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ABSTRACT OF THE THESIS 

Numerical Determination of Critical Mach number on a Three-Element Airfoil in Unbounded 

Flow and in Ground Effect  

 

by 

Bowen Hu 

 

Master of Science in Department of Mechanical Engineering and Material Science 

Washington University in St. Louis, 2017 

Research Advisor: Professor Ramesh Agarwal 

 

The critical Mach number is an important property of airfoils on aerodynamics. When the 

freestream Mach number exceeds the critical Mach number, shock will appear on the aircraft and 

cause a huge loss of energy. Lift decreases sharply and drag increases dramatically. We usually 

hope to increase the critical Mach number and delay the occurrence of shock so that the aircraft 

can fly with a higher speed and carry more weight.  

 

In this thesis, the main task is to determine the critical Mach number of multi -element airfoil 

30P30N in unbounded flow and in ground effect. Commercial software ICEM is employed to 

generate mesh. ANSYS Fluent is conducted to compute flow filed. The compressible The 

Reynolds-averaged Navier - Stokes equations (or RANS equations) with the Spalart-Allmaras 

Turbulence Model are solved in flow field. The results are discussed in three parts. Firstly the 

results lead to the determination of the critical Mach number of 30P30N airfoil in unbounded 

flow and compare it with the critical Mach number of single element airfoil RAE2822. In 



x 

 

addition, the evolution of aerodynamics of 30P30N airfoil from unbounded flow to ground effect 

is displayed and the reasons are analyzed. Finally, the determination of the critical Mach number 

at different ride heights in ground effect is shown and a clear change in the critical Mach number 

can be seen.  

 

 

.
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Chapter 1: Introduction 
This chapter provides the background of the Computational Fluid Dynamics simulation of flow 

past a three-element 30P30N airfoil and the motivation behind this research on determination of 

critical Mach number of 30P30N airfoil. The scope of the thesis is also included. 

1.1 Motivation 
McDonnell Douglas 30P30N three-element airfoil is one of the most widely used airfoil multi-

element configuration by the CFD workers. It is a typical landing configuration. In 1993, 

30P30N airfoil was used as a challenging configuration for CFD validation at CFD Challenge 

Workshop held at NASA Langley [1]. Because of the availability of excellent experimental data, 

the critical Mach number of an airfoil is always of vital concern in aircraft design. Since then, 

this configuration has been studied by many researchers for validation of CFD code worldwide. 

For a free-stream Mach number greater than the critical Mach number, shocks appear on the 

airfoil resulting in a dramatic increases in the drag. By optimizing the shape of airfoil, it may be 

possible to increase the critical Mach number and delay the appearance of shocks. One way to 

increase the critical Mach number is to have a swept wing, it can decrease effective speed of 

aircraft, so higher speed is needed to produce a shock. Another way is to design a variable sweep 

aircraft, which can change the wing sweep angle according to the flight speed. In the low-speed 

take-off and landing, smaller sweep angle is used so that the lift in front wing increases; at high 

subsonic and supersonic speed, large sweep angle is used to improve the aircraft's acceleration 

and high speed flight performance. 
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1.2 Brief Review of Literature 

In the past many decades, the aerodynamics and flow physics of a single-element airfoil in 

unbounded flow and ground effect have been widely studied and are well understood. Coullietter 

and Plotkin [2] used the numerical and analytical methods to study the airfoils with zero 

thickness and non-zero thickness in ground effect. For the zero thickness airfoil, as the camber 

ratio and angle of attack increases, the lift at a given ground height decreases; for the non-zero 

thickness airfoil, the lift increases when the thickness ratio increases. Hsiun and Chen [3] studied 

the influence of camber and thickness on the aerodynamics of a 2D airfoil in ground effect by 

numerical method. They compared the aerodynamic results of single element NACA0006, 

NACA0009, NACA0012, NACA2412 and NACA4412 airfoils at different angles of attacks and 

ride heights and concluded that the aerodynamic forces are determined by the shape of the 

passage between the lower surface of the airfoil and the ground. Qu et al. [4] investigated the 

flow physics and aerodynamics of a NACA4412 airfoil in GE for a wide range of angel of attack 

α = -4 ~ 20° by numerical simulations. For low to moderate AOA, when the ride height is 

reduced, pressure on the lower surface of the airfoil increases. For high AOA, when the ride 

height is reduced, the adverse pressure gradient along the chord-wise direction increases 

resulting in a larger region of separated flow.  

