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In this thesis, we study the switch and pulse functions of actin during two important cellular

processes, cell migration and endocytosis. Actin is an abundant protein that can polymerize

to form a dendritic network. The actin network can exert force to push or bend the cell

membrane. During cell migration, the actin network behaves like a switch, assembling mostly

at one end or at the other end. The end with the majority of the actin network is the leading

edge, following which the cell can persistently move in the same direction. The other end,

with the minority of the actin network, is the trailing edge, which is dragged by the cell

as it moves forward. When subjected to large fluctuations or external stimuli, the leading

edge and the trailing edge can interchange and change the direction of motion, like a motion

switch. Our model of the actin network in a cell reveals that mechanical force is crucial for

forming the motion switch. We find a transition from single state symmetric behavior to
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switch behavior, when tuning parameters such as the force. The model is studied by both

stochastic simulations, and a set of rate equations that are consistent with the simulations.

Endocytosis is a process by which cells engulf extracellular substances and recycle the cell

membrane.

In yeast cells, the actin network is transiently needed to overcome the pressure difference

across the cell membrane caused by turgor pressure. The actin network behaves like a pulse,

which assembles and then disassembles within about 30 seconds. Using a stochastic model,

we reproduce the pulse behaviors of the actin network and one of its regulatory proteins,

Las17. The model matches green fluorescence protein (GFP) experiments for wild-type cells.

The model also predicts some phenotypes that modify or diminish the pulse behavior. The

phenotypes are verified with both experiments performed at Washington University and

with other groups’ experiments. We find that several feedback mechanisms are critical for

the pulse behavior of the actin network, including the autocatalytic assembly of F-actin, the

negative feedback of F-actin on Las17, and the autocatalytic self-assembly of Las17. These

feedback mechanisms are also studied by a simple ordinary differential equation (ODE)

model. Finally, we develop a partial differential equation (PDE) model that is more realistic

than the ODE model and more computationally efficient than the stochastic model. We use

the PDE model to explore the rich spectrum of behaviors of the actin network beyond pulses,

such as oscillations and permanent patches. The predictions of the PDE model are of high

interest for suggesting future experiments that can test the model.
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Chapter 1

INTRODUCTION

Cells depend on an enormous number of regulatory interactions among intracellular com-

ponents, protein molecules and the external environment. The interactions comprise a com-

plex and extensive network. Through evolution, the network is usually far from random,

indicating that some substructures appear much more frequently than random structures.

These special structures, known as network motifs [19], perform useful functions for the

cell. Two functions are of particular interest to the author, switching and the generation of

pulses. In the first part of the thesis (Chapter 2), a possible origin of the switch function

in cell migration, mechanics, is studied mathematically. In the second part (Chapters 3 and

4), the pulse function in endocytosis is studied with quantitative models and experimental

data.

Actin dynamics plays a major role in driving switching and pulse generation in these

two biological processes, cell migration and endocytosis. Actin dynamics is thus the main

subject of this thesis. In this chapter, Section 1.1 presents an overview of actin dynamics,

cell migration and endocytosis. Next, the switch and pulse functions are conceptually and

mathematically described in Sections 1.2 and 1.3. Then, the significant roles of these two

functions in cell migration and endocytosis are addressed respectively in Sections 1.4 and

1.5, as well as important experimental and theoretical studies in the literature. Last, the
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contribution of this thesis to the cell migration and endocytosis is summarized in Section

1.6.

Figure 1.1: Adapted from [1]. A, clathrin-mediated endocytosis. B, the formation of den-
dritic actin network via branching by Arp2/3 complex. C, membrane-bound vesicles trans-
portation by class V myosins. D, contractile ring formed by actin filaments and myosin II
in cytokinesis. E, condensation of nodes in fission yeast cytokinesis. F, Listeria bacterium
promotes actin network assembly, forming a actin comet tail that push it through the host
cell. G, cell migration following the leading edge and retracting the tail.

1.1 Overview

Actin is an abundant protein in eukaryotic cells, and is involved in many mechanochem-

ical processes, such as transportation of key substances, cell polarization, and membrane
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bending, see Fig. 1.1. Single actin molecules in the cytoplasm, known as monomers, can

polymerize into actin filaments. The filaments can form higher-order structures as actin

cables, contractile rings, or dendritic networks. The cables serve as trails for intracellular

cargo transportation, while contractile rings aid cell division in cytokinesis. On the other

hand, the dendritic network plays a central role in cell polarization and membrane bending.

Cell polarization can lead to cell migration, while membrane bending is the main process in

endocytosis. The roles of actin dynamics in cell migration and endocytosis comprise the core

of this thesis.

As shown in Fig. 1.1, when a actin monomer binds to an ATP (adenosine triphosphate)

molecule, it can polymerize at one end of an actin filament at a high rate, while polymerizing

at the other at a low rate or depolymerizing. The end with high polymerization rate is called

the barbed end, and the other end with a low rate is the pointed end. When an ATP-binding

monomer is polymerized, it becomes one subunit of the filament. The subunit can hydrolyze

ATP at a certain rate and become ADP-binding actin, which is much more loosely bound

in the filament. The ADP-binding actin can depolymerize and thus shorten the filament.

Depolymerization is favored at the pointed end. This is because the pointed end polymerizes

ATP-binding actin slowly, i.e. it is at a lower rate. So the pointed end normally keeps

depolymerizing ADP-binding actins that are hydrolyzed some time after being polymerized

at the barbed end. Overall, the asymmetry in the polymerization and depolymerization rates

causes the actin filament to elongate from the barbed end and shorten from the pointed end.

This phenomenon is known as actin treadmilling.
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A subunit in an actin filament can also form a base for the polymerization of a new

filament via the Arp2/3 (Actin Related Protein) complex. In this context, the existing

filament is called the mother filament and the new filament is called the daughter filament.

When a mother filament binds an Arp2/3 and an actin monomer, the base is formed. The

monomer becomes the first subunit of the daughter filament. This process is dramatically

expedited by WASP (Wiskott-Aldrich Syndrome protein). A WASP molecule has a domain

that binds and conformationally activates Arp2/3 so that the Arp2/3 can bind the mother

filament. WASP also has another domain that can bind actin monomers. WASP domains

are discussed in Section 1.5 in more detail. When the initial nucleation process among the

WASP, Arp2/3 and mother filament is complete, the WASP will detach from the new formed

base. Upon the WASP leaving the base, the daughter filament can start polymerizing [20].

This process is known as branching. One distinctive feature of branching is that the daughter

filament has a 70◦ angle with respective to its mother filament. Thus, after generations of

filaments polymerize for some time, a dendritic network of actin is formed, see Fig. 1.2.

When the actin network’s component filaments polymerize and eventually disappear, the

network can treadmill as a coherent entity. All the filaments polymerize roughly in the same

direction. Usually, little or no polymerization away from the membrane happens. Then the

question is: can the network treadmill against an external force? When a force is exerted

on the filaments by an obstacle, the polymerization is reduced by an exponential “Brownian

Ratchet” factor [21] but not stalled, unless the force is too large, see details in Chapter 2.

Thus, the network is able to keep treadmilling while pushing the obstacle to move in the
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Figure 1.2: Adapted from [2]. A dendritic network of actin. Actin filament is in red. Cell
membrane is in green.

same direction [22].

The actin network can also treadmill against the cell membrane and thus move the cell.

But this movement is only possible when the majority of the actin network is assembled

at one end of the cell instead of being uniformly distributed in the cell, as shown in Fig.

1.1. This broken symmetry of actin network distribution is known as cell polarization. It

is not intuitively difficult to understand that the cell can polarize when a directional cue is

present, like chemotaxis in a spatial gradient. The chemotactic cue can be sensed by the
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cell, which then sends downstream signals for the WASP to control actin assembly according

to the direction of the gradient. However, it is observed in many experiments that cells can

spontaneously polarize without any directional cue. In addition, the polarization is usually

long lasting, see Section 1.4 for details. The spontaneous cell polarization is not intuitively

trivial, but rather shares a typical trait of a biological switch. The trait is that a polarized

state is stable, which is like one state of a toggle switch. Changing the state requires large

fluctuations or a new cue. An important question that is answered in Chapter 2 is why the

actin network can behave like a switch and lead to cell polarization, based on mechanical

feedback interactions between the actin network and the cell membrane.

The actin network is also important in endocytosis, a process by which cells devour ex-

ternal substances, regulate plasma membrane activities, and recycle membrane components.

During endocytosis, the pressure difference across the membrane and the bending force of

the membrane must be overcome, see details in Section 1.5. Unlike the case of migration,

the actin network pulls the cell membrane inward instead of pushing it. More importantly,

no steady state of the network is present in endocytosis, because the network will no longer

be needed once the substance reaches inside of the cell or membrane components have been

recycled. It usually takes tens of seconds for the actin network to assemble and disassemble.

Thus endocytosis is not like a biological switch but a biological pulse. The important ques-

tions of why the actin network can behave like a pulse, and what interventions can diminish

the pulse, are throughly studied with quantitative models and experiments in Chapters 3

and 4.
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1.2 Biological Switches

Cells have various kinds of switches employed in different situations. By activating these

switches, the cells can fulfill their biological needs. For example, when Escherichia coli (E.

coli), a human intestine bacterium, is living in an environment that lacks glucose (a preferred

sugar), it has to assemble large quantities of enzymes that can assist it to consume other

sugars like arabinose. But the enzymes are not required when glucose reappears in the

environment. Thus, the states of high or low concentration of the enzymes form a typical

biological switch. For another example, flagella, the propeller of many kinds of cells, can

rotate in the clockwise or counter-clockwise directions. Switching between the two directions

can drive the cells to move forward or backward. There are many types of biological switches

that can be tuned between distinctive physical or chemical states [19, 23, 24]. In particular,

the migration switch studied in this thesis has two states of the actin network distribution,

which are the majority of the network is being assembled at one end of the cell or at the

other end.

Usually, the switch is bistable, consisting of two stable states. This means a cell can

remain in either of the two states stably until it receives a certain cue or is influenced by a

large perturbation to switch to the other state. We thus ask what biological mechanisms lead

to such a switch, and what mathematical criteria can describe the mechanism. In this section,

we discuss two types of switches, the inhibitor-inhibitor switch and the activator-activator

switch.
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1.2.1 Inhibitor-Inhibitor Switch

The first type is the inhibitor-inhibitor switch [23], illustrated by the feedback loop in Fig.

1.3. The loop shows an interaction network with two components x and y, which can be

regarded as the numbers of two proteins. The numbers are determined by the expression

levels of their genes. x and y also label the two transcription factors of the genes. It

is assumed that x can bind to a DNA region right before the gene that expresses y. This

preceding region is called the promoter of the gene. The binding between x and the promoter

of y inhibits y’s expression. Likewise, the transcription factor y inhibits x’s expression by

binding to the promoter of x. The transcription factor and gene interaction is illustrated

in Fig. 1.4. From here on in this section, the transcription factor is called the inhibitor for

simplicity, to avoid confusion.

Figure 1.3: The inhibitor-inhibitor switch consists of two genes x and y.

8



Mathematically, this feedback loop can be written as

dx

dt
= f (y)− µx,

dy

dt
= g (x)− νy, (1.1)

where f (y) is a monotonically decreasing function of y, and likewise g (x) of x; µ is the

disassembly rate of x, and ν is the disassembly rate of y. Now, what forms of f (y) and g (x)

are required for the switch?

Figure 1.4: The expression of genes x and y is inhibited when three y proteins bind to the
x promoter, and three x proteins bind to the y promoter.

Normally the feedback interactions operate within two limits. The first one is the upper

limit. Without the inhibitors, the genes are expressed at finite levels xmax and ymax. The

second limit is set by the expression levels of the genes, xmin and ymin, when the inhibitors are

saturated. Often, xmin and ymin are both taken to be 0. These limits and the monotonically
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decreasing feature of f (y) and g (x) are well described mathematically by the Hill functions

f (y) =
kx

1 + yn
,

g (x) =
ky

1 + xn
, (1.2)

where kx and ky are the assembly rates of x and y respectively, and n characterizes the

cooperative binding on the promoter. For n > 1, the gene is inhibited only when multiple

molecules bind to its promoter, while n = 1 is the single binding case. The cooperative

binding causes a steeper response curve of the inhibition than the single binding does, see

Chapter 3 of [19] for details. In the cooperative binding case, the inhibition of the gene

increases very suddenly when the inhibitor reaches a critical value; in the single binding

case, the inhibition increases gradually as the inhibitor increases.

A steep response of the gene to its inhibitor is required for switching. To explore this

requirement, it is convenient to prove why the single binding case can not form a switch,

namely when n = 1 in Eq. 1.2. Plugging Eq. 1.2 in the differential equations Eq. 1.1, while

letting n = 1, we obtain only one steady state or fixed point. The fixed point is where both

ẋ = 0 and ẏ = 0 on the phase plane of x and y, see [25] for details. The curves ẋ = 0 and

ẏ = 0 in Eq. 1.1 are called the x nullcline and y nullcline on the phase plane respectively.

Thus, the intersection of the two nullclines is nothing but the fixed point.

In the single binding case, the x and y nullclines are x = kx/µ
1+y

and y = ky/ν

1+x
. The

second derivatives of the two nullclines do not change their signs on the phase plane. In

other words, they do not change their curving directions (always concave upward). Also,
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considering that the two nullclines are monotonically decreasing functions, there is thus at

most one intersection, or stable state of the system. But at least two fixed points are needed

for the switch, which means the single binding case is disqualified.

However in the multiple binding case (n > 1), there could be three fixed points. The

nullclines in this case are x = kx/µ
1+yn

and y = ky/ν

1+xn
. Being different from the previous case,

the nullclines can change from concave to convex, thus having three intersections or fixed

points, see [23] for detailed proof. This scenario is illustrated in Fig. 1.6. Among these fixed

points, two are stable, and the other one is unstable. The two stable fixed points then form

a biological switch.

Figure 1.5: The activator-activator switch, consisting of two genes x and y.

To conclude this subsection, two genes inhibiting each other can work together as a bio-

logical switch. The inhibition caused by proteins binding gene promoters must be cooperative

in order to form the switch. The biological mechanism and its mathematical criterion are
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thus clear for the inhibitor-inhibitor switch.

1.2.2 Activator-Activator Switch

The second type is the activator-activator switch. This is also the switch that is studied in

the second chapter to explain cell polarization. Unlike the previously discussed inhibitor,

an activator can activate a gene’s expression by binding to its promoter. The activator is

thus another kind of transcription factor. The above analysis still holds if the monotonically

decreasing Hill functions are replaced by the monotonically increasing ones below

f ′ (y) =
k′xy

n

1 + yn
,

g′ (x) =
k′yx

n

1 + xn
, (1.3)

where the primes are used to distinguish them from the inhibitors. This switch is shown in

Fig. 1.5. When n > 1, increasing the parameters k′x and k′y, the nullclines give two extra

fixed points, see Fig. 1.6. This is known as the blue sky bifurcation. For the inhibitor-

inhibitor switch, the bifurcation is the pitchfork bifurcation, also shown in Fig. 1.6. For

n = 1 in the activator-activator switch, the blue sky bifurcation does not exist because

the curving directions of the nullclines do not change. It is thus clear that the biological

mechanism behind this switch is the cooperative binding between the gene promoters and

the activators. They can cause multiple stable states. This is the activator-activator bistable

switch.
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Figure 1.6: The nullclines of two types of switches. The nullclines are for n = 3 in both
inhibitor-inhibitor and activator-activator switches. The inhibitor-inhibitor switch presents
a pitchfork bifurcation when kx and ky increase. The activator-activator switch presents a
blue sky bifurcation when k′x and k′y increase.

1.3 Biological Pulses

Besides the switch, the biological pulse is also an important function needed by cell. Unlike

the switch that provides a pair of steady states, a pulse of a physical or chemical quantity

in a biological system transiently exceeds a threshold value. The threshold is determined by

the nature of the relevant biological processes.
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Figure 1.7: Excitable feedback system represents the FitzHugh-Nagumo model, Eq. 1.4. In
this feedback loop, the sign of y in Eq. 1.4 is reversed, namely replaced by −y.

For example, a voltage difference can activate a neuron only when a certain threshold

voltage is reached. Thus, voltage pulses that have maxima higher than the threshold can

activate neurons in a sequence. For another example, in order to transport external substance

into the cell via endocytosis, yeast needs to assemble a certain amount of force-generating

proteins to overcome a large pressure difference across the membrane. The proteins, however,

are no longer needed once the vesicle containing the substance is inside the cell. This process

is studied throughly in Chapters 3 and 4.

To understand neural information transmission and endocytosis, it is crucial to under-

stand what feedback mechanisms can lead to both transient increase and decrease of the

pulse quantities. In Section 1.2, two types of feedback were studied, inhibition and activa-
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tion. In this section, it is seen that the combination of one inhibition, one activation and

one self-activation (see Fig. 1.7) can lead to pulse behavior. The analysis is based on the

FitzHugh-Nagumo model [3, 26], which is written as

dx

dt
= c

(
x+ y − 1

3
x3 + z

)
,

dy

dt
= −1

c
(x− a+ by) , (1.4)

where the parameters a = 0.7, b = 0.8 and c = 3 are used for the calculation in this section.

The other parameter z acts as a constant external stimulus on the system.

First, without the stimulus (z = 0), the model gives a single pulse of the two variables

if perturbed at the beginning. The perturbation is achieved by setting the initial conditions

x0 = −0.5 and y0 = −0.5. The result of a numerical calculation of this scenario using the

4th-order Rung-Kutta method is shown in Fig. 1.8. The nullclines in the figure have one

stable fixed point. Immediately following the perturbation away from the fixed point, we see

a transient increase of both x and y. Eventually, x and y are absorbed into the fixed point.

Therefore, without any external stimulus, an initial perturbation can cause a single pulse in

the system.

Second, when the external stimulus is large enough, for example z = −0.4 (Fig. 1.8), it

drives the system to a limit cycle, and destabilizes the fixed point. The transient increase of

x and y thus happens periodically. This transition from a single pulse to an infinite series of

pulses is known as the Hopf bifurcation, see [25] for details.
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Figure 1.8: Reproduction of the result in [3] by calculating Eq. 1.4. The first row of figures
are the time courses (left), and the phase planes (right) when z = 0. The phase plane
contains the initial position, nullclines and trajectory of the calculation. The same for the
second row, except that z = −0.4.

It is therefore clear that an inhibitor-activator system can generate pulses if an initial
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perturbation occurs, with or without an external stimulus. Such perturbations are very

common because the cell is a highly fluctuating system. Also, fluctuations in the environment

can serve as an effective perturbation. Either the internal or the external fluctuations are

good candidates for the perturbation required by the model. In our studies of endocytosis

in Chapters 3 and 4, x and y correspond to actin regulators and actin polymerization.

1.4 Cell Migration

As discussed in the Overview, an actin network can push an obstacle when growing in certain

directions. When an actin network grows inside of a cell, the cell membrane can be regarded

as the obstacle. The membrane normally accumulates WASP or other regulators on the

inner surface, thus promoting the growth of the network. At first glance, all positions on the

entire inner surface of the membrane of an initially circular cell should be almost identical.

Therefore, it is intuitive to assume that the actin network is also identical everywhere near the

inner surface, namely the network is symmetrical. The network thus pushes the membrane

in all the directions symmetrically. According to this symmetry of the actin network, there

should not be any motion.

However, in several cases this intuitive view is not valid. Firstly, if a directional chemoat-

tractant is present in the environment, the cell can sense the direction. Responding to it,

the cell can activate WASP at one end closest to the higher concentration of the chemoat-

tractants, and repress the actin growth at the other end closest to the lower concentration of

the chemoattractants. The result of this response is that the network grows more at the first

end and less at the other end. After a short while, the majority of the network is present
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at the first end, known as the leading edge, which will push the cell in the direction of the

chemoattractant. On the other hand, the minority of the network present at the second end,

known as the trailing edge, can not push the membrane enough in the opposite direction

against the leading edge. Therefore, the cell will move in the same direction as the chemoat-

tractant. Similarly, the cell can respond to directional chemorepellents and move away from

them.

But more surprisingly, the actin network symmetry can be broken even without direc-

tional chemotaxis. Some cells can spontaneously break the symmetry and thus beginning

to move. This spontaneous symmetry breaking (SSB) is studied in Chapter 2. A purely

mechanical model proposed in the chapter can lead to SSB.

Several important experiments illustrate SSB as modified by mechanical effects. In Ref.

[4], the authors treat fish epidermal keratocytes with drugs that can cause the cells to divide

into fragments. The drugs used are either the protein kinase inhibitor staurosporine (100

nM), or the myosin light chain kinase inhibitor KT5926 (20 mM). The resulting fragments

in some cases, spontaneously polarize and persistently move in one direction. Others stay

stationary or polarize through collision. The results are shown in Fig. 1.9. The time

course of distance in the figure reveals a fragment’s transition from a stationary state to a

motile state. Noticeably, the fragment is clearly moving in one direction without stopping

or changing direction for tens of minutes.
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Figure 1.9: Adapted from [4]. Staining: myosin II in red, actin in cyan and tubulin in
yellow. Scale bars: 2 mm in (a, b, h) and 200 nm in (c). (a) Mobile keratocyte fragment.
(b-d) Platinum replicas of (a) revealed by electron microscopy. (e) Stationary keratocyte
fragment. (f, g) Platinum replicas of (e) revealed by electron microscopy. (h) Actin, myosin
and tubulin in several fragments. The time course on the right reveals a stationary fragment
being pushed and becoming motile.

In Ref. [5], the authors treat epithelial cells with the small-molecule drug blebbistatin

(BBS, 25µM) to inhibit myosin II activity. The myosin II is believed to organize the actin

in a ring-shaped region right inside the cell membrane, thus preventing actin from polarizing

and forming the leading edge. The results shown in Fig. 1.10 support their argument. The

cells treated with BBS can spontaneously break the symmetry of actin distribution and

polarize. The cells then migrate in a roughly constant direction for hours. In contrast, the

normal cells are stationary. The most intriguing finding of their work is that it reveals a
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mechanism by which the cells can break the symmetry spontaneously. The treatment they

used does not create artificial asymmetry because all of the symmetrically distributed myosin

II molecules are evenly affected by the drug.

Figure 1.10: Adapted from [5]. a, movie frames during 180 mins, first row: control cell
(DMSO addition); second row: cell treated with BBS (BBS addition); third row: cell after
exposed to BBS (BBS pre-treated). Scale bar: 20µm. b, time course of cell shape circularity
index ( (4π area/perimeter2)). c, tracks of DMSO addition and BBS pre-treated cells over
180 mins.

In Ref. [6], the authors create tethers in HL-60 cells using heat shock. The cell polarizes

with a protruding leading edge that links to the cell body through a very narrow neck, see

Fig. 1.11. The result suggests that a long-ranged but fast transmitting inhibitor is required
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for the polarization. The inhibitor needs to stop actin network assembly at the other end of

the cell (trailing edge). The trailing edge connects to the leading edge via the narrow neck,

in which chemical diffusion is dramatically slowed down. Thus any diffusion-reaction based

inhibitor that needs to tunnel through the neck is not fast enough to prevent the trailing edge

from assembling the actin network. However, the authors suggest that membrane tension is

a good candidate for the inhibitor. The membrane tension meets the two requirements of

the inhibitor, being long-range and fast transmitting. This is because the tension can travel

from one end of the cell to the other almost instantaneously.

Figure 1.11: Adapted from [6]. A, Tether formation in HL-60 cells by heat treatment.
Black arrowhead: pseudopod. White arrowhead: tether. Scale bar is 5µm. B, Polarity
maintenance in HL-60 cells after tether formation. Black arrow: cell body. Black arrowhead:
pseudopod. White arrowhead: tether. Colored contours: outlines of the cell from early to
late.

A long-range inhibitor is modeled in the simulations of Ref. [7]. The authors formulate
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a local-excitation and global-inhibition (LEGI) response system that drives an excitable

network. The LEGI system responds to uniform stimulus. Instead of being excited directly,

the network is excited by the output of the LEGI system. The network is also a FitzHugh-

Nagumo type network discussed in the “Biological Pulses” section. But, the network in [7]

is modeled with two probability distribution functions (PDF) that have spatial gradients.

When the network is excited by the LEGI system, it can break the symmetry of the cell and

persistently polarize, see Fig. 1.12. The fascinating result shows that the LEGI system can

excite the FitzHugh-Nagumo network utilizing its pulse nature, then create steady states

that have non-zero spacial gradients. The LEGI driven FitzHugh-Nagumo network is thus

transformed to a biological switch that can well describe cell polarization.

Figure 1.12: Adapted from [7]. Kymograph of the distribution of a global inhibitor from the
model at all angles. Duration is 1200s. At 120s a uniform stimulus was applied. At 720s
the stimulus was removed.

