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ABSTRACT OF THE THESIS 

Application of principal component analysis to  

cardiac optical mapping 

by 

Louis Woodhams 

Master of Science in Mechanical Engineering 

Washington University in St. Louis, 2017 

Research Advisor: Professor Guy Genin 

 

Structural remodeling of the heart due to pathologies such as hypertension and myocardial 

infarction leads to the appearance of myofibroblasts, a phenotype largely absent in physiologic 

myocardium. While myofibroblasts are responsible for wound healing and structural repair of 

damaged myocardium, they are thought to have deleterious effects on electrical and mechanical 

properties of the heart.  Understanding these effects is critical to developing effective treatments, 

and has motivated the development of a series of in vitro engineered heart tissues and 

cardiomyocyte-myofibroblast co-cultures whose mechanical and electrophysiological function 

can be deduced from video analysis.  Electrophysiological properties are evident from changes in 

intensity of a fluorescent calcium assay, mechanical properties are evident from deformations 

apparent in the video, and both are used to study excitation-contraction coupling properties.  This 

thesis contributes efficient mathematical tools for denoising and analyzing videos of contracting, 

vibrating, and flashing structures.
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Chapter 1: Introduction 

1.1 The Cardiac Action Potential 

In a properly functioning human heart, the cardiac action potential (AP) impulse originates in the 

sinoatrial node (SA node) and propagates through the left and right atrial myocardium as it 

travels to the atrioventricular node (AV node).  The signal is then delayed by around 100ms as it 

passes through the AV node, to allow for contraction of the atria.  After the delay, the action 

potential propagates along the Purkinje fibers through the bundle of His in the inter-ventricular 

septum and out to the ventricular myocardium.  From here, the signal propagates through the 

ventricular myocardium, causing the ventricles to contract. 

Propagation of the AP through the myocardium is primarily a cardiomyocyte (CM) to 

cardiomyocyte process involving the spread of ion currents through protein connections called 

gap junctions [1].  As an individual CM undergoes an AP sequence, positively charged sodium 

ions (Na+) rapidly flood into the cell bringing the transmembrane electrical potential in the cell 

from around -80mV to a brief positive spike.  This activates other ion channels in the cell, which 

cause an efflux of Potassium ions (K+), neutralizing the transmembrane potential, and an influx 

of Calcium ions (Ca2+), which further release Ca2+ ions sequestered in the sarcoplasmic 

reticulum to initiate contraction of the cell.  The rapid increase in positive ion concentrations 

within the cytoplasm causes positive ions to diffuse to other CMs through gap junctions.  The 

diffusion of positive ions into adjacent cells causes the membrane potentials within those cells to 

rise to a threshold voltage which initiates depolarizations in those cells and the cycle continues.  

After a cell has depolarized, it must repolarize to its resting membrane potential and there is a 
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refractory period during which the fast Na+ channels are inactivated, and a cell cannot initiate an 

AP sequence. [2] [3] 

The myocardial AP propagation described above is possible because individual CMs “buffer” the 

signal by depolarizing and flooding with positive ions as they are activated.  Fibroblasts (FBs), 

which are responsible for maintaining the extracellular matrix (ECM), are the most numerous 

cell in the myocardium [4] [5]. FBs do not have APs, and it is unclear whether they form gap 

junctions with CMs under physiological conditions [6].  However, under pathological conditions, 

fibroblasts (FBs) within the myocardium may undergo a phenotypic change to myofibroblasts 

(mFBs), also known as activated fibroblasts, which are known to form heterocellular gap 

junctions with CMs in vitro, though whether or not such heterocellular connections are formed in 

vivo is still a matter of active research [6] [4].  MFBs do not have action potentials and therefore 

cannot buffer the cardiac AP.  This creates several potential signal propagation issues.   

Firstly, signal propagation through mFBs is delayed as ions must diffuse through a passive cell 

[1].  This may cause the AP wave front to travel more slowly and meander through regions with 

high concentrations of mFBs (as may occur with fibrosis), or it may lead to signal blockage in 

areas where there are clumps of mFBs (such is the aftermath of an infarction).  While slowing of 

the signal is undesirable, heterocellular coupling may allow the impulse to travel through regions 

of scar tissue where the signal might otherwise be blocked. 

Secondly, if mFBs act as passive ion reservoirs, they may contribute to source-sink mismatches 

and create unidirectional conductance blocks.  When CMs depolarize, there is an ion efflux 

through gap junctions into adjacent cells.  If all cells are CMs, and the cell density is sufficient, 

then the ions entering quiescent cells are enough to depolarize them and the buffering of the 
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signal means that there are never too few ions leaving the depolarized cells to trigger the next 

quiescent cells.  However, if some of the cells are passive (do not experience APs), or the 

densities become low, there can exist situations in which the ion current is not great enough to 

trigger the next group of CMs.  When the signal travels from a sparse group of cells surrounded 

by mFBs (and the accompanying excessive ECM) to a larger group of CMs, the ions exciting the 

first group may not be sufficient to excite the second group (however, the signal may pass in the 

opposite direction).  This is known as unidirectional conduction block. 

Perhaps the greatest danger related to the above two properties of AP propagation in mFBs is 

their contribution to arrhythmogenesis [5] [2].  To function properly, the heart must contract in 

the orderly fashion described previously.  The impulse typically originates in the SA node 

because cells in this node have automaticity.  Cells in the AV node and Purkinje fibers also have 

automaticity, but typically do not initiate cardiac impulses due to their slower firing rate (the SA 

node usually fires first).  Problems with AP propagation can lead to ectopic impulse initiation 

and re-entrant arrhythmia. Re-entrant arrhythmia may be due to complex interactions between 

CMs and mFBs where a signal that has been delayed by slow mFB conduction re-emerges into 

post-refractory myocardium and initiates another depolarization sequence (see [2] for a graphical 

description).   

In vitro, immature induced-pluripotent-stem-cell (IPSC) derived CMs demonstrate automaticity, 

though it a matter of ongoing investigation as to how closely CM-mFB interactions and 

behaviors in vitro model those in vivo. 

We wish to investigate the effect of varying concentrations of mFBs on AP propagation, and to 

map on the microscopic scale how the cardiac impulse travels within different configurations of 



4 

 

cells.  It has been suggested that there may be more to AP propagation than simply gap-

junctional coupling, and we hope through microscopic optical mapping of APs in different cell 

configurations to gain insight and understanding this phenomenon. [1] 

1.2  Past Work 

This work studies images of beating cell monolayers and multilayers. The acquisition of images 

was not a focus of this thesis, and we therefore list methods used to acquire these images in this 

introductory section.  To study AP propagation in CMs and mFBs, we have created monolayer 

and multilayer CM and mFB co-cultures with varying concentrations of mFBs.  These cultures 

are typically stained with a fluorescent reporter such as Fluo-4 (which indicates intracellular Ca2+ 

concentrations) so that we may optically map AP propagation in CMs.   

The cells are typically self-paced, although our group has performed experiments with external 

pacing in the past and may pursue this again.   

Images were acquired using a pco.edge sCMOS 5MP camera capable of recording images at 

100FPS at full resolution and up to 1000 FPS using a reduced imaging area.  All images were 

recorded directly to uncompressed .tif format.  A custom 7-LED lamp (Figure 1) with 470nm 

LEDs from luxeonstar.com and a 12° beam optic array were interfaced with the Zeiss Confocor 

Microscope for fluorescence excitation. 
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Figure 1 – Custom LED fluorescence excitation lamp for Zeiss Microscope. 

Videos were obtained of various concentrations of mFBs in CMs undergoing spontaneous 

depolarization sequences using fluorescence imaging as described, and using phase contrast 

microscopy.  Fluorescence imaging using Fluo-4 is very effective for mapping action potential 

propagation as indicated by calcium transients.  Phase contrast imaging is useful for identifying 

cell boundaries and mapping motion and deformation in the cells.  These two types of videos 

could not be taken concurrently with the setup used. 

1.3 Image Analysis Methods 

The focus of this thesis will be image analysis methods used to enhance and extract information 

from videos of depolarizing heart cells.  Here we will give a brief overview of the image analysis 

methods that we have used prior to the work that is the focus of this thesis. 

The first and simplest image analysis method that we used was the plotting of average intensities 

of selected spatial regions in an image array (video).  This method involves importing a set of 

images (usually from hundreds or thousands of .tif files, or from a single multi-page .tif), into a 

3-dimensional array (height x width x frame number) in MATLAB.  The camera we used is 

monochromatic, so there is not a dimension for RGB color channel.  We then use the 

imfreehand() function in MATLAB to select an ROI and create a binary mask (with ones inside 
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the region and zeros outside).  This mask is then elementwise multiplied by the images in the 

array and the remaining non-zero values are averaged.  Using this method, we obtain a plot of 

average intensities over time in our ROIs.  A single such plot is shown in Figure 2 on the left, 

and multiple ROIs are shown on the right.  An image of the ROI selection process is shown in 

Figure 3. 

 

Figure 2 – Left: Single ROI intensity plot.  Right:  Intensity plot for multiple ROIs. 

The ROI plotting method allows us to obtain several types of qualitative and quantitative 

information. We obtain calcium transient shapes which give us AP durations and periods.  By 

looking at the initial calcium upstroke times, we can get AP delays between regions.  We can 

compare different regions by normalizing the intensity plots and comparing maximum upstroke 

velocites to see how these are affected by mFB concentrations. 

The second kind of analyisis typically performed involved enhancing certain aspects of the video 

in order to aid visualization of AP propagation.  The Ca2+ transients shown in the plots above are 

easy to visualize because we can look at them all at once (especially when the plot is shown 

larger), and we have reduced noise by averaging pixel values over the entire region.  However, 

when viewing the video, there may be significant image noise and it may be difficult to discern 

slow monochromatic changes in intensity to track AP propagation.   
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Figure 3 – Left: manual ROI selection. Right: AP isochrone map.  Dark blue is earliest, yellow is latest.  The background has been 
thresholded. 

One visualization aid is to superimpose scaled time derivatives (technically finite differences) of 

the pixel intensities over over the original video in another color.  We commonly use red to show 

increasing pixel intensity (representing Ca2+ transient upstroke velocity) and blue to show a 

falling pixel intensity.  As you can see from the plots in Figure 2, Ca2+ upstrokes are brief, so we 

are able to get good separation of the signal location if we step through the enhanced video one 

frame at a time.  We may obtain an AP isochrone map for a single AP sequence by creating an 

image in which each pixel is assigned the frame number of the maximum upstroke velocity in the 

corresponding video pixel (Figure 3). 

An issue that we ran into early on with the time derivative based image enhancement was noise.  

Noise was a problem in the original videos, but when taking derivatives of noisy data, the noise 

becomes overwhelming to the original data.  Initially, we tried combinations of Gaussian blur 

and median filtering to get the derivatives under control.  Heavy application of spatial filtering 

worked well, and 3D versions of Gaussian and median filters (extremely resource intensive) 
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were also effective.  However spatial filtering methods come at the expense of image resolution 

and 3D filters reduce temporal resolution as well. 

Professor Robert Pless introduced the idea and method of using the Singular Value 

Decomposition (SVD) for image denoising and potentially for gathering data about APs in our 

videos.  This method works extraordinarily well for getting noise-free visually satisfactory 

approximations of our original image sets.  However, there are limits to the application of this 

powerful mathematical tool and it may introduce artifacts and omissions which may or may not 

be immediately visible to the eye.   

The focus of this thesis will be an exploration of several software methods and their application 

to the analysis of scientific images, especially images of heart cells. 
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Chapter 2: Introduction to the Singular 

Value Decomposition 

This section draws on several sources for general information about singular value 

decomposition and principal component analysis.  See [7] [8] [9] [10] [11] [12]. 

2.1 Singular Value Decomposition: 

The Singular Value Decomposition (SVD) decomposes a square or rectangular matrix into two 

orthogonal matrices and one diagonal matrix: 

 𝑨𝒎𝒙𝒏𝑽𝒏𝒙𝒏 = 𝑼𝒎𝒙𝒎𝑺𝒎𝒙𝒏 , 𝒐𝒓       𝑨𝒎𝒙𝒏 = 𝑼𝒎𝒙𝒎𝑺𝒎𝒙𝒏𝑽𝒏𝒙𝒏
𝑻  (1) 

 

Here A is our original Matrix (m x n), U is an orthogonal matrix (m x m), S is a diagonal matrix 

(m x n), and V is an orthogonal Matrix (n x n).  The columns of U (the left singular vectors) are 

the eigenvectors of 𝑨𝑨𝑻, and the columns of V (the right singular vectors) are the eigenvectors of 

𝑨𝑻𝑨.  The diagonal entries of S (the singular values) are the square roots of the eigenvalues of 

𝑨𝑨𝑻𝑎𝑛𝑑 𝑨𝑻𝑨 (the non-zero eigenvalues are the same) sorted by decreasing size.  The diagonal 

entries in S are always positive or zero.   