High-lift devices are widely used in modern aircrafts during take-off and landing. However, the 

research effort devoted to the study of GE of high-lift devices has been very limited. Yang et al. 

[5] reported numerical results for a three-element airfoil LIT2 (slat angle δs = 25° and flap angle 

δf = 20°) and a two-element airfoil (modified from L1T2) in GE. Their results indicated that the 

lifts of both the airfoils decreased gradually as the ride height was reduced, but the decrease was 

very small. Carter [6] studied the aerodynamic characteristics of an un-swept wing with an 
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aspect ratio of 10 and a taper ratio of 0.3. With the decreasing ride height, the lift curve slope of 

the wing with retraced flaps increased, but the maximum lift of the wing with full-span double-

slotted flaps deflected 30° and 50° decreased. 

1.3 Scope of the Thesis 
Since the knowledge about the aerodynamics and flow physics of multi-element airfoils in 

ground effect has been very limited. Therefore in this thesis, the ground effect of a multi-element 

airfoil is studied with particular emphasison the critical Mach number. The critical Mach number 

of 30P30N airfoil in unbounded flow and in ground is determined by numerical simulation.   
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Chapter 2: Methodology  
This section presents the methodology for flow field simulation of multi-element airfoil 30p30N.  

2.1 Geometry and Mesh Generation 

2.1.1 Geometry 

The typical geometry of a high-lift airfoil from leading edge to trailing edge consists of three 

parts: slat, main and flap. As shown in Fig.2.1.The location and orientation of the flap and slat 

are defined by the deflection angles, overlap and gap.[7] 

 

Fig 2.1. Definitions of gap, overlap, and deflection angles in a three-element airfoil. 

 

 

The 30P30N is a well-studied high-lift airfoil; geometric settings such as the gap and overhang 

of the slat and the flap are summarized in Table 2.1 [8]. 
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Table 2.1 Geometric parameters (gap and overhang values are specified as percentage of stowed chord, c). 

 

Slat deflection angle  s 30  

Flap deflection angle  f 30  

Slat gap gs 2.95% 

Flap gap gf 1.27% 

Slat overhang os −2.5% 

Flap overhang of 0.25% 

 

As shown in Figure 2.2, the angle of attack is referenced to the main element chord. The angle of 

attack used in the present cases is α=10 . Ride height h is defined as distance between the 

trailing edge of the flap and the ground. 

 

Fig. 2.2 Sketch of 30P30N airfoil in GE. 

 

2.2 Mesh Generation 

2.1.1 Unbounded Flow 

Mesh is generated using the ICEM software in ANSYS. The rectangular computational domain 

and structured mesh layout for the unbounded flow field are shown in Fig 2.3. The inlet, outlet, 
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top and bottom boundaries are located at 40c away from the airfoil. They are all set as pressure 

far-field condition. The airfoil is set as a no-slip static wall condition. 

 

 

 

Fig 2.3 Computational domain and structured mesh layout in unbounded flow 

 

2.1.2 Ground Effect Flow Field 

The semi-circular computational domain and structured mesh layout are generated for the ground 

effect flow field as shown in Fig 2.4. The inlet, outlet and top boundaries are located 40c away 

from the airfoil. They are all set as pressure far-field condition. The bottom boundary is a no-slip 

moving wall condition with a translation velocity equal to the free-stream velocity. The distance 
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between the bottom boundary and the airfoil is changed as h/c=0.1, h/c=0.2 and h/c=1. The 

airfoil is set as a no-slip static wall condition. The mesh is refined in the region between the 

airfoil and the ground. 

 

 

Fig 2.4 Computational domain and structured mesh layout in ground effect 

2.3 Simulation Method 
Reynolds-Averaged Navier-Stokes (RANS) equations are solved using the finite volume method. 

Spalart-Allmaras (S-A) one-equation turbulence model is employed as described in section 2.4. 