These experimental studies provide great motivation for this thesis to understand the key

network interactions driving SSB. Also, as suggested in [7] and [6], these interactions should

contain a long-range and fast traveling inhibitor, most likely membrane tension.
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In developing our understanding of such interaction networks, quantitative models are

as supportive and important as experiments. First and foremost, quantitative modeling is

an excellent tool for interpreting corresponding experimental data. In studying complex

systems, all the experiments have limits on measuring the observables. The parts missing in

the experiments can cause confusion and uncertainty. This problem is often well addressed

by adding plausible assumptions in the model. If the result from the model agrees with

the experiment, then a much better understanding of the topic is obtained than by working

solely from the experimental data. Secondly, a quantitative model can predict new results

that might be verified by experiments. Thus, modeling is a well established method to

propose new experiments for studying important phenomena. In particular, there are several

important competing models of cell polarization and migration that theory coupled with

experiment, can help distinguish.

In Ref. [27], the authors model stochastic actin growth inside a rectangular shaped

membrane. Their stochastic model predicts transient polarization of the actin network.

Thus, the cell undergoes Brownian like motion. Their stochastic model is further understood

by a deterministic master equation. When describing the two ends of the cell with two similar

master equations, they find the approximate solutions being bistable if the network grows

autocatalytically. The autocatalytic network is the key trait of branching, because the more

mother filaments exist the more daughter branches will form. However, the model has a few

issues needed to be solved. First, the motion of the cell predicted by the stochastic model

is not persistent. Unlike the directional motions of the cells in [4] and [5], the modeled cell
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moves like a Brownian particle that frequently changes directions. Second, the stochastic

model does not include several important processes in actin network growth, such as capping

and severing. These two processes might change their prediction based merely on branching

and polymerization. Third, the actin polymerization in their model is not coupled to force,

and thus misses an important negative feedback. The polymerization should be slowed

down by the Brownian ratchet mechanism [21]. Thus, their conclusion could be affected

by mechanical effects. Last, their analytical study of the stochastic model is approximate.

There is no direct comparison between the analytical and stochastic models. Therefore, it is

unclear why a bistable state gives Brownian motion instead of directional motion.

In Ref. [28], the authors propose a mechanical model with only a few degrees of freedom,

that predicts cell shapes similar to those experimentally observed in [4]. Their model is

bistable. There is a state with symmetric shape and another with polarized shape. The two

states are separated by free energy barrier and are thus locally stable. The free energy is

calculated based on actin polymerization, actin-myosin contraction in the lamellipodium and

actin-myosin bundle contraction in the cell rear. The cell is thermodynamically relaxed on

the free energy landscape. This model gives good predictions of the cell membrane, but still

oversimplifies actin dynamics. The actin force is assumed as a constant. Therefore, there is

no information of how actin dynamics can affect the cell shape. So it is still unclear what

feedback mechanisms involving the actin network can lead to the cell polarization.
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1.5 Endocytosis

Figure 1.13: Adapted from [8]. Different stages of endocytosis and crucial proteins involved
are illustrated.

A cell is enclosed in a cell membrane, consisting of a bilayer of lipid molecules. The membrane

can open channels for small molecules to pass through. For transportating larger cargoes,

and to recycle the membrane, the cell needs to proceed by endocytosis. In mammalian cells,

endocytosis does not always require the actin network, but relies on dynamin for some of

the mechanical force. On the contrast, in budding and fission yeast, the actin network is

required. This is because yeast maintains a large turgor pressure that is opposed by a rigid

cell wall over most of the membrane. Once the membrane is pulled off the cell wall, the
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actin network and curvatyre-generating proteins must exert a large force to overcome the

turgor pressure. Specifically, endocytosis in budding yeast is studied in this thesis, using

both quantitative models and experimental data.

Fig. 1.13 gives a nice overview of endocytosis in budding yeast. Overall, there are over 60

kinds of proteins involved. The proteins arrive in a well arranged time sequence. In the early

stage, the cargo arrives and various proteins assemble a coat inside the cell membrane. Coat

proteins can recruit cargo or vice versa. Among these coat proteins, clathrin has a preferred

curvature to force the membrane to bend, but the membrane is bent very little and moves

inward only slightly in this stage (see Ref. [18]). Sla2 is an adapter protein for clathrin that

co-works with Ent1. Sla2 and Ent1 also serve as an anchor that can bind actin filaments,

so that the filaments can pull the coat and membrane inward. In the middle stage, the

actin network assembles. Las17 is the yeast homolog of WASP, which can activate Arp2/3

complex to assemble the actin network. The barbed ends of the filaments in the network

usually point toward the outside of the cell (see Fig. 1.14). Thus the filaments can push the

membrane and pull the cargo inward while polymerizing. Upon actin network formation, the

membrane is bent. In the network, capping proteins bind to the barbed ends of the filaments

to prevent the filaments from getting too long. Usually the filaments at the endocytic site

are about 20-30 subunits long. Physically, longer filaments are more likely to buckle or break

into pieces, thus failing to exert force. In the late stage, cofilin appears, which severs actin

filaments and thus disassembles the network. The cargo is inside the cell within a vesicle,

which is transported into the cytosol. The vesicle is pinched off the membrane and released
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via late BAR-domain proteins, like Rvs161/167. The BAR-domain proteins have preferred

curvature to bend the membrane.

Figure 1.14: Adapted from [2]. Schematic of actin exerting forces on Sla2 cap and membrane
to overcome turgor pressure.

Fig. 1.14 shows the mechanical properties of endocytosis. At the endocytic site, the

actin network is “glued” to the Sla2 cap, and polymerizes and branches (the two processes

are referred as growth) at the bottom close to the membrane. The growing network thus

can push a ring-shaped region of the membrane down while pulling the Sla2 cap up. The

pushing force and the pulling force are approximately equal despite random forces caused

by thermal fluctuations. The Sla2 cap leads an invagination into the cell. The invagination

embraces the cargo right under the Sla2 cap. To create such an invagination, the actin

network needs to overcome a large opposing force and a smaller opposing force. The large

force is caused by the difference in osmotic pressure from inside and outside of the cell,

known as the turgor pressure. The turgor pressure can be as large as ≈ 106Pa (see [2]),
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and normally hard to measure. Therefore the corresponding force is considered within a

large range from 100pN → 1200pN [2]. The smaller opposing force is caused by bending

the cell membrane, which is normally an order of magnitude smaller than the larger force.

Because endocytosis fails when actin growth is inhibited in yeast cells [29, 30], actin force

probably counts at least for 50% of the total external force. Curvature generating proteins,

like clathrin, are not capable of generating enough force to overcome the external forces, see

Ref. [31].

Figure 1.15: Adapted from [8]. Interaction of actin with Arp2/3 complex and actin regu-
lators (also known as nucleation promoting factors (NPFs)). Class I NPFs activate Arp2/3
complexes and bind to free actin monomers (G-actin). Class II NPFs activate Arp2/3 com-
plexes and bind to filamentous actin (F-actin). Normally, Class I NPFs are more efficient
than class II NPFs to activate new branch formation.

A feature of the actin network that can grow against the forces from turgor pressure and
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membrane bending is that it is in a dendritic form. As discussed in Section 1.1, the dendritic

actin network requires activated Arp2/3 complex molecules to bind existing mother filaments

and create bases for daughter filaments. The activation process of the Arp2/3 complex is

greatly accelerated by Las17 (yeast WASP), see in vitro data of actin growth in [14]. The

activation process is triggered when Las17 is dimerized by Bzz1, see Fig. 1.15. The activated

Las17 then binds a Arp2/3 complex via its “acidic” domain, the “A” domain in Fig. 1.15.

The Las17 also binds to an actin monomer via its “V” domain. The monomer is to become

the first subunit of the daughter filament. When the Arp2/3 and the monomer are bound

together on a mother filament, the Las17 molecule will leave the two molecules. Then the

daughter filament can start to polymerize at the first subunit. Therefore, Las17, especially

its “A” domain, is important in dendritic network formation.

Figure 1.16: Adapted from [9]. Time course of Abp1 during budding yeast endocytosis.
Wild-type in blue and las17 ∆acidic pan1 ∆acidic mutant in red. ∆A means ∆acidic. The
mutant has more Abp1.
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Now the question is how many actin filaments and actin subunit are present at each

endocytic site? The question is challenging but well addressed in Refs. [9, 10]. Ref. [9] is the

first paper that measures molecule numbers of several important proteins during endocytosis

in budding yeast. The authors use Green Fluorescent Protein (GFP) to label the proteins

in interest, such as Abp1 and Las17. They compare the intensity of the endocytic proteins

with the intensity of Cse4, which is a protein in the kinetochore. Cse4 has a relatively fixed

number of about 109 in each cell during the anaphase of mitosis. Thus, the comparison of any

measured protein intensity with Cse4 intensity can give the number of the measured protein.

See Fig. 1.16, for example, shows the time courses of Abp1 in measured for wild-type and

mutant cells. Abp1 is a good proxy for F-actin because Abp1 labeling does not cause serious

disfunctions, while actin labeling does. The GFP labeled protein is seen as a protein patch

using a wide-field microscope, which is a Conventional Microscopy (CM) method. The patch

looks like a blurred circle. The detailed structure of the endocytic site is not observable using

CM due to the diffraction limit (the minimal distinguishable distance) of the microscope,

d = λ
2n sin θ

, where λ is the wavelength of the observed florescence light, and n sin θ ≡ NA is

the numerical aperture of the microscope. For GFP excited by a 488nm-wavelength laser

in [10], the emission green light peaks at λ = 509nm [32]. For the microscope used in [10],

NA = 1.45. Thus d ≈ 175nm, which is on par of the whole endocytic site (≈ 150nm). The

detail of the network is then lost in the blurred patch.
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Figure 1.17: Adapted from [10]. Time courses during budding yeast endocytosis. A, time
courses of the inward motion and the molecule numbers of the GFP labeled proteins. B,
spatial localization of the proteins at several time points marked by dashed lines from the
time courses.

This diffraction limit could be overcome by the technology of the Super Resolution Mi-

croscopy (SRM). But SRM usually requires super intense exciting laser power, 1-2 orders
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of magnitude higher than CM needs. The intense laser is photo-toxic to the cell and thus

interferes with endocytosis. Also, SRM is poor at temporal resolution, which is is required by

the rapid time scale of endocytosis. Ref. [10] presented SRM data for the endocytic protein

Sla1 in fixed yeast cells. Some SRM data of live mammalian cells are also emerging, see

[33]. Besides SRM, Electron Microscopy (EM) can reveal endocytosis at much smaller scales

[11, 12, 34]. However, EM can only provide images of fixed samples and has many potential

artifacts. Thus, the wide-field microscope is still a powerful tool to evaluate the time evo-

lution of endocytosis. In addition, although CM can not distinguish the detailed structure

of the actin network in endocytosis, it can still show the average position of the network

accurately. This is because the network, seen as a blurred patch, is well approximated by

a two dimensional Gaussian intensity function. The center of the Gaussian function is thus

the average position of the network.

In Ref. [10], the trajectories and intensities of the patches are measured. The resulting

time courses and trajectories are aligned so that a weighted difference in space and time

is minimized, through spatial rotation, spatial translation and temporal translation. The

intensities are also calibrated to absolute numbers of protein again by comparing the ob-

served proteins with a kinetochore protein Nuf2. Lastly, the temporal differences among the

GFP labeled proteins are obtained by comparing them with Abp1-mCherry. mCherry is an

alternative to GFP. The Abp1-mCherry is different in color compared to the GFP labeled

proteins. Measuring one GFP labeled protein and Abp1-mCherry gives the relative timing

of the two. Then another GFP labeled protein is measured in the same way. The final result
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is shown in Fig. 1.17. All the observed proteins behave like “pulses”. Tracking patches

for CM is still challenging due to the large amount of data and the noise from background

fluorescence.

Figure 1.18: Adapted from [11]. A, Patch of branched actin network. Arrowheads: actin
branches. B, quantitative representation of actin filaments, shown by green lines and red
dots.

As just mentioned, EM reveals some structures of endocytosis that are to small to observe

using wide-field microscope [11, 12], see Fig. 1.18 and 1.19. In Ref. [11], the authors remove

endocytic protein patches from cells and scan the patches using EM. They find dendritic actin

network at the sites. In the second paper, the authors use also EM to reveal the invagination

in different stages, from shallow dimples (early) to long tubes (late). The authors also label

several important proteins in endocytosis with gold, and show the positions of the proteins

relative to the invagination. In both papers, although the samples scanned by EM are fixed,
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some important information about the actin network is obtained, such as the actin network

structure and endocytic protein distributions.

Figure 1.19: Adapted from [12]. Immuno-EM micrographs of cell membrane in endocytosis.
Black dots show the stained proteins Vrp1 and Bzz1, in the two rows respectively. The four
columns from left to right represent shallow, short intermediate and long invaginations.

Similar results of GFP labeled proteins in fission yeast endocytosis are obtained in [13],

see the time courses in Fig. 1.20. Here absolute protein counts were obtained using a whole-

cell calibration curve. In fission yeast, fewer similar proteins share equivalent functions, in

comparison with budding yeast. For example, fission yeast has only one type I myosin,

Myo1. Budding yeast, however, has two, Myo3 and Myo5. Thus in some ways it is more

convenient to study fission yeast having various mutations. The mutations in budding yeast

often have replacement effects that can interfere with the mutations. The proteins similar

to the mutated proteins can replace their functions. In Fig. 1.20, the fission yeast proteins

are also like “pulses”. From Refs. [9, 10] and [13], it is seen that endocytic proteins in both

budding and fission yeasts also behave like “pulses”. However, this conclusion holds only
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for wildtype cells and some mutants. Other mutated cells, or drug treated cells, can behave

differently.

Figure 1.20: Adapted from [13]. Time courses during fission yeast endocytosis. On top,
time courses of molecule numbers of endocytic proteins labeled with fluorescence proteins.
At bottom, the corresponding motion from the membrane of the endocytic proteins.

Some mutations change the peak height and/or duration of the pulses of the proteins.

Sometimes the phenotypes of these mutations are counter-intuitive and thus crucial for un-

derstanding endocytosis. For example, in [9], the authors delete the acidic domain of Las17

and Pan1 (another adapter protein), creating las17 ∆acidic pan1 ∆acidic mutants. The mu-

tation leads to a higher peak height of Abp1. This means that the F-actin in this mutant
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cell is higher than in the wildtype cell. This is a typical counter-intuitive phenotype: mutat-

ing the actin network regulator causes even more F-actin assembled. The counter-intuitive

phenotypes indicate that the endocytosis is not a simple linear system, but rather a complex

non-linear system that contains crucial feedback mechanisms. One goal of this thesis is to un-

derstand the counter-intuitive phenotype, las17 ∆acidic pan1 ∆acidic, which is remeasured,

confirmed, and quantitatively studied in Chapter 3.

Figure 1.21: Adapted from [14]. One movie frame of Myo5 and Abp1 in sla2 ∆ mutant cells
during budding yeast endocytosis. “1” marks the point of kymograph at the bottom.

Other interventions completely change the “pulse” like patches to permanent patches.
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For example, in [14], the authors delete the entire protein Sla2, sla2 ∆. The result, Fig.

1.21, shows that endocytic patches of Myo5 and Abp1 become permanent. Comparing the

phenotype to the wildtype data, Fig. 1.17, it is clear that a behavioral transition of the

patches from transient to static can happen when certain proteins are missing.

Figure 1.22: Adapted from [15]. Feedback interaction among actin, coat protein, enzyme,
PIP2, BDP and membrane curvature. A, comparison of the model with experimental data on
a time course of normalized intensity and distance from membrane. B, calculated membrane
shape from the model.

The experimental data have been interpreted by previous quantitative models. In [15],
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the authors propose a model based on feedback interactions among endocytic proteins and

membrane curvature. The feedback mechanisms and time courses are shown in Fig. 1.22.

The authors suggest that actin network generates curvature by pulling the “bud”, namely the

top region of the invagination. The curvature determines the assembly rate of an enzyme

that can hydrolyze PIP2. PIP2 is required for coat protein accumulation. There are at

least two important functions of the coat proteins in endocytosis. The first is that they are

required for F-actin assembly. The second is that they can bind actin filaments to facilitate

the pulling force. Thus the coat proteins promote actin growth and force generation. A

similar feedback interaction mechanism is in the tubule region, where curvature can recruit

bar domain proteins, which can protect the PIP2 from being hydrolyzed on the tubule. The

PIP2 rich tubule also stabilizes the bar domain proteins.

The model matches the experiment well for normalized intensity of the various proteins.

However, there is no comparison with the experiment on protein numbers. The model might

not predict the correct behavior when fitted to the protein numbers measured in experiments.

Besides, the authors treat all the coat proteins as only one kind. But there are at least two

kinds, one on top of the invagination, the other in a ring region surrounding the invagination,

see Ref. [10]. The ring proteins do not travel with the top of the invagination as suggested

by the authors. One likely ring is Las17, which promotes actin network growth. Therefore,

it is still unclear how and where the coat proteins activate actin growth, and whether the

process is affected by membrane curvature or not.
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Figure 1.23: Adapted from [16]. A, model compared with experiment without parameter
optimization. B, model compared with experiment after parameter optimization.

In Ref. [16], the authors develop a model that can match the protein numbers in the

associated experiments [13]. The model predicts the correct pulse behavior when the param-

eters are optimized, see Fig. 1.23. However, the model relies on a presumed Gaussian pulse

of WASP. The origin of this Gaussian pulse is unclear. Thus the mechanism that diminishes

the WASP at the end of the endocytic process is missing in the model.

1.6 Scope of Thesis

In this thesis, the dendritic actin network is studied using quantitative models and fluo-

rescence imaging data. The models include the processes of actin network formation and

the mechanochemical interactions between the network and the membrane. The stochastic,

theoretical and experimental results are matched. These three aspects render the models

novel. The questions remaining from previous models are thus clarified to some extent by
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this thesis. A fully automatic tracking method is also developed to conquer the challenge of

processing massive data. Lastly, the computation in this thesis is greatly accelerated using

CUDA, a computer language for GPU computation.

In Chapter 2, a cell consisting of actin filaments and subunits, modulated by membrane

tension, is modeled. The model has a stochastic and a deterministic version, which agree

well. The model predicts a phase transition from unpolarized to polarized cells. When

polarized, a cell moves in the same direction persistently. The stochastic version gives a

two dimensional view of the cell, vividly revealing that the mechanisms in the model can

reproduce cell polarization. The deterministic version gives an intact mathematical descrip-

tion of the polarization process by including all the assumptions and interactions among the

variables. An instability of the unpolarized state is found mathematically, which clarifies

the cause of the cell polarization. The transition from the unpolarized to the polarized state

happens when the cell can produce enough membrane tension. When the cell is in the po-

larized state, it can move persistently either to the left or right, which makes it a biological

motion switch. The key merit of this model is that the cell polarization phenomenon seen

in the vivid picture from the stochastic simulation is clearly explained by the deterministic

calculation.

In Chapter 3, a stochastic model and a simplified deterministic model of endocytosis in

budding yeast are proposed. The models give time courses of crucial endocytic proteins,

F-actin and Las17, that match experimental results well. Besides, the model predictions of

several mutant and drug treatment phenotypes, especially the counter-intuitive phenotype
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described in the previous section, are verified by experiments. The stochastic model pro-

vides a three dimensional actin network pulling the cell membrane while resisting the turgor

pressure. The time courses of Las17 and F-actin are pulses that emerge one after the other.

The deterministic model gives a similar result. Although the deterministic model does not

quantitatively match the stochastic model, it provides the latter with reasonable parameter

values to start fitting to the experiments. More importantly, the core feedback interactions

in the deterministic model are the same as those in the stochastic model. So, the qualitative

conclusions from the two models are the same. It is found that a negative feedback interac-

tion from F-actin on Las17, and an autocatalytic positive feedback from Las17 on F-actin,

and an autocatalytic positive feedback of Las17 on itself, are needed to reproduce the correct

biological pulses in endocytosis.

The deterministic models in Chaper 2 and 3 are all based on ordinary differential equa-

tions (ODE). However, it is often challenging to describe the actin network using ODEs.

This is because the branching process in the actin network can only happen in a narrow

region close to the membrane. This region is known as the branching layer, see [22]. Be-

sides, the force generated by the actin polymerization to push the membrane is also near

the contacting surface between the network and the membrane, defined here as the force

layer. Therefore, the bulk portion of the network neither branches new filament nor exerts

force. To distinguish the branching layer and force layer from the rest of the network, a new

model based on partial differential equations (PDE) is developed in Chapter 4. The PDE

model incorporates the geometry of the network. Therefore, it provides much more infor-
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mation than the ODE. When it includes the same feedback interactions as the ODE model

from Chapter 3, the PDE model can also match the experimental data and the stochastic

model in Chapter 3 well. More surprisingly, both cell polarization and the endocytosis can

be well described by the same PDE model. There might thus be a unified theory for both

phenomena.

In sum, this thesis sheds some light on the biological physics of cell migration and endo-

cytosis by studying actin dynamics, using a novel combination of approaches.
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Chapter 2

FEEDBACK MECHANISMS IN A MECHANICAL MODEL OF
CELL POLARIZATION

2.1 Introduction

Many important functions of cells and microorganisms rely on directed migration based on

polarization, including cancer metastasis and neutrophil tracking of bacteria. Polarization

arises from an asymmetric actin distribution where a denser actin network grows at one side

(leading edge) and a sparser network at the other side (trailing edge) of the cell [35]. Cells

can polarize either spontaneously [4] or in response to extracellular signals such as chemoat-

tractants [6, 7] and mechanical force [4]. After the stimulus is removed, cells sometimes

maintain their polarity and keep migrating [4]. Thus under some conditions, the polarized

state of a state is stable, while the unpolarized state is unstable or metastable. The connec-

tion between polarization and the direction of cell migration has recently been emphasized

by experiments in which cells were polarized by micropatterns and subsequently allowed to

migrate [36].

Several recent reviews [37, 38, 35, 39, 40, 41, 42] have treated the mathematical modeling

of cell polarization. At this point the relative contributions of different interactions, and

the conditions which favor the polarized state, are still not known in detail. Both chemi-

cal interactions and mechanical interactions play a role. Most models of cell polarization
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have employed the general framework of the local excitation and global inhibition (LEGI)

mechanism [43], based on a slowly diffusing (local) activator and a fast diffusing (global)

inhibitor. Several treatments have identified the activator with signalling proteins such as

Rac and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) [6, 44], and the inhibitor with

phosphatase and tensin homolog (PTEN). Recent measurements [6] have clarified the role

of mechanical interactions in driving cell polarization. It was shown that the inhibitory in-

teractions propagate too quickly for diffusing signal proteins to play the role of the global

inhibitor. Mechanical tension, which propagates almost instantaneously, was suggested as a

candidate for the fast inhibitor. This is consistent with previous work in which polarization

was induced by the application of mechanical force [4]. However, it is not known precisely

how tension aids the symmetry breaking, nor how it interacts with the chemistry of actin

polymerization.

Several theoretical treatments have aimed to clarify the role of mechanical force and

actin polymerization in polarization, some of which are reviewed in Ref. [41]. Ref. [45]

treated a simple model of “inside-out” polarization, in which actin filaments fixed at their

nongrowing ends pushed on a bead from different sides. They found that this model led to

directed motion of the bead via a force-dependent symmetry-breaking mechanism. However,

it is not clear over what range of parameters symmetry breaking would occur, nor to what

extent the same mechanism would operate in cells. Ref. [27] treated a model of autocatalytic

actin network growth based on filament branching caused by Arp2/3 complex, in a simple

cell geometry. The force was transmitted via flexible springs between the ends of the cell,
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which were treated as flexible polymers. Autocatalytic actin polymerization was found to

provide a positive-feedback mechanism that temporarily polarized the cell. However, at

large time scales, the model obtained Brownian motion rather than stable directed motion.

In addition, transitions between polarized and unpolarized states with varying parameters

were not explored. Finally, because the polarization relied on autocatalytic actin filament

nucleation, it was not clear to what extent mechanical effects were important for polarization.

A simplified mechanical model of cell fragments treated the interplay between pushing

force exerted by actin polymerization on the cell edges, contractile force powered by myosin II

across the cell, and elastic tension in the cell membrane [28]. Forces from actin and myosin

were treated as assumed force densities. In the energy as a function of deformation, two

stable energy minima were found, one polarized and unpolarized. In this model, application

of a force, as in Ref. [4], could induce a transition to a polarized state. Ref. [46] treated

the interplay between membrane tension, filament force generation at the front of a cell,

and filament breaking at the rear. Again using a distributed force density, they calculated a

self-consistent polarized profile of polymerized actin. They found a correlation between front-

to-rear distance of the cell and curvature of the leading edge, consistent with experiment.

The work of [47] treated a membrane that was deformed by actin polymerization and

actomyosin contraction. The front and back of the cell were coupled by the elasticity of the

membrane. The distributions of actin and myosin were treated as continuous variables in

two dimensions. After perturbation of an initially circular cell by a pulse of F-actin at the

front, the asymmetry in the actin distribution persisted, and the cell deformed, becoming
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longer in the direction transverse to its motion. Myosin moved to the rear of the cell. The

authors calculated a phase diagram giving cell shape as a function of cell-substrate adhesion

strength and myosin activity. They found that cell asymmetry was most favored at a point

where myosin activity and cell-substrate adhesion are intermediate.