Because U and V are orthogonal matrices (𝑼𝑻𝑼 = 𝑼𝑼𝑻 = 𝑰𝒎𝒙𝒎, 𝑽𝑻𝑽 = 𝑽𝑽𝑻 = 𝑰𝒏𝒙𝒏), they 

have columns of unit length.  Magnitudes are contained in S. 
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To see that the columns of U are the eigenvectors of 𝑨𝑨𝑻, and the diagonal entries of 𝑺 the 

square roots of the eigenvalues of 𝑨𝑨𝑻, write: 

 𝑨𝑨𝑻 = (𝑼𝑺𝑽𝑻)(𝑼𝑺𝑽𝑻)𝑻 = 𝑼𝑺𝑽𝑻𝑽𝑺𝑻𝑼𝑻 = 𝑼𝑺𝑰𝑺𝑻𝑼𝑻 = 𝑼𝑺𝑺𝑻𝑼𝑻   (2) 

 

𝑽 is orthogonal because its columns are the eigenvectors of a symmetric (full-rank if the columns 

of A are independent) matrix, so 𝑽𝑻𝑽 = 𝑰.  Because S is a diagonal matrix, 𝑺𝑺𝑻is a diagonal 

matrix whose diagonal elements are the squares of the diagonal elements of 𝑺.  We recognize 

this as the eigen decomposition of the symmetric matrix 𝑨𝑨𝑻.   We can do a similar procedure to 

show that the columns of V are the eigenvectors of 𝑨𝑻𝑨, and the squares of the diagonal entries 

of 𝑺 are its eigenvalues. 

There are several ways to think about the SVD.  One way to think of it is that the columns of 𝑼 

(the left singular vectors) form an orthogonal basis for the columns of 𝑨 sorted in decreasing 

order of importance.  If we choose an arbitrary number 𝑝 of consecutive columns starting from 

the left side of matrix 𝑼, those will form the best p-dimensional basis for reconstructing the 

columns of 𝑨.  The entries of the diagonal matrix 𝑺 are the weights of those basis vectors (sorted 

in descending order).  The columns of 𝑽𝑻(or the rows of 𝑽) are the coefficients used to 

reconstruct the corresponding columns of 𝑨 from a linear combination of the singular value 

weighted columns of 𝑼.   

For instance, the first column of 𝑨 is a linear combination of the columns of 𝑼𝑺 (the principal 

components), where the first column of 𝑽𝑇 gives the coefficients of the linear combination.  The 

second column of 𝑽𝑇 gives the coefficients used to reconstruct the second column of 𝑨.  We 

need one column of 𝑽𝑇 for every column of 𝑨. 
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Looking at the first form of the SVD equation, 𝑨𝑽 = 𝑼𝑺, we can also look at 𝑽 as an orthogonal 

transformation that takes the correlated columns of 𝑨 and finds the uncorrelated principal 

components 𝑼𝑺.  The orthogonal principal component vectors (the columns of 𝑼𝑺) are linear 

combinations of the columns of 𝑨 (given by the corresponding columns of 𝑽). 

Because the rows of 𝑺 with row indices greater than n will be zeros (assuming m > n), we can 

write an “economy size” or “thin” version of the SVD as follows: 

 𝑨𝒎𝒙𝒏 = 𝑼𝒎𝒙𝒏𝑺𝒏𝒙𝒏𝑽𝒏𝒙𝒏
𝑻  (3) 

 

Here the columns of 𝑼 with column indices greater than n have been discarded, and 𝑺 has been 

resized to remove the m – n rows of zeros at the bottom. 

2.2 Principal Component Analysis 

The terms Principal Component Analysis (PCA) and Singular Value Decomposition are 

sometimes used interchangeably.  Often people will say that they have used the SVD on a mean-

centered data matrix to perform PCA.  Here we are interested in the contributions of the 

individual principal components that we have found using the SVD.  The contribution of each 

principal component to the reconstruction of our original matrix may be seen in the rank-1 

matrices that are formed by the outer products of the columns of US (the PCs) with the 

corresponding rows of 𝑽𝑇.  If the columns of U and V are 𝒖𝑖 and 𝒗𝑖, respectively, and the 

diagonal entries of S are 𝜎𝑖, then the contributions of the individual principal components are 

𝒖𝒊𝒗𝒊
𝑻 ∗ 𝜎𝑖.  We can reconstruct A exactly by adding the contributions of all the principal 

components.  The contribution matrix of each principal component is rank-1, because each 

column of the matrix is a scalar multiple of every other column and every row is a scalar 
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multiple of every other row (because it is formed by an outer product of two vectors).  The 

principal components are ordered in descending order of importance, where 𝒖𝟏𝒗𝟏
𝑻 ∗ 𝜎1 is the 

most important (contributes the greatest variance to A) and 𝒖𝒓𝒗𝒓
𝑻 ∗ 𝜎𝑟 is the least important 

(where r is the rank of A).  Singular values corresponding to the columns of U with indices 

greater than the rank of the A matrix will be zero, meaning the number of non-zero principal 

components will not exceed the rank of the A matrix.  In fact, the number of non-zero singular 

values is a measure of the rank of A. 

We may choose to reconstruct our original A matrix approximately using an incomplete set of 

principal components.  If A may be well approximated by a lower rank matrix, this may be 

desirable.  Higher order principal components may capture noise and less important data.  All or 

most of the important data may be 

captured in the lower order 

components.  We can see this in the 

plot of the singular values of a 100-

frame bright-field video of beating 

cardiomyocytes (Figure 4).  The video 

may be reconstructed very well with 

20 or fewer principal components, 

leaving mostly noise in the residuals. 

  

Figure 4 – Typical plot of singular values for a beating heart cell video. 
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2.3  Application to Video: 

To perform Matrix operations on our monochrome video array, we must first convert it to a 2D 

matrix.  Our video array starts out 3 dimensional (number of pixels high x number of pixels wide 

x number of frames).  To convert this into a matrix we use linear indexing to stack the columns 

of each frame into a single column vector and then horizontally concatenate these columns into a 

matrix.  We then have a matrix whose height (m) is the total number of pixels per frame and 

whose width (n) is the total number of frames.   

Lastly, we must center the data by subtracting the data mean.  If we did not center our data, the 

first principal component would simply point from the origin to our data mean, rather than 

pointing in the direction of greatest data variance from the mean.  All lower order principal 

components would be affected as well.  In our case, we can center our data by averaging all the 

columns (the frames) and subtracting that mean from the individual columns.  All data is now 

represented as a variation from our mean image.  We save this mean column for use later. 

Because the video data all shares a common scale (pixel intensity), we have chosen not to 

normalize or scale the per-frame intensity values in any way. 

We then decompose our video matrix into 𝑨 = 𝑼𝑺𝑽𝑻.  This can be done using the svds() 

function in MATLAB, which allows the user to specify an arbitrary number of singular values to 

compute (along with the corresponding columns of U and V). 

2.3.1 Noise Reduction 

To reduce noise, we may reduce the number of principal components used to reconstruct A by 

setting higher order singular values to zero.  This is called a truncated SVD (TSVD) when a 

consecutive set of PCs is used starting from PC 1. To reconstruct the original video, we calculate 
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𝑨 = 𝑼𝑺𝒌𝑽𝑻, where 𝑺𝒌 is our S matrix with singular values of index greater than k set to zero, 

add the mean image back to our reconstructed A matrix, and then reshape it into a standard video 

array format.   

To save computer memory usage and processor time, we may choose to not calculate all 

principal components, which will reduce the number of columns of U, the number of rows of 𝑽𝑇, 

and the size of S accordingly.   

Reconstructing our original bright-field and fluorescent videos using only low order principal 

components resulted in noise reduction that was both more effective and preserved greater detail 

than the use of median or Gaussian filtering. This is discussed in greater detail in Chapter 3. 

2.3.2 Data Compression 

There are several ways that the truncated SVD may be used for image and video compression.  

For instance, the SVD may be used to find a basis of rows or columns of an image. An image 

may be broken into smaller regions and the SVD may be used to find a basis set for those 

regions.  Here I will only discuss compression using the SVD to find a full-frame basis for the 

images of the video. 

The pco.edge camera that we have been using for image acquisition is capable of capturing 5MP 

images at a rate of 100FPS.  At this rate, saving .tif files at single-channel 8-bit quantization, ten 

seconds of video requires 10𝑠 ∗ 100𝑓𝑟𝑎𝑚𝑒𝑠/𝑠 ∗ 5𝑀𝑃/𝑓𝑟𝑎𝑚𝑒 ∗ 1 𝑏𝑦𝑡𝑒/𝑝𝑖𝑥𝑒𝑙 ≈ 5𝐺𝐵 of 

storage.  If we decide that ten principal components are sufficient to capture the information we 

are interested in, this reduces the storage needs to a set of 10 basis images and a set of 1000 

coefficients for each basis: 5𝑀𝐵 ∗ 10 + 1,000𝐵 ∗ 10 ≈ 50𝑀𝐵.  Even if we store the TSVD in 

double precision format (~400MB) we have reduced storage requirements tremendously. 
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2.4 Data Completion 

One of the difficulties we have had in finding a transfer function between the calcium signal and 

mechanical motion in cardiomyocytes is getting bright field videos (which are good for 

analyzing motions) and fluorescent videos (which are good for analyzing calcium signals) that 

are either taken concurrently, or well synchronized.  Because we are not pacing our cells, it is 

difficult to sync the two types of videos for two reasons:  Firstly, we do not know what the delay 

is between the calcium signal and the motion of the cells.  This makes syncing the start of the AP 

cycle difficult.  Secondly, the periods of the APs are not totally consistent.  Even if we get the 

first cycle synced, the sync will be off within a cycle or two. 

The idea behind PCA Data Completion of video information is to find two short videos from a 

given stage location, one fluorescence, one bright-field, and use these to form a basis from which 

to reconstruct data of one type if we have data of the other type.  First, we must sync the two 

short videos as well as possible either by inspection (we can detect a certain amount of motion 

from the fluorescence videos) or by using cross correlation between the respective vectors of 

coefficients of the first principal components.  We can then use the SVD to form an optimal basis 

with common coefficients for the fluorescent and bright-field video space, and a least-squares fit 

to find our new coefficients (to construct our “missing” video).  As we will see, the properties of 

the SVD make finding a least-squares fit V very easy. 
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We must find a basis for each synchronized representative video with the constraint that the two 

bases use the same set of coefficients to reconstruct their respective videos. If we call these 

videos 𝑨𝑠ℎ𝑜𝑟𝑡𝑎𝑛𝑑 𝑩𝑠ℎ𝑜𝑟𝑡 (where both have been centered as described), we can represent this 

mathematically using the SVD as follows: 

 
𝑨𝒔𝒉𝒐𝒓𝒕 = 𝑼𝟏𝑺𝑽𝑻 

𝑩𝒔𝒉𝒐𝒓𝒕 = 𝑼𝟐𝑺𝑽𝑻 
(4) 

 

Now if we have a new video, 𝑨𝑙𝑜𝑛𝑔, we can find a new V matrix using a least squares 

approximation with the principal components of 𝑨𝑠ℎ𝑜𝑟𝑡.  Since we have a shared basis for the A 

videos as well as the B videos, we can apply the coefficients we obtained from the A matrix to 

reconstruct our unknown B matrix. 

To find a common basis UAB, that shares a common set of coefficients V, we vertically 

concatenate the two short A and B matrices.  Now we have one matrix, where each column 

vector is the corresponding column vector from matrix A stacked above the corresponding 

column vector from matrix B.  If we perform the SVD on this vertically concatenated matrix, we 

find a Matrix of basis vectors, UAB, that forms an optimal basis for reconstructing both videos at 

once.   The coefficients in V are for both videos.  We can use this basis to reconstruct missing 

data from one type of video if we have data from the other. 

Say we have three videos 𝑨𝑠ℎ𝑜𝑟𝑡, 𝑩𝑠ℎ𝑜𝑟𝑡, and 𝑨𝑙𝑜𝑛𝑔.  𝑨𝑠ℎ𝑜𝑟𝑡 and 𝑩𝒔𝒉𝒐𝒓𝒕 are time synchronized 

and we want to find a long version of B using the data in 𝑨𝑙𝑜𝑛𝑔.   
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First, we convert our two short synchronized representative videos into matrices (As and Bs) as 

described above.  Then we vertically concatenate the two matrices: 

 𝑨𝑩 = [
𝑨𝒔
𝑩𝒔

] (5) 

 

Then we center our concatenated matrix: 

 𝑨𝑩𝒄 = 𝑨𝑩 − 𝝁𝑨𝑩 (6) 

 

Where column vector 𝝁𝑨𝑩 is the mean of the columns of AB. 