The double precision solver of the commercial CFD software ANSYS FLUENT 17.1 is 

employed to conduct the numerical simulation. A second order upwind scheme is utilized for the 
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convection terms and a second order central difference scheme is used for the diffusion terms. 

The SIMPLE algorithm is employed for the pressure-velocity coupling. The steady compressible  

2.4 Turbulence Model 
Spalart-Allmaras (SA) model is employed to solve the Reynolds-Averaged Navier-Stokes 

(RANS) equations. The advantage of this model is simplicity and high accuracy [9] for 

aerodynamic flows. 

It is a one-equation model for transport written in terms of a eddy-viscosity-like term [10]. The 

equation is written as: 

 

 

The eddy viscosity is related to the eddy viscosity term through the equation 

 

 

where 

 

and 

 

The production term  is given by 

 

where Ω is the magnitude of the vorticity, d is the distance from the field point to the nearest 

wall, and 
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The destruction function f  is given by 

 

where 

 

and 

 

The transition functions are 

 

The constants used in model are 
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Chapter 3 Determination of Critical Mach 

Number in Unbounded Flow 
 

3.1 Lift Coefficient and Drag Coefficient 
Figures 3.1 and 3.2 show the change in lift coefficient and drag coefficient of 30P30N airfoil and 

RAE2822 airfoil respectively. One can see a clear increasing and then decreasing trend with 

Mach number in the lift curves. In drag curves, drag coefficient almost remain the same and then 

have a sharp increase with the Mach number. The reason is the presence of shock on the airfoil 

when Mach number exceeds the critical Mach number. In case of RAE2822 airfoil, which is a 

typical airfoil, both the lift coefficient and drag coefficient are smaller than 30P30N as expected. 

Since the multi-element airfoil has larger chord length and camber. In unbounded flow, for 

30P30N airfoil, the larger chord length and camber will increase the lift from the potential flow 

point of view, and the flow in the gaps will further increase the lift by delaying the flow 

separation from viscous flow point of view. The critical Mach number of 30P30N is 0.33 at 

AOA=10 degree according to the simulation data, and the critical Mach number of RAE2822 

airfoil is 0.75 at AOA=2.31 degree. 
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Fig 3.1 Variation of lift coefficients of 30P30N and RAE2822airfoils in unbounded flow with Mach number 

 

Fig 3.2 Variation of drag coefficients of 30P30N and RAE2822airfoils in unbounded flow with Mach number 
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Fig 3.3 Variation of lift coefficients of complete airfoil, slat, main and flap of 30P30N with Mach number in 

unbounded flow 

Fig 3.3 shows the change in lift coefficient of complete airfoil, slat, main and flap. The lift 

curves of main and flap show an increasing and then a decreasing trend in lift before and after 

the critical Mach number. The lift curve of slat however first increases in a small range and then 

decreases and finally increases as freestream Mach number increases. To conclude, the relative 

decrease in the lift of the main wing is the largest, and that of the slat is the smallest. 

3.2 Pressure Coefficient Contours 
Figure 3.4 shows the pressure coefficient contours of 30P30N airfoil at various Mach number 

before and after the critical Mach number of 0.33. The contours are shown for freestream Mach 

number = 0.2, 0.3 0.33, 0.35, 0.4 and 0.5. From Fig 3.4 (a) and Fig 3.4 (b), it can be seen that the 

pressure coefficients on lower surface of the airfoil are the same, however they are slightly 

different on the upper surface. When freestream Mach number increases from 0.2 to 0.3, the 

suction increases, and the pressure on the upper surface decreases. This leads to increase in the 

lift coefficient. As freestream Mach number increase from 0.3 Fig 3.4 (b) to 0.33 Figure 3.4 (c), 

so lift coefficient increases. As freestream Mach number increase from 0.33 Fig 3.4 (c) to 0.35 

