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ABSTRACT OF THE DISSERTATION 

K-Ras, but Not H-Ras or N-Ras, Hyperactivation Regulates Brain Neural Stem Cell Proliferation in a  

Raf/Rb-dependent Manner 
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Professor David H. Gutmann, Chair 
 
 
 

Neural stem cells (NSCs) give rise to all the major cell types in the brain, including neurons, 

oligodendrocytes, and astrocytes. However, the intracellular signaling pathways that govern brain NSC 

proliferation and differentiation have been incompletely characterized to date. Since several 

neurodevelopmental brain disorders (i.e., Costello syndrome, Noonan syndrome) are caused by germline 

mutations in the RAS genes, Ras small GTPases are likely critical regulators of brain NSC function. In the 

mammalian brain, Ras exists as three distinct molecules (H-Ras, K-Ras, and N-Ras), each with different 

subcellular localizations, downstream signaling effectors, and biological effects. Leveraging a novel series 

of conditional Ras molecule-expressing genetically-engineered mouse strains, we demonstrate that K-

Ras, but not H-Ras or N-Ras, hyperactivation increases brain NSC growth in a Raf-dependent, but Mek-

independent, manner. Moreover, we show that K-Ras regulation of brain NSC proliferation requires Raf 

binding and suppression of retinoblastoma (Rb) function. Collectively, these observations establish 

tissue-specific differences in Ras molecule regulation of brain cell growth that operate through a non-

canonical mechanism. 
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CHAPTER 1  

INTRODUCTION 
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DEVELOPMENT OF THE MAMMALIAN BRAIN 

 The gross cellular composition of the mammalian brain arises through sequential specification of 

three main types of cells.  Neurons, the cells responsible for conducting neural signals in the mature 

brain, appear first, followed by the development of two types of neuronal support cells, astrocytes and 

oligodendrocytes.  The temporal differentiation of individual cell types has been well characterized in rat 

models of brain development, which demonstrate that neurons first appear around embryonic day 12 

(E12) and continue to develop through E18  (Figure 1.1) [1]. Following neuronal specification, astrocytes 

first appear at E18, followed closely by oligodendrocytes at postnatal day 1 (PN1).  Both cell types 

continue to develop through early postnatal time points.  While similar, the temporal sequences of rat and 

mouse embryonic brain development do not perfectly correlate.  As indicated in Figure 1.1, mice begin to 

develop neurons at E10.5, astrocytes at E15.5, and oligodendrocytes at PN1 [2].  For simplicity, mouse 

development time points are used throughout this thesis document, unless otherwise noted.  The timeline 

of cell specification is ultimately unsurprising; a neuronal network must be in place before the cells 

responsible for insulating (oligodendrocytes) and maintaining neurons (astrocytes) can establish 

themselves in appropriate proximity to the network.  The temporal segregation of cell type-specific 

development requires a carefully orchestrated integration of temporal cues and cell-extrinsic/intrinsic 

signals to drive brain multipotent progenitors, neural stem cells (NSCs), towards the correct cell fates. 

 

The Keystone of Brain Development: Neural Stem Cells 

 NSCs give rise to all major cell types in the brain, including neurons, astrocytes, and 

oligodendrocytes, thereby underscoring the importance of these progenitor cells for mammalian brain 

development.  In order to specify all three subtypes, these progenitor cells must arise early in embryonic 

development prior to neuronal fate specification.  Multi-potent progenitor cells have been isolated from the 

rat spinal cord at rat E10.5, providing evidence for NSC populations that arise from the primitive neural 

tube before localizing throughout the developing central nervous system (CNS) [3, 4].   

In order to characterize NSCs, a series of in vitro studies sought to isolate and define progenitor 

cell populations at specific time points throughout the course of embryonic brain development.  

Multipotent blast cells were first isolated during mid-embryogenesis in the developing rat brain (rat E13.5, 
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E14.5) using in vitro clonal culture techniques [5].  While the majority of the resulting clones gave rise to 

either neurons or glia alone, a subset (22%) of these clones contained both neuronal and non-neuronal 

cell types.  These findings represented the first isolation of a rudimentary progenitor cell, and 

demonstrated that neural progenitor cells have the capacity to generate both neuronal and glial cell 

lineages.  Subsequently, progenitor cell populations were isolated from the E14 mouse striatum and could 

be cultured in the presence of epidermal growth factor (EGF).  In culture, these cells spontaneously form 

spheres of proliferating cells (the field would later term these “neurospheres”) that express the 

neurofilament protein Nestin, a marker previously found exclusively in progenitor cells from the 

neuroepithelium.  Moreover, EGF-responsive neurospheres possess many of the hallmarks of progenitor 

cell populations in that these cells are capable of self-renewal over multiple passages and can undergo 

multi-lineage differentiation into neurons, astrocytes, and oligodendrocytes in culture [6, 7].  Later work 

also isolated NSCs earlier in embryonic development using the closely related fibroblast growth factor 

(FGF) [8].  As with EGF-responsive NSCs, FGF-responsive cells also demonstrated a capacity to adopt 

all three terminally differentiated cell fates [9].  Taken together, these studies not only define a temporal 

window during which NSCs appear, but also establish a foundation for in vitro culture studies of these 

progenitors for careful evaluation of their cell-autonomous properties. 

The maintenance of NSCs during development requires several extracellular signals, including 

Notch and leukemia inhibitory factor (LIF) [10-12].  In NSCs, the Notch ligand activates several 

downstream effector components, including Janus kinase (JAK) and signal transducer and activator of 

transcription (STAT) transcription factors to promote NSC survival [11].  A role for LIF in maintaining NSC 

identity is apparent upon overexpression in the adult brain, which reduces neurogenesis and promotes 

NSC self-renewal [10].  Given its role in pro-glial signaling later in brain development (discussed below), it 

is possible that LIF primarily functions in inhibiting neuronal cell fate decisions while driving NSC self-

renewal early in development and promoting gliogenesis later in development.  

The differentiation of NSCs towards the three cell lineages depends partially on temporal 

regulatory restrictions.  Using clonal differentiation assays, Qian, et al., elegantly demonstrated that 

Nestin+ NSCs maintained in vitro first develop into neurons, as revealed by expression of the neuronal 

marker Tuj1 around the in vitro equivalent of E11 [13].  Glial differentiation occurred shortly thereafter, 
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evidenced by glial fibrillary acidic protein (GFAP) expression at E16 (astrocytes) and O4 expression 

around P3-P4 (oligodendrocytes).  Early studies suggested that NSC lineage specification depends solely 

on a small subset of growth regulatory proteins: neurons by platelet-derived growth factor (PDGF), 

astrocytes by ciliary neurotrophic factor (CNTF), and oligodendrocytes by thyroid hormone T3 [14].  While 

fundamentally consistent, later studies would demonstrate that NSC fate specification is dependent on a 

more expansive list of coordinated signaling molecules to specify each cell fate.  These signals merit 

further discussion in the context of each cell type. 

Since most studies focused on defining NSC populations in the embryonic brain, it was thought 

that few, if any, progenitor cells persisted in the postnatal brain.  This led to the false conclusion that an 

exhausted NSC pool limited the capacity of the brain to regenerate after birth and into adulthood.  

Subsequent studies have identified concentrated populations of NSCs within the neurogenic regions of 

the adult brain, including the hippocampal subventricular zone (SVZ), the third ventricular zone, and the 

fourth ventricular zone [15-17].  Perhaps the most well-characterized of these regions, the hippocampal 

SVZ, contains a hierarchy of precursor cells that include glial-like progenitor cells (Type B cells), which 

generate Type C transit-amplifying cells.  These type C cells ultimately give rise to Type A neuronal 

precursor cells [16, 18].  Although Type B cells have the capacity to form multi-potent neurospheres in 

vitro, in vivo programming directs these cells to replace only neurons within the olfactory bulb [18, 19].  

Progenitors within the third ventricle can also give rise to neurons, but not other cell types, suggesting 

that postnatal NSCs are directed most often towards neuron cell fates [15].  The overall plasticity of these 

progenitor cell populations may also be regionally-restricted, such that progenitors in different regions 

only give rise to certain neuronal subtypes [20].  Over the course of aging in the adult brain, the 

neurogenerative capacity of these cells is reduced.  Within the SVZ, NSCs undergo increased 

asymmetric divisions that favor astrocyte over neuron formation and deplete the existing NSC pool [21].  

Taken together, these studies demonstrate that a large population of embryonic NSCs readily exhibits a 

capacity for high proliferation and multi-lineage differentiation.  This capacity allows for a high number of 

diverse cell types to be generated in a relatively brief period of time during brain development.  In 

contrast, the adult brain contains a much smaller pool of NSCs that primarily function in maintaining 

existing neurons within the brain.  
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Building a Neuronal Network 

 To initiate brain development, NSCs first differentiate into the neuronal lineage.  This cell fate is 

specified by a number of cell-intrinsic and cell-extrinsic factors which promote neurogenesis and 

simultaneously suppressing gliogenesis (Figure 1.2).  Several basic helix-loop-helix (bHLH) transcription 

factors, including Neurogenin 1 and 2 (Ngn1, Ngn2), mammalian achaete-scute homologue (Mash1), and 

Math3, function to drive progenitor cells toward neuronal lineages [22, 23].  Genetic knockout studies of 

the individual Mash1 and Math3 genes has a minimal effect on neurogenesis in vivo; however, double 

knockout mice exhibit a significant loss of hindbrain neurons [23].  Progenitor cells in these mice that are 

normally committed to become neurons instead adopt a glial cell fate.  This finding reveals a significant 

collaboration between Mash1 and Math3 to simultaneously promote neurogenesis and suppress 

gliogenesis.  The same is also true for Ngn1, which promotes neurogenesis as a transcriptional activator.  

Ngn1 simultaneously inhibits astrogliogenesis by sequestering the CBP-Smad 1 signaling compounds 

while inhibiting STAT transcription factor function, which promotes astrocyte differentiation later in brain 

development (see below).  Introduction of pro-neuronal bHLH genes at postnatal time points no longer 

promotes neurogenesis or blocks gliogenesis, demonstrating that their pro-neuronal signals are 

temporally restricted to embryonic tissues [22].  

 Extrinsically, ligands of the bone morphogenic protein (BMP) family promote NSC differentiation 

into neurons during the neurogenic period of brain development.  Early studies demonstrated that the 

addition of the BMP4 ligand to explant cultures promotes expression of the Tuj1 neuronal marker in cells 

within the ventricular zone [24].  Moreover, a dominant negative BMP receptor (interfering with normal 

BMP-receptor signaling) blocked neuronal migration from this ventricular zone.  This demonstrates that 

BMP is required for the regulation of neuronal cell fates in ventricular zone progenitor cells.  

Characterization of BMP2 in cultured rat cortical progenitor cells identified a temporally-restricted role for 

these ligands in promoting neuronal differentiation [25].  At the beginning of the neurogenic period (rat 

E13), addition of BMP2 inhibits proliferation and suppresses both neurogenesis and gliogenesis.  

However, the addition of moderate doses of BMP2 later in the neurogenic period (rat E16) drives 

neuronal differentiation, identifying a time-dependent role for BMP-mediated neurogenesis in the 

developing brain.  Mechanistically, BMP ligands bind TGF-β membrane receptors to activate the Smad 



	   6 

family of transcription factors and drive cell fate decisions.  To date, the exact mechanism of BMP-

mediated promotion of neurogenesis is unclear, although in the adult, neurogenesis relies on the Smad4 

protein [26].  Taken together, these data demonstrate a time-dependent, pro-neuronal role for BMP 

ligands, a fact that has additional relevance during the gliogenic period, as discussed below.  

The mitogen/extracellular signaling-regulated kinase (MEK) and extracellular signaling-regulated 

kinase (ERK) effector proteins may also mediate extracellular signals that promote progenitor cell 

neurogenesis [27, 28].  In cultured cortical progenitor cells, inhibition of either Mek or its downstream 

effector protein, Erk5, inhibits neurogenesis, indicating a direct requirement for both effector proteins in 

mediating pro-neurogenic signals [28, 29].  The downstream C/EBP family of transcription factors is also 

required for normal neurogenesis, defining a Mek- and C/EBP-mediated pro-neurogenic regulatory 

pathway.  Mechanistically, Mek phosphorylates (activates) C/EBP.  In fact, C/EBP alone is sufficient to 

promote neurogenesis, as demonstrated by expression of a constitutively active member of the C/EBP 

family (C/EBPβ) in cortical progenitor cells [27].  C/EBP may also function in repressing pro-glial fate 

decisions in these same progenitor cells.  When directed towards a glial cell fate using the CNTF 

cytokine, cortical progenitors differentiate into more astrocytes when C/EBP activity is inhibited [28].  

 The combination of these cell-intrinsic and cell-extrinsic factors is critical to direct NSCs towards 

neurogenic cell fates during a defined period of brain development.  Subsequent brain development 

requires a switch to inhibit neurogenesis and instead direct NSCs towards glial cell fates to support the 

newly formed neuronal network. 

 

Supporting the Neuronal Network: Astrocytes 

 In the adult brain, astrocytes function in neuronal maintenance by providing structural support, 

modulating blood flow, facilitating nutrient delivery, and absorbing waste and excess neurotransmitters 

[30].  To facilitate the formation of these astrocytes, formerly pro-neurogenic signals are inhibited and pro-

astroglial signals are activated in NSCs around E15.5 (Figure 1.3).  One regulatory mechanism 

underlying this switch relies on temporally-restricted methylation at two CpG dinucleotide sites upstream 

of the astrocyte-specific genes, glial fibrillary acidic protein (GFAP) and S100β [31, 32].  Within the 

promoter of the astrocytic Gfap gene, CpG methylation obstructs the binding of the STAT3 transcription 
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factor and prevents Gfap transcription [32].  Alternatively, CpG methylation within the promoter for a 

second astrocyte gene, S100β, facilitates binding of the methyl DNA binding protein (MeCP2), which 

enables inhibitory histone deacetylateses and other co-repressor proteins to bind and inhibit S100β  

expression [31].  During the neurogenic period at E11.5, methylation at both sites inhibits expression of 

either gene and can not be initiated even upon overexpression of the STAT3 transcription factor [32].  

These promoters are only demethylated at the start of the gliogenic period (E14.5), thereby allowing 

transcription factor binding and subsequent Gfap and S100β expression [31, 32].   

 In addition to these cell-intrinsic regulatory mechanisms, extracellular pro-gliogenic signals 

increase at the start of the gliogenic period [33].  Many of these signals operate through growth factor 

binding to the gp130 family of membrane receptors.  The importance of these receptors for gliogenesis  

apparent in mice deficient for gp130 receptors, which have increased neuronal cell death and reduced 

formation of GFAP+ astrocytes in the brain [34].  This demonstrates a dual role for the gp130 receptors 

(and their associated growth factor ligands) in both promoting neuron survival and driving astrocyte 

differentiation.  The gp130 receptors signal by homo- and hetero-dimerization of individual receptor family 

members, which transduces signals from a variety of cytokines, including the pro-astrocytic factors 

cardiotrophin-1 (CT-1), CNTF, and LIF [35, 36].  The pro-astrocytic growth factor CT-1 is secreted by 

neighboring neurons to foster the development of astrocytes within proximity of newly developed axons 

and synapses.  Loss of CT-1 expression in the developing brain reduces astrocyte formation, 

demonstrating a partial requirement for this cytokine in driving astrocyte differentiation [37].  The fact that 

only some astrocytes don’t develop in CT-1-/- brains indicates that other growth factors must be involved 

in facilitating astrocyte differentiation.  In vitro, the CNTF growth factor induces cortical progenitor cells to 

become astrocytes, a process which continues even after CNTF is removed from the culture media.  The 

persistence of CNTF-mediated pro-glial signals demonstrates that CNTF irreversibly specifies astrocyte 

cell fate decisions and suggests that this cytokine is involved in the permanent switch from pro-

neurogenic to pro-astrocytic cell fate decisions [38].  Lastly, the loss of the receptor for the pro-glial 

cytokine LIF causes decreased astrocyte differentiation in vivo and in vitro [39].  As discussed below, LIF 

signaling specifies astrocyte differentiation in collaboration with BMP signaling, underscoring an important 

role for LIF in pro-astrocytic cell fate decisions.  Together, these results demonstrate that coordinated 
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signaling from a diverse set of pro-astrocytic cytokines is required for development of the full complement 

of astrocytes in the mature brain.  Despite the diversity of cytokines operating during the pro-gliogenic 

brain development phase, these cytokines collectively signal to the gp130 downstream JAK effector 

protein to activate the glial-promoting STAT3 transcription factor [37, 38, 40].  

 Operating independently of gp130 and its associated growth factor ligands, Notch has also been 

identified as an important driver of astrocyte differentiation.  This aspect of Notch signaling was originally 

demonstrated in neural crest stem cells of the peripheral nervous system.  Upon activation of Notch, 

neurogenesis of these stem cells was suppressed while astroglial cell fates were increased [41].  Shortly 

thereafter, Notch signaling was also identified as a pro-astrocytic signal for hippocampal stem cells in the 

developing CNS [42].  Since Notch signaling requires cell-cell contact, Notch-mediated astrogliogenesis 

may be triggered by neighboring neuroblasts, which direct these stem cells to adopt an astroglial cell fate 

[41].  Similar to some gp130 ligands (CNTF), Notch irreversibly commits progenitor cells to the astrocyte 

lineage, suggesting a role for Notch is specifying the pro-neuronal to pro-glial signaling switch during 

brain development [42].  

In addition to its early role in pro-neuronal signaling, BMP also drives progenitor cells towards the 

astrocyte fate during the gliogenic phase of brain development [43].  During this period, BMP now 

suppresses neurogenesis and restricts oligodendrocyte fate decisions [25, 43].  This is partially mediated 

by BMP2-dependent increases in expression of the transcription factors Id2, Id3, and Hes-5 which inhibit 

the expression of the pro-neuronal factors Mash1 and Ngn1 [44, 45].  Moreover, BMP2 expression 

inhibits the expression of the progenitor gene Nestin and the Map2 neuronal gene.  BMP2 also increases 

expression of the S100β astrocyte gene, thereby indicating that BMP2 expression drives progenitor cell 

development towards astrocyte rather than neuron cell fates [44].  This presents an important question: 

how can the same pro-neuronal signaling molecule (BMP) also promote astrocyte differentiation later in 

development?  The mechanism underlying this switch to pro-astroglial fate choice relies on synergistic 

signaling with the pro-astrocytic LIF cytokine.  At this stage, activation of either BMP2 or LIF alone drives 

only limited astrocyte fate specification, underscoring the importance of coordinated signaling from both 

molecules for normal astrocyte development [40].  Operating downstream of both LIF and BMP, the 

transcriptional coactivator p300 acts as a bridge between these two pathways by binding STAT3 (the LIF-
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mediated transcription factor) at its N-terminus and Smad1 (the BMP2-mediated transcription factor) at its 

C-terminus [40].  As a result, this bridge protein coordinates the input from both cytokines and allows 

BMP to signal in a pro-glial manner. 

