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ABSTRACT OF THE DISSERTATION

Binding Affinity and Specificity of SH2 Domain Intactions
in Receptor Tyrosine Kinase Signaling Networks
by
Thomas James Ronan llI
Doctor of Philosophy in Biomedical Engineering
Washington University in St. Louis, 2017

Kristen M. Naegle, Chair

Receptor tyrosine kinase (RTK) signaling mechaniptag a central role in intracellular
signaling and control development of multicellutaganisms, cell growth, cell migration, and
programmed cell death. Dysregulation of these $ilgmanechanisms results in defects of
development and diseases such as cancer. Contlos afetwork relies on the specificity and
selectivity of Src Homology 2 (SH2) domain interans with phosphorylated target peptides. In
this work, we review and identify the limitationsaurrent quantitative understanding of SH2
domain interactions, and identify severe limitaiom accuracy and availability of SH2 domain
interaction data. We propose a framework to addsesee of these limitations and present new
results which improve the quality and accuracywfently available data. Furthermore, we
supplement published results with a large bodyegfative interactions of high-confidence
extracted from rejected data, allowing for improveddeling and prediction of SH2 interactions.
We present and analyze new experimental resulthiéodynamic response of downstream
signaling proteins in response to RTK signalingr @ata identify differences in downstream
response depending on the character and dose mdéptor stimulus, which has implications

iX



for previous studies using high-dose stimulatiore Mview some of the methods used in this
work, focusing on pitfalls of clustering biologicddta, and address the high-dimensional nature
of biological data from high-throughput experimertke failure to consider more than one
clustering method for a given problem, and thei@ifty in determining whether clustering has

produced meaningful results.



Chapter 1: Introduction, Background, and Review of
the Current State of Quantitative Measurements of
SH2 Domain Interactions

1.1 Introduction and Overview

Receptor tyrosine kinase (RTK) signaling mechanipiag a central role in intracellular
signaling and control development of multicelluaganisms, cell growth, cell migration, and
programmed cell death. Dysregulation of these $iigmamechanisms results in defects of
development and diseases such as cancer. Conttbisofietwork relies on the specificity and
selectivity of Src Homology 2 (SH2) domain interans with phosphorylated target peptides. In
this work, we identify the limitations of currenuantitative understanding of SH2 domain
interactions, review analysis methods, presentawgnt methods and identify best practices, and

present new data for SH2 interactions, and netwehavior.

In Chapter 1, we review the current state of quatide measurement data for SH2
domain interactions, and identify severe limitatiam accuracy and availability. In Chapter 2, we
propose a framework to address some of these tiontaand present results which improve the
quality and accuracy of currently available datartfrermore, we supplement published results
with a large body of negative interactions of hggnfidence extracted from rejected data,
allowing for improved modeling and prediction of Slhteractions. In Chapter 3, we present
and analyze new experimental results for the dyoaesponse of downstream signaling proteins
in response to RTK signaling. Our data identifyfetiénces in downstream response depending
on the character and dose of the receptor stimwhbgh has implications for previous studies

using high-dose stimulation. In Chapter 4, we revgome of the methods used in this work,

1



focusing on pitfalls of clustering biological datand address the high-dimensional nature of
biological data from high-throughput experimentle tfailure to consider more than one
clustering method for a given problem, and theidifty in determining whether clustering has

produced meaningful results.



1.2  Background
1.2.1 The Reader, Writer, Eraser Paradigm of Phosphotyrome
Signaling

Src Homology 2 (SH2) protein domains are small, 480no acid modular domains first
identified in the human SRC (sarcoma) proto-oncedgén. SRC encodes a multi-domain protein
with three domains: a Src Homology 3 (SH3) domamSH2 domain, and non-receptor protein
tyrosine kinase domain. SH2 domains are foundwida range of signaling proteins. Each SH2
domain interacts specifically protein domains contey a phosphorylated tyrosine residue and

flanking residues which convey specificity (2).

In phosphotyrosine signaling mechanisms, like foimdeceptor tyrosine kinase (RTK)
signaling networks, the SH2 domain serves as #ader’ of signal in the reader, writer, eraser
paradigm of signaling (3). When a tyrosine resigughosphorylated by a kinase (the ‘writer’ of
phosphotyrosine signaling), proteins containing Sldthains can interact and bind that residue,
subject to the compatibility of the flanking pe@tsd A phosphatase (the ‘eraser’) can then later

remove the phosphate group and terminate the signal

1.2.2 Role of SH2 Domains in Receptor Tyrosine Kinase N&brks

SH2 domains are believed to have evolved at thenadwnulticellularity, and allowed a
new, orthogonal, signaling mechanism to developwallg communication between cells (3).
They play a key role defining specificity within RThetworks, which control cell development,
migration, and apoptosis (4). When a transmembecaheurface receptor, such as the Epidermal
Growth Factor Receptor (EGFR) binds an extracellligand from another cell such as

Epidermal Growth Factor (EGF) a signaling cascataiees translating the extracellular signal



into intercellular response. A ligand-stimulatectagtor becomes dimerized, and makes a
conformational change. This change causes activatithe intercellular kinase domain, causing
cross phosphorylation of specific tyrosine residthes dimerized receptor tails. These tails are
targets for SH2 domains. Proteins containing SH2alons bind these tails bringing additional

kinase and scaffolding domains causing a cascad&H@tmediated phosphotyrosine signaling.

These signals integrate through several pathwaysh (as PISK, MAPK, JAK/STAT) resulting

in changes in gene expression. Dysregulation of RiKaling networks is a cause of several

developmental diseases and forms of cancer (4, 5).

1.2.3 Qualitative Measurements of Binding

Early experiments attempted to classify the bindprgfile of SH2 domains using
degenerate libraries. Resources like SMALI (6) Sndnsite (7), were able to identify residues at
each position of a phosphorylated peptide thatrdmrie to binding. A limitation of this method
is that influence at each position is identifiedependent of each other position. These results
can be combined into a statistical model like atmsspecific scoring matrix (PSSM) under the

assumption that each position acts independently.

Although useful for identifying general binding nias, these models have significant
limitations. Since contributions between positioccen be interdependent, some interactions
cannot be captured by a model assuming independ€pocelitionally dependent interactions are
believed to play a role in determining selectivatyd specificity of interactions. One of the most
important manifestations of this phenomenon is “pemmissive residues’ — residues in a peptide
that disrupt binding despite the presence of othsidues correlating with strong binding (8).
Predictions from a model based on independencedaresllt in false positive predictions when

non-permissive residues were present. A key soforedentifying conditionally dependent
4



interactions is in data showing non-binding or rizgainteractions, which degenerate libraries
do not effectively demonstrate. Furthermore, d#ta Hegenerate binding libraries result in
qualitative models, and cannot provide quantitatiweasures of affinity required to predict

competition and network outcomes (see Chapter2.5.1

1.2.4 Accurate Quantitative Measurements Are Required tdPredict
Network Outcomes

Interaction of SH2 domains with phosphorylated kst is the key step in determining
signaling outcomes (9). In order to successfullydeisignaling network outcomes, one must be
able to predict the outcome of competition for pdtasylated residues. To predict which
interactions occur, one must know what domains pmesent that have affinity for the
phosphorylated site, the strength of the affiniétigd the effective concentration of the domains
available to interact with the phosphorylated siB@mncentration and identity of interaction
partners is likely to be both cell-specific and dibion-specific, but affinity is likely to depend
on physical characteristics and structures of tH8 8omain and target peptide. Thus accurate
guantitative measurements are a critical step dieroto do accurate modeling, predict outcomes

of competition, and ultimately to predict netwonktcomes.



1.3 A Review of the Current State of Quantitative
Measurements of SH2 Domain Interactions

Significant effort was made by four research grofupsn 2006 through 2014 to acquire
high-throughput quantitative measurements of ictevsa between most human SH2 domains
and a large number of phosphorylated targets inasiigg proteins. Despite this effort, the bulk
of published data is unusable for future reseadafmificant errors have been identified in large
portions of reported data, rendering remaining ddtdimited value, and some experimental
design choices have resulted in data that cannabbegared to results from any other study.
Furthermore, some data was only published in @t summary or as a figure, and in the
intervening years, the electronic forms of thatada@ve been lost. Although these issues could
be rectified by access to the raw data, raw data fmost groups has been lost. Data from only
one group is available for any further analysisre;l&ve summarize the experiments conducted,
and discuss the experimental design choices, @@yaproblems, and errors identified in the

data which affect the suitability of this data foture work.

1.3.1 Overview of Published Data

High-throughput measurements of SH2 domain intemaatith peptides have been made
by four research groups and published in nine pabbtns from 2006 to 2014. Most groups have
focused on the response of phosphorylated tyrasin&ining peptides in the most well studied
receptor tyrosine kinase (RTK) tails: EGFR(ErbBBrbB2, ErbB3, and ErbB4. Later
measurements expanded to additional families of ®T&nhd to a larger pool of suspected
phosphotyrosine containing peptides in the humaotepme. Each group used different

experimental techniques, resulting in various landns in the collected data (Table 1.1).



Orig | Raw
SH2 Pairs Pairs Thres- Data Data | Data
Group | Year | Ref | Method | Peptides| Domains | Tested |Reported| hold Type | Avail. | Avail.
2006 | (10) 61 159 9699 383 Yes | No
2008 | (11) 50 133 6650 482 _ 2 UM Yes | No
MacBeath) 2008 | (12) PM 16 96 1536 25 Ka Yes | No
2009 | (13) 46 96 4416 740 Yes | No
2013 | (14) 729 70| 51030 2808 <1 uM Yes | No
2010 (8 192 50 9600 / n/a |Intensity}] No~ | N
Nash (8) PepA n/a ntensity| No 0
2014 | (15) 22 4 88 60| <9puM Kq Yes
2012 (16) 85 93 7905 1395 <20 Yes | Yes
Jones FP M Kqg
2014 | (17) 85 93 7905 2214 M Yes | Yes
Cesareni| 2013 (18) PepA n/a
6202 70| 434140 317613 Intensity] No No

Table 1.1: Overview of Published SH2 Domain Interaion Data.

*Raw data available for positive interactions; **@published as figure; ***Only published as summaXo
longer publically available, extracted from Pep&idtveb server in 2015/2016. PM-Protein MicroarragpA-
Peptide Array; FP-Fluorescence Polarization.

The first high-throughput measurements were madedsn 2006 and 2009 by the
MacBeath group (10, 11, 13, 19). These measuremgeats made using functional protein
microarrays (PM), where proteins are immobilizedooa glass slide and a peptide with a
covalently attached fluorophore is presented tostltee and then washed with a buffer. When a
peptide and SH2 domain have sufficient interactiimity, the peptide is not washed away and
the fluorescent peptide signal can be detected.igoarray slide can have an entire panel of
different proteins printed onto it, allowing tegjiof many proteins at once. This technique
represented a significant increase in the quaufitpneasurements able to be made in a short
period of time when compared to earlier techniquesrthermore, they measured eight
concentrations per measurement at equilibrium,fesrd the multiple measurements they were
able to calculate the dissociation constang) (& equilibrium. Later work demonstrated that
protein microarrays were unable to reliably deteet affinity SH2 domain interactions with

dissociation constants higher than 2uM (16). Ulteha in 2013, the MacBeath group published
7



a significantly larger data set also using protemcroarray technology, repeating and
superseding earlier measurements and adding anargeer of previously unmeasured protein

domains and peptides (14).

In 2010, the Nash group published an interactiogmegrent using solid-phase peptide
arrays. In theory, a peptide array should provigigesior results to a protein microarray, while
still maintaining the high-throughput capabilitie$ protein microarrays. By plating peptides
instead of proteins, the more delicate proteindccba maintained in soluble conditions closer to
their native environment and only presented toatttay during an experiment. As a control for
this technology, they performed lower-throughputofescence polarization experiments to
validate their peptide array results. Fluorescegpalarization can be used to measure protein-
peptide interaction maintaining both the proteim dhe peptide in solution. Unlike the Jones
group measurements, the Nash group only testedgéestoncentration per protein. The value
they reported was proportional to fluorescence wad deemed by the authors to be ‘semi-
guantitative’. Other work has called into questitihe quantitative validity of a single
measurement (20). In 2014, additional work from Wesh group demonstrated a new type of
peptide array on a small number of interactionggusultiple concentrations of protein, which

was both quantitative and highly reproducible (15).

In 2013, the Cesareni group presented results fr@arlargest scale experiment to date
with over a 10-fold increase in tested interactiofisey used a glass-slide based peptide array
and GST-tagged SH2 domain proteins. They used glesconcentration value of protein per
interaction, and thus reported a value proportidgodluorescence. This technique is known to

limit the accuracy of quantitative measurements.(Edrthermore, we demonstrate that GST-



tagged proteins behave differently in a non-systemaay than untagged proteins, further

calling into question these results (see Chaptr 2.

In 2012 and 2014, the Jones group published twb-tiigpughput experiments using
fluorescence polarization (FP) for all measuremdnts validation, they used Surface Plasmon
Resonance (SPR) — a more accurate but low-throtwgtgminnique — to validate their FP
measurements. The Jones group also measured muwtiptentrations per interaction, and were

able to report the dissociation constang)(&t equilibrium.

1.3.2 Published Experiments Have Significant Limitations

The usefulness of published data is limited by iplgdt factors: limitations of
experimental techniques and experimental designicebp errors in published data, and
limitations in future data availability. Some exipeental techniques have been subsequently
shown to have significant limitations. Experimentisign choices limit the usefulness and
ability to compare results between data sets. Dsimalnle errors and inaccuracies in reported
data limit the usefulness of some data. Finallgk laf availability of published data and also raw

data limits current and future usefulness of expenital results.

Three difference experimental approaches have bsed to publish high-throughput
measurements of interactions between SH2 domainds plwosphorylated peptides: protein
microarrays (10-14), peptide arrays (8, 15, 18} funorescence polarization (16, 17). Of the
three techniques, fluorescence polarization has#st sensitivity and reproducibility on large
scale data sets. Protein microarrays can only teticactions with higher affinity (g2v) (16).
Early implementations of peptide arrays suffer frtme same issues with reproducibility and

sensitivity, as well as issues with noise and Higlkground signal (data not shown), but the
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most recent implementation of peptide arrays masg lewercome these issues (15), but have not
yet been used for large scale measurements of Shi2aids. Fluorescence polarization
techniques are able to detect lower affinity intboms (< 20uM) and thus have increased
sensitivity. Although the authors of the FP expemts identified problems with reproducibility
(16) (including a low 63.3% validation rate forérinteractions on a single FP run), they suggest
(and we also demonstrate) that problems with pngteeparation are more likely responsible for

this issue than the technique.

Experimental design choices play a major role ia ¢hrrent and future usefulness of
some of the published data. Experiments which nreagnly one concentration of protein per
interaction, such as from the Nash and Cesarenipgr¢3, 18), represent potentially inaccurate
measurements and fundamentally lack the controtketermine if those inaccuracies exist (20).
Furthermore, a protein-peptide interaction canretbmpared directly with other data sets — it
can only be compared relative to some other intermcUnderstanding these limitations, the
MacBeath and Jones groups (as well as the latesth Maperiment) measure interactions at
multiple concentrations of the SH2 domain allowifay equilibrium measurements of the
dissociation constant ¢ This dramatically increases the usefulness efdéita, and allows for

comparison of results, despite difference in expental conditions.

One data source is severely limited in usefulnaess t errors in the published data.
Although the PepspotDB data published by the Cesaywup is the single largest data set
available, it has a significant inconsistency ir8 2f the measurements made, drawing the
accuracy of the published data into question. Tdta dontains columns for the foreground (FG)
and background (BG) fluorescence measurements, eds ag the difference between the

foreground and background”@ — BG), and the fold change ratio of the foreground he t
10



background lbgzg). For approximately 2/3 of the data (over 280,00ftein-peptide

interactions) the difference and fold change colsinsannot be computed from the reported
foreground and background values (see Table 1.arf@axcerpt of PepspotDB data). This draws
into question all other values in these rows, &y tre derived from these raw measurements.
These errors were not limited to a subset of pnotldmains, or peptides, a data range of
gathered data, or any other logical subset of thasmrements that we could identify. Since 1/3
of the measurements do compute for these colurhaseims that at some point, a portion of the
database became scrambled, by row or by columnortimiately, these experimental results
have been used in multiple published analyses amdels. Based on these findings, the vast
majority of this data should not be used in anurfeitwork and previous publications should be

reevaluated.

Reported Calculated

Reported Calculated FG FG

SH Domain | Peptide FG | BG | FG-BG | FG-BG | 19825; | logpc
ABL1 TRFDDW LW/QWY 162 146 16 16 0.15 0.15
ABL1 LKDKEGy TSFWND 166 139 27 27 0.25 0.25
ABL1 NI TDPEy GYLARE 149 140 9 9 0.09 0.09
ABL1 YPRECGKY GHAACF 178 140 38 38 0.36 0.36
ABL1 AFFNPKy QHEGFY 154 | 140 22 14 0.21 0.14
ABL1 ALVDL Dy EDRPEY 142 138 3 4 0.03 0.04
ABL1 | | EEGKy SLVVEY 155 142 17 13 0.14 0.13
ABL1 QFSKGWAI FGFY 136 132 2 4 0.02 0.04
ABL1 FPFNFSy SDYDMP 154 143 12 11 0.12 0.11
ABL1 AKLKDYy| FNKYL 141 142 4 -1 0.04 -0.01
ABL1 GQWKDLYHYI TSY 139 132 5 7 0.05 0.07
ABL1 STPKVLYEI PDTY 177 141 43 36 0.37 0.33

Table 1.2: Excerpt of PepspotDB.
Sample excerpt from PeptspotDB demonstrating ifstergcies in published data. Green cells indicateutated

values match published values; blue cells indicateulated values do not match published values.
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Original data was never published for two data,satsl is currently very difficult to
acquire. In the first Nash group publication (8talwas published as a binned heatmap, but a
table containing the measured values was neveighglol. The data is privately available (Ron
Hause, personal communication), but not from thehNgroup which has since disbanded. The
data collected from the Cesareni group (18), was aéver published. A summary of data in the
form of sufficient statistics was included in thegmal publication, but the data that the
calculations were based on was not published irouangl, and the statistics used were
insufficient to completely describe the data. ThHata was subsequently displayed in an online
database, but that database has since been talkiee ahd is no longer available from the
Cesareni group. We were able to evaluate and fgethe errors in this data as described above

as we retrieved a copy of the information in theabdase before it became unavailable.

The state of availability of raw data underlyingsk experiments is dire. Since much of
the useful data published is in the form of a diss@on constant, the reported data is actually
based on a calculation made upon one or more ra& deasurements over multiple
concentrations. These raw measurements are requirestaluate the fitting methods used to
calculate dissociation constants, to question tesuraptions in the models used, and to
determine if the measurements in the experiment® walid. Off all high-throughput data
gathered since 2006, only one group has raw daidahle. Reanalysis of the raw data from the

one available data set is found in Chapter 2.

1.3.3 Intergroup Experimental Results Correlate Poorly
A further complication in working with the interamt data is that there is practically no
agreement of measured data between different gr@ugsre 1.1). Although both the MacBeath

and Jones groups were able to successfully valmladmdom selection of measurements against
12



a lower throughput and more accurate method of umgds interactions — the MacBeath PM
data was validated successfully against low-thrpugt~P, and the Jones FP data validated
successfully against SPR analysis — neither grodgfa validates well against published sets of

curated low throughput data.
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Figure 1.1: Between Group Comparisons of PublisheData.

Correlation between published quantitative datenfdifferent groups is plotted as a scatter plotaDmits
represent Kvalues (M), except for the Cesareni group datielwis published as a z-score of an signal intgnsit

based scale. Pearson correlation coefficientsnaiedted below each plot.
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The disagreement between labs on dissociation &otssts troubling. The dissociation
constant, measured at equilibrium, should be thmesaespite systematic differences in
measurement techniques. If the primary cause for @ras the technology used (e.g. PM vs FP),
one technology should have compared unfavorabtiigdower-throughput validation methods.
On the other hand, if differences in protein pregian are responsible for the majority of the
variance, low-throughput validation methods couldoabe measuring that same protein
preparation. If the variance is due to the condgi@nd method of protein preparation in a
particular laboratory, low-throughput measurementaild correlate well to high-throughput

techniques within the same laboratory even givgniicant differences between laboratories.

Based on our analysis (Chapter 2), it is very Yikdlat a significant component of
measurement variance is due to protein preparalioese differences can be magnified by some
post-measurement modeling techniques and methodbanéling replicate measurements.
Eliminating these sources of variance might veryl @meliorate the significant differences in

measurements found between difference researcipgrou

1.3.4 Conclusion

Despite significant effort to measure and undestaH2 domain interactions with their
target peptides, critical flaws or lack of acceassts the usefulness of most data. Interactions
measured with single measurements are known tonéecurate, and comparison to other
measurement is severely limited. Errors in repodath make that data suspect. Lack of access
to published data prevents use. Lack of accesawodata hinders our ability to evaluate the
analysis process that produced such data. Ofalhigjh-throughput interaction data gathered to

date, a complete set of raw data is available ooty one group.
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Chapter 2: Revised Analysis of SH2 Domain
Interaction Data

2.1  Motivation for Reanalysis

The primary motivation for reanalysis of existingZdomain peptide interaction data is
to identify true negative interactions (pairs of Stomains and peptides that have very low or
no affinity for one another). All quantitative highroughput studies-to-date made tradeoffs to
produce positive interactions at the expense ofdvaégative interactions. Although the raw
measurement techniques were essentially neutgdditive and negative interactions, choices in
analysis techniques were made to focus on idengfyihe most likely positive interactions such
as using quality metrics (16) or statistical t€4®) that favored only positive interactions. Thus,
results were tuned to maximize true positive detacat the expense of making false negative
calls. In these data sets, lower-certainty intéoastwere relegated to an ‘out’ group, along with

potential negative interactions, poor fits, andsgalata.

