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Abstract of the Dissertation 
Lithium-ion batteries have become universally present in daily life, being used across a 

wide range of portable consumer electronics. These batteries are advantageous compared to other 

forms of energy storage due to their high energy density and long cycle life. These characteristics 

make lithium-ion batteries advantageous for many new and developing applications that require 

large scale energy storage such as electric vehicles and the utility grid. Typical uses for lithium-

ion batteries require consistent cycling patterns that are predictable and easy to approximate 

across all uses, but new large scale applications will have much more dynamic demands. The 

cycling patterns for electric vehicles will vary based on each individual’s driving patterns and 

batteries used for energy storage in the grid must be flexible enough to account for continuous 

fluctuations in demand and generation with little advanced notice. Along with these 

requirements, large scale applications do not want to sacrifice on cycle life and need to know that 

adding batteries will make operational and economic sense in specific cases. 

It is not possible to experimentally validate every possible driving pattern or grid storage 

need because of the great expense of these large systems and the long timescale required for 

testing. Therefore modeling of these systems is advantageous to help study specific application 
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constraints and understand how lithium-ion batteries operate under those constraints. A systems 

level model is developed to study lithium-ion battery systems for use with solar energy (in a 

solar-battery hybrid system) and electric vehicles. Electrochemical based battery models are used 

as a component within larger systems. To facilitate fast simulation a single step perturbation and 

switch method is outlined for increasing the speed and robustness of solving the systems of 

DAEs that result from the systems level model.  

Operational characteristics are studied for lithium-ion batteries used to store solar energy 

within the electric grid. Different grid demands are tested against the system model to better 

understand the best uses for the solar-battery hybrid system. Both generic site studies and site 

specific studies were conducted. Solar irradiance data from 2010-2014 was obtained from 10 US 

based sites and used as an input to the system model to understand how the same system will 

operate differently at various locations. Technological benefits such as system autonomy were 

simulated for each site as well as economic benefits based on a time-of-use pricing scenario. 

These models included the growth of the solid-electrolyte interface layer on the battery 

electrodes to measure capacity fade during operation. This capacity fade mechanism allowed 

tracking of the site specific effects on battery life. 

    A systems level model for an electric vehicle was also developed to simulate the 

growth of the SEI layer caused from different types of driving cycles and charging patterns. 

Results from both system models are presented along with an optimization method for the solar-

battery hybrid model. In addition to modeling, experimental tests of LiFePO4 lithium-ion battery 

cells were conducted to measure capacity fade associated with different types of cycling 

throughout a battery’s life. Cycling protocols were tested to study traditional capacity fade and 

also to focus on increasing a cell’s lifetime benefit through application switching. 
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Chapter 1  
Introduction to Batteries and Battery Models 

 

1.1 Motivation 

The need for battery storage has grown rapidly in the past decade as the need for more 

portable and flexible power has expanded. Many of these new needs have been met with 

Lithium-ion (Li-ion) batteries. The market for Li-ion batteries has grown at 25% per year from 

2000-2012 going from only 2GWh of global storage capacity in 2000 to 34GWh of storage 

capacity in 2012.
1
 Over the same time the price for Li-ion cells has dropped by over an order of 

magnitude, helping to increase their usage. 

While the first types of applications that used Li-ion batteries were small portable 

electronic devices with low energy and power needs, the need for large scale battery storage 

continues to grow. Electric vehicles (EV) require large amounts of portable energy capacity and 

the electric grid requires energy storage to smooth renewable energy and make generation more 

flexible. These types of applications require efficient and long lasting batteries that are useful 

across a wide range of cycling patterns. Understanding how batteries are operating in these new 

scenarios and how their life is being affected by different applications is of utmost importance if 

batteries are to continue to grow and meet the needs and desires of society.  

1.2 Secondary Batteries 

There are two main types of batteries, primary cells, which can only be discharged a 

single time, and secondary cells, which can go through many cycles of charge and discharge. 

Secondary cells have become more prominent over the last two decades because of their use in 

portable electronic devices, electric and plug-in vehicles, and large scale energy storage. Many 
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different chemistries have been studied for secondary batteries with the Li-ion being one of the 

most prominently used systems today. 

1.3 Advantages of Lithium-ion Batteries 

Li-ion batteries have become popular in many applications due to their high energy 

density which allows them to be used in portable devices. Earlier versions of electrochemical 

energy storage could not hold enough charge to power the devices in use today while allowing 

them to remain portable. The first galvanostatic cell was created by Alessandro Volta in 1800 

when he stacked zinc and silver disks between a sodium chloride soaked cloth. Advancing from 

this primary cell, the lead-acid battery became the first rechargeable system when it was created 

in 1859 by Gaston Plante.
2
 While lead-acid batteries were novel at the time, they suffered from 

low energy density and would fail at meeting the demands of many power and energy hungry 

electronic devices in today’s world. Nickel-Cadmium (Ni-Cd) was proposed as an alternative 

chemistry in the early 1900’s and Nickel Metal Hybdride (NiMH) became prominent in the latter 

half of the century. Both batteries improved upon the lead-acid battery’s energy density and were 

used in many first generation consumer electronics and hybrid vehicles. But Ni-Cd and NiMH 

suffered from several deficiencies. Both nickel and cadmium are toxic materials and the cell 

voltage for both types of batteries is only 1.2V which limits the energy and power density for 

these chemistries. 

Searching for a material that could store more energy, lithium metal was investigated 

because it is a lightweight metal with a high electropositive potential (which leads to high 

storage densities).
3
 When early lithium batteries were introduced, their weight and volume 

energy densities were about double that of Ni-Cd.
4
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1.4 Lithium-ion Battery Operation 

The term Li-ion battery actually encompasses many different chemistries that all have a 

lithium based electrode as part of their system and transfer charge between electrode using 

lithium ions. Table 1-1 shows a list of different possible battery chemistries (including non-

lithium chemistries) and some of their characteristics. All Li-ion systems will be made up of a 

cathode (positive electrode), separator, and anode (negative electrode), with an electrolyte in all 

three regions (shown in Figure 1-1). The cathode is typically made of a lithium metal oxide, 

while the anode is usually a graphite compound. The electrolyte contains a lithium salt (LiPF6, 

LiBF4, etc.) in an organic solvent (commonly ethylene carbonate) allowing for the transport of 

lithium ions between the electrodes. The separator allows for the electrolyte to flow between the 

electrodes, but keeps the two electrodes apart to prevent short circuits. 

Table 1-1: Secondary battery characteristics.
5, 6

 

 

 

 Energy is stored in the battery based on the electrochemical potential of the electrode 

materials. Lithium cobalt oxide (LiCoO2) was one of the first feasible cathode materials for 

reversible reactions using lithium ions. John Goodenough and Koichi Mizushima discovered the 

potential for this material in 1980
7
, but the first commercially available Li-ion batteries, using a 
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LiCoO2 cathode and a graphite anode, were not produced until 1991. Lithium metal was first 

tested as an anode complement to LiCoO2, but these anodes formed dendrites and often failed 

after a small amount of cycles. The LiCoO2 cathode chemistry remains the most common 

chemistry for consumer electronics batteries.
8
 In this type of Li-ion battery the following reaction 

takes place at the cathode: 
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         (1.1) 

with an electrochemical potential of 3.9V (compared to the base Lithium Reaction). At the 

graphite based anode the reaction is: 
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         (1.2) 

 

Figure 1-1: Schematic of Li-ion battery. 

with an electrochemical potential of 0.1V (compared to the base Lithium Reaction).
9
 Combining 

these electrodes create a cell potential of 3.8V. This value is the nominal cell voltage. During 

normal operation of the battery the voltage will fluctuate between 4.2 and 2.5V based on the 

State-of-Charge (SOC) of the battery and the charge rate (See Figure 1-2).  
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At both electrodes the reaction occurring is an intercalation/deintercalation reaction 

where the lithium is inserted/removed between layers of the host material. The lithium attaches 

in between layers of the graphite for the anode and the metal oxide for the cathode allowing for 

an easily reversible reaction because the basic structure is not greatly altered.
10

 Rather than 

rearranging the atoms during the reaction, the lithium inserts within the existing structure. This 

process will cause the material to expand (although a perfect intercalation material would exhibit 

no expansion) and adds stress to the material which can lead to fracturing, delamination, or 

exfoliation. Many commonly used electrodes have been chosen because, in addition to their 

chemical stability, they have limited expansion caused by intercalation. Reducing expansion 

remains a challenge for researchers working with new electrode materials. Silicon has shown 

promise as a replacement for a graphite anode because it can hold much more energy, but 

expansion during insertion of the lithium into silicon causes rapid degradation of electrodes 

reducing their viability.
11

 

 
Figure 1-2: Single CC-CV charge and CC discharge cycle from the SPM at a 1C rate. 
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Originally, lithium metal was tested as an anode material coupled with a lithium metal 

oxide cathode. However, using a graphite anode which allows for lithium to be hosted in 

between its layers with minimal expansion is favorable to using metal lithium because the pure 

lithium will form dendrites during cycling which can reach into and across the separator leading 

to short circuiting, thermal runaway, and degradation.
12

 

During cycling, charge is carried between the two electrodes by lithium ions within the 

electrolyte. During deintercalation, lithium undergoes a topochemical reaction with a lithium ion 

being formed in the electrolyte and the resulting free electron migrating to the current collector 

where it will pass through the external circuit. In order to facilitate better cycling, the electrodes 

are a porous material, so that there will be a large surface area between the electrolyte and 

electrode for intecalation/deintercalation reactions to occur. While total energy capacity will be 

primarily dependent on the mass and chemistry of the electrode materials, the surface area of the 

electrodes (along with the transport properties of the electrolyte and cell geometry) will play a 

greater part in determining the power density of the battery. Larger surface area is required to 

allow more electrode reactions to occur simultaneously. 

During the discharging process, lithium deintercalates from the cathode, and is 

transported across the separator in the form of an ion while the resulting electron performs work 

in the external circuit, eventually reaching the anode. The lithium ion will again react with the 

electron, this time intercalating into the anode. A schematic of this process is shown in Figure 1-

3 (see Section1.5.2). During intercalation, the reverse of this process occurs with external energy 

facilitating the reactions. 

Figure 1-3 shows 1) lithium diffusing through the solid electrode particles; 2) free 

electrons from the deintercalation reaction moving through the electrode; 3) the deintercalation 
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reaction occurring at the surface between the electrode and electrolyte; 4) the resulting lithium 

ion being transported across the separator to the opposing electrode in the electrolyte; and 5) 

conservation of charge accounting for the various charge carriers. Each of these steps must be 

accounted for when modeling the battery system. 

1.5 Modeling the Battery Process 

Experimental study of batteries can be difficult and time consuming. The battery is a 

closed system and the only state which are measurable in situ are applied current and voltage 

(and sometimes skin temperature). These measurements offer a limited view of the operation of 

the battery. In order to obtain more information, labor intensive off-line studies must be done. In 

addition to the limited measurements obtained through experimental cycling, studies looking 

across multiple cycles can be very time intensive. To study capacity fade in a cell 

experimentally, cycling may be required for many months or years depending on the cycling 

protocol. Model-based studies that can accurately represent the battery system offer a way to 

gather more information about the internal workings of the battery while reducing the time 

required for analysis. 

Different types of battery models have been developed to study the operation and design 

of Li-ion batteries. The goal of any model is to emulate the system that it is representing as 

closely as possible. However, with most modeling, higher fidelity comes with the cost of higher 

complexity. More complex models may be more difficult to solve and require longer 

computation time. Therefore the type of model chosen for a study should reflect the desired 

accuracy in simulation. Table 1-2 summarizes several types of models available to study a Li-ion 

battery. The two models that used for the majority of work in later chapters are the single particle 

model and porous electrode pseudo two dimensional model. 
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Table 1-2: Summary of several battery models. EC stands for electrochemical. 

 

1.5.1 Single Particle Model 

The single particle battery model (SPM) simplifies the battery system by treating the each 

electrode of the battery as a single individual particle.
13

 This model will track the concentration 

of lithium throughout the electrode as well as the individual electrode potentials (in addition to 

current and voltage). One advantage of electrochemical based battery models is they allow for 

the tracking of internal states which cannot be measured through normal experimental battery 

cycling. When cycling batteries in normal operation, only the current and voltage of the system 

can be easily measured. 

Inside the electrode particles the process of lithium diffusion (Item 1 in Figure 1-3) is 

represented through Fick’s 2
nd

 Law of diffusion:
14
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where cs is the solid phase lithium concentration, Ds is the diffusion coefficient, r is the radius of 

the particle and i represents either the positive (cathode) or negative (anode) electrode. All 

variables used in this dissertation will be shown in a table in Appendix D. At the center of the 
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particles, there will be a zero flux boundary condition and at the external surface of the particles 

the flux of lithium into the electrolyte will be a function of pore wall flux, ji:
15
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where the pore wall flux is a function of the current density. The pore wall flux is a measure of 

the intercalation/deintercalation occurring at the particle surface and is governed by Butler-

Volmer kinetics shown as:
16
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where j is the flux into the electrode particle, k is the reaction rate constant for intercalation/ 

deintercalation, c
s
max is the maximum solid-phase concentration of the electrode, c is the 

electrolyte concentration, F is Faraday’s constant, R is the gas constant, T is the temperature, Φ1 

is the solid phase potential, Φ2 is the liquid phase potential, and U is the open circuit potential. 

When charging and discharging under high rates, a gradient for lithium ion concentration 

will form as a result of the intercalation/deintercaltion reaction and the transport of lithium ions 

across the separator. But for low to medium charging rates the lithium ion concentration in the 

electrolyte can be approximated to steady-state.
17

 The SPM assumes that the gradient in lithium 

ion concentration is negligible and therefore no equations are necessary for transport of lithium 

through the electrolyte and there is no liquid phase potential in the Butler-Volmer equation for 

the SPM. 

The SPM is a good model for studying systems operating under long charge and 

discharge time when fast computation time is required. When monitoring more intricate internal 

battery states and studying faster charging times, more detailed model may be useful. 
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Figure 1-3: Discretization of the battery for modeling and a schematic showing the physical 

processes occurring during battery operation. For explanation of the processes labeled by number 

please read the text. 

1.5.2 Porous Electrode Pseudo Two Dimensional Model 

 The porous electrode pseudo two dimensional (P2D) model allows for more accurate 

tracking of internal states throughout the electrodes and separator of the battery. The governing 

equations track the state variables in two spatial directions x and r and one temporal direction t. 

In the electrodes, instead of representing the active material through a single particle, the 

electrodes are discretized in the x-direction (across the electrode) and each node point represents 

an individual particle. This particle, which is assumed to be spherical, is then discretized in the r-

direction, thus creating the second pseudo dimension of the model. In the separator, since there 

are no solid phase particles, only the x-direction is discretized. Figure 1-3 shows the 

discretization of the three regions of the battery for the P2D model. 
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The governing equations in the P2D model are based on porous electrode and 

concentrated solution theory.
18

 Again in the solid-phase the diffusion of lithium through the 

electrode particles is governed by Fick’s 2
nd

 law (Item 1 in Figure 1-3): 
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The electronic conduction of the solid-phase (Item 2 in Figure 1-3) is governed with a 

solid-phase charge balance: 
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where ζeff is the effective conductivity of the electrode, a is the specific surface area of the 

electrode, and j is the flux at the electrode-electrolyte interface. The flux term, j, remains 

governed by Butler-Volmer kinetics (Item 3 in Figure 1-3) described as: 
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Balancing the flow of ions through the electrolyte is a material balance (Item 4 in Figure 1-3): 
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where ε is the porosity, Deff is the effective diffusion coefficient of the electrolyte, and t+ is the 

transfer number. And a charge balance accounts for the contributions to the total current 

throughout the cell (Item 5 in Figure 1-4):
16
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where iapp is the applied current. Figure 1-3 pictorially shows the phenomena that each equation 

governs. 
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The P2D model allows for the tracking of solid and liquid-phase potentials as well as 

lithium concentration in the solid and liquid-phase through the battery. Note that since there is no 

solid-phase in the separator only equations (1.9) & (1.10) will be used in the separator region.  

The P2D and SPM models provide a good balance between model accuracy and computational 

complexity for simulation. 

1.5.3 Other Battery Models 

There are many other types of battery models that can be used in simulation. The simplest 

models are empirical in nature. Some empirical models employ look-up tables or mathematical 

fits to existing data to create a model that equates voltage to SOC. Some empirical models will 

represent the battery system as an equivalent circuit.
19

 Empirical models are often very robust 

and fast because they involve few, if any, equations that require solving. However, these 

empirical models do not represent the underlying physics of the system. Rather they try to 

approximate past data with the best fit possible. Because they are fit to a specific set of data, 

these models are only accurate inside a limited set of conditions. If a study wants to analyze the 

model outside of the area in which the system was calibrated, large amounts of uncertainty will 

be introduced. These models are not predictive in nature. 

On the other side of the spectrum, full 3D battery models can be built. Also individual 

reactions occurring at the electrode surface can be modeled through kinetic Monte Carlo (KMC) 

simulations with those reaction results being coupled to continuum level modeling. KMC 

modeling considers discrete events occurring at the electrode surface that each have a statistical 

probability of happening. Simulations step through each event one at a time to simulate how the 

reactions will be occurring in reality. The time steps between events are often very small and 

therefore many events are required to simulate battery system for a complete cycle. KMC 
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modeling is extremely computationally intensive, but can be useful for studying the nature of 

reactions at the electrode surface.
20

 

While neither of these types of models are extensively used in the following work, they 

offer a flavor of the other types of models (both computational lean and intensive) available to 

study battery systems. 

1.6 Battery Degradation 

 When attempting to predict the useful life of a battery within an application, the 

mechanisms that cause a battery to degrade must be understood. Natural degradation of the 

battery will occur over time regardless of the charge/discharge cycle of the battery. The lifetime 

associated with natural degradation is referred to as “calendar life”. Degradation will also occur 

due to the cyclic charging and discharging of the battery. The lifetime associated with the 

charge/discharge cycle is called “cycle life”. Calendar life is an important consideration for 

applications that have very few cycles spread out over a long duration of time, such as standby 

power sources, while cycle life is more important for applications going through repeated charge 

and discharge cycles, such as a cell phone battery.
21

 Both types of degradation will occur in 

batteries, but the battery use will determine the relative strengths of each type of degradation. 

The following chapters that study capacity fade focus mainly on cycle life. 

Capacity loss within a Li-ion battery can be caused by many different mechanisms and 

the importance of these various mechanisms is not well understood. Certain factors are known to 

increase capacity fade such as extreme temperatures, and high charging rates.
22, 23

 Many different 

internal mechanisms contribute to capacity fade, including mechanical stress effects which can 

lead to volume changes, as well as side reactions, which can increase cell resistance and remove 

active material from the cycling process.
24-27

 Side reactions can include many different types of 
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reactions leading to effects such as electrode pore clogging, lithium metal plating or passive 

layer growth at the electrode-electrolyte interface.
28

 Figure 1-4 shows some of the possible fade 

mechanisms occurring within a Li-ion battery.  

 

Figure 1-4: Possible mechanisms leading to capacity loss within the battery. 

Empirical approaches for modeling capacity fade have used experimental data and 

correlated parameter degradation estimation to allow for certain physical parameters that change 

with each cycle to account for reduced capacity.
27

 Other studies use mathematical fits such as 

power laws with existing data to predict future levels of capacity.
29

 Semi-empirical approaches 

have represented fade mechanisms such as rate capability loss with equations that are specific to 

a single battery chemistry and type of cell and use an equation to account for the mechanism 

causing fade.
30

 These approaches work well for a limited number of cases, but lack the 

robustness to be applied generally. 
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Theoretical approaches study the physics behind the side reactions within the battery, 

which are the drivers behind capacity fade. The side reactions occurring at the electrodes have 

been shown to increase the resistance of the cell, which has been measured experimentally 

through electrochemical impedance spectroscopy and cyclic voltammetry of highly cycled 

cells.
31, 32

 The effects of the increased cell resistance and loss of active lithium can be partly 

explained by studying the solid-electrolyte interface (SEI) growth. 

1.6.1 The Solid-Electrolyte Interface Layer 

During cycling, a layer of growth forms between the anode and electrolyte. Initially, this 

layer, known as the SEI layer, acts as a protective barrier between the anode and electrolyte, 

allowing the lithium ions to transfer through it to the graphitic anode and intercalate while 

keeping the electrolyte separated physically from the anode which reduces side reactions along 

the anode surface, maintaining stability between the anode and electrolyte.
33-35

 The SEI layer 

grows due to irreversible side reactions (non-intercalation) of lithium at the anode surface with 

the electrolyte (plus an electron) and has been shown to contain many different chemical 

compounds.
36, 37

 The SEI layer is not electronically conductive and the pores of the layer are 

generally too small for electrolyte molecules to reach the electrode surface. But these pores 

remain large enough to allow for ions to reach the electrode and intercalate. While the initial 

protective layer will slow the SEI reaction, some reactants will still reach the surface and 

continued growth of the SEI layer will occur with further cycling, increasing the resistive layer 

and removing active lithium from the system. This process lowers the energy and power capacity 

of the battery. The reaction occurs at the electrode surface so the SEI layer grows from the inside 

out.
38

 Figure 1-5 shows the process of normal intercalation and the SEI side reaction occurring at 

the electrode.  
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Figure 1-5: A schematic of the SEI layer growth process. 

Representations of the reactions causing SEI layer growth have been used to model 

effects on State-of-Health (SOH) and remaining capacity.
39

 Although many mechanisms 

contribute to capacity fade, SEI layer growth has been able to accurately account for overall 

capacity fade for some chemistries using graphite anodes.
34, 35

 While this growth can be directly 

modeled (by using a KMC simulation), such models have high computational cost requiring 

large amounts of time to model only small portion of electrode surface.
20

 

Depending on the model being used in a simulation, the equations used for SEI layer 

growth will vary slightly, but the following outline of the process will be the basis for all of the 

SEI layer modeling performed in subsequent chapters. SEI layer growth is affected by voltage, 

charge time, charge rate, Depth-of Discharge (DOD), and SOC window. The SEI layer side 

reaction is accounted for by splitting the applied current term at the negative electrode into an 

intercalation current and a side reaction current that is attributed to the irreversible SEI layer 
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growth. SEI layer thickness, δSEI, is included based on the formulation outlined in Safari, et al.
40

 

The current at the anode is shown as: 

 
a p p in t S E I

i i i   (1.11) 

where iint is the current associated with intercalation. The current associated with the SEI side 

reaction, iSEI, is governed by the following rate equation:
40
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The governing equation for the growth of the SEI layer is: 
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Additionally, the Butler-Volmer equation at the anode will now include a resistance term from 

the SEI layer based on the increase in layer thickness: 
41
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 (1.14) 

Note that in the Butler-Volmer equation at the anode the anode current, in, has been replaced by 

only the portion of the current that is used for intercalation, iint. 

Including the SEI layer growth allows for tracking of the relative capacity fade of the 

battery based on the different charging patterns. The mechanisms outlined above will be used in 

later chapters to model capacity fade. 

1.7 Scope of Dissertation and Research Objectives 

The work in this dissertation primarily focuses on analyzing the use of Li-ion batteries in 

various applications through modeling (Chapter 6 focuses on experimental study). While the 

models utilized for the following studies have been shown in the introduction, Chapter 2 shows 
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methods for efficiently solving the models and outlines some of the mathematical processes used 

to ensure fast and accurate simulations. 

The majority of the remaining work focuses on studying the battery models under 

different application constraints that vary from traditional galvanostatic cycling patterns. Most 

previous model-based studies have focused on simple and predictable cycling patterns. However, 

many new applications utilizing large capacity batteries experience cycling patterns that are 

continuously changing based on the needs of the application. Two examples of applications that 

are implementing large scale energy storage with variable cycling patterns are batteries coupled 

to renewable energy and batteries in EVs. Chapter 3 analyzes battery models coupled in a 

systems level model with a solar array and local demand loads. This coupled system is referred 

to as the solar-battery hybrid system. Studies of the system include analyzing the effects of 

component sizing, demand shape and individual site irradiance patterns. Both technological and 

economic studies of the systems are included. 

Chapter 5 conducts simulations of Li-ion batteries under different driving cycles 

experienced by EVs. Chapters 3-5 include a degradation mechanism in the models, specifically 

the SEI layer growth mechanism. Studying this mechanism and how the SEI layer will grow 

under different circumstances helps to analyze the lifetime of the batteries within these 

applications. 

While Chapters 3-5 focus on how the batteries will operate within these systems, Chapter 

4 outlines a method for optimization based charging of the solar-battery hybrid system. This 

chapter begins to move beyond analyzing sites that would benefit from energy storage to more 

intricately studying how best to use predictive modeling to increase the systems value. 
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Chapter 6 is a deviation from modeling work. This chapter summarizes the experimental 

studies that were conducted for Li-ion cells. While individual capacity fade mechanisms were 

analyzed with the models, the experimental studies helped to better understand how all of the 

degradation mechanisms can affect the battery simultaneously. Long term cycling studies 

evaluated the available energy capacity of batteries over their entire useful life. 

The simulation and experimental studies conducted for this dissertation give a thorough 

picture of how batteries operate when coupled with solar power or EVs and helps to understand 

some of the causes of capacity fade within these applications. Chapter 7 summarizes the work for 

each chapter and expands on possible future directions of study. 
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Chapter 2  
Computational Methods for Efficient 

 Simulation of Battery Models 
 
This chapter contains excerpts from the following journal article, reproduced here with permission 

from Elsevier: 

Lawder, Matthew T., Ramadesigan, Venkat, Suthar, Bharat K., Subramanian, Venkat R. 

“Extending explicit and linearly implicit ODE solvers for index-1 DAEs” Computers and Chemical 

Engineering, 82(2015) 283-292. 

 

2.1 Reducing the Model 

As stated in the introduction, when determining the best model for a specific simulation, 

a balance must be made between accuracy and computational speed. Other than building a faster 

computer, there are two main ways to increase the computational speed of a model simulation. 

You can reduce the model or reformulate the model. Reducing the model will remove or simplify 

equations based on certain assumptions or conditions of operation. Model reduction sacrifices on 

the accuracy of the model and too much reduction can lead to a model that is no longer relevant 

for a problem. 

For many simulations, including the majority of simulations performed in the following 

chapters, exact knowledge of the variation of lithium concentration in the radial direction is not 

required within electrode particles. Rather the important values required for tracking pore wall 

flux and system SOC are surface concentration and average solid-phase concentration. 

Therefore, a model reduction can be performed to reduce the computational load of radially 

discretizing the electrode particles. Fick’s law for solid phase diffusion can be replaced by 

simpler equations that tracks average and surface concentrations in the solid particle through a 

parabolic profile approximation.
42

 This approximation assumes that the concentration of lithium 

in the solid-phase follows a parabolic shape and is valid for low to medium rates over long 



21 

 

cycling times. Fick’s law (in either the SPM or P2D model) can be replaced by the following two 

equations:
15
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which introduces c
avg

 and c
surf 

in place of c
s
. Although two equations now replace one governing 

equation, there is no radial dependence in either of these equations and therefore they will not be 

discretized in the r-direction and the system only has to be discretized in the x-direction before 

being simulated. Using this approximation can to reduce the computational cost of simulation 

without greatly increasing error as long as the model is not required for high rates and short 

times. This approximation is used for the SPM and P2D in Chapters 3-5. 

Other common battery model reductions include linearization of equations for more 

robust optimization and control schemes.
43

 Optimization of battery models without linearization 

can be performed and is shown in Chapter 4 for a battery system tied to solar arrays. 

2.2 Model Reformulation 

A second method for increasing computational speed is model reformulation, which 

involves keeping the original equations intact, but altering the mathematical way the variables 

are managed and the system is solved. For the P2D model (with the parabolic profile 

approximation), when a large number node points are desired for high accuracy, the 

discretization creates a very large system of stiff differential algebraic equations (DAE). For 

example, if 50 node points (in the x-direction) were desired in each region (cathode, anode, and 

separator), the resulting system of equations would contain 600 DAEs (250 in each of the 
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electrodes and 100 in the separator). Large systems like this can be inefficient to solve. In order 

to lower the computational load, the P2D model used in the subsequent chapters uses the 

following reformulation. 