  

Supporting the Neuronal Network: Oligodendrocytes 

 Oligodendrocytes are the third and final cell type to differentiate from NSCs during brain 

development.  Upon differentiation, these cells function in forming an insulating, lipid-rich myelin sheath 

around neuronal axons to enhance electrical conduction of the nerves [30].  Oligodendrocytes derive 

primarily from glial-restricted progenitor cells (GRPCs), which give rise to astrocytes and 

oligodendrocytes, but not neurons, in the brain and spinal cord [46, 47].  However, in the spinal cord 

alone, oligodendrocytes and motor neurons can also derive from a shared progenitor cell population [48, 

49].  In the brain, the primary pool of oligodendrocyte precursors arises from the ventral forebrain, 

although additional sources have been identified within the ganglionic eminences and in the postnatal 

neocortex [50].  Genetic ablation of any single oligodendrocyte precursor population does not disrupt 

normal oligodendrocyte development, indicating that these pools can compensate for shortages of any of 

the original progenitor pools.  

Regionally-restricted differentiation signals are thought to direct GRPCs to adopt either astrocyte 

or oligodendrocyte cell fates during CNS development.  In the chick spinal cord, oligodendrocyte 

differentiation is induced by Sonic hedgehog (Shh) signaling and antagonized by BMP signaling [51, 52].   

The expression of both ligands is regionally restricted—BMP from the dorsal portion of the spinal cord, 

Shh from the ventral floor plate—allowing the formation of a signaling gradient that provides positional 

cues for glial cell differentiation.  In the brain, Shh is expressed along the ventral midline at the 

telecephalon/diencephalon border in an area containing oligodendrocyte precursor cells [53].  This Shh 

expression overlaps with the expression of two pro-oligodendroglial bHLH transcription factor genes, 

Olig1 and Olig2.  Shh is both necessary and sufficient for the expression of these genes in the developing 

CNS in vivo [53, 54].  Additionally, both Olig1 and Olig2 are required for oligodendrocyte differentiation as 

genetic knock-out of both genes results in decreased oligodendrocyte differentiation [48, 49].  
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The Olig genes promote oligodendrocyte cell fate decisions by increasing expression of the SoxE 

group of high-mobility-group (HMG)-transcription factors, which includes the Sox8, Sox9, and Sox10 

transcription factors, in oligodendrocyte precursor cells.  Despite expression of all three transcription 

factors in developing and mature oligodendrocytes, each has a functionally distinct role in 

oligodendrocyte cell fate specification.  Genetic ablation of Sox10 in developing embryos results in the 

accumulation of neural progenitor cells and the loss of oligodendrocytes during embryogenesis, 

demonstrating a requirement for this transcription factor in the terminal differentiation of oligodendrocytes 

[55].  In contrast, targeted loss of Sox9 in NSCs leads to the formation of more astrocytes and fewer 

oligodendrocytes, indicating that this transcription factor is necessary for pro-glial cell fate specification 

[56].  Lastly, although Sox8 is expressed in developing and mature oligodendrocytes, genetic loss of this 

transcription factor does not alter the formation of oligodendrocytes in the CNS, indicating that Sox8 is 

dispensable for oligodendrocyte differentiation [57].  Functionally, these transcription factors are 

responsible for the expression of oligodendrocyte-specific genes.  In zebrafish, Olig1 cooperatively binds 

to Sox10 in order to express myelin basic protein, a key component for myelin sheath formation [58].  

Similarly, genetic loss of either Sox9 or Sox10 in oligodendrocyte progenitor cells results in decreased 

expression of the PDGF receptor alpha (PDGFRα), an oligodendrocyte protein responsible for cell 

survival and migration [59].  Overall, this establishes a clear regulatory mechanism whereby Shh 

expression specifies oligodendrocyte cell fate through Olig and SoxE transcription factor-mediated 

expression of oligodendrocyte-specific genes.  

 

BRAIN DEVELOPMENT GONE AWRY: THE RASOPATHIES 

 Normal development of the CNS is disrupted in several neurodevelopment disorders, providing 

insight into the regulatory mechanisms most critical for normal brain development.  In particular, the 

neuro-cardio-facio-cutaneous syndromes comprise a family of related neurodevelopmental disorders 

resulting from hyperactivating mutations that affect the RAS signaling pathway (Figure 1.4).  These 

disorders are more commonly referred to as RASopathies, underscoring the importance of the RAS 

pathway in regulating normal neural development.  Several shared clinical features characterize the 

RASopathies, including neurodevelopmental defects (mental retardation, learning deficits, neurocognitive 
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delay), congenital heart defects, abnormal growth patterns (short stature, macroencephaly), and 

ectodermal defects (skin freckling, hyperkeratosis) [60].  A summary of these disorders, their causative 

mutations, and the CNS clinical features associated with each syndrome can be found in Table 1.1.  

Although the incidences of individual syndromes vary widely, as a whole the RASopathies occur in 

approximately 1 in 1,000 individuals [61].  Below is a brief summary of a subset of these disorders in the 

context of the CNS.  

 

Noonan Syndrome 

 Noonan Syndrome affects approximately 1 in 1,000-2,500 individuals and is characterized by 

craniofacial deformities, short stature, and congenital cardiac defects [62, 63].  In the CNS, individuals 

with this disorder are most commonly affected by memory deficits, and learning, speech, and motor 

delays [64-66].  The causative mutations underlying Noonan Syndrome increase activity of several 

components within the Ras signaling pathway.  A majority of individuals with Noonan Syndrome (>50%) 

harbor hyperactivating missense mutations in the PTPN11 gene [67].  This gene encodes the protein 

tyrosine phosphatase protein SHP2 responsible for propagating receptor tyrosine kinase signals to the 

RAS-activating guanine exchange factor (GEF) protein SOS1.  A smaller proportion of individuals (~20%) 

present with gain-of-function missense mutations in the SOS1 gene itself [68, 69].  These mutations 

cluster within the autoinhibitory region of the protein, leading to hyperactivation of SOS1 and subsequent 

hyperactivation of RAS and its downstream effector ERK [68].  Activating mutations have also been 

identified in the K-RAS and N-RAS family members, although both mutations occur rarely in Noonan 

patients (<5%) [70, 71].  Similarly, a rare set of mutations occurs in the RAF1 gene leading to the 

hyperactivation of the RAF1 effector protein operating downstream of RAS [72].  Taken together, these 

mutations aberrantly activate the RAS signaling pathway leading to disease progression and the CNS 

defects observed in individuals with Noonan Syndrome.    

 

Neurofibromatosis Type I 

 Neurofibromatosis Type 1 (NF1) represents another commonly occurring RASopathy with an 

incidence of approximately 1 in 3,000 individuals [73].  The clinical features of NF1 include café-au-lait 
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spots, axillary freckling, iris Lisch nodules, and a predisposition to peripheral nerve sheath tumor 

formation (neurofibromas) [62].  In the CNS, learning deficits and behavioral abnormalities are the most 

common features of NF1 with various cognitive deficits reported to occur in 81% of the population [74].  

Low-grade pilocytic astrocytomas often occur in children with NF1 and occur most frequently in the optic 

pathway, hypothalamus, and brainstem [75, 76].  The most common of these tumors, optic pathway 

gliomas, develop in approximately 15-20% of these individuals prior to age 10 [76, 77].  Unlike Noonan 

Syndrome, the NF1 disorder is caused by inactivating mutations within a single gene, NF1.  This gene 

encodes the protein neurofibromin, a GTP-ase activating protein (GAP) that normally functions to inhibit 

RAS activity [78-81].  As a result, loss of the NF1 gene leads to increased RAS activity [82].  

 

Costello Syndrome 

 A relatively rare RASopathy, individuals with Costello Syndrome may exhibit neurodevelopmental 

delays, cardiac and musculoskeletal defects, and craniofacial abnormalities [62, 83].  Individuals affected 

by this disorder are also predisposed to the formation of a variety of malignant and benign tumors, the 

most common of which include rhabdomyosarcoma and neuroblastoma [84].  Similar to NF1, the 

causative mutations of Costello Syndrome are found within a single gene (H-RAS), with the vast majority 

of these mutations occurring within codon 12 of the gene [85-87].  These mutations inhibit H-RAS 

GTPase activity, locking the protein in a hyperactive state and leading to aberrant RAS pathway 

signaling.  Moreover, preliminary phenotype-genotype correlational studies suggest that glycine to alanine 

mutations at this codon are associated with increased risk of malignant tumor formation relative to other 

Costello mutations [86].  Of the RASopathies, Costello Syndrome perhaps best demonstrates the 

consequence of hyperactivating mutations occurring within the RAS proteins themselves 

 

Legius Syndrome 

 Individuals affected by Legius Syndrome, a rarely occurring RASopathy, come to medical 

attention with symptoms resembling those of Noonan Syndrome and NF1, including neurocognitive 

impairments, café-au-lait spots, axillary freckling, and macrocephaly [62].  Similar to NF1 and Costello 

Syndrome, Legius Syndrome results from inactivating mutations within a single gene, SPRED1, encoding 
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a regulatory protein that mediates RAS activity and its activation of the downstream MEK/ERK effector 

pathway [88, 89].  Loss-of-function mutations within the SPRED1 and related SPRY family of proteins 

have not been reported in other neurodevelopmental disorders, leading to the designation of Legius 

Syndrome as a distinct disorder within the RASopathy family [88]. 

 

Cardio-Facio-Cutaneous Syndrome 

 A final, rarely-occurring disorder in the RASopathy family, Cardio-Facio-Cutaneous (CFC) 

Syndrome has overlapping features with Noonan Syndrome, Costello Syndrome, and NF1.  These 

include cardiac deficiencies, ectodermal and musculoskeletal abnormalities, and short stature [62].  In the 

CNS, CFC Syndrome patients may present with learning disabilities and motor and speech 

developmental delays.  Unlike many of the disorders discussed already, CFC Syndrome is primarily 

caused by mutations affecting hyperactivation of RAS downstream effector proteins.  The majority of 

these mutations lead to hyperactivation of the B-RAF protein, although mutations in K-RAS, MEK1, and 

MEK2 have also been reported in this patient population [90-92]. 

 

THE RAS SIGNALING PATHWAY 

Canonical Ras Signaling 

First identified in rat sarcoma cells, the 21 kDa small-GTPase protein RAS is the key transducer 

of growth factor signaling to downstream effector proteins. Specifically, RAS functions as a small-

molecule switch by alternating between active, guanosine triphosphate (GTP)-bound and inactive, 

guanosine diphosphate (GDP)-bound states to transmit growth factor signals (Figure 1.4).  RAS is 

activated by the exchange of bound GDP with a new GTP molecule, which causes conformational 

changes in the RAS protein.  This process is facilitated by a family of GEF proteins that facilitate GDP 

release and GTP binding.  Although one GEF protein, SOS, is most commonly implicated in RAS protein 

activation at the plasma membrane, other GEFs such as RAS guanosine nucleotide releasing protein 

(RasGRP1) can similarly activate RAS at locations distinct from the plasma membrane.  RAS inactivation 

occurs by hydrolysis of the bound GTP to GDP, which remains bound to RAS.  Although RAS has a slow 
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intrinsic GTPase activity on its own, this activity is greatly enhanced in the presence of GTPase-activating 

proteins (GAPs), such as p120GAP and neurofibromin, which inactivate RAS. 

One mechanism of activating the RAS signaling pathway requires extracellular growth factor 

binding to receptor tyrosine kinase (RTK) proteins.  A variety of growth factors are known to bind RTKs, 

including EGF, FGF, and nerve growth factor (NGF).  Upon binding at the RTK extracellular domain, 

these growth factors promote homodimerization of the RTK proteins, which leads to autophosphorylation 

of the RTK intracellular domains.  Within the cell, several adapter proteins, such as SHC, SHP2, and 

GRB2, contain SH2 domains specific for binding to the phosphorylated RTK intracellular domains.  

Simultaneously, these adaptor proteins bind the RAS-GEF protein SOS which, when bound to the RTK 

complex, activates RAS.  Once activated, RAS functions to regulates cell growth and differentiation via 

two canonical downstream pathways, including through the downstream effector proteins 

phosphatidylinositol 3-kinase (PI3K) and the RAF/MEK/ERK signaling cascade [93, 94].   

  

Structure of the RAS Genes 

The RAS superfamily of genes consists of related small GTPase proteins that share sequence 

homology with the RAS genes.  This family is divided into several subgroups, including the RAS, RHO, 

ARF, RAN, and RAB subfamilies.  Within the RAS subfamily, there are multiple related forms of RAS 

found in mammals (Figure 1.5).  Three closely related variants of this subfamily – H-RAS, K-RAS, and N-

RAS – are considered to be the classical RAS proteins and are the focus of this thesis.  Other RAS 

subfamily members are evolutionarily diverged from these classical RAS proteins and include E-RAS 

(expressed in embryonic stem cells), R-RAS (endothelial cells, vascular smooth muscle cells), and M-

RAS (muscle cells and brain hippocampus, cerebellum) [95-98].  Of the classical RAS genes, both H-

RAS (full name: Harvey-RAS) and K-RAS (Kirsten-RAS) were initially identified as the causative effectors 

of tumor growth upon their discovery in rat sarcoma virus in the 1960’s [99, 100].  K-RAS is expressed as 

two alternatively spliced variants (K-RAS4A, K-RAS4B), however in this thesis, K-RAS refers to the 

ubiquitously expressed K-RAS4B isoform.  N-RAS (Neuroblastoma-RAS) was initially isolated from the 

SK-N-SH neuroblastoma cell line and was capable of transforming NIH 3T3 fibroblasts [101].  

Subsequent genetic mapping studies revealed that these classical RAS genes reside on different 
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chromosomal loci in humans: 11p (H-RAS), 12p (K-RAS), and 1p (N-RAS) [102-105].  In mice, the RAS 

genes also reside on different chromosomes (H-RAS on chromosome 7, K-RAS on chromosome 6, N-

RAS on chromosome 3), indicating that mouse and human Ras genes diverged from one another 

relatively recently, as demonstrated by orthologous gene sequence analysis [106].  Despite their 

divergent genetic locations, the RAS molecules share 85% nucleotide sequence homology, suggesting 

that these genes diverged from a single common Ras gene [107].  The conserved region of the RAS 

genes encodes the GTP-binding region (a phosphate-binding loop [P-loop]) and the switch I and switch II 

regions that direct RAS binding to effector proteins (Figure 1.6). The remaining 15% of the nucleotide 

sequence encodes a 25 amino acid, C-terminal hypervariable region (HVR) that differs between the RAS 

genes and is thought to underlie the differential post-translational processing, plasma membrane 

localization, and signaling capacity of the encoded RAS proteins.   

 

Post-Translational Processing and Trafficking of the Ras Molecules 

All RAS molecules undergo extensive, multi-step post-translational modification to correctly traffic 

and localize RAS to the inner leaflet of the plasma membrane and endomembranes such as the Golgi 

and the endoplasmic reticulum (ER) (Figure 1.7).  Without these modifications, the RAS molecules are 

hydrophilic with little affinity for the membranes where they ultimately localize.  A series of lipid 

modifications is therefore required to convert the HVR to a hydrophobic region capable of anchoring 

these molecules within lipid membranes.  RAS processing is initiated at a CAAX (C=cysteine, A=aliphatic 

amino acid, X=any amino acid) motif present at the carboxy-terminal portion of the HVR.  Following 

translation, a hydrophobic isoprenyl group is added to the cysteine of the CAAX motif (prenylation) via the 

farnesyltransferase enzyme.  This modification causes RAS to localize at the cytosolic surface of the ER 

for further modification steps [108].  Once at the ER, the RAS converting CAAX endopeptidase 1 (RCE1) 

enzyme cleaves the AAX tripeptide from the CAAX motif, allowing for subsequent methylation of the 

newly exposed α-carboxyl group (C186) by the isoprenylcysteine carboxyl methyltransferase (ICMT) 

enzyme [109-111].  Here, the RAS molecules begin to diverge in their processing.  In this regard, K-RAS 

is more efficiently methylated by ICMT than its H-RAS and N-RAS counterparts [112].   
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The remaining upstream HVR sequence provides secondary signals that direct additional 

differential processing and trafficking of the Ras molecules (Figure 1.6) [113].  Two cysteines on H-RAS, 

C181 and C184, are the target of a covalent addition of fatty acids (palmitoylation) by the RAS 

palmitoyltransferase enzyme.  N-RAS is similarly palmitoylated, but only at C181 [111].  Based on site 

mutagenesis studies, palmitoylation at these cysteines is required for trafficking of these proteins from the 

ER to the plasma membrane [112].  Using GFP-tagged molecules of H-RAS or N-RAS, two studies 

observed that these RAS molecules accumulate at both the Golgi and the plasma membrane, suggesting 

that H-RAS and N-RAS traffic to the plasma membrane via the Golgi apparatus [112, 114].  In the 

presence of Brefeldin A (BFA), a chemical agent that disrupts the Golgi membrane, there was significant 

loss of H-RAS-GFP or N-RAS-GFP localization at the plasma membrane.  This confirms that both H-RAS 

and N-RAS transit from the ER to the plasma membrane in a Golgi-dependent manner.   

In contrast, K-RAS is not palmitoylated but instead contains a polybasic, lysine-rich sequence 

within the HVR that confers a net positive charge at its C-terminus and targets K-RAS directly to the 

plasma membrane (Figure 1.7) [115].  Unlike H-RAS and N-RAS, GFP-tagged K-RAS is found at the 

plasma membrane but not at the Golgi, suggesting that K-RAS traffics to the plasma membrane without 

further processing within the Golgi.  In support of this hypothesis, BFA treatment of cells does not reduce 

K-RAS-GFP accumulation at the plasma membrane, indicating that K-RAS transits to the plasma 

membrane in a Golgi-independent manner [114].   

