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ABSTRACT OF THE DISSERTATION

Extrinsic and Intrinsic Control of Integrative Processes in Neural Systems
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At the simplest dynamical level, neurons can be understood as integrators. That is, neurons

accumulate excitation from afferent neurons until, eventually, a threshold is reached and they

produce a spike. Here, we consider the control of integrative processes in neural circuits in

two contexts. First, we consider the problem of extrinsic neurocontrol, or modulating the

spiking activity of neural circuits using stimulation, as is desired in a wide range of neural

engineering applications. From a control-theoretic standpoint, such a problem presents several

interesting nuances, including discontinuity in the dynamics due to the spiking process, and

the technological limitations associated with underactuation (i.e., many neurons controlled

by the same stimulation input). We consider these factors in a canonical problem of selective

spiking, wherein a particular integrative neuron is controlled to a spike, while other neurons

remain below threshold. This problem is solved in an optimal control framework, wherein

several new geometric phenomena associated with the aforementioned nuances are revealed.

Further, in an effort to enable scaling to large populations, we develop relaxations and

alternative approaches, including the use of statistical models within the control design

framework. Following this treatment of extrinsic control, we turn attention to a scientifically-

driven question pertaining to intrinsic control, i.e., how neurons in the brain may themselves

be controlling higher-level perceptual processes. We specifically postulate that neural activity

xi



is decoded, or “read-out” in terms of a drift-diffusion process, so that spiking activity drives a

latent state towards a detection/perception threshold. Under this premise, we optimize the

neural spiking trajectories according to several empirical cost functions and show that the

optimal responses are physiologically plausible. In this vein, we also examine the nature of

’optimal evidence’ for the general class of threshold-based integrative decision problems.
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Chapter 1

Introduction

In the nervous system, a neuronal action potential, i.e., a ‘spike’, is generally thought to be

the primary unit of information processing [1]. Neurons interact in highly nontrivial ways to

produce patterns of spiking that, ultimately, culminate in a certain behavioral or functional

outcome. In some cases, spiking may coalesce into rhythmic or oscillatory patterns [2, 3],

while in others, spiking exhibits a more asynchronous character [4]. Over the past decades,

the field of neuroscience (and, in particular, computational neuroscience) has made major

strides in positing relationships between these neural activity patterns and the functions

that they ostensibly enable (in neuroscience, referred to as neural coding, i.e., how neurons

‘code’ information or actions). However, the complexity of neuronal networks has meant

that, despite these advances, many questions remain regarding the precise functional role of

spikes, the mechanisms by which they realize complex patterns of neural activity and the

extent to which this activity can be controlled exogenously. In other words, much remains

unknown about the control properties of neurons and networks thereof. Understanding the

control properties of brain networks at spatial scales commensurate with individual neurons

has three related and important implications in neuroscience and neural engineering.
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First, achieving spatially and temporally precise control in such networks would provide a

substantial tool for probing different hypothesis pertaining to neural coding, such as the

level of spike temporal precision that is consequential for information processing in the brain.

Second, knowing the control properties of such networks may aid in understanding basic

issues around how networks of neurons intrinsically self-coordinate their activity. Third,

these insights may enable new strategies for devising extrinsic neural control systems as part

of clinical brain stimulation technologies or emerging neural prostheses. The overall goal

of this dissertation is to provide fundamental control-theoretic analysis, engineering design

methodology and scientific insight towards these long-term objectives.

1.1 Neurocontrol

The manipulation of networks of neurons in the brain through the use of extrinsic controls –

neurocontrol – is a key problem in experimental neuroscience [5]. Such capability has the

potential to advance our understanding of how the firing activity of brain cells is related to

the processing of sensory information [6]. Moreover, improving the use of neurostimulation

may aid the refinement of how such technology is used in clinical settings [7, 8].

The use of stimulation in the study of neural coding is itself an established paradigm in

neuroscience. The general idea is straightforward: by inducing neural activity and observing

the consequent behavior of the organism, one can infer the functional role of the region in

question. For example, cortical microstimulation of certain brain regions has been shown

to induce behavioral changes in the context of perceptual tasks such as visual decision-

making [9, 10]. Recently, several key advances in neurostimulation technology, such as the

advent of optogenetics [11], have made neurocontrol possible at unprecedented spatial scales.

Thus, experimentalists are able to assess the functional role not simply of different neural

2
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Figure 1.1: Underactuated neurocontrol schema. Most neurostimulation modalities are
underactuated, wherein a single stimulation source impinges on orders-of-magnitude gre-
ater numbers of neurons. (A) The use of such stimulation has historically been limited
to perturbative paradigms, wherein pulse-type inputs are used to create bulk population
responses without fine temporal structure. (B) Increasingly, experimentalists seek to induce
more precise spiking patterns in specific subsets of the population, which may necessitate the
design of nuanced stimulation waveforms.

populations, but potentially of specific neurons and the timing of their spikes. That is, it

may now be possible to test the long-standing neural coding hypothesis that spike timing is

crucial to information processing [12].

Currently, however, these hardware instantiations are typically used in perturbative paradigms

wherein ‘pulses’ of input are used to alter neural firing in a bulk manner (see Figure 1.1) that

does not control the precise timing of individual neuronal spikes. Formal control analysis or

design in this context, while desired, is not well-studied [13]. Thus, there is a need for formal

mathematical analysis regarding the fundamental limits of such stimulation, particularly as

it pertains to the feasibility of inducing precisely timed spiking activity in neural populations

(Figure 1.1).
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1.1.1 Underactuation in Neurocontrol

A key challenge associated with neurocontrol is underactuation, wherein a small number of

inputs (in many current implementations, a single input), impinges on an orders-of-magnitude

greater number of neurons [14], as schematized in Figure 1.1. In other words, individual

neurons are not addressed via independent inputs, but rather a common one. This challenge

is ubiquitous across stimulation modalities and is, perhaps, the major constraint that has

restricted the use of neurostimulation to the aforementioned perturbative paradigms. In

the context of the oscillatory objectives discussed above, some progress has been made

on solving control problems such as entrainment and synchronization in the presence of

underactuation [15–18]. However, this issue is unresolved in the case of asynchronous

timed spike control objectives, such as those we consider herein. Current and foreseeable

neurostimulation technologies are likely to face the challenge of underactuation, especially for

in vivo instantiations.

1.1.2 Neurocontrol Analysis and Design Approaches

Dynamical Systems Framework

A direct approach to understanding the control properties of spiking neuronal networks (as

distinct from macro-scale networks at the level of brain regions) involves the use of dynamical-

systems models, such as the simple integrate-and-fire neuron [14], or biophysical models

involving voltage-gated conductance equations [19]. While basic control characterizations

have been obtained in single neurons [20], the nonlinearity, discontinuity, and noise associated

with the neuronal dynamics in question lead to issues of scalability in both control analysis

4



and design. Nevertheless, such dynamical systems analysis is fundamental to revealing basic

mathematical limitations and insights regarding the control of biophysical neurons.

Probabilistic Framework

An alternative to dynamical systems approaches is to treat neurons are probabilistic spike-

generating units, e.g., as Poisson-like processes. Indeed, point processes provide a systematic

way to handle nonlinearity and inherent stochasticity within the dynamics through a time-

varying rate function. Such models include the popular class of Point-Process Generalized

Linear Models (PPGLMs) [21, 22], which have been used to model event-based phenomena

in ecology [23, 24], telecommunications [25], and, in the present context, the spiking activity

in neuronal networks. Here, each spike is understood as a timed binary event. Since they

are readily fit to spiking data, PPGLMs have emerged as a powerful tool in the analysis of

neural recordings [26] and further, in the control design problem. Absent data, PPGLMs can

also be formulated de novo as mathematical models of neural activity that can capture some

aspects of the network structure and dynamics (e.g., delays, refractory).

Prior Work

The control of neural activity has received substantial attention in the context of oscillations

and synchronization, spurred in large part by interest in clinical brain stimulation for motor

disorders [27, 28]. The objective in this class of neurocontrol problem is generally the forced

splaying of neural phases (i.e., desynchronization), wherein neurons are typically modeled

using phase oscillator formalisms (e.g., [17, 19, 29–33]). Alternatively, others have approached

the problem of desynchronization from the perspective of physiological and instrumentation

constraints, favoring methods involving strictly pulsatile stimulation [34–37]. Control analysis

results have also been obtained in the context of synchronization of neural ensembles [15,
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38]. In contrast, we consider herein the mathematical problem of asynchronous neurocontrol

(i.e., control neural spiking without overt rhythmicity). In other words, forcing a neuron

to spike but not necessarily periodically. The other key distinction of our work is that we

consider a neuronal-level objective (i.e., spiking and spike timing) versus a population-level

objective (i.e., synchronization or desynchronization). [14] provides an early formulation of

this problem, with related works include : optimal control of single neuron [20], or control

design of populations using statistical framework [39] for integrate-and-fire models.

1.2 Intrinsic Control in Sensory Processes

One of the foundational, persistent questions in neuroscience is how sensory networks mediate

robust, efficient processing of afferent inputs. Recent evidence suggests that the stimulus-

evoked responses of early olfactory neurons dichotomize into phasic and tonic temporal

motifs [40]. However, the precise mechanisms by which these motifs are converted into

actionable information (i.e., decoded) and, in particular, the advantages of having these

different sets of temporal dynamics is not well understood. Here, we leverage our theory

on control of integrative processes to perform a computational study that sheds light on

the meaning of these different sensory-evoked responses. We consider a particular class of

decoding schemes, based on the influential drift-diffusion class of sensory decoding models

(drift diffusion model, DDM) [41], which are based on a simple, intuitive premise that sensory

processing is based on integrated neural activity crossing ‘detection’ thresholds. Such a

model amounts to a higher-level abstraction of the basic spiking dynamics discussed earlier.

Previous work has shown that drift-diffusion models are highly predictive of coarse behavioral

features such as reaction time and accuracy in well-constrained cognitive paradigms such as

the two-alternative, forced choice task (2A-FCT) [42]. However, the neural basis of this type

of integrative decoding remains poorly understood. Moreover, it is not known whether this
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type of decoding is specific to high-level cognitive tasks, or whether it is innate to sensory

processing across modality and scale. As we will later show, it turns out that within this

framework, a combination of phasic and tonic responses is provably optimal for particular

drift landscapes and is highly consistent with experimental observations of neural activity in

early sensory networks.

1.3 Contributions

In this dissertation, we develop extrinsic control strategies with an objective of emitting

desired activity from neural ensembles under dynamical systems and probabilistic modeling

frameworks. It turns out that solving this problem enables an interesting investigation of

not just extrinsic neurocontrol, but the aforementioned notion of intrinsic control of sensory

processes. Thus, we also perform a theoretical study of intrinsic neural responses and,

specifically, investigate the hypothesis that neurons may be producing near-optimal activity

motifs towards enabling fast, efficient sensory detection. In turn, this theoretical study reveals

several interesting control-theoretic nuances that arise for general threshold-hitting problems.

Thus, this dissertation spans basic control theory, neural engineering and mathematical and

computational neuroscience as depicted in Figure 1.2. Specifically, we provide:

1. The formal synthesis of time-optimal selective spiking solutions in pairs of Leaky

Integrate-and-Fire (LIF) neurons in an underactuated setting. The synthesis involves

application of the Pontryagin maximum principle, but with several non-trivial caveats

due to the selectivity specification, which leads to state constraints. We prove that the

optimal solution in this case involves use of the so-called boundary control, associated

with the state constraints. We also highlight the the role of system parameters in

determining overall controllability of the network [43, 44].
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2. The development of design methods for timed patterns of spikes. We derive greedy and

regularization based approaches that can provide near-perfect construction of patterns

under specified conditions for pairs and eventually populations of neurons. We also

evaluate the performance of our control design when the system is subjected to noise

and disturbances [44, 45].

3. A control analysis for PPGLMs that approximates, in essence, the reachable set of

binary patterns for a given model. A relativistic notion of control viability that allows

comparison between PPGLMs and validation of the proposed framework, showing its

ability to reveal salient control properties of spiking networks [46].

4. The instantiation of the developed theory for the purposes of designing external

neurostimulation on fitted PPGLMs and for underlying dynamical models of neuron

[46, 47].

5. Characterization of experimental neural response for sensory detection tasks in early

olfactory systems. Analysis of the ’optimal’ response with respect to robust time-

efficient detection objectives under DDM variants as detector models. Configuration of

a competitive network architecture capable of producing these response motifs.

6. A theoretical study to investigate the makeup of the optimal evidence for decision

problems in threshold-based models. Discussion of the non-intuitive features in the

optimal solution or the lack thereof.

The remainder of the dissertation is organized as follows. In Chapter 2, we present solutions

for the asynchronous neurocontrol problem for a dynamical systems-based model (LIF) for

pairs and populations of neurons. Next, in Chapter 3, we approach similar problems within

a statistical framework, namely PPGLM, to first introduce a controllability-like notion for

systems traversing in binary space, and second, to create a design strategy for inducing
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Figure 1.2: Overview of the dissertation

desired activity patterns in the underlying neural ensemble modeled by the PPGLM. Chapter

4 analyzes experimental data from locust olfactory neurons to understand how neurons

intrinsically control themselves for sensory detection tasks. In Chapter 5, we formulate the

optimal decision problem for a compromised objective between time and accuracy and discuss

the peculiarities in the ensuing solution - the ’optimal evidence’. Finally, in Chapter 6 we

highlight the key conclusions derived from our results and discuss their significance.
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Chapter 2

Neurocontrol I: Dynamical Systems

Framework

In this chapter we address the problem of time-optimal control of spiking in Leaky Integrate-

and-Fire (LIF) neurons [48], where the desired spiking is selective, that is, certain neurons

spike while others remain silent. Our presentation and discussion on fundamental optimal

control analysis and design work toward the overall goal of understanding the limits of

neurocontrol.

2.1 Background & Methods

2.1.1 Definitions: Spike Sequence and Pattern Control

We begin by formally defining the notions of spike sequences and patterns, which will facilitate

our approach to spike timing control:
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Definition 1 (Spike Sequence). In a population of C neurons, an K-spike sequence is a

vector

ΣS = [σ1, σ2, ..., σK ] , (2.1)

where σk ∈ {1, 2, ...., C} indicates the neuron which produces the kth spike in the sequence.

Definition 2 (Spike Pattern). In a population of C neurons, an K-spike pattern is a sequence

with timing, i.e.,

ΣP = [(σ1, t1), (σ2, t2), ..., (σK , tK)] , (2.2)

where σk ∈ {1, 2, ...., C} indicates the neuron which produces the kth spike at time tk > 0,

where t1 < t2 < ... < tK.

2.1.2 Model Formulation

We proceed with the model formulation, starting with the base LIF model and then adding

synaptic coupling between neurons.

Base Model

The leaky leaky integrate-and-fire neuron is a well-established model in computational

neuroscience [1, 49]. The circuit of this model is shown in Figure 2.1 where a capacitor C and

resistance R (modeling the capacitive and resistive properties of the cell membrane) are in

parallel, with u(t) being the external stimulus. Denoting the membrane potential as v(t), the

charge deposited on the capacitor is q = Cv and therefore the current is given by IC = C dv
dt
,

leading to the linear dynamics

C dv(t)

dt
=
Vrest − v(t)

R
+ βu(t) + Isyn, (2.3)
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Figure 2.1: The LIF circuit. The membrane potential rises under the stimulus u(t) until
it hits the threshold VT , at this point v(t) is artificially reset to Vrest and a spike is said to
be generated. We also show a cartoon of the possible voltage trace of the neuron under a
rectangular pulse input.

where Vrest is the resting potential and κ = RC is the membrane time constant. Here, Isyn

denotes synaptic input entering from other neurons. We also introduce a parameter β that

encapsulates the effectiveness of the external input u(t) for each neuron.

Spike generation: In this model, a spike is said to be generated at time ts if the membrane

potential reaches a predetermined threshold voltage VT . Upon emitting a spike, the membrane

potential is reset to Vrest. Thus, spike generation is governed by a discontinuous resetting

rule:

v(t−s ) = VT → v(t+s ) = Vrest (2.4)

Model normalization: In what follows, we will assume Vrest = 0. This normalizing assumption

is not restrictive, since it can be readily achieved by a simple translation in the coordinate

system, i.e., v ← (v − Vrest), VT ← (VT − Vrest).
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Synaptic Coupling

We build an approximate model of synaptic coupling based on the standard formulations

in [49]. Key to this formulation is the notion of impulsive coupling, wherein the major

effect of Isyn occurs during a brief time window following an afferent spike (i.e., a spike from

another neuron). Following a reduction of continuous synaptic models (see Appendix A.1),

we formulate Isyn as

Isyn(t) = ρsyn(t)
∑
ts∈T

δ(t− ts), (2.5)

where T denotes the set of all afferent spike times and ρsyn(t) is a synaptic constant that

depends on the specific parameters of the neuron. If all neurons remain below the threshold,

then Isyn ≡ 0.

Thus, the effect of a synaptic event on the postsynaptic neuron can be understood as an

instantaneous rise in voltage that occurs only when a neighboring, connected neuron fires a

spike. Knowing this rise can allow us to insulate neurons from each other in the spike control

problem, formulated in the next section.

2.1.3 Problem Formulation: Minimum Time Selective Spiking

In this section, we start with three baseline problems pertaining to the design of u(t) to create

structured spiking patterns in populations of two LIF neurons of the form (2.3), and further

study their extensions for neural populations. We first consider the problem of time-optimal

sequence control, i.e., inducing target sequences with minimal temporal spacing between the

beginning and end of the sequence. It turns out that this problem amounts to an analysis of

selective spiking. We formulate a canonical version of this problem in two dimensions.
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Problem 1. (P1: Pairwise time-optimal selective spiking with synaptic guard)

Consider two coupled LIF neurons of the form (2.3):

v̇1

v̇2

 =

−a1 0

0 −a2


v1

v2

+

b1

b2

u+

Isyn1

Isyn2


≡ f(v, u, Isyn) = Av + bu+ Isyn

(2.6)

where v = [v1 v2]T , ai = 1
RiCi , bi = βi

Ci , ai, bi > 0 and Isyni are impulsive synaptic inputs of the

form (2.5) for i = 1, 2. Find the control input u(t) so that

v1 (τ) = VT , v2 (t) ≤ VG < VT ,∀t ∈ [0, τ ] (2.7)

with arbitrary initial condition v(0) ∈ G where

G = {(v1, v2) : 0 ≤ v1 ≤ VT , 0 ≤ v2 ≤ VG}. (2.8)

and u(t) solves the time-optimization

minimize J(u) =

∫ τ

0

dt (2.9)

over all measurable functions u that take values in the control set, where U is this set of

admissible inputs.

Taken together, (2.7)-(2.9) imply that Neuron 1 produces a spike before Neuron 2 and that

under (2.7), the spike occurs in minimum time.

Functional decoupling of the network via guard VG: The parameter VG in (2.7), referred to as

a synaptic guard, is key to selectivity. It ensures that Neuron 2 remains below threshold and,
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further, is insulated from the synaptic effect due to the induced spike in Neuron 1, i.e.,

VG < VT − ρ̄syn; ρ̄syn = sup
t
ρsyn(t), (2.10)

where ρsyn(t) is the synaptic contribution to the post-synaptic neuron (here, Neuron 2) and

is derived in Appendix A.1. The guard, in essence, keeps the non-selected neuron sufficiently

away from its own threshold so as not to produce an undesired, collateral spike. It is important

to note that in solving (P1 ), it is sufficient to consider the dynamics in (2.6) as

v̇ = f(v, u, 0) ≡ f(v, u) = Av + bu, (2.11)

since both neurons are below threshold for the duration of the synthesis. Despite this

simplification in the dynamics, the selectivity/guard criterion (2.7) poses a key challenge.

That is, it is not sufficient to simply fire Neuron 1 in minimum time, since doing so may in

general cause Neuron 2 to fire an undesired spike. Mathematically, (2.7) functions as a state

constraint that, as we will see, leads to several complications in the optimal synthesis.

If the problem has a solution for either choice of neuron labeling, then the population is said

to be pairwise feasible. That is, either neuron can be made to spike selectively.

Problem 2. (P2: Pairwise time-optimal selective sequencing) For the two neuron

network in (2.11), find the control input that achieves any K-spike target spike sequence ΣS

time optimally, i.e.,

minimize
u∈U

J(u) =

∫ τ1

0

dt+ . . .+

∫ τK

τK−1

dt (2.12)

15



such that
vσk(τk) = VT , vσ̂k(t) ≤ VG, ∀ t ∈ [τk−1, τk],

v(0) ∈ G, σ̂k = Ω\σk where Ω = {1, 2},

k = 1, . . . , K, and τ0 = 0.

(2.13)

The key complication here is the non-differentiability of the value function within the dynamic

programming, as well as the spike discontinuity (2.4).

Problem 3. (P3: Pairwise time-optimal selective patterning) Considering the same

model in (2.11), find the control which induces the spiking in the two neurons according

to the times specified in the target pattern ΣP , constrained by the underlying sequence.

Mathematically,

minimize
u∈U

J(u) =
K∑
k=1

(
(tk − tk−1)−

∫ τk

τk−1

dt

)2

(2.14)

with the same constraints as described in (2.13) and t0 = τ0 = 0. Note that tk are the desired

spike times, and τk are the actual spike times.

Next, we study three more problems pertaining to the design of u(t) to create precise spiking

in populations of LIF neurons. For a population of C neurons with Isyn = 0 (2.6) can be

rewritten as,


v̇1

...

v̇C

 =


−a1 . . . 0

. . .

0 . . . −aC



v1

...

vC

+


b1

...

bC

u = f(v, u) = Av + bu (2.15)

Problem 4. (P4: Regularized Time-optimal selective spiking in Populations) The

selective spiking problem P1 becomes intractable for higher dimensions and we formulate a

regularized version of the problem, adding a terminal cost which is a function of the voltages

of the neurons except the target neuron. Without loss of generality for a target spike in Neuron
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1 in a population of C neurons, we can set up the following regularized time optimal problem:

minimize
u∈U

J(u) =

∫ τ

0

dt+
1

2
γ (ωv(τ))Tω v(τ)

s.t. v1(τ) = VT

(2.16)

where ω = [0 ω2 . . . ωC ], ωc ≥ 0, ∀ c = 2 . . . C, the admissible set U = [U1,U2] and γ is the

regularization constant.

In higher dimensions, the number of possible candidates for the control increases with the

dimension of the system, making the problem challenging to solve analytically. We have

provided a numerical approach to obtain the solution for C > 2.

Problem 5. (P5: Regularized Minimum Time-Energy selective spiking in Popu-

lations) Along with the selectivity, if we want to minimize the energy of the control u(t),

we can add one more term in the integral of the objective. Without loss of generality for a

target spike in Neuron 1 in a population of C neurons, we formulate the following regularized

minimum time- energy optimal control problem:

minimize
u∈U

J(u) =

∫ τ

0

(1 +
1

2
%u2)dt+

1

2
γ (ωv(τ))Tωv(τ)

s.t. v1(τ) = VT

(2.17)

where % is the second regularization constant for the trade-off between the time and energy in

the objective and the admissible set U = R. We follow the same numerical approach to solve

this problem as P4.

Problem 6. (P6: Regularized Minimum Energy Timed selective spiking in Popu-

lations) For a timed spiking problem, we can modify P5 to minimize the difference between

achieved and target time τd for a desired spike along with the energy of the control u(t).

So without loss of generality for a target spike in Neuron 1 at t = τd in a population of C
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neurons, we formulate the following problem with the regularization on the terminal states of

the unintended neurons:

minimize
u∈R

J(u) =
1

2

∫ τ

0

%u2dt+
1

2

(
γ (ωv(τ))Tωv(τ) + (τd − τ)2

)
s.t. v1(τ) = VT .

(2.18)

Ultimately, we will use the solution of P6 to construct a one step greedy control for multi-spike

timed spike sequences or patterns.

2.2 Minimum Time Selective Spiking

We consider the minimum-time selective spiking problem P1. We assume, without loss of

generality, that the neurons are labeled so that the objective is to fire Neuron 1. It turns out

that the solution to this problem depends on the ratio (see Appendix A.1.1)

ϑ1 =
b1a2

b2a1

, (2.19)

which we treat in two separate cases corresponding to ϑ1 ≶
VT
VG

.

As we will show in the following sections, for ϑ1 >
VT
VG

, i.e., Case 1, selective spiking can

always be accomplished. However, if ϑ1 ≤ VT
VG

, i.e., Case 2, a solution may not exist and

pairwise feasibility is not guaranteed.
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2.2.1 Selective Spiking, Case 1: ϑ1 > VT
VG

Proposition 1. Consider the two neuron network (2.11), where

ϑ1 >
VT
VG
. (2.20)

Assume that the set of admissible controls U forms a box constraint of the form U = [0,U],

and we take as given the initial conditions vi(0) < VG, i = 1, 2. The time optimal feedback

control u∗ ∈ U for the selective spiking problem P1 for Neuron 1 is given by

u∗ =


U for v2 < VG,

uarc for v2 = VG,

(2.21)

where uarc = a2
b2
VG is the unique control that keeps v2(t) = VG invariant. Moreover, such

a control always exists. Thus, optimal controls are either given by a constant control at

maximum value, u∗(t) ≡ U, if the state space constraint does not become active or, if the

corresponding trajectory meets the state space constraint, optimal controls are a concatenation

of a segment for the maximum control until the state constraint is reached followed by a

constant boundary control u∗(t) = uarc until the terminal value v1 = VT is reached.

Proof: Necessary conditions for optimality for problem P1 are given by the Pontryagin

maximum principle. In the presence of state space constraints, these take a rather complicated

form (the multipliers associated with the state space constraint are measures). The problem

considered here, however, is simpler, and instead of analyzing those conditions, we shall define

a synthesis of extremal controlled trajectories through a direct construction, and then verify

the optimality of the synthesis. In particular, there is no need to consider possible degeneracies
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that in principle are allowed by necessary conditions for optimality (e.g., abnormal extremals,

etc.).

Synthesis Construction: We want to solve the optimal control problem P1 on the set G

in (2.8). We first treat the problem in the absence of the state constraint and define the

Hamiltonian function as

H(λ,v, u) = 1 + λ f(v, u) = 1 + λ(Av + bu). (2.22)

According to the maximum principle, as long as no state space constraints are active, the

multiplier λ is a solution to the adjoint equation

λ̇(t) = −λ(t)A (2.23)

and the optimal control minimizes the Hamiltonian over the control set [0,U]. The solutions

of (2.23) are of the form

λ1(t) = d1ea1t, λ2(t) = d2ea2t (2.24)

for some constants d1 and d2, and thus we have

u∗NoGuard(t) =


U if Φ(t) < 0

0 if Φ(t) > 0

(2.25)

with

Φ(t) = b1λ1(t) + b2λ2(t) (2.26)

as the switching function. The terminal constraint is defined by

ψ(τ,v) = v1(τ)− VT , (2.27)
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and the transversality condition [50, Section 2.2] of the maximum principle implies that

λ(τ) = [ν 0] where ν is some multiplier. This gives us d2 = 0, and thus the switching

function has a constant sign in the absence of the guard constraint. Hence the optimal control

is simply a BANG, i.e., the maximal input.

With the state constraint (the guard), there can be switching in the optimal control, and

we need to consider two subcases: trajectories that do or do not hit the boundary v2 = VG.

For A with real eigenvalues, the optimal controls of linear single input control systems are

BANG-BANG with at most C − 1 switchings (where C is the dimension of the system, here

C = 2) [50], and we must have u > 0 at the spike time (otherwise v would be decaying). We

thus consider controls only of the form

u =


0 for t ≤ t̂ where v1(t̂) < VT ,

U for t̂ < t ≤ τ .

(2.28)

These define a smooth flow of extremal controlled trajectories as long as the state space

constraint is not violated. If the extremals hit the state constraint boundary, the control must

switch to the boundary control, uarc, that keeps the system from exceeding the constraint:

uarc =
a2VG
b2

. (2.29)

However, we need to verify whether this boundary control uarc will eventually bring Neuron

1 to threshold. For v1 = VT and u = uarc we have

v̇1 = −a1VT + b1
a2VG
b2

> 0 (2.30)
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where the inequality holds by our assumption on ϑ1. Now if (2.30) holds, then in fact v̇1 > 0

∀ v1 ∈ [0, VT ] under the boundary control, and v1 will eventually reach threshold.

Thus for appropriate initial conditions, applying the maximal input u(t) = U produces a

spike in Neuron 1 without hitting the Neuron 2 guard. For the remaining initial conditions,

we construct a control that applies maximal input until the guard is reached, and then drops

to uarc until v1 hits threshold. Note that we do not need to employ the zero control in (2.28),

so we may take t̂ = 0 (the possibility of additional switching will arise in the next section

under the alternative case for ϑ1). Thus the control (2.21) will produce a spike in Neuron

1 without inducing a spike in Neuron 2, across all initial conditions. This concludes the

synthesis construction.

Proof of Optimality: The optimality of this control follows from regular synthesis-type

sufficient conditions for optimality, and we briefly outline the reasoning. The value or cost-to-

go function of this synthesis is continuous, but not differentiable on the curve that separates

initial states for which the trajectory includes a boundary segment from those that do not.

