
Washington University in St. Louis
Washington University Open Scholarship
Engineering and Applied Science Theses &
Dissertations McKelvey School of Engineering

Spring 5-15-2016

Distributed Target Tracking and Synchronization
in Wireless Sensor Networks
Jichuan Li
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

Part of the Engineering Commons, and the Statistics and Probability Commons

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington University Open Scholarship. It has
been accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open
Scholarship. For more information, please contact digital@wumail.wustl.edu.

Recommended Citation
Li, Jichuan, "Distributed Target Tracking and Synchronization in Wireless Sensor Networks" (2016). Engineering and Applied Science
Theses & Dissertations. 158.
https://openscholarship.wustl.edu/eng_etds/158

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233211113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Feng_etds%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng?utm_source=openscholarship.wustl.edu%2Feng_etds%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=openscholarship.wustl.edu%2Feng_etds%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/208?utm_source=openscholarship.wustl.edu%2Feng_etds%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/158?utm_source=openscholarship.wustl.edu%2Feng_etds%2F158&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Electrical & Systems Engineering

Dissertation Examination Committee:
Arye Nehorai, Chair
R. Martin Arthur

Nan Lin
Hiro Mukai

Heinz Schaettler

Distributed Target Tracking and Synchronization in Wireless Sensor Networks

by

Jichuan Li

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

May 2016
Saint Louis, Missouri

c� 2016, Jichuan Li

Contents

List of Figures . v

List of Tables . vii

Acknowledgments . viii

Abstract . x

1 Introduction . 1
1.1 Background . 2

1.1.1 Distributed particle filtering . 3
1.1.2 Sensor synchronization . 4

1.2 Contributions of this work . 5
1.3 Organization of the dissertation . 7

2 Distributed Particle Filtering via Average Consensus 8
2.1 Introduction . 9
2.2 Problem formulation . 12

2.2.1 Network model . 12
2.2.2 Signal model . 13
2.2.3 Goal . 13
2.2.4 Notations . 14

2.3 Centralized particle filtering . 14
2.4 Distributed particle filtering . 16

2.4.1 Consensus . 16
2.4.2 Gaussian mixture model . 19
2.4.3 Fusion of Gaussian mixtures . 22
2.4.4 Summary of distributed particle filtering 26

2.5 Performance analysis . 26
2.5.1 Convergence of average consensus . 27
2.5.2 Convergence of distributed particle filtering 30
2.5.3 Communication overhead . 31
2.5.4 Computational complexity . 32

2.6 Numerical examples . 33
2.6.1 General settings . 34

ii

2.6.2 Metrics . 37
2.6.3 Accuracy . 37
2.6.4 Consensus . 40
2.6.5 Communication overhead . 41
2.6.6 Local communication radius . 43

2.7 Chapter summary . 45

3 Adaptive Gaussian Mixture Learning . 47
3.1 Introduction . 47
3.2 Signal model . 50
3.3 Distributed particle filtering . 51

3.3.1 Local particle filtering . 51
3.3.2 Distributed fusion . 52

3.4 Adaptive Gaussian mixture learning . 53
3.4.1 Dimension reduction . 53
3.4.2 Adaptive splitting . 54
3.4.3 Gaussian mixture model . 56
3.4.4 Computational complexity . 57

3.5 Numerical examples . 57
3.5.1 General settings . 57
3.5.2 Performance . 59

3.6 Chapter summary . 61

4 Clock Synchronization in Wireless Sensor Networks 63
4.1 Introduction . 64
4.2 Signal models . 67

4.2.1 Clock model . 67
4.2.2 Synchronized multi-sensor state-space model 68
4.2.3 Unsynchronized multi-sensor state-space model 69

4.3 Joint estimation with a known temporal order 71
4.3.1 Expectation-maximization algorithm 72
4.3.2 Objective function . 73
4.3.3 Smoothing . 75
4.3.4 Maximization . 77

4.4 Monte Carlo approximations . 78
4.4.1 Particle filtering and smoothing . 78
4.4.2 Stochastic variants of the EM algorithm 80
4.4.3 Complexity analysis . 82

4.5 Joint estimation with an unknown temporal order 83
4.5.1 Maximum likelihood hypothesis . 83
4.5.2 Distributed implementation . 84
4.5.3 Hypothesis testing . 85

iii

4.5.4 Data fusion . 86
4.5.5 Complexity analysis . 87

4.6 Performance analysis . 88
4.6.1 Information matrix . 88
4.6.2 Algorithm design . 90
4.6.3 Covariance matrix . 92

4.7 Numerical examples . 93
4.7.1 Clock synchronization . 95
4.7.2 Target estimation . 96
4.7.3 Convergence . 99
4.7.4 Temporal ordering . 101
4.7.5 Covariance matrix results . 104

4.8 Chapter summary . 105

5 Conclusions and Future Work . 106
5.1 Summary and conclusions . 106
5.2 Future directions . 108

Bibliography . 110

Appendix A Derivation of Equations . 116

Vita . 121

iv

List of Figures

2.1 An example of a wireless sensor network, its local communication links, and
a target trajectory. 36

2.2 Trajectory estimation ARMSE as a function of the number of particles . . . 38
2.3 State estimation RMSE as a function of time. 39
2.4 KL distance and state estimation RMSE across iterations during the 10th

time step using the proposed method . 40
2.5 Trajectory estimation ARMSE as a function of the number of consensus iter-

ations . 41
2.6 Trajectory estimation ARMSE as a function of the communication cost per

time step . 42
2.7 Trajectory estimation ARMSE and average degree as functions of the local

communication radius . 44

3.1 State estimation RMSE as a function of time, with dotted lines representing
average RMSEs. 59

3.2 The number of EM iterations as a function of the number of components in a
Gaussian mixture. 61

3.3 The average runtime of each method tested on the same sets of samples under
the same computing environment. 62

4.1 Clock synchronization results for a network of 5 sensors: (a) convergence of
{⌧ (i)}; (b) RMSE of ⌧ (i). 95

4.2 Sequential target estimation results for a network of 5 sensors: (a) trajectory
estimates; (b) the trajectory estimation RMSEs across iterations. 96

4.3 Sequential target estimation results for a network of 5 sensors: (a) state es-
timation RMSE as a function of time; (b) trajectory estimation RMSE as a
function of the Monte Carlo sample size. 97

4.4 Clock synchronization results using SAEM* with 800 particles 98
4.5 A comparison of the convergence performance of MCEM with 800 parti-

cles, SAEM* with 800 particles, SAEM with 800 particles, SAEM* with
200 particles, and SAEM with 200 particles, with the same initial guess
⌧̂

(0) = [0.2s, 0.2s]T and the same network of sensors located at (30m, 10m),
(10m, 20m), and (40m, 20m) with relative clock o↵sets ⌧ = [0.3s, 0.1s]T 100

v

4.6 Relative clock o↵set estimation results from distributed tasks: (a) for (S
1

, S
3

),
⌧
1,3

= 0.2250s, ⌧̂
1,3

= 0.2196s; (b) for (S
2

, S
4

), ⌧
2,4

= 0.4750s, ⌧̂
2,4

= 0.4748s;
(c) for (S

2

, S
5

), ⌧
2,5

= 0.9000s, ⌧̂
2,5

= 0.8932s; (d) for (S
3

, S
4

), ⌧
3,4

= 0.3000s,
⌧̂
3,4

= 0.2972s; (e) for (S
4

, S
5

), ⌧
4,5

= 0.4250s, ⌧̂
4,5

= 0.4240s. 103

vi

List of Tables

4.1 Hypothesis testing results . 101

vii

Acknowledgments

I am sincerely grateful to my research advisor, Dr. Arye Nehorai, for his continuous guidance

and support for my research at Washington University and my career after graduation. He

has given me a lot of freedom to explore research topics that interest me the most, and

supported my exploration with advice and encouragement.

I wish to thank my dissertation defense committee members, Dr. R. Martin Arthur, Dr. Nan

Lin, Dr. Hiro Mukai, and Dr. Heinz Schaettler, and my preliminary research exam committee

members, Dr. R. Martin Arthur and Dr. Hiro Mukai, for their valuable suggestions.

I am also thankful to my labmates, Phani, Elad, Peng, Xiaoxiao, Keyong, Zhao, Alex,

Mengxue, Mianzhi, Prateek, Zhen, Yijian, and Hesam, for their help and support.

I owe my deepest thanks to my beloved parents for their unselfish love.

Jichuan Li

Washington University in Saint Louis

May 2016

viii

Dedicated to my parents

ix

ABSTRACT OF THE DISSERTATION

Distributed Target Tracking and Synchronization in Wireless Sensor Networks

by

Jichuan Li

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2016

Professor Arye Nehorai, Chair

Wireless sensor networks provide useful information for various applications but pose chal-

lenges in scalable information processing and network maintenance. This dissertation focuses

on statistical methods for distributed information fusion and sensor synchronization for tar-

get tracking in wireless sensor networks.

We perform target tracking using particle filtering. For scalability, we extend centralized

particle filtering to distributed particle filtering via distributed fusion of local estimates pro-

vided by individual sensors. We derive a distributed fusion rule from Bayes’ theorem and

implement it via average consensus. We approximate each local estimate as a Gaussian

mixture and develop a sampling-based approach to the nonlinear fusion of Gaussian mix-

tures. By using the sampling-based approach in the fusion of Gaussian mixtures, we do not

require each Gaussian mixture to have a uniform number of mixture components, and thus

give each sensor the flexibility to learn a Gaussian mixture model consisting of an optimal

number of mixture components, based on its local information. Given such flexibility, we

x

develop an adaptive method for Gaussian mixture learning through a combination of hier-

archical clustering and the expectation-maximization algorithm. Using numerical examples,

we show that the proposed distributed particle filtering algorithm improves the accuracy

and communication e�ciency of distributed target tracking, and that the proposed adaptive

Gaussian mixture learning method improves the accuracy and computational e�ciency of

distributed target tracking.

We also consider the synchronization problem of a wireless sensor network. When sensors in

a network are not synchronized, we model their relative clock o↵sets as unknown parameters

in a state-space model that connects sensor observations to target state transition. We for-

mulate the synchronization problem as a joint state and parameter estimation problem and

solve it via the expectation-maximization algorithm to find the maximum likelihood solution

for the unknown parameters, without knowledge of the target states. We also study the per-

formance of the expectation-maximization algorithm under the Monte Carlo approximations

used by particle filtering in target tracking. Numerical examples show that the proposed

synchronization method converges to the ground truth, and that sensor synchronization

significantly improves the accuracy of target tracking.

xi

Chapter 1

Introduction

In recent years, wireless sensor networks have emerged as a widely used tool in various ap-

plications. One of the major applications is target tracking, which benefits from the diverse

perspectives of observations provided by a network of di↵erent sensors. In order to collect

more information, a large-scale sensor network can be used. Although more information

means more confidence in estimation, a large-scale network demands scalable signal process-

ing. For this reason, distributed target tracking has become an important research area to

explore. Also, for a large network, it is di�cult to keep all the sensors perfectly synchronized,

which is extremely important for time-sensitive applications like target tracking. Thus, it is

also necessary to keep track of the relative clock o↵sets between sensors from time to time.

In this dissertation, we focus on two topics related to target tracking using wireless sensor

networks. In the first topic, we study distributed particle filtering for distributed target

tracking; in the second topic, we develop statistical methods for sensor synchronization.

1

1.1 Background

Recursive Bayesian estimation is a powerful statistical approach to target tracking. Gener-

ally, a recursive Bayesian estimation algorithm sequentially updates its belief in the current

target state based on its previous belief and the incoming information. The Kalman filter is

one of the most popular recursive Bayesian estimation algorithms and has been successfully

used in various applications. However, a Kalman filter relies on two key assumptions of the

dynamic model. First, it assumes both the state transition model and the observation model

to be linear; second, it assumes both the state transition noise and the observation noise

to be Gaussian. In practice, however, these two assumptions might not be always satisfied,

and in this case, a Kalman filter would not work. To avoid the limitation of the Kalman

filter, the extended Kalman filter (EKF) was developed. An extended Kalman filter still

assumes Gaussian noise but linearizes the dynamic model through the Taylor series expan-

sion, which unfortunately works e↵ectively only under slight nonlinearity. To push the limits

forward, the unscented Kalman filter (UKF) was developed based on the so-called unscented

transform. Thanks to the unscented transform, an unscented Kalman filter works well with

nonlinear models but still relies on the assumption of Gaussian noise. To deal with both

nonlinear models and non-Gaussian noise, a particle filter (PF) was developed, based on

Monte Carlo approximations. Thanks to the Monte Carlo approximations, the particle filter

is flexible enough to work e↵ectively with both nonlinear models and non-Gaussian noise,

and replaces the Kalman filter family when their assumptions are not completely satisfied.

To guarantee its estimation accuracy under the existence of noise in a dynamic model, recur-

sive Bayesian estimation often needs multiple observations, possibly from di↵erent perspec-

tives, at each time step. In practice, we often obtain observations from multiple sensors and

use a wireless sensor network to collect multiple observations at each time step. A wireless

2

sensor network can be implemented in a centralized way with a fusion center that receives

observations from every sensor in the network and processes them in batches. A centralized

implementation works conveniently when the network is small, but shows limitations when

the network is large. First, it has a single point of failure. If the fusion center fails, the

whole network fails. Second, it makes communication di�cult. A distant sensor needs other

sensors to relay its message to the fusion center, which necessitates routing. When some

sensor fails or the topology of the network changes, the previous routing strategy might be

no longer valid, and a new one has to be designed, thus adding di�culty in maintenance.

Third, as a side e↵ect of centralized routing, sensors located near the fusion center relay

considerably more messages and thus consume significantly more energy than those located

far away. Such unbalanced energy consumption a↵ects the longevity of a wireless sensor

network. All these limitations prevent a centralized implementation from scaling. To avoid

these limitations, we pursue a distributed implementation, in which every sensor processes

its own observation and repeatedly communicates with its neighbors to fuse their local re-

sults together. A distributed implementation has information stored in every sensor in the

network and thus is robust to failures. Also, it requires communications between neighbors

only and thus does not need routing, which leads to balanced energy consumption across the

network and robustness to changes in the network topology.

1.1.1 Distributed particle filtering

A particle filter implemented in a distributed fashion is called distributed particle filtering

(DPF). In this dissertation, we study distributed particle filtering based on the fusion of

local posterior density functions, which is also known as posterior-based distributed particle

filtering. In posterior-based distributed particle filtering, each sensor performs local particle

3

filtering based on its own observation and obtains a local posterior during each time step.

Then, each sensor iteratively communicates its posterior with its neighbors and updates its

posterior based on those received from its neighbors, until convergence. There are two prob-

lems to solve in posterior-based distributed particle filtering, namely how to parametrically

represent each posterior for wireless transmission and how to fuse the parametrically rep-

resented posteriors in a distributed fashion. In the literature, there seems to be a trade-o↵

in solving these two problems. For accurate parametric approximations, an accurate fusion

rule becomes intractable, and thus a suboptimal rule has to be used; similarly, for an ac-

curate fusion rule, an over-simplified parametric approximation approach has to be taken.

As a result, posterior-based distributed particle filtering is often not su�ciently accurate,

although it has many other advantages, which are introduced in Section 2.

1.1.2 Sensor synchronization

Wireless sensor networks are powerful because of the collaboration among di↵erent sensors.

For time-sensitive tasks like target tracking, however, e↵ective collaboration strongly relies on

perfect synchronization between sensors, which is usually di�cult to maintain. The internal

clock of a sensor can drift away from its initial setting, due to random mechanical issues or

environmental impacts. Due to imperfect synchronization, sensors programmed to observe a

target at a given time might end up with observations taken at di↵erent times. If we simply

ignore the fact that a sensor network is unsynchronized, our inference from the asynchronous

sensor observations would be inaccurate. To solve this problem, we need to learn the relative

clock o↵set between sensors. A mainstream approach to sensor synchronization is to ask a

sensor about its time. The time of a sensor is usually communicated to other sensors via

messages that convey timestamps. If we do not have any other useful information, it is

4

reasonable to create and communicate timestamps for sensor synchronization; otherwise, it

is preferable to infer from information we have, so that we do not have to waste the energy of

each sensor in creating and communicating extra information. As we know, when a wireless

sensor network tracks a moving target, sensor observations are a function of time and are

also correlated due to the common target. For this reason, sensor observations implicitly

tell us when they were actually taken, and by combining observations from di↵erent sensors

together, we can learn their relative clock o↵sets without collecting additional information.

In this dissertation, we study statistical signal processing methods for sensor synchronization

in target tracking.

1.2 Contributions of this work

This dissertation studies posterior-based distributed particle filtering and statistical sensor

synchronization. We summarize the main contributions as follows.

Optimal distributed fusion: We develop a distributed fusion rule for local posteriors,

which is optimal from a Bayesian perspective. The distributed fusion rule is obtained through

average consensus from a centralized fusion rule, which stems from Bayes’ theorem. Because

a posterior density function is always normalized, the average consensus algorithm involves

an additional normalization step in each consensus iteration. We prove that the average

consensus algorithm with the additional normalization step still converges to the desired

global average.

Adaptive Gaussian mixture learning: We represent each posterior as a Gaussian mix-

ture model, a convex combination of multiple Gaussian components. A Gaussian mixture

5

model can be learned via the expectation-maximization (EM) algorithm from (weighted)

samples representing a posterior. However, the EM algorithm does not make an adaptive

decision about the number of components in a Gaussian mixture model. Also, the EM al-

gorithm is computationally intensive and sometimes needs a large number of iterations to

converge. To enable adaptivity and guarantee computational e�ciency, we develop a divisive

hierarchical clustering algorithm based on an adaptive version of the principal component

partitioning (PCP) tree. We apply this algorithm to learn from weight samples a Gaussian

mixture model consisting of an adaptively determined number of components. We also send

the obtained Gaussian mixture model as an initial guess to the EM algorithm, and show

that the EM algorithm needs only a small number of iterations to move the current model

to a maximum likelihood solution.

Importance sampling for nonlinear fusion: The optimal fusion rule is nonlinear and

thus makes the fusion of Gaussian mixtures analytically intractable. We propose an impor-

tance sampling approach to the nonlinear fusion problem. Instead of using a single proposal

distribution, we consider each Gaussian mixture to be fused as one of our proposal distri-

butions, and draw samples from each Gaussian mixture. To take into consideration the

contribution of each Gaussian mixture to the fusion, we allocate to each Gaussian mixture

a number of samples proportional to its contribution.

Clock synchronization for target tracking: We develop a hypothesis testing approach

to learn the temporal order of sensor clocks. Based on the temporal order, we build a

unsynchronized multi-sensor state-space model to connect asynchronous sensor observations

with the underlying target states. Under the built model, we solve the joint estimation

problem via a stochastic variant of the EM algorithm and analyze the performance of the

solution under Monte Carlo approximations.

6

1.3 Organization of the dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we develop a posterior-

based distributed particle filtering framework via average consensus. In Chapter 3, we design

an adaptive Gaussian mixture learning algorithm to be used in the distributed particle

filtering framework developed in Chapter 2. In Chapter 4, we solve the sensor synchronization

problem in target tracking. In Chapter 5, we summarize our contributions and discuss future

directions.

7

Chapter 2

Distributed Particle Filtering via

Average Consensus

In this chapter, we propose a distributed particle filtering algorithm based on optimal fusion

of local posteriors. We derive an optimal fusion rule from Bayes’ theorem, and implement it in

a distributed and iterative fashion via an average consensus algorithm. We approximate local

posteriors as Gaussian mixtures and fuse Gaussian mixtures through importance sampling.

We prove that under certain conditions the proposed distributed particle filtering algorithm

converges to a global posterior locally available at each sensor in the network. Numerical

examples demonstrate the advantages of the proposed method in estimation accuracy and

communication e�ciency over other distributed particle filtering algorithms.1

1
This chapter is based on J. Li and A. Nehorai, “Distributed particle filtering via optimal fusion of

Gaussian mixtures,” in 18th International Conference on Information Fusion, Washington D.C., July 2015,

pp. 1182–1189.

c� IEEE 2015

8

2.1 Introduction

Distributed particle filtering consists of separate particle filters that have access to local ob-

servations only and produce global estimates via distributed fusion. It is often implemented

using a consensus algorithm [1], where sensors in a network reach agreement among their

beliefs iteratively through communications between neighboring sensors. Depending on the

type of information communicated between sensors in average consensus, a distributed par-

ticle filtering algorithm can be categorized as particle-based, likelihood-based, or posterior-

based.

Particle-based algorithms [2]–[6] communicate the local likelihood or the local weight of each

particle. To guarantee an accurate Monte Carlo approximation, the number of particles

needed in each local filter is usually quite large, which results in considerably high commu-

nication overhead, if the information of every single particle is transmitted. Also, in order to

fuse particle information, each local filter must have an identical set of randomly-generated

particles, which necessitates perfect synchronization between the random number genera-

tors in di↵erent sensors. The reliance on perfect synchronization, together with the high

communication overhead, makes particle-based algorithms costly to implement in practice.

Likelihood-based algorithms [7]–[9] communicate local likelihood functions parametrically

approximated via factorization and linear regression. Since there is no universal approach

to the desired factorization, the likelihood approximation approach does not generalize well

beyond the exponential family. Also, likelihood consensus requires uniform factorization

across the network and thus does not apply to scenarios where the noise distribution at

each sensor varies. Hence, likelihood consensus might not be an ideal choice for general

applications.

9

Posterior-based algorithms [10]–[13] communicate local posteriors parametrically approxi-

mated in a compact form, and have several advantages over likelihood-based and particle-

based algorithms. First, unlike likelihood functions, posteriors are essentially density func-

tions and thus easy to represent parametrically. If a posterior follows a (multivariate) Gaus-

sian distribution, it can be losslessly represented by its mean and variance (covariance ma-

trix); if a posterior follows a non-Gaussian distribution, it can be su�ciently accurately

approximated by a convex combination of multiple Gaussian components, i.e., a Gaussian

mixture (GM) [14]. Also, such a compact parametric representation incurs significantly

lower communication overhead than a nonparametric representation, e.g., particles. More-

over, posterior-based algorithms are invariant to how local posteriors are obtained and thus

allow diverse sensing modalities [15] and various filtering tools to be exploited in a network.

Last but not least, posterior-based algorithms give each sensor privacy, since no sensor in

the network needs to know how any other obtains its local posterior.

The challenge of posterior-based algorithms mainly lies in the fusion of parametrically-

represented local posteriors. In [10] and [11], local posteriors are fused in a Bayesian fashion

but assumed to be Gaussian for fusion tractability. As we know, a posterior follows a Gaus-

sian distribution only if both the state transition model and the observation model are linear

with additive Gaussian noise. Thus, the Gaussian assumption is so strong that it will incur

obvious approximation errors in applications with nonlinear models or non-Gaussian noise.

In [12] and [13], local posteriors are approximated as Gaussian mixtures but fused linearly

through their parameters. This linear fusion rule is, however, suboptimal because it is not

justified by the underlying statistical model. Also, it requires Gaussian mixtures to have

a uniform number of components, thus limiting the flexibility and adaptivity of local para-

metric representation. In [11] and [12], unscented particle filters [16], a category of particle

filters with a special proposal distribution, are used for local filtering. However, since fusion

10

and local filtering in posterior-based algorithms are separated and do not interfere with each

other, unscented particle filters do not actually contribute to the fusion process.

