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ABSTRACT 
 
 

SHAPE OPTIMIZATION OF BUSEMANN-TYPE BIPLANE AIRFOIL FOR DRAG 

REDUCTION UNDER NONLIFTING AND LIFTING CONDITIONS USING GENETIC 

ALGORITHMS 

by 

Yi Tian 

Master of Science in Mechanical Engineering 

Washington University in St. Louis, 2015 

Research Advisor:  Professor Ramesh K. Agarwal 

 
 
The focus of this thesis is on the shape optimization of the Busemann-type biplane airfoil for drag 

reduction under both nonlifting and lifting conditions using genetic algorithms. The concept of the 

Busemann-type biplane airfoil was first introduced by Adolf Busemann in 1935. Under its design 

condition at a specific supersonic flow speed, the Busemann biplane airfoil eliminates all wave drag 

due to its symmetrical biplane configuration; however it produces zero lift. Previous research has 

shown that the original Busemann biplane airfoil design has a poor performance under off-design 

conditions as well. In order to solve this problem of zero lift and to improve the off-design-

condition performance of the biplane airfoil, shape optimization of the asymmetric biplane airfoil is 

performed to minimize the drag while maximizing the lift. In this thesis, the commercially available 

CFD solver ANSYS FLUENT is employed for computing the inviscid flow past the biplane airfoil. 

An unstructured mesh is generated using ICEM software. A second-order accurate steady density-

based solver is employed to compute the supersonic flow field. A single-objective genetic algorithm 

(SOGA) is employed to optimize the Busemann biplane airfoil shape under nonlifting condition to 



 

xi 

 

minimize the drag coefficient and a multi-objective genetic algorithm (MOGA) is employed to 

optimize the Busemann biplane airfoil shape under lifting condition to maximize both the lift 

coefficient and the lift to drag ratio simultaneously. Both results obtained by using SOGA and 

MOGA show significant improvement in the design and off-design-condition performance of the 

optimized Busemann biplane airfoil compared to the original one.   
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Chapter 1 

 

Introduction 
 
This chapter provides the background of the supersonic airfoils of commercial airplanes and the 

motivation behind the study of the optimization of the shape of such airfoils. The scope of this 

thesis is also included. 

 

1.1 Motivation 
 

For decades, the speed of commercial aircrafts has been bounded by the sound barrier. Even the 

most successful supersonic transport (SST) plane, the Concorde, could only be deployed in very few 

routes due to government regulation, low efficiency and excessive noise generation. Since the 

retirement of Concorde in 2003, the desire of developing a replacement for Concorde still remains. 

In order to accomplish that, one of the biggest design challenges is to eliminate, or at least greatly 

reduce, the strong bow shock wave generated during supersonic flight, which can cause high wave 

drag and substantial noise. This research employs a Single-Objective Genetic Algorithm (SOGA) 

and a Multi-Objective Genetic Algorithm (MOGA) to optimize the airfoil shape to minimize the 

wave drag of supersonic commercial aircrafts. 
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1.2 Background 
 

Computational Fluid Dynamics (CFD) is routinely used in a variety of industrial applications as an 

analysis tool to simulate and validate new concepts and designs of systems and components that 

involve fluid flow including both liquid and gas. Components such as wings, fuselage, tails and 

engines are routinely analyzed for both commercial and fighter aircrafts using CFD.  

 

At supersonic speed, a bow shock is generated ahead of the airplane. This shock wave generates a 

substantially high wave drag which needs to be overcome by the engine by providing a much higher 

thrust compared to that for a conventional subsonic/transonic airplane, which results in higher fuel 

consumption and low propulsive efficiency. In order to address the high-wave-drag problem at 

supersonic speed, a biplane concept was proposed by Adolf Busemann in 1935 [1] which can 

potentially avoid the formation of the bow shock and thus does not create sonic boom. During the 

period from 1935 to 1960, substantial research was conducted on the Busemann biplane concept. 

Moeckel [2] and Licher [3] performed the theoretical analysis of the optimized lifting supersonic 

biplanes. Tan [4] took a further step and derived analytical expressions for the drag and lift of a three 

dimensional supersonic biplane with a finite span of rectangular plan form. Some experimental 

results were obtained by Ferri [5] using a wind tunnel and comparisons were made between the 

experimental and analytical results. During the past ten years, considerable interest has again 

generated in supersonic biplane airfoils. Igra and Arad [6] tested and analyzed the effects of different 

parameters on the drag coefficient of the Busemann airfoil at various flow conditions. Kusunose et 

al. [7] proposed a concept for the next generation supersonic transport using the Busemann biplane 

design. A series of studies using both computational fluid dynamics (CFD) methods and wind-

tunnel experimental methods have been completed by Kusunose’s research group [7-16]. Recently, 
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Hu et al. [17] employed a multi-point adjoint-based aerodynamic design and optimization method to 

improve the baseline Busemann biplane airfoil’s off-design performance and alleviate the flow 

hysteresis problem. They also addressed the problem of minimizing its drag by shape optimization. 

 

1.3 Scope of the Thesis 
 

This thesis addresses the aerodynamic shape optimization of the two-dimensional symmetric 

Busemann biplane airfoil under both design and off-design conditions for reducing its wave drag 

and the alleviation of the flow-hysteresis and choked-flow effects using a single-objective genetic 

algorithm. The symmetric Busemann biplane airfoil generates zero lift; this problem is addressed by 

introducing asymmetry in the shape of the two profiles of the biplane. The asymmetric 

configuration is shape optimized for maximum lift and minimum drag by employing a multi-

objective genetic algorithm. The flow field is computed using the commercial CFD software ANSYS 

FLUENT. Body-fitted H-grids around the airfoils are generated using the ICEM software. Random 

airfoil shapes with constraints in a given generation of the genetic algorithm are generated by 

employing the Bezier Curves (third-order polynomials).  
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Chapter 2 

 

Flow Field Simulation of  Busemann 
Biplane Airfoil  
 
This chapter presents the physical characteristics of the Busemann-type biplane airfoil and the 

simulation of supersonic flow past the Busemann biplane airfoil under both design and off-design 

conditions. A total of three types of flows are simulated: an impulsive uniform flow; a flow during 

acceleration; and a flow during deceleration.  

 

2.1 Wave Drag of Supersonic Thin Airfoil 
 
When measuring the total drag of an airplane wing, several types of drag are taken into consideration: 

skin friction drag, wave drag, pressure drag and vortex drag. However in supersonic cruise flight, the 

wave drag, which is the drag caused by the existence of strong shock waves, is the dominant 

component among all others [17].  

 

In order to solve for the lift and drag of an airfoil in supersonic flow, the shock expansion theory is 

generally employed. Under the conditions that the airfoil is thin and the angle of attack is small, the 

lift and drag of an airfoil in supersonic flow can be approximately determined by the analytical 

expressions using the thin airfoil theory [19]. The lift and drag coefficients of an airfoil are defined in 

Eq. (2.1) and Eq. (2.2). 
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where   is the lift,   is the wave drag of the airfoil,   is the chord length and   is the dynamic 

pressure defined as 

 

  
 

 
    

                                                                      

 

It should be noted that in Eq. (2.1) and Eq. (2.2), a wingspan of unit length is assumed. According 

to thin airfoil theory, Eq. (2.4) and Eq. (2.5) provide the expressions for    and    of an arbitrary 

two-dimensional thin airfoil at small angle of attack shown in Figure 2.1. 

 

   
   

√  
   

                                                                 

   
 

√  
   

[(
  

  
)
 ̅̅ ̅̅ ̅̅ ̅̅
   

    
    ̅̅ ̅̅ ̅̅ ̅̅ ]                                           

 

It is clear from Eq. (2.4) that the lift of the thin airfoil in supersonic flow simply depends on the 

mean angle of attack, while the wave drag consists of three parts: drag caused by the angle of attack; 

drag caused by the camber of the airfoil and drag caused by the thickness of the airfoil. 
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Figure 2.1 Linear decomposition of contributions to lift and drag of an arbitrary thin airfoil at small angle of attack [19] 

 

2.2 Advantageous Effects of Busemann Biplane 
Airfoil 

 
The biplane airfoil concept proposed by Adolf Busemann [1] is simply to divide a standard 

diamond-shaped airfoil into two identical components and place the triangular surfaces facing each 

other at a certain distance apart, as shown in Figure 2.2. The Busemann biplane airfoil design works 

excellently to reduce the drag due to angle of attack and the drag due to thickness, referred to as the 

wave reduction effect and the wave cancellation effect respectively.  

 

Figure 2.2 Configuration of the Busemann biplane airfoil concept [17] 
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2.2.1 Wave Reduction Effect 
 
Although the drag due to angle of attack cannot be completely eliminated, it can be significantly 

reduced by employing the multiple-airfoil concept [7]. To better show this, the general airfoil is 

simplified to a flat plate airfoil. Thus,    is the same as in Eq. 2.4 while     can be simplified to 

 

   
   

 

√  
   

                                                                    

 

This indicates that the lift coefficient    of a general airfoil is proportional to the angle of attack 

while the drag coefficient    of a general airfoil is proportional to the square of the angle of attack.  

 

 

Figure 2.3 Wave reduction effect of the biplane airfoil [17] 

 

In the case of cascade of airfoils which consists of n parallel flat plates with the same chord length   

as the single flat plate airfoil shown in Figure 2.3, the angle of attack    is set at         since 

the total lift of this n-plate cascade of airfoils     is set to be the same as that of the single plate 

airfoil     as described by Eq. (2.7). 
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√  
   

   

   

 

√  
   

                                          

 

The wave drag of this n-plate cascade of airfoils     equals to the summation of the wave drag of all 

of the plates: 

 

      
   

 

√  
   

   
 (

  

 )
 

√  
   

 
 

 

   
 

√  
   

 
 

 
                       

 

It can been seen from Eq. (2.8) that the n-plate cascade of airfoils produces 
 

 
 of the wave drag 

compared to the single flat plate airfoil while having the same amount of lift (Eq. (2.7)).   

 

In summary, for a combined cascade of multiple-airfoils configuration, the drag caused by the angle 

of attack or lift effect is reduced since the effective angle of attack or lift effect of each individual 

airfoil is reduced while the total lift of the combined cascade of multiple-airfoils remains the same. 

This reduction in wave drag is called the “Wave Reduction Effect” of a combined cascade of 

multiple-airfoils configuration [7]. 