The curve Γ that separates these two regions is defined by the set of initial conditions that

hit the final condition v(τ) = [VT VG]T under the BANG control u(t) = U. To find this curve,

we first explicitly compute the time for v1 to hit threshold,

τ =
1

a1

log

(
b1/a1U− v1(0)
b1/a1U− VT

)
≡ 1

a1

log
(
E(v1(0))−1

)
(2.31)

where for convenience we define

E(v) =
b1/a1U− VT
b1/a1U− v

. (2.32)
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We then eliminate τ by solving explicitly for v2(t) with the final condition v2(τ) = VG

VG = E(v1(0))
a2
a1 v2(0) +

b2

a2

U
(

1− E(v1(0))
a2
a1

)
, (2.33)

to find the separatrix as

Γ =

{
v ∈ G : E(v1)

a2
a1 v2 +

b2

a2

U
(

1− E(v1)
a2
a1

)
− VG = 0

}
. (2.34)

We define the region Γ− as bounded between Γ and v1 = VT inclusive, and the region

Γ+ = G \ Γ−. Thus, Γ+ includes all initial conditions whose trajectories include a boundary

arc, while initial conditions in Γ− can be driven to threshold directly at maximum input.

The value function corresponding to this synthesis is

V =


V−(v) for v ∈ Γ−,

V+(v) for v ∈ Γ+.

(2.35)

For trajectories without a boundary arc, the value is just the spike time under maximal input,

calculated as in (2.31),

V−(v) =
1

a1

log(E(v1)−1). (2.36)

The calculation of the value V+(v) involves two steps: the time tg for Neuron 2 to reach the

guard voltage, plus the time tth for Neuron 1 to attain the threshold VT under the boundary

arc control. By direct calculation,

V+(v) = tg + tth =
1

a2

log

(
b2/a2U− v2

b2/a2U− VG

)
+

1

a1

log

(
b1/a1uarc − v1(tg)
b1/a1uarc − VT

)
(2.37)
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where

v1(tg) =

(
b2/a2U− VG
b2/a2U− v2

)a1
a2

v1 +
b1

a1

U

(
1−

(
b2/a2U− VG
b2/a2U− v2

)a1
a2

)
(2.38)

is the Neuron 1 voltage at the time tg, that is, when the trajectory hits the Neuron 2 guard.

It is clear from the construction that V is continuously differentiable in the interior of G

away from the curve Γ. We now show that on Γ, V remains continuous, but is no longer

differentiable. Substituting v2 from (2.34) into (2.38) yields

v1(tg) =
VT − b1/a1U

v1 − b1/a1U
v1 +

b1

a1

U

(
1− VT − b1/a1U

v1 − b1/a1U

)
= VT . (2.39)

Hence (2.37) reduces to

V+(v) = tg =
1

a2

log

(
v2 − b2/a2U

VG − b2/a2U

)
. (2.40)

Substituting v2 once again in (2.40), it follows that

V+(v) =
1

a1

log(E(v1)) = V−(v). (2.41)

However,
∂V+

∂v2 �Γ
6= ∂V−

∂v2 �Γ
= 0, (2.42)

so that V is not continuously differentiable.

All controlled trajectories in the synthesis are extremals, and away from Γ the value function

V satisfies the Hamilton-Jacobi-Bellman equation for the unconstrained optimal control

problem,
∂V(t,v)

∂t
+
∂V(t,v)

∂v
f(t,v, u∗) + L(t,v, u∗) = 0 (2.43)
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where L is the Lagrangian of the problem (for time optimal control problems, as in our case,

L = 1).

This conclusion follows from the method of characteristics (e.g., see [50]), but can also

directly be verified using the explicit formulas derived above. That V is not differentiable on

Γ does not invalidate the proof of optimality, although the standard optimality argument

based on dynamic programming (e.g., [50] Theorem 5.2.1) does not apply. Here, we need

to invoke regular synthesis constructions as they are described in [50, Section 6.3]. Since

trajectories do not return from the state space constraint into the interior of the state space,

these arguments could, for example, be undertaken by redefining the state space constraint

as a second terminal manifold, along with a penalty term that gives the time along the

boundary control until v1 = VT . Alternatively, the constructions in [51], where a regular

synthesis argument has been generalized to problems with order 1 state space constraints,

could be modified to apply to cases when the state space constraint is active at the terminal

time. Either way, straightforward modifications of regular synthesis type arguments give the

optimality of the above field of extremals.

Example 1. We demonstrate minimum spike time control in an example of (2.11) with the

following parameters:

R1 = 0.5 GΩ, R2 = 0.33 GΩ

C1 = 300 pF, C2 = 300 pF

VT = 30 mV, VG = 27 mV

U = 2.5 nA, β1 = 1, β2 = 1.2.

(2.44)

Note that these are idealized parameters used for illustrative purposes only, although with

biologically plausible units. Here, the condition ϑ1 >
VT
VG

is satisfied, and we can apply the

above proposition to induce a spike in Neuron 1 in minimal time. Figure 3(a) shows the state

space under this construction.
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Figure 2.2: (a) State trajectories for selective spiking of Neuron 1 under Case 1 for several
initial conditions. Trajectories either reach threshold under maximal input, or reach the
guard under maximal input and then follow the boundary under a lower constant input until
Neuron 1 reaches threshold. (b) State trajectories for selective spiking under Case 2 for
several initial conditions. For those trajectories that do not reach Neuron 1 threshold (before
hitting the guard) under maximal input, the input is zero until the trajectory decays to the
switching separatrix, and then bangs high until Neuron 1 spikes.

2.2.2 Selective Spiking, Case 2: ϑ1 ≤ VT
VG

We now consider the case of eliciting a spike in Neuron 1 when ϑ1 ≤ VT
VG

. We have shown in

the previous section that for Case 1, a control solution always exists. It will turn out that

not all parameters allow a solution in Case 2, so this case reveals the conditions for pairwise

feasibility of sequences while providing the minimum time spiking solution when it exists.

One might expect the solution in Case 2 to be qualitatively similar to Case 1, but in fact

there are no longer increasing trajectories that ride along the guard boundary: under the

boundary control (uarc = a2VG
b2

), we find v̇1 < 0 at v1 = VT . That is, along the guard, v1(t)

does not rise beyond a certain limit and fails to reach the threshold VT . Instead, we have,

Proposition 2. Consider the two neuron network (2.11), where ϑ1 ≤ VT
VG

. Assume that the

set of admissible controls is a box constraint U = [0,U]. The time optimal control u∗ ∈ U for
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the selective spiking problem P1 for Neuron 1, if such a solution exists, is

u∗ =


0 for v ∈ Γ+,

U for v ∈ Γ−.

(2.45)

with Γ± defined as above.

Proof: We follow a similar analysis to the previous case, but identify the differences in

the optimal control structure from the solution in Section 2.2.1. Again, our approach is to

define a synthesis of extremal controlled trajectories, prove their optimality, and finally give

conditions for the existence of a solution for all v ∈ G.

Synthesis Construction: The Hamiltonian and multiplier are similar to (2.22) and (2.24).

The minimum condition similarly results in (2.25) with the conclusion that the optimal

control is simply BANG at u∗(t) = U for trajectories that do not hit the guard under this

control. Similar to (2.33), there again exists a curve Γ that separates such initial conditions

from those requiring switching, given by (2.34). Note that there is no boundary segment

in this case as uarc cannot drive the voltage of Neuron 1 up to threshold along the state

constraint boundary (see Appendix A.1.1), and thus we are led to consider controls only of

the form

u =


0 for t < t̂ where v1(t̂) < VT ,

U for t̂ ≤ t ≤ τ .

(2.46)

in the interior of G, and t̂ = 0 is allowed. This concludes the synthesis construction.

Proof of Optimality: The value function for the region Γ− equals the time taken by Neuron

1 to reach the threshold VT under the constant control U, and takes the same form as (2.36).

For v ∈ Γ+, the value function is calculated assuming that the control is turned off for an
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interval [0, t̂], during which the system decays from the initial condition v(0) = [v1 v2]
T to

a point v(t̂) = [v̂1 v̂2]
T on the curve Γ. At this time the control switches to the maximum

value U, and the corresponding trajectory follows the curve until the terminal condition

v(τ) = [VT VG]T is reached. This gives

V+(v) = t̂+ tth =
1

a1

log

(
v1

v̂1

)
− 1

a1

log(E(v̂1)) (2.47)

where

v̂2 =

(
v̂1

v1

)a2
a1

v2 and(
E(v̂1)

v̂1

v1

)a2
a1

v2 +
b2

a2

U

(
1− E(v̂1)

a2
a1

)
− VG = 0

(2.48)

using the fact that [v̂1 v̂2]
T lies on Γ. Here we cannot get an explicit expression for V+ in

terms of the initial condition [v1 v2]T because of the transcendental form of (2.48).

Note that for this synthesis the state space constraint does not become active. It is clear

from the construction that the corresponding values satisfy the Hamilton-Jacobi-Bellman

equation away from Γ. However, this problem is a nonstandard one in that the value function

may no longer be continuous on Γ, with the only exception at v1 = 0, i.e.,

V+(v) = V−(v), for v ∈ Γ such that v1 = 0. (2.49)

In general, there may exist a unique point on the curve Γ (in our problem with u = 0)

where the vector field v̇ = Av is tangent to Γ while pointing in the opposite direction. As

a result, v̇ = Av points into the region Γ+ and into the region Γ−, above and below this

point respectively. This generates a loss of small-time local controllability that causes the

value function to become discontinuous along Γ above this point. For, if the initial condition

lies to the right of Γ+ above this point, then optimal trajectories must decay below the
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point in order to reach the terminal manifold. We see this in Figure 2.2(b) (also described

below), where the OFF segment in the extremal cannot simply converge to the separatrix

Γ, no matter how close it is to Γ. This issue of controllability makes the value function

discontinuous. The value is still lower semi-continuous on the full state space. In fact, the

value of this synthesis satisfies Sussmann’s weak continuity requirement (Definition 6.3.3 [50]).

While the discontinuity of the value impedes on the application of most HJB-type sufficient

conditions for optimality, this is not the case for regular synthesis type constructions , and

the optimality of the synthesis follows from Theorem 6.3.3 in [50].

Existence of Solution: However, the control approach in (2.46) will fail if trajectories

starting in Γ+ do not in fact hit the separatrix at some time during the initial off-control. A

necessary and sufficient condition for trajectories to hit the separatrix is that Γ intersects

the positive v2 axis. When this condition holds and v(0) lies above Γ, then there must be a

time t̂ where the trajectory hits Γ under u = 0. Conversely, suppose Γ does not intersect the

positive v2 axis. The slope of Γ, considering v2 as a function of v1, must be less than the slope

of the decaying trajectory for there to be an intersection (ignoring the degenerate parameter

choice for which tangency is possible). Taking the ratios v̇2/v̇1 for u = 0 and u = U (recalling

that Γ is itself a solution with maximal input), and rearranging the result, shows the slope

condition can be met only if v2 > ϑ1v1. However, by our assumption ϑ1 ≤ VT/VG, no point

on Γ meets this inequality (the curve lies entirely below the line from the origin to [VT VG]T ).

In fact, since v̇i, i = 1, 2, is monotonic in u, it follows that there is no admissible control that

can push a solution across Γ, so that the latter serves as a barrier to Neuron 1’s threshold for

all initial conditions in Γ+ (at least, without first crossing the Neuron 2 guard). So in this

case, selective spiking of Neuron 1 is not possible.
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Thus, the condition for the existence of a time-optimal solution for selective spiking of Neuron

1 is that the v2 intercept of Γ is positive, which occurs when

(
1− a1VT

b1U

)a2
>

(
1− a2VG

b2U

)a1
. (2.50)

Example 2. We use the same parameter values as in (2.44) but swap the roles of Neuron 1

and Neuron 2, i.e.,

R2 = 0.5 GΩ, R1 = 0.33 GΩ

C2 = 300 pF, C1 = 300 pF

VT = 30 mV, VG = 27 mV

U = 2.5 nA, β2 = 1, β1 = 1.2.

(2.51)

Now, ϑ1 ≤ VT/VG. Moreover, condition (2.50) holds so that the switching separatrix intersects

the positive v2 axis. Thus, a time-optimal solution for selectively spiking Neuron 1 always

exists. Figure 2.2(b) shows example trajectories.

2.2.3 Geometric Interpretation of Cases and Pairwise Feasibility

Thus far in our discussion we assume, without loss of generality, that a selective spike is desired

in Neuron 1. Now for pairwise feasibility, i.e., to analyze when time-optimal selective spiking

of either neuron is possible (from any initial condition), both neurons must be associated

with either Case 1 or Case 2. To do this, we introduce

ϑ2 =
b2a1

b1a2

=
1

ϑ1

. (2.52)

We associate Neuron 1 with ϑ1 and Neuron 2 with ϑ2 to determine the Case (Section 2.2.1,

2.2.2) to which these neurons belong. We say Neuron 1 is Case 1 or 2 when ϑ1 >
VT
VG

or
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ϑ1 ≤ VT
VG

, respectively, and similarly for Neuron 2 with the same inequality relation on ϑ2.

Since we have VT > VG, this allows for three possible scenarios,

1. ϑ1 >
VT
VG

, ϑ2 <
VT
VG

: Neuron 1 is Case 1 and with ϑ2 being the reciprocal of ϑ1 we have

Neuron 2 is Case 2.

2. ϑ1 <
VT
VG

, ϑ2 >
VT
VG

: Neuron 1 is Case 2 and Neuron 2 is Case 1 and the structure of the

solution is identical to the previous scenario.

3. ϑ1 ≤ VT
VG

, ϑ2 ≤ VT
VG

: Both Neurons are Case 2 and this happens when VG
VT
≤ ϑ1,2 ≤ VT

VG
.

As we will show in the following sections, for one of the neurons belonging to Case 1, pairwise

selective spiking can be accomplished. However, if ϑ1,2 ≤ VT
VG

, i.e., both neurons are Case 2, a

solution may not exist and pairwise feasibility is not guaranteed.

To provide an additional geometric interpretation (see Appendix A.1.1) of these conditions,

we introduce the quasistatic equilibrium line

v(∞) := {(v1, v2)|b2a1v1 = b1a2v2}, (2.53)

which defines the set of points for which v̇ = 0 (for each u ∈ U).

In a pair of neurons, two possible parametrization scenarios can be encountered:

Neuron 1 and 2 correspond to different cases

Here we discuss the pairwise feasibility for when Neuron 1 is Case 1 and Neuron 2 is Case 2.

It is important to note that the result extends to the reverse scenario, i.e. Neuron 1 is Case 2

and Neuron 2 is Case 1.
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Here, the line of quasi-static equilibrium in (2.53) intersects the line v1 = VT before it intersects

v2 = VG. Thus, Neuron 1 can always increase along the Neuron 2 guard boundary. Conversely,

Neuron 2 cannot increase along the Neuron 1 guard beyond the point of intersection between

v(∞) and v1 = VG. As we showed above, in this case selective spiking of Neuron 1 is always

possible. Thus, pairwise feasibility reduces to the condition (2.50) modulo a swapping of

labels. Specifically,

Lemma 1. Consider the two neuron network (2.11), where Neuron 1 satisfies Case 1 and

Neuron 2 satisfies Case 2. Then, the network is pairwise feasible if and only if

(
1− a2VT

b2U

)a1
≥
(

1− a1VG
b1U

)a2
. (2.54)

Proof: The proof follows immediately from Proposition 2 and (2.50), with a swapping of

labels.

Thus, it follows that if (2.54) does not hold, a time-optimal solution for Neuron 2 does not

exist (for all initial conditions), and thus the neurons are not pairwise feasible.

Neuron 1 is Case 2; Neuron 2 is Case 2

If both neurons are Case 2, then pairwise feasibility would necessitate (2.54) holding to within

a swapping of labels (i.e., so that either neuron can be selectively spiked). Clearly, this is

impossible (see Appendix A.1.1) except for the limiting case when VG = VT , i.e., the neurons

are not guarded. In such a scenario, the optimal solution may produce simultaneous spiking

of both neurons depending on the initial condition.
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2.3 Minimum Time Sequence Control

We now use the above results to analyze longer pairwise spiking sequences ΣS to solve the

problem P2. Based on the results of the previous section for pairwise feasibility, i.e., to allow

all possible spike sequences for two neurons, we make the following assumption hereon.

Assumption 1. The pair of neurons are parameterized such that Neuron 1 satisfies Case 1,

Neuron 2 satisfies Case 2, and Lemma 1 holds.

This assumption ensures that the selective spiking solutions for the two neurons are given by

Proposition 1 and 2, respectively.

We now analyze all the possible length 2 sequences, i.e., [1, 1], [1, 2], [2, 1] and [2, 2] and

recognize how we can use the basic characterizations developed in Section 2.2.1, 2.2.2 to

synthesize a time optimal strategy for these sequences. We employ a dynamic programming

approach where, using the time-optimal solution for the second spike in neuron i, we define a

terminal cost and then solve the resulting optimal control problem for the first spike in neuron

j, i, j ∈ {1, 2}. While the optimal synthesis for some of these sequences can be generalized

from the solution of P1, we shall see that for the target sequence [2, 1], no time optimal

control solution may exist.

2.3.1 Synthesis of all 2 spike sequences

Without loss of generality, consider the spike sequence ΣS = [1, 1] that we want to achieve

in minimum time. We will use the concept of dynamic programming to solve the following
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problem.

min J(u) =

∫ τ1

0

dt+

∫ τ2

τ1

dt

s.t. v̇ = f(v, u) = Av + bu

0 ≤ u(t) ≤ U

v1(τ1) = VT , v1(τ1
+) = 0

v1(τ2) = VT , v2(t) ≤ VG for t ∈ [τ1, τ2]

(2.55)

We will start from the last spike, Neuron 1, for this example and solve the minimum time

problem P1 for all the initial condition for Neuron 2, namely v2 ∈ [0, VG], v1 = 0, and use

the solution of P1 as the terminal cost ϕ(v(τ1)) for the previous spike, Neuron 1 again, in

our case. So we will solve the following optimal control problem

min J(u) =

∫ τ1

0

dt+ ϕ(v2(τ1))

s.t. v̇ = f(v, u) = Av + bu

0 ≤ u(t) ≤ U

v1(τ1) = VT , v2(t) ≤ VG for t ∈ [0, τ1]

(2.56)

Now we will seek synthesis for all possible two spike sequences using (2.56).

Spike sequence [1,1]

The optimal synthesis for the sequence ΣS = [1, 1] is given in Figure 2.3(a). We highlight

the solution of P1 for Neuron 1 on the top left, the terminal cost ϕ(v2(τ1)) in the middle,

and in the bottom, we show the solution of (2.56). On the right, we construct the complete

synthesis for the whole sequence.
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Figure 2.3: Optimal Synthesis for Sequences [1, 1],[1, 2] and [2, 2] is shown in (a) (b) (c) for
the nominal parameters (2.44). In these depictions, the state space is repeated to indicate
the reset condition. (a) Synthesis for [1, 1], showing both parts of the dynamic programming.
The terminal cost is increasing and differentiable. The optimal trajectories from several initial
conditions are shown. (b) Optimal trajectories for sequence [1, 2]. (c) Optimal trajectories for
sequence [2, 2]. In this case, all initial conditions collapse onto a single manifold associated
with the second spike.

Given an arbitrary initial condition [v1 v2]T , the time-optimal solution of the first part without

any terminal cost (i.e., ϕ(v2(τ1)) ≡ 0, given by Proposition 1) has the property that, among

all admissible controls, it leads to the smallest possible value for the terminal state v2(τ1).

Since the function ϕ(v2(τ1)) is strictly increasing, this is then also the optimal solution for the

combined problem, and thus allows us to simply concatenate two solutions of P1 for Neuron

1. Overall, the optimal control is simply given by the BANG control U until v2 reaches the

guard, after which the boundary control is used exactly as in the single spike problem.

Spike sequence [1,2]

However, such monotonicity arguments do not work in the other cases. Figure 2.3(b) shows

the synthesis of optimal controlled trajectories for the sequence ΣS = [1, 2]. The terminal

cost ϕ(v2(τ1)) is calculated as the value function from the solution of P1 for Neuron 2 and

is a strictly decreasing function of v2 (since the higher the voltage v2, the lower the time to
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induce a spike in Neuron 2). Thus, in principle, it might be possible for the solution of the

first part to deviate from the solution of P1 for Neuron 1 if the loss in doing so would be

made up by the gain in the penalty function ϕ(v2(τ1)) at the terminal point. Consider the

switching function

Φ(t) = λ1b1 + λ2b2 (2.57)

If there is a switching at t = t̂, then we have

Φ(t̂) = λ1(t̂)b1 + λ2(t̂)b2 = 0

λ1(t̂)b1 = −λ2(t̂)b2

(2.58)

Also, for a switching structure OFF-BANG we must have

Φ̇(t̂) < 0. (2.59)

Now using (2.58) for computing the derivative of the switching function

Φ̇(t̂) = λ2(t̂)b2(a2 − a1). (2.60)

From the non-triviality [50, Section 2.2] and transversality conditions

λ2(τ1) =
∂ϕ(v2(τ1))

∂v2

< 0, (2.61)

since the terminal cost is a decreasing function of v2. Also, we have previously derived that

the adjoint variables are solutions of linear homogeneous differential equations which do not

change sign in t ∈ [0, τ1]. So we have λ2(t̂) < 0, as well. Using these and assuming a2 < a1,

from (2.60) we get

Φ̇(t̂) > 0. (2.62)
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This violates the necessary condition in (2.59) for an OFF-BANG switching. Note that for

the case a1 < a2, OFF-BANG switching cannot be ruled out using this argument, and the

synthesis has to be constructed by direct computation. In our example with the parameters

from (2.44), it turns out that the optimal solution is simply BANG/BANG-BOUNDARY

(2.21), i.e., the terminal cost ϕ(v2) has no effect on the solution of (2.56). Thus the time

optimal synthesis for ΣS = [1, 2] is a combination of the individual synthesis for Neurons 1

and 2.

Spike sequence [2,2]

Similar controllability properties also allow us to give a short solution for the sequence

ΣS = [2, 2]. The optimal synthesis is shown in Figure 2.3(c). In this case, the terminal

cost ϕ(v1(τ1)) is a function of v1 and it is also strictly increasing in v1 (since the higher the

value of v1, the higher the time to ensure selective spiking in Neuron 2). From the analysis

of transversality condition and the switching function like in the previous sequence (2.59),

we can show that OFF-BANG is optimal for the first spike in Neuron 2 with a1 < a2, and

sub-optimal for a2 < a1 if there exists a switching. Indeed, for the first Neuron 2 spike and

initial conditions under the separatrix, the optimal control is OFF-BANG. But for initial

conditions on the v2 axis, the optimal control is simply BANG. In the example, the overall

construction is achieved by concatenating the solutions of P1 for Neuron 2 vertically. Since

Neuron 2 is reset to 0 after firing, the initial condition for the second problem is given by

[v1(τ1) 0]T .

Spike sequence [2,1]

Proposition 3. Under Assumption 1, no time optimal control solution exists in general for

a target sequence ΣS containing the sub-sequence [2, 1].
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Proof: The synthesis is more involved for this sequence. The terminal cost for the first

Neuron 2 spike is the value function from (2.35) with v2 = 0, i.e.,

ϕ(v1(τ1)) = V(v)|v2=0, (2.63)

which is a decreasing function in v1, and ϕ(v1(τ1)) is not differentiable with respect to v1 for

some v1 = vnd where vnd ∈ [0, VG] (as shown in the bottom left of Figure 2.4). Note that for

any initial condition at the origin or on the v1 axis to the left of the separatrix, OFF-BANG

cannot lead to optimality, and for those cases, the extremals will be generated by u∗(t) = U,

∀ t ∈ [0, τ1]. Also, to the right of the separatrix OFF-BANG will be the optimal policy as it

is the only viable option in the presence of state constraints. So we can conclude that if there

is indeed a switching to the left of the separatrix, then there must exist a vs with vs ∈ (0, VG],

such that for v(0) = {(v1, v2) : v1 = 0, v2 ∈ (vs, VG)}, the optimal policy will be OFF-BANG

whereas for v(0) = {(v1, v2) : v1 = 0, v2 ∈ [0, vs]}, the optimal control is BANG. Now we will

calculate this voltage vs which acts as an onset for the change in optimal policy. Considering

the switching at t = t̂, we have v2(t̂) = vs and

Φ(t̂) = λ1(t̂)b1 + λ2(t̂)b2 = 0. (2.64)

Since the Hamiltonian vanishes identically for our problem, we get,

H(t̂) = 1− a2vsλ2(t̂) = 0. (2.65)

Also, from the transversality condition with λ0 = 1 we have

λ1(τ1) =
∂ϕ(v1(τ1))

∂v1

, (2.66)
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which is known. Since we reach the threshold VT from vs using the BANG control, from

(2.31)

τ1 − t̂ =
1

a2

log

(
vs − b2

a2
U

VT − b2
a2

U

)
(2.67)

Using the fact that the adjoint variables satisfy linear homogeneous differential equations, we

can write

λ1(t̂) =
∂ϕ(v1(τ1))

∂v1

(
vs − b2

a2
U

VT − b2
a2

U

)−a1
a2

(2.68)

From (2.64)-(2.68), we can solve for vs with

1 +
a2vsb1

b2

∂ϕ(v1(τ1))

∂v1

(
vs − b2

a2
U

VT − b2
a2

U

)−a1
a2

= 0 (2.69)

If such a vs exists, the construction may be much more complicated with the possible presence

of a ‘cut-locus’ type phenomenon, and we leave a detailed analysis of such a problem for

future work. In our case, the terminal cost decreases with a rapid rate for v1 ∈ [0, vnd] and

abruptly changes to a much smaller slope for v1 ∈ (vnd, VG] (See Figure 2.4) due to the nature

of the value functions on either side of separatrix V−, V+ in (2.36), (2.37). This results

in a field of extremals trying to converge to the point vnd, even when the monotonicity of

the value function is not affected by the loss of differentiability (see top left in Figure 2.4).

We calculate the set of initial conditions for which this point can be attained, specifically

vc = {(v1, v2) : v1 = 0, v2 ∈ [vc, VG]}, where vc denotes the highest point on v2 axis from

which [VT vnd]
T can be reached via BANG control. This voltage vc and the set vc are shown

in the right panel of Figure 2.4. Now, the optimal control problem for v(0) ∈ vc simply

reduces to
min J(u) =

∫ τ1

0

dt

s.t. u(t) ∈ U
(2.70)
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with the terminal constraint v(τ1) = [vnd VT ]T and state constraints v1(t) ≤ VG, v2(t) ≤ VT .

This is similar to the selective spiking problem of Neuron 1, and indeed the best control is a

combination of BANG and boundary control as in (2.21)

u∗ =


U for t ≤ tc where v2(tc) = VT

uarc for tc < t ≤ τ1 where v1(τ1) = vnd.

(2.71)

But this implies that Neuron 2 maintains the voltage (VT ), even after the spike is emitted,

which violates our assumption that the neurons are reset instantaneously after reaching

VT , as described in (2.4). So the synthesis S∗ corresponding to (2.71) is excluded from the

admissible set of extremals purely out of the physical constraints imposed on the system.

This resembles the classical problem of finding surfaces of minimum revolution [50], where

the Goldschmidt extremal (see Chapter 5) cannot be attained because of C1 (continuously

differentiable once) assumption on the extremals. Thus, any synthesis S for (2.70) will be

sub-optimal to S∗. For simplicity, we have picked a synthesis such that

usub = u(v(0)) for t ∈ [0, τ1], (2.72)

i.e., a constant control which varies depending on the initial condition shown in Figure 2.4.

For the set of initial conditions

v(0) = {(v1, v2) : v1 = 0, 0 ≤ v2 < vc} ∪ {(v1, v2) : 0 ≤ v1 < VG, v2 = 0}, (2.73)

the optimal synthesis remains the same as the solution of P1 for Neuron 2.
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Figure 2.4: A possible suboptimal synthesis is shown for the sequence ΣS = [2, 1]. Note
that the value function for the last spike, i.e. Neuron 1, plotted in the bottom panel, is not
differentiable with respect to v1. This is added as the terminal cost for the optimum control
problem for the first spike in Neuron 2. In the right panel, the actual optimal solution and a
constant control suboptimal synthesis proposed in (2.72) is shown.

2.3.2 Greedy Designs for Sequences with Arbitrary Length

From our analysis of the 2-spike sequences in the previous section, we can design the time

optimal control for any ΣS of K spikes (K ≥ 2) without the subsequence [2, 1]. In addition if

we assume a2 < a1, it can be shown using an inductive argument that the overall synthesis

can be constructed from the solutions of individual selective spiking problems in Propositions

1 and 2.

In general, for a ΣS with the subsequence [2, 1], to illustrate the complexities of sequence

control, it is instructive to consider the 4-spike sequence, ΣS = [1, 2, 1, 1]. In this case, the

target sequence contains a [2, 1] event, meaning that any solution will be suboptimal. In this

case, a dynamic programming approach that interleaves the interpolation control (2.72) can

yield such a solution. However, from a practical perspective, pursuing this design approach
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Figure 2.5: Simulation example of the greedy algorithm for P2 for a target sequence
ΣS = [1, 2, 2, 1, 1, 2, 1] with the nominal parameters in (2.44). The inset shows the synaptic
contribution ∆v2(t) = 2mV , to Neuron 2 due to the first spike in Neuron 1.

for long sequences is difficult as it requires computing the location of non differentiability in

the value functions of all [2, 1] events.