In this chapter, we propose a posterior-based distributed particle filtering algorithm. We

approximate local posteriors as Gaussian mixtures and fuse local posteriors via an optimal

distributed fusion rule derived from Bayes’ theorem and implemented via an average con-

sensus algorithm. Unlike other posterior-based algorithms, the proposed algorithm neither

compromises approximation accuracy for fusion tractability nor compromises fusion validity

for approximation accuracy. Also, the proposed algorithm seeks consensus on the posterior

distribution represented by a parametric approximation, rather than on the parametric ap-

proximation itself, thus giving flexibility to local parametric approximations by allowing each

Gaussian mixture to have an optimal yet possibly nonuniform number of components. To

address the challenge in fusion, we design algorithms based on importance sampling to fuse

Gaussian mixtures nonlinearly within each consensus step. Finally, we prove the convergence

of the proposed distributed particle filtering algorithm and demonstrate its advantages in

both estimation accuracy and communication e�ciency through numerical examples.

Note that consensus is not the only way to implement distributed particle filtering. For

example, in [17]–[20], a leading sensor or a chain of leading sensors is selected during each

time step to perform filtering; in [21], a di↵usion-based scheme is proposed to reduce the

communication overhead in a consensus-based algorithm. However, in this chapter, we focus

on consensus-based distributed particle filtering only, given the advantages elaborated in

Section 2.4.

The rest of the chapter is organized as follows. Section 2.2 introduces a network model

and a state-space model. Section 2.3 introduces centralized particle filtering. Section 2.4

presents our distributed particle filtering algorithm. Section 2.5 analyzes the performance of

11

the proposed algorithm. Section 2.6 presents numerical examples, and Section 2.7 concludes

the chapter.

2.2 Problem formulation

2.2.1 Network model

We model a sensor network as a graph G = (V ,E), where V = {S
1

, S
2

, . . . , S
K

} is the

set of vertices, corresponding to sensors, with cardinality |V | = K, and E ⇢ V ⇥ V is

the set of edges, corresponding to communication links between sensors. We assume each

communication link to be bidirectional, in the sense that sensors can transmit information

in either direction through the link. With no particular direction assigned to any edge, we

assume the graph G to be undirected. We consider two di↵erent sensors as neighbors if and

only if their distance is below a threshold ⇢, and assume the existence of a communication

link between two sensors if and only if they are neighbors. We define the neighborhood of a

sensor as the set of all its neighbors plus the sensor itself. We assume that the graph G is

connected, or in other words that there exists a multi-hop communication route connecting

any two sensors in the network. Moreover, we assume the sensor network to be synchronized;

otherwise, we synchronize the network via a clock synchronization scheme [22]–[24].

12

2.2.2 Signal model

We consider a single moving target to be observed by the sensor network. We connect target

state transition with sensor observation using a discrete-time state-space model,

8

>

<

>

:

x

n

= g(x
n�1

) + u

n

y

n,k

= h

k

(x
n

) + v

n,k

(k = 1, 2, . . . , K)
, (2.1)

where

1) x
n

2 Rd is the target state at the nth time point;

2) y
n,k

2 Rbk is the observation taken by S
k

at the nth time point;

3) g is a known state transition function;

4) h
k

is a known observation function of S
k

;

5) {u
n

} and {v
n,k

} are uncorrelated additive noises;

6) the distribution of x
0

is given as prior information;

7) state transition is Markovian, i.e., past and future states are conditionally independent,

given the current state;

8) the current observation is conditionally independent of past states and observations, given

the current state.

2.2.3 Goal

The goal is to sequentially estimate the current state x

n

based on the estimate of the pre-

ceding state x

n�1

and the newly available observations {y
n,1

,y
n,2

, . . . ,y
n,K

}.

13

2.2.4 Notations

We denote consecutive states {x
1

,x
2

, . . . ,x
n

} as x
1:n

, observations taken by the whole net-

work at the nth time point {y
n,1

,y
n,2

, . . . ,y
n,K

} as y
n

, and consecutive observations taken

by the whole network {y
1

,y
2

, . . . ,y
n

} as y

1:n

. We use f to denote a probability density

function (pdf) and q to denote the pdf of a proposal distribution in importance sampling.

We denote the neighborhood of S
k

as N
k

.

2.3 Centralized particle filtering

The problem formulated in Section 2.2 is a filtering problem. A filtering problem is of-

ten solved by a particle filter when the state-space model is nonlinear or the noise is non-

Gaussian. A particle filter can be implemented in a centralized fashion by collecting obser-

vations from all the sensors in the network and processing them together.

A centralized particle filter approximates the posterior distribution of the current state,

f(x
n

|y
1:n

), as a weighted ensemble of Monte Carlo samples (also known as particles):

f(x
n

|y
1:n

) ⇡
M

X

m=1

w(m)

n

�(x
n

� x

(m)

n

), (2.2)

where M is the number of particles, x(m)

n

is the mth particle, w(m)

n

is the weight of x(m)

n

with
P

M

m=1

w
(m)

n

= 1, and � is the Dirac delta function. Using importance sampling [25], a

particle is generated according to a proposal distribution q(x
n

|x(m)

n�1

,y
n

), and its weight is

14

updated according to

w(m)

n

/
f(y

n

|x(m)

n

)f(x(m)

n

|x(m)

n�1

)

q(x(m)

n

|x(m)

n�1

,y
n

)
⇥ w

(m)

n�1

. (2.3)

The proposal distribution q is commonly chosen as the state transition pdf f(x
n

|x(m)

n�1

),

which, although slightly ine�cient, yields a convenient weight update rule:

w(m)

n

/ f(y
n

|x(m)

n

)⇥ w
(m)

n�1

. (2.4)

The global likelihood function f(y
n

|x(m)

n

) in (2.4) can be factorized into a product of local

likelihood functions,

f(y
n

|x(m)

n

) =
K

Y

k=1

f(y
n,k

|x(m)

n

), (2.5)

thus providing a centralized fusion rule.

Due to the finite number of particles, the weight in an ensemble tends to be concentrated

in only a few particles as time goes on, resulting in a small e↵ective sample size and thus

a poor approximation. When an ensemble’s e↵ective sample size falls below a threshold, a

possible remedy is to resample the particles according to their weights. A popularly used

estimate of the e↵ective sample size of an ensemble is

M̂
e

=

"

M

X

m=1

(w(m)

n

)2
#�1

, (2.6)

and the threshold can be set as, for example, 60% of the original sample size M , or 100% if

one plans to resample in every iteration.

15

Although centralized particle filtering is optimal in utilizing sensor observations, it is imprac-

tical for large-scale sensor networks. First, it expends considerable energy and bandwidth on

transmitting raw measurements from everywhere in the network to a common fusion center.

Second, it causes severely unbalanced energy consumption and communication tra�c in the

network, because sensors located near the fusion center relay many more messages than those

located far away. Further, reliance on a single fusion center makes it vulnerable to a single

point of failure. Moreover, it does not scale with the network size. Therefore, it is often

preferable to perform distributed particle filtering.

2.4 Distributed particle filtering

In distributed particle filtering, every sensor in the network performs local particle filtering

on its own observation while communicating with its neighbors for information fusion, thus

achieving centralized filtering in a distributed fashion.

2.4.1 Consensus

Consensus [1] is a type of information fusion algorithm in which every sensor in the network

iteratively communicates with its neighbors and updates its own belief based on its neigh-

bors’ until all the sensors hold the same belief. Consensus has the following advantages in

distributed data fusion. First, it ends up with a global estimate available at each sensor in

the network, so that the network is robust to sensor failures and every sensor in the network

is ready to react based on the global estimate. Second, it requires only local communications

and does not need global routing. Last but not least, it is robust to changes in the network

16

topology. In this chapter, we fuse local posteriors provided by di↵erent sensors via consensus,

so that every sensor in the network ultimately obtains a global posterior.

Likelihood factorization in (2.5), as mentioned in Section 2.3, makes data fusion convenient,

because its logarithmic form

log f(y
n

|x
n

) =
K

X

k=1

log f(y
n,k

|x
n

) (2.7)

gives rise to a straightforward implementation of an average consensus algorithm [1]. How-

ever, unlike a prior or posterior density function, a likelihood function is generally di�cult

to approximate parametrically through a universal approach such as the Gaussian mixture

model. This di�culty motivates us to communicate posterior density functions, instead of

likelihood functions, in an average consensus algorithm.

Due to conditional independence, a likelihood function can be equivalently written as

f(y
n,k

|x
n

) = f(y
n,k

|x
n

,y
1:n�1

), (2.8)

which, according to Bayes’ theorem, can be rewritten as

f(y
n,k

|x
n

) =
f(x

n

|y
n,k

,y
1:n�1

)f(y
n,k

|y
1:n�1

)

f(x
n

|y
1:n�1

)
. (2.9)

Substitute (2.9) into (2.7), and then we get

log
f(x

n

|y
1:n

)f(y
n

|y
1:n�1

)

f(x
n

|y
1:n�1

)
=

K

X

k=1

log
f(x

n

|y
n,k

,y
1:n�1

)f(y
n,k

|y
1:n�1

)

f(x
n

|y
1:n�1

)
,

17

which simplifies to

log f(x
n

|y
1:n

) + (K � 1) log f(x
n

|y
1:n�1

) =
K

X

k=1

log f(x
n

|y
n,k

,y
1:n�1

) + const. (2.10)

The constant term in (2.10) comes from the density functions f(y
n

|y
1:n�1

) and f(y
n,k

|y
1:n�1

),

because they do not involve state variables.

Equation (2.10) presents a centralized fusion rule for local posteriors: f(x
n

|y
n,k

,y
1:n�1

) on

the right-hand side of (2.10) is the local posterior of x

n

by S
k

, while f(x
n

|y
1:n

) on the

left-hand side of (2.10) is the global posterior of x
n

by the whole network. There are two

other terms in (2.10), namely the constant term and the prediction term. The constant term

will disappear when we normalize f(x
n

|y
1:n

) so that it integrates to 1; the prediction term

f(x
n

|y
1:n�1

) can be calculated as

f(x
n

|y
1:n�1

) =

Z

f(x
n

|x
n�1

)f(x
n�1

|y
1:n�1

)dx
n�1

, (2.11)

where f(x
n

|x
n�1

) is available from the state transition model, and f(x
n�1

|y
1:n�1

), i.e., the

global posterior of the last state, is available at each sensor thanks to the consensus algorithm

performed during the last time step.

The centralized fusion rule (2.10) can be implemented in a distributed fashion through an

average consensus algorithm. Denote f(x
n

|y
n,k

,y
1:n�1

) as ⌘(0)
k

(x
n

), and then the summation

on the right-hand side of (2.10) can be computed iteratively based on a two-step distributed

18

fusion rule:

Step 1: log ⌘(i+1)

k

(x
n

) =
X

j2Nk

"
kj

log ⌘(i)
j

(x
n

), (2.12)

Step 2: Normalize ⌘
(i+1)

k

(x
n

), (2.13)

where ⌘
(i)

k

(x
n

) is the posterior density function of x
n

held by S
k

in the ith iteration of the

average consensus algorithm during the nth time step, N
k

is the neighborhood of S
k

with

S
k

included, and "
kj

is the Metropolis weight [26] defined as

"
kj

=

8

>

>

>

>

<

>

>

>

>

:

1/max{|N
k

|, |N
j

|} if (k, j) 2 E

1�
P

l2Nk
"
kl

if k = j

0 otherwise

. (2.14)

We call (2.12) the distributed fusion step and (2.13) the normalization step. In the dis-

tributed fusion step, every sensor iteratively sends its current belief to its neighbors and

updates it based on beliefs received from its neighbors; in the normalization step, a updated

belief is normalized so that it appears as a valid probability density function and can be

compactly approximated by a Gaussian mixture model for communication.

In Section 2.5.1, we show that under certain conditions, we have for 8 k

lim
i!1

log ⌘(i)
k

(x
n

) =
1

K

K

X

j=1

log ⌘(0)
j

(x
n

) + const. (2.15)

19

Combining (2.10) and (2.15), we have for 8 k

f(x
n

|y
1:n

) /

⇣

lim
i!1 ⌘

(i)

k

(x
n

)
⌘

K

f(x
n

|y
1:n�1

)K�1

, (2.16)

which, called the recovery step, concludes the consensus-based distributed particle filtering.

2.4.2 Gaussian mixture model

Consensus necessitates inter-sensor communication. Communication is a major source of

energy consumption for wireless sensor networks. Since wireless sensor networks are usually

subject to strong energy constraints, it is important to minimize the amount of communica-

tion needed in consensus. A possible solution to communication minimization is to compress

the data to be transmitted. In this chapter, we compress all the posteriors in the distributed

fusion step (2.12) and the recovery step (2.16) into Gaussian mixtures [14].

A Gaussian mixture is a convex combination of Gaussian components as follows,

⌘
(i)

k

(x
n

) ⇡
C

X

c=1

↵
c

N (x
n

;µ
c

,⌃
c

) , (2.17)

where C is the total number of components, and ↵
c

, µ
c

, and ⌃
c

are the weight, mean, and

covariance matrix, respectively, of the cth component.

A Gaussian mixture model can be used to approximate an arbitrary probability distribution,

and is often learned via the expectation-maximization (EM) algorithm [27] from samples

representing the underlying distribution. In particle filtering, samples are often weighted

20

Algorithm 1: GM Learning from Weighted Samples

procedure GMLearn({x
i

, w
i

}M
i=1

, C)
initialize C (if not given) and {↵

c

, µ
c

, ⌃
c

}C
c=1

repeat
for i = 1 to M do (E-step)

for c = 1 to C do
p
i,c

= ↵
c

N (x
i

|µ
c

,⌃
c

)
normalize {p

i,c

}C
c=1

end for
for c = 1 to C do (M-step)

↵
c

=
P

M

i=1

p
i,c

w
i

µ

c

= ↵�1

c

P

M

i=1

p
i,c

w
i

x

i

⌃
c

= ↵�1

c

P

M

i=1

p
i,c

w
i

(x
i

� µ

c

)(x
i

� µ

c

)T

end for
normalize {↵

c

}C
c=1

until convergence
return GM = {↵

c

,µ
c

,⌃
c

}C
c=1

end procedure

due to importance sampling, and thus we learn a Gaussian mixture model directly from

weighted samples using the weighted EM algorithm [28], as summarized in Algorithm 1.

The convergence of Algorithm 1 can be determined in di↵erent ways. In this chapter, we

terminate Algorithm 1 when the absolute di↵erence between the log-likelihoods of the current

and previous Gaussian mixture models is smaller than a chosen percentage of that between

the log-likelihoods of the current and initial models.

In Algorithm 1, the number of components C has to be specified during initialization be-

fore learning. Generally, a mixture of more components tends to provide a more accurate

approximation but lead to higher communication overhead. The optimal number of com-

ponents should strike a balance between approximation accuracy and communication cost.

21

Methods to determine the optimal number of components abound [29]–[32] but are beyond

the scope of this chapter. In this chapter, we use a predefined number of components C,

randomly divide the samples into C groups of (approximately) equal size, and initialize the

EM algorithm with the statistics of the C groups.

Note that the number of components can even be one, which results in a Gaussian distribution

as a special case. In this sense, if the number of components is adaptively determined, the

approximation accuracy of a Gaussian mixture would not be lower than that of a Gaussian

distribution.

2.4.3 Fusion of Gaussian mixtures

With posteriors approximated as Gaussian mixtures, the fusion of Gaussian mixtures has to

be considered for both the distributed fusion step (2.12) and the recovery step (2.16). For

convenience, we convert the distributed fusion step (2.12) from the logarithmic form to the

exponential form:

⌘
(i+1)

k

(x
n

) =
Y

j2Nk

⇣

⌘
(i)

j

(x
n

)
⌘

"kj

. (2.18)

Both (2.16) and (2.18) involve a product of powers of Gaussian mixtures, which is unfor-

tunately intractable to compute analytically. Therefore, we consider importance sampling.

In [33], various methods are proposed to sample from a product of Gaussian mixtures, but

unfortunately none of them directly applies to our problem, because of the negative ex-

ponents in (2.16) and the fractional exponents in (2.18). In this chapter, we extend the

mixture importance sampling approach presented in [33] to a general case where Gaussian

22

mixtures in the product have fractional or negative exponents, and propose a weighted mix-

ture importance sampling approach to the fusion of Gaussian mixtures in both (2.16) and

(2.18).

Distributed fusion step

We generate samples from each Gaussian mixture to be fused and assign to them importance

weights calculated under their corresponding proposal distributions. For each j 2 N
k

, we

draw M
j

samples {x(j,m)

n

}Mj

m=1

from ⌘
(i)

j

(x
n

) and assign to each x

(j,m)

n

an importance weight

w
(j,m)

n

calculated as

w(j,m)

n

=
⇣

⌘
(i)

j

(x(j,m)

n

)
⌘�1

Y

l2Nk

⇣

⌘
(i)

l

(x(j,m)

n

)
⌘

"kl

. (2.19)

We set M
j

to be proportional to the Metropolis weight "
kj

, i.e., M
j

= bM"
kj

c, where b c is

the floor function and M is the given total number of samples to be drawn (the total number

of thus generated samples might be smaller than M due to rounding, but could be manually

adjusted back to M by distributing the unused quota to some of the Gaussian mixtures to be

fused). After applying the normalization step (2.13) to {w(j,m)

n

}, a Gaussian mixture model

of the updated posterior ⌘(i+1)

k

(x
n

) can be learned from the weighted samples {x(j,m)

n

, w
(j,m)

n

}

using Algorithm 1.

Here, the proposed approach draws samples from each Gaussian mixture to be fused, so

that the drawn samples cover most of the support of the fused density function. Since

multiple proposal distributions are used, the proposal approach equivalently samples from

a mixture of proposal distributions. However, we do not have to use the whole mixture

when calculating the importance weight of a sample. Instead, since we know exactly which

23

proposal distribution in the mixture each sample is drawn from, it would be more accurate

if we use the corresponding proposal distribution alone when calculating the importance

weight. Also, since the sampling bias introduced by each proposal distribution is eliminated

when we divide the true density by the corresponding importance density, importance weights

calculated under di↵erent proposal distributions are consistent.

Another contribution of the proposed approach is weighted sample allocation. As we can see,

the Gaussian mixtures in (2.18) do not contribute equally to the product, and a Gaussian

mixture with a large exponent contributes more to the product and is more influential in

local fusion than one with a small exponent. By adjusting the contribution of each Gaussian

mixture to the proposal distribution mixture according to its contribution to the product,

weighted sample allocation makes the proposal distribution mixture closer to the product,

thus improving the e�ciency of importance sampling.

The weighted mixture importance sampling approach is summarized in Algorithm 2 for the

distributed fusion step.

Recovery step

We implement the recovery step (2.16) in a similar way via weighted mixture importance

sampling. Let GM
k

be the fully fused posterior held by S
k

and GM
pk

be the prior prediction

of the current state by S
k

. We draw half of the samples from GM
k

and the other half from

GM
pk

. For a sample x

(m)

n

drawn from GM
k

, its importance weight is calculated as

w(m)

n

=
GM

k

(x(m)

n

)K

GM
pk

(x(m)

n

)K�1GM
k

(x(m)

n

)
=

GM
k

(x(m)

n

)K�1

GM
pk

(x(m)

n

)K�1

; (2.20)

24

Algorithm 2: GM Fusion

procedure GMFuse (GM
k

, {GM
j

}
j2Nk

)
initialize M , {"

kj

}
j2Nk

for j in N
k

do
M

j

= bM"
kj

c
generate {x(m)

j

}Mj

m=1

from GM
j

for m = 1 to M
j

w
(m)

j

= GM
j

(x(m)

j

)�1

Q

l2Nk

GM
l

(x(m)

j

)✏k,l

end for
end for

normalize {w(m)

j

}
return GMLearn({x(m)

j

, w
(m)

j

})
end procedure

for a sample x

(m)

n

drawn from GM
pk

, its importance weight is calculated as

w(m)

n

=
GM

k

(x(m)

n

)K

GM
pk

(x(m)

n

)K�1GM
pk

(x(m)

n

)
=

GM
k

(x(m)

n

)K

GM
pk

(x(m)

n

)K
. (2.21)

A Gaussian mixture model of the recovered global posterior is then learned from the weighted

samples {x(m)

n

, w
(m)

n

} using Algorithm 1. Note that we do not apply weighted sample allo-

cation to the recovery step, because negative weights are not justified in allocation.

The recovery step is summarized in Algorithm 3.

As we can see, the fusion of Gaussian mixtures in Algorithms 2 and 3 depends only on the

density function described by each Gaussian mixture and does not care about how many

components each Gaussian mixture has. In other words, the proposed method gives each

individual sensor the flexibility to choose an optimal, yet not necessarily uniform, number of

components based on its own samples, thus improving approximation accuracy and e�ciency.

25

Algorithm 3: GM Recovery

procedure GMRecover(GM
k

, GM
pk

)
initialize M

generate {x(m)}bM/2c
m=1

from GM
k

for m = 1 to bM/2c
w(m) =

⇥

GM
k

(x(m))/GM
pk

(x(m))
⇤

K�1

end for
generate {x(m)}M

m=bM/2c+1

from GM
pk

for m = bM/2c+ 1 to M

w(m) =
⇥

GM
k

(x(m))/GM
pk

(x(m))
⇤

K

end for
normalize {w(m)}M

m=1

return GMLearn({x(m), w(m)}M
m=1

)
end procedure

In comparison, most other posterior-based algorithms fuse local posteriors based on their

parameters rather than the density functions described by these parameters, and thus put

structural constraints on local parametric representations. For example, linear fusion of

Gaussian mixtures [12], [13] requires each mixture to have the same number of components.

This requirement gives little flexibility to sensors and compromises adaptivity in local signal

processing.

2.4.4 Summary of distributed particle filtering

We summarize the proposed distributed particle filtering algorithm in Algorithm 4, in which

“PF” is short for “particle filtering,” and the convergence in fusion is locally determined

when the discrepancy in belief is lower than a certain threshold under a chosen metric and

no neighbor is still sending data. We do not specify the exact particle filter for local particle

26

Algorithm 4: Distributed Particle Filtering

procedure DPF({x(m)

n�1,k

, w
(m)

n�1,k

}M,K

m,k=1

, {y
k

}K
k=1

)
for k = 1 to K in parallel filtering

{x(m)

n,k

,w
(m)

n,k

}M
m=1

=PF({x(m)

n�1,k

,w
(m)

n�1,k

}M
m=1

,y
n,k

)

GM
pk

= GMLearn({g(x(m)

n�1,k

), w(m)

n�1,k

}M
m=1

)

GM
k

= GMLearn({x(m)

n,k

, w
(m)

n,k

}M
m=1

)
end for
repeat fusion

for k = 1 to K in parallel
S
k

sends GM
k

to S
j

for 8j 2 N
k

end for
for k = 1 to K in parallel

GM
k

= GMFuse(GM
k

, {GM
j

}
j2Nk

)
end for

until convergence
for k = 1 to K in parallel recovery

GM
k

= GMRecover(GM
k

, GM
pk

)

generate {x(m)

n,k

}M
m=1

from GM
k

end for

return {x(m)

n,k

, 1/M}M,K

m,k=1

end procedure

filtering, because each sensor can select its own customized particle filter, thanks to the

flexibility given by posterior-based fusion.

