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senescence-associated secretory phenotype 

by 
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Dr. Sheila A. Stewart, Chairperson 

 
 
 Protecting the genome is a vital aspect of safeguarding organismal health. Inability to 

efficiently and effectively replicate the genome or repair damage the genome may encounter can 

lead to mutational accumulation or senescence, both of which are drivers of multiple diseases 

including cancer.  Understanding the mechanisms by which the genome is maintained, as well as 

the consequences of repeated rounds of replication or exposure to DNA damaging agents, will 

allow for greater understanding of the diseases they promote as well as development of targeted 

therapies aimed at mitigating the detrimental effects of genomic insult. The first section of my 

work focuses on cellular senescence, a consequence of both aging and DNA damage. Aging is a 

significant risk factor for the development of cancer. The increase in disease in aged individuals 

is due in part to the time required for epithelial cells to accumulate mutations necessary to 

become tumorigenic, and by the increase in senescent cells within their tissues. Senescent cells 

express a coordinately upregulated family of pro-tumorigenic factors termed the senescence-
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associated secretory phenotype, or SASP. The SASP is rich in growth factors, immune 

modulators, and matrix remodelers that together create an environment primed for tumor 

development. Here, I study the mechanisms that regulate expression of the SASP in response to 

DNA damage. In cells exposed to a senescence-inducing stimulus but that do not yet display 

classical senescence markers, SASP expression is reliant upon active transcription for 

upregulation. However, senescent cells maintain SASP factor upregulation through post-

transcriptional stabilization. Previous work demonstrated that this transition is dependent on the 

stress kinas p38MAPK, and p38MAPK inhibition prevents upregulation and stabilization of 

SASP factor mRNAs by modulating the binding of AUF1, a protein that binds regulatory 

sequences in target mRNAs and largely targets them for degradation. AUF1 is not a direct target 

of p38MAPK activity, however. In this work, I demonstrate that AUF1 regulation and therefore 

mRNA stabilization of SASP factors occurs through the p38MAPK-MK2-HSP27 pathway. 

Furthermore, inhibition of MK2 activity abrogates the ability of senescent cells to promote 

preneoplastic cell growth, suggesting MK2 inhibition is an attractive therapeutic target that 

warrants further investigation. In the second section of this work, the role of the essential 

helicase/nuclease Dna2 in DNA replication is investigated. Maintaining genomic stability is 

essential to preventing mutational accumulation and cancer development, and both elevated 

Dna2 expression levels in human cancers and heterozygous deletion in mice have been linked to 

cancer incidence and poor disease outcome. Dna2’s role in DNA replication was initially 

described in yeast, where it was hypothesized to function in lagging strand DNA replication, 

namely in Okazaki fragment maturation. However, work described here demonstrates that while 

shRNA-mediated depletion of Dna2 results in activation of the replication stress checkpoint and 

phenotypes indicative of replication defects, Okazaki fragment maturation is not measurably 
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affected in human cells. Therefore, Dna2 plays an additional role in DNA replication that is 

required to ensure high fidelity duplication of the genome during cell division. Together, my 

work highlights the essential nature of genomic preservation, and consequences that arise when 

genome stability is threatened.  
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Chapter 1 

Background and Significance 

Senescence 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 2 

1.1  Overview and significance 

Cellular senescence was first described in vitro over half a century ago, as Hayflick and 

colleague observed that cultured primary fibroblasts have a limited replicative lifespan (1, 2). 

Due to the mechanics of DNA replication and the end replication problem, telomeres, the 

protective nucleoprotein structures at chromosome ends, shorten with each round of cell division. 

As cells reach this “Hayflick limit,” telomeres become critically short and induce senescence, 

wherein metabolically active cells are prevented from reentering the cell cycle (3-6). Cellular 

senescence also occurs in vivo, as evidenced by age-dependent increases in senescent cells in 

skin samples from both lower primate and human tissue (7, 8). Indeed, senescent cells have been 

observed in many additional human tissues including kidney, prostate, and liver (7, 9-13). 

Cellular senescence is largely induced by the DNA damage signaling pathway, either through 

exogenous insults such as DNA breaks caused by DNA damaging agents or oxidative stress, or 

endogenous processes such as replication associated telomere attrition and telomere dysfunction 

due to loss of function in telomere binding proteins, among others (14-17). Upon exposure to a 

senescence-inducing stimulus, activation of the p53 and Rb tumor suppressor pathways lead to a 

permanent growth arrest, accompanied by changes in overall morphology, epigenetic structure, 

and gene expression patterns. 

 

Senescence is thought to have evolved largely as a tumor protective mechanism. In order 

for a cell to become tumorigenic, it needs to accumulate key mutations in multiple pathways, and 

since it takes many years for the mutations to accumulate, older cells are more likely to have one 

or more of these mutations. Exposure to DNA damage is one mechanism by which cells can 

acquire these mutations, and both telomere attrition due to aging and activation of the DNA 
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damage response pathway are potent senescence inducers. By preventing further expansion of 

cells with potentially harmful mutations, cellular senescence functions as a potent tumor 

suppressor mechanism, acting as a hurdle that incipient tumor cells must overcome before 

becoming fully neoplastic. Indeed, inactivation of senescence-inducing pathways like p53 or the 

DNA damage response results in larger, more invasive tumors and an increased rate of 

progression from premalignancy to malignancy (18, 19). In addition to limiting transformation, 

more recent work has shown that senescence is associated with the secretion of a variety of 

factors, and these factors are capable of promoting immune-mediated clearance of tumor cells 

(20).  

 

Conversely, cellular senescence can have a pro-tumorigenic function in the context of the 

tissues and regions surrounding tumors. In addition to epithelial cells requiring time to acquire 

the mutations needed to become neoplastic, accumulation of senescent cells in the stroma and the 

changes they elicit therein may provide a mechanistic explanation for the significant age-related 

increase in cancer incidence. Rather than being simply a homogenous collection of tumor cells, 

tumors are more akin to dysfunctional organs with their own specialized microenvironment and a 

dedicated blood supply. Changes to the stromal compartment such as a permissive, altered 

extracellular matrix; tumor-promoting immune milieu including reduced tumor-clearing cell 

types and an increase in immune-suppressive cells; and increased levels of growth-promoting 

factors in the tumor microenvironment are all critical components tumor formation, expansion, 

invasion, and metastasis, driven by the tumor microenvironment rather than the tumor itself (21-

23). Indeed, changes in the expression profile of senescent cells, both in the epithelium and the 

stroma, include increased expression of factors that drive these alterations to the tumor 
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microenvironment and thus promote many aspects of tumorigenesis and tumor evolution. 

Therefore, targeting these senescent cells and the pro-tumorigenic modifications to the tumor 

microenvironment is an attractive therapeutic avenue. 

 

 

1.2  Mechanisms governing senescence 

Senescence can be induced for a variety of reasons, and a major age-related senescence 

inducer is replication-driven telomere attrition. The addition of telomeric repeats to the ends of 

chromosomes by telomerase can counteract replication-associated telomere erosion, but the 

majority of human cells do not express telomerase at high enough levels to combat this telomere 

loss (24). Once telomeres reach a critical length, the DNA damage response (DDR) pathway and 

p53 are persistently activated, resulting in senescence induction (Fig. 1.1).  

 

Other cellular stresses can activate this pathway as well, including DNA damaging 

agents, hypoxia, reactive oxygen species (ROS), and epigenetic alterations, resulting in p53 

activation and SIPS (stress-induced premature senescence) (14, 25). Once activated, if p53 does 

not direct the cell towards apoptosis, it activates p21 to induce a transient growth arrest, which 

can progress to permanent growth arrest and senescence via activation of p16INK4a if the stress is 

not resolved. By inhibiting the cyclin-dependent kinases CDK4 and CDK6, p16INK4a inhibits 

phosphorylation of the retinoblastoma protein (Rb), and unphosphorylated Rb arrests the cell in 

G1 by binding and inhibiting the E2F transcriptional factors (26).  
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When cells enter senescence, several characteristic changes occur. Increased expression 

of the cell-cycle inhibitors p53, p21, and p16INK4a are accompanied by accumulation of several 

different protein foci in the nucleus. Large, unresolved DNA damage foci persist in the nucleus, 

particularly at the telomeres, underscoring the importance of DDR signaling in senescence 

induction (27-29). Furthermore, epigenetic alterations associated with senescence result in the 

accumulation of senescence-associated heterochromatin foci (SAHF), characterized by increased 

histone modifications associated with heterochromatin, such as methylation of histone 3 on 

lysine 9 (H3K9me). SAHFs form at E2F target genes that play an important role in cell cycle 

progression, reinforcing the senescence-associated cell cycle arrest (29). Senescent cells also 

undergo characteristic morphological changes, taking on a large, flattened appearance and 

developing stress fibers. Furthermore, senescent cells express senescence-associated β-

galactosidase (SA-β-gal), which is active at a lower pH than most cellular β-galactosidases, 

making it a useful senescence marker. Importantly, senescent cells display an altered gene 

expression profile termed the senescence-associated secretory phenotype (SASP, or senescence 

messaging secretome, SMS), which is enriched in a wide variety of factors that impact every step 

of tumorigenesis, tumor growth, and metastasis, by affecting both the tumor itself as well as the 

tumor microenvironment. 

 

1.3  The senescence-associated secretory phenotype 

The senescence-associated secretory phenotype, or SASP, is a group of factors 

coordinately upregulated in senescent cells. Different cell or tissue types and cells induced to 

senesce using different methodologies express different subsets of SASP factors, but they 

generally include factors that fall into the following categories: immune modulators (including 



	 6 

interleukins, cytokines, and chemokines that alter the inflammatory state and immune profile of 

the tissue), cell cycle regulators (such as mitogens, pro-proliferative factors, and proangiogenic 

factors), and matrix remodelers (such as matrix metalloproteases and serine proteases). 

Therefore, as an individual ages, accumulation of the necessary tumor-promoting mutations in 

the epithelial compartment over time is accompanied by increased senescent cells in the stromal 

compartment, where SASP expression primes the microenvironment by creating a favorable 

immune microenvironment which suppress anti-tumor immunity, promotes tumor growth 

through promotion of angiogenesis and expression of growth factors, and remodels the matrix to 

make it more amenable to tumor expansion and migration (Fig. 1.2) (21, 30, 31). In addition to 

the increased angiogenesis and vascularization, SASP factors promote epithelial-to-

mesenchymal transition (EMT), and SASP expression at distal sites can create a favorable pre-

metastatic niche, therefore further promoting disease progression by establishing an environment 

primed for metastasis (21, 32, 33).  

 

Given the ability of SASP factors to promote a wide variety of tumorigenic processes, it 

is unsurprising that senescent stroma and the SASP have been shown to be protumorigenic both 

in vitro and in vivo. In cell culture models, senescent fibroblasts promote prostate epithelial cell 

proliferation through secretion of amphiregulin, and the SASP factors interleukins 6 and 8 (IL6 

and IL8) and osteopontin (OPN) expressed by senescent stromal cells have been shown to be 

necessary and sufficient to drive breast cancer cell growth (21, 34, 35). Matrix metalloproteases 

expressed by senescent fibroblasts, such as MMP3, promote the tumorigenicity of breast 

epithelial cells in a xenograft setting, by altering the matrix to allow for increased diffusion to the 

cancer cells of mitogenic and other protumorigenic signals (36, 37). The SASP also affects the 
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differentiation and motility of epithelial cells. In vitro, IL6 and IL8 can promote invasion of 

several breast cancer cell lines, and MMP3 secreted by senescent cells inhibits the expression of 

differentiation markers and promotes cell invasion (21, 23, 37). Recently, it was demonstrated 

that IL6 expressed from senescent stroma in the skin was sufficient to create an 

immunosuppressive microenvironment by recruiting myeloid-derived suppressor cells in the 

absence of a tumor. This immunosuppression was sufficient to drive significantly greater tumor 

growth, demonstrating that the SASP can prime the microenvironment for tumor growth even 

before a tumor develops (31). Furthermore, IL6 secretion by senescent osteoblasts in the bone 

creates a favorable environment for metastatic breast cancer lesions to form, leading to increased 

metastasis to the bone (33).  

 

 

1.4  Transcriptional regulation of the SASP 

SASP upregulation relies on a variety of transcriptional programs, largely dependent 

upon signaling through persistent activation of the DDR and ataxia telangiectasia mutated 

(ATM). Although not all SASP factors rely on ATM signaling for upregulation, it is a common 

characteristic of inflammatory SASP factors (38). Regulation of the inflammatory components of 

the SASP is the best understood; several signaling pathways converge on activation of NF-κB, a 

well-established regulator of a wide variety not only inflammatory genes but the SASP as a 

whole, and inhibition or depletion of both ATM and NF-κB prevent SASP upregulation in 

senescent cells (39-41). One mechanism by which NF-κB is activated in senescence relies on 

DDR signaling. ATM is activated and phosphorylates NEMO, a regulatory component of the 
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IKK signaling complex. ATM and NEMO are then shuttled into the cytoplasm where they bind 

to the IKK complex and activate IKKα/β, which phosphorylates and inhibits the inhibitory IκB 

proteins, leading to NF-κB activation (41). Expression of the NF-κB-dependent SASP factor IL6 

in cells induced to senesce via oncogene-induced senescence (OIS) drives a positive feedback 

loop with the transcription factor C/EBPβ (40). Depletion of IL6 or C/EBPβ results in 

senescence bypass and loss of cytokine upregulation, demonstrating that this feedback loop is 

required for entry into OIS and amplification of SASP-driven cytokine and chemokine 

expression.  

 

NF-κB activity is decreased in senescent cells in response to ATM inhibition suggesting 

they act in the same pathway, however, DDR signaling is not required for senescence-mediated 

NF-κB activation. Indeed, p38 mitogen-activated protein kinase (MAPK) signaling, which is not 

dependent upon DDR signaling during senescence, is sufficient to activate NK-κB and drive 

SASP expression (39). Furthermore, abrogation of p38MAPK activity either through RNAi or 

small molecule inhibitors of p38MAPK resulted in decreased NF-κB activity and subsequently 

decreased expression of SASP factors. Highlighting the importance of p38MAPK-dependent 

SASP factor expression, p38MAPK inhibitor treatment abrogated the ability of senescent stroma 

to promote preneoplastic cell growth in a xenograft model (42). p38MAPK is a downstream 

target of ATM, but p38MAPK activation in response to senescence occurs with slow kinetics 

that to not match the rapid activation of ATM in response to genotoxic stress. Furthermore, DDR 

signaling is not required to activate p38MAPK in senescent cells, leaving the mechanism by 

which p38MAPK is activated in senescence yet to be identified (39). 
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1.5  Post-transcriptional regulation of SASP mRNAs 

 Recent work by our lab demonstrated that maintaining upregulation of SASP factors 

shifts from a transcriptionally-driven process to a mechanism dependent on post-transcriptional 

stabilization of SASP mRNAs (42). In cells that have been exposed to a senescence-inducing 

stimulus such as DNA damaging agents, but that do not yet display the canonical characteristics 

of senescence including a flattened morphology or SA-β-Gal expression (pre-senescent cells), 

active transcription is required to maintain upregulation of a subset of SASP factors and 

transcriptional inhibition leads to degradation of these messages. Conversely, once cells display 

the characteristic changes associated with senescence, transcriptional inhibition no longer results 

in degradation of many SASP factor mRNAs, demonstrating a shift to post-transcriptional 

mechanisms of maintaining upregulation. AU-rich element (ARE) binding protein 1 (AUF1, 

discussed below) drives the degradation of SASP factor mRNAs in pre-senescent cells by 

binding regulatory sequences in the 3’ untranslated regions (3’UTRs) of certain SASP factor 

mRNAs and targets them for ARE-mediated decay. This process is p38MAPK dependent, since 

treatment with a small molecule p38MAPK inhibitor blocks the post-transcriptional stabilization 

of SASP mRNAs in senescent cells by preventing removal of AUF1 from SASP factor mRNAs.  

 

 p38MAPK may be regulating the turnover of SASP mRNAs through multiple 

mechanisms. Herranz and colleagues described a mechanism by which mammalian target of 

rapamycin (mTOR) regulated the translation of the downstream p38MAPK target MAP kinase-

associated protein kinase 2 (MAPKAPK2, or MK2), leading to inactivation of the RNA binding 

protein ZFP36L1 and protection of target mRNAs from degradation (43). Indeed, they 

demonstrated that inhibiting mTOR prevented SASP induction by decreasing MK2 synthesis, 
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which in turn prevented sufficient phospho-MK2 from phosphorylating and inactivating 

ZFP36L1, an ARE binding protein that targets mRNAs for degradation. Together, inactivation or 

removal of AUF1 and/or ZFP36L1 appears to be a crucial step in promoting SASP expression. 

 

1.5.1 AUF1 and AU-rich-element-mediated mRNA degradation 

AU-rich elements (AREs) are cis-acting regulatory regions within the 3’ untranslated 

regions (UTRs) of many transcripts (particularly those of cytokines and proto-oncogenes) that 

act through recruitment of trans-acting factors to modulate the rate of RNA turnover (44). ARE 

binding protein 1 (AUF1, also called heterogeneous nuclear ribroprotein D0, or hnRNPD) 

modulates the stability of these factors by regulating their entry into ARE-mediated decay, or 

AMD. AUF1 binds to AREs as a dimer, and this can promote the sequential binding of 

additional AUF1 dimers and eventual oligomerization on target transcripts (45). AUF1 then 

recruits additional trans-acting factors (termed the AUF1-and signal transduction-regulated 

complex or ASTRC), which may include the eukaryotic translation initiation factor 4G (eIF4G), 

poly(A)-binding protein (PABP), the heat shock response proteins HSP70, HSC70, and HSP27, 

and additional as-of-yet-unidentified factors (44, 46). Although the precise mechanism of AMD 

is not yet delineated, it is thought to occur through decapping of the message followed by 

accelerated deadenylation and nucleolytic decay. The mechanism by which AUF1 regulates this 

process is complex, and varies depending on cell type and physiological condition.  

 

The AUF1 family is comprised of four splice isoforms: p37, p40, p42, and p45. All 

isoforms are found in both the nucleus and the cytoplasm, although p42AUF1 and p45AUF1 may 

preferentially localize to the nucleus (47, 48). All isoforms are capable of forming dimers and 
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binding ARE substrates, and although AUF1 is generally considered to promote mRNA 

degradation (with destabilization activity proportional to the binding affinity of the isoform (45, 

49)), all four isoforms have been shown to protect RNAs from decay in certain circumstances 

(50-53). Further illustrating the complexity of the regulatory mechanisms governing AUF1-

mediated decay, AUF1 can be phosphorylated at two serines, and this phosphorylation has 

seemingly contradictory outcomes. p40AUF1 and p45AUF1 contain exon 2, which include two 

phosphorylation sites, although only phosphorylation of p40AUF1 has been demonstrated. Protein 

kinase A phosphorylates p40AUF1 at Ser87, and glycogen synthase kinase 3-beta (GSK3β) 

phosphorylates p40AUF1 at Ser83 (54). In THP monocytes, these phosphorylations are associated 

with degradation of TNFα mRNA. However, treatment with 12-O-tetradecanoylphorbol-13-

acetate (TPA) to simulate monocyte adherence results in rapid stabilization of the target mRNAs 

and concurrent loss of p40AUF1 phosphorylation (54, 55). In contrast, as discussed in section 1.5b, 

phosphorylation of p40AUF1 is required for ubiquitin-mediated AUF1 degradation in HeLa cells 

and is therefore associated with increased mRNA stability (56). 

 

1.5.2 The p38MAPK-MK2 mRNA degradation pathway 

 In addition to regulating gene expression at the transcriptional level, p38MAPK regulates 

expression levels of target factors (cytokines in particular) through regulation of mRNA stability. 

In conjunction with its downstream target MK2, p38MAPK signaling stabilizes mRNAs such as 

IL6, IL8, and GM-CSF through their AU-rich 3’UTRs (57). Furthermore, p38MAPK signaling 

in response to lipopolysaccharide treatment has been shown to result in MK2-dependent 

phosphorylation of the RNA binding protein hnRNP A0. This phosphorylation is necessary to 
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enhance the interaction of hnRNP A0 with cytokine AREs therefore stabilizing them, potentially 

through outcompeting other RNA binding proteins such as AUF1 (58).  

 

 Although we have previously demonstrated that AUF1 regulation of SASP factor mRNA 

stability is p38MAPK-dependent, AUF1 is not a direct downstream target of p38MAPK. 

However, the ASTRC component and AUF1 interacting partner HSP27 is phosphorylated by 

MK2 in a p38MAPK-dependent manner (59). Indeed, phosphomimetic mutation of the three 

MK2 target sites on HSP27 (HSP27-TriD) increases the half-life of mRNAs targeted for 

degradation by AUF1 (60). The authors observed decreased interaction between HSP27 and 

AUF1 as well as increased proteolytic degradation of AUF1 in response to HSP27-TriD 

expression, and suggested that proteasomal degradation of AUF1 protein was responsible for the 

increased mRNA half-lives.  

 

Utilizing HeLa cells expressing phospho-mimetic and phospho-dead constructs of 

HSP27, AUF1, and the β-transducin repeat-containing protein (β-TrCP) subunit of the SCF 

(Skp1-cullin-F-box protein) ubiquitin ligase complex, Li and colleagues suggest HSP27-

dependent ubiquitination of AUF1 mediates AUF1 proteolysis in response to p38MAPK-

dependent HSP27 phosphorylation (56). Phosphorylation of p40AUF1 at serines 83 and 87 creates 

a non-canonical β-TrCP binding site leading to ubiquitination and degradation of p40AUF1, and 

subsequent stabilization of target mRNAs. Expression of HSP27-TriD to mimic HSP27 

phosphorylation was required to facilitate the interaction between phospho-p40AUF1 and β-TrCP 

in this context. The mechanisms by which other isoforms of AUF1 are degraded and regulate 
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mRNA stability in response to HSP27 phosphorylation remain to be elucidated, since only 

p40AUF1 has the ability to be both phosphorylated and ubiquitinated (54, 55, 61).  

