
Washington University in St. Louis
Washington University Open Scholarship

Arts & Sciences Electronic Theses and Dissertations Arts & Sciences

Summer 8-15-2015

Programming the Myocardium: the Notch-Wnt
Axis
Benjamin S. Gillers
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds

Part of the Biology Commons

This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted
for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For
more information, please contact digital@wumail.wustl.edu.

Recommended Citation
Gillers, Benjamin S., "Programming the Myocardium: the Notch-Wnt Axis" (2015). Arts & Sciences Electronic Theses and Dissertations.
526.
https://openscholarship.wustl.edu/art_sci_etds/526

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/art_sci_etds/526?utm_source=openscholarship.wustl.edu%2Fart_sci_etds%2F526&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


WASHINGTON UNIVERSITY IN ST. LOUIS 
Division of Biology and Biomedical Sciences 

Developmental, Regenerative, and Stem Cell Biology 
 

Dissertation Examination Committee: 
Stacey Rentschler, Chair 

Donald Elbert 
Robert Mecham 
Jeanne Nerbonne 

David Ornitz 
Jim Skeath 

 
 
 
 

Programming the Myocardium: the Notch-Wnt Axis 
by 

Benjamin Saul Gillers 
 
 

A dissertation presented to the  
Graduate School of Arts & Sciences 

of Washington University in 
partial fulfillment of the 

requirements for the degree 
of Doctor of Philosophy 

 
 
 
 

August 2015 
St. Louis, Missouri 

 
 
 
 
 
 
 
 
 
 

 

	  



 

 

 

 

 

 

 

 

 

 

© 2015, Ben Gillers 

 

	  



	   	  ii	  

Table	  of	  Contents	  
List	  of	  Figures…………………………………………………………………..…………………………………iv	  

Abbreviations……………………………………..……………………………………………………………….v	  

Acknowledgements……………………………………………..………………………...……………………vi	  

Abstract………………………………………………………………………………………………………….….vii	  

Chapter 1: Introduction………………………………………………………………………………..…………1 

 1.1     The Cardiac Conduction System …………………………………………………………1 

 1.2     Wnt Signaling……………………………………………………………………………………3 

 1.3     Notch Signaling…………………………………………………………………………………6 

 1.4     Cardiac Gene Therapy…………………………………………..……………………………7	   

Chapter 2: Canonical Wnt Signaling is Required for AVC Development……………………11 

 2.1     Canonical Wnt Signaling is Active in the AVC ……………………………..……11 

 2.2     Loss of Wnt Signaling Results in Tricuspid Atresia………………………..……12 

 2.3     Loss of Wnt Signaling Results in Loss of the AVC  ………………….………17 

 2.4     Wnt is Not Required Early maintenance of the AVC…,,……………………..…20 

 2.5     Contributions ………………………………………………………………………….………21 

Chapter 3: Chapter 3: Wnt programs an AVJ Phenotype………………………..…………………22 

 3.1     Wnt GOF Induces Ectopic AVJ Morphology………………………………………22 

 3.2     Ectopic Fibrofatty Depositions are not Myocyte Derived………………………23 

 3.3     Wnt GOF Induces an AVJ Electrical Phenotype…………………………………..25 

 3.4     Wnt GOF Downregulates Working Myocardium Gene Expression….….…27 

 3.5     Adult Activation of Wnt Signaling Downregulates Scn5a…………………..…32 

 3.6     Contributions………………………………………………………………………………..…35 

Chapter 4: Wnt Signaling is Inhibited by Notch Signaling ………………………….……………36 

 4.1     Notch Signaling Downregulates Canonical Wnt Signaling……………………36 

 4.2     Notch Signaling Inhibits the AVJ Phenotype…………………………………….…38 

 4.3     Wnt Signaling Rescues Notch Induced Ventricular Preexcitation…………..40 

 4.4     Wnt GOF Rescues Notch GOF Induced Gene Expression…………...……43 

 4.5     Contributions……………………………………………………………………………..……44 

Chapter 5: Gene Therapy In Vivo and In Vitro …………….…………………………………………46 



	   	  iii	  

 5.1     Mouse Gene Painting In Vivo……………………………………………………………46 

 5.2     Mouse Gene Painting In Vitro…...………………………………………………………49 

 5.3     Human Cardiac Slices………………………………………………………………………51 

 5.4     Contributions………………………………………………………………..…………………55 

Chapter 6: Methods…………………………………………..…………………………………………………56 

 6.1     Mice………………………………………………………………………………………………56 

 6.2     Histology and Immunohistochemistry………………………………..………………56 

 6.3     In Situ Hybridization……………………………………………………..…………………57 

 6.4     Reverse Transcription-Quantitative Polymerase Chain Reaction……………57 

 6.5     Optical Mapping………………………………………………………………………………57 

 6.6     In vivo Gene Painting and Bioluminescent Imaging……………………..………58 

 6.7     In Vitro Mouse Gene Painting………………………………………………...…………59 

 6.8     In Vitro Human Cardiac Slice Culture……………………………………..…………59 

 6.9     Statistical	  Analysis…………………………………………………………..………………59 

Chapter 7: Conclusion…………………………………………………………………………….……………61 

 7.1     What regulates the Notch/Wnt balance?	  …………………………..…………………61 

 7.2     How does Notch Inhibit Wnt Signaling?	  …………………………………..…..……63 

 7.3     What Causes Specific Right Sided Phenotypes?	  ……………...……..……………64 

References…………………………………………………………………………………………………………66	  

	  

 
	  
	  

 
	  



	   	  iv	  

List of Figures 
Figure 1: Canonical Wnt signaling is active in the developing AVC   …………..……..12 

Figure 2: Loss of Wnt signaling results in congenital heart defects………………...…..13 

Figure 3: Loss of β-catenin leads to abnormal RV development …………......………..15 

Figure 4: Deletion of β-catenin leads to valve defects.…..…………..………...……….15 

Figure 5: RA to RV blood flow is abrogated in Wnt LOF hearts……........………….....16 

Figure 6: Wnt LOF mice exhibit septal defects.……………………….………………..17 

Figure 7: Progressive loss of AVC myocardium in Wnt LOF embryos .……...…...…...19 

Figure 8: Canonical Wnt signaling is not required for early AVC development….…….20 

Figure 9: Model for the requirement of Wnt signaling in the AVC ………………..…...21 

Figure 10: Ectopic Wnt activation induces an AVJ morphology………………...……...24 

Figure 11: Ectopic Wnt activation induces an AVJ electrical phenotype………...……..26 

Figure 12: PR interval and QRS interval prolongation in Wnt GOF mice……….……...27 

Figure 13: Ectopic Wnt activation induces AVJ gene expression…………….….……...31 

Figure 14: Adult activation of Wnt alters gene expression….…………………………..34 

Figure 15: Model for programming the AVJ via Wnt LOF and GOF…….…...………..35 

Figure 16: Perinatal Notch activation inhibits the AVJ……....………………….…..…..39 

Figure 17: Inhibition of  Wnt is required for ventricular preexcitation.…………..……..41 

Figure 18: Wnt LOF does not cause ventricular preexcitation………………..…..……..42 

Figure 19: Wnt activation rescues Notch induced regulation of Scn5a……………....….43 

Figure 20: Model for programming the AVJ via Wnt and Notch…………….……....…44 

Figure 21: Wnt is involved in numerous mouse models of human disease……....……..44 

Figure 22: In vivo gene painting …………………………………………….…………..48 

Figure 23: Schematic of in vitro gene painting protocol.………………………………..49 

Figure 24: In vitro gene painting………………………………………………………...50 

Figure 25: Human slice culture………………………………...……….…...…………..54 

 

 

 



	   	  v	  

List of Abbreviations  

AC       arrhythmogenic cardiomyopathy  

AVC  atrioventricular canal 

AVN    atrioventricular node 

AVJ     atrioventricular junction 

BLI      bioluminescence imaging  

ID        intercalated disc 

NICD   Notch intracellular domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	   	  vi	  

Acknowledgements 

I thank Dr. Ben Stanger for providing tetO-NICD mice and Dr. Konrad Basler for providing DM 

mice. I would like to acknowledge Stephanie Hicks, Dr. Baas Boukens, Dr. Haytham Aly, Dr. 

Aditi Chiplunkar, Chaoyi Kang, Jon Qiao, and Kailin Baechle for their experimental 

contributions. Their individual contributions are listed at the end of each chapter. I would also 

like to thank Dr. Attila Kovacs and Carla Weinheimer of  the Mouse Cardiovascular 

Phenotyping Core in the Center for Cardiovascular Research for performing echocardiograms 

and gene painting thoracotomies, Julie Prior and the Optical Radiology Lab for BLI, and Bill 

Coleman and Marlene Scott of the Developmental Biology Histology & Microscopy Core at 

Washington University for invaluable technical assistance and guidance.  I would like to thank 

Dr. Michal Pasque, the Midwest Transplant Services, and the families of heart donors for their 

help and contributions. This work was supported by the American Heart Association and Ms. 

Pamela Marks (predoctoral fellowship 12PRE8570003). I would like to thank Dr. Igor Efimov 

and his entire lab for their fantastic collaboration. Thank you to Dr. David Curiel and Dr. Igor 

Dmitriev for their collaboration and viruses. I would like to thank my committee chair, Dr. Jim 

Skeath and my entire committee, Dr. Jeanne Nerbonne, Dr. David Ornitz, Dr. Robert Mecham, 

and Dr. Donald Elbert for their invaluable guidance and mentorship. I would like to thank my 

advisor, Dr. Stacey Rentschler for her fantastic teachings and support and the awesome 

opportunity to do my thesis research in her lab. 

 

	  



	   	  vii	  

ABSTRACT OF THE DISSERTATION 

Programming the Myocardium: the Notch-Wnt Axis 
 

by 

Ben Gillers 

Doctor of Philosophy in Biology and Biomedical Sciences 

Developmental, Regenerative, and Stem Cell Biology 

 

Washington University in St. Louis, 2015 

Professor Stacey Rentschler, Chair 

 

Heart related deaths are the number one cause of death in the United States. While heart failure 

and other mechanical issues are common, arrhythmias account for the majority of these deaths. 

By understanding the genetic architecture that patterns the normal cardiac conduction system, we 

can further deepen our understanding of how arrhythmias arise and develop targeted therapies to 

treat this deadly class of disease. I have found that canonical Wnt signaling is necessary for 

development of the atrioventricular junction. Furthermore, absence of myocardial Wnt signaling 

leads to tricuspid atresia. Overexpression of Wnt signaling leads to development of ectopic 

atrioventricular junction tissue and induces delayed conduction velocity and other 

electrophysiological properties of nodal tissue. I have further found that Wnt signaling is 

downregulated by Notch signaling and this downregulation is required for Notch induced 

ventricular preexcitation. I have also developed a gene therapy platform for testing the role of 

these genes in cultured mouse and human cardiac tissue. 
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Chapter 1: Introduction 

1.1 The Cardiac Conduction System 

The mammalian heart is comprised of four chambers: the right and left atria and ventricles. Their 

function is to pump blood throughout the body through sequential atrial and ventricular 

contraction. This contraction is regulated by the cardiac conduction system; a network of 

electrically active, specialized cardiomyocytes which control myocyte activation1. The electrical 

impulse originates in the sinoatrial node (SAN), situated in the right atrium (RA) between the 

superior and inferior vena cava. The impulse travels to the atrioventricular node (AVN) where 

the conduction velocity is decreased. This allows sequential atrial and then ventricular activation 

and contraction; thereby allowing atrial to ventricular blood flow. Crucial to this function is the 

atrioventricular junction (AVJ) in the adult heart and its embryonic precursor, the 

atrioventricular canal (AVC). The AVJ is composed of slow conducting myocardial tissue and 

the annulus fibrosis, an insulating plane of fibroblasts and adipocytes2. The annulus prevents any 

electrical conduction between atria and ventricles except through the slow conducting AVN. In 

the embryo, where the annulus is not yet formed, this electrical segregation is achieved through 

the slow conducting nature of the AVC myocardium 3. 

 

Cardiac conduction can be measured using the electrocardiogram (ECG). Leads are placed in 

different regions of the body and can measure numerous electrical properties of the heart 

including atrial activation (P wave), ventricular activation (QRS complex), and the time between 

atrial and ventricular activation (PR Interval) 4. 
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The AVC is programmed through an integrated network of transcription factors and other genes. 

The Tbox family of transcription factors, is perhaps the most important group of genes in AVC 

development. Loss of Tbx2, Tbx3, or Tbx20 all have deleterious effects on AVC development. 

Furthermore, the expression of these three genes is primarily limited to the AVC region, albeit in 

partially overlapping patterns. While Tbx2 and 3 are expressed only in myocytes, Tbx20 is 

expressed in AVC myocytes and non-myocytes. In addition to the Tbox factors, Bmp2 singling 

is required for AVC development and, likewise, its cardiac expression is primarily limited to the 

AVC region5-12. 