2.5 Performance analysis

In this section, we investigate the performance of the proposed distributed particle filtering

algorithm in terms of convergence, communication overhead, and computational complexity.

27

2.5.1 Convergence of average consensus

A standard average consensus algorithm is proved to converge under certain conditions in

[1], [26]. However, the proof for standard average consensus does not directly apply to

the average consensus algorithm proposed in Section 2.4.1, because the proposed algorithm

has an additional normalization step (2.13) for each sensor in each iteration and thus is

di↵erent from standard average consensus. We claim the convergence of the proposed average

consensus algorithm in (2.15) and show its convergence below.

Theorem 1. After a su�ciently large number of iterations of average consensus with nor-

malization, the posterior held by each sensor converges to the normalized geometric mean of

the initial local posteriors obtained from local particle filters.

Proof. The exponential form of (2.12) with normalization (2.13) can be written as

⌘
(i+1)

k

(x
n

) = �
(i+1)

k

Y

j2Nk

⇣

⌘
(i)

j

(x
n

)
⌘

"kj

, (2.22)

where �
(i+1)

k

is a constant coe�cient that normalizes ⌘(i+1)

k

(x
n

) so that it integrates to one.

Each consensus iteration involves such a constant coe�cient for each sensor, and the constant

coe�cient accumulates across iterations. We denote the part of ⌘(i)
k

that comes purely from

the fusion of the original posteriors obtained from local particle filters (in other words, ⌘(0)
k

)

as p
(i)

k

(x
n

), and the accumulated constant coe�cient that ⌘
(i)

k

has collected up to the ith

iteration as �(i)

k

. Then, we have ⌘
(i)

k

(x
n

) = �
(i)

k

p
(i)

k

(x
n

). When i = 0, we have �
(0)

k

= 1 and

28

p
(0)

k

(x
n

) = f(x
n

|y
n,k

,y
1:n�1

); when i � 1, we have

⌘
(i+1)

k

(x
n

) = �
(i+1)

k

Y

j2Nk

⇣

�
(i)

j

p
(i)

j

(x
n

)
⌘

"kj

= �
(i+1)

k

Y

j2Nk

⇣

�
(i)

j

⌘

"kj

| {z }

�

(i+1)

k

⇥
Y

j2Nk

⇣

p
(i)

j

(x
n

)
⌘

"kj

| {z }

p

(i+1)

k (xn)

. (2.23)

The logarithmic form of the last term p
(i+1)

k

(x
n

) is

log p(i+1)

k

(x
n

) =
X

j2Nk

"
kj

log p(i)
j

(x
n

)

= log p(i)
k

(x
n

) +
X

j2Nk

"
kj

⇣

log p(i)
j

(x
n

)� log p(i)
k

(x
n

)
⌘

, (2.24)

which coincides with the canonical form of (weighted) average consensus. With the under-

lying graph G being connected and not bipartite, according to [1], [26] we have

lim
i!1

log p(i)
k

(x
n

) =
1

K

K

X

k=1

log p(0)
k

(x
n

), (2.25)

or equivalently,

lim
i!1

p
(i)

k

(x
n

) =
K

Y

k=1

⇣

p
(0)

k

(x
n

)
⌘

1

K

=
K

Y

k=1

f(x
n

|y
n,k

,y
1:n�1

)
1

K . (2.26)

29

Hence,

lim
i!1

⌘
(i)

k

(x
n

) = lim
i!1

�
(i)

k

p
(i)

k

(x
n

)

= lim
i!1

�
(i)

k

lim
i!1

p
(i)

k

(x
n

)

=
⇣

lim
i!1

�
(i)

k

⌘

K

Y

k=1

f(x
n

|y
n,k

,y
1:n�1

)
1

K , (2.27)

where lim
i!1 ⌘

(i)

k

(x
n

) is the posterior held by S
k

at convergence,
Q

K

k=1

f(x
n

|y
n,k

,y
1:n�1

)
1

K is

the geometric mean of the initial local posteriors, and lim
i!1 �

(i)

k

normalizes the geometric

mean so that it exists as a valid probability density function in the form of lim
i!1 ⌘

(i)

k

(x
n

).

Following the convergence, the global posterior can be obtained separately by each sensor

through a recovery step, which results from substituting (2.27) into (2.10).

2.5.2 Convergence of distributed particle filtering

The proposed distributed particle filtering algorithm implements the proposed average con-

sensus algorithm with approximations and asymptotically converges under the following

three assumptions: (i) the number of consensus iterations is su�ciently large, (ii) the num-

ber of generated samples is su�ciently large, and (iii) the approximation error of a Gaussian

mixture model is su�ciently small. In practice, however, none of these can be perfectly

satisfied without considerable communication or computation. Hence, convergence errors

are usually inevitable. Due to independent randomness, di↵erent sensors are likely to have

30

di↵erent convergence errors, thus resulting in consensus errors. Although the proposed al-

gorithm does not require exact consensus as weight-based algorithms do, inexact consensus,

if too significant, can lead to future errors in both filtering and fusion.

Consensus errors can be manually eliminated by additional average consensus on the pa-

rameters of the obtained Gaussian mixture models [13]. As mentioned in the Introduction,

parameter-based average consensus is not justified by the underlying statistical model and

thus is suboptimal in the fusion of local posteriors. However, its suboptimality is not a

problem here, because the method is used not for fusion but for numerical fine-tuning of

beliefs that are already close to consensus. Also, because of the closeness to consensus, it is

not expected to take many consensus iterations.

Note that parameter-based average consensus requires that all the Gaussian mixtures to be

fused have the same number of components. To satisfy the constraint, we have to adjust the

number of components for each Gaussian mixture in case they do not agree. We achieve this

via sampling. More specifically, we first sample from each Gaussian mixture and then learn

from the samples a Gaussian mixture model with a specified uniform number of components.

2.5.3 Communication overhead

In the proposed algorithm, posteriors are transmitted between sensors in the form of Gaus-

sian mixtures. Let C be the average number of components in these Gaussian mixtures, then

we need to transmit C(d2 + d + 1) numbers per Gaussian mixture, with d being the state

dimension. Since covariance matrices are symmetric, we only need to transmit (d2 + d)/2,

instead of d2, numbers for each covariance matrix in a Gaussian mixture. Also, since com-

ponent weights sum to one, we only need to transmit C � 1, instead of C, component

31

weights. Thus, the actual count of numbers needed to represent a Gaussian mixture is

Cd2/2 + (C/2 + 1)d + C � 1. In a consensus iteration, each communication link is used

once in each direction, so the total number of Gaussian mixtures transmitted in a con-

sensus iteration is 2|E|. Let L be the number of consensus iterations, and then the pro-

posed algorithm communicates 2|E|L(Cd2/2 + (C/2 + 1)d + C � 1) numbers in total and

2|E|L(Cd2/2 + (C/2 + 1)d + C � 1)/K numbers per sensor during each time step. Since

|E| ranges from O(K) to O(K2) for a connected graph, the communication complexity per

sensor is between O(LCd2) and O(KLCd2).

In comparison, the count of numbers transmitted by each sensor in a weight-based algorithm

is proportional to the number of particles, whose is proved to grow exponentially with the

state dimensionality d for a successful particle filter [34]; the communication complexity

of a likelihood-based algorithm is combinatorial in the state dimension, because the num-

ber of regression coe�cients needed for the polynomial approximation presented in [8] is

combinatorial with the state dimension; the communication complexity of a posterior-based

algorithm with the Gaussian approximations is quadratic in the state dimension, with d and

(d2+d)/2 numbers to represent the mean and covariance matrix, respectively, of a Gaussian

distribution.

It is hard to directly compare the communication complexity of the proposed algorithm with

those of other algorithms, because the dependence of L and C on d is mostly problem-specific.

In Section 2.6.5, we compare the actual communication costs of di↵erent algorithms through

numerical examples.

32

2.5.4 Computational complexity

We now investigate the computational complexity of distributed particle filtering algorithms,

focusing on the fusion part without considering the filtering part, because the latter has

almost the same complexity among di↵erent algorithms. Since a distributed particle filtering

algorithm runs at each sensor in parallel, we only consider the computation performed at a

single sensor.

The proposed algorithm calls Algorithms 1, 2, and 3. Algorithm 1 (GM learning) costs

O(L
g

M
g

Cd2) to learn a Gaussian mixture of C components fromM
g

samples in L
g

iterations.

Algorithm 2 (GM fusion) calls Algorithm 1 once and costs O(KM
f

Cd2) in addition to calling

Algorithm 1, where K means that a sensor has at most O(K) neighbors and M
f

is the

sample size for importance sampling in distributed fusion. Algorithm 3 (GM recovery) also

calls Algorithm 1 once and costs O(M
r

Cd2) in addition to calling Algorithm 1, with M
r

being the sample size for importance sampling in recovery. In addition to Algorithms 1, 2,

and 3, the proposed algorithm calls the parameter-based average consensus algorithm for

numerical fine-tuning, which costs O(KCd2) in each iteration. In summary, if we assume

that the proposed algorithm takes L
f

iterations for distributed fusion and L
p

iterations for

fine-tuning, then the overall computational complexity is O((L
f

L
g

M
g

+ KL
f

M
f

+ M
r

+

KL
p

)Cd2). Assuming that M
g

, M
f

, and M
r

are all O(M), then the complexity simplifies to

O([(L
g

+K)L
f

M +KL
p

]Cd2).

In comparison, a likelihood-based algorithm [8] costs O(R3 + (M + q)R2 + (d + q)MR) on

polynomial approximation (M is the sample size, q is the dimension of the state function

appearing in factorization, and R is the dimension of the polynomial basis expansion) and

33

O(LKR) on consensus (L is the number of consensus iterations). Thus, the overall complex-

ity is O(R3+(M+q)R2+[(d+q)M+LK]R). Since R itself is a combinatorial function of the

state dimension d, the cubic function of R might make the algorithm scale poorly in high-

dimensional systems. A weight-based algorithm [6] only needs to perform average consensus

on weights with a computational complexity of O(LKM). A Gaussian posterior-based algo-

rithm costs O(LKd3). Generally, the proposed algorithm and the likelihood-based algorithm

require more computation than the weight-based algorithm and the Gaussian posterior-based

algorithm. The former two algorithms use a certain compact representation for inter-sensor

communication and thus need to enclose information in and read information out of the

representation. Such a representation incurs much lower communication overhead than par-

ticles and provides a more accurate approximation than a single Gaussian distribution, as

shown in Section 2.6.

2.6 Numerical examples

In this section, we demonstrate the performance of the proposed distributed particle filter-

ing algorithm in comparison with weight-based, likelihood-based, and other posterior-based

algorithms, through numerical examples of decentralized target tracking.

2.6.1 General settings

We considered a wireless sensor network consisting of 20 sensors programmed to track a

moving target.

34

The target followed a Wiener process acceleration model [35] in two-dimensional space. The

target state consisted of the position, velocity, and acceleration of the target along each

dimension as

x

n

=



x
n,1

x
n,2

ẋ
n,1

ẋ
n,2

ẍ
n,1

ẍ
n,2

�

T

(2.28)

The state transition function was

g(x
n

) = D · x
n

, (2.29)

where

D =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 t 0 1

2

t2 0

0 1 0 t 0 1

2

t2

0 0 1 0 t 0

0 0 0 1 0 t

0 0 0 0 1 0

0 0 0 0 0 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(2.30)

with t being the state transition interval. The state transition noise u
n

followed a multivariate

Gaussian distribution N (0,R), where

R = �2

u

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1

20

t5 0 1

8

t4 0 1

6

t3 0

0 1

20

t5 0 1

8

t4 0 1

6

t3

1

8

t4 0 1

3

t3 0 1

2

t2 0

0 1

8

t4 0 1

3

t3 0 1

2

t2

1

6

t3 0 1

2

t2 0 t 0

0 1

6

t3 0 1

2

t2 0 t

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

. (2.31)

We assumed that the target traveled over 30 unit-length state transition intervals.

35

Each sensor measured the range and range rate (Doppler) of the target. The kth sensor, S
k

,

was located at l
k

= (l
k,1

, l
k,2

) with the observation function

h

k

(x
n

) =



h
k,range

(x
n

) h
k,doppler

(x
n

)

�

T

, (2.32)

where

h
k,range

(x
n

) =
q

(x
n,1

� l
k,1

)2 + (x
n,2

� l
k,2

)2 (2.33)

and

h
k,doppler

(x
n

) =
ẋ
n,1

(x
n,1

� l
k,1

) + ẋ
n,2

(x
n,2

� l
k,2

)
p

(x
n,1

� l
k,1

)2 + (x
n,2

� l
k,2

)2
, (2.34)

and the observation noise

v

n,k

⇠ N

0

B

@

2

6

4

0

0

3

7

5

,

2

6

4

�2

v

0

0 �2

w

3

7

5

1

C

A

. (2.35)

We set �
u

as 0.5, �
v

as 1, and �
w

as 1. We set the neighborhood radius threshold ⇢ according

to the sensor locations to ensure that the network was connected. The initial target state x
0

was set as 0, and N (x
0

,R) was assumed as the prior information available to each sensor.

In a predefined fashion, we assumed three components for any Gaussian mixture. We used

the sampling importance resampling (SIR) particle filter [36] for local particle filtering. We

used 20,000 samples for importance sampling in both distributed fusion and recovery of the

proposed algorithm. We tested all the algorithms on multiple sensor networks and randomly

generated trajectories, and compared the average performance. Fig. 2.1 shows an example

of a sensor network with a target trajectory randomly generated under the Wiener process

acceleration model.

We compared the proposed algorithm (“Optimal GM”) with other posterior-based algo-

rithms, including the Bayesian fusion of Gaussian approximations (“Bayesian Gauss”) [10]

36

x
0 20 40 60 80 100 120 140 160 180

y

0

20

40

60

80

100

120

140

160

180
Trajectory
Link
Sensor

Figure 2.1: An example of a wireless sensor network, its local communication links, and a
target trajectory.

and the linear fusion of Gaussian mixtures (“Linear GM”) [13]. We also compared it with

a representative weight-based algorithm [6], likelihood-based algorithm [8], and distributed

unscented Kalman filter (UKF) [37], which can be also considered as a posterior-based al-

gorithm, although it does not involve particle filtering. Moreover, we compared it with

centralized particle filtering, which served as a benchmark.

2.6.2 Metrics

We considered the posterior mean as a point estimate of each state and used the root-mean-

square error (RMSE) to quantify the performance. For a single state x

n

, the RMSE of an

estimate x̂
n

was defined as ||x̂
n

�x

n

||, namely the l-2 norm of x̂
n

�x

n

; for a state sequence

of length T , i.e., {x
n

}T
n=1

, the average RMSE (ARMSE) of a sequence estimate, {x̂
n

}T
n=1

,

37

Number of particles
2000 4000 6000 8000 10000 12000 14000 16000

A
R

M
S

E

1

1.2

1.4

1.6

1.8

2

Optimal GM
Bayesian Gauss
Linear GM
Particle-based
Likelihood-based
Centralized PF

Figure 2.2: Trajectory estimation ARMSE as a function of the number of particles

was defined as
q

1

T

P

T

n=1

||x̂
n

� x

n

||2. In a network that performs distributed filtering, each

sensor holds a separate global estimate and thus has its own RMSE and ARMSE. We used

their averages to quantify the performance of the whole network. We used the Kullback-

Leibler (KL) distance [38] to describe the dissimilarity between two Gaussian mixtures. Since

it is analytically intractable to compute the KL distance between two Gaussian mixtures,

we approximated it using the Gaussian approximation approach introduced in [39].

2.6.3 Accuracy

We tested all the methods to be investigated on multiple examples to compare their average

trajectory estimation accuracy. Fig. 2.2 compares the ARMSEs as a function of the number

of particles, given su�cient consensus iterations. We can see that the error of the proposed

method varied the most with the number of particles. With 2,000 particles, its error was

38

Time
5 10 15 20 25 30

R
M

S
E

0

0.5

1

1.5

2

2.5

3

3.5

4
Optimal GM
Bayesian Gauss
Linear GM
Particle-based
Likelihood-based
Distributed UKF
Centralized PF

Figure 2.3: State estimation RMSE as a function of time.

lower than that of Linear GM only; with no less than 8,000 particles, its error was close

to that of centralized particle filtering and no higher than that of any other method. The

performance of the proposed method varied significantly because the approximation accuracy

of a Gaussian mixture is strongly a↵ected by the number of particles used in local particle

filtering. In contrast, the error of Bayesian Gauss, also a posterior-based method, stayed

almost constant with di↵erent numbers of particles, because the accuracy of a Gaussian

approximation, including a mean and a covariance matrix only, is relatively robust to the

number of particles used to represent a local posterior. The error of Linear GM, another

posterior-based method, did not vary much with the number of particles either, because

Linear GM failed to benefit from the increased number of particles due to its unjustified

fusion rule. The errors of both the likelihood-based and weight-based methods dropped

as the number of particles increased. Their errors were lower than that of the proposed

method when we had a small number of particles, and comparable to that of the proposed

39

method when we had a medium or large number of particles. In summary, the proposed

method was the most accurate among all the posterior-based methods and competitive with

the likelihood-based and weight-based methods, when the number of particles was not too

small.

We also tested all the methods on the example in Fig. 2.1 to investigate their state estimation

accuracy. For each method, we used the number of particles corresponding to its elbow point

in Fig. 2.2, i.e., 10,000 particles for the proposed method, 2,000 for Bayesian Gauss, 4,000

for Linear GM, 10,000 for the weight-based method, 8,000 for the likelihood-based method,

and 6,000 for centralized particle filtering. In Fig. 2.3, we show the state estimation RMSE

of each method as a function of time along the trajectory of the target. We can see that the

proposed method, the likelihood-based method, the weight-based method, and centralized

particle filtering had state estimation errors at almost the same level, while Linear GM,

Bayesian Gauss, and distributed UKF su↵ered from high errors at many time points. Among

all the methods, Linear GM obviously yielded the highest errors, which again demonstrates

the deficiency of the unjustified linear fusion rule.

2.6.4 Consensus

We investigated the consensus process of the proposed method within a single time step.

Fig. 2.4 shows the consensus process during the 10th time step as an example, in which

we applied the proposed method, with 10,000 particles for local filtering, 20 iterations for

average consensus, and 20 iterations for numerical fine-tuning, to the example in Fig. 2.1.

We can see that in both average consensus and numerical fine-tuning, both the KL distance

and the RMSE dropped and converged as the algorithm proceeded, which demonstrated the

40

Consensus Iteration Index
0 5 10 15 20

K
L

 D
is

ta
n

ce

0

0.02

0.04

0.06

R
M

S
E

1.28

1.3

1.32

1.34
KL Distance
RMSE

Fine-tuning Iteration Index
0 5 10 15 20

K
L

 D
is

ta
n

ce

0

0.1

0.2

0.3

R
M

S
E

1.05

1.06

1.07

1.08
KL Distance
RMSE

Figure 2.4: KL distance and state estimation RMSE across iterations during the 10th time
step using the proposed method

validity of the proposed average consensus algorithm in terms of convergence. Note that the

metrics in Fig. 2.4 were computed based on unrecovered beliefs for average consensus and

recovered beliefs for numerical fine-tuning, so they came in di↵erent scales.

2.6.5 Communication overhead

We investigated the communication overhead of each method and the relationship between

communication overhead and estimation accuracy. For each method, we fixed the number

of particles at its elbow point, as specified in Section 2.6.3, and investigated its performance

with the number consensus iterations varying.

41

Number of iterations
0 20 40 60 80 100

A
R

M
S

E

1

1.2

1.4

1.6

1.8

2

2.2

2.4
Optimal GM
Bayesian Gauss
Particle-based
Likelihood-based
Distribtued UKF

Figure 2.5: Trajectory estimation ARMSE as a function of the number of consensus iterations

In Fig. 2.5, we demonstrate the e↵ect of the number of consensus iterations on the perfor-

mance of a distributed filtering algorithm. As we can see, the error of each method dropped

as the number of iterations increased and stayed constant beyond a certain threshold.

In Fig. 2.6, we show the trajectory estimation ARMSE of each method as a function of

the communication overhead per time step. We used the count of numbers transmitted

between sensors in the network to quantify the communication overhead of each method. As

expected, there was a trade-o↵ between estimation accuracy and communication e�ciency.

For each method, the estimation error dropped as the communication overhead increased, but

stayed almost constant beyond a certain threshold. The proposed method, the weight-based

method, and the likelihood-based method had errors at the same level but communication

costs of di↵erent orders of magnitude. The weight-based method, which communicated

non-parametric approximations, transmitted more numbers than the proposed method and

42

Communication cost
103 104 105 106 107 108

A
R

M
S

E

1

1.2

1.4

1.6

1.8

2

2.2

2.4
Optimal GM
Bayesian Gauss
Linear GM
Particle-based
Likelihood-based
Distributed UKF

Figure 2.6: Trajectory estimation ARMSE as a function of the communication cost per time
step

the likelihood-based method, both of which communicated parametric approximations. The

likelihood-based method, which used polynomial approximations, transmitted more numbers

than the proposed method, which used Gaussian mixture approximations. Bayesian Gauss

and distributed UKF, both posterior-based methods, had errors at the same level, higher

than that of the proposed method, due to the insu�cient approximation accuracy of Gaussian

approximations. The communication overhead of distributed UKF was close to that of the

proposed method, while that of Bayesian Gauss was lower than that of any other method in

Fig. 2.6. Note that the trade-o↵ between estimation accuracy and communication e�ciency

existed not only within each method, but also between di↵erent methods. As we can see, the

proposed method was more accurate than Bayesian Gauss, benefiting from the upgrade from

Gaussian approximations to Gaussian mixture approximations, but in the meantime incurred

43

Radius
45 50 55 60 65 70

A
R

M
S

E

1

1.5

2

2.5

A
ve

ra
g

e
 D

e
g

re
e

3

4

5

6
Optimal GM
Bayesian Gauss
Particle-based
Likelihood-based
Distribtued UKF
Degree

Figure 2.7: Trajectory estimation ARMSE and average degree as functions of the local
communication radius

extra communication overhead due to the upgrade. Given the significant improvement in

accuracy, we claim that the extra communication incurred by the Gaussian mixture model

used in the proposed method was justified.

2.6.6 Local communication radius

The local communication radius determines the neighborhood and the number of neighbors

for each sensor. Fig. 2.7 shows the e↵ect of the radius on the performance of distributed

particle filtering methods, with both the number of particles and the number of consensus

iterations fixed at the respective elbow points corresponding to each method. The simulations

were conducted on the network in Fig. 2.1, whose default radius was 48. As we can see in Fig.

44

2.7, when the radius was lower than the default radius, the errors of distributed UKF and

weight-based method increased dramatically, and those of the proposed method, Bayesian

Gauss, and the likelihood-based method increased slightly; when the radius was higher than

the default radius, the error of each method either stayed constant or decreased slightly. In

fact, the radius controls the rate of consensus. When the radius is small, it might takes many

iterations of communication for information to be transmitted from a sensor to another in

the network; when the radius is su�ciently large, a sensor can communicate directly with

any other sensor in the network, and the network becomes equivalently centralized. When

the number of consensus iterations is fixed, the radius e↵ectively controls the progress of

consensus. Thus, when a radius is large enough for the network to reach consensus within the

given number of consensus iterations, it would not help much to further increase the radius,

as shown in Fig. 2.7. Also, since a large radius adds to the di�culty in communication, it

might not be always desirable to increase the radius in distributed fusion.