Figure 3.4 (d), the pressure coefficient on both the upper surface and lower surface decrease, lift 

coefficient decrease. Also, one can see that the pressure contours are no longer smooth, which 
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indicate a higher pressure gradient and a shock begins to appear. As freestream Mach number 

increse from 0.35 Fig 3.4 (d) to 0.4 Figure 3.4 (e), the change in pressure gradient is obvious. It 

can also be noticed that in the tail of the main part region and on the flap, there is sharp suction 

leading to decrease in lift. This is the main reason for lift coefficient to decrease sharply. It cann 

be seen from Fig 3.4 (e) to Fig 3.4 (f), pressure coefficient in the shock region decreases sharply, 

leading to increase in lift. Before the critical Mach number, there is no shock, thus drag remians 

nearly constant. After the critical Mach number, shock appears on the airfoil and creates a large 

pressure difference between upstream and downstream of the shock resulting in sharp increase in 

drag. 

 

(a) Freestream Mach number=0.2                      (b) Freestream Mach number=0.3 
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         (c) Freestream Mach number=0.33                      (d) Freestream Mach number=0.35 

 

              (e) Freestream Mach number=0.4                        (f) Freestream Mach number=0.5 

Fig 3.4 Pressure coefficient contours of 30P30N at freestream Mach number = 0.2, 0.3, 0.33, 0.35, 0.4 and 0.5 

3.3 Velocity Magnitude Contours 
Fig 3.5 shows the velocity magnitude contours around 30P30N airfoil at various Mach number 

before and after critical Mach number. The velocity on the lower surface of airfoil is obviously 

lower than that on the upper surface. According to the Bernoulli’s Equation, when pressure 

becomes larger, the velocity becomes smaller. Hence the colors in velocity contour are opposite 

to the colors of pressure coefficient contours. From velocity magnitude contours, it can be seen 
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that there are three stagnation points located near leading bottom part of slat,the main wing and 

the flap. Also, near the leading upper surface of the slat, the main wing and the flap, the velocity 

is maximum. When freestream Mach number increases, the velocity magnitude increases, and 

the shock strength increase on the main part. There is a flow separation in the gap between the 

slat and the main wing and the gap between the main wing and the flap. As the Mach number 

becomes larger than the critical Mach number, flow separates on the upper surface of 30P30N 

airfoil as can be seen from the streamline plots in Figure 3.6. 

 

 

(a) Freestream Mach number=0.2                      (b) Freestream Mach number=0.3 
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         (c) Freestream Mach number=0.33                      (d) Freestream Mach number=0.35 

 

 

              (e) Freestream Mach number=0.4                        (f) Freestream Mach number=0.5 

Fig 3.5 Velocity magnitude contours of 30P30N at freestream Mach number = 0.2, 0.3, 0.33, 0.35, 0.4 and 0.5 

3.4 Streamlines 
Figure 3.6 shows the streamlines around 30P30N airfoil at various Mach number before and after 

critical Mach number. The various colors stand represent the velocity magnitude of different 

streamlines. It can be seen that there are two regions of flow separations in the gap between slat 

and the main wing and the other in the gap between the main wing and the flap. There is large 
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area of separation behind the flap when freestream Mach number become greater than the critical 

Mach number. It shows in the downstream of flap.  

 

(a) Freestream Mach number=0.2                      (b) Freestream Mach number=0.3 

 

          (c) Freestream Mach number=0.33                      (d) Freestream Mach number=0.35 

 

          (e) Freestream Mach number=0.4                        (f) Freestream Mach number=0.5 

Fig 3.6 Streamlines around 30P30N at freestream Mach number = 0.2, 0.3, 0.33, 0.35, 0.4 and 0.5 
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3.5 Conclusions 
Compared to a single-element airfoil like RAE2822, a multi-element airfoil has larger lift since it 

has larger chord length and camber, and has gaps. In the unbounded flow, the larger chord length 

and camber will increase the lift from the potential flow point of view, and the flow in the gaps 

will further increase the lift by delaying the flow separation from viscous flow point of view. For 

30P30N airfoil has an increase in lift coefficient with Mach numbers less than the critical Mach 

number and decrease in lift coefficient with Mach numbers greater than the critical Mach number. 