 

Interestingly, both HSP27 and AUF1 are associated with aging and disease. AUF1 has 

been shown to suppress cellular senescence by activating transcription of the telomerase subunit 

Tert, as well as promoting degradation of mRNAs for the cell cycle inhibitors p16INK4a, p19Arf, 

and p21 (62). Indeed, Auf1-/- mice display telomere shortening and loss, increased cytokine 

expression, and premature aging phenotypes. High levels of HSP27 expression is correlated with 

resistance to chemotherapy as well as with markers of aggressive tumors and decreased survival 

in melanoma and breast cancer (63-65). Inhibition or suppression of HSP27 has been shown to 

sensitize different types of cancers to chemotherapy, and phase II clinical trials of the small 

molecule HSP27 inhibitor apatorsen (OGX-427) are currently underway (64-66). 

 

 

1.6  Summary 

Elucidating the mechanisms by which aging tissues contribute to tumorigenesis and 

cancer as a whole is essential for our understanding of the disease, as well as for designing the 

next generation of targeted cancer therapies. By understanding the pathways underlying the 

senescence-associated secretory phenotype and how the microenvironment promotes tumor 

growth and development, we will be able to treat not only the tumor itself, but also the support 

network that provides the tumor with the factors it needs to thrive. This work focuses on 

characterizing post-transcriptional regulation of the senescence-associated secretory phenotype 

in senescent cells. In chapter 2, I demonstrate that the p38MAPK-MK2-HSP27 pathway 
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regulates AUF1 activity in senescent cells, and that disruption of this pathway inhibits growth 

promotion by senescent fibroblasts. In chapter 3, I discuss the significance of this work and the 

intriguing avenues of investigation it opens. 
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Figure 1.1: Regulation of senescence and the senescence-associated secretory phenotype. 
 

Senescence is induced upon exposure to many stresses including telomere dysfunction, exposure 
to DNA damage, and others. Stresses that activate the DNA damage response lead to senescence 
and SASP expression through activation of p53, which activates p21 and enforces growth arrest 
through non-phosphorylated Rb (38, 67, 68). Persistent DDR signaling and other stressors can 
also indirectly activate the cell cycle regulator p16INK4a (dashed line), which also prevents 
phosphorylation of Rb by inhibiting the cyclin dependent kinases CDK4 and CDK6. 
Nonphosphorylated Rb prevents cell cycle progression by binding and inhibiting the E2F 
transcription factors, as well as by promoting heterochromatin at E2F targets and other pro-
proliferative genes (29). p38MAPK can be activated by DDR signaling, but DDR-dependent 
activation is not required for p38MAPK signaling during senescence. p38MAPK can reinforce 
senescence through activation of p16INK4a and p53, and promote SASP expression through 
activation of NF-κB as well as through stabilization of SASP factor transcripts (39, 42, 69). 
SASP expression also reinforces senescence through IL6 expression, as well as through feedback 
loops via C/EBPβ and NF-κB (40). Adapted from (16). 
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Figure 1.2: Accumulation of senescent cells alters the stromal compartment over time, 
priming the environment and driving tumorigenesis. 
 

Multiple aspects of tumor development come together to drive tumorigenesis over time in human 
tissues. As mutations accumulating in epithelial cells drive neoplasia, changes in the stromal 
compartment contribute to transformation to malignancy. Accumulation of senescent cells and 
SASP expression can promote this transformation through microenvironmental changes such as 
promotion of chronic inflammation and a tumor-permissive immune milieu, increased expression 
of growth factors and proangiogenic factors, and modifications to the extracellular matrix that 
promote both tumor growth as well as motility and invasion through the basement membrane. 
Adapted from (17). 
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Abstract 

Age is a significant risk factor for the development of cancer. Both accumulation of cell 

autonomous mutations within neoplastic cells and increases in senescent stromal cells within the 

tumor microenvironment are thought to collaborate to drive tumorigenesis. Senescent cells 

express a number of pro-tumorigenic factors termed the senescence-associated secretory 

phenotype (SASP) that are subject to a variety of regulatory mechanisms that remain to be fully 

elucidated. Previous work demonstrated that p38 mitogen-activated protein kinase (p38MAPK)-

dependent regulation of AUF1 occupancy on SASP factor mRNAs post-transcriptionally 

stabilizes many SASP mRNAs and contributes to their increased expression. Here, we address 

the mechanism by which p38MAPK regulates AUF1’s occupancy and activity on SASP factor 

mRNAs. We found that the p38MAPK-MK2-HSP27 pathway regulates both mRNA stability 

and AUF1 occupancy in cells induced to senesce. Furthermore, inhibiting this pathway blunted 

the tumor-promoting abilities of senescent stromal cells, suggesting that this pathway may 

represent a viable therapeutic target within the tumor microenvironment. 

 

 

Introduction 

Cellular senescence arises in response to a wide array of cytotoxic stresses including 

replication-driven telomere attrition, DNA damage, oncogene activation and increases in ROS, 

and other cellular stresses. Senescence is characterized by an irreversible cell cycle arrest that is 

mediated by activation of p21, and subsequently p16INK4a and Rb. As such, senescence functions 

as a potent tumor suppressor mechanism when it occurs within incipient tumor cells (1). In 
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addition to permanent growth arrest, senescence is characterized by an altered cell morphology 

that includes a flattened appearance and development of stress fibers, increased expression of 

senescence-associated β-galactosidase (SA-β-gal), and expression of the senescence-associated 

secretory phenotype or SASP (also known as the senescence messaging secretome or SMS) (2-

4). This secretory phenotype can lead to an immune-mediated clearance of tumor cells, but when 

it occurs in stromal cells it has been shown to function as a potent tumor promoter (2, 5-7). The 

SASP consists of a group of proteins including a large number of pro-inflammatory cytokines 

and other immune modulators, matrix remodeling proteins, and pro-proliferative factors, among 

others, that are coordinately upregulated in senescent cells. Senescent fibroblast-derived SASP 

can promote epithelial cell proliferation while simultaneously remodeling the stromal 

compartment to create an environment conducive to tumor proliferation, as well as promoting 

epithelial-to-mesenchymal transition (EMT) to allow for tumor extravasation and metastasis (2, 

7, 8).  

 

Upon induction of senescence, the immediate DNA damage response (DDR) and delayed 

activation of the p38 mitogen-activated protein kinase (p38MAPK) pathway function together to 

induce numerous SASP factors, primarily through activation of NFκB (9). This initial rapid 

transcriptional activation is accompanied by establishment of other characteristics of senescence 

such as SA-β-gal expression and morphological changes which occur more slowly, on the scale 

of days after genotoxic stress, with similar kinetics to p38MAPK phosphorylation. 

 

Immediately following a senescence-inducing stimulus such as treatment with the DNA 

damaging agent bleomycin, cells referred to here as pre-senescent begin to upregulate numerous 
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SASP factors through the activity of transcription factors like NFκB but do not yet display 

classic signs of senescence, including a flattened morphology or SA-β-Gal activity (9-11). We 

recently demonstrated that maintaining SASP factor upregulation results from a transition from a 

transcriptionally-driven process in pre-senescent cells to a post-transcriptional stabilization 

mechanism in cells displaying the morphological changes and SA-β-Gal activity characteristic of 

senescent cells (10). In spite of their increased transcriptional levels, several SASP factor 

mRNAs in pre-senescent cells, including IL-6, IL-8, and GM-CSF, are targeted for post-

transcriptional degradation by AU-rich elements (AREs) in their 3’ untranslated regions (UTRs), 

through a process termed ARE-mediated decay (AMD), which is mediated by the ARE binding 

protein 1 (AUF1, also called heterogeneous nuclear ribonucleoprotein D0 or hnRNPD). 

However, once senescence is established as evidenced by SA-β-Gal expression, AUF1 binding is 

decreased and SASP mRNAs are stabilized. Elevated SASP mRNA levels are sustained 

predominantly by a p38MAPK-dependent mRNA stabilization mechanism. Indeed, p38MAPK 

inhibition with the small molecule inhibitor SB203580 prevented the removal of AUF1 from 

these 3’UTRs and the mRNA stabilization phenotype (10). 

 

During AMD, AUF1 binds to target AREs and recruits other trans-acting factors (termed 

the AUF1- and signal transduction-regulated complex or ASTRC), which results in mRNA 

degradation. The precise mechanisms and order of events that leads to mRNA degradation 

remain to be determined, but it is thought to occur through acceleration of deadenylation and 

subsequent nucleolytic degradation of the target mRNA (12, 13). While AUF1 is known to be 

important in this process, its precise role in mRNA decay is incompletely understood. AUF1 is 

expressed in four splice isoforms generated from a common pre-mRNA: p37, p40, p42, and p45. 
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Although all isoforms can promote mRNA degradation, there are circumstances wherein certain 

isoforms of AUF1 bind and act to protect mRNAs from decay, underscoring the complexity of 

the system and demonstrating that AUF1-mediated decay is not regulated simply at the level of 

AUF1 binding (14-17). Post-translational modification of AUF1 also appears to differentially 

affect mRNA stability. It has been shown that p40AUF1 can be phosphorylated on Ser83 by protein 

kinase A (PKA) and Ser87 by glycogen synthase kinase 3β (GSK3β), and this phosphorylation 

has contradictory consequences on mRNA stability (18, 19). In THP-1 monocytic leukemia cells, 

phosphorylated p40AUF1 is actively involved in mRNA degradation. Treatment with 12-O-

tetradecanoylphorbol-13-acetate (TPA) to simulate monocyte adherence results in rapid 

stabilization of the target mRNAs and concurrent loss of p40AUF1 phosphorylation, suggesting 

that p40AUF1 promotes mRNA degradation when phosphorylated, and mRNA stabilization in its 

non-phosphorylated state (19). In contradiction, phosphorylation of AUF1 leads to its ubiquitin-

mediated degradation (and subsequent AUF1 target mRNA stabilization) in response to 

p38MAPK signaling through HSP27 in HeLa cells (20). The varied consequences of AUF1 

phosphorylation and differential outcomes of AUF1 binding to target AREs demonstrate that 

complex regulatory mechanisms including the phosphorylation state of AUF1 and/or other 

ASTRC members are involved in AMD. 

 

We previously demonstrated that p38MAPK inhibition led to destabilization of SASP 

mRNAs through alteration of AUF1 binding in senescent fibroblasts. However, p38MAPK does 

not directly target AUF1 and thus the mechanism by which p38MAPK influences AUF1 activity 

remained to be elucidated. Interestingly, recent work by Herranz et al. demonstrated that 

MAPKAPK2 (MK2) in senescent IMR90 lung fibroblasts participated in SASP factor regulation. 
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MK2 is a p38MAPK target which when activated is known to regulate mRNA stability and 

phosphorylate the small heat shock protein HSP27, an ASTRC member that has been shown to 

regulate AUF1 levels and mRNA stability in lymphocytes (21-24). 

 

Given our previous findings, we investigated whether p38MAPK regulates mRNA 

stabilization in senescent cells through MK2 and HSP27. Our results indicate that p38MAPK and 

MK2 govern mRNA stabilization through phosphorylation of HSP27, but that HSP27 does not 

act solely through regulation of AUF1 protein levels or binding to SASP mRNAs. Furthermore, 

we find that MK2 pathway inhibition not only prevents the upregulation and stabilization of 

SASP factor mRNAs, it also prevents senescent fibroblasts from promoting preneoplastic cell 

growth in a co-culture model, suggesting that targeting MK2 in the tumor microenvironment 

may be a promising therapeutic avenue in cancer treatment. 

 

 

Materials and Methods 

Cell lines and treatments 

BJ human foreskin fibroblasts were cultured in DMEM supplemented with 15% M-199, 15% 

heat-inactivated FBS, and 1% penicillin/streptomycin (all from Sigma). Fibroblasts were treated 

with bleomycin sulfate (0.1 units/mL, Sigma) for 24 hours, followed by incubation in normal 

culture medium (unless otherwise stated) for the time points indicated. Fibroblasts were treated 

with actinomycin D (10 µg/mL, Sigma) for 24 hours, and SB203580 (10 µM, Millipore), 

CDD111 (also referred to as SD0006, 1 µM), or CDD450 (1µM, both from Confluence Life 

Sciences, St. Louis, MO) every 24h unless indicated otherwise. HaCaT preneoplastic 
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keratinocyte cells obtained from Dr. Norbert E. Fusenig (German Cancer Research Center, 

Heidelberg, Germany) stably expressing click beetle red (CBR) luciferase (HaCaT-CBR) and 

HEK293T embryonic kidney cells (6) were grown in DMEM supplemented with 10% heat-

inactivated FBS and 1% penicillin/streptomycin (Sigma). All cells were cultured at 37°C in 5% 

CO2 and 5% O2. No cell lines used were authenticated. 

 

Virus production and plasmids 

Virus production was carried out as described previously (25). Briefly, HEK239T cells were 

transfected with Trans-IT LT1 (Mirus) and virus was collected 48h later. Infections were carried 

out in the presence of 1µg/mL protamine sulfate. 48h post-infection, cells were selected with 

1µg/mL puromycin or 50 µg/mL hygromycin. 

Short hairpin RNA sequences targeting HSP27 (5’-CCCGGACGAGCTGACGGTCAA-3’) and 

control SCR (5’-TCCTAAGGTTAAGTCGCCCTC-3’) were obtained from the Children’s 

Discovery Institute’s viral vector-based RNAi core at Washington University in St. Louis, and 

were supplied in the pLKO.1-puro backbone. When not combined with knockdown, FLAG-

tagged HSP27-TriD was expressed from the pBABE-hyrgo backbone. Knockdown rescue 

experiments utilized the pRESQ-puro backbone with the indicated hairpins. Hairpin-resistant 

Flag-HSP27 WT and TriD were manufactured by IDT and cloned into pRESQ from pUC57. The 

sequence was based on constructs provided by Dr. Gary Brewer with the following silent 

mutations to the shHSP27 hairpin recognition sequence: 5’-CCG GAC GAG CTG ACG GTC-3’ 

to 5’-CCC GAT GAA CTC ACC GTG-3’. Hairpin-resistant HSP27-TriA was generated utilizing 

QuikChange Lightning site directed mutagenesis (Agilent Technologies) of pUC57-HSP27-WT 



	 30 

and published primers (22) to generate the Ser-to-Ala mutations at serines 15, 78 and 82, and 

similarly cloned into pRESQ. 

 

Western blot analysis 

Cell pellets were lysed in MCLB (50 mM Tris pH 8.0, 5 mM EDTA, 0.5% NP40 and 100 mM 

sodium chloride, with aprotenin, leupeptin, pepstatin, phenylmethylsulfonyl fluoride, 

microcystin LR, sodium orthovanidate and sodium fluoride) for 20 minutes at 4°C. Protein 

concentration was quantified using the Bradford Protein Assay (Bio-Rad). The primary 

antibodies used were: monoclonal p-HSP27 Ser82 (1:1000, clone D1H2, catalog number 9707S), 

polyclonal p-HSP27 Ser15 (1:1000, catalog number 2404S), monoclonal HSP27 (1:1500, catalog 

number 2402), and polyclonal p38 (1:1000, catalog number 9218S) all from Cell Signaling 

Technology; monoclonal p-HSP27 Ser78 (1:2000, clone Y175, catalog number ab32501, 

Abcam); polyclonal AUF1 (1:4000, catalog number 07260MI, Millipore); polyclonal p-p38 

(1:1000, catalog number p190-1802, PhosphoSolutions); monoclonal α-tubulin (1:5000, catalog 

number ab6160, Abcam); monoclonal β-actin (1:2000, clone AC-15, catalog number A2228, 

Sigma); polyclonal γ-actin (1:5000, catalog number NB600-533, Novus Biologicals); and 

monoclonal GAPDH (1:2500, clone GAPDH-71.1, catalog number G8795, Sigma). All 

secondary antibodies from the appropriate species were horseradish peroxidase-conjugated 

(Jackson Laboratories) and diluted 1:10000. 
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Quantitative PCR 

RNA was isolated using TRI Reagent (Life Technologies) or RNeasy kit (Qiagen) at the time 

points indicated. cDNA synthesis and quantitative PCR was performed using previously 

published protocols and manufacturers’ instructions (10) (SYBR Green, Life Technologies). 

Primers for GAPDH (F: 5’-GCATGGCCTTCGGTGTCC-3’, R: 5’-

AATGCCAGCCCCAGCGTCAAA-3’), IL-6 (F: 5’-ACATCCTCGACGGCATCTCA-3’, R: 5’-

TCACCAGGCAAGTCTCCTCA-3’), IL-8 (F: 5’-GCTCTGTGTGAAGGTGCAGT-3’, R: 5’-

TGCACCCAGTTTTCCTTGGG-3’), GMCSF cDNA was amplified using a Taqman 

probe/primer set and normalized to GAPDH (catalog numbers Hs00929873_m1 and 

Hs02758991_g1, respectively, and Taqman Fast Advanced master mix, Life Technologies). 

 

RNA immunoprecipitation (RIP) 

Cell pellets from two 150mm dishes of BJ fibroblasts were lysed in the same buffer used for 

western blot analysis (MCLB). Protein concentration was analyzed using the Bradford Protein 

Assay (Bio-Rad). 1 mg of protein was used for each immunoprecipitation. 15 µg of polyclonal 

AUF1 (catalog number 07260MI, Millipore) was used. An equivalent amount of normal rabbit 

IgG antibody (catalog number 2729S, Cell Signaling) was used to control for specific 

immunoprecipitation. Cell lysates were pre-cleared with 20 µL protein A Dynabeads (Life 

Technologies) for 30 minutes at 4°C prior to incubation with the indicated antibody overnight at 

4˚C in total volume of 1mL MCLB supplemented with 1µL RNAseOUT (Invitrogen). 100 µL 

Protein A Dynabeads were used for each immunoprecipitation. Beads were washed 2 times in 

0.1 M monosodium phosphate, 3 times in Buffer A (1x PBS, 0.1% SDS, 0.3% sodium 

deoxycholate, 0.3% NP40), and 2 times in MCLB, then incubated with samples for 4 hours at 
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4˚C with rotation. Immunoprecipitated beads were washed 2 times with each of the following 

buffers: Buffer A, Buffer B (5x PBS, 0.1% SDS, 0.5% sodium deoxycholate, 0.5% NP40) and 

Buffer C (50 mM Tris pH 7.4, 10 mM magnesium chloride, 0.5% NP40). RNA was isolated 

from the beads by adding 1 mL of TRI Reagent (Life Technologies). Following cDNA synthesis, 

mRNA levels of SASP factors were analyzed by qPCR using the primers and procedures 

described above.  

 

Senescence-associated β-galactosidase  

SA-β-gal staining was carried out on subconfluent cells as described previously (6, 26). 

 

Co-culture 

Co-culture experiments were performed as previously described (10). Briefly, 1.3×104 BJ 

fibroblasts were plated in black-walled 96-well plates. 24h later, cells were treated with 0.1 

units/mL bleomycin for 24h. Cells were then incubated in starve medium (DMEM F-12 + 1% 

penicillin/streptomycin) for 24h before addition of CDD111 and CDD450. Inhibitors were 

refreshed daily for 2 days before the addition of HaCaT-CBR cells. HaCaT-CBR cells were 

cultured in starve medium for 24 hours prior to plating on fibroblasts. 1.0×103 HaCaT-CBR cells 

were plated on fibroblasts and incubated with inhibitors for 72h. After 72h, D-luciferin 

(Biosynth, Naperville, IL) was added to a final concentration of 150 µg/mL. After ten minutes, 

plates were imaged using an IVIS 100 camera (PerkinElmer) using the following settings: 

exposure=5 min, field of view=15, binning=16, f/stop=1, open filter. 
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Results 

HSP27 destabilizes SASP factor mRNA in pre-senescent cells.  

SASP factor mRNAs are regulated at the transcriptional and post-transcriptional levels 

(10). Indeed, our previous work demonstrated that the stress kinase p38MAPK stabilizes SASP 

factor mRNAs by altering the RNA binding and destabilizing ability of AUF1, which can target 

these mRNAs for degradation. Importantly, the increased mRNA stability is induced only after 

the establishment of the senescent phenotype as indicated by expression of senescence-

associated β-galactosidase (SA-β-Gal) and morphological changes. In verification of our 

previous results, when transcription is inhibited with actinomycin D (ActD) immediately 

following a senescence-inducing dose of bleomycin but before SA-β-Gal is expressed and 

morphological changes are observed (pre-senescent), abundance of the SASP factor mRNAs 

IL6, IL8, and GM-CSF is significantly reduced compared to similar treatment of senescent cells 

(Fig. 2.1A & 2.1B). This indicates that transcriptionally-driven mechanisms are responsible for 

inducing increased SASP expression in pre-senescent cells, and SASP factor mRNA levels are 

maintained by post-transcriptional mechanisms in senescent but not pre-senescent cells. 

 

Our previous work demonstrated that p38MAPK inhibition decreased SASP factor 

mRNA stability in senescent cells in part by allowing AUF1 to remain active and bound to the 

UTRs of these mRNAs, resulting in their degradation (10). Because AUF1 is not a p38MAPK 

target, we wanted to determine how p38MAPK impacted the ability of AUF1 to regulate SASP 

factor mRNA degradation following the induction of senescence. For this reason, we turned our 

attention to HSP27 because it is a downstream target of p38MAPK through MK2, and previous 
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studies demonstrated that HSP27 could regulate mRNA stability as a member of the AUF1-

containing ASTRC complex in other experimental settings (22, 23, 27). To determine whether 

HSP27 could regulate mRNA stability in pre-senescent cells, we transduced BJ fibroblasts with a 

control short hairpin (shSCR) or a short hairpin targeting HSP27 (shHSP27), resulting in an 80% 

reduction of HSP27 protein (Fig. 2.1C). Next, we treated control and HSP27-depleted cells with 

bleomycin to induce senescence and found that HSP27 depletion did not significantly affect the 

ability of cells to enter senescence as quantified by SA-β-Gal activity (Fig. 2.1D & 2.1E). 24h 

after bleomycin addition, cells were treated with ActD to assess the stability of SASP factor 

transcripts. Indeed, there was a significant increase in the amount of IL6, IL8, and GM-CSF 

mRNA remaining in pre-senescent cells depleted of HSP27 relative to shSCR-expressing cells 

after transcriptional inhibition (Fig. 2.1F), demonstrating that HSP27 acts to destabilize target 

SASP mRNAs in pre-senescent cells. Previous studies have demonstrated that HSP27 can 

regulate AUF1 levels, suggesting that HSP27 regulates mRNA stability by modulating AUF1 

abundance (20, 22). In our system, we failed to find evidence that HSP27 modulated AUF1 

levels, suggesting the mRNA stabilization we observed was not a result of a change in AUF1 

abundance (Fig. 2.1C). 