2.7 Chapter summary

In this chapter, we proposed a distributed particle filtering algorithm based on optimal fusion

of local posteriors approximated as Gaussian mixtures. We implemented the optimal fusion

rule in a distributed fashion via an average consensus algorithm. We derived a distributed

fusion rule for the consensus algorithm and performed the fusion of Gaussian mixtures via

importance sampling. With an extra normalization step involved in the distributed fusion

rule, the convergence of the proposed average consensus algorithm does not directly follow

that of a standard average consensus algorithm. We therefore proved the convergence of the

proposed average consensus algorithm and then validated it with numerical examples. We

45

also demonstrated the performance of the proposed distributed particle filtering algorithm

through numerical examples. The numerical examples showed that the error of the proposed

algorithm was at least 27% lower than that of the other posterior algorithms and slightly

lower than those of the particle-based and posterior-based algorithms, which implies that

the proposed algorithm significantly improves the accuracy of posterior-based algorithms

and is competitive in accuracy with state-of-the-art approaches. The numerical examples

also showed that the proposed algorithm incurred a communication cost that was 1% that of

the particle-based algorithm and 10% that of the likelihood-based algorithm, which implies

that the proposed algorithm is e�cient in communication. The numerical examples further

showed that the posterior-based algorithm using Gaussian approximations incurred a com-

munication cost that was 10% that of the proposed algorithm and achieved an estimation

error that was 37% higher than that of the proposed algorithm, which implies a trade-o↵

between communication e�ciency and approximation accuracy. We claim that the extra

communication cost incurred by the upgrade from a Gaussian approximation to a Gaussian

mixture model is justified by the increase in the estimation accuracy.

The advantages of the proposed distributed particle filtering algorithm extend beyond accu-

racy and communication e�ciency. As a posterior-based algorithm, it allows diverse sensing

modalities and filtering tools to be exploited by the network; by performing importance sam-

pling for nonlinear fusion, it gives each sensor the flexibility to choose the optimal Gaussian

mixture model to represent its local belief.

The proposed distributed particle filtering framework has a wide range of applications in

addition to target tracking. For example, the distributed particle filtering algorithm can be

used in environmental monitoring, smart grids, and situational awareness; the distributed

fusion rule can be also applied to general nonlinear fusion problems.

46

Chapter 3

Adaptive Gaussian Mixture Learning

In this chapter, we consider the problem of adaptive Gaussian mixture learning in distributed

particle filtering where posteriors are approximated as Gaussian mixtures for wireless commu-

nication. We propose a hierarchical clustering algorithm, combined with the EM algorithm,

to learn from weighted samples a Gaussian mixture consisting of an adaptively determined

number of components. Di↵erent from existing work, the proposed algorithm embeds a clus-

tering algorithm based on kernel density estimation in each recursive step of hierarchical

clustering to split each cluster in an adaptive fashion. Numerical examples show that the

proposed method leads to higher accuracy in distributed particle filtering and is more e�cient

in both computation and communication than other Gaussian mixture learning methods. 2

3.1 Introduction

In posterior-based distributed particle filtering, we often parametrically represent a posterior

as a Gaussian mixture [14] for wireless transmission. When we fit a Gaussian mixture model

2
This chapter is based on J. Li and A. Nehorai, “Adaptive Gaussian mixture learning in distributed

particle filtering,” in 6th International Workshop on Computational Advances in Multi-Sensor Adaptive

Processing, Cancun, Mexico, Dec. 2015, pp. 221–224.

c� IEEE 2015

47

to a posterior or samples drawn from the posterior, an important consideration is how many

components the mixture model should have. Generally, the more components we have,

the more flexibility we gain in the parametric representation, and the higher approximation

accuracy we can achieve. However, the cost of a large number of components is the increased

computational load to learn a Gaussian mixture and the increased communication overhead

to transmit the Gaussian mixture. For this reason, there is always a trade-o↵ between

approximation accuracy and communication e�ciency when we decide the number of mixture

components we use to approximate a posterior.

Most posterior-based algorithms [10]–[13] assume a uniform number of components in each

Gaussian mixture (a Gaussian distribution is a one-component Gaussian mixture) across

time and space for convenience in fusion, but the assumption is usually invalid. First,

sensors located at di↵erent geological spots, with uncorrelated observation noise and possibly

di↵erent sensing modalities can have di↵erent posterior estimates, which are not guaranteed

to be accurately described by a mixture of the same number of Gaussian components. Second,

as the sensor network approaches consensus, the estimate held by each sensor tends to

be more concentrated and thus in general needs fewer Gaussian components to describe.

Moreover, even if the noise is assumed to be Gaussian, nonlinearity in the dynamic model

still results in non-Gaussian and possibly multimodal posteriors, and thus the Gaussian

assumption is not valid. Considering these facts, it would be preferable not to predefine a

fixed number of mixture components but rather to determine the optimal number adaptively

based on the local data available to each sensor at each time step. We call this approach

adaptive Gaussian mixture learning.

A Gaussian mixture is often learned from samples by using the expectation-maximization

(EM) algorithm [27]. The EM algorithm is an iterative algorithm that starts from an initial

48

guess. Since the number of components to use has to be specified in the initial guess, the

EM algorithm itself is not adaptive. A possible remedy is to try every possible number of

components within a certain range and select the optimal Gaussian mixture model according

to a certain model selection criterion, e.g., the Akaike information criterion (AIC) [40] or

the Bayesian information criterion (BIC) [41]. Although an adaptive result is guaranteed,

this solution is usually very slow due to the heavy computation involved in calling the EM

algorithm multiple times. As an iterative algorithm, the EM algorithm itself would be

very slow without informed initialization, especially for high-dimensional systems. For this

reason, a tree-based hierarchical approach is proposed as a fast and adaptive alternative. In

a tree-based approach, the sample set is recursively split into two complementary subsets

along a certain dimension, which can be the most variable dimension of the system state,

corresponding to a k-dimensional (KD) tree [42], or the principal component of the data,

corresponding to a principal component partitioning (PCP) tree [43]; the chosen dimension

is often split at the mean or median. After the tree is built, a greedy search is applied to

the tree to find the optimal set of components according to a certain objective function.

Unlike the EM algorithm, a tree-based approach is not guaranteed to give a local maximum

likelihood solution, and thus is subject to inaccuracy.

For Gaussian mixture learning in posterior-based distributed particle filtering, we need ef-

ficiency in both computation and communication, in addition to approximation accuracy.

As an online algorithm widely used in real-time target tracking, distributed particle filtering

requires fast Gaussian mixture learning. Also, since distributed particle filtering is often

implemented on a wireless sensor network, which has a tight budget for energy consump-

tion, it also requires each Gaussian mixture to have an appropriate number of components,

so that no energy is wasted in transmitting redundant or unnecessary mixture components.

For these reasons, no existing methods perfectly apply to our problem.

49

In this chapter, we propose a new method for adaptive Gaussian mixture learning, based

on a combination of hierarchical clustering and the EM algorithm. We design an adaptive

splitting strategy for hierarchical clustering to divide the sample set into potential Gaussian

components, thus achieving adaptivity, and we then set the output of hierarchical clustering

as an initial guess for the EM algorithm, thus achieving accuracy. Thanks to the informed

initialization provided by hierarchical clustering based on adaptive splitting, the EM algo-

rithm does not need many iterations to converge, thus achieving e�ciency. Based on the

proposed method, we propose the first posterior-based distributed particle filtering algorithm

equipped with adaptive Gaussian mixture learning.

The rest of the chapter is organized as follows. Section 3.2 describes the signal model.

Section 3.3 introduces distributed particle filtering. Section 3.4 proposes a hierarchical clus-

tering algorithm based on adaptive splitting. Section 3.5 validates the proposed method on

numerical examples, and Section 3.6 concludes the chapter.

3.2 Signal model

We consider a network of sensors that simultaneously observe a common moving target. We

denote the total number of sensors as K and the K sensors as S
1

, S
2

, . . . , S
K

. We assume

the agent network to be synchronized [24] and connected. We connect the target activity

with the agent network through the following discrete-time state-space model:

8

>

<

>

:

x

n

= g(x
n�1

) + u

n

y

n,k

= h

k

(x
n

) + v

n,k

, (3.1)

50

where x

n

2 Rd is the target state at the nth time point, y
n,k

2 Rbk is the observation of

x

n

taken by S
k

, g is a known state transition function, h
k

is a known observation function

of S
k

, and {u
n

} and {v
n,k

} are uncorrelated additive noises. For simplicity, we denote

{x
1

,x
2

, . . . ,x
n

} as x
1:n

, {y
n,1

,y
n,2

, . . . ,y
n,K

} as y
n

, and {y
1

,y
2

, . . . ,y
n

} as y
1:n

.

3.3 Distributed particle filtering

Distributed particle filtering computes f(x
n

|y
1:n

) based on f(x
n�1

|y
1:n�1

) and y

n

in a decen-

tralized fashion. Posterior-based distributed particle filtering achieves this goal in two steps.

First, each agent S
k

computes its local posterior f(x
n

|y
n,k

,y
1:n�1

) based on f(x
n�1

|y
1:n�1

)

and y

n,k

through a local particle filter; then, each agent repeatedly communicates with its

neighbors and updates its own posterior until they reach consensus on the global posterior

f(x
n

|y
1:n

).

3.3.1 Local particle filtering

We use the sampling importance resampling (SIR) particle filter [36] for local processing. A

SIR particle filter approximates a posterior as a set of weighted samples or particles:

f(x
n�1

|y
1:n�1

) ⇡
M

X

m=1

w
(m)

n�1

�(x
n�1

� x

(m)

n�1

), (3.2)

where M is the total number of particles, x(m)

n�1

is the mth particle of x
n�1

, w(m)

n�1

is the

normalized weight of x(m)

n�1

, and � is the Dirac delta function. Then, it propagates each

particle from time n�1 to time n by sampling from a proposal distribution f(x
n

|x(m)

n�1

), and

51

computes the weight of each propagated particle x

(m)

n

according to

w(m)

n

/ w
(m)

n�1

⇥ f(y
n,k

|x(m)

n

). (3.3)

The weighted particles {x(m)

n

, w
(m)

n

} are resampled if necessary and then considered as a

discrete approximation of f(x
n

|y
n,k

,y
1:n�1

), the local posterior of x
n

obtained by S
k

.

3.3.2 Distributed fusion

To be compatible with adaptive Gaussian mixture learning, we fuse local posteriors according

to a distributed and iterative fusion rule based on importance sampling [44].

The fusion rule starts with an average consensus step, in which every agent iteratively up-

dates its own belief with a weighted average of beliefs in its neighborhood:

log ⌘(i+1)

k

(x
n

) =
X

j2Nk

"
kj

log ⌘(i)
j

(x
n

), (3.4)

where ⌘(i)
j

(x
n

) is the posterior held by A
j

in the ith consensus iteration with ⌘
(0)

j

(x
n

) being the

local posterior obtained by A
j

, "
kj

is the Metropolis weight [26], and N
k

is the neighborhood

of S
k

with S
k

included. The average consensus step terminates when the discrepancy among

beliefs is lower than a chosen threshold, and is followed by a recovery step that converts the

the consensus result into a global posterior:

f(x
n

|y
1:n

) / ⌘
(1)

k

(x
n

)K

f(x
n

|y
1:n�1

)K�1

. (3.5)

52

We approximate the posteriors in (3.4) and (3.5) as Gaussian mixtures and fuse them via

importance sampling. Importance sampling only needs the density of each Gaussian mixture

evaluated at each given sample and does not care about the number of components in each

Gaussian mixture. For this reason, each agent is free to optimize its own approximation

through adaptive Gaussian mixture learning.

3.4 Adaptive Gaussian mixture learning

To adaptively approximate posteriors as Gaussian mixtures, we propose an adaptive Gaus-

sian mixture learning method that combines hierarchical clustering with the EM algorithm

by setting the output of the former as the initial guess for the latter. To make the combina-

tion both accurate and e�cient, we develop a hierarchical clustering algorithm with adaptive

splitting embedded in each recursive step of tree building.

3.4.1 Dimension reduction

Tree building recursively splits a cluster into two until a termination criterion is satisfied.

Since it is often challenging to split a cluster of high-dimensional samples, existing work [45],

[43] projects the samples onto a selected dimension before further analysis. In this chapter,

we use principal component analysis for dimension reduction because it is able to handle

possible correlations between dimensions. More specifically, we apply weighted principal

component analysis [46] to a set of M weighted samples {x(m), w(m)}M
m=1

and obtain the

53

principal components {p
1

,p
2

, . . . ,p
d

}, indexed in descending order of variance after projec-

tion, with p

i

2 Rd for 8i. We project the samples onto the ith principal component p
i

and

obtain a set of M weighted one-dimensional samples, {pT

i

x

(m), w(m)}M
m=1

= {x(m)

(i)

, w(m)}M
m=1

.

3.4.2 Adaptive splitting

Splitting a cluster of one-dimensional samples is equivalent to finding a scalar point as the

boundary. We prefer to split a cluster between modes rather than at or near a mode, because

a mode of the samples potentially corresponds to the center of a component in the Gaussian

mixture to be learned. Existing work chooses the mean or the median of the samples as

the boundary, which is an uninformed strategy, because it is uncertain whether the mean

or median falls between modes. Also, we prefer not to further split a cluster if it has only

one mode, because the cluster might consist of a single component. Existing work splits a

cluster without knowing its structure and checks whether the split is reasonable later in an

additional tree search step, which results in extra computation involved in both overbuilding

the tree and searching over the overbuilt tree. To build the tree intelligently and e�ciently,

we propose to learn the structure of a cluster before splitting.

To learn the structure, we apply a clustering algorithm to the projected samples. Since

the tree is binary, we need only a two-component clustering algorithm. With the number

of potential components specified, non-adaptive methods, such as the EM algorithm, could

be used. However, most of these methods work under the assumption that the cluster

should indeed be split, and thus are unable to determine whether to stop splitting. Also,

most traditional methods are designed for general cases and unable to take advantage of

the properties of one-dimensional data. To decide whether to stop splitting while taking

54

advantage of one-dimensional data, we use kernel density estimation (KDE) [47] for the

embedded clustering.

We first learn the statistical distribution of the projected samples via weighted KDE as

follows:

f̂
h

(x) =
M

X

m=1

w(m)�
h

(x, x(m)

(i)

), (3.6)

where �
h

is a kernel function with a smoothing parameter h, and f̂
h

is an estimate of the

underlying distribution of the samples given h. Intended to learn a Gaussian mixture, we

set �
h

as a Gaussian kernel, so that h is the standard deviation of the Gaussian kernel. h

is adaptively determined according to the following approximation of the minimum mean

integrated squared error (MISE) rule [47],

h = (
4

3M
)1/5�, (3.7)

where � is the standard deviation of the underlying distribution and substituted with a

robust estimate [47]:

�̂ = median
n

�

�

�

x
(m)

(i)

�median{x(m)

(i)

, w(m)}
�

�

�

, w(m)

o

/0.6745. (3.8)

f̂
h

is a continuous function, and we evaluate it on a one-dimensional grid of L points. The

range of the grid is set as 110% that of the samples, and given a fixed range, L determines

the resolution of the discrete approximation.

Then, we look for a grid point to split the samples at. As introduced in Section 3.4.2, it

is undesirable to split at or near a mode, because a mode potentially corresponds to the

center of a component in the Gaussian mixture to be learned. Hence, an ideal place to split

55

at is a local minimum, which is a potential boundary between two adjacent components. If

strict local minima are identified, we split at the one with the highest negative prominence.

Otherwise, the samples could consist of one single component or multiple components close

to each other. When two components stay close to each other, there could be a “plain”

between them, where consecutive grid points have similar densities. A plain could result in

a local minimum if tilted to the left or right. We split at the most negatively prominent one

of the thus formed minima if there are any; otherwise, we consider the samples as a single

component and do not split it for now.

This adaptive splitting approach applies to samples projected onto any dimension. We

first consider the first principal component; if no split is performed for the first principal

component, we consider the second principal component before we make a final decision.

3.4.3 Gaussian mixture model

A cluster that we do not further split corresponds to a leaf in the hierarchy tree. Every leaf

corresponds to a component in the learned Gaussian mixture as follows:

⌘(x) ⇡
C

X

c=1

↵
c

N (x;µ
c

,⌃
c

) , (3.9)

where C is the total number of leaves, ↵
c

is the sum of sample weights in the cth leaf, µ
c

is

the sample mean of the cth leaf before projection, and ⌃
c

is the sample covariance matrix

of the cth leaf before projection.

56

3.4.4 Computational complexity

In adaptive splitting, KDE costs O(LM), and splitting costs O(M). Hence, adaptive split-

ting costs O(LM) overall. Non-adaptive splitting, costing O(M), has a lower complexity

than adaptive splitting in each recursive step of tree building, but adaptive splitting pre-

vents overbuilding the tree and eliminates searching over the tree, thus saving considerable

computation in return. Also, because adaptive splitting actively looks for Gaussian compo-

nents during tree building, Gaussian mixtures learned under adaptive splitting need fewer

EM iterations to reach local maximum likelihood than those learned under non-adaptive

splitting, which again saves computation.

3.5 Numerical examples

We tested the proposed adaptive Gaussian mixture learning method on numerical exam-

ples of posterior-based distributed particle filtering, in comparison with other methods, to

demonstrate the advantages of the proposed method in both accuracy and e�ciency.

3.5.1 General settings

We considered a network of 20 sensors tracking a common moving target. The target followed

a constant velocity motion model with additive Gaussian noise in a two-dimensional space.

57

Its state transition function was g(x
n

) = D · x
n

, where

x

n

=

2

6

6

6

6

6

6

6

4

x
n,1

x
n,2

ẋ
n,1

ẋ
n,2

3

7

7

7

7

7

7

7

5

, D =

2

6

6

6

6

6

6

6

4

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

3

7

7

7

7

7

7

7

5

, (3.10)

and its transition noise was u
n

⇠ N (0,R), where

R = 0.5⇥

2

6

6

6

6

6

6

6

4

1

3

0 1

2

0

0 1

3

0 1

2

1

2

0 1 0

0 1

2

0 1

3

7

7

7

7

7

7

7

5

. (3.11)

The location of the kth agent, S
k

, was denoted as l

k

= (l
k,1

, l
k,2

). Its observation function

was assumed to be

h

k

(x
n

) =
q

(x
n,1

� l
k,1

)2 + (x
n,2

� l
k,2

)2, (3.12)

and its observation noise v

n,k

followed N (0, 0.25). We used 6,000 particles for local particle

filtering, 15,000 samples for importance sampling in distributed fusion, 1,000 grid points for

KDE, and 40 iterations for average consensus. We assumed prior knowledge of the initial

state x

1

to be N (g(x
0

),R), with x

0

= [0m, 0m, 1m/s, 1m/s]T .

We compared the proposed method (denoted as KDE-EM) with its non-adaptive splitting

counterpart (denoted as Mean-EM), hierarchical clustering methods without using the EM

algorithm (denoted as KDE and Mean), and the EM algorithm with a random initial guess

of 4 components (denoted as EM).

58

Time / s
5 10 15 20 25 30

R
M

S
E

 /
 m

0

0.5

1

1.5

2

2.5

3

3.5

4
KDE-EM
Mean-EM
KDE
Mean
EM

Figure 3.1: State estimation RMSE as a function of time, with dotted lines representing
average RMSEs.

3.5.2 Performance

Fig. 3.1 compares the errors of distributed particle filtering using di↵erent Gaussian mix-

ture learning methods. The proposed method (KDE-EM) yielded the lowest average root-

mean-square error (RMSE) of all. More specifically, KDE-EM yielded a lower average error

than Mean-EM, which demonstrates the advantage of adaptive splitting; KDE-EM yielded

a lower average error than EM, which shows the advantage of informed initialization for the

EM algorithm; KDE-EM and Mean-EM yielded lower average errors than KDE and Mean,

respectively, which validates the benefit of adding the EM algorithm to hierarchical cluster-

ing; KDE yielded a much lower average error than Mean, which implies that the proposed

adaptive splitting approach significantly improves the accuracy hierarchical clustering.

59

Fig. 3.2 compares the numbers of EM iterations needed in KDE-EM and Mean-EM. We can

see that KDE leads to many fewer EM iterations than Mean, which verifies our previous

claim that adaptive splitting helps hierarchical clustering to provide a more informed initial

guess for the EM algorithm and thus to reduce the number of needed EM iterations and the

amount of involved computation.

Fig. 3.3 compares the average runtimes of all the investigated methods tested under the same

computing environment on the same sets of samples during distributed particle filtering. As

we can see, the runtime of KDE was slightly lower than that of Mean, which verifies the

saving of computation in both avoiding overbuilding the tree and eliminating searching

over the tree. Also, the EM algorithm following KDE costed much more time than that

following Mean, which coincides with the results in Fig. 3.2 and verifies the advantage of

adaptive splitting in computational e�ciency. Moreover, the EM algorithms initialized with

hierarchical clustering costed less time than that initialized in a predefined way, which implies

the advantage of adaptive initialization.

The communication cost of a distributed particle filtering algorithm is strongly a↵ected

by the number of components in each transmitted Gaussian mixture. In the examples

above, distributed particle filtering with KDE-EM transmitted 411 Gaussian components

per agent per time step, while distributed particle filtering with Mean-EM transmitted 721

components, which shows that the proposed method is more e�cient in communication than

its non-adaptive splitting counterpart.

60

Figure 3.2: The number of EM iterations as a function of the number of components in a
Gaussian mixture.

3.6 Chapter summary

In this chapter, we combined hierarchical clustering with the EM algorithm for adaptive

Gaussian mixture learning in posterior-based distributed particle filtering. We designed a

one-dimensional clustering algorithm based on kernel density estimation and embedded the

designed clustering algorithm in each recursive step of the hierarchical clustering to adap-

tively determine whether and where to split a cluster. This adaptive splitting approach

improves the accuracy of hierarchical clustering and saves computation in both hierarchi-

cal clustering and the following EM algorithm. We tested the proposed adaptive Gaussian

mixture learning method, in comparison with other methods, on numerical examples of

distributed particle filtering. The numerical examples validated the advantage of adaptive

Gaussian mixture learning over non-adaptive Gaussian mixture learning, demonstrated the

61

Figure 3.3: The average runtime of each method tested on the same sets of samples under
the same computing environment.

benefits of adaptive splitting in hierarchical clustering, verified the importance of the EM al-

gorithm for adaptive Gaussian mixture learning, and showed the advantages of the proposed

method in estimation accuracy, computational e�ciency, and communication e�ciency. In

the numerical examples, the runtime of the EM algorithm initialized with adaptive splitting

was 7% that of the EM algorithm initialized randomly and 17% that of the EM algorithm ini-

tialized with non-adaptive splitting, which implies that adaptive splitting results in a highly

informed initial guess for the EM algorithm and significantly improves the computational

e�ciency of Gaussian mixture learning.