Negative interactions are as important as positiveractions when building accurate
models of binding (21). Supervised machine learrigxhniques rely on training data sets in
developing a function to map new input to a catggar value. In most cases, training sets
leading the highest accuracy must contain bothtipesand negative examples. Similarly many
statistical modeling techniques benefit from negatilata for increased accuracy. In order to
address this shortcoming, researchers using théstdacreate models of interactions have either
used methods that do not take into account negatigeactions (7), or used methods to generate
synthetic negative interactions (21). Other rede=nx ignored the false negative issue and

treated all interactions that were not positiveefiattions as non-binders (17, 22). Since all of
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these methods will produce less accurate modefsititalels using true negative interactions, we

hoped to extract additional information about negainteractions from existing data.

Based on our previous work examining the currestiesand availability of SH2 domain
interaction data (see Chapter 1), we identified/@rle data set which did not contain obvious
systematic errors, and for which raw data was akkat the FP data from the Jones group.
Although this data was the only raw data availabihe, FP technology used has the highest
sensitivity for weak interactions and is solutiasbéd, allowing the proteins to be closest to their
native states when tested. Thus, this data seldwikely have been the starting point of any
reanalysis even if more data were available. Wetaobed the original authors and were
generously provided with all raw data and filesikmme (Richard Jones, Ron Hause, and Kin

Leung, personal communication).

In reviewing the experimental details and analysisthods from the Jones group
experiments, it became clear that best practicag wet followed in both the design of the
experiments and the analysis of the data. Duringeemental design and data gathering,
insufficient controls were used, making it difficulo distinguish between true negative
interactions and non-functional proteins or peideespite identifying non-monomeric protein,
limited purification was undertaken. It would beasenable to assume that limited purification
and controls were related to the tradeoff betwesst and gathering more data. In addition, in
modeling and analysis, several critical steps wekerlooked. No assessment of the
appropriateness or deviation from one-to-one models made, no evaluation for non-specific
binding was used in modeling, and an inappropr@elity metric was used, resulting in

discarding of a majority of the measured data.@rmore, protein preparation was also known
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to be a major source of variation, but the varratwas treated as typical sample variation in

analysis, and no controls for non-functional ottipdly-functional protein were utilized.

These deviations from best practices suggestedatteahative analysis methods might

uncover useful information.
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Figure 2.1: Experimental Layout of 384-well Plate.
Layout diagram for the 384-well plates used intbees FP experiments. Thirty-two proteins at 1Zentrations
were tested per plate against a single peptideettration. Proteins were placed on the plate irptiteern above.
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2.2  Preliminary Data Analysis

2.2.1 Description of Raw Data

The Jones group interaction data consists of tyars¢e data sets published in 2012 and
2014 (16, 17). Although the 2014 study added aalubii peptides, both studies used the same
technology (fluorescence polarization), covered shene SH2 domains, and used the same
protocols. Some aspects of the availability ananmédting of raw data, and aspects of the

experiment design and sample preparation, areael¢u the reanalysis of the raw data.

The published data contains interactions betweesi@@e-domain SH2 proteins with
165 peptides from 8 different receptor proteins FRGErbB2, ErbB3, ErbB4, GAB1, Kit, Met,
and the human androgen receptor). The set of rda gl@vided by the Jones group did not
contain all published data. Although it containedadfrom all 89 domains, it was limited to 142
peptides from 7 receptor proteins, missing datanftiee human androgen receptor, and a handful
of other domain-peptide combinations. Comparisamstased on this slightly smaller set of

interactions common to both the published and rata.d

The raw FP data consisted of numerical fluorescgotarization data (in mP units) in a
16x24 grid, from each 384 well plate that it wasrsted from. The plate contained 32 SH2
domain proteins at each of 12 concentrations orgainspatially as in Figure 2.1. The formatted
raw data contained labels and concentrations fcin @eell of the plate, as well as the identity of
the fluorescently labeled peptide presented to ahire plate (see Table 2.1 for a slightly
reformatted example of raw data from a plate). &axrh plate a 17th row in the data contained
background intensity but was not used in this agislyData for all plates scanned in a particular
run were concatenated end-to-end in a single Hiteel
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131 142.97 137.44 139.66 142.07 139.92 144.07 152.73 143.51 143.91 138.59 134.38 142.22 141.34 140.71 136.23 133.25 141.03 143.46 147.7 142.19 143.25 141 147.29
141.08 121.97 133.8 133.68 138.19 139.46 133.12 134.02 136.16 140.94 144.01 144.57 132.58 140.75 141.25 137.63 135.88 132.56 134.85 136.86 143.32 142.4 142.86 145.96
131.09 133.57 132.71 138.58 140.34 141.35 142.59 142.47 134.5 137.19 140.94 142.91 149.65 139.07 138.79 145.1 143.36 137.59 144.76 132.26 143.11 138.46 143.69 132.23
123.1 137.03 139.1 130.81 141.04 135.75 129.83 143.13 131.71 138.29 146.33 146.01 140.32 140.18 144.39 135.92 142.95 143.52 142.67 139.89 148.02 137.52 138.05 143.86
132.45 139.27 134.92 136.74 138.78 140.64 140.86 137.08 139.8 134.97 141.53 152.38 135.08 146.18 143.24 148.42 134.55 140.33 141.13 143.44 139.91 128.22 143.95 130.41
125.46 139.8 135.95 140.49 133.68 135.91 140.76 126.67 139.68 137.6 132.6 137.17 140.06 141.97 142.77 148.5 141.67 135.57 135.65 145.59 140.71 141.85 139.12 147.87
145.36 138.75 134.55 139.72 132.23 134.95 137.35 143.61 134.05 138.9 145.3 142.28 142.9 132.36 134.9 135.31 143.53 144.99 132.41 136.21 142.39 143.3 138.15 138.67
118.01 139.48 136.48 141.3 141.17 138.6 142.16 144.61 139.32 139.93 140.46 135.98 147.22 145.29 138.13 140.82 149.49 133.26 148.12 135.97 154.97 149.72 143.13 150.19
140.92 141.64 150.64 155.25 143.22 143.81 149.41 150.82 152.49 141.51 145.62 150.52 146.53 149.05 144.94 151.74 141.56 149.13 148.44 158.42 154.49 161.34 145.69 148.02
135.88 147.66 135.29 147.76 134.3 147.32 134.48 145.04 140.87 139.88 146.42 146.11 145.44 139.42 143.56 136.04 151.76 142.28 144.77 151.06 144.52 140.27 155.25

Table 2.1: Raw Data Format
Raw data was stored as intensities, labels, anceotrations for each well of the plate. The platmber, and the identity of the fluorescently labgdeptide
presented to the plate were recorded. For each plavth row in the data contained background it mformation. The information from the originakcel

data is reproduced here but has been modified toefipage.
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The peptides in the Jones FP data are predomindt8Wners, with a central
phosphorylated tyrosine residue. In the first Jomgseriment, approximately 32 peptides were
initially made and tested as 18-mers. Jones andagples found the 18-mers to have similar
binding free energies, but the 13-mer peptides gged higher maximum polarization, and thus
gave better sensitivity and signal-to-noise (16he TSH2 domain proteins were primarily
expressed as single-SH2-domain-containing constr@hen a native protein contained more
than one SH2 domain, constructs were built withhedemain independently (and referred to
with a suffix of “~N” or “~C” to indicate which teninal the domain was from). Although a few
proteins were also expressed as a double domaise ttonstructs are excluded from this revised
analysis. These SH2 constructs that the Jones gelagted for the experiment each met the
following criteria: “1) fraction of monomeric prate observed in previous study following
expression and purification >=50% by size exclustbromatography; 2) previous evidence of
functionality by PM as evidenced by interactionhlwine or more phosphopeptides with an

apparent midpoint binding constant KD<=1 mM.” (16)

2.2.2 Model Selection

The mathematical model underlying a saturation ibompdexperiment is based on a

theoretical one-to-one kinetic interaction:

_ Enax[domain] N
" Ky + [domain] " °

obs

where Fps is the observed fluorescence (in mP unj)main] is the concentration of the SH2
domain, [yis the baseline value (in mP units)y.kis the value at saturation , ang ks the

dissociation constant. This form of model was usethe original publication, as well as all
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other high-throughput analyses which computed diation constants from the raw binding data

(10, 11, 13, 14, 16, 17, 19).
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Figure 2.2: Examples of fitting results for individual replicates.

Several illustrative examples of fitting results fiadividual replicates are shown. (Upper Left) @m example with
moderate K, and signal approaching saturation. (Upper Midtleh-binder example, with low magnitude, flat
signal . (Upper Right) Aggregation example: stréingar response of high slope with no saturatiadew. (Lower
Left) An example of a fit for which a first ordet fvas best, but which had high residual errorvweoMiddle) An
example of a binder called in our revised analygigh was rejected as a binder in the original jmalion. (Lower
Right) Fit Artifact: Despite clearly being noisytdawith little form, a first order fit is selecteder a linear fit.
These examples are also typically filtered outigpal to noise criteria, but they represent a tomtegory of data
that fits no true model, thus they are difficultidentify. Key: Dashed gray line — fitted offsetaghed blue line —
linear fit. Dashed red line — first order fit.

This seems to be the appropriate model to desdgyp&al positive SH2 domain
interaction with phosphorylated peptides (see BinBgure 2.2). However, preliminary analysis
of the data indicated that fitting only a singleeein-one model of binding via least squares failed

in some cases due to fitting artifacts, particylabn many non-binding interactions and
21



interactions that suggested aggregation. For ex@mphon-binding interaction (see Non-Binder,
Figure 2.2) is typically indicated by low but coamst magnitude data with random noise
superimposed. When the random noise at the fuisit @r two coincides with a positive slope,
the least square solution was often a very sharphding saturation curve with an extremely
low dissociation constant Kon the order of 0.000LlM), and a very low Rax oOften
approaching zero (see Fit Artifact, Figure 2.2).u3hthe greedy fitting algorithm was
parametrizing the fitting results based on randamse In the cases which we have described as
aggregation (see Aggregator, Figure 2.2), the $logace increases linearly with concentration
and never shows signs of saturation. When fit \&itbne-to-one model, dissociation constants
and concentration at saturation both approacheditynfand resulted in fits with Kand Fax
values on the order of 1x40M or greater. In the latter case, a one-to-oneahisdnappropriate

to model this phenomenon, resulting in the imprq@eameterization.

In order to overcome these fitting artifacts, webfoth a linear and one-to-one model to

the interaction data. The linear model was in trent

F,,s = m[domain] + F,
where Fys is the observed fluorescence (in mP units)s the slope of the fit linddomain] is
the concentration of the SH2 domain, agdsRhe baseline value (in mP units). The best model

fit was evaluated using the Akaike Information €xibn (AIC) (23).

2.2.3 Determination of Saturation Conditions

We hypothesized that the maximum polarization mesbd the polarization at saturation
— should be similar across all domains and peptifiess, in a saturation binding experiment

such as this, as protein of increasing concentratéoe exposed to labeled peptide, polarization
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values should monotonically increase until theytqda — despite increasing protein
concentration — as all peptides become bound ®Hthdomain. This saturation behavior should
follow the classic hyperbolic binding curve desor@ one to one binding (Figure 2.3). The
labeled peptides in this experiment are all sirtyilaized small molecules — 13 or 18 amino acids
in length, and the SH2 domains are very close 1 d@ino acids in length and globular in
shape. Since fluorescence polarization measurasnedieictively measure the volume difference
between an unbound labeled molecule and a completaining the labeled molecule (Figure
2.4), volume differences between free peptideskemuohd peptides should be very similar across
all domains and peptides. Thus, polarization atratibn should be similar across all measured
domains and peptides. However, based on the presémon-monomeric protein reported in the
original publication, we hypothesized that we miglso find results that might not match perfect
theoretical behavior. Jones and colleagues reptntddall domains used in the experiment had a
“fraction of monomeric protein observed” greatearthor equal to 50% “following expression
and purification by size exclusion chromatograpli¥6). Unfortunately, the percent of non-
monomeric protein was not recorded in the publistath or in the raw data. Knowing that
proteins tested were not pure monomers, we hypagaeshat we might see effects resembling

‘larger volume’ binders than expected for a monamene-to-one binding experiment.
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K, = 1uM

0 2 4 6 8 10

Protein Concentration (u.M)

Figure 2.3: One-to-One Binding.

Example of one-to-one saturation binding curve. Fhg is the signal expected at the asymptote of theecat
complete saturation. The dissociation constagt &equilibrium can be computed graphically frdma figure.
When the fluorescence value on the curve is\ Ehat concentration is the;K

Emitted Light

Small Molecule Rapid Rotation Is Depolarized
/ :
&% 4

Light Large Complex Slow Rotation

Polarized \-—1
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Emitted Light
Remains Polarized
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Figure 2.4: Fluorescence Polarization (FP) MeasureBinding.

Polarized light is used to excite a fluorescerdlydled molecule. (Top) Small molecules rotate mapély than
larger molecules so light emitted from the fluorophis emitted in different planes depolarizing light. (Bottom)
When bound by a larger molecule, light emitted fittve small molecule remains close to the excitilage,
because large molecules have rotated less durinintie between excitation and emission. Thus Fectvely
measures volume differences, and is used to igemiilecular interactions.
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Parameter Distribution
for Saturated Interactions
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Figure 2.5: Range of k., and Ky for Control Set of Binders.

The distribution of K vs F,.is plotted for a set of control interactions. R@siinteractions with good fits and g K
between 0.4uM and 2uM were chosen to represemtaotset of one-to-one fits with good saturatiagnals. The
bulk of fits had an F., between 25 and 300, suggesting this is a reaseeapkcted range for maximum
fluorescence of a one-to-one fit for a 100AA SH2ndén to a short peptide.

In order to find identify a reasonable range ofueal for the maximum fluorescence
(Fmax Of a true one-to-one interaction in this expenmeve looked at a subset of measurements
likely to represent saturated binding. A subsepasitive interactions with a Kbetween 0.4uM
and 2uM were chosen. This subset representedy aakge for which the experimental
concentrations were likely to detect saturationlwes also in a reasonable range for affinity for
an SH2 domain for a peptide according to previdudiss. Thus, this set of interactions is likely

to predominantly consist of true binding interantaf SH2 domains of moderately high affinity
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and provide a valid sample of saturation conditiohssisual inspection of the fits confirmed
these hypotheses. Interactions in thig&ge had .« values between 25 and 316 mP units, and
no maximum values in this set extended above 316m#8 (Figure 2.5). Thus, we concluded

that true one-to-one interactions were unlikelh&we fitted Fkax values far above this range.

However, we were surprised to find such large vWiamabetween the interactions. In
order to determine the source of the variationew@mined the relationship betweegfrange
and protein domain. We chose a set of interactionw/hich a first order fit represented the best
fit, and which had low residual errorp,,& ranges vary significantly by domain — with some
domains having relatively tight windows of,& values, and others with high variance. The
median Fax also varied significantly by domain (Figure 2.6daRigure 2.7). Only a small
fraction of interactions fell below anyk of 50mP. The small differences in protein size (al
close to 100AAin length) are unlikely to be the mmuof this variation. Protein with high
average Fax values may have a higher content of non-mononmtein. Proteins with high
Fmax variation may have been composed of multiple ckfiee protein preparations with

differing percentages of non-monomeric protein.
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F,,.. Distributions by Domain
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Figure 2.6: Fyax Distributions by Domain for 2012 Experiment.

Fnax distributions by protein domain are plotted as ptts. The box extends from the lower quartiléh® upper
quartile value in the data. The red line represdr@anedian. The whiskers extend to the smallediangest values
which are not outliers (more than 1.5 times theriiartile range past the quartile). Data from .(16)
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F,,.. Distributions by Domain
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Figure 2.7: F,ax by Domain for 2014 Experiment.

Fnax distributions by protein domain are plotted as ptts. The box extends from the lower quartiléh® upper
quartile value in the data. The red line represdm@snedian. The whiskers extend to the smallediangest values
which are not outliers (more than 1.5 times therupartile range past the quartile). Data from .(17)
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2.2.4 Protein Functionality Impacts Identification of Negative
Interactions

In addition to accurately identifying true positirgeractions, one significant challenge
when analyzing this interaction data is the taskideintifying true negative interactions as
distinct from negative interactions due to missorgnon-functional protein, or experimental
failure. The ability to identify non-functional gean greatly increases the quality and accuracy

of non-binding calls and is vital to future modeliof SH2 signaling systems.

Several parameters related to expected proteinvimhaffect our ability to accurately
identify true negative interactions. SH2 domainoggation and binding to a phosphorylated
peptide seems to the key step in determining sigalpecificity. Thus, in order to maintain
selectivity, we hypothesized that most SH2 domawmuld only bind a limited set of
phosphorylated peptides. If true, we would expdwt ta large majority of experimental
interactions for each domain would measure as nvgaton-binding, interactions. In addition,
based on prior knowledge of their function, we expiat each SH2 protein tested should
interact with at least one or more phosphorylategtide found in the human proteome. Thus
true positives are likely to be rare. However, sitice experiment does not cover all possible
interactions in the proteome, it is possible th@hs proteins tested will truly interact with no
tested peptides. This circumstance highlights oifgcwty: although non-interaction may
represent a series of true negative results, camplen-interaction would be indistinguishable
from a situation with non-functional protein unlegmtrols were included to distinguish such a

result. In addition, due to the experimental metiogy chosen in the original publication, one
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significant practical difficulty in this experimertes in distinguishing proteins which have

degraded or are non-functional from proteins whialy fail to bind any tested peptide.

In an ideal experiment, controls should be chosemadsure that the results from the
experiment are due to the parameters and compobemsg tested and not due to outside
unintended influences. When evaluating proteinradion with a fluorescent peptide, controls
should establish that the protein is folded ancttiomal, that the peptide is phosphorylated and
properly labeled, and that the protein and peptidmonstrate the expected activity. A non-
functional or unfolded protein or an improperly déédxd peptide would lead to a false negative
interaction. In this experiment, the fluoresceniapaation experiments were carried out on 384-
well plates. Each plate contained 32 different @irat at 12 concentrations measured against a
single peptide. The set of 12 concentrations aneifh a curve resulting in fitting parameters of
Kg (equilibrium dissociation constant), & (fluorescence value at saturation), andaseline
or background fluorescence). This results in 3Zedht protein measurements against a
common peptide. Unfortunately, explicit controlsrev@ot included in the experimental design,
and thus were not present any plate tested. Ofadts this is a significant limitation in the

original experimental design.

Although there are no explicit controls on a singlate, some implicit patterns in the
data can be used as controls. For example, badélioescence for all 32 proteins at every
concentration would be a pattern consistent withoa-functional peptide. Although a single
plate might be useful to diagnose an issue wite@ige, a single plate does not contain a useful
pattern to determine problems with protein activatyfunctionality. Since the behavior of any
particular protein-peptide interaction is not knowany single negative interaction may represent

a true negative non-binding event. Neverthelesszombination of protein results across
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replicates from different runs and across multgdptides can demonstrate a pattern helpful in
diagnosing a problem with protein functionality. Wientified several such patterns that were

effective at identifying varying types of proteiagtadation.

BMX GRB2 PIK3R1-C

Figure 2.8: Examples of Categorical Binding Activiy at the Replicate Level.

Heatmaps of activity for the SH2 domains from BM3XRB2, and PIK3R1-C interacting with ErbB peptid26)(
Rows represent a peptide tested, and columns exgrésferent runs. Green: positive, binding intti@ns. Gray:
negative, non-binding interactions. White: not¢estOrange: Aggregation. Blue: Non-functional pirate

We first looked for gross patterns of protein nandtionality. Binding and non-binding
results for each protein were plotted as a heatm#épeach row representing a different peptide
and each column representing replicates from arifit run or different day. We found both
proteins that displayed patterns consistent witimad biological variation, and patterns
consistent with degraded protein. For example, IK3R1-C interactions with ErbB peptides,
eight peptides show positive interactions Figur@. FEive of those peptides show consistent
results across 3 test runs. One peptide showeslstent positive results across two runs, but a
negative interaction in the third run. One peptelowed a positive result on run 1, but
aggregation behavior on the remaining two runs.e(Otiner peptide with positive interactions
was only tested on one run.) For PIK3R1-C, theeerar systemic patterns that suggest protein
degradation. Contrast this result with GRB2 and BMberactions with ErbB peptides (Figure

2.8). For GRB2, four peptides show positive inteoaxs. However none of the positive results
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are replicated on run 1. This pattern is stronglygestive of protein non-functionality of GRB2
on run 1. For BMX, no positive interactions aream®d during any interactions with ErbB
peptides. Although it is possible that those irnteoms are all true negatives, it is also possible
that the protein was never functional at all. Hegimof this form for each protein can be seen

for the 2012 experiment (16) in Figure 2.9 andtifer 2014 experiment (17) in Figure 2.10.

2.2.5 Patrtial Protein Functionality Can Affect Affinity M easurements

The protein functionality analysis indicated thaime proteins were likely to be non-
functional during the experiment. Since proteinat thisplayed positive binding interactions at
one point in time could seemingly degrade suffittieo result negative interactions during
other runs, we hypothesized that proteins migta platially degrade resulting in effects on the
guantitative measurements of,. Kritting and parameter evaluation depends on $isemaption
that the reported concentration of protein is ahdtional: the ki parameter is equal to the
concentration at which half-saturation is achie¢Egyjure 2.3). If the effective or functional
protein concentration was less than the reportettardration, it would affect Kvalues. For
example, suppose 25% of the protein was degradeen The effective concentration — the
concentration of protein available to bind a peptidwould be 75% of the reported value. A
saturation binding experiment and parameter fit tbaorted a K of 1uM, would actually be
measuring a reaction with agkf 0.75 uM. Protein consisting of a mixture of ¢tional and
non-functional molecules would result in measuretsenll artificially higher Ky values (which
are lower affinity reactions). Thus partially deded protein would represent a systematic bias

towards weaker interactions and highgnidlues.
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Figure 2.9: Categorical Plots of Binding Activity a the Replicate Level from the 2012 Experiment.