A full explanation for the reformulation is shown in Northrop et al. 2011.
44

 First, a 

coordinate transformation is performed in order to convert the three regions of the model 

(cathode, separator, and anode) to each range between X=0 and X=1 where X is a shared 

dimensionless dummy variable. Then the state variables of the system are approximated with a 

series of trial functions within each region. These trial functions are collocated to points in the 

region where they match the finite difference (FD) solution exactly. The number of terms in each 

trial function (representing a variable) will depend on the desired number of collocation points. 

The more collocation points, the more terms in each trial function, and the higher level of 

accuracy for the approximation. The system can be accurately represented with a small number 

of collocation points while allowing for a large reduction in the number of equations in the 

system of DAEs being simulated. In our reformulation, the trial functions are approximated 

using Chebyshev polynomials. While these trial functions will be more complex functions than 

the original variables, in terms of solver efficiency, the reduction in the number of equations 

outweighs the increased complexity of the function. 

2.3 Perturbation and Switch DAE solving method 

Many different solvers are available for computing systems of DAEs.
45-53

 More 

information on the method and solution procedure of several ordinary differential equation 

(ODE) and DAE solvers, are provided elsewhere.
54-64

  

For a system of DAEs, a set of consistent ICs must be given in order to solve the system 

with standard solvers. Some solvers contain initialization routines that help to calculate 
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consistent ICs from starting guesses. These routines add computational time and often require the 

additional use of solvers to obtain the ICs used by the primary DAE solver. By having a system 

that includes both ODEs and algebraic equations (AE), not all ICs offer a possible solution and 

inconsistent ICs will cause solvers to fail in many instances. Knowledge of the governing 

equations and the underlying physics of the system can help in choosing consistent ICs. 

In many cases though, consistent ICs for all of the variables are not known a priori and 

the effects of operating conditions and system parameters like rate constants or diffusion 

coefficients may also be unknown. Even small deviations from consistent ICs will cause the 

solver to fail (using standard solvers).
56

 Many different methods for solving this initialization 

problem have been proposed. More information about individual methods is provided 

elsewhere.
65-70

 Initialization using a perturbation applied to algebraic equations prior to 

simulation of the complete system was shown by Methekar et al.
56

 This perturbation approach 

was used to find the ICs for algebraic variables allowing for faster initialization and simulation 

of index-1 DAEs. 

In this dissertation, an approach that combines initialization and simulation proposed in 

Lawder et al.
71

 is used for solving most DAE systems. The approach builds upon the two-step 

process of 1) Perturbation initialization as outlined in Methekar et al.
56

 and 2) DAE simulation 

based on the consistent ICs obtained from step 1 using explicit (or linearly implicit) ODE 

solvers. The proposed approach combines the two steps of initialization and by using a switch 

function (hyperbolic tangent function) to constrain the differential variables during the time 

when the perturbation approach finds consistent ICs for the algebraic variables. This approach 

allows the initialization and simulation to be done continuously with a single solver. The 

proposed single-step approach increases the robustness of the solution method by allowing for 
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larger perturbation values to be applied and increases the computational speed of the solvers 

while enabling explicit ODE solvers to solve nonlinear DAEs. 

2.3.1 Initialization and Simulation Method 

A general DAE system (shown in semi-explicit form) is considered: 

 ( , , )
d

t
d t


y

f y z  (2.3) 

 0 ( , , )t g y z  (2.4) 

where y are the differential variables and z are the algebraic variables. Function g is 

differentiable and dg/dt is non-singular as the model considered is an index-1 DAE. The system 

of DAEs shown above often arises from combining equations governing physical phenomena 

with constraints or discretizing a PDE’s spatial variables (while keeping time continuous as 

shown in the example from Section 2.2.3). In order to solve the system of DAEs, ICs for all the 

variables must be given as: 

 
0 0

    (0 ) ;    (0 )t = 0;  y y z z  (2.5) 

However, exact values for consistent z0 are not always readily available. Under normal 

DAE solvers (without initialization routines), ICs must be consistent with the system of DAEs or 

a solution cannot be obtained. Variables present in the AEs are limited to sets that directly satisfy 

the algebraic limits. A system of only ODEs will often offer a wider range of consistent ICs 

because the equations govern the derivatives (change) of the system rather than the variable 

values. Combining AEs to an ODE system increases the stiffness of the system and necessitates 

a priori knowledge of the exact ICs of the system. In order to loosen the restriction of 

consistency on the algebraic variables, a perturbation approach is used as outlined in Methekar et 

al.
56

 A perturbation parameter, ε, is introduced such that: 
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and when t=t+ε, the AEs represented in g can be shown as: 

  ( ) 0t  g  (2.7) 

Using a Taylor series expansion, we rearrange the AEs to the form: 
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More details on the perturbation approach can be found in Methekar et al.
56

 Once in perturbed 

form, the AEs can be solved first (without any ODEs, but using the given ICs for the differential 

variables) to find consistent initial values for all algebraic variables. The algebraic variable 

values found from the perturbation approach will be consistent with the given differential 

variable ICs and the values can be used with the initial system of DAEs as ICs. When solving the 

system of DAEs, the set is solved in its initial form (in the example above, semi-explicit form), 

and the consistent ICs from initialization are provided. Using this approach provides an 

initialization routine that produces consistent ICs to be fed into the solver along with the original 

system. The initialization routine allows for a wider range of initial guesses to be used for the 

algebraic variables of the system. The perturbation value applied to the system must be small 

enough so that the converged value of the algebraic variables will be consistent. Larger 

perturbation values may not converge to consistent ICs. In addition, Maple as of today cannot 

solve systems of DAEs without first converting the system to ODEs, so even having consistent 

ICs for algebraic variables will not help in solving nonlinear DAEs. 

The above procedure involves two steps: 1) initialization using a solver for obtaining the 

consistent ICs of the algebraic variables, and 2) the solution of the DAE system calling an 

additional solver and using the consistent ICs obtained from step 1. Instead of taking a two-step 
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approach to initialization of algebraic variables and solving the complete system, in the proposed 

approach, a switch function is proposed and used to hold the differential variables static 

(constant) while the algebraic variables find consistent values using a perturbation approach and 

then the differential variables are unmasked and the system simulation begins in a continuous 

manner using the same solver. This single-step approach combines the initialization of the 

algebraic variables into the solution of the system, offering more robust solutions while reducing 

system stiffness by relaxing the requirement of the perturbation value. Note that in the proposed 

approach, the AEs are converted to a perturbed ODE system and therefore many explicit solvers 

can be directly used (for example, Maple
TM

,
63

 a symbolic programming language, can handle the 

perturbed system as an ODE much better than the original DAE). In addition, Maple provides an 

option to call the ODE solver in compiled form which can be done in a single step minimizing 

the RAM requirement and the avoiding second calls to dsolve (Maple’s inbuilt ODE solver). 

When running optimal control based on control vector parameterization or estimating parameters 

from experimental data, it is convenient and efficient to call a single dsolve procedure as 

opposed to two separate functional calls. The same behavior is observed in MATLAB as well. 

The hyperbolic tangent (switch) function applied to the ODEs is formulated as: 

 
  

1
1 ta n h ( )

2
H j

T q t t  

 (2.9) 

where q is a weighting factor determining the discreteness of the function, and tj is the time 

allowed for the perturbation approach to find consistent algebraic ICs. The value of tj will need 

to be scaled depending on the value of ε used for the perturbation. Subtracting tj from the total 

solution time provides the original (simulation) time variable. The switch function is applied to 

the ODEs as: 
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The switch function allows for the derivative of the differential variables to be set to zero 

for the duration of the initialization of the algebraic variables and be set to the function f for the 

simulation after the initialization period. The adaptive solvers used on the system will find time 

steps as needed from time t = 0 to time = tj and will find the consistent ICs for z. The ability of 

the switch function to approximate a discrete jump with a continuous function makes this 

approach useful for standard solvers. The representation of discrete events as continuous 

functions has been shown to be effective in simulation and the switch function approach has 

even been used to approximate discontinuities as continuous functions.
72

 The continuous nature 

of the switch function also allows for minor corrections of the converged ICs at the end of the 

initialization time (beginning of the actual simulation time). This correction of the converged ICs 

allows for less restrictive perturbation values to be used in this approach when compared to the 

two-step approach. In our experience, the proposed approach also saves a considerable amount 

of time taken in stopping the solver after initialization, substituting the consistent initial values, 

and starting the ODE solver again for simulating the entire system of DAEs. Additionally, this 

method can reduce the time required to properly format the set of equations for solving. With 

this method, the system of DAEs (Eqs. (2.3) & (2.4)) can be restructured as a single-step ODE 

system shown by: 
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A schematic qualitatively describing the stages of the single-step approach is shown in 

Figure 2-1. Often the perturbed form of the AE (Eq. (2.12)) remains in implicit form because the 

left hand side will contain differential variables, y, or their derivatives, 
d

d t

y
. This form is 

acceptable for small systems, but may cause solvers to fail for large sets. In order to make the 

system explicit or linearly implicit, first the derivatives of the differential variable must be 

removed by substituting the original ODE equations (Eq. (2.3)). Then ICs are substituted for the 

differential variables that remain. By converting to this form, the single-step process will allow 

for explicit solvers to be used for both the initialization and solution of the system of DAEs.  

One can write an equation for the explicit form as  

 

0 0 0
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y y z z f
d t

d

d t


  

 
g

g   (2.13) 

where Eq. (2.13) can replace Eq. (2.12) for the single-step solution. 

 Note that Eqs. (2.11), (2.12), & (2.13) are purely ODEs and can be solved using explicit 

solvers in time or linearly implicit solvers in time. For example, in Maple, the linearly implicit 

Rosenbrock stiff ODE solver is very good at handling these systems. One simple example 

showing how to apply the method and its benefits is included followed by the application of the 

method to a FD solution of the SPM. Additional examples of the method can be seen in 

Appendix A. 
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Figure 2-1: Diagram of the proposed single-step approach. 
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2.3.2 Example 1: Index-1 DAE (1 Algebraic and 1 Differential Variable) 

Consider the system below where y is the differential variable and z is the algebraic 

variable: 

 

2( )
( ) ( )

d y t
y t z t

d t
  

 (2.14) 

  c o s ( ) ( ) 0y t z t   (2.15) 

For the example here, we will set the differential variable IC at:  

 ( 0 ) 0 .2 5y   (2.16) 

Standard DAE solvers would need the consistent IC for z:  

 
2

(0 ) co s(0 .2 5) 0 .9 3 8 7 9 1z    (2.17) 

Standard solver packages might fail when the exact algebraic IC is not given (if the 

solver did not include initialization routines). Application of the single-step approach is 

illustrated below. 

A switch function is created shown as: 
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This function is applied to the right hand side of the differential equation so that: 
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And a perturbation will be applied to the algebraic equation such that: 
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The system of Eqs. (2.19) & (2.20) can now be solved with an explicit (or linearly 

implicit) ODE solver. The IC of the algebraic variable does not have to be known a priori, but 

rather the combination of the switch function and perturbation will allow the IC for the algebraic 

variable to reach its consistent value during the first second of the solution because TH will be 0, 

holding the differential variable constant during this initialization. After one second, TH will 

switch to the value 1 (see Figure 2-2), and the solution of the complete system will begin based 

on the initialized conditions. A reasonable initial guess must still be provided for the starting 

value of z. The time of initialization must be removed from the solution time in order to achieve 

the real simulation time of the system. In the example cases, the initialization time is shown as 

negative time in the figures and the real simulation time of the problem is shown as positive. 

 
Figure 2-2: Comparison of different q values for the switch function. 

Smaller values of ε will increase the accuracy of the converged value ensuring that the 

converged value can be used as a consistent IC, but a smaller ε will also increase the stiffness of 
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the system. Applying larger ε will reduce the stiffness, but will also decrease the accuracy of the 

converged value. When ε becomes large enough, the converged value will no longer work as a 

consistent IC for the system of DAEs. The single step approach allows for a correction to the 

converged value at the end of initialization because of the continuous nature of the switch 

function. As the ODE variables begin to be solved, the converged value of the algebraic 

variables (as well as the IC for the differential variables) can correct to consistent values. This 

correction will introduce a small amount of error, but allows for a much more robust approach to 

solving by increasing the allowable converged value for the algebraic variables which will still 

solve the system.  

For Example 1, the proposed approach with the switch function will solve the system 

with less than 0.001 error for all points after 0.1s of simulation time for converged values 

between 0 .9 3 7 7 0 1 8 (0 ) 0 .9 3 9 8 8 0 6z  . Even though the range of allowable converged values is 

small it greatly increases the robustness of the solver and allows for a much wider range of ε. 

These ranges are dependent on the discreteness of the switch function used (q=1000 for the range 

above). Also, these ranges are only the allowable range of converged solutions and the allowable 

range of initial guesses will be much larger (see Figure 2-4).  

For Example 1 using Maple, if a starting guess of z(0)=0.8 was applied, the normal 

perturbation solution would require no larger than 
6

1 .1 1 0


   in order to obtain a solution for 

initialization that is consistent for the system of DAEs. However, the single-step approach can 

solve the same system with 0 .1   (or larger). Figure 2-3 shows a plot for the original two-step 

perturbation and simulation approach and the single-step solution. In the example discussed here, 

q is taken as 1000. The value of q will affect the discreteness of the switch function and can have 

an effect on the increased robustness. The proposed approach can be solved for many different 
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initial guesses of the algebraic variables. Figure 2-4 shows the initialization period for 8 different 

initial algebraic guesses where 0 .1   and 1
j

t   for all cases. All of the guesses converge to the 

consistent IC of z(0)=0.938 and accurately solve the system of DAEs.  

 

 
Figure 2-3: Comparison of Example 1 solution for two-step perturbation approach and proposed 

single-step approach. 

 

The perturbation value does affect the accuracy and convergence of the initialization. 

Smaller values of ε will allow the initialization to converge over shorter simulation time and 

when holding tj constant, larger values of ε may obtain an initialization that is not accurate 

enough to satisfy the consistency condition. Figure 2-5 shows the initialization of Example 1 for 

several different perturbation values (ε=0.1, 0.05, 0.01, 0.001). 
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Figure 2-4: Initialization portion of the single-step simulation showing different initial guesses for 

the algebraic variable (z) from Example 1. 

 
Figure 2-5: Initialization portion of the single-step simulation showing different perturbation values 

for the algebraic variable (z) from Example 1. 
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2.3.3Example 2: Finite Difference Single Particle Lithium-ion Battery Model 

This example shows the method applied to the SPM with no parabolic approximation. 

Recall the equations (1.3), (1.4), and (1.5) from Section 1.5.1 for the SPM: 
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The parameters used for simulation of this example are given in Table 2-1. 

The model can be solved using the numerical method of lines which will discretize the 

spatial derivatives over a series of node points, N, within the particle, while the time derivative 

will remain. This discretization will create a DAE system with 2N differential equations and 4 

algebraic equations (the boundary conditions). The system can be solved for the concentration of 

lithium at every node point in the electrodes and then the electrode potentials, Φ, can be 

determined from the electrode surface concentrations. In a discharged state, the initial 

concentration for lithium throughout the electrodes will be: 

 (0 ) 3 0 5 .5 5
p

c  , (0 ) 4 9 5 0 3 .1 1
n

c   (2.24) 

with units of mol/m
3
.  

This model system written in FD form (using second order central difference approach) 

and applying the single-step approach becomes: 
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Table 2-1: Parameters for SPM. 

 

with boundary conditions converted using second order 3-point forward and backward 

differences as:  
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Results for the concentration values (five internal node points) are shown in Figure 2-6. 

Using the Rosenbrock stiff solver in Maple, the system can be solved for a complete 1C rate 

charge with up to 58 internal node points when not applying the proposed approach after which 

the solver fails due to memory constraints. Note that Rosenbrock methods for DAEs require 

additional constraints to satisfy the order requirement.
45, 73

 By using the proposed single-step 

approach, the same system under the same memory constraints can be solved for over 2,500 

internal node points. The proposed approach reduces the computational burden on the solver and 

allows for larger systems to be solved thereby facilitating more accurate results. Table 2-2 shows 
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the solving speed for simulating the lithium concentration throughout the electrode particles for a 

range of node points. The ICs for both cases were given as shown in Eq. (2.24). The switch 

function was applied with tj=1 and q=1000 (same as previous examples) and the perturbation 

value was 5
1 1 0


  . The system was solved with a Rosenbrock solver under both the standard 

FD scheme and the proposed approach. The computational savings from the proposed approach 

allow larger systems to be solved. For a SPM with 50 internal node points (resulting in a system 

of 4 AEs and 100 ODEs) the proposed approach reduced computational time by two orders of 

magnitude. For more examples of the perturbation and switch method see Appendix A. 

 

 

Figure 2-6: SPM concentration solutions for N=5. 
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Table 2-2: Computational time for solving concentration profiles in Example 5 using Maple’s 

dsolve. Standard finite difference fails to solve SPM beyond N=50. 
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Chapter 3  
Analysis of Solar-Battery Hybrid Systems from 

 Systems Level Modeling 
 

This chapter contains excerpts from the following journal articles, reproduced here with 

permissions from Elsevier: 

Lawder, M.T., Viswanathan, V., Subramanian V. R. “Balancing autonmy and utilization of solar 

power and battery storage for demand based microgrids” Journal of Power Sources 279(2015) p. 

645-655. 
 

And 
 

Lawder, M. T., Viswanathan, V., Subramanian, V. R. “Model-Based Study of Site-Based 

Irradiance Pattern Effects on Battery Storage for Solar Energy.” In review with Journal of the 

Electrochemical Society. 

 

3.1 The Need for Energy Storage with Solar Power 

Distributed generation, specifically solar power, continues to penetrate the electricity 

generation market.
74

 The intermittent nature of solar power can create difficulties when 

attempting to dispatch power to match demand. Unbalanced generation and demand can lead to 

loss of power for customers and cause grid instability. Because of these issues the capacity value 

of solar panels is often 30% or less of nameplate capacity.
75

 While techniques like demand-side 

management can help alleviate some of the problems associated with this imbalance, energy 

storage is one of the few options that can allow intermittent renewable energy to be controlled in 

a manner similar to conventional generation. Figure 3-1 shows the basic concept behind using 

energy storage to create constant generation.  

Within the electric grid, power generation must match consumer demand in real-time. 

Since electricity is perishable (it must be used immediately upon creation) and consumer demand 

can fluctuate on a short (second and minutes) timescale, power generation is often run in excess 

of actual demand requirements in order to maintain the minimum level of electricity required by 

the grid.
76, 77

 Energy storage can help to remove the perishable nature of electricity.
78
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Figure 3-1: Concept showing the use of energy storage with renewables. 

Currently, the electric grid employs energy storage to help maintain a stable network by 

using storage in applications such as: system regulation (frequency and voltage), spinning 

reserve, peak shaving, peak shifting, load leveling, and transmission support.
79, 80

 For solar 

power within the grid, energy storage can help shift solar generated energy to be used during 

peak demand periods when energy is most valuable, increasing a solar array’s capacity value. At 

the utility scale, shifting solar energy can alleviate the need to use expensive peaking plants. At 

the residential or commercial scale, shifting solar energy can be economically beneficial if the 

consumer is enrolled in a time-of-use (TOU) electric rate pricing, where electric rates will vary 

based on the time of day.
81
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Adding energy storage to solar panels can help to reduce the need for transmission 

infrastructure by allowing more of the power that is generated by solar panels to be used locally. 

In some cases, especially in isolated areas, solar-battery systems will not have any connection to 

a regional grid, only using distribution level infrastructure. These types of systems are called 

islanded  systems and must generate all the power needed to meet local demand.
82

 Any system 

with a connection to a larger network is known as a grid tied system. Grid tied systems can 

operate in islanded modes (sometimes referred to as emergency modes), however, they maintain 

a connection to the grid and will typically draw power from the grid during times of high local 

demand and low internal generation. They will send power to the grid during times of high 

internal generation and low local demand.
83

 A grid-tied system will only go into islanded mode 

when the external grid has a failure and cannot supply power to the local loads.
84

 Grid tied 

systems are less strict in their requirements for generation and storage sources because they can 

use the grid to supplement any power shortfalls and will take energy directly from the grid when 

economically favorable. 

This chapter will focus on analyzing solar-battery hybrid systems and their ability to meet 

power requirements from the local grid. System characteristics such as the effects of battery 

capacity and demand size are simulated under controlled conditions. Sizing and system 

performance analyses of battery systems have been performed for grid applications in connection 

with conventional generation sources
85

, single intermittent renewable sources
86-88

, and combined 

hybrid renewable source systems.
89-93

 Inclusion of system demand within these studies has 

increased the fidelity of simulations.
94

 However, when accounting for battery systems, these 

simulations utilize simple empirical-based or equivalent-circuit based models (ECM). While 

these model work well for predicting simple metrics such as sizing, analyzing battery 
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degradation, measuring economic potential, and understanding operation over short time periods 

requires the use of a higher order model that more accurate represents the system.  

Previous work that has used empirical models has restricted the operational SOC range 

and limited DOD during operation.
95

 Additionally, empirically based models struggle to account 

for capacity fade and changes to operating conditions, which can cause inaccuracies even when 

measuring simpler metrics such as system-wide auatonomy. Using the SPM, autonomy and 

battery utilization are tracked accurately over the course of an entire year, avoiding the problem 

of refitting an ECM for changing seasonal insolation. 

 Determining the true operational characteristics of a solar-battery hybrid system will 

require accounting for irradiance patterns at an individual site as well. Using minute-resolution 

data from individual sites in the United States, this chapter determines both technologic and 

economic benefits for adding battery storage to a solar array at a given site. Technologic benefits 

include increasing the level of system autonomy and optimizing the battery utilization as well as 

the system’s capacity value. Adding energy storage to solar arrays cannot increase the total 

amount of energy produced by the system. Therefore the capacity factor or energy value (the 

amount of energy produced divided by the amount of energy produced if the system operated at 

100% of peak output at all times) will not be affected by adding energy storage. However a 

system’s capacity value (the power rating of a constant generation source required to replace the 

solar array and meet the same amount of grid reliability divided by the system’s peak power 

rating) will increase with energy storage because the system will have much greater flexibility in 

meeting reliability issues.
96

 Capacity value will account for the temporal demand of energy from 

a system. Note that irradiance is the power delivered by the sun at any given time and insolation 

is the energy provided from the sun, calculated over a set time interval (in this chapter, one day 
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was typically used for the time interval). To calculate insolation values, a site’s irradiance curve 

must be integrated over the desired time interval. Sites with similar daily insolation values can 

have very different daily and seasonal irradiance patterns.  

 Energy storage becomes even more important to achieving high capacity values for solar 

arrays as the penetration of solar power increases. Capacity values are not measured in this 

chapter, rather system autonomy and battery utilization are used as indicators for technologic 

benefit. The economic benefits for this chapter are measured by determining the dollars gained 

under a TOU pricing scenario. In addition to measuring system metrics, results for all the sites 

will be compared to determine which results require high-resolution irradiance models and which 

results can be more simple determined. 

3.2 Systems Level Solar-Battery Model 

The systems level model couples Li-ion battery storage with a solar array in order to 

better supply power to match demand. While many previous models for solar generation plus 

battery energy storage have studied how total demand met is affected by incorporation of battery 

storage, they struggle to intricately study battery storage’s operation and lifetime, instead 

simplifying the battery component in order to focus on the combined system. While Li-ion 

batteries are credited with a long cycle life that would be useful in grid-scale storage, most 

lifetime estimates are based on simple galvanostaic cycling, as opposed to varying power 

conditions present in solar-battery hybrid systems. This chapter will look at how the battery’s life 

will be affected under different irradiance patterns or demand shapes and sizes. Included are 

analyses based on energy throughput life estimates as well as simulation that include a side 

reaction for SEI layer growth that will help to better estimate the degradation occurring within 

the battery caused by the different cycling patterns. 
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In order to simulate the dynamic conditions seen in the solar-battery network, the system-

level model also includes components for demand, the grid, and solar generation. For the local 

grid (system can be considered a self-contained microgrid tied to a larger network), a dispatch 

protocol will control how power flows between the solar array, battery, demand loads, and 

external grid. A schematic of system protocol is shown in Figure 3-2. The solar and battery 

model components as well as demand are outlined below. 

 
Figure 3-2: Control hierarchy for power flow through solar-battery hybrid system. 

3.2.1 Solar Component 

For the solar component to convert the irradiance data into a usable power output from a 

standard photovoltaic cell, an equivalent-circuit based solar array model is used.
97

 The solar 

array here is represented through an ideal diode in a circuit with one parallel resistance and one 

series resistance. The equivalent circuit model determines power output for the solar array based 

on the array’s output current (I) and voltage (V) determined by the equation:
98
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where the IPV is the photovoltaic current from individual cells (a function of irradiance) , I0 is the 

saturation current, Vt is the thermal voltage, Rs is the series resistance, Rp is the parallel 

resistance, and b is the diode ideality constant. At any irradiance value, a set of I and V values 

can be determined from the equivalent circuit model (they make up what is known as the I-V 

curve for a solar cell). The maximum power producing point is determined for each irradiance 

value and these pairs are used to create a look-up table that determines solar array power output 

based on incident irradiance.  

For a set irradiance, the solar array operates in a steady-state unlike the battery which has 

continuously changing internal states. Therefore the simplified equivalent circuit model can be 

used for the solar array with a higher accuracy than is possible for an ECM for the battery. 

The amount of solar energy produced will be dependent on the size of the solar array and 

the daily insolation characteristic to the system’s site. For complete utilization, the total amount 

of energy demanded from the system should equal the total amount of energy generated by the 

system: 
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where PD is the instantaneous power demanded and PG is the instantaneous power generated. 

Unfortunately, sizing the system is not as simple as equating the demand to the generation 

because the amount of demand as well as the amount of insolation available for power 

generation changes daily and seasonally. Therefore yearlong simulations, such as the simulations 

shown in this chapter, are vital to maximizing the potential of a solar–battery hybrid system. 
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3.2.2 Local Demand Load 

The solar-battery system must determine what portions of demand will be covered by 

local generation instead of being supplied from the external grid. In practice, some battery 

systems may be used for arbitrage purposes, meaning charge is stored using the external electric 

grid when electric prices are cheap and released on the local grid when electric prices are high. 

This practice focuses on using storage based on the economic variations in the electric market 

rather than utilizing the available generation most effectively and can cause a system to locally 

demand more energy than required by its immediate loads. In our study, we exclude the 

application of arbitrage and assume that the local system demand will never exceed its load. 

Different demand structures (driven by different application’s needs) will create varying 

needs among energy generation and storage components. Four different types of demands were 

studied (shown in Table 3-1): Constant; Parabolic, Sinusoidal, and Trapezoidal (or Time-of-Use 

[TOU]). These types of demand are representative of different needs for both islanded and grid-

tied systems.  

The constant demand approximates a steady continuous load. The demand remains at the 

same power requirement for 24 hours without changing. 

The parabolic demand approximates a peak load increase in the late afternoon. The 

demand is six hours in duration following a parabolic shape equation: 
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where t is the time from the beginning of the demand period and T is the period of demand. Eq. 