Thus, we argue that from a design perspective, a simple greedy approach where we minimize

the time for each spike in ΣS progressively, constitutes an acceptable, tractable approximation.

In Figure 2.5, we show the solution of the greedy controller for an arbitrary spike sequence

ΣS.

Decoupling the network for longer sequences

In applying the greedy approach, it is important to note that the synaptic contribution from

the spiking neuron can carry the voltage of the other neuron in the network over the synaptic

guard VG. Thus, we cannot readily apply the solution of P1 for the following spike in the
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sequence (pattern), as the initial condition may violate the state constraint in (2.8) for P1.

Here, we propose strategies to eventually utilize Proposition 1, 2 for the greedy design.

1. First, if the initial condition after any spike in the sequence (pattern), at t = τ1, is not

within the relevant state space G, we can apply u = 0 until t = t′, t′ > τ1, such that

v(t′) ∈ G. Then, we can apply the solution of P1 to induce the target spike.

2. Alternatively, we can modify the guard VG of the non-target neuron at each step of

the greedy design, depending on the number of consecutive spikes in the target neuron

in the sequence (pattern), e.g., if ΣS = [1, 1, 2, 2, 2], then we can set the guard voltage

for Neuron 2 at VG(σ1) < VT − 2ρ̄syn for the first spike and VG(σ2) < VT − ρ̄syn for

the second spike. Thus, the relevant state space for the first and second spike will be

modified to G(σ1) = [0, VT ]× [0, VG(σ1)] and G(σ2) = [0, VT ]× [0, VG(σ2)], respectively.

This ensures that whatever the contribution is from the presynaptic neuron (in this

case, Neuron 1), we start in the relevant state space for the next spike in the sequence

(pattern). Once the target neuron changes to σ3 = 2, the guard voltage for Neuron 1 is

determined by the number of consecutive spikes in Neuron 2 (3 in this example), i.e.,

VG(σ3) < VT − 3ρ̄syn and so on. Note that by successively reducing the guard voltage,

the selective spiking problem may become infeasible as discussed in Section 2.2.3.

3. Finally, we can combine the above two approaches to develop an algorithm where we

can use (2) until the problem is infeasible. At this point, we go back to (1) and add an

off time before implementing the solution of P1.

In our examples of sequence and pattern control, we have used the first approach in developing

the greedy design (see Figure 2.5, 2.6).
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2.4 Fixed-time Selective Spiking and Spike Patterns

We now move to the problem of controlling timed spike patterns, i.e., P3. It is intuitive that

a basic necessary condition in this case is that the desired spike time exceeds the minimum

selective spiking time, i.e., the solution to P1.

Specifically, suppose that we want to achieve the target pattern ΣP = [(1, t1)], i.e., a spike in

Neuron 1 at time t1. The cost function in P3 (2.14) reduces to

J(u) =

(
t1 −

∫ τ1

0

dt

)2

(2.74)

(subject to the selectivity constraint in (2.7)). Here, τ1 denotes the achieved spike time and

τ̄1 is the solution of P1 for an arbitrary initial condition v(0). If τ̄1 ≥ t1, then evidently that

is our best option and the solution of (2.74) and P1 are the same, i.e. τ1 = τ̄1.

For the other case, i.e. τ̄1 < t1, contingent on controllability, a control must exist such that

τ1 = t1. If such a condition is met, then in general there may be multiple solutions to the

pattern control problem. Herein, we consider one simple strategy involving the introduction

of an off time t̂ to the optimal control solution of P1 such that

t̂+ τ r1 = t1 (2.75)

where τ r1 is the solution of the time optimal control P1, for the initial condition v(t̂). We

noted earlier that the initial conditions for the selective spiking problem nominally lie on

either the v1 or v2 axis, under the assumption that one of the neurons has just produced a

spike. In this case, feasibility of (2.75) reduces to understanding those initial conditions that

generate specific values of τ r1 .
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2.4.1 Off-time Insertion for Pattern Control

We characterize the relationship between τ r1 and initial conditions via the notion of a Λ-

Controllable set.

Definition 3 (Λ- Controllable set). Without loss of generality, the Λ-controllable set ζ(Λ) of

Neuron 1 is the set of initial conditions from which the selective spiking of Neuron 1 in P1 is

achieved in time Λ, i.e.,

ζ1(Λ) = {(v1, v2) : v(0) = [v1 v2]T ,@ t < Λ, s.t. v1(t) = VT , v2(t) ≤ VG} (2.76)

The Λ-controllable sets for the system (2.11) are provided in Appendix A.2. Since we are

interested in initial conditions along the v1 and v2 axes, we consider the functions

ω1 : Λ → v1, such that (v1, 0) ∈ ζ1(Λ)

ω2 : Λ → v2, such that (0, v2) ∈ ζ1(Λ),

(2.77)

i.e., the intersection of the Λ-controllable sets with the axes.

Earlier, we noted that the value function for the selective spiking of both neurons remains

continuous on both the v1, v2 axis (i.e., from (2.41), (2.49)). This fact, together with the

derivation of the Λ-controllable sets in the Appendix, allows us to conclude that the functions

(2.77) are continuous in Λ. Thus, we are able to ensure existence of the off-time pattern

control from (2.75), i.e.,

up =


0 for t ∈ [0, t̂],

u∗ for t ∈ (t̂, t1],

(2.78)
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where u∗ comes from Proposition 1 or 2. The computation of the off-time t̂ is obtained

directly from the Λ-controllable sets and is provided in Appendix A.3. Thus, an overall

pattern control strategy can be formulated as:

Π∗ =


u∗ if τ̄1 ≥ t1,

up if τ̄1 < t1.

(2.79)

2.4.2 Greedy Designs for Control of Long Patterns

We now consider the synthesis and design of the general pattern control problem P3. To begin,

we consider the dynamic programming strategy studied in (2.56) but for P3. It turns out

that the same issues pertaining to non-differentiability of the value function in P2 persist in

this case. To illustrate this, consider the 2-spike target pattern ΣP = [(1, t1), (1, t2)]. Starting

from the last spike σ2 = 1, we solve

J(u) =

(
(t2 − t1)−

∫ τ2

τ1

dt

)2

, (2.80)

with the terminal and state constraints, and use the value function of (2.80) as the terminal

cost to the following optimal control problem

J(u) =

(
t1 −

∫ τ1

0

dt

)2

+ ϕ(v2(τ1)). (2.81)
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Let us denote the solution of P1 for the second spike from initial condition v(0) = [0 v2]T , by

τ̄ . Then, depending on v2, the terminal cost in (2.81) takes the following form,

ϕ(v2) =


0 for v2, s.t. τ̄ ≤ (t2 − t1),

((t2 − t1)− τ̄)2 for v2, s.t. τ̄ > (t2 − t1).

(2.82)

Thus, similar complications as referenced in Section 2.3.2 regarding non-differentiability arise

here, and once again we consider implementation of a straightforward greedy strategy for

pattern control involving (2.79). In Figure 2.6, we show an example of this greedy algorithm

for an arbitrary pattern

ΣP = [(1, 20), (2, 30), (2, 70), (1, 95), (1, 115), (2, 120), (1, 130)], (2.83)

with the same spike sequence as in Figure 2.5.

2.4.3 Performance of Greedy Design under Disturbance and Noise

In this section, we analyze the robustness of the greedy design when the coupled LIF network

in (2.3) is subjected to noise and disturbances. Here we consider two types of uncertainties :

1. Incoming synaptic contributions of the pulse coupled form discussed in Section 2.1.2,

from other neurons.

2. Noise in the dynamics of the membrane voltage of the neurons in (2.3) (process noise)

and in measurement of these voltages (measurement noise). Note that in implementing

the greedy controller in (2.79), we repeatedly apply Proposition 1, 2, which are feedback

control, i.e., measurement is implicit.
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Figure 2.6: Simulation example of the greedy algorithm discussed in Section 2.4.2 for P3 for a
target pattern ΣP in (2.83) with the nominal parameters in (2.44). Similar to Figure 2.5, we
show the synaptic contribution ∆v2(t) = 2mV , to Neuron 2. We also explicitly indicate the
off-time (u = 0) after the first (inset) and fourth spike in Neuron 1, as part of the decoupling
strategy discussed in Section 2.3.2.
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In Figure 2.7(A), we show one realization of the voltage and control waveforms for d = 150

incoming spikes over the control horizon for the same ΣP used in the example of Figure

2.6. To illustrate the effect of these disturbances on the control strategy, in Figure 2.7(D)

we plot the average Victor-Purpura (VP) metric [52, 53] between the achieved and target

spike trains as we vary the number of incoming spikes d over 50 trials. In each trial, we

randomly select the arrival times of the spikes, the contribution and target of the synapse

between the two neuron indices. The VP metric is a measure of synchrony between two

spike patterns that involves three basic operations: adding or deleting any spike with cost

1, moving any spike with cost κ1 per unit time, and renaming any index of the spike with

cost κ2. Here, a lower VP distance corresponds to better control performance. We observe

that with higher disturbance, represented by d, the controller performs reasonably well with

gradual degradation in the achieved patterns.

Next, we consider additive Gaussian noise both during the evolution of the membrane voltage

and in measurement. Thus the linear model in (2.11) is modified to

v̇(t) = Av(t) + bu(t) + e1(t)

y(t) = Cv(t) + e2(t),

(2.84)

where the measurement vector y is a linear readout of the neuron voltages through a randomly

selected matrix C, which is full rank. e1(t), e2(t) follow multivariate Gaussian distribution

with e1(t) ∼ N(0,W1), e2(t) ∼ N(0,W2) and W1, W2 are the constant covariance matrices

of the form W1 = η2
1 I, W2 = η2

2 I, I is the identity matrix. Here, we compute the voltage

estimates of the two neurons at each time step by means of a Kalman Filter [54] and employ

the feedback strategy in (2.79) based on these estimates. In Figure 2.7 (B,C), we plot the

pattern control solutions for the same ΣP used in the example of Figure 2.6, for smaller

(η1 = 0.1, η2 = 1) and higher (η1 = 1, η2 = 10) process and measurement variance. We observe
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Figure 2.7: Induced voltage waveforms in the two neurons for ΣP using the greedy design
and the control under incoming synapses (A) and process, measurement noise (B for higher
variance and C for lower variance). (D) Performance analysis of the controller in terms of VP
distance with parameters κ1 = 1, κ2 = 1.5 against number of incoming spikes d as measure
of disturbance. (E) Surface plot fitted to the simulation data of average VP metric (same
κ1, κ2) vs the process and measurement noise variances, in the course of solving the pattern
control problem for ΣP in (2.83) over different trials.

that the controller’s ability to induce the target spike train is not compromised substantially,

although with higher levels of noise, spurious spikes are generated, as indicated in panel (C).

However, the noisy dynamics in (2.84) can result in a high frequency of switching in the

control (B,C, bottom panel), especially during the boundary arc, i.e, the non-target neuron is

to be held at guard VG. Panel (E) shows the performance of the greedy design with respect

to the average VP metric between ΣP and achieved patterns over 50 different trials, as we

change the level of noise during the evolution and measurement phase.
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2.5 Selective Spiking in Populations

2.5.1 Regularized Time Optimal Selective Spiking in a Population

Proposition 4. The solution to the C neuron regularized selective spiking problem P4 is

BANG-BANG with at most C − 1 switchings.

Proof. Necessary conditions for optimality for problem P4 are given by the Pontryagin

maximum principle. the Hamiltonian, adjoint and terminal constraint follows from (2.22),

(2.23), (2.27). From the transversality condition we have

λ(τ) = γWv(τ) + [ν 0 · · · 0]T , H(τ) = 0 (2.85)

where W = ωTω. Now from the solution of the multiplier as in (2.24), the switching function

is given by

Φ(t) = bTλ(t) =
C∑
c=1

bc dc eact. (2.86)

Note that the presence of the regularization term does not change the form of the switching

function. So the optimal control will be

u∗(t) =


U2 if Φ(t) < 0

U1 if Φ(t) > 0.

(2.87)

The value of the regularization parameter γ determines any possible switchings in the optimal

control. The switching function is a nontrivial exponential polynomial (i.e., the polynomial

co-efficients are constant with zero degree) and can be shown to have at most C − 1 zeros

[50]. Thus, the optimal control is BANG-BANG with a maximum of C − 1 switchings.
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Note that for a multi-input system, i.e.,

v̇ = Av +
S∑
s=1

bsus, (2.88)

where S = no. of independent inputs and bs ∈ RC is the b matrix in (2.6) for the sth input

us, the switching function for each input takes the same form as in (2.86), and the same

result (i.e., Proposition 4) holds.

Proposition 5. The solution to the C neuron minimum time-energy regularized selective

spiking problem P5 is given by sum of exponential kernels,

u∗(t) = −1

%

C∑
c=1

bc dc eact. (2.89)

Proof: The Hamiltonian in this case will be given by

H(λ,v, u) = 1 +
1

2
%u2 + λ(Av + bu). (2.90)

From the Maximum principle, the optimal control minimizes the Hamiltonian over the

admissible set U , such that

u∗(t) = −1

%
λb. (2.91)

Since the multipliers follow the same adjoint dynamics as in (2.23), we can simplify (2.91) to

get (2.89).

From the terminal constraint (2.27) and transversality conditions derived in (2.85), we can

solve for ci’s which determine our optimal control for problem P5.
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2.5.2 Numerical Approach

In this section, we discuss the numerical procedure adopted to solve the problems P4 and

P5. Note that in problem P4, since there are C − 1 possible switchings, it is difficult to

ascertain the optimal control like in P1. This restricts the use of the terminal constraint on

the target neuron (i.e., v1(τ) = VT ). Thus, we have proposed a numerical approach to obtain

an approximate optimal solution. We first discretize the system and take two extreme time

points, the first one (τ1) corresponding to the pure minimum time solution i.e., γ = 0 and the

other end point (τ2) corresponding to an arbitrarily high time. Now we solve the following

convex program for τr, r = 1, 2. Note that for P5 the quadratic energy term is added to the

objective and the box constraint on the input is removed.

minimize
û,v̂

1

2
γ v̂(I)TW v̂(I)

s.t. v̂1(I) = VT , v̂(1) = v(0)

v̂(i+ 1) = Ad v̂(i) + bd û(i)

U1 ≤ ûi ≤ U2,∀ i = 1, . . . , I − 1

(2.92)

where I =
⌈
τr
∆

⌉
, ∆ denotes forward Euler discretization step, Ad = (IC + A∆), IC is the

C-dimensional identity matrix and bd = b∆. From these solutions, we use the bisection

algorithm to revise the end points iteratively until some ε tolerance is reached. If the problem

is well behaved as in the case of P4, P5, this algorithm should be a reasonable approximation

of the optimal solution. We run this algorithm several times by changing τ1, τ2 to ensure the

solution is not stuck in a local minima if such a minima exists.
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2.5.3 Examples

Here we display the numerical results for P4 -P5 for C = 7, S = 2 and random parametrization

for the resistance and capacitance with gaussian spread. We also remove the non-negativity

constraint from the set of admissible inputs as assumed in P1 -P3.

E[R] = 0.5 GΩ, σ[R] = .05 GΩ,E[C] = 300 pF

σ[C] = 2 pF, VT = 30 mV, β = 2,ω = [0 1 . . . 1]

U1 = −2.5 nA,U2 = 2.5 nA (for P4 )

(2.93)

In Figure 2.8-2.9, we plot the solution of P4, P5 respectively and demonstrate the effect of

regularization for the selective spiking problem. In the left panel of both figures (γ = 0), along

with the intended spikes in Neuron 1, we observe collateral spiking in the population. In the

right panel of the figures (γ 6= 0), we see that selectivity is improved by adding regularization.

We have used CVX [55] with MATLAB interface for the numerical solution of problems P4,

P5 1.

As we are only penalizing the terminal states of the unintended neurons, it is important to note

that a high γ may lead to a scenario where the threshold is violated at an intermediate point

along the state trajectory. Thus, over-regularization deteriorates the selective performance of

these formulations.

2.5.4 Regularized Timed Selective Spiking in a Population

Proposition 6. The C neuron regularized minimum energy timed selective spiking problem

P6, can be constructed as a two point boundary value problem.
1Note P5 can be also formulated as a two point boundary value problem
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Figure 2.8: (Left:) The solution of problem P4 with no regularization on the terminal states
(γ = 0). The optimal controls are simply BANG (as expected) and there are 5 collateral
spikes in addition to Neuron 1. (Right:) Voltage trajectories and controls are shown for the
regularized problem with (γ = .2/VT ). No collateral spike is generated and the controls are
BANG-BANG with 1 and 2 switches, respectively.
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Figure 2.9: (Left:) The voltage trajectories and controls are shown as a function of time with
no regularization on the terminal states (γ = 0, % = .1) in P5. In this case, 4 collateral spikes
are induced along with Neuron 1. (Right:) Voltage trajectories and controls are shown for
the regularized problem with (γ = 5/VT , % = .1). In this case, too, the selective spiking in
Neuron 1 is ensured. Note that for both the cases γ = 0, γ = 5/VT , the optimal controls take
the form of exponential kernels.
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Proof: The Hamiltonian for this problem is

H(λ,v, u) =
1

2
%u2 + λ(Av + bu). (2.94)

From necessary conditions of optimality, we have (2.91) and the terminal constraints on the

adjoint variables given by (2.85). From the transversality condition on the Hamiltonian, we

have

H(τ)− (τd − τ) = 0. (2.95)

For this problem we first re-scale the time τ̄ = t/τ such that τ̄ ∈ [0, 1] to give a fixed endpoint

problem. Adding τ to the augmented state vector we have

y = [vT λ τ ]T ∈ R2C+1 (2.96)

and the state derivatives will be modified as dy
dτ̄

= τ dy
dt
. Now we have a two point boundary

value problem with the nonlinear differential equation

ẏ = y(2C + 1)


A −1

%
bbT 0

0 −A 0

0 0 0

y (2.97)

and boundary conditions (2.85), (2.95) for the time rescaled system

yv(0) = y0 (given), y1(1) = VT

yadj(1) = γWyv(1) + [ν 0 · · · 0]T

yTadj(1)Ayv(1)− 1

2%
yTadj(1)bbTyadj(1)− (τd − yt) = 0

(2.98)
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where for convenience of presentation we denote yv = y1,...,C = v, yadj = yC+1,...,2C = λT ,

yt = y2C+1 = τ .

2.5.5 One Step Greedy Pattern Control

Until now, we have focused our discussion on single spike events. In this section, we pre-

sent a one step greedy algorithm for the control design of multi-spike patterns using P6.

Here we repeatedly solve P6 to minimize the difference between the target and achieved

spike time for the desired spike, ascertained by any target spike pattern ΣP where for

the kth spike the target time τ kd is determined by τ kd = tk − tk−1, k = 1, . . . , K, t0 = 0.

In Figure 2.10, we show an example of this strategy for a population with C = 5 neurons

parametrized as in (2.93), S = 2 inputs, and a randomly selected 10-spike target pattern ΣP =

[(3, 16.8), (4, 44.2), (1, 52.4), (2, 87.5), (1, 88.6), (1, 115.4), (1, 132.1), (2, 154.4), (2, 160), (3, 168)].

We plot the resulting voltage traces (top panel) and the control waveform (bottom panel)

from successive application of P6. Note that because of the regularized formulation in (2.18),

we induce collateral firing in Neuron 1 before the second spike. We have used the MATLAB

solver bvp4c [56] for the numerical solution of the two point boundary value problem in P6.
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one step greedy design. (Bottom Panel): Optimized control generated stepwise for each spike
in ΣP .
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2.6 Discussions

Here we have studied an optimal control treatment of the neurocontrol problem for LIF

dynamics. Instead of adopting classical controllability methods, we analyzed these problems

in the context of neural systems - i.e, can any desired spike pattern be induced through

exogenous stimulation? We have ascertained that in pairs of neurons, a minimum amount of

heterogeneity in the parameters is critical to achieving different spike patterns. We illustrated

that even in the case of two neurons, an optimal control solution may not be achievable; but

through greedy algorithm, numerical optimization, and regularization, we can obtain efficient

results both in pairs and networks of neurons. That said, the next question is how to broaden

these results when the neuronal dynamics is non-linear and stochastic? The consensus in the

neuroscience community is that neural spiking is inherently noisy, and in the next chapter we

address these issues by formulating the neurocontrol problem in a stochastic setting.
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Chapter 3

Neurocontrol II: Probabilistic

Framework

Recently, the problem of extrinsic neurocontrol has been formulated for the class of statistical

models [39], namely PPGLM, where the rate of neural spiking (assumed to follow Poisson

distribution) is fitted using Generalized Linear Model. In the Poisson class of random

processes, the rate function associated with a neuron governs its probability of producing

a spike at any moment in time. Thus, in a statistical model, neuronal spikes are described

as binary events in a particular output realization. As of yet, no methods for basic control

analysis have been developed for these models. Such analysis is needed in order to provide

baseline characterizations such as establishing whether or not a design objective is feasible.

For instance, it would be vacuous to attempt a design on a system that is not yet theoretically

controllable. The goal of this chapter is to bridge this gap by providing a set of quantitative

metrics, based on dynamic optimization, that assay the control properties of a statistical

neural model to enable basic characterizations (e.g., given two PPGLMs, which is ‘more

controllable’) and, eventually, the problem of input design.
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3.1 Preliminaries

In this section we first demonstrate the intuition behind using a PPGLM to model the spiking

activity in neurons and then proceed to develop the probabilistic descriptions of patterns of

activity in these neurons.

3.1.1 Notation

A point process is an integer-valued stochastic process that models the occurrence of isolated

events in time and space, e.g., neural spiking. The inhomogeneous Poisson process is one

such example that can capture temporal dependencies via a time-varying rate/intensity

function [57]. Generalized Linear Models (GLMs) provide a regression framework to model

output variables Y with respect to the input/explanatory variables X. GLMs assume that a

transformation of the conditional mean of Y is a linear function of X, i.e.,

g(E(Y|X)) = Xβ (3.1)

where g(.) is the link function and β is a vector of unknown parameters. Combining point

processes with GLMs, i.e., modeling the rate function of neurons by a GLM, results in a

PPGLM, the primary object of study in this chapter.

Throughout this dissertation, events and spikes are used synonymously. Most mathematical

notation is standard. The continuous time univariate and multivariate point processes are

indicated by N(t) and N(t), t ∈ R+ respectively, whereas Nt′ and Nt′ , t′ ∈ N denote their

discrete counterpart. In a univariate discrete process, Ni, the value of discrete process at the

i-th window, is a scalar. For a multivariate discrete process, Ni is a vector of all variables at
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the i-th window and Nc,i is a scalar that represents the value of the c-th variable in the i-th

time bin. We follow the same notation for the associated difference processes.

3.1.2 Model Description (Exclusive Event Point Process)

We first consider a univariate inhomogeneous Poisson process N(t) with the intensity (event

rate) function λ(t|H(t)), where H(t) denotes the history of the process along with other

covariates, i.e.,

λ(t|H(t)) = lim
∆→0

Pr[N(t+ ∆)−N(t) = 1|H(t)]

∆
. (3.2)

We divide the total time window under consideration, [0, T ], into I intervals such that ∆ = T/I

and denote the discrete process as Ni ≡ N(i∆) and Hi ≡ H(i∆), i = 1, ..., I. This yields the

difference process

δNi = Ni −Ni−1 = N(i∆)−N((i− 1)∆). (3.3)

We make the key assumption that ∆� 1 (∆ 6= 0), resulting in δNi ∈ B, where B := {0, 1}.

We separate the conditional intensity (3.2) into components related to the background activity,

spiking history over Q lags, and S independent extrinsic control inputs U ∈ RS×I , up to P

previous instances via the log-link model

λi ≡ λ(i∆ |X, Hi) = exp(β0 +

Q∑
q=1

βq δNi−q +
S∑
s=1

P∑
p=0

γsp us,i−p) = exp(θTxi). (3.4)

The parameter set is given by θ = [β0 . . . γ
S
P ]T ∈ RF , F = 1 +Q+ (P + 1)S and the co-variate

matrix X ∈ RF×I with the i-th column xi as

xi = [1 δNi−1 . . . δNi−Q u1,i . . . uS,i−P ]T , (3.5)
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∀i = 1 . . . I.

The joint likelihood of a particular realization of N(t) with k spikes over the I intervals,

conditioned on X, follows the form detailed in [58]

Pr(N|X) = exp

( C∑
c=1

I∑
i=1

δNc,i log(λc,i∆)− λc,i∆
)

+ o(∆k). (3.6)

where any function f(x) ∈ o(h(x)) implies that limx→0
f(x)
h(x)
→ 0. We extend this model for

the C-variate process N(t) as in [59] and the log-likelihood for small ∆ can be written as

L(N|X) ≡ log(Pr(N|X)) =
C∑
c=1

I∑
i=1

(
δNc,i log(λc,i∆)− λc,i∆

)
, (3.7)

where

λc,i = exp(βc0 +
C∑
c′=1

Q∑
q=1

βc
′,c
q δNi−q +

S∑
s=1

P∑
p=0

γsp us,i−p).

In terms of neural spiking, this set of co-variates captures:

1. any baseline activity in the network, via the bias term (βc0)Cc=1 ;

2. refractory periods following a spike in the c-th neuron, via the self process history

(βc,cq )Qq=1 ;

3. afferent excitation or inhibition from other neurons, via the network spiking history

(βc,c
′

q )Cc′=1,c′ 6=c ;

4. temporal dynamics (e.g., exponentially decaying) of the excitation or inhibition from

other neurons, via additional history terms (βc,c
′

q )C,Qc′=1,q=1 ; and

5. effect of any extrinsic stimulation and the integrative nature in which the neurons

process such information, via the current stimulus and the history terms (γp,sp )P,Sp=0,s=1.
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However, more detailed biophysical dynamics associated with sub-threshold membrane

potential and particular ion channels are outside the explanatory power of this model.

3.1.3 Model Description (Simultaneous Event Point Process)

The model described in (3.2)–(3.7), albeit useful in many contexts, is limited because it

excludes multiple neurons producing simultaneous spiking events. Thus, we also consider a

second model, a discrete-time, multinomial generalized linear model of a simultaneous event

multivariate point process (SEMPP) [60, 61]. The coincidence of spiking events (simultaneous

events) from different neurons in the interval ∆, is handled by projecting the system onto

higher dimensions such that only a single kind of event can occur at any interval.

Briefly, for a C-dimensional inhomogeneous Poisson process N(t), a new M = 2C − 1

dimensional marked point process N∗(t) is defined such that at any interval, there is at most

one non-zero bit. The conditional intensity function for this marked point process N∗(t) is

defined as λ∗m(t|H(t)), m = 1, ...,M , similar to (3.2) where H(t) denotes the history of the

process along with other covariates.

Once again with ∆ = T/I � 1 (∆ 6= 0) over the time window [0, T ], we denote the

discrete process as Nc,i for c = 1 . . . C which yields the difference process δNc,i (for the

multivariate point process), δN∗m,i ∈ B (for the marked point process) similar to (3.3). In

matrix representation we can write

δN = DN, (3.8)

where D ∈ RI×I transforms N to its difference process δN (similarly for the marked process

N∗). Here a logistic-link function is used to relate the co-variates with the rate of the process,
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log
λ∗m,i∆

1− λgi∆
= βm0 +

C∑
c=1

Q∑
q=1

βm,cq δNc,i−q +
S∑
s=1

P∑
p=0

γm,sp us,i−p = θTmxi, (3.9)

where λgi =
∑M

m=1 λ
∗
m,i is the conditional intensity for the discrete ground process [62] N g

t′ at

t′ = i. θm is the m-th row of the parameter matrix Θ ∈ RM×F with

F = 1 +QC + (P + 1)S (3.10)

co-variates at each interval. Θ reflects the dependence of the intensity function on the

co-variates X ∈ RF×I . The log-likelihood for the marked point process conditioned on the

co-variates X, is given by

L(N∗|X) = log(Pr(N∗|X)) =
I∑
i=1

M∑
m=1

δN∗m,iθ
T
mxi −

I∑
i=1

log

(
1 +

M∑
m=1

exp(θTmxi)
)
. (3.11)

In the analysis that follows, we work with both the likelihood models in (3.7), (3.11). Much

of the analysis that follows will be based on characterizing how the number of events (spikes)

in a target realization impacts these likelihoods. We specifically consider the spike count

Ψ : RC×I → R,

Ψ(δN) = Ψ(ND) = bT δN1I =
C∑
c=1

I∑
i=1

bc δNc,i, (3.12)

as the number of events in the realization. For the exclusive event process b = 1C ∈ RC and

(3.12) reduces to

Ψ(δN) =
C∑
c=1

I∑
i=1

δNc,i. (3.13)
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For SEMPP, b ∈ RM contains the number of events associated with each dimension of the

projected point process, e.g., for C = 3, the projected dimension is M = 7 and

b = [1 1 2 1 2 2 3]T , (3.14)

corresponding to all possible combinations, i.e., three 1-spike events, three 2-spike events and

one 3-spike event.

3.2 Control Analysis of Statistical Spiking Models

In this section based on the likelihood models developed above we approach the question of

controllability in spiking networks from a probabilistic standpoint. In particular we identify

spike count as a key marker that relates to the probability of achieving any spike pattern as

a function of extrinsic control.