Heatmaps of activity for the SH2 domains interagtivith ErbB peptides (16). Rows represent a peptidted, and
columns represent different runs. Green: positieding interactions. Gray: negative, non-bindintgractions.
White: not-tested. Orange: Aggregation. Blue: Nonefional protein.
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Figure 2.10: Categorical Plots of Binding Activityat the Replicate Level from the 2014 Experiment.
Heatmaps of activity for the SH2 domains from nabHpeptides (17). Rows represent a peptide teated
columns represent different runs. Green: positieding interactions. Gray: negative, non-bindintgractions.
White: not-tested. Orange: Aggregation. Blue: Nonefional protein.
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We hypothesized that this partially degraded proteduld manifest in K patterns in the
experimental results. If a run contained degradetem, but the protein was not so degraded as
to prevent binding, binders should have a systemafs towards higher Kvalues (lower
affinity) than a run with fresh, functional protei®ince each plate compared a panel of 32
proteins against a single peptide, this patternldvoeguire data gathered across sequential plates
containing the same protein mix. The pattern wdnglceasier to identify if data were acquired in
approximately the same order on different runs.kilyc the order of tested peptides was
predominantly preserved from one run to anothgah&2012 experiment (16) enabling exactly

this analysis.

In order to test for partial degradation, fi§ Kalues were arrayed in a table (Table 2.2).
Data for each run is sorted in order of data adtijns and each row represents a peptide. Thus,
the columns can be viewed as a short time scaléh@arder of minutes between measurements)
and different runs representing a long time soalth(hours or days between measurements). In
the data for PIK3R2-N, one can see that run 3 cami@most all of the highest affinity (lowest
Kg) replicates and run 1 contains the lowest affifitigher Ky) replicates. Only one peptide in
run 1 shows the strongest binding. This pattermgssig that protein in runs 1 and 2 was patrtially
degraded, and protein in run 3 was the least dedradl related pattern can be seen in the
binding data for SH2D2A. In this case, there is stoongest run (with strongest binder

distributed randomly between runs 1 and 3), but2shows consistently weaker binding.
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PIK3R2-N RASA1-N
Run 1 Run 2 Run 3 Run 1 Run 2 Run 3
Peptide Plate | Ky | Plate | Ky | Plate | Ky Peptide Plate | Kqy Plate Kqy Plate | Kqy
ERBB4 0807 | 129 199 222 |8.59| [ERBB4 1150 3 219 | 185 056 205 061
ERBB21127 | 133 3.08| 203 226 |0.99| [ERBB4 1202 4  15.16| 186 206 4.32
227 |1.18] [ERBB4 1208 11 37.85| 194 764 | 216 _6.41
ERBB41056 | 134 2.03| 204 [0.82] 230 ERBB2 1005 19 1087 | 202 138| 225 [514
ERBB4 1056 | 137 4.23| 207 231 ERBB2 1127 20 164 | 203 116 | 226 |0.96
ERBB31159 | 136 0.26| 206 0.26| 229 [0.09] [ERBB3 1159 23 031 | 206 044 | 229 019
ERBB31159 | 139 0.70| 209 233 [0.23] [ERBB3 1159 26 415 | 209 495 | 233 299
ERBB31307 | 140 0.58| 210 0.26| 234 [0.25] [ERBB3 1307 27 177 | 210 [1.60] 234 193
ERBB4 1150 | 144 | 214 366| 238 [3.65| [ERBB4 1150 31 105 | 214 [096]| 238 133
ERBB20772 | 148 [1.54] 218 242 219 [ERBB20772 35 [6.05 | 218 242 936
EGFRO764 | 152 249| 223 227| 246 [1.16] [ERBB4 1262 37 114 | 220 479 244
ERBB30823 | 154 225 248 [4.92] [ERBB4 0906 38 969 | 222 77| 300 [147
EGFR1092 | 160 232 254 [13.55| [EGFR 0764 39 [9.94 | 223 246 22.16
ERBB30868 | 167 239 261 [2.32] [ERBB3 0823 a1 284 | 225 28 [223
EGFR1016 | 168 3.67| 240 [0.94] 262 ERBB3 0897 50 235 10.04| 257 [2.10
ERBB21023 | 242 244 265 [2.22] [EGFR 1016 55 143 | 240 [137] 261 224
ERBB31054 | 243 3.14| 245 | 266 ERBB2 1023 174 [5.05 | 244 1055 265  9.31
ERBB3 1222 | 250 252 [0.81] 273 0.84| [ERBBA 1162 176 | 229 | 246 521 | 267 4.4
ERBB31289 | 257 10.68 259 282 [0.16] [ERBB2 1196 178 [ 1.62 | 248 269 171
ERBB4 1202 | 266 268 292 [1.03] [ERBB2 1221 179 [ 024 | 249 195| 270 186
ERBB2 1222 180 [ 040 | 250 689 | 271 278
SH2D2A ERBB3 1222 182 [ 064 | 252 287 | 273 183
Run 1 Run 2 Run 3 ERBB3 1224 183 [ 075 | 253 216 | 274 125
Peptide | Plate | Ky | Plate | Ky | Plate | K, | [ERBB3 1262 187 [ 3.69 | 257 280 13.43
ERBB41202 | 61 [3.08] 186 553[ 206 4.35| [ERBB3 1289 189 [ 345 | 259 282 435
ERBB40807 | 71 [6.90| 199 222 21.91| [EGFR0998 190 [ 130 | 260 7.82| 283 282
ERBB31307 | 82 [12.3] 210 234 55.47| [ERBB3 1276 191 [083 | 261 136| 284 239
ERBB30789 | 87 13.74 215 239 [9.50| [ERBB3 1328 192 [1.83 | 262 16.03| 285  9.10
ERBB4 1262 | 92 15.13 220 244 [9.42] [EGFR1172 193 [ 131 | 263 572| 286 537
ERBB40906 | 93 12.86 222 300 [0.88] [EGFRO727 194 [3.01 | 264 287 633
ERBB30975 | 101 [7.56 231 | 253 20.46| [ERBB4 1202 199 131 | 268 316 | 292 [ 100
EGFR1092 | 102 5.29| 232 [3.23] 254 13.20 [ERBBA4 1242 204 [153 ] 273 179 | 297 590
EGFR0900 | 105 7.50| 235 ###| 257 [1.96
ERBB21139 | 106 3.51| 198 7.50| 220 [1.70
236 221 |1.44
299 [3.67
EGFR0915 | 108 4.46| 238 555/ 259 |3.89
ERBB21221 | 213 [2.80] 249 270 18.26
ERBB31222 | 216 [3.12| 252 273 21.60]
ERBB4 1188 | 219 9.09] 255 276 [7.78]
ERBB31328 | 226 [0.86] 262 285  5.90
ERBB4 1202 | 233 4.36| 268 202 [1.23
ERBB4 1208 | 237 5.42| 272 ###| 216 |1.98

Table 2.2: Patterns in Kd Values Demonstrate Protei Degradation Effects.
Green highlighted values represent the highestigff{lowest K;) measurement for each peptidg.v&lues are in

UM.
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There is no record in the original data for wheot@in sample changes were made (i.e. if
a supply of protein was exhausted and replaced avitther supply). We hypothesized that one
might find runs of moderate or weak affinity folledl suddenly by a very strong affinity. This
pattern, also very unlikely due to random chanceuld be consistent with an older partially
degraded protein sample being replaced by a neashfsample of protein. In the data for
RASA1-N, one sees exactly this pattern. For théezaested peptides in each run, there is no
clear stronger sample. However, at plate 174 inlsuhe highest affinity measurements all come

from run 1 for the rest of the protein data.

Although these patterns are difficult to detect anel not completely consistent, they are
unlikely to be due to systematic errors in dataugition. Any systematic bias in FP data (such
as higher or lower absolute readouts on a particutd would not result in a similar bias for the
calculated K. Shifting a saturation curve up or down does mainge the calculation of theyK
parameter because Kd is based on the horizontalvakiie at half-saturation. Similarly such a
bias would not affect the,fx parameter which is based on the difference betweEmaximum
value at saturation and the baseline value — bétlwvloch would be shifted and thus the
difference would remain unaffected. This is exattly value and rationale in using a parameter

derived from multiple measurements at equilibrium.

Unfortunately, there is not enough compatible datgroduce control patterns for all
proteins, and not enough to be used to infer gtadiviée protein activity for each measurement.
Nevertheless, the patterns strongly suggest théapprotein functionality biases the acquired
parameters towards weaker (highey) Kteractions. As this seems to be a primary sowfic
variation, and it is not random, taking the meannailtiple replicates would result in an

inaccurate estimator of the population activitystead, the minimum Kvalue — the representing
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the most functional protein tested — should be us#tiough this value still may not represent
the true K (as the best protein tested may still itself béy grartially functional) this value

would still be closer to the true value than areotreplicate.

2.2.6 ldentification of Potential Protein Aggregation

We also hypothesized that non-monomeric proteirhiniganifest with patterns outside
those expected of a one-to-one interaction. Weddwo major trends in interaction data outside
of classic saturation binding curves. The firstnttewas a relatively flat linear response
independent of concentration with slopes from 04@mnP/uM (see Non-Binder, Figure 2.2).
These concentration-independent results with lowmtade signal are exactly what would be
expected of true negative interaction for a nordbein The second trend was a linear response
with a high slope, and strong, protein concentratiependent signal (see Aggregator, Figure
2.2). Since signal failed to saturate in these ewpmnts, one-to-one assumptions produced
binding saturation curves with extremely highaFvalues, on the order of 1x1®nP units.
Interactions that do not saturate are unlikelyepresent true one-to-one binding, and are more
likely to represent some type of aggregation phesraof multiple proteins binding one or more

labeled peptides resulting in high volume changklagh signal with increasing concentration.

After identifying this phenomenon in individual tejates, we looked for patterns across
proteins. Binding, non-binding, non-functional, aadgregation interaction results for each
protein were plotted as a heatmap with each rowesgmting a different peptide and each
column representing a different run or differeny daigure 2.9 and Figure 2.10, aggregation in
orange). Proteins showed mixed results with aggi@gand non-binding (e.g. ZAP70-N), or a
mixture of aggregation, binding, and non-bindingules (e.g. LCK). We did notice a significant

decrease in aggregation from the 2012 data to @4l 2lata, though no obvious change in
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pattern (such as limiting to a time range or rurswabpset of protein domains). This suggests that
this phenomenon might be related to protein pregerapurification, or handling, and that it

could be minimized.

2.2.7 Final Process for Selecting Fits

Our fitting procedure uses a classic one-to-oneetldnmodel to identify positive
interactions, as well as alternate models to aigi@mtification of non-binders and aggregators.
Additional criteria, including a measure of sightanoise, aid in identifying low-quality
measurements. Individual replicate measurementsafgrarticular domain-peptide pair are
evaluated categorically and quantitatively. If regle results indicate positive interaction
(binding), the minimum K reported is chosen, as explained in the analyisigadial protein
functionality. This method results in higher comfite calls for both positive interactions
(binders) and negative interactions (non-bindensntearlier methods which only accepted a
small fraction of the data and only focused on fpgesiinteractions. This is accomplished with
limited loss of data into indeterminate categori&s. overview of the fitting method used on

each replicate can be seen in Figure 2.11.

For domain-peptide pairs where a one-to-one modethe best fit, results were
categorized as ‘potential binders’. Potential bisdare then tested for signal-to-noise. If the sum
of the absolute value of the residuals from thgrfagise) is lower than the difference between
maximum signal and the baseline signal (signag,dhir was categorized as a ‘binder’ and the
fit parameters (K Fnax and k) were recorded. Otherwise, if the signal was teas the noise,
the measurement was categorized as ‘low signabitgehand the interaction was considered
inconclusive. When a linear model is the bestzito or low-slope (under 5SmP/uM) indicates a

non-binding interaction. A linear fit with a highslope indicates aggregation, and the replicate is
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set aside as inconclusive. A portion of potentiatlbrs best fit a one-to-one model according to
the AIC, but in essence represent a straight-loslape fit, just like a non-binder. Results where
the Ky > 1000 puM (straight line), thefax < 1 mP (low slope), or thep< 100 mP (a fitting

artifact due to noise on a low-slope straight lin#)represented cases where the fit was for all

purposes a linear fit, and were categorized as.such

andfirstorder
models

Y

S Ne Choose linear Ne
order — it — Is slope S —-}J Aggregator

bestfit? SmP/uM?

*Yes *Yes

Choose first |

‘/ Fit both linear |

order fit Non-Binder

}

Is signal No

greater _ﬁ Low SN

noise?

l Yes

Binder

Figure 2.11: Flowchart Describing Fitting Processdr Individual Replicate Measurements.

A series of one or more measurements were madeafdt domain-peptide pair tested.
Each measurement has been assigned a categorgr(lbmot-binder, aggregator, or low-signal-
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to-noise) as part of the analysis. In order to Ikes@ call for a domain-peptide pair for the
experiment, the calls for each measurement mustcdesidered, and inconsistencies in
categorization must first be reconciled. Those kcisf are resolved as in Table 2.3. If the
replicate group contains one or more binders, tbmain-peptide pair is categorized as a
‘binder’. We chose to believe evidence of a bigdieaction over inconclusive or potential false
negatives because evidence of binding (even imglesireplicate) suggests an interaction is
possible, despite failure to observe the reactioather replicates. If a replicate group contains
one or more ‘non-binders’ and zero ‘binders’, itsnategorized as a ‘non-binder’. The process
used to assign a non-binding result already exsludlgltiple potentially inconclusive situations.
Thus when a group has both non-binding and incenauevidence, but no evidence of binding,
the group is treated as a confirmed negative iotera and assigned a non-binding category. If
a replicate group contained no ‘non-binders’, and'binders’, and only considered of one or
more ‘aggregators’, or one or more ‘low signal-tise’ measurements, it was categorized as

inconclusive, and removed from further analysis.

Rule for Handling Replicate Measurements Outcome
Contains at least one binder binder
Contains no binders AND contains at least one rinddy non-binder
Contains no binders AND no non-binders AND contaihkast one inconclusive
aggregator, 'low signal-to-noise’, or ‘non-funcairmeasurement

Table 2.3: Rules for Making Calls on Groups of Reptate Measurements.

When a group contains more than one binder, it haftiple replicates for the fit
parameters of K Fnax and k. Multiple replicates are typically averaged, asythvere in the
original publications (16, 17), as a sample meatypgally a more reliable indication of a true
mean than any single measurement. However, dugstersic evidence of protein degradation

(see Results), variances between measurementsikaly Hue to difference in protein
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functionality. In the case where a portion of thietgin is degraded, the effective concentration
available for interactions is always less thandkpected concentration. Thus the most accurate
measurement would be from the protein with the ésghfunctionality (as the functional
concentration would be closest to the expected exdnation). Of course, even the highest
measurement might not represent a fully functigoratein — but it would be closer to the true
value than any other single measurement. For #asan, the parameters from the sample with
the strongest binding (lowesiyKwere selected as the value for the domain-pepiaie While

this method is a significant departure from coniwentthe statistical convention is based on
assumptions of the source of noise which seem toidlated in these experimental results,

requiring a new method to reconcile replicates.
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2.3 Methods

2.3.1 Data Description

For each SH2 domain and peptide pair, a Fluoresc&utarization (FP) Saturation
Binding Assay was originally performed by Hause antleagues as described in (16). Data for
each protein-peptide pair consists of twelve dontaincentrations, ranging from 0.002—-10uM,
measured interacting with a fixed peptide concéima(20nM), after 20 minutes to obtain

equilibrium. Experimental interaction magnitude weasorded in millipolarization (mP) units.

2.3.2 Model Fitting and Selection

Data for each replicate for each pair were fitvto imodels — a linear function (equation

1) and a function representing a non-linear oner@-equilibrium interaction (equation 2)

F,ps = m[domain] + F,

P Eyax[domain] N
°bs 7 K. + [domain] * " °

where Fps is the observed fluorescence (in mP uniis)is the slope of the fit line,
[domain] is the concentration of the SH2 domaipjg-the baseline value (in mP units)akis
the value at saturation , ang I the dissociation constant. Data for each rafgi¢or each pair

were fit independently and replicates were handkedescribed below.

The linear model fit parameters for slope and haselalue, while the non-linear model
fit parameters for i Fnax and baseline value. Baseline values were fit alarth the other
parameters because background values recorded orithnal data were often incongruous with
respect to the measurements. Both linear and neaslifits were performed with least squares

regression using the Trust Region Reflective atborias encoded by tloptimize.least squares
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module from the SciPy package in the Python prograrg language. Non-linear fits used the
standard least-squares loss function (the defasdt function), while linear fits used a modified
soft loss method to limit influence of outliers foms “loss='soft I11' f scale=0.1"). Model
selection was performed using the Akaike Informat@yiterion (AIC) (24), with the assumption

of Gaussian-distributed errors as described in. (23)

For domain-peptide pairs where a linear model sapried the best fit (as determined by
the AIC score), results were separated into twegmaies based on the slope of the linear fit. Fits
with slopes below 5mP/uM were categorized as ‘niodrs’, otherwise fits with higher slopes
were set-aside from further analysis and markedaggregators’ (see Results section on
Determination of Aggregation, elsewhere). For daow@eptide pairs where a one-to-one model
represented the best fit, results were categormetpotential binders’. Potential binders were
then further categorized into binders, marked agnigalow signal-to-noise ratio, or flagged as

artifacts representing linear fits.

A portion of potential binders best fit a one-tceomodel according to the AIC, but
essentially represented a straight-line fit. Rsswihere the K> 1000 uM, the Fax< 1 mP, or
the ip < 100 mP all represented cases where the fit waalfgurposes a linear fit, and were

treated as such.

Potential binders were also tested for signal-tisen¢equation 3):

Z |Ri| 2"7-ax(Fobs)_FO
[domain]

where [domain]; is the I" concentration of the SH2 domaing.&is the observed

fluorescence (in mP units),o ks the baseline value (in mP units), ang,Hs the value at
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saturation. If the sum of the absolute value of tb&duals from the fit was greater than the
difference between the difference between maximigmas and the baseline signal, the pair was
categorized as ‘low signal-to-noise’. Otherwises ffair was categorized as a ‘binder angd K

and K. were recorded.

2.3.3 Replicate Analysis

For each domain-peptide pair, based on the numbmpbcates measured, one or more
fits were obtained from the raw data. To assigmal ftategory for the pair taking into account
all replicates, the type of fit for each replicatas considered as described in Table 2.3. If the
replicate group contained one or more binders,dib@ain-peptide pair was categorized as a
‘binder’. If the replicate group contained one more binders, the domain-peptide pair was
categorized as a ‘binder’. If a replicate group taored one or more ‘non-binders’ and no
‘binders’, it was categorized as a ‘non-binder’alfeplicate group contained no ‘non-binders’,
and no ‘binders’, and one or more ‘aggregatorswas categorized as an ‘aggregator’ and
removed from further analysis. If the replicate ugrocontained only ‘low signal-to-noise’

measurements, it was categorized as ‘low signalbiee’ and removed from further analysis.

For remaining domain-peptide pairs categorizedaslers’, the ki, Fnax and associated
confidence interval of the replicate with the minmm Ky was selected for the final value of the

domain-peptide pair.
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2.4 Results

2.4.1 Description of Results

Of 12147 interactions tested, 1506 interactions54a) resulted in a positive interaction,
and 10628 interactions (87.5%) resulted in negativeeractions. The remaining 1117
interactions (9.2%) were indeterminate. Of the tadainate interactions, 382 (3.1%) were due
to non-functional protein, 312 (2.6%) were due dw Isignal-to-noise issues, and 277 (2.3%)

were due to protein aggregation. The results arttgol as a heatmap in Figure 2.12.

We hypothesized that domains would bind a relagiashall proportion of peptides, on
the order of 20%, as the SH2 domain interactiom \phiosphorylated peptides is believed to be
at the core of specificity determination. Althoutyte total binding fraction was even lower —
closer to 12.5% - individual domains actually binddely varying percentages of tested
peptides: from less than 1% to 58.5% of testedigeptFigure 2.13). Different domains have a
wide range of selectivity and specificity for theargets, suggesting that more promiscuous

domains have a purpose outside of determinatiapedificity.

In order to make calls on the 12147 interactiorsteth a total of 37488 replicate
measurements were analyzed. Fitting results sheubatantial portion of replicates (over 30%)
resulted in indeterminate results (e.g. Low SNRn{fanctional, and Aggregator categories, see
Table 2.4). Yet, final determinations of domain-jd interaction results (the calls made on all
replicates for a domain-peptide pair) only resulie®.2% indeterminate results. This suggests
that many results which had one or more indetertainasults were ‘rescued’ by either a true

positive result or a high-confidence negative resul
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Figure 2.12: Results of the Revised Analysis of Jes Group FP Data.

Heatmap plot of the revised analysis. Peptidex{g)are plotted against domains (x-axis) withuélues
represented by a heatmap. The color scale is lmasademperature scale, with lower affinity sigrdilsplaying as
dark squares, and higher affinity (loweg)signals rising through red to orange, yellow, amdte. Gray squares
represent interactions not measured. Blue squapgssent protein identified as non-functional, Hing represent
indeterminate results.
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Figure 2.13: Fraction of Peptides Bound by Each SHRomain.
A plot of the fraction of peptides tested resulting positive interaction (binder) for each domain

Categorical Binding Number of
Call Replicates Percent
Binder 2880 7.7%
Non-Binder 23208 61.9%
Low SNR 2555 6.8%
Non-Functional 6976 18.6%
Aggregator 1867 5.0%

Table 2.4: Summary of Fit Results at the IndividualReplicate Measurement Level.
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Figure 2.14: Published Results From The Jones GroupP Data.

Heatmap plot of the original published results vised and replotted here to match the format aflte$rom the
reanalysis. Peptides (y-axis) are plotted agaiostains (x-axis) with Kd values represented by drhap. The
color scale is based on a temperature scale, awthrl affinity signals displaying as dark squaresl higher affinity
(lower Kd) signals rising through red to orangd|oxw, and white. Gray squares represent interastiuot
measured.
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This aspect of replicate-level analysis represarggnificant improvement in confidence
of quantitative results for positive interactionand certainty over validity of negative
interactions. The failure to remove questionabfdicates would significantly impact any metric

based on average replicate values.