(3.3) is normalized to one so that it can be multiplied to be properly sized in the model.  
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For the sinusoidal demand, a sine curve offset from the x-axis by two times the amplitude 

(maximum demand is double minimum demand) was used to approximate the demand required 

to meet all of a region’s loads throughout the day. The sine curve reaches its maximum at 

3:30PM and reaches its lowest point at 3:30AM to coincide with the typical temporal variation in 

demand. This curve was used to produce the power demanded by a region’s loads over the 

course of an entire day. The size of the demand could be varied (by making the amplitude larger) 

to show how the addition of more loads would affect autonomy and battery utilization if the 

solar-battery hybrid components remained the same size. This demand structure is representative 

of typical load curves for large microgrids and regional or national grids, which can see demand 

shift by over 100% during the course of a single day.
99

 In general, the times of greatest solar 

insolation are weakly coincident with times of peak power demand. The lowest levels of power 

demand are during the nighttime and increase in early morning, reaching their peak in mid-

afternoon, slightly after peak solar insolation (Often the peak demand will be ambient-

temperature driven with high associated heating or cooling loads).
85, 100, 101

 Additionally, for 

small systems such as an individual house, demand will often be driven by occupancy. For the 

example of a single family home, demand will peak in morning before occupants leave for work 

and will again peak in the evening when they return home. However, more complex demand 

structures such as this two peak system were beyond the scope of this dissertation. 

The TOU demand follows a trapezoidal shape, represented by one hour of linear rising 

demand going from zero power to the maximum power demand, followed by constant maximum 

power demand and finishing with one hour linearly falling demand. This trapezoid shaped 

demand is centered around 3:30PM to coincide with peak demand hours (the total length of 

demand varies for Study A and is 6 hours for Study B). When demand rises in the afternoon, 
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additional power plants must be turned on or ramped up to match the load. These peaking plants 

are often expensive to run and the TOU demand curve seeks to offset these plants by demanding 

energy only during peak hours. TOU demand is used for TOU economic studies in Study B.  

The total size and amount of individual loads that are being powered through a solar-

battery system affects the discreteness of the demand. For a small number of defined loads the 

demand can change swiftly depending on when the loads are turned on or off. Individual case 

studies have looked at discrete loads but have been limited in their scope for being applied 

generally.
102, 103

 For systems supporting many loads, the demand curve will show smoother 

characteristics because the relative change caused by any individual load will become much 

smaller. For our simulations, we used demand curves that were approximate for systems of large 

enough size to reduce discrete demand fluctuations. 

 

Table 3-1: Demand curves studied. 

 



49 

 

3.2.3 Battery Component with Solid-Electrolyte Interface Layer 

A Li-ion battery is used for energy storage in these simulations. Most models that study 

battery storage with renewable energy account for the battery through simplified empirical 

relations.
91, 104-111

 These types of models are used for their simplicity in allowing optimization 

algorithms and control strategies to be utilized, but struggle to account for changing operational 

conditions and their effects on degradation. Most empirical models are calibrated under a single 

set of cycling conditions, but during operation in solar-battery hybrid systems, the batteries will 

experience varying cycling conditions. Electrochemical Li-ion battery models have proven to be 

more accurate and predictive of battery states and degradation when compared to empirical 

models because they remain valid outside of the calibration range.
36, 42, 112, 113

 These 

electrochemical models allow for the tracking of additional battery states that are not included in 

empirical models (potential at electrodes, electrode lithium concentration, etc.), which can allow 

for physics-based capacity fade equations to be added to the model. A major downfall of 

empirical models is that they do not track capacity fade well without continual re-calibration of 

the model.
114

  

An electrochemical based SPM is used to represent the Li-ion battery in the system. The 

equations for the SPM model are explained in Section 1.5.1 and shown as used for these studies 

in Table 3-2. The parameter values for the model are shown in Table 3-3. Low rates (less than 

1C) will be used during operation because the time scale for the applications studied is multiple 

hours to days (Short-term energy storage applications such as frequency control were not 

included in this study). We also assume that the electrodes are not thick enough to create 

electrolyte gradients. A comparison between the SPM used in this model and a sample ECM is 

shown in Section 3.3 
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Table 3-2: SPM model equations including SEI reaction. 
13, 15, 41, 115, 116

 

 
Included in the model is a side reaction accounting for SEI layer growth. The SEI layer is 

explained in more detail in Section 1.6.1 and the equations for the SEI layer have been included 

in Table 3-2 with the SEI layer parameter in Table 3-3. While energy storage creates flexibility 

for power delivery, it remains expensive, and therefore only the amount of storage capacity that 

is required to meet demand should be added. To determine how much storage capacity is needed 

within a system, the difference between the power generation curve and power demand curve 

must be ascertained. When generation occurs at the same time as demand, power generated can 

be sent directly to the local demand without energy storage. The remaining difference will have 

to be stored for later use as shown below:  
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Table 3-3: Parameters for SPM model. 

 
 

When PG>PD   
( ( ) ( ))

G D S to ra g e
P t P t d t C a p a c ity   (3.4) 

Similar to sizing the solar panels, sizing the battery for a single day would not be a 

difficult task, but since the demand and generation vary daily, the capacity required to meet 

demand will vary each day. Full yearly simulations are required to determine the optimal battery 

size for a site. Additionally, degradation of the battery is affected by the DOD that the battery 

experiences. Therefore it may be beneficial for the life of battery to operate at lower DOD when 

possible. 

3.2.4 Technologic Metrics 

For the solar-battery hybrid system two technologic metrics were measured for each case 

studied: system autonomy and battery utilization. System autonomy is a measure of the 

percentage of energy supplied by the solar-battery hybrid system compared to the energy 

demanded: 



52 

 

 

E n e rg y  d e liv e re d  to  m ic ro g rid

S ys te m  A u to n o m y
E n e rg y  d e m a n d e d  b y  m ic ro g rid

y e a r

A n n u a l

y e a r






 (3.5) 

 If the system operates correctly and meets all of the demand for the duration of a 

simulation, it will have an autonomy measure of 100%. While autonomy is an energy measure, it 

is similar to the inverse of the metric Loss of Power Supply Probability (LPSP).
92

 However, 

LPSP is often used to describe the statistical likelihood that a system will be able to meet power 

demand at any given time (based on an averaging of historical trends), while the autonomy 

measure used in this study is based on historical solar data and actual system operation based on 

that data taken over the duration of a year. The system model can pinpoint which events lead to 

power loss during the year rather than supplying only a probability of failure. The desire for 

100% autonomy can lead systems to be overbuilt (only using their theoretical capacity a few 

days per year).
117

 This chapter studies how to maximize capacity usage based on a combination 

of demand and generation requirements.  

Battery utilization is a measure of how much battery energy capacity is used on a daily 

basis. Because of the variable nature of solar power, the battery may go through many shallow 

cycles, a few medium length cycles, one deep cycle, or a combination of these over the course of 

a single day. Therefore, we use battery utilization as a measure of the average energy discharged 

per day normalized to the energy discharged during a single 100% DOD discharge: 
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The energy discharged is calculated from the current and voltage outputs of the system 

integrated in time. Note that by definition battery utilization could reach over 100% if multiple 
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cycles are experienced over a single day. Battery utilization accounts for all of the energy 

throughput of a battery during the year. 

The percentage of energy supplied by the system that came from the battery (after being 

generated by solar), known as percentage battery supplied (PBS), over the course of the year will 

also be measured. The remaining percentage of energy is supplied directly from the solar array 

without the need to be stored in the battery. 

SOC will be tracked based on lithium concentration, C
s
n, at the anode: 
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  (3.7) 

When the battery is in a discharged state the anode will contain (almost) no lithium, because it 

will be stored in the cathode. 

DOD, the percentage of capacity used during a discharge cycle, will be track based on 

SOC shown as: 

 
in itia l fin a l

D O D S O C S O C   (3.8)  

3.2.5 Techno-Economic Analysis 

While system autonomy and battery utilization will be used to measure the technologic 

benefit of adding batteries to the solar array, the economic value of the system will be measured 

by coupling those metrics (when using TOU type demand) to utility rates based on TOU pricing. 

TOU has been implemented (mostly on a volunteer basis) in several states throughout the US. 

The rate structure charges difference prices for electricity depending on if the electricity is used 

during peak or off-peak times (some utilities offer three-tier or more complicated real-time TOU 

schedules, but we will only consider the two-tiered fixed structure in this analysis). Electricity 

prices will be higher during peak demand hours. 
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We assume a two tiered TOU structure with peak pricing occurring between 12:30 PM 

and 6:30 PM (the rest of the day is off-peak price). When determining the value of the battery in 

this scenario there are two cases of the system studied. A Base Case (with no battery) assumes 

that only a solar array is installed and reduces electrical load by the amount of power it produces 

instantaneously. Any energy produced during peak times will yield an economic savings at the 

peak rate and the rest of the energy produced will be valued at off-peak rates. In a second case, 

the Battery Case, solar energy generated during off-peak hours will be stored in the battery for 

use during peak pricing hours. We use the TOU (peak) demand explained in Section 3.2.2 

(starting at 12:30 PM and ending at 6:30 PM) to try to maximize energy use during peak pricing 

periods. When the battery is fully charged during off-peak times, any additional solar power will 

be valued at off-peak prices. For these cases, we assume that energy can be used internally and 

does not need to be sold to the external grid. The Base Case Value can be subtracted from the 

Battery Case Value to determine the savings per year added by the battery. 
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where Voff is the electricity price during off-peak hours, Von is the electricity price during peak 

hours, Psolar is the power of the solar array, Pdemand is the power demanded, and Pbattery is the 

power being supplied from the battery. 

The value determined is based on utility bill savings, so the system is only beneficial as 

long as the real-load continues to demand energy during peak-times. The system sizes studied in 

the economic analysis section will be smaller systems of residential and commercial size. 
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Therefore calculations assume that savings at on-peak rates can only incorporate the total amount 

of energy demanded by the system during peak hours (100kWh in most studies). All other 

energy produced is valued at off-peak rates. 

3.3 Comparison of SPM and ECM 

The SPM has proven to be a more accurate model when compared to the ECM because 

its governing equations reflect the actual electrochemical processes occurring in the battery.
118

 

Electrochemically based models have been shown to achieve higher accuracy than their ECM 

counterparts, but ECMs continue to be used for real-time battery management systems (BMS) 

due to their simplicity and robustness within microcontroller environments.
119-123

 For non-BMS 

studies, electrochemical models such as the SPM are favored.
13, 17, 112

 In some cases, enhanced 

ECM models have been applied by using the SPM theory to increase model accuracy.
124, 125

 A 

major challenge for ECMs is accurately measuring the SOC of the battery when charging rates 

are not constant. For solar charging, the current is constantly changing throughout the day and 

the rates of charging vary seasonally. ECMs are not well calibrated to accurately predict the 

SOC, voltage, or energy output during the entire simulation period because they are not valid 

outside of the operating conditions for which they are developed.
126

 For a battery being charged 

through solar power and discharged based on grid demand, the operating conditions are 

constantly changing creating the need for an accurate model that can better account for changing 

conditions. The SPM particle model has shown to be more adaptive to changing operating 

conditions. While an accurate ECM using complex circuits can be used for a single case study, 

the model will not retain its accuracy as well as the SPM over the entire lifetime of the study 

because of the changing operating conditions. 
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We compared the SPM to a common ECM that uses a voltage proxy for SOC estimation.  

The ECM was based on a circuit containing an open circuit voltage source, a series resistance 

and an element with a parallel resistance and capacitor.
127-130

 The circuit can be represented by 

the equations:
131
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where Vb is the battery voltage, VOC is the open circuit voltage, VC is the capacitance voltage, R0 

is the ohmic resistance, CC is the capacitance, RC is the capacitor parallel resistance, and iapp is 

the applied current. The ECM was calibrated based on a 1C charge rate and set to match the 

capacity of the SPM model. For a single charge the percent difference between the ECM and 

SPM was 1.2% for the voltage and 1.3% for the SOC throughout charging, underestimating 

values early in the cycle and overestimating values later. While the difference is acceptable of a 

single cycle, the error will accumulate when the models are used to track multiple cycles. Figure 

3-3 shows the variation in measured SOC between the SPM and ECM over ten cycles.  

Additionally, changing the applied current from the original current creates error in the 

ECM. When studying a test case of the solar-battery hybrid system (12 hour day with 1 BCSC 

(see Section 3.5) and 4 hour demand starting at 6PM) the ECM found the system running at 

87.5% Autonomy and 100% battery utilization. The SPM found autonomy of 89.0% and battery 

utilization of only 94%. A major discrepancy with the ECM is the inaccuracy of the calculated 

voltage-SOC relationship when the operating conditions are changed. Under the test case the 

ECM shows 100% SOC being reached before the normal voltage cut-off, which is a response 

from the empirical nature of the SOC estimation method. 
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Figure 3-3: Comparison of ECM to SPM over 10 cycles. 

While including more rigorous physics-based battery models (beyond the SPM) may be 

useful for simulating single cycles, the use of the SPM allows for simulation of a year’s worth of 

system data on the order of minutes which cannot be matched by higher-order models.
118

 The 

balance of efficiency with accurate SOC, voltage, and energy output estimation that the SPM 

offers allows for better analysis without heavily increasing computational time.  

3.4 Single Day Case Study  

Two examples of the solar-battery system are shown in Figures 3-4 and 3-5 to help 

explain the dynamic relationship between demand, generation, and storage. For the first case, a 

12 hour half sinusoidal solar insolation curve with peak solar insolation of 1000Wm
-2

 is used. 

The demand for the system is an 8-hour TOU demand with a maximum power demand equal to 

the maximum power output from the connected solar array with the demand centered at 3:30PM 

(the TOU demand contains one hour of rising power demand, beginning at 11:30AM, and one 

hour of falling power demand ending at 7:30PM with a 6 hour period of maximum demand in 
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between). Figure 3-4 shows the power used directly from the solar array and from the battery 

storage.  

 
Figure 3-4: Solar array plus battery storage with trapezoidal demand. A) Power from solar array is 

shown in conjunction with the demand of grid and the output of the system. B) Shows distribution 

of power that is supplied directly from solar array and power supplied from battery. 

Figure 3-5 shows a case where the energy demand is too great for the system under its 

current size and insolation. For a 12 hour TOU demand with a maximum power demand equal to 

83% of maximum power output from the connected solar array with the demand centered at 

3:30PM, the solar array (same characteristics as previous case) does not produce enough energy 

and therefore supplies power only part of the time. In this case, the system does not meet the 

required demand for 11.5% of the time, and the system can only provide 79.4% of the demanded 

energy (Autonomy of 79.4%). Also important to note in the second case is that the capacity of 

the battery is underutilized, never being close to fully charged. Under the second case’s 

conditions, the battery is only utilizing 57.2% of its total capacity during a single cycle 

(compared to 82.3% in case 1). The SOC is shown in Figure 3-6 for both cases showing how a 

fully charged battery state was never achieved. In order to satisfy the external demand, the solar 
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array’s output must be increased (increasing the array size 26% while keeping the rest of system 

constant) or the power demand decreased (decreasing the power demand by 21% while keeping 

the rest of the system constant). 

 
Figure 3-5: Solar array plus battery storage with trapezoidal demand. In this case the system 

cannot meet demand at all times. A) Power from solar array is shown in conjunction with the 

demand of grid and the output of the system. B) Shows distribution of power that is supplied 

directly from solar array and power supplied from battery. 

 

Figure 3-6: SOC for cases in Figures 3-4 and 3-5. 
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3.5 The Standard Case (for autonomy and battery utilization studies) 

For most of the results in the following two studies, the sizes of the system components 

were set to a standard value unless otherwise stated. This allowed for easier comparison between 

cases. When all components (solar panel size, battery capacity, and demand load size and shape) 

are simulated under these standardized parameters, we will refer to those simulation as being run 

under the standard case. In many tests, a simulation will be run with only some of the 

components under their standard parameters. For example, in Study A, some simulations vary 

the capacity of the battery and plot the resulting autonomy and battery utilization as a function of 

demand size. For cases that deviate from the standard case, the details of the simulation will be 

explained. 

For the standard case, the maximum power of the solar array was set to 30.5kW. The 

energy capacity of the battery was 116.5 kWh. The battery capacity was determined based on the 

daily amount of solar energy provided from the 30.5kW solar array on average. An irradiance 

curve approximated by a 12-hour half-sine curve peaking at 1kW/m
2
 applied to the solar array 

would provide 233kWh of energy. 
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  (3.13) 

A half-sine curve is a good approximation of the irradiance pattern of a sunny day for a 

site without a large angle of irradiance (see Section 3.7.1). The battery capacity was chosen to 

provide storage for 50% of the solar insolation (116.5kWh). This level of storage will be referred 

to as 0.5 Battery Capacity to Solar daily Capacity (BCSC). If a battery has 233kWh of capacity, 

it would have a BCSC of 1 or if it had 58.25kWh of capacity it would have a BCSC of 0.25. In 

Study B, the value of battery capacity for the standard case is kept constant across all sites, even 
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though the average insolation will change, so that sites can be compared based only on their 

differences in irradiance. The energy demanded during a 24 hour period for the standard case 

was set at 100kWh coming from sinusoidal demand (maximum power of 5.56kW and minimum 

power of 2.78kW). Any variation to the standard case parameters are noted with each study.  

3.6 Simulation of the Battery-Solar Hybrid System 

Two different studies were undertaken with the solar-battery hybrid model. The first 

study focused on the effect that sizing (both for the battery and demand) had on the battery 

utilization and system autonomy using approximated solar data that only varied seasonally. The 

second study used real minute resolution data from the National Renewable Energy Lab’s 

(NREL) Measurement and Instrumentation Data Center (MIDC) database to analyze how 

individual irradiance patterns at various sites would affect both the technologic and economic 

operation of the solar-battery hybrid system. The results are presented as separate sections 

below. 

3.7 Results from Study A 

3.7.1 Influence of Solar Intermittency 

For Study A, half sine curves were used to approximate daily solar insolation curves. For 

completely sunny days, the half sinusoidal approximation compares well with actual solar 

insolation data. Figure 3-7 shows our approximation compared to actual data for a day from 

Phoenix, AZ. However, our results will show an overestimate of available solar energy because 

we assume no daily deviations from the approximated curve. More on the daily variability of 

solar energy is discussed in Section 3.8.1. 

To study the effect of annual averages to autonomy and utilization, we tested each case 

with insolation curves that ranged from 8 hours of sunlight to 16 hours of sunlight and weighted 
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the values for how often that type of day length occurs during the year. An eight hour yearly 

variation in sunlight similar to the one in our study would be experienced near the 49
th

 parallel 

(around the western US and Canadian border in the northern hemisphere).  

 

Figure 3-7: Sinusoidal approximation versus real data from Phoenix site July 18th, 2012.
132

 

3.7.2 Autonomy and Utilization Results 

A system with no energy storage component can only meet demand when the solar 

insolation is greater than the required demand. The yearly autonomy for a system with no storage 

and a constant demand is shown in Figure 3-8 as a function of daily energy demand. As more 

energy is demanded the autonomy slowly decreases for a system. Adding storage to the system 

will increase the autonomy, but the energy capacity of the battery will determine how much the 

autonomy changes. Figure 3-9 shows autonomy and battery utilization as a function of daily 

energy demanded for three different battery sizes (BCSC 0.25, 0.5, and 1) under constant 
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demand. As battery capacity increases, autonomy will increase, but only to the point where the 

power demanded exceeds the combined capacity of the solar array and battery. At this point, 

autonomy will remain the same (as in the BCSC 0.5 and 1 cases), while the battery utilization 

will begin to decrease because the battery can never be fully charged by the solar array. Table 3-

4 shows the differences in battery utilization for differing demand and battery sizes. 

 

 
Figure 3-8: Autonomy and uncaptured solar energy for solar array with no storage and constant 

demand. 

 

Table 3-4: Battery Utilization for the maximum power output demanded that still yields 100% 

autonomy for each of the four types of demand under three different battery sizes. 
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Figure 3-9: Autonomy and battery utilization of constant demand for different battery sizes. 

The type of local demand also affects the autonomy and battery utilization. Figure 3-10 

shows the autonomy and battery utilization for the four different types of demand curves as a 

function of the energy demanded. The parabolic and TOU demand shapes are 10 hours in 

duration centered at 3:30PM. The parabolic demand sees the lowest levels of autonomy, but its 

battery utilization is highest when comparing demand shapes at the same level of energy 

demanded. While the autonomy is affected, the demand shape has a greater effect on the battery 

utilization. Autonomy is more dependent on the total amount of insolation (a function of solar 

array size), while the battery utilization is more dependent on how much of the demanded power 

is not co-incident with the solar power. The TOU (Trapezoid) demand receives the lowest levels 

of battery utilization for daily energy demands between 100 and 300kWh because the battery 

cannot be fully charged by the solar array. At higher energy demands the TOU (Trapezoid) 

demand can still charge during the first half of the day when there is no energy demanded, but 
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sinusoidal and constant demands see lower battery utilization level because most of the time 

demand exceeds solar power meaning that the batteries will receive very little charge. 

 
Figure 3-10: Autonomy and battery utilization of each of the four demand types under the same 

sized system (BCSC 0.5). 

In addition to the demand shape, for the parabolic and trapezoidal demands the timing of 

the demand load effects system operation. Figure 3-11 shows the variation in autonomy and 

battery utilization for a six hour TOU demand centered at different times of a day. In Figure 3-

11, the demand is always a six hour TOU demand but the timing of the load changes. The six 

hour TOU demand curves are centered to occur at noon, 3:30PM, 6PM, or 9PM shown in the 

legend as the deviation of the load timing from noon (0, 3.5, 6, and 9 hours). Since the solar 

insolation being used for this study is an approximation that is symmetrical, the results show the 

difference in the load timing between the center of the demand curve and the center of the solar 

insolation curve. The shape of autonomy and especially battery utilization was affected by the 

time of demand, with the battery utilization being more linear (as it approaches its maximum) for 
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demands that are not coincident with solar insolation. The closer the timing of the load is to the 

timing of solar insolation, the less the battery must be used to supplement power, which leads to 

higher levels of autonomy and lower levels of battery utilization. In some systems, certain 

demand loads will be dispatchable allowing them to be turned on or off at different times 

throughout the day. In general for these types of systems, placing loads coincident with available 

solar power will provide the greatest benefit. 

 
Figure 3-11: Autonomy and battery utilization based on timing of trapezoidal demand. The time 

represents the trapezoid’s variation from maximum solar insolation. 

Figures 3-12 through 3-15 show cases that study the variation in demand length for the 

parabolic and TOU demand curves. Depending on the season and type of loads, the duration of 

peak demand could change. Three-dimensional plots of autonomy (Figure 3-12) and battery 

utilization (Figure 3-13) with a BCSC of 0.5 (116.5kWh capacity) for all TOU demand lengths 

are shown (Note a reversed x-axis [Demand] in Figure 3-13 is used to show the main contour of 

the battery utilization plot in three dimensions). The length of demand has a much greater effect 
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on battery utilization than autonomy. For a given demand value in Figure 3-12, there is not a 

large amount of variation across demand lengths, however, Figure 3-12 varies significantly 

dependent on both the amount of energy demanded (x-axis) and the length of demand (y-axis) 

Similar effects are present in the case of parabolic demand curves. Three dimensional 

plots of autonomy (Figure 3-14) and battery utilization (Figure 3-15) for all parabolic demand 

lengths are shown (Note a reversed x-axis [Demand] in Figure 3-15 is used to show the main 

contour of the battery utilization plot in three dimensions). The major difference between the 

trapezoid and parabolic demand is that the parabolic demand is thinner than the equivalent 

trapezoid demand resulting in slightly higher levels of autonomy and battery utilization shown in 

Figures 3-14 and 3-15 for comparative points. 

 

 

Figure 3-12: Autonomy for TOU demand shape with different amounts of daily demanded energy 

and length of TOU demand. Solar array of 30.5kW and battery of 116.5kWh. 
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Figure 3-13: Battery Utilization for TOU demand shape with different amounts of daily demanded 

energy and length of TOU demand. Solar array of 30.5kW and battery of 116.5kWh. Note the 

reversed x-axis (demand) for highlighting the plot’s contours. 

 

 

Figure 3-14: Autonomy for parabolic demand shape with different amounts of daily demanded 

energy and length of parabolic demand. Solar array of 30.5kW and battery of 116.5kWh. 
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Figure 3-15: Battery Utilization for parabolic demand shape with different amounts of daily 

demanded energy and length of parabolic demand. Solar array of 30.5kW and battery of 

116.5kWh. Note the reversed x-axis (demand) for highlighting the plot’s contours. 

3.7.3 Discussion from Study A 

When determining the best possible size and use of a solar-battery hybrid system, many 

individual factors about the site and desired uses within the local grid environment must be taken 

into account. No single solution will fit all the cases. Study A offers an outline of how to 

approach best determining a system’s size and operational characteristics by establishing the 

model for determining the relationship between a system’s autonomy and the battery utilization 

associated with different applications. Autonomy and battery utilization cannot be maximized 

simultaneously in most cases. Rather a balance which best fits the consumer’s needs and the site 

must be reached between both metrics. Study B will focus on applying the model to specific site-

based inputs. 

One assumption of Study A is that increased battery utilization is always beneficial in the 

lifetime effectiveness of a battery system. Changes in DOD will affect the cycle life of a 
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battery.
133

 The relationship between DOD and cycle life is not well understood. However some 

cases have shown that lower levels of DOD can increase the nominal cycle life of the battery 

when accounting for lifetime energy storage.
29, 134

 Operating a battery at lower DOD will 

increase the cycle life, but will require a larger initial battery capacity and therefore higher 

upfront cost. Assuming a linear increase in nominal cycle life with a decrease in DOD, in order 

to see any economic benefit from installing a larger capacity battery and operating at lower 

DOD, nominal cycle life would need to increase at a rate of at least one percentage point for 

every percentage point decrease in DOD. Figure 3-16 shows the relationship of system cost in 

respect to average DOD and rate of nominal cycle life increase. The nominal cycle life slope is a 

measure of how much the battery’s nominal cycle life will increase due to lowered DOD. At a 

slope of one, there would be no gain in nominal lifetime. The battery would output the same 

amount of energy over its lifetime (For example: 1000 cycles at 100% DOD or 2000 cycles at 

50% DOD). For any slope greater than one, the total energy the battery can discharge during its 

lifetime will be greater at lower DOD. The slope is a relative measure of how much additional 

energy output can be gained from operating at a lower DOD. However, these increases can be 

partially offset by the need for a larger initial battery. The normalized lifetime cost measured in 

Figure 3-16, accounts for both the increase in battery lifetime from the nominal cycle life slope 

and the increased initial battery capacity needed to operate at lower DOD and is normalized to 

the cost per kWh supplied (over the entire lifetime) for a battery operating at 100%DOD. 

 
In i t ia l B a tte ry  C o s t

L ife t im e  C o s t  =  
T o ta l E n e rg y  P ro v id e d

 (3.14) 

 While small gains in lifetime cost can be seen at small DOD reductions and low nominal 

cycle life slopes, the types of nominal cycle life increases required to see economic benefits are 
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greater than those from experimental studies for Li-ion batteries and therefore attempting to 

achieve the highest battery utilization is beneficial for system economics.
29, 133, 134

  

 
Figure 3-16: Normalized battery lifetime cost as a function of average DOD and increase in nominal 

life due to shallower DOD (shown as nominal cycle life slope). All costs are normalized to the cost of 

a 100% DOD system. The black line represents no change in nominal cycle life due to shallower 

DOD (Nominal Cycle Life Slope=1). Assumes a linear approximation of nominal cycle life as a 

function of DOD. 

3.7.4 Conclusions from Study A 

During the course of the year, the variation in solar insolation and demand make it 

difficult to determine the best system components for meeting specific demand requirements. 

Consumers often have to choose between maximizing autonomy or battery utilization. This study 

outlines a model for determining system autonomy and battery utilization based on application 

demand and system size. This model can be used to establish the best possible solar array and 

battery storage for a desired application. Under the demand types tested, demand shape and 

timing affect the system autonomy and battery utilization. When studying autonomy, the solar 

array size had a greater effect, while the battery size had a greater effect on battery utilization. 
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Use of the SPM allowed for greater accuracy when studying the SOC, DOD, and battery 

utilization for batteries operating in conjunction with intermittent renewable generation when 

compared with empirical battery estimates. The model allowed for fast and accurate simulation 

of the combined systems and enhances the system’s ability to control energy storage while 

maintaining safety and performance. 

