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Receptor tyrosine kinase (RTK) signaling mechanisms play a central role in intracellular 

signaling and control development of multicellular organisms, cell growth, cell migration, and 

programmed cell death. Dysregulation of these signaling mechanisms results in defects of 

development and diseases such as cancer. Control of this network relies on the specificity and 

selectivity of Src Homology 2 (SH2) domain interactions with phosphorylated target peptides. In 

this work, we review and identify the limitations of current quantitative understanding of SH2 

domain interactions, and identify severe limitations in accuracy and availability of SH2 domain 

interaction data. We propose a framework to address some of these limitations and present new 

results which improve the quality and accuracy of currently available data. Furthermore, we 

supplement published results with a large body of negative interactions of high-confidence 

extracted from rejected data, allowing for improved modeling and prediction of SH2 interactions. 

We present and analyze new experimental results for the dynamic response of downstream 

signaling proteins in response to RTK signaling. Our data identify differences in downstream 

response depending on the character and dose of the receptor stimulus, which has implications 



x 
 

for previous studies using high-dose stimulation. We review some of the methods used in this 

work, focusing on pitfalls of clustering biological data, and address the high-dimensional nature 

of biological data from high-throughput experiments, the failure to consider more than one 

clustering method for a given problem, and the difficulty in determining whether clustering has 

produced meaningful results.
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Chapter 1: Introduction, Background, and Review of 
the Current State of Quantitative Measurements of 

SH2 Domain Interactions 

1.1 Introduction and Overview 

Receptor tyrosine kinase (RTK) signaling mechanisms play a central role in intracellular 

signaling and control development of multicellular organisms, cell growth, cell migration, and 

programmed cell death. Dysregulation of these signaling mechanisms results in defects of 

development and diseases such as cancer. Control of this network relies on the specificity and 

selectivity of Src Homology 2 (SH2) domain interactions with phosphorylated target peptides. In 

this work, we identify the limitations of current quantitative understanding of SH2 domain 

interactions, review analysis methods, present improved methods and identify best practices, and 

present new data for SH2 interactions, and network behavior. 

In Chapter 1, we review the current state of quantitative measurement data for SH2 

domain interactions, and identify severe limitations in accuracy and availability. In Chapter 2, we 

propose a framework to address some of these limitations and present results which improve the 

quality and accuracy of currently available data. Furthermore, we supplement published results 

with a large body of negative interactions of high-confidence extracted from rejected data, 

allowing for improved modeling and prediction of SH2 interactions. In Chapter 3, we present 

and analyze new experimental results for the dynamic response of downstream signaling proteins 

in response to RTK signaling. Our data identify differences in downstream response depending 

on the character and dose of the receptor stimulus, which has implications for previous studies 

using high-dose stimulation. In Chapter 4, we review some of the methods used in this work, 
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focusing on pitfalls of clustering biological data, and address the high-dimensional nature of 

biological data from high-throughput experiments, the failure to consider more than one 

clustering method for a given problem, and the difficulty in determining whether clustering has 

produced meaningful results.  
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1.2 Background 

1.2.1 The Reader, Writer, Eraser Paradigm of Phosphotyrosine 
Signaling  

Src Homology 2 (SH2) protein domains are small, 100 amino acid modular domains first 

identified in the human SRC (sarcoma) proto-oncogene (1). SRC encodes a multi-domain protein 

with three domains: a Src Homology 3 (SH3) domain, an SH2 domain, and non-receptor protein 

tyrosine kinase domain. SH2 domains are found in a wide range of signaling proteins. Each SH2 

domain interacts specifically protein domains containing a phosphorylated tyrosine residue and 

flanking residues which convey specificity (2). 

In phosphotyrosine signaling mechanisms, like found in receptor tyrosine kinase (RTK) 

signaling networks, the SH2 domain serves as the ‘reader’ of signal in the reader, writer, eraser 

paradigm of signaling (3). When a tyrosine residue is phosphorylated by a kinase (the ‘writer’ of 

phosphotyrosine signaling), proteins containing SH2 domains can interact and bind that residue, 

subject to the compatibility of the flanking peptides. A phosphatase (the ‘eraser’) can then later 

remove the phosphate group and terminate the signal. 

1.2.2 Role of SH2 Domains in Receptor Tyrosine Kinase Networks  

SH2 domains are believed to have evolved at the dawn of multicellularity, and allowed a 

new, orthogonal, signaling mechanism to develop allowing communication between cells (3). 

They play a key role defining specificity within RTK networks, which control cell development, 

migration, and apoptosis (4). When a transmembrane cell surface receptor, such as the Epidermal 

Growth Factor Receptor (EGFR) binds an extracellular ligand from another cell such as 

Epidermal Growth Factor (EGF) a signaling cascade ensures translating the extracellular signal 
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into intercellular response. A ligand-stimulated receptor becomes dimerized, and makes a 

conformational change. This change causes activation in the intercellular kinase domain, causing 

cross phosphorylation of specific tyrosine residues the dimerized receptor tails. These tails are 

targets for SH2 domains. Proteins containing SH2 domains bind these tails bringing additional 

kinase and scaffolding domains causing a cascade of SH2-mediated phosphotyrosine signaling. 

These signals integrate through several pathways (such as PI3K, MAPK, JAK/STAT) resulting 

in changes in gene expression. Dysregulation of RTK signaling networks is a cause of several 

developmental diseases and forms of cancer (4, 5). 

1.2.3 Qualitative Measurements of Binding  

Early experiments attempted to classify the binding profile of SH2 domains using 

degenerate libraries. Resources like SMALI (6) and Scansite (7), were able to identify residues at 

each position of a phosphorylated peptide that contribute to binding. A limitation of this method 

is that influence at each position is identified independent of each other position. These results 

can be combined into a statistical model like a position specific scoring matrix (PSSM) under the 

assumption that each position acts independently. 

Although useful for identifying general binding trends, these models have significant 

limitations. Since contributions between positions can be interdependent, some interactions 

cannot be captured by a model assuming independence. Conditionally dependent interactions are 

believed to play a role in determining selectivity and specificity of interactions. One of the most 

important manifestations of this phenomenon is ‘non-permissive residues’ – residues in a peptide 

that disrupt binding despite the presence of other residues correlating with strong binding (8). 

Predictions from a model based on independence would result in false positive predictions when 

non-permissive residues were present. A key source for identifying conditionally dependent 
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interactions is in data showing non-binding or negative interactions, which degenerate libraries 

do not effectively demonstrate. Furthermore, data like degenerate binding libraries result in 

qualitative models, and cannot provide quantitative measures of affinity required to predict 

competition and network outcomes (see Chapter 2.5.1). 

1.2.4 Accurate Quantitative Measurements Are Required to Predict 
Network Outcomes  

Interaction of SH2 domains with phosphorylated peptides is the key step in determining 

signaling outcomes (9). In order to successfully model signaling network outcomes, one must be 

able to predict the outcome of competition for phosphorylated residues. To predict which 

interactions occur, one must know what domains are present that have affinity for the 

phosphorylated site, the strength of the affinity, and the effective concentration of the domains 

available to interact with the phosphorylated site. Concentration and identity of interaction 

partners is likely to be both cell-specific and condition-specific, but affinity is likely to depend 

on physical characteristics and structures of the SH2 domain and target peptide. Thus accurate 

quantitative measurements are a critical step in order to do accurate modeling, predict outcomes 

of competition, and ultimately to predict network outcomes.  
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1.3 A Review of the Current State of Quantitative 
Measurements of SH2 Domain Interactions  

Significant effort was made by four research groups from 2006 through 2014 to acquire 

high-throughput quantitative measurements of interaction between most human SH2 domains 

and a large number of phosphorylated targets in signaling proteins. Despite this effort, the bulk 

of published data is unusable for future research. Significant errors have been identified in large 

portions of reported data, rendering remaining data of limited value, and some experimental 

design choices have resulted in data that cannot be compared to results from any other study.  

Furthermore, some data was only published in print as a summary or as a figure, and in the 

intervening years, the electronic forms of that data have been lost. Although these issues could 

be rectified by access to the raw data, raw data from most groups has been lost. Data from only 

one group is available for any further analysis. Here, we summarize the experiments conducted, 

and discuss the experimental design choices, availability problems, and errors identified in the 

data which affect the suitability of this data for future work. 

1.3.1 Overview of Published Data 

High-throughput measurements of SH2 domain interaction with peptides have been made 

by four research groups and published in nine publications from 2006 to 2014. Most groups have 

focused on the response of phosphorylated tyrosine containing peptides in the most well studied 

receptor tyrosine kinase (RTK) tails: EGFR(ErbB1), ErbB2, ErbB3, and ErbB4. Later 

measurements expanded to additional families of RTKs, and to a larger pool of suspected 

phosphotyrosine containing peptides in the human proteome. Each group used different 

experimental techniques, resulting in various limitations in the collected data (Table 1.1). 
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Group Year Ref Method Peptides 
SH2 

Domains 
Pairs  

Tested 
Pairs 

Reported 
Thres-
hold 

Data 
Type 

Orig 
Data 
Avail. 

Raw 
Data 
Avail.  

MacBeath 

2006 (10) 

PM 

61 159 9699 383 

≤ 2 µM 
Kd 

Yes No 

2008 (11) 50 133 6650 482 Yes No 

2008 (12) 16 96 1536 25 Yes No 

2009 (13) 46 96 4416 740 Yes No* 

2013 (14) 729 70 51030 2808 ≤ 1 µM Yes No 

Nash 
2010 (8) 

PepA 
192 50 9600 n/a n/a Intensity No**  No 

2014 (15) 22 4 88 60 ≤ 9 µM Kd Yes   

Jones 
2012 (16) 

FP 
85 93 7905 1395 ≤ 20 

µM 
Kd 

Yes Yes 

2014 (17) 85 93 7905 2216 Yes Yes 

Cesareni 2013 (18) PepA 
6202 70 434140 317613 

n/a 
Intensity No***  No 

Table 1.1: Overview of Published SH2 Domain Interaction Data. 
*Raw data available for positive interactions; **Only published as figure; ***Only published as summary. No 
longer publically available, extracted from PepspotDB web server in 2015/2016. PM-Protein Microarray; PepA-
Peptide Array; FP-Fluorescence Polarization. 

The first high-throughput measurements were made between 2006 and 2009 by the 

MacBeath group (10, 11, 13, 19). These measurements were made using functional protein 

microarrays (PM), where proteins are immobilized onto a glass slide and a peptide with a 

covalently attached fluorophore is presented to the slide and then washed with a buffer. When a 

peptide and SH2 domain have sufficient interaction affinity, the peptide is not washed away and 

the fluorescent peptide signal can be detected. A microarray slide can have an entire panel of 

different proteins printed onto it, allowing testing of many proteins at once. This technique 

represented a significant increase in the quantity of measurements able to be made in a short 

period of time when compared to earlier techniques. Furthermore, they measured eight 

concentrations per measurement at equilibrium, and from the multiple measurements they were 

able to calculate the dissociation constant (Kd) at equilibrium. Later work demonstrated that 

protein microarrays were unable to reliably detect low affinity SH2 domain interactions with 

dissociation constants higher than 2µM (16). Ultimately, in 2013, the MacBeath group published 
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a significantly larger data set also using protein microarray technology, repeating and 

superseding earlier measurements and adding a large number of previously unmeasured protein 

domains and peptides (14). 

In 2010, the Nash group published an interaction experiment using solid-phase peptide 

arrays. In theory, a peptide array should provide superior results to a protein microarray, while 

still maintaining the high-throughput capabilities of protein microarrays. By plating peptides 

instead of proteins, the more delicate proteins could be maintained in soluble conditions closer to 

their native environment and only presented to the array during an experiment. As a control for 

this technology, they performed lower-throughput fluorescence polarization experiments to 

validate their peptide array results. Fluorescence polarization can be used to measure protein-

peptide interaction maintaining both the protein and the peptide in solution. Unlike the Jones 

group measurements, the Nash group only tested a single concentration per protein. The value 

they reported was proportional to fluorescence and was deemed by the authors to be ‘semi-

quantitative’. Other work has called into question the quantitative validity of a single 

measurement (20). In 2014, additional work from the Nash group demonstrated a new type of 

peptide array on a small number of interactions, using multiple concentrations of protein, which 

was both quantitative and highly reproducible (15). 

In 2013, the Cesareni group presented results from the largest scale experiment to date 

with over a 10-fold increase in tested interactions. They used a glass-slide based peptide array 

and GST-tagged SH2 domain proteins. They used a single concentration value of protein per 

interaction, and thus reported a value proportional to fluorescence. This technique is known to 

limit the accuracy of quantitative measurements (20). Furthermore, we demonstrate that GST-
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tagged proteins behave differently in a non-systematic way than untagged proteins, further 

calling into question these results (see Chapter 2.5).  

In 2012 and 2014, the Jones group published two high-throughput experiments using 

fluorescence polarization (FP) for all measurements. For validation, they used Surface Plasmon 

Resonance (SPR) – a more accurate but low-throughput technique – to validate their FP 

measurements. The Jones group also measured multiple concentrations per interaction, and were 

able to report the dissociation constant (Kd) at equilibrium. 

1.3.2 Published Experiments Have Significant Limitations 

The usefulness of published data is limited by multiple factors: limitations of 

experimental techniques and experimental design choices, errors in published data, and 

limitations in future data availability. Some experimental techniques have been subsequently 

shown to have significant limitations. Experimental design choices limit the usefulness and 

ability to compare results between data sets. Demonstrable errors and inaccuracies in reported 

data limit the usefulness of some data. Finally, lack of availability of published data and also raw 

data limits current and future usefulness of experimental results. 

Three difference experimental approaches have been used to publish high-throughput 

measurements of interactions between SH2 domains and phosphorylated peptides: protein 

microarrays (10–14), peptide arrays (8, 15, 18), and fluorescence polarization (16, 17). Of the 

three techniques, fluorescence polarization has the best sensitivity and reproducibility on large 

scale data sets. Protein microarrays can only detect interactions with higher affinity (<2µM) (16). 

Early implementations of peptide arrays suffer from the same issues with reproducibility and 

sensitivity, as well as issues with noise and high background signal (data not shown), but the 
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most recent implementation of peptide arrays may have overcome these issues (15), but have not 

yet been used for large scale measurements of SH2 domains. Fluorescence polarization 

techniques are able to detect lower affinity interactions (< 20 µM) and thus have increased 

sensitivity. Although the authors of the FP experiments identified problems with reproducibility 

(16) (including a low 63.3% validation rate for true interactions on a single FP run), they suggest 

(and we also demonstrate) that problems with protein preparation are more likely responsible for 

this issue than the technique. 

Experimental design choices play a major role in the current and future usefulness of 

some of the published data. Experiments which measure only one concentration of protein per 

interaction, such as from the Nash and Cesareni groups (8, 18), represent potentially inaccurate 

measurements and fundamentally lack the controls to determine if those inaccuracies exist (20). 

Furthermore, a protein-peptide interaction cannot be compared directly with other data sets – it 

can only be compared relative to some other interaction. Understanding these limitations, the 

MacBeath and Jones groups (as well as the latest Nash experiment) measure interactions at 

multiple concentrations of the SH2 domain allowing for equilibrium measurements of the 

dissociation constant (Kd). This dramatically increases the usefulness of the data, and allows for 

comparison of results, despite difference in experimental conditions. 

One data source is severely limited in usefulness due to errors in the published data. 

Although the PepspotDB data published by the Cesareni group is the single largest data set 

available, it has a significant inconsistency in 2/3 of the measurements made, drawing the 

accuracy of the published data into question. The data contains columns for the foreground (FG) 

and background (BG) fluorescence measurements, as well as the difference between the 

foreground and background (�� − ��), and the fold change ratio of the foreground to the 
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background (log� 	

�
). For approximately 2/3 of the data (over 280,000 protein-peptide 

interactions) the difference and fold change columns cannot be computed from the reported 

foreground and background values (see Table 1.2 for an excerpt of PepspotDB data). This draws 

into question all other values in these rows, as they are derived from these raw measurements. 

These errors were not limited to a subset of protein domains, or peptides, a data range of 

gathered data, or any other logical subset of the measurements that we could identify. Since 1/3 

of the measurements do compute for these columns, it seems that at some point, a portion of the 

database became scrambled, by row or by column. Unfortunately, these experimental results 

have been used in multiple published analyses and models. Based on these findings, the vast 

majority of this data should not be used in any future work and previous publications should be 

reevaluated. 

SH Domain Peptide � � 
Reported  
� − � 

Calculated  
� − � 

Reported 

����
�
� 

Calculated  

����
�
� 

ABL1 TRFDDWyLWVQMY 162 146 16 16 0.15 0.15 

ABL1 LKDKEGyTSFWND 166 139 27 27 0.25 0.25 

ABL1 NITDPEyGYLARE 149 140 9 9 0.09 0.09 

ABL1 YPREGKyGHAACF 178 140 38 38 0.36 0.36 

ABL1 AFFNPKyQHEGFY 154 140 22 14 0.21 0.14 
ABL1 ALVDLDyEDRPEY 142 138 3 4 0.03 0.04 

ABL1 IIEEGKySLVMEY 155 142 17 13 0.14 0.13 

ABL1 QFSKGVyAIFGFY 136 132 2 4 0.02 0.04 

ABL1 FPFNFSySDYDMP 154 143 12 11 0.12 0.11 

ABL1 AKLKDYyIFNKYL 141 142 4 -1 0.04 -0.01 

ABL1 GQMKDLyHYITSY 139 132 5 7 0.05 0.07 

ABL1 STPKVLyEIPDTY 177 141 43 36 0.37 0.33 

Table 1.2: Excerpt of PepspotDB. 
Sample excerpt from PeptspotDB demonstrating inconsistencies in published data. Green cells indicate calculated 
values match published values; blue cells indicate calculated values do not match published values. 
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Original data was never published for two data sets, and is currently very difficult to 

acquire. In the first Nash group publication (8), data was published as a binned heatmap, but a 

table containing the measured values was never published. The data is privately available (Ron 

Hause, personal communication), but not from the Nash group which has since disbanded.  The 

data collected from the Cesareni group (18), was also never published. A summary of data in the 

form of sufficient statistics was included in the original publication, but the data that the 

calculations were based on was not published in a journal, and the statistics used were 

insufficient to completely describe the data. That data was subsequently displayed in an online 

database, but that database has since been taken offline and is no longer available from the 

Cesareni group. We were able to evaluate and identify the errors in this data as described above 

as we retrieved a copy of the information in the database before it became unavailable. 

The state of availability of raw data underlying these experiments is dire. Since much of 

the useful data published is in the form of a dissociation constant, the reported data is actually 

based on a calculation made upon one or more raw data measurements over multiple 

concentrations. These raw measurements are required to evaluate the fitting methods used to 

calculate dissociation constants, to question the assumptions in the models used, and to 

determine if the measurements in the experiments were valid. Off all high-throughput data 

gathered since 2006, only one group has raw data available. Reanalysis of the raw data from the 

one available data set is found in Chapter 2.  

1.3.3 Intergroup Experimental Results Correlate Poorly 

A further complication in working with the interaction data is that there is practically no 

agreement of measured data between different groups (Figure 1.1). Although both the MacBeath 

and Jones groups were able to successfully validate a random selection of measurements against 
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a lower throughput and more accurate method of measuring interactions – the MacBeath PM 

data was validated successfully against low-throughput FP, and the Jones FP data validated 

successfully against SPR analysis – neither group’s data validates well against published sets of 

curated low throughput data. 

 

Figure 1.1: Between Group Comparisons of Published Data. 
Correlation between published quantitative data from different groups is plotted as a scatter plot. Data units 
represent Kd values (µM), except for the Cesareni group data which is published as a z-score of an signal intensity-
based scale. Pearson correlation coefficients are indicated below each plot.  
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The disagreement between labs on dissociation constants is troubling. The dissociation 

constant, measured at equilibrium, should be the same despite systematic differences in 

measurement techniques. If the primary cause for error was the technology used (e.g. PM vs FP), 

one technology should have compared unfavorably to the lower-throughput validation methods. 

On the other hand, if differences in protein preparation are responsible for the majority of the 

variance, low-throughput validation methods could also be measuring that same protein 

preparation. If the variance is due to the conditions and method of protein preparation in a 

particular laboratory, low-throughput measurements would correlate well to high-throughput 

techniques within the same laboratory even given significant differences between laboratories. 

Based on our analysis (Chapter 2), it is very likely that a significant component of 

measurement variance is due to protein preparation. These differences can be magnified by some 

post-measurement modeling techniques and methods of handling replicate measurements. 

Eliminating these sources of variance might very well ameliorate the significant differences in 

measurements found between difference research groups. 

1.3.4 Conclusion 

Despite significant effort to measure and understand SH2 domain interactions with their 

target peptides, critical flaws or lack of access limits the usefulness of most data. Interactions 

measured with single measurements are known to be inaccurate, and comparison to other 

measurement is severely limited. Errors in reported data make that data suspect. Lack of access 

to published data prevents use. Lack of access to raw data hinders our ability to evaluate the 

analysis process that produced such data. Of all the high-throughput interaction data gathered to 

date, a complete set of raw data is available from only one group.  
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Chapter 2: Revised Analysis of SH2 Domain 
Interaction Data 

2.1 Motivation for Reanalysis 

The primary motivation for reanalysis of existing SH2 domain peptide interaction data is 

to identify true negative interactions (pairs of SH2 domains and peptides that have very low or 

no affinity for one another). All quantitative high-throughput studies-to-date made tradeoffs to 

produce positive interactions at the expense of valid negative interactions. Although the raw 

measurement techniques were essentially neutral to positive and negative interactions, choices in 

analysis techniques were made to focus on identifying the most likely positive interactions such 

as using quality metrics (16) or statistical tests (18) that favored only positive interactions. Thus, 

results were tuned to maximize true positive detection at the expense of making false negative 

calls. In these data sets, lower-certainty interactions were relegated to an ‘out’ group, along with 

potential negative interactions, poor fits, and noisy data.  

Negative interactions are as important as positive interactions when building accurate 

models of binding (21). Supervised machine learning techniques rely on training data sets in 

developing a function to map new input to a category or value. In most cases, training sets 

leading the highest accuracy must contain both positive and negative examples. Similarly many 

statistical modeling techniques benefit from negative data for increased accuracy. In order to 

address this shortcoming, researchers using this data to create models of interactions have either 

used methods that do not take into account negative interactions (7), or used methods to generate 

synthetic negative interactions (21). Other researchers ignored the false negative issue and 

treated all interactions that were not positive interactions as non-binders (17, 22). Since all of 
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these methods will produce less accurate models than models using true negative interactions, we 

hoped to extract additional information about negative interactions from existing data. 

Based on our previous work examining the current state and availability of SH2 domain 

interaction data (see Chapter 1), we identified only one data set which did not contain obvious 

systematic errors, and for which raw data was available: the FP data from the Jones group. 

Although this data was the only raw data available, the FP technology used has the highest 

sensitivity for weak interactions and is solution based, allowing the proteins to be closest to their 

native states when tested.  Thus, this data set would likely have been the starting point of any 

reanalysis even if more data were available. We contacted the original authors and were 

generously provided with all raw data and files available (Richard Jones, Ron Hause, and Kin 

Leung, personal communication). 