Revised Analysis Calls
q Non- Not
Binder Binder Aggregator Low-SNR Functional n/a

2

8 Binder 1225 198 47 27 10 12
°©

()

<

[

= Dropped 281 9326 230 285 372 134
a

Table 2.5: Comparison of Qualitative Binding Resus.

2.4.2 Comparisons with Published Results
The original published fitting results are alsotfdd as a heatmap (Figure 2.14). Results
from this reanalysis differ significantly from thmublished results on the same underlying data.

Both quantitative and categorical differences caisden.

The original data identified 1519 binders, out &147 interactions (12.5%). The
remaining 10628 measurements (87.5%) were discandad outgroup containing the poor fits,
noisy data, non-binders, etc. This new analysigyres approximately the same number of
binders (1506 vs 1519), but the identity of theiselérs has shifted dramatically. In addition, the
analysis recovers 10268 high-confidence non-bindimgractions representing approximately
87.5% of the original data. With respect to positsategorical interactions, out new analysis
agrees on approximately 71% of the positive céisthe positive calls, 1225 overlap between

the two sets, but we disagree on 479 interactiOus.new analysis recovers 281 binders from
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the ‘dropped’ pool of the published data, but 2%ractions called binders by the original data

are classified as non-binders or indeterminatehtsywork (Table 2.5).

Published Fits vs Revised Analysis
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Figure 2.15: Scatter Plot Comparing Published Restd With the Reanalysis.

Published fits are compared with our revised fitsints falling along the x- or y-axes represenadatone set that
was identified as a binder but not by the othearBen correlation was calculated only on the pasititeractions
common to both sets.

Quantitative results differ even more drasticaljg(re 2.15). Since we select minimum
Kq to represent a group of replicates instead of nikganve expected that a significant fraction
of our calls would result in lower K(higher affinity) calls. We found that of the 1226
interactions, we reported a lowerq bn 830 (67.7%). Nevertheless, we also matched the
originally published K calls (£10%) on 201 interactions (16.4%), and reggbhigher K values

on 235 interactions (19.2%). The fraction of high& values is not surprising, since the
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changes we proposed in the fitting process resuteéde addition of new positive interactions
(previously abandoned in the published work) ad alexclusion of negative and inconclusive
interactions (previously considered to be positiveeractions in the published work).
Nevertheless, we were surprised to see that our neswits do not correlate well with the
originally published results (giving a Pearson elation coefficient ) of only 0.509).

Although Ky calls between @M and 5uM have slightly stronger correlation, mipgéeractions

(especially those above 5uM) are essentially ranmeonwhen compared to the original

published results.

2.4.3 Validation with Known Interactions

In order to determine if these new fitting resulsre consistent with the known response
we examined a well-studied biological system: tipgdBrmal Growth Factor Receptor (25-27).
Some examples of expected downstream responseSkosiimulus are shown in Figure 2.16.
Multiple SH2 domains show affinity for each of teeseceptors, so the predicted outcome of

competition should match the known response oylséem.
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Figure 2.16: Validated SH2 Domain Interactions onhe Intracellular Tail of EFGR.
A diagram of expected interactions on the intradatltail of EGFR.
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Figure 2.17: Heatmap of EGFR Tail Interactions fromthe Reanalysis.

(A) Results from our revised analysis. (B) Publihesults from the Jones FP data (16). Peptidesig)-
referenced by position of the phosphotyrosine &rttgal against domains (x-axis) withy Malues represented by a
heatmap.
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At tyrosine 1016, PLE is predicted to be the strongest interaction. @analysis find
that either the N-terminal domain from PIK3R1 oe t@-terminal domain from PLCshould
have the strongest interactions, consistent wighptledicted outcome. The published data (16) is
also consistent, predicting the C-terminal domaamf PLG,. Similarly, for tyrosine 1092 both
our reanalysis and the published data suggestGR&2 has the highest affinity (lowest)K
Although both our data and published data predi€@yPas the strongest interaction for tyrosine
1172 and 1197, the models are merged for thosduesiand predict SHC as the strongest
binder. This model from Blinov, et al.(25) has solingted usefulness for validation purposes,
as it was primarily attempting to connect MAPK andCy signaling, so no predictions were
made for PI3K, for example. Nevertheless, thesalteesuggest that on a well-known system,
our reanalysis has not resulted in a divergence fexpected interactions, and that the best

understanding similarly accurate on this system.
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2.5 Implications of Revised Results

This revised analysis, despite using the same raa, gpresents significantly different
results. Qualitatively, we only have approximatéBfo agreement with the published results on
positive domain-peptide interactions. Quantitagiyehere is almost no agreement with the
published work. We wanted to determine if thesengjtative results changed the conclusions

one could draw from the underlying behavior of Sié2Znain data.

First, we explore the accuracy of binding modelat tassume independence between
positions (e.g. PSSM/PFM-based models). Here, veenee the predictive power of Scansite
binding motif models and compare to published ward to the revised analysis. We also
evaluate the accuracy of new protein binding modelsved from our analysis. Second, we
explore the conclusion drawn from earlier bindieguits that domains which are more closely
related interact with similar sets of peptides.aflin we examine a surprising conclusion from
this analysis about the behavior of GST-labeledgins, which has implications for interpreting

previous high-throughput studies, and impacts tbkwhat is derived from them.

2.5.1 Evaluation of Scansite Protein Binding Models

Scansite protein binding models are derived fromederate library experiments (28).
These experiments were designed to identify residateeach position of a phosphorylated
peptide that contribute to binding. Each findingeath position was identified independently of
each other position. Scansite models are matriepsesenting the frequencies of each amino
acid at each position and are in the form of a mditke a position specific scoring matrix
(PSSM) or position frequency matrix (PFM). This matan be used to score any peptide, with
the highest scores representing true binders, gthenassumption that each position acts
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independently of every other position. The primkmitation of this model is that amino acid

contributions to binding can be interdependent.nfermissive’ residues — residues in a peptide
that disrupt binding despite the presence of otbsidues correlating with strong binding (8) —
were identified as one such example. We would exgfet a model based on independence

would result in false positive predictions when sparmissive residues were present.

First, we evaluated whether Scansite scores ctetehaith affinity published affinity
data. Since we have already established that thesJituorescence polarization (FP) data (16,
17) and MacBeath protein microarray (PM) data (dd)not correlate with one another, we
evaluated both data sets against the Scansitesscdbeansite models are available for the
following domains: ABL1, CRK, FGR, GRB2, ITK, LCKCK1, PLCG1-C, PLCG1-N, SHC1,
SRC, PIK3R1-C, PIK3R1-N. Scansite scores do nostsutively correlate with binding affinity

for either data set (Figure 2.18).
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Figure 2.18: Comparison of Published Data with Scasite Scores.
A comparison of Scansite scores to published giadive data from two groups was performed. (A) dog@up FP
data (16, 17). (B) MacBeath group PM data (14)v&ues are in pM.

We next compared to our revised results. Althoughretation analysis can identify
similar quantitative values, and also might idgnsiimilar ranking, it would not clearly identify a

case where true binders are enriched near theattfs rof Scansite scores. In order to evaluate
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the Scansite models, we plotted receiver operdtaracteristic (ROC) curves for each model,
and calculated the area under the ROC (AUROC) (Eig@uL9). Most Scansite models had poor
predictive power with AUROC scores between 0.520 @650. Two models performed worse
than chance (CRK and ITK), but since most positivelers were ranked near the bottom of the
list, CRK would perform much better if the scoringnking were reversed. Although three
domains scored well via Scansite (NCK1, AUROC 0;7R&3R1-C, AUROC 0.835; and

GRB2, AUROC 0.955) overall performance was veryrpoo
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Figure 2.19: Evaluation of Scansite Binding Motifs.

Scansite scores were calculated for each peptitie $everal domains. Scansite scores were thendaakd
compared to binding results from our revised analyesults were plotted as ROC curves, and trewarder the
curve (AUROC) was reported.
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2.5.2 Evaluation of Newly Constructed Protein Binding Mockls

We were interested in exploring whether PFM-basetep binding motif models would
be more successful at predicting binding when Huiin the data in the revised analysis. In
order to evaluate this, we built a PFM-based méadeh the ‘binder’ peptides for a domain, and
then scored all peptides for that domain with theelel. Although this method is not as rigorous
as a cross-validated test set with holdouts, it stdfcient to identify general trends in quality

for the models.

When comparing qualitative calls for binders and-bonders to the Jones FP data, it was
reasonable to match the same 20uM cutoff as ustekioriginal publication. Here, however, a
call of ‘binder’ vs ‘non-binder’ is arbitrary, andalls at different l§ values might lead to
different results. In order to examine the effechmking a categorical call about a continuous
affinity phenomenon, we built PFM-based models‘bander’ calls at different i thresholds.
Increasing the Kthreshold for binder calls tends to increase tmalver of peptides incorporated

in the model, and since peptides are unique, tigsieases peptide diversity.

Results for several examples are plotted as R@¢sun Figure 2.20 and a summary of
all results by domain can be found in Figure 2.3gveral trends were obvious from this
analysis. First, all models performed well, as wiolk expected given than they were tested on
the same data they were trained on. Also, all neog@elformed better than Scansite models.
However, all models performed progressively worsetlae kK threshold for binding was
increased. This trend is reasonable to expect,usecas the Kthreshold increases, more
peptides are included. If those peptides are sagmfly different than peptides already included,

the model will become increasingly degenerate.
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Figure 2.20: Evaluation of Protein Binding Motifs Created at Different K4 Thresholds.

New motifs for each domain were created from pesitinteractions in our revised analysis. A différemotif was
created for positive results at eachtKreshold. Peptides were scored and then rankedc@mpared to binding
results. Results were plotted as ROC curves, andrita under the curve (AUROC) was reported.
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Success of Motifs Created at Varying K, Thresholds
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Figure 2.21: Summary of Protein Binding Motif Evaluation.

Summary plot showing predictive power of proteinding motifs from revised analysis results. AURQGres
from each domain at each threshold concentraties Fsgure 2.20) were plotted. The value above #edpresents
the number of positive results used to build eackifrat that Ky threshold. The relationship between number of
positive results and AUROC score are plotted inuFag.22.

However, trends in the relationship between nunadfgueptides included and AUROC
suggested that we examine that relationship. Wétggdo)AUROC vs K threshold for each
domain and threshold as a scatter plot (Figure)2: D2 results indicate a very strong negative
correlation (Pearson’s r: -0.991) between AUROC lndrhis suggests that PFM-based models
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might have built in boundaries on predictive powsh this type of diverse peptide data, and is

worthy of further exploration in future work.

1 00 o I I I I | |
Sog
Boo,.
0.95 - ® % -
o8
(o]
[o]
0.90 | i
(]
o

8 0.85 | 0 oo -
@ %
-
<

0.80 | o o -

o
o
0.75 } i
(o]
Pearson r: -0.997 5
0.70 | p<= 2.3E-71 .
065 | | | | | |
0 10 20 30 40 50 60 70

n (number of sequences in motif)

Figure 2.22: Relationship of AUROC with Number of #quences in Protein Binding Motif.

The number of positive interactions (binder) segasrused to create each motif is plotted agaiesprtedictive
power of the motif (as measured by AUROC scoreg fdiationship is strongly negatively correlatif@érson’s r:
-0.997).
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2.5.3 Many Closely Related Proteins Do Not Have Similar Biding
Profiles

Analysis of binding results from some SH2 and SHBndin interaction studies have
suggested that closely related domains (domaima same evolutionary family) bind similar
peptide profiles. The Nash group reported findingjtiple domains which had similar binding
profiles as other members of the same family (8he©groups report similar findings for SH2
and SH3 domains (29, 30). This finding has beerd use algorithms to predict peptide
interactions (31). Although closely related protdimmains have less sequence divergence, and
exhibit more similar fold structure, closely reldgerotein domains arise from duplication events.
A duplication event can free one copy of a profedm selection pressure, potentially allowing
for rapid functional divergence. Plus, even a &ngmino acid mutation in a protein domain
could radically affect protein function, and coutthhance or destroy binding, or change
specificity. We examined the data from our revisewhlysis to determine protein binding

behavior by domain family.
Using the Jaccard similarity coefficient,

_|AuB|
"~ |An B

J(A,B)

(which compares the membership of the interseatfamo sets with the union of the sets), we
compared the binding profiles all domains. Bindweas ‘binarized’ at a 20uM threshold. Protein
families were defined by Ensemble gene trees. Awailzs with limited number of positive

binding examples may skew results, we only consill@fomains with 10 or more binders. In

Figure 2.23, we compare binding profiles for protéomains within closely related families.
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Figure 2.23: Domain Binding Similarity for a Subsetof Protein Families.

Comparison of binding similarity for proteins withore than 10 positive interactions. Similarity isasured by the
Jaccard similarity index and displayed as a heat, méth a highest similarity value of 1.0 displayeslwhite. Scale
is a temperature —style scale with low similarityptying as black, and increasing similarity digphg as higher
temperature colors from red through orange, yelo white. Protein families are marked with a cdlar on the
left. Blue — NCK. Olive — PIK3R. Light purple — PIG1.. Cyan — SHC. Purple — SOCS. Green — SRC. GiidyS:
Dark purple — VAV. Pink — LNK.

The analysis compared 49 proteins from more thadiff€rent protein families. Overall,
very few individual domains exhibited high simitgrwith other domains — only two domains
tested were closer than 0.60 on the Jaccard slynitedex (with 1.0 representing perfect match
between binding members). This suggests that madeips show significant divergence in

binding. Some protein families showed highly simiénding patterns within the family. NCK,
64



PIK3R, SHC, and SRC had the highest within famityikrity, but that similarly at best was
around 0.70. Some families showed very interestlivgrgent behavior. For example, VAV
family members had very low similarity to one aresth- about the same low similarity as to
PIK3R and SRC. In the TNS family, TNS1 and TNS3 Isadilar binding, but neither were
similar to TNS4. Interestingly, families like PLCGRIK3R, and SRC which are expected to be

far apart in evolutionary distance (32), have v@milar response across families.

Although in some cases, domain families exhibitilsimbinding profiles, in many cases
they do not. Methods which rely universally on tassumption should be reconsidered in the

light of these findings.
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2.5.4 GST Affects Binding Profiles in a Non-Linear Manner

One surprising result from our revised analysis €firom examining binding profiles of
the subset of GST-tagged proteins. Although onyynall number of measurements were made
with GST-tagged proteins, comparison of the GST¢algto the untagged proteins shows that

GST-tagged proteins behave very differently tham-tagged proteins (Figure 2.24).

Four proteins were measured against the panel pfides as tagged and untagged
versions. The GST tag was also measured by it§&&8T alone showed no positive interactions.
For CRK, CRK-L, and GRB2 the GST tag generally preed binding when compared to the
untagged version. For example, all peptides thaewesitive interactions for GRB2 were also
tested on the GST-labeled molecule but did not bied GST-labeled molecule. Similarly for
CRK, there were 8 peptides where CRK bound, but €38 did not bind (and many more
where CRK bound but were not tested on the GSTiddomolecule). Interestingly, one peptide
bound CRK-GST that did not bind CRK. In contras§T&abeled SRC did not prevent binding.

Instead, it seemed to radically change the affifatyalmost all peptides.

There are several potential explanations for thienomenon. First, GST is known to
cause proteins to dimerize (33) which could regulinterference with access to the binding
pocket of the SH2 domain, or could affect the affifior all or a subset of peptides by steric
hindrance of certain peptides. However, in a hdnaffeases, affinity surprisingly increased for

the GST-labeled molecule.

One high-throughput data set testing SH2 domaieractions had all protein domains
labeled with GST (18). Although our results aredshsn FP data, they strongly suggest that SH2

domain affinity with GST-tagged protein is not repentative of non-tagged protein.
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Figure 2.24: Effect of GST-Tagging on Interaction Afinity.

Comparison of binding profiles of GST-tagged protii non-tagged protein, plotted as a heatmapfioiitgf (K ).
Gray values represent not measured interaction® Blues represent non-functional protein (and thu
inconclusive measurements.) Higher affinity intéicats have higher temperature colors.
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2.6 Discussion

In this work we have reviewed the raw data frome& & fluorescence polarization
experiments designed to measure SH2 domain intenaatith phosphorylated peptides. We
found that the experimental design lacked importamttrols to establish protein functionality
and peptide activity, and some ways to compensatéhbse problems. We also used different
analysis techniques including fitting multiple méxland better suited noise and model selection
criteria which allowed us to improve the calls aftlp positive and negative interactions. Our
qualitative calls show significant differences, and quantitative results differ greatly from the
original publication. We would like to comment ametfactors which give credence that this
revised analysis is better than the original phigitsanalysis, and discuss the implications for the

use of other SH2 data in future research.

The fluorescence polarization method employed bedd-P is likely to give accurate
and sensitive results when conducting high-throughpeasurements of affinity. Unlike protein
microarray experiments where proteins are not raaiad in solution and reactions are carried
out on a surface, fluorescence polarization expanis) are done completely in solution. In
addition, the process of handling samples was dobetically, likely eliminating many manual
errors in handling. This can be seen in the indialdnteraction measurements displayed low
noise and the vast majority of results represehigtl-quality measurements when examined
with the correct analytical tools. Although this svéhe only raw data available, it is an

experimental method which is likely to yield an aate reading of affinity.

Nevertheless, different runs in this experimentnsse to have a dramatic effect on
calculated SH2 affinity. We identified patternstire data acquisition which suggest that these
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variations were likely due to protein degradatiorpeeparation, and could very well be traced
back to the difference between assumed concentrainal actual active concentration of the
protein. With the chosen affinity model, accurateasurements of affinity completely depend on
accurate protein concentrations. Protein degradatier time, and varying presence of non-
monomeric protein would almost certainly contribignificantly to the kind of variation
observed. We implemented changes in analysis touatcfor these patterns, which should
increase confidence that our revised data contaiose useful information than the original
analysis. Nevertheless, this underlying experintgsplayed serious flaws limiting the accuracy
of the affinity measurements. Our revised anal@®uld be seen as the most rigorous
interpretation of the originally measured datajvaaveats as to absolute accuracy limited by the

experimental technique.

2.6.1 Implications for Other Work and Analysis

Although our conclusions were drawn only on thisadeaw data, our findings are likely
to apply more broadly. Our work has significant licgtions for analysis of other previously
published data sets because both the general mgesl design and specific analysis methods
in this original publication are common to otherbjshed high-throughput SH2 data.
Furthermore, published binding models derived ftoie and other published SH2 data will have
inaccuracies if they depend on qualitative or qiainte versions of published SH2 data.
Finally, we propose some recommendations to impouadity of measurements and analysis in

future work.

Without explicit controls to avoid concentratioragturacies, it would be reasonable to
assume that other quantitative SH2 protein intevaaiata sets also suffer from these types of

variations. Furthermore, without raw data to examior these patterns, the use of previously
69



published data sets should be carefully consideCedcentration inaccuracies, combined with
the tendency to report a mean value easily infladnay outliers, could very well explain the

widely varying results with SH2 affinities reportbdtween different research groups.

The analysis methods used in the original pubbecabf this data were also used in
several other previously published sets of higledghput SH2 interaction data (10, 13, 14, 19).
While the experiments in these other publicatiossduprotein microarrays, the improvements in
model selection, model fitting, and noise evaluatimm our analysis would equally apply to
other data. We have demonstrated that improvedtguaktrics and model selection methods
can improve the final quantitative results, andséhenethods are likely applicable to previously

published data.

Although researchers can be careful to drAvure conclusions from previously
published SH2 data, many publications have alress#y this data to draw conclusions and to
build models of SH2 interactions. We have demotetdrahat models built from degenerate
library data do not match previously published diiative data, or our revised analysis of the
Jones group FP data. Scansite (28), SMALI (6), Net&st (34), KinSpect (35), and DomPep
(31) all rely on degenerate libraries to make th@iedictions of SH2 domain interactions.
Despite the problems with availability and dateasdoling from the Cesareni Group data (18),
multiple predictors have used their results as tspucluding MSM/D (36), and NetSH (18).
We demonstrated that the early (2006-2009) MacBgathp data (10-13) does not correlate
well with later work (2013) from the MacBeath gro{igt). Several predictive models of binding
were built using the earlier data (21, 37). Onedjater from the Jones Group, PEBL (17), was
built from the published Jones FP data (16, 17)al@&ach of these models may be affected by

the quality of the data upon which it was built.
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2.6.2 Suggestions for Future Measurements of Affinity

Accurately measuring interaction affinity betwedd2Sdomains and phosphopeptides is
a difficult undertaking, especially when attemptiogdo so in a high-throughput manner. All of
the issues encountered in low-throughput measursnaea present and further complicated by
making a large quantity of measurements in a reddentime at a reasonable cost. Thus,
controls for protein function and peptide activthyat are sufficient in a qualitative assay are
unlikely to be sufficient in a quantitative assdyleasurements of interaction based on
equilibrium affinity, as done in this analysis, éap heavily on accurate protein concentration.
Since affinity is a function of the active protaiancentration, the difference between assumed
protein concentration and actual functional proteioncentration must be minimized.
Determination of functional protein is compoundedan exploratory experiment such as this,

because interactors for many of the proteins temtechot known ahead of time.

In order to minimize concentration inaccuraciese anust be assured that the protein
being measured is maximally active, and the comagan is accurately known. First, protein
must be highly purified. Non-monomeric SH2 domaindtion may not be exactly the same as
monomeric domain or may be completely non-functioitashould be eliminated with high-
performance liquid chromatography (HPLC) and sixelesion purification methods. Second,
protein activity should be benchmarked to deternfétors that affect degradation because only
measurements of fully active protein will providecarate affinity. Assuming one or more
peptides have been identified as potential binden®ein expression, purification, and storage
methods need to be varied to determine their etiacactivity. Protein degradation can happen
over hours and even minutes at room temperaturenderstanding time-dependent modulations

of activity would be critical. If no known interams exist, then — before high-throughput

71



experiments can begin — exploratory experimentd imeisonducted to identify potential binding
partners and their maximal activity. Finally, gugteeing linear and stable peptide activity is
also important. Although we did not identify anyplems with peptide activity in this data, it is
possible that it was due to insufficient data. &enarking peptide fluorescence magnitude and
stability over time, and any tendency to form nmé#érs would identify windows of accurate

response from the reagents.