 

Because depletion of AUF1 stabilizes SASP factor mRNAs in pre-senescent cells 

suggesting AUF1 functions to destabilize these mRNAs (10), we next wanted to determine 

whether HSP27 affected the ability of AUF1 to bind to SASP mRNAs and alter their stability. 

To test this possibility, we utilized RNAi to deplete HSP27 from BJ fibroblasts, and induced 

senescence via bleomycin treatment. We then performed an RNA-immunoprecipitation (RIP) to 

capture AUF1-bound mRNAs. GAPDH mRNA, which does not contain an ARE, was not 
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significantly immunoprecipitated by an anti-AUF1 antibody relative to IgG control, but the anti-

AUF1 antibody did immunoprecipitate the ARE-containing IL-6 and IL-8 mRNAs. Surprisingly, 

depletion of HSP27 resulted in increased AUF1 binding to IL-6 and IL-8 mRNAs, from 0.36% 

to 0.74% of input for IL-6, and 1.62% to 2.51% of input for IL-8 in shSCR versus shHSP27-

expressing cells (Fig. 2.1G). This finding demonstrates that although AUF1 is necessary for 

mRNA degradation in pre-senescent cells (10), its binding alone is insufficient to induce mRNA 

degradation in pre-senescent fibroblasts depleted of HSP27. Together these data suggest that an 

additional, HSP27-dependent activity is required to drive AUF1-mediated mRNA degradation in 

pre-senescent cells. 

 

p38MAPK and MK2 regulate mRNA stability in senescent cells.  

We previously demonstrated that p38MAPK regulates the transition from unstable SASP 

factor mRNAs in pre-senescent cells to stable mRNAs with longer half-lives in senescent cells, 

in part by regulating the ability of AUF1 to bind and target these mRNAs for degradation (10). In 

response to p38MAPK activation, the downstream kinase MK2 can induce stabilization of 

certain ARE-containing mRNAs, and the p38MAPK-MK2-HSP27-AUF1 axis has been 

implicated in regulation of mRNA stability in THP-1 monocytes (22, 24). Furthermore, MK2 

was recently shown to impact SASP expression (21, 28). Thus, to interrogate the role of the 

p38MAPK-MK2 pathway in the senescence-associated mRNA stabilization phenotype, we 

utilized two inhibitor compounds. SB203580 (p38i) is a small molecule inhibitor of p38α and 

p38β, which we used at a concentration that minimizes off-target effects (10µM) (29, 30). 

CDD450 (MK2i) is a novel p38/MK2 pathway inhibitor that selectively targets the 

p38MAPK/MK2 complex, inhibiting activation of MK2 by p38MAPK while allowing 
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p38MAPK to phosphorylate other downstream targets (data not shown), providing us with a tool 

to investigate the effects of p38MAPK-dependent MK2 phosphorylation on SASP mRNA 

stabilization. Treatment with p38i or MK2i as indicated resulted in a 90% and 95% reduction in 

p38MAPK and MK2 activity, respectively, as measured by average inhibition of HSP27 

phosphorylation (Fig. 2.2A-2.2C). 

 

To confirm the role of p38MAPK activity in the transition from transcriptional regulation 

to post-transcriptional stabilization of SASP mRNAs as cells become senescent, we assayed 

mRNA stability in cells treated with p38i. As previously reported (10), we found that treatment 

with p38i significantly reduced the expression of the SASP factors IL-6, IL-8, and GM-CSF by 

62%, 92%, and 67% relative to vehicle-treated senescent cells (Fig. 2.2D). p38i also significantly 

inhibited the stabilization of these mRNAs in senescent cells, by 61%, 46%, and 75% for IL-6, 

IL-8, and GM-CSF, respectively (Fig. 2.2E). Demonstrating that MK2 functioned downstream 

of p38MAPK in senescent cells, we found that MK2i treatment inhibited expression of IL-6, IL-

8, and GM-CSF by 32%, 71%, and 56% relative to vehicle-treated senescent cells (Fig. 2.2D). 

Furthermore, MK2 pathway inhibition prevented mRNA stabilization in senescent cells, with a 

62%, 57%, and 60% reduction in mRNA remaining after 24h ActD treatment for IL-6, IL-8, and 

GM-CSF, respectively (Fig. 2.2E). Thus, MK2 activity is required for the stabilization of SASP 

factor transcript stability in senescent fibroblasts. 

 

 

 



	 37 

The p38MAPK-MK2-AUF1 axis regulates mRNA stability in senescent cells 

through HSP27 phosphorylation.  

Because HSP27 is required for mRNA degradation in pre-senescent cells, and p38MAPK 

and MK2 are required for SASP factor mRNA stability in senescent cells, we next asked if 

p38MAPK-MK2-dependent HSP27 phosphorylation impacted mRNA stability in pre-senescent 

and senescent cells. In pre-senescent cells, AUF1 activity and increased levels of non-

phosphorylated HSP27 correlate with mRNA degradation (10). Because MK2-dependent 

phosphorylation of HSP27 on Ser15, Ser78, and Ser82 in THP-1 monocytes and HeLa cells 

impacts mRNA stability (20, 22, 23), we asked what role HSP27 phosphorylation plays in 

mRNA stability in senescent cells. Analysis of HSP27 phosphorylation revealed a p38MAPK- 

and MK2-dependent increase in phosphorylation at all three serines in senescent versus pre-

senescent cells (Fig. 2.2B). To investigate the role of p38MAPK-MK2-dependent HSP27 

phosphorylation, we simultaneously depleted cells of endogenous HSP27 and ectopically 

expressed either a FLAG-tagged wild type or mutant HSP27 allele. HSP27-TriD has serine-to-

asparagine phosphomimetic mutations at each of the three key serine residues. If HSP27 

phosphorylation drives SASP mRNA stability, expression of HSP27-TriD in pre-senescent cells 

should create a senescent-like mRNA stability phenotype in pre-senescent cells. Conversely, 

HSP27-TriA has serine-to-alanine mutations at the key serine residues that prevent it from being 

phosphorylated, and should therefore result in a pre-senescent-like, lower mRNA stability state 

in senescent cells. 

 

To assess in the impact of HSP27 phosphorylation on mRNA stability in senescent cells, 

we first simultaneously knocked down the endogenous HSP27 with an HSP27 short hairpin 
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(shHSP27) and ectopically expressed shRNA-resistant FLAG-tagged HSP27 alleles in BJ 

fibroblasts. As previously reported in monocytes, HSP27-TriD expression is very low compared 

to HSP27-WT or HSP27-TriA (22), however in contrast to that report, AUF1 protein levels were 

not affected by the expression of these mutants (Fig. 2.3A). Importantly, the expression of 

neither wild type nor the HSP27 mutants affected the ability of cells to enter senescence as 

quantified by SA-β-Gal staining (Fig. 2.3B & 2.3C). However, we found that the 

phosphorylation state of HSP27 did regulate mRNA stability in pre-senescent and senescent 

cells, independent of AUF1 levels. Cells expressing HSP27-WT, HSP27-TriD, or HSP27-TriA 

were treated with bleomycin to induce senescence for 24h and then treated with ActD to inhibit 

transcription either immediately following bleomycin treatment (pre-senescent) or 96h post-

bleomycin treatment (senescent). In pre-senescent cells, as expected, transcriptional inhibition 

resulted in degradation of SASP factor mRNAs in cells expressing HSP27-WT (Fig. 2.3D). 

However, expression of the HSP27-TriD mutant resulted in significantly increased mRNA 

stability compared to cells expressing HSP27-WT, demonstrating that phosphorylated HSP27 

protects SASP factor mRNAs from degradation and is sufficient to create a senescent-like 

mRNA stabilization state in pre-senescent cells (Fig. 2.3D). Conversely, expression of the non-

phosphorylatable mutant HSP27-TriA in senescent cells resulted in significantly decreased 

mRNA stability compared to HSP27-WT. This demonstrated that HSP27 phosphorylation on 

p38MAPK-MK2 target sites is necessary for senescence-associated mRNA stabilization and 

preventing this phosphorylation can create a pre-senescent-like mRNA instability state in 

senescent cells. Because the endogenous and FLAG-tagged HSP27 expression levels were so 

low in cells expressing shHSP27 + HSP27-TriD, and the phenotype recapitulates that observed 

in cells only expressing shHSP27, we transduced FLAG-tagged HSP27-TriD without the hairpin 
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into BJ fibroblasts and repeated the mRNA stability assay in pre-senescent cells to ensure the 

observed stabilization was due to HSP27-TriD expression rather than loss of endogenous HSP27. 

We again found that expression of HSP27-TriD significantly increased the stability of IL-6 and 

IL-8 mRNAs, recapitulating a senescent-like mRNA stability state in pre-senescent cells (Fig. 

2.3E & 2.3F). 

 

We previously found that AUF1 binding to SASP factor mRNAs decreases from pre-

senescence to senescence in a p38MAPK-dependent manner. Thus, we next wanted to determine 

whether the pre-senescent-like state created by expression of HSP27-TriA in senescent cells 

recapitulated the pre-senescent AUF1 binding state, i.e. increased AUF1 occupancy. We 

performed a RIP in senescent BJ fibroblasts expressing shHSP27 and either HSP27-WT or 

HSP27-TriA. When AUF1 was immunoprecipitated from these cells we found that expression of 

HSP27-TriA significantly increased AUF1 binding from 0.15% to 0.30% of input for IL-6, 

0.92% to 1.58% of input for IL-8, and 0.26% to 0.41% of input for GM-CSF mRNAs as 

compared to HSP27-WT (Fig. 2.3G). Previous studies and our data from shHSP27-expressing 

cells (Fig. 2.1F & 2.1G) argue that AUF1 binding to target mRNAs is not the only determinant 

of ARE-mediated mRNA degradation. However, we did find that AUF1 binding in HSP27-TriA-

expressing senescent cells was increased while mRNA stability was decreased, recapitulating 

what is observed in wild type pre-senescent cells thus confirming that decreased AUF1 binding 

is a component of SASP mRNA stability regulation in senescent cells. 
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The p38MAPK-MK2-HSP27 axis promotes stromal-supported tumor cell 

growth.  

 Previously we demonstrated that senescent stroma promotes tumor cell growth, and 

inhibiting p38MAPK signaling in the stroma significantly reduces this growth promotion (10). 

Because p38MAPK inhibition studies in patients have suggested that cells develop resistance 

mechanisms to p38MAPK inhibition (31-33) and we find that MK2 is an important player in 

SASP mRNA stability, we investigated whether targeting the MK2 arm of the p38MAPK 

pathway would inhibit stromal-supported tumor growth. Along with the p38MAPK inhibitor 

CDD111 (p38iʹ), we again utilized CDD450 (MK2i), which prevents p38MAPK from 

phosphorylating MK2, providing a more selective inhibition of the MK2 pathway while 

preserving alternate p38MAPK activity. Both p38iʹ and MK2i inhibited the pathway as 

evidenced by reduced HSP27 phosphorylation, inhibition of the upregulation and post-

transcriptional stabilization of SASP factors. Both IL-6 and IL-8 upregulation and mRNA 

stabilization were significantly inhibited by treatment with both p38iʹ and MK2i (Fig. 4A-D). To 

test whether MK2 pathway inhibition could prevent senescent stroma from promoting tumor 

growth, we cultured BJ skin fibroblasts with preneoplastic HaCaT keratinocytes expressing click 

beetle red (CBR) luciferase (HaCaT-CBR). BJ fibroblasts were treated with bleomycin and p38iʹ 

or MK2i for 96h to allow the fibroblasts to senesce, and then HaCaT-CBR cells were plated as 

indicated (Fig. 2.4E). As expected, senescent BJ fibroblasts significantly increased the growth of 

HaCaT-CBR cells compared to non-senescent BJ fibroblasts (Fig. 2.4E). Further, as previously 

reported, p38MAPK inhibition abrogated this growth by an average of 66.1%. Importantly, 

treatment with MK2i resulted in an average 73.6% reduction in tumor cell growth promotion 
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(Fig. 2.4E) and this reduction in HaCaT-CBR growth was due to inhibition of the p38MAPK-

MK2 pathway in the stroma specifically, because neither p38iʹ nor MK2i treatment significantly 

affected the growth of HaCaT-CBR cells cultured independently. These data indicate that MK2 

pathway inhibition is a viable therapeutic strategy that can specifically prevent senescent stromal 

promotion of tumor cell growth. 

 

 

Discussion 

The SASP is regulated by a multitude of signaling pathways at the levels of transcription, 

mRNA stability, and translation. In cells irradiated to induce senescence, p38MAPK is activated 

with slow kinetics, with peak phosphorylation of p38MAPK and HSP27 not occurring until 8-10 

days post-irradiation (9). Inhibition of p38MAPK with SB203580 or knockdown using an 

shp38α hairpin prevented the expression of SASP factors at the protein and mRNA levels, 

suggesting that p38MAPK regulates SASP factor transcription (9, 10). Indeed, NFκB binding 

activity increases slowly in senescence reflecting p38MAPK activation, and p38MAPK activity 

is sufficient to induce NFκB binding. 

 

In addition to transcriptional regulation, we previously demonstrated that p38MAPK 

regulates SASP factor expression through stabilization of target mRNAs in senescent cells, in an 

AUF1-dependent manner (10). Here, we demonstrate that the presence of HSP27 and its 

p38MAPK-MK2-dependent phosphorylation state regulate SASP mRNA stability in pre-

senescent and senescent cells. In pre-senescent cells, increased levels of non-phosphorylated 
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HSP27 relative to senescent cells (Fig. 2.2B & 2.2C) promotes SASP factor mRNA degradation 

in a manner independent of AUF1 binding, as depletion of HSP27 increased both mRNA 

stability and AUF1 binding to SASP mRNAs (Fig. 2.1G). Additionally, the stability of SASP 

factor mRNAs is dependent on the phosphorylation state of MK2 target sites on HSP27. In pre-

senescent cells, mRNA degradation correlates with reduced levels of HSP27 phosphorylation, 

while in senescent cells increased mRNA stability is correlated with increased HSP27 

phosphorylation. The importance of HSP27 phosphorylation was underscored by our finding that 

expression of the phosphomimic HSP27-TriD in pre-senescent cells recapitulated the senescent 

state (i.e. stabilized mRNA). In contrast, expression of the phospho-dead HSP27-TriA resulted in 

destabilization of SASP mRNAs and thus created a pre-senescent-like state in senescent cells 

(Fig. 2.3D). These data support the hypothesis that HSP27 phosphorylation is required to 

stabilize SASP mRNAs. Furthermore, phosphorylation of HSP27 is required for removal of 

AUF1 from SASP mRNAs in senescent cells, since HSP27-TriA expression increased AUF1 

binding in senescent cells while decreasing mRNA stability (Fig. 2.3G). This suggests that in 

senescent cells, AUF1 binding is correlated with stability and binding may be a regulatory 

mechanism in that state. A previous study in lymphocytes demonstrated that HSP27’s 

phosphorylation state regulates the abundance and stability of AUF1 resulting in mRNA 

stabilization in that system (20, 22). However, we did not observe consistent changes in AUF1 

levels upon HSP27 knockdown or expression of the HSP27 mutants, suggesting that an alternate 

p38-MK2-HSP27 dependent mechanism of regulating AUF1-mediated mRNA degradation is 

active in senescent fibroblasts. 
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AUF1 activity is regulated at several levels in different cellular contexts. In certain 

systems, AUF1-mediated mRNA degradation is regulated by AUF1 binding to target mRNAs, 

which can be affected by altering AUF1’s binding ability or through modulation of AUF1 levels 

within the cell. However, AUF1 binding alone is not always predictive of mRNA degradation, 

since AUF1 binding has also been reported to protect mRNAs from degradation (15, 17, 34). 

Indeed, all four isoforms of AUF1 can promote mRNA degradation and/or protection depending 

on cell type and context, and the isoforms have different ARE-binding affinities, suggesting that 

AUF1 can regulate mRNA stability through context-specific binding of its four isoforms (12, 14, 

16, 17, 35). Furthermore, AUF1 activity can be regulated by post-translational modifications. In 

THP-1 lymphocytes, phosphorylated p40AUF1 is associated with TNFα mRNA degradation 

whereas non-phosphorylated p40AUF1 is associated with longer TNFα mRNA half-life and higher 

levels of translation, suggesting phosphorylated p40AUF1 is actively involved in AMD (18, 19). 

Conversely, phosphorylation of p40AUF1 is required for ubiquitin-mediated AUF1 degradation in 

HeLa cells, resulting in increased mRNA stability (20). Together, these observations illustrate 

the complexity and context-specificity of the regulatory mechanisms governing AUF1’s roles in 

mRNA stability. 

 

Our data suggest that the phosphorylation state of HSP27 and the binding of AUF1 

impact mRNA stability in pre-senescent and senescent cells (Fig. 2.5). Indeed, non-

phosphorylated HSP27 favors AMD as evidenced by our findings that (i) in pre-senescent cells, 

which have low p38MAPK activity and reduced levels of phosphorylated HSP27, HSP27 

depletion results in mRNA stabilization despite increased AUF1 binding, and (ii) expression of 

the non-phosphorylatable allele HSP27-TriA results in mRNA degradation in senescent cells. 
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Thus, our data suggest an important role for non-phosphorylated HSP27 in AMD in pre-

senescent cells, because if phosphorylated HSP27 were the only state in which HSP27 regulated 

mRNA stability, then HSP27 depletion in pre-senescent cells should result in increased mRNA 

degradation due to the lack of basal phospho-HSP27 in the system. This activity may occur 

through HSP27-dependent recruitment or activation of other ASTRC members.  

 

Together, these observations suggest that senescence-associated AMD is regulated by 

HSP27 and AUF1 activity, and that the role of HSP27 may be upstream of AUF1 during pre-

senescence. In pre-senescent cells, p38MAPK activity is low, and both AUF1 and HSP27 

actively promote AMD, resulting in SASP mRNA degradation (Fig. 2.5A). This suggests that 

non-phospho-HSP27 is its AMD-promoting state. When HSP27 is depleted in pre-senescent 

cells, the lack of non-phospho, AMD-promoting HSP27 results in mRNA stabilization despite 

AUF1 binding to target mRNAs (the increase in AUF1 binding observed in shHSP27 cells may 

be due to the reduction of basal levels of phospho- or AMD-inhibiting HSP27). This indicates 

that although AUF1 is necessary, AUF1 binding is insufficient to drive AMD without HSP27 in 

pre-senescent cells. Once the p38MAPK pathway is activated and cells are senescent (Fig. 2.5B), 

AUF1 activity appears to be regulated at the level of binding, since both inhibition of the 

p38MAPK pathway as well as expression of the non-phosphorylatable HSP27-TriA result in loss 

of the senescence-associated decrease in AUF1 binding and subsequent destabilization of SASP 

mRNAs (10). 

 

Like p38MAPK inhibition, inhibition of the MK2 pathway prevents SASP mRNA 

stabilization, and our data with HSP27-TriA and HSP27-TriD suggest that phosphorylation of 
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MK2 target sites on HSP27 drives this phenotype. Recently, Herranz et al. demonstrated that 

mTOR modulates MK2 translation in the context of oncogene-induced senescence (OIS), 

allowing MK2 to phosphorylate and inactivate ZFP36L1, another mRNA destabilizing protein 

that binds AU rich elements similarly to AUF1. They suggest that this ZFP26L1 phosphorylation 

then prevents ARE-containing SASP mRNAs from being degraded in senescent cells resulting in 

SASP factor upregulation. Our previous data demonstrate that AUF1 binds and targets SASP 

mRNAs for degradation in pre-senescent but not senescent cells and that depletion of AUF1 

from pre-senescent cells stabilizes SASP mRNAs (10). Here we demonstrate HSP27’s MK2-

dependent regulation of AUF1 occupancy on SASP mRNAs in senescent cells. These findings 

together suggest that MK2 has a multifaceted role in the regulation of SASP factor mRNA 

stability and upregulation, further supporting MK2 as a promising drug target for inhibition of 

the p38MAPK pathway. 