 

Wolff-Parkinson-White (WPW) syndrome is an important disease involving the AVJ. This 

disease is characterized by development of accessory pathways- fast conducting myocardial 

tissue which electrically connect the atria and ventricles. In addition there is loss of the annulus 

fibrosis. Most importantly, there is a reduction in the PR interval and appearance of the delta 

wave on the ECG. The patient may feel palpitations which require follow up with an ECG 13, 14. 

Several mouse models of this disease have been developed including manipulation of Tbx2, Tbx3 

and most recently, Notch signaling 15-18. By overexpressing Notch signaling in a subset of 

ventricular myocardium, accessory pathways develop, there is a dramatic PR interval shortening, 

and the annulus does not develop. Of note, this phenotype is 100% penetrant. The mechanism of 

Notch induced ventricular preexcitation will be discussed in greater detail in chapter 4. 

 

When dissecting genetic pathways in mice, many different Cre drivers are available to induce 

recombination in myocytes. The Mlc2vCre is a knock in allele in the Mlc2v locus. Importantly, 

while this Cre is activated early in development, it is only expressed in a subset of ventricular 
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myocytes. This Cre is particularly useful when perturbation of the gene of interest is embryonic 

lethal if recombined in all myocytes. The spotty expression of the Mlc2vCre allows mice with 

deleterious phenotypes to survive to adulthood. However, since it is only expressed in a subset of 

myocytes, its utility in gene expression studies is limited 19. Another common Cre is the αMHC-

Cre, a transgenic allele in which Cre is expressed under the regulation of the αMHC transgene. 

Although expressed later in development than the Mlc2vCre, this Cre is expressed in almost all 

cardiac myocytes 20. This allele is particularly useful for gene expression studies. Lastly, the 

Tbx2Cre is another usefult tool. This Cre, a knockin allele, is expressed in Tbx2 + myocytes. At 

e9.0, this is expressed only in AVC myocytes 11.  

 

1.2 Wnt Signaling 

Wnt signaling is one of the most pervasive signaling pathways in development and disease. This 

pathway is composed of numerous ligands which can bind a member of the Frizzled family of 

cell surface receptors. Frizzled, in turn, is bound to Dishevelled protein. There are two classes of 

Wnt signaling: non-canonical and canonical. Non-canonical Wnt singling is independent of β-

catenin and canonical Wnt signaling is dependent on β-catenin. There are two sub-categories of 

non-canonical Wnt signaling: the planar cell polarity pathway and the calcium handling pathway 

21-23. Canonical Wnt signaling is the focus of this dissertation and I will focus on it here. 

 

As mentioned, canonical Wnt signaling is β-catenin dependent. Normally β-catenin is translated 

in the cytoplasm and is targeted for degradation by the degradation complex, composed of Axin, 

PP2A, APC, and GSK3β. GSK3β phosphorylates β-catenin on 5 serine and threonine residues in 

exon 3 which signals for it to be degraded by the lysosome. This prevents accumulation of β-
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catenin in the cytoplasm. When a Wnt ligand reaches the cell surface, it binds the Frizzeled 

receptor, a member of the G protein Coupled Receptor family, and its co-receptor, Lrp5/6. 

Dishevelled, bound normally by Frizzled than causes translocation of the degradation complex to 

the plasma membrane. Upon this translocation, it can no longer function to target β-catenin for 

degradation. Once β-catenin accumulates in the cytoplasm it localizes to the nucleus. Once there, 

it binds one of the TCF or LEF proteins that is bound to target DNA sequences. Upon binding, 

downstream transcription is initiated 24, 25. 

 

One of the most reliable direct targets of canonical Wnt signaling is Axin2 which acts as a 

negative regulator of canonical Wnt signaling. Axin2LacZ constructs are used in cell culture and 

mice as a readout of active canonical Wnt signaling26. 

 

Canonical Wnt signaling was first discovered as a protoc-oncogene but has since been shown to 

regulate a host of developmental processes in every model organism studied such as cellular 

proliferation, cell fate specification, epithelial to mesenchymal transition (EMT), and 

mitochondrial biogenesis 22, 27-29. 

 

An important point to keep in mind when studying canonical Wnt signaling is the dual role of β-

catenin. While this protein lies at the nexus of this pathway, it also plays a fundamental role in 

cellular adhesion. β-catenin can be localized in the cytoplasm from where it translocates to the 

nucleus. However, β-catenin is also localized to the cell membrane where it stabilizes cadherins 

and thereby promotes cell-cell adhesion. In the absence of β-catenin, cadherins lack structural 

integrity and cadherins from neighboring cells do not bind each other. In myocytes, membrane β-
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catenin is primarily localized to the intercalated discs (ID) which lie at the myocyte-myocyte 

junction. It is co-localized with other important ID proteins such as N-cadherin, plakogoloin, and 

plakophillin. Integrity of the ID is crucial for normal development. Mutations in a number of ID 

genes result in arrhythmogenic cardiomyopathy (AC), a disease characterized by fibrottay 

deposition and an arrhythmia prone heart 30, 31. It has been posited, based on zebrafish models of 

AC, that loss of Wnt signaling may lead to AC 30. This hypothesis will be challenged in chapter 3 

of this dissertation.  

 

Because of the dual role of β-catenin, when over expressing or knocking out this gene, one needs 

to carefully dissect which role of β-catenin is important. A specific signaling allele of β-catenin 

was developed by Konrad Bassler’s lab in which only its signaling role but not cell adhesion role 

is perturbed. This is achieved by point mutations in the N and C termini while leaving the rest of 

the protein functional 32. I use this allele in my LOF studies in chapter 2 to specifically dissect 

the role Wnt signaling in AVC develpment. However, in the gain of function studies, in which 

exon 3 is deleted, one must be careful in interpretation of the results since not only is one 

increasing Wnt signaling but also potentially affecting cell adhesion. 

 

Wnt signaling plays many important roles in cardiac development including regulating cell 

specification and proliferation 23, 33-35. Recently, using a global knockout of the Wnt ligand, 

Wnt2, Tian et al have shown that loss of Wnt signaling leads to loss of the AVC 36. However, 

since that study used a global knockout, it remains unclear which cell type requires Wnt 

signaling. Is it the myocytes, endothelial cells, fibroblasts or other cell types? Using a myocyte 

specific model of Wnt LOF, I will address this question in chapter 2 of this dissertation.  
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1.3 Notch Signaling 

Notch signaling is another fundamental signaling pathway involved in development and disease. 

It has one of the longest histories in developmental biology, as its first allele was discovered in 

drosophila by the famous Thomas Hunt Morgan in 1917 37. While the Wnt singling cascade is 

initiated by a secreted ligand, Notch signaling is initiated by a cell surface ligand binding to a 

receptor of an adjacent cell. Because of this property, Notch signaling is famous for establishing 

boundaries between different cell and tissue types because the cells expressing the ligand can 

induce a specific fate on neighboring cells that contain the receptor. For example, hair stem cells 

are known to express the Notch Ligand whereas neighboring cells which express the receptor are 

then specified and differentiate 38.  

 

The Notch signaling cascade is activated by one of two transmembrane ligand families, delta-like 

and jagged. The signal receiving cell expresses one of four receptors, Notch1-4. Upon ligand 

binding to the receptor, the Notch IntraCellular Domain (NICD) is released due to cleavage of 

the receptor by an adam family mellaprotease. Gama secretase then cleaves the actual NICD and 

releases it for nuclear translocation. Once in the nucleus, NICD binds and activates the CSL 

transcription factor which activates downstream transcription 39. 

 

Notch signaling has long been known to play a role in multiple cancers. Many anti-Notch 

therapies have been developed and many have failed in clinical trials due to their negative side 

effects on the cardiovascular system 40. This highlights the importance of Notch signaling in this 

area. Because the heart is such a complex tissue with many regional differences, Notch signaling 
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is crucial to understanding its development. In fact, Notch signaling has long been known to be 

involved in cardiac development. The direct Notch targets, Hey1 and Hey2 are required for 

limiting Bmp2 and Tbx2 expression to the AVC. This is because Notch activity in the atria and 

ventricles inhibits Bmp2 and Tbx2 in those tissues 41, 42. Why Notch is not active in the AVC 

remains an important and open question. 

 

Because of the importance of Notch signaling in the cardiovascular system, our lab has 

previously tested the effect of cardiac Notch activation. Overexpression of NICD using the 

Mlc2vCre causes formation of accessory pathways connecting the RA and RV; similar to those 

seen in WPW patients. Furthermore, the annulus fibrosis and AV groove are lost and these mice 

develop a shortened PR interval, also characteristic of WPW patients 18. This study highlights the 

importance of regional activation of Notch signaling. When that regionality is breached, the 

specific identity of the AVJ is perturbed. The mechanism of Notch induced ventricular 

preexcitation and the involvement of Wnt signaling in this phenotype will be explored in chapter 

4. 

 

1.4 Cardiac Gene Therapy 

Gene therapy presents an important method for using Notch and Wnt signaling for therapeutic 

purposes. However promising, it has seen a long and bumpy bumpy road. In the late 1990s, it 

was presented as the next big thing in targeted therapies. However, due to the death of Jesse 

Gelsinger, a 19 year old who died due to complications in a gene therapy clinical trial, the field 

has been set back over a decade43. However, since the death of Gelsinger, a great deal has been 

learned about the challenges and risks of gene therapy and scientists have been perfecting this 
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technology ever since. As momentum for gene therapy gains, it is prime time to reinvest our 

efforts in this technology. 

 

Gene therapy, broadly defined, involves the delivery of exogenous genes to either correct a 

mutation in the patient or to overexpress a specific isoform of the gene(s) of interest 44. 

Mutational correction has been demonstrated in mice, as proof of principle, to treat sickle cell 

anemia 45. However, due to the difficulty in correcting mutations in adult cells that have low 

proliferative rates, gene therapy as an overexpression platform provides a much broader scope 

for potential therapies.  

 

Any form of delivery of genetic material can be used to this end. However, delivery of the 

coding sequence without some form of a carrier is highly inefficient in uptake into target cells. 

For this reason, viruses have been used as promising vectors. They are highly efficient at 

delivering DNA to the tissue of interest and can be modified to target specific cell types 44. 

 

The 3 main types of virus used in gene therapy are 1) lentivirus, 2) adenovirus and 3) adeno-

associated virus (AAV). The benefit of lentivirus is that it integrates within the host genome. 

Therefore, it can be used to correct host mutations and can be used for stable, permanent 

overexpression. However, therein also lies its greatest risk. Because it can insert into the genome, 

it has the potential of inserting into oncogenes or other sites that can have drastic side effects 44. 

 

For example, in a clinical trial at the turn of this millennium to treat X-linked severe combined 

immunodeficiency, one of the subjects developed T-cell leukemia due to the insertion site of the 
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gene of interest. In this particular case, the patient presented with symptoms only 2 ½ years after 

enrollment in the trial making long term follow-up absolutely imperative and proving safety here 

to be a daunting task 46. 

 

Because of this risk, for overexpression platforms, adenovirus or AAV are preferred. The benefit 

of adenovirus over AAV is that it can contain a larger insert. This is particularly important for 

multigenic constructs. However, they have the property of inducing an immune response and 

therefore, cells infected with the virus, can be cleared by the immune system, thereby defeating 

the goal of therapy. For this reason, AAV may be preferred over adenovirus by some 47. 

However, current technologies exist to prevent immune system activation by adenovirus 48. 

 

While the majority of viral based gene therapy clinical trials have taken place in the cancer 

space, there is a great deal of effort to use them for cardiovascular disease 44. The field faces 

several challenges; for example, localized delivery of the gene of interest. One can imagine that 

overexpression of a gene could be beneficial to one chamber of the heart while deleterious to the 

rest of it. For example, one of the biggest challenges in atrial fibrillation drugs remains the 

negative side effects of the drug on parts of the heart other than its target tissue 49. For this 

reason, viral injection in the blood stream is limited in its utility. One way to solve this problem 

is by developing specific targeting molecules on the viral capsid surface which would allow the 

viral particle to home in on a certain tissue or certain cell type, thereby limiting its negative side 

effects. An alterative to this method is localized injection, either catheter or surgery based. When 

developing one of these approaches, one needs to take into consideration the risks and ease of 

delivery for this procedure and balance it to the benefit of that particular therapy. 
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In this dissertation, I will first discuss the role of canonical Wnt signaling in AVC development 

and disease. I will then discuss how Wnt signaling is regulated by Notch signaling. Lastly, I will 

discuss the development of novel tools for the use in gene therapy studies. 
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Chapter 2: Canonical Wnt is Required for AVC 

Development 

2.1 Canonical Wnt Signaling is Active in the Developing AVC 

To first ascertain whether it is likely for canonical Wnt signaling to be involved in development 

of the AVC, I assayed the temporal and spatial distribution of active Wnt signaling in the murine 

heart. To assay this, I used the Axin2LacZ mouse. Axin2 is a direct transcriptional target of 

canonical Wnt signaling. The role of Axin2 is to serve as a negative feedback loop and limit the 

activity of Wnt singling once activated. In this mouse, LacZ is knocked into the Axin2 promoter. 