Alternatively, methods of determining affinity whicdo not depend so heavily on
accurate protein concentration could be exploredcohcentration-independent method of
measuring interaction affinity might provide anrattive alternative to the cumbersome

procedures required to ensure precise protein obratens.

One such method was recently developed by the $tdain (38). In that method, a 2-
color competitive fluorescence anisotropy assaysues the relative affinity of two interactions
in solution. Although the experiment as publishegasured protein interaction with nucleotide
oligomers, it could also be used to measure pratgeraction with two peptides labeled with
different color fluorophores. By measuring interactagainst two peptides at once from the
same pool of proteins, the concentration of thegincand the proportion of active protein is the
same in both interactions. When the ratios areutatied, the concentration and activity drop

from the calculation of affinity.

Although this method only provides relative affinitif one could carefully establish
absolutely affinity for a single peptide (or panélpeptides), absolute affinity could be extended
to all interactions. Considering the problems wd#étermining protein concertation accurately,

and the significant impact they have on accuraaypethod such as this employing competition
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and relative affinity combined with a careful me@snent of absolute affinity seems to be a

promising direction.
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Chapter 3: Different Epidermal Growth Factor
Receptor (EGFR) Agonists Produce Unique
Signatures for the Recruitment of Downstream
Signaling Proteins.

This research was originally published in the Jaliafi Biological Chemistry. Ronan,T.,
Macdonald-Obermann,J.L., Huelsmann,L., Bessman,Nakgle,K.M. and Pike,L.J.
(2016) Different Epidermal Growth Factor ReceptoGER) agonists produce unique
signatures for the recruitment of downstream sigggbroteinsJ. Biol. Chem.291, 5528—
5540. © The American Society for Biochemistry andl&tular Biology.

3.1 Abstract

The EGF receptor can bind seven different agonggintls. Although each agonist
appears to stimulate the same suite of downstregnalsng proteins, different agonists are
capable of inducing distinct responses in the samle To determine the basis for these
differences, we used luciferase fragment compleati@mt imaging to monitor the recruitment of
Chbl, CrkL, Gabl, Grb2, PI3K, p52 Shc, p66 Shc, 8h@2 to the EGF receptor when stimulated
by the seven EGF receptor ligands. Recruitmentl @ight proteins was rapid, dose-dependent,
and inhibited by erlotinib and lapatinib, althougghdiffering extents. Comparison of the time
course of recruitment of the eight proteins in cese to a fixed concentration of each growth
factor revealed differences among the growth factbat could contribute to their differing
biological effects. Principal component analysistio¢ resulting data set confirmed that the
recruitment of these proteins differed between &gsrand also between different doses of the
same agonist. Ensemble clustering of the overapaese to the different growth factors
suggests that these EGF receptor ligands fall imto major groups as follows: (i) EGF,

amphiregulin, and EPR; and (ii) betacellulin, T8g3FRand epigen. Heparin-binding EGF is
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distantly related to both clusters. Our data idgrdifferences in network utilization by different
EGF receptor agonists and highlight the need toracherize network interactions under
conditions other than high dose EGF. The EGF recet an intrinsic membrane protein
composed of an extracellular ligand-binding don@nnected to an intracellular tyrosine kinase
domain by a single transmembranelix. In the absence of ligand, the EGF recednought

to exist as a monomer, although inactive “pre-dshare known to form (39—-43). Upon binding
an agonist ligand, the EGF receptor dimerizes tenth the activation of its tyrosine kinase and
the phosphorylation of tyrosine residues in theefnsinal tail of the receptor (44-46). The
phosphorylated tyrosines on the EGF receptor sas/dinding sites for a large number of
signaling proteins that contain SH2 and/or phosglbstne-binding domains (2, 47). Some of
these proteins, such as Cbl, possess an enzynaititya(48). Others, such as Grb2 or Shc,
serve as adapter proteins that bring other protetoghe EGF receptor-containing complex. For
example, Grb2 recruits the scaffolding protein, Gab the EGF receptor (49). Phosphorylation
of Gabl by the EGF receptor allows Gabl to readditional proteins, such as Shp2 or PI3K-
R1, to the signaling complex (50-53). The recruritref these signaling proteins to the receptor
ultimately triggers the activation of a variety dbwnstream signaling pathways, thereby

mediating the intracellular effects of growth facbinding.
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3.2 Introduction

The EGF receptor binds seven different agonishtigaincluding some of high affinity
(EGF, TGB, BTCsand HBEGF) and some of low affinity (AREG, EPG, &feR) (53). It has
been reported that different EGF receptor ligandsice different responses when binding to the
same cell line (54-57). Given that these agonisid to the same receptor and stimulate similar
downstream signaling molecules, it is difficult éxplain how these divergent responses are
achieved. We have previously used a luciferasarfeay complementation system to assess the
ability of EGF to induce dimerization of the EGFceptor (58—60). In this study, we use our
luciferase fragment complementation assay to viseidhe recruitment of a variety of signaling
proteins to the EGF receptor. The fine temporabltg®n and quantitative nature of the split
luciferase complementation system allowed us tdigoausly monitor the association of Chl,
CrkL, Gabl, Grb2, PI3K-R1, p52 Shc, p66 Shc, ang2Skith the EGF receptor in response to
increasing concentrations of all seven differentFE@ceptor ligands. Principal component
analysis was applied to this large dataset to deter how the response to these growth factors
differed. The data demonstrate that each growtkorfggroduces a unique signature for the
recruitment of signaling proteins, and this signatdiffers at different doses of the same growth
factor. This suggests that each growth factor zétdi the signaling network differently,
preferentially promoting flux through some pathway®r others, which could readily lead to a

different net biological outcome.
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3.3 Experimental Procedures

3.3.1 Materials

EGF was purchased from Biomedical Technologies. fr@&fd amphiregulin were from
Leinco. Betacellulin was from ProSpec. Heparin-mgdEGF was from Sigma. Epigen and
epiregulin were synthesized and purified in theotabory of Dr. Mark Lemmon (University of
Pennsylvania). Fetal- Plex was from Gemini BiopiduThe anti-EGF receptor antibody was
from Cell Signaling. The PY20 anti-phosphotyrosiaetibody was from BD Transduction

Laboratories.

3.3.2 DNA Constructs

Full-length cDNA constructs for the signaling pioge were obtained from Addgene
(CrkL PI3K-R1 and Shp2), Source Bioscience (Gabhgrmo Fisher (p52 Shc, p66 Shc, and
Grb2), or Sino Biologicals (c-Cbl). The stop codoreach was removed, and an in-frame BsiWI
site was inserted through site-directed mutagen@&hkis cDNAs were cut with BsiWI and fused
to the C-terminal fragment of luciferase (CLuc).eT¢onstruct was moved into the pcDNAS.1
Zeo expression vector where expression of the rfugrotein is driven off the constitutive CMV

promoter.

3.3.3 Cell Lines

CHO cells stably expressing the tetracycline-indiecEGF receptor C-terminally fused
to the N-terminal fragment of firefly luciferase GER-NLuc) (60) were used as the starting
parental line. These cells were transfected wihgbDNA3.1 Zeo plasmids encoding the CLuc

fusion of each of the eight signaling proteins.HEigdouble) stable cell lines were selected by
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growth in 5 mg/ml Zeocin. Quantitation of EGF retmgpexpression in each line hyl-EGF
saturation binding indicated that the number of selface EGF receptors expressed in each line
is within £20% of the average level of receptoregsion (data not shown). Cells were grown in
Dulbecco’s modified Eagle’s medium supplementechwii®% FetalPlex, 100 pug/ml G418, 100

pag/ml hygromycin, and 100 pg/ml Zeocin and mairgeim an incubator at 37 °C in 5% €0

3.3.4 Luciferase Assays

Double stable CHO cells were plated into 96-wedicklwalled dishes 2 days prior to use
in medium containing 1.5 pg/ml doxycycline to induexpression of the EGFR-NLuc fusion
protein. For assay, cells were transferred into bBato’'s phosphate-buffered saline
supplemented with 5 mg/ml BSA and 20 mMMDPS, pH 7.2. Cells were incubated with 0.9
mg/ml o-luciferin for 30 min at 37 °C prior to the addiicof growth factor and the start of
imaging. Cell radiance (photons/s/tsteradian) was measured every 30 s for 25 minguain
cooled charge-coupled device camera in the IVISSOV&5 Lumina imaging system. Assays
were performed in hextuplicate. The lines through data were drawn using Equation 1, which

represents the sum of a logistics association equahd an exponential dissociation equation.

_ Yo —k,t
Y = PETYETT (plateau — bottom)e~"2' + bottom (Eq. 1)

photons

where Y = at time t, k; represents the association rate constant, lgndis the

dissociation rate constant. This curve drawing natspart of the principal component analysis

and was used only for visual presentation of treee@sponse curves.
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3.3.5 Western Blotting

CHO cells expressing the wild type EGF receptoreneeated without or with 5 uM
erlotinib or 10 pMapatinib for 1 h and then stimulated with the caded concentrations of EGF
for 5 min. Lysates were prepared, and Western ibtptwvith anti-EGF receptor and anti-

phosphotyrosine antibodies were performed as destpreviously (59).

3.3.6 PCA and Enrichment Analysis

Computational analysis was performed using the d?yibrogramming language. PCA
utilized the scikit-learn package (61). PCA wad@®ned on a 280 x 44 matrix, with 280 unique
combinations of protein, growth factor, and dossghewith 44 time points, normalized to the
maximal response elicited for that agonist/profeair. For PCA, a subset of five (out of seven)
doses was chosen for each growth factor to bratieEG, value for the recruited signaling
proteins as follows: for BTC and EGF, the dosegednfrom 0.03 to 3 nM; for TGF, the doses
ranged from 0.1 to 10 nM; for HB-EGF, the dosegyeahfrom 0.3 to 30 nM; and for AREG,
EPG, and EPR, the doses ranged from 3 to 300 nfk&ré&tees to “low” doses of growth factor
(as used in Figure 3.10 and Figure 3.14) repredensecond dose in the five-dose series, and
references to “high” doses (as used for Figure)3régresent the fourth dose in the five-dose
series. Distances between protein pairs were @dbullusing Euclidean distance between the
five-dimensional vector across doses in PC spaoe- &nd bottom-quartile enrichment was

calculated using the hypergeometric test and Booriécorrected.

For clustering of the growth factors based on pnotecruitment across all doses,
pairwise protein distances for each ligand wereveded to a one-dimensional vector. The

vectors for each ligand were then clustered usiegalchical clustering. An ensemble of 35
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clustering results was generated by varying linka@ngle, complete, average, and weighted)
and distance metrics (Euclidean, Pearson correlatity block, cosine, Bray-Curtis, Canberra,
Chebyshev, and square Euclidean). The Euclideanaweas also used with median, centroid,
and Ward linkage. The results for each ligand vasgembled into a matrix and hierarchically
clustered using single linkage and Euclidean d#ap66 Shc was not included in this analysis

SO as not to over-weight the results toward therdmrtion of Shc isoforms.
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Figure 3.1: EGF-stimulated association of eight sitaling proteins with the EGF receptor measured usig
luciferase fragment complementation imaging.

CHO cells stably co-expressing EGFR-NLuc and theclused version of one of eight signaling proteirse
assayed for EGF-stimulated light production inphesence of luciferin. Cells were stimulated with indicated

concentration of EGF at time t=0 and light prodouetmonitored for 25 min.
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3.4 Results

3.4.1 Generation and Characterization of Stable Cell Ling

The split luciferase complementation assay utilesedN-terminal (NLuc) and C-terminal
(CLuc) fragment of firefly luciferase (62). Indiwdlly, the fragments have no enzymatic
activity. However, when they are brought into proity, they complement each other forming a
catalytically active luciferase that produces ligipon oxidation of luciferin. For our luciferase
complementation assays, each of eight signalintepm® (Cbl, CrkL, Gabl, Grb2, PI3K-R1, p52
Shc, p66 Shc, and Shp2) was C-terminally fusech&éoGLuc fragment via a 16-amino acid
flexible linker. The cDNA for the fusion protein wahen transfected into aCHOcell line that
stably expressed the EGF receptor C-terminallydusehe NLuc fragment (EGFR-NLuc) off a
tetracycline-inducible promoter. Double stable chifles were selected for use in these
experiments. For assay, the CHO cells were culttoe@4 h in 1.5 pg/ml doxycycline to induce
expression of the EGFR-NLuc fusion protein. Thenalmpng proteins were constitutively

expressed from a CMV promoter.

3.4.2 Luciferase Complementation between the EGF Recept@nd
Signaling Proteins

All eight signaling proteins yielded an EGFstimelhincrease in luciferase activity when
co-expressed in cells with EGFR-NLuc (Figure 3BGF-stimulated complementation between
the EGF receptor and these signaling proteins e@s as early as 30 s after the addition of EGF.
At low concentrations of EGF, essentially all oé tpairings exhibited a rapid rise in luciferase
activity, which peaked by ~5-8 min. For some pasimguch as the EGF receptor and PI3K-R1
(Figure 3.E), this level of complementation was maintainedrave entire time course at all

doses. In other pairings, such as Cbl (FigureAB3dr CrkL (Figure 3.B), complementation
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plateaued at low concentrations of growth factot declined after an early peak at high
concentrations of EGF. Still other proteins demi@isti a bimodal response across doses. For
example, for Grb2 (Figure 3 and Shp2 (Figure 3.1Figure Bl the maximum
complementation occurred at a relatively low doB&GF, with higher doses of growth factor

resulting in lower peak responses and a markededserat longer times.

In the EGF receptor/Shp2 pairing (Figurek),1the luciferase activity observed at the
highest concentrations of EGF actually fell beltwe basal level after about 15 min. These data
imply that Shp2 associates with the EGF receptadeumon-stimulated conditions. This

association is apparently disrupted upon stimutatvdh high doses of growth factor.

If these signaling proteins are being recruitedh® EGF receptor via phosphotyrosine-
dependent interactions, then the associations hzsdathrough luciferase complementation
should be sensitive to inhibition of the EGF recepyrosine kinase. As shown in Figure 322,

H, treatment of cells with 5 pMrlotinib @reen liney effectively inhibited EGF-stimulated
complementation between the EGF receptor and datiese eight signaling proteins. Inhibition
was essentially complete for all pairings with theeption of p52 Shc and p66 Shc, for which
the inhibition was ~70%. The complementation betwten EGF receptor and Shp2 actually
showed an EGFstimulated decline in luciferase agtiggain consistent with there being a basal

level of association between the two proteins, Wiscdisrupted after ligand binding.

Despite the fact that lapatinib appeared to inHH§BF receptor autophosphorylation to
the same extent as erlotinib (Figurel®.pretreatment of the cells with 10 pl&patinib ¢ed
lines) was far less effective than pretreatment witloterib at blocking the association of these

signaling proteins with the EGF receptor. Althoulgipatinib was able to completely block
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complementation between the EGF receptor and Q#kl.,&Gnd Shp2, the other five signaling
proteins all showed at least 20% residual EGF-dtited luciferase activity in the presence of
lapatinib. The association of Gabl was particulargensitive to lapatinib treatment. Thus, there
is a significant difference between erlotinib aagdtinib in terms of their efficacy for inhibiting

EGF-stimulated signaling complex assembly.
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Figure 3.2: Effect of erlotinib and lapatinib on EGF-stimulated association of eight signaling proteis with the
EGF receptor.

Panels A to H) CHO cells stably co-expressing E@®HRIc and the CLuc-fused version of one of eighhalgng
proteins were treated with 5 uM erlotinib (greame8) or 10 uM lapatinib (red lines) for 60 min prio stimulation
without or with 0.3 nM. EGF-stimulated light pration was monitored for 25 min after addition of EGPanel 1)
CHO cells expressing wild type EGF receptor wesated with 5 uM erlotinib or 10 uM lapatinib for 60n prior
to stimulation with 0.3 or 3.0 nM EGF. Lysates @@repared and equal amounts of protein analyze&D$y gel
electrophoresis and Western blotting with an ahtigphotyrosine antibody or an anti-EGF receptabady.
Quantitation of anti-phosphotyrosine blot is shown.
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Figure 3.3: TGF-stimulated association of eight sitaling proteins with the EGF receptor measured usig

luciferase fragment complementation imaging.
CHO cells stably coexpressing EGFR-NLuc and thed=fused version of one of eight signaling proteirse
assayed for TGF-stimulated light production in phesence of luciferin. Cells were stimulated with indicated

concentration of TGF at time t=0 and light prodostmonitored for 25 min.
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Figure 3.4: BTC-stimulated association of eight sitpling proteins with the EGF receptor measured usig
luciferase fragment complementation imaging.

CHO cells stably coexpressing EGFR-NLuc and thedzfused version of one of eight signaling proteirse
assayed for BTC-stimulated light production in pnesence of luciferin. Cells were stimulated with indicated
concentration of BTC at time t=0 and light prodantmonitored for 25 min.
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Figure 3.5: HB-EGF-stimulated association of eighsignaling proteins with the EGF receptor measured sing

luciferase fragment complementation imaging.

CHO cells stably co-expressing EGFR-NLuc and the&lused version of one of eight signaling proteirse
assayed for HB-EGF-stimulated light productionhia presence of luciferin. Cells were stimulatechwlite
indicated concentration of HB-EGF at time t=0 aigtil production monitored for 25 min.
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Figure 3.6: AREG-stimulated association of eight ghaling proteins with the EGF receptor measured usig
luciferase fragment complementation imaging.

CHO cells stably coexpressing EGFR-NLuc and thed=fused version of one of eight signaling proteirse
assayed for AREG-stimulated light production in ginesence of luciferin. Cells were stimulated wité indicated
concentration of AREG at time t=0 and light prodactmonitored for 25 min.
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Figure 3.7: EPG-stimulated association of eight sigaling proteins with the EGF receptor measured usig
luciferase fragment complementation imaging.

CHO cells stably coexpressing EGFR-NLuc and thed=fused version of one of eight signaling proteirse
assayed for EPG-stimulated light production inghesence of luciferin. Cells were stimulated with indicated
concentration of EPG at time t=0 and light produetmnonitored for 25 min.
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Figure 3.8: EPR-stimulated association of eight sigling proteins with the EGF receptor measured usig

luciferase fragment complementation imaging.
CHO cells stably coexpressing EGFR-NLuc and thed=fused version of one of eight signaling proteirse

assayed for EPR-stimulated light production inghesence of luciferin. Cells were stimulated wita indicated
concentration of EPR at time t=0 and light produttmonitored for 25 min.
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3.4.3 Recruitment Stimulated by Other EGF Receptor Ligand

The EGF receptor is activated by a family of hormgolas growth factors, including EGF,
TGRB, BTC, HB-EGF, AREG, EPG, and EPR (63). To quantify similarities and differences
in the response of cells to stimulation by eachheke ligands, the luciferase complementation
assay was used to monitor the recruitment of thhtadifferent signaling proteins to the EGF

receptor in response to each of these agonistdgyan

Figures 3.3 through 3.8 show the time courses efdlcruitment of these eight signaling
proteins to the EGF receptor in response to inargadoses of each of these additional six
growth factors. Like EGF, all of these growth faststimulated the recruitment of all eight
signaling proteins in a dose-dependent manner. Meryahe patterns of the dose response
curves for all seven growth factors for each indiinl pairing were similar. For example, for all
growth factors, PI3K-R1 recruitment plateaued eahd the level of signal was maintained over
the entire time course. Similarly, the bimodal msge for the recruitment of Grb2 and Shp2 was

observed for all growth factors.

Table 3.1 reports the estimatedsB@lues for each ligand stimulating the recruitmaint
each protein. As expected from their low bindinfinitfes, AREG, EPG, and EPR required ~30—
100-fold greater concentrations of ligand to stiate@la maximal response than did EGF, BGF
BTC, or HB-EGF. Surprisingly, the EGralues for a given growth factor for stimulatingeth

recruitment of the different signaling proteinsfelied up to 18-fold.

91



ECso EGF TGF BTC HB-EGF | AREG EPG EPR
(nM)

Chl 0.31 0.73 0.40 0.85 36.0 33.0 21.0
CrkL 0.14 0.40 0.25 15 26.0 19.0 21.0
Gabl 0.08 0.11 0.06 0.47 5.9 4.8 2.7
Grb2 0.03 0.06 0.04 0.64 4.0 1.8 2.7

PI13K-RI 0.03 0.24 0.11 1.2 21.0 22.0 18.0
p52 Shc 0.06 0.12 0.15 0.85 3.7 3.7 2.6
p66 Shc 0.10 0.21 0.05 1.7 13.0 6.1 4.0

Shp2 0.09 0.11 0.09 0.50 13.0 3.3 4.0

Table 3.1: EGgq's for Agonist-Stimulated EGF Receptor/Protein Assoiation

Table 1 compares the B for each growth factor for stimulating the ratment of the eight signaling proteins.
These values were estimated based on the resppaaelt dose of growth factor at t = 2.5 min. Thigely
eliminates the effects of the declines in signdbager times and means that these values reflaitlyrthe initial
association of the two proteins. Thegg€differed for the recruitment of different pratsiby the same growth
factor. So for example, EGF exhibited ansgE@f ~0.03 nM for recruiting Grb2 and PI3K-R1 butB6s, about 10-
fold higher for recruiting Cbl. EPG exhibited thwdest range of E£y's (~18-fold difference) while HB-EGF
showed the smallest range of &€ (~3-fold).