 

2.2.2 Wave Cancellation Effect 
 
The Busemann-type biplane configuration significantly reduces the drag due to thickness as well. By 

adjusting the distance    between the upper and lower components of the airfoil at a specific Mach 
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number, the strong shock wave generated at the leading edge of one of the components (upper or 

lower) of the airfoil reaches exactly at the mid-point of the opposite component and is cancelled by 

the expansion wave generated at that point. Theoretically speaking, the shock wave is completely 

cancelled, and thus no wave drag due to thickness of the airfoil is produced, as shown in Figure 2.4. 

 

 

Figure 2.4 Wave cancellation effect [17] 

 

However, because of the entropy increase caused by the shock wave generated between the upper 

and lower components of the airfoil and due to the nonlinear effects during the shock-expansion 

process, the wave drag cannot be completely eliminated, and therefore the theoretical zero-drag 

condition cannot be practically realized [19,20]. At other off-design Mach numbers, the shock wave 

is cancelled only partially, as shown in Figure 2.5. Thus, the wave drag of the Busemann biplane 

airfoil does not become zero under off-design conditions.   
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 a) Design condition b) Off-design condition 
Figure 2.5 Wave formation and pressure changes at design and off-design condition for the Busemann biplane airfoil [17] 

 

2.3 Flow Field Simulation of the Standard Diamond-
Shaped Airfoil and the Baseline Busemann 
Biplane Airfoil under Design and Off-design 
Conditions 

 
The flow fields of both the standard diamond-shaped airfoil and the Busemann biplane airfoil are 

computed at zero angle of attack (the zero-lift condition). For meaningful comparison, the total 

thickness of the two airfoils is set to be equal. For this specific case under consideration, the 

thickness to chord ratio of the diamond-shaped airfoil is        , while the thickness to chord 

ratio of the Busemann airfoil is          for both its upper and lower components. The distance 

between the upper and lower components of the Busemann airfoil is set to be one half of the chord 

length to obtain the theoretical minimum drag under the design condition (Mach number      ). 

The angle of attack is set to be zero since we first consider the non-lifting design and off-design 

conditions by varying the Mach number below 1.7 and greater than 1.7.  
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2.3.1 Mesh Generation  
 
The commercial meshing software ANSYS ICEM CFD is used to generate the mesh for computing 

the flow field. The far field boundary is set at 21-chord-length by 20.5-chord-length rectangle from 

the center of the airfoil as shown in Figure 2.6. Figure 2.7 and Figure 2.8 show the H mesh 

configuration generated for the simulations. There are 64 nodes around the two components both 

horizontally and vertically. In between the two components, the grid has a dimension of 32 nodes 

(vertically)   64 nodes (horizontally). An ICEM replay script file is created to automatically generate 

the mesh for the flow past different airfoil shapes once it is called.   

 

 

Figure 2.6 Computational domain for the Busemann biplane airfoil configuration 



 

12 

 

 

Figure 2.7 H-mesh generated in the computational domain around the Busemann biplane airfoil 

 

 

Figure 2.8 Zoomed-in view of H-mesh generated in computational domain around the Busemann biplane airfoil 
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2.3.2 Steady-State Flow Field Simulation at       
 
As has been discussed above, the baseline Busemann biplane airfoil has a much lower drag under its 

design condition with Mach number      . However, it has a poor aerodynamic performance 

under off-design conditions, which may cause much higher drag compared to the standard 

diamond-shaped airfoil. The configurations of both the standard diamond-shaped airfoil and the 

baseline Busemann biplane airfoil are shown in Figure 2.9. 

 

 

Figure 2.9 Configurations of standard diamond-shaped airfoil (left) and baseline Busemann biplane airfoil (right) 

 

Figure 2.10 shows the drag coefficient    of both the standard diamond-shaped airfoil and the 

baseline Busemann biplane airfoil under zero-lift condition over a range of Mach numbers      

      . The simulations are performed using ANSYS FLUENT; the flow field is initialized with 

an impulsive uniform flow.  
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Figure 2.10    comparison of two different airfoils under non-lifting condition 

 

As shown in Figure 2.10, the baseline Busemann biplane airfoil has higher drag compared to the 

standard diamond-shaped airfoil when the Mach number is low            . In the range 

          however, the drag generated by the baseline Busemann biplane airfoil is smaller than 

that of the standard diamond-shaped airfoil, especially at       which is the design condition for 

the Busemann airfoil. Table 2.1 shows a detailed comparison of the drag coefficient    of these two 

airfoils for the range of Mach numbers          .  
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Table 2.1 Drag coefficient    for diamond-shaped airfoil and Busemann airfoil over a range of Mach numbers 

M Cd (Diamond) Cd (Busemann) 

0.3 2.83E-03 4.45E-03 

0.4 3.15E-03 4.87E-03 

0.5 3.09E-03 7.01E-03 

0.6 3.63E-03 6.86E-02 

0.7 8.54E-03 1.33E-01 

0.8 3.47E-02 1.48E-01 

0.9 9.56E-02 1.30E-01 

1 8.65E-02 1.18E-01 

1.1 8.04E-02 1.10E-01 

1.2 7.40E-02 1.04E-01 

1.3 5.25E-02 9.98E-02 

1.4 4.20E-02 9.66E-02 

1.5 3.62E-02 9.43E-02 

1.6 3.22E-02 9.26E-02 

1.7 2.92E-02 3.21E-03 

1.8 2.68E-02 3.99E-03 

1.9 2.48E-02 5.94E-03 

2 2.31E-02 7.94E-03 

2.1 2.17E-02 9.73E-03 

2.2 2.05E-02 1.13E-02 

2.3 1.94E-02 1.26E-02 

2.4 1.84E-02 1.38E-02 

2.5 1.75E-02 1.48E-02 

2.6 1.67E-02 1.57E-02 

2.7 1.60E-02 1.59E-02 

2.8 1.54E-02 1.54E-02 

2.9 1.48E-02 1.48E-02 

3 1.42E-02 1.42E-02 

3.1 1.37E-02 1.37E-02 

3.2 1.33E-02 1.33E-02 

3.3 1.29E-02 1.28E-02 

 

Both Figure 2.10 and Table 2.1 demonstrate the advantage of the Busemann biplane airfoil since it 

produces much lower drag near its design condition         due to the wave reduction and wave 

cancellation effects. The simulations shown above demonstrate that the baseline Busemann biplane 

airfoil has a very good performance at its design condition        , while it has much higher drag 

at off-design conditions due to the choked-flow phenomenon at lower Mach numbers        . 
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Figure 2.11 through Figure 2.14 show the flow field around the baseline Busemann biplane airfoil 

under two different off-design conditions both of which result in high drag but due to different 

reasons. At      , as shown in Figure 2.11, the flow between the two airfoil components reaches 

Mach one at the midchord of the airfoil and then increases further downstream to supersonic. After 

the trailing edge of the airfoil however, the flow speed again drops to subsonic and hence forms a 

vertical shock wave. The supersonic flow in the rear part of the airfoil (after the mid-point) creates 

the low-pressure region, as shown in Figure 2.12, which leads to higher wave drag            at 

this off-design condition of      . At       however, as shown in Figure 2.13, the flow field 

is very different from the       subsonic condition discussed above. A bow shock is formed in 

front of the leading edge of the airfoil. The flow speed drops to subsonic and a high-pressure region, 

as shown in Figure 2.14, is created which again generates a high drag            .  

 

 

Figure 2.11 Velocity contours around the Busemann airfoil at       
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Figure 2.12 Pressure contours around the Busemann airfoil at       

 

 

Figure 2.13 Velocity contours around the Busemann airfoil at       
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Figure 2.14 Pressure contours around the Busemann airfoil at       

 

2.3.3 Flow Field Simulation during Acceleration and Deceleration 
 

Besides the high drag been generated under off-design conditions, there is an even worse problem 

caused by the flow-hysteresis phenomenon during acceleration and choked-flow phenomenon 

during deceleration that need to be addressed under off-design conditions. To demonstrate these 

phenomena, flow field simulations are conducted both under acceleration and deceleration using the 

previous simulation results shown in Figure 2.10 as the initial condition. Figure 2.15 shows two 

separated    curves during acceleration and deceleration of the biplane airfoil.  As been shown in 

Figure 2.15, the change in acceleration and deceleration    curves occurs in the range       to 

     , where the blue dash line represents the    of the Busemann biplane airfoil during 

acceleration and the red solid line represents the    of the Busemann biplane airfoil during 

deceleration. This separation between the two    curves is caused by the flow-hysteresis 

phenomenon during acceleration and the choked-flow phenomenon during deceleration. Therefore, 
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in order to minimize the difference in the drag coefficients of the Busemann biplane airfoil during 

acceleration and deceleration as well as to significantly decrease the drag, shape optimization of the 

Busemann airfoil is conducted using SOGA to eliminate the flow-hysteresis phenomenon during 

acceleration and the choked-flow phenomenon during deceleration; it is discussed in Chapter 3. 

Table 2.2 compares the    for diamond-shaped airfoil and Busemann airfoil under acceleration and 

deceleration at various Mach numbers. 

 

 

Figure 2.15    plots for diamond-shaped airfoil and Busemann airfoil during acceleration and deceleration under non-

lifting condition 
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2.3.3.1 Flow Field of Busemann Biplane Airfoil during Acceleration 
 
In this section, the flow-hysteresis phenomenon during acceleration is examined for the baseline 

Busemann biplane airfoil under non-lifting condition. The pressure coefficient contours for flow 

past the Busemann airfoil during acceleration are shown in Figure 2.16. To simulate the non-lifting 

condition, the angle of attack is set to zero. The resulting non-lifting flow field around the 

Busemann airfoil is shown in Figure 2.16 at various supersonic Mach numbers ranging from   

    to       . As shown in Figure 2.16, the bow shock exists in front of the Busemann airfoil 

and does not disappear until the Mach number reaches 2.13. It can also be noticed that there is a 

subsonic region behind the bow shock between the upper and lower components of the airfoil 

where the pressure coefficients are high. The result of the presence of this bow shock in front of the 

airfoil is a substantial increase in drag compared to that at the design condition. However, when the 

Mach number increases from 2.12 to 2.13, the bow shock is swallowed into the upper and lower 

components of the Busemann airfoil and is replaced by two oblique shock waves, and the subsonic 

region between the two airfoil components finally disappears as shown in Figure 2.16(f). The drag 

coefficient of the airfoil also decreases dramatically and the flow past the airfoil develops into a state 

similar to that under the design condition. Figure 2.16 illustrates the poor performance of the 

baseline Busemann airfoil under off-design conditions. During acceleration, the design condition 

cannot be achieved at Mach number 1.7. And the drag coefficient at March number 1.7 is much 

higher             compared to the standard diamond-shaped airfoil            . 