In addition to distributed particle filtering, the proposed adaptive Gaussian mixture learning

method can be used in any other applications where a Gaussian mixture representation is

needed. Also, the proposed method can be used to solve clustering problems where the

number of clusters is unknown.

62

Chapter 4

Clock Synchronization in Wireless

Sensor Networks

We propose a method to jointly estimate sequential target states and the network synchro-

nization status based on observations obtained by an unsynchronized wireless sensor network.

We build an unsynchronized multi-sensor state-space model to connect asynchronous sensor

observations with target state transition. Under the built model, we solve the joint estima-

tion problem via the expectation-maximum (EM) algorithm, assuming a known temporal

order of sensor clocks. Based on the solution and a hypothesis testing method developed for

temporal ordering, we solve the joint estimation problem in a distributed manner, assuming

an unknown temporal order. We use Monte Carlo methods to approximate our solutions,

in order to deal with nonlinear models and non-Gaussian noise. Moreover, we develop a

recursive and parallel algorithm to compute the EM covariance matrix under Monte Carlo

approximations. Numerical examples demonstrate the performance of the proposed method

63

and show that sequential target estimation benefits from considering clock synchronization.

3

4.1 Introduction

Wireless sensor networks have been widely used in sequential target estimation [48]-[51].

Collaboration among networked sensors provides observations from multiple perspectives,

thus enhancing estimation accuracy. However, e↵ective collaboration strongly relies on per-

fect synchronization between sensors. Synchronization is di�cult to maintain, because the

internal clock of a sensor is very likely to drift away from its initial setting as time goes

on. Simply ignoring the fact that a sensor network is unsynchronized will lead to estimation

errors. Therefore, accurate estimation of the synchronization status of a sensor network is

essential for reliable sequential estimation of target states. Such joint estimation of target

states and synchronization status can be achieved using statistical signal processing methods.

A possible solution to the joint estimation problem is to first learn the synchronization

status using a clock synchronization method [22], [23] and then estimate the target trajectory

based on sensor observations together with the learned synchronization status [52]. However,

this solution has three major drawbacks. First, with no additional information given, the

clock synchronization method has to be based on repeated communication of timestamps

[53], [54], which expends considerable energy and is thus undesirable for a wireless sensor

network, which has a limited energy budget. Second, since the target to be observed often

appears unexpectedly in real-world (e.g., military) applications, the synchronization process

3
This chapter is based on J. Li and A. Nehorai, “Joint sequential target estimation and clock synchroniza-

tion in wireless sensor networks,” IEEE Transactions on Signal and Information Processing over Networks,

vol. 1, no. 2, pp. 74–88, June 2015.

c� IEEE 2015

64

and the observation process are always separated in time; in other words, there is always

a time gap of uncertain length between synchronization and observation. If the gap is not

su�ciently small, clocks can drift during the gap, the learned synchronization status can

become outdated, and thus the sequential target estimation will be inaccurate. Third, the

target estimation step is not robust to errors or failures in the clock synchronization step.

To overcome the drawbacks, we propose to jointly estimate both target states and syn-

chronization status based on asynchronous sensor observations. To the best of the au-

thors’ knowledge, there is no existing work on observation-based clock synchronization. But

observation-based clock synchronization is totally realizable, because sensor observations are

taken according to the sensors’ own clocks, and thus convey implicit temporal information

about relative o↵sets between clocks. The proposed joint estimation approach has three ma-

jor advantages over the above-mentioned synchronize-then-observe approach. First, sensor

observations are available in any sequential target estimation task, so there is no need for

further information communication or data collection, which saves a substantial amount of

energy. Second, observation-based clock synchronization guarantees that the joint estima-

tion approach learns the exact synchronization status under which sensor observations are

taken. Third, the joint estimation approach works e↵ectively with unknown synchronization

status, and is thus robust to errors or failures in collecting prior knowledge. These facts

motivate us to follow such an observation-based joint estimation approach.

A joint estimation problem is often solved with the augmented state-space method [55], which

appends the parameter vector to the state vector and incorporates an artificial parameter

evolution function in the state transition. This method simplifies the original problem into a

single state estimation problem, but adds to the dimensions of the state vector. In this chap-

ter, we use an alternating optimization approach to split the original problem into separate

65

state and parameter estimation problems that alternate until convergence. In particular, we

use the expectation-maximization (EM) algorithm [27] as a tool for alternating optimiza-

tion. We formulate the joint estimation problem by building an unsynchronized multi-sensor

state-space model to connect asynchronous sensor observations with corresponding state

transition. Based on the model, we derive both a centralized solution to the joint estimation

problem with a known temporal order and a distributed solution to the joint estimation prob-

lem with an unknown temporal order. The distributed solution determines local temporal

orders via hypothesis testing, then uses the centralized solution to estimate local synchro-

nization statuses based on local sensor observations, and finally fuses local estimates to form

a global estimate of the network synchronization status, based on which a final estimate of

the target trajectory is obtained. The distributed nature of the method makes it scalable.

The EM algorithm, which we use for joint estimation, has long been criticized for its di�culty

in computing the EM covariance matrix. However, knowing the EM covariance matrix

enables us to evaluate statistical performance, to estimate the fraction of missing information

involved in a problem, to compute the asymptotic global rate of convergence, and to speed

up convergence [56]. In [57], Louis proposes a primal method to compute the EM covariance

matrix via the inverse of the Fisher information, but Louis’s formula is computationally

intractable. Later researchers proposed methods to circumvent calculating Louis’s formula

[58]-[60], but they are subject to numerical inaccuracies and instabilities. In this chapter,

we propose an algorithm to compute the intractable term in Louis’s formula in a recursive

and parallel fashion under Monte Carlo approximations.

This chapter makes three major contributions. First, we propose a novel approach to clock

synchronization. We estimate clock synchronization status based on sequential sensor ob-

servations, rather than the traditionally used timestamps obtained from repeated message

66

passing. This method significantly reduces inter-sensor communication, saves energy and

resources, and works perfectly with sequential target estimation. Second, we design an un-

synchronized multi-sensor state-space model to study the interaction between state transition

and asynchronous observations, and we solve a joint estimation problem under the designed

model, using the EM algorithm and the Monte Carlo method. Third, we propose an algo-

rithm to compute the EM covariance matrix based on a primal method that was previously

considered to be intractable. The proposed algorithm is designed under our problem for-

mulation, but is also extendable to other parameter estimation problems under state-space

models.

The rest of the chapter is organized as follows. Section 4.2 introduces the unsynchronized

multi-sensor state-space model. Section 4.3 derives an EM solution to the joint estimation

problem with a known temporal order. Section 4.4 approximates the EM solution using

Monte Carlo methods and discusses stochastic variants of the EM algorithm. Section 4.5

derives a distributed solution to the joint estimation problem with an unknown temporal

order. Section 4.6 proposes an algorithm to compute the EM covariance matrix. Section 4.7

presents numerical examples, and Section 4.8 concludes the chapter.

4.2 Signal models

4.2.1 Clock model

We model a clock C as an a�ne function of time t,

C(t) = � · t+ ⌧, (4.1)

67

where � is the clock skew and ⌧ is the clock o↵set. Model (4.1) enables us to model a clock

C
1

as an a�ne function of another clock C
2

through

C
1

(t) = �
1,2

· C
2

(t) + ⌧
1,2

, (4.2)

where �
1,2

is the relative clock skew and ⌧
1,2

is the relative clock o↵set. C
1

and C
2

are

synchronized if �
1,2

= 1 and ⌧
1,2

= 0. To achieve synchronization between clocks, the

relative clock skew �
1,2

and the relative clock o↵set ⌧
1,2

have to be estimated. Since a

relative clock skew is determined by the frequencies of internal crystal oscillators and is

thus relatively robust to interference in the long term, we assume it to be 1 for each pair

of clocks to be investigated in this chapter. Also, we assume a relative clock o↵set to be

constant during the investigated period. Under these assumptions, unsynchronized sensors

programmed to collaborate in simultaneous and periodic sampling will take observations at

the same intervals but with fixed o↵sets in time.

4.2.2 Synchronized multi-sensor state-space model

Denote the sensors under investigation as S
1

, S
2

, . . . , S
K

, where K is the total number of

sensors, and the relative clock o↵set between the S
i

and S
j

as ⌧
i,j

. By definition, we have

⌧
i,j

= �⌧
j,i

and ⌧
i,i

= 0. A sensor network is synchronized if ⌧
i,j

= 0 for 8i, j. In a

synchronized network, sensors take observations simultaneously, and always observe the same

state of a common target. In this case, a multi-sensor state-space model can be built as

8

>

<

>

:

x

t

= g(x
t��t

,�t) + u

t

(�t)

y

t,k

= h

k

(x
t

) + v

t,k

(k = 1, 2, . . . , K)
, (4.3)

68

where

1) x
t

2 Rd is the target state at time t;

2) y
t,k

2 Rb is the observation taken by S
k

at time t;

3) �t is the state transition interval or the observation period;

4) g is a known twice di↵erentiable state transition function;

5) h
k

is a known observation function of S
k

;

6) {u
t

} and {v
t,k

} are uncorrelated additive noise;

8) {u
t

} and {v
t,k

} are independent and belong to the exponential family with parameters ✓

and �

k

, i.e., the pdf of u
t

is f(u
t

|✓) = c
u

(✓)a
u

(u
t

) exp (⇡
u

(✓)T�
u

(u
t

)), and that of v
t,k

is

f(v
t,k

|�
k

) = c
v

(�
k

)a
v

(v
t,k

) exp (⇡
v

(�
k

)T�
v

(v
t,k

));

9) ✓ is further parametrized by �t with ✓(�t) being twice di↵erentiable, while �

k

is a

constant parameter;

10) state transition is Markovian, i.e., x
t

?? x

t

0 | x

t

00 for t < t00 < t0 (“??” means “be

independent of,” and “|” means “given”).

4.2.3 Unsynchronized multi-sensor state-space model

A sensor network is unsynchronized, if ⌧
i,j

6= 0 for 8i, j with i 6= j. Since clock o↵sets are

normally much smaller than the pre-assumed observation period (otherwise they would be

easily detected), we assume that |⌧
i,j

| < �t for 8i, j. Also, we assume for now that we know

the temporal order of the sensors, so that we could model state transition sequentially in

time. More specifically, we re-index the sensors according to their temporal order, so that

a sensor with a smaller index is ahead in time, i.e., ⌧
k,k+1

> 0 or C
k

(t) > C
k+1

(t) for 8k.

In this case, we can sequentially model the interaction between state transition and sensor

observations as

69

8

>

>

>

>

<

>

>

>

>

:

x

t,k

= g(x
t,k�1

, ⌧
k�1,k

) + u

t,k

(⌧
k�1,k

)

x

t+�t,1

= g(x
t,K

,�t� ⌧
1,K

) + u

t+�t,1

(�t� ⌧
1,K

)

y

t,k

= h

k

(x
t,k

) + v

t,k

, (4.4)

where

1) x
t,k

is the target state at time t+ ⌧
1,k

,

2) y
t,k

is the observation of x
t,k

or the observation taken by S
k

during the period starting

from time t,

3) u
t,k

is the noise to the transition from the last state to x

t,k

,

4) v
t,k

is the observation noise of S
k

when taking y

t,k

, and

5) all the conditional independence properties of (4.3) still hold.

We simplify the notation ⌧
k�1,k

to ⌧
k�1

and�t�⌧
1,K

to ⌧
K

, implying that ⌧
k

(k 2 {1, 2, . . . , K})

represents the time interval between an observation by S
k

and the next observation taken

by the network. Also, since all relative clock o↵sets are assumed to be smaller than the

observation period �t, we normalize all the time variables in the model by �t; since the

starting time of each observation period is a multiple of �t, we discretize all the time indices

to integers. After simplification, normalization, and discretization, model (4.4) becomes

8

>

>

>

>

<

>

>

>

>

:

x

n,k

= g(x
n,k�1

, ⌧
k�1

) + u

n,k

(⌧
k�1

)

x

n+1,1

= g(x
n,K

, ⌧
K

) + u

n+1,1

(⌧
K

)

y

n,k

= h

k

(x
n,k

) + v

n,k

, (4.5)

where

1) n is the observation period index, i.e., n =
⌅

t

�t

⇧

+ 1;

2) n = 1, 2, . . . , N , where N is the total number of observation periods;

70

3) x
n,k

is the target state observed by S
k

during the nth observation period;

4) y
n,k

is the observation by S
k

in the nth observation period;

5)
P

K

i=1

⌧
i

= 1.

4.3 Joint estimation with a known temporal order

In this section, we solve the joint estimation problem, assuming that we know the temporal

order of the sensors. Our goal is to estimate the target states {x
n,k

} and the relative clock

o↵sets {⌧
i,j

}, given the observations {y
n,k

}. Although the relative clock o↵sets explicitly

determine the varying state transition intervals and thus play a more important role than

ordinary parameters in a dynamic model, we treat them as unknown parameters and cast

the problem into a joint state and parameter estimation problem. We solve this joint es-

timation problem o✏ine with an alternating estimation strategy. In particular, we use the

EM algorithm.

We use the following notations in the rest of the chapter:

⌧ = [⌧
1

, ⌧
2

, . . . , ⌧
K�1

]T ,

X = {x
n,k

: 1  n  N, 1  k  K}, and

Y = {y
n,k

: 1  n  N, 1  k  K}.

Note that ⌧
1

, ⌧
2

, . . . , ⌧
K�1

are all the o↵sets we need to estimate, since any other o↵set can

be calculated from them, e.g., ⌧
K

= 1�
P

K�1

k=1

⌧
k

and ⌧
i,j

=
P

j�1

k=i

⌧
k

for i < j.

71

4.3.1 Expectation-maximization algorithm

The EM algorithm is an iterative parameter estimation method for maximum likelihood

estimation (MLE) with incomplete or missing data. The MLE solution to our problem

under the setting of parameter estimation can be expressed as

⌧̂ = argmax
⌧

L(⌧ ;Y). (4.6)

With the intermediate variable X missing, it is usually intractable to compute the observed

likelihood L(⌧ ;Y). The EM algorithm is used to solve this problem by circumventing the

intractability.

Each iteration of the EM algorithm consists of an expectation step (E-step) and a maxi-

mization step (M-step). In the E-step, given Y and the estimate of ⌧ in the last iteration,

the conditional distribution of X is computed, and the expectation of the complete log-

likelihood logL(⌧ ;X,Y) is taken with respect to X over its conditional distribution, so

that the unknown auxiliary variable X vanishes and the observed log-likelihood logL(⌧ ;Y)

is approximated. In the M-step, the observed likelihood approximated via expectation in

the E-step is maximized with respect to ⌧ , and the current estimate of ⌧ is replaced with

the maximizer. These two steps repeat until the sequence of parameter estimates converges.

In our problem, the complete data is (X,Y), the missing data is X, and the parameter to

be iteratively estimated is ⌧ . Thus, the EM algorithm can be formulated as

E-Step : Q(⌧ ; ⌧̂ (i)) = E
X|Y ;

ˆ

⌧

(i) logL(⌧ ;X,Y) (4.7)

M-Step : ⌧̂ (i+1) = argmax
⌧

Q(⌧ ; ⌧̂ (i)), (4.8)

72

where ⌧̂ (i) is the estimate of ⌧ from the ith iteration, and Q(⌧ ; ⌧̂ (i)) is the objective function

of the (i+1)th iteration. The algorithm starts with an initial guess ⌧̂ (0) and ends when the

sequence {⌧̂ (i)} converges.

Note that the posterior distribution of X is computed in the E-step, based on the latest

estimate of ⌧ . In other words, the state variable X is estimated in each iteration of the EM

algorithm, thus making the EM algorithm suitable for joint state and parameter estimation,

although it is originally designed for parameter estimation.

4.3.2 Objective function

The objective function of an iteration is the conditional expectation of the complete log-

likelihood. Using the joint distribution factorization property of a Bayesian network [61],

the complete likelihood can be computed as

L(⌧ ;X,Y) =
N

Y

n=1

K

Y

k=1

f(y
n,k

|pa(y
n,k

); ⌧)f(x
n,k

|pa(x
n,k

); ⌧), (4.9)

where f is the notation for probability density functions (pdf), and the function pa outputs

the set of parents of the input variable in the Bayesian network. In a Bayesian network, a

parent of a variable is another variable on which it directly depends. In our model, pa(y
n,k

) =

{x
n,k

}; pa(x
n,k

) = {x
n,k�1

} for k = 2, 3, . . . , K and n = 1, 2, . . . , N ; pa(x
n+1,1

) = {x
n,K

}

for n = 1, 2, . . . , N � 1; and pa(x
1,1

) = ?. Thus, the complete likelihood can be rewritten

73

as

L(⌧ ;X,Y) =
N

Y

n=1

K

Y

k=1

f(y
n,k

|x
n,k

)⇥
N�1

Y

n=1

f(x
n+1,1

|x
n,K

; ⌧)

⇥
N

Y

n=1

K�1

Y

k=1

f(x
n,k+1

|x
n,k

; ⌧)⇥ f(x
1,1

). (4.10)

Then, the objective function of the (i+1)th iteration can be calculated as

Q(⌧ ; ⌧̂ (i)) = E
X|Y ;

ˆ

⌧

(i) logL(⌧ ;X,Y)

=
N

X

n=1

K

X

k=1

E log f(y
n,k

|x
n,k

)

| {z }

first term

+
N�1

X

n=1

E log f(x
n+1,1

|x
n,K

; ⌧)

| {z }

second term

+
N

X

n=1

K�1

X

k=1

E log f(x
n,k+1

|x
n,k

; ⌧)

| {z }

third term

+E log f(x
1,1

)
| {z }

fourth term

, (4.11)

where the subscript “X|Y ; ⌧̂ (i)” is omitted from each expectation symbol in (4.11) and later

expressions for simplicity of notation.

Note that there are four terms in the objective function (4.11): the first term is for obser-

vation, the second and third terms are for state transition, and the fourth term is for prior

information. Since only state transition directly depends on ⌧ , maximizing the objective

function Q(⌧ ; ⌧̂ (i)) with respect to ⌧ is equivalent to maximizing the sum of the second and

third terms in the objective functions. In other words, let

Q
p

(⌧ ; ⌧̂ (i)) =
N�1

X

n=1

E log f(x
n+1,1

|x
n,K

; ⌧)

+
N

X

n=1

K�1

X

k=1

E log f(x
n,k+1

|x
n,k

; ⌧), (4.12)

74

then we have argmax
⌧

Q(⌧ ; ⌧̂ (i)) = argmax
⌧

Q
p

(⌧ ; ⌧̂ (i)), and the M-step is equivalent to

⌧̂

(i+1) = argmax
⌧

Q
p

(⌧ ; ⌧̂ (i)). (4.13)

We call Q
p

(⌧ ; ⌧̂ (i)) the partial objective function.

Since the distribution of state transition noise is known, the only thing unknown in (4.12) is

the posterior distribution of X with which the expectations are computed, i.e., f(X|Y ; ⌧̂ (i)).

It further simplifies to f(x
n,k+1

,x
n,k

|Y ; ⌧̂ (i)) and f(x
n+1,1

,x
n,K

|Y ; ⌧̂ (i)), because state tran-

sition relates only two adjacent states at a time. Our next goal is to compute the joint

probability density functions f(x
n,k+1

,x
n,k

|Y ; ⌧̂ (i)) and f(x
n+1,1

,x
n,K

|Y ; ⌧̂ (i)).

4.3.3 Smoothing

An e�cient approach to calculating a joint conditional density is to calculate its marginal

conditional densities and use the chain rule combined with conditional independence proper-

ties to derive the joint conditional density. Thus, our next step is to calculate f(x
k,n

|Y ; ⌧̂ (i))

for all k and n, which is often recognized as a smoothing problem.

For simplicity, we introduce two alternative rules of notation. First, we re-index the state and

observation variables using one-dimensional subscripts in the order of time, i.e., denoting x
n,k

and y

n,k

as x
K(n�1)+k

and y

K(n�1)+k

, respectively, for all k and n. Second, we denote the set

of consecutive observations from y

i

to y
j

(i < j) as y
i:j

. In this way, the marginal conditional

densities to be computed can be expressed as f(x
n

|y
1:KN

; ⌧̂ (i)) for n = 1, 2, . . . , KN .

We use the forward-backward algorithm [62] to solve the smoothing problem iteratively.

The forward part of the algorithm obtains a filtering result f(x
n

|y
1:n

; ⌧̂ (i)) based on the

75

preceding one f(x
n�1

|y
1:(n�1)

; ⌧̂ (i)) for n = 2, 3, . . . , KN ; the backward part of the algorithm

obtains a smoothing result f(x
n

|Y ; ⌧̂ (i)) based on the succeeding one f(x
n+1

|Y ; ⌧̂ (i)) for

n = KN � 1, KN � 2, . . . , 1.

The forward part proceeds iteratively as follows:

f(x
n

|y
1:n

; ⌧̂ (i)) / f(y
n

|x
n

)

Z

f(x
n

|x
n�1

; ⌧̂ (i))f(x
n�1

|y
1:(n�1)

; ⌧̂ (i))dx
n�1

. (4.14)

The backward part proceeds iteratively as follows:

f(x
n

|y
1:KN

; ⌧̂ (i)) =

Z

f(x
n

,x
n+1

|y
1:KN

; ⌧̂ (i))dx
n+1

(4.15)

=

Z

f(x
n+1

|x
n

; ⌧̂ (i))f(x
n

|y
1:n

; ⌧̂ (i))
R

f(x
n+1

|x
n

; ⌧̂ (i))f(x
n

|y
1:n

; ⌧̂ (i))dx
n

⇥ f(x
n+1

|y
1:KN

; ⌧̂ (i))dx
n+1

.

(4.16)

The derivation of (4.14) and (4.16) can be found in the Appendix.

Note that the integrand in (4.15) is exactly the joint conditional density of adjacent states

and can be computed according to the integrand of (4.16). In other words, the joint condi-

tional density comes as a byproduct of the forward-backward algorithm, which is therefore

convenient and useful for our problem.

76

4.3.4 Maximization

The M-step solves a constrained optimization problem:

max
⌧

Q
p

(⌧ ; ⌧̂ (i))

s. t. 0 < ⌧
k

< 1 for 8k
X

K�1

k=1

⌧
k

< 1.

The problem can be reformulated as

max
⌧

Q
p

(⌧ ; ⌧̂ (i)) (4.17)

s. t.

2

6

4

1T

K�1

�I

K�1

3

7

5

⌧ �

2

6

4

1

0
K�1

3

7

5

,

where 1
K�1

is an all-ones column vector of length K � 1, 0
K�1

is an all-zeros column vector

of length K � 1, I
K�1

is an identity matrix of size K � 1, and “�” means “element-wise less

than”.

According to the assumptions, Q
p

is both once and twice di↵erentiable, and it is convenient

to analytically obtain @

@⌧

Q
p

(⌧ ; ⌧̂ (i)) and @

2

@⌧@⌧

T Qp

(⌧ ; ⌧̂ (i)). Hence, the optimization problem

in (4.17) is compatible with gradient methods. Given the linear constraints in (4.17), we use

the gradient projection method [63], a gradient descent method for optimization with linear

constraints, to solve the optimization problem.