Therefore, β galactosidase activity indicates where Axin2 is expressed and where Wnt signaling 

is active.  

 

I performed a timecourse of LacZ expression from E10.5 to E17.5 and analyzed both whole 

mount hearts and histological sections. Starting at E10.5, Axin2LacZ is most strongly expressed in 

the AVC. Through E17.5, the AVC remains the primary region of Axin2LacZ expression. As can 

been seen at E17.5, Axin2LacZ is expressed both in the AVC myocardium and valve tissue; 

leading to the possibility that canonical Wnt signaling plays a role in both tissue types (figure 1). 

 

Outside of the AVC, there is sporadic expression in both atria and ventricles. Interestingly, there 

is significant expression in the SAN region (and SVC valve leaflets) (figure 1G,H). This leads to 

the intriguing possibility that Wnt signaling may also play a role in sinus node development.  
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Figure 1.   Canonical Wnt signaling is active in the developing AVC 
(A-D) Developmental timecourse of Axin2LacZ expression as assessed by Xgal staining denotes active canonical Wnt 
signaling in the region of the AV canal in hearts imaged from the posterior view (white arrows).  (E-H) Histological 
sections of hearts from panels A-D reveal Axin2LacZ expression within AV canal myocardium (black arrows). Scale 
bars 500 µm. 
 
2.2 Loss of Myocardial Canonical Wnt Signaling Results in Tricuspid Atresia 

To test the role of canonical Wnt signaling in the myocardium, 2 separate alleles of β-catenin 

were used. The first allele is a conditional deletion of β-catenin. In cells that express Cre 

recombinase, this allele of β-catenin is deleted. The second allele is the Double Mutant (DM) 

allele in which there are point mutations in the N and C termini of β-catenin thereby turn off the 

signaling role of β-catenin 32. However, the main body of the protein is not perturbed, thereby 

leaving the cell adhesion role of β-catenin intact. When these two alleles are combined with the 

αMHC-Cre, a myocyte specific Cre, all non-myocytes are heterozygous for the DM allele and 

WT for the conditional allele. However, myocytes in which Cre is expressed loose their 

conditional allele. This allowed me to test the signaling role of β-catenin specifically in 

cardiomyocytes. 
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Hearts in Wnt LOF mice appeared normal at E10.5. Both the gross morphology and AVC 

histology had no detectable differences between control and mutant mice. However, at E18.5 

Wnt LOF displayed tricuspid atresia, RV hypoplasia, and loss of the AVC (figure 2). At E10.5, 

the heart valves are not yet developed and exist in their precursor form, the AV cushions 50. This 

group of mesenchymal cells sits in the common canal region, connecting the atria and ventricles. 

No abnormal morphology exists in the cushions. By E14.5, after the cushions have undergone 

EMT, the early valves are condensed and formed. The valve precursors develop in Wnt LOF, 

although their morphology is slightly abnormal (figure 2C,G,K,O). At this time, there is clear 

continuity between the RV and RA, through the tricuspid valve precursor, in both control and 

Wnt LOF. However, by E18.5, no continuity can be seen between the RV and RA and the 

tricuspid valve is completely absent (figure 2D,H,L,P).  

 

Figure 2.   Loss of myocardial canonical Wnt 
signaling results in congenital heart defects. 
Trichrome staining of representative sections 
from αMHC-Cre; Ctnnb1dm/fl (Wnt LOF) mice 
show normal development at E10.5 (A,E,I,M) 
and E12.5 (B,F,J,N) when compared with 
littermate controls.  By E14.5, the tricuspid valve 
is under-developed and the right ventricle is 
hypoplastic in Wnt LOF mice (C,G,K,O).  The 
red asterisks denotes a similar size opening 
between right atrium and right ventricle in 
control and Wnt LOF mice (O,W), while a 
hypoplastic right heart can already be seen in 
Wnt LOF embryos. By E18.5, the tricuspid valve 
is completely absent in Wnt LOF mice 
(D,H,L,P).  The red arrow in P denotes the 
region of the atretic valve. Panels E-H are higher 
magnification images from boxed regions in A-
D, respectively.  Panels M-P are higher 
magnification images from boxed regions in I-L, 
respectively.  Scale bars 500 µm in A-D, I-L and 
Q-T. Scale bars 125 µm in E-H and M-P.   
This phenotype was observed only when  
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deleting β-catenin with the αMHC-Cre. However, when using the Mlc2vCre, the tricuspid valve 

develops normally. Cd31 expression, which marks endocardial tissue and therefore outlines the 

valve, appears normal when using the Mlc2vCre, further highlighting the lack of a phenotype with 

this Cre (figure 3). This is most likely explained based on the different expression of these 2 Cre 

drivers. The Mlc2vCre is expressed only in a subset of ventricular myocardium whereas the 

αMHC-Cre is expressed in almost all myocytes (figure 4). This difference is particularly striking 

when observing the AVC myocardium.  

 
The development of tricuspid atresia is particularly noteworthy since I deleted Wnt signaling 

with a myocyte specific Cre and yet the tricuspid valve, not myocardial in origin, was severely 

affected. There are several hypotheses that could explain this. First, myocyte Wnt signaling 

could induce a downstream non-cell autonomous signal that is required for development of the 

valves. Alternatively, the AVC myocardium is required to serve as a migration substrate of the 

developing valves. In the absence of that tissue, the condensing cushions die. As will be 

discussed, the AVC myocardium is lost in Wnt LOF mice which may therefore affect valve 

maturation and survival. 
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Figure 3. Complete loss of β-catenin within the ventricles leads to abnormal right ventricular development 
with normal tricuspid valve formation. 
Trichrome staining at E16.5 shows a malformed RV in Mlc2vCre/+;Ctnnb1fl/fl when compared with control (A) and 
IHC staining for CD31 delineates grossly normal tricuspid valve morphology in Mlc2vCre/+;Ctnnb1fl/fl when 
compared with control (B,C). Scale bar in A is 500 µm. Scale bar in B corresponds to B,C and is 100 µm. 
 
 
 
Figure 4. Deletion of β-
catenin within the AVJ 
myocardium leads to 
tricuspid valve defects.  
(A,B) In Mlc2vCre/+; Ctnnb1dm/fl 
the tricuspid valve (B) is 
grossly similar to that in 
control (A) as assessed by 
Trichrome staining.  Lineage 
tracing analysis demonstrates 
that Mlc2vCre is expressed in a 
subset of ventricular myocytes, 
while only very sparsley 
within the AV junction as 
assessed in Mlc2vCre/+; 
R26TdTomato/+   hearts (C,D). (E-
H) In αMHC-Cre; Ctnnb1dm/fl 
mice where recombination occurs throughout the entire AV junction (G,H), the tricuspid valve is atretic (F 
compared to E). Black arrow in F denotes region of atretic tricuspid valve. White arrows in C, G denote the AV 
junction. Scale bar in A corresponds to A,B,E,F, scale bar in C corresponds to C,D,G,H and both are 100 µm. 
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In the absence of a tricuspid valve I hypothesized that blood flow would predominately occur 

between the LA and LV while no blood flow would occur between the RA and RV. This is 

because in place of a valve between the RA and RV, there is myocardium and no opening 

between the chambers through which blood can flow. To test this hypothesis, echocardiography 

was used to measure blood flow. Indeed, robust blood flow is seen between the LA and LV 

while almost no flow is seen between the RA and RV. The little flow that is seen may be through 

a small continuity connecting the RA and RV; however, normal flow, as seen in the left side of 

the heart, is abrogated (figure 5).  

 

 
Figure 5. RA to RV blood flow is abrogated in Wnt LOF hearts 
Freeze frames of echocardiographs of embryonic hearts at E18.5 In control (A) blood flow is seen from the LA to 
LV and RA to RV (orange). In Wnt LOF hearts (B), blood flow is seen only from the LA to LV but not RA to RV. 
 
 
Another important morphological phenotype is the development of septal defects. Both severe 

membranous and muscular ventricular septal defects were highly penetrant in Wnt LOF mice 

(figure 6). Furthermore, these mice display severe RV hypoplasia (figure 6). While the 

membranous septal defects may be mechanistically related to the AVC defects, the muscular 

septal defects and the hypoplastic RV likely suggest a separate role for Wnt signaling in those 
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tissues. Since Wnt activity is low outside of the AVC at the assayed timepoints, these defects are 

either suggestive of a very high sensitivity to Wnt dosing or perhaps the result of an earlier Wnt 

requirement in those tissues. 

 
Figure 6. Wnt LOF mice exhibit septal defects.  
Trichrome staining of αMHC-Cre; Ctnnb1dm/fl demonstrates prominent septal defects at E17.5 (C) and P0 (D) when 
compared with littermate controls (A and B respectively). Panel C demonstrates a membranous ventricular septal 
defect, while panel D demonstrates a muscular ventricular septal defect. Scale bar corresponds to A-D and is 500 
µm. 
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2.3 Loss of Myocardial Canonical Wnt Signaling Results in Loss of AVC 

Myocardium 

Since canonical Wnt signaling is active in the AVC myocardium, I wanted to determine if the 

AVC myocardium was affected by loss of Wnt signaling. The AVC contains a specific 

expression pattern. AVC myocytes express Tbx2, 3 and Bmp2 6, 10, 51, 52. Non-moycytes in the 

AV canal express periostin in a spider web-like network around the Tbx3 positive myocytes 53, 

54. Furthermore, while working myocardium myocytes express high conductance gap junction 

proteins (Connexin 43 (Cx43) in the ventricle and Connexin 40 (Cx40) in the atria), the AVC 

myocardium does not 55, 56.  

 

I assayed these markers in the Wnt LOF mice. There is a dramatic absence of Tbx3/periostin 

staining in the plane of the annulus in Wnt LOF mice. In addition, in serial sections, there is a 

reduction in the Cx40 + tissue in this region. Furthermore, using in situ hybridization, I detected 

a substantial reduction in Bmp2 + tissue in the plane of the annulus (figure 7).  

 

Combined, these data suggest that canonical Wnt signaling is not only expressed in the 

developing AVC but is required for its maturation. In these experiments, the αMHC-Cre was used 

to induce recombination of the β-catenin allele. While there is an absence of AVC markers by 

e18.5, AVC development appears normal at E10.5. Both gross histology and AVC markers do 

not appear perturbed at this stage (figure 2I,M and data not shown). This suggests that canonical 

Wnt signaling is actively required for continual development of the AVC. Although the canal is 

present at e10.5, upon loss of canonical Wnt signaling, this tissue is lost by E18.5.  
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Figure 7.  Progressive loss of AV canal myocardium in Wnt LOF embryos. 
(A-C) Immunohistochemistry (IHC) for Tbx3 (AV canal myocardium) and periostin (a marker of fibroblasts 
undergoing epithelial to mesenchymal transition) demonstrate a grossly normal AVC structural organization at 
E12.5 in Wnt LOF when compared with control (A-C).  (D) In situ hybridization demonstrates decreased Bmp2 
expression in Wnt LOF when compared with control (D) at E16.5. (E-H) By E19.5, IHC reveals a near absence of 
Tbx3+/Connexin 40- AVC myocardium in Wnt LOF mice when compared with controls (E-H). White outlines 
denote the AVC myocardium in control hearts, white asterisks denote the region between the right atrium and right 
ventricle where AVC myocardium is absent in Wnt LOF emrbyos.  The sections shown in F are serial to E and the 
sections in H are serial to G.  Scale bar for A also corresponds to panels B,C, E-H and is 100 µm. Scale bar in panel 
D is 50 µm. 
 

The mechanism underlying Wnt’s activity here remains unclear. Is Wnt signaling required for 

the continual specification of this tissue? Upon loss of Wnt signaling, does the AVC 
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myocardium transdifferentiate into other tissue? Alternatively, upon loss of canonical Wnt 

signaling, does the AVC myocardium undergo cell death?  

 

2.4 Wnt is Not Required for Early Development of the AVC 

Since the αMHC-Cre begins to be expressed only around E10.5, when the AVC has already 

developed, it cannot be used to determine if Wnt signaling is required for early development of 

this tissue. To address this question, I used the Tbx2Cre which is expressed in the AVC by E9.0, 

right before it fully develops. Despite the earlier activation of this Cre, at E10.5 the AVC was 

morphologically normal as was Tbx3 expression in that tissue (figure 8). It remains to be seen if 

Wnt signaling is required for initial specification of this tissue. Interestingly, Bressan et al have 

shown that Wnt signaling is required for SAN specification in the chick embryo57. It will be 

interesting to see if this paradigm holds true in the mouse and for the AVC tissue. 