Furthermore due to the flow-hysteresis phenomenon, the drag coefficients    during acceleration 

and deceleration are different as shown in Figure 2.15 and Table 2.2.  
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Table 2.2 Drag Coefficients    for Busemann airfoil and standard diamond airfoil at various Mach numbers 

Busemann Acceleration Busemann Deceleration Standard Diammond 

M Cd M Cd M Cd 

0.3 4.45E-03 0.3 4.45E-03 0.3 2.83E-03 

0.4 4.87E-03 0.4 4.87E-03 0.4 3.15E-03 

0.5 7.01E-03 0.5 7.01E-03 0.5 3.09E-03 

0.6 6.91E-02 0.6 6.91E-02 0.6 3.63E-03 

0.7 1.33E-01 0.7 1.33E-01 0.7 8.54E-03 

0.8 1.48E-01 0.8 1.48E-01 0.8 3.47E-02 

0.9 1.30E-01 0.9 1.30E-01 0.9 9.56E-02 

1.0 1.18E-01 1 1.18E-01 1 8.65E-02 

1.1 1.10E-01 1.1 1.10E-01 1.1 8.04E-02 

1.2 1.04E-01 1.2 1.04E-01 1.2 7.40E-02 

1.3 9.99E-02 1.3 9.99E-02 1.3 5.25E-02 

1.4 9.67E-02 1.4 9.67E-02 1.4 4.20E-02 

1.5 9.43E-02 1.5 9.40E-02 1.5 3.62E-02 

1.6 9.26E-02 1.6 9.40E-02 1.6 3.22E-02 

1.7 9.23E-02 1.61 9.30E-02 1.62 3.16E-02 

1.8 9.08E-02 1.63 5.59E-03 1.7 2.92E-02 

1.9 8.94E-02 1.65 4.14E-03 1.8 2.68E-02 

2.0 8.83E-02 1.7 2.18E-03 1.9 2.48E-02 

2.10 8.69E-02 1.8 3.64E-03 2 2.31E-02 

2.11 8.64E-02 1.9 5.94E-03 2.1 2.17E-02 

2.12 8.60E-02 2 7.94E-03 2.2 2.05E-02 

2.13 1.03E-02 2.1 9.73E-03 2.3 1.94E-02 

2.2 1.13E-02 2.2 1.13E-02 2.4 1.84E-02 

2.3 1.26E-02 2.3 1.26E-02 2.5 1.75E-02 

2.4 1.38E-02 2.4 1.38E-02 2.6 1.67E-02 

2.5 1.48E-02 2.5 1.48E-02 2.7 1.60E-02 

2.6 1.57E-02 2.6 1.57E-02 2.8 1.54E-02 

2.7 1.59E-02 2.7 1.59E-02 2.9 1.48E-02 

2.8 1.54E-02 2.8 1.54E-02 3 1.42E-02 

2.9 1.48E-02 2.9 1.48E-02 3.1 1.37E-02 

3.0 1.42E-02 3.0 1.42E-02 3.2 1.33E-02 

3.1 1.37E-02 3.1 1.37E-02 3.3 1.29E-02 

3.2 1.33E-02 3.2 1.33E-02     

3.3 1.28E-02 3.3 1.28E-02     
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f)                     

Figure 2.16   -contours around the Busemann biplane airfoil with zero-lift during acceleration 
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2.3.3.2 Flow Field of Busemann Biplane Airfoil during Deceleration 
 
In this section, the choked-flow phenomenon of the baseline Busemann biplane airfoil during 

deceleration is examined. The contours of pressure coefficients for flow past the Busemann airfoil 

during deceleration are shown in Figure 2.17. To simulate the non-lifting condition, the angle of 

attack is set to zero as before. The resulting non-lifting flow field around the Busemann airfoil is 

shown in Figure 2.17 at various supersonic Mach numbers ranging from        to       . As 

shown in Figure 2.17, a different flow field appears within the small range near the design Mach 

number        ; a relatively high drag coefficient still occurs as the Mach number further 

decreases during deceleration. A strong bow shock is formed in front of the airfoil when the Mach 

number drops from 1.63 to 1.62, while the drag coefficient increases dramatically from 0.005594 to 

0.0926, which is substantially higher than that of the standard diamond-shaped airfoil     

        . The flow between the two components of the airfoil is choked at the location of the 

maximum thickness of the Busemann airfoil and a subsonic region is formed. This is also a clear 

indication of the poor performance of the baseline Busemann biplane airfoil at off-design conditions 

since the drag coefficient of the Busemann airfoil is much higher than that of the standard diamond-

shaped airfoil for       . 

 

In conclusion, the baseline Busemann biplane airfoil produces a substantially higher drag in the low 

Mach number range (below the design Mach number of      ). Additionally, it is necessary to 

accelerate the Busemann biplane airfoil to a much higher Mach number          to reach the 

shockwave-swallowing state, while producing dramatically higher drag and largely decreasing its 

efficiency, and then decelerate to a lower velocity to achieve the design condition at Mach number 



 

24 

 

     . As a result, the baseline Busemann biplane airfoil design needs to be modified and 

optimized to avoid or at least reduce the high drag coefficient caused by the flow-hysteresis 

phenomenon during acceleration and the choked-flow phenomenon during deceleration.  
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 e)                     
 

f)                    

Figure 2.17   -contours around the Busemann biplane airfoil with zero-lift during deceleration 
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Chapter 3 

 

Optimization of  Busemann-Type 
Biplane Airfoil  
 
In this chapter, the shape optimization procedure for the baseline Busemann biplane airfoil using 

the genetic algorithms (GA) and the results of the optimized Busemann-type airfoil under both non-

lifting and lifting conditions are presented. 

 

3.1 Genetic-Algorithm-Based Optimization 
Procedure 

 

The optimization process is established by coupling a Single-Objective Genetic Algorithm (SOGA) 

or a Multi-Objective Genetic Algorithm (MOGA) based optimization method with the mesh 

generation software ANSYS-ICEM and the CFD solver ANSYS-FLUENT as shown in Fig. 3.1. 

 

 

 

 

 

 

 

Figure 3.1 Schematic of information flow in the optimization process 
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Every individual (airfoil) in each generation of SOGA/MOGA is represented by a set of control 

points, which randomly generate the airfoil shape by using the Bezier Curves. The mesh generation 

software ICEM is used to generate a two-dimensional structured mesh around the airfoil as an input 

to the CFD solver FLUENT, which is then used to calculate the supersonic inviscid flow fields for 

specific flow conditions. Based on the fitness values of all airfoil shapes in a given generation, 

SOGA/MOGA is applied to create the next generation of airfoils and this whole process is repeated 

until the optimal fitness value is obtained. The airfoil shape that corresponds to the optimal fitness 

value is the final shape of the optimized airfoil [18]. 

 

3.1.1 Overview of Genetic Algorithm 
 

Genetic algorithms (GAs) are a class of stochastic optimization algorithms inspired by the biological 

evolution [20]. They efficiently exploit historical information to speculate on new offspring with 

improved performance [21]. For the Busemann biplane airfoil in particular, genetic algorithm is used 

to generate new shapes that produce much lower drag by minimizing the flow-hysteresis 

phenomenon during acceleration and the choked-flow phenomenon during deceleration. Generally, 

The GA employs the following steps to complete the optimization process: 

1. Initialization: Randomly generates a group of individuals. 

2. Evaluation: Evaluates the fitness of each individual generated. 

3. Natural selection: Individuals that have the lowest fitness are removed. 

4. Reproduction: Pairs of the individuals are picked to produce the offspring, which is often 

done by roulette wheel sampling. A crossover function is then used to produce the 

offspring. 

5. Mutation: Randomly modifies some small percentage of the population. 
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6.  Check for convergence: If the current generation has converged, the individual having the 

best fitness will be returned. Otherwise, the process will be repeated starting from step 2 

until the pre-defined tolerance criteria for acceptable change in fitness between generations 

is met. 

 

3.2 Shape Optimization of Busemann Biplane Airfoil 
under Nonlifting Condition 

 

3.2.1 Application of Single-Objective Genetic Algorithm (SOGA)  
 

For the non-lifting condition, where the lift coefficient     , a Single-Objective Genetic 

Algorithm (SOGA) is employed for the shape optimization of the Busemaan biplane airfoil. The 

single objective to be achieved is to minimize the drag coefficient   . Multiple design points (Mach 

numbers) are used during the optimization process due to the flow-hysteresis and choked-flow 

phenomena caused by the baseline Busemann biplane airfoil during acceleration and deceleration 

respectively. For the multi-point optimization, the fitness function employed is a weighted average 

of the drag coefficients   , which can be written in the form: 

 

  
∑     

 
   

∑   
 
   

                                                                  

 

where I is the weighted average drag coefficient and “i” denotes a design point (related to Mach 

number). For the optimization process for nonlifting condition, an evenly weighted average of drag 

coefficients    at different Mach numbers is employed. Therefore Eq. (3.1) reduces to 
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Since the wave drag of the Busemann biplane airfoil is much lower when the flow is unchoked, it is 

highly desirable that the strong bow shock wave in front of the airfoil is swallowed into the area 

between the upper and lower components of the airfoil before the flow speed approaches the design 

Mach number        . Although a higher weight can be assigned to the most important design 

Mach number         to produce a lower drag at that design point, previous research conducted 

by Hu et al. [17] has shown that a slightly higher drag coefficient    is obtained at lower Mach 

numbers during acceleration and deceleration, as given in Table 3.1 and Table 3.2 respectively if 

such an uneven weighting method is used.  

 

Table 3.1    comparison at zero lift condition during acceleration (1 count = 0.0001) [17] 

Mach number 1.1 1.2 1.3 1.4 1.5 1.6 1.7 

Baseline 1050 996 957 928 906 889 873 

Optimized (even) 527 473 419 376 332 112 106 

Optimized (uneven) 539 486 428 382 336 107 101 

 

Table 3.2    comparison at zero lift condition during deceleration (1 count = 0.0001) [17] 

Mach number 1.7 1.6 1.5 1.4 1.3 1.2 1.1 

Baseline 873 889 906 928 957 996 1050 

Optimized (even) 106 112 127 152 419 473 527 

Optimized (uneven) 101 107 122 146 428 486 539 

 

Here, we have a total of seven design points in the Mach numbers range       to      , for 

both acceleration and deceleration. The reason for picking these seven design points is that this 
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range of Mach numbers,       to      , provides the critical region before the Mach number 

increases to the design condition      ; it is the region in which we want to keep the drag 

coefficient as low as possible. Both acceleration and deceleration scenarios are considered in order 

to reduce the flow-hysteresis phenomenon and the choked flow phenomenon respectively.  