In reviewing the experimental details and analysis methods from the Jones group 

experiments, it became clear that best practices were not followed in both the design of the 

experiments and the analysis of the data. During experimental design and data gathering, 

insufficient controls were used, making it difficult to distinguish between true negative 

interactions and non-functional proteins or peptides. Despite identifying non-monomeric protein, 

limited purification was undertaken. It would be reasonable to assume that limited purification 

and controls were related to the tradeoff between cost and gathering more data. In addition, in 

modeling and analysis, several critical steps were overlooked. No assessment of the 

appropriateness or deviation from one-to-one models was made, no evaluation for non-specific 

binding was used in modeling, and an inappropriate quality metric was used, resulting in 

discarding of a majority of the measured data. Furthermore, protein preparation was also known 
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to be a major source of variation, but the variation was treated as typical sample variation in 

analysis, and no controls for non-functional or partially-functional protein were utilized. 

These deviations from best practices suggested that alternative analysis methods might 

uncover useful information.  

 

Figure 2.1: Experimental Layout of 384-well Plate. 
Layout diagram for the 384-well plates used in the Jones FP experiments. Thirty-two proteins at 12 concentrations 
were tested per plate against a single peptide concentration. Proteins were placed on the plate in the pattern above.  
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2.2 Preliminary Data Analysis 

2.2.1 Description of Raw Data 

The Jones group interaction data consists of two separate data sets published in 2012 and 

2014 (16, 17). Although the 2014 study added additional peptides, both studies used the same 

technology (fluorescence polarization), covered the same SH2 domains, and used the same 

protocols.  Some aspects of the availability and formatting of raw data, and aspects of the 

experiment design and sample preparation, are relevant to the reanalysis of the raw data. 

The published data contains interactions between 89 single-domain SH2 proteins with 

165 peptides from 8 different receptor proteins (EGFR, ErbB2, ErbB3, ErbB4, GAB1, Kit, Met, 

and the human androgen receptor). The set of raw data provided by the Jones group did not 

contain all published data. Although it contained data from all 89 domains, it was limited to 142 

peptides from 7 receptor proteins, missing data from the human androgen receptor, and a handful 

of other domain-peptide combinations. Comparisons are based on this slightly smaller set of 

interactions common to both the published and raw data. 

The raw FP data consisted of numerical fluorescence polarization data (in mP units) in a 

16x24 grid, from each 384 well plate that it was scanned from. The plate contained 32 SH2 

domain proteins at each of 12 concentrations organized spatially as in Figure 2.1. The formatted 

raw data contained labels and concentrations for each well of the plate, as well as the identity of 

the fluorescently labeled peptide presented to the entire plate (see Table 2.1 for a slightly 

reformatted example of raw data from a plate). For each plate a 17th row in the data contained 

background intensity but was not used in this analysis. Data for all plates scanned in a particular 

run were concatenated end-to-end in a single Excel file. 
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10.0 µM 5.0  µM 2.5  µM 1.25  µM 0.625  µM 0.313  µM 0.156  µM 0.0781  µM 0.0391  µM 0.0195 µM 0.00977 µM 0.00488  µM 

PIK3R1-N TXN PIK3R1-N TXN PIK3R1-N TXN PIK3R1-N TXN PIK3R1-N TXN PIK3R1-N TXN PIK3R1-N TXN PIK3R1-N TXN PIK3R1-N TXN PIK3R1-N TXN PIK3R1-N TXN PIK3R1-N TXN 

TEC TNS3 TEC TNS3 TEC TNS3 TEC TNS3 TEC TNS3 TEC TNS3 TEC TNS3 TEC TNS3 TEC TNS3 TEC TNS3 TEC TNS3 TEC TNS3 

PIK3R1-C SRC PIK3R1-C SRC PIK3R1-C SRC PIK3R1-C SRC PIK3R1-C SRC PIK3R1-C SRC PIK3R1-C SRC PIK3R1-C SRC PIK3R1-C SRC PIK3R1-C SRC PIK3R1-C SRC PIK3R1-C SRC 

SOCS1 SOCS3 SOCS1 SOCS3 SOCS1 SOCS3 SOCS1 SOCS3 SOCS1 SOCS3 SOCS1 SOCS3 SOCS1 SOCS3 SOCS1 SOCS3 SOCS1 SOCS3 SOCS1 SOCS3 SOCS1 SOCS3 SOCS1 SOCS3 

ZAP70-C GRB2 ZAP70-C GRB2 ZAP70-C GRB2 ZAP70-C GRB2 ZAP70-C GRB2 ZAP70-C GRB2 ZAP70-C GRB2 ZAP70-C GRB2 ZAP70-C GRB2 ZAP70-C GRB2 ZAP70-C GRB2 ZAP70-C GRB2 

PLCG1-NC PLCG1-N PLCG1-NC PLCG1-N PLCG1-NC PLCG1-N PLCG1-NC PLCG1-N PLCG1-NC PLCG1-N PLCG1-NC PLCG1-N PLCG1-NC PLCG1-N PLCG1-NC PLCG1-N PLCG1-NC PLCG1-N PLCG1-NC PLCG1-N PLCG1-NC PLCG1-N PLCG1-NC PLCG1-N 

FGR GRAP2 FGR GRAP2 FGR GRAP2 FGR GRAP2 FGR GRAP2 FGR GRAP2 FGR GRAP2 FGR GRAP2 FGR GRAP2 FGR GRAP2 FGR GRAP2 FGR GRAP2 

TNS1 PLCG1-C TNS1 PLCG1-C TNS1 PLCG1-C TNS1 PLCG1-C TNS1 PLCG1-C TNS1 PLCG1-C TNS1 PLCG1-C TNS1 PLCG1-C TNS1 PLCG1-C TNS1 PLCG1-C TNS1 PLCG1-C TNS1 PLCG1-C 

PIK3R1-NC PTPN11-NC PIK3R1-NC PTPN11-NC PIK3R1-NC PTPN11-NC PIK3R1-NC PTPN11-NC PIK3R1-NC PTPN11-NC PIK3R1-NC PTPN11-NC PIK3R1-NC PTPN11-NC PIK3R1-NC PTPN11-NC PIK3R1-NC PTPN11-NC PIK3R1-NC PTPN11-NC PIK3R1-NC PTPN11-NC PIK3R1-NC PTPN11-NC 

SOCS6 PTPN11-C SOCS6 PTPN11-C SOCS6 PTPN11-C SOCS6 PTPN11-C SOCS6 PTPN11-C SOCS6 PTPN11-C SOCS6 PTPN11-C SOCS6 PTPN11-C SOCS6 PTPN11-C SOCS6 PTPN11-C SOCS6 PTPN11-C SOCS6 PTPN11-C 

BLK VAV1 BLK VAV1 BLK VAV1 BLK VAV1 BLK VAV1 BLK VAV1 BLK VAV1 BLK VAV1 BLK VAV1 BLK VAV1 BLK VAV1 BLK VAV1 

SOCS2 NCK1 SOCS2 NCK1 SOCS2 NCK1 SOCS2 NCK1 SOCS2 NCK1 SOCS2 NCK1 SOCS2 NCK1 SOCS2 NCK1 SOCS2 NCK1 SOCS2 NCK1 SOCS2 NCK1 SOCS2 NCK1 

CRK VAV3 CRK VAV3 CRK VAV3 CRK VAV3 CRK VAV3 CRK VAV3 CRK VAV3 CRK VAV3 CRK VAV3 CRK VAV3 CRK VAV3 CRK VAV3 

PTPN11-N LYN PTPN11-N LYN PTPN11-N LYN PTPN11-N LYN PTPN11-N LYN PTPN11-N LYN PTPN11-N LYN PTPN11-N LYN PTPN11-N LYN PTPN11-N LYN PTPN11-N LYN PTPN11-N LYN 

VAV2 SOCS5 VAV2 SOCS5 VAV2 SOCS5 VAV2 SOCS5 VAV2 SOCS5 VAV2 SOCS5 VAV2 SOCS5 VAV2 SOCS5 VAV2 SOCS5 VAV2 SOCS5 VAV2 SOCS5 VAV2 SOCS5 

SYK-C NCK2 SYK-C NCK2 SYK-C NCK2 SYK-C NCK2 SYK-C NCK2 SYK-C NCK2 SYK-C NCK2 SYK-C NCK2 SYK-C NCK2 SYK-C NCK2 SYK-C NCK2 SYK-C NCK2 

bg bg bg bg bg bg bg bg bg bg bg bg bg bg bg bg bg bg bg bg bg bg bg 

 

                       

  

137.74 135.88 147.66 135.29 147.76 134.3 147.32 134.48 145.04 140.87 139.88 146.42 146.11 145.44 139.42 143.56 136.04 151.76 142.28 144.77 151.06 144.52 140.27 155.25 

141.18 144.84 132.07 134.93 143.15 143.64 141.68 145.94 147.33 141.37 137.8 138.04 133.9 142.95 144.37 137.71 136.45 139.45 145.54 143.85 141.77 141.36 149.75 141.71 

139.29 154.53 141.32 147.29 143.46 146.32 141.93 131.54 142.36 135.62 141.83 137.3 139.28 143.35 144.89 143.96 142.45 139.54 135.38 146.54 136.09 150.25 152.06 143.81 

134.9 148.11 139.44 140.02 143.51 145.2 131.88 138.22 131.2 133.11 141.88 137.45 143.8 148.78 139.58 139.25 142.12 145.72 136.61 146.7 148.07 141.51 147.74 143.69 

146.06 138.14 136.48 134.64 126.42 137.1 138.25 134.47 144.21 145.61 142.76 144.21 139.07 136.25 136.73 141.56 146.95 133.45 139.72 135.51 136.65 149.63 139.68 144.11 

141.2 134.97 142.13 146.69 146.12 137.39 152.14 142.02 144.51 151.14 133.37 130.31 142.52 141.66 138.18 138.76 141.8 146.83 139.19 148.03 138.46 147.75 141.79 140.63 

130.95 134.11 135.74 141.75 140.14 134.4 136.51 140.6 139.95 141.08 138.39 139.61 145.52 136.44 139.11 131.44 144.47 140.15 139.23 136.91 144.36 143.3 144.34 141.55 

131 142.97 137.44 139.66 142.07 139.92 144.07 152.73 143.51 143.91 138.59 134.38 142.22 141.34 140.71 136.23 133.25 141.03 143.46 147.7 142.19 143.25 141 147.29 

141.08 121.97 133.8 133.68 138.19 139.46 133.12 134.02 136.16 140.94 144.01 144.57 132.58 140.75 141.25 137.63 135.88 132.56 134.85 136.86 143.32 142.4 142.86 145.96 

131.09 133.57 132.71 138.58 140.34 141.35 142.59 142.47 134.5 137.19 140.94 142.91 149.65 139.07 138.79 145.1 143.36 137.59 144.76 132.26 143.11 138.46 143.69 132.23 

123.1 137.03 139.1 130.81 141.04 135.75 129.83 143.13 131.71 138.29 146.33 146.01 140.32 140.18 144.39 135.92 142.95 143.52 142.67 139.89 148.02 137.52 138.05 143.86 

132.45 139.27 134.92 136.74 138.78 140.64 140.86 137.08 139.8 134.97 141.53 152.38 135.08 146.18 143.24 148.42 134.55 140.33 141.13 143.44 139.91 128.22 143.95 130.41 

125.46 139.8 135.95 140.49 133.68 135.91 140.76 126.67 139.68 137.6 132.6 137.17 140.06 141.97 142.77 148.5 141.67 135.57 135.65 145.59 140.71 141.85 139.12 147.87 

145.36 138.75 134.55 139.72 132.23 134.95 137.35 143.61 134.05 138.9 145.3 142.28 142.9 132.36 134.9 135.31 143.53 144.99 132.41 136.21 142.39 143.3 138.15 138.67 

118.01 139.48 136.48 141.3 141.17 138.6 142.16 144.61 139.32 139.93 140.46 135.98 147.22 145.29 138.13 140.82 149.49 133.26 148.12 135.97 154.97 149.72 143.13 150.19 

140.92 141.64 150.64 155.25 143.22 143.81 149.41 150.82 152.49 141.51 145.62 150.52 146.53 149.05 144.94 151.74 141.56 149.13 148.44 158.42 154.49 161.34 145.69 148.02 

135.88 147.66 135.29 147.76 134.3 147.32 134.48 145.04 140.87 139.88 146.42 146.11 145.44 139.42 143.56 136.04 151.76 142.28 144.77 151.06 144.52 140.27 155.25  

Table 2.1: Raw Data Format 
Raw data was stored as intensities, labels, and concentrations for each well of the plate. The plate number, and the identity of the fluorescently labeled peptide 
presented to the plate were recorded. For each plate a 17th row in the data contained background intensity information. The information from the original excel 
data is reproduced here but has been modified to fit the page.
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The peptides in the Jones FP data are predominantly 13-mers, with a central 

phosphorylated tyrosine residue. In the first Jones experiment, approximately 32 peptides were 

initially made and tested as 18-mers. Jones and colleagues found the 18-mers to have similar 

binding free energies, but the 13-mer peptides generated higher maximum polarization, and thus 

gave better sensitivity and signal-to-noise (16). The SH2 domain proteins were primarily 

expressed as single-SH2-domain-containing constructs. When a native protein contained more 

than one SH2 domain, constructs were built with each domain independently (and referred to 

with a suffix of “–N” or “–C” to indicate which terminal the domain was from). Although a few 

proteins were also expressed as a double domain, those constructs are excluded from this revised 

analysis. These SH2 constructs that the Jones group selected for the experiment each met the 

following criteria: “1) fraction of monomeric protein observed in previous study following 

expression and purification >=50% by size exclusion chromatography; 2) previous evidence of 

functionality by PM as evidenced by interaction with one or more phosphopeptides with an 

apparent midpoint binding constant KD<=1 mM.” (16) 

2.2.2 Model Selection 

The mathematical model underlying a saturation binding experiment is based on a 

theoretical one-to-one kinetic interaction: 

���� =
���������� !
"# + ������ ! + �% 

where Fobs is the observed fluorescence (in mP units), [domain] is the concentration of the SH2 

domain, F0 is the baseline value (in mP units), Fmax is the value at saturation , and Kd is the 

dissociation constant. This form of model was used in the original publication, as well as all 
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other high-throughput analyses which computed dissociation constants from the raw binding data 

(10, 11, 13, 14, 16, 17, 19).  

 

Figure 2.2: Examples of fitting results for individual replicates. 
Several illustrative examples of fitting results for individual replicates are shown. (Upper Left) Binder example with 
moderate Kd, and signal approaching saturation. (Upper Middle) Non-binder example, with low magnitude, flat 
signal . (Upper Right) Aggregation example: strong linear response of high slope with no saturation evident. (Lower 
Left) An example of a fit for which a first order fit was best, but which had high residual error. (Lower Middle) An 
example of a binder called in our revised analysis which was rejected as a binder in the original publication. (Lower 
Right) Fit Artifact: Despite clearly being noisy data with little form, a first order fit is selected over a linear fit. 
These examples are also typically filtered out by signal to noise criteria, but they represent a third category of data 
that fits no true model, thus they are difficult to identify. Key: Dashed gray line – fitted offset. Dashed blue line – 
linear fit. Dashed red line – first order fit. 

This seems to be the appropriate model to describe typical positive SH2 domain 

interaction with phosphorylated peptides (see Binder, Figure 2.2). However, preliminary analysis 

of the data indicated that fitting only a single one-to-one model of binding via least squares failed 

in some cases due to fitting artifacts, particularly on many non-binding interactions and 
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interactions that suggested aggregation. For example, a non-binding interaction (see Non-Binder, 

Figure 2.2) is typically indicated by low but constant magnitude data with random noise 

superimposed.  When the random noise at the first point or two coincides with a positive slope, 

the least square solution was often a very sharply bending saturation curve with an extremely 

low dissociation constant (Kd on the order of 0.0001 µM), and a very low Fmax, often 

approaching zero (see Fit Artifact, Figure 2.2). Thus the greedy fitting algorithm was 

parametrizing the fitting results based on random noise. In the cases which we have described as 

aggregation (see Aggregator, Figure 2.2), the florescence increases linearly with concentration 

and never shows signs of saturation. When fit with a one-to-one model, dissociation constants 

and concentration at saturation both approached infinity (and resulted in fits with Kd and Fmax 

values on the order of 1x107µM or greater. In the latter case, a one-to-one model is inappropriate 

to model this phenomenon, resulting in the improper parameterization. 

In order to overcome these fitting artifacts, we fit both a linear and one-to-one model to 

the interaction data. The linear model was in the form: 

���� = ������� ! + �% 

where Fobs is the observed fluorescence (in mP units), m is the slope of the fit line, [domain] is 

the concentration of the SH2 domain, and F0 is the baseline value (in mP units). The best model 

fit was evaluated using the Akaike Information Criterion (AIC) (23).  

2.2.3 Determination of Saturation Conditions 

We hypothesized that the maximum polarization measured – the polarization at saturation 

– should be similar across all domains and peptides. Thus, in a saturation binding experiment 

such as this, as protein of increasing concentrations are exposed to labeled peptide, polarization 



23 
 

values should monotonically increase until they plateau – despite increasing protein 

concentration – as all peptides become bound to an SH2 domain. This saturation behavior should 

follow the classic hyperbolic binding curve describing one to one binding (Figure 2.3). The 

labeled peptides in this experiment are all similarly sized small molecules – 13 or 18 amino acids 

in length, and the SH2 domains are very close to 100 amino acids in length and globular in 

shape.  Since fluorescence polarization measurements effectively measure the volume difference 

between an unbound labeled molecule and a complex containing the labeled molecule (Figure 

2.4), volume differences between free peptides and bound peptides should be very similar across 

all domains and peptides. Thus, polarization at saturation should be similar across all measured 

domains and peptides. However, based on the presence of non-monomeric protein reported in the 

original publication, we hypothesized that we might also find results that might not match perfect 

theoretical behavior. Jones and colleagues reported that all domains used in the experiment had a 

“fraction of monomeric protein observed” greater than or equal to 50% “following expression 

and purification by size exclusion chromatography” (16). Unfortunately, the percent of non-

monomeric protein was not recorded in the published data or in the raw data. Knowing that 

proteins tested were not pure monomers, we hypothesized that we might see effects resembling 

‘larger volume’ binders than expected for a monomeric one-to-one binding experiment.  
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Figure 2.3: One-to-One Binding. 
Example of one-to-one saturation binding curve. The Fmax is the signal expected at the asymptote of the curve at 
complete saturation. The dissociation constant (Kd) at equilibrium can be computed graphically from the figure. 
When the fluorescence value on the curve is ½ Fmax, that concentration is the Kd.  

 
Figure 2.4: Fluorescence Polarization (FP) Measures Binding. 
Polarized light is used to excite a fluorescently labeled molecule. (Top) Small molecules rotate more rapidly than 
larger molecules so light emitted from the fluorophore is emitted in different planes depolarizing the light. (Bottom) 
When bound by a larger molecule, light emitted from the small molecule remains close to the exciting plane, 
because large molecules have rotated less during the time between excitation and emission. Thus FP effectively 
measures volume differences, and is used to identify molecular interactions. 
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Figure 2.5: Range of Fmax and Kd for Control Set of Binders. 
The distribution of Kd vs Fmax is plotted for a set of control interactions. Positive interactions with good fits and a Kd 
between 0.4µM and 2µM were chosen to represent a control set of one-to-one fits with good saturation signals. The 
bulk of fits had an Fmax between 25 and 300, suggesting this is a reasonable expected range for maximum 
fluorescence of a one-to-one fit for a 100AA SH2 domain to a short peptide.   

In order to find identify a reasonable range of values for the maximum fluorescence 

(Fmax) of a true one-to-one interaction in this experiment, we looked at a subset of measurements 

likely to represent saturated binding. A subset of positive interactions with a Kd between 0.4µM 

and 2µM were chosen. This subset represented a Kd range for which the experimental 

concentrations were likely to detect saturation well. It’s also in a reasonable range for affinity for 

an SH2 domain for a peptide according to previous studies. Thus, this set of interactions is likely 

to predominantly consist of true binding interaction of SH2 domains of moderately high affinity 
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and provide a valid sample of saturation conditions. A visual inspection of the fits confirmed 

these hypotheses. Interactions in this Kd range had Fmax values between 25 and 316 mP units, and 

no maximum values in this set extended above 316mP units (Figure 2.5). Thus, we concluded 

that true one-to-one interactions were unlikely to have fitted Fmax values far above this range. 

However, we were surprised to find such large variation between the interactions. In 

order to determine the source of the variation, we examined the relationship between Fmax range 

and protein domain. We chose a set of interactions for which a first order fit represented the best 

fit, and which had low residual error. Fmax ranges vary significantly by domain – with some 

domains having relatively tight windows of Fmax values, and others with high variance. The 

median Fmax also varied significantly by domain (Figure 2.6 and Figure 2.7). Only a small 

fraction of interactions fell below an Fmax of 50mP. The small differences in protein size (all 

close to 100AAin length) are unlikely to be the source of this variation. Protein with high 

average Fmax values may have a higher content of non-monomeric protein. Proteins with high 

Fmax variation may have been composed of multiple difference protein preparations with 

differing percentages of non-monomeric protein. 
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Figure 2.6: Fmax Distributions by Domain for 2012 Experiment. 
Fmax distributions by protein domain are plotted as box plots. The box extends from the lower quartile to the upper 
quartile value in the data. The red line represents the median. The whiskers extend to the smallest and largest values 
which are not outliers (more than 1.5 times the interquartile range past the quartile). Data from (16). 
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Figure 2.7: Fmax by Domain for 2014 Experiment. 
Fmax distributions by protein domain are plotted as box plots. The box extends from the lower quartile to the upper 
quartile value in the data. The red line represents the median. The whiskers extend to the smallest and largest values 
which are not outliers (more than 1.5 times the interquartile range past the quartile). Data from (17). 
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2.2.4 Protein Functionality Impacts Identification of Negative 
Interactions 

In addition to accurately identifying true positive interactions, one significant challenge 

when analyzing this interaction data is the task of identifying true negative interactions as 

distinct from negative interactions due to missing or non-functional protein, or experimental 

failure. The ability to identify non-functional protein greatly increases the quality and accuracy 

of non-binding calls and is vital to future modeling of SH2 signaling systems.  

Several parameters related to expected protein behavior affect our ability to accurately 

identify true negative interactions. SH2 domain recognition and binding to a phosphorylated 

peptide seems to the key step in determining signaling specificity. Thus, in order to maintain 

selectivity, we hypothesized that most SH2 domains would only bind a limited set of 

phosphorylated peptides. If true, we would expect that a large majority of experimental 

interactions for each domain would measure as negative, non-binding, interactions. In addition, 

based on prior knowledge of their function, we expect that each SH2 protein tested should 

interact with at least one or more phosphorylated peptide found in the human proteome. Thus 

true positives are likely to be rare. However, since the experiment does not cover all possible 

interactions in the proteome, it is possible that some proteins tested will truly interact with no 

tested peptides. This circumstance highlights one difficulty: although non-interaction may 

represent a series of true negative results, complete non-interaction would be indistinguishable 

from a situation with non-functional protein unless controls were included to distinguish such a 

result. In addition, due to the experimental methodology chosen in the original publication, one 
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significant practical difficulty in this experiment lies in distinguishing proteins which have 

degraded or are non-functional from proteins which truly fail to bind any tested peptide.  