 

The p38MAPK pathway regulates the expression of many pro-inflammatory cytokines 

and other factors responsible for chronic inflammatory diseases such as chronic obstructive 

pulmonary disease (COPD), rheumatoid arthritis (RA), psoriasis, and Chron’s disease (33), and 

therefore has been an attractive target for treating the inflammation associated with these 

diseases. Furthermore, we previously demonstrated that p38MAPK inhibition prevents tumor 

growth driven by a senescent microenvironment (10). However, clinical trials for the 

inflammatory diseases discussed above have so far been met with disappointing outcomes, due to 

problems such as low efficacy, adverse side effects, and a rebound effect observed in trials using 

p38MAPK inhibitors for the treatment of multiple diseases, wherein a transient drop in 

inflammation as measured by the level of C-reactive protein (CRP) is quickly followed by a 
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return to baseline (31, 36, 37). This rebound effect may be due to inhibition of downstream anti-

inflammatory substrates of p38MAPK (e.g. MSK1/2 or MKP1), and could be circumvented by 

more selectively targeting the pro-inflammatory p38MAPK substrate MK2. Furthermore, 

decreased inflammatory responses in MK2 knockout mice have been associated with decreased 

tumorigenesis in colon and skin models (38, 39). Current cancer treatment modalities largely 

target tumor cells, neglecting the critical impact of the tumor microenvironment on tumor 

establishment and growth. Modulation of the tumor microenvironment is sufficient to promote or 

restrain tumor cell growth, demonstrating that stromal-specific therapies or co-therapies are a 

promising therapeutic avenue, and targeting the SASP through p38MAPK and MK2 activity is a 

possible means to do so. Herranz et al. demonstrated that the mTOR/MK2/ZFP36L1 pathway 

mediates the pro-tumorigenic aspects of the SASP. Here, we have demonstrated that MK2 also 

regulates the SASP through HSP27 and AUF1. Furthermore, we have shown that inhibition of 

the MK2 pathway is as effective as p38MAPK inhibition at limiting the expression and mRNA 

stabilization of SASP factors, thereby preventing senescent stroma from promoting the growth of 

pre-neoplastic HaCaT keratinocytes in vitro and demonstrating that targeting the MK2 pathway 

is a viable means of circumventing the putative shortcomings seen with p38MAPK inhibition in 

a clinical setting. Further studies in an in vivo setting will investigate the viability of inhibiting 

the MK2 pathway by CDD450 as a stromal-specific cancer therapy. 
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Figure 2.1: HSP27 promotes SASP mRNA degradation in pre-senescent cells. 
  

A. Timeline of bleomycin and actinomycin D (ActD) treatment to induce stress-induced premature 
senescence and inhibit transcription in BJ fibroblasts. Fibroblasts were treated with bleomycin (0.1 
units/mL) for 24h and subsequently treated with 10µg/mL ActD for 24h starting either 24h or 96h after 
bleomycin treatment. Cells collected at 48h were considered pre-senescent (Pre-Sen) while those 
collected at 120h were considered senescent (Sen).  B. Cells were collected after ActD treatment and 
SASP factor levels were quantified by qRT-PCR. Percent mRNA (%mRNA) remaining was calculated as 
the ratio of ActD-treated to vehicle-treated levels of target mRNA, normalized to GAPDH, n=6.  C. 
Immunoblot of indicated proteins in cells expressing an shSCR or shHSP27 hairpin, treated as indicated. 
The ratio of knockdown is reported under the HSP27 blot as amount of protein remaining in shHSP27 
compared to shSCR cells after normalizing to β-actin.  D, E. Representative images, D, and 
quantification, E, of senescence-associated β-galactosidase (SA-β-Gal) activity in non-senescent and 
senescent cells expressing either shSCR or shHSP27. Images acquired with a 10x objective, scale bar = 
10µm, n=3.  F. Control or HSP27-depleted cells were treated as in A, ActD treated at the pre-senescent 
timepoint, and collected 24h later. n=9 for IL-6 and IL-8, and n=3 for GM-CSF.  G. BJ fibroblasts 
expressing either shSCR or shHSP27 were induced to senesce and collected 24h post-bleomycin addition 
(pre-senescent), and AUF1-bound RNA was isolated by RNA immunoprecipitation. Lysates were 
incubated with 15 µg of either control rabbit IgG (gray bars) or rabbit anti-AUF1 antibody (blue bars). 
The RNA bound to precipitated protein was isolated and levels were analyzed by qRT-PCR. 
Representative experiment shown, n=4. * = p<0.05, error bars are + S.E.M. 
 
 



	 49 

   
 
Figure 2.2: p38MAPK and MK2 regulate SASP mRNA stability in senescent cells. 
 

A. Schematic of senescence induction by bleomycin treatment and inhibition of p38MAPK and MK2 
pathways by treatment with 10 µM SB203580 or 1 µM CDD450, respectively.  B, C. Immunoblot and 
quantification of phospho-HSP27 at Ser15, Ser78 and Ser82, the three MK2 targets, upon p38MAPK or 
MK2 pathway inhibition 48h (Pre-Sen) and 120h (Sen) post-bleomycin treatment. Phospho-HSP27 was 
normalized to total HSP27 and the ratio of phosphorylation at each site is found under each blot and the 
average of all three phosphorylated residues is represented in C.  D. Upregulation of SASP factors in 
senescent cells treated with p38i or MK2i as in A without transcriptional inhibition. mRNA levels were 
determined by qRT-PCR and are represented as fold increase over non-senescent cells, normalized to 
GAPDH.  E. Cells were induced to senesce and treated with p38i and MK2i as shown in A, and ActD 
treated to inhibit transcription for 24h. %mRNA remaining is calculated as the amount of mRNA in 
ActD-treated cells relative to vehicle-treated cells. D and E are representative experiments, n=5, 
*=p<0.05, error bars are + S.E.M 
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Figure 2.3: p38MAPK-dependent phosphorylation of HSP27 regulates SASP factor mRNA 
stability in senescent cells. 
 

A. Immunoblot of simultaneous knockdown of endogenous HSP27 (lower band) and ectopic expression 
of FLAG-tagged HSP27 mutant alleles (upper band) in BJ fibroblasts. Percent of HSP27 knockdown after 
normalization to β-actin is presented under the HSP27 immunoblot.  B, C. Representative images, B, and 
quantification, C, of SA-β-Gal expression in non-senescent and senescent cells expressing pRESQ-



	 51 

shSCR-EV or pRESQ-shHSP27-Flag-HSP27 WT, TriD, or TriA. Images acquired with a 10x objective, 
scale bar = 10µm, n=2.  D. (Top) Timeline of senescence induction and ActD treatment. BJ fibroblasts 
expressing the HSP27 constructs were treated with bleomycin for 24h and ActD for 24h either 
immediately after bleomycin treatment (pre-senescent, left) or 96h post-bleomycin treatment (senescent, 
right), mRNA levels were analyzed by qRT-PCR. %mRNA remaining was calculated as the mRNA level 
in ActD-treated cells relative to vehicle-treated cells, normalized to GAPDH. Representative experiment, 
n=3.  E. Immunoblot of HSP27 expression in cells transduced with pBABE-EV or pBABE-HSP27-TriD.  
F. Cells expressing either pBABE-EV or HSP27 TriD were treated as in A and collected at the pre-
senescent timepoint. Representative experiment, n=2, *=p<0.05.  G. BJ fibroblasts expressing a hairpin 
targeting HSP27 while simultaneously expressing flag-tagged HSP27 WT or TriA were induced to 
senesce by bleomycin treatment. Cells were collected 96h post-bleomycin (senescent) and anti-AUF1 RIP 
was performed using nonspecific IgG or an anti-AUF1 specific antibody. Representative experiment, n=3. 
*=p<0.05, error bars are + S.E.M. 
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Figure 2.4: Inhibiting the p38-MK2-HSP27 axis prevents promotion of tumor cell growth 
by senescent stroma. 
 

A. Schematic of senescence induction by bleomycin treatment and inhibition of p38MAPK or MK2 
activity by treatment with p38iʹ (CDD111, 1µM) or MK2i (CDD450, 1µM), respectively. Inhibitors were 
refreshed every 24h until collection.  B. Immunoblot of HSP27 phosphorylation in cells treated with 
either p38iʹ or MK2i as in A.  C, D. Upregulation, C, and mRNA stability, D, of SASP factors in cells 
treated as in A. SASP mRNA levels were quantified by qRT-PCR. Representative experiments, n=4 for C 
and n=2 for D.  E. BJ fibroblasts were plated in a 96-well plate and induced to senesce by 24h of 
bleomycin treatment. 24h after removal of bleomycin, cells were treated with DMSO, p38iʹ or MK2i for 
48h, refreshing the inhibitors after 24h. Once the fibroblasts were senescent 96h post-bleomycin 
treatment, click beetle red luciferase (CBR)-expressing HaCaT keratinocytes were plated either alone or 
on the young or senescent fibroblasts, and treated with DMSO, p38iʹ or MK2i. To prevent disruption of 
the epithelial layer, inhibitors were not refreshed after HaCaT-CBR addition. HaCaT-CBR cell growth 
was measured 3 days after plating by addition of D-luciferin and bioluminescence quantification. Color 
bar: minimum=2434.5 flux-photons, maximum=105 flux-photons. n=3. n.s. = not significant, *=p<0.05, 
error bars are + S.E.M. 



	 53 

 
 
Figure 2.5: Model of p38MAPK-MK2-HSP27-AUF1 axis regulation of SASP factor mRNA 
stability in pre-senescent and senescent fibroblasts. 
 

A. In pre-senescent cells, p38MAPK is not yet activated to the level observed in senescent cells, so 
p38MAPK-MK2-dependent phosphorylation of HSP27 is low and AUF1 binds target mRNAs. Non-
phosphorylated HSP27 performs a putative pro-AMD activity, and the levels of phospho-HSP27 are 
insufficient to abrogate this function and thus mRNA degradation is dominant.  B. In senescent cells, 
p38MAPK phosphorylation activates the MK2-HSP27 pathway stabilizing SASP mRNAs, potentially 
through several mechanisms. Reduced levels of non-phosphorylated HSP27 result in decreased HSP27-
dependent pro-AMD activity, and phosphorylation of HSP27 on MK2 target sites results in AUF1 
removal and stabilization of target SASP mRNAs. 
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Chapter 3 

Conclusions and Future Directions 

Senescence 
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3.1  Summary 

 Since tumor cells do not exist in isolation and are instead supported and defined by the 

environment in which they grow, it is vital to understand the contribution of the 

microenvironment to tumor establishment and progression. Age-dependent changes to the 

stromal compartment of tissues, such as accumulation of senescent fibroblasts, can suppress anti-

tumor immunity, drive structural changes, increase blood flow, and create an environment rich in 

growth factors primed to promote the growth and progression of benign neoplasias in the 

epithelial compartment into malignant lesions (1-3). Conversely, young stroma can restrain 

tumor growth and promote tumor clearance. Implantation of rat liver epithelial tumor cells into 

the livers of young and aged rats initially resulted in tumor establishment in both groups, but 

over time as the tumors in the aged livers persisted, the tumors in young livers regressed 

completely, highlighting the active role of the tumor microenvironment in regulating tumor 

activity (4). Understanding the mechanisms that govern the transition from tumor-restraining to 

tumor-promoting stroma is a vital step to being able to modulate this process in the context of 

cancer therapy. 

 

 One change that occurs in aged stroma is the accumulation of senescent fibroblasts and 

expression of the senescence-associated secretory phenotype, or SASP. As fibroblasts senesce, 

the usually short-lived mRNAs encoding for inflammatory SASP factors including IL6, IL8, and 

GM-CSF are stabilized, and expression of these factors is increased. Activated by senescence, 

p38MAPK phosphorylates MK2, which phosphorylates HSP27 on three key residues. In chapter 

2, I have demonstrated that HSP27 phosphorylation regulates the binding and activity of AUF1, 

an AU-rich element binding protein that governs mRNA stability. Modulation of HSP27 
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phosphorylation is sufficient to regulate the stability of SASP factor mRNAs, and as a result, 

upregulation of the SASP as a whole. Furthermore, I have demonstrated that disrupting this 

pathway through chemical inhibition of p38MAPK or MK2 inhibits the upregulation and 

stabilization of a variety of SASP factors. Thus, inhibition of either of these kinases prevents 

senescent fibroblasts from promoting the growth of preneoplastic epithelial cells, demonstrating 

that this critical pathway is a therapeutic target. Below, I discuss the implications of these 

findings and future work in the context of both a mechanistic understanding of mRNA regulation 

in senescent cells, as well as the broader implications of the p38MAPK-MK2 pathway as a 

microenvironment-targeted cancer therapy. 

 

 

3.2  The p38MAPK-MK2-HSP27-AUF1 axis regulates post-

transcriptional stabilization of SASP factor mRNAs in senescence 

 p38MAPK plays an important and multifaceted role in the regulation of SASP factor 

expression in senescent fibroblasts. Even in the absence of DDR signaling, p38MAPK promotes 

NF-κB-dependent transcription of target SASP factors in pre-senescent cells (5). However, in 

senescent cells, while p38MAPK activity is critical for the upregulation and expression of SASP 

factors, it is no longer required for NF-κB-dependent transcription, suggesting that p38MAPK is 

regulating the levels of these factors through a separate mechanism. Indeed, inhibiting 

transcription in senescent cells reveals that SASP factor mRNAs have been stabilized relative to 

pre-senescent cells, and this stabilization is p38MAPK-dependent (6). p38MAPK regulates 

mRNA stabilization in senescent cells through modulating the binding of the AU-rich element 
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binding protein AUF1, which binds and targets SASP factor mRNAs for degradation in pre-

senescent cells, but displays a p38MAPK-dependent reduction in binding of SASP factor 

mRNAs in senescent cells. Because p38MAPK does not directly target AUF1, and the 

downstream target of p38MAPK, HSP27, is known to function with AUF1 in mRNA 

degradation, we investigated whether the p38MAPK-MK2-HSP27 pathway regulated AUF1 

activity and SASP factor mRNA stabilization in senescent fibroblasts (7, 8). 

 

 When p38MAPK activity is inhibited either by small molecule inhibitors or by shRNA-

mediated depletion, mRNA stability of SASP factors in senescent cells is decreased (chapter 2 

and (6)). Specific inhibition of MK2 activation by p38MAPK through the use of a small 

molecule inhibitor that selectively targets the p38MAPK/MK2 complex similarly abrogates 

SASP factor upregulation and mRNA stabilization in senescent fibroblasts, indicating that 

p38MAPK acts through MK2 to stabilize SASP factor mRNAs (Fig. 2.2). Pre-senescent cells 

expressing an HSP27 mutant with serine-to-asparagine mutations at MK2 target sites to mimic 

phosphorylation have increased SASP factor mRNA stability compared to those expressing wild 

type HSP27. This finding demonstrates that the MK2-dependent phosphorylation of HSP27 is 

sufficient to create a senescent-like state with regards to mRNA stability in pre-senescent cells. 

Conversely, expression of a non-phosphorylatable HSP27 mutant, with serine-to-alanine 

mutations at the MK2 target sites, prevents stabilization of SASP factor mRNAs in senescent 

cells, creating a pre-senescent-like mRNA stability state (Fig 2.3). Taken together, this 

demonstrates that p38MAPK-MK2-dependent phosphorylation of HSP27 is sufficient to alter the 

mRNA stability of SASP factors in both pre-senescent and senescent cells, and suggests that the 
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p38MAPK-MK2-HSP27 axis regulates the transition from transcriptionally-driven SASP factor 

upregulation in pre-senescent cells to mRNA stability-driven upregulation in senescent cells.  

 

 Several aspects of this regulatory mechanism remain to be investigated. We find that 

AUF1 binding is reduced in senescent compared to pre-senescent cells, and this is dependent on 

p38MAPK. Further, MK2-dependent phosphorylation of HSP27 is required for AUF1 removal 

from SASP factor mRNAs in senescent cells. Together, these findings suggest that SASP mRNA 

stability is regulated at the level of AUF1 binding in senescent cells. However, in pre-senescent 

cells, depletion of HSP27 leads to both mRNA stabilization as well as increased AUF1 binding 

to target mRNAs, suggesting that AUF1 binding ability is not the only determinant in the 

degradation of SASP factor mRNAs during pre-senescence. Furthermore, unlike in other systems 

described, HSP27 phosphorylation does not appear to have a consistent affect on AUF1 levels in 

senescent fibroblasts (7-9). This has several implications. First, it suggests that both 

phosphorylated and non-phosphorylated HSP27 may have roles in regulating mRNA stability, 

and the presence of non-phosphorylated HSP27, rather than simply the absence of 

phosphorylated HSP27, may be required for SASP mRNA degradation in pre-senescent cells. 

Non-phosphorylated HSP27 may be required for proper assembly or activity of the AUF1-and 

signal transduction-regulated complex (ASTRC), acting as a structural determinant or possibly to 

recruit or activate the deadenylation effectors. Furthermore, it suggests that AUF1 may require 

activation in pre-senescent cells, since it is able to bind but not promote degradation in the 

absence of HSP27. The presence of phosphorylated p40AUF1 in monocytes correlates with 

ASTRC degradation activity, and glycogen synthase kinase 3-beta (GSK3β) is able to 

phosphorylate p40AUF1 on Ser83 (10, 11). p38MAPK phosphorylates and inhibits GSK3β, so it is 
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possible that GSK3β phosphorylates and activates p40AUF1 in pre-senescent cells (potentially 

through an HSP27-dependent mechanism wherein non-phosphorylated HSP27 promotes access 

to p40AUF1 Ser83), but senescence-dependent p38MAPK activity results in phosphorylation and 

inhibition of GSK3β and therefore inactivation of p40AUF1. Studies into the means by which 

HSP27 regulates AUF1 in senescence will provide further mechanistic understanding of the 

process regulating SASP expression and regulation of mRNA stability as a whole. 

 

 

3.3  Inhibiting the p38MAPK-MK2-HSP27 pathway abrogates the 

growth promotion of epithelial cells by senescent fibroblasts 

 Secretion of SASP factors by senescent stroma is sufficient to drive epithelial cell growth 

both in in vitro co-culture settings as well as in xenograft experiments. Several different SASP 

factors, such as IL6, IL8, and OPN are sufficient to drive this growth individually (12, 13), but 

understanding the regulatory mechanisms behind SASP factor expression will allow for therapies 

targeting specific pathways that regulate groups of SASP factors together, potentially increasing 

therapeutic efficacy compared to treatments that target specific factors. Indeed, treatment with 

the p38MAPK inhibitor CDD111 prevented expression of a large number of inflammatory and 

other SASP factors essential to senescent stromal-mediated growth promotion of preneoplastic 

cells, dramatically reducing tumor size in a xenograft setting (6). This effect was due exclusively 

to abrogation of microenvironmental support, because CDD111 treatment had no effect on in 

vitro growth of the epithelial cells. This drug and other p38MAPK inhibitors have been the 

subject of several different clinical trials studying the potential for p38MAPK inhibition as a 
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treatment for several different inflammatory diseases such as rheumatoid arthritis. However, a 

rebound effect, wherein early suppression of inflammation is quickly overcome and markers of 

inflammation reach levels higher than those observed pre-treatment, has plagued these trials, and 

support for p38MAPK inhibitors as a treatment strategy is waning (14-18). While CDD111 

treatment was highly effective in limiting tumor growth in the context and treatment duration 

studied by Alspach and colleagues, it is possible that similar rebound from inhibition could result 

in loss of efficacy or even enhancement of tumor growth in experimental settings closer to those 

that would be experienced clinically. It has been suggested that compensatory action by MK2 is 

responsible for this rebound effect, and the potent inhibition of preneoplastic cell growth 

promotion by senescent fibroblasts upon treatment with the MK2-specific inhibitor CDD450 is a 

promising finding in regards to alternatives for pan-p38MAPK inhibitors (Fig. 2.4). 

 

These findings indicate that further study of CDD450 as an anti-cancer therapy is 

warranted. In vivo experiments utilizing a xenograft system composed of senescent human 

fibroblasts and preneoplastic human cells such as BPH-1 prostate epithelial cells in mice with 

systemic MK2 inhibition through CDD450-compounded chow could reveal whether this 

pathway is required for a senescent human tumor microenvironment to promote preneoplastic 

cell growth. Furthermore, similar experiments utilizing CDD450-compounded chow could be 

performed in either a spontaneous tumor model with an inducible senescence phenotype to 

assess the contribution of MK2-dependent SASP expression in senescent tissues on the initial 

development of tumors, or in an injectable model, where the effects of pre-treatment with 

CDD450 and the resulting alterations to the senescent microenvironment on tumor implantation 

or outgrowth could be studied.  
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Because DNA damaging chemotherapy itself is capable of inducing senescence and the 

SASP, current cancer treatments may be promoting the development of future disease or 

metastasis through the generation of favorable metastatic niches, or chemoprotective areas that 

protect subsets of tumor cells from efficient drug action (19). Indeed, chemotherapy induces 

p38MAPK-dependent expression of a pro-inflammatory cytokine profile similar to the SASP and 

promotes tumorigenesis in pancreatic cancer-associated fibroblasts, which function similarly to 

senescent fibroblasts (19, 20). It would be intriguing to determine whether these effects could be 

mitigated through concurrent treatment of current chemotherapies with drugs such as CDD450 

that could inhibit development of favorable metastatic or chemoprotective environments. 

Although current avenues of research tend to focus on the identification and targeting of 

individual factors responsible for disease promotion and progression in both cell-autonomous 

and non-autonomous ways, targeting the pathways that drive coordinate expression of numerous 

pro-tumorigenic factors may be a means of enhancing therapeutic efficacy by inhibiting a 

broader network of factors that drive disease.  

 

 

3.4  Conclusions 

Although senescence is a mechanism to protect cells that have aged or experienced DNA 

damage from continuing to proliferate and potentially become tumorigenic, senescence cells also 

have significant tumor-promoting characteristics including the activation of the senescence-

associated secretory phenotype, a gene expression profile rich in pro-tumorigenic factors that act 

through both direct stimulation of tumor growth and invasion as well as through modifications to 

tissues that create a favorable tumor microenvironment. The work presented here investigates 
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post-transcriptional regulatory mechanisms that govern the expression of the SASP, 

demonstrating that the p38MAPK-MK2 pathway regulates SASP factor mRNA stability through 

phosphorylation of HSP27, adding to our understanding of physiological changes associated with 

senescence as well as mechanisms regulating mRNA stability. Furthermore, this work identifies 

inhibition of MK2 in the tumor microenvironment as a rebound-resistant alternative to 

p38MAPK inhibition and a novel therapeutic approach to cancer treatment. 
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Chapter 4 

Background and Significance 

DNA metabolism 
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4.1  Overview and significance 

 Preserving genomic stability is a crucial component of not only cellular health, but also 

the health of an organism as a whole. The genome is constantly under threat from potentially 

harmful external sources such as UV radiation and other environmental DNA damaging agents 

as well as endogenous threats including oxidative stress, metabolic byproducts such as alkylating 

agents, and DNA replication itself. Humans are estimated to experience over 10,000 oxidative 

damage events per cell per day, and a single round of replication can induce between 10 and 50 

DNA double strand breaks (DSBs), the most deleterious and mutagenic type of DNA damage (1-

3). Uncovering the mechanisms by which the genome safeguards itself against these and other 

threats is an important step in understanding and potentially treating the wide variety of disorders 

that arise as a result of defects in these pathways. 