The exact mechanism underlying K-RAS trafficking to the plasma membrane remains unclear, 

however, several possible mechanisms have been proposed.  First, given the net charge difference 

between the positively charged K-RAS HVR and the negatively charged plasma membrane, it is possible 

that plasma membrane trafficking occurs down an electrostatic gradient.  Evidence in support of this 

theory arises from mutational studies of the K-RAS HVR that converted subsets of lysine residues to 

glutamine residues in order to alter the amphipathic and charge properties of this portion of the K-RAS 

molecule [116].  Mutations that maintained the +6 positive charge of normal K-RAS and the amphipathic 

properties of the HVR were most successful at correctly localizing GFP to the plasma membrane.   

Further evidence for charge-driven trafficking is found in the presence of the anionic lipid-binding agent 

neomycin, which reduces K-RAS-GFP association with the plasma membrane.  This suggests that the 
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positively-charged K-RAS HVR requires negatively charged lipids within the membrane to direct its 

movement from the ER to the plasma membrane.  A second mechanism may function by trafficking K-

RAS to the plasma membrane in a microtubule-dependent manner.  Support for this theory is based on 

the high affinity of prenylated and methylated K-RAS molecules for microtubules within the cell [117, 118].   

In the presence of the chemical agent taxol, which stabilizes the otherwise dynamic microtubule 

structures, K-RAS localization to the plasma membrane is greatly reduced [114, 118].  Taxol 

administration has no effect on the localization of H-RAS-GFP at the plasma membrane, indicating that K-

RAS trafficking alone occurs in a microtubule-dependent manner.  A third and final potential mechanism 

suggests that K-RAS trafficking to the plasma membrane could be facilitated by a chaperone protein.  

This mechanism is well established for the RAS-related RHO GTPase protein which is trafficked to the 

plasma membrane by the RHO guanine nucleotide dissociation inhibitor (RHOGDI) chaperone protein 

after RHO geranylgeranylation and methylation at the ER [119].  On its own, RHO is rapidly degraded by 

cytosolic proteasomes.  However, RHOGDIs sequester RHO in the cytosol and traffic these proteins 

directly to the plasma membrane.  The prenyl binding protein PDEδ is proposed to function similarly for K-

RAS by chaperoning its transport from the ER to the plasma membrane and by ensuring the correct 

localization of K-RAS molecules within plasma membrane microdomains [120].  Given the high 

occurrence of oncogenic K-RAS signaling in tumor progression, the K-RAS-PDEδ interaction has recently 

become the subject of small molecule inhibitor development.  Indeed, disruption of this interaction leads 

to the localization of K-RAS to endomembrane domains and disrupts downstream K-RAS signaling [121].  

Taken together, it is clear that trafficking of K-RAS to the plasma membrane occurs in a more complex 

manner than that of H-Ras and N-RAS trafficking.  These early differences in HVR processing and 

plasma membrane trafficking underscores the importance of these processes in conferring functional 

differences on each of the individual RAS molecules. 

 

Microlocalization within the Plasma Membrane 

One of the important consequences of differential RAS processing and trafficking is the capacity 

for the structurally similar RAS molecules to trigger distinct signaling cascades from unique domains 

within the plasma membrane.  The plasma membrane consists of a heterogeneous mix of cholesterols, 
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lipids, and proteins arranged in lipid and non-lipid raft domains that laterally segregate the RAS molecules 

within the plasma membrane (discussed below).  Growing evidence indicates that RAS molecule 

signaling in these domains occurs primarily from nanoclusters—signaling domains approximately 6-20nm 

in diameter and containing as few as 6-8 RAS proteins per cluster [122].  Nanocluster formation is 

dictated by several factors, including plasma membrane and cytoskeleton composition, RAS HVR 

interaction with the plasma membrane, and effector molecule recruitment to individual signaling domains.  

In this regard, RAS nanocluster formation is dependent on the cholesterol composition of the plasma 

membrane.  Both H-RAS-GDP and N-RAS-GTP cluster formation is cholesterol-dependent while the 

formation of H-RAS-GTP, N-RAS-GDP, and K-RAS-GTP nanoclusters are all cholesterol-independent 

[123].  Moreover, immunogold labeling of active RAS proteins within intact plasma membrane sheets 

revealed a differential dependence on an intact actin cytoskeleton for K-RASG12V, but not H-RASG12V, 

nanoclusters indicating a role for cytoskeleton composition in nanocluster formation [122].  The 

structurally distinct HVR sequences of the RAS molecules also drive nanocluster formation.  This is 

exemplified by the stabilization of active H-RAS signaling nanoclusters by the cytosolic lectin protein 

galectin-1.  Upon activation at the plasma membrane, H-RAS signaling nanoclusters are stabilized by 

galectin-1 binding at the farnesyl moiety within the H-RAS HVR [124].  Apart from simply stabilizing these 

signaling domains, H-RAS-galectin-1 interactions also direct H-RAS signaling to Raf-1 but not PI3K 

downstream effector proteins [125].  Similarly, the Sur-8 and SPRED1 proteins have also been reported 

to modulate RAS signaling to downstream effector proteins at the plasma membrane, suggesting an 

important role for these proteins in facilitating the formation of transient RAS-effector signaling complexes 

[89, 126].  Recent findings demonstrate that nanocluster formation can occur in a manner directly 

proportional to growth factor input signals, indicating that functionally, the formation of RAS nanoclusters 

ensures the fidelity of ligand input signaling to the downstream signaling cascades [127].  Taken together, 

the differential signaling capacity of the RAS molecules is therefore dependent upon lateral segregation of 

the RAS molecules and multiple layers specifying the membrane and effector composition of nanocluster 

signaling domains within the plasma membrane.  This merits further discussion in the context of how the 

individual RAS molecules themselves segregate within the plasma membrane prior to nanocluster 

formation.  
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Comparison of H-RAS and K-RAS membrane localization indicates that these molecules occupy 

distinct portions of the membrane.  Of the three RAS molecules, the localization of H-RAS within the 

plasma membrane has been best characterized using GFP-tagged H-RAS molecules and immunogold 

electron microscopy techniques.  Early work demonstrated that H-RAS localization is dynamic, occupying 

both lipid raft and non-lipid raft portions of the plasma membrane [128, 129].  Trafficking between these 

domains is dependent on the activation state of H-RAS.  Inactive, GDP-bound H-RAS is associated with 

lipid raft portions of the plasma membrane, while active, GTP-bound H-RAS transits to non-lipid raft 

portions of the membrane [129].  The underlying mechanism of this transition relies on three key regions 

of the H-RAS protein.  The CAAX motif and the two palmitoyl sites (cysteines 181, 184) within the HVR 

have a high affinity for lipid raft domains, thereby localizing H-RAS-GDP to these domains by default 

[130].  However, a linker domain between the HVR and N-terminal portion of the protein exhibits affinity 

for non-lipid raft portions of the membrane.  Once GTP-bound, the N-terminal domain of H-RAS exerts a 

repulsive force on lipid rafts which, in combination with the linker domain, triggers trafficking to non-lipid 

raft portions of the membrane.  Here, the lectin protein galectin-1 stabilizes H-RAS-GTP in the non-lipid 

raft portion of the membrane and facilitates formation of H-RAS signaling nanoclusters [128].  Increasing 

amounts of galectin-1 increases the stability of these H-RAS signaling clusters and can increase the 

signaling output from these clusters [131].  

In contrast, K-RAS localizes exclusively in non-lipid raft domains of the plasma membrane, 

although in areas distinct from those occupied by active H-RAS [128, 129, 132].  Owing to the poly-lysine 

sequence within the HVR, K-RAS localization requires anionic lipids to associate within the plasma 

membrane, as the C-terminal region of K-RAS has a low affinity for neutrally-charged lipids in the 

membrane [133].  Despite this dependence, K-RAS does not appear to associate with any specific 

anionic lipids.  In order to form signaling nanoclusters, K-RAS relies on an intact actin cytoskeleton, the 

loss of which appears to be especially deleterious to activated K-RAS signaling [122].  K-RAS clustering 

also requires farnesylation of the HVR, as geranylgeranylation (an alternative prenylation step) does not 

allow for correct clustering of K-RAS in non-lipid raft portions of the membrane [128].  

To date, few studies have focused on the membrane localization of N-RAS.  Recent biochemical 

studies using a series of modified N-RAS lipid anchor motifs demonstrate that N-RAS occupies fluid-like, 
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non-lipid raft domains within the plasma membrane [134, 135].  Localization to the plasma membrane and 

subsequent activation of N-RAS requires that this molecule be palmitoylated at cysteine 181 within its 

HVR [136].  Following activation at the plasma membrane, recent studies suggest that this facilitates N-

RAS clustering in lipid raft portions of the membrane, which precedes depalmitoylation and retrograde 

transport of N-RAS to the Golgi [137].  As such, this provides a mechanism by which active N-RAS may 

accumulate at both the plasma membrane and at endomembranes (Golgi and ER) as is discussed further 

in the next section. 

 

Differential Signaling of the RAS Molecules 

Activation of the RAS molecules occurs at multiple domains within the cell depending on the RAS 

family member and its subcellular localization.  While the majority of Ras activation occurs at the plasma 

membrane, there is evidence that active H-Ras and N-Ras can also be found at the Golgi and the ER 

[138, 139].  This reflects the capacity for both molecules to transit from the plasma membrane to the Golgi 

by recycling endosomes upon HVR depalmitoylation [136, 140].  The differential activation of the Ras 

molecules in the cell may also reflect location-specific sensitivity to GEFs.  While Ras is activated by a 

variety of GEFs at the plasma membrane, only RasGRP activates Ras at the Golgi [141, 142].  In 

combination, the differential localization and sensitivity to GEF activity provides mechanisms by which the 

Ras molecules can have divergent signaling capacities. 

Two signaling pathways that operate downstream of active RAS have been especially well 

characterized in the literature to date.  In the first pathway to be discovered, the Raf family of 

serine/threonine kinase proteins was demonstrated to directly bind to Ras in its active, GTP-bound form 

[143-146].  Although Ras itself cannot function as a kinase, Ras reduces Raf autoinhibition upon binding 

to the Ras binding domain (RBD) within the N-terminus of the Raf protein [147, 148].  Subsequently, Ras 

escorts Raf to the plasma membrane for subsequent activation by a number of kinases, including Src and 

protein kinase C (PKC) [94, 149].  There are three members of the RAF kinase family, RAF-1 (C-RAF), A-

RAF, and B-RAF, all of which can be activated by the H-RAS, K-RAS, and N-RAS molecules [150].  

However, only B-Raf activity is exclusively dependent on Ras-mediated activation as both C-Raf and A-

Raf can be activated by Src in the absence of Ras [151].  Upon activation, Raf activates Mek1 and Mek2 
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by phosphorylating serines 217 and 221 on these proteins [152].  Subsequently, Mek1/2 activates the 

Erk1 and Erk2 effectors by phosphorylating threonine 202 and tyrosine 204 on these proteins [153].  This 

phosphorylation cascade is most often associated with canonical Ras signaling and is most often 

implicated in regulating cell growth, differentiation, and apoptosis.  

Subsequent studies identified another downstream effector protein, phosphatidylinositol 3-kinase 

(PI3K), that binds active Ras in a Raf-independent manner [154].  Active PI3K phosphorylates 

phosphatidylinositol (4,5)-bisphosphate (PIP2), converting the protein to the secondary messenger protein 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3).  PIP3 binds to proteins containing a pleckstrin homology 

(PH) domain such as phosphoinositide-dependent kinase 1 (PDK1) and Protein Kinase-B (AKT).  Upon 

binding, PIP3 facilitates PDK1/Akt trafficking to the plasma membrane, where Akt is subsequently 

activated by phosphorylation at threonine 308 [155, 156].  Once activated, Akt activates the mammalian 

target of rapamycin (mTOR) complex 1 (mTORC1), a key signaling complex in the regulation of gene 

expression, protein translation, and cell proliferation.  To do so, mTORC1 increases protein translation by 

phosphorylating (activating) the p70 S6 kinase ribosomal protein and the eukaryotic initiation factor 

binding protein 4E-BP1 [157, 158].   

These conventional pathways provide a framework by which to understand how RAS might 

regulate cell proliferation and differentiation functions.  However, not every RAS molecule signals through 

these conventional pathways in the same way.  As an example, K-Ras and H-Ras exhibit different 

capabilities of activating the Raf-1 and PI3K effector proteins at the plasma membrane.  Relative to H-

Ras, K-Ras is better able to recruit and subsequently activate Raf-1 at the plasma membrane [159].  In 

contrast, H-Ras is a more potent activator of PI3K than K-Ras.  This differential capacity to signal to 

different downstream effector proteins is a direct result of different HVR sequences on the Ras molecules.  

Shortening of the H-Ras HVR to more closely resemble the K-Ras HVR results in improved Raf-1 

recruitment to the plasma membrane by H-Ras.  K-Ras also retains more Raf-1 within its signaling 

nanoclusters at the plasma membrane relative to H-Ras, thereby allowing K-Ras-GTP to induce 

Raf/Mek/Erk signaling more potently than H-Ras-GTP [160].  The location of individual Ras molecules is 

also critical to their differential signaling capacity.  Activated forms of both H-Ras and N-Ras are found at 

the Golgi and ER, owing to accumulation during posttranslational processing and retrograde transport 
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from the plasma membrane [139, 161, 162].  Although H-Ras has a diminished ability to activate Raf-1 at 

the plasma membrane compared to K-Ras, H-Ras can activate Raf-1 and downstream Erk activity from 

the ER, leading to subsequent transformation of cells [139].  Taken together, these data suggest a model 

in which the biological effects of increased RAS signaling are dependent upon the specific RAS molecule 

in question as well as its location within the cell. 

In addition to PI3K and RAF, RAS can also activate a variety of other signaling effector proteins 

including those involved in cell growth and function (PKC-ζ, RAC, β-catenin), cell fate decisions (PKC-γ, 

PDK1), and oncogenesis (JNK, RAN GTPase) [163-168].  It is likely that these effector proteins will also 

demonstrate differential susceptibility to activation by the individual Ras molecules.  In fibroblasts, K-Ras, 

but not H-Ras, activation leads to increased activation of the small GTPase protein Rac, as demonstrated 

by increased Rac-GTP in these cells [167].  Together, the variety of downstream effector proteins coupled 

with the potential variability of individual RAS molecules to activate these effectors suggests a robust 

infrastructure by which RAS can regulate cell growth and function.   

Despite a number of in vitro studies comparing the impact of Ras molecule activation on cell 

function, there are few studies comparing the consequence of Ras molecule hyperactivation in vivo.  

Recently, Haigis, et al., compared the consequences of activating individual Ras molecules in a mouse 

model of colon cancer [169].  Oncogenic mutations in K-RAS (K-RASG12D) occur in approximately 50% of 

colon cancers, whereas N-RAS mutations (N-RASG12D) occur only rarely (~5%).  In order to determine 

how each hyperactivated Ras molecule impacts the progression of colon cancers, genetically engineered 

mice were generated which, in cells expressing Cre recombinase, express a hyperactivated copy of Ras 

that is transcribed under the control of the endogenous Ras promoter.  These mice were also used in the 

current thesis and a full description of the constructs can be found in Chapter 2: Materials & Methods.  

Using a colon-specific promoter to drive Cre recombinase (and hyperactive Ras) expression in these 

cells, differential biological effects upon Ras molecule hyperactivation were observed.  K-Ras 

hyperactivation led to hyperproliferation of the colon epithelium in a Mek-dependent manner.  Conversely, 

N-Ras hyperactivation did not alter the growth of the epithelium but conferred increased resistance of 

these cells to programmed cell death (apoptosis).  This study was the first to provide evidence of 

differential biological function of the Ras molecules in vivo and provides an important foundation for 
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studies comparing Ras molecule hyperactivation, as in the current thesis.  Additionally, this work yielded 

an important tool for studying Ras molecule hyperactivation in vivo in a biological relevant, endogenous 

expression context.  

 

Activating Ras Mutations 

A relatively high proportion of cancers (30%) are known to result directly from activating RAS 

mutations [170].  Reflecting the differential capacities of the RAS molecules, mutations are not uniformly 

distributed across the individual RAS molecules.  An analysis of the Catalog of Somatic Mutations in 

Cancer (COSMIC) database identifies K-RAS as the most frequently mutated in cancers (22% of all 

tumors), followed by N-RAS (8%) and H-RAS (3%) [170].  While this partially results from the differential 

signaling capacity of the RAS molecules, this may also reflect the differential contributions of each RAS 

molecule to total RAS expression.  A previous analysis of multiple cancer cell lines determined that K-

RAS is more highly expressed than either its N-RAS or H-RAS counterparts [161].  Nevertheless, the 

RAS molecules are commonly associated with certain families of cancers.  K-RAS mutations are more 

commonly associated with cancers in tissues of endodermal origin, (lung, pancreas, colon) while N-RAS 

mutations occur most commonly in hematopoietic (neural crest-derived) disorders [171-174]. 

Aberrant RAS activation results from mutations at only three sites within the RAS genes: codons 

12, 13, and 61.  Although mutations at all three sites have been documented for each RAS molecule, the 

frequency of mutations at each site varies from molecule to molecule.  For example, 80% of activating 

mutations in K-RAS occur at codon 12 while 60% of N-RAS mutations occur at codon 61 with only 35% 

occurring at codon 12 [170].  In contrast, activating mutations in H-RAS occur in relatively equal 

proportions at both codons.  The frequency of activating mutations at these sites lies in the intrinsic 

requirement for the encoded amino acids in normal RAS-GAP function.  The catalytic domain of RAS, N-

terminal to the HVR and conserved between the RAS molecules, contains the amino acid sequences 

required for the intrinsic GTP-ase activity of RAS.  Of particular functional importance is the role of the 

switch I (amino acids 25-40) and switch II (amino acids 57-75) regions within the catalytic domain which 

undergo significant conformational changes during RAS activation/inactivation (Figure 1.6) [175-177].  A 

resolved crystal structure of AlF3-stabilized H-Ras in its transition state reveals the function of the mutated 
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sites in GTP hydrolysis.  In its transition state, an arginine residue from the GAP protein (arginine 789 on 

p120GAP) is inserted into the Ras active site to neutralize developing charges and stabilize the Ras switch 

II region [178].  This also stabilizes Ras glutamine 61, allowing the residue to participate in catalysis of the 

GTP γ-phosphate at the Ras active site.  Of particular interest is the close proximity of Ras glycine 12 

within Van der Waals distance of both Ras glutamine 61 and GAP arginine 789 within the Ras active site.  