In an ideal experiment, controls should be chosen to assure that the results from the 

experiment are due to the parameters and components being tested and not due to outside 

unintended influences. When evaluating protein interaction with a fluorescent peptide, controls 

should establish that the protein is folded and functional, that the peptide is phosphorylated and 

properly labeled, and that the protein and peptide demonstrate the expected activity. A non-

functional or unfolded protein or an improperly labeled peptide would lead to a false negative 

interaction. In this experiment, the fluorescent polarization experiments were carried out on 384-

well plates. Each plate contained 32 different proteins at 12 concentrations measured against a 

single peptide. The set of 12 concentrations are fit with a curve resulting in fitting parameters of 

Kd (equilibrium dissociation constant), Fmax (fluorescence value at saturation), and F0 (baseline 

or background fluorescence). This results in 32 different protein measurements against a 

common peptide. Unfortunately, explicit controls were not included in the experimental design, 

and thus were not present any plate tested. On its face, this is a significant limitation in the 

original experimental design.  

Although there are no explicit controls on a single plate, some implicit patterns in the 

data can be used as controls. For example, baseline fluorescence for all 32 proteins at every 

concentration would be a pattern consistent with a non-functional peptide. Although a single 

plate might be useful to diagnose an issue with a peptide, a single plate does not contain a useful 

pattern to determine problems with protein activity or functionality. Since the behavior of any 

particular protein-peptide interaction is not known, any single negative interaction may represent 

a true negative non-binding event. Nevertheless, a combination of protein results across 
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replicates from different runs and across multiple peptides can demonstrate a pattern helpful in 

diagnosing a problem with protein functionality. We identified several such patterns that were 

effective at identifying varying types of protein degradation. 

 

Figure 2.8: Examples of Categorical Binding Activity at the Replicate Level. 
Heatmaps of activity for the SH2 domains from BMX, GRB2, and PIK3R1-C interacting with ErbB peptides (16).  
Rows represent a peptide tested, and columns represent different runs. Green: positive, binding interactions. Gray: 
negative, non-binding interactions. White: not-tested. Orange: Aggregation. Blue: Non-functional protein.  

We first looked for gross patterns of protein non-functionality. Binding and non-binding 

results for each protein were plotted as a heatmap with each row representing a different peptide 

and each column representing replicates from a different run or different day. We found both 

proteins that displayed patterns consistent with normal biological variation, and patterns 

consistent with degraded protein. For example, in PIK3R1-C interactions with ErbB peptides, 

eight peptides show positive interactions Figure 2.8. Five of those peptides show consistent 

results across 3 test runs.  One peptide showed consistent positive results across two runs, but a 

negative interaction in the third run. One peptide showed a positive result on run 1, but 

aggregation behavior on the remaining two runs. (One other peptide with positive interactions 

was only tested on one run.) For PIK3R1-C, there are no systemic patterns that suggest protein 

degradation. Contrast this result with GRB2 and BMX interactions with ErbB peptides (Figure 

2.8). For GRB2, four peptides show positive interactions. However none of the positive results 
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are replicated on run 1. This pattern is strongly suggestive of protein non-functionality of GRB2 

on run 1. For BMX, no positive interactions are recorded during any interactions with ErbB 

peptides. Although it is possible that those interactions are all true negatives, it is also possible 

that the protein was never functional at all. Heatmaps of this form for each protein can be seen 

for the 2012 experiment (16) in Figure 2.9 and for the 2014 experiment (17) in Figure 2.10.  

2.2.5 Partial Protein Functionality Can Affect Affinity M easurements 

The protein functionality analysis indicated that some proteins were likely to be non-

functional during the experiment. Since proteins that displayed positive binding interactions at 

one point in time could seemingly degrade sufficiently to result negative interactions during 

other runs, we hypothesized that proteins might also partially degrade resulting in effects on the 

quantitative measurements of Kd. Fitting and parameter evaluation depends on the assumption 

that the reported concentration of protein is all functional: the Kd parameter is equal to the 

concentration at which half-saturation is achieved (Figure 2.3). If the effective or functional 

protein concentration was less than the reported concentration, it would affect Kd values. For 

example, suppose 25% of the protein was degraded. Then the effective concentration – the 

concentration of protein available to bind a peptide – would be 75% of the reported value. A 

saturation binding experiment and parameter fit that reported a Kd of 1µM, would actually be 

measuring a reaction with a Kd of 0.75 µM. Protein consisting of a mixture of functional and 

non-functional molecules would result in measurements will artificially higher Kd values (which 

are lower affinity reactions). Thus partially degraded protein would represent a systematic bias 

towards weaker interactions and higher Kd values.  
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Figure 2.9: Categorical Plots of Binding Activity at the Replicate Level from the 2012 Experiment. 
Heatmaps of activity for the SH2 domains interacting with ErbB peptides (16).  Rows represent a peptide tested, and 
columns represent different runs. Green: positive, binding interactions. Gray: negative, non-binding interactions. 
White: not-tested. Orange: Aggregation. Blue: Non-functional protein. 
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Figure 2.10: Categorical Plots of Binding Activity at the Replicate Level from the 2014 Experiment. 
Heatmaps of activity for the SH2 domains from non-ErbB peptides (17).  Rows represent a peptide tested, and 
columns represent different runs. Green: positive, binding interactions. Gray: negative, non-binding interactions. 
White: not-tested. Orange: Aggregation. Blue: Non-functional protein.  
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We hypothesized that this partially degraded protein would manifest in Kd patterns in the 

experimental results. If a run contained degraded protein, but the protein was not so degraded as 

to prevent binding, binders should have a systematic bias towards higher Kd values (lower 

affinity) than a run with fresh, functional protein. Since each plate compared a panel of 32 

proteins against a single peptide, this pattern would require data gathered across sequential plates 

containing the same protein mix. The pattern would be easier to identify if data were acquired in 

approximately the same order on different runs. Luckily, the order of tested peptides was 

predominantly preserved from one run to another in the 2012 experiment (16) enabling exactly 

this analysis.  

In order to test for partial degradation, fit Kd values were arrayed in a table (Table 2.2). 

Data for each run is sorted in order of data acquisition, and each row represents a peptide. Thus, 

the columns can be viewed as a short time scale (on the order of minutes between measurements) 

and different runs representing a long time scale (with hours or days between measurements). In 

the data for PIK3R2-N, one can see that run 3 contains almost all of the highest affinity (lowest 

Kd) replicates and run 1 contains the lowest affinity (higher Kd) replicates. Only one peptide in 

run 1 shows the strongest binding. This pattern suggests that protein in runs 1 and 2 was partially 

degraded, and protein in run 3 was the least degraded. A related pattern can be seen in the 

binding data for SH2D2A. In this case, there is no strongest run (with strongest binder 

distributed randomly between runs 1 and 3), but run 2 shows consistently weaker binding.  
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PIK3R2-N RASA1-N 

 
Run 1 Run 2 Run 3 

 
Run 1 Run 2 Run 3 

Peptide Plate Kd Plate Kd Plate Kd Peptide Plate Kd Plate Kd Plate Kd 

ERBB4 0807 129   199   222 8.59 ERBB4 1150 3 2.19 185 0.56 205 0.61 

ERBB2 1127 133 3.08 203   226 0.99 ERBB4 1202 4 15.16 186   206 4.32 

        227 1.18 ERBB4 1208 11 37.85 194 7.64 216 6.41 

ERBB4 1056 134 2.03 204 0.82 230   ERBB2 1005 19 10.87 202 1.38 225 5.14 

ERBB4 1056 137 4.23 207   231   ERBB2 1127 20 1.64 203 1.16 226 0.96 

ERBB3 1159 136 0.26 206 0.26 229 0.09 ERBB3 1159 23 0.31 206 0.44 229 0.19 

ERBB3 1159 139 0.70 209   233 0.23 ERBB3 1159 26 4.15 209 4.95 233 2.99 

ERBB3 1307 140 0.58 210 0.26 234 0.25 ERBB3 1307 27 1.77 210 1.60 234 1.93 

ERBB4 1150 144   214 3.66 238 3.65 ERBB4 1150 31 1.05 214 0.96 238 1.33 

ERBB2 0772 148 1.54 218   242 2.19 ERBB2 0772 35 6.05 218   242 9.36 

EGFR 0764 152 2.49 223 2.27 246 1.16 ERBB4 1262 37 1.14 220 4.79 244   

ERBB3 0823 154   225   248 4.92 ERBB4 0906 38 9.69 222 7.17 300 1.17 

EGFR 1092 160   232   254 13.55 EGFR 0764 39 9.94 223   246 22.16 

ERBB3 0868 167   239   261 2.32 ERBB3 0823 41 2.84 225   248 2.23 

EGFR 1016 168 3.67 240 0.94 262   ERBB3 0897 50   235 10.04 257 2.10 

ERBB2 1023 242   244   265 2.22 EGFR 1016 55 1.43 240 1.37 261 2.24 

ERBB3 1054 243 3.14 245   266   ERBB2 1023 174 5.05 244 10.55 265 9.31 

ERBB3 1222 250   252 0.81 273 0.84 ERBB4 1162 176 2.29 246 5.21 267 4.14 

ERBB3 1289 257 10.68 259   282 0.16 ERBB2 1196 178 1.62 248   269 1.71 

ERBB4 1202 266   268   292 1.03 ERBB2 1221 179 0.24 249 1.95 270 1.86 

ERBB2 1222 180 0.40 250 6.89 271 2.78 

SH2D2A ERBB3 1222 182 0.64 252 2.87 273 1.83 

 
Run 1 Run 2 Run 3 ERBB3 1224 183 0.75 253 2.16 274 1.25 

Peptide Plate Kd Plate Kd Plate Kd ERBB3 1262 187 3.69 257   280 13.43 

ERBB4 1202 61 3.08 186 5.53 206 4.35 ERBB3 1289 189 3.45 259   282 4.35 

ERBB4 0807 71 6.90 199   222 21.91 EGFR 0998 190 1.30 260 7.82 283 2.82 

ERBB3 1307 82 12.3 210   234 55.47 ERBB3 1276 191 0.83 261 1.36 284 2.39 

ERBB3 0789 87 13.74 215   239 9.50 ERBB3 1328 192 1.83 262 16.03 285 9.10 

ERBB4 1262 92 15.13 220   244 9.42 EGFR 1172 193 1.31 263 5.72 286 5.37 

ERBB4 0906 93 12.86 222   300 0.88 EGFR 0727 194 3.01 264   287 6.33 

ERBB3 0975 101 7.56 231   253 20.46 ERBB4 1202 199 1.31 268 3.16 292 1.00 

EGFR 1092 102 5.29 232 3.23 254 13.20 ERBB4 1242 204 1.53 273 1.79 297 5.90 

EGFR 0900 105 7.50 235 ### 257 1.96 

ERBB2 1139 106 3.51 198 7.50 220 1.70 

    236   221 1.44 

        299 3.67 

EGFR 0915 108 4.46 238 5.55 259 3.89 

ERBB2 1221 213 2.80 249   270 18.26 

ERBB3 1222 216 3.12 252   273 21.60 

ERBB4 1188 219 9.09 255   276 7.78 

ERBB3 1328 226 0.86 262   285 5.90 

ERBB4 1202 233 4.36 268   292 1.23 

ERBB4 1208 237 5.42 272 ### 216 1.98 

Table 2.2: Patterns in Kd Values Demonstrate Protein Degradation Effects. 
Green highlighted values represent the highest affinity (lowest Kd) measurement for each peptide. Kd values are in 
µM.   
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There is no record in the original data for when protein sample changes were made (i.e. if 

a supply of protein was exhausted and replaced with another supply). We hypothesized that one 

might find runs of moderate or weak affinity followed suddenly by a very strong affinity. This 

pattern, also very unlikely due to random chance, would be consistent with an older partially 

degraded protein sample being replaced by a new, fresh sample of protein. In the data for 

RASA1-N, one sees exactly this pattern. For the earlier tested peptides in each run, there is no 

clear stronger sample. However, at plate 174 in run 1, the highest affinity measurements all come 

from run 1 for the rest of the protein data. 

Although these patterns are difficult to detect and are not completely consistent, they are 

unlikely to be due to systematic errors in data acquisition. Any systematic bias in FP data (such 

as higher or lower absolute readouts on a particular run) would not result in a similar bias for the 

calculated Kd. Shifting a saturation curve up or down does not change the calculation of the Kd 

parameter because Kd is based on the horizontal axis value at half-saturation. Similarly such a 

bias would not affect the Fmax parameter which is based on the difference between the maximum 

value at saturation and the baseline value – both of which would be shifted and thus the 

difference would remain unaffected. This is exactly the value and rationale in using a parameter 

derived from multiple measurements at equilibrium. 

Unfortunately, there is not enough compatible data to produce control patterns for all 

proteins, and not enough to be used to infer quantitative protein activity for each measurement. 

Nevertheless, the patterns strongly suggest that partial protein functionality biases the acquired 

parameters towards weaker (higher Kd) interactions. As this seems to be a primary source of 

variation, and it is not random, taking the mean of multiple replicates would result in an 

inaccurate estimator of the population activity. Instead, the minimum Kd value – the representing 
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the most functional protein tested – should be used. Although this value still may not represent 

the true Kd (as the best protein tested may still itself be only partially functional) this value 

would still be closer to the true value than any other replicate. 

2.2.6 Identification of Potential Protein Aggregation 

We also hypothesized that non-monomeric protein might manifest with patterns outside 

those expected of a one-to-one interaction. We found two major trends in interaction data outside 

of classic saturation binding curves. The first trend was a relatively flat linear response 

independent of concentration with slopes from 0 to 40mP/uM (see Non-Binder, Figure 2.2). 

These concentration-independent results with low magnitude signal are exactly what would be 

expected of true negative interaction for a non-binder. The second trend was a linear response 

with a high slope, and strong, protein concentration dependent signal (see Aggregator, Figure 

2.2). Since signal failed to saturate in these experiments, one-to-one assumptions produced 

binding saturation curves with extremely high Fmax values, on the order of 1x107 mP units. 

Interactions that do not saturate are unlikely to represent true one-to-one binding, and are more 

likely to represent some type of aggregation phenomena of multiple proteins binding one or more 

labeled peptides resulting in high volume change and high signal with increasing concentration. 

After identifying this phenomenon in individual replicates, we looked for patterns across 

proteins. Binding, non-binding, non-functional, and aggregation interaction results for each 

protein were plotted as a heatmap with each row representing a different peptide and each 

column representing a different run or different day (Figure 2.9 and Figure 2.10, aggregation in 

orange). Proteins showed mixed results with aggregation and non-binding (e.g. ZAP70-N), or a 

mixture of aggregation, binding, and non-binding results (e.g. LCK). We did notice a significant 

decrease in aggregation from the 2012 data to the 2014 data, though no obvious change in 
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pattern (such as limiting to a time range or run or subset of protein domains). This suggests that 

this phenomenon might be related to protein preparation, purification, or handling, and that it 

could be minimized. 

2.2.7 Final Process for Selecting Fits 

Our fitting procedure uses a classic one-to-one kinetic model to identify positive 

interactions, as well as alternate models to aid in identification of non-binders and aggregators. 

Additional criteria, including a measure of signal-to-noise, aid in identifying low-quality 

measurements. Individual replicate measurements for a particular domain-peptide pair are 

evaluated categorically and quantitatively. If replicate results indicate positive interaction 

(binding), the minimum Kd reported is chosen, as explained in the analysis of partial protein 

functionality. This method results in higher confidence calls for both positive interactions 

(binders) and negative interactions (non-binders) than earlier methods which only accepted a 

small fraction of the data and only focused on positive interactions. This is accomplished with 

limited loss of data into indeterminate categories. An overview of the fitting method used on 

each replicate can be seen in Figure 2.11. 

For domain-peptide pairs where a one-to-one model is the best fit, results were 

categorized as ‘potential binders’. Potential binders are then tested for signal-to-noise. If the sum 

of the absolute value of the residuals from the fit (noise) is lower than the difference between 

maximum signal and the baseline signal (signal), the pair was categorized as a ‘binder’ and the 

fit parameters (Kd, Fmax, and F0) were recorded. Otherwise, if the signal was less than the noise, 

the measurement was categorized as ‘low signal-to-noise’ and the interaction was considered 

inconclusive. When a linear model is the best fit, zero or low-slope (under 5mP/µM) indicates a 

non-binding interaction. A linear fit with a higher slope indicates aggregation, and the replicate is 
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set aside as inconclusive. A portion of potential binders best fit a one-to-one model according to 

the AIC, but in essence represent a straight-line no-slope fit, just like a non-binder. Results where 

the Kd ≥ 1000 µM (straight line), the Fmax ≤ 1 mP (low slope), or the F0 ≤ 100 mP (a fitting 

artifact due to noise on a low-slope straight line) all represented cases where the fit was for all 

purposes a linear fit, and were categorized as such. 

 

Figure 2.11: Flowchart Describing Fitting Process for Individual Replicate Measurements. 
 

A series of one or more measurements were made for each domain-peptide pair tested. 

Each measurement has been assigned a category (binder, non-binder, aggregator, or low-signal-
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to-noise) as part of the analysis. In order to resolve a call for a domain-peptide pair for the 

experiment, the calls for each measurement must be considered, and inconsistencies in 

categorization must first be reconciled. Those conflicts are resolved as in Table 2.3. If the 

replicate group contains one or more binders, the domain-peptide pair is categorized as a 

‘binder’.  We chose to believe evidence of a binding reaction over inconclusive or potential false 

negatives because evidence of binding (even in a single replicate) suggests an interaction is 

possible, despite failure to observe the reaction in other replicates. If a replicate group contains 

one or more ‘non-binders’ and zero ‘binders’, it was categorized as a ‘non-binder’. The process 

used to assign a non-binding result already excludes multiple potentially inconclusive situations. 

Thus when a group has both non-binding and inconclusive evidence, but no evidence of binding, 

the group is treated as a confirmed negative interaction, and assigned a non-binding category. If 

a replicate group contained no ‘non-binders’, and no ‘binders’, and only considered of one or 

more ‘aggregators’, or one or more ‘low signal-to-noise’ measurements, it was categorized as 

inconclusive, and removed from further analysis. 

Rule for Handling Replicate Measurements Outcome 
Contains at least one binder binder 

Contains no binders AND contains at least one non-binder non-binder 

Contains no binders AND no non-binders AND contains at least one 
aggregator, 'low signal-to-noise', or ‘non-functional’ measurement 

inconclusive 

Table 2.3: Rules for Making Calls on Groups of Replicate Measurements. 
 

When a group contains more than one binder, it has multiple replicates for the fit 

parameters of Kd, Fmax, and F0. Multiple replicates are typically averaged, as they were in the 

original publications (16, 17), as a sample mean is typically a more reliable indication of a true 

mean than any single measurement. However, due to systemic evidence of protein degradation 

(see Results), variances between measurements are likely due to difference in protein 
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functionality. In the case where a portion of the protein is degraded, the effective concentration 

available for interactions is always less than the expected concentration. Thus the most accurate 

measurement would be from the protein with the highest functionality (as the functional 

concentration would be closest to the expected concentration). Of course, even the highest 

measurement might not represent a fully functional protein – but it would be closer to the true 

value than any other single measurement. For this reason, the parameters from the sample with 

the strongest binding (lowest Kd) were selected as the value for the domain-peptide pair. While 

this method is a significant departure from convention, the statistical convention is based on 

assumptions of the source of noise which seem to be violated in these experimental results, 

requiring a new method to reconcile replicates.  
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2.3 Methods 

2.3.1 Data Description 

For each SH2 domain and peptide pair, a Fluorescence Polarization (FP) Saturation 

Binding Assay was originally performed by Hause and colleagues as described in (16). Data for 

each protein-peptide pair consists of twelve domain concentrations, ranging from 0.002–10µM, 

measured interacting with a fixed peptide concentration (20nM), after 20 minutes to obtain 

equilibrium. Experimental interaction magnitude was recorded in millipolarization (mP) units. 

2.3.2 Model Fitting and Selection 

Data for each replicate for each pair were fit to two models – a linear function (equation 

1) and a function representing a non-linear one-to-one equilibrium interaction (equation 2) 
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where Fobs is the observed fluorescence (in mP units), m is the slope of the fit line, 

[domain] is the concentration of the SH2 domain, F0 is the baseline value (in mP units), Fmax is 

the value at saturation , and Kd is the dissociation constant. Data for each replicate for each pair 

were fit independently and replicates were handled as described below. 

The linear model fit parameters for slope and baseline value, while the non-linear model 

fit parameters for Kd, Fmax and baseline value. Baseline values were fit along with the other 

parameters because background values recorded in the original data were often incongruous with 

respect to the measurements. Both linear and non-linear fits were performed with least squares 

regression using the Trust Region Reflective algorithm as encoded by the optimize.least squares 
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module from the SciPy package in the Python programming language. Non-linear fits used the 

standard least-squares loss function (the default loss function), while linear fits used a modified 

soft loss method to limit influence of outliers (options “loss='soft l1' f scale=0.1”). Model 

selection was performed using the Akaike Information Criterion (AIC) (24), with the assumption 

of Gaussian-distributed errors as described in (23). 

For domain-peptide pairs where a linear model represented the best fit (as determined by 

the AIC score), results were separated into two categories based on the slope of the linear fit. Fits 

with slopes below 5mP/µM were categorized as ‘non-binders’, otherwise fits with higher slopes 

were set-aside from further analysis and marked as ‘aggregators’ (see Results section on 

Determination of Aggregation, elsewhere). For domain-peptide pairs where a one-to-one model 

represented the best fit, results were categorized as ‘potential binders’. Potential binders were 

then further categorized into binders, marked as having low signal-to-noise ratio, or flagged as 

artifacts representing linear fits. 

A portion of potential binders best fit a one-to-one model according to the AIC, but 

essentially represented a straight-line fit. Results where the Kd ≥ 1000 µM, the Fmax ≤ 1 mP, or 

the F0 ≤ 100 mP all represented cases where the fit was for all purposes a linear fit, and were 

treated as such.   

Potential binders were also tested for signal-to-noise (equation 3): 
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where [domain]i is the ith concentration of the SH2 domain, Fobs is the observed 

fluorescence (in mP units), F0 is the baseline value (in mP units), and Fmax is the value at 
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saturation. If the sum of the absolute value of the residuals from the fit was greater than the 

difference between the difference between maximum signal and the baseline signal, the pair was 

categorized as ‘low signal-to-noise’. Otherwise, the pair was categorized as a ‘binder’ and Kd 

and Fmax were recorded. 