Figure 3.9 compares the extent of recruitment efdight signaling proteins in response
to an optimal concentration of each of the sevawtr factors. The concentrations compared
were those that gave the maximal peak response¢h&rparticular pairing (Figure 3.1 and
Figures 3.3 through 3.8). For most of the pairssaVen ligands stimulated a similar maximal
response. However, HB-EGF routinely elicited algliglower response than the other growth
factors. The greatest difference in response wasragbd for the recruitment of Grb2 for which
the response to EPG and EPR was ~30% higher thatote&F, while the response to HB-EGF
was ~30% lower than that to EGF. Consequently, thexe nearly a 2-fold difference in the

relative extent of Grb2 recruitment between thénlagEPG/EPR and the low of HB-EGF.

Figure 3.10 compares the ability of a fixed (conajpde) low dose of each growth factor
to stimulate the recruitment of all eight signalipgteins. The responses have been normalized
to the maximal response observed for that EGFRépradair at the optimal dose of that growth

factor. For all growth factors, Grb2 appears toehthe fastest relative response time. Cbl and
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CrkL most frequently have the slowest relative ogse time. The recruitment of PISK-R1
shows the most variability being similar to Cbl a&bdkL for the low affinity ligands but closer to
Grb2 and Gabl for the high affinity ligands. Insgnegly, the recruitment of p52 Shc and p66
Shc differs noticeably from each other. In manyesap52 Shc shows a shorter relative response
time than p66 Shc, often significantly shorterf@sAREG and HB-EGF. However, this order is
reversed for BTC where p66 Shc is recruited mopedha than p52 Shc. Thus, at the earliest
times of signal transduction, differences in reggoto the different the growth factors can be

identified and would contribute to a different lmgical outcome.
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Figure 3.9: Comparison of the association of eighdignaling proteins with the EGF receptor stimulatedby

optimal concentrations of the seven EGF receptor ampists.

CHO cells stably co-expressing EGFR-NLuc and theclused version of one of eight signaling proteirse
stimulated at time t=0 with the concentration oflegrowth factor that yielded maximal peak completaon for
a given receptor/protein pair and light productioonitored for 25 min.
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Figure 3.10: Relative response times for the recrtrnent of the eight signaling proteins by comparabldow
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The response to the indicated low concentratiogagh of the seven agonists was normalized to tixénmh
response elicited by that agonist for that EGF paméprotein pair. The normalized responses fosighaling
proteins stimulated by a single agonist were tHetiq@l on the same graph.
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3.4.4 Global Behaviors Observed via Reduced Dimensionajit

The foregoing data represent an extremely riclospteasurements of the recruitment of
eight different signaling proteins by the EGF rdoep Within this dataset, discovering
relationships among the proteins and growth fagsodsfficult due to the high dimensionality of
the problem. To reduce the dimensionality of theaskt, while keeping the relationships within

the data intact, we used PCA.

For this analysis, a fixed subset of five (outlsd seven) doses of each growth factor was
used. The subset of doses was chosen so that weezhp comparable range of response above
and below the EC50 values for each of the diffeggonivth factors. As a result, the doses that
were not included in the analysis were either thy Yowest concentrations that elicited a weak
or no response or the very highest concentratibas were super-saturating. This approach
allows us to compare the behavior of the same dbsesingle growth factor across all eight
signaling proteins and to compare the behavior alingle signaling protein at comparable

concentrations across the different growth factors.

We could account for 97.0% of the co-variation witthe entire dataset by projecting the
original data into the first two dimensions of tipgincipal component space. Principal
component 1 (PC1) captures 87.6% of the varianbeyeas PC2 captures 9.4% of the variance.
As a result, each time series for one growth fadtwse and signaling protein response can be
plotted as a single point in two-dimensional PCcspahile retaining almost all of the variation
that exists in the original 44 dimension®(the 44 time points per curve). The loading plots
(Figure 3.1R) indicate that PC1 represents a positive integmatf information across most
time points. By contrast, PC2 negatively weighte #arliest time points while positively

weighting the latter half of the time course.
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Figure 3.11: Dimensionality can be reduced using prcipal component analysis.

(A) The plot of the loadings of the first two pripal components, which accounts for 97.0% of theacance in
the dataset (PC1 accounts for 87.6%, and PC2 atctar®.4%). (B) Correlation of PC1 with maximuregik
magnitude and PC2 with peak time was calculatedsacs doses for each protein-growth factor pairguBiearson
correlation. Mean correlation for PC1 with maximpeak magnitude was 0.97, while mean correlatiorPfo?
with peak time was 0.75. (C) The dataset is pldt@skd on projections onto the first two principainponents,
capturing 97.0% of the variance. Individual poiate colored according to the signaling protein e

Based on our observations of the data, we thoughtatent dimensions of the principal
component analysis might describe physical featafdéke data, specifically information about
the relative maximum signal achieved and the rateh&ch this signal was achieved. To test this
hypothesis, for each protein ligand pair we deteadithe correlation between the dose response
vector in PC1 and the magnitude of the peak foh efse in the original normalized data. We

also determined the correlation between the PC2-desponse vector and the time of peak
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signal for each dose. As shown in Figure B1there is an extremely high correlation between
the PC1 value and the relative magnitude of thé pesponse (mean= 0.97). Similarly, with
the exception of a few outliers in PC2 space, tieeehigh correlation between the value in PC2
space and the time to peak response in the origistal (meam = 0.76). The high correlation
indicates that we can ascribe physical meaningutopoincipal component axes. Specifically,
higher values along PC1 indicate that the signlieaes a higher relative maximum value.
Higher values in PC2 space indicate that the sigohleves its maximum value at a later time.
Lower values in PC2 space indicate that the sigiieves its maximum value at an earlier

time.

Figure 3.1C shows the entire dataset reduced to the first tweensions of PCA space.
Each point represents a time course for a parti@iggaling protein at a single dose of a single
growth factor. Points are colored to indicate tignaling protein being recruited to the EGF
receptor. Points close together in PCA space reptagsponses that are similar to each other
across the entire time course. The responses & &t PI3K-R1 are the most separated in both
PCs indicating that they are the most differente Témaining points are densely packed in the

intermediate region between the extremes of th&KfR3 and Shp2 signals.

To identify trends in the data, the measurement® weganized into a dose series for
each ligand/protein pair. This was visualized bgreecting the PCA point representing the curve
at the lowest dose of one growth factor to the fpapresenting the curve at the next higher dose
of that same growth factor with a directed arroantmuing on for the five doses of each growth
factor (see Figure 3.1f&r an example). This approach reveals signifi¢ggerids in the evolution
of signals across the dose range, despite thetgemisially observed in PC space (Figure 3.13).

Overall, the major mode of behavior for a givemsiing protein is dominated by the identity
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Figure 3.12: Data in Principal Component Space Coelate with Physical Trends in the Time Series.

The left panel shows normalized time series complgation data for HB-EGF with CHA) and HB-EGF with
Shp2(B). Superimposed on the plots for the five dosediaes with directed arrows connecting the peak edtur
each dose, from lowest dose to highest dose. Ghepanel shows the same time series data but epresented in
principal component space, where each point reptesm entire curve from the left panel. For boBrEGF with
Cbl (C) and HB-EGF with Shp2D), PC1 correlates highly (r=0.97) with the magnited¢he peak at each dose
(the peak y-axis value for each dose in the lefiea PC2 correlates highly (r=0.90) with the tigniof the peak at
each dose (the time of each peak from the x-axiBeofeft panel). Note that the axes are scalddréifitly and
rotated in principal component plots, but the ollestzape of the dose response has not changedtfi®time series
to the principal component representation and pvesephysical meaning from the time series data.
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Figure 3.13: Global trends based on dose response.

The individual points in two-dimensional PC spagpresenting a protein-ligand pair at a particutzsedwere
organized into a dose response series for thecfissen doses, by connecting the response at lavsessdo the next
higher dose using a directed arrow. Panel A) Thaltiag vectors are grouped by signaling proteith emlored
according to the growth factor. Panel B) The r@sglvectors are grouped by growth factor and cal@ecording

to signaling protein.
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of the protein rather than the identity of the gtloviactor. Therefore, the curves describing the
recruitment of the same signaling protein stimwdig any of the seven ligands (Figure 313
are more similar to each other than they are toctirges that describe the recruitment of a
different signaling protein stimulated by the sagnewth factor (Figure 3.18. As is apparent
from Fig. 8, there are differences in how the individual pirotesponses evolve based on the

stimulatory ligand.

Aside from these general observations, each PC shew contrasting trends in a subset
of proteins. First, for Cbl, CrkL, PI3K-RI, p52 Shand p66 Shc, there is a monotonic increase in
PC1 (relative maximal signal) as the dose of grolattor increases. This is what is expected in
a traditional dose-response curve. the signal increases with increasing dose. By eshtr
Gabl, Grb2, and Shp2 show a bimodal response indp@de, reflecting an initial increase in
response followed by a marked decrease in peaklsagthe highest doses of most of the growth

factors.

A second trend is that for most of the signalséhsra monotonic progression down the
PC2 axis. This indicates that the peak responaeh®ved more rapidly at higher concentrations
of growth factor. An exception to this rule is thexruitment of p52 Shc in response to EGF,
BTC, and HB-EGF, where there is little change ia time to peak response over the entire dose

range tested.
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Figure 3.14: Signaling protein response varies byrgwth factor dose.

In order to quantify differences in protein respgrisuclidean distances were calculated betweeripsofor each
growth factor at both a low and high dose and Vized as a heat map. The response pattern forgrag¥th factor

at low dose is in the left column, and the respgatern for a high dose is in the right column.
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3.4.5 Pairwise Interactions

The proteins chosen for this study were selectethuse they are involved in well
documented interactions with the EGF receptor aitldl ®ch other. Therefore, we would expect
that the behaviors of some of these proteins shooicelate in PC space. To quantify these
relationships, we calculated the distances betwaenacting protein pairs in PC space for each
dose of a single growth factor. Figure 3.14 shoeatimaps of protein-pair distances for a low
dose and a high dose for each growth factor. Twgomant features are immediately apparent
from these heat maps. First, the patterns seethétow and high doses of the same growth
factor are distinctly different. This suggests tkta¢ same growth factor utilizes the network
differently when applied at different concentragorsecond, the heat maps for each growth
factor are very different, suggesting that theeddéht growth factors activate the network in a

manner that is specific to that growth factor.

To evaluate the similarity of protein recruitmentndmics across the different growth
factors, distances were calculated between prpiins in PC space across the five doses of each
individual growth factor. The complete set of thesenulative distances was then rank-ordered,
and both the top and bottom quartiles were prolmdstatistical enrichment for individual
proteins or specific protein pairs. Several spegifiotein pairs were strongly represented in the
top quartile. The pairwise distances of Cbl witkkiCand p52 Shc with p66 Shc were the most
significantly enriched protein pairs in the top gila (p < 0.005, Bonferroni-corrected), whereas
the interaction of Gabl with p52 Shc was also §igamtly enriched § < 0.05, Bonferroni-
corrected). Enrichment in the bottom quartile wiae @alculated to identify proteins and protein
pairs that rarely exhibited similar dynamics. Shya&ed interactions as a group were identified

as being enriched in this quartije € 0.0005, Bonferroni-corrected).
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To compare the global response of the network th ed the seven different growth
factors, we performed ensemble clustering on thiewjse distances between proteins, as
described under “Experimental Procedures.” Thegrgeage of time each growth factor clustered
with another growth factor in the ensemble of @usiy solutions is visualized in Figure 3.15as a
heat map. The growth factors were then hierardyichlistered. As can be seen from this figure,
BTC, EPG, and TGFform a strong cluster (the BTC cluster) becausy ttluster together in
every clustering solution in the ensemble. AREG &RR form a second strong cluster (the
AREG cluster). EGF clusters most frequently witle hREG cluster (77%) but shares some
membership in the BTC cluster (23%). HB-EGF is eathnique and is far from both the BTC

and AREG clusters.
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Figure 3.15: Heat map and dendrogram showing the mailts of clustering of the responses to the severogith
factors.

The pairwise protein distances for each ligand wereverted to a vector and the vectors for ea@ntigivere
hierarchically clustered via the ensemble apprabedtribed in Experimental Procedures. The reavdtvisualized
via a heat map displaying the fraction of time elégdind pair clustered together across the ensemble
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3.5 Discussion

We report here on the use of luciferase fragmemhptementation to study the
association of downstream signaling proteins wita EGF receptor. The advantages of this
system include the ease of assay and the facittbah be done in live cells with continuous
monitoring. In addition, the signals generated friira eight signaling proteins examined here
were robust, allowing detection of differences asged with changes in the concentration of
growth factor. Finally, the approach is scalabld aseful for screening applications. Using this
system, we found that all eight of the selectedaigg proteins are rapidly recruited to an EGF
receptor containing complex, with association beapgparent by 30 s. The peak extent of
association occurred between 5 and 7 min, deperatirnthe pairing. This is consistent with the
time course of assembly of Shc-containing compleafésr stimulation of cells with EGF, as

documented through quantitative mass spectromé#y (

In most of the pairings, the luciferase signal dased slowly over time particularly at
the higher doses of growth factor. As internal@atiof the EGF receptor begins almost
immediately after addition of growth factor (6%)seems likely that at least part of the decrease
in signal at longer times is due to internalizatiand degradation of the receptor and its
associated signaling proteins. Nevertheless, &t lsame fraction of the agonist- induced
increase in luciferase activity is maintained ferlang as 25 min after the addition of EGF.
These data imply that these signaling proteins neraasociated with the EGF receptor even
after it has been internalized. Thus, some aspdctggnaling probably continue to occur well
after the receptor has been removed from the aethce. Receptor internalization is unlikely to

account for the decrease in peak signal observethéorecruitment of Gab1, Grb2, and Shp2 at
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high concentrations of all the growth factors. Texrease could reflect increased competition
between signaling proteins for binding to sitesttoe EGF receptor when the signal is strong. It
could also arise from depletion of a common pooladépter or scaffold proteins when the
stimulatory signal is maximal. Finally, it is pdsi that there is steric interference with
luciferase complementation when the signal is gir@and Gabl, Grb2, and Shp2 bind to the

EGF receptor in a multiprotein complex.

All EGF receptor/signaling protein pairs showedoaeldependence on the concentration
of growth factor. However, the EC50 for any giveowth factor varied as much as 18-fold for
the recruitment of different proteins. Knudsaral. (66) reported similar differences in the EC50
values of four EGF receptor ligands for inducing gthosphorylation of the EGF receptor and
several signaling proteins. The molecular basistlitsg observation is not known, but it may
reflect differences in the order or extent of plusplation of sites in response to these seven
agonists (57, 67-70). Surprisingly, there were ifiant differences in the ability of saturating
concentrations of erlotinib and lapatinib to inkithe recruitment of these signaling proteins.
This is likely due to differences in residual phlosgylation of the EGF receptor. These findings
clearly identify erlotinib as a more effective ibhor of signaling in this system than lapatinib
and suggest that these complementation assays enageful for identifying residual signaling

pathways that could be targeted for therapeutietiten

The overarching message from the principal comporagralysis is that there are
significant differences in signaling protein re¢ment depending on both ligand and dose. These
variable responses likely reflect different signgliprotein recruitment strategies employed by
the individual ligands over their entire dose rangéhough the observed differences are subtle

at the level of individual proteins recruited, eallively they could readily give rise to a
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distinctly different biological outcome for eachtbie agonist liganddn vivolevels of EGF and
other ErbB family growth factors vary widely fromsgue to tissue, being low in plasma but 10—
100-fold higher in secretions such as saliva aatsté70-72). Given the differences in network
behavior identified here, our data imply that tipenatic agents that target one particular node in
the signaling pathway could be efficacious in ossue but not in another, simply because of
differences in network utilization based on thentity of the stimulating growth factor and/or
the dose involved. This underscores the need terstahd the signaling network at all doses of
growth factor, as different tissues will likely besponding to vastly different doses of EGF or
other EGF receptor agonists. Because many of thmerements that have defined our
understanding of this network have been carriedusutg high dose EGF (73-75), our current
appreciation of the network may not reflect theuattflux through the pathways under all

physiological conditions.

Ensemble clustering of the responses to the grdadtors demonstrated that the seven
different EGF receptor ligands basically clusteéoithree groups as follows: (i) BTC, T@GFand
EPG; and (ii) EGF, AREG, and EPR. HB-EGF is didtarglated to both clusters. Thus, based
on their ability to recruit these signaling protito the EGF receptor, these ligands do not fall
neatly into groups defined by higrersuslow affinity nor do they fall into groups based on
whether they bind only to the EGF receptor or tdéhbthe EGF receptor and ErbB4 (63).
Whether there is some specific functional diffeeeticat distinguishes the two main groups of
EGF receptor agonists, such as temporal or spdiffrences in expression, remains to be

determined.

With respect to similarities in the utilization ¢ie network by the different growth

factors, our analysis identified a strong correlatbetween the recruitment of Cbl and the
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recruitment of CrkL to the EGF receptor. As Crklkisown to bind directly to Cbl (76, 77), the
detection of a correlation between Cbl and CrkLdbig to the EGF receptor suggests that the
primary mechanism through which CrkL associatesh wite EGF receptor may be through
binding to tyrosine-phosphorylated Cbl. The fagtttthis relationship is clearly observed in our
dataset suggests that this analysis is capabldeuitifying interactions between proteins that
associate within this signaling network. Viewedhis light, the significant correlation between
p52 Shc and Gabl suggests that this also represgmeferred interaction in this network. The
direct binding of p52 Shc to Gabl has been repdi@8d 79). The finding that other canonical
network interactions, such as Grb2/Shc or Grb2-Galete not detected in this analysis likely
reflects the complex and dynamic behavior of thewvok. Grb2 is an adapter protein that
recruits a number of proteins, including Cbl, Gaaidd Shp2, to the EGF receptor. It can bind
directly to the EGF receptor or indirectly throughc. As a result, the interaction of Grb2 with
the EGF receptor represents the summation of aipiicily of different binding events.
Variation in the dynamics of the different bindiagents, such as Grb2-Cl¢rsusGrb2-Gabl,
could easily obscure any correlations between ihdimg of the individual partners in the
protein pairs. Thus, it will be necessary to assleese interactions more directly to determine
whether their association is differentially affattdy the seven EGF receptor agonists.
Ultimately, we would like to be able to determin&igh path through the network is used to
recruit a particular protein to the EGF receptgnaling complex by a particular growth factor at
a particular dose. Prediction on this level is Iykéo require careful modeling of network
behavior. To this end, these data can be usedynjumction with other information, to build
mechanistic models of the network interactions étetnine the dose-dependent network paths

of a given signaling protein.
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Chapter 4: Avoiding Common Pitfalls when
Clustering Biological Data.

From Ronan,T., Qi,Z. and Naegle,K.M. (2016) Avogitommon pitfalls when clustering
biological dataSci. Signal.9(432) re6. doi: 10.1126/scisignal.aad1932. Reprintetth wi
permission from AAAS.

4.1  Abstract

Clustering is an unsupervised learning method, Wwhgcoups data points based on
similarity, and is used to reveal the underlyingistiure of data. This computational approach is
essential to understanding and visualizing the dexngata that are acquired in high-throughput
multidimensional biological experiments. Clusteriegables researchers to make biological
inferences for further experiments. Although a pduldechnique, inappropriate application can
lead biological researchers to waste resourcestiaredin experimental follow-up. We review
common pitfalls identified from the published mal&r biology literature and present methods
to avoid them. Commonly encountered pitfalls retatthe high-dimensional nature of biological
data from high-throughput experiments, the failireonsider more than one clustering method
for a given problem, and the difficulty in determmig whether clustering has produced
meaningful results. We present concrete examplgsatflems and solutions (clustering results)
in the form of toy problems and real biologicalalédr these issues. We also discuss ensemble
clustering as an easy-to-implement method that lesabe exploration of multiple clustering
solutions and improves robustness of clusteringitewis. Increased awareness of common
clustering pitfalls will help researchers avoid or&erpreting or misinterpreting the results and

missing valuable insights when clustering bioloydata.
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4.2 Introduction

Technological advances in recent decades havetedsul the ability to measure large
numbers of molecules, typically across a smallemimer of conditions. Systems-level
measurements are mined for meaningful relationslipsveen molecules and conditions.
Clustering represents a common technique for minmge data sets. Clustering is the
unsupervised partitioning of data into groups, stnet items in each group are more similar to
each other than they are to items in another grdiy@ purpose of clustering analysis of
biological data is to gain insight into the undety structure in the complex data — to find
important patterns within the data, to uncovertr@hships between molecules and conditions,
and to use these discoveries to generate hypothasds decide on further biological
experimentation. The basics of clustering have bedansively reviewed (80-82). Clustering
has led to various discoveries, including molecidabtypes of cancer (83-86), previously
unknown protein interactions (87), similar temporaddules in receptor tyrosine kinase cascades

(88), metabolic alterations in cancer (89), andgase substrate specificity (90).

Although clustering is useful, it harbors potenpéfalls when applied to biological data
from high-throughput experiments. Many of theséapig have been analyzed and addressed in
publications in the fields of computation, bioinfwatics, and machine learning, yet the solutions
to these problems are not commonly implemented iomédical literature. The pitfalls
encountered when clustering biological data depwvenarily from (i) the high-dimensional
nature of biological data from high-throughput exxpents, (ii) the failure to consider the results
from more than one clustering method, and (iii) dificulty in determining whether clustering

has produced meaningful results. Biological systamscomplex, so there are likely to be many
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relevant interactions between different aspectstlod system, as well as meaningless
relationships due to random chance. Differentiatggjween a meaningful and a random
clustering result can be accomplished by applyihgster validation methods, determining
statistical and biological significance, accountiiog noise, and evaluating multiple clustering
solutions for each data set. The high-dimensioasine of biological data means the underlying
structure is difficult to visualize, that valid baonflicting clustering results may be found in
different subsets of the dimensions, and that soomemon clustering algorithms and distance
metrics fail in unexpected and hidden ways. To esklthese issues, clustering parameters and
methods that are compatible with high-dimensioméhdnust be identified and implemented, the
results must be validated and tested for statissigmificance, and researchers should become

used to applying multiple different clustering nedbk as part of routine analysis.