Then we perform the SVD: 

 𝑨𝑩𝒄 = 𝑼𝑨𝑩𝒄𝑺𝑨𝑩𝒄𝑽𝑨𝑩𝒄
𝑻  (7) 

 

To find a new set of coefficients from which to reconstruct a longer version of B, we do a least-

squares fit using the top half of the above basis to the centered matrix of our long A video. 

 

𝑨𝒍𝒐𝒏𝒈 = 𝑼𝑨𝑩𝒄(𝒕𝒐𝒑)𝑺𝑨𝑩𝒄𝑽𝒍𝒐𝒏𝒈
𝑻   

𝑽𝒍𝒐𝒏𝒈 =    ((𝑼𝑨𝑩𝒄(𝒕𝒐𝒑)𝑺𝑨𝑩𝒄) \ 𝑨𝒍𝒐𝒏𝒈)
𝑻
 

= 𝑨𝒍𝒐𝒏𝒈
𝑻 𝑼𝑨𝑩𝒄𝑺𝑨𝑩𝒄

+𝑻  

(8) 

 

In the second line of the equations above, the “\” represents “ldivide” in MATLAB, which will 

find the best V matrix using a least squares algorithm.   This will not generally be an exact 

solution, but rather a projection of the A matrix onto our principal component space.  We are 

only using the top half of 𝑼𝑨𝑩𝒄, the half that corresponds to the “A-type” video.  However, this is 

not the best way to calculate V, but it is included to show that what we are doing is indeed 

equivalent to a least-squares fit.  The better way to calculate V is to use the third line, where 

𝑺𝑨𝑩𝒄
+𝑻  is the transpose of the pseudoinverse of  𝑺𝑨𝑩𝒄, in this case found by taking the reciprocal of 
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all non-zero diagonal entries of S, and leaving zeros as zeros.  This takes advantage of the 

orthogonality of U and the diagonality of S.  We will often be using a thin or truncated SVD, 

where U and V are rectangular and S is square, but the equations in (8) will still work. 

To calculate the long version of B, we use the bottom half of 𝑼𝑨𝑩𝒄: 

 𝑩𝒍𝒐𝒏𝒈 − 𝝁𝑩 = 𝑼𝑨𝑩𝒄(𝒃𝒐𝒕𝒕𝒐𝒎)𝑺𝑨𝑩𝒄𝑽𝒍𝒐𝒏𝒈
𝑻  (9) 

 

To convert this back into a video, we add the mean values back to the matrix above and convert 

it to standard video array format. 

2.5 Physical Meaning of Principal Components 

The first principal component captures the change in the video which contributes the greatest 

variance to the overall video.  In some cases, this may correspond with some physically 

meaningful aspect of the observed cells, such as an overall change in fluorescence intensity, or a 

point of greatest displacement or contraction.  As such, the first principal component may be 

used as a proxy for cardiomyocyte action potential state or intracellular calcium concentration in 

some cases.  We have used cross correlation between the coefficients of the first principal 

components from a bright-field and fluorescence video to synchronize them convincingly.   

High-order principal components mostly represent noise (see Chapter 3).  This may be seen by 

looking at the components individually, or by looking at the residuals of reconstructions using 

only lower order principal components.  We can see from the low singular values that their 

individual contributions are small.  However, there may be useful information in higher order 

PCs, depending on what you are looking for. 
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Because high order PCs represent information that is uncorrelated with the lower PCs and 

contributes little to the overall variance of the data, we may find features in higher order PCs that 

would be difficult to observe otherwise.  For instance, buried in the noise of the residuals of a 

low order reconstruction we may find features such as a cardiomyocyte that fires dimly and 

irregularly, or shadows from bits of debris floating across the surface of the cell medium.  By 

removing the high-variance regular features, we uncover the faint irregular features. 

One motivating idea behind applying PCA to these videos was that the low order PCs might 

represent different modes of change in the tissue constructs and that perhaps they would allow us 

to separate contributions from individual cells, or separate changes in fluorescence intensity from 

changes in cell shape.  Disappointingly, beyond the first PC this is generally not the case.  For 

the most part, the low-order PCs are simply mathematically optimal bases that may not have any 

connection to physical phenomena.  The coefficients in time (rows of 𝑽𝑻) of the PCs above 1 do 

not generally to correspond well to any physical phenomena.  It may be worth exploring ways to 

“force” the PCs to represent different phenomena, but that is beyond the scope of the current 

work. 

An additional complication that arises when trying to extract physical significance from the 

computed PCs is that the components are unique only up to their sense.  The entries of S must be 

positive, but any columns of U may be multiplied by -1 if the corresponding columns of V are 

also multiplied by -1.  If we are using the coefficients of the first principal component as a proxy 

for intracellular calcium concentration, we must ensure that the values in the vector of 

coefficients rise as the calcium concentrations rise, rather than doing the opposite. 
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2.6 Limitations 

The use of PCA for noise reduction and data completion is limited in application by several 

factors. 

PCA is useful for our videos of cardiomyocytes because the videos contain static features and 

repeated events.  Because some parts of our image set change very little and others change in 

repetitive ways, these images are reconstructed quite well using a small set of principal 

components (often less than ten without appreciable loss of data).  The applicability of a reduced 

set of principal components may be seen in the plot of the singular values (which drop off 

rapidly in our case).  If the data do not contain static or repetitive features, they will not be well 

represented by a lower rank approximation.  This will be seen as a plot of singular values that 

does not drop off quickly, but instead shows that higher order components contribute significant 

variance.  In this case reconstruction with a reduced set of components will result in loss of 

significant data. 

Data completion as described above is possible only if there are underlying correlations between 

the data sets.  In the case I showed above, this is true because we are looking at the same set of 

cells undergoing similar action potential sequences, though at different times.  The SVD allows 

us to find the underlying correlation between the two video types, and allows us to infer data 

from one, given data from the other.  However, we cannot use this same basis and coefficient set 

to recreate data from some other stage location or from a different set of cells.  To create a 

meaningful shared basis between two sets of images, we must start with two sets of images 

which are synchronized recordings of correlated events. 
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Lastly, in addition to being limited in applicability, applying the SVD to large matrices is 

computationally demanding.  Processing large data sets is not feasible using standard solvers.  

However, iterative solvers may allow for finding very good approximations of the SVD with 

lower resource requirements.  See Chapter 4. 
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Chapter 3: PCA Image Denoising and Using 

Spectral Analysis for Component Choice 

3.1 Motivation 

Noise can be a significant problem in recorded data, and this is especially the case in the high-

speed videos of fluorescent reporters such as those used in cardiac optical mapping.  The 

emission levels of fluorophores used in optical mapping are much lower than the luminance 

levels encountered in bright-field microscopy.  In addition, excitation source intensity must be 

kept to a level which will not cause problematic photobleaching, further limiting light levels.   

The temporal resolution required to map cardiac impulse propagation (~50cm/s [1]) over 

microscopic or even macroscopic scales requires the use of high-speed videography.  High 

framerates require short exposures.   

The spatial resolution of a high-resolution camera such as the 5MP pco.Edge sCMOS camera we 

have been using to record cardiac videos means that there is a relatively small light gathering 

area for each pixel.  For this reason, low-resolution photodiode arrays, often used with fiber-

optic cable arrays, have been the only practical option for high-speed optical mapping in the past.  

See [13] and [14] for examples.  However, improvements in digital image sensors and continuing 

reductions in price have led to increased use of scientific CCD and CMOS sensor based cameras 

and even consumer level digital cameras for cardiac optical mapping applications (e.g. [15]). 

The combination of low light levels, short exposure times, and small light-gathering areas leads 

to problematic noise levels in videos and images.  Two possible sources of this noise are shot 
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noise and Johnson-Nyquist (thermal) noise.  Shot noise is caused by the random nature of photon 

collection, and that the number of photons collected in a given interval will vary according to a 

Poisson distribution.  The fewer the average photons collected in an interval, the lower the 

signal-to-noise ratio.  Johnson-Nyquist noise is temperature dependent electrical noise caused by 

random fluctuations of electrical currents in circuit resistors.  This noise is not signal correlated, 

but it may be exacerbated by high amplification of a weak signal. 

3.2 Noise Reduction Overview 

Noisy images and videos may be de-noised in a number of ways.  Two common methods include 

Gaussian smoothing (Gaussian blur) and median filtering.  See [16] for an extensive explanation. 

Gaussian filtering (imgaussfilt() in MATLAB) is a linear filter that may be understood as using 

an array of weighting values (the kernel of the filter) and moving it around the 2d image, using 

the values in the kernel as coefficients for a weighted average of all pixel values falling under the 

current location of the filter.  The weighted average value is then assigned to the pixel in the 

smoothed image corresponding to the center of the kernel location.  As the name implies, the 

weights in the kernel are based on a discretized Gaussian distribution (though the general 

technique, convolution, may be used with other distributions to achieve other kinds of linear 

filtering).  The size and standard deviation of the kernel may be varied to control the 

characteristics of the smoothing.  This is essentially a low-pass filter that reduces high spatial 

frequency features in the image.  This type of filtering may also be performed in the frequency 

domain using the Fast Fourier Transform (FFT). 

Median filtering (medfilt2() in MATLAB) is a non-linear filter that involves taking blocks of 

pixels from an image, finding the median pixel value, and then assigning that value to the pixel 
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in the filtered image corresponding to the center of the block.  Block size may be varied to 

change the characteristics of the filtering.  Median filtering may be effective at removing certain 

types of noise while better preserving edges and sharp features than Gaussian filtering.  Both 

filters may be effective at reducing noise levels in an image or video, but that reduction in noise 

comes at the cost of spatial resolution and acuity.   

3D versions of both filters exist as well.  Applying a 3D filter to a video array amounts to 

filtering in the temporal dimension of the array as well as the two spatial dimensions (effectively 

averaging over a volume rather than an area).  In this case, temporal resolution will be affected 

as well. 

3.3 Singular Value Decomposition 

Singular Value Decomposition (SVD) is appealing as a noise reduction technique because it has 

the potential to remove noise from certain kinds of videos without loss of spatial or temporal 

resolution (though it may introduce other artifacts).  This is because de-noising using the SVD 

works in an entirely different way from standard image filters.  The SVD may be thought of as 

decomposing our image set (video) into a set of basis images and a set of coefficients that 

combine the basis images into the images in the video.  The basis images are uncorrelated and 

sorted by decreasing order of importance.  This allows us to keep the lower order number (more 

important) basis image contributions and discard contributions from higher order number (less 

important) basis images.  This is referred to as the truncated singular value decomposition 

(TSVD).  Because the higher order number components tend to be dominated by noise, we may 

be able to remove significant noise without losing spatial or temporal resolution.  The cost of this 
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technique is that it is computationally demanding, not always applicable, and may introduce 

undesirable artifacts. 

If we use all the principal components of a matrix A, where the columns of A represent the 

stacked columns of the frames of a video, we reconstruct A exactly: 

 𝑨 − 𝝁 = 𝑼𝑺𝑽𝑻,      𝑜𝑟,     𝑨 − 𝝁 = ∑ 𝒖𝑖𝜎𝑖𝒗𝒊
𝑻

𝑟

𝑖=1

 (10) 

   

Here we show the standard form of the SVD of our centered (mean image subtracted) A matrix 

on the left, and an equivalent representation on the right showing reconstruction of the centered 

A matrix by a sum of singular matrices formed by the outer product of the columns of U (𝒖𝑖) and 

the columns of V (𝒗𝒊), weighted by the corresponding singular values (𝜎𝑖, which are the diagonal 

entries of S).  Here r represents the rank of matrix A.  We will use the same notation used in [12] 

and show subtraction of the mean of the columns of A from the columns of A as 𝑨 − 𝝁, where 𝝁 

is a column vector.  (For clarity, 𝝁𝒊 =
1

𝑛
∑ 𝑨𝑖𝑗

𝑛
𝑗=1 , i = 1, 2, …, m; where A is an m x n matrix.) 

A truncated SVD sets all singular values with index above k to zero: 

 𝑨𝒌 − 𝝁 = 𝑼𝑺𝒌𝑽𝑻,     𝑜𝑟,     𝑨𝒌 − 𝝁 =  ∑ 𝒖𝒊𝜎𝑖𝒗𝒊
𝑻

𝑘

𝑖=1

 (11) 

 

Here 𝑨𝒌 is the rank-k projection of A onto principal components 1:k, where k < n.  𝑺𝒌 is the 

diagonal matrix formed by taking S and setting all singular values with index above k to zero.  

𝑨𝒌 − 𝝁 is the best rank-k least squares fit for 𝑨 − 𝝁. 
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3.4 Choosing K 

An obvious question that arises when attempting to separate the data-dominated lower order 

components from the noise-dominated higher order components is where to set the cutoff point.  

There are a number of approaches and criteria, and much has been written about choosing 

regularization parameters (such as our truncation value k) when the SVD is used to solve discrete 

inverse problems with ill-conditioned coefficient matrices (see [17] [18] [19]).  We are using the 

SVD for de-noising in this case, but we will investigate whether some of the techniques used in 

the sources listed above can be applied or adapted to choosing a truncation parameter for our 

purpose. 