2.3.3 Replicate Analysis 

For each domain-peptide pair, based on the number of replicates measured, one or more 

fits were obtained from the raw data. To assign a final category for the pair taking into account 

all replicates, the type of fit for each replicate was considered as described in Table 2.3. If the 

replicate group contained one or more binders, the domain-peptide pair was categorized as a 

‘binder’.  If the replicate group contained one or more binders, the domain-peptide pair was 

categorized as a ‘binder’. If a replicate group contained one or more ‘non-binders’ and no 

‘binders’, it was categorized as a ‘non-binder’. If a replicate group contained no ‘non-binders’, 

and no ‘binders’, and one or more ‘aggregators’, it was categorized as an ‘aggregator’ and 

removed from further analysis. If the replicate group contained only ‘low signal-to-noise’ 

measurements, it was categorized as ‘low signal-to-noise’ and removed from further analysis.  

For remaining domain-peptide pairs categorized as ‘binders’, the Kd, Fmax, and associated 

confidence interval of the replicate with the minimum Kd was selected for the final value of the 

domain-peptide pair. 
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2.4 Results 

2.4.1 Description of Results 

Of 12147 interactions tested, 1506 interactions (12.5%) resulted in a positive interaction, 

and 10628 interactions (87.5%) resulted in negative interactions. The remaining 1117 

interactions (9.2%) were indeterminate. Of the indeterminate interactions, 382 (3.1%) were due 

to non-functional protein, 312 (2.6%) were due to low signal-to-noise issues, and 277 (2.3%) 

were due to protein aggregation. The results are plotted as a heatmap in Figure 2.12. 

We hypothesized that domains would bind a relatively small proportion of peptides, on 

the order of 20%, as the SH2 domain interaction with phosphorylated peptides is believed to be 

at the core of specificity determination. Although the total binding fraction was even lower – 

closer to 12.5% – individual domains actually bind widely varying percentages of tested 

peptides: from less than 1% to 58.5% of tested peptides (Figure 2.13). Different domains have a 

wide range of selectivity and specificity for their targets, suggesting that more promiscuous 

domains have a purpose outside of determination of specificity. 

In order to make calls on the 12147 interactions tested, a total of 37488 replicate 

measurements were analyzed. Fitting results show a substantial portion of replicates (over 30%) 

resulted in indeterminate results (e.g. Low SNR, Non-Functional, and Aggregator categories, see 

Table 2.4). Yet, final determinations of domain-peptide interaction results (the calls made on all 

replicates for a domain-peptide pair) only resulted in 9.2% indeterminate results. This suggests 

that many results which had one or more indeterminate results were ‘rescued’ by either a true 

positive result or a high-confidence negative result. 
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Figure 2.12: Results of the Revised Analysis of Jones Group FP Data. 
Heatmap plot of the revised analysis. Peptides (y-axis) are plotted against domains (x-axis) with Kd values 
represented by a heatmap. The color scale is based on a temperature scale, with lower affinity signals displaying as 
dark squares, and higher affinity (lower Kd) signals rising through red to orange, yellow, and white. Gray squares 
represent interactions not measured. Blue squares represent protein identified as non-functional, and thus represent 
indeterminate results.  
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Figure 2.13: Fraction of Peptides Bound by Each SH2 Domain. 
A plot of the fraction of peptides tested resulting in a positive interaction (binder) for each domain. 

Categorical Binding 

Call 

Number of 

Replicates Percent 

Binder  2880 7.7% 

Non-Binder 23208 61.9% 

Low SNR 2555 6.8% 

Non-Functional 6976 18.6% 

Aggregator  1867 5.0% 

Table 2.4: Summary of Fit Results at the Individual Replicate Measurement Level. 
 

  



49 
 

 
Figure 2.14: Published Results From The Jones Group FP Data. 
Heatmap plot of the original published results – revised and replotted here to match the format of results from the 
reanalysis. Peptides (y-axis) are plotted against domains (x-axis) with Kd values represented by a heatmap. The 
color scale is based on a temperature scale, with lower affinity signals displaying as dark squares, and higher affinity 
(lower Kd) signals rising through red to orange, yellow, and white. Gray squares represent interactions not 
measured.   
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This aspect of replicate-level analysis represents a significant improvement in confidence 

of quantitative results for positive interactions, and certainty over validity of negative 

interactions. The failure to remove questionable replicates would significantly impact any metric 

based on average replicate values. 

Revised Analysis Calls 

Binder Non- 
Binder 

Aggregator Low-SNR 
Not 

Functional 
n/a 

P
ub

lis
he

d 
C

al
ls

 

Binder 1225 198 47 27 10 12 

Dropped 281 9326 230 285 372 134 

 Table 2.5: Comparison of Qualitative Binding Results. 
 

2.4.2 Comparisons with Published Results 

The original published fitting results are also plotted as a heatmap (Figure 2.14). Results 

from this reanalysis differ significantly from the published results on the same underlying data. 

Both quantitative and categorical differences can be seen.  

The original data identified 1519 binders, out of 12147 interactions (12.5%). The 

remaining 10628 measurements (87.5%) were discarded in an outgroup containing the poor fits, 

noisy data, non-binders, etc. This new analysis produces approximately the same number of 

binders (1506 vs 1519), but the identity of these binders has shifted dramatically. In addition, the 

analysis recovers 10268 high-confidence non-binding interactions representing approximately 

87.5% of the original data. With respect to positive categorical interactions, out new analysis 

agrees on approximately 71% of the positive calls. Of the positive calls, 1225 overlap between 

the two sets, but we disagree on 479 interactions. Our new analysis recovers 281 binders from 
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the ‘dropped’ pool of the published data, but 294 interactions called binders by the original data 

are classified as non-binders or indeterminate by this work (Table 2.5). 

 
Figure 2.15: Scatter Plot Comparing Published Results With the Reanalysis. 
Published fits are compared with our revised fits. Points falling along the x- or y-axes represent data in one set that 
was identified as a binder but not by the other. Pearson correlation was calculated only on the positive interactions 
common to both sets.  

Quantitative results differ even more drastically (Figure 2.15). Since we select minimum 

Kd to represent a group of replicates instead of mean Kd, we expected that a significant fraction 

of our calls would result in lower Kd (higher affinity) calls. We found that of the 1226 

interactions, we reported a lower Kd on 830 (67.7%). Nevertheless, we also matched the 

originally published Kd calls (±10%) on 201 interactions (16.4%), and reported higher Kd values 

on 235 interactions (19.2%).  The fraction of higher Kd values is not surprising, since the 
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changes we proposed in the fitting process resulted in the addition of new positive interactions 

(previously abandoned in the published work) as well as exclusion of negative and inconclusive 

interactions (previously considered to be positive interactions in the published work). 

Nevertheless, we were surprised to see that our new results do not correlate well with the 

originally published results (giving a Pearson correlation coefficient (r) of only 0.509).  

Although Kd calls between 0µM and 5µM have slightly stronger correlation, most interactions 

(especially those above 5µM) are essentially randomized when compared to the original 

published results. 

2.4.3 Validation with Known Interactions 

In order to determine if these new fitting results were consistent with the known response 

we examined a well-studied biological system: the Epidermal Growth Factor Receptor (25–27). 

Some examples of expected downstream responses to EGF stimulus are shown in Figure 2.16. 

Multiple SH2 domains show affinity for each of these receptors, so the predicted outcome of 

competition should match the known response of the system.   
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Figure 2.16: Validated SH2 Domain Interactions on the Intracellular Tail of EFGR. 
A diagram of expected interactions on the intracellular tail of EGFR. 

A

  

B

 
Figure 2.17: Heatmap of EGFR Tail Interactions from the Reanalysis. 
(A) Results from our revised analysis. (B) Published results from the Jones FP data (16). Peptides (y-axis) 
referenced by position of the phosphotyrosine are plotted against domains (x-axis) with Kd values represented by a 
heatmap.  
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At tyrosine 1016, PLCγ is predicted to be the strongest interaction. Our reanalysis find 

that either the N-terminal domain from PIK3R1 or the C-terminal domain from PLCγ should 

have the strongest interactions, consistent with the predicted outcome. The published data (16) is 

also consistent, predicting the C-terminal domain from PLCγ. Similarly, for tyrosine 1092 both 

our reanalysis and the published data suggest that GRB2 has the highest affinity (lowest Kd). 

Although both our data and published data predict PLCγ as the strongest interaction for tyrosine 

1172 and 1197, the models are merged for those residues and predict SHC as the strongest 

binder. This model from Blinov, et al.(25) has some limited usefulness for validation purposes, 

as it was primarily attempting to connect MAPK and PLCγ signaling, so no predictions were 

made for PI3K, for example. Nevertheless, these results suggest that on a well-known system, 

our reanalysis has not resulted in a divergence from expected interactions, and that the best 

understanding similarly accurate on this system. 
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2.5 Implications of Revised Results 

This revised analysis, despite using the same raw data, presents significantly different 

results. Qualitatively, we only have approximately 70% agreement with the published results on 

positive domain-peptide interactions. Quantitatively, there is almost no agreement with the 

published work. We wanted to determine if these quantitative results changed the conclusions 

one could draw from the underlying behavior of SH2 domain data.  

First, we explore the accuracy of binding models that assume independence between 

positions (e.g. PSSM/PFM-based models). Here, we examine the predictive power of Scansite 

binding motif models and compare to published work and to the revised analysis. We also 

evaluate the accuracy of new protein binding models derived from our analysis. Second, we 

explore the conclusion drawn from earlier binding results that domains which are more closely 

related interact with similar sets of peptides. Finally, we examine a surprising conclusion from 

this analysis about the behavior of GST-labeled proteins, which has implications for interpreting 

previous high-throughput studies, and impacts the work that is derived from them. 

2.5.1 Evaluation of Scansite Protein Binding Models 

Scansite protein binding models are derived from degenerate library experiments (28). 

These experiments were designed to identify residues at each position of a phosphorylated 

peptide that contribute to binding. Each finding at each position was identified independently of 

each other position. Scansite models are matrices representing the frequencies of each amino 

acid at each position and are in the form of a matrix like a position specific scoring matrix 

(PSSM) or position frequency matrix (PFM). This matrix can be used to score any peptide, with 

the highest scores representing true binders, given the assumption that each position acts 
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independently of every other position. The primary limitation of this model is that amino acid 

contributions to binding can be interdependent. ‘Non-permissive’ residues – residues in a peptide 

that disrupt binding despite the presence of other residues correlating with strong binding (8) – 

were identified as one such example. We would expect that a model based on independence 

would result in false positive predictions when non-permissive residues were present. 

First, we evaluated whether Scansite scores correlated with affinity published affinity 

data. Since we have already established that the Jones fluorescence polarization (FP) data (16, 

17) and MacBeath protein microarray (PM) data (14) do not correlate with one another, we 

evaluated both data sets against the Scansite scores.  Scansite models are available for the 

following domains: ABL1, CRK, FGR, GRB2, ITK, LCK, NCK1, PLCG1-C, PLCG1-N, SHC1, 

SRC, PIK3R1-C, PIK3R1-N. Scansite scores do not substantively correlate with binding affinity 

for either data set (Figure 2.18).  

A

 

 

B

  
Figure 2.18: Comparison of Published Data with Scansite Scores. 
A comparison of Scansite scores to published quantitative data from two groups was performed. (A) Jones group FP 
data (16, 17). (B) MacBeath group PM data (14). Kd values are in µM. 

We next compared to our revised results. Although correlation analysis can identify 

similar quantitative values, and also might identify similar ranking, it would not clearly identify a 

case where true binders are enriched near the top ranks of Scansite scores. In order to evaluate 
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the Scansite models, we plotted receiver operator characteristic (ROC) curves for each model, 

and calculated the area under the ROC (AUROC) (Figure 2.19). Most Scansite models had poor 

predictive power with AUROC scores between 0.520 and 0.650. Two models performed worse 

than chance (CRK and ITK), but since most positive binders were ranked near the bottom of the 

list, CRK would perform much better if the scoring ranking were reversed. Although three 

domains scored well via Scansite (NCK1, AUROC 0.718; PIK3R1-C, AUROC 0.835; and 

GRB2, AUROC 0.955) overall performance was very poor.  
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Figure 2.19: Evaluation of Scansite Binding Motifs.  
Scansite scores were calculated for each peptide from several domains. Scansite scores were then ranked, and 
compared to binding results from our revised analysis. Results were plotted as ROC curves, and the area under the 
curve (AUROC) was reported.  
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2.5.2 Evaluation of Newly Constructed Protein Binding Models 

We were interested in exploring whether PFM-based protein binding motif models would 

be more successful at predicting binding when built from the data in the revised analysis. In 

order to evaluate this, we built a PFM-based model from the ‘binder’ peptides for a domain, and 

then scored all peptides for that domain with the model. Although this method is not as rigorous 

as a cross-validated test set with holdouts, it was sufficient to identify general trends in quality 

for the models. 

When comparing qualitative calls for binders and non-binders to the Jones FP data, it was 

reasonable to match the same 20µM cutoff as used in the original publication. Here, however, a 

call of ‘binder’ vs ‘non-binder’ is arbitrary, and calls at different Kd values might lead to 

different results. In order to examine the effect of making a categorical call about a continuous 

affinity phenomenon, we built PFM-based models for ‘binder’ calls at different Kd thresholds. 

Increasing the Kd threshold for binder calls tends to increase the number of peptides incorporated 

in the model, and since peptides are unique, this increases peptide diversity. 

 Results for several examples are plotted as ROC curves in Figure 2.20 and a summary of 

all results by domain can be found in Figure 2.21. Several trends were obvious from this 

analysis. First, all models performed well, as would be expected given than they were tested on 

the same data they were trained on. Also, all models performed better than Scansite models. 

However, all models performed progressively worse as the Kd threshold for binding was 

increased. This trend is reasonable to expect, because as the Kd threshold increases, more 

peptides are included. If those peptides are significantly different than peptides already included, 

the model will become increasingly degenerate. 
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Figure 2.20: Evaluation of Protein Binding Motifs Created at Different Kd Thresholds. 
New motifs for each domain were created from positive interactions in our revised analysis. A different motif was 
created for positive results at each Kd threshold. Peptides were scored and then ranked, and compared to binding 
results. Results were plotted as ROC curves, and the area under the curve (AUROC) was reported.  
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Figure 2.21: Summary of Protein Binding Motif Evaluation. 
Summary plot showing predictive power of protein binding motifs from revised analysis results. AUROC scores 
from each domain at each threshold concentration (see Figure 2.20) were plotted. The value above the bar represents 
the number of positive results used to build each motif at that Kd threshold. The relationship between number of 
positive results and AUROC score are plotted in Figure 2.22.  

However, trends in the relationship between number of peptides included and AUROC 

suggested that we examine that relationship. We plotted AUROC vs Kd threshold for each 

domain and threshold as a scatter plot (Figure 2.22). The results indicate a very strong negative 

correlation (Pearson’s r: -0.991) between AUROC and Kd. This suggests that PFM-based models 
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might have built in boundaries on predictive power with this type of diverse peptide data, and is 

worthy of further exploration in future work. 

 
Figure 2.22: Relationship of AUROC with Number of Sequences in Protein Binding Motif. 
The number of positive interactions (binder) sequences used to create each motif is plotted against the predictive 
power of the motif (as measured by AUROC score). The relationship is strongly negatively correlating (Pearson’s r: 
-0.997).  
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2.5.3 Many Closely Related Proteins Do Not Have Similar Binding 
Profiles 

Analysis of binding results from some SH2 and SH3 domain interaction studies have 

suggested that closely related domains (domains from same evolutionary family) bind similar 

peptide profiles. The Nash group reported finding multiple domains which had similar binding 

profiles as other members of the same family (8). Other groups report similar findings for SH2 

and SH3 domains (29, 30). This finding has been used in algorithms to predict peptide 

interactions (31). Although closely related protein domains have less sequence divergence, and 

exhibit more similar fold structure, closely related protein domains arise from duplication events. 

A duplication event can free one copy of a protein from selection pressure, potentially allowing 

for rapid functional divergence. Plus, even a single amino acid mutation in a protein domain 

could radically affect protein function, and could enhance or destroy binding, or change 

specificity. We examined the data from our revised analysis to determine protein binding 

behavior by domain family. 

Using the Jaccard similarity coefficient,  

0.1, �/ = |1 ∪ �|
|1 ∩ �| 

 (which compares the membership of the intersection of two sets with the union of the sets), we 

compared the binding profiles all domains. Binding was ‘binarized’ at a 20µM threshold. Protein 

families were defined by Ensemble gene trees. As domains with limited number of positive 

binding examples may skew results, we only considered domains with 10 or more binders. In 

Figure 2.23, we compare binding profiles for protein domains within closely related families. 
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Figure 2.23: Domain Binding Similarity for a Subset of Protein Families. 
Comparison of binding similarity for proteins with more than 10 positive interactions. Similarity is measured by the 
Jaccard similarity index and displayed as a heat map, with a highest similarity value of 1.0 displayed as white. Scale 
is a temperature –style scale with low similarity displaying as black, and increasing similarity displaying as higher 
temperature colors from red through orange, yellow and white. Protein families are marked with a color bar on the 
left. Blue – NCK. Olive – PIK3R. Light purple – PLCG1. Cyan – SHC. Purple – SOCS. Green – SRC. Gray – TNS. 
Dark purple – VAV. Pink – LNK. 

The analysis compared 49 proteins from more than 10 different protein families. Overall, 

very few individual domains exhibited high similarity with other domains – only two domains 

tested were closer than 0.60 on the Jaccard similarly index (with 1.0 representing perfect match 

between binding members). This suggests that most proteins show significant divergence in 

binding. Some protein families showed highly similar binding patterns within the family. NCK, 



65 
 

PIK3R, SHC, and SRC had the highest within family similarity, but that similarly at best was 

around 0.70. Some families showed very interesting divergent behavior. For example, VAV 

family members had very low similarity to one another – about the same low similarity as to 

PIK3R and SRC. In the TNS family, TNS1 and TNS3 had similar binding, but neither were 

similar to TNS4. Interestingly, families like PLCG1, PIK3R, and SRC which are expected to be 

far apart in evolutionary distance (32), have very similar response across families. 

Although in some cases, domain families exhibit similar binding profiles, in many cases 

they do not. Methods which rely universally on this assumption should be reconsidered in the 

light of these findings. 
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2.5.4 GST Affects Binding Profiles in a Non-Linear Manner 

One surprising result from our revised analysis came from examining binding profiles of 

the subset of GST-tagged proteins. Although only a small number of measurements were made 

with GST-tagged proteins, comparison of the GST-tagged to the untagged proteins shows that 

GST-tagged proteins behave very differently than non-tagged proteins (Figure 2.24). 

Four proteins were measured against the panel of peptides as tagged and untagged 

versions. The GST tag was also measured by itself.  GST alone showed no positive interactions. 

For CRK, CRK-L, and GRB2 the GST tag generally prevented binding when compared to the 

untagged version. For example, all peptides that were positive interactions for GRB2 were also 

tested on the GST-labeled molecule but did not bind the GST-labeled molecule. Similarly for 

CRK, there were 8 peptides where CRK bound, but CRK-GST did not bind (and many more 

where CRK bound but were not tested on the GST-labeled molecule). Interestingly, one peptide 

bound CRK-GST that did not bind CRK. In contrast, GST-labeled SRC did not prevent binding. 

Instead, it seemed to radically change the affinity for almost all peptides.  

There are several potential explanations for this phenomenon. First, GST is known to 

cause proteins to dimerize (33) which could result in interference with access to the binding 

pocket of the SH2 domain, or could affect the affinity for all or a subset of peptides by steric 

hindrance of certain peptides. However, in a handful of cases, affinity surprisingly increased for 

the GST-labeled molecule. 

One high-throughput data set testing SH2 domain interactions had all protein domains 

labeled with GST (18). Although our results are based on FP data, they strongly suggest that SH2 

domain affinity with GST-tagged protein is not representative of non-tagged protein. 
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Figure 2.24: Effect of GST-Tagging on Interaction Affinity. 
Comparison of binding profiles of GST-tagged protein to non-tagged protein, plotted as a heatmap of affinity (K d). 
Gray values represent not measured interactions. Blue values represent non-functional protein (and thus 
inconclusive measurements.) Higher affinity interactions have higher temperature colors.  
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2.6 Discussion 

In this work we have reviewed the raw data from a set of fluorescence polarization 

experiments designed to measure SH2 domain interaction with phosphorylated peptides. We 

found that the experimental design lacked important controls to establish protein functionality 

and peptide activity, and some ways to compensate for those problems. We also used different 

analysis techniques including fitting multiple models and better suited noise and model selection 

criteria which allowed us to improve the calls of both positive and negative interactions. Our 

qualitative calls show significant differences, and our quantitative results differ greatly from the 

original publication. We would like to comment on the factors which give credence that this 

revised analysis is better than the original published analysis, and discuss the implications for the 

use of other SH2 data in future research. 

The fluorescence polarization method employed by Jones FP is likely to give accurate 

and sensitive results when conducting high-throughput measurements of affinity. Unlike protein 

microarray experiments where proteins are not maintained in solution and reactions are carried 

out on a surface, fluorescence polarization experiments are done completely in solution. In 

addition, the process of handling samples was done robotically, likely eliminating many manual 

errors in handling. This can be seen in the individual interaction measurements displayed low 

noise and the vast majority of results represented high-quality measurements when examined 

with the correct analytical tools. Although this was the only raw data available, it is an 

experimental method which is likely to yield an accurate reading of affinity. 

Nevertheless, different runs in this experiment seemed to have a dramatic effect on 

calculated SH2 affinity. We identified patterns in the data acquisition which suggest that these 
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variations were likely due to protein degradation or preparation, and could very well be traced 

back to the difference between assumed concentration and actual active concentration of the 

protein. With the chosen affinity model, accurate measurements of affinity completely depend on 

accurate protein concentrations. Protein degradation over time, and varying presence of non-

monomeric protein would almost certainly contribute significantly to the kind of variation 

observed. We implemented changes in analysis to account for these patterns, which should 

increase confidence that our revised data contains more useful information than the original 

analysis. Nevertheless, this underlying experiment displayed serious flaws limiting the accuracy 

of the affinity measurements. Our revised analysis should be seen as the most rigorous 

interpretation of the originally measured data, with caveats as to absolute accuracy limited by the 

experimental technique. 

2.6.1 Implications for Other Work and Analysis 

Although our conclusions were drawn only on this set of raw data, our findings are likely 

to apply more broadly. Our work has significant implications for analysis of other previously 

published data sets because both the general experimental design and specific analysis methods 

in this original publication are common to other published high-throughput SH2 data. 

Furthermore, published binding models derived from this and other published SH2 data will have 

inaccuracies if they depend on qualitative or quantitative versions of published SH2 data. 

Finally, we propose some recommendations to improve quality of measurements and analysis in 

future work.  

Without explicit controls to avoid concentration inaccuracies, it would be reasonable to 

assume that other quantitative SH2 protein interaction data sets also suffer from these types of 

variations. Furthermore, without raw data to examine for these patterns, the use of previously 
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published data sets should be carefully considered. Concentration inaccuracies, combined with 

the tendency to report a mean value easily influenced by outliers, could very well explain the 

widely varying results with SH2 affinities reported between different research groups. 

The analysis methods used in the original publication of this data were also used in 

several other previously published sets of high-throughput SH2 interaction data (10, 13, 14, 19). 

While the experiments in these other publications used protein microarrays, the improvements in 

model selection, model fitting, and noise evaluation from our analysis would equally apply to 

other data. We have demonstrated that improved quality metrics and model selection methods 

can improve the final quantitative results, and these methods are likely applicable to previously 

published data. 