Some solutions to address these pitfalls requiraremess of the issue and the use of
appropriate  methods, whereas other solutions regsubstantial computational skill and
resources to implement successfully. However, omthad —ensemble clusterindthat is,
clustering data many ways while making some peatioh to the data or clustering parameters)
— solves multiple pitfalls and can be implementedtheut extensive programming or
computational resources. We mention the uses oénele clustering, as appropriate, and

provide an overview of ensemble clustering at the e
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4.3  High-Dimensionality Affects Clustering Results

Systems-level measurements and high-throughputriexgets are diverse in the size of
the data sets, number of dimensions, and typesxpérenental noise. Examples include
measurements of the transcript abundance from #imoissof genes across several conditions
(such as in multiple cell lines or in response tagdtreatments) (85, 91), measurements of
changes in the abundance of hundreds of peptides tme after a stimulation (92), or
measurements of hundreds of microRNAs across tissamples (85). Because the
dimensionality of the data in a clustering expentr@epends on the objects and features selected
during clustering, understanding how to determimeethsionality and its effects on clustering
are prerequisites for approaching a clusteringlprabAs a rule of thumb, data with more than

10 dimensions should be considered high dimensamélshould be given special consideration.

4.3.1 Determining Dimensionality

The dimensionality of a clustering problem is definby the number features that an
object has, rather than by the number of objectsteted. However, the definition of object and
feature in a given clustering problem depends enhiypothesis being tested and which part of
the data is being clustered. For example, in thasmement of 14,546 genes across 89 cell lines,
as found by Lu, et al. (2005) (3), we can ask twih wthese data. First, what is the relationship
between the genes based on their changes acro89 tedl lines? This case represents a gene-
centric clustering problem with 14,456 observatjongith each observation having 89
dimensions (Figure 4.1A). Second, what is the i@hlahip between cells based on the changes in

gene expression across all of the genes? This repsesents a cell line clustering problem,
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obtained by transposing the original data matrighsthat the matrix now has 89 observations,

with each observation having 14,456-dimensionsuiéig.1B).
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Figure 4.1: Determining the Dimensionality of a Clgtering Problem.
(A) A representation of the Lu mRNA clustering plieri, consisting of over 14,000 mRNA measured acgdssell

lines, from Lu, et al. (2005). When the mRNA arénbeclustered, the mRNA are the objects and ealthire
represents a feature resulting in an 89-dimensiortddlem. (B) When attempting to classify normad ammor cell
lines using gene expression, the objects to beeckr are the cell lines and each mRNA is a featrgsulting in a
clustering problem of thousands of dimensions.K@)a fixed number of points, sparsity increases as
dimensionality increases. (D) In a one-dimensidbalissian distribution (represented by a typicdlhelve) three
standard deviations cover 99.7% of the data. In twahree-dimensions, when independently distatuthis
coverage is reduced slightly (to 99.5% and 99.28peetively). In 10 dimensions, three standard dievia cover
only 97.3%. By 100 dimensions, coverage is rediwcetb.3%, and by 1000 dimensions it is reduced 1866

The same data can be clustered in different wagéstmver different biological insights,
and these different ways of clustering the data ltawve large differences in dimensionalities.
The gene-centric clustering problem representsaal gpasis for clustering because observations
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greatly exceed the dimensions. However, even thathlgm represents a high-dimensionality
situation. The cell line clustering problem is eveare challenging because the relatively small
number of observations (89) compared with the ladgeensionality (>14,000) could be
dominated by noise in the expression data. Witleaueful handling of sparsity and feature
masking, clustering will almost certainly deliveoqy or misleading results. Reliable and
meaningful clustering results are likely achievainidy with careful dimensionality reduction or

subspace clustering.

4.3.2 Geometry and Distance in High-Dimensional Data

As dimensionality increases beyond two- and thiegedsional spaces, the effects of
high-dimensionality, referred to as the “curse whehsionality” come into play. These effects
manifest in three key ways: (i) Geometry behavesimtaitively in higher dimensions; (ii)
sparsity is common in high-dimensional data setst @ii) relevant features tend to become

masked by increasing numbers of irrelevant features

As dimensionality increases , familiar relationshgd distance, volume, and probability
distributions behave nonintuitively (93). The methad determining distance between points in a
clustering problem (the distance metric) influent®s clustering result. With high-dimensional
biological data, distance metrics fail to behaveeapected based on our low-dimensional
intuition. For example, as dimensionality increasegond 16 dimensions, the nearest neighbor
to a point can be the same distance away as ttlee$ameighbor to a point (for many common
distance metrics) (94-96). Put another way, becausdikely that any two points are far apart
in at least a few dimensions, all points approaandequally far apart (97). This means that for
many types of distance functions in high dimendi@pace, all points are effectively equidistant

from one another (96, 98). As a result, some commigtance metrics and the concept of
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“nearest neighbor” can be potentially meaningleskigh-dimensional space (96, 99). Although
data with more than 16 dimensions should be coreideigh-dimensional (96), data with as few

as 10 dimensions can also exhibit non-intuitivenkdgmensional behavior (93).

Some algorithms that were developed for lower-disi@nal spaces do not generalize
well to high-dimensional spaces. Many centroid dedsity-based algorithms, suchlkaseans
(centroid) and DBSCAN (density-based) rely on definanearest neighbonwhich only works
well in lower-dimensional spaces (100). THusmeans and DBSCAN (101) often fail to return
useful results when used on high-dimensional d24a §6). Furthermore, these algorithms will
give no indication that they are not working as eotpd. Despite these problems, reliable and
interpretable results with high-dimensional data ba achieved if ensembles of these clustering

algorithms are used (102, 103).

Some algorithms are specifically designed to fumctwith high-dimensional data.
Hypergraph-based clustering methods draw on thkl fad@ graph theory, a method of
representing pairwise relations between objectyéryraph-based clustering can be used to
transform sparse data in high-dimensions to a probh graph partitioning theory, drawing on
unique methods from that field, to produce accuaaite informative clustering (94).Grid-based
clustering is a density-based approach and candagive meaningful results on some high-
dimensional data sets. However, Optigrid is a gpaded clustering approach that specifically
addresses the problems of distance and noise dmbund other similar algorithms when
applied to high-dimensional data sets (100). Solgerithms, such as NDFS, simultaneously
solve problems with noise and find subgroups (1@#)jch can improve the accuracy of
clustering of high-dimensional data. Others, likptiGrid, alternate rounds of grouping and

dimensionality reduction to cluster high-dimensiodata (105). When working with high-
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dimensional data, clustering algorithms that aréedufor the dimensionality of the clustering

problem should be used.

4.3.3 Sparsity in High-Dimensional Data

Sparsity is a problem with high-dimensional dataduse clusters are most clearly
defined when there are many objects in each clustsulting in robust representation of each
cluster. Given a fixed amount of data, increasimgethsionality causes the data to become
spread out in space. For example, given a sefata points in one dimension, data may be
densely packed (Figure 4.1C). As the dimensionatityeases to two or three dimensions, each
unit volume of the space becomes less and lesslgiedu Extrapolating to an even more
sparsely populated high-dimensional data set, doimes increasingly difficult to ascertain
whether a distant data point represents a noigyt fiei from one cluster or a new cluster that has
only a few members and thus is difficult to identiEffectively, random noise dominates

clustering results based on sparse data.

Sparsity also affects our low-dimensional intuititor statistical rules-of-thumb. We
typically use three standard deviations (SDseg)+® determine a reasonable threshold for
statistical significance. In a one-dimensional Gas distribution (represented by a typical bell
curve) 3 SDs cover 99.7% of the data. In two- aeeéhdimensions, when independently
distributed, this coverage is reduced slightly @6.5% and 99.2% respectively). In 10
dimensions, 3 SDs cover only 97.3%. By 100 dimersi@overage is reduced to 76.3%; by
1000 dimensions it is reduced to 6.7% (Figure 4.d3). This means that, in high-dimensional
space, our rules-of-thumb for interpreting variameal what threshold should be considered

statistically significant need to be reconsidered.

116



4.3.4 Masking Relationships in High-Dimensional Data

With high-dimensional data, the signal can easdy Igst in the noise. Biological noise
and variation contribute to irrelevant featuresjohlcan mask important features, and ultimately
influence cluster membership in the full-dimensiospace (106). In the example of gene
expression analysis across 89 cell lines, measueng of thousands of transcripts guarantees
that transcripts with no relevance to the biologger study will also be measured. However, the
noise that is present in those transcripts fromolgioal or technical variation can dominate
clustering results because clustering algorithreattthe noise as if they are true features in the
data. The background noise resulting from cell-galiation might swamp the most relevant
features necessary to identify differences betwealh lines, or background noise can even
masquerade as significant differences between liogls when those differences are due to

random processes in the cell.

Strong relationships among only a subset of feataem mask other relationships. For
example, metastatic cells and normal cells of &aqaar type may have similar gene expression
profiles, so cell lines might tend to cluster byl ¢gpe (rather than normal versus metastatic)
when the entire gene expression data are used. Wowahen only expression data from a
subset of genes are used, the metastatic cellsextapit similar expression patterns and thus

would be grouped apart from the normal cells.

To exemplify how a signal can be detected in a fedvmensional data set and lost in a
higher-dimensional data set, we turn to a studyLbyand colleagues (85) in which they
measured the relative abundances of microRNA antNAnih 89 cell lines. Eighteen of 20
gastrointestinal cell lines clustered together wiith microRNA data, which had 217 dimensions,

but this relationship was lost when the mRNA datthw14,000 dimensions were clustered.
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Understanding that higher-dimensionality data asult in loss of the signal in the noise, we
agree with the authors when they suggested thalotseof signal might result from the “the
large amount of noise and unrelated signals treaearbedded in the high-dimensional mMRNA

data”. Fortunately strategies are available for asking the hidden signals in biological data.
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Figure 4.2. Dimensionality Reduction Methods and Eécts.

Comparison of PCA and subspace clustering. (A) &letesters are plotted in two dimensions. PCA deitegs the
direction of greatest variance (A, dashed red li(®) Clusters after dimensionality reduction by&RQC) Three
subspaces (red dashed line) are identified uponhati project the data. (D through F) A compariebthe original
clustering results of 89 cell lines in ~14,000 disienal mMRNA data (D), to clustering results aR&A (E), and
after subspace clustering (F). Blue bars represéntll lines, yellow bars represent non-Gl celek.
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There are competing schools of thought for addngsgie masking of relevant features
by irrelevant features. If only a few features (dimions) of the data are likely to contain the
most relevant information, some advocate applyeahniques that reduce the dimensionality.
Dimensionality reduction involves the selectionoofy a subset of the features; the selection of
which is based on a criterion such as predictiwggymr variance. When only a few features are
expected to contain signal and the rest are exgph¢otée noise, Principal Component Analysis
(PCA) is often used. PCA reduces high-dimensiomh do fewer dimensions that capture the
largest amount of covariance in the data. Anothethod of reducing dimensionality is to
remove features with low values, as is often don@icroarray analysis where transcripts below
a threshold, or transcripts changing only a verglsamount between conditions, are removed
from the data set. Alternatively, if multiple indsplent signals exist in the data, selection of

different subset of features to cluster (107) neaeal different relationships among the data

These three commonly applied methods for reduciilgedsionality will produce
clustering results, but each has limitations anddéfinition, eliminates some features of the
data. Dimensionality reduction techniques can digraustering results for high-dimensional
datasets (108) when that is present only in sorbsefwof the data is eliminated as a result of the
dimensionality reduction. To illustrate this prablewe use a toy data example in which three
clusters are readily apparent when the data arsepted in two dimensions (Figure 4.2A). A
single projection onto any one dimension (deterchibg PCA, defined by the dotted line)
(Figure 4.2B) reduces the separability comparedh Wie two-dimensional representation such
that the identity of at least one cluster is |oBhis “local feature relevance” suggests that

dimensionality reduction techniques, such as PCay be inappropriate if different clusters lie
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in different subspaces, and that one should avwdapplication of a single instance of feature

selection (106) to avoid missing important struesuwithin the data.

In contrast, subspace clustering is a method thatches different subsets of original
features to find all valid clustering results, nattar which subset they are found in. Subspace
clustering does not use graph theory or partitigmrethods. Because it involves the selection of
a subset of features, it also does not rely ondéresity of the data. In some data, objects will
cluster only in subspaces of the full data space.dxample, in the toy problem, when three
different subspaces are chosen, at least two ofhttee clusters would be well separated when
projected on to any of the highlighted subspacskdn projected onto the dashed lines) (Figure
4.2C). Subspace clustering must be carefully tadldo high-dimensional data to produce valid
results (109). As a computationally intensive mdthbcan hit limitations due to a combinatorial
explosion of potential subspaces in high dimensi(@#. However, subspace clustering can
reveal the multiple, complex relationships in bgtal data. Although information is lost in each
subspace, multiple subspaces are considered; dherstuibspace clustering results are informed

by information from all relevant dimensions.

The problematic effects of dimensionality reductiand the efficacy of subspace
clustering can be seen on the expression datalftoet al (85). The clustering results from the
original study (clustering 89 cell lines using MI&NA data, ~14,000 dimensions) (Figure 4.2D)
were compared to the clustering results after uBi6é to reduce the dimensionality to the 10
most relevant features (Figure 4.2E) and after gussmbspace clustering to reduce the
dimensionality to the 10 most informative featu(Egure 4.2F). As Liet al found, we do not
see significant grouping of cell lines of gastresttnal origin when we cluster the data in the full

feature space (Figure 4.2D), or if we reduce dinmadity using the first 10 principal
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components as features from PCA (Figure 4.2E). Hewea selection of one 10-dimensional
subspace shows strong clustering for Gl cell liflégure 4.2F) — almost as strong as the results
that Lu and colleagues presented for much loweredsmonal microRNA data (as discussed
below, and as shown in (Figure 4.2D). This analysiggests that, although the reduced
dimensions of principal component space may haeewered a structure we do not understand,
PCA was not informative when attempting to grouplscéased on their tissue of origin.
However, there is a subspace (a subset featunestfr® original dimensions) for the mRNA data
in which we can successfully group cells by theigias. This example illustrates how irrelevant
features in the high-dimensional space masked rithgpgg of cells by origin, despite the data
including expression measurements of genes thigictdfssue origin. The key was finding the

right approach to cluster the data.
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4.4  Effects of Clustering Parameters on Clustering
Results

In addition to issues related to the high-dimenaiioyn of biological data, clustering
parameters also affect the clustering result. Gibensame data, varying a single parameter of
clustering such as the transformation, the distamegic, or the algorithm, can drastically alter
the clustering solution. Unfortunately, there igeaf no clear choice of best metric or best
transformation to use on a particular type of byadal data. Each choice can mask or reveal a
different facet of the organization within the datderefore, in addition to applying different
methods of clustering and different approachesduressing dimensionality, it is essential to

consider results from multiple parameters whenwatalg clustering solutions in biological data.

4.4.1 Transformations and Distance Metrics

Data is often transformed as part of analysis andgssing. For example, transcriptional
microarray data are commonly letgansformed. This transformation expands the mftdion
for genes with low expression variation across damand simplifies the identification of genes
with differential expression. Similarly, in proteas datasets, data may be centered and scaled
by autoscaling or z-scoring?®) to make relative comparisons between signalswhbich
magnitude cannot be directly compared. Althougmdf@amation can improve the ability to
draw useful biological insight (110, 111), transh@tion also generates a new dataset with
altered relationships that may reveal or mask sonaerlying biological relationships in the data

(Figure 4.3, A and B).
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Figure 4.3. Transformations and Choice of Distanc#etric Can Affect Clustering Results.

(A) A demonstration of how transformations affdw relationship of data points in space. A toy skttéreference
set) was clustered into four clusters with agglatiee clustering, average linkage, and Euclideatadce. The
four reference clusters without transformation @mppanel) and after lggransformation (lower panel). (B)
Transformations and distance metrics change clogteesults when compared to the reference clugteriVith no
transformation (upper panels), Euclidean and cadistance do not change cluster identity, but Wiinhattan
distance, a new cluster A’ is added, and clustier iBerged into cluster B. With the lpgansformation (lower
panels), the Euclidean and Manhattan metrics celuséer C’ to emerge and cluster D to be lost. T2
dendrogram from the microRNA clustering experim&sult from Lu covering 89 cell lines and 217 mRMNA.
Gastrointestinal-derived cell lines (blue bars)dominantly cluster together in the full dimensiosphce. Note:
The data was log?2 transformed as part of the prgt@ling analysis. (D) The same microRNA data d€)rbut
without log2 transformation. Although transformatsocan have a large effect on clustering resutt® the effect is
relatively minor. The Gl cell lines still predominidy cluster together, although one Gl cell lineftfihost blue bar)
leaves the main cluster, and the two most distalhtioes become even more separated from the olaster
(rightmost two blue bars).
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Although transformation of data is routine as a pampreclustering analysis, because of
the effects on density and distance in the dataasgt transformations done on the data at any
point should be explicitly considered as a clustgparameter during the clustering process. We
found that, compared with using different distamoetrics or clustering algorithms (111),
transformations often had the greatest impact artustering result (Figure 4.3B). On other

cases, transformation has little impact on clusteresults (Figure 4.3, C and D).

The choice of a distance metric also greatly asfetistering results, because different
distance metrics accentuate different charactesisti the data (Figure 4.3B). Thus, to avoid
missing information in the data, different distameetrics and transformations should be applied

as a routine part of clustering analysis.
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Figure 4.4: The Choice of Algorithm Can Affect Clusering Results.

Four toy datasets demonstrate effects of diffetygpes of clustering algorithms on various strucsuretwo-
dimensional data. The k-means algorithm dependéliiem selection of the correct value foand tends to find
spherical clusters (col 1). It performs poorly aegularly shaped data (rows 3-5). The Ward algori{col 2) can
produce different results depending on the threkfal similarity, highlighting hierarchical relatiships. For
example, at different thresholds, the green clustav 2, two lower groups) might take on separatster
identities, indicating that the group is composétwo subgroups. The DBSCAN algorithm is a denbiged
clustering algorithm. Since it does not rely oraatioular cluster shape, it can capture more comgtieictures in
low-dimensional data (rows 3-5), and does not terfthd clusters in uniform data (row 1). Howeveayiations in
density can cause it to find additional clustersfoand by other algorithms (rows 2 and 3). Stiatid methods,
like Gaussian mixture models (col4) fit statistidédtributions to the data, but have limited susa@s non-normally
distributed data (rows 3-5).
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4.4.1 Clustering Algorithms

The choice of a clustering algorithm is based owewrs factors: (i) the underlying
structure of the data, (ii) the dimensionality oé tdata, (iii) the number of relevant features for
the biological questions being asked, and (iv)rtbise and variance in the data. Each algorithm
incorporates different assumptions about the dathcan reveal different relationships among
the data (Figure 4.4). There four primary classe<lostering algorithms are hierarchical,
centroid, density, and statistical. The choice lostering algorithm depends on the predicted
structure of the data, and each algorithm classlymes clusters with different properties.
Hierarchical clusteringis useful when data are expected to contain ckistéhin clusters, or
the objects are expected to have a nested relhaiprbBhe Ward algorithm (Figure 4.4, column
2) can produce different results depending on theshold for similarity, highlighting
hierarchical relationships. For example, at diffeétfiresholds, the green cluster (Figure 4.4, row
2, column 2, two lower groups) might take on sefgackuster identities, indicating that the group
is composed of two subgroup€entroid clustering such ask-means clustering, assigns
membership in a cluster based on the distance fmsitiple centers, resulting in roughly
spherical clusters even when the underlying dataoisspherically distributed. Thiemeans
algorithm depends heavily on the selection of et value fok and tends to find spherical
clusters (Figure 4.4, column 1). It performs poanyirregularly shaped data (Figure 4.4, rows 3
to 5, column 3).Density-basedlgorithms, such as DBSCAN (101), connect grodpseosely-
connected points with regions of lower density safiag clusters. Because it does not rely on a
particular cluster shape, it can capture more cerptructures in low-dimensional data (Figure
4.4, rows 3 to 5, column 3) and does not tendrd &ilusters in uniform data (Figure 4.4, row 1,

column 3). However, variations in density can caitige find additional clusters not found by
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other algorithms (Figure 4.4, rows 2 and 3, coluB)n Statistical methodssuch as self-
organizing maps (112) and Gaussian mixture modeigufe 4.4, column 4), fit statistical
distributions to data in order to identify multipeoups of observations, each belonging to their
respective distribution, but have limited successnon-normally distributed data (Figure 4.4,

rows 3 to 5).

Whereas the data in Figure 4.4 are toy exampled,werld examples are often high-
dimensional and difficult to plot. Often, the unigerg structure is not known for most biological
data, and it is likely that a complex biologicaltalaet will have multiple structures — non-
spherical distributions, widely varying density lesa and nested relationships — that will only be

revealed by applying multiple clustering algorithms

4.5  Evaluating Clustering Results

How can you tell when the clustering result of bgptal data is meaningful? Because of
the complexity of biological systems, there areljkto be many valid clustering solutions each
revealing some aspect of underlying biological wédra Unfortunately, there are likely to be
many meaningless relationships simply due to randbance because the data are complex.
Most clustering algorithms will find clusters, eviérihere is no true underlying structure in the
data (as exemplified by Figure 4.4, top row). Thenes clusters must be evaluated for biological
relevance, stability, and cluster fitness. Undeditag and accounting for noise and uncertainty
in the data should be also considered when detergniwhether a clustering result is

meaningful.
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4.5.1 Cluster Validation

Validation metrics are a measure of clusteringeg They can be used to determine if
the result represents a well-defined structure iwithe dataset, using concepts such as cluster
compactness, connectedness, separation, or combmalf these attributes. Much like distance
metrics, each validation metric accentuates diffeesspects of the data to account for the final
score (Table 4.1). The compactness of each clesterbe measured by the root-mean square
standard deviation (RMSSTD) method (113), tregjuared (RS) method (114), and Hubelt's
statistic (115). Connectedness within a cluster ¢@n measured byk-nearest neighbor
consistency (116) or Handl's connectivity metrid{)l. Separateness is measured by the SD
validity index (114), which compares average scatjeand total separation between clusters.
Some metrics combine measures of compactness padasen, such as the pseudo F-statistic
(also known as the Calinski-Harabasz index) (1t&),Dunn index (119), Davies-Bouldin index
(120), silhouette width (121), or the gap statigi®2). When there are different numbers of
clusters between the clustering results, or predaniy different membership in each cluster,
some metrics might fail. The Rand index (123) iprapriate for validating these complex

clustering differences.