As more microgrids and distributed energy resources enter the grid, tighter control and 

monitoring of a regional network of grids will be important in fully utilizing the available power 

capacity. The next study will use real solar insolation patterns from regional sites in order to 

better assess how individual systems will function and to determine how similar systems placed 

in different locations (experience differing solar insolation and weather patterns) will affect the 

system’s autonomy and battery utilization. 

3.8 Results from Study B 

3.8.1 Solar Irradiance Data 

Data was obtained for 10 sites between the years 2010 and 2014 from NREL’s MIDC 

database. The site locations are shown on the map in Figure 3-17. Solar irradiance data was fed 

into the solar array component of the model to produce the solar array output. When using 

NREL’s MIDC database, some data was incomplete or missing. Only data sets that had 

uninterrupted data for a complete calendar year were used in the study. Prior to obtaining data 

from the MIDC database. NREL’s Solar and Wind Energy Resource Assessment database was 

used to estimate the global horizontal irradiance (GHI) at each site using SUNY’s High 

Resolution model.
135

 Daily insolation from the satellite-based and ground-based measurements at 

each site as well as other site-based characteristics are shown in Table 3-5. Sites are distributed 

geographically to study different irradiance patterns. The sites experience differing day lengths 
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based on latitude. Sites further north will experience longer summer days and shorter winter days 

compared to more southern sites. In Phoenix, AZ (the most southern site) the longest day of the 

year is only 14 hours and 22 minutes and the shortest day of the year is 9 hours and 56 minutes, 

while in Arcata, CA (the most northern site) the longest day is 15 hours and 6 minutes and the 

shortest day of the year is 9 hours and 14 minutes. Sites with a larger variation in day length will 

receive a greater portion of their total insolation in the summer months. 

 
Figure 3-17: Map of sites from Study B. 

In addition to the length of day, a site’s irradiance will fluctuate based on its local 

weather patterns. These short scale variations are one reason why average values for insolation 

such as those from the SUNY database do not tell the entire story of a site’s solar resource. Even 

very solar rich areas, see wide fluctuations in their irradiance on a day-to-day basis. Figure 3-18 

shows the variation of solar irradiance during July 2012 for the Phoenix, AZ site. The site 

receives an average insolation of 7.92kWh/m
2
 per day (satellite based) in July, but Figure 3-18 

shows the large variation in irradiance on a day to day basis. Figure 3-18 shows the irradiance 



74 

 

levels during sunlight hours broken into quartiles. In July, 25% of the irradiance values fell into 

the blue region, 25% fell in the green region and 50% fell in the red region. Additionally, 

satellite based average values have been shown to be inaccurate at many sites especially for 

locations near the coast.
136, 137

 When compared to ground-based data obtained from NREL’s 

MIDC, low insolation areas tended have higher satellite-based estimates and high insolation 

areas tended to have lower satellite based estimates. Figure 3-19 shows a mild, but statistically 

significant (p-value=0.006) correlation for the difference between the average ground-based data 

and GHI SUNY satellite-based data as a function of average ground-based insolation for all sites 

with at least two years of complete data. 

 
Figure 3-18: Variation in irradiance patterns for Phoenix in July 2012. 
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Table 3-5: Site information for each site studied. Autonomy values are averaged over all years of data for each site and the w/ Storage 

values include 116.5kWh of battery storage capacity. 
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Figure 3-19: Difference between satellite and ground-based insolation yearly average by site as a 

function of ground based yearly insolation average, showing a mild but statistically significant (p-

value=0.006) correlation. 

 

Figure 3-20: Strong inverse correlation between average daily insolation and average daily 

variation of irradiance. 
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In order to quantify weather based irradiance differences at each site, an irradiance 

variation metric was created. A moving average for daily insolation was calculated for each day 

of the year by averaging the nearest 30 days insolation values. Then the percentage of deviation 

from the moving average was calculated for each day and summed to create the site’s “total 

variation” value.  This metric correlated strongly with total insolation at each site (see Figure 3-

20). The sites that received the highest insolation values were also the sites that had the lowest 

levels of daily variation in insolation. This result shows that sites that are considered to have a 

greater solar resource also have a more consistent solar resource on a day-to-day basis. 

The combination of seasonal and daily variation can cause significant differences in the 

irradiance patterns that two sites with similar insolation values experience. Figure 3-21 shows 

Swink and LA yearly irradiance patterns in 2012. Both figures show that cloud cover has a 

significant effect at both sites, shown in the dark lines and spots that cut through the normal 

irradiance patterns. Looking at the summer months, Swink has longer days than LA, but in the 

winter, Swink has shorter days. Additionally, during LA’s summer months, the peak daily values 

for irradiance are higher than Swink’s, shown by the brighter center spot in Figure 3-21 A. Keep 

in mind that although Figure 3-21 shows differing levels of irradiance throughout the year, the 

total amount of insolation delivered at both sites varies by only 1.48%. Although both sites had 

similar levels of “total variation” the images show that there are still major differences is the 

individual site irradiance patterns. Using these different irradiance inputs in the solar-battery 

model, the effects on the battery will be monitored. 
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Figure 3-21: Los Angeles (A) and Swink (B) Irradiance patterns for 2012. 
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3.8.2  Irradiance Resolution Comparison 

Many models use stochastic approaches for modeling a region’s solar irradiance.
138

 This 

method allows for a probability based assessment for a regional site, but does not account for 

individual weather events or daily variations in irradiance patterns and can underestimate times 

of operational failure. Other methods include using historical time series values, but often the 

resolution of these time series is hourly to daily.
139

 Data at these resolutions misses important 

fluctuations in irradiance and induces error into measurements of autonomy, battery utilization, 

and capacity fade. Figure 3-22 shows the irradiance pattern for July 7
th

, 2011 in Los Angeles at 

three different resolution scales: 1-minute, 1-hour, and daily average. Both 1-minute and 1-hour 

data use a first derivative interpolation to connect the discrete points. The daily average finds the 

total insolation from a day and creates a half sine curve with the same total insolation that begins 

at sunrise and finishes at sunset for the site. The hour and day irradiance curve reduce the amount 

of fluctuations a solar-battery system will encounter during a day. Not accounting for these 

fluctuations will induce error into the model. 

Two sites were studied with both minute and hour resolution irradiance data for the 2011 

year: Los Angeles and Oak Ridge. Table 3-6 shows the difference in simulation results for the 

two data sets as well as the percent error of the hour resolution results as compared to the minute 

resolution results. Battery Utilization values show percent errors of 2.81% and 4.77% for Los 

Angeles and Oak Ridge respectively. This error means that the hour resolution data caused the 

energy throughput of the battery in the standard case to be underestimated by 523kWh (4.5 full 

cycles) and 748kWh (6.4 full cycles) at Los Angeles and Oak Ridge respectively over the course 

of 2011. While this is only a few cycles per year, over the lifetime of the battery this error could 

over estimate battery life by more than a year depending on nominal cycle life.  
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Figure 3-22: Irradiance data from LA on July 7th, 2011 for minute, hour, and daily resolution.  

Table 3-6: Results of standard case simulations for Los Angeles and Oak Ridge in 2011 using 1-

minute and 1-hour resolution irradiance patterns. 

 

SEI growth is loosely correlated to the amount of battery utilization, but using hour 

resolution data didn’t add as much error to the total SEI growth as it did to the battery utilization 

values over the course of the year with Los Angeles seeing only 0.17% error and Oak Ridge 

2.08% error. SEI growth was calculated based on the equations from Section 3.2.3 in the SPM 

model. When looking at the SEI growth over monthly intervals rather than the complete year, the 

error is larger for the individual months. Table 3-7 shows the SEI growth from Oak Ridge every 
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month in 2011 for both minute and hour resolution data. On average (using weighted average of 

the absolute value of percent error) the monthly percent error for using hour resolution data is 

3.94%, much larger than the yearly error of 2.08% (see Table 3-6). One reason for this is that the 

SEI values are overestimated by the hour resolution simulations in the high insolation summer 

months (April to September) and underestimated in the low resolution winter months (October to 

March). These two trends partially cancel each other out over the course of the entire year for 

SEI growth. More study is needed to understand why this variation between summer and winter 

occurs.   

For studies seeking a high level of accuracy in modeling solar-battery systems, minute 

resolution irradiance data is favorable over hour resolution data. However, in cases where minute 

resolution data may not be available, hour resolution data can be used to produce close estimates. 

Table 3-7: Comparison of monthly SEI growth for 1-minute and 1-hour resolution for Oak Ridge in 

2011. 

 

3.8.3 Technical Benefit of Energy Storage 

Without energy storage, local demand can only be met during day light hours. If we 

assume the case of 100kWh of daily sinusoidal local demand and 30.5kW solar array, the 
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amount of demand met without energy storage by the solar panels ranges from only 35.2% in 

Arcata, CA up to a maximum of 46.1% Phoenix, AZ. The amount of autonomy met without any 

storage correlated strongly with the total amount of insolation received at the site (see Figure 3-

23). Additionally, large amounts of solar power go unused in these scenarios because the solar 

power generated is often much higher the power demanded. All of the systems will benefit from 

including energy storage to store excess solar energy and use it to increase autonomy. 

 

Figure 3-23: Strong correlation between average daily insolation and site autonomy without 

storage. 

In the case of Milford in 2012, under the no storage condition with a 30.5kW solar array 

and 100kWh of sinusoidal demand the autonomy of the system is 42.8%. Adding only 15kWh of 

storage capacity will increase the autonomy to 57.2%, while adding 50kWh of storage will 
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increase the autonomy to 84.3%. When small amounts of storage capacity are added to the 

system, all of the capacity is used almost every day of the year to help supply some demand 

required overnight. Figure 3-24 shows the autonomy increasing with an increase in storage 

capacity. However, the rate of autonomy increase from added storage will decrease as more 

energy storage is added to the site. 

 

Figure 3-24: Autonomy and battery utilization as a function of battery energy storage capacity for 

Milford in 2012 with a 30.5kW solar array and a sinusoidal demand of 100kWh of daily energy. 

In general, sites experienced two regimes of for the rate of autonomy increase: 1) an 

initial regime where the autonomy quickly increases for small amounts of added storage and 2) a 

diminishing returns regime (occurring beyond 60kWh in Figure 3-24) where adding more 

storage only provides small gains in autonomy. The switch between regimes is caused when 

storage is large enough to meet overnight demand throughout most of the year. However, 100% 

autonomy is not yet reached because of poor insolation during the winter months and long 
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periods of low insolation caused by cloud cover. To show how cloud cover can affect autonomy, 

Figure 3-25 shows a closer look at a seven day period in March 2012 for Milford. 

Figure 3-25 shows the low insolation days of March 16
th

-18
th

 in Milford depleting the 

battery until midway through the 18
th

 when the SOC hits zero and the system can no longer meet 

demand (leading to decreased autonomy). The figure also shows that multiple days of high 

insolation can lead to unused solar generated energy (in the case of a grid-tied system, this 

energy would be sold externally). March 14
th

, 15
th

,and 20
th

 all show days when the battery 

becomes fully charged around mid-day (battery is considered fully charged before SOC reaches 

100% for protective purposes). With the battery fully charged and the solar power exceeding the 

power demanded (the standard case has a max demand of 5.56 kW), the excess solar power will 

go unused. These two cases of too much or too little solar power occuring over multiple days 

show why the amount of insolation is not always completely an accurate indicator of system 

autonomy.  

 

Figure 3-25: Solar power generated, solar power unused by system, and battery SOC during March 

14-21, 2012 at the Milford site under the standard case. 
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As the battery capacity is increased, less solar power will go unused during high 

insolation times and fewer periods of low insolation will lead to completely depleted batteries. 

However, reaching 100% levels of autonomy will be very difficult because of low insolation 

levels during winter months. For the Milford site, each square meter of ground received an 

average insolation of only 2.23kWh/day in December which leads to a power output of only 

45.2kWh per day from the 30.5kW solar array. Regardless of the size of the battery, without 

seasonal energy storage 100% autonomy will not be possible. For seasonal storage, some of the 

excess energy from summer month would need to be stored until the winter. In the summer 

Milford received 8.96kWh/m2/day in June, which equated to 256.2kWh of energy generated per 

day. Note that some of the variation between summer and winter insolation can be reduced by 

adjusting the tilt of solar panels. In order to meet 100% autonomy and overcome poor winter 

insolation levels, the battery would require 1,745kWh of storage capacity at Milford. A battery 

of this size would be cost prohibitive and Li-ion systems do not perform well for seasonal 

storage. Additionally, only a 3.3% of the battery’s capacity would be used on any given day. 

Determining the optimal system size that creates the ideal balance between high levels of 

autonomy and battery utilization can be difficult because of the high seasonal variation in 

insolation levels. But the battery utilization varies significantly by month. Figure 3-26 shows the 

monthly variation of battery utilization for Milford 2012 under the standard case and is 

representative of the general trend at all sites. The lowest levels of utilization come during 

months of low insolation (December) which leads to depleted batteries and low levels of 

autonomy. Another local minimum comes during peak insolation months (June) when the days 

are longer and batteries are not needed for as long of a period overnight (even though autonomy 

measures are high). The peak utilizations come during times just before the monthly autonomy 
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reaches 100% (March in Figure 3-26) and just after the monthly autonomy decreases from 100% 

(October in Figure 3-26). This trend depends on the battery size, but shows that monthly battery 

utilization is affected by the length of day and amount of insolation.  

 

 
Figure 3-26: Monthly autonomy and battery utilization for Milford 2012 under the standard case. 

 

 As the size of the battery capacity increases the battery utilization will decrease and 

autonomy will increase as shown in Figure 3-24 for Milford. Figure 3-24 shows two regimes for 

how autonomy is affected by additional energy storage. For all sites, simulations were run for 

two battery capacities to see if sites experienced similar increase in autonomy in both regimes. 

To measure the initial rate of autonomy increase from storage, the increase in autonomy from 

0kWh of storage to 50kWh of storage was calculated by running simulations with 50kWh of 

battery storage. The increased autonomy values ranged from only a 28.6% increase at Arcata, 

CA to 45.6% at Clark, NV. The added value from 50kWh of storage showed a strong correlation 
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to the site’s total insolation (see Figure 3-27) similar to the correlation shown without any energy 

storage.  

 

Figure 3-27: Strong correlation between average daily insolation and added autonomy from 50kWh 

of battery storage. 

 

To study at what level the autonomy begins to level off (in the second regime), 

simulation with 116.5kWh of battery storage were conducted at each site. In addition to just data 

from 2012, for this study all available site data between 2010 and 2014 was simulated and 

autonomy and battery utilization values were determined. Figure 3-28 shows the simulation 

results for all sites and years. The autonomy again showed a strong correlation to the total site 

insolation. Figure 3-29, shows this correlation for all of the data points taken between 2010-2014 

Battery utilization also shows a correlation only slightly weaker than the autonomy correlation. 
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These correlation results show that simulation using detailed irradiance data is not important at 

sites unless extremely accurate results are desired. In most cases, a site’s total average insolation 

will offer a good determination of the relationship between system autonomy and energy storage 

at a site. This is only for long time-periods, if shorter time-period, such as individual weeks or 

months are being studied, the importance of detailed irradiance simulation becomes greater. 

 

 

Figure 3-28: Autonomy and battery utilization values for all sites under the standard case. 

 

While the previous section showed that insolation values could be used to determine 

average site characteristics such as autonomy, insolation values were shown not to be nearly as 

good of a predictor when studying economic value (based on time-of-use scenarios) of a system 

or when studying the degradation occurring within a battery at different sites. 
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Figure 3-29: Yearly site autonomy, battery utilization, and percentage of energy supplied from 

battery as a function of ground-based average daily insolation for all sites. 

3.8.4 Economic Value of Energy Storage 

The economic benefits of the battery were considered under a two-tier TOU pricing 

scenario. Off-peak prices were set at $0.10/kWh and On-peak prices were set at $0.20/kWh. The 

on-peak pricing period was between 12:30pm and 6:30pm every day of the week (see Figure 3-

30). First, all of the sites were considered with only solar panels (30.5kW) and no storage 

element. Any solar power generated during off-peak hours was worth $0.10/kWh and any energy 

generated during on-peak hours was worth $0.20/kWh. Each site’s solar array value is shown in 

Figure 3-31. Note, it was assumed that all power generated from the solar panels could be used 

locally and therefore is valued at the market utility price. Additionally, a maximum of 100kWh 

of peak hour demand was allowed daily with a maximum instantaneous power demand of 20kW 

because it was assumed that only power that could be used locally would be valued at market 

prices and any additional power generation beyond local demand that would need to be sold 

externally would only be valued at off-peak prices. 
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Figure 3-30: Diagram of time-of-use pricing setup. 

Economic benefit from the solar panels alone (for 2012) ranged from $138.60 per 

installed kW at Arcata, CA to $263.63 per installed kW in Phoenix, AZ. When considering only 

the solar panels, the economic value on the panels based on TOU pricing correlated strongly with 

the average insolation that a site received. The sites with more yearly insolation received more 

economic value from the solar panels (see Fig 3-32). 

To measure the benefits of battery storage in addition to the solar panels, a 116.5kWh 

battery was added to the system to try to store some of the solar energy produced during off-peak 

periods to be used during on-peak periods and therefore be used at a higher value. 116.5kWh of 

storage was used because it can store approximately one half of energy generated from a 12-hour 

summer day approximated by a half sine curve when 30.5kW of solar panels are present. The 

batteries generate value at each site ranging from an additional $44.32 of value per installed kW 

at Arcata, CA to $62.54 of value per installed kW at Clark, NV. The additional value gained by 

including the battery system did not correlated with the amount of insolation a site received (see 

Figure 3-32). In fact, Phoenix which received the most insolation during 2012 had the second 
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lowest amount of value added from a battery at only $44.39 per installed kW. Note that all 

values reported here are in terms of solar array size and will be affected by changing the capacity 

of the installed battery. 

 
Figure 3-31: Economic value under TOU pricing in 2012 for all sites. 

 
 

Figure 3-32: Strong correlation between average daily insolation and the economic value under 

TOU pricing without storage and no statistically significant correlation between average daily 

insolation and economic value from 50kWh of added storage. 
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When determining the economic value from TOU pricing for an added battery, the 

amount of irradiance that is coincident with the time of peak demand also had no correlation to 

the absolute economic value derived from the system. But when the added economic value was 

instead considered as the relative gain compared to the initial value of the solar array without 

storage (taking the absolute value gained from the battery and dividing it by the amount of 

economic value of the solar array without the battery system), there was a very strong inverse 

correlation between the amount of irradiance coincident with the on peak periods as shown in 

Figure 3-33. 

 

 
Figure 3-33: Strong correlation between the amount of solar power generated coincident with on-

peak demand and relative value added from storage. 
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For example, Swink, CO and Milford, UT received 5.31kWh/m2/day and 

5.30kWh/m2/day of insolation respectively in 2012, but a battery at Swink increased value by 

25.4% ($56.57 per installed kW) while Milford’s value was only increased by 20.2% ($46.43 per 

installed kW). Milford produced an average of 50.5kWh of energy during on-peak hour per day 

(out of 100kWh demand), while Swink produced only 42.8kWh of energy during on-peak hours 

per day on average. The exact reason for why Milford produced more coincident power was not 

obvious. The amount of daily variation between sites is similar and both sites sit at similar 

latitudes (38.0N and 38.4N) and therefore experience similar length of days. One possible 

explanation for the discrepancy could be that the two sites sit at opposite ends of the same time 

zone and therefore, although the day lengths are similar, the time of sunset is much earlier for 

Swink than for Milford. More study is needed to determine the effects of time zones on TOU 

pricing scenarios. 

3.8.5 SEI Effects of Cycling on Battery Life 

Adding a battery to the solar array at any site will increase system autonomy and will add 

some economic benefit to the system, however aggressive cycling will reduce the life of the 

battery. Sites that use the battery more frequently will shorten the life of the battery. But not all 

cycles will affect the life of the battery equally. In order to measure the effects of cycling on the 

life of the battery, SEI layer growth is tracked at all of the sites under the TOU pricing scenario. 

The amount of SEI layer growth shows a mild correlation to the value added by the battery (see 

Figure 3-34), which itself is a strong indicator of the amount of battery utilization. However 

there is still significant discrepancy on the amount of SEI layer growth at similar sites. 

Comparing three sites that received similar insolation shows how differences in the SEI layer 

growth can lead to changes in how the lifetime value of a battery system is perceived. 
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Looking at Swink, CO and Milford, UT under the TOU pricing scenario, the battery 

provides a 22.0% greater economic ($56.57 per kW of solar) benefit at Swink than at Milford. 

However, in order to achieve that higher economic gain, the battery at Swink was cycled more. 

By tracking Battery Utilization, the Swink site was shown to have discharged 23.1% more 

energy in 2012. By comparing the SEI layer growth at the two sites, we can study how the 

additional cycling affected the batteries at each site. SEI layer will experience growth each cycle 

during charging and the layer will slowly build up over the course of the year. Figure 3-35 tracks 

the growth of the both Swink and Milford and shows that the SEI layer growth at Swink in 2012 

was 21.7% greater than growth at the Milford. So while the same capacity battery may be more 

valuable over a single year at Swink, most of that value is wiped out over the battery’s entire 

lifetime because the battery at the Milford will last longer and be able to recoup most of the 

economic difference. Note that there are many degradation mechanisms beyond just SEI layer 

growth that will affect the life of the battery, but that this mechanism offers a good relative view 

of degradation occurring based on cycling at individual sites. Other factors, such as different 

temperature conditions at sites, were not considered in this analysis. 

When applying the same comparison between the Milford and LA sites, LA is 

economically 19.1% more valuable in 2012 and cycles 20.7% more energy than Milford. 

However, as shown in Figure 3-35, LA experiences 38.4% more SEI layer growth. With that 

much SEI layer growth, although the economic gain from a single year is greater at LA, the 

lifetime economic value of the battery will be higher at Milford. This type of capacity fade 

analysis is imperative to determining the lifetime benefit of storage at differing sites. 
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Figure 3-34: Mild correlation between absolute value added from storage and the amount of SEI 

layer growth. 

 
Figure 3-35: SEI layer growth for three sites in 2012 under TOU pricing scenario. SEI layer growth 

is normalized to the amount of growth experience by LA. 
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3.8.6 Demand Size and Type Effects 

Similar to changing the battery size of the system, altering the size of the demand will 

also affect the operation of the solar-battery hybrid system. So far in the results section, the daily 

energy demand was always 100kWh. Altering that demand will affect both the autonomy and 

battery utilization. Figure 3-36 shows the battery utilization and autonomy as a function of 

demand size at Lowry Range in 2011 (the solar array is 30.5kW, battery capacity is 116.5 kWh 

and the demand type in sinusoidal). The shape of the demand remains sinusoidal, but the 

magnitude of the demand will change. For example, when daily energy demand is 200kWh 

instead of 100kWh (as in the standard case) the maximum power demand would be 11.12 kW 

and the minimum power demand would be 5.56 kW (maintaining the 2:1 ratio). 

 
Figure 3-36: Autonomy and battery utilization demand as a function of total daily demanded 

energy for a system of 30.5kW solar array and 116.5kWh battery at Lowry Range in 2011 with 

Sinusoidal demand. 

For low levels of demand, the autonomy will be 100% and as demand increases the 

autonomy will decrease. At the high levels of demand there is no way to supply the amount of 
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energy demanded with the available solar cells. In 2011, Lowery Range averages 127.81kWh of 

energy produced by its solar array per day, so demands above this amount could not reach 100% 

autonomy even with the largest batteries. 

Battery utilization follows a different trend. The utilization values begin very small when 

only a few kWhs of energy is demanded because the amount of energy capacity required to 

supply the total demand is only a small percentage of its total capacity. As the demand size 

increases, the battery utilization rises, but it will reach a maximum and then begin to decrease. At 

the low demand sizes, the amount of energy required does not deplete the battery resulting in low 

DOD cycles. But for the high demand sizes, the battery is completely depleted overnight and the 

energy demanded during the day is much higher than the solar energy and therefore the battery 

cannot be fully charged and remains at low levels of SOC throughout the year. For Lowry 2011 

with a 116.5kWh battery, the battery utilization peaks at just below 50% around 160kWh of 

sinusoidal demand. 

The timing/shape (sinusoid versus TOU) of demand will also affect the battery 

utilization. TOU demand was also studied at varying sizes for autonomy and battery utilization at 

Lowry Range in 2011. This type of study is relevant for systems that are already in place that 

may be adding additional loads to maximize solar energy value. Figure 3-37 shows the autonomy 

and battery utilization as a function of demand size for TOU demand at Lowry Range in 2011. 

The autonomy values for TOU demand are very similar to those of sinusoidal demand shape 

because when sufficient amounts of energy storage are available, autonomy is driven heavily by 

the total amount of solar insolation (see discussion). At low levels of demand size, the TOU 

demand shows similar autonomy and battery utilization values to the sinusoidal demand (see 

Figure 3-37). However, beyond 100kWh of demand size, the battery utilization values begin to 
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diverge when comparing TOU and sinusoidal demand. As mentioned previously, for the 

sinusoidal demand beyond 100kWh, the battery is not able to be fully charged during the day. 

But for TOU demand, since no power is demanded before 12:30PM, the battery will always be 

able to charge in the morning. This charging allows higher levels of battery utilization to be 

reached and instead of peaking then decreasing, battery utilization for the TOU demand case 

remains high because of the ability for the battery to be charged every morning regardless of the 

amount of energy demanded. Note that autonomy values will still continue to decrease.  

 
Figure 3-37: Autonomy and battery utilization demand as a function of total daily demanded 

energy for a system of 30.5kW solar array and 116.5kWh battery at Lowry Range in 2011 with 

TOU demand. 

Figures 3-38 and 3-39 shows the battery SOC during the first 10 days of April at Lowry 

Range in 2011 for both TOU and sinusoidal demands at two different demand sizes. The figures 

show the trend that daily DODs are more similar for the 100kWh of daily demand than the 

200kWh of daily demand. At 200kWh of daily demand, the sine demand restricts the battery 

from reaching as high of SOC levels as the battery in the TOU demand scenario during daily 

charging which leads to lower battery utilization for the sine demand shape simulations. 
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Figure 3-38: SOC values for TOU and sine demand from April 1-10, 2011 at Lowry Range with 

battery energy capacity was 116.5kWh and solar array was 30.5kW and 100kWh of energy 

demanded. 

 
Figure 3-39: SOC values for TOU and sine demand from April 1-10, 2011 at Lowry Range with 

battery energy capacity was 116.5kWh and solar array was 30.5kW and 200kWh of energy 

demanded. 

Comparing the SEI layer growth between the sinusoidal demand type and the TOU 

demand type, the SEI growth at low daily energy demands (<150kWh) is larger for the 

sinusoidal demand, but for high daily energy demands the SEI growth is larger for TOU demand. 

SEI growth is dependent on SOC, charging time, and battery voltage.
140

 For the lower demands 
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when battery utilization between sine demand shape and TOU demand shape is similar, the 

duration of charging for the sinusoidal demand battery is slightly longer while SOC and voltage 

ranges are similar to the TOU demand battery (see Figure 3-38) which leads to larger SEI growth 

in sinusoidal demand. But at high demands, in addition to having lower battery utilization, the 

SOC and battery voltage remains lower for the sinusoidal demand battery (see Figure 3-39). The 

SEI reaction is less likely to occur at low SOC and therefore less SEI growth occurs for the 

sinusoidal demand shape at high levels of demand.
141

  For 100kWh of energy demanded the SEI 

growth was 16.8% higher in the sinusoidal demand battery than in the TOU demand battery, but 

for 200kWh of energy demanded the SEI growth was 10.7% lower in sinusoidal demand battery 

than the TOU demand battery. 