This proximity precludes the addition of side chains, even one as small as alanine, without significant 

functional disruption to the Ras active site.  Presumably, this constraint also applies to Ras glycine 13, 

which is found in equally close proximity to these residues in the active site.    

The complexity of differential RAS signaling has frustrated the development of drug therapies 

aimed at reducing aberrant RAS pathway hyperactivation.  Preliminary studies aimed at blocking Ras 

processing and subsequent localization to the plasma membrane suggested that farnesyltransferase 

inhibitors (FTIs) could therapeutically abrogate hyperactivation of all three RAS molecules [179, 180]. 

Despite a strong biological foundation in support of moving these inhibitors to clinical trials, phase I trials 

using FTIs in the context of NF1 plexiform neurofibromas yielded a limited tumor response to the drug 

[181].  While in theory all RAS molecules should be inhibited by FTIs, in vitro biochemical studies 

comparing the efficiency of FTI treatments revealed that RAS processing is differentially inhibited across 

the three RAS molecules [182].  In line with preclinical results, H-RAS processing is successfully inhibited 

in the presence of FTIs.  However, both N-RAS and K-RAS can bypass this FTI inhibition by alternatively 

undergoing geranylgeranylation and subsequent processing and trafficking to the membrane.  A second 

pharmacological agent, lovastatin, primarily inhibits cholesterol biosynthesis but also inhibits RAS 

prenylation [183, 184].  To date, preclinical and clinical trials of lovastatin have focused on correcting 

learning and behavioral deficits in individuals affected by NF1 with mixed success [185-187].  Given the 

differential processing, localization, and signaling capacity of the individual RAS molecules, future 

therapeutic treatments will need to consider taking a more directed approach to inhibit RAS pathway 

hyperactivation.  In place of broad scale treatments such as FTIs and lovastatin, novel approaches will 

target individual downstream effector pathways as a more efficient and precise means by which to inhibit 

hyperactivation of the individual RAS molecules. 
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SUMMARY AND SIGNIFICANCE 

 The specification of NSCs towards neuron, astrocyte, and oligodendrocyte cell fates is a closely 

regulated process necessary to ensure normal brain development.  Disruptions in the signaling pathways 

described in this section, as demonstrated by genetic overexpression and knock-out studies, can radically 

skew NSC differentiation towards one lineage versus another to alter the overall composition of the brain.  

The RASopathy family of neurodevelopmental disorders further underscores the consequence of aberrant 

hyperactivation of a single regulatory pathway on normal brain development, resulting in abnormal neural 

functions, including learning deficits and behavioral abnormalities.  Despite the clear importance of this 

signaling pathway in brain development, the mechanisms underlying RAS pathway hyperactivation and 

its impact on brain development are incompletely characterized.  This is especially relevant to the function 

of NSCs, which give rise to the majority of cell types in the brain.  Given the capacity for the three RAS 

molecules (H-RAS, K-RAS, N-RAS) to localize and signal differently upon activation, the contribution of 

each RAS molecule must be characterized in the context of brain development.  In this thesis, we 

leverage a novel series of genetically-engineered mouse (GEM) strains to characterize the consequence 

of hyperactivation of the individual Ras molecules on brain development and the cell-intrinsic properties of 

NSCs.  This work has important implications for the development of therapeutic approaches designed to 

target aberrant RAS pathway hyperactivation in the brain.   
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Figure 1.1. Timeline of mammalian brain development.  The NSC pool differentiates into mature cell 

types during both embryonic and postnatal brain development in a temporally-regulated manner.  

Neurons develop first beginning at embryonic day 10.5 (E10.5) in the mouse.  Astrocytes (E15.5) and 

oligodendrocytes (postnatal day 1 (P1)) develop afterward to support these newly formed neurons.  The 

timeline of mammalian brain development was extensively characterized in the rat brain, correlating to the 

timepoints in parentheses. 
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Figure 1.2. Cell fate specification during the neurogenic period of brain development.  From E10.5-

E15.5, neurogenesis is specified by both cell-intrinsic and cell-extrinsic factors.  At the genetic level, the 

transcription factors Ngn1, Ngn2, Mash1, and Math3 promote transcription of neuronal genes.  BMP 

signaling promotes neurogenesis directly, while MEK/ERK5 may mediate autocrine pro-neurogenic 

signals via the C/EBP transcription factor.  At this stage, astrocyte cell fate decisions are inhibited by the 

pro-neuronal transcription factors Mash1 and Math3 and by CpG methylation (Me) in the promoter region 

of astrocyte-specific genes.  Ngn1 also sequesters the pro-astrocytic STAT transcription factor from 

astrocytes-specific genes.  
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Figure 1.3.  Cell fate specification during the gliogenic period of brain development.  Gliogenic 

signals proceed predominantly through the gp130 family of membrane receptors (in turquoise).  

Cardiotrophin-1 (CT-1) and Notch promote gliogenesis based on signals from neurons and surrounding 

neuroblast progenitors, respectively.  Leukemia inhibitory factor (LIF) and ciliary neurotophic factor 

(CNTF) activate STAT transcription factors via the Janus kinase (JAK) protein.  BMP promotes Smad1 

binding at astroglial gene promoters, which synergistically promotes astroglial gene transcription with 

STAT via the transcriptional coactivator protein P300.  BMP also promotes expression of the Id2, Id3, and 

Hes5 transcription factors, which inhibit the action of the pro-neurogenic transcription factors Mash1 and 

Ngn1. 
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Figure 1.4. The RAS signaling pathway.  The small G-protein RAS mediates downstream signaling 

initiated by growth factor (GF) binding at receptor tyrosine kinase (RTK) membrane proteins.  RAS 

mediates these signals by transitioning between an active GTP-bound state and an inactive GDP-bound 

state, with activation assistance from the guanine exchange factor (GEF) SOS and inactivation facilitated 

by the GTPase activating protein (GAP) neurofibromin.  There are three RAS molecules expressed in the 

mammalian brain that, when active, can promote cell proliferation and differentiation. 
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Figure 1.5. Genetic evolution of the RAS subfamily of genes.  The RAS protein subfamily is 

composed of related GTPase proteins that share sequence homology with the classical RAS proteins 

(blue), H-RAS, K-RAS, and N-RAS, which are the focus of this thesis.  As indicated by orthologous gene 

sequence analysis, the other members of this subfamily diverged from these classical RAS proteins and 

include E-RAS, expressed in embryonic stem cells, R-RAS, expressed in endothelial and smooth muscle 

cells, and M-RAS, expressed in muscle cells and some portions of the brain (hippocampus, cerebellum).  

Adapted from [188], points of genetic divergence are relative and not drawn to scale. 
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Figure 1.6. Genetic structure of the H-RAS, K-RAS, and N-RAS genes.  In humans, the three related 

RAS genes are located on separate chromosomes: H-RAS on 11p, K-RAS on 12p, and N-RAS on 1p.  

The first 165 amino acids are conserved among the three genes and encode the GTP-binding (P-loop) 

and effector-binding (switch I, II) regions of the RAS proteins.  The 25 amino acids at the C-terminus 

encode a hypervariable region (HVR) that underlies the differential processing, localization, and biological 

function of the RAS proteins.  The HVR contains a CAAX (C=Cysteine, A=aliphatic amino acids, X=amino 

acid) motif and secondary signals for divergent RAS molecule post-translational processing.  These 

secondary signals consist of a fatty acid addition (palmitoylation) at cysteines in the H-RAS (C181, C184) 

and N-RAS (C181) HVRs.  In contrast, the K-RAS HVR contains a poly-lysine (K) sequence that acts as a 

secondary signal.  Adapted from [189] and [188], numbers at the top indicate amino acid number (H-RAS 

and N-RAS are 189 amino acids in length, K-RAS is 188 amino acids in length).  
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Figure 1.7. Differential post-translational processing of the RAS molecules.  Upon translation, RAS 

molecules must undergo post-translational modifications to increase the affinity of the carboxy-terminus 

HVR for membrane localization.  Immediately following translation, all RAS molecules are located in the 

cytosol.  (1) To begin post-translational processing, the RAS molecules are farnesylated at the cysteine 

present within the CAAX motif at the C-terminus, localizing the protein to the endoplasmic reticulum 

where (2) the –AAX tripeptide is removed.  (3) The three RAS molecules undergo differential methylation 

by the isoprenylcysteine methyltransferase (ICMT) enzyme.  (4) H-RAS and N-RAS are trafficked through 

the Golgi apparatus where they undergo fatty acid modifications (palmitoylation).  (5) Following Golgi 

processing, H-RAS and N-RAS are trafficked to the plasma membrane while K-RAS is transported to the 

plasma membrane by an unknown, Golgi-independent mechanism. 
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Table 1.1.  Summary of neuro-cardio-facio-cutaneous syndromes. 
 
 

Disorder Incidence 
Mutated 
Genes 

Encoded 
Protein 

Occurrence 
within 

Disorder CNS Clinical Features 

Noonan Syndrome 1 in 1,000-
2,500 

PTPN11 SHP2 ~50% memory deficits 

SOS1 SOS1 ~20% learning deficits 

K-RAS K-RAS <5% language development 
delay 

N-RAS N-RAS <5% motor delay 

RAF1 RAF1 rare   

Neurofibromatosis 
Type 1 1 in 3,000 NF1 Neurofibromin 100% 

learning disabilities 

behavioral abnormalities 

tumor predisposition 
(glioma) 

Costello Syndrome rare H-RAS H-RAS 100% neurodevelopmental 
delay 

Legius Syndrome rare SPRED1 SPRED1 100% mild neurocognitive 
impairment 

Cardio-Facio-
Cutaneous 
Syndrome 

rare 

B-RAF B-RAF 75% learning disabilities 

MAP2K1 MEK1 
25% 

motor delay 

MAP2K1 MEK2 speech delay 

K-RAS K-RAS rare   
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INTRODUCTION 
 

The formation of the mammalian brain is a carefully orchestrated process in which the sequential 

development of mature cell types ensures the formation of the functional neuronal signaling networks 

required for adult brain function.  In the mouse, brain development is initiated by the specification of 

neurons beginning at embryonic day 10.5 (E10.5), with a neuronal network forming through E15.5.  In 

order to support this newly formed neuronal network, glial astrocytes develop beginning at E15.5, 

followed shortly thereafter by the formation of insulating oligodendrocytes at birth (postnatal day 1 (PN1)).  

The close association between glial cells and neurons is necessary to ensure the health, viability, and 

signaling capacity of these neuronal networks [1].  Despite their divergent functions in the mature brain, 

all three cell types (neurons, astrocytes, and oligodendrocytes) arise from a single population of 

multipotent neural stem cells (NSCs).  The specification of these diverse cell fates requires targeted 

inputs to direct NSCs to develop into one mature cell type versus another.  This suggests an extensive 

array of signaling mechanisms is required to drive NSCs towards the correct cell fates at the correct 

developmental time point.  Indeed, at developmentally-restricted time points, cell-extrinsic signaling 

factors (cardiotrophin-1 (CT-1), ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), bone 

morphogenic protein (BMP)) and cell-intrinsic factors (Mash1, Math3, Ngn and Olig transcription factors) 

cooperate to induce NSC adoption of neuronal, astrocytic, and oligodendroglial cell fates [2-10]. 

Despite research aimed at dissecting the cell type-specific and time-specific regulation of cell fate 

specification in the brain, the importance of the RAS signaling pathway in NSCs during brain development 

is often overlooked.  The critical function of this pathway is most apparent in a family of neuro-cardio-

facio-cutaneous neurodevelopmental disorders that are characterized by abnormal RAS pathway 

signaling.  In the central nervous system (CNS), these disorders often manifest in the form of learning 

difficulties, behavioral abnormalities, and tumor predisposition [11].  In normal cells, the small GTP-ase 

protein RAS functions as a molecular switch by binding GTP in its active state and retaining GDP in its 

inactive state.  When activated, RAS-GTP functions in mediating growth factor signaling and promoting 

cell proliferation and differentiation.  In the neuro-cardio-facio-cutaneous syndromes, commonly termed 

RASopathies, normal RAS signaling is altered by germline mutations that lead to aberrant hyperactivation 

of RAS pathway signaling.  In the mammalian brain, there are three RAS molecules expressed, H-RAS, 
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K-RAS, and N-RAS.  Despite significant overlap in their genetic and amino acid sequences, variation at 

the C-terminal hypervariable region (HVR) directs differential post-translational processing, localization, 

and downstream effector protein signaling of the three RAS molecules [12-17].  These differences 

ultimately underlie differential biological functions of these molecules in vivo [18].       

 In this chapter, we hypothesized that hyperactivation of the RAS molecules at different 

developmental time points might have differential effects on progenitor cell growth and the resulting 

cellular composition of the adult brain.  To test this hypothesis, we used Cre-driver strains (BLBP-Cre and 

GFAP-Cre) to drive hyperactivated Ras expression in progenitor cells at two distinct developmental time 

points.  Our laboratory has previously developed and characterized a BLBP-Cre mouse to drive Cre 

recombinase expression in NSCs beginning at E9.5 [19].  Cre-expressing cells overlap with cells positive 

for the NSC marker brain lipid binding protein (BLBP) in the brain ventricular regions (a location of 

resident NSCs in the brain) and also express the BLBP marker when grown in neurospheres in vitro.  

Moreover, BLBP-Cre-expressing cells can undergo multi-lineage differentiation to give rise to neurons, 

astrocytes, and oligodendrocytes in vivo and in vitro.  Together, these data are consistent with the 

conclusion that BLBP-Cre is expressed in the brain NSC population.  In contrast, the GFAP-Cre mouse 

expresses Cre recombinase under a human promoter for glial fibrillary acidic protein (GFAP), a protein 

expressed in neuroglial progenitor cells and mature astrocytes.  Our laboratory has previously 

demonstrated that Cre recombinase expression is initiated beginning at E14.5 in neuroglial progenitor 

cells which give rise to mature neurons, astrocytes, and oligodendrocytes [20, 21].  Both strains of mice 

were intercrossed with GEM strains containing a Cre-dependent construct to drive expression of a 

hyperactivated copy of the individual Ras molecules from their endogenous promoters in Cre-expressing 

cells.  Here, we demonstrate that K-Ras, but not H-Ras or N-Ras, hyperactivation in NSCs at E9.5 leads 

to the formation of more astrocytes in the brainstem at approximately three weeks of age (PN18).  In 

contrast, activating any of these Ras molecules in NSCs at E14.5 does not result in gross abnormalities in 

glial cell formation in the three week old brain.  Characterization of the neuroglial progenitor cell 

population in K-RasBLBP mice at early developmental timepoints (E12.5, PN1) revealed that K-RasBLBP 

mice have more Sox2+ NSCs in the embryonic hindbrain at E12.5 and have more Olig2+ glial restricted 

progenitor cells in the brainstem of PN1 mice compared to littermate controls.  Taken together, these data 
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indicate a temporally-restricted role for Ras molecule hyperactivation in altering NSC function such that 

more astrocytes are formed in the mature brain.     
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MATERIALS AND METHODS 
 

Mice. Activated H-Ras, K-Ras, or N-Ras allele expression was induced in NSCs in vivo by intercrossing 

BLBP-Cre [19] or GFAP-Cre [20] mice with mice containing Lox-Stop-Lox (LSL)-H-RasG12V (Supplemental 

Figure S2.1; generated by Dr. Kevin Haigis), LSL-K-RasG12D [22], or LSL-N-RasG12D [18] constructs 

knocked into the respective Ras locus. All mice were maintained on a C57Bl/6 background under an 

approved animal studies protocol at Washington University.  

 

Immunohistochemistry. Brain tissues were collected at postnatal day 18 (P18). Prior to tissue 

harvesting, mice underwent intracardiac perfusion with Ringer’s solution containing lidocaine and heparin 

followed by 4% paraformaldehyde. Tissues were subsequently post-fixed overnight in 4% 

paraformaldehyde, and then in 70% ethanol prior to tissue processing and embedding.  Paraffin-

embedded tissues were sectioned at 6µm thickness using a Leica RM2125 RTS microtome (Leica 

Microsystems Inc., Buffalo Grove, IL). Antigen retrieval and appropriate primary antibodies (Supplemental 

Table S2.1) were applied overnight at 4°C prior to the addition of species-appropriate horseradish 

peroxidase-conjugated secondary antibodies (Vector Laboratories, Burlingame, CA). Images of the pons 

(Supplemental Figure S2.2) were acquired on a Nikon Eclipse E600 light microscope (Nikon Instruments 

Inc., Melville, NY) equipped with a Leica EC3 camera. Six to ten mice were collected per genotype along 

with appropriate matched littermate controls. 

 

Immunofluorescence. Brain tissue was collected following perfusion and fixation in 4% 

paraformaldehyde as described above.  After overnight fixation, these tissues were subsequently 

dehydrated in 30% sucrose for at least 24 hours prior to embedding in OCT mounting media (Sakura 

Finetek, Torrance, CA) and freezing at -80°C. All frozen tissues were sectioned on a Reichert-Jung 

Cryocut 1800 (Reichert Technologies, Depew, NY) cryostat into 10µm-thick sections. Primary antibodies 

(Supplemental Table S2.1) were applied overnight at 4°C followed by incubation with species-appropriate 

AlexaFluor® 488 or 568 secondary antibodies (Life Technologies) and counterstained with DAPI.  For 

postnatal tissues, images of the pons (Supplemental Figure S2.2) were acquired using a Nikon Eclipse 

TE300 inverted fluorescent microscope with a Photometrics CoolSnap EZ camera (Photometrics, Tucson, 
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AZ) and compared to littermate controls.  Marker-positive cells were quantified as a percentage of total 

DAPI+ cells.  For embryonic brain sections, images were acquired of the ventricular region of the 

hindbrain (the future site of the brainstem pons) using a Leica DFC 3000G camera.  Since the high 

density of cells in these images precluded quantification of total DAPI+ cells, marker-positive cells were 

normalized to the total tissue surface area in the images using Leica Application Suite Advanced 

Fluorescence software.  