To illustrate the differences in validation metridhat measure compactness,
connectedness, and separation, we applied diffenetrics to the clustering results Figure 4.4.
The results can be found in Table 4.2. For thedata, DBSCAN generally performs better on
the more complex structures, with some exceptiDiBSCAN correctly identifies no structure
(Figure 4.4, row 1), the half-moons (Figure 4.4y ) and nested circles (Figure 4.4, row 5).
This is also reflected in the validation metriculés for connectedness, which is a better measure

than compactness for non-spherical data shapedackef structure in row 1 is also suggested

128



by the “zero” result to thRS measure of compactness and the ‘not-availablailtrdsr
separation from the SD validity index. For the spta clustersk-means and mixture models
perform the best (Figure 4.4, row 2), which iseeféd in the best scores for validation metrics
measuring both compactness and separation. Noithlgoperforms well on the parallel lines
data (Table 4.2). Although DBSCAN appears to ddebpetith the center of the clusters (Figure
4.4, row 3), the errant results at the far left agtit result in a poor score for validation medric

— on par with those algorithms which chop the hartal parallel lines into vertical clusters.

Metric References Measures

Root-mean-square (113)
standard deviation (RMSSTD) Compactness
R-squared (RS) (114)
Modified Hubert Gammalj) statistic (115)
k-nearest neighbor consistency (116)
Connectivity (117) Connectedness
Determinant Ratio Index (124)
SD Validity Index (114) Separation
Pseudo-F statistic (118)
(Calinski-Harabasz ) o
Dunn index (119) Combination of
Silhouette width (120) compaciness

- — and separation
Davies-Bouldin index (120)
Gap Statistic (122)
Rand index (123) Similarity between solutions

Table 4.1: Validation Metrics.

A number of validation metrics can be used forimgsthe quality of a clustering solution. While sefiocus on
compactness, or connectedness, others use a cdimbiohcompactness and separation. The Rand irsdex
particularly useful when there is a wide rang& between solutions, or large differences in clustembership
between clustering solutions.
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Compactness Connectedness Separation
Validation
Metric | RMSSTD|r-squareq Determinant Ratio Indeq SD Validity Index
Algorithm Structure min max min min

k-means No structure 0.38 0.23 4.04 6.67
Ward No structure 0.40 0.18 2.58 7.56
DBSCAN No structure 0.44 0.00 1.00 N/A
Mixture models | No structure 0.38 0.23 4.09 6.67
k-means Spherical clusters 0.78 0.8 249.08 0.32
Ward Spherical clusters 1.18 0.56 26.43 0.18
DBSCAN Spherical clusters 0.58 0.86 1683.53 2.52
Mixture models | Spherical clusters 0.78 0.8 249.08 0.32
k-means Long parallel clusters 0.89 0.27 2.77 0.79
Ward Long parallel clusters 0.93 0.2 2.10 0.75
DBSCAN Long parallel clusters 0.84 0.21 22.36 4.32
Mixture models | Long parallel clusterg 0.89. 0.27 2.79 0.79
k-means Half Moons 0.55 0.35 4.23 1.77
Ward Half Moons 0.57 0.30 3.77 1.98
DBSCAN Half Moons 0.60 0.21 3.03 2.61
Mixture models | Half Moons 0.56 0.33 5.21 1.93
k-means Nested Circles 0.52 0.17 271 4.04
Ward Nested Circles 0.53 0.13 1.97 3.30
DBSCAN Nested Circles 0.57 0.00 1.00 4059.71
Mixture models | Nested Circles 0.52 0.17 2.71 3.99

Table 4.2: Validation Metrics.
Results of validation metrics measuring compact@sSSTD (113), r-squared (114)), connectedness
(Determinant Ratio Index (124)), and separation {&ilidity Index (114)), applied to the data fronrén
Reference source not found.. The validation metnidicate the type of best score (max or min). green cells
represent the best score for each structure ardhtiah metric.

The validation metric chosen should match the dtarestics being tested. One approach
is to use a metric that matches the selected #hgoriFor example, when an algorithm optimizes
connectedness, a metric that evaluates connectedrssad of one that evaluates compactness
should be used (Table 4.1). An alternate approaalsé to a panel of validation metrics, each
measuring a specific aspect of the data. For examphen creating an ensemble of distance

metrics and algorithms, a panel of metrics meagurompactness, connectedness, and
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separation will eliminate inappropriate combinasiasf parameters. The worst pitfall is to not

use any metric to assess the clustering outcome.

4.5.2 Clustering Stability

Because complex biological data can demonstratetipfeuland independent valid
clustering results, any single clustering resutt ba inconclusive. Validation metrics provide an
assessment of the quality of a clustering resuth weégard to specific aspects of the data. In
contrast, stability of the clustering result defif@w robust the clustering is to perturbationt tha
is, how many ways of assessing the data produdmnitaisclustering result. Stability analysis
works under the premise that clustering resultsessgnt the underlying structure of the data and
should be relatively invariant to perturbationstie analysis. Stability analysis can identify
robust clustering solutions using a variety of pdyations, such as accounting for (i) noise (125—
127), (ii) projections of high dimensional data @féwer dimensions (109), (iii) differences in
algorithms, distance metrics, and data transfoonati(111), and (iv) the effect of selecting

different random starting positions in nondeterstinialgorithms (128).

Stability analysis assumes that there is a siftgle’ structure within the data; however,
high-dimensional biological data can have multipies structures that reveal distinct biological
insights. Therefore, it may be equally valid tousme that there are multiple structures within the
data. Multiple Clustering Analysis Methodology (M®#® (111) is an approach that tests
multiple clustering results. The approach in MCAM based on the assumption that some
perturbations to clustering parameters can uncahestering results that reveal different
biological insights. For example, some transfororai uncovered shared binding partners of
phosphorylation sites, while others highlightedrelabiological function within a cell signaling

pathway (111, 125).
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Application of multiple clustering methods can ralva single stable and robust result or
uncover additional underlying structures in thead&pplying only a single clustering approach
runs the risk of drawing conclusions based on norsaissing interesting and useful structures

within the data.

4.5.3 Accounting for Noise and Measurement Uncertainty

Uncertainty in data means uncertainty in clusteregults. However, many clustering
algorithms do not account for noise or error wheetednining relationships between
observations or when calculating distance. Althotighmolecular and cellular biology research
community has adopted a set of rules that enablenimgful interpretation of differences in
molecular measurements between pairs of conditibiskind of standard has not been adopted
for clustering complex, high-dimensional data. Fexample, when comparing means of
measured data, we tend to require a minimum ofidafe measurements and the use of
Student’st test to determine statistically significant difaces within biological data (129, 130).
Surprisingly, similar standards and rules do nastefor identifying differential patterns or
groupings from clustering results, despite the tatzng the same measurements and biology as

low-dimensional data between pairs of conditions.

Several methods account for the uncertainty inda& and properly propagate that
uncertainty into clustering results. One ensembb@r@ach is exemplified by Kerr and
Churchill’'s work (131) in which the researchers fpamed repeated clustering on multiple
datasets created by sampling gene expression fra@tatestical model that incorporates the
variance of the measurements. From this analyssyariation in the clustering result due to the
variability in the original data is determined; shyproducing a range of clustering results

representing the variability. An alternative apmtogs to use model-based clustering algorithms
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that account for the variance in the replicate mesments during the formations of clusters

(127, 132, 133).

Because model-based approaches are not commomysilgle to molecular biologists in
standard software packages, we explored ways touatcfor noise with ensembles (125)
without necessarily relying on a statistical modélthe data. This exploration led us to two
major conclusions about the effects of noise. Fisbten data are well-separated, robust clusters
can still be found, even in data with noisy digitibns. Thus, clustering robustness cannot be
predicted on the basis of the noise in the dateoi®k the noise and variance in data are useful
and contain information that can be revealed frobenénsemble analysis. Specifically, we found
that as signals propagate in time from a receptosine kinase to the mitogen-activated protein
kinase (MAPK) pathway, there was high variability an intermediate signaling state in the
MAPK pathway. The effect of this noise in the cérsig results reflected the relationship of this
intermediate signal (a singly phosphorylated kipagéh both the upstream signal (the receptor)
and downstream signal (the doubly phosphorylatedh fof the kinase) and represented a
meaningful biological relationship. Consequentlye wecommend against prefiltering data to
remove those with high variance; instead, noisailshbe addressed in the clustering analysis,

even in the absence of replicates (as detaileti2B)j.

4.5.4 Determining Biological and Statistical Significanceof Clustering
Results

A primary challenge of clustering analysis is dery biological insight. The most
successful analyses often result from combiningtehing with prior biological understanding of
the system. However, unless the process of attgdhiological meaning to the clusters is done

with statistical care, we can often over-interpedationships that “make sense” to us. The two
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most common pitfalls related to this are (i) usargecdotal observations instead of a statistical
test, and (ii) failing to account for the increasdalse positives when multiple statistical tesmts

performed.

Ultimately, to avoid the first pitfall, a researchrust determine the likelihood of having
made a particular observation by random chances “filall model” or “background model” can
then be used to assess how likely the relationshgovered by clustering is truly related to the
biological information under consideration, as oggub to the likelihood of it occurring by
random chance. We demonstrate this process withmibeoRNA clustering results from the
analysis of the 89 cell lines (Figure 4.3C) (89) test the statistical hypothesis, we asked how
likely it is that the 15 gastrointestinal cell Isy&ould have occurred in the cluster of 20 cekdin
by random chance. We used the theoretical hypergemmdistribution to calculate the
probability using a right-tailed test. The resudtia value is approaches zero, indicating that this
clustering result is unlikely to be due to randdmarce alone. In contrast, the random chance of
any two gastrointestinal cell lines appearing icluster of 20 cell lines is likely due to random

chance aloneR(< 0.9).

In many biological data sets, we are not simplyiigsone label in a single cluster, but
rather multiple labels across multiple clusterscolnmon example in cell biology and signaling
research is to test for enrichment in any clusteGGene Ontology terms (134) or biological

pathway assignments from other sources.

Testing for the enrichment of such biological pndigs or classifications across the
clustering results represents multiple hypothessting and thus requirémultiple hypothesis

correction. For example, & value cutoff of 0.01 for a single tested hypothegields the
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prediction that false-positive results due to randehance occur rarely — only 1/fb@f the
time. However, as is common is biological datasealysis, we often test thousands of
hypotheses (for example, asking if any one gene@bl0,000 is differentially expressed). In this
case, even with B value cutoff of 0.01, we would expect to find lfaGse positive results due to
random chance. If we identify 105 differentiallypeessed genes, but we know 100 are false
positives, we cannot separate which five are likelybe the true positives without multiple

hypothesis correction.

When choosing a procedure for multiple hypothesisection, reducing false positives
may simultaneously increase false-negatives (tineiretion of real positives), and can result in
missing biological insight. To reduce the frequentyalse-negatives, we recommend the false
discovery rate (FDR) correction procedure introdubg Benjamini and Hochberg (135), which
is often applied in microarray analysis (136, 13@jher than the Bonferroni correction (138).
Regardless of the type of correction chosen, whgking multiple questions, one must

implement some form of multiple hypothesis corm@ttio prevent overinterpreting the results.

4.6  Ensemble Clustering: A Solution to Many Pitfalls

Ensemble clustering refers to the act of clustetlmgy data many times while making
some perturbation — either to the data matrix ocltstering parameters — and then accounting
for all of the clustering results across the endemibhe goal of ensemble clustering is to
improve the quality and robustness of clusterirsyits when compared to any single clustering

result.
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Why do ensembles improve quality and robustnesshdmt, it is because uncorrelated
“noise” cancels across clustering results. In efddernlustering, noise in the clustering results
occurs when there are strong biases due to thetsglalgorithms or because data contains
poorly clustering points. Fortunately, if the eromade in each clustering result are not
correlated, and the errors pertain to only a subké¢he data, then the shared decisions made
across the ensemble will dominate, resulting inveogence to the robust clustering result. A
combination of diverse clustering results strengghine underlying signal while filtering out the
individual noise from each clustering result. Enbkra enable a more robust determination of
the data structure than that acquired from a siolgistering result obtained through analysis of

the data without perturbation.

Perturbation Reason Behind Perturbation References
k Stability can identify the optimum number of cluste (126, 139, 140)
Noise Biological and experimental noise shouldai@nge (125, 127, 141)
strong relationships within the data
Starting point (non- | Identify those partitions that are independent of (102, 128)
deterministic starting position or identify set of minima
algorithms)
Projections into lowel Increase robustness to clustering noise as a m@sult (109, 139, 142-144)
dimensions the curse of high dimensionality
Subsampling Subsets of the data should clusteistently if the (145-147)
relationships are real
Parameters of Unique biological information can be uncovered by (112)
clustering perturbing solution space

Table 4.3: Ensemble Perturbations.
Major perturbations applied to the data or to tlustering parameters in ensemble clustering andnibiivating
ideas for their use.
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4.6.1 Ensemble Generation, Finishing, and Visualization

The process of performing ensemble clustering wesl selection an appropriate
perturbation (Table 4.3), collecting the clusterirggults based on the perturbation, and then
either combining the individual clustering resutito a single clustering result or exploring the
ensemble of clustering results for information abthe underlying structure of the data. To
illustrate an ensemble of clustering solutions,used random toy data and created an ensemble
of clustering results usinkgkmeans clustering with an increasing number oftehgsk) (Figure

4.5).

There have been many techniques proposed to comésdis of individual clustering
results in the ensemble into one final clusteriaguit. We refer to these methods as finishing
techniques. Most finishing techniques use agreenaenbtss the ensemble to build a final
clustering result. One method is to calculate tbheoecurrence (or consensus) matrix. A co-
occurrence matrix is am X mmatrix, where each entry,; Crepresents the number of times

objecti clusters with objeqgtacross all of the clustering results in the endemb

We clustered the co-occurrence matrix using hiéieat clustering and Ward linkage
and plotted the result as a heatmap (Figure 4.3Bg clusters are formed on the basis of
creating maximal in-group co-occurrence frequenay @inimum co-occurrence with members
outside the group. This representation reveals atiwef detail about the relationships between
data points and highlights data points that coelusibustly (that is, frequenctly) with each other

across the ensemble.
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Figure 4.5: Ensemble Clustering Overview.
(A) A set of clustering results obtained using khmeans algorithm with various valueskofak-sweep). (B) The
hierarchically clustered (Ward linkage) co-occuoematrix for the ensemble of results in (A). Tleatmap
represents the percentage of times any pair ottsb@-clusters across the ensemble. (C) A majeoty was taken
using a threshold of 50% threshold on the co-oetwwe matrix (left panel). The six strong clustees(dendrogram
color groupings) resulting from the majority vote dhown in the right panel. (D) The grey clustevides an
example of partially fuzzy clustering because drsls membership with the orange and dark blueerkusthese
three clusters are isolated (D, left panel) andctireccurrence matrix is reexamined. Rather thaisidering the
gray cluster as distinct, one can consider it teetepartial membership in either the orange oe blusters with a
probability based on the co-occurrence matrix value

138

100%

90%
80%
70%
60%
50%
40%
30%
20%
H10%
0%




Others have used majority voting, also based ondéas of robustness (140, 148), as
demonstrated in Figure 4.5C. We subjected theccoroence matrix above to majority voting
(Figure 4.5C, left) and then plotted the ensemb&gonty-voting cluster assignments (Figure
4.5C, right). Identifying the most robust clusteriresult is useful for generating hypotheses for
further experimental testing because hypothesedeaanked on the basis of strength of the co-

occurrence (90% of the time compared to 10% ofithe).

Another finishing technique to identify robust ports of the ensemble is to apply graph
theory. For example, if we assumed that the co+oenae matrix represented edge weights (a
numerical value indicating the strength of a cotine} connecting the data points, we could
traverse these weights to find maximally connecsedbgraphs and provide a different
representation of robust clusters (149). With ttag;cept of graph theory representation of
ensemble clustering, we discovered that robusthgteted dynamic tyrosine phosphorylation

data uncovered molecular-level interactions (87).

The finishing technigues mentioned above uniquedgigm each observation to one
cluster, thereby creating hard partitions withire tata. However, a benefit of ensemble
clustering is the ability to identify the probabjliof relationships (fuzzy partitioning), which can
be applied to the entire data (probability is cktad for membership of any observation to any
cluster) or a mixture of hard partitioning and pablity based assignment. An examination of
the portion of the heatmap representation of theamurrence matrix containing the blue, gray,
and orange clusters demonstrates fuzzy partitio(fingure 4.5D, left). The heatmap indicates
that the gray cluster members share partial merhipevath the blue and orange clusters (Figure

4.5D, right). Rather than considering the gray teluss distinct, one can consider it to have a
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partial membership in either the orange or bluestelts with a probability based on the co-

occurrence matrix value.
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Figure 4.6: Ensemble Clustering on Phosphoproteomibata.

(A) A single clustering solution showing known irgetors with EGFR (orange bars) and PDLIM1 (blug be-
clustering in the phosphoproteomic data (blue hap)m(B) The co-occurrence matrix heatmap dematirsgra
robust clustering of interactors with EGFR. Thewnadnteractors with EGFR (orange bars) and PDLIMIL€ bar)
are found in a single, robust cluster (upper I1€€). A subset of clustering results across multgitance metrics
and clustering algorithms. Under the dendrograrowminteractors with EGFR are marked with orangss bad
PDLIM1 is marked with a blue bar.
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4.6.2 Ensembles for Robust Clustering Results

Ensemble clustering can reveal unexpected resdlteen an algorithm with limited
capabilities is combined into an ensemble, thetefusy result of the ensemble can have new
capabilities. For example, althoughkameans algorithm can only identify spherical cluste
when used as part of an ensemble with majorityngotthe ensemble can identify half-moons
and spirals (140). This is possible because siginafa relatively weak relationships in each
clustering result are combined to improve the gfiferof the pairwise relationship between
points in the ensemble clustering results. Ensendilstering can assess the impact of
perturbations to clustering parameters on the etugy results, revealing when transformations
to the data can have a larger impact on a clugtaoetution than the algorithm or distance metric

does (111).

As an example of ensemble clustering, we descrdagbaet of the results of an ensemble
approach that we used to cluster the dynamics roisitye phosphorylation in the epidermal
growth factor receptor (EGFR) network measured byifWadlin and colleagues (92). From
this analysis, we identified previously unknown tgio interactions (87). We show a subset of
the full analysis to illustrate this process (Fegdr6). PDLIM1, a protein not previously reported
as part of the EGFR network, had similar phosplosiyie dynamics with many other proteins
known to directly interact with phosphorylated tyirtes residues of EGFR (Y1197 and Y1192)
(Figure 4.6; blue bar, PDLIM1; orange bar, EGFReifattors).To identify a more robust
representation of the clustering behavior of theteay, we generated an ensemble of clusters by
varying distance metrics and clustering algorithAsoss the ensemble, known interactions had
a much higher tendency to cluster together tham wan-interactors. A visualization of the

ensemble results — a co-occurrence matrix — plates interactors of these EGFR
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phosphotyrosine sites in one of the clusters (lEguéB, upper left and orange bars), along with
the potential interactor PDLIM1 (blue bar). On thasis of these results, we experimentally
tested and validated PDLIM1 as a protein that adexd with EGFR (87). It is important to note
that, in many of the ensemble clustering resul®,.IRI11 did not cluster with all known EGFR
phosphorylated at Y1197 and Y1192. Rather, PDLtbtided to cluster with a subset of known
interactors. Furthermore, in many ensemble cluggeresults, the known interactors of EGFR
did not all cluster together (Figure 4.6C). Thisndastrates the value of robust clustering since a

single clustering solution might have missed thipartant relationship (87).
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In-Depth Review Area

References

Specific clustering algorithms, their tradeoffsddrow they
function

(81, 82, 150152

Analysis of the effects of different distance netron clustering (153, 154)

gene expression data

Practical and mathematical implications of high-eimsionality on (94, 95)

clustering.

A thorough review of validation metrics (114, 1124,
155)

The most common multiple hypothesis correction (MHC (135, 138)

procedures including Bonferroni correction and edksscovery

Rate (FDR) correction.

The effects of specific distances on data clusteion lower- (156)

dimensional spaces

The effects of specific distances on data clusgeion high- (94, 157)

dimensional spaces

Ensembles of some algorithms incompatible with high (102, 103)

dimensional data can be useful on higher-dimensidaia, even

when a single clustering solution is uninformative.

A more in-depth analysis of ensembles, includingl@ating the (139, 148)

results of multiple clustering runs and determintogsensus

Table 4.4: Summary of In-Depth Review Articles.
A collection of reviews for more in depth coveraresach topic.
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4.7 Conclusion

Clustering biological data involves a number of ices, many of which are critical to
meaningful results. Evaluation of a dataset shielgperformed to make sure it has a sufficient
number of observations (data points) that and theelsionality of those observations informs
subsequent clustering choices. For each new datdise¢nsionality and any transformations
applied should influence the choice of appropréaseéance metrics and algorithms for clustering.
Data sets of more than 10 dimensions often behaegpectedly, and clustering can produce
meaningless results. Using only a single clusteregylt from any dataset can lead to wasted
time and resources resulting from erroneous hyptheesting. When possible, noise and
variance should be accounted for in the clustenmehod directly rather than simply taking
averages at each data point. Once clustering sesuét obtained, their validity should be
evaluated using the appropriate metrics. The statissignificance of clustering results should
also be evaluated, and multiple hypothesis coorcthould be applied when necessary. For
robust results, ensemble clustering over a rang#istdnce metrics, transformations, and other
clustering parameters is effective. Following theseps will result in obtaining robust and
reliable results from clustering, and will provige basis for solid generation of testable

hypotheses.
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