Start simple - look at the singular values: 

Because the contributions of the individual principal components are weighted by their singular 

values, we can get a sense of the contribution of each component by the size of its singular value.  

For many of the heart tissue videos that we have looked at, the singular value plot drops rapidly 

at first and then levels off.  We can see this in the singular values of an example noisy 

fluorescence video in Figure 5. 
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Figure 5 – All 100 singular values from a 100-frame fluorescence video are shown on the left.  The first 20 singular values are 
shown on the right. 

One tempting interpretation of a singular value plot such as the one shown in Figure 5 is that the 

first 6 or so singular values, which are above the plateau line, correspond to data-dominated 

components and that the components along the plateau line correspond to the noise-dominated 

components.  There are several justifications for this interpretation: 

Low frequencies dominate low-order components: 

As with other decompositions, such as the Fourier Decomposition, larger coefficients (singular 

values) in the SVD tend to be associated with lower frequencies and smaller coefficients tend to 

be associated with higher frequencies (see section 2.5 of [19]).  Much of the most important 

information in our cardiomyocyte videos lies in the lower frequency range.  Important spatial 

features are 10s or 100s of pixels wide and the important temporal changes have periods of 

around one second (though, as in a Fourier Decomposition, we may need higher frequency 

components to reconstruct low frequency motions).  In our SVD, spatial frequencies are captured 

in the columns of U (our basis images) and temporal frequencies are captured in the 

corresponding columns of V (the associated coefficients in time).   
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The singular values indicate the variance: 

The contribution from each principal component is weighted by its corresponding singular value.  

This is apparent in the right-hand version of Equation (10).  We can also look at the singular 

values as the square roots of the overall variances contributed by each PC: 

 𝑅𝑖 =
𝜎𝑖

2

∑ 𝜎𝑛
2𝑟

𝑛=1

 (12) 

 

Here Ri is the fraction of the overall variance in the original video contributed by PC 𝑖, and r is 

the numerical rank of the original video matrix (total number of non-zero singular values).  We 

can also use this formula to calculate the fraction of the variance that is preserved by a TSVD: 

 𝑅𝑘 =
∑ 𝜎𝑚

2𝑘
𝑚=1

∑ 𝜎𝑛
2𝑟

𝑛=1

 (13) 

 

Here 𝑅𝑘 is the fraction of the original variance preserved by the truncated SVD.  The reason all 

of this is useful is that it means that by discarding the higher-order components, we are keeping 

the ones that have the greatest overall contribution.  Large, structured changes (the ones we want 

to keep) will have large contributions to the overall variance, whereas small, random changes 

(noise) will individually contribute little to the overall variance.  The reason for the plateau in the 

singular value plot is that there are many basis vectors that contribute similar, relatively small, 

amounts to the variance and fill out the rank r of the original matrix.  It is reasonable to assume 

that these are primarily bases for random image noise.  As noise levels increase, and signal-to-

noise levels decrease, it will be increasingly difficult to separate the two, and information will be 

lost. 
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Low-order components show clear structure: 

It is clear from inspection of the basis images in U, the coefficients in V, and reconstructions of 

the original image set by TSVD that the most important information lies in the low-order 

principal components.  Low-order basis images show recognizable features from the image sets, 

whereas higher-order ones degrade to noise.  Low-order columns of V (basis coefficients in 

time) show structure corresponding to video events, whereas higher-order columns degrade to 

noise.  Residual image sets (reconstructed images subtracted from their originals, see Eq. (20)) 

show mostly noise even with 𝑘 = 3,4,5 components (see Figure 12).  This is neither surprising 

nor new.   

What is not clear is exactly where one should set the truncation parameter k for the best de-

noised reconstruction of our original image set.  What if we wish to automate SVD de-noising 

and do not want to spend the time required to look at multiple reconstructed image sets using 

different truncation parameters to pick the best one?  What is the criterion?  Do we truncate at a 

certain threshold of the singular values?  Do we truncate when the negative slope of the singular 

value plot flattens out to certain value?  What if important information is still present in the early 

principal components that have plateaued singular values? 

3.5 Residual Analysis and the Normalized Cumulative 

Periodogram (NCP) 

In the plot of the singular values in the above section, we looked at the size of the contribution 

from each principal component.  In this section, we will attempt to look at the character of the 

contribution. 
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The TSVD is used as a regularization method in solving ill-posed discrete inverse problems (see 

[17] [18] [19]).  Here we will borrow from the methods used in the references above to choose a 

regularization parameter k and apply ideas from those methods to our image de-noising 

problem. 

Summary of the application in discrete ill-posed inverse problems: 

Say we wish to solve for 𝒙, an approximate solution for input 𝒙 in the following equation: 

 𝒃 = 𝑨𝒙 + 𝜼 (14) 

Here b is a vector of our measurement data, A is some process matrix, and 𝜼 is normally-

distributed measurement error.  If matrix A has a very high condition number, then “…the 

elements of 𝒙 are pathologically sensitive to small variations in the elements of b…” [17].  The 

naïve least squares solution 

 𝒙̂ = (𝑨𝑻𝑨)−𝟏𝑨𝑻𝒃 (15) 

 

will yield an 𝒙̂ that bears little resemblance to 𝒙. 

One approach to this problem, if we know that 𝜼 is has an evenly distributed periodogram (as 

would white noise or normally distributed perturbations of the measurement), is to solve the 

inverse problem using a TSVD and choose a truncation parameter k that gives us a residual 

vector (Equation (18)) that has the spectral characteristics of white noise.  The SVD may be used 

to compute the least squares solution as in Equation (16), where 𝑺+is the pseudoinverse of S (In 

this case, all non-zero diagonal entries of S are inverted and the matrix is transposed. Zeros 

remain zeros.).  A proof may be found on page 65 of [11]. 
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 𝒙̂ =  𝑽𝑺+𝑼𝑻𝒃 = ∑
𝒖𝒊

𝑻𝒃

𝜎𝒊
𝒗𝒊

𝒓

𝒊=𝟏

 (16) 

 

The above sum may be truncated to remove disproportionately large contributions caused by 

disproportionately small values of 𝜎𝑖 relative to 𝒖𝒊
𝑻𝒃 (see Discrete Picard Condition):   

 𝒙̂𝒌 = 𝑽𝑺𝒌
+𝑼𝑻𝒃 = ∑

𝒖𝒊
𝑻𝒃

𝜎𝑖
𝒗𝒊

𝒌

𝒊=𝟏

 (17) 

 

We then analyze the residual vector 𝒆𝒌 to find a best truncation parameter k: 

 𝒆𝒌 = 𝒃 − 𝑨𝒌𝒙̂𝒌 (18) 

 

Here 𝑨𝒌 is the TSVD reconstruction of our process matrix 𝑨.  If 𝒆𝒌 has the spectral 

characteristics of white noise, then the hope is that 𝒆𝒌 = 𝒃 − 𝑨𝒌𝒙̂𝒌  ≈  𝜼 = 𝒃 − 𝑨𝒙 and 𝒙̂𝒌  ≈  𝒙 

(because we know that 𝑨𝒌 is the best rank-k approximation of 𝑨). If k is too low, we expect low-

frequency information to remain in the residuals; if k is too high, we expect that the residuals 

will contain only high-frequency components of the noise (leaving low-frequency noise 

components in our solution).  We use the word hope above, because different regularization 

methods work best with different problems.  There is no single approach which gives 

consistently optimal results [18]. 

The periodogram of a signal is found by taking the Fast-Fourier Transform (FFT) of the signal, 

and then squaring the modulus of the FFT values.  This gives an overview of the contributions 

from individual frequencies to the overall signal power.  By creating a vector of the cumulative 

sum of the periodogram values at each vector element, we create a cumulative periodogram.  If 

we then divide this vector by its largest value (the last element), we have the normalized 
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cumulative periodogram (NCP).  If all frequencies contribute equally, this will be a straight line.  

If lower frequencies dominate, it will rise quickly early then level off.  If higher frequencies 

dominate, it will rise slowly at first and quickly at higher frequencies. 

To decide whether or not a signal has the spectral properties of white noise (a flat periodogram), 

both Rust and Hansen compare the NCP of the signal to a straight line going from 0 to 1 on the 

ordinate, and 1 to q on the abscissa, where 𝑞 = 𝑛/2 + 1, and 𝑛 is the number of samples.  If the 

ordinates of the NCP fall within the Kolmogorov-Smirnoff limits of the straight line at 𝛼 = 5%, 

the signal is considered “white noise like” [18].  Hansen gives this limit as ±1.36𝑞−1/2. 

Application to video de-noising 

In a video array, if noise comes from shot noise or Johnson-Nyquist thermal noise, we expect 

that the noise will have a flat periodogram (we are discarding the noise mean). We expect 

thermal noise to be normally distributed and independent of the signal.  For shot noise, we expect 

the standard deviation of the noise to vary proportionally to the square root of the signal, so that 

the signal-to-noise ratio varies inversely to the square root of the signal.  We should note that 

image and video compression algorithms such as .mpeg compression may drastically change the 

character of the noise.  All videos analyzed here were saved directly into .TIF format.   

This may be written 

 𝑨𝒊𝒋 = 𝑨𝒊𝒋
∗ + 𝑵𝒊𝒋

𝒕𝒉𝒆𝒓𝒎𝒂𝒍 + 𝑵𝒊𝒋
𝒔𝒉𝒐𝒕, 𝑤ℎ𝑒𝑟𝑒 𝑠𝑡𝑑(𝑵𝒊𝒋

𝒔𝒉𝒐𝒕) ∝ 𝑠𝑞𝑟𝑡(𝑨𝒊𝒋
∗ ) (19) 

 

Here 𝐀ij is our video array, 𝑨𝒊𝒋
∗  is an ideal noise free video array, 𝑵𝒊𝒋

𝒕𝒉𝒆𝒓𝒎𝒂𝒍 is thermal noise, and 

𝑵𝒊𝒋
𝒔𝒉𝒐𝒕 is shot noise.  
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We will define the TSVD video residuals as the differences between the original video file and 

the TSVD reconstructed video: 

 𝑬𝒌 = 𝑨 − 𝑨𝒌 (20) 

 

Notice the residual has the same format as the original video array, which is to say it is a two-

dimensional matrix (where each column represents the stacked columns of an image) while we 

are doing matrix operations in MATLAB, but it can be converted into a three dimensional array 

(where the first two dimensions are image width and height, and the third is frame number) and 

viewed in a video player (implay() in MATLAB).  To analyze the frequency spectrum of the 

residuals, we will analyze the 2D Discrete Fourier Transform (DFT) of the 2D image residuals 

using fft2() in MATLAB.  We avoid analyzing the 1D frequency spectrum of the columns of the 

matrix format residual, because this introduces artificial periodicity by stacking columns, though 

this periodicity should become less important as the residual becomes more noise-like. 

To analyze the periodogram of the 2D image residuals, we follow the guidelines given in [18].  

First, we take the 2D DFT of a residual image using fft2() in MATLAB.  We then take the square 

of the modulus of the values in the upper left quadrant to find the 2D periodogram.  These values 

need to be sorted in order of increasing frequency (distance from the upper left corner).  To do 

this we create a matrix of the same size as our quadrant with values 𝑖2 + 𝑗2, where 𝑖 and 𝑗 are our 

row and column indices respectively.  We can then turn this matrix into a vector and use the 

MATLAB sort() function to find the permutation that orders the values in non-decreasing order.  

We use this permutation to sort the linearly-indexed version of our periodogram into a 1D 

function of frequency.  Because there is different information in the upper left and lower left 



34 

 

quadrant periodograms, we have averaged the two.  Opposite corner quadrants of the 2D 

periodogram contain the same information. 

In MATLAB, we used the following code: 

% find permutation to arrange periodogram from low to high freq. 

x = 1:floor(cols/2)+1; 

y = 1:floor(rows/2)+1; 

vec_length = x(end)*y(end); 

[X,Y] = meshgrid(x,y); 

dist2 = X.^2 + Y.^2; 

[~, indx] = sort(dist2(:)); 

  

% get 2D periodogram and set zero freq. = 0 

p_array = abs(fft2(array_in)).^2; p_array(1,1) = 0; 

white_line = linspace(0,1,vec_length)'; 

ncp = zeros(vec_length,frames); %pre-allocate NCP 

dev = zeros(frames,1); % pre-allocate deviation 

for i = 1:frames 

    pdgrm_n = p_array(y,x,i); % get current 2D periodogram 

    % get flipped 3rd quadrant to add to 2nd 

    pdgrm_flipud = p_array(end-y+1,x);  

    %re-order, add left two quadrants 

    p_sort = pdgrm_n(indx(:)) + pdgrm_flipud(indx(:)); 

    % calculate NCP & find deviation from white noise 

    ncp(:,i) = cumsum(p_sort); 

    ncp(:,i) = ncp(:,i)/ncp(end,i); 

    dev(i) = mean(abs(ncp(:,i)-white_line)); 

end 

 

This code was tested with an array of normally distributed white noise (noisy = randn(300, 300, 

25); in MATLAB) and gave the expected result: all NCPs were nearly straight lines with small 

deviations (~10−3) and all fell within KS limits. 