 
Figure 8. Canonical Wnt 
signaling is not required for early 
AVC maintenance.  
Gross morphology is normal 
inTbx2Cre/+;Ctnnb1dm/fl embryos at 
E10.5  when compared with 
littermate controls (A) and Tbx3 
expression is preserved   (B,C). 
Scale bar in B corresponds to B,C 
and scale bars in A,B are 100 µm. 
Sections in B,C are magnified 
regions corresponding to the white 
box in A. 
 
 
 
 
 

 

There are several important questions that remain unanswered. How does myocardial Wnt 

regulate the non-myocardial valve? Is there a secreted ligand, downstream of canonical Wnt 
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signaling that is required for valve maturation? An AVC explant assay50 could be used to screen 

for those factors. Another area of interest lies in the role of Wnt in the tricuspid but not mitral 

valve. Why is Wnt required only for triscuspid valve development? This will be discussed in 

greater detail later in this dissertation along with other predominantly right sided phenotypes. 

 

 
Figure 9.  Model for the requirement of Wnt signaling in the AVC 
Notch signaling is active in the atria and ventricles (red) whereas canonical Wnt signaling (blue) is normally 
expressed in the AVJ during development (WT) and is required for maintenance of the AV myocardial phenotype 
and proper formation of the tricuspid valve (Wnt LOF).   

 

2.5 Contributions  

Mouse breeding was done by Stephanie Hicks. LacZ staining, histological preparation, 

immunostaining, and in situ hybridization was done by Ben Gillers. Echocardiography was done 

by Attila Kovacs. Chapters 2-4, 6 published in altered form in Circulation Research 116(3):398. 

 

 

 



22 
 

Chapter 3: Wnt programs an AVJ phenotype 

3.1 Wnt GOF Induces Ectopic AVJ Morphology 

I have previously shown that myocardial loss of canonical Wnt signaling leads to loss of the 

AVC myocardium and is therefore required for its development. Based on this data, I asked if 

Wnt is sufficient to induce AVC development. To ask this question, I over activated canonical 

Wnt signaling using a floxed allele of β-catenin in which exon 3 is deleted in the presence of Cre 

34. I first used the Mlc2vCre. Mlc2vCre is expressed in a subset of ventricular myocytes during 

development and in all ventricular myocytes in the adult. 

 

One of the hallmarks of the AVC is the presence of the annulus fibrosis; an insulating plane of 

fibroblasts and adipocytes that insulates the atrial and ventricular myocardium 54. This allows all 

electrical activity to funnel through the AVN. When Wnt was activated only in myocytes ectopic 

fibrofatty depositions developed in stochastic locations throughout the ventricles. These grooves 

are histologically indistinct from the normal AV groove. This suggests that activation of 

canonical Wnt signaling is sufficient to induce AVJ-like tissue. Using trichrome staining, one 

can see the fibrofatty deposition very clearly (figure 10A-C). To further validate that we are, in 

fact, seeing lipid containing cells, we used Oil-Red-O to stain these hearts. In control hearts, one 

can see a streak of adipocytes only in the posterior of the heart between the atria and ventricles. 

However, in the Wnt GOF, one can see patches of Oil-Red-O + tissue scattered throughout the 

ventricles (figure 10D,E). The phenotype seen here is reminiscent of the human disease, 

arrhythmogenic cardiomyopathy (AC); a condition characterized by ectopic fibrofatty deposition 

in the myocardium. Proteins of the ID in AC patients become deregulated and electrical 
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communication between myocytes is disturbed. This can lead to arrhythmias and sudden cardiac 

death. 

 

3.2 Ectopic Fibrofatty Depositions are Not Myocyte Derived 

There are several mouse models of this disease involving mutations in proteins of the ID. There 

are several suggestions in the literature that both in the human and mouse version of this disease, 

the adipocytes are derived from transdifferentiation of myocytes. Understanding the etiology of 

this disease is important for developing targeted therapies. Do we target the myocyte and prevent 

its transdifferentiation into a non-myocyte or do we target another cellular source such as 

epicardial cells. To address this question, I performed lineage tracing analysis to determine if, in 

fact, these ectopic adipocytes are myocyte derived. I used an 

Mlc2vCre/+;Ctnnb1fl(ex3)/+;R26TdTomato/+ 

mouse. In this mouse, only cells that once expressed Mlc2v would express both the over 

activated form of β-catenin and would fluoresce red due to TdTomato expression. Therefore, if a 

cell is red, it must have, by definition, either expressed Mlc2v at some point in its history or is the 

progeny of a cell that once expressed Mlc2v. In other words, if a cell is red, it either is, or once 

was, a myocyte. Therefore, if any adipocytes are TdTomato +, although they are no longer 

myocytes, they are myocyte derived. Oil-Red-O was used to detect adipocytes. Although, Oil-

Red-O is a histological stain, I took advantage of the fact that it fluoresces upon far red excitation 

58, 59 and therefore was able to look for  colocalization of TdTomato and Oil-Red-O fluorescence 

. 
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Although many Oil-Red-O + cells were found, they did not express TdTomato (figure 10F-I). 

This suggests that in this mouse model of AC, the adipocytes are not myocyte derived. It remains 

to be seen what the cellular source of these adipocytes are. One interesting speculation is that 

they are epicardial derived. In fact, in the normal heart, several populations of AVJ cells are 

epicardial-derived 53, 54, 60, 61. Both in vivo and in vitro lineage tracing experiments can be used to 

test this hypothesis here. 

  

  

Figure 10.  Ectopic Wnt 
activation induces an AVJ-like 
phenotype within the 
ventricles. 
(A) Trichrome staining of the 
AV junction in a control adult 
heart, demonstrating a well 
delineated myocardial 
constriction, annulus fibrosis 
(blue), and subepicardial 
adipocytes.  (B) Mlc2vCre/+; 
Ctnnb1fl(ex3)/+  hearts (Wnt GOF) 
have ectopic myocardial 
constrictions containing an 
organized layer of fibroblasts and 
subepicardial adipocytes (boxed 
region from LV apex in B shown 
at higher magnification in panel 
C), which resemble the normal 
AV groove.  (D,E) Oil-Red-O 
staining shows subepicardial 
adipocytes are very specific for 
the region of the AV junction in 
control mice (D), while Wnt 
GOF mice have regions of 
ectopic adipocytes within the 
ventricles (E). (F-I) Lineage 
tracing in Wnt GOF mice (Mlc2vCre/+;R26RTdTom/+; Ctnnb1fl(ex3)/+) demonstrates that ectopic fibro-fatty depositions 
(green) are not derived from Cre-expressing myocytes (red).  Enlarged view of boxed region in F is shown in G-I to 
demonstrate that Oil-Red-O+ cells (green) are not colocalized with TdTomato+ cells (red). Scale bars 500 µm in A 
and C, scale bar for G corresponds to G-I and is 50 µm, 
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3.3 Wnt GOF Induces an AVJ Electrical Phenotype 

Since Wnt GOF induces an AVJ morphology, we wanted to test the hypothesis that it also 

changes its function. The hallmark of the AVJ is slow conducting myocardium. The purpose of 

this is to delay the impulse as it travels from the atria to the ventricles allowing non-simultaneous 

contraction of these regions of the heart. In the embryo, this delay occurs through slow 

conducting canal tissue. In the adult, this occurs through insulation of the atria and ventricles via 

the annulus fibrosis and slow conducting myocardium in the AVN 62. To test this, we used 

optical mapping to measure the conduction velocity in langendorf perfused hearts both in sinus 

rhythm and in programmed stimulation. In Wnt GOF, in both protocols, the conduction velocity 

is markedly decreased (figure 12C-K). In addition, the QRS is widened (figure 12A,B and 13B). 

Interestingly, the PR interval was also elongated (figure 13A). This suggests that Wnt GOF 

induces AVJ properties on the ventricular myocardium. Interestingly, it also induced 

heterogeneous conduction, which can be seen as a non-linear traverse of the impulse throughout 

the myocardium. Unexpectedly, when the RV was paced at cycle lengths shorter than 125 ms, 

the tissue was unexcitable (figure 12K). The refractory period is the time at which the cells in a 

given tissue are unexcitable, while they regenerate their ability to become excited. One of the 

properties of nodal tissue is its longer refractory period relative to working myocardium. This 

inexcitability suggests a longer refractory period and further strengthens my argument that Wnt 

GOF programs an AVJ/nodal phenotype on working myocardium.  

 

Interesting differences between the right and left ventricle present in 2 forms here: 1) conduction 

velocity is slower in the RV than the LV 2) The RV was more unexcitable than the LV. Are 

these two differences related? Could differences in expression of gap junctions and sodium 
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channels at baseline explain a differential sensitivity to Wnt GOF? This will require further 

experiments to dissect. 

 
Figure 11.  Ectopic Wnt 
activation programs 
ventricular myocytes to adopt 
an AVJ electrical phenotype.  
(A) Representative surface EKG 
from control (top) and 
Mlc2vCre/+; Ctnnb1fl(ex3)/+ Wnt 
GOF (bottom) mice. (B) Wnt 
GOF mice have a prolonged 
QRS complex when compared 
with control littermates (9.2 ± 0.4 
versus 12.6 ± 1.2 ms, n=5 each 
genotype).  (C,D) Reconstructed 
electrical activation pattern from 
optical mapping experiment 
during sinus rhythm in control 
(C) and Wnt GOF (D) mice.   (E) 
Total epicardial activation time is 
significantly prolonged in Wnt 
GOF mice (4.4 ± 0.4 versus 11.5 
± 1.0 ms, n=4 each genotype). 
(F-I) Representative electrical 
activation pattern of the LV and 
RV during epicardial stimulation 
in control (F,G) and Wnt GOF 
(H,I) mice.  (J) Left ventricular 
(LV) longitudinal conduction 
velocity of Wnt GOF mice was 
slower during stimulation at each 
cycle length, and the difference 
between the two genotypes 
became larger at faster pacing 
rates (111 and 100 ms cycle 
lengths, n=4).  (K) Right ventricular (RV) longitudinal conduction velocity of Wnt GOF mice was also slower, and 
was more severely decreased than in the LV.  One Wnt GOF mutant had an electrically inexcitable RV when paced 
at 143 ms cycle length, while two others had markedly decreased conduction velocity at slower cycle lengths and 
became inexcitable at pacing rates above 125 ms cycle interval.  This is consistent with decremental conduction, a 
property of AV canal and AV nodal tissues.  Note the different time scales between each experiment.  Data are 
represented as mean ± SEM. Group comparison for conduction velocity was performed using a Student’s unpaired 
2-tailed t-test at each cycle length.  Group comparison for inexcitability was performed using a Chi squared test 
without yates correction. *p<0.05. 
 

The PR interval elongation is particularly intriguing since, as mentioned in the introduction, 

Notch activation decreases the PR interval. This leads to the possibility that Notch and Wnt have 
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apposing affects on tissue specification and properties. This will be further discussed in chapter 

4. 

 
Figure 12. PR interval and QRS interval prolongation in Wnt GOF mice. 
(A) The PR interval is prolonged in Wnt GOF mice (46.0 ± 2.6  ms) when compared with littermate controls (32.5 ± 
0.3 ms) as measured by surface ECG. (B) The QRS interval is prolonged in Wnt GOF mice (11.7 ± 0.8 ms) when 
compared with littermate controls (9.1 ±  0.4ms) as measured by surface ECG. n=4, *p<0.005, **p<0.05. Data are 
expressed as mean ± SEM. Group comparison was performed using a Student’s unpaired 2-tailed t-test. 
	  
3.4 Wnt GOF Downregulates Working Myocardium Gene Expression 

I hypothesized that the decrease in conduction velocity may either be due to the fibrofatty 

deposition or altered gene expression. The fibrofatty deposition may serve to impede the 

electrical impulse as it travels through the tissue. This may also explain the heterogeneous 

conduction. The presence of non-conducting tissue may force the impulse to change its path and 

therefore traverse the tissue in a non-linear fashion.  

 

To determine if altered gene expression may also be involved, we assayed connexin and sodium 

channel gene expression. Connexins are primarily localized to the IDs and form gap junctions-

allowing electrical communication between cells 55. Abnormal connexin deposition could lead to 

both slower and heterogeneous conduction. Additionally, lower connexin levels could have a 

similar effect. Since Cx43 is the main high conductance gap junction protein in the ventricle, we 
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focused on this protein 63. While immunostaining did not reveal abnormal Cx43 localization, 

qPCR did reveal lower Cx43 mRNA levels in the Wnt GOF ventricles (figure 11A). 

 

Since sodium channels play an important role in regulating conduction velocity, we next assayed 

mRNA levels for Scn5a, one of the main sodium channels in the heart 59, 64. In fact, mutations in 

Scn5a have been associated with numerous human cardiac diseases including Brugada Syndrome 

59. qPCR reveled that Wnt GOF downregulated Scn5a mRNA levels by 50% (figure 11A).  