The drag coefficient remain almost keeps the same at Mach numbers less than the critical Mach 

number and then has a sharp increase when freestream Mach number becomes larger than the  

critical Mach number due to the appearance of shock on the upper suraface. Pressure contours 

and velocity contours show the pressure and velocity distributions on the upper and lower 

surface of 30P30N which validate the conclusion about the lift and drag coefficients described 

above. 
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Chapter 4 Aerodynamics of 30P30N Airfoil 

in Ground Effect 
When an object moves in the proximity to the ground, its flow field and aerodynamics change, 

this is called the ground effect. In this chapter, we determine the flow field and aerodynamics of 

30P30N in ground effect various ride heights h/c=0.1, 0.2 and 1 by numerical simulation.  

4.1 Lift Coefficient and Drag Coefficient 
In order to discuss the change in the aerodynamics of 30P30N airfoil from unbounded flow to 

ground effect, we consider it flow field at different heights above the ground at the same 

freestream Mach number. Figure 4.1 and Figure 4.2 show the change in lift coefficient and drag 

coefficient respectively freestream for Mach number = 0.2 at different ride height h/c = 0.1, 0.2, 

1 and ∞ (which is unbounded flow). There is an increasing trend in lift coefficient and drag 

coefficient when ground clearance increases.  

 

 

Fig 4.1 Lift coefficient of 30P30N at different ride heights at freestream Mach number = 0.2 
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Fig 4.2 Drag coefficient of 30P30N at different ride heights at freestream Mach number = 0.2 

 

Lift and drag coefficient increase as the ground clearance increases. Figure 4.3 shows the change 

in lift coefficient of the slat, the main wing and the flap. They all show an increasing trend with 

ride height. The relative increase in the lift of the flap is the largest, and that of the slat is the 

smallest for h/c<1. 
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Fig 4.3 Lift coefficient of complete airfoil, slat, main and flap of 30P30N at different ride heights with freestream 

Mach number = 0.2 

4.2 Pressure Coefficients and Contours 
Figure 4.4 shows the pressure coefficient distributions at different ride heights. 

 

Fig 4.4 Pressure coefficient distributions at different height when freestream Mach number is 0.2  
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ride height. Thus for a multi-element airfoil, the lift decreases significantly in GE compared to 

unbounded flow because of decrease in suction on the upper surface. 

Figure 4.5 shows the pressure coefficient contours at h/c=0.1, 0.2 and 1. 

 

Fig 4.5 Pressure coefficient contours at h/c=0.1, 0.2 and 1 for freestream Mach number = 0.2 

The pressure coefficient at the lower surface remains almost the same at different ride height. 

The main factor for change in lift coefficient is the pressure coefficient on the upper surface. As 

the ground clearance increases, the upper surface pressure coefficient of slat, main wing and flap 

increases significantly, which implies a larger suction which leads to a lager lift coefficient. The 

minimum pressure coefficient points lie near the heading edge of slat, main wing and flap, the 

maximum pressure point lies on the lower surface. When ground clearance changes, the 

positions and of these points hardly change. 
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4.3 Velocity Contours 
Figure 4.6 shows the velocity magnitude contours when h/c=0.1, 0.2 and 1. 

 

Fig 4.6 Velocity contours at h/c=0.1, 0.2 and 1 at freestream Mach number = 0.2 

The velocity in the lower surface region is obviously lower than that in the upper surface region.  

The maximum velocity occurs at the head of main wing, the minimum velocity is on the lower 

surface. With decrease in ride height, the velocities in the lower and upper surface regions all 

decrease due to the ground blockage effect.  

4.4 Streamlines 
Figure 4.7 shows the streamlines around 30P30N at different ride heights h/c = 0.1, 0.2 and 1. 
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Fig 4.7 Streamlines at h/c=0.1, 0.2 and 1 when freestream Mach number is 0.2 

The boundary layers with high energy from on the main wing and the flap due to gaps, and 

improve the flow separation characteristics. The flow separation occurs on the flap in GE. As the 

ground clearance reduces, flow separates flow near the trailing edge of the flap.  