3.6 Test case 1: Cardiomyocyte Fluorescence Video 

For our first test case, we will look at a video of a multi-layered clumps of CardioMyocytes 

(CMs) derived from Induced Pluripotent Stem Cells (IPSCs) and myoFibroBlasts (mFBs) from 

dermal tissue.  Both are of human origin.  The cells have been stained with Calcium-reporting 

Fluo-4 fluorescent assay, which is responsible for the changes in pixel intensity in CMs 
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undergoing action potentials (APs) in the video.  The cells are not externally paced.   Stills from 

every six frames of the test case video are shown in Figure 6.  The video contains deformation 

motions due to CM contractions, changes in intensity due to Ca2+ transients, and significant 

image noise.  Figure 7 shows a crop from the first image to show the noise pattern. 

 

Figure 6 - Still frames from the Fluo-4 stained heart cell video.  Every sixth frame is shown reading from left to right starting in 
the upper left corner. 
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Here we have intentionally chosen a difficult case 

in which we have only 100 frames and one action 

potential cycle from which to find our PCs.  With 

more frames, the algorithm will have an easier time 

separating structured data from random noise. 

As a quick way to check that our software is 

working as it should, we can look at the standard 

deviations of the residuals at different truncation 

parameters.  We see the expected result in Figure 8, 

which is that the standard deviation of the residuals decreases monotonically as the truncation 

parameter increases.  We are getting better and better approximations of our noisy video.  To 

avoid an overwhelming amount of data, we have chosen to examine the residuals of only the first 

10 images. 

 

Figure 8 – Standard deviation of the residual array at different 
truncation parameters k.  Using more components decreases the 
residual error. 

Figure 7 - crop from first frame showing noise pattern 
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Next, we look at the mean of the absolute value (the 1-norms) of deviations of the residual NCPs 

from a straight line running from zero to one on the ordinate. 

 

Figure 9 – Mean absolute deviation of the NCP of the residuals of TSVD reconstructions from a straight line.  Lower values 
indicate the residual is more noise-like. 

In Figure 9, we see that the mean absolute deviation of the residual NCP has more complex 

structure than the plot of the singular values.  Whereas the singular values decrease 

monotonically (by definition) and quickly level off, the deviations show that the residuals 

become more “white noise like” up to k=27 before starting to fluctuate.  If this method worked 

ideally (and we could perfectly separate data from noise), we would expect an absolute minimum 

where the residuals were most “white noise like” before high frequency dominance of the 

residuals caused the deviation plot to increase.  Note that the residual with k = 100 is purely 

rounding error. 

Figure 10 shows that the residuals are nowhere close to white noise according to our NCP of 

spatial frequencies evaluated by Kolmogorov-Smirnov limits.  All of the NCP plots are convex 

up, indicating dominant lower spatial frequencies.  This is the expected result for lower 
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truncation values, but it does not show the expected shift to high frequency dominance in later 

values of k.  In fact, there is really very little qualitative change in the graphs of any of the 

residuals.   

 

Figure 10 – NCP of the residual A – Ak at four different values of k.  KS limits are so close here they appear as one line.  The NCPs 
for all residuals are well outside of the KS limits. There is little qualitative difference between them. 

One explanation for the results in Figure 10 is that our noise model is innaccurate.  Looking at 

the original video file, we see that there are areas where the video is saturated – the values are 

equal to the maximum uint8 value of 255.  We would not expect to see the same noise pattern in 
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these areas if we see any noise at all.  This creates low noise areas in the residuals, adding to low 

frequency information in the DFT.  There may well be other issues with our noise model and the 

assumption of flat frequency spectrum noise. 

Qualitative inspection of the residual video supports the idea that there may be periodic 

information in the noise.  Residuals were viewed as a video by reshaping them into standard 

video array format, setting the lowest value to zero and the highest value to 1 (double precision 

format).  With truncation parameter k set to 1, we see moistly noise with lighter and darker areas 

in quiescent frames (little to no movement), and we see distinct outlines of moving features in 

frames with movement (Figure 11).  By k=5, we see mostly noise in the residual even in active 

frames (Figure 12).  However, we still see ghosts of our video that show up as slightly lighter 

and darker areas in the video as well as apparent variations in the noise levels (smoother looking 

areas).  Beyond k=5, this trend continues and the residuals show mostly noise.  We do not 

include more examples as they will appear on the page as noise. 

 

Figure 11 – Two residual frames at truncation parameter k = 1.  Left: quiescent residual frame (#1), Right: active residual frame 
(#46) 
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Figure 12 – Two residual frames at truncation parameter k = 5.  Left: quiescent residual frame (#1), Right: active residual frame 
(#46) 

3.7 Another Approach: Look at the V matrix 

We have seen in the example above that analysis of the NCP of the 2D residuals does not give a 

clear indication of how noise-like our residual is in this case due to spatial variations in the 

residual.  The next question is, can we determine how noise-like the residual is in time.  One way 

to do this would be to look at the values of the residuals of certain pixel locations over time.  

These are the same length as the video itself, and there are as many of them as there are pixels 

per frame.  However, perhaps there is an easier approach for what is still only a first best guess at 

a truncation parameter: look at the columns of the V matrix. 

If the higher order principal components do indeed reconstruct the noise of the original video, 

then we would assume that the coefficients of those components would also be characterized by 

a noise-like frequency spectrum.  We see an arbitrary sampling of coefficient vectors from V in 

Figure 13.  As we would expect, the lower components show clear structure for the 

reconstruction of low frequency events, whereas the higher frequency components appear to 

become dominated by noise. 
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Figure 13 – Plots of nine arbitrarily selected columns of V, showing the trend of lower-number columns showing low-frequency 
structure, and higher-number components showing higher frequencies and noise. 

In Figure 14 we see an overview of the mean absolute deviations of the NCPs of the columns of 

V from the straight-line distribution.  Points labeled with an X fall outside of the Kolmogorov-

Smirnoff (KS) limits at 95% certainty, and points labeled with an O fall within the limits.  We 

see that the first 13 columns have relatively high deviations and all fall outside of the KS limits, 

indicating that these columns are not noise-like (Figure 15).  From columns 14 through 71, all 

but one of the columns have deviations within the KS limits (Figure 16).  From columns 72 

through 100, only about one-third lie within the limits (Figure 17). 
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Figure 14 - Mean absolute deviation of the NCP of the columns of V from a straight line.  
Lower values indicate that the column is more noise-like.  The first column within the KS 

limits (marked by O) is 14. 

 

Figure 15 - NCP plots of the columns of V from 1 to 13.  All NCPs fall outside of the KS 
limits (dashed lines), indicating that they are not noise-like. All NCPs are low-frequency 

dominated except 10 and 11, which are high frequency dominated.  Plots go from dark to 
light blue by number. 
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Figure 16 - NCP plots of the columns of V from 14 to 71.  All but one NCP falls inside of 
the KS limits (dashed lines), indicating that they are noise-like.  Plots go from dark to 
light blue by number. 

 

Figure 17 - NCP plots of the columns of V from 72 to 100.  9 of 29 plots lie within the KS 
limits.  Plots go from dark to light blue by number.  The low-frequency heavy plot to the 

upper left is the NCP of column 100. 
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If we are simply looking for a truncation parameter k, Figure 14 makes a strong argument for 

k=13.  None of the columns 13 or below have a noise-like NCP, and most of the columns above 

13 do, including all of the next 27.  Interestingly, we do not see any significant change in the 

singular value going from component 13 to 14 in Figure 5.  This may be because the noise levels 

are such that noisy components contribute as much variance to the signal as some of our data-

dominated components do.  This makes data-dominated components and noise-dominated 

components impossible to separate by looking at singular values alone. 

3.8 Qualitative Analysis of the Components 

We can get a qualitative sense of the differences between components by viewing them as 

images.    Here we take the columns of U, reshape them into the dimensions of the images, and 

scale the values from 0 to 1 so that they are viewable in a standard MATLAB image viewer 

(such as imshow()).  This analysis is admittedly subjective, but may inform the interpretation of 

quantitative measures. 
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Figure 18 – Top row: PC 1, 2, 3 show clear structure and are the 3 most important components.  Second row: PC 5, 6, 7 still show 
some structure and have dark and light spots corresponding to flashing cardiomyocytes. Bottom row: PC 10,11,12 show no clear 

edges, but have faint light and dark spots corresponding to flashing cardiomyocytes. 

 

Figure 19 – NCPs of the right singular vectors.  PCs 1-7 have strong low-frequency bias.  PC 10 and 11 have strong high-
frequency bias, PC 12 has strong low-frequency bias. 
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In Figure 18, the first three components show clear structure of features from the video (clumps 

of cardiomyocytes).  These had the most low frequency biased NCPs and the greatest NCP 

deviation from a straight line.  Components 5 to 7 also show clear structure and dark and light 

spots corresponding to flashing cardiomyocytes.  These had similar NCPs to the first three, but 

with less low-frequency bias and smaller deviations.  Components 10 and 11 appear to have less 

defined and intense bright spots than component 12, even though they were ranked higher (the 

singular values are close).  Components 10 and 11 had high-frequency biased NCPs whereas 

component 12 had a low-frequency biased NCP(Figure 19). 

In Figure 20 we show PCs 13 through 15, because our NCP criterion suggested a cutoff at k=13.  

It may be difficult to discern at the scale the images are shown here, but there are more highly 

pronounced dark and light spots among the noise in PC 13 than there are in PC 14 or 15. By PC 

16 and above, we see a sort of textured noise with very little in the way of light or dark spots and 

no discernable features.  There are “smooth spots” where the noise appears to be reduced 

(presumably due to bright or blown out areas in the video).  There are occasional faint variations 

in the overall brightness at higher components, but they are much subtler than what we see even 

in PC 13. 
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Figure 20 – From left: PC 13, 14,15.  Using our NCP of V criterion, the coefficients of PC13 were not noise-like, but those of PC14 
and PC15 were. 

Figure 21 shows the same cropped region from PC 1,2,3, and 10.  We see very low noise in PC1, 

moderate noise in PC2, and fairly heavy noise in PC3 and above.  PC10 is included to show how 

quickly the components are dominated by noise. 

 

Figure 21 – From left: The same image area cropped from PC 1,2,3,10 to show noise levels.  PC1 is smooth, PC2 shows moderate 
noise, PC3 is noisy but with features, PC10 is dominated by noise (characteristic of later PCs). 
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3.8.1 Qualitative Analysis of TSVD Reconstructions: 

Here again we are aware of the subjectivity of the current analysis.  However, because we are 

interested in reconstruction of video, which is intended to be viewed, we feel it is appropriate to 

analyze the results visually.  Certain aspects of these reconstructions such as flickering regions, 

apparent noise, edge artifacts (such as dark areas around moving objects), non-smooth transitions 

during deformations, and apparent sharpness are difficult to quantify.  This analysis is intended 

to inform the interperetation of quantitative methods being evaluated in this work. 

Evaluation of reconstructions with several truncation parameters k: 

k =6:  This is the value suggested by the singular values in Figure 5, where the first six singular 

values were above the plateau line.  This reconstruction is visually excellent.  There are only 

very slight artifacts around moving cells that show up as slight dark spots.  Noise levels are very 

low.  It is not obvious to the eye that there is information missing from the reconstruction.  The 

residuals show flat spots in the noise where the cells are bright.  They also show some edge 

differences during movement and some blinking of the cells which was not captured in the 

reconstruction. 

k =8:  These are the PCs whose associated right singular vectors had NCPs of greatest deviation 

from noise (Figure 14).  They were all low-frequency dominated.  This reconstruction is visually 

excellent as well.  There is some slight fluttering that appears around one small bright cell.  

Residuals show the same smooth spots, some cell blinking, and less edge difference. 

k =13: This is the value suggested by the KS limits when looking at the NCP of the columns of 

V.  The first 13 PCs were outside of the KS limits, though some were high-frequency dominated.  

At this truncation, we are starting to see some reconstruction of the dynamic noise.  There is an 
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overall flickering noise pattern.  Some cells with irregular or out of sync blinking patterns are 

starting to visually flicker.  In the residuals, the slow blink of cells not captured in the lower k 

value reconstructions has turned into a faster irregular flicker. 

k =13, minus PC 10,11:  Here we will try a selective SVD where we exclude the PCs that 

showed high frequency dominated NCPs in Figure 19.  This reconstruction does show a slight 

reduction in the overall noise pattern seen in the full k=13 reconstruction.  However, cell 

flickering issues do not seem to be improved. 

k =27:  This value is tried because of an early local minumum in Figure 9.  Some noise has been 

added back to the original video and it appears somewhat noisy, though still much cleaner than 

the original.  There is an overall flickering quality as only some of the noise components have 

been added back.  Some of the blinking cells are flickering rapidly.   

k =40: this value is tried because a local minimum in Figure 9.  By this point, much of the noise 

has been put back into the video, though it is still visually reduced.  Flickering issues are not 

visually problematic.  Out of sync cell blinking is well captured.  Residuals appear to be mostly 

noise with some flat spots of low noise.  There are occasional flashes in a few CM locations.  