In the models of Refs. [28], [46], and [47], the key mechanical interactions and their effect

on actin polymerization are given explicitly. However, the treatment of actin polymeriza-

tion in these models is simplified. Here we aim to grasp the key mechanical interactions in

a more complete, stochastic model of actin polymerization. In order to focus on the me-

chanical interactions, we treat a model including only actin polymerization and mechanical

force, and do not treat the upstream signaling pathways. The model treats actin networks

present at the two sides of an idealized square cell fragment. The two sides serve as iden-

tical obstacles to actin polymerization, which slow the polymerization according to the the

Brownian Ratchet mechanism [21]. The model is solved using both a stochastic simulation

approach, and a rate equation approach that is systematically derived from the stochastic

approach. The results of the two approaches agree closely, for both steady-state and dy-

namic properties of the system. Both treatments predict symmetry breaking over a broad

range of parameter values. The origins of the symmetry breaking are explored by a linear

stability analysis of the rate equations. We find that the symmetry breaking is caused by

a feedback loop connecting fluctuations in the number of filaments on the two sides of the

cell with fluctuations in the amount of polymerized actin. Increasing polymerized actin on

one side favors growth of the number of filaments on that side, while the increased number
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of filaments can favor or inhibit actin polymerization depending on the parameter values. A

key factor in obtaining accurate estimates of polarization in the rate-equation approach is

the use of a state-dependent filament decay rate.

The development of an accurate rate-equation approach for treating actin polymerization

and depolymerization will have applications beyond the specific problem of cell polarization

treated here. Simulations of whole-cell structure and function usually require simplifying

approximations such as the description of actin and related proteins by continuous densi-

ties. A major difficulty in such calculations has been knowing how to treat actin network

disassembly correctly, and the state-dependent decay rate developed here is a step in this

direction.

This chapter is based on an article published as Xinxin Wang and Anders E Carlsson,

“Feedback mechanisms in a mechanical model of cell polarization”, Physical Biology, 11(6):

066002, 2014.

2.2 Model

2.2.1 Stochastic Model

We treat a 2µm× 2µm square cell fragment with height 0.2µm, containing actin filaments.

The lateral size is taken to correspond to a small cell fragment, while the height is chosen to

correspond to a typical lamellipodium thickness. Changing the system size leads to changes

in parameter values, but not in the qualitative behavior seen below. For example, doubling

the length of the cell changes the critical values of the parameters required for polarization by

about 50%. The model treats free actin (G-actin) and polymerized actin filaments (F-actin).
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The actin filaments are located at either end of the cell. The G-actin monomers diffuse freely

in the cytoplasm of the cell, and are converted to F-actin by polymerization or nucleation

events. Conversely, F-actin subunits convert to G-actin through depolymerization from

filaments. Each individual filament has two chemically distinct ends, a “barbed” end where

polymerization is favored, and a “pointed” end where depolymerization is favored. Force on

the barbed ends slows actin polymerization according to the Brownian Ratchet mechanism

[21]. In order to focus on the effects of mechanical interactions on cell polarization, we treat

only the most basic unit processes: nucleation and growth of actin filaments. This model is

similar to that of Ref. [27], but differs in that autocatalytic branching is not included, and

that we treat a rigid membrane at each side of the cell. In both approaches to solving the

model, the following assumptions are made:

1. Filaments nucleate only right at the front and back of the cell, as indicated in blue

in Fig. 2.1. This assumption is based on the fact that actin filament nucleation requires

Arp2/3 complex, which is activated by agents in the membrane [48]. The nucleated filament

network is taken to be two dimensional because of the limited height of the simulation cell.

Thus the height controls only the actin monomer supply and the rate of filament nucleation

at the cell edges.

2. Arp2/3 complex is present in excess, so that we can ignore the effect of filament

nucleation on the cytosolic Arp2/3 concentration. Thus chemical feedbacks involving the

Arp2/3 concentration are ignored.

3. G-actin diffusion is infinitely fast. In the present model, actin assembly and disas-
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sembly occur at the same side of the cell, rather than assembly at one end and disassembly

at the other end. Therefore, there is no net transport of monomers from one side of the

cell to the other. Previous analysis [49] has shown that diffusion of G-actin in this case is

not a significant constraint. The rate-limiting G-actin diffusion process is from the front to

the rear of the actin network at either side of the cell. Typical diffusion coefficients of actin

monomers in vivo are ∼ 5×10−8cm2/s [50], which implies that the time scale for this process

is on the order of a second, much smaller than the calculated time scale of polarization. Thus

the steady state of the model is not affected strongly this assumption. However, diffusion

rate limitations could affect the dynamics of polarization more strongly.

4. The actin filament barbed ends point out of the cell fragment, as found in many

studies including Ref. [51]. Each filament has an angle α = ±35◦ with respect to the

forward direction [51, 52]. In Fig. 2.1, the red filaments are growing and generating force

against the membrane.

5. There is no pointed-end growth.

6. Filament capping and branching are ignored, in order to limit the number of variables.

However, as discussed below, our model may in some ways mimic the nucleation-growth-

capping-depolymerization cycle believed to control actin dynamics cells.

7. The actin filaments are rigid and tightly attached to an underlying substrate. The

most pronounced departures from this scenario would result from retrograde flow at the

leading edge, in which polymerized actin slides over the substrate. The extent of retrograde

flow varies between cell types, and our results will be most relevant to those where retrograde
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flow is slow.

8. The positions X1 and X2 of the membrane at the two sides of the cell are determined

by the average of the barbed-end coordinates x1,i and x2,j: X1 = 1
N1

∑N1

i=1 x1,i, with a similar

result for side 2, where where N1 and N2 are the numbers of filaments at the two sides.

9. Actin polymerization stretches the top and side membranes of the cell elastically, with

a spring constant K, as indicated by the purple springs in Fig. 2.1. The interaction force

between the membrane and the actin filament network at is equal to the tension

T = K (L− L0) ≡ K∆L, (2.1)

where L0 is the original length of the cell and

L = X1 −X2 (2.2)

is the length after being stretched by the filaments. We do not include the effect of volume

changes during the simulation on the actin concentration. Our additional tests showed that

including this effect changed the critical parameter values for polarization by less than 5%.

The stochastic approach is implemented via Monte-Carlo simulation of the polymeriza-

tion, depolymerization and nucleation processes. We use a time-driven evolution algoreithm

with a constant time step ∆t, rather the event-driven Gillespie algorithm [53], because this

simplifies the updating of the continuous variable T . During each time step, uniformly

distributed random numbers ξ between 0 and 1 are generated for each process.
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a) A free actin will polymerize onto a barbed end if ξ is less than k+
i ∆t, where

k+
i = konG exp

(
−βTδ

Ni

)
, (2.3)

is the polymerization rate, kon is the on-rate constant, δ is the filament length increment per

added actin subunit, and β is the inverse temperature. The exponential behavior comes from

the analysis of Ref. [21]. This process is repeated for each filament. When polymerization

occurs, G is reduced appropriately.

b) Barbed-end depolymerization will occur if ξ is less than k−B∆t, where k−B is the barbed-

end depolymerization rate. A subunit from the a barbed end is removed and G is increased.

Pointed end depolymerization is treated similarly. When the last subunit of a filament

depolymerizes, the filament is removed from the simulation.

c) Filament nucleation occurs if ξ is less than kn∆t, where kn is the random nucleation

rate. A number l0 of G-actins are removed from solution to form a new filament of length l0.

The nucleation rate kn is taken proportional to G2 as suggested by Ref. [54]:

kn =
1

2
krG

2 A

A0

, (2.4)

where kr is a constant, A is the frontal area of the leading edge, and A0 = 0.4µm2 is

the reference value of the area. The area scaling is based on the assumption that actin

nucleators are uniformly distributed across the front edge of the cell. During the course of

a given simulation, the frontal area is kept fixed. The above scaling was used to compare
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simulations for cells with different volumes. The new filaments are placed at the average

barbed-end locations X1 and X2 with equal probability, and distributed uniformly parallel

to the leading and trailing edges of the cell.

In reality, some filaments will push farther into the membrane than others, and one might

expect some filaments to be left behind the moving membrane. However, these differences

are reduced by membrane flexibility. Our previous studies of filament-membrane interac-

tions (Ref. [55]) showed that filaments can grow while attached to the membrane. Trailing

filaments being pulled by the membrane grow faster, and the ones that penetrate into the

membrane grow slower, tending to equalize the positions of the filaments. We account ap-

proximately for flexibility by assuming that the filaments realign after each time step so that

their barbed ends are at the same location as the membrane, placing them at X1 and X2

(see Fig. 2.1).

We have also considered an alternative model with explicitly flexible front and back

membranes. Each filament has an individual harmonic force acting on its barbed end, which

is evaluated from its extension beyond the original position of the unextended membrane.

This does not cause any qualitative changes in the results. The same type of bifurcation

is found in this case, and the effects of the bifurcation parameters described have the same

sign. However, it is hard to compare these two treatments quantitatively since the membrane

spring constant K must be very different in the two cases.
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Figure 2.1: Schematic of model. Actin filaments are represented by red lines and the two
nucleation regions by blue dashed lines. Springs mimicking the mechanical function of the cell
membrane along the sides and top of the cell are shown in purple. The schematic is compared
with a polarized neutrophil, where red labels polymerized actin and green labels tubulin [17]
(https://www.london-nano.com/cleanroom-and-facilities/facilities/confocal-microscopes).

For l0, we consider both small and large values implementing different physical assump-

tions. The “small” value corresponds to the critical nucleus required to nucleate an actin

filament. We choose l0 = 8 rather than commonly used values of 3− 4, for practical reasons.

If l0 is substantially smaller than 8, an unphysical scenario can occur in the stochastic sim-

ulations where all the filaments at the rear decay rapidly, so the extension vanishes. Then
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all the filaments will nucleate at the leading edge and experience zero opposing force. We

avoid this scenario, in order to focus on the the interactions mediated by membrane force.

For the “large” value, we choose l0 = 100. Here, the nucleation step in the model is viewed

as including the first rapid steps in the filament life cycle in cells [48]. These include the cre-

ation of the filament and its growth until it is capped. The polymerization/depolymerization

phase in our simulations corresponds to the last step in the life cycle, which is hydrolysis to

ADP-actin and depolymerization.

This model is a first step in understanding the key interactions between mechanical force

and actin polymerization. It is missing explicit treatment of several key features of im-

portance in cells, including : i) barbed-end capping, which limits the length of filaments

after they are nucleated, ii) ATP hydrolysis, which converts filament tips from growing to

shrinking states (although hydrolysis it is included implicitly via the differences in critical

concentrations between the barbed and pointed ends), and iii) autocatalytic filament nucle-

ation [22], in which the rate of filament nucleation depends in the F-actin concentration.

However, effects i) and ii) are included implicitly in our large-l0 model, and the effect of iii)

is evaluated in the Discussion. The model is highly simplified, but this simplicity allows

us to develop and test an analytic approach based on a combination of rate equations and

bifurcation analysis. This provides a roadmap for the analysis and interpretation of more

complex models in the future.
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Figure 2.2: Filament distribution from simulations, for parameters giving a symmetric steady
state (frame a), and an polarized steady state (frame b). Color usage is as in Fig. 2.1.

2.2.2 Rate-Equation Model

Our rate-equation approach attempts to mimic the stochastic simulations using three local

variables at each end of the cell, and one global variable. Our derivation of the rate equations

is based on a biased-diffusion description [56] of polymerization and depolymerization. A

filament with l F-actin subunits can polymerize to length l + 1 or depolymerize to length

l − 1. The length l is viewed as a continuous random variable, and its distribution function

is described by the diffusion equation

∂ρi (l, t)

∂t
= Di

∂2ρi (l, t)

∂l2
− ui

∂ρi (l, t)

∂l
+ knδ (l − l0) , (2.5)

where the index i denotes the region in the cell and the boundary conditions are ρi (l, t) = 0

for l = 0 or l → ∞. Here Di = 1
2

(
k+
i + k−B + k−P

)
is the effective diffusion coefficient in
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region i and

ui =
[
k+
i −

(
k−B + k−P

)]
(2.6)

is the effective convection coefficient. Eq. (2.5) differs from that given in Ref. [56] by the

additional δ-function term, which describes the creation of new filaments with length l0.

We choose the local variables to be the zeroth, first and second moments of ρ1 and ρ2,

as defined in Ref. [57], and the global variable to be the tension T . Note that the zeroth

moment is just the number of filaments: Ni =
∫
ρidl. Similarly, the first moment is the

F-actin count Fi =
∫
lρidl. Thus the free G-actin concentration is

G = G0 −
F1 + F2

V
, (2.7)

where V is the volume of the cell and G0 is the initial free-actin concentration before poly-

merization begins.

The second moment Σi =
∫
l2ρidl highlights a very important feature of the length

distribution: its spread. We work with the standard deviation σi =
√

Σi/Ni − F 2
i /N

2
i . The

value of σi strongly affects the concentration of filaments near l = 0. Since these are the only

filaments that can decay, this means that the decay rate of the filament number is strongly

sensitive to σi.
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Our equation set is:

dT

dt
= Kδ cosα

[
k+

1 + k+
2 − 2k−B +

k−B
k−B + k−P

(
kd1 + kd2

)]
(2.8)

dN1

dt
= kn(G)− kd1N1 (2.9)

dN2

dt
= kn(G)− kd2N2 (2.10)

dF1

dt
= kn(G)l0 + u1N1 (2.11)

dF2

dt
= kn(G)l0 + u2N2 (2.12)

dΣ1

dt
= kn(G)l20 + 2D1N1 + 2u1F1 (2.13)

dΣ2

dt
= kn(G)l20 + 2D2N2 + 2u2F2, (2.14)

where we have introduced the decay rate

kdi =
(
k−B + k−P

) ∂lρi (l, t) ∣∣l=0

Ni

(2.15)

and kn is given by Eq. (2.4).

Eq. (2.8) is derived as follows. The relations dX1/dt = δ cosα(k+
1 − k−B) and dX2/dt =

δ cosα(−k+
2 + k−B), together with Eqs. (2.1) and (2.2), justify the first three terms. Pointed-

end depolymerization does not appear in Eq. (2.8) because it does not affect the tension.

The fourth term results from overcounting of barbed-end depolymerization in the first three

terms. When a filament consisting of a single subunit depolymerizes, the filament disappears.
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In this case, the depolymerization does not affect the tension, which depends only on existing

filaments (see Eq. (2.1)). Thus, the overcounted depolymerization contribution to Ṫ must

be subtracted off. The overcounted depolymerization rate is k−Bρi (1, t). On the other hand,

since ρi (0, t) = 0, ρi (1, t) ' ∂lρi (l, t)
∣∣
l=0

. Combining this with Eq. (2.15) gives the fourth

term in Eq. (2.8).

The remaining equations are straightforwardly derived except for Eqs. (2.13), (2.14), and

2.15. Using Eq. (2.5), we obtain

dΣi

dt
=

∫ ∞
0

l2
∂ρi (l, t)

∂t
dl =

∫ ∞
0

l2
[
Di
∂2ρi (l, t)

∂l2
− ui

∂ρi (l, t)

∂l
+ knδ (l − l0)

]
dl. (2.16)

Then Eq. (2.13) and Eq. (2.14) are obtained by integrating the first two terms in Eq. (2.16)

by parts. Eq. 2.15 is obtained from the definition kdNi = (k−B + k−P )ρ(1, t), by again taking

ρ(1, t) ' ∂lρi (l, t)
∣∣
l=0

.

The contribution of nucleation to the dF/dt terms in Eqs. (2.11) and (2.12) gives

corrections to the conventional formulas for the critical concentration Gc, where polymer-

ization balances depolymerization [58]. For a bulk solution with no force acting on the

filaments, and only one population N1 of filaments, Gc is determined by the conditions

dF1/dt = dN1/dt = 0. Multiplying Eq. (2.9) by l0, and using Eq. (2.6), shows that

−kd1l0N1 = (konGc− k−B − k
−
P )N1, so that Gc = (k−B + k−P − kd1l0)/kon. The kd1 term lowers Gc,

corresponding to the physical effect that nucleation removes free monomers from solution.

When tension is are present, the polymerization rate is reduced and the critical concentra-

tion is increased. As we shall see later, the tension is higher when the cell is polarized,
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corresponding to a higher free-actin concentration.

Because our expressions involve ∂lρi (l, t)
∣∣
l=0

in addition to the moments, it is necessary

to estimate this quantity. For calculating steady-state solutions of the equations, ∂lρi (l, t)

can be obtained from the steady-state solution ρssi (l, t) of Eq. (2.5). By matching the

boundary conditions at l = 0, and l =∞, and enforcing continuity at l = l0, we obtain

ρssi (l) =


kn
ui

[
exp

(
ui
Di
l
)
− 1
]

l ≤ l0

kn
ui

[
1− exp

(
− ui
Di
l0

)]
exp

(
ui
Di
l
)

l ≥ l0

(2.17)

Note that the exponential in the second of Eqs. 2.17 is decaying because ui must be negative

in steady state, to counter contributions to dFi/dt from nucleation.

From Eq. (2.17), we can calculate the three moments:

Ni = −kn
ui
l0 (2.18)

Fi = Ni

(
l0
2
− Di

ui

)
(2.19)

Σi =
1

3
Nil

2
0 − Fil0 + 2

F 2
i

Ni

. (2.20)

By solving for kn/ui and ui/Di in terms of Ni and Fi, we obtain

ρssi (l) =


Ni
l0

[
1− exp

(
− l
li−l0/2

)]
l ≤ l0

Ni
l0

[
exp

(
l0

li−l0/2

)
− 1
]

exp
(
− l
li−l0/2

)
l ≥ l0,

(2.21)

where li = Fi/Ni are the mean filament lengths (measured in subunits). Differentiating Eq.
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(2.21) and inserting into Eq. (2.15), we obtain the steady state decay rate:

kdi
∣∣
ss

=
k+
i + k−B + k−P

2l0

1

li − 1
2
l0
. (2.22)

We note that it is mathematically possible for the decay rate in Eq. (2.22) to become negative,

if li becomes less than l0/2. This cannot occur in the stochastic treatment, because even in

the extreme limit of no polymerization, li = l0/2. However, because the rate equations are

approximate, it can happen in rare cases that li < l0/2. We avoid this by limiting ourselves

to parameter values where the filaments are not too short.

The steady-state values of kd from Eq. (2.22), together with Eqs. (2.8-2.14), specify a

dynamical system whose solution will give correct fixed points. However, it will not neces-

sarily describe the dynamics of actin polymerization correctly, because the kdi obtained by

Eq. (2.22) are only guaranteed to be correct at steady state. Obtaining the kdi exactly from

Eq. (2.15) would require knowledge of all the moments of ρ, or another numerical approach

to calculating ρ, both of which are impractical. Therefore, to obtain a practical approach,

we truncate our description of ρ at the second moment. We devise a correction to Eq. (2.22)

with a form kdi = f (σi, li) k
d
i

∣∣
ss

based on the standard deviation σi and the average filament

length li. We take the correction to have the functional form

f (σi, li) =
(σi/σ

ss
i )n

(li/lssi )m
, (2.23)

where σssi and lssi are the steady state values of σi and li calculated from Eqs. (2.18), (2.19)
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and (2.20). This form is chosen for simplicity, and is guaranteed to give the correct values

of kdi at steady state. Fits to the decay rate obtained from the stochastic simulations for

baseline values of the bifurcation parameters, plus an additional set using a k−P value equal

to 150% of its baseline value, obtained the best agreement for n = 3 and m = 1.6. Thus, the

corrected decay rate reads:

kdi
∣∣
corr

=
(σi/σ

ss
i )3

(li/lssi )1.6k
d
i

∣∣
ss
. (2.24)

The physical mechanism underlying the correction is shown in Fig. 2.8. The blue curve

has a larger variance σ than the red one, although they have the same zeroth moment N

and first moment F . The larger spread in the blue curve causes a larger value of ∂lρi (l, t)

at the origin, increasing the filament decay rate according to Eq. (2.15).

In our implementation of this approach, we obtained n and m from a given parameter set,

and tested the resulting method over a broad range of parameter values, from 50% to 150% of

their baseline values. We found consistently improved agreement with the dynamic stochastic

simulations (see Stochastic Results below), relative to using the steady-state kdi values. The

correction in Eq. (2.24) thus appears to be a broadly applicable approach. However, it is

not essential for the the steady-state stability of the polarized vs. the unpolarized state.

2.3 Stochastic Results

The simulation parameters are given in Tables 2.1 and 2.2. Some of these are kept constant

for all of the runs, while other key parameters, which can be adjusted experimentally, are
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tuned to drive symmetry-breaking transitions. K is chosen such that the time for the cell

to equilibrate is moderate. We also chose K large enough to eliminate excessive volume

changes. The tuned parameters G0, k−P , k−B , and kr are given relative to baseline values (see

Table 2.2), which define the threshold between polarized and unpolarized states. They are

in the same general range as existing estimates, but some of them differ from the values

typically used to fit in vitro experiments (see Ref. [54]). Relative to standard parameters,

the main difference is that our value of k−B is larger and k−P is smaller. This choice is made

in order to maintain a reasonable filament length in our simplified model, while keeping the

tension continuous during the transition from the symmetric to asymmetric state. Note that

in the four-dimensional parameter space there are many possible choices of baseline values at

the threshold. Our results are fairly independent of the particular choice of baseline values.

For example, we have increased k−cP by 35% and k−cB by 20 %, which kept the system at the

threshold. The critical values of the other parameters did not change, and the shape of the

bifurcation plots was the same. Figs. 2.3, 2.4, and 2.9-2.11 present typical time courses of

Parameter Value (for both small and large l0)
Temperature 300K
K 5.7pN/nm
kon 11.6Mµ−1s−1 (Ref. [59])
δ 2.7 nm

Table 2.1: Values of constant parameters. K is the spring constant, kon is the polymerization
rate, and δ is the length increment per monomer.

the filament count N and the polymerized-actin count F at the two ends of the cell. Figure

2.3 shows results for the unpolarized regime. At the beginning of the simulation, actin

62



Parameter Baseline value (small l0) Baseline values (large l0)
Gc

0 12µM 12µM
k−cP 0.05s−1 0.05s−1

k−cB 2.9s−1 2.9s−1

kcr 70µM−2s−1 2.5µM−2s−1

Table 2.2: Baseline values of key parameters that are varied.

filaments nucleate and polymerize very rapidly (within about a second). The nucleation is

fast because of the high initial G-actin concentration and theG2-dependence of the nucleation

rate. In the small-l0 case, the cell polarizes after the initial period. Then the polarization

decays to symmetric steady state results. The time scale of the convergence to the final

symmetric state is slow because the only disassembly mechanism included in the model is

depolymerization; disassembly by severing would lead to faster convergence. The dynamics

of N are fairly similar to those of F . In the large-l0 case, the initial polarization phase is

absent.

Increasing or decreasing the key parameters relative to the baseline values, while keeping

the other parameters fixed, causes symmetry breaking. This is seen in Figs. 2.4 and (2.9-

2.11), where individual parameters are varied from 50% to 150% of their baseline values

while the others remain fixed. The polarization jumps rapidly over a period of a few hundred

seconds, and then slowly drops to a finite value. The large-l0 results are similar to the small-

l0 results. Polarization is favored by large G0, large k−P , small k−B , and small kr. Again, the

dynamics of N are similar to those of F .
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Figure 2.3: Dynamics of F and N before reaching symmetric steady states, for k−P = 0.5k−cP
(see Table 2.2). Other parameters are as in Tables 2.1 and 2.2. Frames a) and b) are for
small l0, while frames c) and d) are for large l0.
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Figure 2.4: Dynamics of F and N before reaching asymmetric steady states, for G0 = 1.5Gc
0

(see Table 2.2). Other parameters have the values given in Tables 2.1 and 2.2. Frames a and
b are for small l0 and frames c and c are for large l0.

2.4 Rate-Equation Results

It is not possible for a deterministic rate-equation approach to precisely reproduce the dy-

namics leading to polarization from a symmetric starting point, since the polarization results

from the growth of an initial stochastic fluctuation. Thus we use two sets of slightly asym-

metric initial conditions to solve Eqs. (2.8-2.14). Set 1 has a minimal asymmetry: N1 = 2,

N2 = 1, F1 = 2l0, F2 = l0, Σ1 = 2l20, Σ2 = l20. Set 2 consists of stochastic-simulation values

of T , N1,2, F1,2 and Σ1,2 evaluated (for the same parameter set) after 1 second of simulation
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time, so that the rate equations start at t = 1s. In this way the rate-equations treat the

entire dynamics of polarization, except for its very initial stages. As seen in Figs. 2.3 and

2.4, the rate-equation results for small l0 match those from the stochastic simulation well for

both the dynamic behavior and steady state values of F , independent of initial conditions.

For large l0, the results are more sensitive to initial conditions. Using initial conditions 1

leads to noticeable delays in the polarization, while these delays are much smaller when using

initial conditions 2.
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Figure 2.5: Dynamics of cell polarization, for different treatments of the filament decay rate
kd. Parameters: Gc

0 = 1.5Gc
0 (see table 2.2). Other parameters have the values given in

Tables 2.1 and 2.2. Initial conditions are N1 = 2, N2 = 1.