 

4.2  Genomic instability as a driver of disease 

 Genomic instability is an underlying factor in a variety of different diseases, including 

cancer, several types of anemia, and certain premature aging disorders. Because of the essential 

nature of guarding genomic stability, many redundant pathways cooperate to ensure proper 

execution of processes such as DNA replication, repair, and telomere maintenance. However, 

these backup pathways are not entirely efficient. Due to the overlapping nature of these 

processes and the fact that many proteins participate in multiple facets of genomic maintenance, 

mutations in a single gene or disruption of a single pathway can have wide-reaching 

consequences on the health of an organism. 
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4.2.1 DNA replication fidelity 

Tens of billions of cells replicate per day in the human body, including generation of 

1×1011 neutrophils and 2×1011 erythrocytes, highlighting the need for cells to efficiently replicate 

their DNA with minimal introduction of mutations or other DNA damage (4). Eukaryotic DNA 

polymerases have a mutation rate of approximately one per 104-105 nucleotides, so between 

100,000 and 1,000,000 mutations per round of replication are potentially introduced into human 

tissues (5, 6). Therefore, multiple mechanisms exist to ensure DNA replication fidelity, primarily 

through proofreading newly synthesized DNA and mismatch repair (MMR). The leading- and 

lagging-strand DNA polymerases, ε and δ respectively, have proofreading activities mediated by 

their intrinsic 3’ exonucleases (7-9). Disruption of this proofreading activity is vital to preventing 

mutational accumulation. Underscoring the critical role this proofreading function plays, 

introduction of a single base pair substitution to the 3’ active site of Pol ε in mice resulted in 

spontaneous generation of adenomas and adenocarcinomas of the lung and intestine, among 

other tumors (10). Interestingly, inactivation of the proofreading function of Pol δ in mice 

resulted in a different distribution of tumor types than Pol ε, with the majority of mice presenting 

with thymic lymphomas, tail skin carcinomas, or lung adenomas and adenocarcinomas (10-12). 

Together, these studies highlight the importance of the proofreading capability of Pols ε and δ in 

preventing mutational accumulation and cancer development. Those replication-generated 

mutations that are not corrected during proofreading are typically repaired through MMR. 

Defects in the MMR pathway are associated with colon cancer in humans, with inherited MMR 

defects responsible for ~1-5% of colorectal cancer cases, and spontaneous mutations to the 



	 72 

MMR pathway genes or their regulatory elements are found in ~15-20% of sporadic colorectal 

cancers (8, 13). 

 

4.2.2 DNA repair and replication fork progression 

In order to preserve the integrity of the genome, it is vital that DNA breaks and other 

lesions are repaired efficiently while ideally minimizing mutational consequences. The genome 

faces many threats including oxidative damage that can break or mutate DNA, bulky adducts that 

prevent replication fork progression, and DNA single- and double-strand breaks that can result in 

loss of genetic information. A vast network of pathways exist to repair these and other DNA 

lesions, and while there is a good deal of redundancy in protein function and alternate repair 

mechanisms, mutations in DNA repair proteins can have a wide variety of negative and 

pathogenic consequences.  

 

DSBs are considered the most dangerous type of DNA break, because they can lead to 

loss of genetic information and structural changes to chromosomes. Homologous recombination 

(HR) is an error-free means of repairing DSBs, and there are diseases characterized by cancer 

predisposition among other symptoms associated with mutations in proteins involved in almost 

every step of the pathway. Two such diseases are Ataxia telangiectasia (A-T), and Nijmegen 

breakage syndrome (NBS). A-T is a neurodegenerative disease caused by mutations to the ATM 

(Ataxia telangiectasia mutated) kinase, which initiates DDR signaling. It is characterized by 

motor and movement difficulties, immunodeficiency, and cancer predisposition, among other 

symptoms (14, 15). NBS is caused by mutations to NBS1, which acts as part of the MRN 

(Mre11-Rad50-NBS1) complex to bind DSBs and initiate the resection required to create the 3’ 
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single stranded DNA (ssDNA) overhang necessary for HR. NBS is characterized by 

immunodeficiency, cancer predisposition, and sensitivity to ionizing radiation, similar to the 

symptoms of A-T, but can also cause microcephaly and intellectual impairments that differ from 

those found in A-T (14, 16).  

 

Interstrand DNA crosslinks are a barrier to replication fork progression, which can lead to 

replication fork stalling, collapse, or DSBs. One pathway involved in removal of interstrand 

crosslinks among other repair activities is the Fanconi anemia (FA) pathway, a family that 

includes 19 distinct functional complementation groups. FA is characterized by chromosomal 

instability, which leads to cognitive and physical developmental abnormalities, predisposition to 

leukemia and solid tumors, and progressive bone marrow failure among other symptoms (17, 

18). The FA core complex, comprised of nine FA proteins, activates the FANCD2-FANCI 

heterodimer, while other recombinational and nucleolytic functions required to repair the lesions 

are mediated by the other eight proteins (17, 19). 

 

4.2.3 Telomere maintenance 

Telomeres are specialized nucleoprotein structures at the ends of chromosomes that act to 

mitigate the effects of DNA loss caused by multiple rounds of replication, as well as to 

distinguish chromosome ends from DSBs. Incorrect recognition of linear chromosome ends as 

DSBs would initiate DNA repair mechanisms such as non-homologous end joining (NHEJ) or 

HR. This can result in cycles of inappropriate chromosomal ligations and chromosomal 

instability, characterized by amplification of extensive regions and large terminal deletions (20). 

The main mechanism by which telomeres are distinguished from chromosome ends is through 
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formation of the t-loop structure, wherein the 3’ssDNA overhang at the telomere end folds back 

and invades the more proximal region of the telomere, and through binding of the shelterin 

complex, a group of proteins that repress DDR signaling at the telomere and protect telomere 

ends from DNA repair machinery (21, 22).  

 

Genetic disruption of telomere integrity through inherited, monogenic mutations to one of 

11 genes identified thus far can result in a spectrum of disorders. These mutations are either in 

genes encoding for telomerase components or telomere binding and protection proteins (23-25). 

While the disorders affect a diverse set of tissues with differing outcomes, they are generally 

characterized by a core set of symptoms including: depletion of bone marrow stem cell reserves 

resulting in immune function loss, gastrointestinal disorders, pulmonary fibrosis, liver cirrhosis, 

neuropsychiatric conditions, and predisposition to certain cancers (23, 24, 26).  

 

Telomere dysfunction can also result in aging defects, as seen in Werner syndrome (WS), 

which caused by mutation of WRN, one of five RecQ-family helicases in humans. WS is a 

progeroid syndrome, characterized by the premature appearance of diseases typically associated 

with aging, including type II diabetes, osteoporosis, and cardiovascular disease, in addition to 

cancer predisposition (27). WRN is involved in a multitude of DNA maintenance activities 

including DSB repair, and promoting restart of stalled or regressed replication forks, particularly 

through telomeric regions replicated by lagging strand synthesis (28-30). Loss of WRN function 

causes telomere shortening and premature senescence, and it has been suggested that this is a 

disease mechanism leading to the premature aging phenotypes associated with WS. 
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4.3  Dna2 functions to ensure genomic stability 

Dna2 is a highly conserved, essential helicase/nuclease that is important for maintaining 

many aspects of genomic stability. Initially discovered in a screen for proteins required for DNA 

replication and identified as an Okazaki fragment processing (OFP) factor, Dna2 has since been 

shown to participate in DSB repair, replication fork recovery and restart, and telomere 

maintenance (30-34). Although Dna2 knockout mice die before embryonic day 7.5, Dna2 

mutations are associated with a variety of diseases, highlighting the critical role of this enzyme in 

genomic maintenance (34-36).  

 

Dna2 is a helicase/nuclease capable of performing a variety of biochemical activities. 

Originally described as a 3’ to 5’ replicative DNA helicase with a preference for forked 

substrates, it was later confirmed to translocate in the 5’ to 3’ direction instead (31, 37). This 

helicase activity allows Dna2 to load onto the 5’ end of flap structures and translocate to its site 

of activity (38). Dna2 also has essential endonucleolytic activity, specific for ssDNA (39, 40). 

Human Dna2 (hDna2) has been shown to have both 5’ to 3’ and 3’ to 5’ nuclease activities that 

require free ssDNA ends, wherein the 3’ to 5’ activity is not stimulated by RPA and leaves 

approximately 10 nucleotides from the cleavage site to the base of the fork or flap, while the 5’ 

to 3’ activity is stimulated by RPA and cleaves flaps or forks only a few nucleotides from the 

base of the flap (41). RPA therefore acts as a mechanism to enforce 5’ to 3’ polarity of Dna2 

endonuclease activity.  

 

hDna2 was initially reported to localize exclusively to the mitochondria, where it was 

shown to interact with polymerase γ (Polγ) and promote Polγ-dependent DNA synthesis, process 
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RNA primer intermediates, and function in long-patch base excision repair (42). However, work 

by Duxin and colleagues demonstrated that hDna2 also localizes to the nucleus. They 

demonstrated that depletion of hDna2 resulted in genomic instability characterized by 

aneuploidy and internuclei chromatin bridges, demonstrating that hDna2 has nuclear functions 

important to nuclear genome maintenance (43). Furthermore, both the nuclear and mitochondrial 

functions of hDna2 are vital to cell function, and several diseases have been associated with 

hDna2 mutations. In the mitochondria, hDna2 mutations in the nuclease, helicase, and ATPase 

activities have been identified in individuals with progressive mitochondrial myopathy stemming 

from instability of muscle mitochondrial DNA (36). In regards to nuclear hDna2 function, an 

hDna2 mutation leading to truncation of one isoform and abnormal splicing in two other 

isoforms was identified in two related individuals with primordial dwarfism (44). Interestingly, 

fibroblasts from these individuals displayed an increased frequency of senescent cells as well as 

higher levels of endogenous DNA damage as evidenced by increased comet tails, and this DNA 

damage was rescued upon exogenous expression of hDna2. Lastly, cellular levels of Dna2 are 

tightly regulated, and both over- and under-expression of hDna2 can be deleterious. Mice 

heterozygous for a Dna2 deletion develop cancers such as lymphoma, lung adenocarcinomas, 

and heptomas at a higher frequency than littermate controls (34). Conversely, overexpression of 

hDna2 is also detrimental as it enhances tolerance of replication-associated DSBs, and increased 

Dna2 expression has been identified in a variety of cancer types. Dna2 expression was positively 

correlated with metastasis frequency and inversely correlated with patient survival in breast 

cancer (35). Recently, a small molecule inhibitor of Dna2 was demonstrated to sensitize cells to 

DNA damaging chemotherapies and PARP inhibition, suggesting co-treatment with Dna2 

inhibitors may be a feasible therapeutic strategy (45). 
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4.3.1 Dna2’s function in lagging-strand DNA replication 

Yeast Dna2 (yDna2) was initially identified as a replicative DNA helicase. yDna2 

physically interacts with RAD27, the yeast flap endonuclease 1 (FEN1) nuclease, and 

overexpression of yDna2 rescued the temperature-sensitive growth defects associated with 

rad27Δ while overexpression of RAD27 suppressed growth defects associated with expression 

of the yDna2 mutant dna2-1 (46). These observations suggested that yDna2 and FEN1 shared 

functionality in DNA replication, namely OFP. The process of lagging strand replication 

generates RNA primers at the 5’ end of each nascent Okazaki fragment, which need to be 

removed to form the mature DNA duplex. During OFP, Pol δ displaces the DNA/RNA primer of 

the downstream Okazaki fragment, generating a 5’ flap structure that is typically cleaved by 

FEN1, creating a ligatable nick that is filled in by DNA ligase I. However, if these flaps are not 

efficiently processed by FEN1, OFP can shift from a one-step to a two-step model (Fig 4.1). 

Biochemical studies have shown that if these flaps become longer than approximately 27 

nucleotides, the single stranded DNA binding protein replication protein A (RPA) coats the flap, 

inhibiting FEN1 activity and necessitating another nuclease to complete flap removal (47). RPA 

stimulates yDna2 activity, suggesting that Dna2 could cleave the long flap, leaving behind 

several nucleotides that are subsequently cleaved by FEN1 to generate the ligatable nick. 

Expression of hDna2 can also rescue rad27Δ in yeast, suggesting that hDna2 may function in a 

similar manner in higher eukaryotes (48). 
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4.3.2 Dna2 participates in homologous recombination 

Formation of a 3’ssDNA flap is a critical step in DSB repair by HR, and Dna2 has been 

shown to function in its generation. Certain dna2 mutants in yeast display increased 

recombination rates and chromosome loss, as well as increased sensitivity to DNA damaging 

agents and Dna2 relocalizes throughout the nucleus from telomeres after treatment with DSB 

induction, suggesting that Dna2 participates in DSB repair (49-51). During HR in yeast, the 

DNA ends are bound by the MRX (Mre11-Rad50-Xrs2/NBS1, MRN in humans) complex, 

which initiates resection of the 5’ DNA ends to form an initial, short 3’ssDNA overhang through 

the nuclease activities of Mre11 and Sae2 (CtIP in humans, Fig. 4.2) (52, 53). Further resection 

was shown to rely on the activity of exonuclease 1 (Exo1) and Sgs1, the RecQ-family helicase in 

yeast (54). However, long distance resection still occurred in Sgs1-competent yeast when Exo1 

was deleted, and Dna2 was identified as the nuclease that acts in conjunction with Sgs1 (55). 

Dna2 and Exo1 have similar efficiency within 3kb of the DSB site, but Dna2 has greater 

efficiency and is therefore predicted to be the primary nuclease when resection is required 

beyond that point. In human cells, CtIP and BRCA1 recruit hDna2 to DSB sites, where BLM 

interacts with hDna2 and stimulates 5’ end resection by both hDna2 and hExo1 (56, 57). 

Although the RecQ family helicases BLM and WRN are not always interchangeable, it was 

demonstrated that hDna2 could also function in conjunction with WRN to mediate long-range 

resection (58).  

 

4.3.3 Dna2 protects telomere integrity 

Telomeres are made up of short tandem repeats, containing a C-rich 5’ strand and a G-

rich 3’ strand, which forms a 3’ssDNA overhang necessary for telomere protection. The 
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3’ssDNA overhang is generated through two mechanisms: selective elongation by telomerase 

and resection of the 5’ C-strand (Fig. 4.3) (22). In yeast, Dna2 localizes to the telomere during 

the G1 phase, redistributes to replicating DNA throughout most of S phase (or upon DNA 

damage), and then relocalizes to the telomeres in late S/G2 (50). Expression of a dna2 mutant in 

yeast resulted in shortened telomeres with each successive generation, demonstrating that Dna2 

is required to maintain telomere length (59). This is due both to its involvement in generating the 

G-rich 3’ssDNA overhang through nucleolytic resection of the 5’ C-rich strand as well as by 

facilitating telomere synthesis through promoting telomerase binding to telomeres in a manner 

independent of telomere length (50, 59). 

 

The repetitive nature of the telomere along with its propensity to form secondary 

structures like G-quadruplexes (G4) makes it a difficult replication template, prone to replication 

fork stalling. Mammalian cells deficient in Dna2 display elevated telomere abnormalities, such 

as fragile telomeres, telomeric sister chromatid exchanges, sister telomere loss, and signal free 

ends, indicative of potential telomeric replication defects (34). In this study, Lin and colleagues 

demonstrate that Dna2 cleaves G4s within bubble or flap structures and that pharmacological 

stabilization of G4s leads to increased telomere fragility in cells heterozygous for Dna2. They 

therefore suggest that Dna2 protects telomere integrity by processing G4 structures to ensure 

replication fork progression through telomeric substrates. However, as will be discussed in 

chapter 6, Dna2 has a broader role in promoting replication fork progression, and further Dna2-

dependent activities may therefore be involved in ensuring telomere replication and protecting 

telomere integrity. 
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4.4  Summary 

 Elucidating the mechanisms responsible for efficient replication and repair of the genome 

is vital for expanding our understanding of the causes and consequences of genomic instability. 

Due to the interconnected pathways guarding the genome, defects in a single protein involved in 

DNA processes can have wide-reaching effects on DNA replication, repair, and telomere 

maintenance and lead to a variety of diseases such as cancer, anemia, and cognitive disabilities. 

In chapter 5, I will elucidate the role of Dna2 in DNA replication, and in chapter 6 I will discuss 

the significance of this work and questions it raises as well as further advances in understanding 

the activities of Dna2.  
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Figure 4.1: Dna2 mediates two-step Okazaki fragment processing. 
 

FEN1 and Dna2 cooperate to process Okazaki fragments in eukaryotes.  i. DNA polymerase δ, 
the lagging strand polymerase, synthesizes DNA in the 5’ to 3’ direction. Once it reaches the 5’ 
end of the previous Okazaki fragment, it or an associated helicase displaces it creating a 5’ 
RNA/DNA flap that is typically cleaved by FEN1 (60, 61).  ii. In some circumstances, these 
flaps escape FEN1 cleavage and Polδ or a helicase continues displacing and elongating the 
ssDNA region. If the flap reaches 27 nucleotides in length it is bound by RPA, which inhibits 
FEN1 activity but promotes the 5’ to 3’ endonuclease activity of Dna2 (47, 62-64).  iii. Dna2 
then loads onto the flap and utilizes its helicase activity to track down the flap, where it uses its 
endonuclease activity to cleave the DNA (38, 64).  iv. Dna2 cleavage occurs several nucleotides 
from the ssDNA/dsDNA junction, leaving a small flap that is processed by FEN1.  v. The 
remaining nick is filled in by DNA ligase I. In one-step Okazaki fragment processing, there is a 
single cleavage event, and the process progresses directly from the first to the last step. Adapted 
from (65). 
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Figure 4.2: Dna2 participates in long-distance end resection in homologous recombination. 
 

Upon experiencing a DNA double strand break (DSB), a cell can repair it through non-
homologous end joining or homologous recombination.  i. A DSB is induced and initial signaling 
occurs.  ii. The MRN (Mre11-Rad50-NSB1) complex soon binds the DSB ends, directing repair 
towards the HR pathway. Both Mre11 and CtIP nucleases begin short-range resection of the 5’ 
DNA end, resulting in short 3’ssDNA overhangs (iii) (52, 54, 66).  iv. Further resection is then 
carried out through exonucleolytic cleavage by Exo1, or endonucleolytic cleavage by Dna2 in 
conjunction with the RecQ family helicases BLM or WRN (55, 58, 67, 68).  v. The 3’ssDNA is 
bound by Rad51, which directs the homology search and invasion of the ssDNA into the 
homologous region, where the missing DNA is synthesized and the structure is resolved. 
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Figure 4.3: Dna2 has a multifaceted role in the synthesis and maintenance of telomeres. 
 

Telomeres are the protective structures at chromosome ends that protect linear chromosomes 
from being degraded during DNA replication and from being identified and repaired as DNA 
double strand breaks.  i. They are a difficult-to-replicate region, due in part to their repetitive 
sequence and the formation of polymerase-blocking secondary structures such as G 
quadruplexes. Dna2 is able to cleave these structures and promote the restart of stalled 
replication forks, allowing replication to progress through the telomere (30, 34, 69).  ii. Once the 
telomere is replicated, the 3’ssDNA overhang on the G-rich strand needs to be generated.  iii. 
Again working in concert, Dna2 and the RecQ helicase Sgs1 in yeast and possibly BLM in 
humans promote resection of the 5’ telomeric strand, leaving behind the 3’ssDNA (32, 50, 59, 
70, 71).  iv. Dna2 is also able to directly stimulate telomerase activity, leading to elongation of 
the 3’ G-rich strand (32, 50).  v. After either resection or telomerase-mediated elongation, the 
3’ssDNA region is generated.  iv. The ssDNA then invades and pairs with the C-rich strand 
forming the T-loop structure, which sequesters the DNA ends. The shelterin complex, comprised 
of six core telomere binding and stabilizing proteins along with a growing list of accessory 
factors such FEN1, binds and protects the telomere from aberrant DNA repair activity (22, 70, 
72, 73). 
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Abstract 
 

Dna2 is an essential helicase/nuclease that is postulated to cleave long DNA flaps that 

escape FEN1 activity during Okazaki fragment (OF) maturation in yeast. We previously 

demonstrated that the human Dna2 orthologue (hDna2) localizes to the nucleus and contributes 

to genomic stability. Here we investigated the role hDna2 plays in DNA replication. We show 

that Dna2 associates with the replisome protein And-1 in a cell cycle-dependent manner. 

Depletion of hDna2 resulted in S/G2 phase specific DNA damage as evidenced by increased γ-

H2AX, RPA foci, and Chk1 kinase phosphorylation, a readout for activation of the ATR-

mediated S phase checkpoint. In addition, we observed reduced origin firing in hDna2-depleted 

cells consistent with Chk1 activation. We next examined the impact of hDna2 on OF maturation 

and replication fork progression in human cells. As expected, FEN1 depletion led to a significant 

reduction in OF maturation. Strikingly, the reduction in OF maturation had no impact on 

replication fork progression, indicating that fork movement is not tightly coupled to lagging 

strand maturation. Analysis of hDna2-depleted cells failed to reveal a defect in OF maturation or 

replication fork progression. Prior work in yeast demonstrated that ectopic expression of FEN1 

rescues Dna2 defects. In contrast, we found that FEN1 expression in hDna2-depleted cells failed 

to rescue genomic instability. These findings suggest that the genomic instability observed in 

hDna2-depleted cells does not arise from defective OF maturation and that hDna2 plays a role in 

DNA replication that is distinct from FEN1 and OF maturation.  
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Introduction 

Genomic maintenance requires coordination of several processes including DNA 

replication, DNA repair, transcription, and cell cycle progression. Given the importance of 

genomic stability for ongoing cell proliferation, it is not surprising that DNA replication and 

repair proteins have evolved multiple functions and participate in several replication and repair 

pathways. Previously, we demonstrated that human Dna2 (hDna2) localizes to the nucleus and 

mitochondria and participates in DNA maintenance in both compartments (1). Dna2 is a highly 

conserved helicase/nuclease, originally discovered in S. cerevisiae and found in all organisms 

from yeast to humans (2-6). Dna2 possesses a 5’ to 3’ ATP-dependent helicase activity and a 

flap endonuclease activity (7). Genetic and biochemical experiments conducted in yeast support 

a model in which Dna2 contributes to Okazaki fragment (OF) maturation in lagging strand DNA 

replication (8-10), though in vivo evidence of Dna2 participating in this process is lacking.  