3.2.1 ε-Controllability for PPGLMs

We first consider an analogue to the classical notion of controllability. As a statistical model,

any such notion must involve the likelihood of particular realizations, heretofore referred to

as target patterns. As such, we first consider the following candidate:

Definition 4 (ε−Controllability for PPGLMs). A PPGLM is ε−controllable if, for all ε > 0,

there exists an input U such that any realization N(t) of the PPGLM can attain a log-likelihood

satisfying

− ε ≤ L(N |U) ≤ 0. (3.15)
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Despite its intuitive appeal, the following highlights that the notion of ε−controllability is

too strong to be of practical utility in the desired context.

Lemma 2. The PPGLM described in (3.7), (3.11) is not ε− controllable, even if the energy

of the input U is unconstrained.

Proof: The proof is given in Appendix B.1, and hinges on the fact that the likelihood

function is in fact strictly concave in U.

The Lemma establishes that allowingU to assume arbitrarily large energy confers no advantage

in controlling the PPGLM. This is conceptually different from classical control analysis, where

allowing progressively larger energy (in general) improves the overall range of trajectories

that can be induced. Two points should be considered when interpreting this result. First,

our analysis focuses on at most one event in each time bin. With increasing energy, one may

increase the likelihood on an event, but not necessary a single one. Second, in a coupled

network scenario, applying a large input in order to target a spike in a particular neuron will

have collateral effects elsewhere in the network. However, clearly some minimum energy is

required in order to maximize the likelihood of given realizations.

3.2.2 Event Count as a Surrogate for Pattern Complexity

As a consequence of Lemma 2, we seek a characterization that examines the complexity of

the realizations (spike patterns) that can be induced. Below, we establish that the spike

count, i.e. simply the number of spikes contained in a particular realization (i.e. (3.12)), can

serve as an informative marker in this regard.

Lemma 3. For a PPGLM of the form (3.4)–(3.7) with infinitesimally small interval (∆� 1),

the maximum likelihood of any realization decreases with respect to number of events.
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Proof: The proof is given in Appendix B.2.

Lemma 3 is most easily understood in a fully actuated scenario wherein each neuron receives

its own, independent control input. In this case, it is straightforward to show that the control

can be designed to negate any effect of process history. Consider the likelihood model of (3.7)

with S = C along with P = 0 and γc,s0 = 0 for c 6= s, i.e., γ0, which reflects how the current

input affects all the processes, is a C-dimensional vector. Since here the probability of an

event is independent at each time and other input indices, we can analyze the likelihood for

each i and c separately, i.e.,

max
U∈RC×I

L(N |U) =
I∑
i=1

C∑
c=1

max
uc,i∈R

L(Nc,i | uc,i) =
I∑
i=1

C∑
c=1

max
uc,i∈R

Lc,i, (3.16)

where

Lc,i ≡ L(Nc,i | ui) = δNc,i (θTc xi + log ∆)−∆exp(θTc xi). (3.17)

For δNc,i = 0, (3.17) reduces to

Lc,i = −∆exp(θTc xi) = −∆exp(rc,i + γc0 uc,i). (3.18)

We observe that given any ε′ > 0,

Lc,i(δNc,i = 0 | u) ≥ −ε′ when u ≤ u∗c,i, (3.19)

where u∗c,i = 1
γc0

(log( ε
′

∆
)− rc,i), assuming γc0 > 0. In other words, for the pattern consisting of

all zeros, the likelihood indeed can be made arbitrarily close to one (for the fully actuated

case). We now show that the addition of any spike to the pattern results in likelihood

degradation.
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Specifically, for δNc,i = 1, we can maximize the indexed likelihood as

Lc,i(δNc,i = 1 | u∗c,i) = −1 with u∗c,i = − 1

γc0
(log∆ + rc,i). (3.20)

Since the maximum likelihood of each Lc,i is fully determined by the input uc,i, we can

design an extrinsic control u∗ using (3.19), (3.20) that maximizes the likelihood for the whole

realization, i.e. from (3.16)

L(N|U∗) =
∑

δNc,i=0

Lc,i(δNc,i = 0|U∗) +
∑

δNc,i=1

Lc,i(δNc,i = 1|U∗)

= −(CI −Ψ(δN))ε′ −Ψ(δN)

(3.21)

Now for unconstrained inputs we have

lim
ε′→0

L(N |U∗) ≈ −Ψ(δN), (3.22)

i.e., the maximum likelihood decreases with the number of events Ψ(δN) in any realization

N of the process N(t).

A similar analysis can be carried out for the fully actuated SEMPP model, wherein we can

treat marked process independently and use (3.16) to maximize the likelihood over the whole

realization. In this case, the likelihood at the c-th process, i-th time index is

Lc,i ≡ L(Nc,i | ui) = δNc,i γ uc,i − log(1 + exp(γ′uc,i)). (3.23)

Since the inputs are unconstrained, the total contribution from the co-variates can be

reformulated in terms of only two parameters γ, γ′ ∀ c, i. Also note that we have removed the

asterisk indicating the marked point process since analyzing each process independently in

one dimension means, δN∗c,i = δNc,i. For δNc,i = 0, we can achieve probability approximately
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close to one and can obtain a similar version of (3.19). When δNc,i = 1, the maximum is

attained at

Lc,i(δNc,i = 1 | u∗c,i) = ϕ(γ, γ′) with u∗c,i =
1

γ′
log(

γ

γ′ − γ
), (3.24)

where

ϕ(γ, γ′) = log

(
γ
γ
γ′

γ′(γ′ − γ)
γ
γ′−1

)
< 0. (3.25)

The likelihood maximization in (3.24) is independent of each c, i and similar to (3.21), we

have

L(N|u∗) ≈ Ψ(δN)ϕ(γ, γ′). (3.26)

Thus, from our analysis of both the likelihood models (3.7), (3.11), we can conclude that

in terms of likelihood, increasing the number of spikes in a pattern results in likelihood

degradation, which can be interpreted as greater control difficulty.

3.2.3 Estimation of Complexity-based Viable Sets

Clearly, there are many factors in addition to spike count that determine the likelihood of a

particular realization of a considered PPGLM. Indeed, not all patterns with the same spike

count will generate the same likelihood. Accepting this limitation (see also Section 3.5), we

will leverage the result of the previous section to form a tractable, accurate assay for the

control properties of a PPGLM in terms of spike count. We proceed first by introducing the

notion of a viable pattern set, which is analogous to the reachable set for a classical control

system.

Definition 5 (ρ-Viable Pattern Set). Consider an arbitrary M -dimensional PPGLM defined

over I intervals. Given a likelihood threshold ρ, the ρ-Viable Pattern Set, N (ρ ;C, I,U), is
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the set of patterns defined as

N (ρ ;C, I,U) = {N ∈ RC×I | ∃U ∈ U s.t. Pr(N |U) ≥ ρ}, (3.27)

where U denotes the set of admissible inputs.

It follows from Lemma 3 that, in general, N (ρ ;C, I,U) includes all patterns with a spike

count less than or equal to some maximally viable count, µ ≤ CI. We can thus formulate a

relativistic analysis as follows.

Definition 6 ((µ, ρ)-Viability). For a likelihood threshold ρ and spike count µ, the PPGLM

(3.4)–(3.7), is (µ, ρ)-viable if ∃ U ∈ U such that

N (ρ ;C, I,U) ⊃ Nµ(C, I), (3.28)

where Nµ(C, I) denotes the set of all patterns with spike counts of µ or less, i.e., ∀ N ∈

Nµ(C, I), we have

Ψ(δN) = bT δN 1 ≤ µ (3.29)

where δN ∈ BC×I is the difference process corresponding to N.

The key problem is now to obtain the maximally viable count, µ, for a given ρ. This amounts

to a joint optimization problem for the spike count, Ψ(δN), and control U. Since the difference

process imposes the constraint

δNc,i = {0, 1}, ∀ c, i, (3.30)
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this optimization is a Nonlinear Mixed Integer program. To make this tractable, we relax the

integer constraint and introduce a new variable χ, such that

χc,i ∈ [0, 1], ∀ c, i. (3.31)

This allows us to define a relaxed viability notion as follows.

Definition 7 (Relaxed maximally viable spike count). The relaxed maximally viable spike

count µr is defined as

µr = Ψ(χ) (3.32)

and can be calculated from the solution of the following program,

maximize
U,χ

Ψ(χ)

subject to L(χ |U) ≥ log(ρ)

us,i ∈ U , ∀ s, i

0 ≤ χc,i ≤ 1 ∀ c, i.

(3.33)

While this optimization is still non-convex, we show below that numerical evaluation of the

pairs (µr, ρ) leads to accurate, informative characterization of PPGLMs.
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Figure 3.1: Accuracy of the relaxed maximally viable spike count (µr). The maximum
likelihood is computed for 100 random realizations and compared to the predicted thresholds
from the (µr, ρ)-controllability calculation (ρ = 10−6).
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3.3 Validation of the Analysis Framework

Here through numerical simulations we verify how relaxed maximally viable spike count

affects the probability of achieving any pattern.

3.3.1 (µr, ρ)-Viability is Accurate

Figure 3.1 demonstrates the veracity of the relaxation in (3.33). We consider PPGLMs with

randomly selected parameters Θ for C = 3 neurons, Q = 6 lags and I = 10 time bins. The

inputs are constrained via U = [−5, 5]. We solve (3.33) numerically2 for the likelihood in

(3.7) and find the relaxed maximum spike count µr = 7.08 for ρ = 10−6, ∆ = 0.1 and one

independent input, i.e., S = 1. Then, the maximum likelihood is calculated individually for

100 random patterns and compared to the results of the (µr, ρ) optimization. Only 8/100

patterns are misclassified (spike counts that are below µr but nevertheless whose likelihoods

do not exceed ρ). Patterns whose spike counts exceed µr are always classified correctly in

this example.

3.3.2 (µr, ρ)-Viability Enables Salient Comparison of PPGLMs

Based on our formulation of (µ, ρ)-viability, if µ1
r > µ2

r,

∣∣N 1(ρ)
∣∣ > ∣∣N 2(ρ)

∣∣ (3.34)

where |.| denotes the cardinality of a set. We demonstrate the utility of the viability

analysis via an example, where we show how the analysis can disassociate PPGLMs with
2We used a random sampling procedure over the initial conditions of our solver to ensure convergence to a

robust local maximizer.
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symmetric and asymmetric connectivity (see Figure 3.2A). We consider PPGLMs with the

same structure, input constraint and window length as in the previous example and a fixed

reference parametrization (essentially, the connectivity between units) Θ = σ ×Θr, where Θr

is the base parameter. Two observations are of note in Figure 3.2B. First, a small amount of

connectivity (via the scaling parameter σ ∈ [0, 1]) is advantageous for control, beyond which

viability decreases monotonically. This numerical inference can, in fact, be substantiated via

a formal analysis:

Lemma 4. For a PPGLM modeling Exclusive or Simultaneous Event Processes with like-

lihoods defined in (3.7), (3.11) and connectivity defined via the parameters βm,cq , ∀ q,m, c

(M = C for the log-link model), the likelihood of any given pattern is strictly concave with

respect to the network connectivity parameters.

Proof: The proof is contained in Appendix B.3, and is a variation of the proof of Lemma

2.

The second observation is that an asymmetric topology is, in general, more viable than

a symmetric topology, consistent with studies of similar 3-neuron motifs using dynamical

systems models and Lie bracket-based controllability analysis [63].
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Figure 3.2: Symmetric and Asymmetric 3-neuron motifs. (B) µr vs. Connectivity weight σ
for ρ = 10−10.

3.4 Control Design of Statistical Spiking Models

The previous section focused on the development of the analytical framework for PPGLMs

based on optimization. Along with this analysis, it is natural to also consider the overt design

of an exogenous control input U∗ to induce a specific target spiking pattern NT with highest

probability.

3.4.1 Control Design with Maximum Likelihood Estimation

Considering a cost function J : RC×I × RC×I → R, that accepts two patterns and returns a

real number denoting how dissimilar they are, we can formulate the following optimization

problem,

U∗ = arg min
U∈U

〈J(N,NT )〉Pr(N|U) = arg min
U∈U

∑
J(N,NT )Pr(N|U), (3.35)
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where the sum is over all possible spike patterns N. For a delta cost function J(N,NT ) =

−δ(N,NT ) as proposed in [39] we can rewrite (3.35) as

U∗ = arg min
U∈U

− Pr(NT |U) = arg min
U∈U

− log Pr(NT |U) = arg min
U∈U

− L(NT |U). (3.36)

Thus, the delta cost function reduces (3.35) to a maximum likelihood estimation (MLE)

problem.

Proposition 7. The maximum likelihood estimation problem of finding the extrinsic control

U∗ for the likelihood defined in (3.7) and (3.11), under an energy constraint on the control,

is convex.

Proof: In Lemma 2, we have established that the likelihoods presented in (3.7) and (3.11)

are strictly concave with respect to the extrinsic control U, which makes (3.36) convex.

Here, in addition to the delta cost function, we also studied a jittered cost function which

encompasses K different patterns, structurally close (in terms of an appropriate metric) to

the target pattern NT . In this case, the problem is:

U∗ = arg min
U∈U

−
K∑
k=1

ωk Pr(Nk|U) = arg min
U∈U

−
K∑
k=1

ωk L(Nk|U) (3.37)

where ωk > 0 denotes the weights assigned to the jittered patterns according to their similarity

to the target pattern NT with

ωk = max{ω1, . . . , ωK} when Nk = NT . (3.38)

Figure 3.3 demonstrates a possible weighting strategy as a function of jitter in timing of

spikes and in neurons, for a target pattern NT . The origin in the plane, indicating NT , gets
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Figure 3.3: A schematic for assigning weights (ωk) to the jittered cost function in (3.37). The
target pattern NT denoted as (0, 0), in the middle, is given the most importance, whereas
patterns with disturbance both in time and space (of neurons), progressively get lower weights.

the highest weight and the jittered patterns are weighted according to their proximity to NT .

Note that any constraint on energy (quadratic form) will not alter the convexity of the

program. Also, any regularization in the cost in terms of energy effectively makes the problem

a maximum a posteriori (MAP) estimation problem.

3.4.2 Analysis and MLE Design Example

Verification of the Controllability Analysis

Here we validate our controllability analysis results on a randomly parametrized PPGLM

model equipped with a log-link function (3.4). First we solve for maximally viable spike count

µr, (3.33) with C = S = 4, ρ = 10−8, ∆ = 0.01 and U = [−10, 10]. Then for some randomly

chosen (µr, ρ)-viable pattern NT (using (3.28) and (3.29)) shown in Figure 3.4 (top panel),
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Figure 3.4: Validation of (µ, ρ)- viability. Top panel : A random pattern NT with Ψ(δNT ) <
µr where µr is the solution of (3.33) for randomly chosen Θ. Middle panel : Achieved pattern
in terms of probability of spiking in each window, with U∗ from (3.36) and Bottom Panel :
The optimized control U∗ from the MLE problem.

we calculate U∗ from the MLE problem in (3.36). In the middle and bottom panel of Figure

3.4 we plot the probability of spike in each window (λc,i∆) and the corresponding extrinsic

control input us,i ∀ c, s, i from the maximization solution. We also observe that indeed the

pattern NT is ρ-viable (3.27). We note that in this example, the low probability of spiking in

Neuron 1 is due to the presence of large excitatory connectivity between Neuron 1 and 2.

Thus, the MLE solution biases the resultant pattern in order to avoid spurious spiking in

Neuron 2.
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Seven neuron coupled PPGLM network

We have thus far given two different formulations for the problem of controlling spike patterns

in neural populations. Here we considered a 7 neuron, coupled PPGLM network for the fully

actuated case i.e. S = C = 7 and solved (3.36), (3.37) for a target pattern, the letter ’W’ (see

Figure 3.5). In Figure 3.5, we plotted the average realization, simulated from the solution of

two different objectives in (3.36),(3.37) respectively. We achieved the target almost perfectly

for the delta cost function, with the jittered cost function yielding a noisier output. However

we noted that for the jittered objective, we obtained an energy efficient control.

PPGLM Control of Underlying Stochastic Integrate and Fire (INF) model

Finally, in this section we illustrate that our design strategy can be used indirectly to control

dynamical systems models. Here we consider C coupled stochastic integrate and fire (INF)

neurons of the form [49],

dv(t)

dt
= − 1

τv
v(t) +

1

C
(bu(t) + Isyn(t)) + η e(t)

Isyn(t) = −gsyn(t)(v(t)− Esyn)

gsyn(t) = ḡ
(t− ts)
τs

exp

(
−(t− ts)

τs

) (3.39)

where τv is the membrane time constant, C is the membrane capacitance, e(t) is standard

Gaussian white noise, η denotes the standard deviation of this noise, u(t) is the extrinsic

control input, b denotes the influence of the input on the neuron, Isyn(t) is the synaptic

current coming from a pre-synaptic neuron firing an action potential at time ts, Esyn is

the reversal potential of the synapse, ḡ models the constant synaptic conductance and τs

determines the decay of the synaptic current as time is elapsed from the incoming spike at ts.
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Figure 3.5: The solution of a jittered and delta cost function for a target pattern NT = the
letter "W" (top panel) in a population of C = 7 neurons. In the second panel, we solved
the optimization problem (3.36) with S = 7 inputs and plotted the spike pattern averaged
over several realizations. In the bottom panel, we solved the problem (3.37) with the same
number of inputs and allowing spikes on either side of the target pattern with penalties. For
this fully actuated case, we achieved the target spike train with high probability and the
effect of adding jittered spikes is also very evident in the simulations.
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Figure 3.6: KS plots with 95% confidence bounds for goodness of fit assessment for a fully
actuated two neuron INF network (C = S = 2) fitted using Q = 3 process history and P = 5
input history terms.

The model parameters for the neurons are given by

C = 10 nF, τv = 15 ms, Vrest = −70 mV,

VT = −50 mV, Esyn = 70 mV, η2 = 2

ḡ ∼ U[0, 1], τs = 1 ms, b ∼ N(0, 1).

(3.40)

Now, we determine the GLM model parameters Θ in a Monte Carlo fashion in KT = 500

different trials. Exciting stochastic INF network withU(t) drawn from a Gaussian distribution

such that us,i(t) ∼ N(0, 50) ∀ s, i, produces spike patterns Nj for j = 1 . . . KT and using these

data we fit Θ̂ that best describes the training set. Conceptually, this is akin to a system

identification step.

In Figure 3.7 we show the performance of the control U∗, obtained from the delta objective, on

the INF network for different cases of actuation (C neurons, S inputs). The covariate matrix

X has three process lags (Q = 3) and input history (P = 5), selected based on the Akaike

information criterion (AIC). Figure 3.6 shows the Kolmogorov-Smirnov (KS) goodness-of-fit

test using time-rescaling theorem [64], which indicates that the model accurately reflects the

data. With the hypothesis that the control inputs calculated from the PPGLM should also

emit a spike train close to the target NT (panel A) in the underlying dynamical model, we
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stimulate the INF neurons with the same U∗ (panel D). In panel B, C we show the generated

spike pattern (averaged over several realizations) and one sample waveform, when the original

stochastic INF neurons are excited by U∗, and indeed we can see that the induced pattern is

close to target NT . For validation of optimality of U∗, in panel E we plot the achieved spike

pattern for a randomly selected input. We observe that as underactuation becomes more

prominent, the performance of U∗ degrades. The simulation results were primarily generated

using CVX with MATLAB interface.

Control Design for underlying Biophysical Models

To evaluate the utility of this design approach on a more complicated biophysical model, we

further consider a network of diffusively coupled Fitzhugh-Nagumo (FN) neurons of the form

[65]. Here the dynamics of the c-th neuron is given by

dvc
dt

= vc −
v3
c

3
− wc + bu(t) +

σw
C

C∑
c′=1

(vc − vc′) + η e(t)

τ
dwc
dt

= vc + ᾱ− β̄wc,

(3.41)

where vc denotes the membrane potential, wc the recovery variable, σw is the coupling strength,

α, β, τ are system parameters and u(t), e(t) the extrinsic input and standard Gaussian white

noise respectively as before in (3.39). In our simulations we have used

τ = 12.5, ᾱ = .7, β̄ = 0.8, η2 = 0.5

σw ∼ U[0, 1], b ∼ N(0, 1).

(3.42)

where U denotes uniform distribution. We use a spike detection algorithm that records a spike

from simulated voltage for amplitudes higher than VT ∼ 1 mV [66] and refractory period of

2 ms. In Figure 3.8 we show the average achieved pattern and one voltage waveform (panel
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Figure 3.7: Control design for a C neuron coupled stochastic integrate and fire network. A :
The target pattern for simulation study. B : The mean pattern over different realization for
the INF neurons with the control U∗. C: One realization of voltage traces for the two INF
neurons under U∗. D: The optimized input U∗. E : The mean spiking pattern generated for
a randomly selected U to validate optimality of U∗.
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Figure 3.8: Control design for diffusively coupled FN neurons (C = 2). A: The target pattern
NT for the simulation. B: The average pattern over different realizations for the 2 neurons
under U∗. C: One realization of voltage traces for the 2 FN neurons under U∗. The circled
lines denote the detected spikes from the spike detection program. D: The optimized input
U∗.

B and C respectively) for a randomly selected target pattern (panel A) for a fully actuated

(C = S = 2) network of FN neurons as in (3.41).

3.4.3 Analysis of Jittered Cost Function

We proceed with the jittered cost function by using the concept of gray coding [67]. In a gray

code, two consecutive binary differs by only 1 bit. For example, consider the following target

pattern in one dimension with I = 4, NT = [0 1 1 1]. Using a gray code, the two ‘nearest’

patterns are N− = [0 1 1 0], N+ = [0 1 0 1], compared to the normal binary sequence where

the patterns on either side of N, N− = [0 1 1 0], N+ = [1 0 0 0], may differ significantly
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from the target pattern. So using the N−, N+ as the jittered patterns (over the neurons at

each interval for a population) in (3.37), we can robustly achieve a pattern structurally close

to NT .

Here, we select the (K−1)/2 (assuming K is odd) nearest (in terms of the gray code) patterns

on either side of NT and then transform them back to decimal equivalent to construct the

marked point process. Note that the addition of these jittered patterns in the cost function

does not alter the convexity of the program. Figure 3.9 illustrates the outcome of the optimal

control problem with jittered cost function as compared with the dirac-delta function as a

function of network size. The same number of inputs was considered in all cases (S = 2).

We sampled 50 different target patterns from the binary space BC×I , for number of neurons

C (= 3 . . . 8) and I = 10 time points, calculated the control U∗ according to the two cost

functions and plotted the average VP metric, along with the energy (Frobenius norm for U∗)

expended for the two cases.

87



Population Size

Delta Objective

Jittered Objective

3 4 5 6 7 8
0

20

40

3 4 5 6 7 8
0

20

40

60

A
ve

ra
ge

 V
P

 M
et

ric
C

on
tr

ol
 E

ne
rg

y

Figure 3.9: Performance comparison for jittered and delta cost function as objectives for
(3.35). We plotted the VP metric and the controller energy used for a wide sample of patterns
in a varying population of neurons with the same number of inputs for both cases. We see that
the jittered cost program always produces an energy efficient control and as the population
becomes underactuated (3.37) yields a comparable performance with respect to (3.36), in
achieving the target spike pattern. This leads us to the conclusion that for controlling the
spiking activity in an underactuated neural population, (3.37) is advantageous over (3.36).
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3.5 Discussions

Here we have introduced a control analysis and design paradigm for statistical models of

spiking networks. In the analysis framework, we show that the number of events in a

realization of any PPGLM is a simple indicator of pattern viability in terms of likelihood. It

is important to note the limitations in the proposed approach. Most notably, we focus here on

evaluating the (relaxed) maximally viable spike count µr to investigate the space of patterns

that can be achieved to within the probability threshold ρ. As mentioned, this framework

does not distinguish between different patterns with the same count µ, and labels all of them

to be viable for ρ if µ ≤ µr. For an idealistic scenario, i.e. full actuation and unconstrained

control inputs, we proved in (3.21), (3.26) that the event count solely dictates likelihood

degradation. But with stringent energy constraints on the input and heavy underactuation,

the process history and other co-variates also affect the likelihood so that dependence on

Ψ(δN) is not exclusive. The misclassified patterns in Figure 3.1 are attributed to this fact.

Understanding this limitation, the aforementioned issue of non-convexity of (3.33) and the

constraint relaxation (3.31), we posit that the framework is strong enough to reveal salient

control properties in spiking networks. Our example highlighting concave dependence on

connection strength, a fact that is analytically verifiable, demonstrates this utility.
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Chapter 4

Intrinsic Control in Sensory Detection

Tasks

In this chapter, we study integrative processing of sensory inputs in high-dimensional combina-

torial detection spaces, as exemplified in olfaction [68, 69]. Rather than considering high-level

cognitive tasks such as in the 2A-FCT, we are interested in studying simple detection and

response to sensory stimuli. Simply stated, we seek to understand whether the early neural

responses associated with such stimuli are consistent with a DDM-type threshold decoder;

and further, how the underlying network may enable the realization of such responses.

Thus, our central premise is that response motifs observed in vivo are in fact the optimal

neural drivers for particular drift dynamics. In studying this premise, we will first analyze

a novel decoding scheme that generalizes the DDM to high dimensional, combinatorial

environments. We will evaluate this model by formally optimizing its afferent inputs. In other

words, we will postulate objective functions that reward fast, unambiguous detection and

mathematically derive the exact form that the sensory neural activity should take in order to
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achieve optimal performance. It turns out that the optimized motifs have an intuitive and

interpretable form that is consistent with those observed in the early olfactory circuits of

locust. We highlight this biological salience in the latter part of the chapter.

4.1 Background

4.1.1 Threshold-hitting Models for Choice Tasks

The 2A-FCT is one of the most pervasive, well-studied methods in behavioral experiment

design. It is an idealized binary model of decision-making wherein a subject is presented with

two alternatives and based on the integration of sufficient evidence, a decision is made in

favor of one of the alternatives [70].

There are at least two different theoretical frameworks in which evidence can accumulate in a

2A-FCT. In a 1-dimensional (1D) construct, the assumption is that the difference between

the neural responses corresponding to the two competing stimuli drives the integrator.

Subsequently, this evidence difference is integrated over time until a certain threshold is

reached, at which time a presumably ‘correct’ decision or detection is reached. This idea

can be generalized into a scenario in which the differing lines of evidence are integrated

independently, i.e., within an n-dimensional framework. In this latter scenario, the index set

In = {1, 2, . . . , n} represents the n different alternatives. In this chapter we will focus on this

scenario as a schema for multidimensional processing of sensory evidence.

Classical DDM and Detection Paradigms

In order to build a complete mathematical specification, we denote ν(t) ≡ [ν1(t), ν2(t), ..., νn(t)]T

as the latent state that determines the outcome of the detection task. Note that in the
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context of 2A-FCT, the latent state ν(t) ∈ R2. In the classical DDM framework [71, 72] the

evolution of the latent state ν is governed by the dynamics :

dν = kdt+ c dW, ν(0) = 0. (4.1)

where k is the constant drift component, c dW is the diffusive component, usually modeled

as white noise with mean 0, variance c2dt.

Using this state vector enables formalization of how the detection is made within the model.

For a ‘Forced Response’ or ‘Interrogation’ paradigm, the outcome of the task depends

on whether a response to the stimulus occurs within a prespecified time window, say τ .

Assuming the process starts at t = 0, whichever dimension of ν(t) is higher at t = τ is chosen,

i.e.,

choice = max
i∈In

νi(τ) (4.2)

In a ‘Free Response’ paradigm a subject makes a decision on their own time. Here, we

introduce a threshold Γ, which represents a quantitative notion of sufficient evidence for

detection. In a 2D construct, the decision is based on whichever latent state reaches it’s

threshold first i.e. a detection is made at t = τ if,

νi(τ) ≥ Γi with νi(t) < Γi, ∀t ∈ [0, τ), i ∈ I2. (4.3)

Here, τ is the reaction time (RT) [70, 71, 73] of the task. Note that by definition, the RT

is fixed for the Interrogation paradigm. In this work, we will not differentiate between the

decision time (DT), which is time associated with the decision process only and RT, which is

a sum of DT and time associated with sensory, motor processes [70] that precedes the actual

response from the subject.
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Unambiguous Detection

A multi-alternative free response framework can produce choice ambiguity. An unambiguous

detection implies the latent state ν is dominant along only one dimension when the threshold

along that dimension is reached. Thus, perfect (totally unambiguous) detection of one of the

alternatives, say i = 1 at t = τ , corresponds to:

ν(τ) = [Γ1 0]T . (4.4)

This can be interpreted as a low entropy configuration of the latent state. To formalize this

notion, we modify (4.4) to introduce the level of ambiguity ε, which occurs when the latent

state in (4.4) becomes

ν(τ) ∈ Bε(z1), z1 = [Γ1 0]T , 0 < ε < min(Γ1,Γ2). (4.5)

where Bε(.) denotes an open ball of radius ε (in the ‖.‖2 norm) around any point in the latent

space. For a robust detection of stimulus we want ε to be as small as possible. We illustrate

this in Figure 4.1, where we show an ideal state trajectory in the latent space ν ∈ R2, for

decision index 1. In the schematic, as the state trajectory moves away from the positive

ν1 axis, the detection becomes ambiguous with respect to the desired choice (i = 1) and

eventually leads to error. The level of ambiguity is closely related to the Error Rate (ER)

[70, 74], which is defined as the proportion of incorrect responses by a subject under different

trials for the same task. Smaller ambiguity (ε) results in lower ER.
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Figure 4.1: (A) We consider a multidimensional, integrative detection framework with
combinatorial mixing of afferent inputs (stimuli). (B) In this decoding scheme, detections are
made when latent states cross thresholds. Detection can be robust or ambiguous, depending
on competing states. We will formulate an objective function designed to allow thresholds to
be hit and held with minimal ambiguity. The level of ambiguity ε of a detection indicates how
close competing latent states are to their respective thresholds. (C) Our objective function
generalizes detection to also account for persistence and withdrawal of sensory representations.
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4.1.2 Response motifs in early olfactory networks.