3.9 Testing a Synthetic Video with Noise Added 

To test the hypotheses posed in the analysis of our cardiomyocyte fluorescence video, we 

constructed a synthetic, noise-free, video so that we could add, and then try to remove, noise 

from the video using the SVD.  The video contains both deformation and intensity value 

changes.  Intensity value changes were set to lead the deformations by .2 seconds.  We then 

added Poisson and Gaussian distributed noise (in that order) using imnoise() in MATLAB.  The 

pixel intensity value (0-255) is used as the mean value for the Poisson distribution.  The default 
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Gaussian variance of .1 gave noise levels for our uint8 format video (the same format we obtain 

from our tiff videos) that appeared comparable to those in our CM video. 

 

Figure 22 – Top image shows still frames from the synthetic test video.  Reading from left to right, every 
sixth frame is shown starting from the upper left corner.  The bottom image shows frames with Poisson and 

normally distributed noise added.  The visual differences are not significant at this scale. 
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Figure 23 – The first 9 basis images (principal components) for the clean (top) video and for the noise-added 
(bottom) video.  The first four noisy components are visually similar to the first four clean components (the 

inversion of PC 2 and 4 is arbitrary).  Components of the noisy video above PC 4 become dominated by noise, 
though we see faint elements of structure remaining. 
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Figure 24 – Singular values for the synthetic video.  Top row: Singular values for the noise-free video decay to a value of 1.8 by 
PC 10, and slowly decay to .6 at PC98 (PC 99,100 are over 12 orders of magnitude smaller).  Bottom Row: Singular values for our 

noisy video have leveled off by PC4 to 81.5 and decay to 77 by PC99 (PC100 is effectively zero). 
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Figure 25 – Standard deviation of the residuals at all truncation parameters k.  Left: residuals of all truncated reconstructions of 
noisy video.  Middle:  residuals of noise-free video minus truncated reconstructions of noisy video.  Low value (.018) is at k = 2.  

Right: residuals of noise-free video minus reconstruction of noisy video using median-filtered PCs.  Low value (.009) is shifted to k 
= 3. 

Figure 25 shows the expected result for the standard deviation of the residuals when the TSVD 

of the noisy video is used to reconstruct the noisy video.  In the middle plot, when finding 

residuals using the noise-free video and the TSVD of the noisy video, we see a minimum value 

at k = 2, after which the residual increases monotonically.  Adding more components only takes 

us farther from the original video by the least-squares evaluation.  This suggests that the best 

TSVD reconstruction comes from only the first two components.  While this is true in the least-

squares sense, there may be crucial information missing or artifacts introduced by the low 

truncation value.  It may be worth balancing the cost of additional noise with the benefit of extra 

information gained, which is hard to quantify, and may have to be evaluated qualitatively. 

The right-most plot of Figure 25 shows the standard deviation of the residuals obtained by 

subtracting from the noise-free video a TSVD reconstruction of the noisy video where the 

individual basis images have been median filtered.  The overall standard deviations are lower, 

which is not surprising since we would expect a filtered video to be closer to our noise-free video 

by least-squares.  The interesting result is that the optimal truncation parameter has been shifted 
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from two to three.  The third PC went from adding to the residual to reducing the residual.  This 

raised the question of whether pre-filtering the components before reconstruction had an 

advantage over post-filtering the reconstructed array.  To answer the question, we ran another 

residual analysis where post-filtered reconstructions were subtracted from the clean video array.  

The result (not shown) was almost identical to the right-most plot of Figure 25.  Both filtering 

methods shifted the lowest residual from k = 2, to k = 3.  This result is useful, because it suggests 

that if we wish to combine the TSVD with traditional filtering methods (even non-linear median 

filtering), we may be able to obtain similar results by pre-filtering a few components rather than 

post-filtering an entire video.

 

Figure 26 – NCP of the residual of the noisy data minus the noisy reconstruction.  Reconstructions with k = 1 and k = 2 fall outside 
of KS limits, reconstructions for k = 3 through k = 98 fall within KS limits.  We show a corner of the plot to improve readability. 

For the 2D NCPs of the residuals using the noisy video and the noisy reconstructions, the first 

two NCPs, corresponding to k = 1 and k = 2 fall outside of the KS limits with low-frequency 

dominated NCPs (Figure 26).  Residuals corresponding to k = 3 through k = 98 fall within the 

KS limits, indicating that they are noise-like. The residual for k = 99 falls outside of the limits 

(low-frequency dominated).  From this information, we may choose to truncate at k = 3, because 

this is the first noise-like residual.  This agrees well with Figure 25, where the best truncation 

was found to be at k = 2 or k = 3 (with filtering). It is worth noting how quickly the residual 

NCPs fall within the KS limits here, because they never fell within the KS limits for our 
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engineered heart tissue video.  This supports the idea that the residual NCP analysis method is 

plausible, but will not work for some noise models.   

If we want to find the most noise-like residual, Figure 27 might suggest k = 4, where we our 

slope is close to flat (not getting much more noise-like), or k = 7 where we have an early local 

minimum.   

 

Figure 27 – 1-norm of residual NCP deviations from a straight line.  The first two values are significantly higher than the rest and 
fall outside of the KS limits, indicating non-noise-like residuals.  PC 3-98 fall within the KS limits.  A local minimum is reached at 

k=7.

Figure 28 – Deviation of NCPs of the right singular vectors.  Points marked by an X fall outside of KS limits (not noise-like), points 
marked with an O fall within KS limits. Most of the vectors in the clean V matrix fall outside of the KS limits.  The first four 

vectors of the noisy V matrix are not noise-like according to this test. 
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The right plot of Figure 28 suggests a truncation parameter of k = 4 from looking at the NCPs of 

the right singular vectors.  Here the first four columns of V fall well outside of the KS limits and 

all further columns are either within or close to within the KS limits.  The first four columns are 

by far the lease noise-like.  The left plot – deviations of the clean vector NCPs – shows a scoop 

shape that agrees with expectations: The earlier PCs are low-frequency dominated and the later 

PCs are high-frequency dominated. Both of their respective NCPs deviate from the straight line.  

PCs in the middle have frequency distributions that may be difficult to discern from noise 

(though only 9 of 100 fall within the KS limits).  Overall, this plot is supportive of the idea that 

clean data components and noisy components will have very different coefficient NCP 

characteristics.   

3.9.1 Qualitative Analysis of Reconstructions  

The previous disclaimer about subjectivity applies here.  Visually, a reconstruction with k = 2, is 

very clean and smooth and generally looks very good.  It captures the changes in intensity very 

well.  However, it fails to do a very good job of capturing the deformation of the borders 

between the middle two and outer two regions.  These borders look crisp in the fully deformed 

temporal middle of the video, but are fuzzy and crescent shaped otherwise. 

k = 3:  The border shapes are better, but we see some slight artifacts during the middle of the 

deformation phase.  We are starting to see noise now, although it is fairly static. 

k = 4:  The two borders mentioned previously are more accurately produced at several time-

points in the video, but now there are bothersome artifacts causing a perception of vibration of 

the borders during phases of the motion. 
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k = 5 and above: There are troublesome artifacts in all reconstructions until around k = 50.  By k 

= 50, the artifacts that appear as quivering or vibrating features largely disappear, but noise is 

strong.  Interestingly, the noise is not noticeable in the temporal middle of the video, when the 

deformation is at its greatest.  The components of the noise that contribute to that period of the 

video must be of smaller variance. 

The reconstructions of the Synthetic video have visual flickering issues that are stronger than in 

the heart cell videos.  We suspect that this may be due to the geometric nature of the synthetic 

video. 

3.10 Analysis of a Long Fluorescence video 

In the first exploration of NCP analysis applied to the SVD of a fluorescence video, we had the 

less than ideal situation where we had only 100 noisy frames from one action potential cycle 

from which to find our SVD.  In that situation, the SVD was able to separate data from noise 

well in the first component, somewhat in the second component, and not well at all with higher 

number components.  With a larger image set, and more action potential cycles, we expect the 

SVD to be able to do a better job of separating noisy components from data dominated ones.   

Using 3200 frames, 32 times as many frames as the previous analysis, we see a profound 

difference in the ability of the SVD to separate noise from data.  Even though there are 

theoretically 3200 PCs for this video (assuming the images are linearly independent), we 

calculate only the first 100.  As before, we start with a plot of the singular values: 
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Figure 29 – Singular values for SVD of 3200 frame Fluorescence video.  Here the first four are clearly apart from the rest, but 
singular values decay to a nearly flat line much more slowly.  The percent decrease drops below 1 at PC30, and below .1 at PC 

58. 

The first thing we notice in the plot of singular values (Figure 29) is that they decay more slowly 

than in the decomposition of the shorter video.  More components contribute variance above 

noise level.  The first four clearly stand apart from the rest, but the percent decrease stays above 

1% until PC 30.  In the short version of the video, the percent decrease drops below 1% by PC 7. 

Qualitative analysis of the PCs (Figure 30) shows that there is very little visible noise in the first 

10, but some horizontal noise patterns in 11,12, and 13.  PC 14,15,16 primarily show dark and 

light spots corresponding to flashing cardiomyocytes.  In the thumbnails of the columns of V 

(bottom left), we see strong, steady higher-frequencies in PCs 11,12,and 13.  These differences 

are reflected in the NCPs of the columns of V (bottom right). 
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Figure 30 – Principal components(above) and their corresponding right singular vectors (below left).  Coefficients from the frame 
200 to 400 interval are shown.  On the bottom right we show thumbnails of the NCPs of the right singular vectors to show the 
different spectral character of PC 11,12,13. 
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Looking at the deviations of the NCPs of the residuals from a straight line, the first two 

deviations are far above the rest and are not shown.  There is a strong global minimum at k=4, 

suggesting that the residual at k=4 is most noise-like.  The next lowest point is at k=20.  

Interestingly, the shape of the plot changes at k=56. Before k=56 the deviations fluctuate: adding 

more PCs making the residual more or less noise-like depending on the PC.  After k=56, adding 

more PCs makes the residual less noise-like in a slow smooth progression.  It is not immediately 

clear what happens at k = 56, if anything.  One possible interpretation of the more predictable 

increase in the deviation of the residual NCP is that we are adding more uniformly noisy 

components above PC56 and we are leaving higher frequency filtered noise in the residuals (this 

is the original idea).  However, none of the NCPs here lie within the KS limits.  This is the same 

as with the 100 frame SVD shown previously. 

 

Figure 31 – Deviation of residual NCP from white noise line.  Points for k=1 and k=2 are not shown.  The lowest point is at k=4.  
The second lowest point is at k=20.  Above k=56, the character of the plot changes and we see a slow, but steady increase in 

deviation. 
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In Figure 32 we can see an overall structure to the decay of the deviations as the higher NCPs 

become more noise-like.  We see strong outliers at PC 11, 12, 13 as we would expect from the 

thumbnails in Figure 30.  We also see strong outliers at PC 31, 32, 34, and 36.  The deviations 

drop sharply from PC 56-60, and fall within the KS limits by PC 75.  This figure suggests not 

only truncating the SVD somewhere in the k=50 to k=60 range, but perhaps excluding low 

deviation PCs such as 11,12,13; and 31,32,34, and 36. 

 

Figure 32 – Deviation of the NCPs of the right singular vectors.  We see marked dips at PC 11,12,13, and PC 31,32,and 34.  The 
first vector to fall within the KS limits is PC 75. 

3.10.1 Qualitative analysis of reconstructions 

Here we will examine several TSVD reconstructions suggested by the analyses above, with the 

same disclaimer about subjectivity given previously.  The first four singular values are much 

stronger than the rest, and the NCP of the residuals was most noise-like at k=4, so the first 

reconstruction we will examine is at k=4.  We will examine reconstructions by playing a 

vertically concatenated video of 200 frames of the original video above 200 frames of the 

reconstructed video.  We will then examine the residual (in single precision 0-1 scale), shifting 

and scaling as necessary to see what features are or are not missing. 
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At k=4, the reconstructed video looks excellent.  There is only one apparent artifact (a small 

movement artifact at the upper middle of the frame) and no noise.  There is a static grid pattern 

visible from variations in column and row sensitivities of the image sensor. (Perhaps this might 

be corrected by subtracting a dark frame and dividing by a bright frame, as is commonly done in 

astronomy imaging).  It is not immediately obvious that any information is missing, and the 

TSVD video actually appears sharper in many areas that the original video, due to the total 

absence of noise.  The residual shows lots of noise (as expected), some edge differences during 

motion, but also a lot of blinking areas corresponding to out of sync CM APs.  These smaller 

flashing areas are not captured by the k=4 TSVD reconstruction as they are not in phase with the 

large variance changes captured in the first few PCs. 