 

A code in MATLAB package is developed and utilized in the optimization process of the airfoil as 

well as for ICEM meshing and FLUENT flow field calculations. All SOGA parameters are defined 

based on the GA methodology, as shown in Table 3.3.  

 

Table 3.3 GA parameters for shape optimization of Busemann biplane airfoil under nonlifting condition 

GA Parameters Description 

Generation Size 8 individuals per generation 

Number of Generations Maximum of 50 generations if convergence not obtained 

Number of Design Variables 14 in total, 7 for acceleration and 7 for deceleration 

Selection Type Roulette Wheel Selection 

Crossover Rate 0.7 

Mutation Rate 0.1 

Error of Mutation Constant 
0.8, which determines how much mutation affects the curves as 
generations proceed 

 

3.2.2 Airfoil Parameterization   
 

The shape of the airfoil is generated by using the Bezier curves (third-order polynomials). Bezier 

curves are frequently used in computer graphics to produce curves which appear to be reasonably 

smooth at all scales. One of the main reasons that Bezier curves are used in computer graphics is 

that they can be efficiently constructed; each Bezier curve is simply defined by a set of control points 

[22]. 
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For the non-lifting case in specific, with     , since the upper and lower components of the airfoil 

are symmetric with respect to the horizontal axis, only the upper component of the airfoil needs to 

be defined; the lower component is the mirror image with respect to the horizontal axis. For the 

upper component of the airfoil, there are two lines that need to be drawn to define its shape. Since 

the thickness distribution for the entire airfoil remains the same as that of the baseline Busemann 

biplane airfoil, the y-coordinates of the lower line are defined by Eq. (3.3) and Eq. (3.4). Thus the 

upper line (which is a straight horizontal line for the baseline Busemann airfoil) is the only line that 

needs to be generated by the Bezier curves in order to define the shape of the whole biplane airfoil. 

 

                         (          )                              

                         (         )                                

 

In Eq. (3.3) and Eq. (3.4), the subscripts ‘low’ and ‘up’ correspond to the lower and upper line of the 

airfoil; the origin is at the center of the upper line. Two Bezier curves are used to generate the shape-

defining upper line. Each Bezier curve is defined by a set of four control points. Each control point 

is constrained by a specified range of x- and y-coordinates as shown in Table 3.4. Figure 3.2 shows a 

randomly generated Busemann-type biplane airfoil shape using Bezier curves. Figure 3.3 and Figure 

3.4 show the detailed geometry of Bezier curve #1 and Bezier curve #2 along with their control 

points.  
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Table 3.4 Coordinate range for each control point of the Bezier curves for the airfoil under nonlifting condition 

 
Coordinate Upper Limit Lower Limit 

Bezier 
curve 

#1 

x1 Fixed at x=-0.5 

x2 -0.05 -0.5 

x3 Fixed at x=-0.05 

x4 Fixed at x=0 

y1 0.25 0.2 

y2 0.25 0.2 

y3 Fixed at y=0.25 

y4 Fixed at y=0.25 

Bezier 
curve 

#2 

x1 Fixed at x=0 

x2 Fixed at x=0.05 

x3 0.5 0.05 

x4 Fixed at x=0.5 

y1 Fixed at y=0.25 

y2 Fixed at y=0.25 

y3 0.25 0.2 

y4 0.25 0.2 

 

 

Figure 3.2 Randomly generated Busemann-type biplane airfoil shape using Bezier curves 
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Figure 3.3 Detailed geometry of Bezier curve #1 and its control points 

 

Figure 3.4 Detailed geometry of Bezier curve #2 and its control points 
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3.2.3 Optimization Results 
 

After implementing SOGA for 20 generations with 8 individuals in each generation, an optimal 

shape result for symmetric Busemann-type biplane airfoil under non-lifting condition with minimum 

drag is obtained. Figure 3.5 shows the geometry of the original Busemann biplane airfoil (red) and 

the optimized Busemann biplane airfoil (blue) under nonlifitng condition. Figure 3.6 and Figure 3.7 

show the two final Bezier curves used to generate the optimized Busemann biplane airfoil shape 

along with their control points. 

 

 

Figure 3.5 Geometry of both the original and optimized Busemann biplane airfoil under nonlifting condition 

Original (red) 

Optimized (blue) 
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Figure 3.6 Bezier curve #1 and its control points for the optimized Busemann biplane airfoil under nonlifting condition 

 

 

Figure 3.7 Bezier curve #2 and its control points for the optimized Busemann biplane airfoil under nonlifting condition 
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The drag coefficients for the seven design points are compared in Table 3.5 and Table 3.6 for both 

the original and optimized Busemann biplane airfoil under nonlifting condition during acceleration 

and deceleration respectively. As shown in Table 3.5 and Table 3.6, the baseline Busemann biplane 

airfoil is choked at all Mach numbers within the optimization range; while the optimized Busemann 

biplane airfoil unchokes at       during acceleration and chokes at       during deceleration. 

Even under choked conditions during both acceleration and deceleration, the optimized Busemann 

biplane airfoil has significantly lower drag compared to the baseline Busemann biplane airfoil. The 

only point where the optimized Busemann biplane airfoil has a higher drag compared to the original 

airfoil is at       during deceleration.  

 

Table 3.5    comparison for the original and optimized Busemann biplane airfoil at nonlifting condition during 

acceleration (1 count = 0.0001) 

Mach Number 1.1 1.2 1.3 1.4 1.5 1.6 1.7 

Baseline 1097 1040 999 967 943 926 923 

Optimized (GA) 622 506 428 389 132 114 104 

 

Table 3.6    comparison for the original and optimized Busemann biplane airfoil at nonlifting condition during 

deceleration (1 count = 0.0001) 

Mach Number 1.7 1.6 1.5 1.4 1.3 1.2 1.1 

Baseline 32 926 940 967 999 1040 1098 

Optimized (GA) 104 114 132 163 428 506 621 

 

Figures 3.8 – 3.21 show the change in the pressure coefficient    around the original Busemann 

biplane airfoil as the Mach number increases and decreases within the design-points range. The 

corresponding    contours for the optimized Busemann biplane airfoil are shown in Figures 3.22 – 

3.35 to illustrate the wave-cancelling effect.  
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Figure 3.8    contours around the original Busemann biplane airfoil at       during acceleration 

 

 

Figure 3.9    contours around the original Busemann biplane airfoil at       during acceleration 
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Figure 3.10    contours around the original Busemann biplane airfoil at       during acceleration 

 

 

Figure 3.11    contours around the original Busemann biplane airfoil at       during acceleration 
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Figure 3.12    contours around the original Busemann biplane airfoil at       during acceleration 

 

 

Figure 3.13    contours around the original Busemann biplane airfoil at       during acceleration 
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Figure 3.14    contours around the original Busemann biplane airfoil at       during acceleration 

 

 

Figure 3.15    contours around the original Busemann biplane airfoil at       during deceleration 
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Figure 3.16    contours around the original Busemann biplane airfoil at       during deceleration 

 

 

Figure 3.17    contours around the original Busemann biplane airfoil at       during deceleration 
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Figure 3.18    contours around the original Busemann biplane airfoil at       during deceleration 

 

 

Figure 3.19    contours around the original Busemann biplane airfoil at       during deceleration 
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Figure 3.20    contours around the original Busemann biplane airfoil at       during deceleration 

 

 

Figure 3.21    contours around the original Busemann biplane airfoil at       during deceleration 
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Figure 3.22    contours around the optimized Busemann biplane airfoil at       during acceleration 

 

 

Figure 3.23    contours around the optimized Busemann biplane airfoil at       during acceleration 
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Figure 3.24    contours around the optimized Busemann biplane airfoil at       during acceleration 

 

 

Figure 3.25    contours around the optimized Busemann biplane airfoil at       during acceleration 
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Figure 3.26    contours around the optimized Busemann biplane airfoil at       during acceleration 

 

 

Figure 3.27    contours around the optimized Busemann biplane airfoil at       during acceleration 
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Figure 3.28    contours around the optimized Busemann biplane airfoil at       during acceleration 

 

 

Figure 3.29    contours around the optimized Busemann biplane airfoil at       during deceleration 
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Figure 3.30    contours around the optimized Busemann biplane airfoil at       during deceleration 

 

 

Figure 3.31    contours around the optimized Busemann biplane airfoil at       during deceleration 
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Figure 3.32    contours around the optimized Busemann biplane airfoil at       during deceleration 

 

 

Figure 3.33    contours around the optimized Busemann biplane airfoil at       during deceleration 
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Figure 3.34    contours around the optimized Busemann biplane airfoil at       during deceleration 

 

 

Figure 3.35    contours around the optimized Busemann biplane airfoil at       during deceleration 
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Figure 3.36 shows the comparison of the drag coefficients for the standard diamond-shaped airfoil, 

the baseline Busemann biplane airfoil and the optimized Busemann biplane airfoil under nonlifting 

condition. As shown in the figure, the separation between the acceleration and deceleration lines for 

   still exists for the optimized Busemann biplane airfoil, which means that the flow-hysteresis and 

the choked-flow effects are not totally eliminated. However, as clearly shown in Figure 3.36, the 

flow-hysteresis area has been significantly reduced and the drag increase during deceleration due to 

the choked-flow phenomenon is much smaller than that for the original Busemann biplane airfoil. 

The drag of the optimized Busemann biplane airfoil in the subsonic region is also smaller than that 

of the original Busemann biplane airfoil, although it is slightly higher than that of the standard 

diamond-shaped airfoil for           . For both subsonic and supersonic conditions, the 

optimized Buseman biplane airfoil has been able to significantly reduce the wave drag compared to 

the original Busemaan biplane airfoil. At the design condition Mach number of 1.7 however, the 

drag coefficient of the optimized Busemann biplane airfoil              is much higher than 

that of the original Busemann biplane airfoil              . This is due to the fact that for the 

shape optimization, our focus has been reducing the flow-hysteresis and choked-flow effects and we 

chose to assign equal weights to all Mach numbers used as the multiple design points. To address 

this problem, we could have put more weight on the design condition         during the 

optimization process. 
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Figure 3.36    plot for different airfoils under nonlifting condition 

 

Next we examine the details of the flow field during acceleration and deceleration for the optimized 

Busemann biplane airfoil and compare them with the original baseline Busemann biplane airfoil and 

the optimization results obtained by Hu et al. [17] using an adjoint-based optimization technique. 