 

Data Analysis. Unless noted otherwise above, tissue and cell staining images were quantitated using 

ImageJ image analysis software (U.S. National Institutes of Health).  GraphPad Prism 5 software 

(GraphPad Software, La Jolla CA) was used for all statistical analyses in this study.  Specifically, outlier 

values were determined using the Grubbs outlier test and statistical significance (*p<0.05, **p<0.01, 

***p<0.001) was determined using an unpaired, two-tailed Student’s t-test. 
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RESULTS 
 

K-Ras activation in early embryonic NSCs leads to increased astrogliogenesis in vivo.  To define 

the impact of Ras hyperactivation on NSC function in vivo, we leveraged BLBP-Cre mice to target Cre 

recombinase expression (and Ras activation) to brain NSCs capable of multi-lineage differentiation 

beginning at E9.5 [19].  Expression of each individual activated Ras allele was accomplished using mice 

in which an oncogenic version was knocked into the endogenous Ras locus.  Specifically, these RasLSL 

(H-RasLSL-G12V, K-RasLSL-G12D, or N-RasLSL-G12D) mice contain a transcriptional stop element flanked by 

LoxP sites (Lox-Stop-Lox [LSL]) that prevents expression of the mutationally-activated Ras alleles in the 

absence of Cre expression.  Following Cre-mediated recombination, mutationally-activated Ras is then 

expressed from its endogenous promoter.  

At postnatal day 18 (PN18), there was a greater percentage of astrocytes in the brainstem of K-

RasBLBP, but not H-RasBLBP or N-RasBLBP, mice relative to littermate controls using the GFAP (1.8-fold) and 

S100β (1.2-fold) astrocyte markers (Figure 2.1A, 2.1B).  In contrast, there were no differences in APC+ 

oligodendrocytes (Figure 2.1C) or NeuN+ neurons (Figure 2.1D) or differences in brain or body weights 

across the three Ras genotypes relative to controls (Supplemental Figure S2.1). These data demonstrate 

that K-Ras, but not H-Ras or N-Ras, activation in NSCs leads to the generation of more astrocytes in vivo. 

 

Ras activation in later embryonic NSCs does not alter glial cell formation in vivo.  In order to 

determine if activating the individual Ras molecules in NSCs at a later brain developmental time point 

also increases gliogenesis in the brain, we intercrossed RasLSL mice with GFAP-Cre mice.  These mice 

express Cre recombinase in multipotent NSCs beginning at E14.5 [20, 21].  Upon Ras molecule 

activation in these NSCs, there was no difference in the percentage of brainstem GFAP+ astrocytes or 

APC+ oligodendrocytes in H-RasGFAP, K-RasGFAP, or N-RasGFAP mice at P18 (Figure 2.2A, 2.2B).  As with 

the RasBLBP mice, there were also no differences in the body or brain weights across the three Ras 

genotypes when compared to littermate controls (Supplemental Figure S2.2).  Taken together, these data 

demonstrate that K-Ras hyperactivation alone leads to increased astrocyte formation in vivo.  Moreover, 

this increase in astrocytes is dependent on K-Ras hyperactivation in NSCs at E9.5, but not at E14.5, 

suggesting that K-Ras* alters NSC function within a limited developmental time frame.   
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K-RasBLBP mice have more Sox2+ and Olig2+ progenitor cells in the developing embryonic and 

postnatal brain.  To determine how K-Ras hyperactivation at E9.5 alters the function of NSCs in the 

developing brain, we examined changes in two progenitor cell populations (Sox2+ NSCs, Olig2+ glial-

restricted progenitor cells) during brain development.  Specifically, we measured these progenitor cell 

populations at two developmental time points, shortly after K-RasBLBP activation (E12.5) and at birth 

(PN1).  At E12.5, the embryonic hindbrain represents the future location of the postnatal brainstem.  In 

this region, there was a 2-fold increase in Sox2+ NSCs per unit area (0.1mm2) observed in K-RasBLBP 

mice relative to littermate controls (Figure 2.3A, **p<0.01).  At PN1, there was no longer a difference in 

the percentage of Sox2+ NSCs in the brainstem of K-RasBLBP and littermate control mice (Figure 2.3B).  

However, at this time point there was a 1.9-fold increase in the percentage of Olig2+ glial-restricted 

progenitor cells (Figure 2.3C, ***p<0.001).  These data demonstrate that K-Ras hyperactivation in NSCs 

at an early developmental time point causes a brief expansion in the population of progenitor cells, which 

likely underlies the increase in astrocytes observed in the K-RasBLBP mouse brainstem at PN18.     
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DISCUSSION 
 
 The importance of RAS signaling during brain development is especially apparent in the context 

of the RASopathy family of neurodevelopmental disorders in which patients present with CNS defects 

such as neurocognitive deficits, learning difficulties, and behavioral abnormalities.  While all of the 

RASopathies result from aberrant RAS pathway hyperactivation, the gain-of-function mutations occurring 

in this pathway vary widely between the individual disorders.  Of particular interest to the current thesis, 

activating mutations do not occur uniformly within the RAS molecules.  For example, Costello Syndrome 

is caused exclusively by hyperactivating mutations in the H-RAS gene while hyperactivating mutations in 

K-RAS or N-RAS cause Noonan Syndrome in a small proportion (<5% each) of patients affected by this 

disorder.  This likely reflects the capacity of the individual RAS molecules to differentially alter cell growth 

and function during brain development.  To this end, it remains unclear how each individual RAS 

molecule contributes to the regulation of normal brain development.  Moreover, it is unknown if RAS 

pathway activation within different developmental time frames differentially disrupts normal brain 

development.  To address these questions, we expressed activated forms of H-Ras, K-Ras, and N-Ras in 

NSCs at both early and later stages of brain development.  This comparison allowed us to make several 

important observations about the Ras molecule-specific and time-specific consequences of Ras activation 

in the developing embryonic brain. 

First, we have demonstrated that K-Ras, but not H-Ras or N-Ras, activation in NSCs increases 

astrocyte formation in the postnatal brain (PN18).  Moreover, we have observed that this increase in K-

Ras*-mediated astrocyte formation occurs only when K-Ras is activated in NSCs early in brain 

development (E9.5).  When activated in NSCs later in brain development (E14.5), none of the three Ras 

molecules cause more astrocytes or oligodendrocytes to form in the postnatal brain.  These results 

suggest a time dependent role for activated K-Ras in specifying glial cell fate decisions.  Precedent for 

RAS-mediated regulation of cell fate decisions stems from several studies which examined the 

consequences of activation of Ras or its downstream Mek/Erk effectors on pro-neuronal and pro-glial fate 

decisions.  In favor of pro-neuronal Ras signaling, the Ras downstream effector protein Mek is required 

for the phosphorylation (activation) of the pro-neuronal C/EBP transcription factor in in vitro cortical NSCs 

[23].  This transcription factor directs expression of the neuron-specific gene Tα1 α-tubulin, causing these 
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NSCs to adopt a neuronal cell fate.  In vivo, expression of the Ras effector protein Erk2 is required for 

cortical NSCs to adopt a neuronal cell fate.  Conditional loss of the Erk2 gene in NSCs inhibits neuronal 

differentiation and instead results in increased astrocyte formation in the cortex, demonstrating that Erk2 

is required for neuronal differentiation in the cortex [24].  While these studies clearly identify a pro-

neurogenic role for Ras signaling in NSCs, other recent studies demonstrate a pro-gliogenic role for Ras 

signaling as well.  Introduction of activated H-Ras in cortical progenitor cells by in vivo electroporation 

inhibits cortical neurogenesis and increases progenitor cell proliferation and the adoption of glial cell fates 

[25].  Strikingly, the Ras downstream effector proteins Mek1/2 are critical for astrocyte fate specification in 

NSCs as loss of both genes in E11.5 NSCs in vivo causes the complete loss of astrocytes in the adult 

brain.  This loss of astrocytes can be rescued to wild-type levels by overexpression of Mek1 later in 

embryonic development (E15.5), indicating that Mek is both necessary and sufficient for astrocyte 

differentiation [26].  Although as a whole these studies suggest conflicting roles for Ras in either pro-

neurogenic or pro-glial differentiation programs, a recent study demonstrates that Ras can direct both cell 

fate decisions within the same progenitor cell population.  Upon expression of a constitutively activated 

form of Ras (RasG12V) in E12.5-E15.5 cortical progenitor cells in vivo, Ras inhibits expression of the pro-

neuronal transcription factor Ngn2 and induces expression of the traditionally pro-neuronal Mash1 

transcription factor in an Erk-dependent manner [27].  Subsequently, Mash1 is sufficient to specify both 

glial and neuronal cell fates in cortical progenitor cells in a Ras expression-dependent manner.  In cells 

expressing high levels of Ras, more Sox9+ proliferative glioblasts are formed, which differentiate into both 

astrocyte and oligodendrocyte precursor cells.  In contrast, moderate Ras expression induces some 

progenitor cells to become Dlx2+ GABAergic neurons.  Collectively, these studies define the capacity of 

Ras signaling to specify multiple cells fates during brain development.  Our data demonstrates that brain 

NSCs have a limited time frame in which they are sensitive to endogenously activated K-Ras signaling 

and suggests that K-Ras activation early in brain development might direct NSCs towards the glial 

(astrocyte) lineage rather than the neuronal lineage.  However, in vitro studies on the NSC cell-

autonomous consequences of Ras molecule activation (examined separately and discussed in Chapter 3) 

demonstrate that Ras does not alter NSC cell fate decisions in vitro.  This suggests that K-Ras activation 

at E9.5 is sufficient to alter NSC growth such that more astrocytes are formed by PN18. 
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 In support of this hypothesis, examination of Sox2+ and Olig2+ progenitor cells demonstrates that 

both cell populations are expanded at distinct time points during K-RasBLBP mouse brain development.  

The increase in Olig2+ restricted progenitor cells at an intermediate developmental time point (PN1) is 

significant as this transcription factor is found in astrocyte and oligodendrocyte progenitor cells and is 

required for their differentiation into mature glial cell types [28, 29].  It is important to note the similar fold-

change differences in these cell types between K-RasBLBP and littermate control mice at the different 

developmental time points.  At E12.5, Sox2+ NSCs are increased 2-fold in K-RasBLBP mice, Olig2+ 

progenitor cells at PN1 are increased 1.9-fold, and GFAP+ astrocytes at PN18 are increased 1.8-fold.  

This remarkably consistent increase in each cell type suggests a model in which K-Ras activation initiates 

a single, brief expansion of Sox2+ NSCs at E9.5.  Subsequently, these NSCs give rise to and similarly 

expand the proportion of Olig2+ restricted progenitor cells at PN1.  At this time point, there is no difference 

in the percentage of Sox2+ cells between K-RasBLBP and wild-type mice, further reinforcing the idea that 

the initial Sox2+ cells have all become Olig2+ cells by PN1.  Lastly, these glial restricted progenitor cells 

differentiate into an equal proportion of GFAP+ astrocytes in the postnatal brain.  

Taken together, this chapter defines a limited developmental window in which K-Ras activation 

alone impacts on the growth of NSCs in the developing brain.  While many studies have explored the 

activation of Ras downstream effector proteins such as Mek and Erk, this study is the first to not only 

compare the impact of endogenously-expressed activated forms of the three Ras molecules but also 

compares their activation at both early and late developmental time points within the same progenitor cell 

population.  Further studies are required to examine whether K-Ras activation alters NSC function in a 

cell-autonomous manner and the signaling mechanism by which Ras might alter NSC function.  These 

studies and their experimental outcomes are discussed in detail in Chapter 3. 
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Figure 2.1. K-Ras activation in E9.5 NSCs leads to increased gliogenesis in vivo.  At PN18,            

K-RasBLBP, but not H-RasBLBP or N-RasBLBP, mice harbor an increased percentage of astrocytes in the 

brainstem quantified using the (A) GFAP (1.8-fold, **p<0.01) and (B) S100β (1.2-fold) astrocyte markers. 

Representative images appear on the right (20x, scale bar=50µm).  There were no changes in the 

percentages of (C) APC+ oligodendrocytes or (D) NeuN+ neurons in the three RasBLBP genotypes relative 

to littermate controls. Error bars represent the standard errors of the mean. 
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Figure 2.2.  Ras activation in E14.5 NSCs does not alter glial cell formation in vivo.  At PN18,        

H-RasGFAP, K-RasGFAP, and N-RasGFAP mice do not harbor any differences in the percentage of brainstem 

(A) GFAP+ astrocytes and (B) APC+ oligodendrocytes relative to littermate controls. Error bars represent 

the standard errors of the mean.  
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Figure 2.3.  K-RasBLBP mice have more neuroglial progenitors during early brain development.     

(A) At embryonic day 12.5 (E12.5), K-RasBLBP mice have 2–fold more Sox2+ NSCs per 0.1mm2 in the 

developing hindbrain, the future site of the brainstem pons, compared to littermate controls (**p<0.01).  

Representative images appear to the right with Sox2+ cells in green and the dashed line demarking the 

ventricular surface (20x, scale bar=50µm).  (B) At postnatal day 1 (PN1), there is no difference in the 

percentage of Sox2+ NSCs in the brainstem, however, (C) K-RasBLBP mice have 1.9–fold more Olig2+ glial 

progenitor cells compared to littermate controls (***p<0.001).  Representative images appear to the right 

of their respective graphs with arrowheads identifying Sox2+ or Olig2+ nuclei (red), respectively.  DAPI 

(blue) marks total cells (20x, scale bar=50µm).         
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Supplemental Figure S2.1. Targeting strategy for the H-RasLSL-G12V mouse. Schematic representation 

of H-RasLSL-G12V mice at the endogenous H-Ras locus in murine embryonic stem cells.  A transcriptional 

stop site flanked by LoxP sites (lox-stop-lox [LSL]) was inserted upstream of a G12V activating point 

mutation (*) in the first coding exon of H-Ras. 
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Supplemental Figure S2.2. Imaging the postnatal brainstem pons. Six - 0.1mm2 images were 

acquired per postnatal brain within the reticular nucleus (dashed outline) of the brainstem. 
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Supplemental Figure S2.3. Ras activation in BLBP-Cre-expressing NSCs does not alter body or 

brain weight. Ras activation does not significantly change (A) body or (B) brain weight of H-RasBLBP, K-

RasBLBP, or N-RasBLBP mice relative to littermate controls. 
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Supplemental Figure S2.4. Ras activation in GFAP-Cre-expressing NSCs does not alter body or 

brain weight. Ras activation does not significantly change (A) body or (B) brain weight of H-RasGFAP, K-

RasGFAP, or N-RasGFAP mice relative to littermate controls. 
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Table S2.1. Antibodies for immunohistochemistry (IHC) and immunofluorescence (IF). 

Antibody Species  Application Antigen Retrieval Source Dilution 

APC mouse IHC 10mM Sodium Citrate Millipore,  
Billerica, MA 1:50 

GFAP mouse IHC 10mM Sodium Citrate Millipore 1:500 

NeuN mouse IHC 10mM Sodium Citrate Millipore 1:250 

Olig2 rabbit IF --- Millipore  1:500 

S100β rabbit IHC 10mM sodium citrate + 
1mM EDTA 

Sigma-Aldrich,  
St. Louis, MO 1:1,000 

Sox2 rabbit IF --- Millipore 1:1,000 

Sox2 mouse IF --- Abcam 1:1,000 
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CHAPTER 3  
 

RAS ACTIVATION IN NEURAL STEM CELLS IN VITRO 
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INTRODUCTION 
 

Neural stem cells (NSCs) represent a self-renewing population of cells found in the neurogenic 

regions of the embryonic and adult brain [1, 2]. In addition to forming new NSCs (symmetric division, self-

renewal, and proliferation), these stem cells can also give rise to all the major cell types in the brain, 

including neurons, oligodendrocytes, and astrocytes, through multi-lineage differentiation (asymmetric 

division) [3-6]. Each of these cell fate decisions (self-renewal versus differentiation) requires the activation 

of signaling pathways and transcriptional programs [3, 7-11]. In this regard, previous studies have 

identified numerous potential regulatory mechanisms involving p53, bmi1, sonic hedgehog (SHH), Notch, 

p27, REST/NSRF, epidermal growth factor receptor, and others [12-23]. While many of these signaling 

molecules may be responsible for NSC growth and differentiation, it is not clear which of the many 

effectors are important for the pathogenesis of diseases characterized by abnormal brain NSC function.  

A number of neurodevelopmental disorders, including neurofibromatosis type 1 (NF1), Costello 

syndrome, and Noonan syndrome, are caused by germline mutations in genes that lead to 

hyperactivation of the Ras proto-oncogene [24-27].  Small GTPase proteins, like Ras, act as molecular 

switches by alternating between active, GTP-bound and inactive, GDP-bound states [28]. In each of the 

above neurogenetic conditions, there is more Ras in the active GTP-bound form, leading to increased 

Ras pathway signaling. The critical importance of Ras to brain development is underscored by mouse 

genetic knockout studies, in which de-regulated Ras signaling is associated with brain developmental 

defects or embryonic lethality [29-33]. 

Ras exists as three separate molecules (H-Ras, K-Ras, and N-Ras) in the mammalian brain. 

Despite 85% similarity in amino acid sequence across all of the Ras molecules, Ras molecule-specific 

function is dictated by unique hypervariable regions (HVRs) encoded by distinct C-terminal 25-amino acid 

sequences. While the HVR of all Ras molecules contains a CAAX-box motif which is isoprenylated to 

allow for proper targeting of Ras to the plasma membrane (PM) [34], differential palmitoylation directs 

their trafficking to the PM via the Golgi (H-Ras, N-Ras) or another, unknown mechanism (K-Ras) [35, 36]. 