To evaluate the necessity of the correction in Eq. (2.23) for accurate polymerization
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dynamics, Fig. 2.5 shows results for N1,2 with the correction (using Eq. (2.24)), and without

the correction (using Eq. (2.22)), together with stochastic-simulation results for a typical

polarized case. The rate-equation dynamics with the correction are much closer to the

simulation dynamics. The curve with constant decay rate drops well below the stochastic-

simulation curve at around 2000s, while the curve with the corrected decay state follows

the stochastic-simulation curve closely. As a indicator of how methods typically used in

the literature perform, we also show results for a constant decay rate set to be 50% greater

than the average of the decay rates in the two regions at steady state. The polarization

in both the initial period and steady state disappears completely. Other constant values of

the decay rate also abolish the polarization. Thus the prediction of either steady-state or

dynamic properties of polarization requires the use of a state-dependent decay rate.

2.5 Bifurcation Analysis of the Rate-Equation Results

Bifurcation analysis is an efficient method for understanding the qualitative behaviour of

symmetry-breaking transitions, pinning down key interactions, and establishing possible

long-term behaviors of a dynamical system [25]. By examining the stability of the solu-

tion of a dynamical system via diagonalization of a small matrix, one can find bifurcations

and establish the key interactions responsible for the bifurcations. Such an instability analy-

sis cannot be used directly for the stochastic simulations, but our development of a dynamical

system in Eqs. (2.8-2.14) that mimics the simulation results allows us to perform a stability

analysis of the unpolarized state. Because we seek only steady-state properties, we simplify

the analysis by using the steady-state version of the decay rate from Eq. (2.22), so the
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variables Σ1,2 are not required. Fig. 2.6 shows the bifurcation diagram obtained from both

the rate-equation calculation and the stochastic simulation. For each data point on the bi-

furcation diagram, both the simulation and rate equations were run for 50,000 seconds. The

rate-equation result is the last data point, while the simulation result is the time average

of the last 20,000-30,000 seconds’ data. The results from the two approaches match well,

showing that the rate-equation method handles the bifurcation accurately. The continu-

ous variation of the polarization as the various parameters are adjusted, together with the

symmetry-breaking nature of the transition, suggests that the bifurcation is a supercritical

pitchfork bifurcation [25]. Polarization is favored by increasing G0 and k−P , and decreasing

k−B and kr.

The symmetry breaking mechanism driving polarization results from an instability of

the symmetric steady state to small perturbations. We perform a quantitative analysis of

the instability, and identify the feedback loop that causes it. The instability is determined

by the 5 × 5 Jacobian matrix [25] of the five variables T , N1,2 and F1,2, evaluated in a

symmetric state. If all of the eigenvalues of this matrix are negative, the symmetric state

is stable; if one or more is positive, the symmetric state is unstable. We force the system

to be in a (potentially unstable) symmetric state by requiring that N1 = N2 and F1 =

F2 as we solve the equations. If this restriction is lifted, for some parameter values the

system will leave the symmetric steady state and polarize spontaneously. For clarity, we use

symmetrized variables: N1, N2 → N = 1/2 (N1 +N2), ∆N = 1/2 (N1 −N2), and F1, F2 →
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F = 1/2 (F1 + F2), ∆F = 1/2 (F1 − F2). The Jacobian matrix is then

Â =



∂Ṫ
∂T

∂Ṫ
∂N

∂Ṫ
∂F

∂Ṫ
∂∆N

∂Ṫ
∂∆F

∂Ṅ
∂T

∂Ṅ
∂N

∂Ṅ
∂F

∂Ṅ
∂∆N

∂Ṅ
∂∆F

∂Ḟ
∂T

∂Ḟ
∂N

∂Ḟ
∂F

∂Ḟ
∂∆N

∂Ḟ
∂∆F

∂∆Ṅ
∂T

∂∆Ṅ
∂N

∂∆Ṅ
∂F

∂∆Ṅ
∂∆N

∂∆Ṅ
∂∆F

∂∆Ḟ
∂T

∂∆Ḟ
∂N

∂∆Ḟ
∂F

∂∆Ḟ
∂∆N

∂∆Ḟ
∂∆F


, (2.25)

where the derivatives with respect to the new variables are

∂

∂N
=

∂

∂N1

+
∂

∂N2

and
∂

∂∆N
=

∂

∂N1

− ∂

∂N2

, (2.26)

with similar expressions for ∂/∂F and ∂/∂∆F .

The calculation is simplified by the decoupling of a 2 × 2 submatrix from the rest of

the matrix. Since Eqs. (2.8-2.12) are invariant under the operation N1, F1 ↔ N2, F2 the

variables can be chosen to be either symmetric or symmetric under this operation. Ṫ , Ṅ

and Ḟ are symmetric under the operation, while ∆Ṅ and ∆Ḟ are asymmetric. Therefore

the elements of Â coupling ∆N and ∆F to the other variables vanish, so that
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Â =



∂Ṫ
∂T

∂Ṫ
∂N

∂Ṫ
∂F

0 0

∂Ṅ
∂T

∂Ṅ
∂N

∂Ṅ
∂F

0 0

∂Ḟ
∂T

∂Ḟ
∂N

∂Ḟ
∂F

0 0

0 0 0 ∂∆Ṅ
∂∆N

∂∆Ṅ
∂∆F

0 0 0 ∂∆Ḟ
∂∆N

∂∆Ḟ
∂∆F


(2.27)

We define the lower right 2× 2 sub-matrix of Â to be

â =

 ∂∆Ṅ
∂∆N

∂∆Ṅ
∂∆F

∂∆Ḟ
∂∆N

∂∆Ḟ
∂∆F

 (2.28)

Numerical diagonalization of Â reveals four eigenvalues that are always negative, and

one that is positive for parameters that yield polarization. This eigenvalue is one of the

eigenvalues of the â submatrix. Thus the symmetry-breaking instability is determined by â

and independent of the other parts of Â. The interactions driving the instability can then

be identified by examining the signs of the elements of â:

i) ∂∆Ṅ/∂∆N < 0. This is derived in Appendix B.

ii) ∂∆Ḟ /∂∆F = 0. According to Eqs. (2.11) and (2.12), ∆Ḟ is not explicitly dependent

on ∆F . The only dependence of these equations on F1 and F2 is via G, and G depends on

the total F-actin number F , but not on ∆F .

iii) ∂∆Ṅ/∂∆F > 0. A positive ∆F corresponds to increasing F1 while keeping N1

constant. This causes the filaments in region 1 to be longer. The longer filaments will
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decrease the decay rate according to Eq. (2.22), and thus increase ∆Ṅ . As for case ii)

above, G entering kn does not depend on ∆F .

iv) Finally, two competing mechanisms determine ∂∆Ḟ /∂∆N , so it can be either positive

or negative. Differentiation of Eqs. (2.11) and (2.12) shows that

∂∆Ḟ

∂∆N
=

1

2
Tδβ

(
k+

1

N1

+
k+

2

N2

)
+

1

2

(
k+

1 + k+
2

)
−
(
k−B + k−P

)
. (2.29)

a) The positive contribution comes from the first term in Eq. (2.29). Positive ∆N reduces

the force per filament in region 1 while increasing the force per filament in region 2. Then the

polymerization rate given by Eq. (2.3) in region 1 will be greater than that in region 2. The

difference in the polymerization rates created by ∆N then increases ∆F , so the contribution

to ∂∆Ḟ /∂∆N is positive.

b) The negative contribution comes from the remaining terms in Eq. (2.29). Increasing

∆N increases the number of barbed and pointed ends in Region 1. At steady state, depoly-

merization exceeds polymerization because the sum of depolymerization and polymerization

must cancel the actin subunits added by filament nucleation. Therefore, F-actin in region 1

will depolymerize faster than in region 2. Thus the contribution to ∂∆Ḟ /∂∆N is negative.

It is shown in Appendix B that, since ∂∆Ṅ/∂∆N < 0, ∂∆Ḟ /∂∆F = 0, and ∂∆Ṅ/∂∆F >

0, polarization will occur only if ∂∆Ḟ /∂∆N > 0, so that the positive contribution exceeds

the negative contribution. Thus the transition in the sign of this element drives the transition

from a symmetric steady state to an asymmetric one. As shown under iv), this transition

occurs when the interactions between N and F mediated by force become strong, which re-
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quires that the polymerization rate decreases with opposing force. The feedback loop driven

by ∂∆Ḟ /∂∆N > 0 is illustrated in Fig. 2.7, where the arrow leading from ∆F to ∆N is

always positive as discussed under iii), while the one from ∆N to ∆F can be either negative

or positive depending on the magnitude of the tension T .
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Figure 2.6: Bifurcation diagram of polarization as function of G0, k−P , k−B , kr, using the
small l0 value. The parameters are varied from 0.5Gc

0, 0.5k−cP , 0.5k−cB , 0.5kcr to 1.5Gc
0, 1.5k−cP ,

1.5k−cB , 1.5kcr. In the simulation, each parameter is varied by 5% from dot to dot. In the rate
equations, each parameter is varied by 1%, forming a smooth curve.

72



Figure 2.7: Schematic of essential feedback loop that leads to polarization.

2.6 Discussion

In the previous section, we identified the key feedback loop in our model that destabilizes a

symmetric steady state and thus causes polarization. This loop is based on three physical

mechanisms relating ∆F to ∆N . Here we explore the relevance of the results obtained in this

highly simplified model to the behavior of real cells, and analyze the parameter dependence

in more depth.

First we compare the model predictions with the key experimental findings and previous

theory. In Ref. [6], the authors laser-severed the body of a polarized cell from the leading

edge and a new leading edge grew out of the cell body. To simulate this experiment, we
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cleaved a polarized cell in the model, cutting off the leading edge together with 70% of the

original cell. Then the remaining cell body grew a new leading edge, consistent with Ref.

[6]. We find that under this protocol, the new leading edge always is where the rear of the

unsevered cell was previously. Of the two examples illustrated in Fig. 3 of Ref. [6] (one

using laser severing and the other spontaneous severing), the leading edge in one case was at

the old rear of the unsevered cell, and in the other case it was on the opposite side. If we use

a different protocol, where the filaments in the cell “body” depolymerize after the cleavage,

the new leading edge is randomly located, consistent with Ref. [6].

On the other hand, the model does not reproduce the phenomenology of Ref. [4], where

imposition of force caused a transition from a symmetric state to a polarized state. In the

model, initially symmetric cells always return to a symmetric state after imposition of force,

as expected from the supercritical nature of the bifurcation. It may be that reproducing the

observed behavior requires the inclusion of additional nonlinear mechanical terms as in Ref.

[28].

As discussed in the Introduction, most previous theories of cell polarization have as-

sumed a combination of diffusion and chemical reactions containing positive and negative

feedbacks of proteins and lipds including Rac, PIP3, PTEN, and myosin. The model de-

scribed here differs from these in that it does not assume explicit chemical feedback terms

and requires no myosin activity. Rather, the positive-feedback terms that cause the polar-

ization result from a combination of force generation by polymerization, the force sensitivity

of polarization, and the effect of filament length on the filament decay rate. Of the models
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currently in the literature, the present model is closest in spirit to that of Ref. [27]. However,

it differs from that model in that it does not require autocatalytic actin filament nucleation.

The mechanochemical feedback loop described here has some points in common with that

discussed in Ref. [60] for focal adhesions. In that work, force was taken to regulate assembly

of focal adhesions via a mechanism in which tensile stress lowers the chemical potential

of assembled subunits relative to unassembled ones, enhancing assembly. In the present

mechanism, force enters the feedback loop of Fig. 2.7 mainly via the effect of ∆N on ∆Ḟ .

The reduction in the force per filament at one end of the cell that results from an increased

∆N causes ∆Ḟ to increase at that end as well. The main physics underyling this is the

well-known Brownian-ratchet effect [21], in which compressive stress on the tip of a filament

reduces the on-rate. We believe that this is a special case of the rigorous thermodynamic

results described in Ref. [60].

Next we use our basic feedback loop to physically interpret the parameter dependences of

polarization found in the simulation and rate-equation results. We found that polarization

is favored by increased G0 and k−P and reduced k−B and kr. Eq. (2.29) shows that the key

matrix element determining polarization is strongly dependent on T . Therefore, we based

our analysis of the parameter dependence of polarization on T .

a) Increasing G0 increases the net barbed-end polymerization rate and thus T , favoring

polarization.

b) Increasing k−P increases G, which again increases T and favors polarization.

c) Decreasing k−B increases the net polymerization rate of barbed ends, which increases
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T and thus favors polarization.

d) Decreasing kr causes more actin to be polymerized into filaments, and less to be used

up in nucleation events. Because nucleation events by assumption do not generate tension

(see Eq. (2.8)), focusing more of the free actin into polymerization increases T . This favors

polarization.

Although the model is very simplified, some of these predicted trends might apply to cells

where mechanical feedbacks are important. For example, G0 can be reduced by latrunculin

treatment. Our finding that reduced G0 impairs cell polarization is thus consistent with the

finding that latrunculin prevents polarization of HL-60 cells induced by a uniform attractant

concentration [61]. We do not see how to vary k−P and k−B individually in a cell. However,

actin disassembly is accelerated by cofilin, which might preferentially accelerate disassembly

at one filament end relative to the other. Decreasing kr reduces the non-branching nucleation

rate. Since formins are believed to cause non-branching nucleation, while Arp2/3 complex

causes branching nucleation, downregulation of formin activity might correspond to reducing

kr.

Finally, we explore the extent to which the basic picture embodied by Fig. 2.7, and

criteria i) - iv) given above, will persist in more complete treatments of cell polarization:

i) ∂∆Ṅ/∂∆N < 0. Since the decay rate Ṅ1 contains a term proportional to N1, this

inequality will hold unless the nucleation rate on the “1”-side increases, or k1
d decreases, with

increasing N1. An increase of the nucleation rate with N1 could result from autocatalytic

nucleation by filament branching [22, 54]. It is not certain whether autocatalytic branching
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depends on N1 or on F1. In vitro, where actin nucleation factors are uniformly distributed

in solution, branches occur along the length of the filament, suggesting a dependence on F1.

However, in cells, branches are formed only near the membrane, so the filament length may

not be an important factor. In this case the autocatalytic branching rate would depend on

N1. If this causes ∂∆Ṅ/∂∆N to make a transition from negative to positive, and D > 0,

then Eq. (2.32) shows that the eigenvalues will make a transition from having negative real

part with a nonzero imaginary part to having a positive real part with a nonzero imaginary

part (a Hopf bifurcation [25]). Eigenvalues with positive real part and nonzero imaginary

part correspond to a polarization that oscillates over time, as was observed in Ref. [62].

A decrease in k1
d with increasing N1 could occur with a different decay mechanism. Refs.

[41] and [46] suggested a “crushing” mechanism where filaments at the rear of the cell are

broken by large force. Such a mechanism would be expected by have a decay rate roughly

of the form k1
d ∝ exp(const× T/N1), which decreases as a function of N1. This could also

lead to a Hopf bifurcation to an oscillating state, under appropriate circumstances.

ii) ∂∆Ḟ /∂∆F = 0. The main correction to this result would come from steric crowding of

actin, which would suppress polymerization where F is large and make ∂∆Ḟ /∂∆F negative.

In this case, instability would still require a positive determinant for â, but now the deter-

minant includes an extra contribution from the product of the diagonal terms. This means

that ∂∆Ḟ /∂∆N would have to exceed a positive minimum critical value for polarization to

occur.

iii) ∂∆Ṅ/∂∆F > 0. This should hold quite generally, since the filament lifetime should
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increase with its length. As mentioned above, another positive contribution to ∂∆Ṅ/∂∆F is

present if side branching dominates. An additional possibility is the generation of new fila-

ments by severing of existing filaments, which would provide a positive contribution provided

that the severed fragments remain attached to the network [63, 64].

iv) ∂∆Ḟ /∂∆N has two competing contributions, a positive one from the force dependence

of the polymerization rate, and the second one from the shorter lifetime associated with

shorter filaments. These factors should also be present in real cells. However, some studies

[65] have indicated that the polymerization velocity can have a force-independent plateau,

and the positive term would be absent in this regime, abolishing polarization unless other

positive-feedback effects become prominent.

We emphasize that obtaining criterion iii) depends crucially on having a state-dependent

filament decay rate. If the decay rate is taken to be constant, then ∂∆Ṅ/∂∆F = 0, and

there is no polarization unless autocatalytic branching or severing come into play.

The actual matrix of interactions describing a real cell is larger than that considered

here. At the linear level asymmetric variables like ∆N and ∆F are still decoupled from

symmetric variables. But other asymmetric variables are present, including those describing

the distributions of upstream signaling proteins. In addition, beyond the linear level cell

polarization might occur by a discontinuous change in several variables. In this case, changes

in the symmetric variables could be coupled to changes in the asymmetric variables. However,

the present analysis based on ∆N and ∆F provides a starting point for understanding the

mechanical interactions driving cell polarization.
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The model studied here treats only two networks, one at the front and one at the back

of the cell, interacting with rigid boundaries. Extending the analysis to more general cell

shapes with multiple networks, and deformable boundaries, could reveal several new types

of phenomemena. For example, in a circular cell shape the orientation of the wave could

gradually shift over time, rather than being constrained to discrete jumps of 180◦. This could

lead to motion that over long times is like a correlated random walk. Including membrane

flexibility might allow traveling waves of polymerized actin to form along the edge of the

cell, although such waves probably would require additional negative feedback mechanisms

[66]. Treating a circular cell shape could be accomplished by two modifications. First, the

main system variables, F and N , could be transformed into continuously varying functions

along the cell periphery. Similarly, the tension would be transformed into a force density

varying continuously along the membrane. It is likely that some terms penalizing excessive

variations along the periphery would be required, so that the system would be described by

partial differential equations. Achieving more realistic cell shapes requires the inclusion of

membrane flexibility. This has been a challenge for cell migration modelers, but a promising

class of approaches is based on the “phase-field” method [47].

2.7 Conclusion

We have systematically derived a rate-equation model of force-dependent actin polymeriza-

tion from known biochemical processes and their force dependence. The polarization pre-

dicted by steady state solution of the rate equations agrees with our stochastic-simulation

results to within 5%. A modification of the model was shown to treat dynamic effects accu-
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rately as well. The model results show that a polarized F-actin distribution can result from a

a combination of force generated by polymerization, the slowing of polymerization by oppos-

ing force, and the dependence of the filament decay rate on the filament length. The feedback

loop driving polarization results from reciprocal interactions between the asymmetry ∆N in

the number of filaments between the two ends of the cell, and the corresponding asymmetry

∆F of the amount of polymerized actin. For appropriate parameter values, ∆N and ∆F

grow synergistically, so that ∆N feeds the growth of ∆F , and vice versa. Polarization is

favored by large values of the pointed-end off-rate and the free-monomer concentration, and

small values of the barbed-end off-rate and random-nucleation rate. Obtaining correct po-

larization dynamics requires the use of information about the effect of the variance of the

filament length on the filament decay rate. The improvements in rate-equation descriptions

of actin polymerization described here should be useful in future efforts to model whole-cell

structure and function, using methods such as the “Virtual Cell” approach [67].
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2.8 Appendix A: Additional Figures

In this section, we show the schematic of the length distribution, mentioned in the Model

section, see Fig. 2.8. We also show the time courses leading to polarized steady states, for

variations in the three key parameters k−P , k−B and kr. For each parameter, both the small l0

and large l0 cases are considered, see Figs. 2.9, 2.10 and 2.11.

ρ
(l

)

l

Large σ
Small σ

Figure 2.8: Schematic of two possible filament-length distributions, with the blue line having
a larger standard deviation.
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Figure 2.9: Approach to polarized steady state for k−P = 1.5k−cP (see Table 2.2). Other
parameters have the values given in Tables 2.1 and 2.2. Frames a) and b) are for small l0,
while frames c) and d) are for large l0.

82



N
1,

2

0

200

400

600

800

Time (1000 s)
0 2 4 6 8 10

N1 (sim.)
N2 (sim.)
N1 (eq.) with initial condition 1
N2 (eq.) with initial condition 1
N1 (eq.) with initial condition 2
N2 (eq.) with initial condition 2

(a)

F 1
,2

 (1
00

0 
F-

ac
ti

n)

0

10

20

30

40

 

Time (1000 s)
0 2 4 6 8 10

F1 (sim.)
F2 (sim.)
F1 (eq.) with initial condition 1
F2 (eq.) with initial condition 1
F1 (eq.) with initial condition 2
F2 (eq.) with initial condition 2

(b)
N

1,
2

0

50

100

150

200

250

300

Time (1000 s)
0 2 4 6 8 10

N1 (sim.)
N2 (sim.)

(c)

F 1
,2

 (1
00

0 
F-

ac
ti

n)

0

10

20

30

40

 

Time (1000 s)
0 2 4 6 8 10

F1 (sim.)
F2 (sim.)

(d)

Figure 2.10: Approach to polarized steady state for k−B = 0.5k−cB (see Table 2.2). Other
parameters have the values given in Tables 2.1 and 2.2. Frames a) and b) are for small l0;
frames c) and d) are for large l0. We do not plot the rate-equation result for the large l0
value, because in this case the average filament length in the rate equations becomes less
than 0.5l0 at one end of the cell, so Eq. 2.22 for the decay rate breaks down.
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Figure 2.11: Approach to polarized steady state for kr = 0.5kcr (see Table 2.2). Other
parameters have the values given in Tables 2.1 and 2.2. Frames a) and b) are for small l0,
while frames c) and d) are for large l0.
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2.9 Appendix B: Mathematical Derivations

Relation of polarization instability to the signs of the terms in â (Eq. 2.28) We

note that the eigenvalues of â are determined [25] by the trace

τ =
∂∆Ṅ

∂∆N
+
∂∆Ḟ

∂∆F
(2.30)

and the determinant

D =
∂∆Ṅ

∂∆N

∂∆Ḟ

∂∆F
− ∂∆Ṅ

∂∆F

∂∆Ḟ

∂∆N
, (2.31)

as:

λ± =
τ ±
√
τ 2 − 4D
2

(2.32)

The fact that ∂∆Ṅ/∂∆N < 0 and ∂∆Ḟ /∂∆F = 0, as proved below and under Discussion

respectively, imply that τ < 0. Then Eq. (2.32) implies that â will have a positive eigenvalue,

leading to instability, if and only if D < 0, which occurs only if ∂∆Ḟ /∂∆N > 0, since

∂∆Ṅ/∂∆N < 0 and ∂∆Ḟ /∂∆F = 0.

Proof that ∂∆Ṅ/∂∆N < 0. This follows from inserting Eq. (2.22) into Eqs. (2.9) and

(2.10). Differentiating Eq. (2.9) minus Eq. (2.10) with respect to ∆N gives

∂∆Ṅ

∂∆N
= −1

2

(
k−B + k−P

) ∂

∂∆N

(
kd1N1 − kd2N2

)
. (2.33)
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SinceN1 = N+∆N andN2 = N−∆N , it is clear that ∂N1/∂∆N > 0 and ∂N2/∂∆N < 0.

Also, when Eq. (2.22) is written in terms of N1 and N2,

∂ ˙kd1
∣∣
ss

∂∆N

∣∣∣∣
∆N=0

=
konGβTδ

2l0N2
e−β

Tδ
N

(
F1

N
− l0

2

)−1

+
F1

2l0

(
k−B + k−P + konGe

−β Tδ
N

)(
F1 −

l0
2
N

)−2

> 0. (2.34)

Similarly, ∂ ˙kd2
∣∣
ss
/∂∆N < 0. Combining the above inequalities shows that ∂∆Ṅ/∂∆N < 0.
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Chapter 3

ACTIN-REGULATOR FEEDBACK INTERACTIONS DURING
ENDOCYTOSIS

3.1 Introduction

Endocytosis encompases a set of engulfment processes by which cells absorb molecules and

materials from outside the cell [68]. The clathrin-mediated form of endocytosis (CME),

in which membrane invaginations are surrounded by clathrin coats, is used by the cell for

multiple purposes, including the regulation of plasma membrane activities and the ingestion

of essential nutrients. In addition to its importance for cellular functions, CME provides

an attractive system to study membrane deformation by actin and other cytoskeletal and

membrane-associated proteins. Actin polymerization often plays an important role in CME.

In yeast, CME requires actin polymerization [69, 70]. In mammalian cells, the role of actin

polymerization depends on the physical conditions. When membrane tension is high, the

requirement for actin polymerization is more stringent [71].

These findings motivate the study of actin polymerization dynamics during CME. Yeast

is an attractive system for CME because of the ease of genetic manipulation, and the ability

to perform live-cell imaging of fluorescent fusion proteins, expressed at endogenous levels.

Actin polymerization and depolymerization during CME occur as part of the assembly and

disassembly of a protein patch containing over sixty different proteins, arriving in a well
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defined sequence [72, 10]. Initially cargo and adapter proteins assemble, followed by a coat

including clathrin and other proteins. The coat recruits actin regulators, sometimes referred

to as “nucleation promoting factors”. The regulators, including Las17 (yeast WASP), Myo3,

Myo5 (yeast class-1 myosins), and Pan1 (an Eps15-like protein) in budding yeast, recruit

and activate the Arp2/3 complex to nucleate new actin filaments from the side of existing

filaments. After actin polymerization begins, membrane bending occurs [18], and a tubule

forms and it eventually pinches off into a vesicle, followed ultimately by dissolution of the

protein coat.