 

During OF processing, flap endonuclease 1 (FEN1) is the major endonuclease that acts in 

a coordinated manner with DNA polymerase δ (Pol δ) strand displacement activity to remove 

short RNA/DNA flaps formed on the previous OF (short flap pathway OF processing) (9-12). 

Flaps that escape FEN1 cleavage and are longer than 27 nucleotides are subsequently coated by 

replication protein A (RPA), which inhibits FEN1 nuclease activity (long flap pathway OF 

processing) (9, 12, 13). RPA-bound OF flaps recruit Dna2, which cleaves the RPA-coated DNA 

and displaces RPA, leaving a short 5-6 nucleotide RNA-free DNA flap that is further processed 

by FEN1 to produce a ligatable nick (9, 10, 14-18). In support of this long flap model, both PIF1 

helicase and Pol δ processivity subunit (Pol 32) promote long flap formation in vitro, and their 

deletion rescues the lethality associated with yeast Dna2 (yDna2) loss, presumably because long 
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flaps no longer form (12, 19-22). Conversely, mutations that increase Pol δ processivity are 

synthetically lethal with dna2 mutations (19). 

 

In addition to its role in OF processing, Dna2 functions in DNA repair and telomere 

maintenance through its DNA end-resection activity. In yeast, Dna2 undergoes a dynamic 

localization where it is present at telomeres in G1, relocalizes throughout the genome in S phase, 

and moves back to the telomeres in late S/G2 phase (23). In addition, upon bleomycin treatment, 

yDna2 leaves the telomere and localizes to sites of double strand breaks (DSBs) (23). Recent 

studies have demonstrated that yDna2 nuclease activity participates in the formation of a 3’ 

single strand DNA overhang essential to initiate the homologous recombination process or to 

maintain telomeric stability (24-30). Furthermore, Nimonkar et al. elegantly reconstituted DNA 

end resection in vitro using purified human proteins and demonstrated that hDna2 physically 

interacts with BLM to resect 5’ DNA ends in a process that depends on hDna2’s nuclease, but 

not hDna2 helicase activity (31). Nonetheless, in vivo and in vitro studies in yeast and humans 

indicate that Exo1 can compensate for Dna2’s nuclease activity in this process (24, 29, 31). This 

suggests that the essential function of Dna2 is not its resection activity during DSB repair but 

rather its function in removing long flaps during DNA replication. 

 

Our previous work revealed that hDna2 contributes to genomic stability (1). Here, we 

provide evidence that hDna2 ensures genomic stability by virtue of a critical role in DNA 

replication that is independent of FEN1 and OF processing. 
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Materials and Methods 

Cell culture 

U-2-OS and HeLa were grown in Dulbecco’s modified Eagle’s medium (DMEM) (Sigma, St 

Louis, MO) containing 10% heat-inactivated fetal bovine serum (FBS) and 1% 

penicillin/streptomycin at 37°C in 5% CO2. 

 

Virus production and infection 

Viral production and infections were carried out as described previously (1, 32). Briefly, 293T 

cells were transfected using TransIT-LT1 (Mirus, Madison, WI) and virus was collected 48 

hours post-transfection. Subsequent infections were carried out overnight in the presence of 10 

µg/ml of protamine sulfate, and followed 48 hours post-infection by selection of transduced cells 

with 2 µg/ml of puromycin. The pLKO.1 shDna2, pResQ shDna2’ and pLKO.1 shSCR 

lentiviruses were produced by co-transfection with pCMV8.2ΔR and pCMV-VSV-G (8:1 ratio). 

The sequence for the shDna2 short hairpin was 5’-CATAGCCAGTAGTATTCGATG-3’, for 

shDna2’ was 5’-GCAGTATCTCCTCTAGCTAGT-3’ and for shSCR was 5’-

AAGGTTAAGTCGCCC TCGCTC-3’ as previously reported (1). The sequences used for the 

FEN1 short hairpins were previously reported (32). The sequence used for the LigI-specific 

shLigI was 5’-GCTCAAGCTGAAGAAGGACTA-3’. 

 

 The pBabe-hygro-3xFLAG-Dna2 wild-type (wt), D294A (nuc), K671E (hel) and D294A/K671E 

double mutant (dm) cDNAs were cloned from pFastBACHTc-hDna2-FLAG and confirmed by 

DNA sequencing (5). Briefly, depletion rescue experiments utilized pBabe-Hygro-3XFLAG-
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Dna2 (wt, nuc, hel or dm) or pBabe-hygro-3xFLAG control constructs produced in 293T cells. 

U-2-OS cells were transduced with different constructs and selected in the presence of 200 µg/ml 

of hygromycin B (Sigma, St Louis, MO). After selection, hDna2 overexpression was confirmed 

by western blot, and cells were transduced with pResQ shDna2’ which does not target the 

exogenous hDna2 cDNAs followed by puromycin selection as described above. Five days post-

infection, cells were analyzed for DNA content by flow cytometry as previously described (Fig. 

5.2A) (1). 

 

 For FEN1 ectopic expression experiments, viral production and infections were carried out as 

described previously (32). U-2-OS cells were infected with pLKO.1 shSCR or pLKO.1 shDna2 

lentiviruses for 5 hours. Cells were then counted and re-seeded in the presence of media 

containing Adeno-FEN1 or Adeno-GFP (33). 48 hrs post-infection, cells were re-plated at 

0.8x106 cells/10-cm plate, and then analyzed 24 to 48 hrs later by hypotonic propidium iodide 

staining and flow cytometry as previously described (1). FEN1 ectopic expression was 

confirmed by western blot and immunofluorescence (data not shown). 

 

Immunoprecipitation and western blot analysis  

For co-immunoprecipitation studies cells were washed in PBS and lysed in TBS-Tx buffer 

containing 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton-X100 and protease 

and phosphatase inhibitors. 2 mg of protein extracts were immunoprecipitated with 2.4 µg of 

anti-hDna2 or IgG control antibodies using protein A beads overnight at 4°C. The following 

morning, beads were washed 3 times in 1 mL of TBS-Tx buffer before eluting bound proteins in 
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2X Laemmli buffer by boiling for 5 min at 95°C. Anti-hDna2 antibody was produced as 

previously described (5) and anti-And-1 was kindly provided by Dr. Anindya Dutta (34). 

For the cell cycle experiments, cells were enriched in G0/G1 and G1/S by serum starvation and 

double thymidine block respectively, as previously described (35). Briefly, for G0/G1 

enrichment, exponentially growing cells were cultured in DMEM medium containing 0.6% FBS 

for 38 hours, then harvested, analyzed by FACS to ensure arrest, and used for 

immunoprecipitation of hDna2 followed by western blotting for And-1. For G1/S enrichment, 

exponentially growing cells were cultured in medium supplemented with 3 mM thymidine for 16 

hours, washed twice in pre-warmed PBS and fresh media without thymidine was added for 12 

hours. Then, fresh medium with 3 mM thymidine was added and cells grown for another 16 

hours. Arrest was monitored by flow cytometry analysis and cells were harvested and used for 

co-immunoprecipitation studies as described above.  

 

For western blot analysis, cells were washed in phosphate buffered saline (PBS), lysed in MCL 

buffer (50 mM Tris pH 8.0, 5 mM EDTA, 0.5% NP40, 100 mM NaCl, 2 mM DTT, and freshly-

added protease and phosphatase inhibitors), sonicated (6 cycles of a 30 s pulse and 30 s cooling 

interval), and centrifuged for 20 min at 4 °C. Western blot analysis was carried out on whole cell 

lysates with the following antibodies: anti-hDna2 (ab96488, Abcam, Cambridge, MA); anti-

FEN1 (A300-255A, Bethyl Laboratories, Montgomery, TX); anti-DNA Ligase I (ab615, Abcam, 

Cambridge, MA); anti-FLAG M2 (F3165, Sigma, St. Louis, MO); anti-Chk1 (G-4 #SC-8408, 

Santa Cruz, Santa Cruz, CA); anti-phospho-Chk1 (Ser 317) (36, Cell Signaling); anti-β-Catenin 

(#610154, BD Biosciences); anti-γ Actin (NB600-533, Novus Biological, Littleton, CO); and 

anti-phospho-histone H3 (Ser 10) (#9701, Cell Signaling). For western blot analysis of γ-H2AX, 
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cells were washed with PBS and lysed in RIPA buffer (150 mM NaCl, 1% Triton X-100, 0.5% 

sodium deoxycholate, 0.1% SDS, 50 mM Tris [pH 8.0], and freshly added protease and 

phosphatase inhibitors), then probed with anti-phospho-histone H2A.X (Ser139) (clone JBW301, 

#05-636, Millipore, Temecula, CA). All protein concentrations were measured using the 

Bradford assay.  

 

Immunofluorescence 

U-2-OS cells were grown for 1-2 days on coverslips, then washed in PBS, fixed in 4% 

paraformaldehyde, and permeabilized in 0.5% Triton X-100 prior to treatment with blocking 

buffer (10% FBS, 2% goat serum, and 0.2% Tween 20) at room temperature. Antibodies were 

diluted in blocking buffer and incubated with cells for 1 hr at room temperature or overnight at 

4˚C. Cells were washed in PBS containing 0.02% Tween 20 and mounted in ProLong Gold 

mounting medium (Invitrogen, Grand Island, NY) containing 4’, 6-diamidino-2-phenylindole 

(DAPI). Immunofluorescence detection was carried out with anti-phospho-histone H2A.X 

(Ser139) (clone JBW301, #05-636, Millipore, Temecula, CA) or anti-phospho-ATM (Ser1981) 

(clone 10H11.E12, #4526, Cell Signalling) as primary antibodies. Secondary antibodies were 

anti-mouse IgG-Alexa-Fluor® 488 or 546 (Invitrogen, Carlsbad, CA).  

 

For RPA immunofluorescence, cells were pre-extracted before fixing as previously described 

(37). Briefly, U-2-OS cells were grown for 1-2 days on coverslips. Cells were washed in ice-cold 

cytoskeleton (CSK) buffer (10 mM HEPES/KOH pH 7.4, 300 mM sucrose, 100 mM NaCl, 3 

mM MgCl2), and then extracted for 6 min on ice with 0.5% Triton X-100 in CSK buffer 

supplemented with protease and phosphatase inhibitors. Following extraction, cells were fixed in 
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3.7% formaldehyde at room temperature for 25 min followed by immunofluorescence staining 

using anti-Replication Protein A antibody (RPA-70-9, #NA13, Calbiochem, La Jolla, CA). 

 

Inter-nuclei chromatin bridges and micronuclei counts 

hDna2-depleted (shDna2 and shDna2’) and control (shSCR) U-2-OS cells were seeded in a 12 

well plate at 5x104 cells per well four days post-infection. After 36-48 hours, cells were fixed 

and stained with DAPI and the number of inter-nuclei bridges (ICBs) and micronuclei were 

counted. At least 1000 nuclei were counted per well, and 6 wells were quantified per experiment. 

Two independent experiments were quantified for micronuclei counts in Fig. 5.1C and ICB 

counts in Fig. 5.5D. To inhibit Chk1, cells were treated with either 300 nM Gö 6976 

(Calbiochem) (38) or 100 nM AZD7762 (Axon Medchem BV, Netherlands) (39) for 8 hours 

before fixing and quantification of ICBs. Inhibition of Chk1 was confirmed by flow cytometry 

and western blot (Fig. 5.5C and data not shown). Images were processed using Photoshop 7.0 

gray scale and invert function (Adobe, San Jose, CA).  

 

Flow cytometric analysis 

U-2-OS cells were seeded at 0.8 x106 cells/10 cm plate four days post-infection, and resuspended 

36 to 48 hrs later for hypotonic propidium iodide staining (0.1 % sodium citrate tribasic, 0.3% 

triton X-100, 0.01 % propidium iodide, 50 µg/ml RNase A (Sigma, St Louis, MO)) prior to flow 

cytometry to determine DNA content as previously described (40). 
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S phase progression assay 

U-2-OS cells were cultured for 30 min in the presence of 20 µM bromo-2-deoxyuridine (BrdU) 

in the dark as previously described (33). Briefly, cells were washed, cultured in fresh medium 

and harvested by trypsinization at the indicated times. Cells were washed in PBS and fixed in 4% 

paraformaldehyde and 0.1% Triton X-100 in PBS for 20 min at room temperature prior to DNase 

I treatment (30 µg DNase I (Sigma, St. Louis, MO) at 37 °C for 1 hour). BrdU was detected with 

an Alexa Fluor 488-conjugated anti-BrdU antibody (A21303, Invitrogen, Carlsbad, CA), and 

cellular DNA content was determined by propidium iodide staining followed by flow cytometric 

analysis. 

 

Metaphase preparation and chromosome FISH 

Subconfluent U-2-OS cells were incubated for 3.5 to 4 hr with 0.1 µg/ml of colcemid in order to 

isolate mitotic cells by mitotic shake off. After hypotonic swelling in 75 mM KCl for 10 min at 

37 °C, cells were fixed in methanol/acetic acid (3:1), dropped onto glass slides, and aged at room 

temperature for 3 days. FISH was performed as previously described (32). Briefly, slides were 

rehydrated for 10 min in PBS, fixed with 4% paraformaldehyde in PBS for 2 min then 

hybridized with 0.3 µg/ml of a telomeric PNA probe (Cy3-(CCCTAA)3) and a centromeric probe 

(Flu-OO-CTTCGTTGGAAACGGGA) in 70% formamide, 10 mM Tris HCl (pH 7.2) plus 

blocking reagent (Roche Applied Science, Indianapolis, IN). DNA was denatured for 3 min at 80 

°C, and hybridizations were carried out at 37 °C for 4 hrs in a moist chamber. Slides were 

subsequently washed, dehydrated and mounted using VectaShield (Vector Labs, Burlingame, 

CA) containing DAPI. Images were taken using a Nikon 90i microscope and analyzed using the 

ISIS FISH imaging software (Metasystems, Altlussheim, Germany). 
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BrdU-comet assay 

The BrdU-comet assay was performed as previously described (41). Briefly, U-2-OS cells were 

plated at 5x105 cells/6 cm plate and grown for 36 hrs at 37°C. Cells were then pulsed for 30 min 

with 100 µM BrdU (Sigma, St. Louis, MO), and chased for 1 to 8 hrs in growth medium lacking 

BrdU. Cells were then trypsinized and embedded in low-melting-point agarose at 37°C prior to 

spreading onto comet slides (Trevigen, Gaithersburg, MD). Cells on slides were then lysed, 

denatured and run through electrophoresis under denaturing conditions (200 mM NaOH, 1 mM 

EDTA) prior to immunostaining with anti-BrdU antibody (#555627, BD Biosciences) for 1 hr in 

the dark. The primary antibody was detected using anti-mouse IgG-Alexa-Fluor® 488 

(Invitrogen, Carlsbad, CA), and cells were counterstained with DAPI. At least 40 comet tails 

were quantified per sample time point using CometScoreTM (TriTek). A total of 3 independent 

experiments were conducted.  

 

maRTA assay 

Replication fork progression rates were determined using microfluidic-assisted replication track 

analysis (maRTA) (42). Briefly, hDna2-depleted (shDna2) or control (shSCR) U-2-OS cells 

were labeled for 30 min each with 50 µM IdU followed by 50 µM CldU (Sigma, St. Louis, MO). 

For FEN1-depleted cells, U-2 OS-hTert cells were used to avoid potential telomeric defects 

induced by FEN1 depletion (43). Cells were then collected by trypsinization and used to prepare 

agarose plugs as previously described (42). High-molecular-weight DNA was isolated from cells 

embedded in agarose by brief heating to 75°C to melt the agarose, followed by agarose digestion. 

The resulting high-molecular-weight DNA was then loaded by capillary tension into 

microchannels to uniformly stretch and capture long, high molecular weight DNA molecules on 
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glass coverslips for immunostaining and fluorescence microscopy. Origin firing efficiency was 

determined by counting the fraction of origin firing events among all active replication events. 

Replication elongation efficiency was determined by measuring the mean length of first-label 

replication tracks in double-labeled tracks in order to analyze active/ongoing fork rates. Track 

lengths were measured in digital images of track using the AxioVision software package (Carl 

Zeiss). Three replicate samples of hDna2-depleted U-2-OS cells or mock-depleted U-2-OS cells 

(hDna2 experiment), or FEN1 depleted U-2 OS-hTert vs. mock-depleted U-2 OS-hTert cells 

(FEN1 experiment) were analyzed for each determination. A total of 250 to 450 replication 

tracks were measured in each sample.  

 

 

Results 

hDna2 contributes to genomic stability. 

We previously reported that hDna2 depletion in U-2-OS cells leads to genomic instability 

characterized by the appearance of aneuploid cells, inter-nuclear chromatin bridges (ICBs), and 

an accumulation of cells in the late S/G2 phase of the cell cycle (1). Here we further report that 

hDna2 depletion results in an increase in γ-H2AX, a well-characterized marker of DNA damage 

including double strand breaks (DSBs) and the appearance of micronuclei indicative of aberrant 

mitosis. U-2-OS cells were transduced with one of two shRNA hairpins that led to a greater than 

70% reduction in hDna2 mRNA and protein levels (Fig. 5.1A & 5.1B). Analysis of hDna2-

depleted cells revealed a two-fold increase in micronuclei compared to cells expressing a control 

shRNA (Fig. 5.1C). Furthermore, hDna2-depleted cells displayed an increase in γ-H2AX foci 
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that was confirmed by western blot analysis (Fig. 5.1D & 5.1B). In addition to the appearance of 

γ-H2AX foci, we also observed phosphorylated-ATM foci in hDna2-depleted cells (Fig. 5.1D), 

confirming that hDna2 depletion results in the generation of DNA damage with activation of the 

DNA damage checkpoint. 

 

ICBs arise from unresolved replication intermediates, defective mitosis, and/or telomere 

fusions that form upon loss of telomeric integrity (44). Because Dna2 plays an important role in 

telomere stability in yeast, we investigated whether the ICBs observed upon hDna2 depletion 

were the result of telomeric fusions. To address this possibility, we analyzed metaphases from 

control or hDna2-depleted cells. No increase in chromosomal end-to-end fusions was observed 

in cells expressing shRNAs targeting hDna2, suggesting that telomere dysfunction is not 

responsible for the formation of ICBs in these cells (Sup. Fig. 5.S1). Interestingly, analysis of 

metaphases isolated from hDna2-depleted cells revealed the appearance of abnormal 

chromosomes (Fig. 5.1E). These metaphases are reminiscent of chromosomes isolated from cells 

entering mitosis with incompletely replicated DNA (45) that could lead to the generation of 

ICBs, DSBs, and micronuclei similar to what is observed in hDna2-depleted cells. Together 

these experiments suggest that the genomic instability observed in hDna2-depleted cells arises 

from incomplete DNA replication. 

 

hDna2’s nuclease and helicase activities are essential. 

Dna2 is a highly conserved enzyme that possesses nuclease and helicase/ATPase 

activities that are postulated to contribute to its function in vivo. While both activities are 

essential for viability in S. cerevisiae (46), recent in vitro biochemical studies have called into 
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question the significance of the helicase activity in the human protein (5, 6). Therefore, we 

addressed whether hDna2’s nuclease and/or helicase activities contribute to genomic stability in 

mammalian cells. To assess the roles of these activities, we carried out a series of genetic 

knockdown-rescue experiments utilizing an shRNA targeting the 3’ untranslated region (UTR) 

of endogenous hDna2 while expressing a FLAG-tagged shRNA-resistant hDna2 cDNA. We 

expressed either a control vector (ctrl) or wild-type (wt) hDna2, nuclease-deficient D294A (nuc) 

hDna2, or helicase/ATPase-deficient K671E (hel) hDna2 cDNA (5). To distinguish between the 

endogenous and exogenous hDna2 mRNAs, we designed specific PCR primers that amplify a 

region encompassing the last exon (exon 21) and the 3’ UTR of the endogenous hDna2 gene that 

is absent in the cDNA constructs. This allowed us to confirm the knockdown of endogenous 

hDna2 while verifying ectopic expression of the cDNAs by western blot using a FLAG antibody 

(Fig. 5.2A & 5.2B).  

 

We previously demonstrated that depletion of endogenous hDna2 results in a reduced G1 

population, a late S/G2 cell cycle arrest, and the appearance of aneuploid cells (1). To assess the 

role of the helicase and nuclease activity of hDna2, we utilized flow cytometry to measure DNA 

content and determine the cell cycle profile of cells expressing wild-type or mutant hDna2. 

Expression of the wild-type allele rescued significantly the cell cycle defects observed upon 

depletion of hDna2 (Fig. 5.2C). In contrast, expression of the nuclease-deficient or helicase-

deficient alleles did not rescue the cell cycle defects, indicating that both activities are essential 

to maintain genomic stability (Fig. 5.2C). Furthermore, cells expressing the nuclease-deficient 

hDna2 protein, at even lower levels than the wild-type or helicase-deficient mutants, displayed 

cell cycle defects that were more severe than those observed in cells depleted of endogenous 
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hDna2 alone (Fig. 5.2B & 5.2C; compare G1/(S+G2) ratio, and cells with >4N DNA content). 