This differential processing directs the different Ras molecules to distinct domains within the PM [37], and 

is thought to underlie their differential capacities to signal to downstream effector proteins in different 

cellular contexts [34, 38, 39].  
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Based on these potential differences, we hypothesized that H-Ras, K-Ras, and N-Ras may 

differentially regulate brain NSC growth and differentiation. Using in vitro approaches, we demonstrate 

that hyperactivation of K-Ras, but not H-Ras or N-Ras, increases brain NSC proliferation without altering 

multi-lineage differentiation. Moreover, we report that K-Ras controls brain NSC growth in a Raf-

dependent, but Mek-independent manner, through binding and inhibition of retinoblastoma protein (Rb) 

function. Collectively, these results demonstrate that the Ras molecules have distinct biological effects on 

brain NSC function. 
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MATERIALS AND METHODS 
 

Mice. NSCs for in vitro culture were collected from the brainstem of mice containing Lox-Stop-Lox (LSL)-

H-RasG12V (Supplemental Figure S2.1; generated by Dr. Kevin Haigis), LSL-K-RasG12D [40], or LSL-N-

RasG12D [41] constructs knocked into the respective Ras locus.  All mice were maintained on a C57Bl/6 

background in accordance with approved animal studies protocols at Washington University.  

 

Neural Stem Cell (NSC) Culture. NSCs were generated from brainstems of PN1 mice as previously 

reported [42]. Briefly, dissociated brainstem tissue was cultured for five days in NSC-selective media 

supplemented with 1% N2 (Life Technologies, Grand Island NY), 2% B27 (Life Technologies), 20ng/mL 

fibroblast growth factor (FGF) (Sigma-Aldrich, St. Louis, MO) and 20ng/mL epidermal growth factor (EGF) 

(R&D Systems, Minneapolis, MN) in ultra-low attachment dishes (Corning, Corning, NY). The expression 

of activated H-Ras, K-Ras, or N-Ras molecules was induced in NSCs following Ad5-Cre (University of 

Iowa Gene Transfer Vector Core, Iowa City, IA) infection. Ad5-LacZ-infected NSCs were used as 

controls. Ras activity was quantified using a Raf1-Ras binding domain (RBD) affinity chromatography 

assay kit (Millipore, Billerica, MA). NSC growth was assessed by direct cell counting following the seeding 

of 5,000 NSCs (in triplicate) in 24-well ultra-low attachment dishes containing NSC media (Corning). Cells 

were typsinized and counted using a hemocytometer after five days in culture. For all NSC growth and 

differentiation assays, experiments were performed on NSCs maintained in culture for fewer than three 

passages.   

 

Immunofluorescence. Neurospheres were collected after five days in culture, washed twice in PBS, and 

fixed for 30 minutes in 4% paraformaldehyde.  Following fixation, neurospheres were dehydrated in 30% 

sucrose for at least 24 hours prior to embedding in OCT mounting media (Sakura Finetek, Torrance, CA) 

and freezing at -80°C. All neurospheres were sectioned on a Reichert-Jung Cryocut 1800 (Reichert 

Technologies, Depew, NY) cryostat into 10µm-thick sections. Primary antibodies (Supplemental Table 

S3.1) were applied overnight at 4°C followed by incubation with species-appropriate AlexaFluor® 488 or 

568 secondary antibodies (Life Technologies) and counterstained with DAPI.  At least eight neurospheres 

of similar diameter and cell number were imaged per sample using a Nikon Eclipse TE300 inverted 
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fluorescent microscope with a Photometrics CoolSnap EZ camera (Photometrics, Tucson, AZ) and 

compared to LacZ-infected control cells.  

  

Immunocytochemistry. Differentiation was assessed using methods previously published [17].  Briefly, 

150,000 NSCs were plated in triplicate and allowed to adhere onto 24-well plates coated with 50µg/mL 

poly-D-lysine (Sigma-Aldrich) and 10µg/mL fibronectin (Life Technologies) in NSC media supplemented 

with 1% N2, 2% B27, and 1% fetal bovine serum.  After six days in culture, adherent cells were fixed for 

15 minutes in 4% paraformaldehyde and stained using primary antibodies listed in Supplemental Table 

S1.  Cells were incubated with species-appropriate AlexaFluor® 488 or 568 secondary antibodies (Life 

Technologies) and counterstained with DAPI.  For the EdU studies, 20µM 5-ethynyl-2'-deoxyuridine (EdU; 

Life Technologies) was added to the culture media 3 hours prior to fixation.  EdU was detected using the 

Click-IT® EdU Assay Kit (Life Technologies) according to manufacturer’s protocol prior to 

immunocytochemistry staining.  Each experiment was repeated a minimum of three times using NSCs 

harvested from three independently-generated litters. 

 

Immunoprecipitation. Raf-1 immunoprecipitation was performed on whole cell lysates in a binding buffer 

containing 20mM HEPES (pH 7.9), 40mM KCl, 1mM MgCl2, 0.1mM EGTA, 0.1mM EDTA, 0.1mM 

dithiothreitol, 0.1 NaF, 0.1mM Na3VO4, 0.5% IGEPAL, and 3mg/mL BSA. Total protein (500µg) in 400µl of 

binding buffer was pre-cleared with 30µl agarose protein G beads (Cell Signaling) for 2 hours at 4°C on a 

rotor. After removing the beads, lysates were incubated with Raf-1 monoclonal antibodies (Millipore) 

overnight at 4°C on a rotor. Agarose beads were added to these lysates, and incubated for 2 hours on a 

rotor at 4°C. The beads were washed three times in 500µl binding buffer, boiled in 20µl 4x Laemmli 

buffer, and separated on an 8% polyacrylamide gel for Western blotting.  Raf-1 pull-down was confirmed 

by blotting with a different Raf-1 antibody (Cell Signaling).  Each experiment was repeated a minimum of 

three times using NSCs harvested from three independently-generated litters. 

 

Flow Cytometry Analysis. Neurospheres were trypsinized and then fixed overnight in 50% ethanol in 

PBS containing 0.02% IGEPAL (Sigma-Aldrich). Following fixation, cells were washed three times in PBS 
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prior to trypsinization ((0.003% trypsin type-II (Sigma-Aldrich) in DNA analysis solution (0.1% IGEPAL, 

0.05% spermine tetrahydrochloride (Sigma-Aldrich) in 3.9mM sodium citrate buffer)) for 10 minutes at 

room temperature. Cells were subsequently incubated for 10 minutes at room temperature in 

trypsinization inhibitor solution (0.05% trypsin inhibitor type-O (Sigma-Aldrich), 0.001% RNase A (Sigma-

Aldrich) in DNA analysis solution) prior to staining (0.02% propidium iodide (Sigma-Aldrich), 0.015% 

spermine tetrachloride in DNA analysis solution) for 10 minutes at room temperature.  

Apoptosis was measured using trypsinized neurospheres. Live cells were stained for annexin V 

and propidium iodide using an Annexin V-FITC Apoptosis Detection Kit (Abcam, Cambridge, MA) 

according to manufacturer’s protocol. All samples were quantitated on a Beckton Dickinson FACScan 

machine (Beckton Dickinson, Franklin Lakes, NJ) using FlowJo acquisition and analysis software 

(TreeStar Inc., Ashland, OR). 

 

Western Blotting. Western blotting was performed as previously described [43] with appropriate primary 

antibodies (Supplemental Table S3.2). Detection was achieved using species-appropriate HRP-linked 

secondary antibodies (Cell Signaling, Danvers, MA) and enhanced chemiluminescence imaging (BioRad) 

using the ChemiDoc-It Imaging System (UVP, Upland, CA).   

 

Pharmacological Inhibition Studies. Optimal drug concentrations for all inhibitor studies were 

experimentally determined by dose escalation (data not shown). Following optimization, NSCs were 

treated with either 6.5µM GGTI-286 (Millipore), 200nM AZ628 (Selleck Chemicals, Houston TX), 2nM 

PD0325901 (Selleck Chemicals), 50nM AZD0530 (Selleck Chemicals), 20µM SB203580 (Selleck 

Chemicals), or 5 µM RRD-251 (Sigma-Aldrich) for five days in culture. Control cells were treated with 

DMSO.    

 

Data Analysis. Tissue and cell staining images were quantitated using ImageJ image analysis software 

(U.S. National Institutes of Health). The Grubbs outlier test was used to determine statistical outliers and 

statistical significance (*p<0.05, **p<0.01, ***p<0.001) was determined using an unpaired, two-tailed 

Student’s t-test and GraphPad Prism 5 software (GraphPad Software, La Jolla CA).  
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RESULTS 
 

K-Ras activation does not alter NSC astrocyte differentiation. Based on the observed increase in 

astrogliogenesis in vivo described in Chapter 2, we employed neurosphere cultures generated from the 

brainstems of PN1 pups infected with adenovirus expressing either LacZ (control cells, CTL) or Cre 

recombinase (activated H-Ras, K-Ras, or N-Ras, denoted H-Ras*, K-Ras*, and N-Ras*, respectively) to 

determine whether K-Ras activation results in a change in brain NSC astrocyte differentiation. Active Ras-

GTP pull-down by Raf1-RBD affinity chromatography confirmed that each of the Ras molecules was 

comparably activated following Ad5-Cre infection (Figure 3.1A).  Upon in vitro differentiation of these 

NSCs over six days in adherent culture, only K-Ras*-expressing NSCs exhibited increased numbers of 

GFAP+ astrocytes (1.8-fold) relative to controls (Figure 3.1B). Importantly, K-Ras*-expressing NSC 

cultures also showed an increase in the total number of DAPI+ cells (1.8-fold) compared to control cells 

(Figure 3.1C).  The increase in GFAP+ cells proportional to total DAPI+ cells resulted in no change in the 

percentage of GFAP+ cells compared to controls (Figure 3.1D), indicating that K-Ras activation does not 

directly change NSC astrocyte differentiation. 

Since we observed no change in astrocyte differentiation, we next sought to determine whether 

the increase in astrocyte numbers following K-Ras* expression reflected an increase in the NSC pool 

during differentiation. This was assayed by EdU incorporation in the six-day differentiation assay, 

observing differentiating cells at both early (one day post-plating) and late (five days post-plating) time 

points in the assay (Figure 3.2A).  In addition to EdU incorporation, markers for NSCs (Sox2) and 

astrocytes (GFAP) were used to measure changes in both populations throughout the differentiation 

assay. After one day in culture, K-Ras*-expressing cells were proliferating 7.4-fold more than their control 

counterparts (Figure 3.2B). These proliferating cells were exclusively Sox2+ NSCs, and not GFAP+ 

astrocytes (Figure 3.2C). At this time point, there was no difference in the percentage of control or K-Ras* 

cells positive for Sox2, however, a significantly smaller percentage of K-Ras*-expressing cells were 

GFAP+ compared to control cells (Figure 3.2D).  After five days in culture, the K-Ras*-expressing cells 

were still proliferating 2.2-fold more than controls (Figure 3.2E), however, there was no difference in 

proliferating NSCs or astrocytes (Figure 3.2F).  Importantly, a significantly higher percentage (1.6-fold) of 

K-Ras*-expressing cells were Sox2+ NSCs relative to control cells, while there was no difference in the 
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percentage of GFAP+ astrocytes in either K-Ras* or control cell populations (Figure 3.2G). Taken 

together, these data indicate that K-Ras activation increases the NSC pool, rather than driving NSCs 

towards astrocyte differentiation.  

 

K-Ras activation increases NSC proliferation in vitro. To determine whether the individual Ras* 

molecules differentially increase NSC growth in vitro, we directly counted NSCs after five days in culture. 

Similar to the previous in vitro data, K-Ras*-, but not H-Ras*- or N-Ras*-, expressing NSCs grew 2.3-fold 

more than controls (Figure 3.3A). Immunofluorescence staining of sectioned neurospheres after five days 

in neurosphere culture confirmed that K-Ras*-, but not H-Ras*- or N-Ras*-, expressing neurospheres 

have a 1.6-fold increase in the percentage of Ki67+ proliferating cells (Figure 3.3B). To determine whether 

increased K-Ras* NSC growth results from increased proliferation or decreased cell death, we utilized 

flow cytometry to analyze both potential etiologies in the same NSC samples. Using propidium iodide to 

quantitatively stain cellular DNA content, fewer K-Ras*-expressing NSCs were found in the pre-cycling 

G0/G1 phase (-4.6%) of the cell cycle relative to controls, while more K-Ras*-expressing NSCs were found 

in S phase (+3.6%) and G2/M phase (+2.6%) (Figure 3.3C, 3.3D). Using annexinV staining to identify cells 

undergoing programmed cell death (apoptosis), we found no difference between live and apoptotic K-

Ras*-expressing and control NSCs (Figure 3.3E, 3.3F). These data demonstrate that K-Ras activation 

enhances NSC growth by increasing proliferation rather than by decreasing apoptosis. Together, these in 

vitro assays are consistent with a model that K-Ras hyperactivation promotes an approximately 1.7-fold 

increase in NSC proliferation, expanding the NSC pool, and resulting in a proportional increase (1.8-fold) 

in astrocyte formation upon differentiation (Figure 3.3G).    

 

K-Ras increases NSC proliferation in a Raf-dependent, but Mek-independent, manner. To define the 

signaling pathway responsible for activated K-Ras control of NSC proliferation, we performed a series of 

pharmacological inhibitor studies. First, we confirmed that K-Ras activation is required for K-Ras*-induced 

NSC hyperproliferation using the GGTI-286 geranylgeranyltransferase inhibitor. Following GGTI-286 

(6.5µM) treatment, the hyperproliferation of K-Ras* NSCs was reduced to that of controls, as measured 

by direct cell counting (Figure 3.4A). Second, following inhibition with the pan-Raf inhibitor AZ628 
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(200nM), K-Ras*-induced NSC hyperproliferation was also attenuated to that of control cells (Figure 

3.4B). Consistent with Ras- and Raf-mediated hyperactivation, increased Erk activation was observed in 

K-Ras*-expressing NSCs (Figure 3.4C). Third, to determine whether Raf/Mek signaling was responsible 

for K-Ras*-induced NSC hyperproliferation, K-Ras*-expressing NSCs were treated with the PD0325901 

(PD901; 2nM) Mek inhibitor. Despite reduction of Erk activity to control cell levels, PD901 treatment did 

not reduce K-Ras*-mediated NSC hyperactivation to control cell levels (Figure 3.4D).  

This unexpected result prompted an examination of potential Raf effector proteins. While we 

observed no change in Akt, Jnk, PKC-γ, PKC-ζ, Ran, β-catenin, and Yap activity, Src and p38MAPK were 

hyperactivated (increased SrcY416 and p38MAPKT180/Y182 phosphorylation, respectively) in K-Ras*-

expressing NSCs compared to controls (Supplemental Figure S3.1A, S3.1B). However, pharmacologic 

inhibition of Src (50nM AZD0530) or p38MAPK (20µM SB203580) activity did not reduce K-Ras*-induced 

NSC hyperproliferation (Supplemental Figure S3.1C, S3.1D). Similarly, neither GGTI-286 (Ras inhibitor) 

nor AZ628 (Raf inhibitor) treatment reduced Src and p38MAPK hyperactivation (Supplemental Figure 

S3.1E). Collectively, these data demonstrate that K-Ras* expression increases NSC proliferation in a Raf-

dependent, but Mek-, Src-, and p38MAPK-independent, manner.   

 

Raf-1 inhibition of Rb is responsible for K-Ras-induced NSC proliferation.  To determine how K-

Ras* expression regulates NSC proliferation, we focused on potential Raf-dependent mechanisms. 

Previous studies have shown that Raf-1 (c-Raf) directly binds the retinoblastoma tumor suppressor 

protein (Rb) to relieve Rb-mediated suppression of cell cycle progression [44]. We found that endogenous 

Rb bound to Raf-1 in K-Ras*-expressing NSCs as assessed by Raf-1 immunoprecipitation (Figure 3.5A). 

Based on these findings, we employed a small peptide inhibitor, RRD-251, previously shown to disrupt 

the Raf-1/Rb interaction [45, 46], to demonstrate that this interaction is required for K-Ras*-mediated NSC 

hyperproliferation. Treatment of K-Ras*-expressing NSCs with RRD-251 (5 µM) reduced K-Ras*-induced 

NSC hyperproliferation to control levels (Figure 3.5B). Together, these data establish a new model for K-

Ras* regulation of NSC proliferation, in which K-Ras-GTP activation of Raf leads to Rb binding and 

inhibition, and leads to increased G0/G1-S transition and proliferation (Figure 3.5C). 
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DISCUSSION 

 
Despite the central role of Ras in regulating embryonic development, the three Ras molecules do 

not equally impact on this process. For example, bi-allelic K-Ras deletion in mice results in lethality 

between 12 and 14 days of gestation, resulting from brainstem defects, hematopoietic abnormalities, and 

organ failure [29, 30]. In striking contrast, H-Ras or N-Ras deletion, either separately or in combination, 

does not interfere with normal embryonic development and results in healthy adult mice, indistinguishable 

from wild-type littermates [47, 48]. These differential effects are further highlighted by observations made 

in human neurogenetic disorders characterized by germline mutations in genes whose protein products 

regulate Ras activity (collectively termed “RASopathies”). In these RASopathies, which include Costello 

syndrome, Noonan syndrome, and neurofibromatosis type 1 (NF1), Ras activation is abnormally elevated. 

However, the causative RAS mutations are different: In Costello syndrome, H-RAS mutations [26] have 

been reported, whereas Noonan syndrome patients harbor K-RAS mutations [27], each with varying 

neurocognitive delays and learning disabilities. Similarly, in NF1, loss of Nf1 gene expression in mouse 

brain NSCs from the third ventricle, lateral ventricle, and brainstem all lead to Ras hyperactivation [17, 42, 

49]. While it is not known which Ras molecules are hyperactivated in these Nf1-deficient NSCs, only K-

Ras activity is increased following Nf1 loss in astrocytes [50]. This differential Ras activation is 

underscored by the finding of oncogenic K-RAS, but not H-RAS or N-RAS, mutations in pediatric brain 

tumors [51, 52], and prompted us to investigate the impact of each individual Ras molecule on brain NSC 

function. In this chapter, we make several important observations. 

Herein, we demonstrate that activated K-Ras, but not H-Ras or N-Ras, increases the proliferation 

of brain NSCs. While no prior studies have systematically compared the three Ras molecules in the brain, 

previous work in other tissue types revealed divergent functions of these Ras molecules. In neural crest-

derived hematopoietic cells, activated N-Ras is the primary regulator of cell self-renewal, proliferation, 

and cell fate decisions [53-56], whereas activated K-Ras primarily drives cell growth in tissues arising 

from the endoderm (lungs, colon) [40, 57]. Similarly, in endoderm-derived stem cells, overexpression of 

active H-RasG12V promotes cell differentiation and suppresses cell growth, in contrast to K-RasG12V 

overexpression that conversely promotes stem cell proliferation and inhibits cell differentiation [58]. 