 

It remains to be seen which of these factors are essential in Wnt mediated slowed conduction 

velocity. One could envision a rescue experiment in which either Cx43 or Scn5a is unregulated 

in a Wnt GOF mouse. If upregulation of either one is sufficient to rescue the delayed conduction 

velocity, one would conclude which is important for this phenotype. It further remains to be seen 

if this altered gene expression is sufficient to alter conduction velocity or if the fibrofatty 

deposition is required for this phenotype. While it has been shown that downregulation of either 

Cx43 or Scn5a is sufficient to decrease conduction velocity 64, are the decreased message levels 

in the Wnt GOF sufficient for this phenotype? Answering these questions will be important for 

developing targeted therapies to treat AC. 

It is also important to note that while this altered gene expression can explain the conduction 

velocity phenotype, it is also important in understanding how far Wnt GOF programs an AVJ 

phenotype. As I have previously shown, Wnt GOF induces AVJ morphology and function. The 

altered gene expression is further consistent with this characterization.  
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The decreased Cx43 and Scn5a levels are crucial for understanding this mouse model of AC. 

Adult mice that have fibrofatty deposition and decreased conduction velocity, also have this 

altered gap junction and sodium channel profile. It is important to understand, though, if this 

results from a developmental gene program gone awry or an unrelated process. This approach to 

understanding disease is an important paradigm not limited to the cardiovascular space. In fact, 

much of cancer can be understood in terms of developmental processes gone awry such as 

abnormal EMT leading to tumor metastasis. Therefore, the same processes that are required for 

AVJ development, such as Tbx3 dependent patterning, may be deregulated and causal of the AC 

phenotype. 

 

To dissect this, we used a different Cre driver to overactivate Wnt signaling. The Mlc2vCre is 

expressed in a subset of ventricular myocytes during development and only in the adult is it 

expressed in all ventricular myocytes. Use of this Cre allows survival to adulthood in a 

phenotype that is otherwise embryonic lethal. We therefore used this Cre  in the above described 

experiments. However, since it is not expressed in all myocytes during development 19, one may 

miss certain important biological information using this Cre. We therefore used the αMHC-Cre 

to activate Wnt signaling for this next experiment. αMHC-Cre is expressed in almost all 

myocytes during development and therefore is more useful in assessing changes in gene 

expression 20.  

 

To analyze the etiology of this phenotype, we assayed for ectopic Tbx3 expression. As described 

earlier, Tbx3 is a prominent member of the Tbox family of transcription factors. Tbx3 is required 

for normal development of the AVC and its expression marks both canal and nodal tissue 6, 10, 65, 
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66. Importantly, it is expressed very early in development and can be seen as one of the master 

regulators of AVC development. I also analyzed periostin localization. There is a very unique 

and distinct localization pattern of periostin and Tbx3 in the developing AVC and node. While 

Tbx3 is expressed in nodal and canal myocytes, periostin is secreted specifically by non-

myocytes in the node and canal. Periostin expressing cells deposit a spider web like network of 

periostin surrounding and intertwining with Tbx3 positive cells. If the downregulation of Cx43 

and Scn5a are not regulated here by Tbx3 in the same way the AVJ is specified, one would 

expect to see no ectopic Tbx3.  

 

In Wnt GOF, not only did we see upregulation of Tbx3 mRNA in the embryo (figure 11B), I also 

detected ectopic Tbx3 and periostin protein in the apex of the embryonic LV in an expression 

pattern reminiscent to that of the canal/node (figure 11C-H). This leads to the very intriguing 

hypothesis that the AC phenotype seen in Wnt GOF mice is in fact, a developmental process 

gone awry that now occurs, due to ectopic Wnt activation, in sporadic locations throughout the 

ventricle instead of being limited to the AVC/N. One can speculate that the human AC disease 

develops in a similar manner. This again, is an important question not only for understanding the 

role of Wnt but for developing targeted therapies. Instinct may suggest that treatment of AC 

should occur through targeting gap junctions or other ID proteins. Based on these data, one can 

imagine that targeting the developmental processes or genes such as Tbx3 or Wnt signaling, may 

in fact, present a more powerful form of a therapy.  
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Figure 13.  Ectopic Wnt activation induces an AVJ-like phenotype within the ventricles. 
 (A) Expression of Cx43 and Scn5a, which regulate conduction velocity, are significantly decreased in the LV of 
adult Wnt GOF mice when compared with littermate controls (n=3 each genotype).  (B) Expression of Axin2 and 
Tbx3 are upregulated in ventricles from E12.5 Wnt GOF mice (αMHC-Cre;Ctnnb1fl(ex3)/+) when compared with 
littermate controls (n=7 each genotype), while Tbx2, Tbx20 and Bmp2 are unchanged.  (C-H) IHC of E14.5 embryos 
demonstrates ectopic Tbx3 and periostin near the ventricular apex in Wnt GOF mice when compared with littermate 
controls (white line demarcates the apex in both genotypes, n=3). Scale bar in C corresponds to C-H and is 100 µm.  
Data are represented as mean ± SEM. Group comparison was performed using a Student’s unpaired 2-tailed t-test. 
*p<0.05.  
 

3.5 Adult Activation of Wnt Signaling Downregulates Scn5a 

It is well known that as an organism develops, it loses a great deal of plasticity. This may have 

an evolutionary benefit; once the organism has developed this can prevent gross susceptibility to 

disease 67. Therefore, once the developmental pathways have been used to program the organism, 

they become epigenetically silenced for its protection. I therefore wanted to determine the adult 
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susceptibility to this AVJ phenotype in response to increased Wnt signaling. Previously, both 

using Mlc2v and αMHC-Cre mice, Wnt is activated embryonically. I therefore used a 

doxycycline inducible system to interrogate the affects of Wnt when activated only in the adult.  

 

To do this, I used an αMHC-rtTA;tetO-Cre;Ctnnb1fl(ex3)/+. Only in the presence of doxycycline 

can the myocyte specific rtTA enter the nucleus and activate Cre expression that in turn, deletes 

exon3 of β-catenin. The downside of this system is that, even though it is doxycycline inducible, 

since Cre mediated genetic recombination occurs, Wnt overactivation cannot be turned off. 

 

After adult mice were fed doxycycline chow for three weeks, each chamber of the heart was 

harvested and analyzed via qPCR. Importantly, Scn5a was downregulated 5-fold in the LA and 

Cx40 was downregulated 2-fold in the RA (figure 14A,B). While Cx43 is the main gap junction 

in the ventricles, Cx40 is predominant in the atria. This suggests that Wnt regulation of gap 

junctions is not specific to Cx43 in the ventricle as described before, but may represent a more 

global role of Wnt’s regulation of this class of proteins. This suggests that Wnt signaling, even 

when activated in the adult, has the capacity to regulate the cardiac electrical gene program. It 

remains to be seen if inducible Wnt GOF also causes a slowing of conduction velocity. 

 

Interestingly, while there was a trend for upregulation of Tbx3 in the RA, those changes are not 

statistically significant. This suggests that adult activation of Wnt signaling may not occur 

through the developmental paradigm described before. Alternatively, there may be an initial 

increase in Tbx3 expression which is resolved before the three week timepoint when the hearts 

were harvested.  
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Of further note, while Scn5a was dramatically decreased in the LA, it was not in the RA. One 

can speculate why there are such differences between the RA and LA. Gene expression 

differences between chambers has long been noted 68 . One possibility here, is that contamination 

of the SAN, contained within the RA sample may give one a mistaken understanding of the 

expression changes. This is because the SAN has a very different expression profile than both the 

LA and the RA 69 highlighted in figure 14C. Alternatively, the presence of the SAN, which may 

already have high levels of Wnt signaling, may cause that chamber to respond differently to 

activation of Wnt than the LA, which is segregated from Wnt activity in the adult. 

 

Interestingly, Tbx18 expression is not affected in the RA nor LA. Several studies have shown the 

sufficiency of Tbx18 to reprogram a nodal phenotype in isolated myocytes and in vivo in both 

guinea pig and porcine models. Based on the data I have shown here,  it is clear that Wnt 

signaling is sufficient to reprogram at, least in part, a nodal phenotype. An important question 

that remains is how do Tbx18 and Wnt signaling relate to each other. Is one upstream of the other 

or do they function in parallel pathways. My data here suggests that, at least in the atria, Wnt 

signaling is not upstream of Tbx18. It remains to be seen if it is downstream or functions in a 

separate pathway.  
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Figure 14.  Adult activation of canonical Wnt 
signaling downregulates working myocardium 
gene expression. 
Wnt signaling was activated in the adult using the 
αMHC-rtTA; tetO-Cre; Ctnnb1fl(ex3)/+. Mice 
were fed doxycycline starting at 3 weeks and 
sacrificed at 6 weeks and analyzed with qPCR. (A) 
In the LA, Scn5a is downregulated 5 fold. (B) In 
the RA, while Scn5a is not downregulated, Cx40 is 
decreased by 50%. Tbx3 trends towards an increase 
but is not statistically significant. Axin2, a direct 
transcriptional target of canonical Wnt signaling, is 
highly unregulated in both LA and RA. N=6. Data 
are represented as mean ± SEM. Group comparison 
was performed using a Student’s unpaired 2-tailed 
t-test. P values, where significant or close to 
significance, are written above the bar. (C) Map of 
the ion channels expressed in working myocardium 
(atrial, blue) and SAN myocardium (SAN, red) and 
the genetic network that establishes theses two 
different expression patterns. 

 

 

 

 

 

 

 

 

 

It is clear now that activation of canonical Wnt signaling is sufficient to program an AVJ 

phenotype.  This is evidenced by an AVJ gene profile, morphology, and electrical phenotype. 

The role of developmental pathways in this phenotype is highlighted by ectopic Tbx3 expression. 

This understanding may highlight important therapeutic directions to explore in the treatment of 
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AC. Interestingly, several studies have suggested that Wnt LOF is causal of the AC phenotype 

and have even raised the possibility of treating AC via upregulation of Wnt signaling 30, 70. My 

data here is very clear, that at least in mice, Wnt GOF can actually be causal of the AC 

phenotype. It is possible that imbalance of Wnt signaling, in either direction, can cause this 

disease. Alternatively, Wnt signaling, at different points in development may have opposite 

effects. Either way, we need to be very cautious in treating AC with Wnt agonists before getting 

a better understanding of the mechanism(s) of Wnt induced AC. 

Figure 15.  Model for Programming the 
AVJ via Wnt LOF and GOF 
Notch signaling is active in the atria and 
ventricles (red) whereas canonical Wnt 
signaling (blue) is normally expressed in the 
AV junction during development (WT) and is 
required for maintenance of the AV 
myocardial phenotype and proper formation of 
the tricuspid valve (Wnt LOF).  Ectopic Wnt 
activation within ventricular myocardium 
(Wnt GOF) is sufficient to induce Tbx3 
expression and ectopic AV junction properties 
as assessed by morphologic and electrical 
criteria.   

 
3.6 Contributions 

Histological preparation and trichrome staining were done by Stephanie Hicks and Ben Gillers. 

Oil-Red-O staining was done by Haytham Aly and Ben Gillers. Immunostaining was done by 

Ben Gillers. qPCR was done by Aditi Chiplunkar and Ben Gillers. EKGs were done by Baas 

Boukens, Stephanie Hicks, and Ben Gillers. Optical mapping and associated analysis was done 

by Baas Boukens.  
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Chapter 4: Wnt Signaling is Inhibited by Notch 

Signaling 

4.1 Notch Signaling Downregulates Canonical Wnt Signaling 

I have shown that canonical Wnt signaling is both necessary and sufficient for development of 

the AVJ. Furthermore, I have shown that Canonical Wnt signaling is upstream of Tbx3 signaling 

in development of this tissue. What regulates canonical Wnt signaling and why is it so specific to 

this region? Although there is some active Wnt signaling elsewhere the heart, the strongest 

region of Wnt signaling is in the AVC.  

 

It has been reported that during development, Notch signaling is active in the working 

myocardium. The direct Notch targets, Hey1 and Hey2 are highly expressed in the developing 

atria and ventricles, respectively 41, 71. Importantly, Notch is not active in the AVC. Because 

Notch and Wnt are active in the heart in primarily a mutually exclusive pattern, I hypothesized 

that either Notch inhibits Wnt activity or vice versa. Furthermore, activation of Notch and Wnt 

signaling have opposite effects on the PR interval. While Notch activation decreases the PR 

interval, activation of Wnt signaling elongates it. Therefore, there is strong basis to speculate that 

one of these pathways inhibits the other. To test the hypothesis that Notch signaling inhibits 

canonical Wnt signaling, I utilized the doxycycline inducible system to overexpress the Notch 

Intracellular Domain (NICD) in myocytes. When mated with the Axin2LacZ mice, I was able to 

assay altered Wnt activity upon Notch activation. 
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In control mice, Wnt is active in both the AVC myocardium and valve tissue. However, upon 

activation of Notch signaling, while valve Axin2 is unaffected, its expression in the AVC 

myocardium is greatly reduced. I used qPCR to quantify this reduction and found that while 

Hey1 and Hey2 are dramatically increased in Notch GOF, Axin2 is reduced by 50% (figure 

16A,B). Presumably, the presence of valve tissue in the preparation diminished the perceived 

reduction of Axin2 expression. Also of note, the Wnt target, Gata6 is also reduced (figure 16A). 