Several studies have measured the effects of perturbations on the assembly of actin and

its regulators in yeast. The actin inhibitor latrunculin [72] extended the lifetime of coat

proteins, while the Arp2/3 inhibitor CK-666 [73] extended the actin lifetime and decreased

the number of actin patches. Deletions of the gene encoding the endocytic coat protein Sla2

[29, 74] resulted in the formation of comet-shaped actin structures extending inwards from

the cell cortex. We measured the effects of mutations affecting the budding yeast Arp2/3

regulators Las17, Myo3, Myo5, and Pan1, on the numbers of copies of actin and actin-

binding proteins at the endocytic site [9]. These mutants had truncations of regulator acidic

domains, which bind and activate Arp2/3 complex, so we expected less activation of Arp2/3

and decreased F-actin. However, the acidic-domain truncations did not significantly reduce

the maximum F-actin count, and in some mutants it unexpectedly increased. A preliminary

mathematical model suggested that a negative-feedback interaction between F-actin and the

Arp2/3 regulators might contribute to this effect.
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Two modeling studies in the literature have addressed the dynamics of F-actin in CME

protein patches. One study, in budding yeast, treated a mechanism for protein pulse gen-

eration, based on indirect negative feedback interactions acting on the regulators, including

the effects of membrane deformation and PIP2 hydrolysis [15]. This model explained several

traits of endocytosis mutants. A second study, in fission yeast, treated a multistep model

of actin filament nucleation, growth, and capping, based on an assumed time course for

the active Arp2/3 regulator [16]. It provided important insights into the kinetics of cellular

processes relative to those observed in vitro, and highlighted the role of severing in actin

disassembly.

In this article, we seek to establish the main protein interactions that drive actin and

regulator pulse dynamics in wild-type cells, and determine the effects of mutations and

drug treatments on actin polymerization. To this end, we combine stochastic modeling

studies of actin polymerization with a negative-feedback interaction between F-actin and

the membrane. The model provides a more detailed treatment of the actin network than

the models in the previous two studies [15, 16], because the network is explicitly grown in

three dimensions. The effects of force on filament growth and branching are also included in

a physically consistent fashion.

We find that our stochastic-growth/negative-feedback model explains key effects of the

mutations and drug treatments discussed above. It also predicts an increase of regulator

count under the conditions of reduced branching resulting from acidic-domain mutations

of the regulators. This prediction is reinforced by results from a simple two-variable rate-
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equation model of the regulator/actin dynamics. We test the prediction by measuring the

regulator counts in mutated yeast cells using fluorescence microscopy, and the experiments

confirm the prediction.

This chapter is based on an article published as Xinxin Wang, Brian J Galletta, John A

Cooper, and Anders E Carlsson, “Actin-regulator feedback interactions during endocytosis”,

Biophysical Journal, 110(6): 1430-1443, 2016. The fluorescence videos were taken by Brian

Galletta, while I performed the quantitative image analysis and the mathematical modeling.

3.2 Mathematical Models

The models treat the dynamics of actin polymerization and the regulator Las17, the yeast

form of WASP (Wiskott-Aldrich Syndrome Protein). We focus on Las17 because in vitro

experiments [14] suggest that it has the strongest nucleation activity. Furthermore, the

other regulators with strong nucleation activity, class-1 myosins Myo3 and Myo5, have a

motor activity that is beyond the present analysis. Treating Las17 by itself is certainly an

approximation, but our data (Fluorescence Imaging Experiments) suggest that to some

extent the regulators act independently of each other. We define L as the number of Las17

molecules in the endocytic protein patch.

The models extend our preliminary negative-feedback model [9]. They share the following

main assumptions:

1. L grows by an autocatalytic self-assembly mechanism (see Box A of Fig. 3.1) from an

initial fluctuation of magnitude L0. In the absence of polymerized actin L approaches a

plateau value at long times. Autocatalytic self-assembly would result from indirect or

90



direct attractive interactions between Las17 monomers. Such interactions have been

demonstrated by in vitro experiments [75, 76] showing that WASP, in combination

with adaptor proteins, self-assembles up to a certain limiting concentration.

We do not include actin-dependent terms in the assembly rate for two reasons: i) Las17

patches in budding and fission yeast assemble in the absence of polymerized actin

[77, 29, 78, 79], and ii) Las17 assembles for a period of about 20 seconds before actin

arrives at the patch. In fission yeast, treatment with latrunculin [78], which inhibits

actin polymerization, and mutation of cofilin [79], which severs actin filaments, slow

the accumulation of Wsp1. This suggests feedback of F-actin onto Wsp1 assembly. We

are not aware of such an effect in budding yeast; furthermore, the rapid assembly of

Wsp1 compared to Las17 suggests that the underlying biophysical mechanisms may

be quite different. This is consistent with the large evolutionary distance between the

organisms.

2. The disassembly of regulators is accelerated by actin polymerization, leading to a

negative feedback effect. Negative feedback between actin and Arp2/3 regulators is

suggested by several observations. First, the regulator time courses during endocytosis

have the form of a pulse, and this pulse lifetime is extended by latrunculin, which

inhibits actin polymerization [29, 80]. Second, in mammalian cells, latrunculin slows

the membrane dynamics of WAVE complex, another Arp2/3 regulator [81, 82]. Finally,

traveling waves of F-actin along the plasma membrane have been observed in several

cell types, and theoretical models have found it necessary to assume negative feedback
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effects to explain these phenomena (see Ref. [66] for a review). Without a negative-

feedback term, none of our models are able to obtain the pulse behavior of the proteins.

A similar negative-feedback effect between polymerized actin and coat proteins has

been suggested previously [79, 15].

At least three physical mechanisms could mediate this negative-feedback effect (see

Boxes B1-B3 in Fig. 3.1):

i) (Box B1) Newly nucleated filaments pull Las17 off the membrane, after which Las17

diffuses into the cytoplasm. The actin filament network moves away from the mem-

brane, so this process could result from the binding of Las17 to Arp2/3 complex in the

actin network, or to the actin network itself. The WH2 domain of the actin regula-

tor N-WASP binds to actin [83]. Since Las17 also has a WH2 domain, it could bind

F-actin.

We note that in Arp2/3 branching studies using a di-VCA WASP fragment, most di-

VCA molecules detached from the mother filament before the new branch was generated

[20]. If Las17 detaches in a similar fashion, the newly nucleated filament will not pull

Las17 with it. However, the resolution of the experiment was such that the number

of di-VCA molecules staying on filaments (Figure 2D of Ref. [20]) could be up to

40% of the number of filaments forming. Our stochastic model, which assumes that

10% of branching events cause Las17 detachments, is thus consistent with Ref. [20].

Furthermore, Las17 has a polyproline actin-binding domain [84] that is not present in

di-VCA. This domain might allow new actin branches to drag Las17 off the membrane.
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ii) (Box B2) Curvature or tension of the membrane, generated by actin polymerization,

weakens the binding of Las17 or the underlying coat proteins to the membrane [15].

This mechanism is supported by studies revealing tension-dependent binding of clathrin

[85] and the WASP-binding protein FBP17 [86] to membranes, and the curvature-

dependent binding of the regulator WASP to vesicles [87].

iii) (Box B3) Membrane curvature, or proteins recruited by polymerized actin, hy-

drolyze PIP2, which in turn weakens the binding of the coat proteins and regulators

to the membrane [15]. This hypothesis is supported by the finding that recruitment

to actin patches of the synaptojanin Sjl2, which hydrolyzes PIP2 [88], is dependent on

F-actin [89]. Furthermore, PIP2 hydrolysis depends on membrane curvature [90].

3. Actin filament nucleation is autocatalytic, so that preexisting actin filaments accelerate

polymerization (see Box C in Fig. 3.1). This assumption is based on the branching

nature of Arp2/3-induced actin filament nucleation, where Arp2/3 nucleates new fila-

ments by binding to the sides of existing filaments [48, 8]. The applicability of a model

treating spontaneous (non-branching) nucleation is discussed in the Appendix.

To enhance the robustness of our results, we perform two types of model calculations,

stochastic-growth and rate-equation. The stochastic-growth calculations generate an explicit

actin network in three dimensions. This network interacts with the actin regulators at the

cell membrane, and its growth is slowed by opposing force. The rate-equation models capture

the key features of the stochastic-growth calculations in a compact form.
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Figure 3.1: Schematic of modeled protein interactions. L is Las17 and F is F-actin. Blue
ovals: Las17. Gray circles: Arp2/3 complex. Red circles: actin monomers. Membrane is
green and region where PIP2 is hydrolyzed is dark red. Box A shows the self-recruitment
of Las17. Boxes B1-B3 show possible mechanisms for the negative feedback of F-actin on
Las17. Box C shows how Las17, Arp2/3 complex, and actin monomers enter the branching
mechanism.

Stochastic-Growth Model

This model is similar to the model used by one of us to study F-actin waves in animal cells

[91], and it shares general features with several other models of actin waves [81, 92, 93, 94].
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It uses a Monte Carlo-type network-growth methodology as in Ref. [22]. Polymerization,

branching, capping, and network disassembly are treated as stochastic events described by

rate parameters kon, kbr, kcap, and ksev. The network is assumed to be rigid, and it moves

away from the membrane at a rate determined by the polymerization rate of the filaments in

contact with the membrane. Network disassembly is assumed to occur by the disappearance

of entire filaments, one at a time. We neglect the possibility of reattachment of filaments

to the network. Previous work [16] has shown that actin dynamics in fission yeast is well

described without including reattachment. Details are given in the Appendix.

Figure 3.2: Schematic of the 3d geometry of the stochastic-growth model. Actin filaments
polymerizing from a ring of Las17 push against the membrane, pulling other filaments at-
tached to Sla2 at the membrane back with them. The osmotic pressure is higher in the
interior (up), and the force of actin polymerization helps overcome this pressure difference.
The turgor pressure is the difference between the interior and exterior osmotic pressures.

The geometry of the model and the forces (Fig. 3.2) is based on the explicit mechanical

calculations of Ref. [95], and on theories [96, 97, 69] in which retrograde flow of actin

drives invagination by pulling the region inwards. The regulators are uniformly distributed

on the membrane on a ring with inner radius 25 nm and outer radius 75 nm (Fig. 3.3),
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corresponding roughly to the radii of the invagination and the actin polymerization zone

found in Ref. [18]. The assumed distribution is consistent with observed rings of the protein

Sla1 [10], F-actin rings during CME in COS-7 cells [33], and with experimental observations

of membrane localization of Las17 [29, 10, 98]. (We note, however, that a small ( < 100

nm) small inward motion of Las17 has been suggested [10].) We assume that the regulators

redistribute rapidly in the Las17 region. This is plausible since the turnover times for the

regulator N-WASP on viruses [99] and clathrin in mammalian cells [34] are only about 2 s

[99]. Therefore we treat a uniform distribution of Las17 molecules rather than specifying

individual coordinates. We base our description of regulator assembly on a simple reaction-

rate theory. If the Las17 assembles by interaction of a molecule in solution with a pair of

molecules bound to the membrane, and the concentration in solution is regarded as constant

on the assumption that diffusion is rapid, then the assembly rate will be proportional to L2

[100]. If the reaction occurs in a fixed region where each Las17 molecule takes up a certain

area, the number of sites available for reaction will be reduced by a factor proportional

to L2 − L, where L2 is the maximum number of molecules that can fit. Combining these

dependences, we obtain an assembly rate proportional to L2(L2−L), and we use this in the

bulk of the calculations. Interactions of different orders correspond to different powers in this

expression. We have found that assembly rates proportional to L(L2 − L) and L3(L2 − L)

preserve the basic predictions of the model. However, an assembly rate proportional to

(L2−L), which does not contain an autocatalytic term, gives poor results for both wild-type

and mutant cells (see Appendix). We thus use an average rate of k0L
2 (L2 − L), where k0 is
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a rate parameter. The process is treated stochastically.

Figure 3.3: Oblique snapshot of the stochastic simulation geometry, after 23 s of a wild-type
simulation run. Actin filaments are red cylinders, with barbed ends in light green spheres;
the membrane is green. The blue disk around the center represents the Las17 region where
actin filament branches form. The membrane profile is not explicitly treated by the model
but we include an approximation to it to clarify the physical picture. We assumed that the
membrane deformation at the center is the average distance from the actin filament pointed
ends to the membrane, provided that the number of filaments and the F-actin count exceed
the threshold value for force generation (see text). The width of the deformation corresponds
roughly to known invagination widths [18].

The polymerization rate is konG, where G is the free-actin concentration, and the branch-

ing rate per subunit is kbrL. Branching is assumed to occur only in a “donut”-shaped region

above the regulator ring, within a branching width W = 20 subunits = 54 nm of the mem-

brane. We implement the negative feedback of F-actin on Las17 by assuming that a Las17

molecule can leave the membrane (and become inactive), with probability α, when a branch-

ing nucleation event occurs. This corresponds to mechanism B1 in Fig. 3.1. The Las17

molecules are assumed to detach from the actin network when they leave the membrane,

since Las17 moves inward much less than the actin network [29, 10].
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The main model does not treat membrane deformation explicitly, for reasons of compu-

tational practicality. We still feel that the results are meaningful, because the main actin

regulators remain near the membrane during invagination [29, 10, 98]. In the Appendix we

describe a model in which regulator detachment is driven by membrane deformation rather

than by branching dynamics, corresponding to mechanisms B2 and B3 in Fig. 3.1. We were

unable to obtain physically reasonable results with this model.

We treat the forces opposing actin network growth in a simplified fashion (Fig. 3.2).

Because the viscous drag on the actin network is extremely small, we assume a balance of

forces on the network leading to zero net force. In the outer region of the network, defined

by the Las17 ring, the filaments push against the membrane, and thus experience a force

opposing their growth. The inner region of the network pulls on the membrane via linker

proteins such as Sla2. The magnitude of the pushing force opposing actin polymerization in

the ring is equal to the magnitude of the pulling force.

The dominant opposing force that must be overcome in the pulling region likely results

from turgor pressure [95, 101]. Estimates of the turgor pressure in budding yeast vary widely,

from 0.05 MPa [102] to roughly 0.6 MPa [103]; in fission yeast a higher value of 0.85 MPa

has been measured [104]. If one assumes a radius of 25 nm [18] for the pulling region, the

total estimated force for budding yeast then ranges from 100 pN to 1200 pN . We define fa

as the portion of the total force that needs to be overcome by actin polymerization, and we

assume that the remaining force is supplied by curvature-generating proteins such as clathrin

and BAR-domain proteins. The value of fa is highly uncertain. We used that a value of
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415 pN , about a third of the highest value of the total force. The results were insensitive to

the value of fa (see Appendix).

We treat the slowing of actin polymerization by fa by assuming that a critical minimum

number of filaments and subunits (taken to be 20 and 200 respectively) is required to form

a continuous network that can exert a pulling force on the membrane. When these critical

numbers are not reached, there is no opposing force. When the critical numbers are reached,

then the network experiences the force fa. We take the on-rate for the free filaments touching

the membrane to have the familiar “Brownian-ratchet” form [21]

ktouchon = konexp(−faδ/NtouchkBT ). (3.1)

where Ntouch is defined as the number of filaments with two subunits of the membrane. In

principle, the on-rate in Eq. 3.1 should include cosine factors depending on the filament

orientation. We found that the inclusion of such factors gives results similar to lowering

fa, so we decided to use the simpler form of Eq. 3.1. The retrograde velocity of the actin

network is then given by ktouchon δ〈cosθ〉, where δ = 2.7 nm is the length added per subunit, θ

is the orientation angle of a filament, and the average is taken over the touching filaments.

We parameterize the model for budding yeast. The model’s potential relevance to fission

yeast is described in the Discussion. The key parameters in the model are konG, kbr, kcap,

ksev, k0, and α, whose values and definitions are given in Table 1. Because error minimiza-

tion with the stochastic-growth code is computationally demanding, we obtained an initial

parameter set using a faster four-variable rate-equation code (see Appendix), and performed
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Model Stochastic Rate-Equation
Parameters

konG, barbed-end on-rate (s−1) 32 -
kbr, subunit branching rate (10−3s−1) 2.17 0.957
kcap, capping rate (s−1) 0.667 -
ksev, severing rate (s−1) 0.300 0.427
W , branching layer thickness (nm) 54 -
fa, total actin-membrane force (pN) 415 -
k0, Las17 assembly rate constant (10−5s−1) 3.5 3.93
α, Las17 detachment probability 0.100 0.136
l̄ , average filament length in subunits - 30
L2, maximum Las17 count 101 101
knuc, filament nucleation rate (10−2s−1) 2 -

Initial Values
L0, Las17 count 20 18
N0, number of filaments 5 -
F0, F-actin count 100 1

Table 3.1: Parameters and initial values for stochastic and rate-equation models.

further optimization using the stochastic code. The optimization with the stochastic code

was accelerated by the use of a Graphical Processing Unit together with the CUDA program-

ming language [105]. To avoid overfitting, we do not vary all of these parameters, but rather

assign a kcap a fixed value, from the four-variable model. The remaining five parameters

konG, kbr, ksev, k0, and α, were obtained by a least-squares fit to the following six properties

of the time courses: the peak heights of L and F , the full widths at half-maximum of the

time courses of L and F , and the peak counts of capping protein and Arp2/3 complex taken

from our previous work [9] . Note that the fitted value of α is small, suggesting that most

Las17 molecules remain on the membrane during branching events.
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Figure 3.4: Side view snapshots of stochastic simulations for different interventions. Color
conventions are as in Fig. 3.3. Each of rows a)-c) shows the initiation of the simulation,
the F-actin peak, disassembly, and near disappearance. Row d) shows the initial phase and
later time points where the F-actin count reaches a steady state. The membrane profile is
approximated as in Fig. 3.3, except that in row d) we assumed that the actin gel was unable
to pull on the membrane.

The simulation begins with 5 primer actin filaments [106] placed with random positions

and orientations in the Las17 disk, and a starting value of L0 = 20 Las17 molecules. L0 was

chosen with two considerations in mind: i) the critical nucleus is probably relatively large, to

prevent very rapid nucleation of patches, and ii) L0 should be much smaller than L2. Primer

filaments are also produced at a low continuing rate of 0.02 s−1. The simulations were

run 2000 times for each parameter set to obtain meaningful averages. Because several of the

parameters and functional dependences are uncertain, we varied parameters and assumptions

to see the effects on the model predictions (see Appendix).
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The actin patch life cycle illustrated in the representative snapshots of Fig. 3.4a has the

following three steps: initiation from primer filaments, rapid polymerization via branching

nucleation, and finally depolymerization as regulators are removed and inactivated. Fig. 3.5a

compares the predicted wild-type time courses with our experimental data (more complete

data is given under Fluorescence Imaging Experiments). The predicted time courses

are similar to the experimental ones, and also to previously published ones [14, 10]. Since we

do not have a direct measurement of the F-actin count, we estimate the measured F in this

and following figures as 8.9 times the measured Abp1 count. This results from assuming a

value of 6000 for the wild-type peak value of F [8]; dividing this by our measured peak wild-

type value of 674 (see Fluorescence Imaging Experiments) for Abp1 gives the factor

of 8.9. Because we did not perform two-color experiments, we could not measure the delay

between the Las17 peak and the actin polymerization peak. Therefore in presenting our data

and corresponding model results, we do not show the delay, but rather align all of the time

courses at their maxima. The delay in our model results is a few seconds, consistent with

previous results using two-color imaging [14, 10]. Because several of the processes treated

in the model are stochastic, a substantial degree of asymmetry is often seen in the actin

patches (see Fig. 3.3), reminiscent of the asymmetry seen in electron micrographs of CME

in mammalian cells [107].

Modeling effects of mutations and drug treatments on cells. To further explore

the relevance of this model to the experimental system, we have studied four interventions

in silico, whose effects on cells have been measured in vivo:
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Mutations of the acidic Arp2/3-binding regions of Las17. The acidic “A” regions of the

regulators are believed to be important for nucleation because they bind Arp2/3 complex.

In vitro studies [108] have also shown that these domains, as well as the combination of these

domains with WH2 domains, called “WA”, can activate Arp2/3 complex. We thus model

the A-region mutations by reducing kbr. We do not know how large the reduction is. In vitro

data [109] for WASP suggest that the A region mutation renders Las17 completely inactive

(kbr = 0). However, our previous observation [9] of a substantial F-actin count even in cells

containing A-region mutations of the three nucleators believed to be the strongest, Las17,

Myo3, and Myo5, suggests that kbr is not driven to zero by these mutations. A nonzero value

of kbr could be caused by i) intrinsic activity of Arp2/3 complex (requiring recruitment but

not activation) [110], ii) branching activity of other nucleators, or iii) nucleation activity of

Las17 not requiring the A region [8].

In the absence of a negative-feedback interaction, acidic-domain mutations would cause a

large reduction in the F-actin peak count Fmax, roughly proportional to the reduction in kbr.

Our simulations including negative feedback show a qualitatively different behavior. When

kbr is reduced by fractions up to 70%, Fmax increases rather than dropping proportionally to

kbr. When kbr is reduced by more than 70%, Fmax is reduced, and Fmax equals the initial F

value when kbr = 0. Figs. 3.4b and 3.5a show model results for a 40% reduction in kbr, along

with the corresponding experimental data. The simulations predict a 40% increase in Fmax,

consistent with the data, and our previous experimental findings [9] for cells with single

acidic-domain mutations of Las17 and cells with acidic-domain mutations of both Las17 and
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Pan1. The magnitude of the predicted effect, for this value of kbr, is comparable to the

measured one for the double mutant, and we label the figure frames accordingly.
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Figure 3.5: Time courses of L and F from stochastic simulations and experiments (described
in detail under Fluorescence Imaging Experiments). a) Wild type and las17 ∆acidic
pan1 ∆acidic mutant, b) disassembly mutant, c) sla2∆ mutant, and d) LatA treated cells. F-
actin count is measured Abp1 count multiplied by a conversion factor of 8.9 (see text). Model
results obtained from 2000 simulation runs, displayed in the same way as the experimental
data (see Appendix): Plotted points correspond to mode values; error bars are the standard
deviation of a distribution of 1000 mode values obtained by bootstrapping. The time courses
in this and subsequent figures are aligned with their peaks at time t=0. Arrows in frame (b)
indicate which vertical scale to read.

The simulations also predict an increase in the peak Las17 count Lmax, of about 40%,

which is confirmed by our data (Fig. 3.5a). The increase occurs in the model because the

reduced branching rate leads to less Las17 being pulled off the membrane. The increase in

Lmax in turn causes the increase in Fmax, which is determined by a competition between the

increased amount of Las17 present and the reduced kbr. The prediction of increased Lmax is
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very robust: Lmax always increases when kbr is decreased, and the increase is a monotonic

function of kbr.

Disassembly mutations. We model mutations that slow actin disassembly by reducing

ksev. Actin disassembly is believed to be delayed relative to actin assembly because it follows

hydrolysis of ATP on F-actin. This belief is supported by the observations that assembly of

cofilin, which accelerates actin disassembly, is delayed relative to F-actin [111, 79]. There-

fore, we model actin disassembly mutations as a decrease in ksev that occurs after a delay.

For computational convenience, the delay is described in terms of a minimum number of fil-

aments (100) that must be reached before ksev is decreased. Actin disassembly mutants that

have been studied in budding yeast include the actin act1-159 mutation [112], which delays

disassembly because a conformational change is prevented, and the cof1-22 cofilin mutation

[113, 114, 111]. We do not know how large the reduction in ksev is for a given mutation, and

we show results for a reduction of 50% in Figs. 3.4c and 3.5b. The model predicts that Fmax

is increased by about 60%, the F-actin lifetime is greatly increased, and the regulator count

is decreased by cofilin mutation. The predictions for F-actin are qualitatively consistent

with the findings that actin patches in budding yeast are 25% brighter in act1-159 mutant

cells [112], and that their disassembly is delayed in both the act1-159 and cof1-22 mutants

[113, 114, 111].

sla2 deletion. Sla2 couples actin polymerization to membrane deformation [115]. Reduc-

tion of this coupling by sla2 deletion should have two effects. First, it should reduce the

force opposing actin polymerization. Second, it should lead to less deformation and tension
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in the membrane. As discussed above (mechanisms B2 and B3 in Fig. 3.1) regulator de-

tachment may be accelerated by tension, Therefore sla2 deletion could reduce detachment of

regulators from the membrane, leading to a reduction in α. We reduce fa by 90% (a nonzero

force is needed to keep the actin gel near the membrane), and reduce α by varying amounts.

Reductions less than 30% give actin pulses. Reductions greater than 30% cause persistent

and increased actin accumulation (see Figs. 3.4d and 3.5b for a reduction of 90%). This

reproduces the finding of persistent comet-shaped accumulations of actin in the sla2 mutant

[29, 74]. The fact that the reduction in α is needed to reproduce the actin comets suggests

that the negative-feedback interaction is tension dependent.