Moreover, K-RasG12D expression increases the proliferation of an intestinal stem cell population, whereas 
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N-RasG12D expression increases the resistance of these cells to apoptosis without changing cell 

proliferation [41]. Lastly, K-RasG12D expression has also been reported to cause bronchioalveolar stem 

cell hyperproliferation in the lung [57]. Taken together, these studies identify K-Ras* as a potent driver of 

progenitor cell proliferation, which is consistent with our finding that only K-Ras activation promotes brain 

NSC proliferation.  

Given the high level of sequence similarity between the three Ras molecules and their capacity to 

signal to a similar subset of downstream effector proteins, it seems counterintuitive that these molecules 

should have such divergent functions. However, these differences are conferred by unique 25-amino 

acid, C-terminal HVRs. During post-translational processing, the Ras molecules are first prenylated by 

farnesyltransferase, which allows for trafficking to the endoplasmic reticulum [59, 60]. After this step, Ras 

molecule post-translational processing diverges: K-Ras becomes more highly methylated than its H-Ras 

and N-Ras counterparts [35]. H-Ras and N-Ras are then palmitoylated and trafficked to the plasma 

membrane through the Golgi apparatus while methylated K-Ras is trafficked to the plasma membrane 

independent of the Golgi [36, 61]. While the exact mechanism of K-Ras trafficking is unknown, its 

transport is dependent on a polybasic, lysine-rich portion of the K-Ras HVR not found within the HVRs of 

H-Ras or N-Ras [62]. Following its localization at the plasma membrane, each Ras molecule occupies a 

different microdomain: N-Ras is found in lipid raft domains, while K-Ras localizes to non-lipid raft portions 

of the membrane [37, 63]. H-Ras occupies lipid raft domains when inactive, but translocates to non-lipid 

raft membrane upon activation (in areas distinct from those occupied by K-Ras) [37, 64].  In addition, H-

Ras and N-Ras are also capable of signaling to downstream effectors from the Golgi, a capability not 

shared by K-Ras [65, 66]. Collectively, the divergent processing and localization of the Ras molecules 

likely account for their capacities to signal to different subsets of downstream proteins to generate 

different biological outcomes [38, 39]. 

Ras/Raf signal transduction most commonly operates through Raf activation of Mek1/2 [67-69]. In 

striking contrast to this canonical signaling mechanism, we demonstrate that K-Ras* regulates brain NSC 

proliferation in a Raf-dependent manner that operates independent of Mek. Precedent for Mek-

independent Ras/Raf growth control derives from several studies performed in numerous different cell 

types.  First, Raf-1 overexpression has been shown to increase cell survival by inhibiting ASK-1 function 
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in the presence of the Mek pharmacological inhibitors PD98059 and U0126 [70]. Second, K-Ras*-

expressing DLD-1 cells continue to proliferate despite treatment with the Mek inhibitor CI-1040. 

Proliferation of these cells was only inhibited in the presence of the Raf inhibitor AZ628 [41]. Third, protein 

binding discovery studies have revealed several other potential Raf binding partners, including the 14-3-

3-zeta protein, which modulates Raf signaling during cell stress through its association with keratin 8/18 

[71, 72]. Fourth, both B-Raf and Raf-1 associate with PKC-theta to inactivate the pro-apoptotic Bcl-2 

family protein BAD and increase cell survival [73]. While these studies collectively identify a role for Raf in 

cell growth, we found that K-Ras-dependent brain NSC hyperproliferation depends on the productive 

interaction between Raf-1 and the retinoblastoma (Rb) cell cycle regulator [44].  

The Rb tumor suppressor protein regulates G0/G1 to S phase cell cycle progression. In quiescent 

cells, Rb prevents cell cycle progression by inhibiting the expression of the E2F transcription factors to 

prevent DNA synthesis. Upon growth factor stimulation, this inhibition is relieved, allowing cells to 

progress through the cell cycle. Using genetic and biochemical techniques to alter Ras expression in the 

presence or absence of Rb expression, early work established a hierarchy for Ras/Rb/cell cycle 

regulation, whereby Ras inhibition of Rb function led to increased cell cycle progression (proliferation) [74, 

75]. The mechanism underlying this Ras/Rb connection was identified when direct binding between Raf-1 

and Rb was revealed [44]. Interrupting this interaction with the RRD-251 small peptide has been shown to 

block tumor cell growth in numerous model systems [44-46, 76-78]. Consistent with these findings, we 

demonstrate that K-Ras*-induced brain NSC hyperproliferation is dependent on Raf/Rb binding and 

inhibition of Rb function.     

Taken together, using a novel collection of conditional Ras GEM strains and derivative brain 

NSCs, we establish differential effects of the three Ras molecules on brain NSC proliferation. Moreover, 

the elucidation of a non-conventional mechanism underlying Ras/Raf-mediated brain NSC growth control 

suggests additional determinants relevant to the study of diseases characterized by de-regulated RAS 

function. Future studies characterizing differences in Ras molecule function in disease-pertinent models 

will be critical to further defining and ultimately treating these disorders. 
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Figure 3.1. K-Ras activation does not affect NSC multi-lineage differentiation. (A) Ras activation 

(Ras-GTP) is increased in all three Ras* NSC populations after Cre expression. (B) K-Ras*-, but not      

H-Ras*- or N-Ras*-, expressing NSCs have a greater number of GFAP+ astrocytes compared to controls 

(1.8-fold, ***p<0.001). Graphs of representative experiments are shown with representative images 

included (GFAP+ (green) and DAPI+ (blue), 20x, scale bar=50µm). (C) K-Ras*, but not H-Ras* or N-Ras*, 

-expressing NSCs also give rise to more total DAPI+ cells compared to control cells (1.8-fold, ***p<0.001). 

(D) K-Ras*-, H-Ras*-, and N-Ras*-expressing NSCs do not have significantly different percentages of 

GFAP+ astrocytes compared to controls. Error bars represent the standard errors of the mean. 
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Figure 3.2. K-Ras activation increases NSC proliferation during differentiation. (A) EdU labeling at 

day 1 and day 5 post-plating was employed to determine whether Sox2+ NSCs or GFAP+ astrocytes 

proliferate during NSC differentiation. (B) K-Ras*-expressing cells proliferate 7.2-fold more than control 

cells at day 1 (***p<0.001). (C) These EdU+ proliferating cells are exclusively Sox2+ NSCs, and not 

GFAP+ astrocytes. (D) At day 1, there is no significant difference in the percentage of Sox2+ NSCs 
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between K-Ras* and control cell populations, however, there is a significant decrease in GFAP+ 

astrocytes in K-Ras*-expressing cells relative to controls. (E) At day 5, K-Ras*-expressing cells proliferate 

2.2-fold more than controls (*p<0.05). (F) There was no difference between proliferating NSCs (Sox2+) 

and astrocytes (GFAP+) in K-Ras*-expressing versus control cells.  (G) At day 5, K-Ras*-expressing cells 

have a 1.6-fold increase in the percentage of Sox2+ NSCs compared to control cells, while there is no 

difference in the percentage of GFAP+ astrocytes between the two cell populations (**p<0.01).  All graphs 

are representative experiments; error bars represent the standard errors of the mean.  Representative 

images for (D) and (G) appear below their respective graphs (20x, scale bar=50µm).  Arrowheads mark 

representative EdU+/Lineage+ double-positive cells, arrows mark cells positive for GFAP alone, and 

asterisks (*) mark cells positive for EdU alone. 
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Figure 3.3. K-Ras activation increases NSC proliferation in vitro.  (A) K-Ras*-, but not H-Ras*- or N-

Ras*-, expressing NSCs have increased growth as measured by direct cell counting (2.3-fold, 

***p<0.001). (B) K-Ras*-, but not H-Ras*- or N-Ras*-, expressing neurospheres have an increased 

percentage of Ki67+ cells relative to controls (1.6-fold, ***p<0.001, 20x, scale bar=50µm). Graphs include 

representative experiments. (C, D) Flow cytometry of fixed propidium iodide (PI)-stained NSCs 

demonstrates an increased percentage of K-Ras*-expressing NSCs in S phase (+3.6%) and G2/M phase 

(+2.6%) than in G0/G1 phase of the cell cycle (-4.6%) compared to control cells (*p<0.05. ***p<0.001).  (C) 
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Shows one representative experiment, while (D) includes the data from all four experiments. (E, F) Flow 

cytometry of live NSCs shows no difference in the percentage of live (propidium iodide-, annexin V-) 

versus apoptotic (annexin V+) cells. (E) Shows one representative experiment, while (F) includes the data 

from all four experiments. (G) Incorporating the data from all in vitro assays suggests a model in which K-

Ras hyperactivation promotes NSC proliferation (1.7-fold) which leads to a proportional increase in 

astrocyte formation (1.8-fold). 
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Figure 3.4. K-Ras regulates NSC proliferation in a Raf-dependent, but Mek-independent, manner. 

K-Ras*-induced NSC hyperproliferation is reduced to control levels following pharmacological inhibition of 

(A) Ras (GGTI-286, 6.5µM) (*p<0.05) and (B) Raf (AZ628, 200nM) (**p<0.01). (C) The downstream Ras 

effector, Erk1/2 (p-ErkT202/Y204) is hyperactivated in K-Ras*-expressing NSCs relative to controls. (D) K-

Ras*-induced NSC hyperproliferation following pharmacological inhibition with the Mek inhibitor 

PD0325901 is not reduced back to control cell levels (PD901, 2nM).   
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Figure 3.5. K-Ras regulates NSC proliferation in a Raf- and Rb-dependent manner. (A) Raf-1 

immunoprecipitation reveals that Rb binds to Raf-1 in K-Ras*-expressing NSCs. (B) The small molecule 

inhibitor RRD-251 reduces K-Ras*-induced NSC hyperproliferation to control levels, as measured by 

direct cell counting (*p<0.05). (C) Proposed model for K-Ras*-mediated regulation of NSC proliferation. 

Active K-Ras-GTP activates Raf by binding to the Ras-binding domain (RBD). This leads to subsequent 

Rb binding to and inhibition of Rb activity, culminating in increased cell cycle progression (proliferation). 

 
  



	   90 

 

Supplemental Figure S3.1. K-Ras*-, but not H-Ras*- or N-Ras*-, expressing NSCs exhibit increased 

Erk, p38MAPK, and Src activation. (A) K-Ras activation in NSCs activates both canonical and non-

canonical downstream effector proteins. (B) p-ErkT202/Y204, p-p38MAPKT180/Y182, and p-SrcY416 expression 

are increased in K-Ras*, but not H-Ras* or N-Ras*, NSCs. However, pharmacologic inhibition of (C) Src 

(AZD0530, 50nM) and (D) p38MAPK (SB203580, 20µM) activity did not inhibit K-Ras*-mediated NSC 

hyperproliferation. (E) Western blotting of DMSO-, GGTI-286-, and AZ628-treated K-Ras*-expressing 

NSCs reveal no reduction in p-SrcY416 and p-p38MAPKT180/Y182 hyperactivation in K-Ras*-expressing 

NSCs. 
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Table S3.1. Antibodies for immunocytochemistry (ICC), immunofluorescence (IF), and 
immunoprecipitation (IP). 
 

Antibody Species  Application Source Dilution 

GFAP mouse ICC Millipore, Billerica, MA 1:1,000 

Ki67 rabbit ICC Abcam, Cambridge, MA 1:1,000 

Ki67 mouse IF BD Biosciences, San Jose, CA 1:500 

O4 mouse ICC Millipore 1:1,000 

Raf-1 rabbit IP Millipore 1:50 

Sox2 rabbit ICC Millipore 1:1,000 
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Table S3.2. Antibodies for western blotting. 

  
Antibody Protein Size Species Source Dilution 

Akt 60 kDa rabbit Cell Signaling, Danvers, MA 1:5,000 

p-AktT308 60 kDa rabbit Cell Signaling 1:500 

p-AktS473 60 kDa rabbit Cell Signaling 1:5,000 

β-Catenin 92 kDa rabbit Cell Signaling 1:2,000 

Erk 42 kDa rabbit Cell Signaling 1:1,000 

p-ErkT202/T204 42 kDa rabbit Cell Signaling 1:1,000 

JNK 46, 54 kDa rabbit Cell Signaling 1:1,000 

p-JNKT183/Y185 46, 54 kDa rabbit Cell Signaling 1:1,000 

p38-MAPK 43 kDA rabbit Cell Signaling 1:1,000 

p-p38-MAPKT180/Y182 43 kDA rabbit Cell Signaling 1:500 

PKC-γ 78 kDa rabbit Abcam, Cambridge, MA 1:2,000 

p-PKC-γT514 78 kDa rabbit Abcam 1:1,000 

PKC-ζ 76 kDa rabbit Cell Signaling 1:1,000 

PKC-ζT410 76 kDa rabbit Cell Signaling 1:500 

Raf-1 65-75 kDa rabbit Cell Signaling 1:500 

Ras 21 kDa mouse Millipore, Billerica, MA 1:2,000 

Rb 110 kDa mouse Developmental Studies 
Hybridoma Bank, Iowa City, IA 1:100 

S6 34 kDa rabbit Cell Signaling 1:10,000 

p-S6S240/244 34 kDa rabbit Cell Signaling 1:5,000 

p-S6S235/236 34 kDA rabbit Cell Signaling 1:5,000 

Src 60 kDA rabbit Cell Signaling 1:2,000 

p-SrcY416 60 kDA rabbit Cell Signaling 1:500 

tubulin 50 kDa mouse Sigma Aldrich, St. Louis, MO 1:10,000 

Yap 75 kDa rabbit Cell Signaling 1:1,000 

p-YapS127 75 kDa rabbit Cell Signaling 1:1,000 
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Despite the significant similarity in their amino acid sequence, there is evidence that the three 

related Ras proteins examined here (H-Ras, K-Ras, N-Ras) function uniquely to alter cell growth and 

differentiation.  In this thesis, I have established that constitutively-activated forms of these Ras proteins 

differentially impact on the function of NSCs when expressed in a biologically-relevant context from their 

endogenous promoters.  First, I have demonstrated that only K-Ras, and not H-Ras or N-Ras, 

hyperactivation increases the proliferation of brainstem NSCs.  Second, I have demonstrated that K-Ras 

hyperactivation does not alter the cell fate decisions of NSCs upon in vitro differentiation.  Third, I 

determined that K-Ras*-mediated NSC hyperproliferation operates through a non-canonical downstream 

pathway that is dependent on the effector protein Raf and the cell cycle regulatory protein Rb.  Taken 

together, these observations define differential functions and mechanisms of action of the Ras molecules 

in one important CNS cell type. 

These findings complement and expand upon previous observations comparing the differential 

impact of Ras molecule activation in vivo and in vitro.  Our laboratory has previously demonstrated that 

loss of Nf1 gene expression in mature brain astrocytes leads to differential hyperactivation of the 

individual Ras molecules.  In these studies, following Nf1 gene inactivation in astrocytes, only the K-Ras 

molecule is hyperactivated [1].  Moreover, K-Ras hyperactivation in these cells increases astrocyte 

proliferation in vitro in a manner similar to loss of Nf1 protein (neurofibromin) expression.  In order to 

demonstrate that K-Ras hyperactivation can substitute for neurofibromin loss in the genesis of murine 

brain tumors (optic gliomas), Nf1+/- mice were generated in which K-Ras activation occurred in neuroglial 

progenitor cells.  Consistent with the in vitro studies, Nf1+/- mice with K-Ras hyperactivation developed 

optic gliomas in vivo.  In addition to this study in the brain, differential Ras molecule function has also 

been explored in a mouse model of colon cancer in vivo [2].  While expression of activated N-Ras in the 

colonic epithelium inhibits cell apoptosis, activated K-Ras increases epithelial hyperplasia.  Despite this 

increase in cell proliferation, K-Ras activation is not sufficient to initiate tumor formation in these mice on 

its own.  In colon cancers, genetic mutations leading to the loss of the APC tumor suppressor gene occur 

early in cancer progression, suggesting that loss of this protein functions in colon tumor initiation.  In the 

mouse, epithelial loss of the Apc protein in the colon causes adenocarcinoma formation.  To determine if 

Ras molecule activation alters the progression of these tumors, genetically engineered mice were used 



	   102 

that both lacked Apc expression and expressed activated forms of either K-Ras or N-Ras in the colonic 

epithelium.  In the context of Apc loss, K-Ras, but not N-Ras, activation led to high-grade dysplasia within 

the colonic epithelium.  This result indicates that K-Ras activation alone increases cell proliferation and, in 

a tumor environment, promotes colon cancer progression.  Taken together, these findings establish that 

the individual Ras molecules have different biological functions in vivo and that K-Ras is critical for 

regulating cell proliferation. 

In addition to the functional heterogeneity introduced by the distinct Ras molecules, other factors 

play important roles in determining how Ras functions in specific organs during life.  These critical 

variables include how the various Ras molecules operate in specific cell types, different regions within the 

same organ, and during the course of various diseases. 

 

CELL-TYPE SPECIFICITY OF RAS SIGNALING 

The ability of RAS to regulate the growth of discrete cell populations within the same organ may 

rely on the differential utilization of unique effector pathways operating downstream of RAS.  This cell 

type specificity can be generated by using different RAS molecules or changing the interaction of effector 

proteins with the same activated RAS molecule.  Of these potential RAS downstream signaling pathways, 

the canonical RAF/MEK/ERK effector pathway is the predominant signaling cascade important for growth 

regulation in leukemic cells, hematopoietic cells, osteoblasts, and some populations of neural progenitor 

cells [3-6].  Nevertheless, recent data, including those presented in this thesis, suggest that RAS 

signaling may occur through other effector pathways in a cell type-specific manner.  Here, I have 

elucidated one such pathway required for hyperactivated K-Ras-mediated increased NSC proliferation.  

Other cell types in the mammalian brain, including neurons and astrocytes, also rely on different non-

canonical RAS signaling mechanisms to regulate their behavior. 