77

4.4 Monte Carlo approximations

Although the forward-backward algorithm is easy to follow, the involved integrals can be

intractable to compute, since state transition and observation functions can be nonlinear

and noise can be non-Gaussian. Thus, to simplify the calculation, we use the Monte Carlo

method to approximate the densities and transform the integrals into sums.

4.4.1 Particle filtering and smoothing

The Monte Carlo version of filtering is called particle filtering [36]. In particle filtering, the

posterior distribution of a state is approximated by a su�ciently large number of weighted

samples or, in other words, particles:

f(x
n

|y
1:n

; ⌧̂ (i)) ⇡
Mi+1

X

m=1

w(m)

n

�(x
n

� x

(m)

n

), (4.18)

where

1) M
i+1

is the number of particles used for the approximation of a single state in the (i+1)th

iteration, and can vary with i;

2) x(m)

n

is the mth particle used for the approximation of x
n

, and is generated according to

a proposal distribution [36];

3) w(m)

n

is the weight of x(m)

n

with
P

Mi+1

m=1

w
(m)

n

= 1; and

4) � is the Dirac delta function.

Particle filtering is a Monte Carlo approximation to a simplified forward part of the forward-

backward algorithm. The way in which particle weights are computed depends on the choice

of a proposal distribution. Usually, the proposal distribution of x(m)

n

is chosen as the state

78

transition distribution f(x
n

|x(m)

n�1

; ⌧̂ (i)), and, correspondingly, the particle weights are itera-

tively computed as

w(m)

n

/ f(y
n

|x(m)

n

) · w(m)

n�1

, (4.19)

where the recursion is initialized with uniform weights. Resampling of particles with replace-

ment is performed when most of the weight is on a small group of particles.

The Monte Carlo version of smoothing is called particle smoothing [64]. Filtering and

smoothing share particles, but assign di↵erent weights to them, because they are condi-

tioned on di↵erent information. More specifically, smoothing densities are conditioned on

future observations in addition to up-to-date observations that filtering densities are con-

ditioned on. In particle smoothing, the posterior distribution of a state is approximated

as

f(x
n

|y
1:KN

; ⌧̂ (i)) ⇡
Mi+1

X

m=1

w(m)⇤
n

�(x
n

� x

(m)

n

), (4.20)

where the asterisk indicates that the weight is updated with additional evidence, i.e., y
(n+1):KN

in this case. With this in mind, the backward part in (4.16) can be rewritten as

w(m)⇤
n

= f(x(m)

n

|y
1:KN

; ⌧̂ (i))

=

Mi+1

X

k=1

f(x(k)

n+1

|x̂
n

(m); ⌧̂ (i))w(m)

n

P

Mi+1

j=1

f(x(k)

n+1

|x(j)

n

; ⌧̂ (i))w(j)

n

w
(k)⇤
n+1

, (4.21)

where w
(m)⇤
KN

= w
(m)

KN

for all m upon initialization.

79

Similarly, the joint conditional probability density function can be approximated as

f(x
n

,x
n+1

|y
1:KN

; ⌧̂ (i)) ⇡
Mi+1

X

k=1

Mi+1

X

j=1

w
(j,k)⇤
n,n+1

�(x
n

� x

(j)

n

)�(x
n+1

� x

(k)

n+1

), (4.22)

where according to the integrand of (4.16)

w
(j,k)⇤
n,n+1

= f(x(j)

n

,x
(k)

n+1

|y
1:KN

; ⌧̂ (i))

=
f(x(k)

n+1

|x(j)

n

; ⌧̂ (i))w(j)

n

P

Mi+1

l=1

f(x(k)

n+1

|x(l)

n

; ⌧̂ (i))w(l)

n

w
(k)⇤
n+1

. (4.23)

With {w(j,k)⇤
n,n+1

}Mi+1

j,k=1

(n = 1, 2, . . . , KN �1) known, the conditional expectations in (4.12) can

be directly calculated.

4.4.2 Stochastic variants of the EM algorithm

With densities in the EM objective function approximated by weighted random samples, the

EM algorithm becomes stochastic, and hence not all of the properties of the EM algorithm

still hold.

Two major stochastic variants of the EM algorithm are the Monte Carlo EM algorithm

(MCEM) [65] and the stochastic approximation EM algorithm (SAEM) [66].

80

Monte Carlo EM algorithm

MCEM generates Monte Carlo samples X(1),X(2), . . . ,X(Mi+1

) from the posterior distribu-

tion f(X|Y ; ⌧̂ (i)) and approximates the objective function as

Q(⌧ ; ⌧̂ (i)) =
1

M
i+1

Mi+1

X

m=1

logL(⌧ ;X(m),Y). (4.24)

Stochastic approximation EM algorithm

SAEM uses the same approach to approximate Q, but considers Q̄, a moving average of Q

with forgetting factors {�
i

}, as its objective function:

Q̄(⌧ ; ⌧̂ (i)) = (1� �
i

)Q̄(⌧ ; ⌧̂ (i�1)) + �
i

Q(⌧ ; ⌧̂ (i)). (4.25)

The stochastic approximation is initialized with Q̄(⌧ ; ⌧̂ (0)) = Q(⌧ ; ⌧̂ (0)) and continues ac-

cording to (4.25), under the constraints that 0 < �
i

 1,
P

�
i

= 1 and
P

�2

i

< 1.

MCEM has a rate of convergence comparable to that of the EM algorithm, but is not

guaranteed to converge, unless the sample size (or the number of particles) keeps increasing

across iterations [67], [68], which, however, results in a serious computational concern. In

contrast, SAEM has a lower rate of convergence than MCEM, but is guaranteed to converge

with a finite sample size, both due to the involved moving average.

To combine the advantages of MCEM and SAEM, we first use MCEM for a relatively high

rate of convergence and then use SAEM for guaranteed convergence. Since MCEM is a

special case of SAEM with �
i

= 1 for 8i, the combination approach is equivalent to SAEM

with �
i

= 1 first and �
i

< 1 afterwards. We switch from �
i

= 1 to �
i

< 1 when the

81

sequence {⌧̂ (j)}i
j=1

enters a neighborhood of convergence, which is quantitatively determined

as follows.

We use the average variance of recent parameter estimates as a metric to quantify the

convergence progress. The metric in the ith iteration (i � ⇢) is defined as

�
i

=
1

K � 1

K�1

X

k=1

var{⌧̂ ((i�⇢+1):i)

k

}, (4.26)

where i is the iteration index, ⇢ is the window length and a positive integer, and ⌧
((i�⇢+1):i)

k

is the sequence of estimates of ⌧
k

from the (i � ⇢ + 1)th iteration to the ith iteration. We

claim the entrance into a neighborhood of convergence if the metric �
i

(i � ⇢) falls below a

predefined threshold ⌘.

We denote this variant of SAEM as SAEM*.

4.4.3 Complexity analysis

Each SAEM* iteration consists of particle filtering, particle smoothing, stochastic approx-

imation, and maximization. For convenience, we assume that a fixed Monte Carlo sample

size M is used across iterations.

The time complexity of particle filtering is O(KNM), and that of particle smoothing is

O(KNM2), which includes the computation needed for byproducts. Stochastic approxima-

tion takes a time complexity of O(KN), and maximization takes O(KN) for each iteration

of the gradient projection method. Therefore, the time complexity of each SAEM* iteration

is dominated by that of particle smoothing with O(KNM2).

82

The space complexity of particle filtering is O(KNM), and that of particle smoothing is

O(KNM2). Both stochastic approximation and maximization take an extra space complex-

ity of O(KN). Therefore, the space complexity of each SAEM* iteration is also dominated

by that of particle smoothing with O(KNM2).

4.5 Joint estimation with an unknown temporal order

In Sections 4.3 and 4.4, we designed a method to estimate relative clock o↵sets from sensor

observations, given the temporal order of sensors. However, the temporal order is not always

known prior to the estimation of relative clock o↵sets, and thus also needs to be estimated

from observations. In this section, we estimate the temporal order via hypothesis testing in

a distributed manner.

4.5.1 Maximum likelihood hypothesis

We consider each possible temporal order ⇠ as a hypothesis, and let ⌅ be the set of all

candidate hypotheses. We find the most probable hypothesis ⇠ 2 ⌅ given sensor observations

Y , i.e., the maximum a posteriori (MAP) hypothesis [69]

⇠
MAP

= argmax
⇠2⌅

P (⇠|Y) = argmax
⇠2⌅

f(Y |⇠)P (⇠). (4.27)

83

In our case, we have no prior preference over any temporal order. Thus, P (⇠) is constant for

all ⇠ 2 ⌅, and the MAP hypothesis reduces to a maximum likelihood (ML) hypothesis [69]

⇠
ML

= argmax
⇠2⌅

f(Y |⇠). (4.28)

4.5.2 Distributed implementation

For a network of K unsynchronized sensors, the cardinality of ⌅ is K!, so the ML hypoth-

esis approach will not scale on the whole network, since it needs to evaluate every single

hypothesis. We thus propose to divide the whole network into groups of size two, and infer

local temporal orders from local sensor observations. For a group of two sensors, there exist

only two possible temporal orders, each corresponding to a di↵erent sign of the relative clock

o↵set between these two sensors, so the ML hypothesis approach is totally tractable.

After obtaining an estimate of the temporal order, we apply the joint estimation method

designed in Sections 4.3 and 4.4 to each local group of sensor observations, obtain an estimate

of the exact value (including the sign) of the relative clock o↵set, and fuse local estimates

into a global estimate.

To obtain an estimate of the network synchronization status from local estimates, we cannot

divide the network into arbitrary groups. Let each sensor be a vertex in a graph, and add

an undirected edge between two sensors, if they belong to the same group. The thus created

graph has to be connected [70], in order to provide a global estimate. The minimum number

of groups is K � 1, when the corresponding graph is a path that sequentially visits the K

vertices; the maximum number of groups is K(K � 1)/2, when the corresponding graph is

84

complete. Since each group corresponds to a distributed task, the quadratic upper bound

on the number of groups implies tractability of the distributed implementation.

4.5.3 Hypothesis testing

Consider a group that consists of S
i

and S
j

, and then ⌅ = {⌧
i,j

> 0, ⌧
i,j

< 0}. Denote local

observations as Y
loc

= {y
n,k

: k = i or j} and locally observed states as X
loc

= {x
n,k

: k =

i or j}. Then, the ML hypothesis is argmax
⇠2⌅ f(Yloc

|⇠), which is equivalent to comparing

f(Y
loc

|⌧
i,j

> 0) and f(Y
loc

|⌧
i,j

< 0). Since ⇠, ⌧
i,j

, X

loc

, and Y

loc

form a Markov chain,

f(Y
loc

|⇠) can be evaluated via the Chapman-Kolmogorov equation as

f(Y
loc

|⇠) =
Z Z

f(Y
loc

|X
loc

)f(X
loc

|⌧
i,j

)f(⌧
i,j

|⇠)dX
loc

d⌧
i,j

. (4.29)

We use the Monte Carlo method to compute (4.29). First, we generate a sample of ⌧
i,j

, given

the hypothesis ⇠. Since we have no prior preference over any value of ⌧
i,j

, we consider it

to be uniformly distributed. Also, since |⌧
i,j

| < 1, ⌧
i,j

is uniformly distributed over (0, 1) if

⇠ = “⌧
i,j

> 0” or (�1, 0) if ⇠ = “⌧
i,j

< 0”. Then, conditioned on the sample of ⌧
i,j

, we generate

a sample of X
loc

according to the state transition equation, and evaluate f(Y
loc

|X
loc

) using

the sample of X
loc

according to the observation equation. We repeat the previous steps until

we have enough samples. Finally, we compute an average of f(Y
loc

|X
loc

) over all the samples

under ⇠, and use the average to approximate f(Y
loc

|⇠).

In practice, the Monte Carlo method may be di�cult to realize. First, the sample space

may be so large that most of the generated samples of X
loc

are far from the true X

loc

and

thus show no significant di↵erence in f(Y
loc

|X
loc

) under di↵erent hypotheses, which makes

it less e↵ective to compare the average. Second, f(Y
loc

|X
loc

) is likely to be extremely close

85

to zero for most samples. We cannot simply round these numbers to zero, because we need

them not for their absolute values but for comparison; we cannot store them in logarithms,

either, because we need to compute their average. Hence, the task could be challenging

for an ordinary digital processor. However, as we can expect, although poor samples can

be generated under either hypothesis, good samples are more likely to come from the true

hypothesis than from the false hypothesis. Therefore, we compare the maximum, instead

of the average, of f(Y
loc

|X
loc

) under di↵erent hypotheses. In this way, we can simply store

f(Y
loc

|X
loc

) in its logarithmic form.

The randomness of sampling could lead to errors in hypothesis testing, although with an

extremely small probability for a su�ciently large number of samples. In case an error occurs,

the joint estimation method that follows hypothesis testing can help validate the correctness

of the inferred temporal order and detect the inference error. The particle filter involved

in every iteration of the joint estimation method is very sensitive to small f(y
n,k

|x
n,k

),

which is used to update the weight of a particle across iterations, and can easily collapse if

most particles are of small weight [34]. Since f(Y
loc

|X
loc

) is the product of f(y
n,k

|x
n,k

)’s, the

collapse of the particle filter also implies a small f(Y
loc

|X
loc

) and thus suggests the alternative

hypothesis. The extra validation further reduces the originally very small probability of error.

4.5.4 Data fusion

A group of S
i

and S
j

provides a local estimate of ⌧
i,j

for data fusion. Since ⌧
i,j

= ⌧
i,1

� ⌧
j,1

,

stacking these equations gives us the following equation system:

A⌧

ref=1

= d, (4.30)

86

whereA 2 RL⇥(K�1), ⌧
ref=1

= [⌧
2,1

, ⌧
3,1

, . . . , ⌧
K,1

]T , and d 2 RL⇥1. Each row ofA corresponds

to a distributed task, and L is thus the number of distributed tasks. When L takes its lower

bound K � 1, A is a square matrix, and (4.30) can be solved using Gaussian elimination;

when L > K � 1, (4.30) is overdetermined, and can be solved using least squares. With

the solution ⌧̂

ref=1

ready, each ⌧
i,j

can be estimated as ⌧̂
i,1

� ⌧̂
j,1

, and a global estimate

of the network synchronization status, which includes the global temporal order, can be

easily obtained. The central processor then estimates the target trajectory based on sensor

observations, given the network synchronization status.

Note that estimates provided by di↵erent distributed tasks could conflict. Their values

could not agree, e.g., ⌧
i,j

+ ⌧
j,k

6= ⌧
i,k

, which is normal, since these estimates are obtained

from noisy measurements; their orders could not agree, e.g., ⌧
i,j

> 0, ⌧
j,k

> 0, but ⌧
i,k

<

0, which is extremely unlikely under the dual inference introduced in Section 4.5.3 but

still theoretically possible. For value conflicts, ordinary least squares su�ces; for order

conflicts, robust regression with outlier detection can be used. Also, increasing the number

of distributed tasks can add to accuracy and robustness to errors.

4.5.5 Complexity analysis

The number of groups L is O(K2). For each group, relative clock o↵set estimation takes a

time complexity of O(NM2), where M denotes the Monte Carlo sample size, and hypothesis

testing takes O(NM), if we assume its sample size to be a linear function of the Monte Carlo

sample size. The space complexity of hypothesis testing is O(N), and that of relative clock

o↵set estimation is O(NM2), so the overall space complexity for each group is O(NM2).

87

The fusion center takes a time complexity of O(LK2 + K3) for data fusion and a time

complexity of O(KNM2) for global target trajectory estimation. The data fusion step takes

a space complexity of O(LK +K2), and the global estimation step takes a space complexity

of O(KNM2).

4.6 Performance analysis

In signal processing, a covariance matrix is often used to evaluate the statistical performance

of an estimation method, and is commonly obtained from the inverse of the Fisher informa-

tion matrix. In this section, we explore how to apply this approach to the EM algorithm

under a state-space framework. We develop an algorithm to compute the EM covariance

matrix, with complementary derivation given in the Appendix.

4.6.1 Information matrix

The observed, missing, and complete information matrices can be expressed as

I
o

(⌧) = �E
X|Y ;⌧

@2

@⌧@⌧ T

log f(Y ; ⌧), (4.31)

I
m

(⌧) = �E
X|Y ;⌧

@2

@⌧@⌧ T

log f(X|Y ; ⌧), and (4.32)

I
c

(⌧) = �E
X|Y ;⌧

@2

@⌧@⌧ T

log f(X,Y ; ⌧), (4.33)

respectively. Among them, the observed information matrix I
o

is the most relevant, because

its inverse is exactly the covariance matrix of the EM estimate. However, it is also the most

di�cult to compute, because the observed likelihood f(Y ; ⌧) is intractable, which is the very

88

reason why we use the EM algorithm to circumvent it. A possible approach to calculating

I
o

is to use the missing information principle [27]:

I
o

(⌧) = I
c

(⌧)� I
m

(⌧). (4.34)

The complete information matrix I
c

can be calculated as

I
c

(⌧) = �


@2

@⌧
o

@⌧ T

o

Q
p

(⌧
o

; ⌧)

�

⌧

o

=⌧

, (4.35)

which is tractable based on our previous knowledge. The derivation of (4.35) can be found

in the Appendix.

The missing information matrix I
m

can be calculated using Louis’s formular [57] as

I
m

(⌧) = E
X|Y ;⌧

⇥

S
c

(⌧)ST

c

(⌧)
⇤

� S
o

(⌧)ST

o

(⌧), (4.36)

where S
c

(⌧) = @

@⌧

log f(X,Y ; ⌧) is the complete score function, and, correspondingly,

S
o

(⌧) = @

@⌧

log f(Y ; ⌧) is the observed score function.

In (4.36), S
o

(⌧) can be computed as

S
o

(⌧) =



@

@⌧
o

Q
p

(⌧
o

; ⌧)

�

⌧

o

=⌧

, (4.37)

89

whose derivation can be found in the Appendix, and S
c

(⌧) can be computed as

S
c

(⌧) =
@

@⌧



N�1

X

n=1

log f(x
n+1,1

|x
n,K

; ⌧
K

) +
N

X

n=1

K�1

X

k=1

log f(x
n,k+1

|x
n,k

; ⌧
k

)

�

=



s
1

s
2

· · · s
K�1

�

T

, (4.38)

where

s
k

=
@

@⌧
k

log f(X,Y ; ⌧)

=
N�1

X

n=1

@

@⌧
k

log f(x
n+1,1

|x
n,K

; ⌧
K

) +
N

X

n=1

@

@⌧
k

log f(x
n,k+1

|x
n,k

; ⌧
k

) (4.39)

for k = 1, 2, · · · , K � 1. Hence,

E
X|Y ;⌧

⇥

S
c

(⌧)ST

c

(⌧)
⇤

= {E
X|Y ;⌧

[s
i

s
j

]}
i,j

, (4.40)

where {E
X|Y ;⌧

[s
i

s
j

]}
i,j

denotes a matrix whose i,jth element is E
X|Y ;⌧

[s
i

s
j

]. The matrix, or

equivalently E
X|Y ;⌧

⇥

S
c

(⌧)ST

c

(⌧)
⇤

, is the very term that makes Louis’s method considered

to be intractable [60]. However, as we will see, it can be computed under our problem

formulation, and the approach can also be extended to general state-space models.

4.6.2 Algorithm design

To compute each E
X|Y ;⌧

[s
i

s
j

], it su�ces to know the joint conditional density of every two

pairs of adjacent states. We propose a recursive and parallel algorithm to compute the joint

conditional densities of all possible combinations of state pairs.

90

Let (x
a

,x
a+1

) and (x
a+k

,x
a+k+1

), where 0  k  KN � 2 and 1  a  KN � k� 1, be two

arbitrary pairs of adjacent states.

If k = 0, then (x
a+k

,x
a+k+1

) = (x
a

,x
a+1

), and the joint conditional density is exactly the

byproduct of smoothing that we obtain in Section 4.3.3:

f(x
a

,x
a+1

,x
a+k

,x
a+k+1

|Y ; ⌧) = f(x
a

,x
a+1

|Y ; ⌧), (4.41)

which is calculated as a byproduct of smoothing.

If k = 1, then (x
a+k

,x
a+k+1

) = (x
a+1

,x
a+2

) and the joint conditional density can be com-

puted as

f(x
a

,x
a+1

,x
a+k

,x
a+k+1

|Y ; ⌧) =
f(x

a

,x
a+1

|Y ; ⌧)

f(x
a+1

|Y ; ⌧)
f(x

a+1

,x
a+2

|Y ; ⌧), (4.42)

where f(x
a+1

,x
a+2

|Y ; ⌧) was obtained when k = 0. Please see the Appendix for detailed

derivation.

If k = 2, then (x
a+k

,x
a+k+1

) = (x
a+2

,x
a+3

) and the joint conditional density can be com-

puted as

f(x
a

,x
a+1

,x
a+k

,x
a+k+1

|Y ; ⌧) =
f(x

a

,x
a+1

|Y ; ⌧)

f(x
a+1

|Y ; ⌧)
f(x

a+1

,x
a+2

,x
a+3

|Y ; ⌧), (4.43)

where f(x
a+1

,x
a+2

,x
a+3

|Y ; ⌧) was obtained when k = 1. Please see the Appendix for

detailed derivation.

91

If k = k0 � 3, then the joint conditional density can be computed as

f(x
a

,x
a+1

,x
a+k

0 ,x
a+k

0
+1

|Y ; ⌧) =
f(x

a

,x
a+1

|Y ; ⌧)

f(x
a+1

|Y ; ⌧)

⇥
Z

f(x
a+1

,x
a+2

,x
a+k

0 ,x
a+k

0
+1

|Y ; ⌧)dx
a+2

, (4.44)

where f(x
a+1

,x
a+2

,x
a+k

0 ,x
a+k

0
+1

|Y ; ⌧) was obtained when k = k0 � 1. Please see the

Appendix for derivation.

Following (4.41)–(4.44), we are able to compute f(x
a

,x
a+1

,x
a+k

,x
a+k+1

|Y ; ⌧) for every

possible combination of a and k and thus every matrix element in E
X|Y ;⌧

⇥

S
c

(⌧)ST

c

(⌧)
⇤

.

Note that for a fixed k, f(x
a

,x
a+1

,x
a+k

,x
a+k+1

|Y ; ⌧) with di↵erent a’s can be computed

in parallel, since each of them only depends on results with smaller k’s. This leads to a

significant run-time saving. Also, the algorithm is completely compatible with Monte Carlo

approximations.

4.6.3 Covariance matrix

The covariance matrix of the EM estimate ⌧̂ is obtained from the inverse of the observed

information matrix I
o

(⌧) evaluated at ⌧ = ⌧̂ , i.e.,

cov(⌧̂) = I
o

(⌧̂)�1 = (I
c

(⌧̂)� I
m

(⌧̂))�1 , (4.45)

where I
c

(⌧̂) is calculated according to (4.35), and I
m

(⌧̂) according to Louis’s formula in

(4.36) together with our algorithm.