3.8.7 Discussion of Study B with Lifetime Economic Value 

Within each site there is a small variation in the results each year. When comparing the 

variation in autonomy and battery utilization results for individual sites, the average standard 

deviation for year-to-year variation was 1.27% (1.27kWh of demand met per day) for system 

autonomy and 0.69% (2.5 cycles full cycles per year) for battery utilization (see Figure 3-29). 

These values were calculated only for sites with at least three year of data. Results from 

simulations run for any one year of data will be accurate for following years. 

While the single-year economic benefit from adding battery storage to a site was affected 

by both battery and demand size (see section 3.8.3), the lifetime economic value was not very 

sensitive to these two variables. Single year economic benefit correlated strongly with battery 

utilization because the added economic benefit was tied directly to the amount of energy 

throughput. However increased battery utilization will lead to short lifetimes in terms of years 

before a battery must be replaced.  
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When installing a battery system, the amount of savings over the lifetime of the battery 

should exceed the total costs in order to be economically viable. The maximum installation price 

per kWh of storage capacity will be based on the TOU price structure (which will determine the 

annual savings), and the battery life. The equation below is used to determine the maximum 

allowable installation price for a battery system to be economically beneficial during its lifetime: 

 

   
p e r  k W h

P ric e
B a tte r y C a s e B a s e C a s e B a tte r y

B a tte r y

V a lu e V a lu e L ife t im e

C a p a c ity




 (3.15) 

where lifetime of the battery is measured in years. For example, at Lowry Range using 2011 data 

(with 30.5kW solar array and 116.5kWh battery) and a peak to off-peak price difference of $0.15 

(e.g. POff=$0.10 and POn=$0.25), the base case will provide $6,712 in savings per year and the 

battery case will provide $9,557 in savings based on simulation. Assuming a 10 year battery life, 

the total lifetime savings will be $28,450 ([$9,557-$6,712] x 10 years) from the addition of the 

battery. Dividing by the 116.5kWh of capacity will yield a maximum allowable installation price 

of $244 per kWh. Any installation price cheaper than $244 per kWh will yield an economic 

benefit over the life of the battery.  

The maximum allowable installation price is highly dependent on the TOU price 

structure and the battery lifetime. Figure 3-40 shows how this price will change based on the 

peak to off-peak price difference and the battery life. The previous example of a 10 year battery 

life and $0.15 peak to off-peak difference is shown by the black dot in Figure 3-40. Increasing 

the TOU price difference or the battery lifetime will allow for higher installation prices that still 

produce economic benefits. If installation costs are $300/kWh for an energy storage system, any 

point on the surface above the $300 line would represent an economically beneficial case to 

install batteries. Note that this analysis focuses only on energy capacity. The nature of the 
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surface plot will vary based on the site and year of the data chosen, but will follow a similar 

trend shape. 

 
Figure 3-40: Break even battery installation prices for Lowry Range (using 2011 data) as a function 

of two-tiered TOU price difference and nominal battery cycle life. 

3.8.8 Conclusions from Study B 

A systems level model for coupling battery storage to a solar array was studied for 10 

sites in the US over a five year period (2010-2014). The model allowed for much faster analysis 

of these sites than implementation of individual experimental setup at each site and year long 

study. Site based data from 2012 was analyzed to show that daily amounts of cloud variation at 

each site correlated strongly with the total site insolation. The total site insolation was a strong 

indicator for site performance. The site autonomy both without storage and with storage 

correlated strongly with total site insolation and the total economic value produced by a site’s 

solar array without storage (based on a TOU pricing scenario) also correlated to the site’s total 

insolation. In order to obtain these simple metrics, detailed irradiance time-series simulations 
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(such as the model presented here) are not required, rather these metrics can be elucidated with 

more readily available average insolation values. However, the economic value of the added 

battery under a TOU pricing scenario did not correlate to the total insolation of a site. Instead the 

relative amount of value added from the battery was strongly driven by the amount of solar 

power at the site that was generated coincident to the on-peak demand. For this type of economic 

study, irradiance based models such as the one presented here are required for thorough analysis 

of the system. 

Additionally, The SEI layer was tracked at sites to monitor the degradation caused by 

different cycling patterns at individual sites. SEI growth at individual sites showed only a weak 

correlation with the amount of economic value added at a site and therefore indicates that 

although some sites may benefit from battery storage more (in economic terms) over a single 

year, they may not generate the most benefit over the entire life of the battery due to shorter 

battery life from degradation caused by certain types of cycling. Again detailed modeling is 

required to determine the relation of economic benefit to degradation at a site. 

Studies comparing the accuracy of different resolution irradiance inputs showed that 1-

minute resolution showed significant difference in yearly results when compared to 1-hour  

resolution data. And a method outlining calculation of lifetime value and break-even installation 

price was presented. This type of model-based study offers a blueprint for how sites should be 

evaluated from both an operational standpoint and economic standpoint. The efficacy of the 

system level model, specifically when analyzing the effects of operation on the battery storage, 

enhances the study of site-based energy storage coupled to solar power. 
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3.9 Conclusions to Solar-Battery Hybrid Modeling 

The systems level model proved adept at analyzing a wide range of applications for 

energy storage coupling with renewable energy. The electrochemical modeling of the battery 

component offered insight not only into the operation of the device, but also the degradation 

effects of different cycling patterns through the monitoring of SEI layer growth. The ability of 

the model to handle real-world inputs and run simulations for different locations and applications 

allowed for a wide scope of study. More information about future directions for the solar-battery 

hybrid model can be found in Chapter 7.   
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Chapter 4  
Optimization of Storage in Solar-Battery Hybrid System 

 

This chapter contains excerpts from the following journal article, reproduced here with permission 

from IEEE: 

Lawder, Matthew T., Suthar, Bharat K., Northrop, Paul. W.C, De, Sumitava, Hoff, C.Michael, 

Leitermann, Olivia, Crow, Mariesa L., Santhanagopalan, Shriram, Subramanian, Venkat R. 

“Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale 

Applications” Proceedings of the IEEE, 102:6 (2014) A682-A692. 

 

4.1 Battery Management Systems 

While the previous chapter focused on studying areas that would benefit from battery 

storage, this chapter will give an overview of how battery modeling can help batteries perform 

optimally once the energy storage devices have been installed in a solar-battery hybrid system.  

Batteries require a BMS in order to control how cells are charged and discharged. This 

BMS can consist of a simple charge controller or a complex algorithm monitoring many 

variables. For small cells that do not have strict application requirements, basic BMS systems 

that are cheap and robust work best. But for large applications, especially in the grid, where 

hundreds to thousands of individual cells make up battery energy storage systems (BESS) that 

undergo unpredictable cycling patterns, advanced BMS are required to obtain the greatest benefit 

out of these expensive battery packs. 

BESS require BMS to monitor and maintain safe, optimal operation of each battery pack 

and for systems that have multiple sets of batteries that can be operated independently, a system 

supervisory control (SSC) to monitor the full system. Batteries are dynamic in nature, constantly 

operating outside of the equilibrium state during cycling. In addition, the situation worsens for 

the case of intercalation based storage systems (e.g. lithium chemistry) which operate as a closed 

system with very few measureable state variables making them difficult to properly monitor and 

maintain safe operation. Furthermore, even under normal operation the battery packs of a BESS 
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will degrade during cycling. This degradation can be accelerated by extreme charging patterns, 

increased temperature (both ambient and operating), overcharging, or undercharging. A basic 

BMS controls battery packs only to meet the power demand. However, smarter model-based 

BMS can reduce the causes of degradation and improve the performance of a system. Predictive 

and adaptive BMS based on models are especially important for large battery packs for 

applications such as EVs and grid integration.
142-144

 While there are many possible solutions to 

the intricate problem of BESS control, Figure 4-1 describes a general BESS-BMS structure used 

for implementation.  

The BESS in Figure 4-1 can be used for many different objectives, such as: 

 Matching peak power demand 

 Load following to increase generation utilization 

 Improving grid stability, power quality and balancing (e.g. frequency control) 

 Reducing source intermittency 

The BMS and SCC portion of Figure 4-1 can help the BESS provide these services with 

optimal performance by: 

 Minimizing temperature gradients across the system 

 Protecting the cells from internal degradation and capacity fade 

 Providing optimal charging patterns 

 Balancing cells throughout the stack 

While these systems work in tandem, unfortunately physical measurements of the internal 

states of the cells are not accessible to the BMS and SCC. The only battery states that can be 

measured are: 

 Voltage 
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 Current 

 External Temperature 

 

Figure 4-1: Schematic for the implementation of a battery pack and BMS into a BESS. 

Other measurements are not cost practical or infeasible in situ. Additionally, the BMS 

and SCC can only control the BESS by manipulating: 

 Current or Voltage 

 Ambient temperature (when cooling or heating is available) 

However, by utilizing physics-based models, the BMS can accurately estimate many internal 

variables that allow it to gain a thorough understanding of battery SOC and SOH.  

A BESS will incorporate a BMS that is responsible for managing the operations of the 

battery. The BMS’ relationship within the BESS system can be seen in Figure 4-1. The BMS is 

responsible for: safe operations (thermal management, operating between safe current and 
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voltage limits, shutdown on detection of fault etc.), state estimation (SOC determination), 

parameter estimation (SOH determination), time remaining (tr) (depending on the applied load 

profile), and other miscellaneous functions. In addition, for Li-ion and other closed-cell systems, 

the BMS must also perform inter-cell charge balancing.  

In large systems, many battery packs with individual BMS will be combined to create a 

large capacity BESS. The SSC of the BESS is the interface between the grid and the BMS. The 

information about battery packs are conveyed from BMS to SSC. When the grid demands power 

to be supplied from the batteries, the SSC chooses the optimal protocol for releasing charge 

while accounting for both the current state of the batteries and the grid’s demand request. This 

SSC protocol will call power from individual packs in order to meet the final power demand.  

During certain periods, the required power profiles of batteries will be more flexible and 

the BESS can have more control over the charging pattern. For example, in a peak-shaving 

application, the discharge is heavily constrained but the charging can be chosen based on the 

needs of the BESS.  Here the individual BMS can run optimization routines to come up with the 

best charging profiles. These charging profiles can be communicated to the SSC which can 

control the power input from the grid. When determining the performance of a storage system, in 

addition to the BMS and the SSC, power electronics which connect these systems to each other 

and the grid must be taken into account. These power electronics allow for the bidirectional flow 

of power to and from the grid.
145

 The way these individual pieces are structured creating a 

hierarchical system architecture will influence the efficiency and operation of the entire system 

and can aid in control. 
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4.2 Optimal Model-based Protocols 

The model-based optimization performed in this chapter will utilize the P2D model 

outlined in Section 1.5.2. Using the P2D model allows the tracking of many internal states that 

would not be possible during operation otherwise. With better knowledge of these internal states, 

the cycling protocol for the battery can be optimized in order limit degradation while still 

meeting an application’s power needs. A nonlinear dynamic optimization will be performed on 

the system to obtain the best possible charging pattern under the solar-battery hybrid system 

constraints. 

Any type of control must be able to operate in real-time so that it can affect battery 

operation. Often when running an optimization routine, the model must be simulated hundreds of 

times in order to find the best possible protocol. Using techniques like reformulation and the 

perturbation approach outlined in Chapter 2, the optimization performed for this chapter can be 

conducted in real-time. An example demonstrating the advantages of a model-based optimization 

approach is discussed by showing three possible charging protocols for the energy storage 

component of a solar-battery hybrid system. For more information on the method of optimization 

used please see Appendix B. 

Starting with a reformulated P2D model explained in Chapters 1 and 2, we included 

equations to model the internal temperature changes during charging and the growth of the SEI 

layer caused from side reactions at the anode.
17, 146, 147

 The passive SEI layer growth causes 

capacity fade by increasing diffusion resistance and removing lithium from the system, and can 

therefore be used to determine battery cycle life based on the remaining capacity.
38, 40

 For more 

explanation on SEI layer growth please see Section 1.6.1. While SEI growth has been shown to 

cause fade within Li-ion batteries, many mechanisms can cause fade to occur (see Figure 1-4). 
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If the only objective is storing the maximum amount of charge for the system with no 

time limits or additional constraints, an optimization of the P2D model leads to a constant 

current-constant voltage (CC-CV) charging pattern.
148

 However, in order to guarantee long cycle 

life, the battery should limit the amount of SEI growth during each cycle. By adding a new 

constraint for the optimization model which sets a maximum allowable SEI layer, the charging 

pattern will deviate from the typical CC-CV charging in order to obtain the greatest amount of 

charge while ensuring that the SEI layer does not grow significantly. Additionally, constant 

current (CC) charging is not possible when using solar power due to the non-steady-state power 

from the solar cells. 

Applying this approach to an example of a solar-battery hybrid system, we can see the 

effect that optimization can have on a system’s performance and life. Our sample solar-battery 

hybrid system will be used to help satiate peak demand by providing as much power as possible 

between the hours of 4 to 8 PM. The solar insolation for the system is approximated by half sine 

curve over a 12 hour period which begins at 6AM and lasts until 6PM (Assuming full charging 

of the battery, the system will be able to meet a power demand 141.3% of the peak solar output 

over the four hour demand period). Under basic charging conditions, when power is not 

demanded from the system, but there is solar insolation, the solar power will go directly to 

charging the battery. Since some of the solar insolation will occur during the time of demand, 

this portion of the power will go directly to the demand load instead of battery charging. The 

portion of the day for which the battery can be charged will be between 6AM and 4PM and the 

battery will be sized so that it can capture 80% of the power supplied during that time. This 

percentage was chosen because many days there will not be perfect solar insolation, which can 
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cause underutilization of the battery. Any power generated once the battery is fully charged will 

be supplied to the grid at a standard rate.  

A standard charging protocol (labeled “Standard Charging” in Figure 4-2) would begin 

charging the battery with power as soon as the power became available and continue to charge 

with the maximum available power until the voltage limit was reached. However, using 

optimization with an objective of maximizing the amount of charge stored and a constraint to 

limit the passive SEI growth (and therefore capacity fade) to the same level as seen in the under 

the standard charging protocol, the amount of charge stored would be increased (labeled “Max 

Stored Charge” in Figure 4-2). Note that we have not increased the amount of capacity fade, but 

have increased the amount of charge stored over the course of the day by altering when the 

battery accepts charge. The model based optimal charging protocol increases the amount of 

charge stored by 0.5%, and experiences the same amount of capacity fade. 

 
Figure 4-2: Different charging patterns for a battery powered from a solar array with different 

optimization objectives and constraints. The solid line (red) shows standard charging with no 

optimization constraints; the dashed line (green) attempts to maximize the charge stored while not 

increasing fade from the standard case; and the dashed-dotted line (blue) reduces capacity fade to 
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90% of the standard charging case while maximizing the amount of charge stored. The solar 

irradiance curve and demand curve are shown as well.  

To further improve life, we can restrict the total amount of capacity fade which occurs in 

a single cycle. With the solar insolation pattern, we can limit the SEI layer growth to 90% of the 

standard charging protocol without losing much stored charge. The “Reduced Fade” line in 

Figure 4-2 shows the charging pattern with this capacity fade bound in place, which only reduces 

the total charge stored by 0.42%. This small decrease in single cycle capacity means we can add 

many additional cycles to the battery life without sacrificing performance in the short term. The 

reduction of SEI layer will not lead to a large reduction in charge stored until we push beyond a 

10% reduction in fade. After this point, the stored charge begins to decrease significantly and 

further SEI layer growth reduction is prohibitive (see Figure 4-4). When comparing the three 

cases Figure 4-3 shows the normalized growth of the SEI layer for each charging pattern and 

Figure 4-4 shows the total energy gained over battery lifetime as well as the energy unutilized 

per cycle due to the SEI layer growth constraint. 

 
Figure 4-3: Normalized SEI layer growth as a function of SOC  during  the charging cycle for the 

three cases. 
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Figure 4-4: Comparison of energy benefit per cycle and over the complete life of the battery. 

Restricting the capacity fade in this example will increase the cycle life by 11.1%. 

Although each cycle will store slightly less charge, the cumulative amount of storable energy 

will increase by 9.6% over the lifetime of the battery. The amount of savings will vary depending 

on the shape and structure of the available charge (e.g. solar insolation) within grid systems, but 

using adaptive optimal charging protocols gathered from model-based simulation that limit 

degradation effects can lead to significant improvement of energy storage systems over the 

lifetime of the battery.  

The results given here only represent a simple case. Since insolation and demand can 

change on a daily basis, these types of systems will require continuous real-time optimization 

based on fast physics based models. These curves are presented as evidence that modeling and 

simulation capability for batteries have advanced to a state where one can make real-time 

predictions and optimize charging protocols.
42

 The objectives and constraints placed on the 
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battery system can be altered for many different situations and system sizes can be altered to 

study the effectiveness of system parameters for various sites. The real-time simulation and 

optimization was enabled by the advancement in model reformulation and efficient simulation of 

battery models.
15, 44, 149, 150
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Chapter 5  
Analysis of Batteries under Electric Vehicle Constraints 

 
This chapter contains excerpts from the following journal article, reproduced here under the 

Creative Commons Open Access BY-NC-ND licenses: 

Lawder, Matthew T., Northrop, Paul. W.C,  Subramanian, Venkat R. “Model-Based SEI Layer 

Growth and Capacity Fade Analysis for EV and PHEV Batteries and Drive Cycles” Journal of the 

Electrochemical Society, 161:14 (2014) A2099-A2108. 

 

5.1 Electric Vehicle Battery Modeling 

 In addition to renewable energy support, large-scale battery packs are being implemented 

in other applications such as EVs. While working EVs have been in existence for over a century 

(a lead-acid battery powered car achieved speeds of 30m/s in 1899), the price of EVs has not 

become competitive with their internal combustion engine (ICE) counterparts.
151

 EV sales are 

currently aided by subsidies ranging from $3,000 in China to $7,500 in the US and Western 

Europe to $10,000 in Japan.
152

 One of the causes of the high prices of EVs is the expensive 

nature of the vehicle's battery pack, which is not required by ICE vehicles running entirely on 

gas (hybrids operate on a combination of both systems with plug-in hybrid electric vehicles 

(PHEV) being able to operate in an all-electric mode). Most currently available and planned EVs 

(and PHEVs) use a Li-ion battery chemistry. Li-ion EV battery pack costs were estimated at 

between $600-$1,200 per kWh of energy capacity in 2013.
152, 153

 This price can cause battery 

packs to cost in excess of $10,000 per vehicle and account for 30-50% of total vehicle cost.
154

 

Although battery prices have decreased, they remain one of the most expensive components of 

an EV. Decreasing the price of the battery pack will be extremely important in making the EVs 

price competitive in the automobile market.  

As EV and PHEVs age, their battery packs will have to be replaced due to capacity and 

power fade. Power fade is defined as the loss of cell power caused by increased cell impedance 

from aging. Capacity fade is defined as the loss of energy storage capacity due to degradation 
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caused by cycling.
155

 Based on present requirements, EV batteries that have lost 20% of their 

initial factory capacity are no longer useful for automotive use and should be replaced.
156

 

Typically, an EV battery will last between 5 to 10 years within its automotive application 

depending on driving and charging patterns. Nissan estimates that the battery installed in the 

2011 Nissan Leaf will contain approximately 80% of its original capacity after five years.
157

 

PHEV batteries will experience capacity fade on a similar time scale. At the end of the eight year 

warranty coverage for the 2013 Chevrolet Volt’s battery, Chevrolet states that the battery may 

have degraded anywhere between 10% and 30% depending on driving patterns.
158

 These wide 

variations are a byproduct of consumer’s different driving and charging patterns. The charging 

and discharging patterns for EV and PHEVs will greatly affect the amount of capacity fade that 

occurs during cycling and will determine when the battery needs to be retired from automotive 

use. While many studies have shown capacity fade associated with SEI layer growth for 

galvanostatic charge and discharge conditions, few studies have looked at the SEI layer growth 

caused from dynamic discharge condition seen in EV and PHEVs.
30, 41, 159

  

5.1.1 P2D Model with SEI Layer Growth 

 For this study, the P2D model (see Section 1.5.2) is used to represent the Li-ion battery 

pack. An SEI layer side reaction was included with the P2D model. More info about the SEI 

layer can be found in Section 1.6.1. Side reactions creating the passive SEI layer can form in two 

steps, at contact of the lithium ion to the electrode and during the intercalation of the lithium ion 

into the electrode.
160

 Additional side reactions that may cause capacity fade, but do not directly 

contribute to SEI growth, can also occur at these stages (see Figure 1-4).  Three variations on the 

generally SEI reaction mechanism were tested for this study. Each of these expressions are 

derived from variations on Butler-Volmer kinetics for determining the amount of current flux 



117 

 

consumed by the reaction, but each has a different pre-exponential dependence on the lithium 

and solvent concentrations.
30, 38, 40

 The simplest of the three terms assumes that the variation in 

lithium and solvent concentration will be negligible at low to moderate rates and that neither of 

the concentrations will be rate limiting.
30

 Therefore there is no concentration dependence in the 

flux term for SEI layer growth shown as: 
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based on the model developed by Ramadass et al.
30

 

In Safari et al.
40

, a term is included to account for the electrolyte concentration, but the 

equilibrium potential, USEI, is removed from the system.
40

 The equilibrium potential for SEI is 

not well understood with values being reported in literature ranging from 0.4 to 2.0V.
161, 162

 The 

resulting flux equation is: 
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The final expression studied includes the concentration for the electrolyte and the lithium 

ions at the surface as well as the equilibrium potential for the SEI. Based on the model developed 

by Pinson and Bazant, the resulting expression is:
38

 

 
0 .5 0 .5

1 2
e x p

S E I n

S E I S E I s o l S E IL i

S E I

jF
j k c c U

R T




   

  
  

 

 






 (5.3)

 

Note that with the reaction occurring at the anode the, current density flux at the anode must be 

split into two pieces, one intercalation term and one side reaction term, shown as: 
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At the cathode, all of the current will go to intercalation with no side reactions occurring. By 

including the SEI equations into the P2D model, capacity fade will be simulated throughout the 

cell during both charging and regenerative braking (during braking while driving the batteries 

will be partially charged from the force use to brake). SEI layer growth will not occur during 

discharging of the battery. 

 

Figure 5-1: SEI growth shown for charging at 1C, C/4, and C/8 rates for three SEI growth 

mechanisms. SEI growth is scaled and normalized for the total growth over one charging cycle to 

be equal across cases. 

5.2 Comparison of SEI Growth Expressions 

 The SEI layer growth from the three different growth expressions (Eqs. (5.1), (5.2), and 

(5.3)) can be seen for three charging rates (under CC-CV charging) in Figure 5-1. Figure 5-2 

shows the SEI growth occurring during EV use under the DST driving cycle (regenerative 

charging accounts for all of the SEI growth in this case) for all three growth expressions. The 

kinetically limited expressions from Eqs. (5.1) and (5.2) are qualitatively similar, with both 

showing much greater SEI growth during the later stages of charging especially the CV portion 
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of charging in Figure 5-1. In Figure 5-1, as charging rates decrease the differences between the 

different SEI growth expressions will shrink. Additionally as the charging rates decrease, the 

ratio of SEI growth occurring during driving to the growth during charging decreases as seen in 

Table 5-1.  

 
Figure 5-2: SEI layer growth during the DST driving cycle for each SEI growth mechanism over a 

complete discharge. Time has been scaled over the entire discharging cycle (Note: Regenerative 

charging will occur during the driving cycle). SEI growth is scaled and normalized for the total 

growth over one discharge cycle to be equal across cases. 

 
Table 5-1: When completing a full charge-discharge cycle, the SEI growth contributed will be less 

than the amount contributed through CC-CV charging. This table shows the percentage of total 

SEI growth that the DST driving cycle contributes one a single charge-discharge cycle when 

charging rates are 1C, C/4, and C/8. 

 

During regenerative braking (see Figure 5-2) the Pinson expression shows close to linear 

growth of SEI layer, while the Safari et al. as well as the Ramadass expressions show growth that 
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is dependent on the remaining SOC of the battery. Both expressions show larger amounts of 

growth at high SOC levels than Pinson. 

While consumers typically desire fast charging for EV applications, the majority of 

vehicle charging occurs at levels of 2C and below with Level 2 and home installation charging 

typically ranging between C/3-and C/16. The charging and discharging occurring during an EV 

drive cycle can vary greatly and the high rates of charging or discharging that may occur due to 

driving preferences may affect the dependence of certain variables on SEI layer growth. 

However, testing the differences between the SEI growth expressions is beyond the scope of this 

chapter and therefore all simulations beyond this section will utilize the Ramadass, et al. rate 

expression (Eq. (5.1)). When studying capacity fade over the entire life of the battery, the 

amount of growth each cycle is more important than the shape of the growth over a single cycle. 

High rates of cycling have been shown to lead to increased capacity fade, however for the 

SEI growth expressions shown above, the amount of SEI growth actually increases with a 

decrease in the charging, mainly due to the increased charging time which allows more time for 

the side reaction to occur.
23

 Other mechanisms can have greater effects on capacity fade during 

high rate charging beyond SEI growth, such as mechanical stress fractures or overcharging.
26

 

Stress induced fractures can create fresh electrode surface sites which experience greater SEI 

growth than portions of the electrode that already have some SEI layer covering them.
163, 164

 At 

lower rates of charging the contribution of SEI growth towards overall capacity fade is greater 

and while other fade mechanisms are present, SEI layer growth has been shown to be one of the 

greatest factors of capacity fade.
28

 SEI growth remains an important fade mechanism in the large 

format cells that are used in EVs.
128, 165
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5.3 EV Driving Cycles 

To study the effects of driving on EV batteries, we apply different standard drive cycles 

to the EV battery. These cycles incorporate both discharge and regenerative braking, but will be 

referred as the discharge portion of battery cycling (charging will refer to only the CC-CV 

charging of the battery). Eight driving cycles commonly used by the US and European 

government were chosen. These cycles approximate different types of driving, from urban stop 

and go cycles to predominately highway cycles. They include: Urban Dynamometer Driving 

Schedule (UDDS); Federal Test Procedure (FTP-75); Highway Fuel Economy Driving Schedule 

(HWFET); Supplemental FTP Driving Schedule (US06); Elementary Urban Cycle (ECE-15); 

Extra-Urban Driving Cycle (EUDC); New European Driving Cycle (NEDC); and Dynamic 

Stress Test (DST) (see Appendix C see more details).
166

 Other than the DST cycle, the remaining 

seven test cycles prescribes a different set of velocities and accelerations throughout the drive 

cycle. In order to be useful for our studies we must convert these velocity and acceleration time 

curves into power curves that can then be applied to the EV battery packs.  

To find the power required from the battery we need to study the forces that are applied 

to the car which include: 
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where Fmotor is the force required from the motor, Fdrive is the force required for vehicle 

acceleration, Frr is the rolling resistance between the tires and the roadway, Fdrag is the force 

from the aerodynamic drag, and Fg is the gravitational force created when the car is driving 

uphill or downhill. We will assume for all drive cycles that the driving surface is flat, therefore 

Fg =0 for all cases. 
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The three other forces are represented as:
167
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where m is the vehicle mass, kr is the rolling resistance coefficient, ρ is the density of air, CD is 

the drag force coefficient, Af is the 2-D projected vehicle area, vw is the wind velocity (assumed 

to be zero), and θ is the roadway gradient (also assumed to be 0). Using these conversions we 

can take any of the normal velocity drive cycles and convert them to power cycles (The only 

drive cycle that did not need to be converted was the DST cycle, which was developed for EV 

testing and provides a direct power curve). The vehicle and roadway parameters used to convert 

vehicle velocity into power are shown in Table 5-2.
168, 169

 Driving cycles range from the simple 

ECE-15 seen in Figure 5.3 to the more reality based UDDS seen in Figure 5.4.
170, 171

 

 
Figure 5-3: The power and velocity seen under vehicle conditions shown in Table 5-2 for the ECE-

15 drive cycle. 