Recent studies from our laboratory have identified and characterized non-conventional RAS 

effector pathways which regulate neuronal function. In the context of NF1, the Ras-GAP protein 

neurofibromin was originally thought to regulate glial and neuronal cell biology through Ras-dependent 

and Ras-independent signaling pathways, respectively [7].  Upon heterozygous Nf1 gene inactivation, 

there is a reduction in neuronal intracellular cyclic AMP (cAMP) levels, leading to decreased axon 
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lengths, growth cone areas, and survival in vitro.  The importance of cAMP to these neuronal phenotypes 

is underscored by the finding that pharmacological agents that inhibit cAMP degradation or increase 

cAMP production restore Nf1+/- axonal lengths, growth cone areas, and survival to wild-type levels.  The 

idea that cAMP production by neurofibromin operated in a Ras-independent manner derived from 

experiments in which pharmacological inhibition of Mek or PI3K/Akt signaling had no effect on these 

defective Nf1+/- phenotypes. However, recent work demonstrated that cAMP homeostasis is actually 

Ras-dependent.  In neurons, neurofibromin regulates cAMP through inhibition of atypical PKC (PKCζ), 

leading to Gαs and adenylyl cyclase activation [8].  Upon reduced expression of neurofibromin in Nf1+/- 

neurons, the activity of both Ras and PKCζ is increased.  This subsequently inhibits Gαs and adenylyl 

cyclase activity and causes depletion of cAMP.  Genetic and pharmacologic inhibition of Ras activity in 

Nf1+/- neurons restores cAMP levels and neuronal axon lengths to those of wild-type neurons.  These 

results demonstrate that neurofibromin regulates cAMP levels in a Ras-dependent manner.  This pathway 

is unique to brain neurons, as PKCζ is not expressed in brainstem NSCs (Supplemental Figure S3.1), 

precluding this pathway from regulating NSC growth and underscoring cell type-dependent signaling 

differences. 

Similar to NSCs and neurons, astrocyte growth is also regulated by Ras, but in a manner 

dissimilar to neurons and NSCs. As outlined above, K-Ras hyperactivation increases astrocyte 

proliferation and is sufficient to form optic gliomas in Nf1+/- mice [1].  In Nf1-deficient astrocytes, Ras 

hyperactivation leads to greater cell proliferation through hyperactivation of the mammalian target of 

rapamycin (mTOR) complex [9].  As such, the increased proliferation of Nf1-/- astrocytes is reduced to 

wild-type levels following treatment with the mTOR inhibitor rapamycin.  While the precise mechanisms 

responsible for mTOR activation in astrocytes remain to be completely elucidated, recent studies have 

demonstrated that neurofibromin regulation of brainstem astrocyte proliferation in vitro and optic glioma 

growth in vivo involves mTOR activation mediated by both the PI3K/AKT and RAF/MEK RAS effector 

pathways [10].  Moreover, unlike other cell types, neurofibromin mTOR activation does not depend on the 

tuberous sclerosis complex proteins tuberin and hamartin [11].  Tuberin can be phosphorylated by MEK 

or AKT, leading to hyperactivation of the RAS homolog enriched in brain (Rheb) molecule [12-15]; 

however, Rheb activation does not result in increased astrocyte growth in vitro or optic glioma formation 
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in Nf1+/- mice in vivo [11].  Similarly, genetic silencing of Rheb has no effect on Nf1-deficient astrocyte 

growth.  Taken together, these studies demonstrate that neurofibromin loss leads to K-Ras 

hyperactivation, which subsequently activates mTOR through either the Mek or Akt effector proteins to 

increase astrocyte proliferation.  

A potential mechanism for cell-type specificity of Ras function is suggested by another recent 

study from our laboratory.  Although Nf1-associated gliomas (pilocytic astrocytomas) are caused by 

inactivation of both Nf1 alleles, sporadic pilocytic astrocytomas are caused by mutations at the B-RAF 

gene locus.  In these mutations, the genetic sequence encoding the B-RAF kinase domain is fused to a 

portion of a gene of unknown function, KIAA1549.   Expression of this B-RAF:KIAA1549 fusion gene (f-

BRAF) leads to increased activation of the downstream effector proteins Mek and Erk in both cerebellar 

astrocytes and NSCs [16].  However, only f-BRAF-expressing NSCs, but not astrocytes, demonstrate 

increased proliferation relative to wild-type cells.  An analysis of downstream effector proteins revealed 

that mTOR activity is increased in f-BRAF-expressing NSCs, but not in astrocytes.  Additionally, the 

protein tuberin, which normally inhibits mTOR activity, is more highly phosphorylated (inactivated) in 

these NSCs compared to the astrocytes.  Mechanistically, this cell type-specific phosphorylation of 

tuberin results from the differential subcellular localization of this protein in NSCs and astrocytes.  In 

astrocytes, cell fractionation reveals that tuberin is localized to subcellular membranes whereas in NSCs, 

tuberin is found exclusively in the cytosolic fraction.  It is thought that the cytosolic localization of tuberin 

in NSCs may allow this protein to be phosphorylated by Erk, such that mTOR activity and cell proliferation 

is increased.  In contrast, tuberin in astrocytes is sequestered at the membranes, thereby precluding the 

tuberin-Erk interaction from occurring.  This study provides evidence that the subcellular localization of 

effector proteins can account for differential signaling in different cell types.  

Collectively, these observations demonstrate that activated RAS can differentially control the 

growth and function of individual cell types through a diverse number of cell type-specific downstream 

effector pathways.  Moreover, this third study suggests a mechanism by which RAS interacts with 

different effector proteins such that activation of the same protein activates different effector pathways in 

a cell type-specific manner. 
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REGIONAL HETEROGENEITY OF RAS SIGNALING   

In addition to cell type-specific responses to RAS signaling, NSCs isolated from different brain 

regions also respond uniquely following RAS activation.  In this regard, Nf1-/- NSCs isolated from the 

brainstem proliferate faster and undergo more gliogenesis in vitro and in vivo relative to Nf1-/- NSCs 

isolated from the brain cortex.  An analysis of downstream effector molecules responsible for transmitting 

the Ras growth-promoting signal in these two NSC populations reveals that NSC proliferation and 

differentiation is dependent on mTOR complex 2 (mTORC2)-mediated activation [17].  This mTOR 

complex is characterized by the presence of the Rictor protein, which allows mTOR to function as an 

activator of AKT through serine 473 phosphorylation. The differential capacity of brainstem NSCs to 

increase their proliferation and glial differentiation following neurofibromin loss and mTOR activation 

results from three-fold more expression of Rictor in these NSCs relative to those derived from the cortex. 

Silencing of Rictor expression reduced the hyperproliferation and gliogenesis observed in Nf1-/- 

brainstem NSCs, establishing differential expression of one downstream effector as a key determinant in 

dictating brain region-specific signaling and cellular function.  In support of these data, brain region 

heterogeneity is also observed upon expression of the f-BRAF protein in NSCs isolated from the 

cerebellum and cortex.  Similar to the results above, f-BRAF expression increases the proliferation of 

cerebellar NSCs, but not cortical NSCs [16]. 

In conjunction with the data presented in this thesis, recent work suggests that the individual RAS 

molecules may also signal in a region-specific manner.  When expressed in cortical progenitor cells in 

vitro, two separate hyperactivated H-Ras constructs (H-RasG12V, H-RasG12S) inhibit neurogenesis, induce 

neural progenitor cell proliferation, and promote glial cell differentiation [18].  Moreover, introduction of the 

same constructs via in vivo electroporation during the embryonic neurogenic period (E13/E14) induces 

cell proliferation and premature gliogenesis.  These data highlight an important role for H-Ras* function in 

specifying glial versus neuronal cell fates in the developing neocortex.  In this thesis, activation of H-Ras 

(H-RasG12V) at a similar time point (E9.5) in the brainstem did not cause changes in glial or neuronal cell 

formation.  Moreover, we have examined the impact of H-Ras activation in brainstem NSCs in vitro and 

found that this is insufficient to change NSC proliferation or alter NSC cell fate decisions relative to wild-

type NSCs.   
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Taken together, these studies suggest that the regional specificity of RAS signaling may be 

conferred by differential expression of RAS downstream effector proteins or through regionally-restricted 

roles of the individual RAS molecules themselves.  To the second point, we have not yet explored 

whether the individual RAS molecules function differently by brain region.  If this proves to be accurate, 

further work will be necessary to determine the mechanistic basis by which region-specific, molecule-

specific RAS signaling could occur in the brain. 

 

RAS SIGNALING IN DISEASES OF THE CENTRAL NERVOUS SYSTEM 

 Additional insights into differential RAS signaling function can be realized by studying the 

consequences of RAS hyperactivation in the context of various brain disorders.  In NF1, affected 

individuals can develop a wide variety of neurological problems that reflect abnormalities in neuronal 

(learning disabilities and seizures) and astrocytic (optic gliomas) biology.  This highlights a particular 

vulnerability of multipotent NSCs to changes in NF1 gene function, which could impact on the 

development and function of both differentiated cell types.  In agreement with previous studies from our 

laboratory, I have demonstrated that Nf1-/- NSCs proliferate faster and give rise to more astrocytes upon 

differentiation relative to wild-type NSCs in vitro (Figure 4.1).  Moreover, Nf1 gene inactivation in BLBP-

Cre-expressing NSCs in vivo leads to increased astrogliogenesis in the brainstem of PN18 mice relative 

to littermate controls (Figure 4.2).  While the behavior of these Nf1-deficient NSCs is similar to that of K-

Ras* NSCs described in this thesis, the mechanisms underlying their altered NSC function differs.  Here, I 

have demonstrated that K-Ras hyperactivation increases NSC proliferation in a Raf/Rb-dependent 

manner.  However, using NSCs from the same brain region and time of development, we have previously 

demonstrated that Nf1-deficient NSCs undergo increased proliferation in an mTOR/Rictor-dependent 

manner to activate the downstream effector protein Akt [17].  To determine if this pathway functions upon 

K-Ras activation, I examined the activity of both Akt (p-AktS473) and S6 kinase (p-S6240/244) in K-Ras* 

NSCs and found that neither protein was hyperactivated in K-Ras* NSCs relative to wild-type NSCs 

(Supplementary Figure S3.1A).  As a negative regulator of Ras, the loss of neurofibromin expression is 

known to increase RAS activity.  Therefore, it stands to reason that hyperactive Ras could impact NSC 

growth in a manner similar to Nf1 gene inactivation.  However, these results demonstrate that this is not 
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the case and instead indicate that neurofibromin and K-RAS regulate the growth of the same cell 

population differently.  

 RAS also functions differently in different types of cancers.  Of all cancers, RAS pathway 

dysregulation is an important step in cancer initiation as approximately 30% of all cancers arise from 

hyperactivating mutations in RAS [19].   Despite the widespread importance of RAS to tumorigenesis, the 

individual RAS molecules do not contribute equally to this process.  For example, K-RAS mutations are 

found in 22% of all cancers, whereas H-RAS mutations are observed in only 8% of malignancies [19].  N-

RAS mutations occur even more rarely, occurring in approximately 3% of all cancers.  Some of this 

discrepancy can be accounted for by the developmental origin of the tissues in which these cancers 

develop.  In tissues of endodermal origin (lung, pancreas, colon), cancers are most commonly associated 

with K-RAS mutations, while N-RAS mutations are often associated with cancers of the hematopoietic 

system [20-23].  It is interesting to note that progenitor cells in these tissue populations have been shown 

to be especially susceptible to activating RAS mutations, providing a cellular basis for tumor formation 

and suggesting a potential target for anti-cancer therapies [2, 21, 24].  These studies indicate that there is 

inherent heterogeneity in RAS pathway hyperactivation underlying the formation of different tumors. 

 Future studies could address this differential contribution of each hyperactivated RAS molecule to 

brain tumorigenesis using the endogenous RASLSL mice used in this thesis.  It is clear that K-Ras 

hyperactivation in terminally differentiated astrocytes is sufficient for tumor formation in the optic nerve, a 

result that merits further exploration on the tumorigenic consequence of K-Ras hyperactivation in NSCs 

[1].  Moreover, as K-Ras activation alone increases the growth of NSCs, we attempted to examine 

whether CNS tumors arise in aged K-RasBLBP mice.  Unfortunately, efforts to evaluate tumor susceptibility 

in these mice were not possible as aging beyond 18 days of age caused these mice to form an apparent 

rectal prolapse between 5-8 weeks of age (n=4), which required subsequent euthanasia. Follow-up 

necropsy results revealed squamous cell papilloma of the vagina and/or anus yet there were no 

indications of CNS-related tumors at this time point.  Although this result limits the utility of K-RASBLBP 

mice in evaluating the tumorigenic potential of hyperactivated K-RAS in NSCs, future studies might 

consider exploring this question using an alternative, NSC-specific Cre recombinase driver.  

 Taken together, these examples indicate that the context in which the RAS pathway is activated 
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varies in different diseases.  As an example, in cancers and in the NSCs examined in this thesis, RAS 

pathway hyperactivation is the result of oncogenic RAS mutations, which may result in different levels of 

RAS activity than occurs upon the loss of a RAS regulatory protein such as neurofibromin.  This has 

potential implications in how the RAS pathway might be targeted in different diseases.   

 

SUMMARY AND SIGNIFICANCE 

 The requirement for RAS signaling in normal cell growth complicates efforts to inhibit RAS 

pathway hyperactivation in a specific manner and without the potential for off-target effects.  This 

emphasizes a need for therapeutic options that more specifically target aberrant RAS activity in specific 

cell types, specific organ regions, and in specific diseases.  The H-RAS, K-RAS, and N-RAS molecules 

described in this thesis are ubiquitously expressed across different mammalian cell types.  However, here 

we have described mechanisms that confer specificity on RAS molecule signaling.  First, the individual 

RAS molecules can be activated differently in various cell and tissue types.  Second, the expression 

and/or localization of effector proteins differentially alters the interactions between RAS and its 

downstream signaling pathways.  Third, activation of the same RAS molecule in the same cell type can 

alter cell function differently depending on how RAS is activated, such as by an oncogenic mutation within 

RAS or by gain-of-function/loss-of-function mutations to other components of the RAS signaling pathway.  

These mechanisms provide a potential means by which to inform the development of targeted therapies 

that reduce RAS pathway hyperactivity in specific tissues, cells, and in the various RASopathies.  

It is possible that therapies could be developed that inhibit RAS pathway activity in a tissue-

specific manner.  While studies have implicated active K-Ras as the driver of cell proliferation in both the 

brain and colon, the Ras effector pathways operating in these tissues are not equivalent.  This provides 

an opportunity to inhibit K-Ras-mediated astrocyte proliferation in brain tumors by targeting the mTOR 

complex or, conversely, targeting colon hyperplasia by inhibiting Mek/Erk activity.  Elucidation of 

additional Ras tissue-specific pathways may afford additional opportunities to target RAS hyperactivation 

in individual tissues.  

 Within the same tissue, there is growing evidence that RAS can regulate the function of individual 

cell types through the use of cell type-specific effector pathways. In the brain, this represents a 
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remarkable opportunity to target RAS signaling in individual cell types rather than by globally inhibiting the 

RAS pathway.  Moreover, this development is especially promising for the treatment of disorders that are 

characterized by defective regulation of multiple cell types, such as in individuals with NF1.  In this 

disorder, one might envision that targeting of the RAS/PKCζ/Gαs pathway in neurons could effectively 

treat children presenting with learning and memory disabilities.  In theory, these treatments could restore 

cAMP levels to those found in normal neurons.  Alternatively, in children affected by Nf1-associated optic 

gliomas, therapies that target RAS/mTOR activity may prove valuable in inhibiting the proliferation of 

astrocytes that make up the bulk of these tumors.  Additionally, the differential localization and expression 

of effector proteins in different cell types suggests that drugs that modulate the behavior and localization 

of effector proteins could allow for specific targeting of RAS signaling.  Hypothetically, these cell type-

specific approaches may demonstrate increased efficacy over conventional treatments targeting overall 

RAS signaling (i.e. lovastatin for learning disabilities) although more work is required before they can 

translate to the clinic. 

Lastly, disease-specific mechanism by which the RAS pathway is activated in individual disorders 

may alter how therapeutic approaches reduce aberrant RAS pathway hyperactivation.  Despite identifying 

RAS as the critical operator underlying the neuro-cardio-facio-cutaneous disorders, the nuances of the 

individual disorders likely result from the occurrence of disorder-specific mutations in different 

components of the RAS pathway.  In NF1, NSCs are especially sensitive to NF1 gene inactivation in 

order to account for defects in the function of both neurons and astrocytes in patients with this disorder.   

Nevertheless, it is unknown how Nf1 loss in NSCs may result in the differential activation of the three Ras 

molecules relative to one another.  While the current thesis is an important first step in understanding how 

RAS alters NSC function on its own, valuable follow-up studies will apply this knowledge to activating the 

Ras molecules in a manner consistent with Nf1 gene inactivation. 

 The studies discussed here demonstrate that RAS signaling extends far beyond the 

RAF/MEK/ERK and PI3K/AKT/mTOR signaling pathways that are traditionally accepted as the primary 

RAS effector pathways.  Indeed, a great deal of complexity and specificity is conferred upon RAS 

signaling through the utilization of other, non-conventional effector pathways.  While this thesis has 

focused on the differential function of RAS signaling, there is undoubtedly similar utilization of non-
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conventional pathways downstream of other developmental pathways, such as WNT, Notch, TGF-β, and 

hedgehog signaling.  This cautions against the assumption that certain proteins signal via only a limited 

subset of effector pathways.  Clarification of the effector pathways that confer specificity on these 

developmental pathways will facilitate more targeted approaches to regulate aberrant pathway signaling. 
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Figure 4.1. Nf1 loss results in increased NSC proliferation and glial cell differentiation in vitro.    

Nf1-/- NSCs proliferate faster than WT controls as measured by (A) direct cell counting (p<0.001) and (B) 

the percentage of Ki67+ proliferating cells (arrowhead) in Nf1-/- neurospheres (p<0.01).  (C) Nf1-/- NSCs 

give rise to increase numbers of GFAP+ astrocytes and O4+ oligodendrocytes (p<0.001) but not Tuj1+ 

neurons. 
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Figure 4.2. Nf1 loss in NSCs leads to increased gliogenesis in vivo. (A) Nf1 loss in BLBP-Cre-

expressing NSCs (Nf1BLBPCKO) leads to a 3.7-fold increase in brainstem GFAP+ astrocytes (***p<0.001). 

(B) Nf1BLBPCKO mice do not exhibit altered numbers of APC+ oligodendrocytes. 
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