Latrunculin treatment. We model latrunculin treatment by setting kon = kbr = 0, which

equates to no actin polymerization. The regulator time course in Fig. 3.5b shows that the

regulator count goes to its maximal value and remains there. This is consistent with the

observation that latrunculin greatly lengthens the lifetime of coat proteins and regulators

[29].

Rate-Equation Models

Mathematical Form. The rate-equation models abstract the essential ingredients of

the more complex simulations, allow us to ascertain the robustness of the predictions, and

facilitate more complete fitting of the models to the data. They treat the variables F (F-

actin) and L (regulator Las17). For simplicity, we treat actin polymerization as a one-step

process where a nucleator produces an actin filament that grows instantaneously to its final

length. This approximation will be valid if the time it takes to grow a filament is shorter than
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the time scale of the endocytic dynamics. To estimate the filament growth time, we note

that the free actin concentration is at the micromolar level [8]. Assuming a value of 2µM ,

and taking the actin polymerization rate to be 11.6 subunits s−1µM−1 [59], we find that a

typical actin filament of ∼40 subunits [8] takes about two seconds to grow to its final length.

By comparison, the actin lifetime in the patch is about 10s. Therefore, regarding filament

growth as instantaneous appears to be a reasonably good approximation. We have confirmed

this by studying a four-variable model in which filament nucleation and growth are treated

separately (see Appendix). We find that the two-variable and four-variable models agree

well, provided that the detachment rate parameter α in the four-variable model is reduced

by about 10% relative to the two-variable model.

We implement our assumptions as follows:

dL

dt
= k0L

2 (L2 − L)− αkbrLF, (3.2)

dF

dt
= kbr l̄LF − ksevF, (3.3)

where kbr is the branching rate per subunit, l̄ is the average filament length, α is the detach-

ment probability for L per branching event, and ksev is the disassembly rate of F . The first

term in dL/dt is the same as the average assembly rate in the stochastic simulations. In this

model the number of filaments N is F/l̄ . The second term is a nucleation rate of kbrLF ,

corresponding to autocatalytic branching. The first term in dF/dt combines the nucleation

rate of kbrLF with our assumption that filaments grow rapidly to length l̄ . Finally, the last

term describes a simple first-order decay of F .
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This model is similar to the classic Fitzhugh-Nagumo (FN) model [3, 26], in that it has

a nonlinear positive-feedback term driving assembly of the activator L, and an inhibitor F

whose buildup drives the activator down (to be precise −F corresponds to the inhibitor in

the FN model). However, the mathematical forms differ in three ways: i) The buildup at

small L is quadratic in L rather than linear as in the FN model, to reproduce the slow initial

buildup of L [14, 10]; ii) the second term in dL/dt contains an added factor of L to prevent L

from going negative; and iii) the first term of dF/dt contains an extra factor of F to account

for autocatalytic branching.

Fitting and Predictions of Two-Variable Model. The four adjustable parameters

(k0, kpol, ksev and α) are optimized to fit data for wildtype cells, while l̄ was given a plausible

value of 30 (any change in l̄ could be compensated by making appropriate changes in α

and kbr). We use a least squares objective function to minimize the difference between the

time courses given by the model and those obtained from experiment (see Appendix). L2 is

chosen to be the same as in the stochastic simulations. We choose F = 1 at the beginning

of the simulation, as a starting point for autocatalytic growth. We find that our results are

not sensitive to the value of L0, and as in the stochastic simulations we used a value that is

much smaller than L2, but guarantees a large critical nucleus. The fit parameters are given

in Table 1. Note that kbr is smaller than in the stochastic simulations because in this model

all subunits are implicitly allowed to branch, while in the stochastic simulations only those

near the membrane can branch. As seen in Fig. 3.6, the model matches the data reasonably

well. The peak heights and full widths at half maximum of both F and L are reproduced
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Phenotype Fmax Lmax
Wild-type 6133 50
las17 ∆acidic pan1 ∆acidic 9602 84
Actin disassembly mutation 8549 50
latrunculin treatment 0 101

Table 3.2: Summary of predictions of rate-equation model.

well, as well as the slow buildup of L.
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Figure 3.6: Rate-equation model with branching nucleation. Predicted time courses (solid
and dashed lines) of a) F and b) L for wild-type (black) and las17 ∆acidic pan1 ∆acidic
(blue) cells compared with experimental time courses (dots). F is the measured Abp1 count
multiplied by a conversion factor of 8.9 (see text). For clarity, the error bars for the experi-
mental data are not indicated here, but they are given in Fig. 3.5a.

We have predicted the effects of the same interventions, except for the sla2 mutation,

treated above by the stochastic-growth models. We used the same percent changes in the

parameter values. We were unable to model the sla2 deletion mutation in a physically

reasonable fashion because the rate-equation model does not include opposing force.

The results (Fig. 3.6 and Table 2) are generally similar to the stochastic-growth model
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predictions. Under acidic-domain and actin disassembly mutations, both Fmax and Lmax

increase substantially. Under latrunculin treatment, Fmax = 0 but L climbs to an asymptotic

value of L2.

These results are fairly insensitive to the values of the unknown parameters L0 and L2.

Reducing L0 by 50% has no effect on the quality of fit in the wild-type case; increasing it by

50% increases the root-mean-square (rms) error by 10%. The sign of the phenotypic predic-

tions made above is preserved, although their magnitude changes. Doubling L2 increases the

rms error of fit by 30%, but again leaves the qualitative predictions of the model unchanged.

3.3 Fluorescence Imaging Experiments

To test the predictions of the theoretical models, we measured the effects of acidic-domain

mutations on the regulator counts. We extended our previous measurements of Abp1, cap-

ping protein and Arp2/3 complex [9] to measure the counts of the four regulators Las17, Pan1,

Myo3, and Myo5 in wild type cells and the following mutants: las17 ∆acidic; pan1 ∆acidic;

myo5 ∆acidic; myo3 ∆acidic myo5 ∆acidic; las17 ∆acidic pan1 ∆acidic; and myo3 ∆acidic

myo5 ∆acidic pan1 ∆acidic. We also reanalyzed our Abp1 data [9], which had previously

been analyzed using different software. These measurements allow us to test our predictions

of the effects of mutations on regulator counts, and provide a database for fitting the models.

Our measurements of the cross-effects of mutation of one regulator on assembly of another

regulator also allow us to ascertain the effects of interactions between regulators on their

assembly. Our methods for generating yeast strains, as well as the microscopy and image

analysis, are similar to those in Ref. [9]. We give more information about these methods,
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and the protein counting methods, in the Appendix.

The data are given in Fig. 3.7. The time courses are aligned with each one having its

maximum at time t = 0. They are truncated in time because the fractional error at smaller

protein counts becomes large. The time courses of Abp1, Las17, and Myo5 reproduce the

general features of those given in Ref. [14] and [10], including the slow buildup of Las17.

Our wild-type peak values for Las17 and Myo5 (55 and 130), are similar to the values (43

and 130) measured for budding yeast in Ref. [10]. They are, however, much smaller than

the counts of the corresponding proteins Wsp1 and Myo1 (230 and 400) measured for fission

yeast actin patches in Ref. [13].

Abp1 Count Depends Counterintuitively upon Acidic-Domain Mutations. Fig.

3.7(b) shows time courses of Abp1, our F-actin surrogate, in wild type and various ∆acidic

mutants. The results are reasonably consistent with our previous ones [9], with the wild-type

count being about 15% below the previous count and that for the las17 ∆acidic pan1 ∆acidic

mutant being about 30% lower. The Abp1 counts in the las17 ∆acidic pan1 ∆acidic and

las17 ∆acidic mutants are larger than in the wild type cells, by 37% and 20% respectively,

an effect similar to that found in our previous work. This is consistent with the predictions

of both the stochastic (Fig. 3.5a) and rate-equation (Fig. 3.6a) models. On the other

hand, the Abp1 count in the myo3 ∆acidic myo5 ∆acidic pan1 ∆acidic and myo3 ∆acidic

myo5 ∆acidic mutants is nearly equal to that in wild type cells. The ∆acidic mutants that

include the pan1 ∆acidic mutation affect the Abp1 count more than those without the Pan1

mutation, but pan1 ∆acidic itself has an almost negligible effect.
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Acidic-Domain Mutation of Las17 Increases Las17 Count. Fig. 3.7(c) shows

that the Las17 count increases as a result of las17 ∆acidic mutation. This is consistent with

the predictions of both of the mathematical models (Figs. 3.5a and 3.6b). The peak height

is increased by 55% in the las17 ∆acidic mutant, and 60% in the las17 ∆acidic pan1 ∆acidic

mutant. Thus the effect of the additional Pan1 mutation is small. The Las17 lifetime is

increased in both these mutants. On the other hand, the Las17 count is essentially unaffected

by mutations of Myo3 and Myo5, even when they are combined with mutations of Pan1.

Acidic-Domain Mutation of Myo5 Increases Myo5 Count. For Myo5, the largest

effect is seen in the myo3 ∆acidic myo5 ∆acidic pan1 ∆acidic mutant (see Fig. 3.7(d)). The

Myo5 peak height is increased by 120% in the mutant cells. Our models do not treat Myo5

explicitly, but the negative-feedback effect seen in Figs. 3.5a and 3.6b may also contribute

to the effect seen here. The effect requires the pan1 ∆acidic mutation; the peak height is

essentially unchanged in the myo3 ∆acidic myo5 ∆acidic mutant. The requirement for the

pan1 ∆acidic mutation in the case of Myo5 might result from the binding of Pan1 to Myo5

[116], but we do not know precisely how this binding would affect the Myo5 count. The

lifetime is also increased in the myo3 ∆acidic myo5 ∆acidic pan1 ∆acidic and myo3 ∆acidic

myo5 ∆acidic mutants. The Myo5 count is affected much less by mutations in Las17 and

Pan1. The Myo3 count is generally less sensitive to mutations than the Myo5 count. We do

not know the reason for this difference. However, we are not aware of in vitro measurements

of the nucleation activity of Myo3, so it is possible that Myo3 is a weaker nucleator than

Myo5.
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Figure 3.7: Measured time courses of Abp1, Las17, Myo5, Myo3, and Pan1 for wild-
type cells and several mutants. ∆A in the legend means ∆acidic. Numbers of patches
measured (N) in Abp1-GFP are N = 184, 132, 148, 274, 64, 331, for wild-type, las17 ∆A
pan1 ∆A, myo3 ∆A myo5 ∆A pan1 ∆A, las17 ∆A, myo3 ∆A myo5 ∆A and pan1 ∆A respec-
tively. Following the same order, in Las17-GFP, N = 197, 202, 181, 151, 88, 202. In Myo5-
GFP, N = 279, 90, 677, 366, 517, 491. In Myo3-GFP, N = 307, 437, 601, 161, 159, 187, 627. In
Pan1-GFP, N = 206, 263, 183, 347, 151, 96. In addition, for Myo5-GFP myo5 ∆A, N = 1070.
Plotted points correspond to mode values; error bars are the standard deviation of a distri-
bution of mode values obtained by bootstrapping (see Appendix). Frame (g) shows repre-
sentative fluorescence images of GFP-labeled regulators.
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Acidic-Domain Mutation of Pan1 Extends Pan1 Lifetime. For Pan1, the peak

height is not significantly changed by any of the mutations. However, its lifetime is dramat-

ically increased in the las17 ∆acidic pan1 ∆acidic mutant. Treating this effect within our

theoretical framework would require the inclusion of multiple regulators, which is beyond

the scope of the present paper.

3.4 Discussion

We have tested a negative-feedback mechanism for protein dynamics at endocytic actin

patches in budding yeast, using both stochastic-growth simulations and rate-equation models.

Both of these models reproduce the pulse nature of the protein time courses. In addition,

they predict (Figs. 3.5a and 3.6b) that the maximum counts of Arp2/3 regulators will be

increased by mutations that reduce the regulators’ activity. We tested the robustness of the

prediction by varying key assumptions (see Appendix) and found the prediction to be robust

to these variations.

The physical mechanism is the following: branching and concomitant actin polymeriza-

tion increase the probability for Arp2/3 regulators to leave the membrane, either by being

directly pulled off with the nascent branch or via mechanical effects. Therefore reducing

branching/actin polymerization increases the fraction of regulators left on the membrane.

The prediction was confirmed in vivo by analyzing movies of CME in live cells to evaluate

the time courses of the regulators, in wild-type cells and cells with mutated Arp2/3-binding

domains. Large increases in the counts were seen for Las17 and Myo5, the regulators having

the strongest branching activity (Figs. 3.7(c) and 3.7(d)).
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Another mechanism that might explain the increased Arp2/3 regulator counts is that the

mutations reduce the strength of the binding between Arp2/3 complex and the regulators.

This corresponds to reducing the parameter α in our models, which determines the rate of

regulator detachment. We have implemented this hypothesis, and find that it can match the

increase in Arp2/3 regulator peak height, but it greatly overestimates the increase in the

F-actin peak height. Therefore we feel that the negative-feedback mechanism based on the

branching rate is a more likely explanation.

The negative-feedback models can also explain the increased F-actin peak height caused

by some acidic-domain mutations (Fig. 3.7(b)). What other mechanisms might explain this

observation?

a) If actin assembly at endocytic actin patches were diffusion-limited, i. e. every actin

monomer that contacts the patch region is polymerized, then reducing kbr would not decrease

Fmax. However, this assumption is not likely to hold. If one considers the actin patch as a

spherical perfect absorber of radius R = 100 nm [18], assumes a diffusion coefficient of D =

5µm2 for monomeric actin [50], and takes a monomeric actin concentration of C = 2 µM ,

one obtains a diffusion-limited monomer flux [117] of 4πDCR = 7500 monomers/s. This is

considerably greater than our maximum measured actin assembly rate of 900 monomers/s

obtained by multiplying the maximum slope of Fig 3.7(b) by a conversion factor of 8.9 to

obtain the F-actin assembly rate. In addition, the diffusion-limiting hypothesis does not

explain our measured increase of both F-actin and regulator peak height.

b) Weakened regulator-Arp2/3 binding caused by acidic-domain mutations could enhance
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Arp2/3 release from the regulators bound to the membrane. This could explain the F-actin

results in two ways. First, release of Arp2/3 complex from regulators has been shown to

accelerate branch formation [20]. Second, enhanced Arp2/3 release could accelerate polymer-

ization by reducing the force opposing actin polymerization. Finally, as mentioned above,

weakening of the regulator-Arp2/3 binding could cause fewer regulators to detach from the

membrane. We again treated this effect by reducing α. As mentioned above, the predictions

fit the data poorly.

Thus we feel that the negative-feedback hypothesis is the most likely explanation of this

observation. Since the model with negative feedback driven entirely by membrane tension

(mechanisms B2 and B3 in Fig. 3.1, Appendix) did not fit the data, the negative feedback

interaction must depend to some extent on branching (mechanism B1). Another observation

supporting mechanism B1 is that the regulators assemble almost independently. Figs. 3.7(c)

and 3.7(d) show that acidic-domain mutation of one particular regulator affects that same

regulator most strongly, with relatively weak effects on the other regulators. This argues

against mechanisms B2 and B3 being dominant. These mechanisms would predict that

mutation of Las17 would affect Las17 and Myo3/5 roughly equally, since they are both at

the base of the invagination [10]. Only mechanism B1, where individual branching events lead

to regulator detachment, would lead to the observed independent assembly of the regulators.

On the other hand, we found that reproducing the actin comets in sla2 deletion mutants

required a mechanical coupling in the negative feedback term. A likely explanation of these

findings is that detachment of regulators from the membrane is driven by branch formation,
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with a rate depending on force. This could be included by generalizing our model to have

a deformation-dependent α. Such a model would have additional fitting parameters, and in

the absence of more detailed information about the mechanochemical couplings, we did not

pursue this approach.

Another key assumption of our model is that of autocatalytic Las17 assembly, inde-

pendent of F-actin. An alternate hypothesis is that Las17 assembly passively follows the

assembly of an upstream factor in the endocytic patch. Ref. [72] showed that mutation

of clathrin, which acts upstream of Las17, reduces the Las17 lifetime. This suggests that

clathrin aids Las17 assembly. But the very different time courses of Las17 and clathrin ar-

gue against Las17 following clathrin passively. Clathrin may rather act as a platform for

autocatalytic Las17 assembly. Bzz1 has also been found to activate the fission yeast Las17

analog Wsp1 [118]. Our assembly dynamics could describe this system provided that Wsp1

is assumed to assemble in a background containing Bzz1. The autocatalytic Las17 assembly

hypothesis could be tested by measuring the effects of more upstream proteins, such as Bzz1,

on Las17 assembly.

Despite the large evolutionary distance between budding yeast and fission yeast, the need

to overcome a large turgor pressure in both organisms may have led to some commonality in

their endocytic machineries. Thus the basic mechanisms studied here for budding yeast may

also be relevant to fission yeast. A major difference between the two systems is the larger

counts of most of the patch constituents in fission yeast [13, 79] vs budding yeast [113, 9, 10].

In our model, a multiplication of all time courses by, for example, a factor of two could be
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obtained by the following adjustments: i) doubling L0, L2, fa, and the starting number of

actin filaments, and ii) reducing kbr by 50% and k0 by 75%. This system would generate

twice as much force. Thus the higher protein counts in fission yeast may help overcome the

higher turgor pressure in this system relative to budding yeast.

Another difference between budding yeast and fission yeast is the larger inward motion

of Wsp1 in fission yeast [13] (nearly 300 nm). This suggests that a substantial fraction of

the Wsp1 i) incorporates into the actin network, or ii) moves up the sides of the tubule.

If i) holds, and Wsp1 in the network continues to activate Arp2/3 complex, the negative-

feedback mechanism treated here could be weaker. If ii) holds, actin polymerization will

exert forces perpendicular to the sides of the tubule, which will compress it, and thus aid

the scission process. However, less force would be available for pulling the invagination into

the cytoplasm. Finally, the time course of Wsp1 [13] has a faster assembly period than that

for Las17.

We do not know how modifying the model to treat fission yeast would change the results.

However, the negative-feedback interaction explored here may be relevant to several finding

regarding fission yeast: i) Treatment with CK-666, which inhibits Arp2/3-based branching,

was found to give nearly unchanged Fmax values [73]. In a model without negative feedback,

a large drop in Fmax would have occurred. ii) Mutation of cofilin gave actin patches that were

brighter by 10% to 70% [73, 79], similar to our predictions for budding yeast (Fig. 3.5b).

Could the model predictions made here be reproduced by previous models in the liter-

ature? Ref. [16] treated a feedforward model of endocytosis in fission yeast using a pulse
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of active WASP (corresponding to L in our calculations) with a fixed magnitude and time

dependence. This model treats branching using several steps, but our kbr would correspond

most closely to the activation rate of Arp2/3 bound to a filament. Reducing this rate by

40% would cause a large reduction in Fmax, unlike the increase seen in our data and models.

Furthermore, Lmax would be unchanged, since a fixed pulse height and shape were assumed.

Therefore the model of Ref. [16] would require substantial modification to reproduce our

predictions and experimental findings.

Ref. [16] also reported a number of uncapped filaments Nu ' 8. In contrast, we find

that Nu ' 140. We believe the discrepancy arises because Ref. [16] did not treat the effects

of opposing force on the growing filaments. If we multiply the on-rate assumed in [16] by a

factor of exp(−faδ/NukBT ), the value of Nu required to match the maximum polymerization

rate of 2000 s−1 [16] increases. For fa = 415 pN , as above, this approach gives Nu = 101.

The model of Ref. [15] for budding yeast includes the following chain of feedback in-

teractions of polymerized actin onto membrane-bound agents that act upstream of actin

nucleation: F → membrane bending → coat protein turnover, as well as another chain in-

cluding PIP2 hydrolysis. The net result of each of these chains is that F feeds back negatively

on the coat proteins C. The model did not treat actin regulators explicitly. However, if the

regulators were taken be included in C, and kbr were to be identified with the rate constant

k7 (Eq. (4) of Ref. [15]) coupling C to actin assembly, a reduction in k7 could lead to an

increase in Cmax, paralleling the increase in Lmax that we have predicted and observed. It is

not clear whether this could lead to an increase in Fmax, because this requires the increase
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in Cmax to overcome the direct effect of decreasing k7.

A major difference between the present model and that of Ref. [15] is in the assumed

distribution of actin polymerization. Ref. [15] assumes actin polymerization focused on the

invagination, while we take it to be focused in a disk-like region around the invagination.

Our assumption is based on explicit mechanical calculations [95] showing that a disk-like

distribution can lead to a density of pulling force much greater than the polymerization stall

stress. We are not aware of calculations showing that polymerization in the bud region can

produce pulling forces. The merits of the differing assumptions about the distribution of

actin polymerization could be directly evaluated via superresolution measurements of the

distribution of regulators.

The mathematical similarity between our models and those used previously to treat

F-actin waves in mammalian cells (reviewed in Ref. [66]) suggests similarities between en-

docytosis and F-actin waves. They are, indeed, parallel in several aspects. As in the case

of endocytosis, actin regulators (WAVE complex) and Type-1 myosins (Myosin 1B) in actin

waves precede F-actin [119, 120]. In both processes, phosphoinositides enhance actin poly-

merization [121]. Finally, Cdc42 waves, which should correspond to F-actin waves, are

closely coupled to clathrin waves [122], which could drive waves of endocytosis. Thus these

two phenomena may be variants of the same process.

The negative-feedback interaction studied here may be a generic component of the circuits

by which the cell controls actin dynamics at the membrane. It provides a natural mechanism

for generating a burst of actin polymerization where needed. It also prevents excessive local
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F-actin buildup that could otherwise result from autocatalytic branching polymerization.

Finally, it could act as a homeostatic mechanism protecting actin assembly against pertur-

bations. A robust finding of our models is that large changes in key rates, such as those of

branching and severing, have surprisingly modest effects on the peak F-actin count.
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3.5 Appendix

3.5.1 Robustness of stochastic-grown results to variations in parameters and assumptions

We have varied several key parameters and assumptions in the stochastic model and cal-

culated the corresponding changes in the predictions. In all cases where we could fit the

wild-type data, we found that reductions in kbr caused substantial increases in Lmax and

Fmax, a persistent patch phenotype was found under sla2 mutation, and latrunculin treat-

ment gave persistent Las17 patches. We refit the models in those cases where the initial

variations of doubling or halving a parameter predicted more than a 25% change in the peak

protein counts. In these cases, we performed an approximate refit by varying just kbr, except

as indicated below.
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Figure 3.8: Time course of stochastic-growth model with branching rate proportional to L2,
compared with experimental data.
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1. The branching width W , with baseline value 20 subunit sizes (54nm), was varied from

10 subunits to 40 subunits. Reducing it to 10 subunits increased Fmax by 11% and

increased Lmax by 7% wild-type cells, with corresponding changes of -2% and 5% for

Increasing W to 40 subunits reduced the wild-type Fmax by 7% and increased the wild-

type Lmax by 3%, with corresponding changes of -20% and 5% for the acidic-domain

mutant.

2. The primer filament length l0, with baseline value 20, (in subunits) was varied from

10 to 30. For l0 = 10, Fmax was reduced by 9% and Lmax by 5%, with corresponding

changes of 7% and 0 for the acidic-domain mutation. For l0 = 30, Fmax was decreased

by 20% while Lmax was decreased by 8%. with corresponding changes of 7% and 0 for

the acidic-domain mutation.

3. The initial filament number N0, with baseline value 5, was varied from 0 to 10. For

N0 = 0, Fmax decreased by 11% and Lmax by 3%, with corresponding changes of -2%

and 0 for the acidic-domain mutation. For N0 = 10 (refit), the wildtype Fmax and Lmax

values increased by 6% and 3% respectively, with corresponding changes of 2% and 10%

for the acidic-domain mutation. The primer nucleation rate knuc, with baseline value

0.02 s−1, was also varied from 0.01 s−1 to 0.03 s−1. For knuc = 0.01s−1, Fmax and

Lmax were increased by 11% and 7% respectively, with corresponding changes of 5%

and 10% for the acidic-domain mutation. For knuc = 0.03s−1 (refit), the wildtype Fmax

and Lmax values dropped by 6% and increased by 7% respectively, with corresponding
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changes of -12% and -4% for the acidic-domain mutation.

4. The initial Las17 number L0, with baseline value 20, was varied from 10 to 30. For L0 =

10 (refit) , the wildtype Fmax and Lmax values increased by 7% and 2% respectively,

with corresponding changes of -2% and 2% for the acidic-domain mutation. For L0 = 30

(refit), The wildtype Fmax and Lmax values increased by 9% and 5% respectively, with

corresponding changes of 1% and 2% for the acidic-domain mutation.

5. The total force opposing invagination, fa, with baseline value 415 pN, was varied from

208 pN to 830 pN. For fa = 208 pN, Fmax increased by 22% and Lmax decreased by 10%,

with corresponding changes of 11% and -1% for the acidic-domain mutation. For fa =

830 pN (refit by varying konG), the wildtype Fmax and Lmax values increased by 7%

and 14% respectively, with corresponding changes of -3% and 6% for the acidic-domain

mutation.

