 

periods of walking and incorrectly identified walking 0.7% of the time during a non-walking 

lower limb activity (i.e. donning shoes).  Parameters were modified for adults with stroke 

because walking is slower and more asymmetrical after stroke.  Walking was defined as ≥ 5 

seconds of continuous activity across either lower limb that was ≥ 70 activity counts.  These 

parameters correctly identified walking 50% of the time during a known period of walking in a 

subset (n=20) of participants.  The lower accuracy in adults with stroke was likely due to 

increased heterogeneity in walking ability post-stroke. 

Because our algorithm accurately identified walking in nondisabled adults, we examined whether 

UL activity due to arm swing in nondisabled adults biased study results.  In nondisabled adults, 

the median duration of walking was 0.8 (IQR: 1.0) hours.  Duration of simultaneous (i.e. 

bilateral) UL activity during walking was also 0.8 (IQR: 1.0) hours, indicating that walking was 

a bilateral UL activity, which was confirmed by an Activity Ratio of 1.0 (IQR: 0.0).  The median 

Bilateral Magnitude value during walking was 190.3 (IQR: 83.9) activity counts, which indicates 

that UL activity was of low-to-moderate intensity during walking.  The median Magnitude Ratio 

during walking was -0.14 (IQR: 0.73), which indicates that the dominant UL moved with slightly 

more intensity than did the nondominant UL during walking. 
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Wilcoxon Signed Rank Tests (i.e. the nonparametric equivalent of a paired-samples t-test) were 

used to examine differences between accelerometry-derived variables of UL activity when 

walking was included and excluded from analysis.  Results are displayed in Table B.1.  First, as 

noted previously, walking was a bilateral activity that lasted for 0.8 hours, which explains the 

difference in hours of simultaneous UL activity.  Although the median values for the Bilateral 

Magnitude and Magnitude Ratio were statistically different, the differences were not clinically 

meaningful.  A difference of 10 activity counts in the Bilateral Magnitude and a difference of 

0.001 in the Magnitude Ratio are not clinically significant.  Lastly, and consistent with 

previously reported literature, there was no difference in the Activity Ratio. 

Table B.1 Comparison of upper limb activity in nondisabled adults when 
walking was included and excluded from analysis 

 Walking 
Included 

Walking 
Excluded p-value* 

 Median (IQR)  
Simultaneous UL Activity, hours 6.9 (2.5) 6.0 (2.3) <0.001 
Median Bilateral Magnitude 136.2 (36.6) 126.5 (32.6) <0.001 
Median Magnitude Ratio -0.100 (0.29) -0.099 (0.29) <0.001 
Activity Ratio 0.95 (0.08) 0.95 (0.09) 0.7 

*P-Value determined using Wilcoxon Signed Rank Test (i.e. nonparametric 
equivalent of a paired t-test) 
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