Our theoretical study is motivated in part by observations of the activity in early olfactory

networks, i.e., sensory neuronal networks that interface with environment and, eventually,

enable the perception of smell. In [40], detailed characterizations were made regarding the

stimulus-evoked responses of projection neurons in the locust antennal lobe that receive

direct sensory input from the olfactory receptor neurons. Note that here, a ‘stimulus’ refers

to sensory input (i.e., an odor). It is observed that evoked responses contain two major,

mutually exclusive motifs: phasic increase and overshoot of spiking activity during stimulus

presentation followed by tonic activity that persists during stimulus maintenance (’ON’ type);

or inhibition (reduction of activity from baseline) during the stimulus presentation followed

by pronounced phasic activation after stimulus termination (’OFF’ type). The ON, OFF

clusters can be further sub-classified according to the magnitude of their phasic parts, as

shown in Figure 4.2.

We are interested in these motifs because they can be interpreted as ‘evidence’ that is decoded

by higher brain circuits towards ultimately enabling stimulus detection and processing. How

exactly does this decoding happen? Following from the above, our supposition is that the

decoding is integrative, wherein this sensory activity is integrated in a high-dimensional latent

state space towards complex detection boundaries. For such a scheme to work, the sensory

neural activity motifs must allow the latent state to reach relatively distinct regions of the

latent space so as to avoid sensory ambiguity and, further, to achieve such trajectories quickly.

In this sense, we posit that early sensory networks are effective, perhaps even optimal, drivers

of this higher integrative decoding process.
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Figure 4.2: Response Motifs observed in Locust Olfactory Network
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4.2 Problem Formulation

4.2.1 Persistent Response Paradigm

The paradigms discussed above model a single detection within a structured choice task

framework. In contrast, we are interested in understanding behavioral responses to multidi-

mensional, combinatorially-encoded stimuli that occur sequentially without overt periodicity.

In this context, one can surmise a functional need for detections to not simply occur but also

persist and withdraw. Thus, we introduce a third paradigm motivated by [75], [76], where we

hypothesize that neural evidence supports the maintenance of a particular detection until

t = τp > τ . This means for a stimulus with onset at t = 0, duration ts and RT τ , we have

τp > max(τ, ts). Beyond t = τp, latent states reset to a neutral regime so that they can

respond to new stimulus without any bias (see schematic in Fig. 4.1). The latter is accounted

for by introducing a withdrawal period t ∈ (τp, τw), during which the neural response resets

the latent states to within a ε′ neighborhood of neutral. Note that our formulation is general

enough to allow for representations that persist beyond stimulus termination. However, in

most basic sensory detection settings, one expects τp ≥ ts.

Thus, using our notation in a 2D latent space, to elicit a response in favor of the first choice,

i.e., (i = 1), we have,

ν(t) ∈ Bε(z1), ∀ t ∈ [τ, τp], τp > ts, ν(0) = 0.

ν(t) ∈ Bε′(0), ∀ t ∈ (τp, τw).

(4.6)

where ε and ε′ denotes the level of ambiguity for the two phases, namely, detection and

withdrawal of the stimulus, respectively.
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Extensions to the DDM and Decision Landscapes

In our study, we will examine different drift dynamics motivated by the ‘energy picture of

decision making’ [77]. For ease of presentation, we formulate these models for ν(t) ∈ R2 and

reconcile these representations with the classical DDM and several of its extensions.

Null Model: We first describe the null model where the latent variables do not have

internal drift and thus behave as perfect integrators. This takes the form,

ν̇ = bx + cdW. (4.7)

Note that for b a 2× 2 identity matrix I2, (4.7) reduces to the Race model [78], wherein the

evidence favoring each alternative is integrated independently.

Equilibrium Model: Here all the latent variables lie within a stable basin of attraction

and all decision thresholds are located away from the equilibrium. This is equivalent to leaky

integration of afferent activity. The two representations are given by,

ν̇ =

−a1 0

0 −a2

ν + bx + cdW, (2D), (4.8)

where a1,2 > 0. Note that, here the equilibrium model with b = 0, is a version of a stable

Ornstein-Uhlenbeck process [79] without affine input. A more general version of a stable 2D

Equilibrium model can be written as

ν̇ = Aν + bx + cdW (4.9)
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Figure 4.3: Different dynamic landscapes for decision making

where A ∈ R2×2 such that σ(A) ∈ R−, σ(A) denotes the eigenspectrum of A. For a diagonal

A, (4.9) reduces to the 2D model in (4.8). The Mutual Inhibition model of [80] is a special

case of (4.9) with non-diagonal A (and, specifically, with reciprocal inhibitory coupling

between the latent variables).

Saddle Model: If one of the decisions is made more frequently, bias is introduced in

the DDM framework by modifying the initial state ν(0). This is dependent on the prior

probabilities of the two choices [81, 82]. Here, we propose a model that encodes bias within

the latent state dynamics i.e.

ν̇ =

−a1 0

0 a2

ν + bx + cdW (4.10)

For the 2D representation in (4.10), the dynamics are biased against the latent state ν1 and

favors ν2. More generally, such a model can be represented as in (4.9) but wherein σ(A)

now contains eigenvalues of opposite signs. The favored stimulus orientation is along the

eigenvector corresponding to positive eigenvalue.

In Figure 4.3, we plot the dynamical landscape for the models described above.
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4.2.2 Optimization Framework

Our main results involve the optimization of evidence trajectories with respect to the persistent

response framework in (4.6).

Optimal Response for Speed, Accuracy, Energy Trade-off

We will specifically formulate a regularized optimization problem in order to elucidate the

evidence motifs that best mediate a trade-off between fast (minimum time to reach threshold)

and unambiguous (maximum separation between the latent variables) DDM-based detection.

Optimization Scheme: For simplicity but without loss of generality, we assume M(> 2)

neurons (which can be interpreted as sensory units) are influencing a 2D latent state ν1,2.

Since we are primarily interested in characterizing the evidence motifs, we will neglect the

diffusive component of the DDM, focusing only on the deterministic dynamics associated

with evidence accumulation. In (4.7)-(4.10), these two assumptions translate into b ∈ R2×M

and c = 0.

Objective Functions: As mentioned above, we are concerned with multiple phases of

detection: occurrence, maintenance and withdrawal. We assume, again without loss of

generality that the objective is to induce and maintain a detection in the ν1 dimension, then

withdraw that detection. In this sense, the evidence trajectories can be viewed as solutions

to the following problems.

(P1p)

min
y

J(y) =

∫ τp

0

1

2
[(ν(t)− z1)TQ1(t)(ν(t)− z1) + x(t)TS1(t)x(t) + y(t)TR1(t)y(t)]dt

100



(P1w) min
y

J(y) =

∫ τw

τp

1

2
[ν(t)TQ2(t)ν(t) + x(t)TS2(t)x(t) + y(t)TR2(t)y(t)]dt

where
ν̇(t) = f(ν,x), ẋ = y,

ν(0) = 0, x(0) = x0,

Qj(t) ∈ R2×2; Sj(t),Rj(t) ∈ RM×M

Qj(t),Sj(t) ≥ 0; Rj(t) > 0, j = 1, 2.

(4.11)

With z1 is defined in (4.5), (P1p), (P1w) become finite time regulator problems [83]. Qi(t)

dictates the ambiguity level ε, ε′ in (4.6).

4.3 Results

4.3.1 Persistent responses are best achieved through biphasic neu-

ral responses

In this section we develop the solutions of the problems in (P1p), (P1w) and discuss the

characteristics of these motifs in coding the sensory stimulus for efficient sensory detection.

The key technical step is the reduction of the response optimization problems to that of the

finite-time quadratic regulator from control theory. While most of the technical derivation

is left to the Appendix, we note the main transformation from (P1p) is add the target z1

(which is constant) to the augmented state vector v = [νT xT ]T and ascribe to it the null

dynamics ż = 0 with initial condition z(0) = z1. So we have,

v̇z = [fT (ν,x) yT 0T ]T = [gT (v,y) 0T ] ≡ g̃(v,y),

vz = [νT xT zT ]T = [vT zT ]T
(4.12)
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and (P1p) reduces to

(P1p* )
min
y

J(y) =

∫ τp

0

1

2
[vTz Q̄1vz + yTR1y]dt

s.t. v̇z = g̃(v,y),vz(0) = [0 x0 z1]

where

Q̄1 =


Q1(t) 02×M −Q1(t)

0M×2 S1(t) 0M×2

−Q1(t) 02×M Q1(t)

 . (4.13)

Here, (P1p* ) is in the normal form of the standard regulator problem. Since the drift dynamics

are linear in the latent state ν, (P1p* ) is the so-called Finite Time Linear Quadratic Regulator

(LQR) problem. Similarly, (P1w) can be reduced to

(P1w* )
min
y

J(y) =

∫ τw−τp

0

1

2
[vT Q̄2v + yTR2y]dt

s.t. v̇ = g(v,y),v(0) = [ν(τp) x(τp)]

where

Q̄2 =

Q2(t) 02×M

0M×2 S2(t)

 . (4.14)

Note that Q̄1,2(t) in (4.13), (4.14) is positive semi-definite (see Appendix C.1) and a (unique)

solution to (P1p* ), (P1w* ) exists.

To study the nature of the solutions to these problems we consider a prototypical combinatorial

decoding setup, depicted in Figure 4.4A. Here, the colors blue and red each impinge on

M = 41 sensory neurons via Gaussian tuning curves. These curves are overlapped by O = 11

neurons. The tuning curves and selectivity of the latent states (for red and blue) are absorbed

into the matrix b matrix in (4.7)-(4.10).
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Figure 4.4: Optimal evidence for Persistent response Paradigm for the 2D Models during
persistent and withdrawal phase.
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We select penalty matrices that equally weight the detection time and ambiguity. The ensuing

optimized response motifs for the persistent paradigm are shown in Figure 4.4B,C. Here,

we plot the response motifs for the persistent and withdrawal phase (i.e., the solutions of

(P1p), (P1w)), assuming ts = τp. Due to asymmetry along the two directions corresponding

to the two alternatives in the Saddle Model, we plot the optimal response for both i = 1, 2. A

biphasic stimulus onset and offset response is observed in all cases. Further, the offset response

is geometrically opposed to the onset response. Qualitatively, the equilibrium DDM model

(i.e., 4.4B) produces overall motifs that are most consistent with experimental observations.

4.3.2 Phasic Responses are Needed for Fast, Persistent Detections

As seen in the previous section, the optimal neural trajectory for persistent detection exhibits

an overshoot (phasic transient) followed by steady state (tonic) maintenance. From an

energetic standpoint, the presence of phasic overshoot is costly; but the benefit of such

dynamics is that it enables faster and more accurate detection. Indeed, Figure 4.5 shows the

optimal response motifs as the regularization matrix S1 is scaled to more heavily penalize

motif energy. Fig. 4.5A depicts a general reduction in ambiguity and detection time as more

energy is tolerated, which is accompanied by a progressively more pronounced overshoot (Fig.

4.5B). It is interesting to note that this overshoot varies on the order of 300% depending on

the energy regularizer, while the tonic (steady state) response only varies to within 50%.

Further, the phasic overshoot only arises due to the persistence of the detection. Indeed, if we

repeat our optimization procedure for the more classical DDM detection paradigms discussed

above in 4.1.1 (namely, free and forced detection), we find that the optimal response is always

of the form:

x(t) =
∑
k

eβkt, (4.15)
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where βkt are real coefficients (see Appendix C.2-C.4). Since in these cases the motifs end

when a detection is made (i.e., there is no persistence), (4.15) implies that the optimized

motifs for free or forced detection can never overshoot.

4.3.3 Responses are produced through a canonical model of recur-

rent inhibition

Finally, we note that the optimal response motifs we see in Figure 4.5 are readily realized

through a prototypical, competitive neuronal network architecture. Indeed, as we see in these

motifs, a feature of the optimal response is not only an increase from baseline of the primary

response, but a decrease/inhibition from baseline of the competing response. It is highly

intuitive that lateral inhibition within the sensory layer can mediate such dual responses.

Here we investigate a modified version of the competitive network architecture proposed by

[76]. This structure consists of a hidden layer of inhibitory neurons which receives excitation

from a primary layer of sensory neurons (that interfaces with the periphery). It is the sensory

layer whose activity is read out by the integration mechanism that forms the detection. We

show a layout of this network in Figure 4.6.

Calculation of Firing Rate

Assuming u as the input to an M neuron sensory layer, we can calculate the firing rate as in

[1]. The synaptic current Is ∈ RM follows a first order dynamics excited by a net activation

from u and the inhibitory projection from the hidden layer,

τ s
dIs
dt

= −Is + we
s u(t)−we

ixh (4.16)
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Figure 4.5: Role of energy in shaping the response motifs for speed-accuracy trade-off
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Figure 4.6: Proposed network architecture for unambiguous binary decision making. We
assume that the feature space representation of the stimulus u(t) excites the sensory neurons
in the first layer via we

s, which then affects (possibly smaller number) inhibitory neurons in
the hidden layer through wi

e. This hidden layer projects onto the sensory layer through ωei ,
enabling the dominant stimulus to stand out in the detection process.
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where τ s ∈ RM×M , the synaptic time constant is a diagonal matrix, we
s ∈ RM×M , wi

e ∈ RM×L

denote the influence of u(t) ∈ RM and hidden layer firing rate xh ∈ RL respectively.

From the synaptic current Is, we calculate the firing rate vector xs

τr
dxs
dt

= −xs + F (Is(t)),

F (Is) = (1 + exp(−Is − I0

τf
))−1

(4.17)

where F (Ij) is the sigmoidal activation function. Following our architecture, the hidden

inhibitory layer with L neurons (L < M) receive this input xs through a weighting matrix

wi
e ∈ RL×M . The synaptic current Ih ∈ RL of the hidden inhibitory neurons follow similar

linear dynamics as in (4.16),

τ h
dIh
dt

= −Ih + wi
e xs (4.18)

with τ h ∈ RL×L the diagonal matrix of time constant. From the synaptic inputs Ih, we can

compute the firing rate xh of the inhibitory layer as in (4.17). These neurons now in turn

inhibit the sensory layer through a weighting pattern we
i , shown in (4.16).

Now we show that this network is indeed capable of producing the optimal motifs observed

in the simulations for problem (P1p)-(P1w). As example, we consider a detection task of

discerning the color of an image patch which is dominated by blue in 5 : 1 ratio with respect

to red. Let us also assign ’blue’ to decision index i = 1 and red to i = 2. We also assume

a constant baseline activity present in the network. Now suppose the image belongs to the

receptive field of M = 6 sensory neurons with an overlap of O = 2 and L = 2 inhibitory

neurons. In this simplistic realization, this input can be expressed as u(t) ∈ RM where

the blue, red sensitive and the overlapping neurons get step inputs on top of the baseline

input acting on the network. We compute the firing rates generated by these layers using

(4.16)-(4.18) for both the blue and red half in Figure 4.7. If we assume that only the sensory
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Figure 4.7: The firing rate for four different types of neurons in the two layers are shown.
A step input representative of the sensory stimulus is applied to the network, proposed in
Figure 4.6. Assuming that only the excitatory neurons participate in the final integrative
process, as proposed in the architecture, we observe that the firing rates match the kernels
for the optimal neural response.

neurons are involved in the decision making then we see that this network architecture is

capable of achieving the kernels shown in the optimal decision making.

4.4 Discussion

In this chapter, we have performed a theoretical study of integrative decoding of sensory stimuli

through the use of optimal control theory in conjunction with a generalized drift-diffusion

detection schema. We specifically posited a decoding objective involving fast, unambiguous

detection and maintenance of stimulus representations. Within this optimization framework,

we showed that the putative best neural responses involve phasic overshoot to rapidly hit
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a detection threshold, followed by tonic representation maintenance. These computational

findings provide a potential explanation for previously observed activity motifs in early

olfactory networks.

4.4.1 Optimal formation and maintenance of representations

Our theoretical framework departs from the classical drift-diffusion decoding schema by

positing not simply threshold crossing, but rather persistence of the latent state within a

small region corresponding to unambiguous detection (i.e., ideally along a base vector in the

latent state space). The goal of maintaining representations is what ultimately causes the

optimal motifs to dichotomize into an initial overshoot and eventual tonic phases, the former

governing fast transients, with the latter governing robust maintenance.

4.4.2 Speed-energy vs. Speed-accuracy trade-offs

Our model also provides an interesting interpretation regarding the notion of speed-accuracy

trade-off or, lack thereof. In fact, as shown in Figure 4.5, for the multivariate DDM framework,

it is possible to achieve fast and unambiguous threshold hitting/maintenance simultaneously.

Where the trade-off occurs is not between speed and accuracy, but rather between speed

and energy of the underlying neural responses. Penalizing energy leads to motifs that while

able to maintain representations, do so more slowly and less accurately. These motifs also

lack the characteristic phasic overshoot observed in data. Indeed, it is this overshoot that is

the primary manifestation of energy tolerance (leading to faster, more accurate responses),

explaining why such phasic activation often appears in early sensory networks.
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4.4.3 Multivariate threshold-detection and reset responses

Our model provides a theoretical framework within which to understand the offset responses

observed in [40]. Indeed, the multivariate DDM requires a nonzero neural activation, from

which a given latent state can integrate bidirectionally. Thus, the offset responses can be

interpreted as mediating a (fast) reset of the latent states to neutral, from which the network

is able to respond to future stimuli. That the offset responses are geometrically opposed to

the onset responses is a putative reflection of the need to integrate ‘backwards’ along the

onset trajectory.

4.4.4 Sensitivity to noise

Our theoretical studies are all performed in a deterministic setting, without an overt noise

model. For instance, we might suppose a small amount of additive Gaussian noise impinging

on the latent state integration process. In this case, it is important to note that the optimal

motifs for the persistent detection paradigm remain unchanged [84]. Other forms of noise

will, however, have nontrivial effects on the optimization problem studied herein.
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Chapter 5

Optimal Evidence for Fast-Unambiguous

Detection Problems

In this chapter, we characterize optimal evidence for fast and unambiguous sensory detection

in threshold-based models. We apply the optimal control framework developed in Chapters

2 and 4, illustrate the geometric subtleties in the solutions, and point out the relation to

classical problems in Calculus of Variation. We also reveal that inhibition in the optimal

response is key to ambiguity reduction.

5.1 Problem Formulation

Using the detection framework discussed in the previous chapter (4.3), here we seek the optimal

neural representation for a fast but unambiguous decoding of sensory input. We formulate two

optimal control problems for a 2-dimensional threshold-based DDMs, resembling the 2A-FCT

task model. The objective functional in these problems is designed to achieve a trade-off

between speed (the time for the target state to hit the threshold) and accuracy (ensuring
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that the non-target state remains well below it’s threshold). We incorporate the accuracy

aspect through a terminal cost ϕ(·) that penalizes higher values of the non-target state. We

take ϕ as an increasing and convex function of the non-target state and consider both smooth

and non-smooth models. This function associates a measure of unambiguity/accuracy with

the problem and, for example, by choosing a piecewise defined function which has different

slopes on opposite sides of a critical value xc, we can bias the solution towards restricting

the non-target state to lie below this critical value xc. Interestingly, as we shall see below,

such a non-smooth formulation sometimes has advantages in that it leads to an optimal

control problem that has a simpler optimal synthesis than the one which is formulated with

a smoothed version of such a penalty term ϕ.

We now formulate the problems we shall be analyzing. The state-space is R2, x = [x1 x2]T ,

and without loss of generality we select the variable x1 to be the target variable and x2 to be

the non-target variable. We write the system dynamics in the form

ẋ = Ax + bu, x ∈ R2, (5.1)

with

A =

−a1 0

0 −a2

 , and b =

b1

b2

 (5.2)

with ai and bi, i = 1, 2, positive coefficients. We also assume that a1 6= a2. The case when

a1 = a2 leads to degenerate situations (which are easy to analyze) since the linear system is not

completely controllable, but we omit these in the presentation. Also, the assumption that A is

a diagonal matrix simplifies the notation, but, more generally, A could be any asymptotically

stable matrix with real eigenvalues. Admissible controls are Lebesgue measurable functions

u which take values in a compact interval [U1,U2], the control set. Since the dynamics is

linear, given any admissible control defined over an interval [0, τ ] and any initial condition
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x(0) there exists a unique solution to the dynamics (5.1) which is called the corresponding

trajectory. We call the pair (x, u) a controlled trajectory. We then consider the following

optimal control problem as our reference problem:

Problem 7. (P7) With the terminal time τ free, minimize the objective

J(u) = τ + η ϕ(x2(τ)) (5.3)

over all admissible controls u subject to the dynamics (5.1), initial conditions in G

x(0) = x0 ∈ G = [0, xth]× [0, xth], (5.4)

and terminal condition x1(τ) = xth.

Here xth denotes the detection threshold (similar to Γ in (4.3) Chapter 4) for both states and

η is a regularization parameter. We make the following assumptions:

Assumption 2. • The bounds in the control set are of high enough magnitude to effect rise

and decay in the state variables, i.e., for all x ∈ G we have that

Ax + bU1 < 0 and Ax + bU2 > 0. (5.5)

Here we write v < 0 when all elements of the vector v are negative. Let us also denote the

vector fields corresponding to the constant controls U1 and U2 by X and Y, respectively.
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• The terminal cost is an increasing and convex, but not necessarily smooth function of the

non-target state x2. Generally, we assume that ϕ is of the form

ϕ(x) =


ϕ1(x) if x < xc,

ϕ2(x) if x ≥ xc.

(5.6)

where ϕi(·) are differentiable functions with ϕ1(xc) = ϕ2(xc). Note that, if the composite

function ϕ is not differentiable at x = xc, then we have that

lim
x→x−c

dϕ

dx
= ϕ′1(xc) < ϕ′2(xc) = lim

x→x+c

dϕ

dx
. (5.7)

An important aspect in this problem formulation is that the state space is all of R2. Conse-

quently, in the optimal control problem it is allowed that trajectories may increase beyond

their threshold values and then return to a more cost-effective lower value for the terminal

cost ϕ(x2(τ)). This problem formulation therefore does not reflect the selectivity we are after,

but it can be considered a relaxed formulation of the problem whose solution will allow us

to clarify various aspects connected with the realistic problem formulation we are actually

interested in. So does the problem formulation below when the states are constrained to lie

in the compact set G.

Problem 8. (P8) With the terminal time τ free, minimize the objective

J(u) = τ + η ϕ(x2(τ)) (5.8)

over all admissible controls u subject to the dynamics (5.1), initial condition x(0) = x0 ∈ G,

terminal condition x1(τ) = xth and state-space constraint x ∈ G, for all t ∈ [0, τ ].
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This problem simply enforces the constraint, but it also does not yet correspond to a

formulation that would represent selectivity because it is still allowed for the trajectories

to move along the threshold x1,2 ≡ xth which is an admissible boundary segment of the

state-space. However, this is not useful since latent decision state x1 would be activated

instantly when it reaches the threshold value x1 = xth. This, however, causes that for some

initial conditions optimal solutions do not exist and this will become plainly evident from the

optimal solutions for the problems P7 and P8 which explain the pivotal role played by the

state-space constraint for these problems.

5.2 Syntheses of Optimal Solutions

In this section we develop a synthesis of optimal controls u∗ and their corresponding trajectories

x∗ for problems P7 and P8. Optimal controls are bang-bang with at most one switching and,

if there is a switching, the switching sequence depends on the relative magnitudes of the leak

terms for the two states.

Proposition 8. Optimal controls for problem P7 are bang-bang with at most one switching. If

there is no switching, then optimal controls are constant at the maximum value U2. Otherwise,

if a1 6= a2, then optimal controls have a unique switch from U2 to U1 if a1 < a2 and from U1

to U2 if a1 > a2. Thus optimal trajectories are of the forms YX and XY, respectively.

Proof: Necessary conditions for optimality of problem P7 are given by the Pontryagin

maximum principle [85] (e.g., see [50, 86, 87] for some more recent textbooks on the topic)

with appropriate modifications to account for non-smooth formulations (e.g., [88, 89]).

The control Hamiltonian function is defined similarly as in (2.22)

H(λ,x, u) = λ0 + λ(Ax + bu), (5.9)
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with λ0 ∈ {0, 1} and λ ∈ (R2)∗, the space of 2-dimensional row vectors. The multiplier λ

satisfies the adjoint equation given by

λ̇ = −λA, i.e., λ̇i = aiλi, i = 1, 2, (5.10)

and it follows from the maximum principle that

1. λ(t) 6= 0 for all times t,

2. the optimal control u∗ minimizes H over the control set [U1,U2] along the multiplier λ

and the optimal trajectory x∗,

3. the function H vanishes identically along the multiplier λ and the optimal controlled

trajectory (x∗, u∗) and

4. a transversality condition on the multiplier (which will be specified below) holds at the

terminal time.

If we define the switching function as

Φ(t) = λ(t)b, (5.11)

then the minimization condition implies that

u∗(t) =


U2 if Φ(t) < 0,

U1 if Φ(t) > 0.

(5.12)

It is clear from the problem formulation and relation (5.5) that the control must be constant

at its maximum value u∗(t) ≡ U2 if there is no switching. In general, the derivative of the
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switching function Φ is given by

Φ̇(t) = λ̇(t)b = −λ(t)Ab = a1b1λ1(t) + a2b2λ2(t). (5.13)

If the system has a switching at time ts, then it holds that Φ(ts) = 0, i.e.,

b1λ1(ts) = −b2λ2(ts). (5.14)

Hence

Φ̇(ts) = b2(a2 − a1)λ2(ts). (5.15)

Since λ(t) 6= 0, it follows that λ2(ts) does not vanish and λ1 and λ2 have constant and

opposite signs over the full interval.

We claim that it follows form the transversality conditions at the endpoint that λ2(τ) > 0.

For, if the function ϕ is differentiable at the endpoint, then the standard transversality

conditions of the maximum principle (e.g., see [50]) imply that

λ(τ) = λ0ϕx(x2(τ)) + νDxψ(x(τ)). (5.16)

Here ψ(x) = x1−xth ≡ 0 describes the terminal constraint and the setN = {x ∈ R2|x1 = xth}

denotes the terminal manifold. Thus λ1(τ) is free while

λ2(τ) = λ0
∂ϕ

∂x2

(x2(τ)). (5.17)

Since there is a switching, λ2 cannot vanish and thus, in particular λ0 = 1 and since ϕ is

increasing, we also have that ∂ϕ
∂x2

(x2(τ)) > 0. The same argument carries over to the case

when x2(τ) = xc and the function ϕ is not differentiable, with the only change that instead
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of the derivative ∂ϕ
∂x2

(x2(τ)) now the whole range of values in the interval [ϕ′1(xc), ϕ
′
2(xc)] are

allowed as terminal values for the multiplier. But as before, since ϕ is non-decreasing, all

these values are positive. This proves our claim.

It thus follows from (5.15) that the derivative of the switching function has the same sign

at every switching and thus there can at most be one switching. If a1 > a2, then Φ̇(ts) < 0

and thus the switching is from U1 to U2 while it is from U2 to U1 if a1 < a2. This proves the

proposition.

Knowing the switching structure of optimal controls, it is possible to determine the global

structure of all solutions, i.e., construct an optimal synthesis. For 2-dimensional systems such

syntheses follow well-established patterns that have been classified in [90] and are largely

determined by the following two geometric objects in R2: the switching curve S where the

controls switch and a cut-locus C from which multiple optimal controls exist.

Definition 8. The switching curve S is the set of points in state space R2 that lie on

trajectories when the control switches between U1 and U2, i.e.,

x∗(ts) ∈ S ⇐⇒ Φ(ts) = λ∗(ts)b = 0, (5.18)

If the corresponding trajectories cross the switching curve transversally (at a non-zero angle),

we call S a transversal crossing. In this case, the switching curve does not correspond to

a trajectory of the system. In time-optimal control problems there also commonly exist

switching curves which are trajectories of the system.

Definition 9. If all the controls switch to one and the same trajectory of the system, we call

such a trajectory a separatrix Sp.
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Thus a separatrix is an extremal and in our model it separates the region where optimal

controls are constant from initial conditions where optimal controls have a switching. We

denote such controls by usw.

Definition 10. The cut-locus C is the set of points from which it is possible to reach the

terminal manifold optimally with both a constant control u ≡ U1,2 and a control usw that has

a switching, i.e.,

C = {x ∈ R2 | J(Ui) = J(usw) for x(0) = x, i ∈ {1, 2}}. (5.19)

The cut-locus also separates regions in the state-space where optimal controls are constant

from those where optimal controls have a switching. In general, for our problem, this

separating set consists of concatenations of cut-loci and switching curves.

We note that a non-smooth terminal cost does not change the switching profile, but it leads

to a modified, and in fact simpler form of the synthesis when compared with smooth models.

If the penalty is high enough, we shall see that the non-smoothness of ϕ on the terminal

manifold at xc, as described in (5.6), (5.7), has the effect of attracting trajectories towards

this point.