6. An alternative branching term, with the branching rate per subunit proportional to

kbrL
2, was refitted by varying kbr. This form reflects the possibility of cooperative

activation by Arp2/3 regulators, and was used in Ref. [91]. Fmax for wild-type was

25% lower than baseline, and Lmax was 7% higher, with corresponding changes of -30%

and -10% for the acidic-domain mutation. The resulting time courses for wild-type and

acidic-domain mutants (Fig. 3.8) were similar to those for the baseline parameters.

7. Three alternative mathematical forms for the assembly of L were tested. For these

we performed a more complete refitting procedure. i) L (L2 − L). Fmax for wild-type
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was 6% higher than baseline, and Lmax was unchanged, with corresponding changes

of +11% and -7% for the acidic-domain mutation. ii) L3 (L2 − L). Fmax for wild-type

was 28% higher than baseline and Lmax was 19% higher, with corresponding changes

of +11% and +11% for the acidic-domain mutation. iii) (L2 − L) (no autocatalytic

assembly). In this case no pulse behavior was seen, rather both F and L approached

finite values in steady state. Thus fitting either wild-type or mutant data requires an

autocatalytic assembly term.

8. We implemented and fitted a model in which negative feedback was taken to be pro-

portional to the extent of membrane bending, which in turn was taken proportional to

the average position of the actin filament pointed ends. This model gave poor results:

i) only a very small fraction of the runs gave pulses; ii) under acidic-domain mutations,

Fmax decreased rather than increasing; iii) the fluctuations in patch brightness were

larger than in the experimental data.

3.5.2 Fitting of models

In fitting the stochastic-growth model, we began with the results from the four-variable

model and by hand increased konG to account for opposing force, increased kbr to account

for the finite branching region, and adjusted ksev to get roughly correct peak heights. Then we

randomly sampled parameter space by taking trial steps in random directions with Gaussian-

sampled amplitudes. The trial steps were accepted if the value of the following objective

function was reduced:
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,

where Nmax is the maximum number of filaments (experimental number obtained as the

Arp2/3 count from Ref. [9]), Cmax is the maximum capping protein count [9], and τF and

τL are the full widths at half-maximum of the F and L time courses.

For the rate-equation models, we used the following objective functions, where the sub-

scripts “exp” and “mod” denote the experimental data and the model predictions:

For the branching nucleation model,

O =
1

11

1∑
i=−9

(Lexp,i − Lmod,i)2

L2
exp,i

+
1

9

4∑
i=−4

(Fexp,i − Fmod,i)2

F 2
exp,i

, (3.4)

where at each time point t = 1s× i. The cutoffs in the sums were chosen so as to focus on

the regions with higher counts, where there is less fractional error.

For the spontaneous nucleation model,

O =
1

8

2∑
i=−5

(Lexp,i − Lmod,i)2

L2
exp,i

+
1

7

3∑
i=−3

(Fexp,i − Fmod,i)2

F 2
exp,i

(3.5)

The parameter values minimizing the objective functions were found by searching over
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a multidimensional rectangular grid of parameter values, with a mesh size roughly equal to

0.01 times the lowest value treated.

3.5.3 Two-variable rate-equation model based on spontaneous nucleation of actin filaments

We use the following equations:

dL

dt
= k0L (L− L1) (L2 − L)− kdetLF, (3.6)

dF

dt
= ksp̄lL− ksevF, (3.7)
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Figure 3.9: Time courses from spontaneous-nucleation rate-equation model. Parameters are
ksp = 2.35s−1, ksev = 0.555s−1, k0 = 5.98× 10−4s−1, l̄ = 30, L1 = 17, and L2 = 101. Initial
values are L0 = 25 and F0 = 1. Black denotes wild-type and blue denotes las17 ∆acidic
pan1 ∆acidic cells. Solid and dashed curves are model predictions; dots are experimental
data. For clarity, the error bars for the data are not indicated here, but they are given in
Fig. 5a. F-actin is obtained as measured Abp1 count multiplied by a conversion factor 8.9
(see text).
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They differ from the branching nucleation model in two ways: i) In the first term of

dL/dt a factor of L is replaced by L − L1, where L1 is an additional parameter that acts

as a threshold for regulator assembly. We were unable to obtain reasonable fits of the time

courses of L and F without this term. ii) The first term in dF/dt is independent of F , since

the model assumes that preexisting actin filaments are not required for nucleation of new

filaments.

The data shown in Fig. 3.9 reveal a less accurate fit than was obtained by the branching

nucleation model (Fig. 6). The model does not capture the slow assembly of L, although it

fits the Abp1 time course slightly better than the main model. The spontaneous nucleation

model also does not describe the mutant phenotypes as well. Small decreases in ksp lead

to decreases in Fmax, while larger decreases lead to the formation of permanent patches.

However, the prediction of increased Lmax is obtained in this model, as in the branching

nucleation model. The cofilin and latrunculin phenotypes are handled roughly as well as by

the branching nucleation model.

Figure 3.10 compares the branching and spontaneous nucleation models to the experi-

mental data.
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Figure 3.10: Bar graphs comparing autocatalytic branching with spontaneous nucle-
ation model. The autocatalytic model predicts a increase in Fmax for the las17 ∆acidic
pan1 ∆acidic mutant (LP∆A), consistent with the experiments, while the spontaneous nu-
cleation model predicts a small decrease. Both models predict an increase in Lmax in the
LP∆A mutant. The autocatalytic model prediction is, however, closer to the experimentally
measured increase.

3.5.4 Four-variable rate-equation model

This model extends the two-variable autocatalytic model, by treating separate nucleation and

polymerization processes, for capped and uncapped filaments. It has the following equations:

dL

dt
= k0 (L2 − L)L2 − αkbrLF, (3.8)

dNu

dt
= kbrLF − kcapNu, (3.9)

dNc

dt
= kcapNu − ksevNc, (3.10)

dF

dt
= konGNu − ksevF, (3.11)
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where Nc and Nu are the numbers of capped and uncapped filaments, kbr is the branching

rate, and konG is the polymerization rate. The parameters are given in Table 3.3. We

take konG = 20s−1 on the basis of the roughly micromolar actin concentration G [8] and

kon = 11.6µM−1s−1 [59]. We also take kcap = konG/̄l , where the average filament length

l̄ = 30 as in the two-variable model. For the remaining parameter values, we began with

the values from the two-variable model. We found that a good fit to the data was obtained

provided that α was reduced by 10%. The two- and four-variable models are compared

in Fig. 3.11, revealing close agreement between the models for the wild-type case. The

predictions for the effects of mutations are also similar to those of the two-variable model,

with a 40% reduction of kbr leading to a 60% increase in Lmax and a 40% increase in Fmax.

This supports our treatment of actin polymerization as a single-step process.

3.5.5 Patch Tracking and Protein Counting

The movies were first cropped to separate GFP-Cse4 tagged cells from those with tagged

endocytic proteins. Endocytic patches were tracked using the TrackMate plugin (N. Perry, J.-

Y. Tinevez, and J. Schindelin, http://fiji.sc/TrackMate) of ImageJ (Wayne Rasband, NIH,

Bethesda, MD, http://imagej.nih.gov/ij/). The X-Y positions of the patch centroids in

each movie time frame, obtained from TrackMate, were read into a custom C++ code that

processed the track data and used it to obtain the intensity numbers from the movie frames.

As in [123], we took the intensity IP of each patch in a time frame as the total intensity in

a square region of 9×9 pixels around the center of the patch, minus a background intensity
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IB. IB is the average intensity of a region ranging from 10×10 to 13×13 pixels around the

center.

The tracks were then filtered by the C code so that only relatively isolated and distin-

guishable patches were left. The criteria were that i) the closest distance from any filtered

track to any other track should be larger than 13 pixels, and ii) the contrast of a given track,

defined as

C =

∑
IP∑
IB
, (3.12)

should exceed a chosen threshold value Cmin, where the summation is over all frames in which

the track appears. Because the different tagged protein have different counts, it is necessary

to set Cmin differently for different proteins. For each one, we ordered all the originally

selected wild-type tracks based on their time-averaged contrast C values, in a composite

image. Then we obtained Cmin by visually determining at what value the tracks seemed

sufficiently clear. Cmin was taken the same for all of the mutants having a given tagged

protein. The final tracks left after the filtering based on the criteria i) and ii) were used for

further analysis.

The GFP-Cse4 patches were analyzed in the same way. To convert intensity to protein

count, we assumed that each GFP-Cse4 patch has 109 molecules of Cse4 [9]. The intensities

of the endocytic protein patches and the Cse4 patches were found to decrease systematically

over the 60 second period of the experiments, probably because of photobleaching. To correct
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for photobleaching, we fit the time dependence of the Cse4 patch intensity to an exponential

form, using a linear regression on a logarithmic plot. This gave a time course of Cse4 patch

intensity. Then the count of each endocytic protein was obtained by dividing IP by the

time-dependent Cse4 patch intensity, and then multiplying by 109.
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Figure 3.11: Four-variable rate-equation model compared to two-variable model. F is mea-
sured Abp1 count multiplied by a conversion factor of 8.9 (see text) to approximate the
F-actin count. Arrows indicate which vertical scale to read.

For statistical analysis, we aligned the tracks at their maximum intensity points (t=0),

and binned the intensities at each time. The track data for Abp1 is illustrated in Fig. 3.12,

in which the distribution of patch intensities at a given time is indicated by the gray-scaled

bins.
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Parameters
konG (s−1) 20.0
kcap (s−1) 0.667
kbr (10−3s−1) 0.957
ksev (s−1) 0.427
k0 (10−5s−1) 3.93
α 0.122
L2 101

Initial Conditions
L0 18
Nu,0 1
Nc,0 0
F0 1

Table 3.3: Four-variable model parameters and initial conditions

To obtain a meaningful plot of intensity as a single function of time, we followed the proce-

dure of Ref. [9] and estimated the mode of the intensity distribution at each time point. The

modeest package (P. Poncet, http://cran.r-project.org/web/packages/modeest/index.html)

in R (D. Bates et al., http://www.r-project.org/) was used to implement the mode value

estimation method developed in [124]. This was used to generate the protein time courses

that we plot. To generate the error bars, we generated a distribution of 1000 mode values

by bootstrapping; the error bars correspond to the standard deviation of this distribution.

3.5.6 Yeast strains

The strains used in this study are listed in Table 3.4. All strains are derived from YJC6494,

an isogenic strain generated by diploidizing BY4741. Green fluorescent protein (GFP) fu-

sion constructs were generated at the endogenous loci as described [125, 126]. Mutations
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were generated in an isogenic background as described [127]. Mutations were confirmed by

PCR and DNA sequencing. The proper localization of the mutant proteins to patches was

confirmed by fluorescence microscopy imaging of GFP in the cells (Fig. 7g).

3.5.7 Microscopy and image analysis

Strains were grown overnight in liquid YPD at 30 ◦C to an optical density of ∼ 0.1 - 0.5. Cells

were collected by centrifugation (82 × g, 5 min) and suspended in SD-complete medium or in

a simplified nonfluorescent synthetic medium [128]. To quantitate GFP fusion protein levels,

we mixed cells expressing Cse4-GFP with cells expressing the fusion of interest and placed

them onto a 1% agarose pad, made with the same nonfluorescent medium and covered with

a # 1 coverslip. Wide-field fluorescence movies were collected with an inverted microscope

(IX81, Olympus) using a 1.35 NA 100X oil immersion objective, and an EM-CCD camera

(Hamamatsu). A 1.5X magnifier was placed in front of the camera, and a 1.6X magnifier

was placed in the light path in the body of the microscope. GFP was excited with laser

illumination at 488 nm. Images were collected from a single, equatorial focal plane with 900

ms exposures at 1 frame/s. For all experiments, at least 60 consecutive frames were collected.

The temperature was maintained at 30 ◦C for all observations. Integrated GFP fluorescence

intensity was converted to absolute numbers of molecules using the fluorescence of Cse4,

as in Ref. [9]. Because we use wide-field microscopy, 3D motion causes smaller intensity

changes than would occur in confocal microscopy. Ref. [129] showed that even being out

of focus by several microns does not change the integrated patch fluorescence significantly.
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The in-plane motion of Las17 before disassembly is less than 100 nm, and most of the Abp1

has disassembled by the time it has moved 200-300 nm. We see no reason why 3D motion

should be larger than in-plane motion. In addition, the quality control criterion in the patch

tracking method (see below) tends to eliminate tracks in which the patches move out of focus

before disassembling.
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Figure 3.12: Protein count distribution for Abp1. The gray scale indicates the relative
probability of measuring a given number of Abp1 molecules (vertical axis) at any given time.
The mode value of the distribution is plotted in red.
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Table 3.4: Yeast strains used.

Strain Genotype Source

BY4741 MATa his3∆1 leu2∆0 met15∆0 ura3∆0 [125]

YJC6494 MATα/MATa his3∆1/his3∆1 leu2∆0/leu2∆0 met15∆0/met15∆0 ura3∆0/ura3∆0 [9]

YJC6718 MATa Abp1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 [9]

YJC6719 MATα Abp1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 [9]

YJC6720 MATa Abp1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 [9]

YJC6721 MATα Abp1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 ura3∆0 [9]

YJC6722 MATα Abp1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 ura3∆0 [9]

YJC6723 MATa Abp1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 ura3∆0 [9]

YJC6725 MATa Cse4-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 [9]

YJC6726 MATα Cse4-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 [9]

YJC6797 MATα Myo5-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC6798 MATa Myo5-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC6799 MATa Myo5-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC6800 MATa Myo5-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 ura3∆0 This study

YJC6801 MATa Myo5-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 ura3∆0 This study

YJC6802 MATα Myo5-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 ura3∆0 This study

YJC6910 MATα Myo3-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC6911 MATa Myo3-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC6912 MATa Myo3-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC6913 MATa Myo3-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 ura3∆0 This study

YJC6914 MATa Myo3-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 ura3∆0 This study

YJC6915 MATα Myo3-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 ura3∆0 This study

YJC6931 MATa Pan1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC6932 MATa Pan1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC6933 MATα Pan1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC6934 MATa Pan1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 ura3∆0 This study

YJC6935 MATa Pan1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 ura3∆0 This study

YJC6936 MATα Pan1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 ura3∆0 This study

YJC6958 MATa Abp1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0 [9]

YJC6959 MATa Abp1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0 [9]

YJC6960 MATα Abp1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0 [9]

YJC6961 MATa Abp1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 pan1∆acidic-kanMX6

ura3∆0

[9]

Continued on next page
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YJC6962 MATa Abp1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 pan1∆acidic-kanMX6

ura3∆0

[9]

YJC6963 MATα Abp1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 pan1∆acidic-kanMX6

ura3∆0

[9]

YJC7148 MATa Abp1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-kanMX6 ura3∆0 [9]

YJC7149 MATα Abp1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-kanMX6 ura3∆0 [9]

YJC7150 MATα Abp1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-kanMX6 ura3∆0 [9]

YJC7151 MATα Abp1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo3∆acidic-hphMX4

myo5∆acidic-kanMX6 ura3∆0

[9]

YJC7152 MATα Abp1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo3∆acidic-hphMX4

myo5∆acidic-kanMX6 ura3∆0

[9]

YJC7153 MATα Abp1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo3∆acidic-hphMX4

myo5∆acidic-kanMX6 ura3∆0

[9]

YJC7310 MATa Abp1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-natMX4

pan1∆acidic-kanMX6 ura3∆0

[9]

YJC7311 MATa Abp1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-natMX4

pan1∆acidic-kanMX6 ura3∆0

[9]

YJC7312 MATα Abp1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-natMX4

pan1∆acidic-kanMX6 ura3∆0

[9]

YJC7361 MATα Myo3-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0 This study

YJC7362 MATα Myo3-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0 This study

YJC7363 MATa Myo3-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0 This study

YJC7364 MATα Myo3-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 pan1∆acidic-kanMX6

ura3∆0

This study

YJC7365 MATa Myo3-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 pan1∆acidic-kanMX6

ura3∆0

This study

YJC7366 MATa Myo3-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 pan1∆acidic-kanMX6

ura3∆0

This study

YJC7369 MATa Pan1-GFP-SpHIS5 his3∆1 leu2∆0 myo3∆acidic-hphMX6 myo5∆acidic-kanMX4 met15∆0 ura3∆0 This study

YJC7370 MATα Pan1-GFP-SpHIS5 his3∆1 leu2∆0 myo3∆acidic-hphMX6 myo5∆acidic-kanMX4 met15∆0

ura3∆0

This study

YJC7371 MATα Pan1-GFP-SpHIS5 his3∆1 leu2∆0 myo3∆acidic-hphMX6 myo5∆acidic-kanMX4 met15∆0

ura3∆0

This study

YJC7372 MATa Pan1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 myo3∆acidic-hphMX6

myo5∆acidic-kanMX4 met15∆0 ura3∆0

This study

Continued on next page
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YJC7373 MATα Pan1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 myo3∆acidic-hphMX6

myo5∆acidic-kanMX4 met15∆0 ura3∆0

This study

YJC7374 MATα Pan1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 myo3∆acidic-hphMX6

myo5∆acidic-kanMX4 met15∆0 ura3∆0

This study

YJC7376 MATα Las17-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC7377 MATa Las17-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC7395 MATα Myo5-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0 This study

YJC7396 MATa Myo5-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0 This study

YJC7397 MATα Myo5-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0 This study

YJC7398 MATa Myo5-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 pan1∆acidic-kanMX6

ura3∆0

This study

YJC7399 MATa Myo5-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 pan1∆acidic-kanMX6

ura3∆0

This study

YJC7400 MATα Myo5-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 pan1∆acidic-kanMX6

ura3∆0

This study

YJC7402 MATa Las17-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC7403 MATa Las17-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX6 myo5∆acidic-natMX4

pan1∆acidic-kanMX6 ura3∆0

This study

YJC7404 MATα Las17-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX6 myo5∆acidic-natMX4

pan1∆acidic-kanMX6 ura3∆0

This study

YJC7405 MATα Las17-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX6 myo5∆acidic-natMX4

pan1∆acidic-kanMX6 ura3∆0

This study

YJC7406 MATa Las17-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX6 myo5∆acidic-natMX4 ura3∆0 This study

YJC7407 MATα Las17-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX6 myo5∆acidic-natMX4

ura3∆0

This study

YJC7408 MATa Las17-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX6 myo5∆acidic-natMX4 ura3∆0 This study

YJC7409 MATa Las17-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0 This study

YJC7410 MATα Las17-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0 This study

YJC7411 MATa Las17-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0 This study

YJC7430 MATα pan1∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC7431 MATa pan1∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC7432 MATα pan1∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC7433 MATa pan1∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX6 myo5∆acidic-kanMX4

ura3∆0

This study

YJC7434 MATa pan1∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX6 myo5∆acidic-kanMX4

ura3∆0

This study

Continued on next page
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YJC7435 MATa pan1∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX6 myo5∆acidic-kanMX4

ura3∆0

This study

YJC7436 MATa pan1∆acidic-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 ura3∆0 This study

YJC7437 MATa pan1∆acidic-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 ura3∆0 This study

YJC7438 MATa pan1∆acidic-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 ura3∆0 This study

YJC7439 MATα las17∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC7440 MATα las17∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC7441 MATa las17∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC7442 MATα las17∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX6 myo5∆acidic-kanMX4

ura3∆0

This study

YJC7443 MATa las17∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX6 myo5∆acidic-kanMX4

ura3∆0

This study

YJC7444 MATa las17∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX6 myo5∆acidic-kanMX4

ura3∆0

This study

YJC7445 MATa las17∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0 This study

YJC7446 MATα las17∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0 This study

YJC7447 MATa las17∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0 This study

YJC7448 MATα myo3∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo5∆acidic-kanMX4 ura3∆0 This study

YJC7449 MATa myo3∆acidic-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo5∆acidic-

kanMX4 ura3∆0

This study

YJC7450 MATa myo3∆acidic-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo5∆acidic-

kanMX4 ura3∆0

This study

YJC7451 MATa myo3∆acidic-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo5∆acidic-

kanMX4 ura3∆0

This study

YJC7452 MATa myo3∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC7453 MATa myo3∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC7454 MATα myo3∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo5∆acidic-natMX4 pan1∆acidic-kanMX6

ura3∆0

This study

YJC7455 MATα myo3∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo5∆acidic-natMX4 pan1∆acidic-kanMX6

ura3∆0

This study

YJC7456 MATa myo3∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo5∆acidic-natMX4 pan1∆acidic-kanMX6

ura3∆0

This study

YJC7457 MATα myo5∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-kanMX4 ura3∆0 This study

YJC7458 MATα myo5∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

YJC7459 MATa myo5∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0 This study

Continued on next page
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YJC7460 MATα myo5∆acidic-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo3∆acidic-

kanMX4 ura3∆0

This study

YJC7461 MATα myo5∆acidic-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo3∆acidic-

kanMX4 ura3∆0

This study

YJC7462 MATα myo5∆acidic-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo3∆acidic-

kanMX4 ura3∆0

This study

YJC7463 MATa myo5∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-kanMX4 ura3∆0 This study

YJC7464 MATα myo5∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-kanMX4 ura3∆0 This study

YJC7465 MATa myo5∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-kanMX4 pan1∆acidic-kanMX6

ura3∆0

This study

YJC7466 MATa myo5∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-kanMX4 pan1∆acidic-kanMX6

ura3∆0

This study

YJC7467 MATa myo5∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-kanMX4 pan1∆acidic-kanMX6

ura3∆0

This study

YJC7468 MATa myo3∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo5∆acidic-kanMX4 ura3∆0 This study

YJC7469 MATα myo3∆acidic-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo5∆acidic-kanMX4 ura3∆0 This study
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Chapter 4

PARTIAL DIFFERENTIAL EQUATION MODEL OF ACTIN
NETWORK

4.1 Introduction

Partial differential equation (PDE) approaches can well describe biological networks that

have spatially non-uniform concentrations varying over time. For intracellular actin net-

works, we develop a PDE model that includes important processes such as branching, poly-

merization, capping and severing. A key advantage of this approach is that many additional

physical assumptions can be implemented and tested in this model. These assumptions are

difficult or impossible to implement in the ordinary differential equation (ODE) models in the

previous two chapters. The most important assumption is that branching can only happen

in a branching layer near the cell membrane. This is because the actin regulator Las17 only

activates the Arp2/3 complex when it binds the coat protein Bzz1, which is attached to the

membrane. Thus, there are rarely branching events in the bulk of the network. It is hard to

separate the branching layer from the bulk using ODEs because the variables in the ODEs

represent the total counts of the proteins. However, PDE models can conveniently incorpo-

rate the branching layer because they treat the probability distribution function (PDF) of

the network, i.e. the density of F-actin at varying distances from the membrane. The total

rate of branching is obtained as an integral over a thin region of space corresponding to the
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branching layer. Therefore, the PDE model is much more accurate than the ODE model to

describe branching, a surface effect. In addition, the Brownian ratchet effect and the force

exerted on the network can be implemented in our PDE model but are difficult to include

in the ODE models.

Another advantage of the PDE model is that we can obtain the geometry of the actin

network. For example, in the cell, the actin network may be distributed in a ring region

near the membrane. The ring-like distribution can be obtained from the PDE if it is set up

using an appropriate coordinate system. This type of information is difficult to include in

ODEs. Also, in three dimensions an endocytic patch of F-actin is probably a hemisphere

like structure. The PDE model can describe this structure as well, while the ODE models

cannot. Overall, the PDE is a more complete approach to modeling the actin network. The

only trade off is that the PDE requires much more computation time than the ODEs. But

solving PDEs can be greatly accelerated using GPU algorithms. Also, because the PDE

model is deterministic, there is no need to obtain ensemble averages over many copies of the

same calculation, like the stochastic simulation in Chapter 3. Therefore, it is much faster

to calculate within the PDE model, making the PDE approach a balanced one in terms

of accuracy and computation load. Table 4.1 summarizes the three models to reveal their

advantages and disadvantages.

In this chapter, the PDE model is introduced and discussed. The general PDE has two

spatial dimensions. A simplified version of the PDE, with one spatial dimension, is derived

and applied to model endocytosis. The details of the calculation are discussed and the results
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ODE PDE Stochastic
Protein Number Yes Yes Yes
Geometry No Yes Yes
Brownian Ratchet No Yes Yes
Spatial Concentration No Yes Yes
Computational Load Low Medium High
Ensemble Average No No Yes

Table 4.1: Different aspects of the three models.

are presented. We find that the PDE model not only matches the experimental data and the

stochastic model well, but also makes a rich set of predictions for experimental conditions

that have not yet been studied. The PDE model predicts several types of dynamic behaviors,

including single transient pulses, repeating pulses and permanent patches, depending on the

parameter values.