Although researchers can be careful to draw future conclusions from previously 

published SH2 data, many publications have already used this data to draw conclusions and to 

build models of SH2 interactions. We have demonstrated that models built from degenerate 

library data do not match previously published quantitative data, or our revised analysis of the 

Jones group FP data. Scansite (28), SMALI (6), NetPhorest (34), KinSpect (35), and DomPep 

(31) all rely on degenerate libraries to make their predictions of SH2 domain interactions. 

Despite the problems with availability and data scrambling from the Cesareni Group data (18), 

multiple predictors have used their results as inputs, including MSM/D (36), and NetSH (18). 

We demonstrated that the early (2006-2009) MacBeath group data (10–13) does not correlate 

well with later work (2013) from the MacBeath group (14). Several predictive models of binding 

were built using the earlier data (21, 37). One predictor from the Jones Group, PEBL (17), was 

built from the published Jones FP data (16, 17) alone. Each of these models may be affected by 

the quality of the data upon which it was built.  
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2.6.2 Suggestions for Future Measurements of Affinity 

Accurately measuring interaction affinity between SH2 domains and phosphopeptides is 

a difficult undertaking, especially when attempting to do so in a high-throughput manner. All of 

the issues encountered in low-throughput measurements are present and further complicated by 

making a large quantity of measurements in a reasonable time at a reasonable cost. Thus, 

controls for protein function and peptide activity that are sufficient in a qualitative assay are 

unlikely to be sufficient in a quantitative assay. Measurements of interaction based on 

equilibrium affinity, as done in this analysis, depend heavily on accurate protein concentration. 

Since affinity is a function of the active protein concentration, the difference between assumed 

protein concentration and actual functional protein concentration must be minimized. 

Determination of functional protein is compounded in an exploratory experiment such as this, 

because interactors for many of the proteins tested are not known ahead of time. 

In order to minimize concentration inaccuracies, one must be assured that the protein 

being measured is maximally active, and the concentration is accurately known. First, protein 

must be highly purified. Non-monomeric SH2 domain function may not be exactly the same as 

monomeric domain or may be completely non-functional. It should be eliminated with high-

performance liquid chromatography (HPLC) and size-exclusion purification methods. Second, 

protein activity should be benchmarked to determine factors that affect degradation because only 

measurements of fully active protein will provide accurate affinity. Assuming one or more 

peptides have been identified as potential binders, protein expression, purification, and storage 

methods need to be varied to determine their effect on activity. Protein degradation can happen 

over hours and even minutes at room temperature, so understanding time-dependent modulations 

of activity would be critical. If no known interactors exist, then – before high-throughput 
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experiments can begin – exploratory experiments must be conducted to identify potential binding 

partners and their maximal activity. Finally, guaranteeing linear and stable peptide activity is 

also important. Although we did not identify any problems with peptide activity in this data, it is 

possible that it was due to insufficient data.  Benchmarking peptide fluorescence magnitude and 

stability over time, and any tendency to form multimers would identify windows of accurate 

response from the reagents.  

Alternatively, methods of determining affinity which do not depend so heavily on 

accurate protein concentration could be explored. A concentration-independent method of 

measuring interaction affinity might provide an attractive alternative to the cumbersome 

procedures required to ensure precise protein concentrations. 

One such method was recently developed by the Stormo lab (38). In that method, a 2-

color competitive fluorescence anisotropy assay measures the relative affinity of two interactions 

in solution. Although the experiment as published measured protein interaction with nucleotide 

oligomers, it could also be used to measure protein interaction with two peptides labeled with 

different color fluorophores. By measuring interaction against two peptides at once from the 

same pool of proteins, the concentration of the protein and the proportion of active protein is the 

same in both interactions. When the ratios are calculated, the concentration and activity drop 

from the calculation of affinity. 

Although this method only provides relative affinity, if one could carefully establish 

absolutely affinity for a single peptide (or panel of peptides), absolute affinity could be extended 

to all interactions. Considering the problems with determining protein concertation accurately, 

and the significant impact they have on accuracy, a method such as this employing competition 
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and relative affinity combined with a careful measurement of absolute affinity seems to be a 

promising direction. 
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Chapter 3: Different Epidermal Growth Factor 
Receptor (EGFR) Agonists Produce Unique 

Signatures for the Recruitment of Downstream 
Signaling Proteins.  

This research was originally published in the Journal of Biological Chemistry. Ronan,T., 
Macdonald-Obermann,J.L., Huelsmann,L., Bessman,N.J., Naegle,K.M. and Pike,L.J. 
(2016) Different Epidermal Growth Factor Receptor (EGFR) agonists produce unique 
signatures for the recruitment of downstream signaling proteins. J. Biol. Chem., 291, 5528–
5540. © The American Society for Biochemistry and Molecular Biology. 

3.1 Abstract 

The EGF receptor can bind seven different agonist ligands. Although each agonist 

appears to stimulate the same suite of downstream signaling proteins, different agonists are 

capable of inducing distinct responses in the same cell. To determine the basis for these 

differences, we used luciferase fragment complementation imaging to monitor the recruitment of 

Cbl, CrkL, Gab1, Grb2, PI3K, p52 Shc, p66 Shc, and Shp2 to the EGF receptor when stimulated 

by the seven EGF receptor ligands. Recruitment of all eight proteins was rapid, dose-dependent, 

and inhibited by erlotinib and lapatinib, although to differing extents. Comparison of the time 

course of recruitment of the eight proteins in response to a fixed concentration of each growth 

factor revealed differences among the growth factors that could contribute to their differing 

biological effects. Principal component analysis of the resulting data set confirmed that the 

recruitment of these proteins differed between agonists and also between different doses of the 

same agonist. Ensemble clustering of the overall response to the different growth factors 

suggests that these EGF receptor ligands fall into two major groups as follows: (i) EGF, 

amphiregulin, and EPR; and (ii) betacellulin, TGFβ, and epigen. Heparin-binding EGF is 



75 
 

distantly related to both clusters. Our data identify differences in network utilization by different 

EGF receptor agonists and highlight the need to characterize network interactions under 

conditions other than high dose EGF. The EGF receptor is an intrinsic membrane protein 

composed of an extracellular ligand-binding domain connected to an intracellular tyrosine kinase 

domain by a single transmembrane α-helix. In the absence of ligand, the EGF receptor is thought 

to exist as a monomer, although inactive “pre-dimers” are known to form (39–43). Upon binding 

an agonist ligand, the EGF receptor dimerizes leading to the activation of its tyrosine kinase and 

the phosphorylation of tyrosine residues in the C-terminal tail of the receptor (44–46). The 

phosphorylated tyrosines on the EGF receptor serve as binding sites for a large number of 

signaling proteins that contain SH2 and/or phosphotyrosine-binding domains (2, 47). Some of 

these proteins, such as Cbl, possess an enzymatic activity (48). Others, such as Grb2 or Shc, 

serve as adapter proteins that bring other proteins into the EGF receptor-containing complex. For 

example, Grb2 recruits the scaffolding protein, Gab1, to the EGF receptor (49). Phosphorylation 

of Gab1 by the EGF receptor allows Gab1 to recruit additional proteins, such as Shp2 or PI3K-

R1, to the signaling complex (50–53). The recruitment of these signaling proteins to the receptor 

ultimately triggers the activation of a variety of downstream signaling pathways, thereby 

mediating the intracellular effects of growth factor binding.   
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3.2 Introduction 

The EGF receptor binds seven different agonist ligands, including some of high affinity 

(EGF, TGFβ, BTC,6 and HBEGF) and some of low affinity (AREG, EPG, and EPR) (53). It has 

been reported that different EGF receptor ligands induce different responses when binding to the 

same cell line (54–57). Given that these agonists bind to the same receptor and stimulate similar 

downstream signaling molecules, it is difficult to explain how these divergent responses are 

achieved. We have previously used a luciferase fragment complementation system to assess the 

ability of EGF to induce dimerization of the EGF receptor (58–60). In this study, we use our 

luciferase fragment complementation assay to visualize the recruitment of a variety of signaling 

proteins to the EGF receptor. The fine temporal resolution and quantitative nature of the split 

luciferase complementation system allowed us to continuously monitor the association of Cbl, 

CrkL, Gab1, Grb2, PI3K-R1, p52 Shc, p66 Shc, and Shp2 with the EGF receptor in response to 

increasing concentrations of all seven different EGF receptor ligands. Principal component 

analysis was applied to this large dataset to determine how the response to these growth factors 

differed. The data demonstrate that each growth factor produces a unique signature for the 

recruitment of signaling proteins, and this signature differs at different doses of the same growth 

factor. This suggests that each growth factor utilizes the signaling network differently, 

preferentially promoting flux through some pathways over others, which could readily lead to a 

different net biological outcome.  
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3.3 Experimental Procedures  

3.3.1 Materials  

EGF was purchased from Biomedical Technologies. TGFβ and amphiregulin were from 

Leinco. Betacellulin was from ProSpec. Heparin-binding EGF was from Sigma. Epigen and 

epiregulin were synthesized and purified in the laboratory of Dr. Mark Lemmon (University of 

Pennsylvania). Fetal- Plex was from Gemini Bioproducts. The anti-EGF receptor antibody was 

from Cell Signaling. The PY20 anti-phosphotyrosine antibody was from BD Transduction 

Laboratories. 

3.3.2 DNA Constructs 

Full-length cDNA constructs for the signaling proteins were obtained from Addgene 

(CrkL PI3K-R1 and Shp2), Source Bioscience (Gab1), Thermo Fisher (p52 Shc, p66 Shc, and 

Grb2), or Sino Biologicals (c-Cbl). The stop codon in each was removed, and an in-frame BsiWI 

site was inserted through site-directed mutagenesis. The cDNAs were cut with BsiWI and fused 

to the C-terminal fragment of luciferase (CLuc). The construct was moved into the pcDNA3.1 

Zeo expression vector where expression of the fusion protein is driven off the constitutive CMV 

promoter.  

 

3.3.3 Cell Lines  

 
CHO cells stably expressing the tetracycline-inducible EGF receptor C-terminally fused 

to the N-terminal fragment of firefly luciferase (EGFR-NLuc) (60) were used as the starting 

parental line. These cells were transfected with the pcDNA3.1 Zeo plasmids encoding the CLuc 

fusion of each of the eight signaling proteins. Eight (double) stable cell lines were selected by 
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growth in 5 mg/ml Zeocin. Quantitation of EGF receptor expression in each line by 125I-EGF 

saturation binding indicated that the number of cell surface EGF receptors expressed in each line 

is within ±20% of the average level of receptor expression (data not shown). Cells were grown in 

Dulbecco’s modified Eagle’s medium supplemented with 10% FetalPlex, 100 µg/ml G418, 100 

µg/ml hygromycin, and 100 µg/ml Zeocin and maintained in an incubator at 37 °C in 5% CO2.  

 

3.3.4 Luciferase Assays  

 
Double stable CHO cells were plated into 96-well black-walled dishes 2 days prior to use 

in medium containing 1.5 µg/ml doxycycline to induce expression of the EGFR-NLuc fusion 

protein. For assay, cells were transferred into Dulbecco’s phosphate-buffered saline 

supplemented with 5 mg/ml BSA and 20 mM MOPS, pH 7.2. Cells were incubated with 0.9 

mg/ml D-luciferin for 30 min at 37 °C prior to the addition of growth factor and the start of 

imaging. Cell radiance (photons/s/cm2/steradian) was measured every 30 s for 25 min using a 

cooled charge-coupled device camera in the IVIS50 or IVIS Lumina imaging system. Assays 

were performed in hextuplicate. The lines through the data were drawn using Equation 1, which 

represents the sum of a logistics association equation and an exponential dissociation equation.  

5 = 67
89:;<=>? + .@A�BC�D − E�BB��/CFGHI + E�BB��    (Eq. 1) 

where 5 = J:�I�*�
�  at time B, K8 represents the association rate constant, and K�  is the 

dissociation rate constant. This curve drawing was not part of the principal component analysis 

and was used only for visual presentation of the dose-response curves.  
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3.3.5 Western Blotting  

CHO cells expressing the wild type EGF receptor were treated without or with 5 µM 

erlotinib or 10 µM lapatinib for 1 h and then stimulated with the indicated concentrations of EGF 

for 5 min. Lysates were prepared, and Western blotting with anti-EGF receptor and anti-

phosphotyrosine antibodies were performed as described previously (59).  

3.3.6 PCA and Enrichment Analysis  

 
Computational analysis was performed using the Python programming language. PCA 

utilized the scikit-learn package (61). PCA was performed on a 280 x 44 matrix, with 280 unique 

combinations of protein, growth factor, and dose, each with 44 time points, normalized to the 

maximal response elicited for that agonist/protein pair. For PCA, a subset of five (out of seven) 

doses was chosen for each growth factor to bracket the EC50 value for the recruited signaling 

proteins as follows: for BTC and EGF, the doses ranged from 0.03 to 3 nM; for TGF, the doses 

ranged from 0.1 to 10 nM; for HB-EGF, the doses ranged from 0.3 to 30 nM; and for AREG, 

EPG, and EPR, the doses ranged from 3 to 300 nM. References to “low” doses of growth factor 

(as used in Figure 3.10 and Figure 3.14) represent the second dose in the five-dose series, and 

references to “high” doses (as used for Figure 3.14) represent the fourth dose in the five-dose 

series. Distances between protein pairs were calculated using Euclidean distance between the 

five-dimensional vector across doses in PC space. Top- and bottom-quartile enrichment was 

calculated using the hypergeometric test and Bonferroni-corrected.  

For clustering of the growth factors based on protein recruitment across all doses, 

pairwise protein distances for each ligand were converted to a one-dimensional vector. The 

vectors for each ligand were then clustered using hierarchical clustering. An ensemble of 35 
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clustering results was generated by varying linkages (single, complete, average, and weighted) 

and distance metrics (Euclidean, Pearson correlation, city block, cosine, Bray-Curtis, Canberra, 

Chebyshev, and square Euclidean). The Euclidean metric was also used with median, centroid, 

and Ward linkage. The results for each ligand were assembled into a matrix and hierarchically 

clustered using single linkage and Euclidean distance. p66 Shc was not included in this analysis 

so as not to over-weight the results toward the contribution of Shc isoforms.  
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Figure 3.1: EGF-stimulated association of eight signaling proteins with the EGF receptor measured using 
luciferase fragment complementation imaging. 
CHO cells stably co-expressing EGFR-NLuc and the CLuc-fused version of one of eight signaling proteins were 
assayed for EGF-stimulated light production in the presence of luciferin.  Cells were stimulated with the indicated 
concentration of EGF at time t=0 and light production monitored for 25 min.  
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3.4 Results  

3.4.1 Generation and Characterization of Stable Cell Lines  

The split luciferase complementation assay utilizes an N-terminal (NLuc) and C-terminal 

(CLuc) fragment of firefly luciferase (62). Individually, the fragments have no enzymatic 

activity. However, when they are brought into proximity, they complement each other forming a 

catalytically active luciferase that produces light upon oxidation of luciferin. For our luciferase 

complementation assays, each of eight signaling proteins (Cbl, CrkL, Gab1, Grb2, PI3K-R1, p52 

Shc, p66 Shc, and Shp2) was C-terminally fused to the CLuc fragment via a 16-amino acid 

flexible linker. The cDNA for the fusion protein was then transfected into aCHOcell line that 

stably expressed the EGF receptor C-terminally fused to the NLuc fragment (EGFR-NLuc) off a 

tetracycline-inducible promoter. Double stable cell lines were selected for use in these 

experiments. For assay, the CHO cells were cultured for 24 h in 1.5 µg/ml doxycycline to induce 

expression of the EGFR-NLuc fusion protein. The signaling proteins were constitutively 

expressed from a CMV promoter.  

3.4.2 Luciferase Complementation between the EGF Receptor and 
Signaling Proteins  

All eight signaling proteins yielded an EGFstimulated increase in luciferase activity when 

co-expressed in cells with EGFR-NLuc (Figure 3.1). EGF-stimulated complementation between 

the EGF receptor and these signaling proteins was seen as early as 30 s after the addition of EGF. 

At low concentrations of EGF, essentially all of the pairings exhibited a rapid rise in luciferase 

activity, which peaked by ~5–8 min. For some pairings, such as the EGF receptor and PI3K-R1 

(Figure 3.1E), this level of complementation was maintained over the entire time course at all 

doses. In other pairings, such as Cbl (Figure 3.1A) or CrkL (Figure 3.1B), complementation 
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plateaued at low concentrations of growth factor but declined after an early peak at high 

concentrations of EGF. Still other proteins demonstrated a bimodal response across doses. For 

example, for Grb2 (Figure 3.1D) and Shp2 (Figure 3.1Figure 3.1H), the maximum 

complementation occurred at a relatively low dose of EGF, with higher doses of growth factor 

resulting in lower peak responses and a marked decrease at longer times.  

In the EGF receptor/Shp2 pairing (Figure 3.1H), the luciferase activity observed at the 

highest concentrations of EGF actually fell below the basal level after about 15 min. These data 

imply that Shp2 associates with the EGF receptor under non-stimulated conditions. This 

association is apparently disrupted upon stimulation with high doses of growth factor.  

If these signaling proteins are being recruited to the EGF receptor via phosphotyrosine-

dependent interactions, then the associations visualized through luciferase complementation 

should be sensitive to inhibition of the EGF receptor tyrosine kinase. As shown in Figure 3.2, A–

H, treatment of cells with 5 µM erlotinib (green lines) effectively inhibited EGF-stimulated 

complementation between the EGF receptor and each of these eight signaling proteins. Inhibition 

was essentially complete for all pairings with the exception of p52 Shc and p66 Shc, for which 

the inhibition was ~70%. The complementation between the EGF receptor and Shp2 actually 

showed an EGFstimulated decline in luciferase activity, again consistent with there being a basal 

level of association between the two proteins, which is disrupted after ligand binding.  

Despite the fact that lapatinib appeared to inhibit EGF receptor autophosphorylation to 

the same extent as erlotinib (Figure 3.2I), pretreatment of the cells with 10 µM lapatinib (red 

lines) was far less effective than pretreatment with erlotinib at blocking the association of these 

signaling proteins with the EGF receptor. Although lapatinib was able to completely block 
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complementation between the EGF receptor and Cbl, CrkL, and Shp2, the other five signaling 

proteins all showed at least 20% residual EGF-stimulated luciferase activity in the presence of 

lapatinib. The association of Gab1 was particularly insensitive to lapatinib treatment. Thus, there 

is a significant difference between erlotinib and lapatinib in terms of their efficacy for inhibiting 

EGF-stimulated signaling complex assembly.  

 
Figure 3.2: Effect of erlotinib and lapatinib on EGF-stimulated association of eight signaling proteins with the 
EGF receptor. 
Panels A to H) CHO cells stably co-expressing EGFR-NLuc and the CLuc-fused version of one of eight signaling 
proteins were treated with 5 µM erlotinib (green lines) or 10 µM lapatinib (red lines) for 60 min prior to stimulation 
without or with 0.3 nM.  EGF-stimulated light production was monitored for 25 min after addition of EGF.  Panel I)  
CHO cells expressing wild type EGF receptor were treated with 5 µM erlotinib or 10 µM lapatinib for 60 min prior 
to stimulation with 0.3 or 3.0 nM EGF.  Lysates were prepared and equal amounts of protein analyzed by SDS gel 
electrophoresis and Western blotting with an anti-phosphotyrosine antibody or an anti-EGF receptor antibody.  
Quantitation of anti-phosphotyrosine blot is shown.  
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Figure 3.3: TGF-stimulated association of eight signaling proteins with the EGF receptor measured using 
luciferase fragment complementation imaging. 
CHO cells stably coexpressing EGFR-NLuc and the CLuc-fused version of one of eight signaling proteins were 
assayed for TGF-stimulated light production in the presence of luciferin. Cells were stimulated with the indicated 
concentration of TGF at time t=0 and light production monitored for 25 min.  
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Figure 3.4: BTC-stimulated association of eight signaling proteins with the EGF receptor measured using 
luciferase fragment complementation imaging. 
CHO cells stably coexpressing EGFR-NLuc and the CLuc-fused version of one of eight signaling proteins were 
assayed for BTC-stimulated light production in the presence of luciferin. Cells were stimulated with the indicated 
concentration of BTC at time t=0 and light production monitored for 25 min.  
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Figure 3.5: HB-EGF-stimulated association of eight signaling proteins with the EGF receptor measured using 
luciferase fragment complementation imaging. 
CHO cells stably co-expressing EGFR-NLuc and the CLuc-fused version of one of eight signaling proteins were 
assayed for HB-EGF-stimulated light production in the presence of luciferin. Cells were stimulated with the 
indicated concentration of HB-EGF at time t=0 and light production monitored for 25 min.  
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Figure 3.6: AREG-stimulated association of eight signaling proteins with the EGF receptor measured using 
luciferase fragment complementation imaging. 
CHO cells stably coexpressing EGFR-NLuc and the CLuc-fused version of one of eight signaling proteins were 
assayed for AREG-stimulated light production in the presence of luciferin. Cells were stimulated with the indicated 
concentration of AREG at time t=0 and light production monitored for 25 min.  
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Figure 3.7: EPG-stimulated association of eight signaling proteins with the EGF receptor measured using 
luciferase fragment complementation imaging. 
CHO cells stably coexpressing EGFR-NLuc and the CLuc-fused version of one of eight signaling proteins were 
assayed for EPG-stimulated light production in the presence of luciferin. Cells were stimulated with the indicated 
concentration of EPG at time t=0 and light production monitored for 25 min.  
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Figure 3.8: EPR-stimulated association of eight signaling proteins with the EGF receptor measured using 
luciferase fragment complementation imaging. 
CHO cells stably coexpressing EGFR-NLuc and the CLuc-fused version of one of eight signaling proteins were 
assayed for EPR-stimulated light production in the presence of luciferin. Cells were stimulated with the indicated 
concentration of EPR at time t=0 and light production monitored for 25 min.  



91 
 

3.4.3 Recruitment Stimulated by Other EGF Receptor Ligands  

The EGF receptor is activated by a family of homologous growth factors, including EGF, 

TGFβ, BTC, HB-EGF, AREG, EPG, and EPR (63). To quantify the similarities and differences 

in the response of cells to stimulation by each of these ligands, the luciferase complementation 

assay was used to monitor the recruitment of the eight different signaling proteins to the EGF 

receptor in response to each of these agonist ligands.  

Figures 3.3 through 3.8 show the time courses of the recruitment of these eight signaling 

proteins to the EGF receptor in response to increasing doses of each of these additional six 

growth factors. Like EGF, all of these growth factors stimulated the recruitment of all eight 

signaling proteins in a dose-dependent manner. However, the patterns of the dose response 

curves for all seven growth factors for each individual pairing were similar. For example, for all 

growth factors, PI3K-R1 recruitment plateaued early, and the level of signal was maintained over 

the entire time course. Similarly, the bimodal response for the recruitment of Grb2 and Shp2 was 

observed for all growth factors.  