92

In [71], it is shown that ⌧̂ is a stationary point of L(⌧ ;Y) and thus logL(⌧ ;Y), i.e.,

S
o

(⌧̂) =



@

@⌧
logL(⌧ ;Y)

�

⌧=

ˆ

⌧

= 0. (4.46)

Therefore, according to (4.36), I
m

(⌧̂) can be calculated as

I
m

(⌧̂) = E
X|Y ;

ˆ

⌧

⇥

S
c

(⌧̂)ST

c

(⌧̂)
⇤

. (4.47)

4.7 Numerical examples

In this section, we use numerical examples to demonstrate the performance of the proposed

methods. We show first the accuracy of the joint estimation method with a known temporal

order, then the e↵ectiveness of the hypothesis testing approach to temporal ordering, and

finally the e↵ect that an unknown temporal order has on the accuracy of joint estimation. We

compare the proposed joint estimation method with an ordinary sequential target estimation

method to demonstrate the advantages of taking synchronization into account, and with

the augmented state-space method to show the advantages of the utilized joint estimation

strategy. Also, we compare the simulation results with the ground truth to show the accuracy

of the proposed solution.

We tested our methods on wireless sensor networks with di↵erent synchronization statuses

and di↵erent number of sensors in the following numerical examples.

93

The target observed by sensors in a network followed a noisy constant velocity kinematic

model in a 2-dimensional space with the transition function

g(x
n,k

, ⌧) = D(⌧) · x
n,k

, (4.48)

where

x

n,k

=

2

6

6

6

6

6

6

6

4

x
(1)

n,k

x
(2)

n,k

ẋ
(1)

n,k

ẋ
(2)

n,k

3

7

7

7

7

7

7

7

5

, D(⌧) =

2

6

6

6

6

6

6

6

4

1 0 ⌧ 0

0 1 0 ⌧

0 0 1 0

0 0 0 1

3

7

7

7

7

7

7

7

5

, (4.49)

and the transition noise

u

n,k

(⌧) ⇠ N (0,R(⌧)) , (4.50)

where

R(⌧) = �2

u

2

6

6

6

6

6

6

6

4

⌧

3

3

0 ⌧

2

2

0

0 ⌧

3

3

0 ⌧

2

2

⌧

2

2

0 ⌧ 0

0 ⌧

2

2

0 ⌧

3

7

7

7

7

7

7

7

5

. (4.51)

S
k

was located at l
k

= (l(1)
k

, l
(2)

k

) with its observation function

h
k

(x
n,k

) =
q

(x(1)

n,k

� l
(1)

k

)2 + (x(2)

n,k

� l
(2)

k

)2, (4.52)

and its observation noise

v
n,k

⇠ N (0, �2

v

). (4.53)

94

0 1000 2000 3000 4000 5000 6000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Iteration

R
e
la

tiv
e
 C

lo
ck

 O
ff
se

t
E

st
im

a
te

 /
 s

(a)

0 1000 2000 3000 4000 5000 6000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Iteration

R
M

S
E

 /
 s

SAEM*
Augmented

(b)

Figure 4.1: Clock synchronization results for a network of 5 sensors: (a) convergence of
{⌧ (i)}; (b) RMSE of ⌧ (i).

For all the numerical examples to be presented, we assume N = 30, �
u

= 0.71, �
v

= 0.1,

⇢ = 500, and ⌘ = 1⇥ 10�5. Also, we assume x

0

= [0m, 0m, 1m/s, 1m/s]T and

x

1,1

= D(1) · x
0

+ u

1,1

(1), (4.54)

i.e. the prior information about the distribution of the initial state x
1,1

isN (D(1) · x
0

,R(1)).

4.7.1 Clock synchronization

Fig. 4.1 shows the clock synchronization results of a network of 5 sensors located at on a 2D

plane, with relative clock o↵sets ⌧ = [0.0500s, 0.1750s, 0.3000s, 0.4250s]T . Prior to estima-

tion, ⌧ was unknown, but the temporal order S
1

! S
2

! S
3

! S
4

! S
5

was known. SAEM*

with a fixed sample size of 800 and an initial guess ⌧̂ (0) = [0.1800s, 0.1800s, 0.1800s, 0.1800s]T

was used.

95

0 20 40 60 80 100
0

20

40

60

80

100

120

x / m

y
/

m

True

SAEM*

Augmented

Ordinary

Sensor

(a)

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

3.5

Iteration

R
M

S
E

 /
 m

SAEM*
Augmented
Ordinary

(b)

Figure 4.2: Sequential target estimation results for a network of 5 sensors: (a) trajectory
estimates; (b) the trajectory estimation RMSEs across iterations.

As shown in Fig. 4.1(a), the sequence of estimates approached ⌧ rapidly and then slowed

down while stably converging to ⌧ , which is exactly how SAEM* works. The final estimate

is ⌧̂ = [0.0488s, 0.1761s, 0.2997s, 0.4221s]T with a root-mean-square error (RMSE) equal to

0.0016s. Fig. 4.1(b) shows how the RMSE dropped from 0.1511s to 0.0016s as the algorithm

converged, in comparison with the RMSE of the estimate provided by the augmented state-

space method with the same sample size.

4.7.2 Target estimation

In Fig. 4.2, we demonstrate the sequential target estimation results, which came together

with the clock synchronization results in Section 4.7.1, in comparison with the augmented

state-space method and the ordinary target estimation method.

Fig. 4.2(a) compares estimates of the target trajectory. As shown in the figure, the trajectory

estimate provided by the proposed method almost coincided with the ground truth, while

96

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time / s

R
M

S
E

 /
 m

SAEM*

Augmented

Ordinary

(a)

0 500 1000 1500
0

1

2

3

4

5

Number of Particles

R
M

S
E

 /
 m

SAEM*
Augmented
Ordinary

(b)

Figure 4.3: Sequential target estimation results for a network of 5 sensors: (a) state esti-
mation RMSE as a function of time; (b) trajectory estimation RMSE as a function of the
Monte Carlo sample size.

those provided by the augmented state-space method and the ordinary method started to

deviate from the ground truth halfway down their trajectories.

Fig. 4.2(b) shows that the RMSE of the trajectory estimate provided by the proposed method

decreased rapidly with slight fluctuation and then stayed stable around 0.5m, which is sig-

nificantly lower than those of the other two methods. The fluctuation results from the

randomness of Monte Carlo sampling, and will attenuate as the sample size becomes larger.

Compared with Fig. 4.1(b), it is not di�cult to notice that the target state estimates reached

convergence earlier than the relative clock o↵set estimates. This implies that the target esti-

mation part in the proposed method is relatively robust to errors of the relative clock o↵set

estimates within a certain range. Also, as shown in the figure, initial estimates of the pro-

posed method have higher RMSEs than that of the ordinary method, which implies that a

poor guess of the relative clock o↵sets can be even worse than no guess at all.

97

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

Iteration

R
e

la
tiv

e
 C

lo
ck

 O
ff

se
t

E
st

im
a

te
 /

 s

(a)

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

Iteration

R
e

la
tiv

e
 C

lo
ck

 O
ff

se
t

E
st

im
a

te
 /

 s

(b)

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Iteration

R
e

la
tiv

e
 C

lo
ck

 O
ff

se
t

E
st

im
a

te

(c)

Figure 4.4: Clock synchronization results using SAEM* with 800 particles

In Fig. 4.3, we show how target estimation errors changed as time went on and as the number

of particles varied.

Fig. 4.3(a) compares the RMSE as a function of time. Data in Fig. 4.3(a) were obtained

from repeated experiments with a fixed number of particles, 800. As shown in the figure, the

RMSE of the proposed method was lower than those of the other two methods at every time

point. Also, the RMSE of the proposed method stayed at the same level as time went on,

while those of the other two methods tended to increase with time because of the cumulation

of estimation errors.

Fig. 4.3(b) compares the RMSE of a trajectory estimate as a function of the number of

particles. Data in Fig. 4.3(b) were also obtained from repeated experiments. It is obvious

that the RMSE of the proposed method was lower than those of the other methods under

any sample size. The RMSE of the proposed method slightly decreased as the sample size

grew, which agrees with the fact that the accuracy of a Monte Carlo approximation grows

with the sample size. However, since the decrease was not significant, it might not be cost

e↵ective to use a large sample size (e.g., more than 1000 particles). A medium sample

size (e.g., 500–1000 particles) should be su�cient in terms of both approximation accuracy

98

and computational e�ciency. The RMSE of the augmented state-space method tended to

decrease as the number of particles increased; that of the ordinary method was fairly high

when the sample size was small, but dropped and stayed at the same level, when the sample

size was large.

4.7.3 Convergence

Fig. 4.4 shows three examples of the convergence of the clock synchronization part of the

proposed joint estimation method (with a known temporal order) on di↵erent networks

with di↵erent synchronization statuses and di↵erent initial guesses. In Fig. 4.4(a), we

set ⌧ = [0.0500s, 0.1750s, 0.3000s, 0.4250s]T , ⌧̂ (0) = [0.0500s, 0.0500s, 0.0500s, 0.0500s]T , and

⌧̂ = [0.0408s, 0.1770s, 0.2977s, 0.4152s]T ; in Fig. 4.4(b), we set ⌧ = [0.1800s, 0.1800s, 0.1800s,

0.1800s]T , ⌧̂

(0) = [0.0500s, 0.1750s, 0.3000s, 0.4250s]T , and ⌧̂ = [0.1828s, 0.1848s, 0.1806s,

0.1825s]T ; in Fig. 4.4(c), we set ⌧ = [0.1000s, 0.3000s]T , ⌧̂

(0) = [0.3500s, 0.3500s]T , and

⌧̂ = [0.0986s, 0.3020s]T .

The proposed method achieved comparable accuracy in all three examples and demonstrated

its robustness to di↵erent network synchronization statuses. Fig. 4.4(a) and Fig. 4.1(a) are

based on the same network with the same synchronization status but di↵erent initial guesses

for the EM algorithm, and their convergence results demonstrated the robustness of the

proposed method to di↵erent initial guesses.

Fig. 4.5 compares the convergence performance of SAEM*, SAEM, and MCEM with the

same initial guess but di↵erent numbers of particles. Results were obtained from a network

of 3 sensors located at (30m, 10m), (10m, 20m), and (40m, 20m) with relative clock o↵sets

⌧ = [0.3s, 0.1s]T .

99

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

R
e
la

tiv
e
 C

lo
ck

 O
ff
se

t
E

st
im

a
te

 /
 s

MCEM p#=800

SAEM* p#=800

SAEM p#=800

SAEM* p#=200

SAEM p#=200

Figure 4.5: A comparison of the convergence performance of MCEM with 800 particles,
SAEM* with 800 particles, SAEM with 800 particles, SAEM* with 200 particles, and SAEM
with 200 particles, with the same initial guess ⌧̂

(0) = [0.2s, 0.2s]T and the same network
of sensors located at (30m, 10m), (10m, 20m), and (40m, 20m) with relative clock o↵sets
⌧ = [0.3s, 0.1s]T .

As shown in Fig. 4.5, MCEM with 800 particles slowed down as it approached ⌧ , but then

continued to fluctuate somewhere beyond ⌧ due to the limited sample size; SAEM* with

800 particles behaved similarly to MCEM with 800 particles before the moving average

started, and stably converged to ⌧ thanks to the moving average; SAEM with 800 particles

approached ⌧ at a considerably slow pace, because the moving average started from the

first iteration, and would thus take considerably many iterations to converge. As stated in

Section 4.4.2, SAEM, as well as SAEM*, is guaranteed to converge with any finite number of

particles. Hence, we also tested SAEM and SAEM* on a small sample size. As shown in the

Fig. 4.5, SAEM with 200 particles converged slightly faster than SAEM with 800 particles,

but still much slower than the other methods; SAEM* with 200 particles approached ⌧ the

100

fastest among all the tested methods, but got stabilized somewhere far beyond ⌧ , due to the

accumulated approximation errors caused by a small sample size. Note that SAEM* with

200 particles would still converge to ⌧ , since its second stage is equivalent to SAEM with 200

particles starting with a di↵erent initial guess, but might take many iterations, as SAEM

often does. In conclusion, SAEM* with a medium sample size is the optimal choice for our

problem.

4.7.4 Temporal ordering

We assumed no knowledge of the temporal order, and applied the distributed hypothesis

testing method proposed in Section 4.5 to the same wireless sensor network studied in Section

4.7.1 with a known temporal order. We divided the network into (S
1

, S
3

), (S
2

, S
4

), (S
2

, S
5

),

(S
3

, S
4

), and (S
4

, S
5

), and found the maximum likelihood temporal order of each pair through

hypothesis testing with a Monte Carlo sample size of 106 for each candidate hypothesis.

Table 4.1 summarizes the hypothesis testing results obtained from these distributed tasks.

For each row, which corresponds to a distributed task, we found the maximum of log f(Y
loc

|X
loc

)

among samples ofX
loc

under either hypothesis (listed in the 3rd and 4th columns), and chose

the hypothesis with a higher max log f(Y
loc

|X
loc

) to be our decision. As we can see, all the

decisions were correctly made, with no need for further verification by the following joint

Table 4.1: Hypothesis testing results

i j ⌧
i,j

> 0 ⌧
i,j

< 0 Decision
1 3 �1.1445⇥ 104 �1.2454⇥ 104 ⌧

1,3

> 0
2 4 �8.1943⇥ 103 �1.5929⇥ 104 ⌧

2,4

> 0
2 5 �1.1046⇥ 104 �3.7557⇥ 104 ⌧

2,5

> 0
3 4 �6.3506⇥ 103 �1.1820⇥ 104 ⌧

3,4

> 0
4 5 �8.3623⇥ 103 �1.1749⇥ 104 ⌧

4,5

> 0

101

estimation method. Moreover, the di↵erence between the 3rd and 4th columns in each row is

fairly large (no less than 103). Note that the di↵erence is between logarithms, which implies

that the ratio without taking the logarithm would be considerably large (no less than e1000).

Such a ratio would make the leading hypothesis overwhelmingly dominant in the comparison,

thus further lowering the probability of error. The ratio also verifies the e↵ectiveness and

reliability of the proposed hypothesis testing method in return.

With local temporal orders known, we applied the joint estimation method to each dis-

tributed task, and estimated the relative clock o↵set based on local observations. Fig. 4.6

shows the clock synchronization result of each distributed task. Based on these local esti-

mates, we obtained through least squares ⌧̂
ref=1

= [�0.0439s,�0.2196s,�0.5168s,�0.9389s]T ,

determined from ⌧̂

ref=1

the global temporal order S
1

! S
2

! S
3

! S
4

! S
5

, and converted

⌧̂

ref=1

to

⌧̂ = [⌧̂
1,2

, ⌧̂
2,3

, ⌧̂
3,4

, ⌧̂
4,5

]T

= [0.0439s, 0.1757s, 0.2972s, 0.4221s]T .

The RMSE of ⌧̂ is 0.0037s, comparable to, although slightly higher than, that of the estimate

given by the joint estimation method with a known temporal order. Here, a slightly higher

RMSE is reasonable because of the distributed processing enforced by the absence of knowl-

edge of the global temporal order. Based on ⌧̂ , we obtained a target trajectory estimate

with an average RMSE of 0.5195m from repeated experiments, which is comparable to that

obtained with a known temporal order as shown in Fig. 4.2(b).

102

0 1000 2000 3000 4000 5000 6000
0.1

0.2

0.3

0.4

0.5

0.6

Iteration

R
e

la
tiv

e
 C

lo
ck

 O
ff

se
t

E
st

im
a

te
 /

 s

(a)

0 1000 2000 3000 4000
0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

Iteration

R
e

la
tiv

e
 C

lo
ck

 O
ff

se
t

E
st

im
a

te
 /

 s

(b)

0 1000 2000 3000 4000 5000
0.4

0.5

0.6

0.7

0.8

0.9

Iteration

R
e

la
tiv

e
 C

lo
ck

 O
ff

se
t

E
st

im
a

te
 /

 s

(c)

0 500 1000 1500
0.25

0.3

0.35

0.4

0.45

0.5

0.55

Iteration

R
e

la
tiv

e
 C

lo
ck

 O
ff

se
t

E
st

im
a

te
 /

 s

(d)

0 100 200 300 400 500 600
0.4

0.42

0.44

0.46

0.48

0.5

0.52

Iteration

R
e

la
tiv

e
 C

lo
ck

 O
ff

se
t

E
st

im
a

te
 /

 s

(e)

Figure 4.6: Relative clock o↵set estimation results from distributed tasks: (a) for (S
1

, S
3

),
⌧
1,3

= 0.2250s, ⌧̂
1,3

= 0.2196s; (b) for (S
2

, S
4

), ⌧
2,4

= 0.4750s, ⌧̂
2,4

= 0.4748s; (c) for (S
2

, S
5

),
⌧
2,5

= 0.9000s, ⌧̂
2,5

= 0.8932s; (d) for (S
3

, S
4

), ⌧
3,4

= 0.3000s, ⌧̂
3,4

= 0.2972s; (e) for (S
4

, S
5

),
⌧
4,5

= 0.4250s, ⌧̂
4,5

= 0.4240s.

103

4.7.5 Covariance matrix results

In addition, we tested the covariance matrix algorithm on the numerical example in Section

4.7.1, and obtained the following result,

2

6

6

6

6

6

6

6

4

0.0010 �0.0005 �0.0055 0.0076

�0.0005 0.0279 �0.0009 �0.0300

�0.0055 �0.0009 0.1784 �0.2098

0.0076 �0.0300 �0.2098 0.2844

3

7

7

7

7

7

7

7

5

⇥ 10�5,

which is positive definite and coincides with the fact that most variables are negatively

correlated (because their sum is constrained). For comparison, we also computed the sample

covariance matrix,

2

6

6

6

6

6

6

6

4

0.0235 �0.0201 �0.0024 �0.0507

�0.0201 0.0650 �0.0172 0.0402

�0.0024 �0.0172 0.0283 �0.0117

�0.0507 0.0402 �0.0117 0.1695

3

7

7

7

7

7

7

7

5

⇥ 10�5,

which has the same order of magnitude as the asymptotic covariance matrix. The small vari-

ance and covariance in both matrices also imply that the EM algorithm has stable estimation

performance.

104

4.8 Chapter summary

In this chapter, we proposed to jointly estimate sequential target states and network synchro-

nization status based on sensor observations. We developed a centralized joint estimation

method under the assumption of a known temporal order, proposed an hypothesis testing

method to learn an unknown temporal order from asynchronous sensor observations, and de-

rived a distributed joint estimation method based on the previous two methods to work with

an unknown temporal order. We demonstrated the performance of the proposed method

through numerical examples. The numerical examples showed that the trajectory estima-

tion error when the synchronization problem was considered was 34% lower than that when

the synchronization problem was ignored. The numerical examples also proved four points:

1) the joint estimation method converges to the true synchronization status and outputs an

accurate target trajectory estimate, given a known temporal order, 2) the hypothesis testing

method outputs the true temporal order, 3) the distributed method outputs an estimate of

the network synchronization status with negligible sacrifice in accuracy resulting from the

absence of prior knowledge of the temporal order, and 4) clock synchronization significantly

improves the accuracy of sequential target estimation. Since the proposed observation-based

clock synchronization method makes use of the already obtained and distributed sensor ob-

servations and thus avoids extra communications of timestamps, we also concluded that

it saves more energy for a wireless sensor network than traditional timestamp-based clock

synchronization methods.

The proposed joint estimation framework is inspired by clock synchronization problems but

can be used to solve other parameter estimation problems under a state-space model. Also,

the proposed covariance matrix algorithm presents a numerical approach to computing the

covariance matrix of the EM algorithm.

105

Chapter 5

Conclusions and Future Work

5.1 Summary and conclusions

In this dissertation we studied distributed target tracking using wireless sensor networks and

sensor synchronization for target tracking.

We first considered distributed particle filtering based on distributed fusion of local poste-

riors provided by local particle filters. We derived an optimal distributed fusion rule from

Bayes’ theorem and implemented it via average consensus. We proved the convergence of the

proposed distributed fusion rule and applied it to local posteriors parametrically represented

as Gaussian mixtures. We designed a weighted mixture importance sampling approach to

the nonlinear fusion of Gaussian mixtures. Using numerical examples, we showed that the

proposed distributed particle filtering algorithm is significantly more accurate than other

posterior-based algorithms and that it is competitive in accuracy with likelihood-based and

particle-based algorithms. We also demonstrated the communication e�ciency of the pro-

posed algorithm, achieved by the compactness of Gaussian mixture models. We further

discussed the advantages of the proposed algorithm beyond accuracy and e�ciency, such as

106

the flexibility of each individual sensor in its sensing, processing, and parametric represen-

tation.

We next considered a flexible parametric representation for local posteriors in the proposed

distributed particle filtering algorithm. We designed a hierarchical clustering algorithm,

combined with the EM algorithm, to learn from weighted Monte Carlo samples a Gaussian

mixture model consisting of an adaptively determined number of mixture components. We

designed an adaptive splitting strategy for hierarchical clustering and sent the clustering

result to the EM algorithm as an informed initial guess. We showed that adaptive splitting

in hierarchical clustering improves the accuracy of hierarchical clustering and also reduces

the number of EM iterations needed to find a maximum likelihood solution, thus achieving

computational e�ciency.

Finally, we considered the synchronization problem of wireless sensor networks and its impact

on target tracking. We developed a statistical method to infer the unknown relative clock

o↵sets between sensors from their periodic observations of a common target. We formulated

the synchronization problem as a joint estimation problem for both the unknown relative

clock o↵sets and the hidden target states, and solved the problem using a stochastic variant

of the EM algorithm. We discussed the performance of the stochastic EM algorithm under

Monte Carlo approximations, and developed an approximation to the covariance matrix of

an EM estimate through Monte Carlo approximations. We showed that the proposed syn-

chronization method converges to the ground truth and that sensor synchronization improves

the accuracy of target tracking.

107

5.2 Future directions

In this section, we point out potential future research directions.

Analytical fusion of Gaussian mixtures: In this dissertation, we solved the nonlinear

Gaussian mixture fusion problem through importance sampling, which often requires a large

number of samples and thus can be computationally intensive. It would be preferable if

we could fuse Gaussian mixtures analytically, thus avoiding sampling and improving both

computational e�ciency and stability.

Approximation to powers of Gaussian mixtures: In nonlinear fusion of Gaussian

mixtures, we often need to compute a power of a Gaussian mixture. The exponent can be a

positive integer, a positive fraction, or a negative number. Importance sampling might be a

numerical solution, but it is again computationally intensive and sometimes inaccurate due

to the choice of the proposal distribution. For this reason, it would be interesting to find an

analytical approximation to the power of a Gaussian mixture. Moreover, it would also help

the analytical fusion of Gaussian mixtures.

Distributed fusion based on randomized gossip: In this dissertation, we used average

consensus for distributed fusion. Randomized gossip is another framework for distributed

fusion. In randomized gossip, each iteration often involves only two neighboring sensors, thus

possibly simplifying the challenge in nonlinear fusion of Gaussian mixtures. Also, randomized

gossip is an asynchronous protocol and thus easier to implement in practice than average

consensus.

Distribtued multiple particle filtering: Multiple particle filtering [72] is a particle

filtering strategy that e↵ectively deals with high-dimensional systems. Existing methods of

108

multiple particle filtering all work under a centralized implementation and do not scale as the

wireless sensor network grows. It would be interesting to study a distributed implementation

of multiple particle filtering.

Online sensor synchronization: The sensor synchronization method considered in the

dissertation is an o✏ine method. It would be interesting to explore an online solution to the

same problem, so that we can sequentially update our estimate of the relative clock o↵sets

based on incoming information only.