Figure 3.37 and Figure 3.38 show the pressure coefficient contours of the optimized Busemann 

biplane airfoil under acceleration and deceleration respectively. Figure 3.39 and Figure 3.40 show the 

pressure coefficient contours of the optimized Busemann biplane airfoil using the adjoint-based 

technique [17] under acceleration and deceleration respectively. During acceleration, the flow-

hysteresis effect still exists and a bow shock wave is formed in front of the airfoil. The swallowing of 

the bow shock wave happens when the Mach number increases from 1.49 to 1.50 in our GA 

optimization as shown in Figure 3.37(f); it happens when Mach number increases from 1.52 to 1.53 

in the adjoint-based optimization as shown in Figure 3.39(e) and it happens when Mach number 
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increases from 2.12 to 2.13 for the original Busemann biplane airfoil as shown in Figure 2.16(f). The 

drag coefficient decreases from 0.03556 to 0.01316 in the present GA based optimization and from 

0.03336 to 0.01221 in the adjoint-based optimization [17].  
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f)                   

Figure 3.37   -contours of the GA-optimized Busemann biplane airfoil with zero-lift during acceleration 
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During deceleration, the choked-flow effect still exists, however, it is shifted to a lower Mach 

number of 1.36 in the GA optimization and 1.37 in the adjoint-based optimization; it occurs at 

Mach number of 1.6 in the original baseline Busemann airfoil.  
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f)                  

Figure 3.38   -contours of the GA-optimized Busemann biplane airfoil with zero-lift during deceleration 
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Figure 3.39   -contours of the Adjoint-based-optimized Busemann biplane airfoil with zero-lift during acceleration [17] 
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Figure 3.40   -contours of the Adjoint-based-optimized Busemann biplane airfoil with zero-lift during deceleration [17] 
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Figure 3.41    plot for different airfoils under nonliting condition 

 

In conclusion, as shown in Figure 3.41, the drag coefficient of the GA-optimized Busemann biplane 

airfoil is significantly reduced comparing to the original Buseman biplane airfoil and it matches with 

the adjoint-based optimization result obtained by Hu et al. [17]. 
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3.3 Shape Optimization of Busemann Biplane Airfoil 
under Lifting Condition 

 

3.3.1 Application of Multi-objective Genetic Algorithm (MOGA) 
 

For the lifting condition with the lift coefficient     , a Multi-Objective Genetic Algorithm 

(MOGA) is employed for shape optimization of the Busemann biplane airfoil. The two objectives to 

be achieved are to minimize the drag coefficient    while maximizing the lift coefficient   . Similar 

to that for the nonlifting condition described in section 3.2, a total of seven design points ranging 

from       to       are used during the optimization process. For the fitness functions for 

the lifting case, we use the sum of evenly-weighted average of both    and   . The GA parameters 

used for the lifting case are listed in Table 3.7. 

 

Table 3.7 GA parameters for shape optimization of Busemann biplane airfoil under lifting condition 

GA Parameters Description 

Generation Size 8 individuals per generation 

Number of Generations Maximum of 50 generations if convergence not obtained 

Number of Design Variables 
28 in total, 14 (7 for    & 7 for   ) for acceleration and 14 (7 for 

   & 7 for   ) for deceleration 

Selection Type Roulette Wheel Selection 

Crossover Rate 0.7 

Mutation Rate 0.1 

Error of Mutation Constant 
0.8, which determines how much mutation affects the curves as 
generations go on 
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3.3.2 Airfoil Parameterization   
 

Similar to that for the nonlifting case, the random shapes of the airfoil are generated by using the 

Bezier curves with control points. For the lifting case with     , since the upper and lower 

components of the biplane airfoil are not symmetric, both the upper and lower component need to 

be defined separately. The thickness distribution for both the upper and lower components is still 

kept the same as for the nonlifting case. Now, a total of four Bezier curves are needed to define the 

shape of the airfoil. The range of the x- and y-coordinates of the Bezier curves for the two 

components of the airfoil are listed in Table 3.8 and Table 3.9. 

 

Table 3.8 Coordinate range for each control point of the Bezier curves for the upper component of the airfoil under 

lifting condition 

 
Coordinate Upper Limit Lower Limit 

Bezier 
curve 

#1 

x1 Fixed at x=-0.5 

x2 -0.05 -0.5 

x3 Fixed at x=-0.05 

x4 Fixed at x=0 

y1 0.25 0.2 

y2 0.25 0.2 

y3 Fixed at y=0.25 

y4 Fixed at y=0.25 

Bezier 
curve 

#2 

x1 Fixed at x=0 

x2 Fixed at x=0.05 

x3 0.5 0.05 

x4 Fixed at x=0.5 

y1 Fixed at y=0.25 

y2 Fixed at y=0.25 

y3 0.25 0.2 

y4 0.25 0.2 
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Table 3.9 Coordinate range for each control point of the Bezier curves for the lower component of the airfoil under 

lifting condition 

 
Coordinate Upper Limit Lower Limit 

Bezier 
curve 

#3 

x1 Fixed at x=-0.5 

x2 -0.05 -0.5 

x3 Fixed at x=-0.05 

x4 Fixed at x=0 

y1 -0.2 -0.25 

y2 -0.2 -0.25 

y3 Fixed at y=-0.25 

y4 Fixed at y=-0.25 

Bezier 
curve 

#4 

x1 Fixed at x=0 

x2 Fixed at x=0.05 

x3 0.5 0.05 

x4 Fixed at x=0.5 

y1 Fixed at y=-0.25 

y2 Fixed at y=-0.25 

y3 -0.2 -0.25 

y4 -0.2 -0.25 

 

Figure 3.42 shows a randomly generated Busemann-type biplane airfoil shape using Bezier curves 

for the lifting condition. Figures 3.43 - 3.46 respectively show the detailed geometry of Bezier curves 

#1 to #4 along with their control points. 
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Figure 3.42 Randomly generated Busemann-type biplane airfoil shape using Bezier curves for lifting condition 

 

 

Figure 3.43 Detailed geometry of Bezier curve #1 and its control points 
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Figure 3.44 Detailed geometry of Bezier curve #2 and its control points 

 

 

Figure 3.45 Detailed geometry of Bezier curve #3 and its control points 
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Figure 3.46 Detailed geometry of Bezier curve #4 and its control points 

 

3.3.3 Optimization Results 
 

After implementing MOGA for 20 generations with 8 individuals in each generation, an optimal 

shape for asymmetric Busemann-type airfoil under lifting condition with maximum    and minimum 

   is obtained. Figure 3.47 shows the geometry of the original Busemann biplane airfoil (red) and 

the optimized Busemann biplane airfoil (blue) under lifting condition. Figures 3.48 - 3.51 show the 

four Bezier curves used to generate the optimized Busemann biplane airfoil shape along with their 

control points. 
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Figure 3.47 Geometry of both the original and optimized Busemann biplane airfoil under lifting condition 

 

Figure 3.48 Bezier curve #1 and its control points for the optimized Busemann biplane airfoil under lifting condition 

 

Original (red) 

Optimized (blue) 
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Figure 3.49 Bezier curve #2 and its control points for the optimized Busemann biplane airfoil under lifting condition 

 

Figure 3.50 Bezier curve #3 and its control points for the optimized Busemann biplane airfoil under lifting condition 
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Figure 3.51 Bezier curve #4 and its control points for the optimized Busemann biplane airfoil under lifting condition 

 

The drag coefficients for the seven design points are compared in Table 3.10 and Table 3.11 for 

both the original and optimized Busemann biplane airfoil under lifting condition. As shown in Table 

3.10 and Table 3.11, the baseline Busemann biplane airfoil is choked at all Mach numbers within the 

optimization range; while the optimized Busemann biplane airfoil unchokes at       during 

acceleration and chokes at       during deceleration. Even under choked conditions during both 

acceleration and deceleration, the optimized Busemann biplane airfoil has significantly lower drag 

compared to the baseline Busemann biplane airfoil. Similar to the nonlifting condition, the only 

point where the optimized Busemann biplane airfoil has a higher drag compare to the original airfoil 

is at       during deceleration. 
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Table 3.10    comparison for the original and optimized Busemann biplane airfoil at lifting condition during 

acceleration (1 count = 0.0001) 

Mach Number 1.1 1.2 1.3 1.4 1.5 1.6 1.7 

Baseline 1097 1040 999 967 943 926 923 

Optimized 683 633 529 461 418 148 136 
 

 

Table 3.11    comparison for the original and optimized Busemann biplane airfoil at lifting condition during 

deceleration (1 count = 0.0001) 

Mach Number 1.7 1.6 1.5 1.4 1.3 1.2 1.1 

Baseline 32 926 940 967 999 1040 1098 

Optimized 136 148 173 224 529 633 682 
 

Figures 3.52 – 3.65 show the change in the pressure coefficient     around the optimized Busemann 

biplane airfoil under lifting condition as the Mach number increases and decreases within the design-

point range. As can be seen from these figures, the bow shock wave in front of the airfoil disappears 

at       during acceleration and is not generated until the flow speed drops down to       

during deceleration.  