Table 3.1 reports the estimated EC50 values for each ligand stimulating the recruitment of 

each protein. As expected from their low binding affinities, AREG, EPG, and EPR required ~30–

100-fold greater concentrations of ligand to stimulate a maximal response than did EGF, TGFβ, 

BTC, or HB-EGF. Surprisingly, the EC50 values for a given growth factor for stimulating the 

recruitment of the different signaling proteins differed up to 18-fold.   
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EC50 
(nM) 

EGF TGF BTC HB-EGF AREG EPG EPR 
 

Cbl 0.31 0.73 0.40   0.85 36.0 33.0 21.0 
CrkL 0.14 0.40 0.25 1.5 26.0 19.0 21.0 
Gab1 0.08 0.11 0.06   0.47    5.9   4.8   2.7 
Grb2 0.03 0.06 0.04   0.64    4.0   1.8   2.7 

PI3K-RI 0.03 0.24 0.11 1.2 21.0 22.0 18.0 
p52 Shc 0.06 0.12 0.15   0.85    3.7    3.7   2.6 
p66 Shc 0.10 0.21 0.05 1.7 13.0    6.1   4.0 

Shp2 0.09 0.11 0.09   0.50 13.0    3.3   4.0 

Table 3.1: EC50‘s for Agonist-Stimulated EGF Receptor/Protein Association 
Table 1 compares the EC50’s for each growth factor for stimulating the recruitment of the eight signaling proteins.  
These values were estimated based on the response to each dose of growth factor at t = 2.5 min.  This largely 
eliminates the effects of the declines in signal at longer times and means that these values reflect mainly the initial 
association of the two proteins.   The EC50‘s differed for the recruitment of different proteins by the same growth 
factor.  So for example, EGF exhibited an EC50 of ~0.03 nM for recruiting Grb2 and PI3K-R1 but an EC50 about 10-
fold higher for recruiting Cbl.  EPG exhibited the widest range of EC50’s (~18-fold difference) while HB-EGF 
showed the smallest range of EC50’s (~3-fold). 

 

Figure 3.9 compares the extent of recruitment of the eight signaling proteins in response 

to an optimal concentration of each of the seven growth factors. The concentrations compared 

were those that gave the maximal peak response for that particular pairing (Figure 3.1 and 

Figures 3.3 through 3.8). For most of the pairs, all seven ligands stimulated a similar maximal 

response. However, HB-EGF routinely elicited a slightly lower response than the other growth 

factors. The greatest difference in response was observed for the recruitment of Grb2 for which 

the response to EPG and EPR was ~30% higher than that to EGF, while the response to HB-EGF 

was ~30% lower than that to EGF. Consequently, there was nearly a 2-fold difference in the 

relative extent of Grb2 recruitment between the high of EPG/EPR and the low of HB-EGF.  

Figure 3.10 compares the ability of a fixed (comparable) low dose of each growth factor 

to stimulate the recruitment of all eight signaling proteins. The responses have been normalized 

to the maximal response observed for that EGFR/protein pair at the optimal dose of that growth 

factor. For all growth factors, Grb2 appears to have the fastest relative response time. Cbl and 
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CrkL most frequently have the slowest relative response time. The recruitment of PI3K-R1 

shows the most variability being similar to Cbl and CrkL for the low affinity ligands but closer to 

Grb2 and Gab1 for the high affinity ligands. Interestingly, the recruitment of p52 Shc and p66 

Shc differs noticeably from each other. In many cases, p52 Shc shows a shorter relative response 

time than p66 Shc, often significantly shorter, as for AREG and HB-EGF. However, this order is 

reversed for BTC where p66 Shc is recruited more rapidly than p52 Shc. Thus, at the earliest 

times of signal transduction, differences in response to the different the growth factors can be 

identified and would contribute to a different biological outcome.   
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Figure 3.9: Comparison of the association of eight signaling proteins with the EGF receptor stimulated by 
optimal concentrations of the seven EGF receptor agonists. 
CHO cells stably co-expressing EGFR-NLuc and the CLuc-fused version of one of eight signaling proteins were 
stimulated at time t=0 with the concentration of each growth factor that yielded maximal peak complementation for 
a given receptor/protein pair and light production monitored for 25 min.  
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Figure 3.10: Relative response times for the recruitment of the eight signaling proteins by comparable low 
doses of each of the EGF receptor ligands. 
The response to the indicated low concentration of each of the seven agonists was normalized to the maximal 
response elicited by that agonist for that EGF receptor/protein pair.  The normalized responses for all signaling 
proteins stimulated by a single agonist were then plotted on the same graph.  
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3.4.4 Global Behaviors Observed via Reduced Dimensionality  

The foregoing data represent an extremely rich set of measurements of the recruitment of 

eight different signaling proteins by the EGF receptor. Within this dataset, discovering 

relationships among the proteins and growth factors is difficult due to the high dimensionality of 

the problem. To reduce the dimensionality of the dataset, while keeping the relationships within 

the data intact, we used PCA.  

For this analysis, a fixed subset of five (out of the seven) doses of each growth factor was 

used. The subset of doses was chosen so that we captured a comparable range of response above 

and below the EC50 values for each of the different growth factors. As a result, the doses that 

were not included in the analysis were either the very lowest concentrations that elicited a weak 

or no response or the very highest concentrations that were super-saturating. This approach 

allows us to compare the behavior of the same dose of a single growth factor across all eight 

signaling proteins and to compare the behavior of a single signaling protein at comparable 

concentrations across the different growth factors.  

We could account for 97.0% of the co-variation within the entire dataset by projecting the 

original data into the first two dimensions of the principal component space. Principal 

component 1 (PC1) captures 87.6% of the variance, whereas PC2 captures 9.4% of the variance. 

As a result, each time series for one growth factor dose and signaling protein response can be 

plotted as a single point in two-dimensional PC space while retaining almost all of the variation 

that exists in the original 44 dimensions (i.e. the 44 time points per curve). The loading plots 

(Figure 3.11A) indicate that PC1 represents a positive integration of information across most 

time points. By contrast, PC2 negatively weights the earliest time points while positively 

weighting the latter half of the time course.   
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Figure 3.11: Dimensionality can be reduced using principal component analysis. 
(A) The plot of the loadings of the first two principal components, which accounts for 97.0% of the covariance in 
the dataset (PC1 accounts for 87.6%, and PC2 accounts for 9.4%). (B) Correlation of PC1 with maximum peak 
magnitude and PC2 with peak time was calculated across 5 doses for each protein-growth factor pair using Pearson 
correlation. Mean correlation for PC1 with maximum peak magnitude was 0.97, while mean correlation for PC2 
with peak time was 0.75. (C) The dataset is plotted based on projections onto the first two principal components, 
capturing 97.0% of the variance. Individual points are colored according to the signaling protein measured. 

Based on our observations of the data, we thought the latent dimensions of the principal 

component analysis might describe physical features of the data, specifically information about 

the relative maximum signal achieved and the rate at which this signal was achieved. To test this 

hypothesis, for each protein ligand pair we determined the correlation between the dose response 

vector in PC1 and the magnitude of the peak for each dose in the original normalized data. We 

also determined the correlation between the PC2 dose-response vector and the time of peak 
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signal for each dose. As shown in Figure 3.11B, there is an extremely high correlation between 

the PC1 value and the relative magnitude of the peak response (mean r = 0.97). Similarly, with 

the exception of a few outliers in PC2 space, there is a high correlation between the value in PC2 

space and the time to peak response in the original data (mean r = 0.76). The high correlation 

indicates that we can ascribe physical meaning to our principal component axes. Specifically, 

higher values along PC1 indicate that the signal achieves a higher relative maximum value. 

Higher values in PC2 space indicate that the signal achieves its maximum value at a later time. 

Lower values in PC2 space indicate that the signal achieves its maximum value at an earlier 

time.  

Figure 3.11C shows the entire dataset reduced to the first two dimensions of PCA space. 

Each point represents a time course for a particular signaling protein at a single dose of a single 

growth factor. Points are colored to indicate the signaling protein being recruited to the EGF 

receptor. Points close together in PCA space represent responses that are similar to each other 

across the entire time course. The responses of Shp2 and PI3K-R1 are the most separated in both 

PCs indicating that they are the most different. The remaining points are densely packed in the 

intermediate region between the extremes of the PI3K-R1 and Shp2 signals.  

To identify trends in the data, the measurements were organized into a dose series for 

each ligand/protein pair. This was visualized by connecting the PCA point representing the curve 

at the lowest dose of one growth factor to the point representing the curve at the next higher dose 

of that same growth factor with a directed arrow, continuing on for the five doses of each growth 

factor (see Figure 3.12 for an example). This approach reveals significant trends in the evolution 

of signals across the dose range, despite the density initially observed in PC space (Figure 3.13). 

Overall, the major mode of behavior for a given signaling protein is dominated by the identity  
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Figure 3.12: Data in Principal Component Space Correlate with Physical Trends in the Time Series. 
The left panel shows normalized time series complementation data for HB-EGF with Cbl (A) and HB-EGF with 
Shp2 (B). Superimposed on the plots for the five doses are lines with directed arrows connecting the peak value for 
each dose, from lowest dose to highest dose. The right panel shows the same time series data but now represented in 
principal component space, where each point represents an entire curve from the left panel. For both HB-EGF with 
Cbl (C) and HB-EGF with Shp2 (D), PC1 correlates highly (r=0.97) with the magnitude of the peak at each dose 
(the peak y-axis value for each dose in the left panel). PC2 correlates highly (r=0.90) with the timing of the peak at 
each dose (the time of each peak from the x-axis of the left panel). Note that the axes are scaled differently and 
rotated in principal component plots, but the overall shape of the dose response has not changed from the time series 
to the principal component representation and preserves physical meaning from the time series data. 
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Figure 3.13: Global trends based on dose response. 
The individual points in two-dimensional PC space representing a protein-ligand pair at a particular dose were 
organized into a dose response series for the five chosen doses, by connecting the response at lower doses to the next 
higher dose using a directed arrow. Panel A) The resulting vectors are grouped by signaling protein and colored 
according to the growth factor. Panel B) The resulting vectors are grouped by growth factor and colored according 
to signaling protein.   



101 
 

of the protein rather than the identity of the growth factor. Therefore, the curves describing the 

recruitment of the same signaling protein stimulated by any of the seven ligands (Figure 3.13A) 

are more similar to each other than they are to the curves that describe the recruitment of a 

different signaling protein stimulated by the same growth factor (Figure 3.13B). As is apparent 

from Fig. 6B, there are differences in how the individual protein responses evolve based on the 

stimulatory ligand.  

Aside from these general observations, each PC shows two contrasting trends in a subset 

of proteins. First, for Cbl, CrkL, PI3K-RI, p52 Shc, and p66 Shc, there is a monotonic increase in 

PC1 (relative maximal signal) as the dose of growth factor increases. This is what is expected in 

a traditional dose-response curve, i.e. the signal increases with increasing dose. By contrast, 

Gab1, Grb2, and Shp2 show a bimodal response in PC1 space, reflecting an initial increase in 

response followed by a marked decrease in peak signal at the highest doses of most of the growth 

factors.  

A second trend is that for most of the signals there is a monotonic progression down the 

PC2 axis. This indicates that the peak response is achieved more rapidly at higher concentrations 

of growth factor. An exception to this rule is the recruitment of p52 Shc in response to EGF, 

BTC, and HB-EGF, where there is little change in the time to peak response over the entire dose 

range tested.  
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Figure 3.14: Signaling protein response varies by growth factor dose. 
In order to quantify differences in protein response, Euclidean distances were calculated between proteins for each 
growth factor at both a low and high dose and visualized as a heat map. The response pattern for each growth factor 
at low dose is in the left column, and the response pattern for a high dose is in the right column.  
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3.4.5 Pairwise Interactions  

The proteins chosen for this study were selected because they are involved in well 

documented interactions with the EGF receptor and with each other. Therefore, we would expect 

that the behaviors of some of these proteins should correlate in PC space. To quantify these 

relationships, we calculated the distances between interacting protein pairs in PC space for each 

dose of a single growth factor. Figure 3.14 shows heat maps of protein-pair distances for a low 

dose and a high dose for each growth factor. Two important features are immediately apparent 

from these heat maps. First, the patterns seen for the low and high doses of the same growth 

factor are distinctly different. This suggests that the same growth factor utilizes the network 

differently when applied at different concentrations. Second, the heat maps for each growth 

factor are very different, suggesting that the different growth factors activate the network in a 

manner that is specific to that growth factor. 

To evaluate the similarity of protein recruitment dynamics across the different growth 

factors, distances were calculated between protein pairs in PC space across the five doses of each 

individual growth factor. The complete set of these cumulative distances was then rank-ordered, 

and both the top and bottom quartiles were probed for statistical enrichment for individual 

proteins or specific protein pairs. Several specific protein pairs were strongly represented in the 

top quartile. The pairwise distances of Cbl with CrkL and p52 Shc with p66 Shc were the most 

significantly enriched protein pairs in the top quartile (p < 0.005, Bonferroni-corrected), whereas 

the interaction of Gab1 with p52 Shc was also significantly enriched (p < 0.05, Bonferroni-

corrected). Enrichment in the bottom quartile was also calculated to identify proteins and protein 

pairs that rarely exhibited similar dynamics. Shp2-based interactions as a group were identified 

as being enriched in this quartile (p < 0.0005, Bonferroni-corrected).  
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To compare the global response of the network to each of the seven different growth 

factors, we performed ensemble clustering on the pairwise distances between proteins, as 

described under “Experimental Procedures.” The percentage of time each growth factor clustered 

with another growth factor in the ensemble of clustering solutions is visualized in Figure 3.15as a 

heat map. The growth factors were then hierarchically clustered. As can be seen from this figure, 

BTC, EPG, and TGFβ form a strong cluster (the BTC cluster) because they cluster together in 

every clustering solution in the ensemble. AREG and EPR form a second strong cluster (the 

AREG cluster). EGF clusters most frequently with the AREG cluster (77%) but shares some 

membership in the BTC cluster (23%). HB-EGF is rather unique and is far from both the BTC 

and AREG clusters. 

 
Figure 3.15: Heat map and dendrogram showing the results of clustering of the responses to the seven growth 
factors. 
The pairwise protein distances for each ligand were converted to a vector and the vectors for each ligand were 
hierarchically clustered via the ensemble approach described in Experimental Procedures.  The results are visualized 
via a heat map displaying the fraction of time each ligand pair clustered together across the ensemble. 
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3.5 Discussion  

We report here on the use of luciferase fragment complementation to study the 

association of downstream signaling proteins with the EGF receptor. The advantages of this 

system include the ease of assay and the fact that it can be done in live cells with continuous 

monitoring. In addition, the signals generated from the eight signaling proteins examined here 

were robust, allowing detection of differences associated with changes in the concentration of 

growth factor. Finally, the approach is scalable and useful for screening applications. Using this 

system, we found that all eight of the selected signaling proteins are rapidly recruited to an EGF 

receptor containing complex, with association being apparent by 30 s. The peak extent of 

association occurred between 5 and 7 min, depending on the pairing. This is consistent with the 

time course of assembly of Shc-containing complexes after stimulation of cells with EGF, as 

documented through quantitative mass spectrometry (64).  

In most of the pairings, the luciferase signal decreased slowly over time particularly at 

the higher doses of growth factor. As internalization of the EGF receptor begins almost 

immediately after addition of growth factor (65), it seems likely that at least part of the decrease 

in signal at longer times is due to internalization and degradation of the receptor and its 

associated signaling proteins. Nevertheless, at least some fraction of the agonist- induced 

increase in luciferase activity is maintained for as long as 25 min after the addition of EGF. 

These data imply that these signaling proteins remain associated with the EGF receptor even 

after it has been internalized. Thus, some aspects of signaling probably continue to occur well 

after the receptor has been removed from the cell surface. Receptor internalization is unlikely to 

account for the decrease in peak signal observed for the recruitment of Gab1, Grb2, and Shp2 at 
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high concentrations of all the growth factors. This decrease could reflect increased competition 

between signaling proteins for binding to sites on the EGF receptor when the signal is strong. It 

could also arise from depletion of a common pool of adapter or scaffold proteins when the 

stimulatory signal is maximal. Finally, it is possible that there is steric interference with 

luciferase complementation when the signal is strong, and Gab1, Grb2, and Shp2 bind to the 

EGF receptor in a multiprotein complex.  

All EGF receptor/signaling protein pairs showed a dose dependence on the concentration 

of growth factor. However, the EC50 for any given growth factor varied as much as 18-fold for 

the recruitment of different proteins. Knudsen et al. (66) reported similar differences in the EC50 

values of four EGF receptor ligands for inducing the phosphorylation of the EGF receptor and 

several signaling proteins. The molecular basis for this observation is not known, but it may 

reflect differences in the order or extent of phosphorylation of sites in response to these seven 

agonists (57, 67–70). Surprisingly, there were significant differences in the ability of saturating 

concentrations of erlotinib and lapatinib to inhibit the recruitment of these signaling proteins. 

This is likely due to differences in residual phosphorylation of the EGF receptor. These findings 

clearly identify erlotinib as a more effective inhibitor of signaling in this system than lapatinib 

and suggest that these complementation assays may be useful for identifying residual signaling 

pathways that could be targeted for therapeutic benefit.  

The overarching message from the principal component analysis is that there are 

significant differences in signaling protein recruitment depending on both ligand and dose. These 

variable responses likely reflect different signaling protein recruitment strategies employed by 

the individual ligands over their entire dose range. Although the observed differences are subtle 

at the level of individual proteins recruited, collectively they could readily give rise to a 
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distinctly different biological outcome for each of the agonist ligands. In vivo levels of EGF and 

other ErbB family growth factors vary widely from tissue to tissue, being low in plasma but 10–

100-fold higher in secretions such as saliva and tears (70–72). Given the differences in network 

behavior identified here, our data imply that therapeutic agents that target one particular node in 

the signaling pathway could be efficacious in one tissue but not in another, simply because of 

differences in network utilization based on the identity of the stimulating growth factor and/or 

the dose involved. This underscores the need to understand the signaling network at all doses of 

growth factor, as different tissues will likely be responding to vastly different doses of EGF or 

other EGF receptor agonists. Because many of the experiments that have defined our 

understanding of this network have been carried out using high dose EGF (73–75), our current 

appreciation of the network may not reflect the actual flux through the pathways under all 

physiological conditions.  

Ensemble clustering of the responses to the growth factors demonstrated that the seven 

different EGF receptor ligands basically cluster into three groups as follows: (i) BTC, TGFβ, and 

EPG; and (ii) EGF, AREG, and EPR. HB-EGF is distantly related to both clusters. Thus, based 

on their ability to recruit these signaling proteins to the EGF receptor, these ligands do not fall 

neatly into groups defined by high versus low affinity nor do they fall into groups based on 

whether they bind only to the EGF receptor or to both the EGF receptor and ErbB4 (63). 

Whether there is some specific functional difference that distinguishes the two main groups of 

EGF receptor agonists, such as temporal or spatial differences in expression, remains to be 

determined.  

With respect to similarities in the utilization of the network by the different growth 

factors, our analysis identified a strong correlation between the recruitment of Cbl and the 
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recruitment of CrkL to the EGF receptor. As CrkL is known to bind directly to Cbl (76, 77), the 

detection of a correlation between Cbl and CrkL binding to the EGF receptor suggests that the 

primary mechanism through which CrkL associates with the EGF receptor may be through 

binding to tyrosine-phosphorylated Cbl. The fact that this relationship is clearly observed in our 

dataset suggests that this analysis is capable of identifying interactions between proteins that 

associate within this signaling network. Viewed in this light, the significant correlation between 

p52 Shc and Gab1 suggests that this also represents a preferred interaction in this network. The 

direct binding of p52 Shc to Gab1 has been reported (78, 79). The finding that other canonical 

network interactions, such as Grb2/Shc or Grb2-Gab1, were not detected in this analysis likely 

reflects the complex and dynamic behavior of the network. Grb2 is an adapter protein that 

recruits a number of proteins, including Cbl, Gab1, and Shp2, to the EGF receptor. It can bind 

directly to the EGF receptor or indirectly through Shc. As a result, the interaction of Grb2 with 

the EGF receptor represents the summation of a multiplicity of different binding events. 

Variation in the dynamics of the different binding events, such as Grb2-Cbl versus Grb2-Gab1, 

could easily obscure any correlations between the binding of the individual partners in the 

protein pairs. Thus, it will be necessary to assess these interactions more directly to determine 

whether their association is differentially affected by the seven EGF receptor agonists. 

Ultimately, we would like to be able to determine which path through the network is used to 

recruit a particular protein to the EGF receptor signaling complex by a particular growth factor at 

a particular dose. Prediction on this level is likely to require careful modeling of network 

behavior. To this end, these data can be used, in conjunction with other information, to build 

mechanistic models of the network interactions to determine the dose-dependent network paths 

of a given signaling protein.   
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Chapter 4: Avoiding Common Pitfalls when 
Clustering Biological Data.  

From Ronan,T., Qi,Z. and Naegle,K.M. (2016) Avoiding common pitfalls when clustering 
biological data. Sci. Signal., 9(432): re6. doi: 10.1126/scisignal.aad1932. Reprinted with 
permission from AAAS. 

4.1 Abstract 

Clustering is an unsupervised learning method, which groups data points based on 

similarity, and is used to reveal the underlying structure of data. This computational approach is 

essential to understanding and visualizing the complex data that are acquired in high-throughput 

multidimensional biological experiments. Clustering enables researchers to make biological 

inferences for further experiments. Although a powerful technique, inappropriate application can 

lead biological researchers to waste resources and time in experimental follow-up. We review 

common pitfalls identified from the published molecular biology literature and present methods 

to avoid them. Commonly encountered pitfalls relate to the high-dimensional nature of biological 

data from high-throughput experiments, the failure to consider more than one clustering method 

for a given problem, and the difficulty in determining whether clustering has produced 

meaningful results. We present concrete examples of problems and solutions (clustering results) 

in the form of toy problems and real biological data for these issues. We also discuss ensemble 

clustering as an easy-to-implement method that enables the exploration of multiple clustering 

solutions and improves robustness of clustering solutions. Increased awareness of common 

clustering pitfalls will help researchers avoid overinterpreting or misinterpreting the results and 

missing valuable insights when clustering biological data.   
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4.2 Introduction 

Technological advances in recent decades have resulted in the ability to measure large 

numbers of molecules, typically across a smaller number of conditions.  Systems-level 

measurements are mined for meaningful relationships between molecules and conditions. 

Clustering represents a common technique for mining large data sets. Clustering is the 

unsupervised partitioning of data into groups, such that items in each group are more similar to 

each other than they are to items in another group. The purpose of clustering analysis of 

biological data is to gain insight into the underlying structure in the complex data – to find 

important patterns within the data, to uncover relationships between molecules and conditions, 

and to use these discoveries to generate hypotheses and decide on further biological 

experimentation. The basics of clustering have been extensively reviewed (80–82). Clustering 

has led to various discoveries, including molecular subtypes of cancer (83–86), previously 

unknown protein interactions (87), similar temporal modules in receptor tyrosine kinase cascades  

(88), metabolic alterations in cancer (89), and protease substrate specificity (90). 