 



123 

 

Table 5-2: Parameters used for converting velocity profiles into power profiles for use in electric 

batteries.
168, 169

 

 

 The duration and distance of each driving cycle varies. The driving cycles were repeated 

multiple times until the battery was 100% discharged. When applying cycles to the battery model 

with SEI growth, each was scaled so that the battery capacity would allow for 150 km of driving 

distance, which is a range typical of many available EVs, in order to provide a fair comparison. 

Therefore the number of individual driving cycles that a battery went through in one discharge 

varied based on the cycle. The same scaling factor was applied when conducting tests on 

different DOD (DOD was calculated based on SOC and anode lithium concentration).  
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Figure 5-4: The power and velocity seen under vehicle conditions shown in Table 5-2 for the UDDS 

drive cycle. 
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Figure 5-5: SEI growth over a single charge-discharge cycle, for six different rates of CC-CV 

charging. The discharge cycle in all cases was the standard DST driving cycle. “Total Charge 

Energy” is scaled based on the total amount of energy used to charge the battery (including 

regenerative charging during the discharge cycle). SEI growth is scaled and normalized for the 

total growth over one charge-discharge cycle to be equal across cases. 

5.4 EV Charging Characteristics 

While fast charging is desired for most EV and PHEVs, a typical EV will see a wide 

range of different charging patterns over the course of its lifetime. Charging rates for EVs are 

categorized into three levels: Level 1; Level 2; and Level 3. Level 1 charging operates through 

the standard residential outlet plug (120V AC) and EVs will have the charging equipment built 

in to the vehicle. This type of charging will only add a few miles of charge per hour. Therefore, it 

can take over ten hours to fully charge a vehicle depending on the battery size and is typically 

only used for residential overnight charging. Level 2 charging occurs at mid-range voltages 

(208V and 240V (AC) are common levels) and requires off-board charging equipment for most 

vehicles. This level of charging is prominent in public charging stations or can be installed in 

homes. Charging at Level 2 takes between 2-8 hours. Level 3 encompasses charging rates that 
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can fully charge a battery in even less time through use of DC often at 480V (Note that the 

AC/DC refers only to the charging source, the battery must be charged through DC). These 

charging stations require extensive off-board equipment, but offer the ability to regain close to a 

full charge in a half hour. Note that all charging times are dependent on battery size. The range 

of rates that typical EV batteries experience is between C/8-2C. Figure 5-5 shows the differing 

SEI growth over one cycle of charging followed by the EV DST cycle at these differing charging 

rates. Vehicle charging will lead to the majority of growth over the life of battery. 

5.5 Results and Discussion 

Most charging applications apply a CC-CV. While this protocol maximizes the amount of 

charge stored for a single cycle, the CV portion of charging greatly increases the charging time 

while adding stored charge at a diminishing rate. The increased charging time will lead to 

increased SEI growth. CV charging only occurs during the end of the charging cycle and at high 

levels of SOC. Figure 5-1 shows that during the CV portion of charging the rate of SEI growth 

with respect to charge stored increases for all cases. Previous experimental studies have shown 

that increasing the portion of CV charging can lead to increased capacity fade.
172

 In cases where 

a EV owner is willing to forego the additional charge stored  from CV charging (less than 10% in 

most cases), they will see a benefit over the life of the battery by reducing the SEI growth. Other 

degradation effects may negate the benefit of CC only charging. 

An overview of several EV and PHEVs available to the public in 2013 is shown in Table 

5-3. This table includes all EVs and PHEVs that sold at least 550 units in the US during 2013. 

For the two types of vehicles reviewed here (EV and PHEV), the charge/discharge patterns vary. 

PHEVs can operate in several modes depending on how the driver wishes to use the available 

capacity. In a charge depleting mode, the PHEV battery will experience deep DOD cycles 
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because the battery will be completely depleted as the vehicle operates in an all electric mode 

until the battery is out of energy and then switches to the ICE. A more commonly used mode for 

PHEVs is a charge sustaining mode which will keep the battery capacity at an average capacity 

during driving through sparingly using the electric motor in combination with the ICE. The 

vehicle will only operate in all-electric mode for a portion of its battery capacity before 

switching to a balance between the ICE and battery. 

Many PHEV batteries are optimally sized so that a consumer’s average driving cycle will 

use the entire battery capacity while only briefly needing the ICE. The DOD patterns of PHEVs 

will often experience deeper DOD than EVs because of their smaller battery size (although 

charge sustaining operation for PHEVs will limit the DOD). An EVs’ battery is sized to allow 

for cushion or buffer capacity beyond the consumer’s typical driving cycle so that a driver is not 

stranded on the road. This overhead capacity is rarely used, but does alleviate some of the 

consumer’s range anxiety (fear that the vehicle will not be able to travel to a desired destination 

and back on a single charge) which is one of the primary customer concerns when purchasing an 

EV.
173-175

 

For PHEVs, battery sizing is based on capturing the optimal amount of vehicle miles. 

Vehicle manufactures differ on what is viewed as optimal size shown in the variance in battery 

capacity present among PHEVs in Table 5-3. The Department of Transportation determined that 

the average trip distance for a US vehicle in 2009 was 9.72 miles and the average daily vehicle 

miles traveled (VMT) per driver was 28.97 miles.
176

 Figure 5-6 shows the percentage of miles 

covered in all electric mode for several of the PHEVs for average US driving characteristics and 

Figure 5-7 shows the breakdown of daily VMT for US vehicles.
177, 178
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Table 5-3: Characteristics of 2013 production EV batteries.
158, 179-187

 *The Prius-Plug-in energy capacity is an estimated amount. *The 

Honda Fit EV is only available to lease. 
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Figure 5-6: Percentage of total VMT driven using the all-electric mode for different PHEV 

(assuming charge depletion). 

 

Figure 5-7: Amount of daily VMT for American vehicles. Blue represents all vehicles drive less 

than 15 miles per day. Blue and Red represent all vehicles driven less than 30 miles per day, etc. 

The daily driving cycles will affect the DOD experienced by EVs and PHEVs. Assuming 

operation in all electric mode for the entire battery capacity (no charge sustaining mode or re-

charging), a battery with a 10 mile all-electric range will experience 100% DOD during 96% of 

an average driver’s daily travel cycles, while a battery with a 40 mile all-electric range will 

experience full discharge in only 69% of daily travel cycles. Variation in DOD cycles creates 

more difficulty for vehicle manufactures who try to implement a BMS to optimally control the 
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battery.
188

 While PHEVs will experience deep discharge more frequently, EVs will still utilize a 

larger absolute amount of battery energy due to the greater size of their battery and the 

requirement that all VMT are driven by electric power. The nature of an individual’s driving 

cycles and the amount of regenerative braking that occur during a cycle will also affect the 

vehicle’s all electric range and the battery’s experienced DOD.  

5.5.1 SEI Growth Results 

We applied each of the driving cycle power curves to the P2D Li-ion battery model with 

SEI layer growth to study the effects of different driving patterns and different levels of 

regenerative braking on the SEI layer growth within the battery. Figures 5-8 and 5-9 show the 

SEI layer growth during the first two hours of driving and the first 30 km of distance covered, 

respectively. The SEI growth in these figures has been normalized relative to the amount of 

growth experienced under the NEDC driving cycle during the same periods. The absolute values 

of SEI layer growth are on the order of nanometers as only one cycle was simulated.
189, 190

  

 
Figure 5-8: SEI growth for all 8 driving cycles for two hours of driving. The SEI growth was scaled 

to the amount of growth from the NEDC case over two hours in order to show a relative 

comparison among the driving cycles. 
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Figure 5-9: SEI growth for all 8 driving cycles for 30km of driving. The SEI growth was scaled to 

the amount of growth from the NEDC case over 30 km in order to show a relative comparison 

among the driving cycles. 

The results show that the drive cycles that averaged faster speeds and had lower ratios of 

braking power to propulsion power (R-P ratio) also had lower amounts of growth during the 

driving cycle. This trend held for both SEI growth measured over distance traveled and over 

travel time. The distribution among rates was much greater for the rate per distance traveled than 

it was from time. Results for the amount of growth per unit distance and per unit time of each 

cycle are shown in Table 5-4. For each drive cycle the duration and magnitude of the 

acceleration and deceleration period were the predominant factors in determining the ratio of 

regenerative power that could be captured (shown Table 5-4). Stretches of constant velocity did 

not affect the power, but did increase the distance traveled greatly with less growth of the SEI 

layer. Cycles such as the HWFET cycle which maintains a high constant velocity without much 

acceleration, travels longer distances without gaining as much SEI layer growth as other cycles. 

In general, the cycles that approximate lower speed, urban driving patterns experienced more 
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Table 5-4: Characteristics for the eight drive cycles studied. Average velocity, duration, distance, and R-P Ratio are the characteristic for 

one driving cycle (not repeated unless end of discharge) while the remaining categories show values for drive cycles repeated unless 

battery has reach 100% DOD. Regen Energy Added is the percentage of energy gained during the driving cycle, compared to the amount 

from a full charge. Regen SEI Added is the percentage of SEI layer thickness gained during the driving cycle, compare to the amount 

from a full charge cycle. R-P Ratio is the ratio of regenerative energy during a driving cycle to the amount of energy used for vehicle 

propulsion during a driving cycle. SEI growth/ min and SEI growth/ km are scaled to the amount of SEI growth/min and SEI growth/ km 

of the NEDC cycle. These value represent a relative comparison of how much growth each driving cycle will accumulate per min or km. 

*DST characteristic were back calculated from Power curve. 
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SEI growth during an entire discharge cycle, but also had the greatest amount of regenerative 

braking (which is the main cause for SEI growth during driving) and therefore would typically 

require a smaller battery pack in order to achieve the distances studied. Additionally, when 

driving between points, utilizing driving patterns similar to the DST or EUDC cycles (which 

experience the lowest growth rates per km) would be most beneficial for reducing SEI growth. 

When focusing on how the regenerative nature of the driving cycle affects the amount of 

SEI growth, we found the percentage of additional energy output from the battery and the 

amount of additional SEI layer growth during a single discharge cycle caused from using 

regenerative braking instead of conventional brakes (see Table 5-4). While the regenerative 

braking caused some SEI formation for all the drive cycles, the cycles that experienced the 

greatest amount of additional energy benefit also experienced the greatest rate of SEI growth. 

For the ECE-15, UDDS, FTP-75, and NEDC cycles, the percentage of additional SEI growth 

exceeded the additional energy gained. If SEI growth was the only fade mechanism occurring 

during driving, then the use of regenerative braking during these cycles would be prohibitive 

over the entire life of the battery because even though additional energy is being gained during a 

single cycle, the fade that occurs will result in a net total energy loss over the life of the battery 

due to the decrease in cycle life.  For the DST, EUDC, HWFET, US06 cycles the additional 

percentage of energy gained is greater than the additional SEI layer growth meaning that the use 

of regenerative braking in these cycles in beneficial over both a single cycle and the entire life of 

the battery.  

Many real-world driving cycles do not deplete the battery to 100% DOD before 

recharging. We looked at the SEI growth of cycling at different DOD levels for each of the 
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driving cycles. The results for SEI growth at 4 different DOD levels is shown in Figure 5-10 for 

the HWFET cycle and Figure 5-11 for the UDDS cycle. 

 
Figure 5-10: SEI growth over multiple driving cycles using the HWFET driving cycle for differing 

DOD. Only SEI growth during discharging is shown (no charging growth). The SEI growth is 

measured in comparison to the amount of discharged energy since more energy will be discharged 

during a deeper DOD (and we would expect more SEI layer growth). This method allows for 

comparison between cases even though they stored different amounts of energy during a single 

cycle. The discharge energy and SEI growth is scaled to the amount seen during two cycles of 100% 

DOD. For all cases discharge will begin at 100% SOC. 

 

Table 5-5: Summary of the ratio of SEI layer growth for different DOD in comparison to 100% 

DOD for all eight driving cycles beginning at 100% SOC for all cases. 
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Figure 5-11: SEI growth over multiple driving cycles using the UDDS driving cycle for differing 

DOD. Only SEI growth during discharging is shown (no charging growth). The SEI growth is 

measured in comparison to the amount of discharged energy since more energy will be discharged 

during a deeper DOD (and we would expect more SEI layer growth). This method allows for 

comparison between cases even though they stored different amounts of energy during a single 

cycle. The discharge energy and SEI growth is scaled to the amount seen during two cycles of 100% 

DOD. For all cases discharge will begin at 100% SOC. 

The figures show only SEI growth during the driving cycles (additional growth will occur 

during charging). Table 5-5 summarizes the relative SEI layer growth for all the driving cycles 

based on varying DOD where the amount of usable energy from the batteries is normalized to the 

amount of energy utilized during two 100% DOD discharges. The SEI growth is greater for 

cycling at lower DOD for all of the driving cycles. Part of this higher growth rate is due to the 

higher potential of the battery during cycling for small DOD cycles because lower potentials 

correlate to the lower states of charge. Figures 5-10 and 5-11 and Table 5-5 have measured DOD 

starting from 100% SOC, however we can also start the driving cycle at a lower SOC. For 

example, instead of beginning a 33% DOD at 100% SOC and driving until 67% SOC, the 

driving cycle can begin at 33% SOC and end at 0% SOC. Changing the range of SOC 

experienced during driving will change the potential of the battery during the cycle. Results for 
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the same 4 DOD for the UDDS cycle are again shown in Figure 5-12, however now the SOC 

range will always go to 0% SOC (eg. 0-33% SOC, 0-50% SOC, 0-67% SOC). Because of the 

lower potential during the driving cycles the SEI growth is actually lowest for the 100% DOD 

case on a growth per km driven basis. Since the EV cycles apply a desired power to the battery, 

the current applied by the cycles will be higher during the operation at low SOCs. However, 

Figure 5-12 shows that the potential is more important for the SEI growth than the applied 

current. Experimental studies have shown increased side reactions at the SEI layer for high 

potentials.
191

 

 
Figure 5-12: SEI growth over multiple driving cycles using the UDDS driving cycle for differing 

DOD. Only SEI growth during discharging is shown (no charging growth). The SEI growth is 

measured in comparison to the amount of discharged energy since more energy will be discharged 

during a deeper DOD (and we would expect more SEI layer growth). This method allows for 

comparison between cases even though they stored different amounts of energy during a single 

cycle. The discharge energy and SEI growth is scaled to the amount seen during two cycles of 100% 

DOD. For all cases discharge will end at 0% SOC. 

Although operating the battery at lower SOC will reduce the SEI growth, it has several 

other undesirable affects. Along with increases in the current required to meet power 

requirements, low SOC operation does not utilize the full capacity of the battery. In most EV 
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cases, drivers will begin the day with a full charge at 100% SOC and therefore cycling beginning 

at low SOC level would not be commonly seen in EV usage. 

 

Figure 5-13: SEI growth over 500 charge-discharge cycles (100% DOD) for the HWFET, NEDC, 

and UDDS driving cycles. The SEI growth was scaled to the amount of growth from the NEDC case 

over 500 cycles in order to show a relative comparison among the driving cycles. 

When studying the complete lifetime of the battery, simulations will need to include 

multiple years of driving cycles and run until the end of automotive life. These simulations must 

include hundreds to thousands of cycles. Although studying the end of life characteristics of 

batteries is beyond the scope of this chapter, Figure 5-13 shows the ability of the reformulated 

P2D model to approach these types of problems. Figure 5-13 shows the SEI layer growth for 500 

charge/discharge cycles for the HWFET, NEDC, and UDDS driving cycles. These simulations 

required 6.54, 4.56, and 7.49 hours respectively to complete 500 cycles. Without using the 

reformulated model each of these cases would have required multiple days to weeks for running 

a single simulation. The use of the reformulated P2D model enhances the efficiency for solving 

stiff computational problems such as EV driving. Figure 5-13 also shows that continuing to drive 
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under the NEDC driving cycle will lead to more total SEI layer growth than driving under the 

HWFET or UDDS over 500 cycles. 

5.6 Conclusions 

Passive SEI layer growth is a major contributor to capacity fade in Li-ion batteries used 

for EV and PHEV applications. The majority of SEI layer growth will occur during charging. 

While fast charging creates undesired stress and temperature affects among other degradation 

problems, it will limit the amount of direct SEI layer growth in comparison to slow rates. 

Additionally, CC-CV charging will increase the amount of charge stored within a battery for a 

single cycle, but over the entire cycle life of the battery will decrease the total amount of usable 

energy from the battery for drive cycle cases.   

The driving cycle will add to the SEI layer growth mainly during the regenerative braking 

portion of the drive cycles. For start and stop traffic, where most driving occurs at low speeds, 

the negative effect of SEI layer growth on cycle life exceeds the benefit of increased energy 

available to the driver during a single cycle. If regenerative braking is used in these cases, the 

total amount of usable energy over the life of the battery will decrease. For driving cycles that 

have higher, more constant speeds, and briefer (sharper) levels of deceleration, the SEI layer 

grows at a slower rate than the amount of energy added, which results in benefits over both a 

single cycle and the lifetime of the battery. 

During daily cycling most EVs do not experience a 100% DOD of their batteries. Cycling 

at smaller DOD from 100% SOC will increase the amount of SEI growth per mile driven 

compared to 100% DOD cycling. However, cycling at small DOD at lower starting SOC (eg. 

starting at 50% SOC and cycling to 0% SOC for a 50% DOD) will decrease the amount of SEI 

layer growth when compared to 100% DOD mainly due to the lower battery potential during 
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cycling. While cycling at lower SOC may be beneficial for reducing SEI growth, it is not 

advisable for actual EV and PHEV use because it causes underutilization of the battery capacity 

over each cycle.   
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Chapter 6  
Experimental Analysis of Capacity Fade 

 
This chapter contains excerpts from the following journal article, reproduced here with permission 

from M.A.P.L.E. group: 

Lawder, Matthew T. and Subramanian, Venkat R. “Extending Battery Life of LiFePO4 Cells 

through Secondary Applications” In review in the Journal of the Electrochemical Society. 

 

6.1 Value of LiFePO4 cells 

Applications using Li-ion batteries for power and energy demands continue to increase. 

With many of these new applications, predicting battery cycle life can be difficult because the 

life will be dependent on the charging and discharging protocols as well as the SOC window of 

operation for an application.
192

 While commercial cells are tested under galvanostatic cycling 

conditions to determine factory rated cycle life, an application’s constraints will often create 

varying cycling demands causing the actual cycle life to deviate from the factory rated cycle life. 

For batteries used under the same type of application, many cells experience very different 

cycling patterns. Batteries used for EVs will have a cycling pattern based on a consumer’s 

driving habits and a battery used for grid storage will experience a cycling pattern based on the 

localized needs of the grid.
193

 With so much variation, a better understanding of capacity fade is 

required for more accurately predicting battery life within an application. 

In this chapter, we focus on experimental cycling of Li-ion LiFePO4 battery cells to 

examine capacity fade occurring for different cycling patterns. Additionally, protocols for 

altering cycling patterns to extend battery life are tested. Since first being realized as an 

advantageous cathode chemistry for batteries in the late 1990’s, LiFePO4 cells have become 

popular for their stability and resistance to capacity fade.
194

 While they operate at a slightly 

lower voltage than other Li-ion chemistries, reducing their energy density, LiFePO4 cells have a 

very flat voltage curve during cycling and have shown low rates of degradation.
33

 Degradation in 
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cells is caused by many different mechanisms but has been shown to vary based on cycling 

rate.
31, 195-197

 Higher rates generally lead to shorter battery life. Wang et al. experimentally 

showed that the cycle life of LiFePO4 batteries is affected by the cycling rate.
29

  

One way to reduce the rate of capacity fade is to cycle the battery at a lower rate. In 

addition to measuring capacity fade, several experiments in this chapter focus on slowing the rate 

of capacity fade in the later portions of a battery’s life by altering the cycling protocol of the 

battery to lower rates. The value of a battery over a single cycle depends on the available amount 

of energy to discharge and the value of that energy to an application. The cost of a single cycle 

will be dependent on the amount of degradation that occurs over a cycle and the total cell cost. 

By analyzing the ratio between benefit and cost, the value of any individual cycle within an 

application can be determined: 

 
   

   

D isch a rg ed A p p lica tio n

B a tte ry

E n e rg y V a lu e
V a lu e  R a tio =

D e g ra d a tio n C o s t
 (6.1)

 

Note that the units in the equation above will be [kWh] for Energydischarged, [$/kWh] for 

Valueapplication, [%] for Degradation (degradation will be calculated based on 100% degradation at 

end-of-life (EOL) conditions of 80% initial capacity), [$] for Costbattery. If the Value Ratio is 

greater than 1, the economic value of a cycle will outweigh the cost. For example, if a battery 

can discharge 10kWh for one cycle valued at $0.50/kWh and degradation occurring during this 

cycle was 0.02% with a total battery cost of $5,000, then the value ratio would be 5 and battery 

would create substantial value from that cycle. To have a battery be economically viable over its 

entire lifetime, the average Value Ratio for all of the cycles would need to be above 1. 

Unfortunately, determining the exact amount of degradation occurring during a single 

cycle is not a straightforward task. Additionally, the amount of degradation per cycle will change 
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throughout a battery’s life and the amount of energy discharged per cycle will be affected by 

degradation. The experiments in this chapter focus on better measuring the amount of 

degradation occurring over the life of the battery and testing methods for decreasing degradation 

later in life in order to increase the Value Ratio during later-in-life cycles, thereby increasing the 

total value of a battery during its lifetime. 

6.2 Methods 

6.2.1 Equipment 

Two different battery testing systems were used to perform experimental cycle tests. The 

majority of the tests were performed by a 16-channel Arbin BT 2000. Additional tests were 

conducted using an 8-channel Maccor 4300. The batteries studied were LiFePO4 18650 cells 

(1.1Ah). While LiFePO4 is classified as a Li-ion electrode, it has several differences from 

traditional LI-ion cells. LiFePO4 cells operate at a lower voltage range (2.0V-3.6V) than many 

other Li-ion ion cells. Additionally, the intercalation process may behave differently for LiFePO4 

cells. While lithium ions will typically intercalate homogeneously throughout the cathodes of 

most Li-ion chemistries such as LiCoO2, LiFePO4 electrodes have shown intercalation occurring 

heterogeneously with lithium rich and lithium poor regions developing within the electrodes.
198

 

This heterogeneous intercalation will enhance certain capacity fade mechanism (such as those 

associated with particle stress), but LiFePO4 batteries have shown great resilience even for high 

power applications leading some researchers to question if the difference in intercalation has 

much of an effect on capacity.
199

 Another difference is the amount of lithium that can be 

extracted from different cathode chemistries during charging. LiCoO2 can only stably extract 

half of the lithium from the cathode during charging, while LiFePO4 can extract much more.
200

 

The anode for the cells is graphite. 
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6.2.2 Procedure 

For all tests, charging was conducted using a CC-CV protocol. The battery was charged 

at the specified rate until the voltage limit (3.6V) was reached at which point the current would 

be continuously reduced to maintain a constant voltage of 3.6V. The battery would continue to 

receive charge until the current dropped below 10% of the original charge rate. For all tests, 

discharging was conducted using a CC protocol. The battery was discharged at a specified rate 

until the voltage limit (2.0V) was reached. 

A total of 21 cells were tested under a range of conditions. Seven cells were tested under 

control conditions, meaning that they experienced the same rate for both charging and 

discharging and were cycled at the same rate throughout their entire lifetime. Cycling rates for 

these cells varied between 1C and 4C. Table 6-1 provides more information about individual 

tests. Four cells were tested with different rates for charging and discharging. Tests 8 and 9 from 

Table 6-1 were charged at 1C and discharged at 4C, while tests 10 and 11 were charged at 4C 

and discharged at 1C. The rates remained the same throughout the entire test. Ten cells were 

tested by switching the cycling rate prior to EOL conditions being reached. Tests 12-16 were 

charged at either 4C or 3C for 2,000 cycles and then switched to rates between C/2 and 2C until 

EOL. Tests 17-21 were charged at either 4C or 3C until they began experiencing accelerated 

fade (See section 6.3.2) at which time they were switched to a 1C cycling rate. All tests were 

conducted at room temperature (23C).  

Under most applications EOL refers to when the battery reach 80% of initial usable 

capacity. For this chapter some studies continued beyond EOL to examine fade later in the 

batteries life.  
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Table 6-1: Summary of Tests. 

 

6.3 Experimental Cycling Results 

Although manufactures rate cycle life to be the same for all batteries of a single type, 

there will be variability among individual cell capacity even for cells manufactured within the 

same batch.
201, 202

 The variability will become enhanced as cells are cycled (even when cells are 

cycled under the same conditions) and can lead to large discrepancies in cycle life for 

equivalently rated cells operated under the same constraints. For the seven cells studied under 3C 

cycling conditions (Tests 5, 14-16, and 19-21), the initial capacity (as measured by the average 

Ah stored during charging of the first 25 cycles of the battery) ranged between 1.009Ah-1.032Ah 

with a standard deviation of 8.8mAh. In this chapter capacity will refer to Ah stored and usable 

energy capacity will refer to the amount of Wh discharged during a battery cycle. For the seven 
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cells studied under 3C cycling conditions, the initial usable energy capacity ranged between 

3.139Wh-3.249Wh with a standard deviation of 0.038 Wh. 

When the batteries are cycled, tracking the percentage of capacity fade in comparison to 

their initial capacity is more important than comparing their absolute capacity. For the first 

thousand cycles, the variation between the batteries grows, but is still relatively small with all the 

cells experiencing between 3.36%-4.85% capacity fade from their initial capacity. At 1,000 

cycles the standard deviation of the capacity fade for the seven cells is 0.6%. However, as the 

cells age more, the variation in capacity fade increases. At 2,000 cycles, the capacity fade ranges 

from 7.50%-15.58% and the standard deviation increases to 2.7%. Figure 6-1 shows the capacity 

(compared to their initial capacity) for the seven cells cycled at a rate of 3C for 2,000 cycles 

along with the standard deviation of the set. 

 

 

Figure 6-1: Variability of Capacity for cells cycled at 3C (Tests 5, 14-16, and 19-21). 
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The absolute initial capacity of a cell is a poor predictor of how it will experience fade 

showing almost no correlation to capacity fade. Figure 6-2 shows the R
2
 values for the initial Ah 

capacity correlation to both absolute (Ah) and relative (percentage of initial) fade. The 

correlation between the absolute capacity fade and initial absolute capacity weakens with 

increasing cycles, so there is almost no correlation by EOL. The correlation between relative 

capacity fade and initial absolute capacity never exists. A better predictor of lifetime capacity 

fade is important to be able to prepare for battery replacement and cell balancing purposes later 

in life.  

 
Figure 6-2: Correlation between the capacity fade and initial capacity or first 100 cycle slope. 

The slope calculated from a cell’s first 100 cycles (after the initial 25 cycles used to 

calculate initial capacity) was found to be a better indicator of remaining capacity after 2,000 

cycles. The correlation between first 100 cycle slope and remaining capacity over 2,000 cycles is 

also shown in Figure 6-2. The correlation between these values strengthens as the cells move 

towards EOL. The cells that experience faster fade over their first 100 cycles are more likely to 
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reach their accelerate fade regime sooner and therefore this method helps to produce a more 

accurate life estimate early in a cell’s life. Basically, the rate of capacity fade tends to only 

increase throughout life, so if a cell is degrading more than others early in its life, the cell is 

unlikely to slow that fade later in life. Note that the results for the correlation between initial 

capacity slope and remaining capacity only became statistically significant (<0.05 p-value) 

beyond 1,650 cycles. More cycling tests are required to increase the significance and verify these 

results.  

6.3.1 Initial Fade Rate as a Function of Cycling Rate  

While there will be variation in the capacity fade of cells cycled under the same 

constraints, the rate of cycling will have a greater effect on the capacity fade. Other studies have 

shown that for Li-ion batteries
22, 203

 and LiFePO4 cells
29

 in particular, prior to their accelerated 

fade regime (see section 6.3.2), capacity fade exhibits a power law relationship. However, our 

results show cells exhibiting linear or slightly accelerating fade.  