The next lowest residual NCP deviation was at k=20, so we will examine a reconstruction with 

k=20 next.  At this truncation, we still see excellent clarity, perhaps better than at k=4, but with 

slightly more noise and a slight decrease in contrast.  More complex patterns of CM flashing are 

apparent, but there are also some flickering artifacts present, where out of sync CMs appear to 

flicker rapidly (much faster than possible CM AP frequencies due to the refractory period of the 

cell).  From the residuals we see noise, less distinct low-frequency (~1-4 Hz) flashing CMs, and 

very little in the way of edge differences (visual edge outlines of moving features).  We see some 

high frequency cell flickering, but it is less apparent in the residuals. 

The NCPs of the right singular vectors dropped sharply at PC=56, and this is also where the 

shape of the residual NCP deviations changed, so we examine k=56 next.  At k=56, the video 

quality and lack of noise is excellent, but the flickering artifacts have gotten worse.  Strange 

flickering is apparent in many areas throughout the video and is not subtle.  The residuals consist 
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of noise with smooth noise-free disks where some of the CMs are, and high-frequency flashing 

(but much less low-frequency blinking).   

At k=100, the video is abuzz with flickering cells, but noise levels are still much better than in 

the original.  With enough components, we get back to our original video, but by then we have 

added all of the noise back as well. 

Since the NCPs suggested that there are high-frequency components in early singular values, we 

will now try a Selective SVD (SSVD) where we omit those components whose right singular 

vectors have low NCP deviations from a flat line.  These include PC 11,12,13,31,32,34,36.  This 

reconstruction exhibits the same flickering issues that were present in the TSVD at k=56.  There 

does not appear to be an improvement. 

To see where the flickering artifacts first appear, we will examine TSVDs above k=4.  At k=5, 

we still see the small motion artifact, and we see a small amount of flickering on one cell.  At 

k=6, we start to see some slight flickering in several other cells.  From k=7 to k=9, we see 

similar results, with flickering becoming more constant with more components.  By k=10, 

several cells are flickering constantly, and we see a black motion artifact behind one of the cells. 

To see if the information from Figure 30 and Figure 32 is suggesting that PC11-13 are 

detrimental, we compare the TSVD reconstructions at k=10 and k=13 directly.  The k=13 

reconstruction does not appear to be worse, though it is hard to visually tell whether it is better.  

Looking at just a video of the contributions of PC11-13, they do not appear to contribute to 

flickering or noise. 
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An SSVD using only the highest NCP of V deviations from the first 10 PCs was also tried.  

These were PC 1,2,5,6,8.  This reconstruction had large motion artifacts and was clearly worse 

than using a low order TSVD alone. 

3.11 Discussion 

Residual NCPs and KS limits 

With the test cases we have examined here, using the NCP of the residuals does not give clear 

answer as to which components should be kept in a TSVD reconstruction. With both heart cell 

videos we examined, the NCPs never fell within KS limits.  This may be related to the particular 

noise characteristics of that image set, because the NCP of our synthetic video residuals did fall 

within KS limits (and quickly).  However, in all cases, the NCP deviations started out very large 

and dropped quickly.  They may not tell us which value of k is best, but they do seem to suggest 

which early values to avoid.  In Figure 9 (short CM video), the first 5 values of k give the clearly 

least noise-like residual.  In Figure 27 (synthetic video), the first two deviations are far higher 

than the rest.  In Figure 31(long CM video), the first two deviations are very high, and we 

actually have a distinct minimum at k=4.  The only problem is that this residual NCP is not 

within KS limits, and there is clearly valuable video information missing in the k=4 

reconstruction. 

Beyond the early high deviation values, the behavior of the plots gets more complex.  The two 

heart cell videos both show fluctuations in these values and multiple local minimums.  The 

synthetic video shows less erratic plot behavior, but still gives a large range of values that are 

low and NCPs that are well within KS limits. 
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Additionally, the computational resources for this type of analysis are high.  For every k value 

tested, we must compute a reconstruction of some portion of the video, subtract it from the 

original, and then analyze that residual. 

NPCs of the columns of V 

This method of analysis is appealing due to its computational simplicity.  In the test cases above, 

it seems to give as much information as the NCPs of the residuals do, and in fact it does so in a 

way that separates the characteristics of different components more cleanly.  Additionally, this 

method does not depend on the (possibly flawed) premise that the previous method depends on: 

the idea that we may separate the mostly data-dominated components from the mostly noise-

dominated components by making a clean break at a certain truncation value. This opens the 

door to using the automatable selection criteria in this method for picking components in a 

selective SVD. 

We have not yet demonstrated the utility of this method in a conclusive way.  However, the 

method shows promise and may be useful if several obstacles may be overcome.  In our short 

video, the method was able to identify the PCs with the clearest visual contributions by their low 

frequency dominated coefficient vectors.  In the synthetic video, the difference between the NCP 

deviations of the clean and noisy videos is striking.  The right plot of Figure 28 shows a clear 

identification of the 4 PCs of the noisy video that are data-dominated and resemble the PCs of 

the clean video. 

In our long heart cell video, there is more room for interpretation.  The overall structure of the 

plot suggests that the first 60 or so PCs are clearly not noise-like (with several outliers), and the 

PCs from 75 on are clearly noise-like.  The only problem is that reconstructions based on these 
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guidelines show clear visual issues, as described in the qualitative analyses.  This brings us to the 

final subject of our discussion. 

The optimal mathematical basis may not be the best image basis. 

This may not be a surprising statement, but it may be the root of several issues that we have had 

with denoising and video analysis.  The SVD finds the orthogonal directions of greatest variance 

of our image set.  These directions form a set of basis images.  For our purposes, we would like 

these basis images to correspond to different events in our videos, such as cell contractions and 

intensity changes, and for the noisy parts to all lie in their own components so that they may be 

neatly removed.  Such is not the case.  The early components are the biggest and most 

predictable.  They tend to be well-behaved but incomplete. 

To get the whole picture, we need information from higher level components.  These combine in 

unpredictable ways.  A given PC may capture, for instance, a noise contribution, part of a 

blinking cell, and the borders of several cells at a specific deformation point.  If we remove that 

component to remove the noise, we also lose part of the blinking of the cell and part of the edge 

of our deforming cells.  We may have just introduced a flicker in the cell and a discontinuity in 

the deformation motion. 
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3.12 Conclusion 

Evaluating residuals by their spectral characteristics to determine their resemblance to white 

noise is computationally expensive and may not be effective.  In cases we have examined the 

residual never becomes noise-like by the KS limit definition.  This may be because of the 

characteristics of the image noise itself.  In the synthetic case, where the noise characteristics 

were known, the residual became noise-like quickly, but it did so at a reconstruction that was 

deemed somewhat incomplete. 

NCP analysis of the V matrix is quick and easy, and gives insight into the PC contributions.  This 

method may help to separate noisy from clean components, especially where the change in PC 

quality is abrupt.  However, there is still quite a bit of subjective interpretation needed when the 

transition from data-dominance to noise is more gradual.  Additionally, if desirable and 

undesirable contributions are tied up in the same PC, no analysis method will allow us to 

separate the two.  Removing noise dominated components may still create artifacts such as 

flickering, and discontinuous motion. 

3.13 Further Work 

It would be worth analyzing more videos with different levels of noise.  These could be both 

synthetic and captured videos of scientific interest.  Noise levels and characteristics could be 

varied in the synthetic videos to see if there are cases in which the methods of PC discrimination 

are particularly effective. 

Another residual analysis scheme used in inverse problem solving [17] that was not used here is 

to try to match the standard deviation of the residual with the known standard deviation of the 
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measurement error (noise).  We may be able to get a good representation of the noise by finding 

a set of quiescent images (little to no movement) and subtracting the mean of those images from 

the set. 

Ultimately, the real utility will lie in being able to form sets of basis images that are well suited 

to our image analysis.  If we can find ways to coax our PCs into representing the information that 

is most relevant to us, it could be of great utility in extracting data from noisy images and 

obtaining relations between fluorescence reported states such as Ca2+ transients or membrane 

potentials and cell contractions.  
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Chapter 4: Optimized, Iterative SVD 

Analysis of Large Datasets 

4.1 Motivation 

Large video arrays are impractical or impossible to process using standard Singular Value 

Decomposition (SVD) algorithms in MATLAB and other software packages due to high memory 

usage.  Although a range of schemes exists for estimating principal components from a small 

subsampling of the video sequence, these are impractical for general application to beating 

cardiac tissue, in which outlier events such as cardiac alternans or transient arrhythmias need to 

be captured.  This is also impractical for analysis of vibrating structures in a frequency range 

capable of exciting multiple modes of excitation.  Because of this, we have been using an 

incremental MATLAB SVD solver written by Robert Pless based on a paper by Matthew Brand 

[20] to estimate principal components from the entire video sequence.  This is an iterative solver 

in which one column of the data matrix may be fed to the solver per iteration and the solver 

updates an approximation of the SVD each iteration.  The major advantage of this approach, for 

our purposes, is that it allows finding an approximate SVD of matrices which would be far too 

large to decompose all at once using MATLAB’s svds() or svd() functions, or other standard 

SVD algorithms. 

This comparison and analysis was written to try to understand the differences in output we were 

seeing as users of both the iterative and standard solver.  Some conclusions drawn by this work 

may not be surprising to those with an expert understanding of the software, but the analysis is 
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nevertheless included for completeness.  A description of two processes used to find a set of 

right singular vectors without excessive memory usage is included. 

4.2 Resource Usage 

Using the standard SVD solvers in MATLAB, we are limited in the size of the arrays we can 

process by RAM.  The CM fluorescence video used for several test cases in this document was 

540 x 960 pixels and 100 frames long.  At double precision, this is a 395MB array. The SVD of 

an array this size may be processed using a standard SVD solver on a computer with a Core-i7 

processor and 16GB of RAM in a matter of a minute or two.  However, the original video was 

3200 frames long.  At double precision, that array is 12.36 GB.  This is too large to process in a 

standard SVD solver “all at once”.  In the iterative solver we were able to solve for 50 

components in 859 seconds, or 100 components in 1,750 seconds.  This takes some time, but it is 

not unreasonable.  Incidentally, this array has already had its resolution reduced 50%, the 

original was 4 times as large! 

Using the iterative solver, we may process the SVD one frame at a time.  The large video file 

may be left in uint8 format (1/8th the size of double precision) and have each frame converted to 

double precision only as it is being fed into the solver.  We don’t need to convert the entire array 

to floating point to get a floating point SVD. 

4.3 Application to a Trichome Video 

Here we will compare the resource requirements of crunchy_isvd(), the iterative SVD solver, 

with the resource requirements of svds(), the MATLAB SVD solver, for decomposing a video of 

a plant trichome experiencing high frequency vibration [21].  Computations were timed using the 
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tic and toc MATLAB commands.  Memory usage was monitored using perfmon.exe, the built-in 

performance monitoring application in Windows 10.  The object monitored was private bytes 

(MATLAB) under Process.  The system used is a laptop computer with an Intel Core-i7 quad-

core processor running at 2.5GHz base frequency and 16GB of ram. 

The baseline MATLAB memory usage recorded by perfmon.exe was 1.36GB.  The video array 

was 600x800x500 (height x width x number-of-frames).  The format was uint8, which was 

converted to double to compute the SVD. 

Using MATLAB’s svds() function to compute the truncated SVD using the first ten singular 

values caused MATLAB’s memory usage to exceed the physical ram available almost 

immediately.  Memory usage quickly jumped to 18GB and caused the computer to begin writing 

data to the swap file for about 25 seconds.  Memory usage then dropped to 12GB for the 

remainder of the SVD calculation.  The SVD was complete after 196 seconds.  Maximum 

MATLAB memory usage was over 16.5GB above the baseline memory usage. 

Crunchy_isvd() completed a truncated approximate SVD with 10 singular values in 32 seconds.  

Maximum memory usage was 1.5GB, which is only 140MB above the baseline memory usage. 

4.3.1 Comparison of S matrix 

In Figure 33, we see that the iterative SVD algorithm produces a first singular value that is 

within one percent of the singular value calculated by svds().  However, higher order singular 

values begin to diverge by as much as 16%.  Singular values computed using the iterative 

method were consistently lower than those computed using the standard solver. 
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Figure 33 - Comparison of singular values produced by the standard and 
iterative solvers. 