4.5 Conclusions 
In ground effect, the lift and drag coefficient increase as the ground clearance increases. 

Compared to unbounded flow, the decrease in lift results due to significant on the upper surface 

of the airfoil. The pressure increment on the lower surface of the airfoil is small. As the ground 

clearance decreases, the pressure coefficient increases because of decrease in suction on the 

upper surface. With the decreasing ride height, the velocities in the lower and upper regions 

surface decrease due to the ground blockage effect. At small ride height flow can separate near 

the trailing edge of the flap. 
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Chapter 5 Determination of Critical Mach 

Number of 30P30N in Ground Effect 
 

5.1 Lift coefficient and drag coefficient 
Figure 5.1 and Figure 5.2 show the change in lift coefficient and drag coefficient at various 

freestream Mach numbers with different ride heights. Lift curves show that at the same ride 

height, lift coefficient increases with Mach number before the critical Mach number and then 

decreases with Mach number after the critical Mach number. The reason for this behavior in lift 

curves was explained in Chapter 3. At the same ride height, when freestream Mach number 

changes from 0.2 to the critical Mach number, as the ride height increases the lift coefficient 

increases. However, when freestream Mach number increases from the critical Mach number to 

0.5, lift coefficient decreases. It can be noticed from Figure 5.1 that the slope of lift curve is 

largest is unbounded flow compared that to ground effect. However, the slopes pf the lift curves 

as well as the magiyudes of lift coefficients change very little for Mach number. Drag curves 

show that at the same height, drag coefficient remians almost the same at Mach number less than 

the critical Mach number and then increases sharply with Mach numbers greater than the critical 

Mach number. At the same freestream Mach number, drag coefficient decreases as the ground 

clearance decreases. Curves of lift and drag coefficient at ride height 0.1 and 0.2 are very close, 

since the ground clearances are very close. 
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Fig 5.1 Variation in lift coefficients of 30P30N with different freestream Mach number at different ride heights 

 

Fig 5.2 Variation in drag curves of 30P30N with different freestream Mach number at different ride heights 
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the viriation in lift coefficient with ride height has a similar trend and the lift coefficient 

increases with increasing ride height. However when freestream Mach number becomes larges, 

the lift coefficient decreases with increase in ride height as shown in Figure 5.3. Drag curves in 

Figure 5.4 show that for all freestream Mach numbers, the change in the drag coefficients with 

ride heights have similar trend. 

 

 

Fig 5.3 Variation in lift coefficient with ride height at various freestream Mach numbers 

 

Fig 5.4 Variation in drag coefficient with ride height at various freestream Mach numbers 
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5.2 Pressure Coefficients and Contours 
Figures 5.5-5.8 show respectively the pressure coefficient distributions at four freestream Mach 

number of 0.2, 0.3, 0.4, 0.5 at different ground clearances. As the ground clearance decreases, 

the pressure coefficient increases at low freestream Mach number of 0.2 and 0.3.  At low 

freestream Mach number, the upper surface pressure coefficient of slat, main wing and flap 

increases significantly, however the lower surface pressure coefficient increases only slightly. 

For freestream Mach number less than 0.4, the pressure distribution is exhibit similar behavior in 

ground effect. However, when the freestream Mach number becomes greater than 0.4, the flow 

field becomes quite complex. 

 

 

Fig 5.5 Pressure coefficient distributions at different heights at freestream Mach number = 0.2 
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Fig 5.6 Pressure coefficient distributions at different heights at freestream Mach number = 0.3 

 

 

Fig 5.7 Pressure coefficient distributions at different heights at freestream Mach number = 0.4 
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Fig 5.8 Pressure coefficient distributions at different heights at freestream Mach number = 0.5 

 

  

5.3 Flow Field in Ground Effect at Freestream Mach 

Number 0.4 
 

Figures 5.9 to 5.11 show the pressure coefficient contours, velocity magnitude contours and 

streamlines respectively at freestream Mach number  0.4 at varouis ride heights h/c=0.1, h/c=0.2, 

h/c=1 and unbounded flow. 
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Fig 5.9 pressure coefficient contour when freestream Mach number is 0.4 at different height  
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Fig 5.10 velocity magnitude contour when freestream Mach number is 0.4 at different height. 