Although clustering is useful, it harbors potential pitfalls when applied to biological data 

from high-throughput experiments. Many of these pitfalls have been analyzed and addressed in 

publications in the fields of computation, bioinformatics, and machine learning, yet the solutions 

to these problems are not commonly implemented in biomedical literature. The pitfalls 

encountered when clustering biological data derive primarily from (i) the high-dimensional 

nature of biological data from high-throughput experiments, (ii) the failure to consider the results 

from more than one clustering method, and (iii) the difficulty in determining whether clustering 

has produced meaningful results. Biological systems are complex, so there are likely to be many 
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relevant interactions between different aspects of the system, as well as meaningless 

relationships due to random chance. Differentiating between a meaningful and a random 

clustering result can be accomplished by applying cluster validation methods, determining 

statistical and biological significance, accounting for noise, and evaluating multiple clustering 

solutions for each data set. The high-dimensional nature of biological data means the underlying 

structure is difficult to visualize, that valid but conflicting clustering results may be found in 

different subsets of the dimensions, and that some common clustering algorithms and distance 

metrics fail in unexpected and hidden ways. To address these issues, clustering parameters and 

methods that are compatible with high-dimensional data must be identified and implemented, the 

results must be validated and tested for statistical significance, and researchers should become 

used to applying multiple different clustering methods as part of routine analysis. 

Some solutions to address these pitfalls require awareness of the issue and the use of 

appropriate methods, whereas other solutions require substantial computational skill and 

resources to implement successfully. However, one method – ensemble clustering (that is, 

clustering data many ways while making some perturbation to the data or clustering parameters) 

– solves multiple pitfalls and can be implemented without extensive programming or 

computational resources. We mention the uses of ensemble clustering, as appropriate, and 

provide an overview of ensemble clustering at the end.  
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4.3 High-Dimensionality Affects Clustering Results 

Systems-level measurements and high-throughput experiments are diverse in the size of 

the data sets, number of dimensions, and types of experimental noise.  Examples include 

measurements of the transcript abundance from thousands of genes across several conditions 

(such as in multiple cell lines or in response to drug treatments) (85, 91), measurements of 

changes in the abundance of hundreds of peptides over time after a stimulation (92), or 

measurements of hundreds of microRNAs across tissue samples (85). Because the 

dimensionality of the data in a clustering experiment depends on the objects and features selected 

during clustering, understanding how to determine dimensionality and its effects on clustering 

are prerequisites for approaching a clustering problem. As a rule of thumb, data with more than 

10 dimensions should be considered high dimensional and should be given special consideration. 

4.3.1 Determining Dimensionality 

The dimensionality of a clustering problem is defined by the number features that an 

object has, rather than by the number of objects clustered. However, the definition of object and 

feature in a given clustering problem depends on the hypothesis being tested and which part of 

the data is being clustered. For example, in the measurement of 14,546 genes across 89 cell lines, 

as found by Lu, et al. (2005) (3), we can ask two with these data. First, what is the relationship 

between the genes based on their changes across the 89 cell lines? This case represents a gene-

centric clustering problem with 14,456 observations, with each observation having 89 

dimensions (Figure 4.1A). Second, what is the relationship between cells based on the changes in 

gene expression across all of the genes? This case represents a cell line clustering problem, 
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obtained by transposing the original data matrix such that the matrix now has 89 observations, 

with each observation having 14,456-dimensions (Figure 4.1B). 

 

 

Figure 4.1: Determining the Dimensionality of a Clustering Problem. 
(A) A representation of the Lu mRNA clustering problem, consisting of over 14,000 mRNA measured across 89 cell 
lines, from Lu, et al. (2005). When the mRNA are being clustered, the mRNA are the objects and each cell line 
represents a feature resulting in an 89-dimensional problem. (B) When attempting to classify normal and tumor cell 
lines using gene expression, the objects to be clustered are the cell lines and each mRNA is a features resulting in a 
clustering problem of thousands of dimensions. (C) For a fixed number of points, sparsity increases as 
dimensionality increases. (D) In a one-dimensional Gaussian distribution (represented by a typical bell curve) three 
standard deviations cover 99.7% of the data. In two- or three-dimensions, when independently distributed, this 
coverage is reduced slightly (to 99.5% and 99.2% respectively). In 10 dimensions, three standard deviations cover 
only 97.3%. By 100 dimensions, coverage is reduced to 76.3%, and by 1000 dimensions it is reduced to 6.7%. 

 

The same data can be clustered in different ways to discover different biological insights, 

and these different ways of clustering the data can have large differences in dimensionalities. 

The gene-centric clustering problem represents a good basis for clustering because observations 
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greatly exceed the dimensions. However, even that problem represents a high-dimensionality 

situation. The cell line clustering problem is even more challenging because the relatively small 

number of observations (89) compared with the large dimensionality (>14,000) could be 

dominated by noise in the expression data. Without careful handling of sparsity and feature 

masking, clustering will almost certainly deliver poor or misleading results. Reliable and 

meaningful clustering results are likely achievable only with careful dimensionality reduction or 

subspace clustering. 

4.3.2 Geometry and Distance in High-Dimensional Data  

As dimensionality increases beyond two- and three-dimensional spaces, the effects of 

high-dimensionality, referred to as the “curse of dimensionality” come into play. These effects 

manifest in three key ways: (i) Geometry behaves nonintuitively in higher dimensions; (ii) 

sparsity is common in high-dimensional data sets; and (iii) relevant features tend to become 

masked by increasing numbers of irrelevant features. 

As dimensionality increases , familiar relationships of distance, volume, and probability 

distributions behave nonintuitively (93). The method of determining distance between points in a 

clustering problem (the distance metric) influences the clustering result. With high-dimensional 

biological data, distance metrics fail to behave as expected based on our low-dimensional 

intuition. For example, as dimensionality increases beyond 16 dimensions, the nearest neighbor 

to a point can be the same distance away as the farthest neighbor to a point (for many common 

distance metrics) (94–96). Put another way, because it is likely that any two points are far apart 

in at least a few dimensions, all points approach being equally far apart (97). This means that for 

many types of distance functions in high dimensional space, all points are effectively equidistant 

from one another (96, 98).  As a result, some common distance metrics and the concept of 



115 
 

“nearest neighbor” can be potentially meaningless in high-dimensional space (96, 99). Although 

data with more than 16 dimensions should be considered high-dimensional (96), data with as few 

as 10 dimensions can also exhibit non-intuitive high-dimensional behavior (93). 

 Some algorithms that were developed for lower-dimensional spaces do not generalize 

well to high-dimensional spaces. Many centroid and density-based algorithms, such as k-means 

(centroid) and DBSCAN (density-based) rely on defining a nearest neighbor, which only works 

well in lower-dimensional spaces (100). Thus k-means and DBSCAN (101) often fail to return 

useful results when used on high-dimensional data (94, 96). Furthermore, these algorithms will 

give no indication that they are not working as expected. Despite these problems, reliable and 

interpretable results with high-dimensional data can be achieved if ensembles of these clustering 

algorithms are used (102, 103).  

Some algorithms are specifically designed to function with high-dimensional data. 

Hypergraph-based clustering methods draw on the field of graph theory, a method of 

representing pairwise relations between objects. Hypergraph-based clustering can be used to 

transform sparse data in high-dimensions to a problem in graph partitioning theory, drawing on 

unique methods from that field, to produce accurate and informative clustering (94).Grid-based 

clustering is a density-based approach and can fail to give meaningful results on some high-

dimensional data sets. However, Optigrid is a grid-based clustering approach that specifically 

addresses the problems of distance and noise that confound other similar algorithms when 

applied to high-dimensional data sets (100). Some algorithms, such as NDFS, simultaneously 

solve problems with noise and find subgroups (104), which can improve the accuracy of 

clustering of high-dimensional data. Others, like OptiGrid, alternate rounds of grouping and 

dimensionality reduction to cluster high-dimensional data (105). When working with high-
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dimensional data, clustering algorithms that are suited for the dimensionality of the clustering 

problem should be used. 

4.3.3 Sparsity in High-Dimensional Data 

Sparsity is a problem with high-dimensional data because clusters are most clearly 

defined when there are many objects in each cluster, resulting in robust representation of each 

cluster. Given a fixed amount of data, increasing dimensionality causes the data to become 

spread out in space.  For example, given a set of data points in one dimension, data may be 

densely packed (Figure 4.1C). As the dimensionality increases to two or three dimensions, each 

unit volume of the space becomes less and less populated. Extrapolating to an even more 

sparsely populated high-dimensional data set, it becomes increasingly difficult to ascertain 

whether a distant data point represents a noisy point far from one cluster or a new cluster that has 

only a few members and thus is difficult to identify. Effectively, random noise dominates 

clustering results based on sparse data. 

Sparsity also affects our low-dimensional intuition for statistical rules-of-thumb. We 

typically use three standard deviations (SDs, ±3σ) to determine a reasonable threshold for 

statistical significance. In a one-dimensional Gaussian distribution (represented by a typical bell 

curve) 3 SDs cover 99.7% of the data. In two- or three-dimensions, when independently 

distributed, this coverage is reduced slightly (to 99.5% and 99.2% respectively). In 10 

dimensions, 3 SDs cover only 97.3%. By 100 dimensions, coverage is reduced to 76.3%; by 

1000 dimensions it is reduced to 6.7% (Figure 4.1D) (95). This means that, in high-dimensional 

space, our rules-of-thumb for interpreting variance and what threshold should be considered 

statistically significant need to be reconsidered. 
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4.3.4 Masking Relationships in High-Dimensional Data 

With high-dimensional data, the signal can easily get lost in the noise. Biological noise 

and variation contribute to irrelevant features, which can mask important features, and ultimately 

influence cluster membership in the full-dimensional space (106). In the example of gene 

expression analysis across 89 cell lines, measuring tens of thousands of transcripts guarantees 

that transcripts with no relevance to the biology under study will also be measured. However, the 

noise that is present in those transcripts from biological or technical variation can dominate 

clustering results because clustering algorithms treat the noise as if they are true features in the 

data. The background noise resulting from cell-cell variation might swamp the most relevant 

features necessary to identify differences between cell lines, or background noise can even 

masquerade as significant differences between cell lines when those differences are due to 

random processes in the cell.  

Strong relationships among only a subset of features can mask other relationships. For 

example, metastatic cells and normal cells of a particular type may have similar gene expression 

profiles, so cell lines might tend to cluster by cell type (rather than normal versus metastatic) 

when the entire gene expression data are used. However, when only expression data from a 

subset of genes are used, the metastatic cells may exhibit similar expression patterns and thus 

would be grouped apart from the normal cells. 

To exemplify how a signal can be detected in a lower-dimensional data set and lost in a 

higher-dimensional data set, we turn to a study by Lu and colleagues (85) in which they 

measured the relative abundances of microRNA and mRNA in 89 cell lines. Eighteen of 20 

gastrointestinal cell lines clustered together with the microRNA data, which had 217 dimensions, 

but this relationship was lost when the mRNA data with ~14,000 dimensions were clustered. 
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Understanding that higher-dimensionality data can result in loss of the signal in the noise, we 

agree with the authors when they suggested that the loss of signal might result from the “the 

large amount of noise and unrelated signals that are embedded in the high-dimensional mRNA 

data”. Fortunately strategies are available for unmasking the hidden signals in biological data. 

 

Figure 4.2. Dimensionality Reduction Methods and Effects. 
Comparison of PCA and subspace clustering. (A) Three clusters are plotted in two dimensions. PCA determines the 
direction of greatest variance (A, dashed red line). (B) Clusters after dimensionality reduction by PCA. (C) Three 
subspaces (red dashed line) are identified upon which to project the data. (D through F) A comparison of the original 
clustering results of 89 cell lines in ~14,000 dimensional mRNA data (D), to clustering results after PCA (E), and 
after subspace clustering (F). Blue bars represent GI cell lines, yellow bars represent non-GI cell lines. 
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There are competing schools of thought for addressing the masking of relevant features 

by irrelevant features. If only a few features (dimensions) of the data are likely to contain the 

most relevant information, some advocate applying techniques that reduce the dimensionality. 

Dimensionality reduction involves the selection of only a subset of the features; the selection of 

which is based on a criterion such as predictive power or variance. When only a few features are 

expected to contain signal and the rest are expected to be noise, Principal Component Analysis 

(PCA) is often used. PCA reduces high-dimensional data to fewer dimensions that capture the 

largest amount of covariance in the data. Another method of reducing dimensionality is to 

remove features with low values, as is often done in microarray analysis where transcripts below 

a threshold, or transcripts changing only a very small amount between conditions, are removed 

from the data set. Alternatively, if multiple independent signals exist in the data, selection of 

different subset of features to cluster (107) may reveal different relationships among the data 

These three commonly applied methods for reducing dimensionality will produce 

clustering results, but each has limitations and, by definition, eliminates some features of the 

data. Dimensionality reduction techniques can degrade clustering results for high-dimensional 

datasets (108) when that is present only in some subset of the data is eliminated as a result of the 

dimensionality reduction. To illustrate this problem, we use a toy data example in which three 

clusters are readily apparent when the data are presented in two dimensions (Figure 4.2A). A 

single projection onto any one dimension (determined by PCA, defined by the dotted line) 

(Figure 4.2B) reduces the separability compared with the two-dimensional representation such 

that the identity of at least one cluster is lost. This “local feature relevance” suggests that 

dimensionality reduction techniques, such as PCA, may be inappropriate if different clusters lie 
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in different subspaces, and that one should avoid the application of a single instance of feature 

selection (106) to avoid missing important structures within the data. 

In contrast, subspace clustering is a method that searches different subsets of original 

features to find all valid clustering results, no matter which subset they are found in. Subspace 

clustering does not use graph theory or partitioning methods. Because it involves the selection of 

a subset of features, it also does not rely on the density of the data. In some data, objects will 

cluster only in subspaces of the full data space. For example, in the toy problem, when three 

different subspaces are chosen, at least two of the three clusters would be well separated when 

projected on to any of the highlighted subspaces ( when projected onto the dashed lines) (Figure 

4.2C). Subspace clustering must be carefully tailored to high-dimensional data to produce valid 

results (109). As a computationally intensive method, it can hit limitations due to a combinatorial 

explosion of potential subspaces in high dimensions (94). However, subspace clustering can 

reveal the multiple, complex relationships in biological data. Although information is lost in each 

subspace, multiple subspaces are considered; therefore, subspace clustering results are informed 

by information from all relevant dimensions. 

The problematic effects of dimensionality reduction and the efficacy of subspace 

clustering can be seen on the expression data from Lu et al. (85). The clustering results from the 

original study (clustering 89 cell lines using the MRNA data, ~14,000 dimensions) (Figure 4.2D) 

were compared to the clustering results after using PCA to reduce the dimensionality to the 10 

most relevant features (Figure 4.2E) and after using subspace clustering to reduce the 

dimensionality to the 10 most informative features (Figure 4.2F). As Lu et al. found, we do not 

see significant grouping of cell lines of gastrointestinal origin when we cluster the data in the full 

feature space (Figure 4.2D), or if we reduce dimensionality using the first 10 principal 



121 
 

components as features from PCA (Figure 4.2E). However, a selection of one 10-dimensional 

subspace shows strong clustering for GI cell lines (Figure 4.2F) – almost as strong as the results 

that Lu and colleagues presented for much lower-dimensional microRNA data (as discussed 

below, and as shown in (Figure 4.2D). This analysis suggests that, although the reduced 

dimensions of principal component space may have uncovered a structure we do not understand, 

PCA was not informative when attempting to group cells based on their tissue of origin. 

However, there is a subspace (a subset features from the original dimensions) for the mRNA data 

in which we can successfully group cells by their origins. This example illustrates how irrelevant 

features in the high-dimensional space masked the grouping of cells by origin, despite the data 

including expression measurements of genes that reflect tissue origin. The key was finding the 

right approach to cluster the data.  



122 
 

4.4 Effects of Clustering Parameters on Clustering 
Results 

In addition to issues related to the high-dimensionality of biological data, clustering 

parameters also affect the clustering result. Given the same data, varying a single parameter of 

clustering such as the transformation, the distance metric, or the algorithm, can drastically alter 

the clustering solution. Unfortunately, there is often no clear choice of best metric or best 

transformation to use on a particular type of biological data. Each choice can mask or reveal a 

different facet of the organization within the data. Therefore, in addition to applying different 

methods of clustering and different approaches to addressing dimensionality, it is essential to 

consider results from multiple parameters when evaluating clustering solutions in biological data. 

4.4.1 Transformations and Distance Metrics 

Data is often transformed as part of analysis and processing.  For example, transcriptional 

microarray data are commonly log2-transformed. This transformation expands the information 

for genes with low expression variation across samples and simplifies the identification of genes 

with differential expression. Similarly, in proteomics datasets, data may be centered and scaled 

by autoscaling or z-scoring (25) to make relative comparisons between signals for which 

magnitude cannot be directly compared. Although transformation can improve the ability to 

draw useful biological insight (110, 111), transformation also generates a new dataset with 

altered relationships that may reveal or mask some underlying biological relationships in the data 

(Figure 4.3, A and B). 
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Figure 4.3. Transformations and Choice of Distance Metric Can Affect Clustering Results. 
(A) A demonstration of how transformations affect the relationship of data points in space. A toy dataset (reference 
set) was clustered into four clusters with agglomerative clustering, average linkage, and Euclidean distance. The 
four reference clusters without transformation (upper panel) and after log2 transformation (lower panel). (B) 
Transformations and distance metrics change clustering results when compared to the reference clustering.  With no 
transformation (upper panels), Euclidean and cosine distance do not change cluster identity, but with Manhattan 
distance, a new cluster A’ is added, and cluster C is merged into cluster B. With the log2 transformation (lower 
panels), the Euclidean and Manhattan metrics cause cluster C’ to emerge and cluster D to be lost. (C) The 
dendrogram from the microRNA clustering experiment result from Lu covering 89 cell lines and 217 microRNA. 
Gastrointestinal-derived cell lines (blue bars) predominantly cluster together in the full dimensional space. Note: 
The data was log2 transformed as part of the pre-clustering analysis. (D) The same microRNA data as in (C) but 
without log2 transformation. Although transformations can have a large effect on clustering results, here the effect is 
relatively minor. The GI cell lines still predominantly cluster together, although one GI cell line (leftmost blue bar) 
leaves the main cluster, and the two most distant cell lines become even more separated from the main cluster 
(rightmost two blue bars).  
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Although transformation of data is routine as a part of preclustering analysis, because of 

the effects on density and distance in the data set, any transformations done on the data at any 

point should be explicitly considered as a clustering parameter during the clustering process. We 

found that, compared with using different distance metrics or clustering algorithms (111),  

transformations often had the greatest impact on a clustering result (Figure 4.3B). On other 

cases, transformation has little impact on clustering results (Figure 4.3, C and D). 

The choice of a distance metric also greatly affects clustering results, because different 

distance metrics accentuate different characteristics of the data (Figure 4.3B). Thus, to avoid 

missing information in the data, different distance metrics and transformations should be applied 

as a routine part of clustering analysis.  
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Figure 4.4: The Choice of Algorithm Can Affect Clustering Results. 
Four toy datasets demonstrate effects of different types of clustering algorithms on various structures in two-
dimensional data. The k-means algorithm depends heavily on selection of the correct value for k and tends to find 
spherical clusters (col 1). It performs poorly on irregularly shaped data (rows 3-5). The Ward algorithm (col 2) can 
produce different results depending on the threshold for similarity, highlighting hierarchical relationships. For 
example, at different thresholds, the green cluster (row 2, two lower groups) might take on separate cluster 
identities, indicating that the group is composed of two subgroups.  The DBSCAN algorithm is a density-based 
clustering algorithm. Since it does not rely on a particular cluster shape, it can capture more complex structures in 
low-dimensional data (rows 3-5), and does not tend to find clusters in uniform data (row 1). However, variations in 
density can cause it to find additional clusters not found by other algorithms (rows 2 and 3).  Statistical methods, 
like Gaussian mixture models (col4) fit statistical distributions to the data, but have limited success on non-normally 
distributed data (rows 3-5).  
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4.4.1 Clustering Algorithms 

The choice of a clustering algorithm is based on several factors: (i) the underlying 

structure of the data, (ii) the dimensionality of the data, (iii) the number of relevant features for 

the biological questions being asked, and (iv) the noise and variance in the data. Each algorithm 

incorporates different assumptions about the data and can reveal different relationships among 

the data (Figure 4.4). There four primary classes of clustering algorithms are hierarchical, 

centroid, density, and statistical. The choice of clustering algorithm depends on the predicted 

structure of the data, and each algorithm class produces clusters with different properties.  

Hierarchical clustering is useful when data are expected to contain clusters within clusters, or 

the objects are expected to have a nested relationship. The Ward algorithm (Figure 4.4, column 

2) can produce different results depending on the threshold for similarity, highlighting 

hierarchical relationships. For example, at different thresholds, the green cluster (Figure 4.4, row 

2, column 2, two lower groups) might take on separate cluster identities, indicating that the group 

is composed of two subgroups. Centroid clustering, such as k-means clustering, assigns 

membership in a cluster based on the distance from multiple centers, resulting in roughly 

spherical clusters even when the underlying data is not spherically distributed. The k-means 

algorithm depends heavily on the selection of the correct value for k and tends to find spherical 

clusters (Figure 4.4, column 1). It performs poorly on irregularly shaped data (Figure 4.4, rows 3 

to 5, column 3).  Density-based algorithms, such as DBSCAN (101), connect groups of densely-

connected points with regions of lower density separating clusters. Because it does not rely on a 

particular cluster shape, it can capture more complex structures in low-dimensional data (Figure 

4.4, rows 3 to 5, column 3) and does not tend to find clusters in uniform data (Figure 4.4, row 1, 

column 3). However, variations in density can cause it to find additional clusters not found by 
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other algorithms (Figure 4.4, rows 2 and 3, column 3)  Statistical methods, such as self-

organizing maps (112) and Gaussian mixture models (Figure 4.4, column 4), fit statistical 

distributions to data in order to identify multiple groups of observations, each belonging to their 

respective distribution, but have limited success on non-normally distributed data (Figure 4.4, 

rows 3 to 5). 

Whereas the data in Figure 4.4 are toy examples, real-world examples are often high-

dimensional and difficult to plot. Often, the underlying structure is not known for most biological 

data, and it is likely that a complex biological data set will have multiple structures – non-

spherical distributions, widely varying density scales, and nested relationships – that will only be 

revealed by applying multiple clustering algorithms. 

4.5 Evaluating Clustering Results 

How can you tell when the clustering result of biological data is meaningful? Because of 

the complexity of biological systems, there are likely to be many valid clustering solutions each 

revealing some aspect of underlying biological behavior. Unfortunately, there are likely to be 

many meaningless relationships simply due to random chance because the data are complex. 

Most clustering algorithms will find clusters, even if there is no true underlying structure in the 

data (as exemplified by Figure 4.4, top row). Therefore, clusters must be evaluated for biological 

relevance, stability, and cluster fitness. Understanding and accounting for noise and uncertainty 

in the data should be also considered when determining whether a clustering result is 

meaningful. 
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4.5.1 Cluster Validation 

Validation metrics are a measure of clustering fitness. They can be used to determine if 

the result represents a well-defined structure within the dataset, using concepts such as cluster 

compactness, connectedness, separation, or combinations of these attributes. Much like distance 

metrics, each validation metric accentuates different aspects of the data to account for the final 

score (Table 4.1). The compactness of each cluster can be measured by the root-mean square 

standard deviation (RMSSTD) method (113), the r-squared (RS) method (114), and Hubert’s Γ- 

statistic (115). Connectedness within a cluster can be measured by k-nearest neighbor 

consistency (116) or Handl’s connectivity metric (117). Separateness is measured by the SD 

validity index (114), which compares average scattering and total separation between clusters. 