Interestingly, cells expressing high levels of the nuclease deficient allele were selected against 

over the course of the experiment as evidenced by a significant reduction in protein level, 

suggesting that the nuclease-deficient mutant is either toxic or functions as a dominant negative 

(Fig. 5.2A, 5.2B & 5.2C). 

 

To address whether hDna2 helicase activity contributed to the deleterious properties of 

the nuclease-deficient Dna2 allele, we expressed a double mutant (dm) allele lacking both the 

hDna2 nuclease and helicase activities. As seen in Sup. Fig. 5.S2B, expression of the double 

mutant was maintained at levels similar to the helicase-deficient protein in contrast to the 

nuclease-deficient mutant whose expression was rapidly lost (Sup. Fig. 5.S2A & 5.S2B). These 

results suggest that the toxic effect of nuclease-deficient hDna2 depends on its helicase activity 

and that both activities are coupled in vivo. Together, these results demonstrate that the nuclease 

and helicase activities of hDna2 are essential to maintain genomic stability.  

 

hDna2 interacts with the replisome protein And-1 in a replication dependent 

manner. 

Above, we demonstrate that hDna2 depletion leads to DNA damage and the appearance 

of metaphases reminiscent of cells entering mitosis with incomplete DNA replication. In 

Xenopus laevis extract, Dna2 is recruited to DNA shortly after replication licensing where it 

interacts with the replisome protein And-1 (47). To determine whether Dna2 associates with the 

replisome in human cells, we investigated interactions between hDna2 and And-1. We found that 

endogenous And-1 co-immunoprecipitated with hDna2 from asynchronous cells, suggesting that 
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hDna2 associates with the replisome (Fig. 5.3A and data not shown). Furthermore, comparisons 

of the And-1/hDna2 interaction in cells arrested in G0/G1 by serum starvation and cells blocked 

at the G1/S border by a double thymidine treatment revealed a significant increase in And-

1/hDna2 interaction in cells arrested at the G1/S transition (Fig. 5.3B). These observations 

demonstrate that hDna2 specifically interacts with And-1 in replicating cells and are similar to 

observations made in Xenopus extract (47). Together they suggest that hDna2 interacts with 

And-1 shortly after licensing of the pre-RC as part of the replisome. 

 

hDna2 depletion leads to replication checkpoint activation. 

Dna2 plays an essential role in DNA replication in yeast. Our results indicate a 

corresponding, important role in human DNA replication. Therefore, we next tested whether 

hDna2’s depletion altered S phase progression. Control or hDna2-depleted U-2-OS cells were 

pulsed with BrdU for 30 minutes and chased for 12 hours. While hDna2-depleted cells 

incorporated BrdU at the same rate as control cells, they displayed a marked delay in completing 

the S/G2 phase and consequently took longer to appear in the next G1 phase following mitosis 

(Fig. 5.4A & 5.4B) (compare 8, 10 and 12 hour time points). These observations support the 

original cell cycle profiling data and suggest that hDna2 depletion alters late S/G2 replication 

rather than bulk DNA replication rates during S phase. Furthermore, western blot analysis 

revealed a reduction in the phosphorylation of the mitotic marker histone H3 at serine 10 in 

depleted versus control cells confirming that the block occurs prior to mitosis (Fig. 5.5A bottom 

panel). 
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Complete replication of the genome relies on efficient replication initiation, progression 

and maturation. When replication is inhibited at any of these steps, cells respond by activating 

the S-phase checkpoint. Therefore, given the characteristic damage and cell cycle arrest observed 

following hDna2 depletion we next investigated the activation status of Chk1. Western blot 

analysis of hDna2-depleted cells revealed a significant increase in phosphorylation of Chk1 at 

serine 317 compared to control cells, indicative of DNA replication stress (Fig. 5.5A top panel). 

In agreement with this finding, we observed an accumulation of single stranded DNA, a trigger 

of the S-phase checkpoint, as evidenced by a significant increase in the number of RPA foci per 

cell in hDna2-depleted cells compared to control cells (Fig. 5.5B). 

 

Chk1 activation prevents cells that have not completed DNA replication from moving 

into mitosis (48). When Chk1 is inhibited in cells undergoing replication stress, they can move 

into mitosis with incompletely replicated DNA that if unrepaired will lead to unresolved 

replication intermediates. To address whether checkpoint activation blocked hDna2-depleted 

cells from entering mitosis with under-replicated chromosomes and/or unresolved damage, we 

treated cells with one of two Chk1 inhibitors, Gö 6976 or AZD7762 (38, 39). Cells depleted of 

hDna2 were grown for 8 hours in the presence of the Chk1 inhibitor. Flow cytometric analysis 

revealed a drastic alteration in the cell cycle profile of hDna2-depleted cells treated with a Chk1 

inhibitor compared to untreated cells (Fig. 5.5C). hDna2-depleted cells treated with the Chk1 

inhibitor and released from the G2 arrest entered mitosis, but displayed an increase in ICBs 

compared to untreated hDna2-depleted cells, indicating that cells released from the G2 block 

underwent aberrant mitosis (Fig. 5.5D). Together these experiments establish that cells depleted 

of hDna2 display replication defects and arrest in late S/G2 due to checkpoint activation. Upon 
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checkpoint override, cells resume cell cycle progression despite incomplete replication and/or 

unresolved damage and undergo aberrant mitoses. 

 

Above we demonstrate that hDna2 depletion leads to Chk1 activation and a late S/G2 cell 

cycle arrest. Chk1 activation following replicative stress occurs to stabilize ongoing replication 

forks and to inhibit firing of additional forks (48). Therefore, to examine the impact of Chk1 

activation on origin firing we used microfluidic-assisted replication track analysis (maRTA), 

wherein DNA is sequentially labeled in vivo with short pulses of the base analogues IdU and 

CldU (42). Following labeling, DNA is isolated and stretched on coverslips for detection by IdU 

and CIdU immunostaining (Fig. 5.6A). Using maRTA we quantified the fraction of DNA origin 

firing events present among all tracks labeled with CldU and IdU. We found that hDna2-depleted 

cells displayed a 20-25% reduction in origin firing events compared to control cells (Fig. 5.6B). 

Together, these experiments establish that hDna2 depletion activates the replication checkpoint, 

which in turn inhibits the firing of replication forks. 

 

Defects in Okazaki fragment processing do not alter replication fork 

progression. 

Given the type of DNA damage we observed following hDna2 depletion and the model 

established in yeast suggesting Dna2 participates in OF maturation (9, 10), we next examined the 

role of hDna2 in DNA replication and fork progression using maRTA. By measuring the lengths 

of first label segments within replication tracks containing both labels, we determined the rate of 

DNA replication elongation. Using this method, we found that hDna2 depletion did not alter 

replication fork rate. Indeed, we found that DNA track lengths were similar in control and 
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hDna2-depleted cells (Fig. 5.7A). This finding suggests that the damage that arises from 

unprocessed DNA fragments accumulating behind the replication fork does not impede 

continued replication fork progression and is consistent with our result showing no defects in S 

phase progression in hDna2-depleted cells (Fig. 5.4A & 5.4B).  

To further address the possibility that unprocessed OFs do not impact replication kinetics, 

we also depleted cells of FEN1 (Sup. Fig. 5.S3) (10).  Because FEN1 is the major OF processing 

nuclease in the cell, we expected to find that FEN1 depletion would alter replication fork 

progression. Strikingly, we found that FEN1 depletion also failed to slow replication fork 

progression. In fact, we found that DNA track lengths were slightly longer in FEN1-depleted 

cells compared to control cells (Fig. 5.7B and Sup. Fig. 5.S3). Together these observations 

strongly suggest that the presence of unprocessed OFs and the associated damage they generate 

behind the replication fork is not sufficient to slow replication fork progression in vivo. 

 

hDna2 depletion does not lead to detectable defects in maturation of newly 

synthesized DNA. 

Long flaps requiring Dna2 for processing are predicted to arise in only a small percentage 

of OFs, and in specific regions of the genome (4, 12, 20). Therefore, the need for Dna2 should be 

dispensable for processing the vast majority of OFs, in contrast to the short flaps that are cleaved 

by FEN1. To determine whether hDna2 participates in OF processing, we measured the 

maturation kinetics of newly replicated DNA using a BrdU-comet assay. We reasoned that if 

hDna2 were necessary to process only a minority of the flaps, it would be difficult to observe 

maturation differences in cells depleted of hDna2 alone. Therefore, we also depleted FEN1 in 

addition to hDna2 in an effort to increase the accumulation of long flaps that would require Dna2 
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activity. In parallel we also depleted cells of DNA ligase I (LigI) as a positive control: LigI is 

required to ligate OF, which is required to complete OF processing (41). Western blot analysis 

demonstrated that we successfully depleted FEN1, LigI or hDna2 alone, and co-depleted FEN1 

and hDna2 (Fig. 5.8A).  

 

To assess the maturation of newly replicated DNA, control cells and cells depleted of 

hDna2, FEN1, or LigI alone, or co-depleted of both hDna2 and FEN1 were pulsed with BrdU 

and analyzed by an alkaline comet assay. Immunofluorescence against BrdU was used to assess 

the integrity of newly replicated DNA by measuring its migration from the tail (unligated DNA 

fragments, i.e., unprocessed OFs) to the head (ligated DNA, i.e., processed OFs) of the comet 

(Fig. 5.8B compare 1 hour to 8 hour images). As expected, LigI depletion slowed the maturation 

of newly replicated DNA from comet tails to heads (Fig. 5.8C) (41). In contrast, we failed to 

observe a significant difference in OF maturation in hDna2-depleted compared to control cells 

(Fig. 5.8C). Furthermore, FEN1-depleted cells displayed a reduction similar to that of LigI-

depleted cells, indicating that FEN1 is the major flap endonuclease responsible for processing 

OFs during lagging strand replication. Finally, OF maturation did not differ in FEN1-hDna2 co-

depleted cells compared with cells depleted of FEN1 alone (Fig. 5.8C), suggesting that hDna2 

does not compensate for FEN1 loss in OF processing. These results indicate that the DNA 

damage that arises upon hDna2 depletion (Fig. 5.9C compare shDna2 to shFEN1 γ-H2AX 

levels) is unlikely to arise from a global OF maturation defect. However, it does not rule out a 

role for hDna2 in the maturation of a small fraction of OFs.  
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To further assess whether hDna2ʼs primary function in DNA replication involves OF 

processing, we ectopically expressed FEN1 in hDna2-depleted cells ((33) & data not shown). In 

yeast, FEN1 overexpression compensates for phenotypes caused by hypomorphic mutations of 

Dna2 (8). However, ectopic expression of FEN1 in human cells did not improve the cell cycle 

defects observed in hDna2-depleted cells (Fig. 5.9A & 5.9B). These results further reinforce the 

contention that the key role of hDna2 in DNA replication is independent of FEN1 or OF 

processing. 

 

 

Discussion 

In this study, we provide evidence that hDna2 is essential to ensure faithful replication of 

the genome like its yeast homologue, and that unlike in yeast this essential role is independent of 

a requirement for hDna2 in global OF processing. We further demonstrate that both the nuclease 

and helicase activities of hDna2 contribute to genomic stability in human cells as they do in 

yeast. Finally, we report the unexpected finding that defective OF processing has no detectable 

impact on replication fork progression. This surprising result indicates that fork movement is 

decoupled from damage that arises behind the replication fork. 

 

In S. cerevisiae, temperature sensitive dna2 mutant alleles arrest cells in G2 with a 2C 

DNA content when shifted to the restrictive temperature (49). In S. pombe, temperature sensitive 

mutants also arrest in late S phase while displaying no defects in bulk DNA synthesis (4). When 

combined with a checkpoint inhibitor, these cells bypass the arrest and undergo aberrant mitosis. 

Similarly, here we demonstrate that hDna2-depleted cells harbor DNA damage and arrest in late 
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S/G2 phase. Upon Chk1 inhibition, cells bypass the replication checkpoint and progress through 

mitosis, displaying aberrant mitotic structures (increase in ICBs Fig. 5.5D). These phenotypes 

recapitulate observations in yeast and strongly suggest a conserved role for Dna2 in DNA 

replication in humans. Supporting our conclusions, ectopic expression of hDna2 suppresses the 

growth defects of the replication mutant dna2-1 in S. cerevisiae (50). 

 

The requirement for Dna2’s helicase activity for yeast viability in S. cerevisiae indicates 

that this function is required in vivo (46). Indeed, different studies have demonstrated that Dna2’s 

helicase activity is essential for efficient cleavage of long DNA flaps that may form secondary 

structures (7, 51). However, several studies demonstrated that the helicase activity of hDna2 is 

weak or undetectable, and might not serve a corresponding role in human cells (5, 6). Our 

observation that neither nuclease nor helicase-deficient hDna2 mutants rescue hDna2 depletion 

demonstrates that both activities are essential to ensure the integrity of the genome. Furthermore, 

we provide evidence that as in yeast, hDna2 nuclease-deficient expression is toxic to the cell (46, 

51). This toxicity depends on its helicase activity, suggesting that both activities need to be 

coupled within a single Dna2 molecule to act on its substrates in vivo. This is in contrast to 

Dna2’s function in 5’ end resection during DSB repair where only the nuclease activity of Dna2 

participates in this process (24, 29, 52, 53).  

 

OF processing is an essential process that ensures a continuous lagging DNA strand and 

avoids single and double strand break formation. Several prior studies have suggested that 

defects in OF processing do not impact the rate of DNA synthesis. Indeed, we previously 

demonstrated that FEN1 depletion did not slow S-phase progression nor SV40 LargeT antigen-
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dependent DNA replication in vitro (33). Similarly, LigI mutant cells (46BR.1G1) that exhibit 

low LigI activity do not activate the intra-S phase checkpoint (41). While protein extracts from 

these cells are deficient in OF ligation during SV40 DNA replication in vitro, they support 

incorporation of [α-32P] dATP into plasmid DNA with similar kinetics as extracts from control 

fibroblasts. In addition, yeast deficient in LigI completely replicate their genomes despite being 

unable to ligate OF (54, 55). Together these studies suggest that replication fork progression is 

unperturbed in the absence of LigI (56). Here, using the sensitive maRTA technique, we 

demonstrate that depletion of an essential OF maturation protein, FEN1, does not alter 

replication fork progression in vivo. These observations strongly suggest that flaps that persist 

behind the replication fork do not affect the synthesis rate of DNA during replication.  

 

FEN1 is postulated to be the primary endonuclease that processes flaps produced during 

lagging strand synthesis. However, both genetic and biochemical data indicate the presence of an 

additional long-flap processing pathway. Long DNA flap formation is promoted by PIF1 in vitro, 

and they require Dna2 activity to create shorter flaps that are cleaved by FEN1 to generate a 

ligatable nick (9, 10, 14). To address the role of hDna2 in long-flap processing in human cells, 

we depleted FEN1 and hDna2 independently or together, and then measured the maturation of 

nascent DNA. We found that maturation occurs with slower kinetics in FEN1-depleted cells, 

thus confirming FEN1 as the primary endonuclease responsible for processing OFs in human 

cells. In contrast, we did not observe a defect in maturation in hDna2-depleted cells. This 

indicates that if hDna2 processes long flaps, they do not represent a significant fraction of OFs in 

accordance with the model. However, our finding that FEN1-hDna2 co-depletion did not result 

in a significant difference in OF maturation rate compared to cells depleted of FEN1 alone was 
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surprising, since in yeast dna2 and rad27 mutations are synergistic (8). These results suggest 

either long flaps do not form readily in the absence of FEN1 in human cells, or that another 

nuclease can process flaps to render them ligatable. In yeast, other nucleases such as RNaseH2 or 

Exo1 can compensate for FEN1 loss by processing short flaps (20, 57-59). It remains to be seen 

whether their functions are conserved in humans. Despite the apparent functional dominance of 

FEN1, we were surprised to find that hDna2-depleted cells display more DNA damage than 

FEN1-depleted cells as assessed by γ-H2AX levels and abnormal cell cycle profile (Fig. 5.9B 

and data not shown). One explanation for this is that even infrequent unprocessed long flaps are 

a source of DNA damage and genetic instability in the absence of hDna2. However, we find this 

to be unlikely because ectopic FEN1 expression had no impact on the defects observed in 

hDna2-depleted cells. Thus a more likely and interesting possibility is that hDna2 has an 

important, as yet to be elucidated, role in replication or DNA repair beyond its postulated role in 

OF processing. This possibility is strengthened by our observation that hDna2 interacts with 

And-1 specifically in replicating but not resting human cells. This interaction is in accordance 

with yeast and Xenopus observations (47, 60-62) and suggests that hDna2 is a component of the 

replication fork. The late S/G2 phase arrest and appearance of aberrant post-mitotic structures 

could suggest a role for hDna2 in completing DNA replication by aiding in the resolution of 

replication intermediates. Interestingly, the BLM RecQ helicase can resolve late replication 

intermediates and its ectopic expression rescues Dna2 mutants in yeast (50). Alternatively, 

Xenopus Dna2 has been proposed to play a role in the early steps of DNA replication (3, 47). It 

remains to be addressed whether hDna2 actively participates in any of these processes.



	 114 

Acknowledgements  

We thank Dr. Soza and Dr. Montecucco for the BrdU/comet assay protocol and technical 

assistance with the procedure; Dr. Junran Zhang and Dr. Wei Shi for the RPA 

immunofluorescence protocol and aliquots of the antibody; Megan Ruhland for participating in 

this project during her rotation in the laboratory; Avi Silver for participating in DNA 

preparations and data analysis; and members of the Stewart, Campbell and Monnat laboratories 

for useful comments. We also thank Ermira Pazolli and Daniel Teasley for critical reading of the 

manuscript. This work was supported by the Cancer Biology Pathway, Siteman Cancer Center at 

Barnes-Jewish Hospital and Washington University School of Medicine in St Louis (JD, HM). 

 

 

 

 

 



	 115 

 

Figure 5.1: hDna2 contributes to genomic maintenance.  
 

A. Knockdown of hDna2 in U-2-OS cells determined by qRT-PCR. Results for two independent 
hairpins targeting hDna2 (shDna2 & shDna2’) are normalized to the shSCR control cell line 
expression levels. Note: shDna2 induces a better knock down of hDna2 mRNA than shDna2’. B. 
hDna2 knockdown determined by western blot analysis. Lysates were also probed for γ-H2AX to 
assess DNA damage and DSBs.  C. Relative micronuclei counts and representative images 
depicting micronuclei (red arrows) following hDna2 depletion in cells. Results were normalized 
to shSCR control cells.  D. Immunofluorescence staining of γ-H2AX (red) and phosphorylated-
ATM (P-ATM) (green) in U-2-OS cells depleted of hDna2 (shDna2, bottom panels) or a control 
hairpin (shSCR, top panels). Nuclei were stained with DAPI (blue).  E.  (Left) Metaphase spread 
of control cells and hDna2-depleted cells with abnormal chromosomes. (Right) Quantification of 
200 metaphases in 2 independent experiments is shown.  All error bars represent SEM and * 
denotes p<0.01 compared to shSCR. 
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Figure 5.2: hDna2’s nuclease and helicase activities contribute to genomic stability. 
 

A. Timeline of experimental procedure given in days; wb denotes western blot.  B. Relative 
knockdown of hDna2 in U-2-OS cells determined by qRT-PCR (top panel). Results are 
normalized to cells co-expressing the control vector (ctrl) + shSCR (-). PCR primers used detect 
only endogenous hDna2 mRNA. cDNA construct expression was confirmed by anti-FLAG 
western blot. C. Flow cytometric analysis depicting the cell cycle and DNA content of the U-2-
OS cells analyzed in B. Bar graphs represent 4 independent experiments. (Left) The ratio of the 
percent of cells in G1 versus the percent of cells in S+G2. (Right) The percent of aneuploid cells 
containing abnormally high DNA content (>4N). Error bars represent SEM for 4 independent 
experiments and * denotes p<0.05 compared to cells co-expressing the ctrl vector + shDna2’. 
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Figure 5.3: hDna2 interacts with And-1 in a replication dependent manner.  
 

A. Interaction between hDna2 and And-1 in asynchronous cells. hDna2 was immunoprecipitated 
from asynchronous HeLa cells followed by western blot analysis with antibodies against And-1 
or hDna2 as indicated.  B. Interaction between hDna2 and And-1 occurs during G1/S transition. 
HeLa cells were arrested in G0/G1 by serum starvation or during G1/S by a double thymidine 
block. hDna2 was immunoprecipitated from the arrested cells and western blot analysis was 
performed with antibodies against And-1 or hDna2 as indicated.    
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Figure 5.4: hDna2 depletion impedes cell cycle progression in late S/G2.  
 

A. Cell cycle progression. U-2-OS cells expressing shSCR or shDna2 were pulsed with BrdU for 
30 minutes and analyzed at the indicated times by flow cytometry using an anti-BrdU antibody 
(FITC-conjugated) (y-axis) and propidium iodide to quantify DNA content (x-axis). The inset 
box represents BrdU-positive cells that are analyzed in B. Red arrows indicate the cells 
appearing back in G1 8 and 10 hours post-BrdU pulse.  B. Quantification of BrdU-positive cells 
in S/G2 phase (top graph) or BrdU-positive cells appearing in G1 (bottom graph). A 
representative experiment is shown. 
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Figure 5.5: hDna2 depletion activates the replication checkpoint.  
 