In order to measure the rate of capacity fade occurring throughout the batteries life, the 

slope of the capacity fade curve was calculated at each cycle. Figure 6-3 shows the slope of the 

capacity curve for Test 6 which cycles at 4C. The instantaneous slope is calculated by measuring 

the linear fit over the previous 150 cycles and the following 150 cycles (therefore the 

instantaneous slope has a 150 cycle lag). The dashed line in Figure 6-3 represents when 80% of 

initial capacity was reached. After reaching this level of remaining capacity the cells will need to 

be replaced. The slope (and therefore the rate of capacity fade) remains mostly flat during the 

first 1,000 cycles of operation. After this time the slope begins to rapidly increase. This 

acceleration continues beyond EOL until plateauing once the battery reaches around 60% of 

initial capacity. The only time the slope decrease is when the remaining capacity reaches levels 
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approaching only 40% of remaining capacity well beyond what is considered the useful life of 

the battery. 

 
Figure 6-3: Capacity loss per cycle for Test 6. 

Using our slope calculation method, the instantaneous slope was measured during the 

first 1,000 cycles of operation for all 17 tests that used the same charging and discharging rate 

during their first 1,000 cycles. The capacity fade rates fluctuated over the first thousand cycles, 

but they retained mostly flat or slightly accelerating trends for all the tests. The average slopes 

over the first thousand cycles were calculated for the 17 tests and are shown in Figure 6-4 as a 

function of their cycling rate. Figure 6-4 shows a strong correlation between increased cycling 

rate and increased capacity fade during the linear regime. Figure 6-5 shows the slope 

measurements for 4 tests each with a different cycling rate. These figures show that the higher 

cycling rate will lead to increased capacity fade beginning on the first cycle of operation. 
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Figure 6-4: The average capacity fade per cycle for the first 1,000 cycles of operation for all tests as 

a function of cycling rate. 

 

 
Figure 6-5: The capacity fade per cycle for the first 1,000 cycles for different rates (Test 2, 3, 5, and 

6). 
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Additionally higher rate cycling will lead to accelerated fade beginning at a higher 

remaining capacity. The four tests cycling at 4C began accelerated fade (as described in Section 

6.3.3) at an average remaining capacity of 91.4% while the four tests cycling at 3C began 

accelerated fade at an average remaining capacity of 88.6% and the two tests cycling at 2C began 

accelerated fade at an average remaining capacity of 83.4%. Ongiong tests of 1C will be studied 

to verify this trend. 

6.3.2 Analyzing Fade Characteristics 

Most studies of capacity fade are interested in the first 20% of capacity fade before 

traditional EOL occurs for a cell. Several studies of Li-ion batteries have shown a power law 

decrease in capacity fade occurring during early cycling.
203-205

 Wang et al. presented a capacity 

loss model based on a power law fitting of experimental data for LiFePO4 cells.
29

 While power 

law models could predict the measured capacity fade for small losses. The power law models 

failed to accurately measure capacity fade beyond the first few hundred cycles. The power law 

model assumes that the amount of capacity fade per Ah throughput decreases throughout the 

battery’s life. Our results found the opposite to be true, specifically for high rate cycling. 

Decreases in the capacity fade stay mostly constant during early operation until reaching an 

inflection point where the capacity fade begins to increase with each Ah of capacity used. Only 

when the battery begins to reach very low levels of remaining capacity (well beyond the 80% 

EOL) does the battery experience a reduction in capacity lost per Ah of throughput. 

Figure 6-6 shows the remaining battery capacity for cells cycled continuously at the same 

rate (1C-4C). The shape of the capacity curve at each rate is similar, with the batteries 

experiencing a steady rate of declining capacity during early cycling and then entering a phase 

where capacity fade rapidly accelerates. The initial rate of fade and the point at which the 
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acceleration in fade begins will vary depending on the rate of cycling (see Section 6.3.1). Smith 

et al. shows data that exhibits the same “knee joint” where fade accelerates rapidly.
206

 Cell 

capacity data extended from the original Wang et al. study is shown in Smith et al. to also exhibit 

the accelerated fade regime. Smith et al. proposes that the cell experiences power law fade until 

reaching the knee joint and then additional mechanisms such as stress related site loss begin to 

greatly contribute to capacity fade causing a rapid shift in the rate of capacity fade. Zhang and 

White proposed a model for LiNiCoO2 cells that showed an accelerated regime of fade caused by 

a shift in the limiting electrode from the anode to cathode.
207

 Spotnitz showed that accelerated 

fade occurred late in a batteries life, but that this region often occurred after 80% EOL had been 

reached and therefore was not often reported on in literature.
34

 However, with improvements in 

overall battery life, many batteries will reach the accelerated fade regime before EOL. Therefore 

better understanding of the accelerated fade regime is important for extending battery life later in 

life especially for batteries experiencing high rates (>1C).  

The cycle life is affected greatly by when the accelerated fade begins. Table 2 shows 

characteristics for the control batteries (2C-4C) before and after accelerated fade begins to occur. 

The beginning of the accelerated fade regime is defined as when the instantaneous capacity fade 

(as defined by the slope) reaches 0.01% per cycle and EOL is 80% of initial capacity. For the 

Test 6 shown in Figure 6-3, the cell experienced 1,344 cycles before reaching the accelerated 

fade regime at which point it had lost 7.60% of its initial capacity. The cell lasted another 622 

cycles before reaching EOL. The rate of capacity loss after the knee joint was 3.5 times the rate 

of capacity fade loss before the knee joint. The cost of continuing to cycle the cell under the 

same constraints greatly increases after the accelerated fade begins because each cycle will do a 

much greater amount of damage to the battery. If the amount of fade increases enough the cost of 
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using the battery in the application may outweigh the benefits of using the battery for some other 

purpose. Finding a different application where the remaining capacity would provide a better 

Value Ratio may be preferable to continuing to operate the cell under the same conditions. 

 
Figure 6-6: The Capacity fade for all control cycles. (Tests 1-7).  

Table 6-2: Characteristics of capacity fade before (pre-) and in accelerated fade regime. Test 1-4 

currently under continued cycling to verify the result. 

 

6.3.3 Extending Battery Life through Secondary Applications 

Two sets of battery cycling studies focused on trying to increase the value of the battery 

once accelerated fade has begun by changing the cycling rate for the cell. Altering the cycling 

rate (in effect removing the cell from its primary application and moving into a secondary 
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application) can change the rate at which capacity fade is occurring and extend the total energy 

throughput of the cell before EOL. 

The first test assumed that no real-time monitoring of the battery would be available for 

informing when to switch applications in the cell. Therefore, cells were cycled for a prescribed 

number of cycles (2,000) before being removed from their primary application and switched into 

a secondary operation. In Tests 12 and 13, cells were cycled for 2,000 cycles at a 4C rate. After 

2,000 cycles, one cell (Test 13) was switched to 1C cycling and the other (Test 12) to 2C 

cycling. In Tests 14-16, cells were cycled for 2,000 cycles at a 3C rate. After 2,000 cycles, one 

cell (Test 14) switched to 2C cycling, one cell (Test 15) was switched to 1C cycling and one cell 

(Test 16) was switched to C/2 cycling. 

After 2,000 cycles none of the cells had reached EOL, but the 4C cells were already 

beginning to experience accelerated fade and two of the 3C cells showed slight signs 

(approaching 0.01% fade per cycle) of entering the accelerate fade regime. By changing the 

cycling rate, we were able to arrest the fade and obtain more energy throughput for the battery 

before reaching EOL conditions. An empirical fade model was used to simulate what the 

capacity fade data would be if the cells had continued being cycled at 4C. The experimental data 

was compared to the simulated data to measure how much additional energy the cells were able 

to store because of the altered cycling conditions. 

For the empirical model, the slope during the first two thousand cycles was calculated in 

the same manner shown in Figure 6-3. From the slope values an exponential curve was fit from 

cycles 1700-1850 (because the slope calculation uses 150 cycles of both sides of a point, cycle 

1,850 is the last usable slope value). The model follows the empirical equation: 

   1 7 0 0
ex p 1 7 0 0

S im cyc le
S lo p e S lo p e A N 

 (6.2)
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where Slope1700 is the calculated slope value from cycle 1,700 and Ncycle is the cycle number. The 

A coefficient is calculated so that the sum of the squared error between the simulated slope and 

the experimental slope from cycles 1,700-1,850 is minimized. 

 The exponential slope model fits well for cells that have begun to experience accelerated 

fade. To calculate the simulated capacity beyond 2,000 cycles, the simulated slope values were 

used to subtract capacity until EOL. For cells in the earliest stages of accelerated fade, the model 

slightly underestimated the slope values simulating slower capacity fade than the experimental 

controls. Therefore the simulated results are considered the best case results for battery lifetime 

if the cells continue to be cycled in their primary applications. Figure 6-7 shows the experimental 

slope values along with the simulated values for Tests 12 and 13. Figure 6-8 shows the 

experimental remaining capacity and the simulated remaining capacity for the same two tests. 

Not only will the slope of the capacity fade for a cell decrease when the application is switched, 

but also the absolute capacity may show a slight increase because the slower charging rate will 

allow for more storage before reaching charging cut-off (See Section 6.4.1).  

In Figure 6-8, a qualitative measure of a cell’s lifetime utility can be seen by the size of 

the area under its capacity fade curve. A larger area under the curve will represent greater Ah 

throughput during a battery’s lifetime. Table 6-3 shows the increase in the Ah throughput for 

switching applications when compared to the simulated data at EOL. In Test 12, the cell 

switched to 2C rate after 2,000 cycles added 27.6% more Ah to its life than if the cell had 

remained at a 4C rate. Results for Tests 12-16 are shown in Table 3. For Test 16, the cell did not 

exhibit accelerated fade (or approaching accelerated fade) by 2,000 cycles and therefore the 

simulated capacity used a constant slope consistent with cycles 1,700-1,850. 
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Because of the variability of cells, monitoring the battery throughout cycling and 

switching cycling conditions at the first sign of accelerated fade can be more effective than using 

an arbitrary cycle cutoff. Tests 17-21 were conducted where the slope of the cell capacity was 

monitored continuously to allow for an accurate measure of the rate of capacity fade. When the 

rate of capacity fade reached 0.01% per cycle the cell was deemed to be in the accelerated fade 

regime and was switched to a different cycling rate.  

The rate of capacity fade prior to the accelerated regime is a function of cycling rate (see 

section 6.3.2), but will show variability even between cells cycled under the same conditions. For 

example the six tests cycled at 4C experienced between 4.68x10
-3

% and 5.89x10
-3

% fade per 

cycle over their first 1,000 cycles (all prior to the accelerated regime). Because of cell variability, 

the cycle number at which accelerated fade begins to occur will vary. The capacity fade is also 

affected by the cycling rate, so different rates will reach the accelerate regime at different time. 

The monitoring and switch method allows for each cell to be switched when accelerated fade 

begins rather than at an arbitrary cycle number.  

Tests 17-21 all monitored capacity fade by calculating the slope for each cycle. During 

their first 1,000 cycles, the slope showed some variation within each cell, but the average 

capacity fade rates were 4.38x10
-3

%, 5.06x10
-3

%, and 4.00x10
-3

% for the 3C cells and 4.34x10
-

3
% and 6.69x10

-3
% for the 4C cells. Once 0.01% fade per cycle was measured, the cells were 

switched to 1C cycling (Test 17 waited until 1.25x10
-2

% fade was reached before switching 

rates). To simulate continued use under primary cycling conditions, an empirical exponential fit 

of the previous 100 cycles was used. Only 100 cycles were used instead of 150 because the cells 

had only just begun to enter the accelerated regime. The additional energy gained for switching 

cycling rates is shown in Table 6-3. 
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Figure 6-7: Simulated and Experimental capacity fade rates for tests 12 and 13. 

 

Figure 6-8: Simulated and Experimental Capacity for tests 12 and 13. 



156 

 

Table 6-3: Lifetime Energy added by switching application. 

 

6.3.4 Effect of Charge and Discharge on Capacity Fade 

The overall capacity fade rate has been shown to increase with cycling rate. For Tests 1-7 

and 12-21 the rate remained the same for both charging and discharging. Other studies of Li-ion 

chemistries have shown that individually, higher charging
195

 or discharging
23

 rates will also lead 

to increased capacity fade. To help quantify the relative degradation of faster charging and faster 

discharging, four more tests were conducted. In Tests 8 and 9, cells were charged at a 4C rate 

and discharged at a 1C rate and in Tests 10 and 11, cells were charged at a 1C rate and 

discharged at a 4C rate. Tests 1, 2, 6, and 7 were used as controls for this study. Our hypothesis 

that the capacity fade from the new test cells would fall between the capacity fade for the 1C and 

4C control tests was proven wrong. Figure 6-9 shows the remaining capacity for the four 

experimental cells and the four control cells. 

All of Tests 8-11 (those that experienced fast charging only or fast discharging only) 

exhibited much quicker capacity fade than the control cells. Cells from Tests 8 and 9 faded 

extremely quickly reaching EOL after only 284 and 373 cycles respectively. The cells from Tests 

10 and 11 fared better reaching EOL at 1,064 and 1,103 cycles respectively. This fade was much 

faster than for both 4C and 1C control cycling.  
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Figure 6-9: Capacity for Tests 1, 2, and 6-11. 

6.4 Discussion 

The internal resistance (Rint) is increasing much faster in Tests 8 and 9 than any of the 

other cycling tests. The internal resistance can be measured by studying the voltage curves of the 

cells. Operating voltage will be based on the open circuit voltage (VOC) of the system, applied 

current and internal resistance shown in Ohm’s law as
23

: 

 
O C a p p in t

V V I R 
 (6.3)

 

The VOC curve should not be affected by capacity fade, so if the applied current remains 

the same during cycling, changes in the operating voltage can be attributed to increased internal 

resistance. Figure 6-10 and 6-11 show the voltage discharge curves over the first 500 cycles for 

Test 9 and Test 11, respectively. For Test 9 and Test 11 the operating voltage decreases as the 

cycles increase and the discharging time becomes much shorter. The trend is more pronounced in 
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Test 9 which experiences faster capacity fade. An increased internal resistance can be caused by 

many different factors and does not show the cause for capacity fade. 

Lui et al. showed that most degradation within LiFePO4 cells occurs at the anode and 

often involves irreversibly removing active lithium and physical degradation of graphite.
208

 

Models for LiFePO4 capacity fade were developed by Deshpande et al. that focus on modeling 

the removal of active lithium through SEI film growth.
209

 Diffusion induced stress and electrode 

cracking are also cited as major reasons for capacity fade. Assuming most degradation is 

occurring at the anode, Tests 8-11 reveal that high rate intercalation of lithium into the anode 

does more damage to the battery than high rate deintercalation. However, the fact that both Tests 

8 and 9 as well as Tests 10 and 11 show much more degradation than the 4C control tests shows 

that the discrepancy between the charging and discharging rates is also a major cause of 

degradation.  

 
Figure 6-10: Voltage discharge curves for first 500 cycles of test 9. 
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Figure 6-11: Voltage discharge curves for first 500 cycles of test 11. 

6.4.1 Energy Capacity Increases through Application Switching 

While the charging pattern cannot reverse internal resistance buildup in the battery, 

lowering the cycling current can actually increase the usable energy capacity of the battery later 

in life. The amount of physically storable charge will remain the same when switching 

applications, but because the applied current will be lower the internal resistance will have less 

of an effect on the voltage deviation from the open circuit voltage (see Eq. (6.3)). When 

discharging at a lower applied current, the operating voltage will be higher which leads to an 

increase in energy discharged per cycle.  

Figure 6-12 shows the voltage discharge curves from Test 16 at cycle 1,990 when 

discharge is occurring at 3C and at cycle 2,010 when discharge is occurring at C/2. Before the 

switch the charge capacity for the 3C cycling is 0.915Ah and after switching to C/2 charging the 

charge capacity is only 0.884Ah. But the energy discharged from the cell goes from 2.89Wh at 

3C discharge to 3.13Wh at C/2 discharge, an increase of 8.5%. All values were averaged over ten 
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cycles before or after the switch. In Figure 6-12 the C/2 discharge curve remains at a much 

higher voltage throughout which leads to overall more energy discharged from the system. Table 

6-4 shows the values of energy discharged per cycle before and after switching applications. 

 
Figure 6-12: Voltage curve before and after switch. 

Table 6-4: Summary of increase in discharged energy after switching applications. 

 

6.4.2 Added Lifetime Value 

An extension of battery life has been shown in Section 6-3, but the ultimate value of the 

battery depends on the application in which it is being used. If the secondary application places a 
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low economic value on the energy storage then extending a battery’s life through a secondary 

application may not make economic sense. In order to show how the economic value of a battery 

application will affect the determination of continuing in a primary application or switching to a 

secondary application, sample application values are chosen for a case study. 

Assuming a battery cost of $800/kWh (about $3 for a single 1.1Ah 18650 cell) and 

primary storage value of $0.40/kWh, the Value Ratio for Test 6 is shown in Figure 6-13. The 

average Value Ratio during the life of the battery is 1.17 meaning that the battery produced a 

value at just over the cost during its lifetime ($3.25 value versus $2.88 cost) and therefore was a 

good economic decision. However, the highest Value Ratios occur early in cycling and will 

begin to decrease as the battery ages, especially after accelerated fade begins. Switching 

applications can help to increase the average value ratio. But the secondary application’s value of 

energy storage will also affect the Value Ratio. 

 

 
Figure 6-13: Value Ratio for Test 6. 
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Consider again a battery cost of $800/kWh and a primary storage value of $0.40/kWh for 

Test 12. During the first 2,000 cycles (4C) the average Value Ratio is 1.33 (see Figure 6-14). At 

this point Test 12 switches to its secondary cycle protocol (2C). Using the simulated data (see 

Section 6.3.3), a prediction can be made for what the Value Ratio would be if the battery 

remained in its primary application. After 2,000 cycles, if the battery remained under the primary 

cycling rate the average Value Ratio until the EOL would be 0.54 and EOL would be reached at 

cycle 2,558. If the battery is switched into a secondary application with a storage value of 

$0.25/kWh the average Value Ratio from cycle 2,000 to cycle 2,558 would be 0.88 (see Figure 

6-14). 

Comparing the two cases, switching the battery into a secondary application offered less 

economic value between cycles 2,000-2,558 ($0.40 versus $0.59) because of the lower value of 

storage, but it produced much less capacity fade thereby boosting its value ratio. While the cell 

that remained in the primary cycling rate reached EOL at 2,558, the cell that switched to a 

secondary application did not reach EOL until cycle 3,314. The lifetime cost of the battery was 

the same at $2.88, but the value accumulated was $2.98 for the cell that continued its primary 

rate and $3.09 for the cell switched to a secondary application, a 3.7% increase in value. Note 

that ultimate lifetime value produced is very sensitive to the storage value and the cycling 

protocol of the battery in the secondary application. Figure 6-14 shows the Value Ratio for three 

different storage values in the secondary application. When a suitable application with high 

enough storage value and a lower charging rate can be found, switching applications for the 

battery will be beneficial to both the battery life and system economics. Note that the cost of 

physically moving the battery between systems is not considered here. An example of a possible 

switching application would be moving used electric car batteries into stationary grid storage 
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before the cells have reached EOL. For the EV battery owner, selling the battery with life 

remaining and purchasing a new battery may be more beneficial economically than continuing to 

use the battery at low levels of life. 

 
Figure 6-14: Value Ratio for Test 12 (Primary storage value of $0.40/kWh and Battery cost of 

$800/kWh) with three different secondary storage values ($0.25/kWh, $0.15/kWh, and $0.05/kWh) 

as well as the value ratio for the cell simulated remaining in primary storage ($0.40/kWh). 

6.5 Conclusions 

Through experimental cycling of LiFePO4 cells, the capacity fade was analyzed at 

different cycling rates. The cells experienced linear fade until reaching an inflection point where 

they will begin to see accelerated fade. The rate of linear fade will be dependent on the rate of 

cycling. However, even for similarly rated cells that undergo the same cycling patterns, there 

will be significant variation in the amount of fade they experience and when they transition into 

the accelerated fade regime. 

The onset of accelerated fade is the deciding factor in determining EOL for a cell. This 

onset can be prolonged by altering the cycling conditions of the battery. By reducing the cycling 
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rate for a cell, the increase in the rate of capacity fade can be slowed or even temporarily 

reversed allowing for an increase in lifetime energy throughput for the cell. By moving the 

battery to a secondary cycling pattern, we showed that cells originally cycling under 3C and 4C 

rates could increase their lifetime Ah throughput by up to 50%. 

Additionally, tests for fast (4C) charging with regular (1C) discharge as well as tests for 

regular (1C) charging and fast discharging (4C) revealed that fast charging did more damage. 

But both cases reach EOL much faster than when rates remained the same during charging and 

discharging. Cells charged and discharged at 4C (and 1C) lasted much longer. 

The cycling protocol of a battery greatly affects the battery’s life. Through active 

monitoring and proactive application of battery protocol switching, the overall value of the 

battery can be increased by raising the battery’s lifetime storage throughput. 
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Chapter 7  
Conclusions and Future Directions 

 

7.1 Efficient Simulation of Battery Models 

Since the MAPLE lab was founded, a major objective of the lab’s ongoing work has been 

to increase computational efficiency for the models being studied. This has included model 

reduction under certain assumptions as well as reformulation of models as outlined in Chapter 2. 

Work in this dissertation added to the model efficiency by describing the perturbation and switch 

single-step method for solving systems of DAEs. All of these techniques have allowed for 

battery models to be simulated across a wide set of conditions and parameters at some of the 

fastest speed reported in literature.
126

 While these techniques greatly enhance the speed of 

simulation, they always seek to minimize any error added to the system. 

The implementation of the perturbation and switch single-step approach has advanced the 

group’s ability to simulate and analyze systems of DAEs by allowing for easier system set up 

and execution of the solver. The increased range of allowable ICs greatly reduces the need to 

know exact ICs prior to simulating a system. The combination of the perturbation method with 

the actual simulation of the system also enhances the robustness of the solvers and increased 

solving speed. 

Work in the MAPLE lab will continue to focus on increasing efficiency of simulation 

while increasing the level of detail within the model. While most work in this dissertation looked 

at capacity fade through a single mechanism, the SEI layer growth, additional mechanisms that 

contribute to fade in battery are being studied. Work by Suthar et al.
148

 has studied stress effects 

during charging and Northrop et al. 
210

 has included thermal effects. With the inclusion more 
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intricate mechanisms for capacity fade, the models strive to become more predictive of actual 

fade occurring within the battery. 

The fast, accurate models developed within the lab, allowed for many of the simulations 

in this dissertation to be performed in a timely manner. Simulation of year long periods of 

minute resolution data in Chapter 3, required robust models that could handle very dynamic 

charge discharge patterns over long periods of time without crashing. Additionally, to be able to 

study the many varying levels of demanded power and battery size, hundreds of individual 

simulations needed to be run for each site. In order to study all of the cases required for a 

thorough analysis, a fast model was required. The optimization of solar-battery operation in 

Chapter 4 required hundreds to thousands of iterations of the P2D model to be run in order to 

determine the best scenario. Without a model that could solve an individual iteration on the order 

of milliseconds, this type of optimization would become much slower and more difficult to 

implement. The need for robust models was also present in the study of EVs in Chapter 5. 

The ability to study the effects of application on Li-ion batteries was only enabled by first 

having an accurate, robust, fast model to implement within these systems. And as the models 

become even better in the future, more intricate applications can be studied for a wider range of 

variables. 

7.2 Advances to the Solar-Battery Hybrid Model 

By using electrochemically based Li-ion battery models within systems level models, the 

ability to understand how the battery functions within specific applications has been enhanced 

and allowed greater understanding of Li-ion batteries in a wide range of systems not previously 

studied within our group. And while applications, such as connection to a solar array, have been 

modeled for Li-ion batteries before, the models has never been as extensive as those used in the 
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studies from Chapter 3 and have not given the insight into battery operation seen in this 

dissertation. 

The solar-battery hybrid model allowed for the battery model to be tested under a wide 

range of constraints, most notably variation in irradiance patterns and variation in demand 

patterns. This systems level model was the first implementation by the M.A.P.L.E. group 

allowing for continuously changing current from real data to be studied over multiple cycles of a 

battery in a single simulation. The ability to easily read in high resolution real world data and 

simulate over long periods of time allowed for a much more thorough understanding of the 

battery throughout its lifetime. Most previous studies within the group focused only on one or a 

few cycles of operation and used constant or simplified approximation of varying current or 

power demands. Incorporating the battery into a MAPLESim system level model allowed for 

long duration studies with varying current or power demands to become viable. The speed of 

simulation of the solar-battery hybrid model allowed for many real world cases to be studied. 

Another benefit of the solar-battery hybrid model was that it was developed modularly to 

be able to connect other individual components that could enhance the accuracy of the 

simulation. The main components of the solar-battery hybrid model are: the battery, the solar 

array, and the demand load. In addition to these components, power flow was control through a 

series of components that measured incoming power, battery SOC, and demand load and made 

decisions about how to route power. The modular approach allowed for more versatility during 

studies by allowing easily changeable control structures. 

This approach to modeling allows for new additional components to be added or for 

multiple solar arrays or batteries to be simulated together and analyzed individually. The solar 

battery model has been run with battery stacks in place of the individual cell. Simple cases were 
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run with 16 independent SPM model strung together (4 parallel strings of 4 cells in series) in 

order to study cell variation within a battery pack. Each individual cell could be given different 

parameters to analyze how small variations between cells within a larger pack can effect 

operation. Again, the modular approach to create this systems level model made analyzing 

different sized packs much simpler by allowing for easier implementation of additional 

components. 

Future work within the MAPLE lab will include continuing to study battery packs in 

connection to utility generation sources. Degradation mechanisms within battery packs will also 

be studied to see how SEI layer growth may vary between cells. The ability to model many cells 

within an individual pack has been aided by the efficiency of the model, as battery packs are 

scaled up for study, the system of equations for simulation increases, slowing the ability of the 

computer to simulate and analyze. The fast solving methods developed in the MAPLE have been 

important in allowing modeling to move from individual cells into true battery packs with cell 

variation. 

While the work outlined in this dissertation has dealt exclusively with Li-ion battery 

models, redox-flow battery models have also been studied. Redox-flow batteries have been an 

area of interest in recent years because of their ability to store large amounts energy with a single 

cell because they decouple the power and energy capacity of the battery. A CSTR (continuous 

stir-tank reactor) model of a vanadium redox-flow battery was studied within the solar-battery 

hybrid model in place of the Li-ion component. Future work undertaken by the MAPLE group 

will include studying how redox-flow battery operations may differ from a Li-ion battery under 

the same constraints. Additionally, combinations of redox-flow cells and Li-ion cells within a 

larger system could be tested together. Along with multiple battery models, a true microgrid 
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system with multiple generation sources, individualized demand and storage devices can be built 

using this model as a basis. Creating complex system level models like the one described here, 

offer the greatest ability to truly be able to analyze real working systems through modeling. 

7.3 Advances to the EV Battery Model 

The EV battery model and the solar-battery model share similarities in that they were 

both developed as system level models to study Li-ion batteries in specific applications. 

However, the EV model had different constraints then the solar-battery hybrid model. The 

discharging rates were much higher for the EVs and PHEV driving cycles than they were for the 

solar-battery application. EV batteries were being cycled on the order of hours instead of days 

and EV could see rate spikes over 1C for short periods of time. Additionally if the EV required 

fast charging, the rates for charging would be much higher for the EV model than for the solar-

battery application. Therefore, the P2D model which does a better job of handling the higher 

rates was chosen for the battery component in the EV model. The P2D model also offered 

tracking of more internal variables and more points at which those variables could be tracked 

within the system. Since most of the simulation were only over one or a few cycles for this study, 

the more information about internal states was beneficial without greatly reducing the 

computational time. 