Some metrics combine measures of compactness and separation, such as the pseudo F-statistic 

(also known as the Calinski-Harabasz index) (118), the Dunn index (119), Davies-Bouldin index 

(120), silhouette width (121), or the gap statistic (122). When there are different numbers of 

clusters between the clustering results, or predominantly different membership in each cluster, 

some metrics might fail. The Rand index (123) is appropriate for validating these complex 

clustering differences. 

To illustrate the differences in validation metrics that measure compactness, 

connectedness, and separation, we applied different metrics to the clustering results Figure 4.4. 

The results can be found in Table 4.2. For the toy data, DBSCAN generally performs better on 

the more complex structures, with some exceptions. DBSCAN correctly identifies no structure 

(Figure 4.4, row 1), the half-moons (Figure 4.4, row 4) and nested circles (Figure 4.4, row 5). 

This is also reflected in the validation metric results for connectedness, which is a better measure 

than compactness for non-spherical data shapes. The lack of structure in row 1 is also suggested 
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by the “zero” result to the RS measure of compactness and the ‘not-available’ result for 

separation from the SD validity index. For the spherical clusters, k-means and mixture models 

perform the best (Figure 4.4, row 2), which is reflected in the best scores for validation metrics 

measuring both compactness and separation. No algorithm performs well on the parallel lines 

data (Table 4.2). Although DBSCAN appears to do better with the center of the clusters (Figure 

4.4, row 3), the errant results at the far left and right result in a poor score for validation metrics 

– on par with those algorithms which chop the horizontal parallel lines into vertical clusters. 

  

Metric References Measures 

Root-mean-square  
standard deviation (RMSSTD) 

(113) 

Compactness 
R-squared (RS) (114) 

Modified Hubert Gamma (Γ) statistic (115) 

k-nearest neighbor consistency  (116) 

Connectedness Connectivity (117) 

Determinant Ratio Index (124) 

 
SD Validity Index 

 
(114) 

 
Separation 

 

Pseudo-F statistic  
(Calinski-Harabasz ) 

(118) 

Combination of  
compactness  

and separation 

Dunn index (119) 

Silhouette width (120) 

Davies-Bouldin index (120) 

Gap Statistic (122) 

 
Rand index 

 
(123) 

 
Similarity between solutions 

 

Table 4.1: Validation Metrics. 
A number of validation metrics can be used for testing the quality of a clustering solution. While some focus on 
compactness, or connectedness, others use a combination of compactness and separation. The Rand index is 
particularly useful when there is a wide range of k between solutions, or large differences in cluster membership 
between clustering solutions.   
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Compactness Connectedness Separation 

Validation  
Metric  RMSSTD r-squared Determinant Ratio Index SD Validity Index 

Algorithm Structure min max min min 
k-means No structure 0.38 0.23 4.04 6.67 
Ward No structure 0.40 0.18 2.58 7.56 
DBSCAN No structure 0.44 0.00 1.00 N/A 
Mixture models No structure 0.38 0.23 4.09 6.67 
k-means Spherical clusters 0.78 0.81 249.08 0.32 
Ward Spherical clusters 1.18 0.56 26.43 0.18 
DBSCAN Spherical clusters 0.58 0.86 1683.53 2.52 

Mixture models Spherical clusters 0.78 0.81 249.08 0.32 
k-means Long parallel clusters 0.89 0.27 2.77 0.79 
Ward Long parallel clusters 0.93 0.21 2.10 0.75 
DBSCAN Long parallel clusters 0.84 0.21 22.36 4.32 
Mixture models Long parallel clusters 0.89 0.27 2.79 0.79 
k-means Half Moons 0.55 0.35 4.23 1.77 
Ward Half Moons 0.57 0.30 3.77 1.98 
DBSCAN Half Moons 0.60 0.21 3.03 2.61 
Mixture models Half Moons 0.56 0.33 5.21 1.93 
k-means Nested Circles 0.52 0.17 2.71 4.04 
Ward Nested Circles 0.53 0.13 1.97 3.30 
DBSCAN Nested Circles 0.57 0.00 1.00 4059.71 

Mixture models Nested Circles 0.52 0.17 2.71 3.99 

 

Table 4.2: Validation Metrics. 
Results of validation metrics measuring compactness (RMSSTD (113), r-squared (114)), connectedness 
(Determinant Ratio Index (124)), and separation (SD Validity Index (114)), applied to the data from Error! 
Reference source not found.. The validation metrics indicate the type of best score (max or min). The green cells 
represent the best score for each structure and validation metric. 

 

The validation metric chosen should match the characteristics being tested. One approach 

is to use a metric that matches the selected algorithm. For example, when an algorithm optimizes 

connectedness, a metric that evaluates connectedness instead of one that evaluates compactness 

should be used (Table 4.1). An alternate approach is use to a panel of validation metrics, each 

measuring a specific aspect of the data. For example, when creating an ensemble of distance 

metrics and algorithms, a panel of metrics measuring compactness, connectedness, and 
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separation will eliminate inappropriate combinations of parameters. The worst pitfall is to not 

use any metric to assess the clustering outcome. 

4.5.2 Clustering Stability 

Because complex biological data can demonstrate multiple and independent valid 

clustering results, any single clustering result can be inconclusive. Validation metrics provide an 

assessment of the quality of a clustering result with regard to specific aspects of the data. In 

contrast, stability of the clustering result defines how robust the clustering is to perturbation, that 

is, how many ways of assessing the data produce a similar clustering result. Stability analysis 

works under the premise that clustering results represent the underlying structure of the data and 

should be relatively invariant to perturbations in the analysis. Stability analysis can identify 

robust clustering solutions using a variety of perturbations, such as accounting for (i) noise (125–

127), (ii) projections of high dimensional data onto fewer dimensions (109), (iii) differences in 

algorithms, distance metrics, and data transformations (111), and (iv) the effect of selecting 

different random starting positions in nondeterministic algorithms (128). 

Stability analysis assumes that there is a single “true” structure within the data; however, 

high-dimensional biological data can have multiple true structures that reveal distinct biological 

insights. Therefore, it may be equally valid to assume that there are multiple structures within the 

data. Multiple Clustering Analysis Methodology (MCAM) (111) is an approach that tests 

multiple clustering results. The approach in MCAM is based on the assumption that some 

perturbations to clustering parameters can uncover clustering results that reveal different 

biological insights. For example, some transformations uncovered shared binding partners of 

phosphorylation sites, while others highlighted shared biological function within a cell signaling 

pathway (111, 125).  
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Application of multiple clustering methods can reveal a single stable and robust result or 

uncover additional underlying structures in the data. Applying only a single clustering approach 

runs the risk of drawing conclusions based on noise or missing interesting and useful structures 

within the data. 

4.5.3 Accounting for Noise and Measurement Uncertainty 

Uncertainty in data means uncertainty in clustering results. However, many clustering 

algorithms do not account for noise or error when determining relationships between 

observations or when calculating distance. Although the molecular and cellular biology research 

community has adopted a set of rules that enable meaningful interpretation of differences in 

molecular measurements between pairs of conditions, this kind of standard has not been adopted 

for clustering complex, high-dimensional data. For example, when comparing means of 

measured data, we tend to require a minimum of triplicate measurements and the use of 

Student’s t test to determine statistically significant differences within biological data (129, 130). 

Surprisingly, similar standards and rules do not exist for identifying differential patterns or 

groupings from clustering results, despite the data having the same measurements and biology as 

low-dimensional data between pairs of conditions. 

Several methods account for the uncertainty in the data and properly  propagate that 

uncertainty into clustering results. One ensemble approach is exemplified by Kerr and 

Churchill’s work (131) in which the researchers performed repeated clustering on multiple 

datasets created by sampling gene expression from a statistical model that incorporates the 

variance of the measurements. From this analysis, the variation in the clustering result due to the 

variability in the original data is determined; thus producing a range of clustering results 

representing the variability. An alternative approach is to use model-based clustering algorithms 
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that account for the variance in the replicate measurements during the formations of clusters 

(127, 132, 133). 

Because model-based approaches are not commonly accessible to molecular biologists in 

standard software packages, we explored ways to account for noise with ensembles (125) 

without necessarily relying on a statistical model of the data. This exploration led us to two 

major conclusions about the effects of noise. First, when data are well-separated, robust clusters 

can still be found, even in data with noisy distributions. Thus, clustering robustness cannot be 

predicted on the basis of the noise in the data. Second, the noise and variance in data are useful 

and contain information that can be revealed from the ensemble analysis. Specifically, we found 

that as signals propagate in time from a receptor tyrosine kinase to the mitogen-activated protein 

kinase (MAPK) pathway, there was high variability in an intermediate signaling state in the 

MAPK pathway. The effect of this noise in the clustering results reflected the relationship of this 

intermediate signal (a singly phosphorylated kinase) with both the upstream signal (the receptor) 

and downstream signal (the doubly phosphorylated form of the kinase) and represented a 

meaningful biological relationship. Consequently, we recommend against prefiltering data to 

remove those with high variance; instead, noise should be addressed in the clustering analysis, 

even in the absence of replicates (as detailed in (125)). 

4.5.4 Determining Biological and Statistical Significance of Clustering 
Results 

A primary challenge of clustering analysis is deriving biological insight.  The most 

successful analyses often result from combining clustering with prior biological understanding of 

the system. However, unless the process of attaching biological meaning to the clusters is done 

with statistical care, we can often over-interpret relationships that “make sense” to us. The two 
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most common pitfalls related to this are (i) using anecdotal observations instead of a statistical 

test, and (ii) failing to account for the increase in false positives when multiple statistical tests are 

performed. 

Ultimately, to avoid the first pitfall, a researcher must determine the likelihood of having 

made a particular observation by random chance.  This “null model” or “background model” can 

then be used to assess how likely the relationship uncovered by clustering is truly related to the 

biological information under consideration, as opposed to the likelihood of it occurring by 

random chance. We demonstrate this process with the microRNA clustering results from the 

analysis of the 89 cell lines (Figure 4.3C) (85).  To test the statistical hypothesis, we asked how 

likely it is that the 15 gastrointestinal cell lines would have occurred in the cluster of 20 cell lines 

by random chance. We used the theoretical hypergeometric distribution to calculate the 

probability using a right-tailed test. The resulting P value is approaches zero, indicating that this 

clustering result is unlikely to be due to random chance alone. In contrast, the random chance of 

any two gastrointestinal cell lines appearing in a cluster of 20 cell lines is likely due to random 

chance alone (P ≤ 0.9). 

In many biological data sets, we are not simply testing one label in a single cluster, but 

rather multiple labels across multiple clusters. A common example in cell biology and signaling 

research is to test for enrichment in any cluster of Gene Ontology terms (134) or biological 

pathway assignments from other sources.  

Testing for the enrichment of such biological properties or classifications across the 

clustering results represents multiple hypothesis testing and thus requires “multiple hypothesis 

correction.” For example, a P value cutoff of 0.01 for a single tested hypothesis yields the 
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prediction that false-positive results due to random chance occur rarely – only 1/100th of the 

time. However, as is common is biological dataset analysis, we often test thousands of 

hypotheses (for example, asking if any one gene out of 10,000 is differentially expressed). In this 

case, even with a P value cutoff of 0.01, we would expect to find 100 false positive results due to 

random chance.  If we identify 105 differentially expressed genes, but we know 100 are false 

positives, we cannot separate which five are likely to be the true positives without multiple 

hypothesis correction. 

When choosing a procedure for multiple hypothesis correction, reducing false positives 

may simultaneously increase false-negatives (the elimination of real positives), and can result in 

missing biological insight. To reduce the frequency of false-negatives, we recommend the false 

discovery rate (FDR) correction procedure introduced by Benjamini and Hochberg (135), which 

is often applied in microarray analysis (136, 137), rather than the Bonferroni correction (138).  

Regardless of the type of correction chosen, when asking multiple questions, one must 

implement some form of multiple hypothesis correction to prevent overinterpreting the results. 

4.6 Ensemble Clustering: A Solution to Many Pitfalls 

Ensemble clustering refers to the act of clustering the data many times while making 

some perturbation – either to the data matrix or to clustering parameters – and then accounting 

for all of the clustering results across the ensemble. The goal of ensemble clustering is to 

improve the quality and robustness of clustering results when compared to any single clustering 

result. 
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Why do ensembles improve quality and robustness? In short, it is because uncorrelated 

“noise” cancels across clustering results. In ensemble clustering, noise in the clustering results 

occurs when there are strong biases due to the selected algorithms or because data contains 

poorly clustering points. Fortunately, if the errors made in each clustering result are not 

correlated, and the errors pertain to only a subset of the data, then the shared decisions made 

across the ensemble will dominate, resulting in convergence to the robust clustering result. A 

combination of diverse clustering results strengthens the underlying signal while filtering out the 

individual noise from each clustering result. Ensembles enable a more robust determination of 

the data structure than that acquired from a single clustering result obtained through analysis of 

the data without perturbation. 

 

 
Perturbation 

 

 
Reason Behind Perturbation 

 
References 

k Stability can identify the optimum number of clusters (126, 139, 140) 

Noise Biological and experimental noise should not change 
strong relationships within the data 

(125, 127, 141) 

Starting point (non-
deterministic 
algorithms) 

Identify those partitions that are independent of 
starting position or identify set of minima 

(102, 128) 

Projections into lower 
dimensions 

Increase robustness to clustering noise as a result of 
the curse of high dimensionality 

(109, 139, 142–144) 

Subsampling Subsets of the data should cluster consistently if the 
relationships are real 

(145–147) 

Parameters of 
clustering 

Unique biological information can be uncovered by 
perturbing solution space 

(111) 

Table 4.3: Ensemble Perturbations. 
Major perturbations applied to the data or to the clustering parameters in ensemble clustering and the motivating 
ideas for their use.  



137 
 

4.6.1 Ensemble Generation, Finishing, and Visualization 

The process of performing ensemble clustering involves selection an appropriate 

perturbation (Table 4.3), collecting the clustering results based on the perturbation, and then 

either combining the individual clustering results into a single clustering result or exploring the 

ensemble of clustering results for information about the underlying structure of the data. To 

illustrate an ensemble of clustering solutions, we used random toy data and created an ensemble 

of clustering results using k-means clustering with an increasing number of clusters (k) (Figure 

4.5). 

There have been many techniques proposed to combine results of individual clustering 

results in the ensemble into one final clustering result. We refer to these methods as finishing 

techniques. Most finishing techniques use agreement across the ensemble to build a final 

clustering result. One method is to calculate the co-occurrence (or consensus) matrix. A co-

occurrence matrix is an m x m matrix, where each entry, Ci,j, represents the number of times 

object i clusters with object j across all of the clustering results in the ensemble. 

We clustered the co-occurrence matrix using hierarchical clustering and Ward linkage 

and plotted the result as a heatmap (Figure 4.5B). The clusters are formed on the basis of 

creating maximal in-group co-occurrence frequency and minimum co-occurrence with members 

outside the group. This representation reveals a wealth of detail about the relationships between 

data points and highlights data points that cocluster robustly (that is, frequenctly) with each other 

across the ensemble.  
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Figure 4.5: Ensemble Clustering Overview. 
(A) A set of clustering results obtained using the k-means algorithm with various values of k (a k-sweep). (B) The 
hierarchically clustered (Ward linkage) co-occurrence matrix for the ensemble of results in (A). The heat map 
represents the percentage of times any pair of objects co-clusters across the ensemble. (C) A majority vote was taken 
using a threshold of 50% threshold on the co-occurrence matrix (left panel). The six strong clusters (see dendrogram 
color groupings) resulting from the majority vote are shown in the right panel. (D) The grey cluster provides an 
example of partially fuzzy clustering because it shares membership with the orange and dark blue clusters. These 
three clusters are isolated (D, left panel) and the co-occurrence matrix is reexamined. Rather than considering the 
gray cluster as distinct, one can consider it to have a partial membership in either the orange or blue clusters with a 
probability based on the co-occurrence matrix value.  
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Others have used majority voting, also based on the ideas of robustness (140, 148), as 

demonstrated in Figure 4.5C.  We subjected the co-occurrence matrix above to majority voting 

(Figure 4.5C, left) and then plotted the ensemble majority-voting cluster assignments (Figure 

4.5C, right). Identifying the most robust clustering result is useful for generating hypotheses for 

further experimental testing because hypotheses can be ranked on the basis of strength of the co-

occurrence (90% of the time compared to 10% of the time). 

Another finishing technique to identify robust portions of the ensemble is to apply graph 

theory. For example, if we assumed that the co-occurrence matrix represented edge weights (a 

numerical value indicating the strength of a connection) connecting the data points, we could 

traverse these weights to find maximally connected subgraphs and provide a different 

representation of robust clusters (149). With this concept of graph theory representation of 

ensemble clustering, we discovered that robustly clustered dynamic tyrosine phosphorylation 

data uncovered molecular-level interactions (87). 

The finishing techniques mentioned above uniquely assign each observation to one 

cluster, thereby creating hard partitions within the data. However, a benefit of ensemble 

clustering is the ability to identify the probability of relationships (fuzzy partitioning), which can 

be applied to the entire data (probability is calculated for membership of any observation to any 

cluster) or a mixture of hard partitioning and probability based assignment. An examination of 

the portion of the heatmap representation of the co-occurrence matrix containing the blue, gray, 

and orange clusters demonstrates fuzzy partitioning (Figure 4.5D, left). The heatmap indicates 

that the gray cluster members share partial membership with the blue and orange clusters (Figure 

4.5D, right). Rather than considering the gray cluster as distinct, one can consider it to have a 
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partial membership in either the orange or blue clusters with a probability based on the co-

occurrence matrix value. 

 

 

Figure 4.6: Ensemble Clustering on Phosphoproteomic Data. 
(A) A single clustering solution showing known interactors with EGFR (orange bars) and PDLIM1 (blue bar) co-
clustering in the phosphoproteomic data (blue heatmap). (B) The co-occurrence matrix heatmap demonstrating 
robust clustering of interactors with EGFR. The known interactors with EGFR (orange bars) and PDLIM1 (blue bar) 
are found in a single, robust cluster (upper left). (C) A subset of clustering results across multiple distance metrics 
and clustering algorithms. Under the dendrogram, known interactors with EGFR are marked with orange bars and 
PDLIM1 is marked with a blue bar.  
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4.6.2 Ensembles for Robust Clustering Results 

Ensemble clustering can reveal unexpected results. When an algorithm with limited 

capabilities is combined into an ensemble, the clustering result of the ensemble can have new 

capabilities. For example, although a k-means algorithm can only identify spherical clusters, 

when used as part of an ensemble with majority voting, the ensemble can identify half-moons 

and spirals (140). This is possible because signals from relatively weak relationships in each 

clustering result are combined to improve the strength of the pairwise relationship between 

points in the ensemble clustering results. Ensemble clustering can assess the impact of 

perturbations to clustering parameters on the clustering results, revealing when transformations 

to the data can have a larger impact on a clustering solution than the algorithm or distance metric 

does (111). 

As an example of ensemble clustering, we describe a subset of the results of an ensemble 

approach that we used to cluster the dynamics of tyrosine phosphorylation in the epidermal 

growth factor receptor (EGFR) network measured by Wolf-Yadlin and colleagues (92). From 

this analysis, we identified previously unknown protein interactions (87). We show a subset of 

the full analysis to illustrate this process (Figure 4.6). PDLIM1, a protein not previously reported 

as part of the EGFR network, had similar phosphotyrosine dynamics with many other proteins 

known to directly interact with phosphorylated tyrosines residues of EGFR (Y1197  and Y1192) 

(Figure 4.6; blue bar, PDLIM1; orange bar, EGFR interactors).To identify a more robust 

representation of the clustering behavior of the system, we generated an ensemble of clusters by 

varying distance metrics and clustering algorithms. Across the ensemble, known interactions had 

a much higher tendency to cluster together than with non-interactors. A visualization of the 

ensemble results – a co-occurrence matrix – places the interactors of these EGFR 
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phosphotyrosine sites in one of the clusters (Figure 4.6B, upper left and orange bars), along with 

the potential interactor PDLIM1 (blue bar). On the basis of these results, we experimentally 

tested and validated PDLIM1 as a protein that interacted with EGFR (87). It is important to note 

that, in many of the ensemble clustering results, PDLIM1 did not cluster with all known EGFR 

phosphorylated at Y1197 and Y1192.  Rather, PDLIM1 tended to cluster with a subset of known 

interactors. Furthermore, in many ensemble clustering results, the known interactors of EGFR 

did not all cluster together (Figure 4.6C). This demonstrates the value of robust clustering since a 

single clustering solution might have missed this important relationship (87).   
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In-Depth Review Area 

 

 
References 

 
Specific clustering algorithms, their tradeoffs, and how they 
function 

(81, 82, 150–152) 

Analysis of the effects of different distance metrics on clustering 
gene expression data 

(153, 154) 

Practical and mathematical implications of high-dimensionality on 
clustering. 

(94, 95) 

A thorough review of validation metrics (114, 117, 124, 
155) 

The most common multiple hypothesis correction (MHC) 
procedures including Bonferroni correction and False Discovery 
Rate (FDR) correction.  

(135, 138) 

The effects of specific distances on data clustering for lower-
dimensional spaces 

(156) 

The effects of specific distances on data clustering for high-
dimensional spaces  

(94, 157) 

Ensembles of some algorithms incompatible with high-
dimensional data can be useful on higher-dimensional data, even 
when a single clustering solution is uninformative. 

(102, 103) 

A more in-depth analysis of ensembles, including evaluating the 
results of multiple clustering runs and determining consensus 

(139, 148) 

Table 4.4: Summary of In-Depth Review Articles. 
A collection of reviews for more in depth coverage of each topic.  
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4.7 Conclusion 

Clustering biological data involves a number of choices, many of which are critical to 

meaningful results. Evaluation of a dataset should be performed to make sure it has a sufficient 

number of observations (data points) that and the dimensionality of those observations informs 

subsequent clustering choices. For each new dataset, dimensionality and any transformations 

applied should influence the choice of appropriate distance metrics and algorithms for clustering. 

Data sets of more than 10 dimensions often behave unexpectedly, and clustering can produce 

meaningless results. Using only a single clustering result from any dataset can lead to wasted 

time and resources resulting from erroneous hypothesis testing. When possible, noise and 

variance should be accounted for in the clustering method directly rather than simply taking 

averages at each data point. Once clustering results are obtained, their validity should be 

evaluated using the appropriate metrics. The statistical significance of clustering results should 

also be evaluated, and multiple hypothesis correction should be applied when necessary. For 

robust results, ensemble clustering over a range of distance metrics, transformations, and other 

clustering parameters is effective. Following these steps will result in obtaining robust and 

reliable results from clustering, and will provide a basis for solid generation of testable 

hypotheses. 
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