4.2 General Theory

The general model we propose is a two dimensional PDE written as

∂ρ (x, y, t)

∂t
=

l(y,t)∑
i=1

kbr (y + i)

2
ρ (x− i, y + i, t)

+

l(y,t)∑
i=1

kbr (y + i)

2
ρ (x+ i, y + i, t)− ksevρ (x, y, t) , (4.1)

where x and y are position variables in the membrane and perpendicular to it, kbr is a

spatially dependent branching rate, l is a space- and time-dependent filament length, and

ρ (x, y), representing the number of subunits at (x, y), is the non-normalized distribution

function of the subunits in the network. The rate parameters are the same as those in
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Chapter 3. The PDE is constructed in a discrete coordinate system, in which the smallest

unit of the coordinate in both x and y directions is one subunit. The subunit coordinate can

be converted to a length coordinate considering that each subunit is 2.7nm long, and that

the filaments have either a 45◦ or −45◦ angle with respect to the y axis, see Fig. 4.1.

x

y

(x+4,y+4)(x-4,y+4)

(x,y)

Figure 4.1: In this case, l = 4. Four branches from the left (dashed lines) and four branches
from the right (solid lines) can give one more subunit at (x, y) (circle). All the possible
starting points are shown in solid dots. x axis is lateral and y axis is vertical.

Fig. 4.1 explains the geometry treated by Eq. 4.1, and the coordinates, for the case of

l = 4. There are in total eight possible locations from where a new branch can reach a point
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(x, y), four on the left and the other four on the right. For each new branch reaching (x, y),

ρ (x, y) is increased by 1. The branching process from the left four locations is described by

the first term in Eq. 4.1, while branching from the right four locations is from the second

term. The third term in Eq. 4.1 represents the main actin disassembly mechanism, which we

take to be severing. There are thus a total of eight filaments that can increase the subunit

number at (x, y) by one. These filaments are plotted in Fig. 4.1 in different colors. The

filaments branching from the left are dashed lines and the filaments from the right are solid

lines. For a given value of the filament length l, Eq. 4.1 describes all the possible branching

events. In more general cases, l is not a constant, but determined by polymerization and

capping. The calculation of l will be discussed in the next section.

2πRcell
x

0

Rcell

cut

y

Figure 4.2: A flat network can approximately describe the actin cortex around the cell.

Using the PDE 4.1, the actin network in different shapes and configurations can be well
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described. For cell migration, the actin network is distributed near the inner side of the

membrane, and constitutes the actin cortex, shown in Fig. 4.2. Because the circumference

of the cell, 2πRcell, is much larger than the depth of the network, it is convenient to assume a

flat network with periodic boundary conditions, so that ρ (x = 2πRcell, y, t) = ρ (x = 0, y, t).

During endocytosis, some models assume that actin network looks like a pudding which

is hollow in the middle whereas in others, it is believed to be a hemisphere [95]. This

complicated hollow-pudding shape can be described by treating only the cross-section if

azimuthal symmetry is assumed. The cross-section reduces the dimension of the network

from three to two. After calculating the actin distribution in the cross-section using the

PDE method, a rotation about the y axis gives the three dimensional network back.

From the above examples, we see that Eq. 4.1 can describe phenomena as diverse as cell

migration and endocytosis, when certain approximations or symmetry are assumed. The

equation is generally applicable to actin dynamics in various contexts. In the next section,

an even simpler version of Eq. 4.1 is derived, and its application to endocytosis is discussed.

4.3 Simplified Model

The general equation 4.1 provides a detailed description of actin network in a rather simple

form. However, it is even simpler if we ignore one more dimension. In the case of endocytosis,

the y dimension is more important than x because the force is dependent only on y. Also,

the branching layer depends on y. Although the Las17 ring depends on x, we can make an

approximation that the actin network is not much wider than the ring. We thus assume

that branching is independent of x and do not treat the Las17 ring explicitly. By integrating
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both sides of 4.1 with respect of x, we obtain

∂ρ (y, t)

∂t
=

l(y,t)∑
i=1

kbr (y + i) ρ (y + i, t)− ksevρ (y, t) . (4.2)

The implementation of Eq. 4.2 depends on various assumptions.

1. Branching Function. The branching is determined by the Las17 number L, the

branching layer thickness ybranch, and the maximum branching rate kmaxbr ,

kbr (y) = kmaxbr Le
− y−ymem
ybranch . (4.3)

The branching function monotonically decreases as the branching point gets away from

the membrane, mimicking the branching layer.

2. Las17. The Las17 dynamics is the same as in the ODE model of Chapter 3, except

that the F-actin pulling off the Las17 is not the total F-actin but rather the branching

rate determined by the branching layer. The rate equation for L is

dL

dt
= k0L

2 (L2 − L)− αFbr (4.4)

Fbr (t) =

∫ ymax

ymin

kbr (y) ρ (y, t) dy, (4.5)

where ymin and ymax are shown in Fig. 4.3.
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y
ymax

ymin
ymem

Figure 4.3: A schematic of the actin network and variables.

3. Membrane Dynamics. The membrane near the endocytic site is assumed to move

according to the dynamics of actin network. We assume that the central region of the

membrane is attached to the Sla2 cap, thus being fixed to a characteristic position in

the actin network, such as the average position of all of the subunits. In this chapter,

we ignore the force caused by membrane bending because it is much smaller than the

force caused by the turgor pressure. The peripheral region of the membrane undergoes

Brownian motion, characterized by the Langevin equation

dymem
dt

=
1

γ
f (t) +

1

γ
frand, (4.6)
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where f (t) and frand are deterministic and random forces, and γ is a drag coefficient.

The inertia is ignored considering that the membrane moves in over-damped environ-

ment.

4. Force Balance. The forces exerted on the membrane are from the turgor pressure

(ftp) and actin polymerization (fact). We assume that the actin network can exert

force on the membrane and thus be subject to forces from the membrane, only when

there is enough F-actin to exert a pulling force on the endocytic coat. Otherwise, the

polymerization is not subject to any forces. The actin force depends on how deep the

network is embedded into the membrane. The two forces and the total force are

ftp (t) =


200 pN when F (t) > 400

0 otherwise

(4.7)

fact (t) =

∫ ymem

ymin

[y − ymem (t)] ρ (y, t) dy (4.8)

f (t) = ftp (t) + fact (t) . (4.9)

5. Filament Length l. The length of a new branch l growing to a point y is determined

by how many subunits can be polymerized before the filament is capped. Also, l is

reduced when force is exerted, based on a factor from the Brownian ratchet mechanism

slowing of polymerization:

B (t) = e
− f(t)a
Natt(t)kBT , (4.10)
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where

Natt (t) = ρ (ymem + 1) . (4.11)

Thus

l (y, t) =
lmax = konG

kcap
when y − ymem (t) ≥ 0

lmaxB (t) when [ymem (t)− y] ≥ lmaxB (t) ,

[ymem (t)− y] [1− 1/B (t)] + lmax else

(4.12)

in which the three possible lengths are illustrated in Fig. 4.4. In the third case, the

part affected by the Brownian ratchet (embedded in the membrane) is deducted from

lmax. The embedded part is then added back, and multiplied by the Brownian ratchet

factor Eq. 4.10.
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y

y

y

3. Partially affected by Brownian ratchet

ymem

1. Not affected by Brownian ratchet
(outside membrane)

2. Completely affected by Brownian ratchet

Actin 
filament

Figure 4.4: A schematic of possible filament lengths l. 1. When the new branched filament
(red) is completely outside of the membrane, l is not affected by the Brownian ratchet,
corresponding to the first equation in Eq. 4.12. 2. When the new branched filament (green)
is completely embedded in the membrane, l is completely affected by the Brownian ratchet,
corresponding to the second equation in Eq. 4.12. 3. When the new branched filament
(partially green and partially red) is partially embedded in the membrane, l is partially
affected by the Brownian ratchet effect, corresponding to the third equation in Eq. 4.12.

Below is the table of summarizing the defined variables, functions and parameters.
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Variable/Function Physical Meaning
x lateral direction of the network
y vertical direction of the network
t time
l length of branched filament in subunit number
ρ (x, y, t) number of subunit at (x, y, t)
kbr branching function
Fbr total F-actin pulling Las17
L Las17
ymem position of the membrane
ymin lowest subunit in the network
ymax highest subunit in the network
f total force
ftp turgor pressure force
fact actin force
Natt attaching filament number
Parameter Physical Meaning
γ damping coefficient
ybranch characteristic width of the branching layer
lmax longest filament length

Table 4.2: The table of variables, functions and parameters defined in this chapter.

4.4 Results: PDE v.s. Experiment

The PDE model can match the wild-type experimental data well. In Fig. 4.5, the time

courses of F and L from the PDE model, in solid lines, match the experimental data points

very well. F from the PDE model is calculated as

F (t) =

∫ ymax

ymin

ρ (y, t) dy. (4.13)

The parameters are optimized using the same method as in Chapter 3. A clear pulse behavior

is present in the PDE model, just as in the ODE and the stochastic models. Also, the slow
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assembly of the Las17 is reproduced. However, comparing the PDE model to the other two

models, its advantages are prominent.

L PDE
F PDE
L EXP.
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Figure 4.5: PDE result matches experiment for WT.

First, the PDE model is much more complete than the ODE model in representing the

actin network. The PDE model incorporates the branching layer, Eq. 4.3, and the Brownian

ratchet, Eq. 4.10. Second, the PDE model results agree better with the stochastic model

results for the same choice of parameters. Third, the computational load for the PDE is

considerably lower than the stochastic model. Optimizing the PDE model to match the

experimental data is feasible, unlike optimizing the stochastic model. We ignore the random

force in the PDE model for simplicity. Thus there is no need for calculating ensemble average
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of the PDE model because it is deterministic. This also obviates the calculation of random

numbers in each time step, which is computationally intensive.

In short, the PDE model is overall a complete and computationally friendly model. Study-

ing this model is fast and convenient.

4.5 Results: PDE v.s. ODE

The additional physical properties entering the PDE model affect the calculated properties

strongly. We use the same parameters as in the previous section, in the ODE model from

Chapter 3. The result of the ODE is very different from that of the PDE, see Fig. 4.6. From

the PDE model, a F-actin pulse appears after a Las17 pulse. Both pulses last for normal

time periods and reach normal peak heights as in the experiments. However, from the ODE

model, the F-actin pulse arrives much earlier and the Las17 pulse does not appear. Also,

the F-actin peak height is considerably higher. This difference is hard to reconcile due to

the nonuniform actin distribution seen in Fig. 4.6 on the right. Starting with a truncated

uniform distribution of F-actin (red curve), the distribution becomes neither uniform nor

Gaussian after seconds of simulation. We can not directly add a branching layer or force

layer to the ODE model without knowing the distribution. Therefore, the ODE can only

serve as a qualitative guide for the stochastic model to match experiments. It can not help

to avoid the very time-consuming parameter optimization in the stochastic model. However,

the PDE model not only represents the experiments well, but also agrees with the stochastic

model to a large extent. We believe the PDE model agrees with the stochastic model (the

most realistic model) because the PDE incorporates the branching layer and the force layer.

154



We present the comparison between the two models in the next section.
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Figure 4.6: PDE and ODE do not agree when given the same parameters. PDE also predicts
the spatial distribution of F-actin.

4.6 Results: PDE v.s. Stochastic Model

The PDE model generally agrees well with the stochastic model. Fig. 4.7 shows typical

comparison results. Using the same optimized parameters, and some minor modifications to

the stochastic model, we see a good match between the two models. The stochastic model

then serves to generate a vivid representation of the PDE model. We can use the same

three dimensional graphics as in Chapter 3. On the other hand, the PDE model serves as a

great tool to search the parameter space for the stochastic model. First, the PDE model can
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assist the stochastic model to match the experiment. Second, the PDE model can search

the parameter space widely to explore possible behaviors. Not only is the PDE model faster

than the stochastic model in doing these things, the fact that it is deterministic is helpful

in some cases. For example, it is sometimes hard to tell whether there is an oscillation in a

stochastic time course or just a random fluctuation near a steady state. But it is clearly seen

in the PDE model. In the next section, there are a couple of concrete examples of searching

the parameter space.

L PDE
L SIM.

La
s1

7

0

20

40

60

80

100

time (s)
0 10 20 30 40 50

F PDE
F SIM.

F-actin (10
4)

0

0.5

1

1.5

2

time (s)
0 10 20 30 40 50

Figure 4.7: PDE model agrees with the stochastic model of Chapter 3.

156



4.7 Results: PDE Phase Diagram

In this section, we explore the behaviors of the PDE model by varying two parameters at

a time. Then, four characteristic properties are calculated, RF , Fmax, RL and Lmax. Fmax

and Lmax are the maximum values of F-actin and Las17 during a given time course. RF is

the ratio of the area under the F (t) time course and the product Fmax × ttot, where ttot is

the total time of the time course. RL is defined in the same way for L. RF and RL can be

written as

RF =

∫ ttot
0

F (t) dt

Fmax × ttot
, (4.14)

LF =

∫ ttot
0

L (t) dt

Lmax × ttot
. (4.15)

Then RF and LF near 1 correspond to persistent patches, values near 0 correspond to

transient pulses, and intermediate values correspond to oscillations.

In exploring the possible range of behaviors of the model, we first vary the first two

parameters kbr and k0. The results are plotted in Fig. 4.8. In the first row of the RF heat

map, we can see a clear transition from single pulse to oscillation, then to permanent patch,

as kbr decreases. We need to ignore the left two boxes in the top row because Fmax is too

small to obtain a meaningful value of RF (see the Fmax cold map for reference). In these

two cases, the F-actin can not reach the 400 threshold to initiate the turgor pressure force

in Eq. 4.7. For the rest of the boxes in the first row, the phase transition is represented by

three time courses shown in the figure.
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Figure 4.8: hem,eThe phase diagram of F-actin with three characteristic time courses
corresponding to three green circle. Two magenta squares mark the wild-type and the
las17 ∆acidic pan1 ∆acidic mutant. ttot = 1000s is used in the calculation. For the time
courses, only 400s is plotted.

158



In the top time course, both F and L reach their non-zero steady state. RF is large

because the area below the time course is large. In the second time course, both F and L

oscillate. RF is medium because F is small for most of the time, despite having repeating

spikes. In the third time course, F has a single peak then vanishes, while L also has a single

peak but reaches L2 eventually. RF is low because F is near zero for most of the time except

the single peak. L approaches L2 instead of 0 because of vanishing F , which is the only

negative feedback on L. In this chapter, we ignore the spontaneous F-actin nucleation term

contained in the stochastic model of Chapter 3, for simplicity. In more realistic cases, F

will reappear by spontaneous nucleation. Then L will decrease due to the negative feedback

from F . The Fmax cold map in Fig. 4.8 shows the transition from low to high then to low

Fmax when decreasing kbr. Thus the maximum Fmax is obtained for intermediate kbr.

We mark both the wild-type point and the las17 ∆acidic pan1 ∆acidic mutant point in

the heat and cold maps . We see that Fmax is larger in the las17 ∆acidic pan1 ∆acidic box

than in the wild-type box, which agrees with the result in Chapter 3. A comparable difference

is not seen in RL or the Lmax map (Fig. 4.9) because L eventually reaches L2 in both cases.

However, the single peak of L is higher in the las17 ∆acidic pan1 ∆acidic mutant than the

wild-type. Interestingly, the heat map of RL is opposite to the heat map of RF . But the

phase transition is similarly clear. However, we note that the high asymptotic value of L

may be an artifact of our simplifications.

Varying the two parameters α and ftp also gives a phase transition. The results for F are

shown in Fig. 4.10. We mark the wild-type point and a point corresponding to the sla2 ∆
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mutant on the heat maps. We see that both RF and Fmax are larger at the sla2 ∆ point,

which agrees with Chapter 3 in that the sla2 ∆ mutant gives a large and permanent patch

of F-actin.

Overall, we see a phase transition of the PDE model that resembles the Hopf bifurcation,

in the sense of a transition from static to oscillating behavior. Various results from the PDE

model match the previous ones in Chapter 3. The PDE model provides a powerful tool to

explore the possible behaviors of the system.
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Figure 4.9: Phase diagram of Las17 with varying kbr and k0. Symbols are as in Fig. 4.8.
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4.8 Conclusion

In this chapter, we have developed a model of the actin network based on partial differential

equations. The PDE model is more realistic than the ODE model in Chapter 3 because the

PDE model includes the branching layer, the force layer and the Brownian ratchet effect.

On the other hand, the PDE model is much easier to solve than the stochastic model in

Chapter 3. There is no need for calculating the ensemble average to get meaningful results.

In addition, the PDE is more precise than the stochastic one when exploring the parameter

space. Because the PDE is deterministic, it can precisely differentiate steady states from
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oscillations, while the stochastic one has difficulties in making this distinction due to its

random nature.

In short, the PDE model is a well balanced model between realism and computational

load. The new behavior predicted by the PDE model is of high interest for predicting results

of experiments yet to be performed.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

Actin plays central roles in cell migration and endocytosis. First, actin functions like a motion

switch in cell migration. When subject to a fast global inhibitor, such as membrane tension,

the symmetry of actin network can be spontaneously broken. In this case, more actin network

assembles at the leading edge than at the trailing edge. The cell thus moves following the

leading edge. The cell can change direction by switching the majority of the actin network

from the leading edge to the trailing edge when large fluctuations or extracellular cues occur.

Second, actin functions like a pulse during endocytosis. Actin network assembles at endocytic

sites where actin regulators have previously arrived. The feedback interactions among the

actin, actin regulators and cell membrane lead to a transient burst of actin network, which

disappears after tens of seconds when cargo carried by the vesicle is ready to be released.

The pulse behavior is sensitive to various interventions. The actin pulse can be delayed, or

even vanish, when the regulators or other important endocytic proteins are mutated.

The origins of the switch function and pulse functions of actin are studied throughly in

this thesis. For cell migration, the symmetric distribution of actin network at two ends of a

cell is destabilized by small fluctuations when there is large enough membrane tension. Any

small difference in filament numbers at the two ends (∆N) leads to a larger difference in
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subunit numbers at the two ends (∆F ). This is because the leading edge has more filaments,

thus experiencing smaller force per each filament, while the trailing edge experiences a larger

force per filament. According to the Brownian ratchet effect [21], the filaments at the leading

edge can polymerize faster to assemble more actin subunits, increasing ∆F . In turn, ∆F

causes a larger ∆N because the filaments at the leading edge are longer, and therefore

disassemble slower than those filaments at the trailing edge. These two mechanisms behave

like the activator-activator switch from Chapter 1.

However, when the membrane tension is not large enough, the asymmetric states vanish

and the symmetric state becomes stable again. Because of the small tension, the Brownian

ratchet effect is also small. A depolymerization effect dominates the Brownian ratchet effect.

The depolymerization effect is based on the fact that the leading edge has more filaments,

and thus more barbed ends and pointed ends. The depolymerization happens at those ends.

The total depolymerization from all the filaments is thus faster at the leading edge. The

depolymerization then diminishes the excessive filaments at the leading edge ∆N by reducing

∆F . The Brownian ratchet effect and the depolymerization effect compete. If the Brownian

ratchet effect dominates, then the stationary state is unstable, otherwise the stationary state

is stable. The membrane tension enhances the Brownian ratchet effect, and is thus the key

to the switch function of the actin network.

For endocytosis, the actin network assembles and then disassembles, during a period of

time of about 30 seconds. Regulators that activate the actin network assembly also behave

like pulses. Here, actin and its regulators are modeled as an excitable feedback system,
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similar to the FitzHugh-Nagumo model [3, 26]. Not only do actin and its regulators behave

like pulses, they also have a counter-intuitive behavior. When the regulators are mutated,

causing a lower branching rate, even more actin assembles at each endocytic site. Studying

this counter-intuitive phenotype, we found that a negative feedback from F-actin on its

regulator Las17 is required. The negative feedback is most likely driven by a process in

which actin filaments can pull Las17 molecules off the membrane, which then leave the

endocytic site. The mechanism behind the phenotype is a combination of two opposing

effects. First, when the branching rate is reduced, fewer actin filaments are branched via

each Las17 molecule. Second, each Las17 molecule is less likely to be pulled off the membrane

by the actin filaments. Overall, for some branching rates, somewhat smaller than the wild-

type branching rate, a larger number of “weaker” mutant Las17 molecules help branch more

F-actin than the “stronger” but fewer wild-type Las17 molecules. Another feature of the

actin and regulator pulses is that the regulator pulse builds up much more slowly than

the actin pulse. We found that this feature is fulfilled in our model when actin network

assembles autocatalytically. The keys to the correct pulse function of the actin network are

thus the negative feedback mechanism that F-actin can pull Las17 off, and the autocatalytic

branching of F-actin.

Studying the models for cell migration and endocytosis is challenging because of the com-

plexity of the processes. The stochastic simulation is the most realistic approach. However,

it is also the most computationally intense approach. It is thus hard to explore all possible

behaviors or fit the stochastic model to experimental data. On the other hand, the ordi-
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nary equation (ODE) approach is the most convenient one to calculate. It is easy to fit the

ODE model to experiments. However, it is not easy to incorporate all physical or chemical

processes, particularly those depending on the spatial distribution of actin. Therefore, the

ODE model is sometimes not realistic enough to reveal all possible mechanisms of the actin

network.

To overcome these challenges, we developed a partial differential equation (PDE) model

that balances computational load and realism. The PDE model is capable of including

important mechanisms that are difficult to include in the ODE model, such as the Brownian

ratchet effect, the branching layer, and the force layer. On the other hand, the PDE model

is much easier to calculate than the stochastic model. Also, there is no need to calculate

ensemble averages to obtain meaningful results from the PDE model. The PDE model

can also be more accurate than the stochastic model for exploring possible behaviors, such

as defining oscillations and stationary states, because the key features are more readily

visible. Therefore, the relatively realistic and computationally efficient PDE model opens

many opportunities for the studying actin network in various biological processes.

We simplified the PDE model to study endocytosis in Chapter 4. The simplified PDE

model has only one spatial dimension, but it matches the experimental data and even the

stochastic simulations of Chapter 3 very well. The PDE model also predicts a rich spectrum

of possible behaviors like oscillations and steady states of actin and its regulator. The results

from the PDE model suggest several possible experiments for verifying the model predictions.
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5.2 Future Work

The continuation of the work in this thesis has several possible directions. First, the feed-

back mechanism between actin and its regulators in Chapter 3/4 could be included in the

cell migration model. We used an F-actin-independent nucleation mechanism and constant

nucleator count in the model of Chapter 2. However, the autocatalytic branching of F-actin

and the negative effect of F-actin on nucleators could be important in cell migration. It

will be interesting to explore the spectrum of behaviors in this extended model by varying

the branching rate and the membrane tension. In Chapter 2, we saw a second order phase

transition when varying the membrane tension coefficient. The symmetric state is stable for

small tension coefficient and unstable for large tension coefficient. However, the transition

in cell migration could be first order, which means for some parameter values, both the

symmetric state and the asymmetric state are stable. In these cases, the cell needs a large

excitation to jump from the stable symmetric state to the stable asymmetric state, in order

to start migration. Using a similar PDE model as in Chapter 4, this first order transition

might be discovered. It will be then clear what physical or chemical properties are required

for the first order transition.

Second, in the models of endocytosis, a more detailed interaction mechanism between

actin filaments and the Sla2 cap required for exerting pulling forces could be added. At

present, the models treat the interaction as a step function. The Sla2 cap is attached to the

moving actin network when there is enough actin, and left on the membrane otherwise. The

step function mechanism creates artifacts that might be prevented if a smoother interaction
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mechanism is used.

Third, some requirements and predictions of the models call for experimental verifications.

For example, the possible biological mechanisms that can lead to negative feedback from F-

actin on Las17 need to be screened by experiments. Two possible experiments could verify

whether the negative feedback is caused by F-actin pulling Las17 molecules off membrane or

by membrane curvature generation. First, the curvature effect can be examined if the osmotic

pressure can be dramatically increased. The high osmotic pressure can reduce the membrane

curvature, and can be achieved by diluting the cell suspension with a medium having low

ionic concentration [101]. If the Las17 count still drops and eventually vanishes, then we will

know that the membrane curvature can not cause the negative effect. Second, the curvature

effect can also be examined if the membrane curvature can be generated without F-actin. We

can achieve this requirement by treating the cells with Latrunculin, and then constitutively

activating channels that transport glycerol out of the cell, such as Fps1 [130, 131]. This

could allow other proteins to create membrane curvature, even without F-actin. In this case,

if the Las17 count still drops and eventually vanishes, we will then know that the membrane

curvature leads to the negative feedback. Also, the oscillations in actin and regulator counts,

seen in Chapter 4, might be observed in experiments with appropriate conditions. For

example, we can treat budding yeast cells with varying concentrations of CK-666, a molecule

that can interfere with Arp2/3 complex activation, to reduce the branching rate. Some gene

transformations might also match the requirement for the oscillations predicted by the PDE

model, which is to properly reduce the branching rate and increase the Las17 assembly rate.
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Finally, the PDE model developed in Chapter 4 can be viewed as a general growth model.

The model can describe biological systems that can grow, in addition to the actin network.

For example, the clathrin coat, which can expand and create membrane curvature, might be

modeled using a similar PDE. The growth model can also calculate the spatial distribution

of polymerized molecules. These molecules diffuse in the cytoplasm and occasionally add to

growing polymers of the same type of molecules. It is hard to describe the growth part of

this process using the traditional diffusion-reaction equation approach.

In short, the author looks forward to seeing applications and/or expansions of the ideas

and methods implemented in this thesis.
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