We now develop the optimal syntheses for the cases a1 < a2 and a1 > a2.

Simulation Parameters : In our examples, we consider the following form for the cost

function ϕ(x) as in (5.6),

ϕ(x) =


ϕ1(x) = e+ fxr if x < xc

ϕ2(x) = p( x
xc

)r if x ≥ xc.

(5.20)
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where e, p, r > 0 and f = (p − e)x−rc , ensuring ϕ1(xc) = ϕ2(xc). For the various syntheses

shown for P7, we have changed e, f, p, r to reveal the different constructions seen in Figure

5.2-5.5. Note that these functions are strictly increasing and convex. This is an assumption

on the penalty term we implicitly make throughout this chapter. For our computations, we

have used the following model parameters

a1 = 0.05, a2 = 0.1, b1 = 2, b2 = 3,

xth = 30, U1 = 0, U2 = 5, η = 1,

(5.21)

with a1 and a2 reversed for the case a1 > a2. Also, without loss of generality, from now on

we take U1 = 0 and set U2 = U.

5.2.1 Optimal synthesis for a1 < a2

For a1 < a2 optimal controls are either constant or they have exactly one switching from U2

to U1. Since the x1-coordinate is decreasing over the final segment along U1, it follows that

the switching curve S lies above the terminal set N and outside the set G. Furthermore,

everywhere in the set G the optimal control is given by U2. Let Υh denote the trajectory

in G corresponding to the control U2 which terminates in the corner point [xth xth]
T . It is

clear that for initial conditions that lie below Υh optimal controls must have a switch and

corresponding trajectories are of the type YX. This is also the optimal structure for points

xf = [xth x̄2]T on the terminal set N if the incremental cost of making the switch is less than

the gain made in the decrease of the penalty function realized through the switching. In this

case, the control with a switch does better than the constant control U2.
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Since we know that optimal trajectories are of the YX type, it is easy to compute the optimal

controls for points in N : given xf = [xth x̄2]T ∈ N , for ε ≥ 0 consider the control

uε(t) =


U2 = U for 0 ≤ t ≤ ε,

U1 = 0 for ε < t < ζ(ε),

(5.22)

where ζ(ε) is the unique time when the corresponding X-trajectory reaches the terminal set

from above. This function is easily computed and we have that

ζ = ε+
1

a1

ln

(
e−a1ε +

(
1− e−a1ε

) b1U

a1xth

)
. (5.23)

In particular, this function does not depend on the initial point x̄2. We note that ζ is

strictly increasing with slope ζ ′(ε) > 1 and strictly concave, ζ ′′(ε) < 0. The end-point of this

trajectory is given by

x2(ζ(ε) ; x̄2) = e−a2ζ(ε)
(
x̄2 +

b2

a2

U (ea2ε − 1)

)
(5.24)

and is linear in x̄2. If we denote this point by ξ(ε ; x̄2), then the difference in the cost function

is given by

∆(ε ; x̄2) = ζ(ε) + ϕ(ξ(ε) ; x̄2)− ϕ(x̄2). (5.25)

For ε = 0 the trajectory reduces to the initial point x̄2 with ∆(0 ; x̄2) = 0 while it is clear

that for ε large enough, ∆(ε ; x̄2) will be positive. Thus there always exists a minimum

value over [0,∞) which is easily computed numerically and this minimum determines the

optimal control. If the function ∆(ε ; x̄2) remains positive for all times, then the minimum is

attained for ε = 0, i.e., at this point the optimal controlled trajectory reaches the terminal

manifold with the control U from below. In Figure 5.1 we illustrate this function for two
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Figure 5.1: Illustration of ∆(ε ; x̄2) corresponding to a switching curve with transversal
crossing (left) or a cut-locus (right) in the neighborhood of xs, which is the intersection
between Sp and N , for (P7 ) with a1 < a2.

different points on N for two different smooth ϕ(.) (left and right panel). We shall see that

the optimal synthesis is determined by a switching curve with a transversal crossing at N

(left) or cut-locus (right) that may arise, as revealed by the nature of this function. In both

cases the blue curve denotes the onset of switching and corresponds to x̄2 = xs. However,

the function ∆(ε ; x̄2) can become negative (c.f., the red curves in Fig. 5.1) and in this case

it is better to continue with the control and then switch to U1 = 0 to return to the terminal

manifold. Overall, we have the following general result:

Proposition 9. Let a1 < a2 and suppose the terminal cost ϕ(x) in P7 is a smooth, strictly

monotonically increasing and convex function. Then switching curves are transversal crossings

and there exists a unique point xs > 0 such that the following holds:

1. Points P = [xth x̄2]
T with x̄2 < xs are endpoints of optimal controlled trajectories

both from below and from above: trajectories corresponding to the constant control U2

terminate at P from below and trajectories corresponding to the control U1 (with or

without a prior switching) terminate at P from above.

123



2. The point Ps = [xth xs]
T is the endpoint of only the trajectory corresponding to the

constant control U2 from below.

3. Points P = [xth x̄2]T with x2 > xs are not endpoints of optimal controlled trajectories.

In this case all trajectories corresponding to U2 cross N at P and return to N at a

lower value after the switching.

Proof: We prove Proposition 9 by contradiction. Recall that

∆(ε, x̄2) = ζ(ε) + ϕ(ξ(ε); x̄2)− ϕ(x̄2) (5.26)

and consider the following function

∆̃(x̄2) = min
ε

∆(ε, x̄2) (5.27)

Let us assume the contrary, i.e., there is no unique xs and the synthesis contains x′s > xs

such that extremals ending at the terminal manifold from below with 0 ≤ x̄2 ≤ xs have no

switching, for xs < x̄2 < x′s have one switching and for x′s ≤ x̄2 ≤ xth once again there is no

switching. Then according to our assumption we have the following for ∆̃(x̄2)

∆̃(x̄2) =


0 for x̄2 ∈ [0, xs]

k(x̄2) < 0 for x̄2 ∈ (xs, x
′
s)

0 for x̄2 ∈ [x′s, xth]

(5.28)

with k(x̄2) some function of x̄2. The other sequence, i.e. first switching to no switching in G

and the corresponding ∆̃(x̄2), taking sign −,+ respectively is not feasible and we’ll show this

later. Now let us consider a point x̄′2 ∈ (xs, x
′
s) and the corresponding switching time is ε̄.
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Thus we have

ε̄ = arg min
ε

∆1(ε, x̄′2) (5.29)

Since ∆(0, x̄′2) = 0, limε→∞∆(ε)→∞, for the switching time ε̄ we have

∂∆

∂ε
(ε̄, x̄′2) = 0, ∆(ε̄, x̄′2) = k′ < 0 (5.30)

Since ζ(ε̄) > 0, from (5.26) we get

ϕ(ξ(ε̄, x̄′2))− ϕ(x̄′2) < 0 (5.31)

and with ϕ increasing, this means

ξ(ε̄, x̄′2) < x̄′2 (5.32)

Rewriting (5.24) as

x2(ζ(ε) ; x̄2) = ξ(ε, x̄2) = m(ε) x̄2 + c(ε), (5.33)

where

m(ε) = e−a2ζ(ε) < 1, 0 < m < 1, c(ε) = e−a2ζ(ε)
b2

a2

U(ea2ε − 1) (5.34)

i.e., for a given ε, ξ is linear in x̄2. From (5.32), and fixing ε = ε̄ in (5.33), for any x̄2 ≥ x̄′2

with x̄2 = x̄′2 + h, h ≥ 0, we have that

ξ(x̄2, ε̄) = m(ε̄)x̄′2 + c(ε̄) = m(x̄′2 + h) + c = (mx̄′2 + c) +mh = ξ(ε, x̄′2) +mh < x̄′2 + h = x̄2,

(5.35)

i.e.,

ξ(x̄2, ε̄) < x̄2, ∀ x̄2 ≥ x̄′2. (5.36)
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Next we take partial of ∆(.) with respect to x̄2

∂∆(ε, x̄2)

∂x̄2

= m(ε)ϕ′(ξ(ε; x̄2))− ϕ′(ε, x̄2) (5.37)

For x̄2 ≥ x̄′2 with (5.36) and plugging ε = ε̄ in (5.37), we have

∂∆(x̄2, ε̄)

∂x̄2

< 0, (5.38)

since ϕ is strictly convex. From (5.30) we know

∆(ε̄, x̄′2) = k′ (5.39)

Let us consider x̄′′2 ∈ [x′s, xth] and since x̄′′2 > x̄′2, from (5.38) (5.39),

∆(ε̄, x̄′′2) = k′′ < k′ < 0 (5.40)

Thus there exists ε = ε̄ such that ∆(ε̄, x̄′′2) < 0 , but from (5.28) we have

∆̃(x̄′′2) = min
ε

∆(ε, x̄′′2) = 0, (5.41)

which is a contradiction. For the other sequence of signs we can use the same argument to

show that ∆̃ cannot change sign from negative to positive. Thus we can claim that there is a

unique xs on N which separates the switching profile within G.

In Figure 5.2 we present the synthesis of P7 and it’s features by changing the smooth penalty

function ϕ. The middle panel shows the synthesis of optimal controlled trajectories away

from the terminal point Ps = [xth xs]
T . The portion near Ps is left blank as there exist two

cases for how the synthesis looks like near Ps depending on whether a switching curve S or a
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Figure 5.2: Syntheses for P7 under smooth ϕ’s with a1 < a2. The general structure is shown
in the middle where the highlighted rectangle indicates the region in which the synthesis may
differ. (Left) A cut-locus is generated at xs which ultimately intersects the switching curve
at Q. (Right) The switching curve has a transversal crossing at xs. In the insets we show
∆(ε; x̄2) by varying x̄2 in the neighborhood of xs for these two cases.

cut-locus C emerges from this point. These two cases are shown as blow-ups in the right and

left panels respectively of Fig. 5.2.

The right panel shows the synthesis for the case when the limiting point Ps is the intersection

of the switching curve with the terminal manifold, Ps = S ∩ N . If Υs denotes the backward

trajectory (in G) corresponding to the control U2, then to the left of Υs optimal controls are

constant given by U2 and the corresponding trajectories end as they reach N from below,

while optimal controls have a switch for initial conditions that lie to the right of Υs. In this

case, optimal trajectories are of the type YX and then return to a point to the left of xs. This

situation corresponds to the case when the function ∆ is strictly positive for points x̄2 < xs

and has minima for positive values of ε for x̄2 > xs which converge to ε = 0 as x̄2 → xs from

the right.

The panel on the left in Figure 5.2 shows the synthesis when the function ∆ for the base

point xs still has the minimum value zero, but this minimum is also attained for a positive

value ε0 > 0, ∆(ε0) = 0. In this case, it is equally optimal to terminate the trajectory for the

control U2 as it reaches the terminal manifold from below or to continue with this control and
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switch at time ε0 and then return to the terminal manifold from above. Thus the point Ps

lies on the cut-locus for the trajectories which use the constant control U2 and those which

follow the switching strategy usw. Indeed, in this case a cut-locus C emerges from Ps which

divides the set above x1 = xth into two regions where, respectively, u = U1 and u = U2 are

optimal. This cut-locus C then merges with the switching curve S in a point Q and the frame

(C,S) determines the optimal synthesis.

The optimal synthesis can take a qualitatively different form if the penalty function ϕ becomes

non-smooth in which case the switching curve can become a separatrix. Suppose ϕ is not

differentiable at x = xc and denote by Yc the Y-trajectory which terminates at the critical

point xc from below and by Xc the X-trajectory which terminates at the critical point xc

from above. If the difference between the derivatives of ϕ2 at xc from the right and ϕ1 at xc

from the left, denoted by κ,

κ =
∂ϕ2

∂x
(x+

c )− ∂ϕ1

∂x
(x−c ) (5.42)

is small enough then non-smoothness of ϕ has no bearing on the synthesis (Figure 5.3 left),

whereas, if κ is larger than a critical value, specifically κc (See Appendix D.1),

κ ≥ κc (5.43)

then all optimal controls for initial points to the right of Yc have a switch and they reach

the terminal set N at xc along the trajectory Xc. This feature is illustrated in the diagram

on the right in Figure 5.3. It is generated by the non-smoothness of the penalty ϕ(x) which

causes all the trajectories to be attracted to the terminal point xc on N which takes over the

role of the point xs in Proposition 9. We have the following behavior which is proven with a

similar argument as above.
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Figure 5.3: Illustration of the optimal syntheses for problem P7 under non-smooth ϕ’s with
a1 < a2. The different penalties are shown in the inset. (Left) The non-smooth ϕ has no
effect on the synthesis. (Right) ϕ with κ > κc such that xc attracts all switched trajectories
in G. (Middle) Mix of the two features with the switching curve being a combination of the
transversal crossing and a subset S1 of Xc.

Proposition 10. Let a1 < a2 and suppose the terminal cost ϕ(x) in P7 is strictly monotoni-

cally increasing and convex, but non-smooth at xc with κ > κc. Then the switching curve is a

separatrix given by the trajectory Xc and the following hold:

1. Points P = [xth x̄2]T with x̄2 < xc are only endpoints of optimal controlled trajectories

corresponding to the constant control U2 which terminate at P from below.

2. The point Pc = [xth xc]
T is the endpoint for both the trajectories Xc from above and Yc

from below.

3. Points P = [xth x̄2]T with x̄2 > xc are not endpoints of optimal controlled trajectories.

In this case all trajectories corresponding to U2 cross N at P and then switch to the

control U1 as the trajectory intersects Xc and then return to N in the point xc along Xc.

In such a situation, the switching curve thus is the trajectory Xc of the system and the

trajectory Yc becomes the separatrix in G between initial conditions for which optimal
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controls are constant and for which they have a switching. Note the simpler structure for

this synthesis.

More generally, for smaller values of κ (See Appendix D.1), with

κ′c ≤ κ < κc (5.44)

these two features mix as shown in the middle diagram of Figure 5.3. It is always the

trajectory Xc that forms the limiting behavior of trajectories entering N from above, but not

the full curve consists of switching points. There exists a unique point Q on this trajectory

marked by a black square in the figure such that points on Xc above Q are switching points

while points below Q are not. In the figure, we denote the portion of Xc above Q by S1. At

the point Q the switching curve separates from Xc into a separate curve which is a transversal

crossing. This part of the switching locus may still merge with a cut-locus and the combined

curve intersects the terminal set N in a point xs > xc leading to similar local behavior

near xs as in the smooth case. Altogether, the switching curve consists of the union of this

transversal crossing and the portion S1 of Xc joined at Q. For this case, the points xs and xc

which coincided in Proposition 10, separate and we have the following behavior:

Proposition 11. Let a1 < a2 and suppose the terminal cost ϕ(x) in P7 is strictly monoto-

nically increasing and convex, but non-smooth at xc. For κ satisfying (5.44), there exists a

point xs > xc such that the following holds:

1. Points P = [xth x̄2]T with x̄2 < xc are only endpoints of optimal controlled trajectories

corresponding to the constant control U2 which terminate at P from below.

2. The point Pc = [xth xc]
T is the endpoint for both the trajectories Xc from above and Yc

from below.
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3. Points P = [xth x̄2]T with xc < x̄2 < xs are endpoints of optimal controlled trajectories

both from below and from above: trajectories corresponding to the constant control U2

terminate at P from below and trajectories corresponding to the control U1 (with or

without a prior switching) terminate at P from above.

4. The point Ps = [xth xs]
T is the endpoint of only the trajectory corresponding to the

constant control U2 from below.

5. Points P = [xth x̄2]T with x̄2 > xs are not endpoints of optimal controlled trajectories.

In this case all trajectories corresponding to U2 cross N at P and then return to the

terminal manifold after switching to the control U1 (either along a transversal crossing

or as the trajectory intersects Xc).

In order to highlight the differences between a smooth and non-smooth penalty function, in

Figure 5.4 we modify the example considered in the middle portion of Figure 5.3 by smoothing

the terminal cost around xc with a polynomial function ϕ3(x) such that

ϕ3(x− δ) = ϕ1(x− δ), ϕ′3(x− δ) = ϕ′1(x− δ)

ϕ3(x+ δ) = ϕ2(x+ δ), ϕ′3(x+ δ) = ϕ′2(x+ δ)

(5.45)

with a small and positive δ. With this change, the trajectory Xc no longer plays a special

role in the synthesis. The returning trajectories to the terminal manifold progressively move

closer to each other on the left but do not converge to a single segment as before.

Summarizing, already for this simple model of decision problem a variety of optimal solutions

arises. Of these, the synthesis shown in the right panel of Figure 5.3 has the simplest structure,

but it only arises if the jump κ satisfies (5.43).
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Figure 5.4: Synthesis for the smoothed version of ϕ in Figure 5.3 (right) which illustrates that
the convergence feature of the X trajectories to a unique point xc is specific to non-smooth ϕ.

5.2.2 Optimal synthesis for a1 > a2.

In this case, possible switchings are from U1 to U2. Hence the switching curve S lies in the

set G, i.e., within the limits imposed by the thresholds. Optimal trajectories, after a possible

initial decrease in both variables, reach the terminal value x2(τ) = xth from within G. In fact,

the region G is positively invariant for the control system and we only need to consider this

region.

The analysis is very much symmetric to the previous one with the simplification that the

entire optimal synthesis is within G. We therefore just indicate these structures. Figure 5.5

depicts the typical types of optimal syntheses for different ϕ(x) under the specific parameter

condition. The figure on the left shows a synthesis where the switching curve is a transversal

crossing, the figure on the right gives the other extreme where all trajectories for the control
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Figure 5.5: Illustration of the optimal syntheses for problem P7 under non-smooth ϕ with
a1 > a2. The optimal controls are either U2 or a switched control from U1 to U2. (Left) The
non-smoothness has no effect on the synthesis. (Right) The non-smoothness is high enough
such that X trajectories switch on intersection with Yc. (Middle) Mix of these two syntheses,
similar to Figure 5.3 (middle), where a subset S1 of the switching curve S coincides with Yc.

U1 switch as they intersect the trajectory Yc and then all these trajectories end on the

terminal manifold in the point xc. As above, the first case (left) corresponds to a ϕ with a

small enough κ while the latter one (right) arises if the one-sided derivatives at xc from left

and right has a sufficiently large gap (See Appendix D.1). The intermediate case (middle)

corresponds to a situation when these two cases intermingle. The black square again denotes

the point Q where the character of the switching curve changes from a transversal crossing

(above Q) to a separatrix, namely the portion of the trajectory Yc below Q. Similar to the

case a1 < a2, the trajectory Yc plays the critical role of channeling optimal solutions to the

critical point xc on the terminal manifold. We note that, in contrast to the case a1 < a2, for

a1 > a2 no cut-locus exists in the synthesis.
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5.2.3 Synthesis of the optimal control problem P8 with state con-

straint.

We now analyze problem P8 which is simply problem P7 with x ∈ G enforced as a state-space

constraint. In the case a1 > a2, all extremals in the optimal synthesis for problem P7 are

entirely contained within G. Thus all these controlled trajectories are admissible for problem

P8 as well and, since they are even optimal over the larger class of admissible controlled

trajectories for problem P7, this is also the optimal solution for problem P8. Essentially, while

the class of admissible controlled trajectories has been made smaller, the optimal solution

from problem P7 was retained. This no longer is the case for a1 < a2 when trajectories

with a switching decrease in the final phase to reach the terminal manifold, i.e., violate the

state-space constraints matter of problem P8. We henceforth assume that a1 < a2.

We briefly discuss the reduced dynamics when a state -space constraint is active. The lower

limits x1 = 0 and x2 = 0 will never become active and the upper limits x1 = xth and x2 = xth

are order 1 state-space constraints, i.e., the corresponding boundary controls u∂ can be

computed by simply setting the first derivatives of these variables to zero. We have that

u∂,i =
ai
bi
xth, i = 1, 2. (5.46)

Along the boundary segments, it matters whether the system moves the other variable towards

0 or towards xth. This depends on the ratio, discussed in (2.19), Appendix A.1.1

ϑ1 =
b1a2

b2a1

. (5.47)
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For example, suppose the constraint x2 = xth is active. Then, along the boundary control we

have that

ẋ1 = −a1x1 + b1
a2

b2

xth = −a1x1

(
1− ϑ1

xth
x1

)
. (5.48)

If ϑ1 < 1, this derivative is negative near x1 = xth and thus trajectories cannot reach the

target manifold along this boundary segment while this is possible if ϑ1 > 1. Similarly, if

x1 = xth is active, then

ẋ2 = −a2x2 + b2
a1

b1

xth = −a2x2

(
1− 1

ϑ1

xth
x2

)
. (5.49)

For ϑ1 < 1, this derivative is positive near x2 = xth and thus trajectories can move to the

right. But the penalty function is non-decreasing and thus this will not be advantageous.

Hence trajectories simply terminate when they reach the terminal manifold. On the other

hand, if ϑ1 > 1, then this derivative is negative and states with a lower penalty may be

reachable using the boundary control. If this can be done by lowering the overall cost, then

trajectories will end with such a boundary segment. We start with the simpler scenario.

Proposition 12. For ϑ1 ≤ 1, the optimal control for P8 is bang-bang with at most one

switching: trajectories either reach the terminal manifold directly under U2 or go through a

switching from U1 to U2, similar to the case a1 > a2 for problem P7.

Proof: In this case, the value of the objective cannot be improved by moving along the state

constraint x2 ≡ xth if x1 = xth or it is not possible to reach the terminal manifold N along

x1 ≡ xth if x2 = xth. Inside the region G the conditions of the standard maximum principle

apply and thus, for any initial condition x(0) = [x1(0) x2(0)]T , the synthesis is governed by
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the following optimization problem:

minimize
x

ϕ(%(x)) + β(x) + µ(x)

subject to 0 ≤ x ≤ x2(0).

(5.50)

Here x denotes the value for the x2 coordinate after an initial segment with u ≡ U1, β(x) is

the time during the initial decay period under U1,

β(x) =
1

a2

log

(
x2(0)

x

)
, x1(β(x)) = x1(0)

(
x

x2(0)

)a1
a2

, (5.51)

µ(x) denotes the time for the target state x1 to reach the threshold from it’s decayed value

at t = β(x), given by x1(β(x)),

µ(x) =
1

a1

log

(
b1/a1U− x1(β(x))

b1/a1U− xth

)
, (5.52)

and %(x) denotes the terminal value of the x2 coordinate on N ,

%(x) =

(
b1/a1U− xth

b1/a1U− x1(β(x))

)a2
a1

x+
b2

a2

U

(
1−

(
b1/a1U− xth

b1/a1U− x1(β(x))

)a2
a1

)
. (5.53)

In this formulation, if the solution of (5.50) turns out to be x = x2(0), the optimal control is

simply bang to the terminal manifold. In this case, the segment with U1 is absent.

Proposition 13. For ϑ1 > 1, the optimal control for problem P8 is a concatenation of bang

and boundary controls: (a) If the extremal for the constant control U2 hits the constraint

boundary x2 = xth first, then the control switches to the boundary control u∂,2 = a2
b2
xth, until

the corner point for x1 = xth is reached, and then concludes with the other boundary control

u∂,1 = a1
b1
xth. This control terminates when the best terminal point (in the sense of minimizing

the objective) on the constraint N is reached. (b) If the extremal for the constant control
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U2 first hits the constraint boundary x1 = xth, the optimal controls may terminate at that

point or still use the boundary control to move along N until the best terminal point has been

reached. Summarizing, optimal controls are piecewise constant, start with U2, and possibly

are followed by two boundary arcs.

Proof: Controls in the optimal synthesis for the unconstrained problem are either U2 or a

concatenation of U2 with U1 in that order. If there is a switching, the final segments of the

trajectories lie outside G and violate the state constraint for P8, and the control U1 is only

used outside of G. With the state constraint imposed, this control no longer is feasible. The

constant control u∗ = U2 defines a smooth family of controlled trajectories on G until the

extremals hit the constraints. In the case ϑ1 > 1, the state can move along the boundary

segments to reach the target value and to improve the cost. Whether the last segment exists

and if it does, where it ends on N , specifically the x2 co-ordinate, is determined by the

solution of the following optimization problem:

minimize
x

ϕ(x) + α(x)

subject to 0 ≤ x ≤ x′,

(5.54)

where x′ is the x2 co-ordinate of the point where the extremals hit N under U2 or x′ = xth if

this trajectory first hits the constraint x2 = xth and

α(x) =
1

a2

log

( b2
a2
u∂,1 − x′

b2
a2
u∂,1 − x

)
, (5.55)

is the time taken to reach x on N from x′ under u∂,1 = a1
b1
xth.

The optimization program in (5.54) defines a compromise between reducing the penalty at

the end point x and the cost of moving on N to reach x. Note that for the same set of

parameters, the end point of the extremals here and for problem P7 need not be the same.
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Figure 5.6: Optimal synthesis of controlled trajectories for problem P8 with a family of
sub-optimal approximating trajectories which do not encounter the constraints.

Like for all the other problems considered above, the optimality of this field of controlled

trajectories follows from regular synthesis type constructions [50] along similar modifications

as they are made in detail in [51].

In Figure 5.6 we show the synthesis for P8 with ϑ1 > 1 and the critical point of the terminal

cost being xc = 20. The solution of (5.54) here, is given by x = 23.9 and any extremal

intersecting N to the right of this value, has a segment with u∂ that keeps x1 invariant at

xth (shown in green). The boundary arc along x2 = xth is plotted in magenta.

5.2.4 Implications for the threshold hitting problem

At this point, it is important to revisit the motivation of the threshold hitting problems

considered in this chapter. We added the penalty ϕ along the terminal manifold in (5.3),

(5.8) to ensure that the optimal control u∗, along with driving the target variable (x1) to
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the threshold, keeps the other state (x2) away from it’s own threshold. Since the thresholds

here, are associated with the occurrence of an event, accuracy or unambiguity is an equally

important aspect of this problem. In Proposition 13, we see that the extremals which

involve switching, move along x1,2 = xth to reach an inexpensive point on N . But for the

real underlying problem these trajectories are inadmissible, because as soon as one of the

thresholds is hit, the corresponding event associated to that state, takes place, rendering

the boundary arcs irrelevant. Thus, even though the extremals with the boundary arcs are

indeed the optimal solution to P8, they do not reflect the underlying premises of the problem.

In fact, we have the following result:

Proposition 14. For the threshold hitting problem with ϑ1 > 1, there is no optimal solution.

Proof: If ϑ1 > 1, then the optimal synthesis for problem P8 involves boundary arcs along

x1 = xth and possibly x2 = xth. But as we have discussed above, once the extremal hits one of

the thresholds, in the context of the problem, the latter part of the extremal is inconsequential.

Thus the extremals with boundary arcs are inadmissible for the threshold hitting problems.

On the other hand, it is straightforward to find controls such that the trajectories closely

follow the optimal trajectories of problem P8 and reach the target point on the terminal

manifold without actually touching one of the thresholds. These trajectories get arbitrarily

close to the optimal solutions of problem P8, but the limiting curve is no longer an admissible

controlled trajectory.

This resembles the qualitative nature of the optimal synthesis for the classical problem of

minimum surfaces of revolution in the calculus of variations [91] and we briefly recall that

structure in Figure 5.7. Here the goal is to find a non-negative curve connecting two points

[0 y0]T and [t1 y1]T , t1, y0, y1 > 0 which, when rotated around the t-axis, generates a surface

with minimum surface area. If one restricts curves to be positive smooth functions, then all
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extremals are given by the family of catenaries:

y(t) = σ cosh

(
t− θ
σ

)
, θ ∈ R, σ > 0, (5.56)

with y0 = σ cosh(− θ
σ
), imposed by the initial condition. Introducing p = − θ

σ
, (5.56) can be

expressed as the one parameter family

y(t ; p) =
y0

cosh p
cosh

(
p+

t

y0

cosh p

)
. (5.57)

In Figure 5.7 (left), we plot the catenaries for t1 = 2, as we vary the parameter p. The

resultant curves are the extremals between any two points for this problem. In Figure 5.7

(middle), we show the surface generated by a rotation around t axis for one such catenary

between [0 1]T and [2 2.65]T , i.e., y0 = 1 and y1 = 2.65. It turns out, however, that for some

terminal values there are smooth curves that perform better than the catenaries, but these

are not extremals. The reason is that there is a non-smooth curve, the so-called Goldschmidt

extremal, which performs better than the catenary. This is the curve which simply joins

the two points along t axis by a couple of vertical segments of length y0 and y1 respectively.

The surface generated in this case are two circles at the endpoints, as shown in Figure 5.7

(right). If only positive smooth curves are considered, this extremal is inadmissible. But we

can approximate it arbitrarily closely with positive smooth curves and since the Goldschmidt

extremal does better, so do this non-extremal smooth curves [50, 91].
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Figure 5.7: Solutions for the problem of minimum surface of revolution. (Left) The family
of catenaries. (Middle) Surface generated by an extremal of the catenary family. (Right)
Goldschmidt extremal and the resultant surface. An approximating smooth curve is also
shown.

5.3 Discussion

In our analysis of the problems P7, P8, we have two key observations. First, for the robust

threshold hitting problems, inhibition - which is represented by a presence of a segment with

U1 in the optimal control - is key to the construction of any optimal solution. We showed

that in the only case in the parameter region where inhibition does not play a role in the

synthesis, a1 < a2 and ϑ1 > 1, there is no optimal solution. In all the other cases, stated in

Section 5.2.2 and Proposition 12, inhibition is part of the optimal strategy for unambiguous

induction of an event.