 

These data suggest that Notch GOF inhibits Wnt activity. Importantly, β-catenin transcript levels 

are not changed, suggesting that this occurs through a post transcriptional mechanism (figure 

16A). The inhibitory effect of Notch on Wnt signaling is an emerging paradigm in several 

environments. For example, Kwon et al have shown that Notch signaling inhibits canonical Wnt 

singling in myocyte progenitor cells using Isl1 to mark this population 23, 72. Kwon suggests the 

mechanisms occurs through Notch targeting β-catenin for lysosomal degradation. It remains to 

be seen if this or other mechanisms are responsible for the AVC phenotype. 

 

Given that Notch signaling is able to suppress Wnt activity, one may hypothesize that the relative 

absence of Wnt activity outside of the AVC during normal embryonic development may be due 

to the presence of endogenous Notch signaling. To further elucidate this, it would be worthwhile 

to investigate the levels of Axin2 in the Notch LOF mouse such as a Hey2 knockout or the 

dominant negative MAML mouse, a Notch LOF model. 

4.2 Notch Signaling Inhibits the AVJ Phenotype  

I have previously shown that Canonical Wnt signaling is required for normal AVC development. 

Since Notch GOF downregulates canonical Wnt signaling, I hypothesized that upon Notch GOF, 
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the AVC myocardium would be perturbed. Interestingly, in Notch GOF mice, there is a 

reduction in Tbx3 expression as assed both by qPCR and immunofluorescence (figure 16A,C,D). 

This suggests that Notch activation downregulates both canonical Wnt signaling and destabilizes 

the AVC myocardium. Interestingly, Notch activation also downregulates Tbx20, another 

important regulator of AVC development (figure 16A). Since Tbx20 is not affected in the Wnt 

LOF or GOF models, this would suggests that Notch activation has additional affects on this 

tissue besides regulation of Canonical Wnt signaling.  

 

Interestingly, it has been reported that mice lacking Tbx20 develop a complete common AVC 52. 

The Notch GOF mice do not display this phenotype. This may be due to late activation of Notch 

signaling or only partial downregulation of Tbx20. 
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Figure 16. Perinatal Notch activation reprograms the AVJ into chamber-like myocardium.   
(A) Transient activation of Notch signaling in the myocardium through administration of doxycycline (DOX) to 
αMHC-Cre; tetO-NICD double transgenic mice from E17.5 until P1 (Notch GOF) upregulates direct Notch targets 
and downregulates Wnt targets Axin2 and Gata6, as measured by RT-qPCR. Important regulators of the AV 
junction, including Tbx3, Tbx20, Bmp2, and periostin are also downregulated (n=8 each genotype).  (B) Histological 
sections of Axin2LacZ/+ hearts show active canonical Wnt signaling in AV junctional myocardium and tricuspid valve 
mesenchyme at P3. Notch GOF downregulates Axin2LacZ/+ expression in the AV junctional myocardium but does not 
affect expression in the valve mesenchyme. (C-E) IHC demonstrates decreased Tbx3+ AV junctional myocardium 
in Notch GOF mice when compared with littermate controls (C,D).  IHC demonstrates ectopic Nav1.5 in Notch 
GOF AV junctional myocardium while Nav1.5 is absent within the AV junctional myocardium in littermate controls 
(E).  (F) Membrane localization of Nav1.5 is shown in control atria for comparison.  TV=tricuspid valve, RA=right 
atrium, RV=right ventricle. Data are expressed as mean ± SEM. Group comparison was performed using a Student’s 
unpaired 2-tailed t-test. *p<0.05. **p<0.001. Scale bars in B,C are 100 µm. Scale bar in C corresponds to C,D .  
Scale bar in E corresponds to E,F and is 10 um. Black arrows in B denote AV junctional myocardium, and stars in B 
denote the tricuspid valve. White lines in D demarcate the AV junctional myocardium. Arrow in D denotes the 
sparse Tbx3+ region in Notch GOF. Sections in E are serial to C,D and represents a magnified region corresponding 
to the white box in C. 
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4.3 Wnt Signaling Rescues Notch Induced Accessory Pathway Formation and 

Ventricular Preexcitation  

Our lab has previously shown that using the Mlc2vCre, Notch GOF mice develop accessory 

pathways and ventricular preexcitation 18. Since Notch signaling downregulates Wnt signaling, I 

asked whether this downregulation of Wnt was required for Notch induced preexcitation. To test 

this, we used Mlc2vCre to activate both NICD and Ctnnb1fl(ex3), the Wnt GOF allele described 

earlier. While 100% of Notch GOF mice display this phenotype, 25% of the double mutant mice 

display a complete rescue. As can be seen from the ECG traces, the PR interval is normal in this 

rescue. Accessory pathway formation is also rescued in 25% of mice. As can be seen in the 

trichrome staining, an AV groove and annulus are clearly seen in WT mice. In Notch GOF mice, 

the groove and annulus are lost and an accessory pathway is seen. In the rescue mice, the groove 

and annulus are present and there is no hint of an accessory pathway (figure 17). These data 

suggest that downregulation of canonical Wnt signaling is required for development of Notch 

induced ventricular preexcitation.  

 

To test whether loss of Wnt alone is sufficient for development of this pathology, we used the 

Mlc2vCre to delete β-catenin. When using 2 floxed alleles of β-catenin, mice are embryonic lethal 

and we could not test for ventricular preexcitation. However, when using one floxed allele and 

one DM allele, mice survived to adulthood. However, there was no PR interval shortening 

suggesting that while loss of canonical Wnt signaling is required for development of Notch 

induced preexcitation, it is not sufficient (figure 18). This again suggests that Notch activation 

regulates more in the AVJ than Wnt signaling alone. One candidate for this is Tbx20, which as I 

have already shown, is downregulated upon Notch activation. It remains to be seen if 
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simultaneous downregulation of canonical Wnt signaling and Tbx20 is sufficient for 

development of preexcitation. 

 
Figure 17. Inhibition of Canonical Wnt signaling is required for Notch induced ventricular preexcitation. 
(A) RT-qPCR from the LV of adult Mlc2vCre/+; Ctnnb1dm/fl Wnt LOF mice demonstrates upregulation of Scn5a when 
compared with littermate controls, demonstrating a requirement for Wnt signaling in normal ion channel gene 
regulation.  (B-D) Trichrome-stained section from a control heart demonstrates a deep myocardial constriction 
between right atrium and right ventricle with a well-formed annulus fibrosis (B, annulus denoted between white 
lines). Notch GOF mice (Mlc2vCre/+; NICD) have accessory pathways, disorganized annular tissue, and lose their 
AV constriction (C, arrow denotes accessory pathway).  Simultaneous activation of Wnt signaling on the 
background of Notch GOF (Mlc2vCre/+; Ctnnb1fl(ex3)/+; NICD) rescues the morphology of the AV junction, including 
the formation of the annulus fibrosis and the AV constriction (D). (E-G) Representative EKG traces show that Notch 
GOF mice have severe PR interval shortening and a delta wave, characteristic of ventricular preexcitation (F) when 
compared with control (E).  The PR interval is completely rescued and comparable to control littermates in 25% of 
Notch GOF + Wnt GOF mice (G). There is a partial rescue of the PR interval in the remaining mice (H). Scale bar 
in B corresponds to B,C,D and is 100 µm. Data are expressed as mean ± SEM. Group comparison in A was 
performed using a Student’s unpaired 2-tailed t-test. Group comparison in H was performed using a one-way 
ANOVA followed by a post-hoc Tukey’s test. p<0.05, n>20.*p<0.05.  
 



42 
 

 
Figure 18. Wnt LOF is not sufficient for the development of ventricular preexcitation. 
(A,B) Representative surface EKG from control (A) and Mlc2vCre/+; Ctnnb1dm/fl Wnt LOF adult mice (B), 
demonstrating a normal PR interval. (C) There is no difference in the PR interval between control and Wnt GOF 
mice (n=8 each genotype).  Data are expressed as mean ± SEM. Group comparison was performed using a Student’s 
unpaired 2-tailed t-test. 
 
 
4.4 Wnt GOF Rescues Notch GOF Induced Gene Expression 

 Upon activation of Notch signaling, I previously showed that there is a decrease in canonical 

Wnt signaling and the AVC marker, Tbx3. I asked whether Notch also regulates sodium channel 

signaling. Scn5a is highly expressed in working myocardium and is absent from the AVJ.  

Interestingly, as can be seen with immunofluorescence, Notch activation induces ectopic Nav1.5 

(the translated protein of Scn5a) in the AVC region (figure 16E). Furthermore, by qPCR, we 

found that Notch activation upregulates Scn5a levels (figure 19). Since we already showed that 

Wnt GOF downregulates Scn5a levels, we asked whether simultaneous activation of Notch and 

Wnt would up- or downregulate Scn5a. We found that Wnt GOF is able to rescue the Notch 

induced upregulation of Scn5a (figure 19). This shows that canonical Wnt signaling is not only 

required for Notch induced ventricular preexcitation but also for its upregulation of Scn5a. This 

further highlights that the mode of action of these Notch induced phenotypes is likely via 

downregulation of canonical Wnt signaling. 
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Figure 19. Wnt activation rescues Notch induced 
regulation of Scn5a 
Wnt and Notch cooperatively regulate Scn5a gene expression 
in adult LV as measured by qPCR. Notch GOF upregulates 
Scn5a, while ectopic Wnt GOF downregulates Scn5a and 
rescues the Notch-mediated effect (n=6 each genotype). Data 
are expressed as mean ± SEM. Group comparison in H was 
performed using a one-way ANOVA followed by a post-hoc 
Tukey’s test. *p<0.05.  
 
 

  

 

 

 
 

 

 

Several important questions remain unanswered. Firstly, what is the difference between those 

mice that undergo a complete and those that don’t? Presumably, there are other cofactors that 

may affect the penetrance of the rescue. Morever, why is upregulation of Wnt dominant to 

upregulation of Notch in regulating Scn5a expression? Does Notch upregulate Scn5a through 

down regulation of Wnt or does it do so independently? For example, it is possible that β-catenin 

binds proteins on the Scn5a promoter to inhibit transcription while NICD binds CSL on or near 

those sites to initiate transcription or that Notch transcriptional targets, and not the NICD 

upregulate Scn5a. 
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Figure 20.  Model for Programming the AV Junction via Wnt and Notch 
Notch signaling is active in the atria and ventricles (red) whereas canonical Wnt signaling (blue) is normally 
expressed in the AV junction during development (WT) and is required for maintenance of the AV myocardial 
phenotype and proper formation of the tricuspid valve (Wnt LOF).  Ectopic Wnt activation within ventricular 
myocardium (Wnt GOF) is sufficient to induce Tbx3 expression and ectopic AV junction properties as assessed by 
morphologic and electrical criteria.  Ectopic Notch activation in postnatal AV junctional myocardium (Notch GOF) 
can globally reprogram gene expression in the AV junction, including inhibition of canonical Wnt signaling.  Since 
Wnt LOF does not entirely phenocopy Notch GOF, Notch may additionally regulate other signaling pathways 
giving rise to ectopic myocardium. 
 

         

Figure 21.  Wnt is involved in numerous mouse models of human disease. 
Wnt LOF leads to tricuspid atresia (chapter 2). Wnt GOF leads to arrhythmogenic cardiomyopathy (chapter 3). 
While Wnt LOF does not lead to ventricular preexcitation, downregulation of canonical Wnt signaling is required 
for Notch induced ventricular preexcitation (chapter 4). 
 
4.5 Contributions 

ECGs were done by Stacey Rentschler, Stephanie Hicks, and Ben Gillers. Mouse breeding was 

done by Stephanie Hicks. Tissue was processed by Ben Gillers. LacZ and Trichrome staining 
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were done by Stephanie hicks and Ben Gillers. Immunostaining was done by Ben Gillers. qPCR 

was done by Aditi Chiplunkar and Ben Gillers.  
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Chapter 5: Gene Therapy In Vivo and In Vitro 

5.1 Mouse Gene Painting in Vivo 

The use of transgenic and knockin mice has been crucial for our understanding of development 

and disease. Indeed, the preceding data of this dissertation are derived from such mice. However, 

to rapidly test the affects of overexpression of different pathways requires other tools that do not 

involve development of new mouse models.  

 

Viruses have long been used as vectors for gene delivery and present an excellent opportunity 

with which to screen signaling pathways in vivo. Furthermore, if we are to manipulate the 

signaling pathways described in this dissertation to treat human disease, we need an efficient 

delivery system that can be used in the context of human patients. Although gene therapy faced a 

major setback in 1999 due to the death of Jesse Gelsinger in a gene therapy clinical trial, much 

has been learned since then regarding the safety of this technology and gene therapy clinical 

trials are reemerging to treat a host of diseases 43, 73.  