 

 

Figure 3.52    contours for the optimized Busemann biplane airfoil under lifting condition at       during 

acceleration 
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Figure 3.53    contours for the optimized Busemann biplane airfoil under lifting condition at       during 

acceleration 

 

 

Figure 3.54    contours for the optimized Busemann biplane airfoil under lifting condition at       during 

acceleration 

 



 

68 

 

 

Figure 3.55    contours for the optimized Busemann biplane airfoil under lifting condition at       during 

acceleration 

 

 

Figure 3.56    contours for the optimized Busemann biplane airfoil under lifting condition at       during 

acceleration 
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Figure 3.57    contours for the optimized Busemann biplane airfoil under lifting condition at       during 

acceleration 

 

 

Figure 3.58    contours for the optimized Busemann biplane airfoil under lifting condition at       during 

acceleration 
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Figure 3.59    contours for the optimized Busemann biplane airfoil under lifting condition at       during 

deceleration 

 

 

Figure 3.60    contours for the optimized Busemann biplane airfoil under lifting condition at       during 

deceleration 
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Figure 3.61    contours for the optimized Busemann biplane airfoil under lifting condition at       during 

deceleration 

 

 

Figure 3.62    contours for the optimized Busemann biplane airfoil under lifting condition at       during 

deceleration 
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Figure 3.63    contours for the optimized Busemann biplane airfoil under lifting condition at       during 

deceleration 

 

 

Figure 3.64    contours for the optimized Busemann biplane airfoil under lifting condition at       during 

deceleration 
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Figure 3.65    contours for the optimized Busemann biplane airfoil under lifting condition at       during 

deceleration 

 

Figure 3.66 shows the comparison of the drag coefficients for the standard diamond-shaped airfoil, 

the baseline Busemann biplane airfoil and the optimized Busemann biplane airfoil under lifting 

condition. As shown in the figure, the separation between the acceleration and deceleration    lines 

still exists for the optimized Busemann biplane airfoil, which means that the flow-hysteresis and the 

choked-flow effects are not totally eliminated. However, as clearly shown in Figure 3.66, the flow-

hysteresis area has been significantly reduced and the drag increase during deceleration due to the 

choked-flow phenomenon is much smaller than that for the original Busemann biplane airfoil. The 

drag of the optimized Busemann biplane airfoil in the subsonic region is smaller than that of the 

original Busemann biplane airfoil, although it is slightly higher than that of the standard diamond-

shaped airfoil for           . For both subsonic and supersonic conditions, the optimized 

Buseman biplane airfoil has significantly reduced wave drag compared to the original Busemaan 

biplane airfoil. Similar to the nonlifting condition, the drag coefficient of the optimized Busemann 

biplane airfoil at                    is higher than that of the original Busemann biplane 

airfoil              .  
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Figure 3.66    plot for different airfoils under lifting condition 

 

Next we examine the details of the flow field in acceleration and deceleration conditions for the 

optimized Busemann biplane airfoil under lifting condition and compare them with the flow field of 

the original Busemann biplane airfoil. Figure 3.67 and Figure 3.68 show the pressure coefficient 

contours of the optimized Busemann biplane airfoil using GA under acceleration and deceleration 

respectively. During acceleration, the flow-hysteresis effect still exists and a bow shock wave is 

formed in front of the airfoil. The swallowing of the bow shock wave happens when the Mach 

number increases from 1.51 to 1.52 as shown in Figure 3.37(f) and from 2.12 to 2.13 for the original 

Busemann biplane airfoil as shown in Figure 2.16(f). The corresponding drag coefficient decreases 

from 0.04116 to 0.01665 for the optimized Busemann biplane airfoil.  
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Figure 3.67   -contours of the GA-optimized Busemann biplane airfoil with lift during acceleration 
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During deceleration, the choked-flow effect still exists; however, it is shifted to a lower Mach 

number of 1.38 compared to 1.6 for the original Busemann biplane airfoil. 
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Figure 3.68   -contours of the GA-optimized Busemann biplane airfoil with lift during deceleration 
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In conclusion, the drag coefficient of the optimized Busemann biplane airfoil under lifting condition 

is significantly reduced compared to the original Buseman biplane airfoil as shown in Table 3.12. 

 

Table 3.12    for the optimized Busemann biplane airfoil under lifting condition at different design points 

Mach Number 1.1 1.2 1.3 1.4 1.5 1.6 1.7 

   (acceleration) 0.3319 0.3553 0.3061 0.2842 0.2858 0.2525 0.2713 

   (deceleration) 0.3306 0.3551 0.3064 0.3032 0.2678 0.2525 0.2712 
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Chapter 4 

 

Conclusions  
 

In this thesis, numerical simulations of the flow past the standard diamond-shaped airfoil and the 

baseline Busemann-type biplane airfoil have been conducted. An impulsive uniform flow, a flow 

during acceleration and a flow during deceleration are simulated. The original Busemann biplane 

airfoil has a poor performance at off-design conditions due to the flow-hysteresis phenomenon 

during acceleration and the choked-flow phenomenon during deceleration. For shape optimization, 

a Single-Objective Genetic Algorithm (SOGA) and a Multi-Objective Genetic Algorithm (MOGA) 

are employed to optimize the shape of the Busemann-type biplane airfoil under nonlifting and lifting 

condition respectively to improve its performance at off-design conditions. The commercially 

available CFD solver FLUENT is employed to calculate the flow field on an unstructured mesh 

generated using the ICEM software. A second-order accurate steady density-based solver in 

FLUENT is employed to compute the supersonic flow field. The optimization results for the 

nonlifitng case show significant improvement in reducing the drag coefficient at off-design 

conditions for the optimized Buseman-type biplane airfoil shape compared to the original shape. 

The flow-hysteresis phenomenon during acceleration and the choked-flow phenomenon during 

deceleration are both alleviated significantly for the optimized shape. For the lifting case, the 

optimized Busemann biplane airfoil is able to significantly reduce the drag coefficient at off-design 

conditions while generating lift at the same time.  
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Appendix A 

 

Mother Function for Optimization Code 
 

 

% This is a simple multi-objective optimization code that can be used for 
% CFD projects here in the lab. It can be adjusted for single or 
% dual-objective optimization, and is fully automated. Make sure you know 
% the basics of a GA and have some familiarity with matlab before using  
% this program. I'm going to try and comment it the best I can. THIS IS A  
% GENERAL CODE AND HAS MULTIPLE COMPONENTS THAT MUST BE SPECIALIZED FOR YOUR  
% PARTICULAR CASE. I've included "FilesToBeIndividualized.txt" that lists 
% all those files. All functions and scripts are commented to help you 
% follow what they are doing, but you should only have to change the 
% particular files listed. 

  
% This specific matlab file, "MOTHER", is the parent function from which 
% everything else is called. 

  
% ------------------ Begin Code ------------------ % 

  
%-------------------------------------------------------------------------- 
% Step 1: Defining parameters for use throughout simulation 
%-------------------------------------------------------------------------- 
% The following functions start your program by defining key parameters for 
% use throughout the code. Of these, GAparams and GeometryConstraints need 
% to be completely individualized for your code. Instructions on how to 
% individualize them can be found in thir respective .m files. 

  
% 1a) Run "StartOrRestart" to define initialization info 
StartOrRestart; 

  
% 1b) Run "GAparams" to define parameters for the GA 
GAparams 

  
% Run "GeometryConstraints" to define the specific geometry constraints and 
% information this individual case 
[Mcurves,Ncurves,nBC,fCPinfo,vCPinfo,limCPinfo] = GeometryConstraints; 

  
% Run "GlobalData" to define our shape and design variable cell arrays, but 
% only if it is the initial run. 
if strcmp(initRun,'Y') == 1 
    [BEZIER_POINTS,DAUGHTER_CURVES,DES_VARS,OLD_DES_VARS] = 

GlobalData(genSize,nBC,Ncurves,Mcurves,nDV); 
end 

  
% Run "SimTimes" to define how long to pause for meshing and simulation 
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SimTimes 

  
%-------------------------------------------------------------------------- 
% Step 2: Randomized Shapes Loop 
%-------------------------------------------------------------------------- 
% This is the first step for the GA: creating, simulating, and evaluating a 
% generation of random individuals. Once a set of randomindividuals has 
% been created, it will be saved separately from the others for future use. 
% If you are restarting the GA, as noted in the prompt for "initial run,"  
% this entire step will be skipped and the code will begin at step 4. 

  
if strcmp(initRun,'Y') == 1 || (strcmp(initRun,'Y') == 0 && generation == 1 

&& numTrial <= genSize) 
   RandomShapesLoop 
end 

  
%-------------------------------------------------------------------------- 
% Step 3: Genetic algorithm 
%-------------------------------------------------------------------------- 
% Now that we have our generation of random curves and their data stored in 

our 
% global matrices, we can run the genetic algorithm (GA) and then repeat for 
% a loop using daughter curves. The genetic algorithm is simple once you 
% understand it, but calls multiple functions. Read carefully. 

  
if strcmp(initRun,'Y') == 1 || (strcmp(initRun,'Y') == 0 && generation == 1 

&& numTrial == genSize+1) 
    MOGAgeneral 
    ResetVars 
end 

  
%-------------------------------------------------------------------------- 
% Step 4: Loop until converged 
%-------------------------------------------------------------------------- 
% After the above 3 steps we now have our cell array "BEZIER_CURVES" 
% containing all of the CP information for the newly generated curves. We  
% also have saved the best curve's information. Now we cycle through a very 
% similar loop to "RandomShapeLoop", except our "RandomIndividuals" 
% function is replaced with something that is no longer random. Everything 
% else is, for the most part, the same. 

  
if maxGen ~= 1; 
    while ConvergenceCheck(bestCurveVals,nDV,maxGen) == 0 % while the 

solution is not converged 
        OptimizationLoop        % run the in-generation loop 
        MOGAgeneral 
        ResetVars 
    end 
end 
totalRuns = generation*genSize %#ok<NOPTS> 

  
%-------------------------------------------------------------------------- 
% end of script 
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Appendix B 

 

GAparams.m 
 

% GAparams is a script to take in your parameters for the GA. It needs to 
% be individualized for your case. 

  
% ------------------------------------------------------------------------- 
% Step 1: Individuals per generation and maximum generations 
% ------------------------------------------------------------------------- 
% 1a) Define generation size (number of individuals per generation) 
genSize = 8; %ind % must be greater than 1 and an even integer. 