 

 

 

Fig 5.11 streamlines when freestream Mach number is 0.4 at different height 
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Although free stream Mach number 0.4 is greater than the critical Mach number in unbounded 

flow and at h/c=1, it is close to critical Mach number at h/c=0.2 and is less than the critical Mach 

number when h/c=0.1. Noting these changes in the critical Mach number with freestream Mach 

number and h/c, the behavior of pressure coefficient distribution and velocity distribution in 

Figure 5.9 and 5.10 can be explained. In Figure 5.11, there is separation on the flap in unbounded 

flow due to shock and boundary layer interaction. 

5.4 Flow Field in Ground Effect at Freestream Mach 

number 0.45 
Figures 5.12 to 5.14 show the pressure coefficient contours, velocity magnitude contours and 

streamlines respectively at free stream Mach number = 0.45 at various ride height h/c=0.1, 

h/c=0.2, h/c=1 and unbounded flow. 
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Fig 5.12 Pressure coefficient contours at freestream Mach number = 0.45 at different ride heights 
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Fig 5.13 Velocity magnitude contours at freestream Mach number = 0.45 at different ride heights. 

 

 

 

 

Fig 5.14 Streamlines at freestream Mach number = 0.45 at different ride heights 

 



36 

 

As the freestream Mach number increases from 0.4 to 0.45, there is strong shock and boundary 

layer interaction which influences both the pressure and velocity contours as can be seen from 

Figures 5.13 and 5.14. Figure 5.14 shows separation on the main wing at h/c=1 and in 

unbounded flow because of shock and boundary layer interaction when freestream Mach number 

is greater than the critical Mach number. However, when h/c=0.1 and h/c=0.2, freestream Mach 

number is very close to the critical Mach number and there is a weal shock at the leading edge of 

the main wing and the flow om the main wing is not separated. 

5.5 Flow Field in Ground effect at Freestream Mach 

number 0.5 
Figures 5.15 to 5.17 show the pressure coefficient contours, velocity magnitude contours and 

streamlines respectively at freestream Mach number 0.5 at various ride heights h/c=0.1, h/c=0.2 

h/c=1 and unbounded flow. 
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Fig 5.15 Pressure coefficient contours at freestream Mach number = 0.5 at different ride heights 
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Fig 5.16 Velocity magnitude contours at freestream Mach number = 0.5 at different ride heights. 

 

 

 

 

 

Fig 5.17 Streamlines at freestream Mach number = 0.5 at different ride heights 
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As the freestream Mach number increase to 0.5, it is much greater than the critical Mach number 

resulting in strong shoch and boundary layer interaction. The nature of pressure and velocity 

contours is similar to that in case of freestream Mach number 0.45. However, there is strong 

separation at h/c=0.1 and h/c=0.2. Figure 5.18 shows the variation in critical Mach number with 

ride height. Critical Mach number increases as the ride height decreases. 

 

 

Fig 5.18 Variation in critical Mach numbers with ride height. 
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increases with freestream Mach number. The most important finding in ground effect is that as 

ride height decreases, the critical Mach number increases. 
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Chapter 6 Conclusions 
 

1. Compared to the single element airfoil, multi-element airfoil has larger chord length and 

camber, and has gaps. In the unbounded flow, the larger chord length and camber increase the 

lift of airfoil from the potential flow viewpoint, and the flow in the gaps further increases the lift 

by delaying the flow separation form the viscous flow viewpoint. 

 

2. In unbounded flow when the freestream Mach number is less than the critical Mach number, 

lift coefficient of 30P30N increases and then it decreases sharply when free stream Mach number 

is greater than the critical Mach number. The drag coefficient on the other hand remains same 

when freestream Mach number is less than the critical Mach number and then increases 

dramatically when freestream Mach number is larger than the critical Mach number. 

 

3. In ground effect, the behavior of both the lift and drag coefficient is the same with respect to 

critical Mach number as described above for unbounded flow. 

 

4. The critical Mach number increases with increase in ride height. 
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