 

I therefore decided to expand on a gene therapy platform developed in recent years by Kevin 

Donehue’s lab in pig and Mark Aderson’s lab in mouse 74, 75. Both have shown successful gene 

painting using a mixture of polymer, proteases, and virus applied on the atrial surface with a 

camel’s hair paint brush. However, what is unclear with this system is how long the viral induced 

gene expression remains active in the atria. To test this, I made use of biolumisincent imaging 

(BLI). BLI can be used to monitor gene expression in a living animal 76, 77. I used an Ad5 vector 

that contains the coding sequence for both GFP and firefly luciferase under the control of the 

CMV promoter. In the presence of D-luciferin, firefly luciferase catalyzes an enzymatic reaction 
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that produces light that can be captured with a high speed camera. This allows one to do a 

longitudal time course without having to sacrifice the animal mid-experiment. Presence of GFP 

allowed me to assess viral expression with single cell resolution; something not possible with in 

vivo BLI. 

 

I found that while BLI signal peaked at 6 days, signal dramatically decreased by 2 weeks after 

gene painting (figure 22B,C). This decrease in signal may be due to clearance of the cells by the 

immune system. To directly test this hypothesis, I compared the persistence of adenoviral gene 

expression in control (Cd1) and immune compromised mice (NOD/SCID). The difference in BLI 

signal is striking. Already by 1 week, the signal in Cd1 beings to decrease while in NOD/SCID 

mice the signal continues to increase at 3 weeks (figure 22C). Importantly, when I sacrificed the 

mice and imaged GFP fluorescence I found signal only in the NOD/SCID hearts whereas  I 

found no GFP in the Cd1 hearts. Furthermore, the LA in the Cd1 hearts was very unhealthy and 

covered in what is presumably an immune cell filled infiltrate. In the NOD/SCID mice, the RA 

and LA are both clearly discernable and healthy looking (figure 22D). Because GFP was not 

seen in the Cd1 hearts at 23 days, it is reasonable to assume that any gene activity in those mice 

was extraneous  to the heart. Indeed, when I performed BLI after sacrificing the mice and opened 

the chest cavity, I detected small amounts of BLI on the chest wall but not on the actual heart. In 

NOD/SCID mice, I detected BLI on the LA in addition to the chest wall. In both groups, BLI 

was also detected in the liver. 
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Figure 22.  In vivo gene painting can be used for long term gene expression in NOD/SCID mice. 
(A) In vivo bioluminescence image of  a NOD/SCID mouse 3 days after gene painting. Signal is seen primarily in 
the chest cavity region, near the heart. (B) Bioluminescence comparison of virus volume in gene painting of Cd1 
mice. Mice treated with high amount of virus (1.12x10^11 V.P.) peak in BLI signal at 6 days after gene painting 
while signal in the mouse treated with low amount of virus (1.40x10^10 V.P.) 
peaks at day 3 and rapidly drops off by 6 days. (C) BLI comparison of expression of painted virus in NOD/SCID vs 
Cd1 mice. By 6 days, signal begins to decrease in Cd1 mice while in NOD/SCID mice, signal continues to increase 
even at 3 weeks. (D) Bright field and fluorescence imaging of gene painted hearts at 23 days post gene painting. In 
D, a Cd1 heart is shown with much immune infiltrate in the atrial region. While the RA is discernable, the LA is not. 
No fluorescence is seen in the Cd1 heart. (D’) A NOD/SCID heart is shown with healthy looking atria and strong 
fluorescence seen in the LA. There is nominal fluorescence in the RA. (D’’) Magnified image of GFP+ LA in D’. 
N=3 in C, D. 
 

Eduardo Marban’s group has shown that adenovirus expressing Tbx18 can be injected into the 

porcine LV and induce  an ectopic pacemaker site 78. However, this effect was lost by 2 weeks 
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after injection. My data here strongly suggests that the immune system is responsible for this 

type of short lived effect. It is therefore imperative, when developing adenovirus based cardiac 

therapies, to use modified viruses that are capable of evading the immune system. It would be 

interesting to compare BLI signal using such a modified virus in a Cd1 mouse versus unmodified 

virus in a NOD/SCID mouse. I would expect that both would have similar long lasting gene 

expression. 

 

5.2 Mouse Gene Painting in Vitro 

Since in vivo gene painting requires a complicated surgery involving intubation and a 

thoracotomy, I wanted to be able to test different viruses in the heart in a more accessible 

fashion. To accomplish this, I used an atrial culture system used by the Efimov lab. I filleted 

open the atria and pinned it down; epicardial side facing up. When I initially painted polymer, I 

found that gene expression was seen throughout the tissue, even in regions that I did not paint 

polymer and virus. This is due to the fact that polaxymer 407 is hydro-soluble and therefore, 

dissolves in the solution after being painted on the cultured atria.  

 

Figure 23.  Schematic of in vitro painting protocol.  
Atria are remove from the ventricles, filleted open, and painted with polymer/virus. Duraseal is then sprayed on to 
seal the polymer in place. 
 

To circumvent this issue, I used a cap technology to seal the polymer onto the tissue. Once 

painted, I sealed the polymer using DuraSeal, a surgical adhesive used in spinal cord surgery. 
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Using this cap technology, the GFP expression became localized to the site of delivery (protocol 

illustrated in figure 23, data shown in figure 24). 

 

Since the cost of DuraSeal is prohibitive, an alternative cap, such as a poly ethylene glycol 

(PEG) hydrogel may be worthwhile pursuing. Initial experiments with PEG diacrylate (PEGDA) 

illustrated the need for modifications since PEGDA fluoresced green under blue light, thereby 

preventing the monitoring of GFP fluorescence.  

 

An alternative to the cap technology would be to abandon the use of polaxymer 407 in favor of a 

material that is not water-soluble. For example, a pellet of collagen mixed with virus could be 

gelled and placed on top of the tissue. Collagen has already been shown to be compatible in vivo 

with adenovirus and presents sustained delivery of the virus over time. An alternative is to use a 

microinjection system to directly inject virus without polymer into the tissue. Both of these 

methods have been successfully reported in the brain slice organotypic literature. Furthermore, 

collagen has been shown to be compatible with adenovirus and useful as a viral delivery vehicle 

in vivo 79. 

 
Figure 24.  Localized gene expression after in 
vitro gene painting. 
Mouse atria are filleted open and pinned down in a 
6 well plate. GFP fluorescence is primarily seen, in 
this whole mount image, only in the middle of the 
tissue where virus/polymer was painted. 
Fluorescence lasts, at least until 6 days. 
 

5.3 Human Cardiac Slices 

Ultimately, one of the main goals of biomedical research is to develop therapies that can be used 

to treat human disease. Since we cannot do experiments on humans, we make do with model 
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organisms in which we can dissect the mechanisms of disease and test therapies. The major 

drawback to this approach is that humans are not identical to any model organism. In fact, many 

promising therapies that were proven efficacious and safe in animal studies were rejected in 

clinical trials due to unforeseen complications that arose only in humans and not in the preceding 

animal studies 80. This highlights the need to validate a therapy in human tissue before bringing it 

to clinical trials. It would be highly advantageous to begin experiments with human tissue 

coincident with developing a therapy or dissecting a genetic pathway in mice. This would allow 

the human biology to directly inform the course of experiments in animal models. 

 

To be able to do this, I began working with the human cardiac culture system published by 

Camelliti et al 81-83 and modified by the Efimov laboratory. It involves the use of a vibratome to 

slice hearts that were rejected for transplant. Based on the published literature, I began culturing 

these slices on transwells. This is to maintain the air-liquid interface and provide the tissue with 

maximal oxygen uptake. Initially, when I began working with the heart slices, I was only able to 

keep them alive for 1 day. After much trial and error, I found that it was crucial to fill the entire 

well, both in and out of the transwell with PBS each day to wash the tissue. Upon doing this, I 

have now been able to culture the slices reliably for up to 4 days. This requirement may be due to 

the high metabolism of myocytes. If the metabolic waste secreted by these cells is not washed 

out, it may be detrimental to the culture. 

 

In order to study the effects of Wnt and Notch signaling in human cardiac tissue, I decided to 

develop a viral based gene delivery system within the human slice culture, similar to the system I 

developed with mouse atria. 
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When adding only GFP expressing virus (Ad5GFP), by 24 hours I found robust expression of 

GFP in punctate shaped cells (figure 25B). Upon immune staining with actinin, I found that only 

non-myocytes were GFP positive (figure 25E,F). I therefore decided to treat the tissue with 

protease to allow for deeper penetration of the virus into the tissue. Based on the published 

literature in mouse atria in vivo and my experiments in vitro, I initially mixed the virus with 

collagenase and trypsin. By 4 days in culture, myocytes became GFP positive in one heart. It is 

unclear why the myocytes take longer to express GFP than non-myocytes. Does it take longer for 

the viral particle to enter the myocyte or is the delay in the unpacking of the viral particle once 

inside the tissue or in the expression of GFP itself? Using viruses with different targeting 

modifications may help address this question. 

 

Although this data is interesting, in remaining hearts, I could only detect GFP in non-myocytes. 

Furthermore, while trypsin and collagenase allowed for strong viral expression in one heart, I 

found that in remaining hearts, trypsin damages the human cardiac slices and actually prevents 

GFP expression (except in adipocytes where trypsin activity increases GFP expression). This 

may be due to a variation in the degree of health of different hearts from which we cut the human 

slices. I did find, however, that collagenase alone did not damage the tissue and increased GFP 

expression in the tissue. 

 

Several important questions remain in this area of research. Firstly, can modifications of the viral 

particle not only decrease the time to GFP expression but also increase the targeting efficiency? 

Do certain modifications allow for higher myocyte uptake? Also, can a polymer base system be 

used to allow for spatial control of viral expression. Both the collagen droplet method and direct 



53 
 

micro injection are techniques worth investigating. It further remains to been what affects do 

collagenase treatment and viral expression have on the electrical properties of the tissue.  

 

Figure 25.  Organotypic slices from human donor hearts can be cultured and transduced with adenovirus. 
Donor hearts rejected for transplantation were sliced on a vibratome and cultured for 4 days. Trichrome of cardiac 
slice at 1 (A) and 4 days (A’) in culture. Fibrotic regions can be seen in blue. (B) Whole mount GFP fluorescence at 
1 (B) and 4 (B’) days in culture in slices transduced with virus at D0. At 1 day, green punctate are seen. At 4 days, in 
1 out of 10 hearts, large elongated cells are GFP+. (C-H) A transverse histological section of a cultured cardiac slice 
where the entire thickness of the cultured slice can be seen. (C) At 1 day in culture, GFP is seen only in small puncti, 
around the nucleus in non-myocytes. Myocytes are stained with actinin (red), nuclei with DAPI (blue). (C’) is the 
same image as (C) without the green channel. (D) A zoomed in image of (C) where it is clear the GFP+ cell is not a 
myocyte. (D’) The same image as (D) without the green channel. (E) At 4 days in culture, GFP can be seen in 
myocytes deep in the tissue. (E’) The same image as (E) without the green channel. (F) A zoomed in image of (E) 
where GFP is clearly seen in the myocyte. (F’) The same image as (F) without the green channel. The cell that is 
GFP+ in (F) is clearly actinin positive in (F’).   (G) At 4 days in culture, GFP is primarily seen in non-myocytes. 
(G’) The same image as (G) without the green channel. (H) A zoomed in image of (G) where GFP is seen in non-
myocytes. (H’) is the same image as (H) without the green channel. The cell that is GFP+ in (H) is clearly actinin 
negative in (H’). Scale bars are 100 µm except D where it is 50 µm. 
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5.4 Contributions 
In vivo gene painting was done by Carla Weinheimer, Kalin Baechle, and Ben Gillers. BLI was 

performed by Julie Prior of the Optical Radiology Lab, Kailin Baechle, and Ben Gillers. Mouse 

in vitro gene painting was done by Jon Qiao and Ben Gillers. Hearts were brought from the 

operating room by Chaoyi Kang, Aditi Chiplunkar and Ben Gillers. Hearts were sliced by 

Chaoyi Kang, Jon Qiao, and Ben Gillers. Tissue was cultured and treated by Ben Gillers. Tissue 

was fixed and stained by Kailin Baechle and Ben Gillers. Images and figures were prepared by 

Ben Gillers. 
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Chapter 6: Methods 

6.1 Mice 

Mlc2vCre 19, αMHC-Cre 20, αMHCrtTA, tetO-NICD 29, 84, Axin2LacZ 24, Ctnnb1fl 28, Ctnnb1dm 32, 84, 

Ctnnb1fl(ex3) 29, NICD 85, Tbx2Cre 11  and R26TdTomato 86 mice have been described previously, and 

were maintained on a mixed genetic background. For experiments involving conditional gene 

expression, timed pregnancies were determined and induction of gene expression was 

accomplished with doxycycline chow (BioServ 200 mg/kg) during the stated timepoints.  