  
% Making sure genSize is a positive and even integer. 
if genSize < 2 || rem(genSize,2) ~= 0 ||  fix(genSize) ~= genSize 
    error('genSize must be a positive and even integer') 
end 

  
% 1b) Define maximum generations for the optimization 
maxGen = 50; %ind % must be greater than 1 and an integer 

  

  
% Making sure maxGen is a positive integer 
if maxGen < 1 || fix(maxGen) ~= maxGen 
    error('Maximum generations must be a positive integer') 
end 

  
% ------------------------------------------------------------------------- 
% Step 2: Number of design variables (dVs) 
% ------------------------------------------------------------------------- 
% 2a) Define the number of design variables 
% Number of design variables (nDV) is how many variables you need to keep 
% track of to use in your fitness function. 
nDV = 28; %ind 

  
% Making sure nDV is a positive integer 
if nDV < 1 || fix(nDV) ~= nDV 
    error('nDV must be a positive integer') 
end 

  
% 2b) Specify dV objectives 
% List the design objective for each dv. If you are trying to minimize 
% them, input "'min'", if you are trying to maximize them, input "'max'" 
% (these inputs are without the " " but do include the ' ') 
dvObj = cell(1,nDV); % allocates space 

  
for i = 1:14 
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    dvObj{i} = 'min'; %ind 
end 
for i = 15:28 
    dvObj{i} = 'max'; 
end 

  
% DVerrorCheck ensures you input the dV objectives correctly 
DVerrorCheck(dvObj,nDV) 

  
% ------------------------------------------------------------------------- 
% Step 3: Selection Type 
% ------------------------------------------------------------------------- 
% I have coded in roulette wheel selection and tournament selection. 
% You define which type and its corresponding probability values here. 
% Use 'rw' for roulette wheel and 't' for tournament (you need to 
% apostrophes for these definitions) 

  
% selectionType determines which type of selection will happen 
selectionType = 'rw'; %ind 
if strcmp(selectionType,'rw') == 1          % if "rw" do roulette wheel 

selection 
    fprintf('Roulette Wheel Selection\n') 
    k = 'not used'; 
elseif strcmp(selectionType,'t') == 1 
    fprintf('Tournament Selection\n')       % if "t" do tournament selection 

     
    % Define tournament size (wealer individuals have a higher probability 
    % of being selected as the size becomes larger. When k = 1 then this 
    % behaves as random selection, which is bad so don't do it. 

     
    k = 2;     %ind % k can range from 1 to genSize 

     
    % k must be a positive integer less than genSize 
    if k < 1 || k > genSize || fix(k) ~= k 
        error('"k" value for tournament selection must be a positive integer 

less than genSize') 
    end 
else 
    % Make sure selection type is one of the options 
    error('"selectionType" is not a viable option. (must be ''t'' or ''rw''') 
end 

  
% ------------------------------------------------------------------------- 
% Step 4: Crossover and mutation parameters 
% ------------------------------------------------------------------------- 
% 4a) Crossover parameter 
% This is the probability that crossover occurs for any given variable 

control 
% point. It must be between 0 and 1. 
crossRate = .7; %ind 

  

  
% makes sure the rate is an acceptable number 
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if crossRate >= 1 || crossRate <= 0 
    error('Crossover rate is outside allowable bounds') 
end 

  
% 4b) Mutation rate 
% This is the probability that any given variable control point is mutated. 
% It helps increase genetic diversity to avoid local optimums. It must be 
% between 0 and 1. 

  
mutRate = .1; %ind 

  
if mutRate >= 1 || mutRate <= 0 
    error('Mutation rate is outside allowable bounds') 
end 

  
% 4c) Error of mutation constant (eomC) 
% eomC determines how much mutation affects the curves as generations go 
% on. Set to 0 for a ton of mutation variance (not reccomended) and to 1 
% for very little mutation (not reccomended). Basically, as "generation" 

approaches 
% "maxGens" the greatest change a mutation can make is 1-eomC*(distance to 
% geometric limit). 

  
eomC = .8; %ind 

  
% makes sure eomC is between 0 and 1 
if eomC >= 1 || eomC <= 0 
    error('Error of mutation constant is outside allowable bounds') 
end 

  
%-------------------------------------------------------------------------- 
% end of script 
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Appendix C 
 
MOGAgeneral.m 
 
% This is a generic framework for an adaptable single objective or multi 
% objective genetic algorithm. It is based on the inputs from "GAparams"  
% and "GeometryConstraints" 

  
% ------------------------------------------------------------------------- 
% Step 1: Use your fitness function to evaluate each shape's fitness 
% ------------------------------------------------------------------------- 

  
fitness = FitnessFunction(genSize,DES_VARS); 

  
% ------------------------------------------------------------------------- 
% Step 2: Natural selection sorting 
% ------------------------------------------------------------------------- 

  
[BEZIER_POINTS,DES_VARS,sortedBPinfo,sortedTrialData,sortedFitness] = 

Sorter(generation,genSize,fitness,BEZIER_POINTS,DAUGHTER_CURVES,DES_VARS,OLD_

DES_VARS); 

  
% ------------------------------------------------------------------------- 
% Step 3: Save data used for convergence analysis 
% ------------------------------------------------------------------------- 

  
% Save best curve as a vector for reference 
for i = 1:nBC 
    bestCurve{i}(2*generation-1:2*generation,:) = sortedBPinfo{i}(1:2,:); 

%#ok<SAGROW> 
    filename = sprintf('%s_%d','bestCurve',i); 
    dlmwrite(filename,bestCurve{i},'-append','newline','pc') 
end 

  
% Save the best curve dVs as a vector for reference 
for i = 1:nDV 
    bestCurveVals(generation,i) = sortedTrialData(1,i+1); %#ok<SAGROW> 
end 

  
dlmwrite('bestCurveVals.txt',bestCurveVals,'-append','newline','pc'); 

  
% ------------------------------------------------------------------------- 
% Step 4: Create new generation 
% ------------------------------------------------------------------------- 
% Backup before 
SaveCurves(BEZIER_POINTS,DAUGHTER_CURVES) 

  
% Create new generation 
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DAUGHTER_CURVES = 

DaughterCurveGenerator(sortedBPinfo,limCPinfo,vCPinfo,sortedFitness,genSize,s

electionType,crossRate,mutRate,DAUGHTER_CURVES,generation,maxGen,eomC,k); 

  
% Define "old" matrices (sorted already) 
BEZIER_POINTS = sortedBPinfo; 

  
OLD_DES_VARS = DES_VARS; 

  
% Backup new generation 
SaveCurves(BEZIER_POINTS,DAUGHTER_CURVES) 
SaveDVs(DES_VARS,OLD_DES_VARS) 

  
% ------------------------------------------------------------------------- 
% end of function. 
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Appendix D 

 

FitnessFunction.m 
 

function [fitness] = FitnessFunction(genSize,DES_VARS) 
% FitnessFunction needs to be individualized for you fitness function. It has 
% access to DES_VARS and therefore can find the fitness. Save the fitness 
% as a matrix of trial number in column 1 and fitness in column 2, and 
% appropriately title it "fitness" 

  
% My fitness function for the example case of minimizing curve length 

  
% Normalized based on a bad (max) value 
fitness = zeros(genSize,2); 
fitness(:,1) = 1:genSize; 
nDV = length(DES_VARS); 
localDragHolder = zeros(1,nDV/2); 
localLiftHolder = localDragHolder; 
averageVals = zeros(genSize,3); 
averageVals(:,1) = 1:genSize; 

  

  

  
% Felix Code -------------------------------------------------------------- 

  
% Drag 
for j = 1:genSize 
    for i = 1:nDV/2 
        localDragHolder(i) = DES_VARS{i}(j,2); 
    end 

     
    % Finding any infinity values 
    infIndex = find(localDragHolder == inf); %#ok<EFIND> 
    if isempty(infIndex) == 1 
        averageVals(j,2) = sum(localDragHolder)/(nDV/2); 
    else 
        averageVals(j,2) = nan; 
    end 

  
end 

  
% Lift 
for j = 1:genSize 
    for i = (nDV/2+1):nDV 
        localLiftHolder = abs(DES_VARS{i}(j,2)); 
    end 
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    % Finding any negative infinity values 
    infIndex = find(localLiftHolder == -inf); %#ok<EFIND> 
    if isempty(infIndex) == 1 
        averageVals(j,3) = sum(localLiftHolder)/(nDV/2); 
    else 
        averageVals(j,3) = nan; 
    end 
end 

  
% ------------------------------------------------------------------------- 
% Drag 
minDragVal = min(averageVals(:,2)); 
maxDragVal = max(averageVals(:,2)); 
dragValues = averageVals(:,2); 
infIndex = find(isnan(dragValues) == 1); 
dragValues(infIndex) = maxDragVal; %#ok<FNDSB> 
averageVals(:,2) = dragValues; 
normalizedDrag = minDragVal./dragValues*100; 

  
% Lift 
maxLiftVal = max(averageVals(:,3)); 
minLiftVal = min(averageVals(:,3)); 
liftValues = averageVals(:,3); 
infIndex = find(isnan(liftValues) == 1); 
liftValues(infIndex) = minLiftVal; %#ok<FNDSB> 
averageVals(:,3) = liftValues; 
normalizedLift = liftValues./maxLiftVal*100; 

  
% Pareto Optimal front weight (increases/decreases weight of design vars) 
weight = .5; 
if weight < 0 || weight > 1 
    error('Weight is outside acceptable bounds'); 
end 

  
fitness(:,2) = weight*normalizedLift + (1-weight)*normalizedDrag; 

  
end 

  
%-------------------------------------------------------------------------- 
% end of function 
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Appendix E 

 

GenerateIndividuals.m 
 
function [BEZIER_POINTS] = 

GenerateIndividuals(numTrial,Mcurves,BEZIER_POINTS) 
% GenerateIndividuals behaves largely the same as RandomIndividuals did, 
% however, instead of creating randomized shapes it takes in curve data 
% (BEZIER_POINTS) and generates the required curve acording to numTrial. 
% This curve's point data is saved for being passed to ICEM. 

  
% If you want to graph each individual BC, set plotter = 1; 
% If you want to graph all the BCs together, set plotterAll = 1; 
% Be sure to set both to 0 before running the full GA. You don't want to 
% come back to 400 graphs and your computer crashing. 

  
plotter = 0; %ind 
plotterAll = 0; %ind 

  
%-------------------------------------------------------------------------- 
% Step 1: Start of the loop and limit the geometry randomized inputs 
%-------------------------------------------------------------------------- 
nBC = length(Mcurves);  % number of Bezier Curves (BCs) to iterate over 
BPres = cell(1,nBC);        % save points for later 

  
for cNum = 1:nBC    % for each BC 

  
    j = 0;                  % counter variable 
    n = Mcurves(cNum)-1;    % used for Bezier Point (BP) function 

     
    % Placehold the BCs as zeros to be filled in later 
    BP = BEZIER_POINTS{cNum}(2*numTrial-1:2*numTrial,:); % gives our current 

curve 

     
%-------------------------------------------------------------------------- 
% Step 2: Bezier Function Generator 
%-------------------------------------------------------------------------- 
% This is the Bezier Function generator. Go to wikipedia Bezier Curves and 
% you'll find this function under the equations section. THIS FUNCTION DOES 
% NOT CHANGE EVER AND IS SOLELY DEPENDENT ON BPx, BPy, AND THE COUNTING  
% VARIABLES. IT WILL WORK FOR ANY INPUT CURVES. DON'T MESS WITH IT UNLESS 
% YOU KNOW WHAT YOU'RE DOING. 