The second observation is fairly intuitive, in which we argue that higher threshold facilitates

a more robust response for these problems. To see this, let us consider the simple scenario of

the system reaching the terminal manifold from origin, x(0) = [0 0]T , under bang control U.

In this scenario, the terminal value of the free state variable x2 is given by

x2(τ) =
b2

a2

U

(
1−

(
b1/a1U− xth

b1/a1U

)a2
a1

)
, (5.58)
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if we use the distance between x2(τ) and the threshold as a measure of robustness χ. Now,

keeping everything else the same, we can represent χ as a function of xth. Differentiating

with respect to xth, we have

dχ

dxth
= 1 +

b2

b1

(
b1/a1U− xth

b1/a1U

)a2
a1
−1

> 0 (5.59)

where χ = xth− b2
a2

U

(
1−
(

b1/a1U−xth
b1/a1U

)a2
a1

)
. Thus we can conclude that for a higher threshold,

in the context of decision making, there is more room to maneuver a robust response.
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Chapter 6

Conclusion

In this chapter, we summarize the contributions of this thesis, and discuss the relevance of

our results.

6.1 Summary and Remarks

In our work, we first examine the problem of controlling timed activity of networks of

neurons from a dynamical systems point of view, (namely LIF neurons), with a focus on basic

theoretical formulation and the development of rigorous solution methodologies. Due to state

constraints imposed by both the selectivity criterion and spike generation mechanism, we show

that Boundary-arc type phenomena emerge in this scenario. Formal analysis and synthesis is

carried out to establish how the proposed solutions are geometrically disassociated in terms

of their initial conditions. The developed solutions, which leverage the Maximum Principle

and dynamic programming, are shown to be efficacious in controlling the LIF models.
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Clearly, our results here are of a theoretical nature. While the control-theoretic features

revealed are themselves interesting from a mathematical standpoint, they serve the broader

purpose of establishing fundamental limits on the selective control of neurons with common

inputs. The qualitative nature of the derived solutions (e.g., OFF-BANG, boundary arc

strategies) are already more complex than the fixed-amplitude, square pulse designs cur-

rently used in practice. Given the massive growth in stimulation technology development,

understanding these limits, even for a relatively simple model class, may provide insight into

how experimentalists should tune their stimulation parameters for experimental objectives.

For instance, our analytical conditions (e.g., ϑ1 ≷
VT
VG

) amount to a criteria on the amount

of heterogeneity needed within a neuronal population in order to enable control. Without

sufficient heterogeneity, it is simply impossible for a common input to ‘split’ the spiking of

neurons in a selective manner. Exploiting this heterogeneity is at the heart of the derived

control solution (e.g., OFF-BANG solutions that leverage increased leak dynamics). Building

on these baseline characterizations, we establish relaxation approaches such as regularized

optimal control problems to induce targeted spikes and penalize collateral activity in neuronal

populations.

We expand the problem domain in Chapter 3 to introduce non-linearity and noise within

the spiking process through a stochastic framework, namely PPGLM. In this setting, the

spike patterns are now events binned over the time span resulting in a binary matrix of

neural activity. We use probability as a function of the extrinsic control to identify the

’controllable subspace’, i.e., the subset of all possible patterns that can be realized with a

specified probability – the viable pattern set. Such an analysis provides an important means

to compare the extent to which different PPGLMs can be controlled. We demonstrate the

accuracy of the proposed analysis via numerical simulation. Finally, we show how the analysis
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can naturally pair with a design paradigm to compute optimal controls for inducing a desired

pattern on the PPGLM, and further, for underlying dynamical models of neurons.

Next, we demonstrate how similar optimal control formulations can be used to analyze intrinsic

neural control- i.e., how neurons control themselves in processing higher level perceptual

tasks. Our results demonstrate that the temporal responses of the early olfactory system

are consistent with optimal control of a DDM for a quadratic, threshold-based cost. We

show that established detection paradigms are unable to replicate these motifs under similar

optimization schemes, underlining a presence of persistent mechanism in which sensory

information could be processed. We also indicate that canonical, competitive architecture

between sensory and inhibitory pool of neurons can generate these neural responses. Thus,

these results indicate how neural responses in early sensory networks may achieve optimal

formation and maintenance of representations of a persistent stimulus. More generally, our

results provide an optimization-based framework for studying traversal of the latent state

space in DDMs, driven by neural responses, with nontrivial drift landscapes.

Finally, we analyze a general class of detection problems mediated by threshold-hitting on

integrative dynamics. We provide detailed control-theoretic analysis that shows paradoxical

solutions that arise in the case of time-accuracy trade-off objective function. Indeed, in some

cases, optimal evidence for such objectives may not exist. We prove that inhibition is a key

component of the ’optimal evidence’ in these scenarios.

6.2 Outlook

This dissertation has provided a blend of mathematical analysis, computational studies and

theoretical formulation. We have in particular provided a rather detailed study of optimal

control of threshold hitting as motivated by the problem of neurocontrol. Given the analytical
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complexity of the exact analysis problem, we showed the merit of various relaxations, both in

terms of objective function, but also in terms of mathematical formulation, i.e., by considering

probabilistic models.

Of course, the ultimate goal will be to eventually enact these control solutions on actual

neurocontrol platforms. In this regard, a major barrier is the identification of model parameters

from experimental data. Indeed, neural system identification was only minimally treated in

this dissertation, and there is ample room for future work in this domain. Similarly, control

approaches that do not rely on an explicit model or that learn an abstract one ‘on the fly’

(so-called, model-free control approaches), may have merit given the analytical difficulties

associated with exact analysis.

Finally, this research highlights the potential of control-theoretic methods to serve as tools for

hypothesis generation and scientific inquiry, beyond simply engineering applications. While

originating from a motivation for the latter, we uncovered interesting links to theoretical

neuroscience and conceptual frameworks within which to posit, admittedly in a constrained

but nonetheless intriguing way, the functional meaning of brain activity. Understanding how

and why the brain ‘controls’ itself in this manner is a very interesting problem to consider in

future work.
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Appendix A

Optimal Control of LIF neurons

A.1 Derivation of Impulsive Synaptic Coupling Model

To derive (2.5), we start with a classical continuous-time model of synaptic dynamics [49]

wherein, assuming Vrest = 0 in (2.3), the membrane potential of each neuron evolves according

to:

Cdv(t)

dt
= −v(t)

R
+ βu(t) + Isyn(t), (A.1)

with
Isyn(t) = gsyn(t)(v(t)− Esyn),

gsyn(t) = ḡse
− (t−ts)

κs H(t− ts).
(A.2)

where ts is the arrival time of a presynaptic action potential from the other neuron, gsyn is

the synaptic conductance, H is a Heaviside step function, κs is the time constant for the

conductance, ḡs is the maximum conductance for the synapse, and Esyn denotes the reversal

potential. For selective spiking, we want the postsynaptic neuron to be protected from this

incoming synapse with respect to the membrane potential.
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In the typical case of an excitatory synapse, we have Esyn ≈ 0 and the contribution from the

spike in the presynaptic neuron becomes

∆v(t) =
1

C

∫ t

ts

ḡse
− (t−ts)

κs v(t)dt (A.3)

Now, assuming a separation in time scale between the synaptic time constant κs and the

membrane time constant κ i.e. κs � κ, we can approximate the integral in (A.3) by keeping

the voltage of the postsynaptic neuron constant at v(ts) over the integration window. Using

this, we have

∆v(t) ≤ 1

C

∫ ∞
ts

Isyn(t)dt =
ḡsκs
C

v(ts) ≤
ḡsκs
C

VT (A.4)

So the effect of a synaptic event on the postsynaptic neuron can be crudely summarized as an

almost instantaneous rise in voltage bounded by (A.4). Thus, the model (2.5) approximates

this effect with an impulsive synaptic action, where

∆v(t) ≡ ρsyn(t) ≤ ḡsκs
C

VT ≡ ρ̄syn (A.5)

A.1.1 Geometrical Aspects of Selective Spiking Solution

Here, we first discuss the role of ϑ1 (2.19) in determining the two different selective spiking

solutions presented in sections 2.2.1, 2.2.2. We also geometrically show that pairwise feasibility

is not achievable when both neurons are Case 2, as described in section 2.2.3.

We first derive the equation for the line of quasistatic equilibrium defined in (2.53). This is

the set of points in the phase plane for which v̇(u) = 0 for any constant control u ∈ U . Using
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this condition we have,

v̇1 = −a1v1 + b1u = v̇2 = −a2v2 + b2u = 0 (A.6)

Since u is a constant, we can eliminate u to get the equation for the quasistatic equilibrium

v1

v2

= ϑ1 (A.7)

where ϑ1 = b1a2
b2a1

. Now the two different solution presented in Proposition 1 and 2 are

dependent on the existence of the boundary segment, i.e., for a boundary control uarc for

which Neuron 2 is voltage invariant (v̇2(uarc) = 0), regardless of whether the voltage of

Neuron 1 increases. To satisfy this, we must have

v̇1(uarc)|v1=VT > 0 (A.8)

We can answer this question from the analysis on the quasistatic equilibrium line as uarc

is constant. If the line intersects v1 = VT before v2 = VG, we have from (A.7) (see Figure

A.1(a))

ϑ1 >
VT
VG

(A.9)

Using this, we can calculate the direction of vector field at v1 = VT in (A.8)

v̇1(uarc)|v1=VT = −a1VT + b1uarc = −a1VT + b1
a2VG
b2

= a1VG

(
b1a2

b2a1

− VT
VG

)
= a1VG

(
ϑ1 −

VT
VG

)
> 0

(A.10)

We show this in Figure A.1(a), where the quasistatic equilibrium intersects v2 = VG beyond

v1 = VT . This ensures the vector field is positive under the boundary control such that the

target neuron reaches threshold while keeping the other neuron at VG. Now if we assume
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Figure A.1: Representation of the solution space with respect to the quasistatic equilibrium
line. (a) When Neuron 1 satisfies Case 1 i.e. ϑ1 > VT/VG, which implies ϑ2 < VT/VG, i.e. Neuron
2 satisfies Case 2. (b), (c) The parameters of the neurons are such that 1 ≤ ϑ1 ≤ VT/VG and
VG/VT ≤ ϑ1 ≤ 1 respectively which implies both neurons are Case 2. Note that for these two
scenarios, the selective spiking is not possible for both the neurons. (d) The parameters
satisfy ϑ2 > VT/VG, i.e. Neuron 2 is Case 1 which implies Neuron 1 is Case 2, ϑ1 < VT/VG. For
(a) and (d), selective spiking is possible for both neurons.
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ϑ1 ≤ VT
VG

(see Figure A.1 (b,c,d)), we can similarly show as in (A.10) that

v̇1(uarc)|v1=VT < 0 (A.11)

for this case, and we need to adopt the solution presented in Proposition 2 to fire Neuron

1 selectively. So we see that the nature of selective spiking solution, i.e., (BANG/ BANG-

BOUNDARY) or (BANG/OFF-BANG), is contingent upon the ratio ϑ1.

Figure A.1 presents an intuitive representation of the geometric aspects of the solution space

discussed in section 2.2.1-2.2.3 with respect to ϑ1, ϑ2. Here, we analyze the pairwise feasibility

for all possible parameter combinations. If ϑ1 >
VT
VG

( =⇒ ϑ2 <
VT
VG

) and Lemma 1 for Neuron

2 holds, then the neurons are pairwise feasible, i.e., from any point in the phase plane we can

fire either neuron selectively. Similarly, if we have ϑ1 <
VG
VT

( =⇒ ϑ2 >
VT
VG

), i.e., Neuron 2 is

Case 1, Neuron 1 is Case 2, and Lemma 1 holds for Neuron 1, we can once again achieve

pairwise feasibility. These two scenarios are depicted in Figure A.1 (a,d), respectively. When

VG
VT
≤ ϑ1,2 ≤ VT

VG
(i.e. both neurons are Case 2), for pairwise feasibility we must have Lemma

1 satisfy for each neuron individually. This creates a situation shown in Figure A.1 (b,c)

where the separatrices for Neuron 1 and Neuron 2 intersect, which implies that at the point

of intersection we have two different vector fields under the same control (u = U) which is a

contradiction. Hence, if both neurons are Case 2, we cannot have pairwise feasibility.

A.2 Computation of Λ controllable sets

We show the calculation for Neuron 1 here. There are two possible situations, namely, Λ ≤ Ts

and Λ > Ts, which result in two different switching structures where Ts denotes time to reach
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[VT VG]T along the separatrix Γ from the initial condition

v(0) = {(v1, v2) : v ∈ Γ, v2 = 0}. (A.12)

If Λ ≤ Ts, we can find the neuron voltages (v1, v2) from which Neuron 1 reaches VT in time Λ

v1 = ea1Λ(VT −
b1

a1

U(1− e−a1Λ)) (A.13)

Note that v2 does not come in (A.13) since ∀ v ∈ Γ+, Neuron 1 reaches threshold without

Neuron 2 hitting the guard.

For Λ > Ts, we assume that it takes t̄ for Neuron 2 to hit the guard VG, under bang control,

VG = e−a2 t̄v2 +
b2

a2

U(1− e−a2 t̄)

t̄ =
1

a2

log

(
v2 − b2

a2
U

VG − b2
a2

U

)
.

(A.14)

The voltage of Neuron 1 at this time is calculated using (2.38). This means for (v1, v2) to

be on the Λ-controllable set, Neuron 1 must reach the threshold VT in (Λ − t̄) along the

boundary arc, i.e.

VT = e−a1(Λ−t̄)v1(t̄) +
b1

a1

U(1− e−a1(Λ−t̄)). (A.15)

Simplifying (A.15), we get

v1 = ea1Λ

(
VT −

b1

a1

uarc − e−a1Λg(v2)

(
b1

a1

U

(
1− 1

g(v2)

)
− b1

a1

uarc

))
(A.16)
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where g(v2) =

(
v2 − b2

a2
U

VG − b2
a2

U

)a1
a2

. From this, we can find the Λ controllable set for the selective

spiking of Neuron 1.

Similarly, for Neuron 2 we can find the set ζ2(Λ).

A.3 Calculation of Off-time for Fixed-time Selective Spi-

king

In this section, we will show how the off-time in (2.75) can be calculated to induce a spike

in a specified time. Without loss of generality, we once again assume the target pattern

ΣP = [(1, t1)], v(0) = [v1 0]T , and t1 < Ts. For the other cases, the computation is similar

and follows from the optimal control structure discussed in Section 2.2.1, 2.2.2. Let us denote

the voltage at the end of the off segment v(t̂) = [v̂1 0]T . Now, using (2.47) in (2.75) we have,

1

a1

log

(
v1

v̂1

)
− 1

a1

log(E(v̂1)) = t1

v̂1 =
b1
a1

U

1− (VT − b1
a1

U) exp(a1(t1 − 1
a1

log(v1)))

(A.17)

Substituting v̂1 in t̂ =
1

a1

log

(
v1

v̂1

)
, we get the desired off-time. Note that for t1 � Ts, we

will need to use the boundary segment in (A.17).
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Appendix B

Controllability Analysis of PPGLM

B.1 Proof of Lemma 2

The proof is a direct consequence of the fact that the PPGLM likelihood described in our

model has a global maximum with respect to its inputs [92]. To prove this, it is enough to

show that the likelihoods in (3.7), (3.11) are concave functions of U. First for the log-link

model, if we substitute (3.4) into (3.7) we have

L(N |X) =
C∑
c=1

I∑
i=1

(
δNc,i (θTc xi + log ∆)−∆exp(θTc xi)

)
. (B.1)

Stacking the difference process δN and the control input U into column vectors n ∈ RCI ,

u ∈ RSI respectively and with modified parameter matrix Θ̄ ∈ RCI×(P+1)SI corresponding to

the extrinsic control part of the covariate matrix, we can write (B.1) as

L(N | u) = nT Θ̄ D′u−∆1TK exp(Θ̄ D′u) + Ψ(δN) log ∆ + r, (B.2)
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where K ∈ RCI×CI is a diagonal matrix where the contributions of the process history

and background activity for each process and time index are placed along the diagonals,

r = 1T log(K)n is a constant (logarithm is applied to each element on the diagonal of K) and

D′ ∈ R(P+1)SI×SI is a design matrix that extracts the delayed inputs from U into a vector

∈ R(P+1)SI . Note that the likelihood is a combination of a linear term along with a negative

exponential, which clearly makes the Hessian negative definite i.e. L is strictly concave with

respect to the extrinsic inputs.

For the SEMPP with the logistic link model, we can similarly write (3.11)

L(N∗ | u) = n∗T Θ̄ D′u− 1T log(1 + Ks exp(Θ̄ D′u)) + r′, (B.3)

where n∗ ∈ RMI , Ks ∈ RI×MI is a block diagonal matrix where each block is a row of

contributions of the process history and background activity for each marked process and

time index and r′ = 1T log(diag(Ks))n, diag(Ks) is a diagonal matrix where the blocks of Ks

constitutes the diagonal. Since we want to show the concavity of the likelihood with respect

to u, we can ignore the linear term in (B.3) and concentrate on the second term. Let us

denote this as l2,

l2(u) = −
I∑
i=1

log(1 + kTi exp(Θ̄ D′u)) (B.4)

and ki is the i-th row of the matrixKs. Note that all elements ofKs i.e. ki,j ≥ 0, ∀i = 1, . . . , I,

j = 1, . . . ,MI. Taking the gradient we have

∇l2 = −
I∑
i=1

1

1 + kTi exp (Ū)
ΞTdiag(ki) exp(Ū), (B.5)
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where Ξ = Θ̄ D′ and Ū = Ξu. Now let us denote diag(ki) = Ks
i and calculate the Hessian

for each i,

∇2li2 = − 1

z2
i

(ziΞ
TKs

i diag(exp(Ū))Ξ− ΞTKs
iexp(Ū)exp(Ū)TKs

iΞ), (B.6)

where zi = 1 + kTi exp (Ū). For strict concavity we need to show that ∀ y ∈ RMI ,

yT∇2l2 y < 0. (B.7)

From (B.6) and (B.7),

yT∇2li2 y = − 1

z2
i

(Ξy)T
(
ziK

s
i diag(exp(Ū))−Ks

i exp(Ū)exp(Ū)TKs
i

)
Ξy. (B.8)

Denoting Ξy = w, Ūe = diag(exp(Ū) and substituting zi

yT∇2li2 y = − 1

z2
i

(
wTKs

iŪ
ew + wT (

MI∑
j=1

ki,jū
e
j,j)K

s
iŪ

e −Ks
i exp(Ū)exp(Ū)TKs

i )w

)
= ti1 + ti2.

(B.9)

Now let us analyze the second term separately,

ti2 = − 1

z2
i

(∑
j

ki,jū
e
j,j

∑
j

ki,jū
e
j,jw

2
j − (

∑
j

ki,jū
e
j,jwj)

2

)
= − 1

z2
i

(∑
j

vi,j
∑
j

vi,jw
2
j − (

∑
j

vi,jwj)
2

)
, where vi,j = ki,jū

e
j,j

≤ 0 (From Cauchy-Schwarz inequality).

(B.10)
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Now for the complete Hessian with (B.9), we have

yT∇2l2 y =
∑
i

yT∇2li2 y =
∑
i

(ti1 + ti2) ≤
∑
i

ti1 = −wT
∑
i

1

z2
i

Ks
iŪ

ew = −wT K̄w < 0,

(B.11)

where K̄ =
∑

i
1
z2i
Ks
iŪ

e ∈ RMI×MI is a diagonal matrix and the negative definiteness comes

from the fact that all the entries in matrix K̄ are positive, since the terms come from

exponential of the co-variates. So the likelihood in (B.3) is strictly concave as well. Note

that for any pattern N with at least one spike i.e., Ψ(δN) > 0, we can show

∇L(N∗|u) 6→ 0, if ∃ j ∈ {1 . . . SI} such that uj → ±∞. (B.12)

Along with strict concavity, (B.12) means that the first-order condition for maximum is

satisfied for a finite U∗ i.e., the maximum L∗ = L(N|U∗) will be global and unique. Now for

any ε with −ε > L∗, there is no control that satisfies (3.15) and thus ε- controllability is not

achieved for unconstrained input.

B.2 Proof of Lemma 3

Consider an arbitrary realization N containing Ψ(δN) events overall and a box constraint on

each extrinsic input i.e. us,i ∈ U = [umin umax] ∀ s, i. The likelihood in this case follows from

(B.2)

L(N | u) = nT Θ̄ D′u−∆1TK exp(Θ̄ D′u) + Ψ(δN) log ∆ + r. (B.13)

The first-order condition for maximum of L(N | u) is a transcendental equation, thus, the

solution U∗ cannot be derived in general and does not necessarily reside in the constrained

space U . Ideally we will need L(U∗) to analyze any dependence of maximum likelihood on

spike count. But for U ∈ U and bounded parameters Θ, the likelihood in (B.13) is dominated
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by the term Ψ(δN)log∆, i.e.,

lim
∆→0

L(N | u) ∝ 1

Ψ(δN)
(since log ∆ < 0), (B.14)

and a higher event count dictates the degradation of likelihood.

B.3 Proof of Lemma 4

Here the variable of interest is the portion of the parameter vector Θ represented by βm,cq for

q = 1 . . . Q, m = 1 . . .M , c = 1 . . . C in (3.9). For the log link model in (3.7), M = C. Let

us denote these set of values by α ∈ RC2Q and rewrite the likelihood in (3.7) as a function of

α following (B.2) in Appendix B.1,

L(N |α) = nTZα−∆1TKp exp(Zα) + Ψ(δN) log ∆ + rα, (B.15)

where rα is the contribution from other co-variates namely inputs and background activity

independent of α, Z ∈ BCI×C2Q is a matrix composed of the relevant process history terms

for each variable, time index and Kp ∈ RCI×CI is a diagonal matrix similar to (B.2).

For the SEMPP model we can rewrite (3.11) for α ∈ RMCQ following (B.3),

L(N∗ |α) = n∗TZα− 1T log(1 + Ks
p exp(Zα)) + r′α, (B.16)

with Ks
p as the analog to Kp in (B.15). We note that both (B.15), (B.16) follow the same

structure as their counterparts (B.2), (B.3) and thus we can conclude that the likelihoods

are strictly concave with respect to the connectivity parameters α as well. Now to show that

a critical amount of connectivity, e.g., αc helps in the controllability of any arbitrary pattern,
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we investigate the first-order condition at α = 0. Computing the gradient of the likelihood

in (B.15) we have

∇Lα|α=0 = (nTZ)T −∆ZTKp exp(Zα)|α=0

= ZT (n−∆Kp1).

(B.17)

Now, the first-order condition for maximum is satisfied if

n−∆Kp1 ∈ ker(ZT ), (B.18)

which does not hold in general for any N, U and the rest of the parameters βc0, γm,sp ∀ c,m, s

and this proves that αc 6= 0. We also claim that αc does not diverge, i.e.,

∇Lα|α=αc = (nTZ)T −∆ZTKp exp(Zαc) = 0 (B.19)

has a solution. To see this, consider the case β1,2
1 →∞. Now since Z ∈ B, β1,2

1 →∞ implies

a spike in the second neuron for previous time bin maximizes the probability of spike in the

first neuron for the current time bin. But for a spike pattern N
′ in which such a sequence

does not occur, the log-likelihood becomes

L(N
′ |αc)→ −∞. (B.20)

If β1,2
1 → −∞, likewise any pattern with consecutive spike from second and first neuron will

have zero probability same as (B.20). This can also be seen from the first-order condition.

So we can conclude that in general for any arbitrary pattern

αc 6= 0, |αjc| ≤ αmax <∞, ∀ j = 1 . . . C2Q. (B.21)
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Appendix C

Intrinsic Control for Sensory Detection

Tasks

C.1 Existence of Solution for Reduced Regulator

Here we prove that the matrices Q̄1,2 for the regulator in (P1p* ), (P1w* ) are positive

semi-definite. We first identify the eigenvalues of Q̄1 using

det(Q̄1 − λI) = 0⇒ det


Q1 − λI 0 −Q1

0 S1 − λI 0

−Q1 0 Q1 − λI

 = 0 (C.1)
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where I is identity matrices of appropriate dimensions. From (C.1)

det


Q1 − λI 0 −Q1

0 S1 − λI 0

−Q1 0 Q1 − λI

 = det


Q1 − λI −Q1 0

0 Q1 − λI 0

0 0 S1 − λI


= det((Q1 − λI)2 −Q2

1) det(S1 − λI) = det(λI) det(2Q1 − λI) det(S1 − λI) = 0

(C.2)

Thus σ(Q̄1) = {0, . . . , 0, σ(2Q1), σ(S1)}, where σ(.) denotes the eigenspectrum of a matrix.

We have S1 > 0 and since Q1 ≥ 0 to begin with, so is 2Q1, which implies Q̄1 is positive

semi-definite. For Q̄2 can show that, σ(Q̄2) = {σ(Q2), σ(S2)} and thus, Q̄2 ≥ 0.

C.2 Optimal Response in Forced paradigm

We first seek these motifs for the forced response paradigm. Without loss of generality, for a

candidate optimal neural response x(t) that triggers decision 1 unambiguously after a fixed

time τ , we can formulate the following problem

(P2-interrogation)

min
y

J(y) =
1

2

∫ τ

0

(γxT (t)x(t) + %yT (t)y(t))dt+ ϕ(ν(τ))

s.t. ν̇(t) = f(ν,x), ẋ = y, ν(0) = 0, x(0) = x0

ϕ(ν(τ)) =
1

1 + exp(ξα(ν1(τ)− ν2(τ)))
, α = 1, ξ > 0.

where ϕ(ν(τ)) is a sigmoidal penalty function on the terminal decision state ν(τ), f(ν,x)

denote drift dynamics (4.7)-(4.10) from Section 4.2.1 and x0 is the response in the beginning

of detection cycle. For α = 1, the penalty is high for negative values of the difference

ν1(τ) − ν2(τ). This ensures that ν1(τ) > ν2(τ), which is desired for decision 1 from (4.2).

The quadratic term in x in the objective penalizes response energy over the detection period

τ , which enhances the sensitivity of the decision making process. This also has the effect
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of distributing the net response is over the sensory network [93]. y is the response velocity

and %, enforces a continuity constraint on x. γ determines the trade-off between ambiguity

reduction and sensitivity, with the regularization parameters following % � γ < 1. The

optimal motif for decision 2 can be obtained from (P2-interrogation) with α = −1.

Solution: For (P2-interrogation), the Lagrangian is,

L =
1

2
(γxTx + %yTy), (C.3)

We construct an augmented state vector v ∈ RM+2 by adding x to the latent state ν such

that,

v̇ = [fT (ν,x) yT ]T ≡ g(v,y), v = [νT xT ]T . (C.4)

From the dynamic models in (4.7)-(4.10) the vector field g can be expressed as

g =

˙ν
x

 =

A b

0 0


ν
x

+

0
I

y. (C.5)

Now the Hamiltonian can be written as,

H = L+ λTg(v,y). (C.6)

where λ ∈ RM+2 is the adjoint vector with dynamics,

λ̇ = −∇vL−
(
∂g(v,y)

∂v

)T
λ ≡ −Lv − gTvλ. (C.7)
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From the minimum condition

y∗(t) = −1

%

∂(λTg(v,y))

∂y
≡ −1

%
gTyλ, (C.8)

and the transversality condition of the maximum principle we have,

λj(τ) = ∇νϕ(ν(τ)) ≡ ϕν , j = 1, 2,

λj(τ) = 0, j = 3, . . . ,M + 2,

(C.9)

Substituting y∗ from (C.8) in the augmented state dynamics (C.7), we now have a two point

boundary value problem with boundary conditions defined in (C.9) and (P2-interrogation).

C.3 Optimal Response in Free Response paradigm

Next we formulate these problems for Free response paradigm. Once again without loss of

generality, for unambiguous detection of choice 1, the optimal neural response not only drives

the desired latent state to threshold but also suppress the competing state. Thus we consider

the following regularized minimum time problem,

(P2-free)

min
y

J(y) =

∫ τ

0

(
1 +

γ

2
xT (t)x(t) +

%

2
yT (t)y(t)

)
dt+

α

2
ν2

2(τ)

s.t. ν̇(t) = f(ν,x), ẋ = y,

ν(0) = 0, x(0) = x0, ν1(τ) = Γ,

where α penalizes the terminal value of the competing latent state, in this case ν2(τ). γ, α

regulates the trade-off between RT, response energy (sensitivity) and ambiguity.

Solution: In the Free response paradigm, RT τ is unknown and the optimal neural response

is a trade-off between speed, sensitivity and ambiguity. Here we first rescale the time s = t/τ,
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so that we have a fixed endpoint problem s ∈ [0, 1]. The transformation modifies the dynamics

by
dν

ds
= τ

dν

dt
,

dx

ds
= τ

dx

dt
(C.10)

Adding τ to the state vector with dynamics dτ
ds

= τ̇ = 0, to the augmented state vector in

(C.4), we have

v̇τ = τ [fT (ν,x) yT 0T ]T = τ [gT (v,y) 0T ]T ≡ ḡ(v,y),

vτ = [νT xT τ ]T = [vT τ ]T
(C.11)

The Lagrangian and the Hamiltonian for this problem can be written as,

L = 1 +
γ

2
xTx +

%

2
yTy; H = L+ λTg(v,y) (C.12)

where λ ∈ RM+2. The adjoint dynamics and the optimal response velocity is given by

λ̇ = −Lv − gTvλ, y∗(t) = −1

%
gTyλ, (C.13)

similar to Section C.2. Since the terminal time τ is free and the Hamiltonian is time invariant,

from the transversality condition of maximum principle we have

H(τ) = H(1) = 0,

λ2(τ) = αν2(τ), λj(τ) = 0, j = 3, . . . ,M + 2.