4.3.2 Comparison of U matrices 

To visualize the principal components, we have shown the positive pixels of each principal 

component in red and the negative pixels in blue.  Because the columns of U (the left singular 

vectors) are the eigenvectors of the covariance matrix of our original data matrix (and their 

eigenvalues are non-degenerate), they are unique only up to a sign flip, which is arbitrary.  In 

comparing the principal components generated by the two SVD algorithms, we have flipped the 

sign of the corresponding columns of U where they were clearly inverses of one another 

(determined by inspection, but this would be easy to implement using positive/negative 

correlation).  In Figure 34, we see the first four principal components computed by MATLAB 

svds() in the top row, and the principal components computed by crunchy_isvd() in the bottom 

row.  The values have been rescaled to make the components visible. 
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Figure 34 –Principal components 1-4 in a trichome vibration video.  PCs obtained by svds() are shown in the top row, PCs 
obtained using crunchy_isvd() are shown in the bottom row. 

In Figure 34, we see that the first 3 PCs are visually nearly identical between the iterative and 

standard solutions, and that the fourth component begins to diverge.  In Figure 35, we see that 

iterative PC 5-8 diverge somewhat from the standard PCs.  Both iterative and standard PCs begin 

to be dominated by noise starting with PC 7. 

 

Figure 35 - Principal components 5-8 in the trichome vibration video.  PCs obtained by svds() are shown in the top row, PCs 
obtained using crunchy_isvd() are shown in the bottom row. 

4.3.3 Comparison of V matrices 

To compare the V matrices, we plot the columns of V.  Each column of V shows the 

contributions of the corresponding principal component to the individual frames of the video.  
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Because the columns of the U matrix may be flipped in sign arbitrarily, we have also flipped the 

signs of the columns of the V matrices from the two SVD algorithms as needed to get them to 

agree (again, by inspection). 

The V matrix produced by the iterative solver is computed as the principal components are being 

refined.  As such, all columns of V start at zero and converge toward a more accurate solution as 

more input columns are provided.  A better V matrix is found by using a least-squares fit of the 

original input matrix to the U and S matrices computed by the iterative solver. Computing a new 

V matrix took less than 0.2 seconds when taking advantage of the orthogonality of the U matrix 

and the diagonality of the S matrix (if we pre-multiply US and solve for V, this operation takes 

over 27 times as long).  In MATLAB, this was written, V = A'*U/S; where A is our (centered) 

data matrix.  Note that this requires us to convert the original matrix to floating point format 

which is contrary to our original goal of keeping memory usage low.  To keep memory usage 

low, we may rewrite the operation to complete one row at a time: 

UdbS = U/S; % calculate this only once 
for i = 1:k 
     Ai = im2double(A(:,:,i)); % rows of A' (cols of A) 
     Ai = (Ai(:) - meanData); % make column and center data 
     V(i,:) = Ai'*UdbS; % get a new row of V 
end 

 

Figure 36 shows plots of the first column of V, using three different methods to compute V.  

Here we see that the first column of V computed using svds() starts negative and becomes 

positive around frame 180.  The column computed using crunchy_isvd() starts at zero, oscillates, 

and then begins to converge towards the exact solution by the end of the video, as the first PC is 

refined.  If we ran the incremental SVD for a longer video, we would expect the later values of V 

(with higher row indexes) to be better than the earlier values, but the first values are not very 

accurate. 



75 

 

We see that column 1 of V_lsf (our least 

squares fit V matrix from the incremental U 

and S) is so close to column 1 from our svds() 

computed V that the two are hard to 

distinguish in the plot.  These are the 

coefficients for a projection of our centered A 

matrix onto the space spanned by the first PC 

computed by crunchy_isvd(). 

We see a similar trend for PCs 2 and 3 (Figure 

37).  The Column of V computed by the iterative approach starts poor, but improves with 

refinement of the associated PC.  Using a least-squares fit after refining U and S gives us a much 

better V matrix. 

 

Figure 37 – Second and third right singular vectors computed in three different ways. 

However, for PCs 4 and higher (Figure 38), the PCs computed using iterative and standard 

methods begin to diverge.  Because of this, the columns of our iterative V and our least-squares 

V also diverge from the columns of our standard V.  Using PCs above 3, we are looking at a 

Figure 36 – Right singular vectors for PC1 computed three 
different ways. The least squares fit to the PC computed 
iteratively almost completely obscures the standard solution. 
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different SVD.  However, it may not be as different as it initially seems.  If we look at the 

iterative “crunchy” plot from PC4 and invert it, it looks very much like the standard plot for PC5.  

It seems that the two solvers may have switched the two components, which is not all that 

surprising if we look at how close their singular values are in Figure 33.  Comparing basis 

images in Figure 34 and Figure 35 seems to support this theory. 

 

Figure 38 – Fourth and fifth right singular vectors computed in three different ways. 

 

Figure 39 – Sixth  right singular vector computed in three different 
ways. 
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4.3.4 Multiple Passes 

With a longer video of this type (having repeated features and a low effective rank) we expect 

the values in V to converge toward the standard solution as more iterations are available for 

refinement.  To test this, we ran the iterative solver on the same video, simply doubled in length 

by repetition.  We then discarded the upper half of the V matrix (leaving only the portion 

associated with the second repetition of the video).   To keep the columns of V unit-length, we 

multiply by the square root of 2.  We divided the S matrix by the square root of 2 to compensate.  

The results for the first four PCs are shown in Figure 40. 

We see that even in the second pass of our iterative solver, our first column of V has not 

converged to the solution found by the standard method, though it is improved over the single 

pass solution ().  However, our least-squares fit to the iterated PCs fits our standard solution 

extremely well. 

We see that the second pass has improved columns 2 and 3 of our V matrix and brought them 

much closer to our standard solution.  They are still not quite as good as the least squares 

solution found from the final iterated U and S matrices. 
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Figure 40 – Using 2-Pass iterative solver 

4.3.5 Comparison of Residuals 

By its definition, an n-dimensional truncated SVD should give the best least-squares rank-n 

approximation of the original matrix.  By this standard, we can get a measure of how accurate an 

SVD solution is by comparing the norms of the residuals.   

In Figure 41, we compare the 2-norms of the residuals of the trichome video reconstructed from 

only the first three components.  The original video was subtracted from the video reconstructed 

from the first three PCs found using each of the five methods labeled.  The per-pixel differences 
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were squared, summed, divided by the total number of pixels, and the square root of that value is 

listed at the top of each column. 

 

Figure 41 – Residual of 3 component reconstruction using  several methods of finding the SVD 

We see that the standard SVD (using MATLAB’s svds() command) gives the lowest error, 

followed by a least squares fit solution using the iterative solver.  Using two passes of the 

iterative solver before performing the least squares fit improves the accuracy slightly over using 

one pass (columns 2 and 3).  Using the 2-pass iterative solver does not give quite as good 

accuracy as the first three methods, but it is an improvement over using the iterative solver with 

only one pass. 

4.4 Comparison using Fluorescence video: 

The previous analysis was also carried out on a 100-frame video of Fluo-4 stained heart cells.  

The results of that analysis are shown here with a minimum of commentary both for brevity and 

because they are consistent with the previous findings. 
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4.4.1 S matrices 

In Figure 42 we see one interesting phenomenon which is that running the iterative solver with 

three passes brings the low-order singular values closer to those computed by the standard 

solver, but causes the higher order singular values to deviate further from the standard solution.  

It is beyond the scope of this work to investigate the reasons for this deviation. 

 

Figure 42 – Singular values computed by the standard and iterative solvers in one pass (Left) and three passes (Right). 

Images of the PCs are omitted for brevity.  The standard and incremental solvers gave visually 

similar results. 
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4.4.2 V matrices 

 

Figure 43 – Right singular vectors for the first 6 PCs.  The iterative solver was used with one pass. 
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Figure 44 – Right singular vectors for the first 6 PCs.  The iterative solver was used with three passes. 
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4.5 Conclusion 

The clear advantage of the iterative SVD solver is that it allows us to process large data matrices 

that we could not process with standard solvers.  It has the added benefit of being faster as well, 

reducing computation time for the first test case by a factor of six.   

With the understanding that the important output of this software is the ideal orthogonal basis U, 

we can compute a good V quickly and with little memory usage by breaking the matrix 

operations down into a loop that feeds in a floating-point column of A at a time. 

We may get slightly different left singular vectors from the iterative solver than from the 

standard solver, and differences in the computed singular values may “swap” singular vectors.  

This is apparent from visual inspection of basis images even without analyzing differences.  

However, these small differences seem to largely “come out in the wash” when we calculate our 

V matrix.  We know that the first few columns of U are a very good, if not ideal, basis for A 

because of the negligible error difference between iterative and standard TSVD reconstructions 

once we find a post-iteration V. 
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Chapter 5: Conclusions 

Conclusions 

Principal component analysis shows clear utility for certain applications in cardiac optical 

mapping. PCA or a similar mathematical tool has the promise to be even more useful if we can 

separate components in a way that is more meaningful to the subject being studied. 

The coefficients of the first PC work well as a proxy for the cardiac action potential state in some 

applications.  We have used cross-correlation of the first columns of the V matrices to 

synchronize and find similarly shaped action potential sequences in fluorescence and phase-

contrast heart cell videos.  This works well as long as we are aware that the synchronization is 

approximate due to the fact that we are synchronizing calcium transients and deformations in the 

fluorescence video with deformations only in the phase-contrast video. 

PCA data completion may be used to reconstruct missing or nonexistent videos from a related 

video if we have a sufficient data set to create a shared basis for the two types of video.  We have 

demonstrated recreation of a long phase contrast video from a short fluorescence video, a 

synchronized short phase contrast video, and a long fluorescence video.  This works because the 

two videos show two representations of the same underlying phenomenon (the cardiac action 

potential and related contraction). 

Denoising with PCA is effective at removing heavy video noise and leaving a clear, but 

incomplete, approximation of the original video.  PCA denoising removes noise much more 

completely than median filtering or Gaussian blur, without as much loss of detail and resolution.  

However, smaller, out of sync features and certain aspects of deforming features may be lost in 
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these approximations.  Adding more components adds these details and missing events, but at the 

cost of adding back noise and potentially creating artifacts such as flickering and discontinuous 

motion. 

Spectral analysis of the TSVD reconstruction residuals is computationally demanding and may 

not be useful in many cases.  Noisy components may not separate cleanly from data-dominated 

components, so there is no point at which the residual is composed mainly of noise that is neither 

high-pass nor low-pass filtered.  In our real-world fluorescence video, the residuals never 

resembled noise by our KS limits test.  This may be due to structure in the 2D noise due to 

saturated regions.  In the synthetic video case, residuals became noise-like after k=2. 

Spectral analysis of the right singular vectors is computationally inexpensive and helps to 

characterize the contributions of those components, though making use of that information is 

another matter.  In some cases, this may help us separate structured, data-dominated components 

from noisy components.  However, even if we know that a basis image is largely dominated by 

noise, and that it has coefficients that appear noisy by our NCP test, we cannot conclude that the 

component is unimportant to the reconstruction and can be thrown out.  PCs may be combined in 

complex ways by the overall system of matrix equations and isolating the components 

responsible for specific phenomena has proven difficult. 

Future Directions 

Perhaps the most useful goal we could hope to obtain from Principal Component Analysis would 

be a way to separate a video into components that represent different events and features, rather 

than simply relying on the algorithm to pick directions of greatest variance.  There are several 

approaches that may be worth investigating.  One is the use of other related statistical tools such 
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as independent component analysis and exploratory factor analysis.  We have not tried these 

tools, but they may be worth investigating as a way to reduce complicated component 

interactions, i.e.  multiple components combining to create a simple feature, such as a blinking 

CM. 

If we can find a way to control or coax component selection, there are several benefits.  For one, 

we may be able to use effective denoising without giving up important video events such as out 

of sync blinking cardiomyocytes.  We could add in important feature components if they are not 

tied in to other undesirable features such as noise.  A second benefit would be quick access to 

data from optical mapping recordings.  If the individual components represented regions of the 

video blinking at different delays, for instance, then we would have automatic region of interest 

selection in the columns of U, and fluorescence intensity plots for those regions in the columns 

of V.  A third benefit of having this kind of component separation would be the ability to explore 

the relationships between components related to intensity changes and components related to 

deformation.   

There may be other ways to achieve this kind of separation of regional deformations and 

intensity changes.  We are currently investigating the use of strain mapping software that has 

been modified to “unwarp” deformed regions in a video [22].  This offers the promise of 

removing motion from videos of dynamically deforming subjects.  We not only get a map of the 

strains in time, but we stabilize the image for ease of fluorescence intensity mapping.  PCA of 

the stabilized images may offer a simpler case where the components have less complicated 

events to reconstruct.  This may be useful for denoising (we could add deformations back after 

the stabilized image set has been denoised), automatic region selection, and fluorescence 

intensity plotting. 
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