     
    %-----------------------------KEEP THIS AS IS-------------------------- 
    nPoints = 100; 
    ux = zeros(1,nPoints); 
    uy = zeros(1,nPoints); % these are going to be the point files for ICEM 
    uylow = uy; 
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    for t=0:1/(nPoints-1):1 
        j=j+1; 
        for i=0:n 
            if i==0 
                a=(1-t)^n; 
            elseif i==n 
                a=t^n; 
            else 
                a=(factorial(n)/(factorial(i)*factorial(n-i)))*t^(i)*(1-

t)^(n-i); 
            end 
            ux(j)=ux(j)+BP(1,(i+1))*a; 
            uy(j)=uy(j)+BP(2,(i+1))*a; 

             
            if cNum == 1 
                uylow(j)=uy(j)-0.05-0.1*ux(j); 
            elseif cNum == 2 
                uylow(j)=uy(j)-.05+.1*ux(j); 
            elseif cNum == 3 
                uylow(j) = uy(j) +.05+.1*ux(j); 
            elseif cNum == 4 
                uylow(j) = uy(j) +.05-.1*ux(j); 
            end 

             
        end 
    end 
    %-----------------------------KEEP THIS AS IS-------------------------- 

     
%-------------------------------------------------------------------------- 
% Step 3: Plotting 
%-------------------------------------------------------------------------- 
% Plotting the graphs is useful for checking the results in the beginning, 
% but be sure to make plotter = 0 at the start of the function before  
% running the optimization program. 

  
    if plotter == 1 
        figure 
        plot(ux,uy,'-r','LineWidth',4) % this plots the resulting curve 
        hold on 
        plot(BP(1,:),BP(2,:),'*-g') % this plots the Bezier Points 
        hold on 
        axis equal 
        grid on 
    end 

  
%-------------------------------------------------------------------------- 
% Step 4: Saving Shape Data to External Files and Global Matrices 
%-------------------------------------------------------------------------- 
% Saving the points to a file, Points_#.txt, lets us easily load them into 

ICEM. 
% See "HelpIcemAutoScript.txt" for some tips on how to most easily do so. 
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% Saving the CPs to a global matrix lets us call them later. We will also be 
% saving the CPs to an external file for data back up: if for any reason the 
% simulation shuts down, the most recent curve information will be 
% available in a text file. 

  
% Felix stuff ------------------------------------------------------------ 

  
    uxlow = ux; 

     
    points = [ux;uy;zeros(1,length(ux))]; 
    filename = sprintf('%s_%d','PointsBC',cNum); 
    fid = fopen(filename,'w'); 
    fprintf(fid,'%5.0f %1.0f\n', length(ux), 1); 
    fprintf(fid,'\t\t%f\t%f\t%f\n', points); 
    fclose(fid); 

     
    points = [uxlow;uylow;zeros(1,length(uxlow))]; 
    filename = sprintf('%s_%d','PointsLow',cNum); 
    fid = fopen(filename,'w'); 
    fprintf(fid,'%5.0f %1.0f\n', length(ux), 1); 
    fprintf(fid,'\t\t%f\t%f\t%f\n', points); 
    fclose(fid); 
% ------------------------------------------------------------------------ 

  

     
% This saves the BC CPs to the global BEZIER_POINTS cell array 
    MatBeingUsed = BEZIER_POINTS{cNum}; 
    MatBeingUsed(2*numTrial-1:2*numTrial,:) = BP;     
    BEZIER_POINTS{cNum} = MatBeingUsed;   

  
% The formatting means that the CPs for our BC will exist in two rows, one 
% for x values and one for y. If it's our first curve they will exist in rows 
% 1 (x) and 2 (y). For our 12th curve they will bein rows 23 (x) and 24 (y).  
% The size of BEZIER_POINTS was defined in GlobalData using our generation 

size  
% and number of control points, so everything should fit perfectly. IF YOU 
% HAVE ANY CURVES THAT EXIST IN THREE DIMENSIONS THE ABOVE CODE WILL NOT 
% WORK. YOU'LL HAVE TO FIGURE THAT ONE OUT ON YOUR OWN. 

     
    % Save for later 
    BPres{cNum} = BP; 

  
end 

  
%-------------------------------------------------------------------------- 
% Step 5: Saving results for easy viewing and global plotting. 
%-------------------------------------------------------------------------- 

  
% Results.txt is a file that will save your Bezier curve information and 
% desVars information for each trial in each generation. We won't access 
% any information from it as there are the global matrices and their 
% backups, but it does bring all of the important information together into 
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% one text file that is easy to read.  

  
% Saving a summary of things for easy viewing 
fid = fopen('Results.txt','a'); 
fprintf(fid,'\nShape %i\n',numTrial); 
for i = 1:cNum 
    dlmwrite('Results.txt',BPres{i},'-append') 
end 
fclose(fid); 

  
% These final lines are used to plot all the BCs together on the same plot. 
% To turn off, simply set plotterAll = 0 at the beginning of the code; 

  
PointsBC = cell(1,nBC); 
PointsLow = PointsBC; 
PointsBCMirror = PointsBC; 
PointsLowMirror = PointsBC; 
if plotterAll == 1 
    figure 
    for i = 1:nBC 
        % Plotting BCs 
        filename = sprintf('%s_%d','PointsBC',i); 
        PointsBC{i} = dlmread(filename); 
        PointsBC{i} = PointsBC{i}(2:end,:); % gets rid of icem point count 

     
        plot(PointsBC{i}(:,1),PointsBC{i}(:,2)) 
        hold on 
        axis equal 

         
        % Plotting low curves 
        filename = sprintf('%s_%d','PointsLow',i); 
        PointsLow{i} = dlmread(filename); 
        PointsLow{i} = PointsLow{i}(2:end,:); 

         
        plot(PointsLow{i}(:,1),PointsLow{i}(:,2)) 
        hold on 

 
    end 
end 

  
end 

  
%-------------------------------------------------------------------------- 
%end of function 
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Appendix F 

 

DaughterCurveGenerator.m 
 
function [DAUGHTER_CURVES] = 

DaughterCurveGenerator(sortedBPinfo,limCPinfo,vCPinfo,sortedFitness,genSize,s

electionType,crossRate,mutRate,DAUGHTER_CURVES,generation,maxGen,eomC,k) 
% will produce genSize of offspring curves 

  
nBC = length(sortedBPinfo); 
delete DaughterCurves.txt 
% ------------------------------------------------------------------------- 
% Step 1: Selection function 
% ------------------------------------------------------------------------- 
if strcmp(selectionType,'rw') == 1 
    parNums = RouletteSampling(sortedFitness,genSize); 
else 
    parNums = TournamentSampling(genSize,k); 
end 

  
% ------------------------------------------------------------------------- 
% Step 2: Crossover of selected curves 
% ------------------------------------------------------------------------- 
maleCurve = cell(1,nBC); 
femaCurve = maleCurve; 
for i = 1:genSize % each couple produces 2 kids but we only save 1 
    maleNum = parNums(i,1); 
    femaNum = parNums(i,2); 
    for j = 1:nBC 
        maleCurve{j} = sortedBPinfo{j}(2*maleNum-1:2*maleNum,:); 
        femaCurve{j} = sortedBPinfo{j}(2*femaNum-1:2*femaNum,:); 
    end 
    % now we have the male and female curve information and can crossover 
    [newCurve] = Crossover(maleCurve,femaCurve,vCPinfo,crossRate); 
    for j = 1:nBC 
        DAUGHTER_CURVES{j}(2*i-1:2*i,:) = newCurve{j}; % store the info to 

DAUGHTER_CURVES 
    end 
end 

  
% ------------------------------------------------------------------------- 
% Step 3: Mutation of randomly selected curves 
% ------------------------------------------------------------------------- 
%random mutation function 
DAUGHTER_CURVES = 

Mutator(vCPinfo,limCPinfo,mutRate,genSize,DAUGHTER_CURVES,generation,maxGen,e

omC); 
 

end 
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Appendix G 

 

Crossover.m 
 
function [newCurve] = Crossover(male,fema,vCPinfo,crossRate) 
% Exchange CP info between the curves 

  
nBC = length(male); 
new1 = male; 
new2 = fema; 

  
for i = 1:nBC % each Bezier curve 
    for j = 1:length(vCPinfo{i}) % only the variable CPs 
        doCrossover = (rand(1) <= crossRate); %1 if we will, 0 if we won't 
        if doCrossover == 1 
            sM = male{i}(vCPinfo{i}(j));   % male value of index j  
            sF = fema{i}(vCPinfo{i}(j));   % fema value of index j 
            new1{i}(vCPinfo{i}(j)) = sF;   % male now has fema value 
            new2{i}(vCPinfo{i}(j)) = sM;   % fema now has male value 
        end     
    end 
end 

  
% Randomly choose which curve 
if rand(1) <= .5 
    newCurve = new1; 
else 
    newCurve = new2; 
end 

         

  
end 

  
% ------------------------------------------------------------------------- 
% end of function 
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Appendix H 

 

Mutator.m 
 
function [DAUGHTER_CURVES] = 

Mutator(vCPinfo,limCPinfo,mutRate,genSize,DAUGHTER_CURVES,generation,maxGen,e

omC) 

% Mutator takes in the new daughter curves and iterates over all of their 

% variable CPs. mutRate % of those vCPs will be mutated, or randomly 

% altered. 

  

% ------------------------------------------------------------------------- 

% Step 1: Define the effective mutation efficiency (eom) 

% ------------------------------------------------------------------------- 

% We want eom to start at 1 and decrease to eomC by maxGen 

  

eom = 1 - eomC*generation/maxGen; 

  

% ------------------------------------------------------------------------- 

% Step 2: Mutate the curves 

% ------------------------------------------------------------------------- 

nBC = length(DAUGHTER_CURVES); 

  

for i = 1:genSize % iterate over all individuals 

    for j = 1:nBC % iterate over each bezier curve 

        curve2Mut = DAUGHTER_CURVES{j}(2*i-1:2*i,:); % define curve CPs 

        for k = 1:length(vCPinfo{j}) % iterate over all vCPs 

            doMutation = (rand(1) <= mutRate);  % mutation probability is 

mutRate 

            if doMutation == 1 

                val2Mut = curve2Mut(vCPinfo{j}(k)); % value of point being 

mutated 

                if rand(1)<.5 

                    edgeVal = limCPinfo{j}(k,1);    % select one edge value 

                else 

                    edgeVal = limCPinfo{j}(k,2);    % otherwise select other                 

                end 

                curve2Mut(vCPinfo{j}(k)) = val2Mut + eom*rand(1)*(edgeVal-

val2Mut); %curve moves some random distance towards that edge 

            end 

        end 

        DAUGHTER_CURVES{j}(2*i-1:2*i,:) = curve2Mut; % replacing in DC matrix 

    end 

end    

 

  

end 
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