αMHCrtTA and tetO-NICD littermates fed doxycycline were used for comparison in all 

conditional gene expression experiments unless otherwise noted. Littermate controls were used 

for all experiments. All animal protocols were approved by the Animal Studies Committee at 

Washington University 

 

6.2 Histology and Immunohistochemistry 

Immunohistochemistry was performed on paraffin-embedded and frozen sections with antibodies 

recognizing Tbx3 (sc-17871, Santa Cruz), connexin 40 (CX40-A, Alpha Diagnostic 

International), Nav1.5 (AS-005, alomone labs), CD31 (DIA-310, dianova), and periostin 

(Ab14041, Abcam). Secondary antibody-fluorescent conjugates included anti-rabbit Alexa 568 

(Invitrogen), anti-goat Alexa 488 (Invitrogen), and for connexin 40, signal amplification was 

performed using anti-rabbit ImmPRESS (MP-7401, Vector Laboratories) with TSA 

(SAT702001, Perkin Elmer). Histology, immunohistochemistry, and whole-mount Xgal images 

were analyzed using Adobe Photoshop. Control and mutant images were treated identically in all 

cases where brightness and contrast were altered. 

6.3 In Situ Hybridization 
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In situ hybridization for Bmp2 was performed as described previously. Digoxigenin-labeled 

probes were detected using an antidigoxigenin-alkaline phosphatase conjugate (Roche) and 

visualized with an enzyme catalyzed color reaction. 

 

6.4 Reverse Transcription-Quantitative Polymerase Chain Reaction  

Total RNA was isolated from atria/AV or ventricles using Trizol (Invitrogen) and DNase treated 

using TURBO DNA-free DNase Treatment Kit (Ambion).  First-strand cDNA was synthesized 

using a high Capacity cDNA Reverse Transcription kit (Applied Biosystems). Gene expression 

was assayed using the Power SYBR Green PCR Master Mix (Applied Biosystems) with primers 

listed in the attached Table and quantified using the StepOne Plus Real-Time PCR system or 

ViiA™ 7 qRT-PCR systm (Applied Biosystems).  Relative fold changes were calculated using 

the comparative threshold cycle methods (2-ΔΔCt). 

 

6.5 Optical Mapping 

Optical mapping was performed as previously described 87.  Briefly, mice were anesthetized with 

a ketamine/xylazine cocktail (ketamine, 80 mg/kg bodyweight; xylazine, 10 mg/kg bodyweight) 

and heparinized (100 units) by intraperitoneal injection. Hearts were excised and mounted on a 

Langendorff set-up and perfused at 37°C with Tyrode’s solution ((in mmol/L) 128.2 NaCl, 4.7 

KCl, 1.19 Na H2PO4, 1.05 MgCl2, 1.3 CaCl2, 20.0 NaHCO3, and 11.1 glucose, pH maintained at 

7.4 by equilibration with a mixture of 95% O2 and 5% CO2). To record optical action potentials, 

a bolus injection of 10 mM Di-4-Anepps was administered with 15 mM blebbistatin to prevent 

motion artifacts. Optical signals were processed using MATLAB software.  All optical signals 

were spatially binned (5x5 pixels), filtered using a 0-100Hz finite impulse response filter, and 
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normalized. Activation times were defined at dVm/dtmax. Simultaneous recording of a pseudo-

electrocardiogram using electrograms placed 5 mm from the heart was performed, and the QRS 

duration was determined according to previously described methodology 88. 

6.6 In vivo Gene Painting and Bioluminescent Imaging 

Adeno virus was mixed with polaxymer 407 and trypsin and collagenase. The polaxymer allows 

the mixture to adhere to the atria while the trypsin and collagenase allow viral penetration into 

the myocardium. The mixture was prepared the day before surgery to allow for proper 

solubilization of the polymer. 

 

Cd1 or NOD/SCID mice were placed under anesthesia and intubated. They underwent a 

thoracotomy and a the virus/polymer mixture was painted on the LA. The chest was left open for 

5 minutes to allow penetration of the virus and proteases. A 2nd round of painting was done 

followed by another 5 minute wait. The chest cavity was sutured and mice were imaged starting 

3 days after surgery. 

 

D-Luciferin was injected intraperatonealy and mice were left while conscious for 5 minutes to 

allow for distribution of D-Luciferin. Mice were then placed under isoflurane for 5 minutes and 

imaged with a high-speed camera for 1 to 60 seconds. The injected virus contains the firefly 

luciferase gene that catalyzes a light emitting enzymatic reaction in the presence of D-Luciferin. 

Therefore, this technique can be used to detect active gene expression in vivo. 

 

6.7 In Vitro Mouse Gene Painting 
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The virus/polymer mixture used for in vivo painting was used for in vitro painting of the mouse 

atria. Mice were sacrificed and their hearts were perfused on a Langendorf perfusion with 

Krebbs solution at 37 C. The atria were removed and dissected open and pinned down in a 6 well 

plate, epicardium facing up. Virus was painted on the atria. The painted region was then coated 

with DuraSeal and placed in a tissue culture incubator. Medium was changed every day for 6 

days. 

 

6.8 In Vitro Human Cardiac Slice Culture 

Human hearts that were rejected for transplantation were perfused with cardioplegia and 

collected by a cardiothoracic surgeon. Hearts were transported to the laboratory in ice cold 

cardioplegia. A piece of the LV free wall was placed in ice cold tyrodes solution and sliced on a 

vibratome in 380 uM sections and an advance rate of 4um/s. Slices were cultured on trasnwells 

in M199 media with 1% Insulin/Transferin/Selenium and  penicillin/streptomycin. Slices were 

treated with 15 uL protease and virus and left on the tissue over night. Slices were washed in 

PBS every day. 

 

6.9 Statistical Analysis 

All data are expressed as means ± standard error (SEM). Statistical analyses were performed 

using student unpaired t tests or one-way ANOVA followed by post-hoc Tukey’s test. 

Significant differences are indicated by *P<0.05, **P<0.005. 
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Chapter 7: Conclusion 

I have presented here a model where Notch and Wnt signaling program distinct cardiac regions. 

While Wnt signaling programs a junction/nodal phenotype, Notch signaling programs working 

myocardium and limits the activity of Wnt activation. Several important questions remain in 

further developing this model. 

7.1 What Regulates the Notch/Wnt Balance? 

I have posited that Wnt activation is limited primarily to nodal tissue as a result of Notch 

activation in non-nodal tissue. This model places Notch signaling upstream of Wnt signaling. 

What is upstream of Notch signaling? Why is it not active in the AVC myocardium? Is there an 

inhibitory signal in the presumptive AVC which prevents active Notch signaling? Does Wnt 

signaling in the AVC inhibit Notch signaling? If so, why is Wnt’s inhibition of Notch dominant 

in the AVC but vice versa in working myocardium? Presumably, there are cofactors which 

regulate these two aspects of regional cardiac specification. What are those factors and how do 

the interact with the proposed signaling pathway? 

 

Another intriguing questions lies in the stochasticity of ectopic AVJs. I have shown, based on 

several criteria, that Wnt activation programs ectopic AVJs. However, these fibrofatty 

depositions appear at seemingly random sites in the ventricles. They can be at the apex or they 

can be more lateral. Furthermore, there doesn’t appear to be a set number of these foci. In 

addition, in the embryo, the ectopic Tbx3/perisotin pattern can also emerge in varying regions; 

whether at the apex of the LV or as an expansion of the AV canal/nodal region. What determines 

where these foci develop? 
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One may be tempted to explain this based on the spottiness of Mlc2vCre expression. However, as 

noted earlier, αMHC-Cre is expressed ubiquitously throughout the heart and even when using 

that Cre to over activate canonical Wnt singling, the ectopic Tbx3 expression is also stochastic in 

its spatial distribution. Therefore, the choice of tools in this experiment does not explain the 

random distribution. 

 

There are two interesting mechanisms that may explain this phenomena. As mentioned earlier, 

Notch signaling is active in the ventricles. In particular, Hey2 is expressed in the ventricles while 

Hey1 is expressed in the atria 41. There may exist different levels of Hey2 expression throughout 

the ventricles. As I have shown earlier, Notch signaling downregulates the activity of canonical 

Wnt signaling. Therefore, it is possible, that regions of the ventricles which have low(er) Notch 

activity are susceptible to Wnt induced overexpression whereas regions with higher endogenous 

Notch activity are not susceptible since their Notch activity may prevent those regions from 

becoming programmed by ectopic Wnt activation.  

 

This hypothesis may also explain why Wnt GOF completely rescues Notch induced preexcitation 

in 25% of mice. It is possible that in the 75% of mice that are not completely rescued, there is a 

higher level of endogenous Notch activation that prevents Wnt activation from being able to 

rescue the phenotype. In the remaining 25% of mice that are completely rescued, there may be 

lower endogenous Notch activation and therefore these mice can be rescued by Wnt activation. 

 

Bmp2 signaling may present an alternative mechanism in understanding the stochastic nature of 

the ectopic AV junctions. Bmp2 signaling, primarily expressed in the AVC, is required for 
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development of that tissue 35. However, it is also expressed at low levels in the ventricles. It is 

possible that Wnt signaling is able to specify an ecptoic AVJ only in regions that already have a 

threshold level of Bmp2 which makes them “pre-specified” and permissive to Wnt’s 

specification. Being that the direct Notch target, Hey2 has been shown to limit Bmp2 expression 

primarily to the AVC, small amounts of Bmp2 expression in the ventricle may be the result of 

lower Notch activation. Therefore, this hypothesis may in fact be a further iteration of my 

previously described Notch hypothesis as apposed to a completely independent mechanism.  

 

7.2 How Does Notch Inhibit Wnt Signaling? 

Another area of speculation lies in Notch’s inhibition of Wnt singling. As mentioned earlier, 

Kwon et al posited that in Isl1 myocyte progenitors, NICD targets β-catenin for lysosomal 

degradation 72. Although this mechanism may be true in myocyte progenitors, there are several 

other hypotheses to take into consideration in AVC myocytes. The mechanism does not lie in 

regulation of β-catenin transcript levels since in Notch activated mice, β-catenin transcript levels 

remain unchanged. This suggest that the mechanism is post transcriptional, either in regulating β-

catenin protein levels or activity. Notch signaling may prevent translation of the β-catenin 

message. This would lead to lower β-catenin levels and hence lower Wnt activation. An 

alternative explanation is that although initially β-catenin protein levels are the same, they are 

either prevented from enter the nucleus or from activating downstream transcription once in the 

nucleus. This would likely occur through a post translational modification which would affect its 

nuclear localization signal from targeting it to the nucleus. Alternatively, once β-catenin enters 

the nucleus, it cannot bind target sites due to either sequestration of β-catenin in the nucleus or 

occupation of TCF/LEF binding sites by competitor proteins. 
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On a similar note, what aspect of Notch signaling inhibits Wnt activity? Is it NICD itself 

participating in competitive binding or sequestration or are Notch downstream effectors (such a 

Hey1 or Hey2) required for this inhibition. It would be interesting to assess Wnt activity in a 

Hey1 or Hey2 overexpression mouse that would activate Notch downstream effectors without 

over activating the NICD. 

 

7.3 What Causes Specific Right Sided Phenotypes? 

Another are of interest is the right sided nature of several phenotypes presented here. The Notch 

induced accessory pathways are primarily right sided. The Wnt GOF induced inexcitability was 

predominant in the RV. Lastly, in the Wnt LOF, the tricuspid, and not mitral, valve is atretic. 

This suggests that there may be a certain program that regulates the right versus left side of the 

heart. It is important to realize that the right sided nature of these three phenotypes may all be 

dependent on different mechanisms. For example, the longer refractory period in the Wnt GOF 

may be dependent on expression of different ion channels in the RV versus the LV which make 

it more susceptible to a prolonged refractory period. Indeed, the effects of adult Wnt activation in 

the atria was different for the RA and LA in downregulating Scn5a. The atretic tricuspid valve is 

likely not due to ion channel expression but possibly a result of a specific genetic network which 

programs the right vs left side of the AVC. For example, Tbx3, which is regulated by Wnt 

signaling, is primarily a right sided factor whereas Tbx2 is more highly expressed in the left side 

of the AVC. This leads to the intriguing possibility that the right side of the heart is regulated by 

a Wnt-Tbx3 axis and left side of the AVC is regulated by a Tbx2 dependent pathway. The right 

sided accessory pathways may also be dependent on this differential program. 
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The role of Notch and Wnt presented here, and their interplay provide a deeper understanding of 

the signaling pathways that program distinct regions of the heart. Furthermore, understanding 

how perturbation of these pathways leads to disease may give us a better direction for developing 

targeted therapies. The use of gene therapy may provide a useful platform for targeting these 

pathways in the treatment of disease. 
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