A. Western blot analysis of control (shSCR) and hDna2-depleted (shDna2) U-2-OS cells. Whole 
cell lysates were probed for total versus phosphorylated-Chk1 (P-Chk1 S317) (top panels). 
Samples were also probed for phosphorylated-histone H3 (P-H3 S10).  B. Immunofluorescence 
staining of RPA-70 in shSCR and shDna2 U-2-OS cells. Cells were pre-extracted before fixing 
and staining to eliminate cytoplasmic RPA-70 (37). Quantification of RPA foci: average number 
(left) and total number (right) of foci per cell. * denotes p<0.01.  C. Cell cycle distribution of 
shSCR and shDna2 +/- treatment with Chk1 inhibitor (Gö6976) for 8 hours. Similar results were 
obtained when AZD7762 was used to inhibit Chk1 (data not shown).  D. Inter-nuclei chromatin 
bridges (ICBs) (1) were quantified in control (shSCR) and hDna2-depleted (shDna2) U-2-OS 
cells +/- Chk1 inhibitor.  A representative image is shown with an ICB indicated by an arrow.  * 
denotes p<0.01. 
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Figure 5.6: hDna2 depletion reduces origin firing.  
 

A. shSCR or shDna2 U-2-OS cells labeled consecutively with IdU (green) and CldU (red) for 30 
min each prior to isolating and stretching DNA for immunostaining.  B. Origin firing events 
among all tracks labeled were identified as CldU-only (red only) or CldU-IdU-CldU (red-green-
red) triple-segment tracks. The mean percentages of new origin firing events defined by these 
two track types among all labeled tracks are shown for three independent experiments in which 
200 to 450 tracks/experiment were analyzed for control shSCR or shDna2.  Error bars show 
SEM between three independent experiments.  * denotes p<0.05. 
 

 

Figure 5.7: Replication fork progression is unperturbed in hDna2 or FEN1-depleted cells.  
 

A. Quantification of three independent maRTA experiments is shown on the right. The bar graph 
summarizes mean lengths of first-label segments labeled for 30 min in two-segment tracks (i.e. 
tracks labeled consecutively with IdU and CIdU) to ensure that fork rate measurements were 
made from active replication forks. Error bars show 95% confidence intervals for sample means. 
No statistical difference in mean track lengths was observed between shSCR and shDna2 cells 
using a two-sample Kolmogorov-Smirnov test.  B. Quantification of three independent 
experiments summarizing mean track length of the first label in cells depleted of FEN1 (shFEN1, 
shFEN1’) or control cells (shSCR). 
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Figure 5.8: hDna2 depletion does not impact Okazaki fragment maturation.  
 

A. BrdU-comet analysis of U-2-OS cells depleted of FEN1 (shFEN1), hDna2 (shDna2), LigI 
(shLigI) or co-depleted of FEN1 and hDna2 (shFEN1 + shDna2). Cells were pulsed for 15 min 
with BrdU and chased for 1 or 8 hours prior to comet processing. A. Western blot analysis of the 
different cell lines probed for LigI, FEN1, and hDna2.  B. Representative images of the different 
samples at 1 and 8 hours post-BrdU pulse. Cells were immunostained for BrdU (green) and DNA 
was stained with DAPI (blue).  C. Quantification of the percent BrdU-positive DNA in the tail 
versus the comet head at the 8-hour time point. Results are based on the analysis of 40 to 65 
comets per experiment. A total of three independent experiments were performed and the errors 
bars correspond to the SEM. The total number of cells analyzed per sample is shown in 
parenthesis. * denotes p<0.05 comparing shFEN1, shFEN1+shDna2 or shLigI to shSCR. 
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Figure 5.9: FEN1 overexpression does not compensate for hDna2-depletion. 
 

A. hDna2-depleted (shDna2) or control U-2-OS cells (shSCR) were transduced with either GFP 
(ctrl) or FLAG-FEN1 (FEN1). Immunofluorescence images against FLAG demonstrated >70% 
of transduction of FEN1 expressing cells (data not shown). Flow cytometry histograms of the 
cell cycle distribution of the respective cell lines is depicted with the cell count represented on 
the y-axis and DNA content on the x-axis.  B. Quantification of two independent experiments. 
(Left) graph representing the ratio of the percent of cells in G1 versus the percent of cells in 
S+G2. (Right) graph representing the percent of cells containing abnormally high DNA content 
(>4N). Error bars represent SEM. C. γ-H2AX levels determined by western blot analysis in 
FEN1 or hDna2-depleted cells. 
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Supplementary Figure 5.S1: hDna2 depletion does not result in telomeric fusions.  
 

Metaphases were prepared from control (shSCR) or hDna2-depleted (shDna2 and shDna2’) U-2- 
OS cells and spreads were analyzed with a telomere-specific (red) and centromere-specific 
(green) probe. An example metaphase from an shDna2-depleted cell is shown on the left. On the 
right telomeric fusions were quantified for the different cell types. 
 

 

 

Supplementary Figure 5.S2: hDna2 helicase activity contributes to the deleterious 
properties of the nuclease-deficient Dna2 mutant.  
 

A. Timeline of experimental procedure given in days.  B. Western blot analysis of U-2-OS cells 
expressing a nuclease deficient allele (nuc), a helicase deficient allele (hel), and a nuclease and 
helicase-deficient double mutant allele (dm). Western blots were performed 1 and 3 weeks post-
transduction. 

 

Supplementary Figure 5.S3: shRNA-mediated knockdown of FEN1. 
Western blot analysis of FEN1 levels in U-2-OS cells depleted of FEN1 using two independent 
short hairpins (shFEN1, shFEN1’) compared to a control cell line (shSCR). β-Catenin was used 
as a loading control. 
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Chapter 6 

Conclusions and Future Directions 

DNA metabolism 
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6.1 Summary 

Cells are constantly being exposed to a variety of intrinsic and extrinsic insults that can 

threaten genomic integrity, from the tens of thousands of oxidative lesions experienced per cell 

per day to the multitude of mismatched bases and double strand breaks induced within each 

round of DNA replication (1-3). Therefore, cells have evolved complex and interconnected 

mechanisms to ensure these lesions are repaired in order to prevent mutational accumulation or 

cellular dysfunction that can lead to pathologies such as cancer and immunological deficiencies. 

Elucidating the mechanisms protecting genome stability is an important step in understanding 

and potentially treating the multitude of diseases that occur as a result of deficiencies in these 

processes. In chapter 5, we demonstrate that human Dna2, a highly conserved and essential 

helicase/nuclease, participates in DNA replication in a manner independent of its canonical 

Okazaki fragment processing (OFP) function. Furthermore, disruption of this activity through 

shRNA-mediated Dna2 knockdown results in replication-driven genomic instability 

characterized by activation of the replication checkpoint and DNA double strand breaks, the 

accumulation of micronuclei, and gross chromosomal abnormalities during mitosis. Below, I will 

discuss the implications of this work, as well as more recent findings in regards to alternative 

functions of Dna2 in DNA replication.  

 

6.2 Dna2 has non-Okazaki fragment processing roles in DNA 

replication 

Dna2 has traditionally been thought to participate in two-step Okazaki fragment 

maturation, wherein 5’ss DNA flaps displaced by continued DNA polymerase δ-driven synthesis 
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are typically cleaved by flap endonuclease 1 (FEN1) to produce a nick that is ligated by DNA 

ligase I. However, some flaps escape FEN1 cleavage, and if they reach 27 nucleotides in length, 

become coated with replication protein A (RPA). This inhibits FEN1 activity and drives the 5’ to 

3’ endonuclease activity of Dna2, which cleaves the RPA-coated DNA leaving several 

nucleotides at the base of the flap that are cleaved by FEN1 to leave a ligatable nick. In human 

cells, Dna2 is required for efficient DNA replication, because Dna2 depletion to leads Chk1-

dependent activation of the replication checkpoint and late S/G2 cell cycle arrest, as well as other 

phenotypes indicative of replication stress such as internuclei chromatin bridges (Fig 5.4 & Fig. 

5.5). If this were due to defects in OFP, then depletion of hDna2 should result in an accumulation 

of unligated, newly-synthesized DNA fragments including unligated Okazaki fragments. While 

depletion of Lig1 and FEN1 resulted in a significant accumulation of these fragments, depletion 

of Dna2 alone did not affect the percentage of unligated DNA. Furthermore, co-depletion of 

Dna2 and FEN1 did not have an additive affect on the inhibition of nascent DNA ligation, and 

unlike in yeast, overexpression of FEN1 to prevent the accumulation of long flaps did not 

alleviate the cell cycle arrest observed in Dna2-depleted human cells (Fig 5.8 & 5.9). Defects in 

LigI, which should affect processing of every Okazaki fragment, result in the accumulation of 

DNA breaks and replication intermediates and inefficient ligation of nascent DNA, but does not 

impact cell cycle progression (4). Together, these suggest that processing of long Okazaki 

fragments is not the primary replication function of Dna2 in human cells, and the replication 

defects associated with Dna2 depletion are not due to an accumulation of unprocessed Okazaki 

fragments and raise the question of what function of Dna2 is required to prevent the replication 

abnormalities observed in Dna2-deficient cells. 
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6.3 Dna2 is required for replication fork restart 

 Since performing the work in chapter 5, several reports have been published describing a 

role for Dna2 in the processing and restart of stalled replication forks (5-7). Replication forks 

stall when they are unable to continue synthesizing DNA, either due to a blockage on the 

template such as a bulky adduct, interstrand crosslink, or transcription machinery, as well as due 

to deficiencies in nucleotide pools. Fork stalling results in S phase checkpoint activation to 

stabilize the forks, since prolonged stalling can result in replication fork reversal, wherein the 

nascent strands anneal forming a “chicken foot” structure, which resembles a Holliday junction 

and is therefore subject to cleavage and recombination, or the fork can collapse, which can also 

result in DNA breaks (8-12). Several pathways have evolved to stabilize stalled forks by 

preventing regression or collapse, and to therefore promote replication fork restart. 

 

 In Saccharomyces cerevisiae, Cdk1-mediated phosphorylation of Dna2 was found to 

regulate Dna2’s resection activity at DSB ends in a cell cycle-dependent manner (13). Chen and 

colleagues found that recruitment to and long-range resection of a DNA DSB by Dna2 required 

Cdk1 activity, and that Cdk1 and Mec1 (the functional homolog of the replication stress kinase 

ATR) phosphorylate Dna2 in response to DNA damage. This indicates that Dna2 activity at 

DSBs is regulated in a cell cycle-dependent manner, and suggests that Dna2 is primarily active in 

S phase (13). Shortly thereafter, Dna2 depletion was found to sensitize human cells to 

camptothecin and etoposide, both of which are topoisomerase inhibitors that induce replication-

associated DSBs, and Dna2’s nuclease activity was required for efficient HR-mediated repair of 

these breaks (6). Furthermore, Dna2 was required to restart replication forks that had been stalled 

by treatment with the DNA polymerase inhibitor aphidicolin and released. Although the authors 



	 134 

suggested that Dna2 functioned to enhance tolerance of replication-associated DSBs through 

HR-mediated repair mechanisms, their observation that Dna2 was required for restart of 

replication forks stalled by aphidicolin suggests that Dna2 has a broader function in promoting 

replication fork restart. Indeed, HR-mediated pathways, such as template switching to repair 

stalled forks and break-induced replication at collapsed forks, are major mechanisms of fork 

restart and essential in higher eukaryotes (14-17).  

 

 Mechanistically, Dna2 in Schizosaccharomyces pombe was shown to prevent the reversal 

of stalled replication forks. As a replication fork regresses, the complementary nascent DNA 

strands can anneal to form a chicken foot structure with potentially deleterious consequences. Hu 

and colleagues demonstrated that the intra-S phase checkpoint phosphorylates Dna2 promoted 

association of Dna2 with stalled replication forks. There, Dna2 was able to cleave both 5’ and 3’ 

DNA flaps to prevent replication fork regression. The helicase activity of Dna2 was not required 

for this activity, suggesting a scenario in which nascent DNA strands do not simultaneously 

unpair from their parent strands to anneal to each other, which would necessitate helicase activity 

to create Dna2 substrates, but rather that a single strand unpairs from the template and is cleaved 

by Dna2 to prevent further reversal (5). Similarly, Dna2 in humans was shown to resect nascent 

DNA at replication forks stalled by treatment with hydroxyurea to deplete nucleotide pools or 

camptothecin to inhibit topoisomerase activity. Furthermore, this Dna2-dependent processing 

was required to efficient restart forks after release from drug treatment (7). In this setting, Dna2 

may act on chicken foot structures that had already formed, since Dna2 and the WRN were 

epistatic in processing DNA ends and promoting fork restart, suggesting they worked together to 

unwind and cleave structures at stalled forks. The extent of resection at stalled replication forks 
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by Dna2 is controlled at by several mechanisms to prevent ‘over-resection’, which can impair 

replication fork restart. The RecQ family helicase RecQ1 restrains Dna2 activity at stalled 

replication forks, as depletion of RecQ1 resulted in shorter tracts of nascent DNA at stalled 

replication forks than in control cells, and this degradation was Dna2 dependent because co-

depletion of Dna2 and RecQ1 rescued this over-resection phenotype (7). While Thangavel and 

colleagues did not observe Mre11 nuclease activity in this setting, a second, Mre11-dependent 

mechanism of replication fork regression has been described (7, 18). In this pathway, the 

Fanconi anemia pathway proteins FANCD2, BRCA1, and BRCA2 bind and protect stalled 

replication forks from nucleolytic degradation by Mre11 (18). Interestingly, this pathway also 

regulates Dna2 resection activity (19). FANCD2-deficient cells have increased sensitivity to 

interstrand crosslinking agents, partially due to over-resection of DNA at the sites of interstrand 

crosslinks. Depletion of Dna2 in FANCD2-deficient cells rescues this sensitivity, suggesting that 

in addition to RecQ1, FANCD2 also modulates Dna2 activity at stalled replication forks to 

ensure proper processing and fork restart (19). 

 

6.4 Dna2 knockout induces a stringent cell cycle arrest and 

abnormal metaphase chromosomes 

Investigating the replication-dependent effects of Dna2 depletion can be difficult in an 

shRNA-mediated system, since multiple rounds of cell division occur as Dna2 levels drop, 

potentially leading to accumulation of DNA damage, chromosomal abnormalities, or other 

phenotypes related to loss of Dna2 function. Utilizing siRNA technology to knock down Dna2 

mitigates this problem, as only 24-48h is required before experimentation, but residual Dna2 can 
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confound results. Therefore, we turned to a tamoxifen-inducible Dna2 knockout system in order 

to study the short-term effects of Dna2 loss. In HCT116 human colon cancer cell lines, a small 

duplication of chromosome 10 resulted in the introduction of a third DNA2 allele. Therefore, two 

alleles were knocked out and the third was made conditional by introduction of loxP sites 

flanking a portion of exon 2 and a tamoxifen-inducible CreERT2, allowing us to investigate the 

differences between wild type HCT116 CreERT2 (wild type) and Dna2Flox/-/- CreERT2 with 

treated with vehicle or tamoxifen (Dna2F/-/-
 and Dna2-/-/-, respectively). 

 

 Depletion of Dna2 by shRNA results in a late S/G2/M cell cycle arrest. This arrest is due 

to activation of the replication stress checkpoint, as Chk1 phosphorylation is increased in Dna2-

depleted cells and treatment with a Chk1 inhibitor rescues cell cycle progression (Fig. 5.5). 

While Dna2F/-/- and wild type cells had similar cell cycle profiles, a strong late S/G2 arrest was 

observed in Dna2-/-/- cells (Fig 6.1). However, unlike what was observed in shDna2-expressing 

cells, inhibition of the replication stress checkpoint by treatment with AZD7762 to inhibit Chk1 

did not rescue cell cycle progression in Dna2-/-/- cells. Furthermore, inhibition of ATM by 

treatment with Ku55933 or both ATM and ATR with caffeine treatment also failed to rescue cell 

cycle progression in Dna2-/-/- cells. This suggests that although these checkpoints are likely active 

in Dna2-/-/- cells, they are not the only mechanism by which the cell cycle is restrained. 

Preliminary data from cells synchronized at the G1/S transition by double thymidine block 

indicates that Dna2 knockout cells were able to progress through S phase with similar kinetics to 

wildtype cells, but that loss of Dna2 prevented cells from progressing through the first M phase 

after release (Fig 6.2). In agreement with an inability to enter M phase, whether due to cell cycle 

arrest or another factor, treatment with colcemid to isolate mitotic cells produced very few 
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metaphase spreads in Dna2-/-/- cells. Similar to the “pulverized chromosomes” observed in 

metaphase spreads from shDna2-expressing cells, preliminary investigation suggests a large 

majority of Dna2-/-/- spreads were grossly abnormal and fragmented. In contrast to the largely 

circular chromosome fragments observed in Dna2-depleted cells, the chromosomes in Dna2-/-/- 

metaphase spreads largely kept their shape. However, they were characterized by chromosome 

fusions, acentromeric and polycentromeric chromosomes (without overall alteration to 

centromere number) fragmentation of telomeric regions, and frequent loss of cohesion between 

sister centromeres and chromatids (Fig. 6.3).  

 

 These findings raise an interesting possibility. Dna2 interacts with And-1/Ctf4, which is 

required for sister chromatid cohesion (20-22). Deletion of CTF4 in S. cerevisiae leads to G2/M 

spindle assembly checkpoint activation, and mutation of ctf4 in results in a non-RAD9-dependent 

cell cycle delay, indicating the DNA damage checkpoint is not responsible for the delay 

observed (22, 23). The breakages observed in these metaphase spreads may be indicative of a 

chromosome condensation defect. Given the cell cycle-dependent Dna2/And-1 interaction, the 

inability to rescue Dna2-/-/- cell cycle progression with ATM and ATR inhibitors, and the 

potential sister chromatid cohesion defect observed in Dna2-/-/- metaphase spreads, investigation 

into a role for Dna2 in sister chromosome cohesion, condensation, or other late S/G2 processes 

could reveal a novel activity for Dna2 in genomic maintenance.  

   

6.5 Conclusions 

Preserving genomic stability is a vital aspect of protecting cellular and organismal health, 

and therefore many mechanisms have evolved to ensure efficient and efficacious replication and 
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repair of DNA. The proteins associated with these activities often have a diverse set of functions, 

allowing them to protect genomic stability through multiple mechanisms. The helicase/nuclease 

Dna2 is an important component of DNA repair, replication and telomere maintenance. The 

work presented here adds to the understanding of the diverse activities of Dna2, indicating that 

human Dna2 has a critical function in DNA replication outside of its canonical Okazaki fragment 

processing role identified in yeast. Fully characterizing the activities of Dna2 and other essential 

and multifunctional DNA metabolism proteins is an important aspect of understanding and 

eventually treating the diseases associated with dysfunctional genome maintenance. 

 

 

Materials and methods 

Cell culture conditions and drug treatments 

The relevant HCT116 cell lines, a gift from the Eric Hendrickson lab, were grown in McCoy’s 

5A modified medium (Gibco) supplemented with 2mM glutamine, 10% FBS, and 1% 

penicillin/streptomycin at 37˚C in 5% CO2 and atmospheric O2 conditions. Cells were frozen in 

40% complete medium, 10% DMSO, and 50% FBS. Cells were treated with 10nM 4-

hydroxytamoxifen (Sigma, product number H7904) in ethanol at the indicated times. For 

checkpoint inhibition, cells were treated 48h post-4-OHT addition for 3h with 300nM AZD7762 

(Axon Medchem BV), 10µM Ku55933 (Calbiochem) and 4mM caffeine. 

 

Cell cycle synchronization and flow cytometric cell cycle analysis 

Cells were synchronized using a double thymidine block. Cells were plated in 10 cm dishes, and 

the next day, were incubated with 2mM thymidine for two 14h treatments with a 10h recovery in 
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between. Cells were washed 2x in PBS and released into fresh medium, both of which were at 

37˚C and stored in 5% CO2 incubators to minimize temperature and pH changes to the cells. 

Samples were collected and the indicated times, and DNA content was analyzed by hypotonic 

propidium iodide staining and flow cytometry as described (24).  

 

Metaphase analysis  

HCT116 cells were treated with tamoxifen or control for 24h and then arrested in metaphase by 

treatment with 0.1µg/mL colcemid for 3h. Mitotic cells were collected by mitotic shake-off and 

hypotonic swelling, and fluorescence in situ hybridization was used to visualize centromeres and 

telomeres as described (25). 
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Figure 6.1  Dna2 knockout induces cell cycle arrest resistant to DNA damage checkpoint 
inhibitors 
 

Cell cycle analysis of HCT116 wild type (WT), Dna2F/-/- and Dna2-/-/- cells treated 4-OHT (WT 
and Dna2-/-/-) or ethanol (Dna2F/-/-) and with the indicated inhibitors for 3h before collection.     
A. Flow cytometric analysis of the DNA content as measured by hypo-PI staining.  B. Cell cycle 
distributions and quantification of the samples measured in A. Representative experiment, 
AZD7762, n=5; caffeine, n=3; Ku55933, n=2. 
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Figure 6.2  Progression through the cell cycle is impaired in Dna2-/-/- cells after release from 
G1/S block. 
 

HCT116 wild type and Dna2F/-/- cells were synchronized using double thymidine block. 4h prior 
to the second release, wild type and a subset of Dna2F/-/- cells were treated with 4-OHT to 
generate Dna2-/-/- and control populations. Cells were then released and collected at the indicated 
times, stained with hypotonic-PI, and the cell cycle distribution was calculated based on DNA 
content as measured by flow cytometry. 4-OHT treatment to generate Dna2-/-/- cells at different 
times before and after release produced similar results. Representative experiment. 
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Figure 6.3  Metaphase chromosome spreads from Dna2 knockdown and knockout cells 
display morphological abnormalities. 
 

A. Representative metaphase chromosome spreads from HeLa cells expressing either a 
scrambled control (shSCR) or Dna2-targeted (shDna2) hairpin. DNA was visualized by DAPI 
staining. ‘Pulverized chromosomes’ in shDna2-expressing cells have a different characteristic 
appearance than the chromosomes in Dna2-/-/- cells.  B.  Centromeres (green) and telomeres (red) 
were visualized in HCT116 cells with the indicated genotypes by FISH utilizing fluorescently 
labeled PNA probes. Arrowheads point to telomeric abnormalities including fragile or missing 
telomeres, or chromosomal abnormalities including acentromeric chromosomes and 
chromosomal fusions. Representative images. 
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