The charging pattern for the EV model was the normal CC-CV charging pattern used for 

most battery charging applications, but the discharge required deriving the power requirements 

necessary in order to achieve different driving cycles. The variation from these cycles was made 

easier to work with through the same modular approach outlined in section 7.2. The addition of 

the SEI layer growth mechanism allowed for a thorough analysis of how regenerative braking 

will affect the life of battery. Other types of degradation will occur during normal EV operation, 
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but the analysis of the SEI layer growth offered a first basis of how variation in regenerative 

braking based on driving patterns will affect the battery. 

Work within the M.A.P.L.E. lab has included studying additional capacity fade 

mechanisms such as stress and temperature affects. Including these effects into the EV model 

would allow for a more thorough analysis of degradation caused from driving. It will be difficult 

however, to get more then generalized results because the charging patterns seen within EV will 

be highly dependent on the owner of the vehicle’s driving patterns. Additionally the size and 

type of batteries within EV is continually changing as models are upgraded or new models 

become available. 

The EV study for this work standardized the vehicle and battery and focused only on the 

driving patterns. More work could analyze specific battery and car characteristic so that 

individual vehicle models could be compared among each other. However, this would require an 

extensive amount of simulation for each model and knowledge of each model that is sometime 

proprietary, such as the exact chemistry of the battery being used. 

Any future work on this system should also include an analysis of how pack variation 

may affect operation similar to the analysis that has begun in the MAPLE lab for the solar-

battery hybrid application. Variation among cells within EV battery packs offers many possible 

areas of study. 

7.4 Advances to Model-based Optimization 

Model-based optimization has been an advancing area of research for the MAPLE lab for 

the past several years. Because the speed and robustness of the battery models used within the 

lab has increased greatly, optimization of these models has become possible. There are many 
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applications in which optimization can greatly enhance understanding of operation and help lead 

to more advanced control methods that are predictive in nature instead of reactive. 

Optimization of a solar-battery model was undertaken to better understand how charge 

could be best stored within the battery being charged solely by the sun. For optimization of the 

solar-battery model to be useful for model-based control accurate solar forecasts must be 

available. Optimization of the system requires that we know the possible available current for the 

battery during the complete day, only then can the best charging current profile be chosen. The 

accuracy of the solar forecast will influence the accuracy of the model-based optimization. While 

the MAPLE group has not previously looked into solar forecasting, a better understanding of the 

possible limitations of solar forecasting for model-based control would be useful. 

For the optimization presented in Chapter 4 approximate solar curve were used with a 

simple demand structure. Using real world irradiance curves with more dynamic demand would 

show how optimization could be implemented beyond a proof of concept and dig deeper into the 

important aspect of how control of a system would work. Additionally, as stated in section 7.3, 

additional mechanisms could be added that would allow additional variable constraints to be 

included in the optimization of the battery. 

Our model analysis of the system focused on two important objectives, maximizing 

charge stored over a given day and maximizing the life of the battery. Many additional objectives 

could be used to study the system including reduced temperature rise of the system, maximizing 

solar power utilized locally, etc. While Chapter 4 only shows a simple case of how optimization 

could be performed on a system, with the method in place and validated, many additional studies 

can be undertaken using the framework outline in Chapter 4. The MAPLE group continues to 
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study optimization specifically for battery control purposes for both EV applications and grid 

scale storage. 

7.5 Experimental Cycling 

Cycling cells experimentally, helped to gain a much more thorough understanding of the 

advantages of attempting lifetime modeling of batteries and applications as well as the limitation 

of such models. The duration of experimental cycling is time prohibitive. In order to test a 

battery rated to last 5,000 cycles at 1C, you would need 417 days of continuous cycling. 

Accelerated testing, where rates are higher or the temperature is increased can shorten the 

required time needed to experimentally reveal fade occurring, but it is difficult to extrapolate 

those findings to other cases. Especially for applications like solar power shifting or EVs that 

experience different cycling patterns every day, this type of extrapolation results in a great 

amount of uncertainty in life estimates. Modeling can be performed on a much shorter time scale 

for many more cases. 

While our experimental studies were limited by the bandwidth of our testing facilities and 

the amount of cycles it took to degrade the individual cells, for the cases that were studied, the 

experiments provided vital information to inform our understanding. For example, the most 

interesting case from our exponential study was the high charge or high discharge experiments 

where a cell was either charged fast and discharged slowly or charged slowly and discharged 

fast. Both cases degraded extremely fast. Both faded faster than the control cells cycling at 4C 

for both charge and discharge. Normally slower cycling reduces battery fade, but performing half 

of a cycle at a slow rate did not slow the fade, and actually increased it! The mechanism that 

causes this behavior is not included in the model and is currently unknown. 
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While the model can be useful to simulate known processes within the battery, there are 

still many cases of cycling that require independent validation in order to verify results. For the 

studies in this dissertation capacity fade is measured through only a few variables, most often 

SEI layer growth. While this mechanism has shown to be a good predictor of capacity fade, there 

remain many cases such as the fast charge slow discharge case, where the SEI layer mechanism 

alone cannot explain the fade seen in the experimental studies. It remains important not to lose 

sight of experimental studies of cycling to help inform future models. These models should not 

just use the information gained to add empirical corrections to a model, but rather should seek to 

better understand the physics and mechanisms causing the variations between simulated results 

and experimental results. 
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Appendix A: Additional Examples of the  

Perturbation and Switch Method 
 

This chapter contains excerpts from the following journal article, reproduced here with permission 

from Elsevier: 

Lawder, Matthew T., Ramadesigan, Venkat, Suthar, Bharat K., Subramanian, Venkat R. 

“Extending explicit and linearly implicit ODE solvers for index-1 DAEs” Computers and Chemical 

Engineering, 82(2015) 283-292 

 

A.1: Wu and White Problem  

An example of a two equation system representing a thin film nickel hydroxide electrode 

described in Wu and White
211

 is studied during the charging process. This system can cause 

difficultly in determining consistent ICs. The system is represented by the equations:
56
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The parameters of the system are given in Table A-1. The differential variable y represents the 

nickel hydroxide mole fraction and the algebraic variable z represents the potential difference at 

the solid liquid interface. In a discharged state, the mole fraction of the nickel hydroxide is 

estimated to be: 

 ( 0 ) 0 .0 5y   (8.5) 

under the algebraic constraint, the consistent IC for the potential must be: 

 
(0 ) 0 .3 5 0 2 3 6z 

 (8.6) 
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Table A-1: Parameters for Nickel Hydroxide Electrode. 

 

(Several imaginary roots are solutions to the algebraic constraint, but these are non-physical 

solutions, so they are not useful for the electrode equations shown here). 

When deviating from the consistent ICs, many initialization routines and solvers fail to 

obtain a solution. Table A-2 shows the range of possible ICs for the algebraic variable that 

provide a solution for different solvers and approaches including the proposed single-step 

approach. Under normal conditions (no initialization), these solvers require initial guesses that 

are very close to the consistent values. The proposed single-step approach greatly widens the 

possible range of ICs. The solution for a full charge of the electrode is shown in Figure A-1 (with 

an initial guess z(0)=0.7). For systems where the ICs are not easily available or obvious from the 

physical system, the expanded range of possible initial guesses is important for obtaining a 

solution. As mentioned in Chapter 2, a compiled single procedure can be obtained for a nonlinear 

DAE system with this approach just like a procedure for ODEs. This helps improve the 

efficiency and robustness for inverse optimization problems (optimal control and parameter/state 

estimation). 
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Table A-2: Comparison of working ranges of initial algebraic guess for Example 2 using different 

solvers. The Maple dsolve approach uses Maple’s rkf45 method. 
49, 50, 212, 213

 

 

 

Figure A-1: Solution to Example 1. 

A.2: Implicit ODE converted to DAE solved with Explicit Solver 

The proposed approach can also be used to solve implicit ODEs. Consider the implicit 

ODE: 
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This problem cannot be directly solved using explicit solvers. When attempted, Maple 

states that IC for dy/dt is not known or the system cannot be converted to explicit ODE form. 

However, including a substitution:  

 

Figure A-2: Solution to Example 2. 
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converts Eq. (8.7) into: 

    
2
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This adds a variable z, allowing the proposed approach to be used. The proposed 

approach is applied to Eqs. (8.8) and  (8.9) leading to: 
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where q=1000 and tj=1 for the switch function. The results for both initialization and simulation 

are shown in Figure A-2 for the system solved using 0 .1  with ICs of: 

 ( 0 ) 0y   ( 0 ) 0z   (8.12) 

The converged value for z(0) from the initialization portion of the solver is 0.550.  

A.3: Partial Differential Equation Discretized to DAEs 

When PDEs are discretized they can create a system of DAEs. Many of these systems 

consist of variables with explicit time derivatives (like concentration) and static variables (like 

potential which may not consist of time derivatives, but still change with time because other 

variables in the system change with time). Consider the following set of PDEs: 
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with the boundary conditions: 
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Though ∂z/∂t is not present in the system, z changes with time as y changes with time. 

The model can be solved using numerical method of lines
214

 which will discretize the spatial 

derivatives over a series of node points between the system’s boundaries. When discretizing for 

the spatial variable the system becomes:  
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where h is the length between node points. And the boundary conditions become: 
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where N is the number of interior node points of the system. Converting to the proposed 

approach the system equations become: 
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And the boundary equations are: 
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For standard solvers the system cannot be solved for a large number N using explicit 

solvers (i.e., one cannot convert this system of DAEs to explicit ODEs of the form dy/dt = f. 

Maple’s dsolve, even with consistent ICs (yi(0)=1 and zi(0)=0), cannot solve the system for N 

greater than 5. Maple aims to convert the DAE system to an explicit ODE system of the form 

dy/dt =f and fails for larger values of N. However using the single step proposed approach 
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loosens the restrictions on the number of interior node points and increases the solving speed in 

Maple without having to use solvers involving Newton type iterations. Larger values of N may 

be required for higher accuracy and better convergence. Figure A-3 shows the value of y at x=0, 

1/3, 2/3, and 1 for N=2 and N=11 with ε=1x10
-5

). The values at N=11 have converged to more 

accurate values, especially for values closer to x=0. Consistent ICs (yi(0)=1 and zi(0)=0) were 

used for Figure A-3. The proposed approach can use the standard Maple dsolve approach to 

solve for more internal node points, without having to use direct DAE solvers that use Newton-

Raphson type iterations. Even at lower number of node points, the proposed approach is faster 

than standard simulation techniques as it provides Maple with an approximate ODE that it can 

solve directly. At N=5 the proposed approach solves in 159ms using Maple dsolve, over an order 

of magnitude faster than the standard techniques inbuilt in Maple. 

 
Figure A-3: Solution to Example 3 for N=2 and N=11 at four different x-values. 
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Appendix B: Methods for Optimization 
 

B.1 Optimization Simulation: Objectives and Constraints 

The goal of the battery optimization in Chapter 4 is to find the charging protocol that will 

maximize the amount of charge stored in a given time period while limiting the negative effects 

of the charging protocol. There are many different methods for optimization simulation, but the 

type of optimization being performed in this work is simultaneous nonlinear programming 

optimization.
215

 In order to perform the optimization, the battery model equations are first 

spatially discretized and then temporally discretized in order to create a set of nonlinear algebraic 

equations. An objective function and path constraints are then applied to the system resulting in a 

large nonlinear program which is then solved using IPOPT (a nonlinear programming solver).
216

 

IPOPT will iterate solutions within the bounds until finding a solution with the maximum value 

of the objective function Note that in practice, the IPOPT code objective function will find the 

minimum of the objective function, therefore in the cases stated, the objective function contains 

the negative of the stored. The optimization performed in Chapter 4 will be outlined below. 

The objective function for maximizing charge stored will be: 

 
0

m a x ( )

f
t

a p p
Q i t d t   (9.1) 

where Q is the charge stored and iapp is the current applied to the battery. In the case outlined in 

Chapter 4, the iapp can only come from the solar array and therefore there will be a constraint 

such that: 

 0 ( ) ( )
a p p m a x

i t i t   (9.2) 

where: 
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with t in hours. Additionally the Voltage of the system is constrained by the safe limits of 

operation such that: 

 2 .8 ( ) 4 .1 5V t   (9.4) 

 Under the standard charging scenario (see Figure 4.3), optimization is not performed and 

the iapp follows the maximum charge until reaching the maximum voltage at which time the 

battery is considered fully charged. Under this scenario the SEI layer growth is tracked. The 

amount of growth to the SEI layer from the base case is represented by b a s e

S E I
 . When optimization 

is performed to maximize Q, Eq. (9.1) will be used as the objective function. 

 This optimization will increase the amount of charge stored by utilizing a different 

charging protocol which allows slightly more charge to be stored before reaching the voltage cut-

off of 4.15. In addition to increasing the charge stored, the SEI layer growth will be restricted so 

that it does not increase from the base case. For further optimization, the growth of the SEI layer 

will seek to be limited without greatly reducing the amount of charge stored. In order to limit the 

amount of SEI layer growth, an additional constraint to the system is included shown as: 

 0 0 .9
b a se

S E I S E I
    (9.5) 

Since the SEI layer only grows and cannot shrink under our assumptions, this constraint will 

only affect the SEI at the final simulation time. 

This constraint limits the SEI layer growth of the system to only 90% of the SEI layer 

growth in the base case. Assuming the SEI layer growth is the predominant form of capacity, 

reducing growth per cycle by 10% will increase total cycle life of the battery by 11.1%. The final 

case that reduces fade still includes the objective function to maximize the amount of charge 
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stored. For results of these cases see Chapter 4. Using both the objective function and constraints 

allows for controlling multiple variables within the simulation. 

The M.A.P.L.E lab has worked on optimization of Li-ion battery models for different 

applications, targeting a variety of internal states for constraints. These topics include finding the 

best charging profiles for mechanically constrained systems
148

 and high stress systems
217

 as well 

as analyzing design characteristics such as electrode porosity, thickness, and tortuosity.
218

 

B.2 Graphical User Interface for Battery Optimization 

In order to provide easier access and demonstration of the M.A.P.L.E. group’s battery 

optimization models, a graphical user interface (GUI) was developed in Excel and VBA to allow 

for users outside the lab to utilize the optimization simulation. For faster solving, the 

optimization code, which was developed in Maple (software), was converted into an executable 

C file. This executable file used text files as inputs to allow for changing of parameters such as 

simulation time, or constraints such as maximum allowable charging current. The output of the 

executable file is also placed into a text file. The GUI was created to allow easy manipulation of 

the input text files and running of the executable. Additionally, once the executable has finished 

running and outputs the results, the GUI aggregates the results into a viewer panel with important 

charts and metrics of the optimization simulation. The GUI runs a full optimization simulation of 

the system through the executable file just as the original code would. 

The GUI home window is shown in Figure B-1. The home window allows users to set the 

allowable charging time (30min; 45min; 1hour) and set upper bounds for temperature, Tmax, 

(310K; 315K; 320K; Unbounded), maximum allowable current, imax (1C; 1.5C; 2C), and lower 

bound for cycle life (500 cycles; 750 cycles; 1000cycles). The objective function will try to 

maximize the charge stored in all cases and the voltage will be limited to operation between 2.8V 
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and 4.1V. The set of objectives and constraints for the system based on user input can be shown 

as: 

 
0

m a x ( )

f
t

a p p
Q i t d t   (9.6) 
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i t i   (9.7) 

 2 .8 4 .1V   (9.8) 
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The SEI layer growth is used to determine the cycle life of the battery. When the minimum cycle 

life of the battery is required to be 1,000 cycles, the maximum allowable SEI layer growth, m a x

S E I
 ,  

will be half of the value allowed for the 500 cycle life case. 

 
Figure B-1: GUI for battery optimization. 
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 After running the optimization executable and obtaining the optimal charge protocol, the 

GUI will create charts from the results of the applied current, voltage, temperature and SOC of 

the battery with respect to time. Note, the SOC is measured as the amount of lithium in the anode 

divided by the maximum amount of lithium allowed in the anode. Additionally, the GUI will 

report the input bounds and simulation time as well as the final SOC. A view of the results 

window from the GUI is shown in Figure B-2. 

 

Figure B-2: Results from the GUI. 

A comparison between two successive simulations can be done as well. Figure B-3 shows 

comparisons of two different cases. The GUI allows for any user to access many different cases 

to test battery optimization without the need for intimate knowledge of the battery model, 

optimization methods, or the coding language (in this case Maple and C) that the original 

optimization code was written in. This type of interface greatly lowers the barrier for someone 
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new to understand how the battery optimization works and view customized results. A video 

tutorial of the GUI that walks the user through several cases is available on the M.A.P.L.E 

group’s website at http://depts.washington.edu/maple/Batteryopt_new.html. 

 
Figure B-3 Two comparisons of different cases. 
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Appendix C: Drive Cycles 
 

DST: Dynamic Stress Test 

Duration: 360s 

Distance: 4.63km 

Average Velocity: 46.3km/h 

Max Velocity: 83km/h 

Regenerative Braking to Propulsion Power Ratio: 0.052 

*Velocity curve derived from prescribed power curve for DST cycle 

 
 

 

NEDC: New European Driving Cycle 

Duration: 1180s 

Distance: 11.02km 

Average Velocity: 33.6km/h 

Max Velocity: 120km/h 

Regenerative Braking to Propulsion Power Ratio: 0.183 
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ECE-15: Elementary Urban Cycle 

Duration: 195s 

Distance: 1.00km 

Average Velocity: 18.4km/h 

Max Velocity: 50km/h 

Regenerative Braking to Propulsion Power Ratio: 0.423 

 

 
 

 

EUDC: Extra-Urban Driving Cycle 

Duration: 400s 

Distance: 6.96km 

Average Velocity: 62.6km/h 

Max Velocity: 120km/h 

Regenerative Braking to Propulsion Power Ratio: 0.143 
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UUDS: Urban Dynamometer Driving Schedule 

Duration: 1370s 

Distance: 11.99km 

Average Velocity: 31.5km/h 

Max Velocity: 91km/h 

Regenerative Braking to Propulsion Power Ratio: 0.363 

 

 
 

 

FTP-75: Federal Test Procedure 

Duration: 1875s 

Distance: 17.79km 

Average Velocity: 34.2km/h 

Max Velocity: 91km/h 

Regenerative Braking to Propulsion Power Ratio: 0.357 
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HWFET: Highway Fuel Economy Driving Schedule 

Duration: 765s 

Distance: 16.45km 

Average Velocity: 77.7km/h 

Max Velocity: 96km/h 

Regenerative Braking to Propulsion Power Ratio: 0.171 

 

 
 

US06: Supplemental FTP Driving Schedule 

Duration: 600s 

Distance: 12.89km 

Average Velocity: 77.9km/h 

Max Velocity: 129km/h 

Regenerative Braking to Propulsion Power Ratio: 0.303 
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Appendix D: List of Abbreviations & Variables 
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 Implemented optimal model-based charging protocols focused on reducing capacity fade. 

  Refined numerical methods for solving differential algebraic equations by applying a 

perturbation approach with discrete switch for reducing consistency requirements. 

 Funded in part by DOE ARPA-E award #DE-AR0000275 to develop better battery management 

systems for electric vehicles utilizing model-based control. 
 

EDUCATION 
 

Ph.D. Candidate Energy, Environmental, and Chemical Engineering Aug. 2011-Dec. 2015         

Washington University, Saint Louis, MO GPA:3.83  

B.S. Physics (with Honors) Aug. 2007-May 2011 

Butler University, Indianapolis, IN Minors: Astronomy and Math      GPA:3.81          

High School, Saint Louis University High School   Aug. 2003-May 2007        
 

RESEARCH AND WORK EXPERIENCE 
  

Washington University-Graduate Research Assistant (Ph.D.) Jan. 2012-Present 

 Thesis: “Modeling, Simulation, & Analysis of Lithium-Ion Batteries for Grid-Scale Applications” 

 Advisors: Venkat Subramanian and Pratim Biswas 

 Built models for simulation of batteries in electric vehicle and electric grid environments 

focused on increasing battery life and utilization. 

 Analyzed large battery cycling data sets to produce easy to use life metrics. 

 Conducted techno-economic feasibility studies for grid scale battery implementation 

 Collaborated with the National Renewable Energy Laboratory and Pacific Northwest 

National Laboratory. 
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Washington University Office of Sustainability-Intern May 2014-Present 

 Analyzed potential for renewable energy projects (solar, wind, storage)   on and off-campus 

 Led team for producing educational outreach component for existing campus solar arrays 
 

Washington University-Research Rotation Assistant in The Jay Turner Lab Aug.-Dec. 2011 

 Implemented regional air dispersion models for emissions from St. Louis area 

University of Idaho-Student Researcher June-Aug. 2010 

 As part of the National Science Foundation’s Research Experience for Undergrads 

 Thesis: “Measuring Regional Regolith Depth across the Lunar Surface” 

 Advisor: Gwen Barnes 

 Analyzed moon crater features with surface images from Lunar Reconnaissance Orbiter 

 Calculated topsoil (regolith) depth in regions across the lunar surface 
 

Butler University-Student Researcher May-July 2009 

 Advisor: Xianming Han 

 Conducted experiments to analyze Fresnel diffraction patterns through pinholes 

 Built a graphical user interface (in visual basic) to analyze diffraction patterns in digital images 
 

PATENTS 
 

V. R. Subramanian, V. Ramadesigan, P. W. C. Northrop, S. De, B. Suthar, M. T. Lawder, “Systems 

and methods for improving battery performance,” US Patent: US20140136169 (May, 2014) 
 

D. Sonawane, M. T. Lawder, M. Pathak, V. Ramadesigan, V. R. Subramanian, “Robust fail-safe 

iteration free approach for solving Index-1 DAEs arising from battery models,” Provisional Patent 

Application Number: 62194678 (Submitted July, 2015) 
 

ACADEMIC HONORS 
 

 Electrochemical Society – IEEE Division student travel grant winner.  Spring 2014 

 MAGEEP 4
th
 Energy and Environment Symposia Student video competition 2

nd
 place.  2012 

 Henry G. Swartz Jr. Fellowship at Washington University in St. Louis 2011-2012 

 Member of Electrochemical Society 2012-Present 

 Member of Sigma Pi Sigma - Physics honor society 2010-Present 

 Robert O. Whitesell Award - given annually to a student in Butler’s physics department  2010 

for academic excellence in Physics. 

 Howard Baker Award - given annually to a student in Butler’s physics department of  2009 

physics for excellence in the pursuit of a career in Physics and Astronomy  
 

PUBLICATIONS 
 

 

1. M. T. Lawder, V. Ramadesigan, B. Suthar, V. R. Subramanian. “Extending Explicit and Linearly 

Implicit ODE Solvers for Index-1 DAEs.” Computers and Chemical Engineering (2015)  

2. M. T. Lawder, V. Viswanathan, V. R. Subramanian. “Balancing Autonomy and Utilization of Solar 

Power and Battery Storage for demand based Microgrids.” Journal of Power Sources 279 (2015) 

3. M. T. Lawder, P. W.C. Northrop, V. R. Subramanian. “Model-based SEI Layer Growth and 

Capacity Fade Analysis for EV and PHEV Batteries and Drive Cycles.” Journal of the 

Electrochemical Society 161:14 (2014) 

4. M. T. Lawder, B. Suthar, P. W.C. Northrop, S. De, C. M. Hoff, O. Leitermann, M. L. Crow, S. 

Santhanagopalan, V. R. Subramanian. “Battery Energy Storage System (BESS) and Battery 

Management System (BMS) for Grid-Scale Applications.” Proceedings of the IEEE 102:6 (2014) 
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5. G. D. Bart, R. D. Nickerson, M. T. Lawder, H. J. Melosh. “Global survey of lunar regolith depths 

from LROC images.” Icarus 215:2 (2011) 

6. B. W. Murphy, A. N. Darragh, T. W. Harp, Z. J. Liu, B. B. Geiss, M. T. Lawder, M. J. McFall, K. A. 

Phifer. “Light Curve Analysis of Asteroids 619 Kolya, 9549 Akplatonov, 12466 1997 AS12, 15154 

2000 FW 30, and 32505 2001 KF17.” Minor Planet Bulletin 38  (2011) 

 

PRESENTATIONS (FIRST AUTHOR) 
 

1. Model-based Techno-Economic Analysis and Optimization of Battery Storage for Solar Energy 

(talk). American Institute of Chemical Engineers Annual Meeting. Salt Lake City, UT. November, 

2015. 

2. Model-based Techno-Economic Analysis of Battery Function for Energy Storage of Solar Energy 

(talk). Electrochemical Society Fall Meeting. Phoenix, AZ. October, 2015. 

3. Techno-Economic Assessment of Battery Integration with Solar Power (talk). MAGEEP-Solar 

Energy and Energy Storage Workshop. Ankara, Turkey. June, 2015. 

4. Model-Based Regional Comparison of Autonomy and Battery Utilization of Energy Storage 

Integration with Solar Power (talk). Electrochemical Society Spring Meeting. Chicago, IL. May, 

2015. 

5. Model-Based SEI Layer Growth in EV and PHEV Batteries for Standard Drive Cycles (talk). 

Electrochemical Society Spring Meeting. Chicago, IL. May, 2015. 

6. Solar Powered Microgrid Autonomy and Battery Utilization (poster). McDonnell Academy 

International Symposium. St. Louis, MO. October, 2014. 

7. Autonomy and Battery Utilization within Microgrids and Solar-Battery Applications (talk). 

Electrochemical Society Fall Meeting, Cancun, Mexico. October, 2014. 

8. Modeling and Lifetime Assessment of Lithium-Ion Batteries Used for Solar Firming Applications and 

Grid Storage (talk). Electrochemical Society Spring Meeting, Orlando, FL. May, 2014. 

9. Modeling and control of electrochemical energy storage systems for the renewable electric grid 

(poster). Institute for Pure & Applied Mathematics Workshop III: Batteries and Fuel Cells, Los 

Angeles, CA. November, 2013. 

10. Modeling and Optimal Control of Energy Storage Devices for a Lithium-Ion Battery-Photovoltaic 

Hybrid System (talk). Electrochemical Society Fall Meeting, San Francisco, CA. October, 2013. 

11. Modeling of a Lithium-ion Battery-Photovoltaic Solar Cell hybrid System (talk). Electrochemical 

Society Spring Meeting, Toronto, Canada. May, 2013. 

12. Modeling and Simulation of Solar Cell Coupled with Recycled/reusable Lithium-ion Batteries 

(poster). McDonnell Academy Global Energy and Environment Partnership 4
th
 Energy and 

Environment Symposia, Mumbai, India. December 2012. 

13. Measuring Regolith Depth across the Lunar Surface (talk). Butler Undergraduate Research 

Conference, Indianapolis, IN. April, 2011. 

14. Measuring Regolith Depth across the Lunar Surface (poster). American Geophysical Union Fall 

Meeting, San Francisco, CA. December, 2010. 

15. Study of intensity pattern of Fresnel diffraction through a circular aperture (talk). Butler 

Undergraduate Research Conference, Indianapolis, IN. April, 2010. 
 

CODING LANGUAGES 
 

Worked on projects with Maple, MapleSim, Matlab, R, C++, Fortran, Visual Basic, HTML and SQL. 
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 Akanka Jagwani (IIT Gandhinagar, India), MAGEEP summer student, 2012 
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COMMUNITY OUTREACH 
 

 Big Brothers Big Sisters mentor, 2008-2011. 

 LEGO Engineering in the Elementary Classroom, Spring 2012. 

 ECS IEEE Division conference outreach, bi-annually at ECS meetings. 

 Washington University Young Scientist Program, 2014-Present. 
 

PERSONAL 
 

 Enjoys running and racing marathons with a best time of 2 hours and 26 minutes (Boston, 2015-46
th
 

place). I also help organize a local Elite racing team (Big River Running) and have coached 

(assistant) cross country at a local high school (St. Louis University High). 

 Energy and Environmental Blogger for Washington University in St. Louis’ The Common Reader 

magazine and website (https://commonreader.wustl.edu/blogs/). 
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