(C.14)

The boundary condition on the latent state being it triggers decision 1 from (P2-free),

ν1(τ) = ν1(1) = Γ. Thus we have a Two Point Boundary Value problem as before with the

differential equation formed from (C.11), (C.13) and boundary conditions in (C.14), (P2-free).
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C.4 Response Motif Characteristics for Forced and Free

Paradigm

Note that for both Interrogation and Free paradigm the nature of the optimal response is

governed by the adjoint variables λ. From (C.7) and (C.8) and similarly (C.13) we can

combine the dynamics of λ and x into

˙λ
x

 =


−AT 02×M 02×M

−bT 0M×M −γIM

0M×2 −1
%
IM 0M×M


λ
x

 (C.15)

where Lv =

02×1

γx

, gv =

 A b

0M×M 0M×M

, gy =

02×M

IM

.
From (C.15) we can easily see that the optimal response takes the following exponential form

x(t) = [0M×M+2 IM ] eĀt

λ(0)

x(0)

 (C.16)
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where Ā =


−AT 0 0

−bT 0 −γI

0 −1
%
I 0

 ∈ R2M+2. The eigenvalues of Ā can be calculated using3

det(Ā−λI2M+2) = det


−AT − λI2 0 0

−bT −λIM −γIM

0 −1
%
I −λIM

 = det(−AT−λI2)det((λ2− γ
%

)IM) = 0

(C.17)

Thus the eigenspectrum of Ā is given by

σ(Ā) =
{
σ(−AT ),±

√
γ

%
, . . . ,±

√
γ

%︸ ︷︷ ︸
M

}
=
{
−σ(A),±

√
γ

%
, . . . ,±

√
γ

%︸ ︷︷ ︸
M

}
(C.18)

From (4.7)-(4.10), we have σ(A) ∈ R and σ(Ā) ∈ R. If ±
√

γ
%
/∈ σ(A), it can be shown that

Ā is diagonalizable, which proves that for both Forced and Free response paradigms the

optimal motifs are exponential, taking the form in (4.15) with βk ∈ σ(Ā), k = 1, . . . , 2M + 2.

3Note the difference between λ, which is the adjoint vector and λ, which denotes the eigenvalues of a
matrix.
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Appendix D

Synthesis for Optimal Evidence in

Detection Problems

D.1 Critical Measure for non-smoothness of the Penalty

In this section we ascertain the critical values of κ, namely κc, κ′c in (5.43),(5.44) relating to

Proposition 10, 11 for a1 < a2. From our discussion of ∆(ε ; x̄2) and Figure 5.1, we can see

that for the point of non-smoothness xc on N to attract the returning trajectories as seen in

Figure 5.3 (right panel), we must have

∆′(0 ; xs)|ϕ1 = ∆′(0 ; xc)|ϕ1 > 0

∆′(0 ; xs)|ϕ2 = ∆′(0 ; xc)|ϕ2 ≤ 0

ξ′(0 ;xc) < 0

(D.1)
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i.e., ∆(.) at x̄2 = xc would result in no switching under ϕ ≡ ϕ1, and a switching for ϕ ≡ ϕ2.

We also use the fact that in this case xs and xc coincide. Using (D.1) we have

∆′(0 ; xc)|ϕ1 −∆′(0 ; xc)|ϕ2 ≥ ∆′(0 ; xc)|ϕ1 (D.2)

Differentiating (5.25) with respect to ε, and using (D.1), (D.2) we have that

(ϕ′1(xc)− ϕ′2(xc))ξ
′(0 ;xc) ≥ ζ ′(0) + ϕ′1(xc)ξ

′(0 ;xc)

ϕ′2(xc)− ϕ′1(xc) = κ ≥ ζ ′(0) + ϕ′1(xc)ξ
′(0 ;xc)

|ξ′(0 ;xc)|
= κc,

(D.3)

where |.| denotes absolute value. From (5.23), (5.24) we can calculate

ζ ′(0) =
b1U

a1xth
, ξ′(0 ;xc) = b2U− a2xcζ

′(0) (D.4)

and thus

κc =

b1U
a1xth

+ ϕ′1(xc)(b2U− a2xc
b1U
a1xth

)

a2xc
b1U
a1xth

− b2U
,

xc >
a1b2

a2b1

xth =
xth
ϑ1

(D.5)

will result in the feature where all switched trajectories converge to xc (as shown in Figure

5.3 right).

Next we look at the scenario presented in Proposition 11 and Figure 5.3 (middle panel),

where we see a mix of the two features, i.e., regular synthesis as in smooth penalty upto

a certain point x′s on N and convergence to xc via Xc beyond that. Since in this case the

separatrix intersects N to the right of xc, we have

xc < xs < x′s ≤ xth (D.6)
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Let us consider the derivative of ∆(ε ; x̄2) at ε = ε̄ and x̄2 = x′s such that ξ(ε̄ ; x′s) = xc.

From our earlier analysis we know that at this point

∆′(0 ; x′s)|ϕ2 = 0, ∆′(0 ; x′s)|ϕ1 ≥ 0 (D.7)

From (D.7) we can similarly derive the specific κ as in (D.2)

∆′(ε̄ ; x′s)|ϕ1 −∆′(ε̄ ; x′s)|ϕ2 = ∆′(ε̄ ; x′s)|ϕ1 (D.8)

Using the range of x′s in (D.6) we can get the range of κ in which we see the mix of the two

limiting behaviors. Note that for x′s = xc, we have ε = 0 and solving for κ in (D.8) we get

κ = κc. To calculate κ′c we need to use the other end point of (D.6), i.e., x′s = xth. Thus

from (D.8) we have

κ′c =
∆′(ε̄ ; xth)|ϕ1

|ξ′(ε̄ ; xth)|
=
ζ ′(ε̄) + ϕ′1(xc)ξ

′(0 ;xth)

|ξ′(ε̄ ; xth)|
(D.9)

where ε̄ can be solved from,

ξ(ε̄ ; xth) =

(
e−a1ε̄xth + b1

a1
U(1− e−a1ε̄)

xth

)−a2/a1(
e−a2ε̄xth +

b2

a2

U(1− e−a2ε̄)

)
= xc. (D.10)

The calculation of κc, κ′c for a1 > a2 can be carried out similarly with the construction of

∆(ε̄ ; x̄2) for x̄2 ∈ N , but now for a switching sequence of U1, U2.

[169]



References

[1] Peter Dayan and Laurence F Abbott. Theoretical neuroscience. Vol. 10. Cambridge,
MA: MIT Press, 2001.

[2] Charles M Gray and Wolf Singer. “Stimulus-specific neuronal oscillations in orientation
columns of cat visual cortex”. In: Proceedings of the National Academy of Sciences 86.5
(1989), pp. 1698–1702.

[3] Katrina MacLeod, Alex Bäcker, and Gilles Laurent. “Who reads temporal information
contained across synchronized and oscillatory spike trains?” In: Nature 395.6703 (1998),
pp. 693–698.

[4] Patricia M DiLorenzo and Jonathan D Victor. Spike timing: mechanisms and function.
CRC Press, 2013.

[5] Jason T Ritt and ShiNung Ching. “Neurocontrol: Methods, models and technologies for
manipulating dynamics in the brain”. In: American Control Conference (ACC), 2015.
IEEE. 2015, pp. 3765–3780.

[6] Garrett B Stanley. “Reading and writing the neural code”. In: Nature neuroscience 16.3
(2013), pp. 259–263.

[7] Joel S Perlmutter and Jonathan W Mink. “Deep brain stimulation”. In: Annu. Rev.
Neurosci. 29 (2006), pp. 229–257.

[8] Boris Rosin, Maya Slovik, Rea Mitelman, Michal Rivlin-Etzion, Suzanne N Haber,
Zvi Israel, Eilon Vaadia, and Hagai Bergman. “Closed-loop deep brain stimulation is
superior in ameliorating parkinsonism”. In: Neuron 72.2 (2011), pp. 370–384.

[9] Jochen Ditterich, Mark E Mazurek, and Michael N Shadlen. “Microstimulation of visual
cortex affects the speed of perceptual decisions”. In: Nature neuroscience 6.8 (2003),
pp. 891–898.

[10] C Daniel Salzman, Kenneth H Britten, and William T Newsome. “Cortical microsti-
mulation influences perceptual judgements of motion direction”. In: Nature 346.6280
(1990), p. 174.

[11] Karl Deisseroth. “Optogenetics”. In: Nature methods 8.1 (2011), pp. 26–29.

[170]



[12] Zachary F Mainen and Terrence J Sejnowski. “Reliability of spike timing in neocortical
neurons”. In: Science 268.5216 (1995), p. 1503.

[13] Logan Grosenick, James H Marshel, and Karl Deisseroth. “Closed-Loop and Activity-
Guided Optogenetic Control”. In: Neuron 86.1 (2015), pp. 106–139.

[14] ShiNung Ching and Jason T. Ritt. “Control strategies for underactuated neural ensem-
bles driven by optogenetic stimulation.” eng. In: Front Neural Circuits 7 (2013), p. 54.
doi: 10.3389/fncir.2013.00054.

[15] Jr-Shin Li, Isuru Dasanayake, and Justin Ruths. “Control and synchronization of neuron
ensembles”. In: IEEE Transactions on automatic control 58.8 (2013), pp. 1919–1930.

[16] Dan Wilson, Abbey B Holt, Theoden I Netoff, and Jeff Moehlis. “Optimal entrainment
of heterogeneous noisy neurons”. In: Frontiers in neuroscience 9 (2015).

[17] M. Rosenblum and A. Pikovsky. “Controlling synchronization in an ensemble of globally
coupled oscillators.” In: Phys Rev Lett 92:114102 (2004).

[18] Mikhail V Ivanchenko, Grigory V Osipov, Vladimir D Shalfeev, and Jürgen Kurths.
“Phase synchronization in ensembles of bursting oscillators”. In: Physical review letters
93.13 (2004), p. 134101.

[19] Ali Nabi, Mohammad Mirzadeh, Frederic Gibou, and Jeff Moehlis. “Minimum energy
desynchronizing control for coupled neurons”. In: Journal of computational neuroscience
34.2 (2013), pp. 259–271.

[20] Alexandre Iolov, Susanne Ditlevsen, and André Longtin. “Stochastic optimal control of
single neuron spike trains”. In: Journal of Neural Engineering 11.4 (2014), p. 046004.

[21] Donald L Snyder and Michael I Miller. Random point processes in time and space.
Springer Science & Business Media, 2012.

[22] Peter McCullagh and John A Nelder. Generalized linear models. Vol. 37. CRC press,
1989.

[23] Yosihiko Ogata. “Space-time point-process models for earthquake occurrences”. In:
Annals of the Institute of Statistical Mathematics 50.2 (1998), pp. 379–402.

[24] Ignacio Rodriguez-Iturbe, DR Cox, and Valerie Isham. “Some models for rainfall based
on stochastic point processes”. In: Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences. Vol. 410. 1839. The Royal Society.
1987, pp. 269–288.

[25] Victor S Frost and Benjamin Melamed. “Traffic modeling for telecommunications
networks”. In: Communications Magazine, IEEE 32.3 (1994), pp. 70–81.

[26] Liam Paninski, Jonathan Pillow, and Jeremy Lewi. “Statistical models for neural
encoding, decoding, and optimal stimulus design”. In: Progress in brain research 165
(2007), pp. 493–507.

[27] Jeff M Bronstein et al. “Deep brain stimulation for Parkinson disease: an expert
consensus and review of key issues”. In: Archives of neurology 68.2 (2011), pp. 165–165.

[171]

https://doi.org/10.3389/fncir.2013.00054


[28] Günther Deuschl et al. “A randomized trial of deep-brain stimulation for Parkinson’s
disease”. In: New England Journal of Medicine 355.9 (2006), pp. 896–908.

[29] M. Rosenblum and A. Pikovsky. “Delayed feedback control of collective synchrony: an
approach to suppression of pathological brain rhythms.” In: Phys Rev E 70 (2004),
p. 041904.

[30] Ali Nabi and Jeff Moehlis. “Time optimal control of spiking neurons.” eng. In: J Math
Biol 64.6 (May 2012), pp. 981–1004. doi: 10.1007/s00285-011-0441-5.

[31] Ali Nabi and Jeff Moehlis. “Single input optimal control for globally coupled neuron
networks”. In: J. Neural Eng. 8 (2011), 065008 (12pp).

[32] Dan Wilson and Jeff Moehlis. “A Hamilton-Jacobi-Bellman approach for termination of
seizure-like bursting”. In: Journal of computational neuroscience 37.2 (2014), pp. 345–
355.

[33] Anatoly Zlotnik and Jr-Shin Li. “Optimal entrainment of neural oscillator ensembles”.
In: Journal of neural engineering 9.4 (2012), p. 046015.

[34] Dominique M Durand and Eduardo N Warman. “Desynchronization of epileptiform
activity by extracellular current pulses in rat hippocampal slices.” In: The Journal of
physiology 480.Pt 3 (1994), p. 527.

[35] Arthur T Winfree. The geometry of biological time. Vol. 12. Springer Science & Business
Media, 2001.

[36] Peter A Tass, Li Qin, Christian Hauptmann, Sandra Dovero, Erwan Bezard, Thomas
Boraud, and Wassilios G Meissner. “Coordinated reset has sustained aftereffects in
Parkinsonian monkeys”. In: Annals of neurology 72.5 (2012), pp. 816–820.

[37] I Adamchic, C Hauptmann, UB Barnikol, N Pawelcyk, OV Popovych, T Barnikol, et al.
“Coordinated reset has lasting aftereffects in patients with Parkinson’s disease”. In:
Mov. Disord 29 (2014), pp. 1679–1684.

[38] Christoph Boergers and Nancy Kopell. “Synchronization in networks of excitatory and
inhibitory neurons with sparse, random connectivity”. In: Neural Computation 15.3
(2003), pp. 509–538.

[39] Yashar Ahmadian, Adam M Packer, Rafael Yuste, and Liam Paninski. “Designing
optimal stimuli to control neuronal spike timing”. In: Journal of neurophysiology 106.2
(2011), pp. 1038–1053.

[40] Debajit Saha et al. “Engaging and disengaging recurrent inhibition coincides with
sensing and unsensing of a sensory stimulus”. In: Nature Communications 8 (2017).

[41] Ian Krajbich and Antonio Rangel. “Multialternative drift-diffusion model predicts the
relationship between visual fixations and choice in value-based decisions”. In: Proceedings
of the National Academy of Sciences 108.33 (2011), pp. 13852–13857.

[42] Andrew M Colman. A dictionary of psychology. Oxford University Press, USA, 2015.

[172]

https://doi.org/10.1007/s00285-011-0441-5


[43] Anirban Nandi, Jason T Ritt, and ShiNung Ching. “Non-negative inputs for underactu-
ated control of spiking in coupled integrate-and-fire neurons”. In: Decision and Control
(CDC), 2014 IEEE 53rd Annual Conference on. IEEE. 2014, pp. 3041–3046.

[44] Anirban Nandi, Heinz Schättler, Jason T Ritt, and ShiNung Ching. “Fundamental
Limits of Forced Asynchronous Spiking with Integrate and Fire Dynamics”. In: The
Journal of Mathematical Neuroscience 7.1 (2017), p. 11.

[45] Anirban Nandi, Heinz Schättler, and ShiNung Ching. “Selective spiking in neuronal
populations”. In: American Control Conference (ACC), 2017. IEEE. 2017, pp. 2811–
2816.

[46] Anirban Nandi, MohammadMehdi Kafashan, and ShiNung Ching. “Control Analysis
and Design for Statistical Models of Spiking Networks”. In: IEEE Transactions on
Control of Network Systems (2017).

[47] Anirban Nandi, MohammadMehdi Kafashan, and ShiNung Ching. “Controlling point
process generalized linear models of neural spiking”. In: American Control Conference
(ACC), 2016. IEEE. 2016, pp. 5779–5784.

[48] Anthony N Burkitt. “A review of the integrate-and-fire neuron model: I. Homogeneous
synaptic input”. In: Biological cybernetics 95.1 (2006), pp. 1–19.

[49] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press, 2002.

[50] Heinz Schättler and Urszula Ledzewicz. Geometric optimal control: theory, methods
and examples. Vol. 38. Springer Science & Business Media, 2012.

[51] Heinz Schättler. “Local fields of extremals for optimal control problems with state
constraints of relative degree 1”. In: Journal of dynamical and control systems 12.4
(2006), pp. 563–599.

[52] Jonathan D Victor and Keith P Purpura. “Nature and precision of temporal coding
in visual cortex: a metric-space analysis”. In: Journal of neurophysiology 76.2 (1996),
pp. 1310–1326.

[53] Jonathan D. Victor and Keith P. Purpura. “Analysis of Parallel Spike Trains, Grün,
Sonja and Rotter, Stefan”. In: Analysis of Parallel Spike Trains. Boston, MA: Springer
US, 2010. Chap. Spike Metrics, pp. 129–156. doi: 10.1007/978-1-4419-5675-0_7.

[54] Rudolph Emil Kalman. “A new approach to linear filtering and prediction problems”.
In: Journal of Fluids Engineering 82.1 (1960), pp. 35–45.

[55] Michael Grant, Stephen Boyd, and Yinyu Ye. CVX: Matlab software for disciplined
convex programming. 2008.

[56] Lawrence F Shampine, Jacek Kierzenka, and Mark W Reichelt. “Solving boundary
value problems for ordinary differential equations in MATLAB with bvp4c”. In: Tutorial
notes 2000 (2000), pp. 1–27.

[173]

https://doi.org/10.1007/978-1-4419-5675-0_7


[57] Peter Dayan and LF Abbott. “Theoretical neuroscience: computational and mathema-
tical modeling of neural systems”. In: Journal of Cognitive Neuroscience 15.1 (2003),
pp. 154–155.

[58] Wilson Truccolo, Uri T Eden, Matthew R Fellows, John P Donoghue, and Emery N
Brown. “A point process framework for relating neural spiking activity to spiking history,
neural ensemble, and extrinsic covariate effects”. In: Journal of neurophysiology 93.2
(2005), pp. 1074–1089.

[59] Murat Okatan, Matthew A Wilson, and Emery N Brown. “Analyzing functional con-
nectivity using a network likelihood model of ensemble neural spiking activity”. In:
Neural computation 17.9 (2005), pp. 1927–1961.

[60] Victor Solo. “Likelihood functions for multivariate point processes with coincidences.”
In: Decision and Control, 2007 46th IEEE Conference on. IEEE. 2007, pp. 4245–4250.

[61] Demba Ba, Simona Temereanca, and Emery N Brown. “Algorithms for the analysis of
ensemble neural spiking activity using simultaneous-event multivariate point-process
models”. In: Frontiers in computational neuroscience 8 (2014), p. 6.

[62] Daryl J Daley and David Vere-Jones. An introduction to the theory of point processes.
Vol. 2. Springer, 1988.

[63] Andrew J. Whalen, Sean N. Brennan, Timothy D. Sauer, and Steven J. Schiff. “Obser-
vability and Controllability of Nonlinear Networks: The Role of Symmetry”. In: Phys.
Rev. X 5 (1 Jan. 2015), p. 011005. doi: 10.1103/PhysRevX.5.011005.

[64] Emery N Brown, Riccardo Barbieri, Valérie Ventura, Robert E Kass, and Loren M
Frank. “The time-rescaling theorem and its application to neural spike train data
analysis”. In: Neural computation 14.2 (2002), pp. 325–346.

[65] Takashi Kanamaru, Takehiko Horita, and Yoichi Okabe. “Theoretical analysis of array-
enhanced stochastic resonance in the diffusively coupled FitzHugh-Nagumo equation”.
In: Physical Review E 64.3 (2001), p. 031908.

[66] Eugene M Izhikevich and Richard FitzHugh. “Fitzhugh-nagumo model”. In: Scholarpedia
1.9 (2006), p. 1349.

[67] Frank Gray. Pulse code communication. US Patent 2,632,058. Mar. 1953.

[68] Debajit Saha and Baranidharan Raman. “Relating early olfactory processing with
behavior: a perspective”. In: Current Opinion in Insect Science 12 (2015), pp. 54–63.

[69] Debajit Saha, Chao Li, Steven Peterson, William Padovano, Nalin Katta, and Bara-
nidharan Raman. “Behavioural correlates of combinatorial versus temporal features of
odour codes”. In: Nature communications 6 (2015), p. 6953.

[70] Rafal Bogacz, Eric Brown, Jeff Moehlis, Philip Holmes, and Jonathan D Cohen. “The
physics of optimal decision making: a formal analysis of models of performance in
two-alternative forced-choice tasks.” In: Psychological review 113.4 (2006), p. 700.

[174]

https://doi.org/10.1103/PhysRevX.5.011005


[71] Philip L Smith. “Stochastic dynamic models of response time and accuracy: A founda-
tional primer”. In: Journal of mathematical psychology 44.3 (2000), pp. 408–463.

[72] Roger Ratcliff. “A theory of memory retrieval.” In: Psychological review 85.2 (1978),
p. 59.

[73] Ray Hyman. “Stimulus information as a determinant of reaction time.” In: Journal of
experimental psychology 45.3 (1953), p. 188.

[74] Martin P Paulus, Nikki Hozack, Lawrence Frank, and Gregory G Brown. “Error rate
and outcome predictability affect neural activation in prefrontal cortex and anterior
cingulate during decision-making”. In: Neuroimage 15.4 (2002), pp. 836–846.

[75] Michael N Shadlen and William T Newsome. “Neural basis of a perceptual decision in
the parietal cortex (area LIP) of the rhesus monkey”. In: Journal of neurophysiology
86.4 (2001), pp. 1916–1936.

[76] Xiao-Jing Wang. “Probabilistic decision making by slow reverberation in cortical
circuits”. In: Neuron 36.5 (2002), pp. 955–968.

[77] Wulfram Gerstner, Werner M Kistler, Richard Naud, and Liam Paninski. Neuronal dyn-
amics: From single neurons to networks and models of cognition. Cambridge University
Press, 2014.

[78] D Vickers. “Evidence for an accumulator model of psychophysical discrimination”. In:
Ergonomics 13.1 (1970), pp. 37–58.

[79] Jerome R Busemeyer and James T Townsend. “Decision field theory: A dynamic-
cognitive approach to decision making in an uncertain environment.” In: Psychological
review 100.3 (1993), p. 432.

[80] Marius Usher and James L McClelland. “The time course of perceptual choice: the
leaky, competing accumulator model.” In: Psychological review 108.3 (2001), p. 550.

[81] RHS Carpenter and MLL Williams. “Neural computation of log likelihood in control of
saccadic eye movements”. In: Nature 377.6544 (1995), p. 59.

[82] Ward Edwards. “Optimal strategies for seeking information: Models for statistics,
choice reaction times, and human information processing”. In: Journal of Mathematical
Psychology 2.2 (1965), pp. 312–329.

[83] Brian DO Anderson and John B Moore. Optimal control: linear quadratic methods.
Courier Corporation, 2007.

[84] Arthur Earl Bryson. Applied optimal control: optimization, estimation and control. CRC
Press, 1975.

[85] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. CRC Press,
1987.

[86] Bernard Bonnard and Monique Chyba. Singular trajectories and their role in control
theory. Vol. 40. Springer Science & Business Media, 2003.

[175]



[87] Alberto Bressan and Benedetto Piccoli. Introduction to the mathematical theory of
control. Vol. 2. American institute of mathematical sciences Springfield, 2007.

[88] Frank H Clarke. Method of Dynamic and Nonsmooth Optimization. SIAM, 1989.

[89] Richard Vinter. Optimal control. Springer Science & Business Media, 2010.

[90] Ugo Boscain and Benedetto Piccoli. Optimal syntheses for control systems on 2-D
manifolds. Vol. 43. Springer Science & Business Media, 2003.

[91] Gilbert A Bliss. “Lectures on the Calculus of Variations”. In: (1946).

[92] Liam Paninski. “Maximum likelihood estimation of cascade point-process neural en-
coding models”. In: Network: Computation in Neural Systems 15.4 (2004), pp. 243–
262.

[93] Martin Boerlin, Christian K Machens, and Sophie Denève. “Predictive coding of
dynamical variables in balanced spiking networks”. In: PLoS Comput Biol 9.11 (2013),
e1003258.

[176]


	Washington University in St. Louis
	Washington University Open Scholarship
	Winter 12-15-2017

	Extrinsic and Intrinsic Control of Integrative Processes in Neural Systems
	Anirban Nandi
	Recommended Citation


	List of Figures
	Acknowledgments
	Abstract
	Chapter 1: Introduction
	1.1 Neurocontrol
	1.1.1 Underactuation in Neurocontrol
	1.1.2 Neurocontrol Analysis and Design Approaches

	1.2 Intrinsic Control in Sensory Processes
	1.3 Contributions

	Chapter 2: Neurocontrol I: Dynamical Systems Framework
	2.1 Background & Methods
	2.1.1 Definitions: Spike Sequence and Pattern Control
	2.1.2 Model Formulation
	2.1.3 Problem Formulation: Minimum Time Selective Spiking

	2.2 Minimum Time Selective Spiking
	2.2.1 Selective Spiking, Case 1: 1 > VTVG
	2.2.2 Selective Spiking, Case 2: 1VTVG
	2.2.3 Geometric Interpretation of Cases and Pairwise Feasibility

	2.3 Minimum Time Sequence Control
	2.3.1 Synthesis of all 2 spike sequences
	2.3.2 Greedy Designs for Sequences with Arbitrary Length

	2.4 Fixed-time Selective Spiking and Spike Patterns
	2.4.1 Off-time Insertion for Pattern Control
	2.4.2 Greedy Designs for Control of Long Patterns
	2.4.3 Performance of Greedy Design under Disturbance and Noise

	2.5 Selective Spiking in Populations
	2.5.1 Regularized Time Optimal Selective Spiking in a Population
	2.5.2 Numerical Approach
	2.5.3 Examples
	2.5.4 Regularized Timed Selective Spiking in a Population
	2.5.5 One Step Greedy Pattern Control

	2.6 Discussions

	Chapter 3: Neurocontrol II: Probabilistic Framework
	3.1 Preliminaries
	3.1.1 Notation
	3.1.2 Model Description (Exclusive Event Point Process)
	3.1.3 Model Description (Simultaneous Event Point Process)

	3.2 Control Analysis of Statistical Spiking Models
	3.2.1 -Controllability for PPGLMs
	3.2.2 Event Count as a Surrogate for Pattern Complexity
	3.2.3 Estimation of Complexity-based Viable Sets

	3.3 Validation of the Analysis Framework
	3.3.1 (r,)-Viability is Accurate
	3.3.2 (r,)-Viability Enables Salient Comparison of PPGLMs

	3.4 Control Design of Statistical Spiking Models
	3.4.1 Control Design with Maximum Likelihood Estimation
	3.4.2 Analysis and MLE Design Example
	3.4.3 Analysis of Jittered Cost Function

	3.5 Discussions

	Chapter 4: Intrinsic Control in Sensory Detection Tasks
	4.1 Background
	4.1.1 Threshold-hitting Models for Choice Tasks
	4.1.2 Response motifs in early olfactory networks.

	4.2 Problem Formulation
	4.2.1 Persistent Response Paradigm
	4.2.2 Optimization Framework

	4.3 Results
	4.3.1 Persistent responses are best achieved through biphasic neural responses
	4.3.2 Phasic Responses are Needed for Fast, Persistent Detections
	4.3.3 Responses are produced through a canonical model of recurrent inhibition

	4.4 Discussion
	4.4.1 Optimal formation and maintenance of representations
	4.4.2 Speed-energy vs. Speed-accuracy trade-offs
	4.4.3 Multivariate threshold-detection and reset responses
	4.4.4 Sensitivity to noise


	Chapter 5: Optimal Evidence for Fast-Unambiguous Detection Problems
	5.1 Problem Formulation
	5.2 Syntheses of Optimal Solutions
	5.2.1 Optimal synthesis for a1<a2
	5.2.2 Optimal synthesis for a1>a2.
	5.2.3 Synthesis under state constraints
	5.2.4 Implications for the threshold hitting problem

	5.3 Discussion

	Chapter 6: Conclusion
	6.1 Summary and Remarks
	6.2 Outlook

	Appendix A:  Derivations
	A.1 Derivation of Impulsive Synaptic Coupling Model
	A.1.1 Geometrical Aspects of Selective Spiking Solution

	A.2 Computation of  controllable sets
	A.3 Calculation of Off-time for Fixed-time Selective Spiking

	Appendix B:  Derivations
	B.1 Proof of Lemma 2
	B.2 Proof of Lemma 3
	B.3 Proof of Lemma 4

	Appendix C:  Derivations
	C.1 Existence of Solution for Reduced Regulator
	C.2 Optimal Response in Forced paradigm
	C.3 Optimal Response in Free Response paradigm
	C.4 Response Motif Characteristics for Forced and Free Paradigm

	Appendix D:  Derivations
	D.1 Critical Measure for non-smoothness of the Penalty

	References