109

Bibliography

[1] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked
multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, Jan. 2007.

[2] D. Üstebay, M. Coates, and M. Rabbat, “Distributed auxiliary particle filters using se-
lective gossip,” in 2011 IEEE International Conference on Acoustics, Speech and Signal
Processing, Prague, Czech Republic, May 2011, pp. 3296–3299.

[3] C. J. Bordin and M. G. S. Bruno, “Consensus-based distributed particle filtering algo-
rithms for cooperative blind equalization in receiver networks,” in 2011 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, Prague, Czech Republic,
May 2011, pp. 3968–3971.

[4] C. J. Bordin and M. G. Bruno, “Distributed particle filtering for blind equalization
in receiver networks using marginal non-parametric approximations,” in 2014 IEEE
International Conference on Acoustics, Speech and Signal Processing, Florence, Italy,
May 2014, pp. 7984–7987.

[5] S. Farahmand, S. Roumeliotis, and G. B. Giannakis, “Set-membership constrained par-
ticle filter: Distributed adaptation for sensor networks,” IEEE Transactions on Signal
Processing, vol. 59, no. 9, pp. 4122–4138, June 2011.

[6] V. Savic, H. Wymeersch, and S. Zazo, “Belief consensus algorithms for fast distributed
target tracking in wireless sensor networks,” Signal Processing, vol. 95, pp. 149–160,
Feb. 2014.

[7] O. Hlinka, F. Hlawatsch, and P. M. Djurić, “Likelihood consensus-based distributed
particle filtering with distributed proposal density adaptation,” in 2012 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, Mar.
2012, pp. 3869–3872.

[8] O. Hlinka, O. Sluciak, F. Hlawatsch, P. M. Djurić, and M. Rupp, “Likelihood consen-
sus and its application to distributed particle filtering,” IEEE Transactions on Signal
Processing, vol. 60, no. 8, pp. 4334–4349, Aug. 2012.

[9] O. Sluciak, O. Hlinka, M. Rupp, F. Hlawatsch, and P. M. Djurić, “Sequential likelihood
consensus and its application to distributed particle filtering with reduced communica-
tions and latency,” in 45th Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, Nov. 2011, pp. 1766–1770.

110

[10] B. N. Oreshkin and M. J. Coates, “Asynchronous distributed particle filter via decentral-
ized evaluation of Gaussian products,” in 13th International Conference on Information
Fusion, Edinburgh, U.K., July 2010, pp. 1–8.

[11] A. Mohammadi and A. Asif, “Consensus-based distributed unscented particle filter,”
in 2011 IEEE Statistical Signal Processing Workshop, Nice, France, June 2011, pp.
237–240.

[12] D. Gu, J. Sun, Z. Hu, and H. Li, “Consensus based distributed particle filter in sensor
networks,” in 2008 International Conference on Information and Automation, Chang-
sha, China, June 2008, pp. 302–307.

[13] D. Gu, “Distributed particle filter for target tracking,” in 2007 IEEE International
Conference on Robotics and Automation, Rome, Italy, Apr. 2007, pp. 3856–3861.

[14] C. M. Bishop, in Pattern Recognition and Machine Learning. Springer, 2007, ch. 9.

[15] P. Chavali and A. Nehorai, “Managing multi-modal sensor networks using price theory,”
IEEE Transactions on Signal Processing, vol. 60, no. 9, pp. 4874–4887, June 2012.

[16] R. V. D. Merwe, A. Doucet, N. D. Freitas, and E. Wan, “The unscented particle filter,”
in NIPS, vol. 2000, Aug. 2000, pp. 584–590.

[17] D. Guo and X. Wang, “Dynamic sensor collaboration via sequential Monte Carlo,” IEEE
Journal on Selected Areas in Communications, vol. 22, no. 6, pp. 1037–1047, Aug. 2004.

[18] Z. Yan, B. Zheng, and J. Cui, “Distributed particle filter for target tracking in wireless
sensor network,” in 14th European Signal Processing Conference, Florence, Italy, Sep.
2006, pp. 1–5.

[19] O. Hlinka, P. M. Djurić, and F. Hlawatsch, “Time-space-sequential distributed parti-
cle filtering with low-rate communications,” in 43rd Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, Nov. 2009, pp. 196–200.

[20] X. Sheng, Y.-H. Hu, and P. Ramanathan, “Distributed particle filter with GMM ap-
proximation for multiple targets localization and tracking in wireless sensor network,”
in 4th International Symposium on Information Processing in Sensor Networks, Los
Angeles, CA, Apr. 2005, pp. 181–188.

[21] M. G. Bruno and S. S. Dias, “Collaborative emitter tracking using Rao-Blackwellized
random exchange di↵usion particle filtering,” EURASIP Journal on Advances in Signal
Processing, vol. 2014, no. 1, pp. 1–18, Feb. 2014.

[22] Y.-C. Wu, Q. Chauhari, and E. Serpedin, “Clock synchronization of wireless sensor
networks,” IEEE Signal Processing Magazine, vol. 28, pp. 124–138, Jan. 2011.

111

[23] O. Simeone, U. Spagnolini, Y. Bar-Ness, and S. H. Strogatz, “Distributed synchroniza-
tion in wireless networks,” IEEE Signal Processing Magazine, vol. 25, pp. 81–97, Sep.
2008.

[24] J. Li and A. Nehorai, “Joint sequential target estimation and clock synchronization
in wireless sensor networks,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 1, no. 2, pp. 74–88, June 2015.

[25] J. V. Candy, Bayesian Signal Processing: Classical, Modern and Particle Filtering Meth-
ods. Wiley-Interscience, 2009.

[26] L. Xiao, S. Boyd, and S. Lall, “Distributed average consensus with time-varying
Metropolis weights,” Automatica, 2006.

[27] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-
plete data via the EM algorithm,” Journal of the Royal Statistical Society, Series B
(Methodological), vol. 39, no. 1, pp. 1–38, 1977.

[28] N. R. Ahmed and M. Campbell, “Fast consistent Cherno↵ fusion of Gaussian mixtures
for ad hoc sensor networks,” IEEE Transactions on Signal Processing, vol. 60, no. 12,
pp. 6739–6745, Nov. 2012.

[29] P. Pacĺık and J. Novovicová, “Number of components and initialization in Gaussian mix-
ture model for pattern recognition,” in Artificial Neural Nets and Genetic Algorithms.
Springer, 2001, pp. 406–409.

[30] T. Huang, H. Peng, and K. Zhang, “Model selection for Gaussian mixture models,”
arXiv preprint arXiv:1301.3558, 2013.

[31] R. J. Steele and A. Raftery, “Performance of Bayesian model selection criteria for Gaus-
sian mixture models,” Frontiers of Statistical Decision Making and Bayesian Analysis,
pp. 113–130, 2010.

[32] C. Olivier, F. Jouzel, and A. Matouat, “Choice of the number of component clusters in
mixture models by information criteria,” in Vision Interface, 1999, pp. 74–81.

[33] A. T. Ihler, E. B. Sudderth, W. T. Freeman, and A. S. Willsky, “E�cient multiscale
sampling from products of Gaussian mixtures,” Advances in Neural Information Pro-
cessing Systems, vol. 16, pp. 1–8, 2004.

[34] C. Snyder, T. Bengtsson, P. Bickel, and J. Anderson, “Obstacles to high-dimensional
particle filtering,” Monthly Weather Review, vol. 136, no. 12, pp. 4629–4640, Dec. 2008.

[35] Y. Bar-Shalom, P. K. Willett, and X. Tian, in Tracking and Data Fusion: A Handbook
of Algorithms. YBS Publishing, 2011, ch. 1.

112

[36] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Transactions on Signal
Processing, vol. 50, no. 2, pp. 174–188, Feb. 2002.

[37] W. Li and Y. Jia, “Consensus-based distributed multiple model UKF for jump Markov
nonlinear systems,” IEEE Transactions on Automatic Control, vol. 57, no. 1, pp. 227–
233, Dec. 2012.

[38] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley & Sons,
2012.

[39] J. R. Hershey and P. Olsen, “Approximating the Kullback Leibler divergence between
Gaussian mixture models,” in 2007 IEEE International Conference on Acoustics, Speech
and Signal Processing, vol. 4, Honolulu, HI, Apr. 2007, pp. IV–317–320.

[40] H. Akaike, “Information theory and an extension of the maximum likelihood principle,”
Selected Papers of Hirotugu Akaike, pp. 199–213, 1998.

[41] G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics, vol. 6,
no. 2, pp. 461–464, 1978.

[42] A. Moore, “A tutorial on kd-trees,” Technical Report, University of Cambridge Com-
puter Laboratory, 1991.

[43] D. Boley, “Principal direction divisive partitioning,” Data Mining and Knowledge Dis-
covery, vol. 2, no. 4, pp. 325–344, 1998.

[44] J. Li and A. Nehorai, “Distributed particle filtering via optimal fusion of Gaussian
mixtures,” in 18th International Conference on Information Fusion, Washington D.C.,
July 2015, pp. 1182–1189.

[45] A. T. Ihler, J. W. Fisher III, and A. S. Willsky, “Using sample-based representations
under communications constraints,” Lab. Inform. and Decision Syst., Massachusetts
Institute of Technology, Cambridge, MA, Tech. Rep. 2601, 2005.

[46] Z. Fan, E. Liu, and B. Xu, “Weighted principal component analysis,” in Artificial
Intelligence and Computational Intelligence. Springer, 2011, pp. 569–574.

[47] A. W. Bowman and A. Azzalini, Applied Smoothing Techniques for Data Analysis.
Oxford University Press, 1997.

[48] O. Hlinka, F. Hlawatsch, and P. M. Djurić, “Distributed particle filtering in agent
networks,” IEEE Signal Processing Magazine, vol. 1, no. 30, pp. 61–81, Jan. 2013.

[49] D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed, “Detection, classification, and tracking
of targets,” IEEE Signal Processing Magazine, vol. 19, no. 2, pp. 17–29, Mar. 2002.

113

[50] P. M. Djurić, M. Vemula, and M. F. Bugallo, “Target tracking by particle filtering in
binary sensor networks,” IEEE Transactions on Signal Processing, vol. 56, no. 6, pp.
2229–2238, June 2008.

[51] O. Ozdemir, R. Niu, and P. K. Varshney, “Tracking in wireless sensor networks using
particle filtering: Physical layer considerations,” IEEE Transctions on Signal Process-
ing, vol. 57, no. 5, pp. 1987–1999, 2009.

[52] J. Beaudeau, M. F. Bugallo, and P. M. Djurić, “Target tracking with asynchronous
measurements by a network of distributed mobile agents,” in 2012 IEEE International
Conference on Acoustics, Speech and Signal Processing, Kyoto, Japan, 2012, pp. 3857–
3860.

[53] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol for sensor net-
works,” in Proceedings of the 1st International Conference on Embedded Networked
Sensor Systems. ACM, 2003, pp. 138–149.

[54] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization using
reference broadcasts,” ACM SIGOPS Operating Systems Review, vol. 36, no. SI, pp.
147–163, Dec. 2002.

[55] J. Liu and M. West, “Combined parameter and state estimation in simulation-based
filtering,” Sequential Monte Carlo Methods in Practice, pp. 197–223, 2001.

[56] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions, 2nd ed. Wiley-
Interscience, 2008.

[57] T. A. Louis, “Finding the observed information matrix when using the EM algorithm,”
Journal of the Royal Statistical Society, Series B (Methodological), vol. 44, no. 2, pp.
226–233, 1982.

[58] I. Meilijson, “A fast improvement to the EM algorithm on its own terms,” Journal of
the American Statistical Association, vol. 51, no. 1, pp. 127–138, 1989.

[59] J. B. Carlin, Seasonal Analysis of Economic Time Series. Harvard University, 1987.

[60] X.-L. Meng and D. B. Rubin, “Using EM to obtain asymptotic variance-covariance
matrices: The SEM algorithm,” Journal of the American Statistical Association, vol. 86,
no. 416, pp. 899–909, Dec. 1991.

[61] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. Prentice
Hall, 2009.

[62] L. Murray, “Bayesian learning of continuous time dynamical systems with applications
in functional magnetic resonance imaging,” Ph.D. dissertation, School of Informatics,
University of Edinburgh, 2008.

114

[63] D. J. Luenberger, Linear and Nonlinear Programming, 2nd ed. Springer, 2002.

[64] A. Doucet and A. M. Johansen, “A tutorial on particle filtering and smoothing: Fifteen
years later,” Oxford Handbook of Nonlinear Filtering, 2011.

[65] G. Wei and M. A. Tanner, “A Monte Carlo implementation of the EM algorithm and
the poor man’s data augmentation algorithms,” Journal of the American Statistical
Association, vol. 85, no. 411, pp. 699–704, Sep. 1990.

[66] S. F. Nielsen, “The stochastic EM algorithm: Estimation and asymptotic results,”
Bernoulli, vol. 6, no. 3, pp. 457–489, June 2000.

[67] J. G. Booth, J. P. Hobert, and W. Jank, “A survey of Monte Carlo algorithms for max-
imizing the likelihood of a two-stage hierarchical model,” Statistical Modelling, vol. 1,
pp. 333–349, 2001.

[68] J. G. Booth and J. P. Hobert, “Maixmizing generalized linear mixed model likelihoods
with an automated Monte Carlo EM algorithm,” Journal of the Royal Statistical Society,
Series B (Statistical Methodology), vol. 61, no. 1, pp. 265–285, 1999.

[69] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.

[70] D. B. West, Introduction to Graph Theory, 2nd ed. Pearson, 2000.

[71] W. Jank, “Stochastic variants of the EM algorithm: Monte Carlo, quasi-Monte Carlo
and more,” in Proceedings of the American Statistical Association, Minneapolis, Min-
nesota, 2005.

[72] P. M. Djuric, T. Lu, and M. F. Bugallo, “Multiple particle filtering,” in 2007 IEEE
International Conference on Acoustics, Speech and Signal Processing, vol. 3, 2007, pp.
III–1181–1184.

115

Appendix A

Derivation of Equations

Derivation of the forward part (4.14) in Section 4.3.3:

f(x
n

|y
1:n

; ⌧̂ (i)) =
f(x

n

,y
n

|y
1:(n�1)

; ⌧̂ (i))

f(y
n

|y
1:(n�1)

; ⌧̂ (i))

/ f(y
n

|x
n

,y
1:(n�1)

; ⌧̂ (i))f(x
n

|y
1:(n�1)

; ⌧̂ (i))

/ f(y
n

|x
n

)

Z

f(x
n

,x
n�1

|y
1:(n�1)

; ⌧̂ (i))dx
n�1

/ f(y
n

|x
n

)

Z

f(x
n

|x
n�1

,y
1:(n�1)

; ⌧̂ (i))⇥ f(x
n�1

|y
1:(n�1)

; ⌧̂ (i))dx
n�1

/ f(y
n

|x
n

)

Z

f(x
n

|x
n�1

; ⌧̂ (i))⇥ f(x
n�1

|y
1:(n�1)

; ⌧̂ (i))dx
n�1

.

116

Derivation of the backward part (4.16) in Section 4.3.3:

f(x
n

|y
1:KN

; ⌧̂ (i)) =

Z

f(x
n

,x
n+1

|y
1:KN

; ⌧̂ (i))dx
n+1

=

Z

f(x
n

|x
n+1

,y
1:n

; ⌧̂ (i))f(x
n+1

|y
1:KN

; ⌧̂ (i))dx
n+1

=

Z

f(x
n+1

,x
n

|y
1:n

; ⌧̂ (i))

f(x
n+1

|y
1:n

; ⌧̂ (i))
f(x

n+1

|y
1:KN

; ⌧̂ (i))dx
n+1

=

Z

f(x
n+1

|x
n

, y
1:n

; ⌧̂ (i))f(x
n

|y
1:n

; ⌧̂ (i))

f(x
n+1

|y
1:n

; ⌧̂ (i))
f(x

n+1

|y
1:KN

; ⌧̂ (i))dx
n+1

=

Z

f(x
n+1

|x
n

; ⌧̂ (i))f(x
n

|y
1:n

; ⌧̂ (i))
R

f(x
n+1

|x
n

; ⌧̂ (i))f(x
n

|y
1:n

; ⌧̂ (i))dx
n

f(x
n+1

|y
1:KN

; ⌧̂ (i))dx
n+1

.

Calculation of the complete information matrix (4.35) in Section 4.6.1:

I
c

(⌧) =� E
X|Y ;⌧

@2

@⌧@⌧ T

log f(X,Y ; ⌧)

=�
Z

f(X|Y ; ⌧)



@2

@⌧
o

@⌧ T

o

log f(X,Y ; ⌧
o

)

�

⌧

o

=⌧

dX

=�


@2

@⌧
o

@⌧ T

o

Z

f(X|Y ; ⌧) log f(X,Y ; ⌧
o

)dX

�

⌧

o

=⌧

=�


@2

@⌧
o

@⌧ T

o

E
X|Y ;⌧

log f(X,Y ; ⌧
o

)

�

⌧

o

=⌧

=�


@2

@⌧
o

@⌧ T

o

Q
p

(⌧
o

; ⌧)

�

⌧

o

=⌧

.

Calculation of the observed score function (4.37) in Section 4.6.1:

117

S
o

(⌧) = E
X|Y ;⌧

[S
c

(⌧)]

= E
X|Y ;⌧



@

@⌧
log f(X,Y ; ⌧)

�

=



@

@⌧
o

E
X|Y ;⌧

log f(X,Y ; ⌧
o

)

�

⌧

o

=⌧

=



@

@⌧
o

Q
p

(⌧
o

; ⌧)

�

⌧

o

=⌧

,

where the first step is proved below:

E
X|Y ;⌧

[S
c

(⌧)] =E
X|Y ;⌧



@

@⌧
log f(X,Y ; ⌧)

�

=E
X|Y ;⌧



@

@⌧
log f(X|Y ; ⌧) +

@

@⌧
log f(Y ; ⌧)

�

=E
X|Y ;⌧



@

@⌧
log f(X|Y ; ⌧)

�

+
@

@⌧
log f(Y ; ⌧)

=

Z

f(X|Y ; ⌧)
@

@⌧
log f(X|Y ; ⌧)dX + S

o

(⌧)

=

Z

f(X|Y ; ⌧)
@

@⌧

f(X|Y ; ⌧)

f(X|Y ; ⌧)
dX + S

o

(⌧)

=

Z

@

@⌧
f(X|Y ; ⌧)dX + S

o

(⌧)

=
@

@⌧

Z

f(X|Y ; ⌧)dX + S
o

(⌧)

=S
o

(⌧).

118

Derivation of the EM covariance matrix algorithm in Section 4.6.2:

For k = 1, (4.42) results from

f(x
a

,x
a+1

,x
a+k

,x
a+k+1

|Y ; ⌧)

=f(x
a

,x
a+1

,x
a+2

|Y ; ⌧)

=f(x
a

|x
a+1

,x
a+2

,Y ; ⌧)f(x
a+1

,x
a+2

|Y ; ⌧)

=f(x
a

|x
a+1

,Y ; ⌧)f(x
a+1

,x
a+2

|Y ; ⌧)

=
f(x

a

,x
a+1

|Y ; ⌧)

f(x
a+1

|Y ; ⌧)
f(x

a+1

,x
a+2

|Y ; ⌧).

For k = 2, (4.43) results from

f(x
a

,x
a+1

,x
a+k

,x
a+k+1

|Y ; ⌧)

=f(x
a

,x
a+1

,x
a+2

,x
a+3

|Y ; ⌧)

=f(x
a

|x
a+1

,x
a+2

,x
a+3

,Y ; ⌧)f(x
a+1

,x
a+2

,x
a+3

|Y ; ⌧)

=f(x
a

|x
a+1

,Y ; ⌧)f(x
a+1

,x
a+2

,x
a+3

|Y ; ⌧)

=
f(x

a

,x
a+1

|Y ; ⌧)

f(x
a+1

|Y ; ⌧)
f(x

a+1

,x
a+2

,x
a+3

|Y ; ⌧).

119

For k = k0 � 3, (4.44) results from

f(x
a

,x
a+1

,x
a+k

0 ,x
a+k

0
+1

|Y ; ⌧)

=

Z

f(x
a

,x
a+1

,x
a+2

,x
a+k

0 ,x
a+k

0
+1

|Y ; ⌧)dx
a+2

=

Z

f(x
a

|x
a+1

,x
a+2

,x
a+k

0 ,x
a+k

0
+1

,Y ; ⌧)f(x
a+1

,x
a+2

,x
a+k

0 ,x
a+k

0
+1

|Y ; ⌧)dx
a+2

=

Z

f(x
a

|x
a+1

,Y ; ⌧)f(x
a+1

,x
a+2

,x
a+k

0 ,x
a+k

0
+1

|Y ; ⌧)dx
a+2

=
f(x

a

,x
a+1

|Y ; ⌧)

f(x
a+1

|Y ; ⌧)

Z

f(x
a+1

,x
a+2

,x
a+k

0 ,x
a+k

0
+1

|Y ; ⌧)dx
a+2

.

120

Vita

Jichuan Li

Degrees Ph.D., Electrical Engineering, Washington University in St. Louis,

Missouri, USA, May 2016

M.S., Electrical Engineering, Washington University in St. Louis,

Missouri, USA, December 2014

B.S., Electrical Engineering, Fudan University, Shanghai, China, July

2011

Professional

Memberships

The Institute of Electrical and Electronics Engineers (IEEE)

IEEE Signal Processing Society

Publications Journal Publications:

J. Li and A. Nehorai, “Distributed particle filtering via optimal fu-

sion of Gaussian mixtures,” submitted.

J. Li and A. Nehorai, “Adaptive Gaussian mixture learning in dis-

tributed particle filtering,” submitted.

J. Li and A. Nehorai, “Joint sequential target estimation and clock

synchronization in wireless sensor networks,” IEEE Transactions on

Signal and Information Processing over Networks, vol. 1, no. 2, pp.

74–88, June 2015.

S. Krishnan, B. Kumfer, W. Wu, J. Li, A. Nehorai, and R. Axel-

baum, “An approach to thermocouple measurements that reduces

uncertainties in high temperature,” Energy & Fuels, vol. 29, no. 5,

pp. 3446–3455, Apr. 2015.

Conference Publications:

121

J. Li and A. Nehorai, “Joint sequential target state estimation and

clock synchronization in wireless sensor networks,” in 48th Asilomar

Conference on Signals, Systems and Computers, Pacific Grove, CA,

Nov., 2014, pp. 525–529.

J. Li and A. Nehorai, “Distributed particle filtering via optimal fu-

sion of Gaussian mixtures,” in 18th International Conference on In-

formation Fusion, Washington D.C., July 2015, pp. 1182–1189.

J. Li and A. Nehorai, “Adaptive Gaussian mixture learning in dis-

tributed particle filtering,” in 6th International Workshop on Compu-

tational Advances in Multi-Sensor Adaptive Processing (CAMSAP),

Cancun, Mexico, Dec. 2015, pp. 221–224.

May 2016

122

	Washington University in St. Louis
	Washington University Open Scholarship
	Spring 5-15-2016

	Distributed Target Tracking and Synchronization in Wireless Sensor Networks
	Jichuan Li
	Recommended Citation

	tmp.1465419042.pdf.tUZd6

