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ABSTRACT OF THE DISSERTATION 

Identification of Prognostic Cancer Biomarkers through the Application of RNA-Seq 

Technologies and Bioinformatics 

by 

Nathan William Wong 

Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2017 

Dr. Xiaowei Wang, Chair 

MicroRNAs (miRNAs) are short single-stranded RNAs that function as the guide sequence of 

the post-transcriptional regulatory process known as the RNA-induced silencing complex 

(RISC), which targets mRNA sequences for degradation through complementary binding to the 

guide miRNA. Changes in miRNA expression have been reported as correlated with numerous 

biological processes, including embryonic development, cellular differentiation, and disease 

manifestation. In the latter case, dysregulation has been observed in response to infection by 

human papillomavirus (HPV), which has also been established as both oncogenic in cervical 

cancers and oropharyngeal cancers and favorable for overall patient survival after tumor 

formation. The identification of dysregulated miRNAs associated with both HPV infection and 

cancer survival requires large datasets of high-throughput sequencing data, which were obtained 

through The Cancer Genome Atlas. By analyzing this public data, we have identified a series of 

proposed mechanisms for cancer formation and survival that is mediated through the miRNA-

RISC regulatory mechanism in response to HPV infection.  We have also identified a diverse set 

of miRNA biomarkers that have been incorporated into linear expression-based risk signatures 

that are prognostic for overall patient survival after tumor diagnosis in HPV-related cancers. The 
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tools that were used to identify both miRNA biomarkers and proposed targets in public datasets, 

such as The Cancer Genome Atlas, have since been incorporated into an web-accessible 

resource, OncomiR.org, to streamline the process of biomarker identification for the cancer 

research community. 
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Chapter 1: Introduction 
 

The expanded role of RNA-sequencing platforms in the identification of cancer 

biomarkers has allowed for the research community to delve deeply into the genomic 

mechanisms behind tumor formation and survival, and subsequently identify coding and 

noncoding nucleotide sequences that can be applied to the clinical setting in determining patient 

risk of tumor formation and survival. Here, we will describe bioinformatics techniques and 

pipelines that have been applied to next-generation RNA-sequencing data used to identify such 

biomarkers, and various mechanisms that may be affected by the dysregulated biomarkers in 

tumor tissues. 

1.1 Biomarkers in Contemporary Personalized Medicine 

Medicine has always consisted of two primary facets: the identification of an ailment 

based on presented symptoms, and the treatment of said ailment. In modern times, the two 

aspects have begun to overlap as the paradigm of personalized medicine has taken form. It is rare 

that two patients present with identical symptoms, due to variations in environment, behavior, 

and genetics; as such, therapies should be tailored as well, so as to maximize treatment efficacy. 

This has taken a number of different forms including the identification of specific therapeutic 

targets, the expansion of diagnostic criteria, and the intersection of the two fields. 

The field of biomarker identification can also be separated into these two categories. 

Certain biomarkers can be utilized in the clinical setting to stratify patients by risk of disease 

development or progression. Comparatively, the identification of markers that can be acted upon 

therapeutically, either through drugs or other interventions, constitute the second category. 

Biomarkers can serve as both therapeutic interventions and diagnostic criteria. One of the better 

known examples is in the contemporary treatment of breast cancer. Upon presentation, a tumor 
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sample can be tested for three different cell surface receptors: estrogen receptor (ER), 

progesterone receptor (PR) and human epidermal growth factor receptor (HER2/neu, or HER2) 

(1).  Breast cancer cells may express these markers at a significantly higher level than the 

surrounding healthy cells, as well as being crucial for tumor proliferation, making the markers 

strong candidates for intervention. The standard chemotherapeutic approach for ER/PR(+), also 

called hormone-positive,  breast cancer is hormone therapy, which attacks the signaling pathway 

controlled by the receptors. One mechanism of preventing the receptor-mediated signaling 

cascade is through competitive inhibition, in which the drug competes with estrogen for binding 

to the receptor; such drugs include tamoxifen (trade name Nolvadex) and toremifene (Farestan), 

which modulate binding of estrogen through competition for the receptor, and fulvestrant 

(Faslodex), which destabilizes the receptor after binding to induce receptor degradation  (2,3). 

Another approach is the reduction of estrogen available to activate the receptor signaling 

pathway, which can be achieved by preventing its production in the ovaries or through aromatase 

inhibitors, such as anastrozole (Arimidex), which prevent the aromatase enzyme from producing 

estrogen (4).  HER2(+) breast cancers can be treated with monoclonal antibodies (mAbs) such as 

trastuzumab (Herceptin) and pertuzumab (Perjeta) (5,6). HER2 is an EGF receptor that initiates 

signaling in the MAPK, PI3K/Akt, and STAT pathways, among others, leading to cell 

proliferation (7). By targeting HER2, tumor growth and cellular replication can be arrested; 

additionally, some evidence suggests that trastuzumab also can activate the anti-proliferative 

protein p27 (8). It should also be noted that breast cancers may also test negative for all three 

markers, which constitutes a small but high-risk cohort of cancers which are candidates for more 

drastic interventions (9). 
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Diagnostic criteria in the clinic has typically included samples that can be easily observed 

or obtained from the patient through minimally invasive procedures; for example, prostate-

specific antigen, a biomarker that can indicate the development of prostate cancer, can be 

isolated from a blood draw (10). However, such diagnostic tests can be imprecise in determining 

risk; the same warning holds true for evaluating behavioral and environmental risk factors such 

as smoking and alcohol consumption or exposure to high risk carcinogens. Additional 

environmental factors to consider can include the presence of foreign bodies such as viruses. 

Evidence has shown that certain viruses, including the Epstein-Barr virus, human 

papillomavirus, and hepatitis viruses B and C, are tumorigenic agents (11). As such, behavioral 

factors such as sexual practices may need to be considered by the diagnostician, since certain 

activities increase the likelihood of patient exposure.  

Precision for risk stratification can be improved through genotyping, which has become 

increasingly more affordable in recent years, as evidenced by home genotyping test distributed 

by companies such as 23andMe (12). Diagnostic genomic markers can include protein-coding 

genes, which can be observed and measured at the proteomic level through procedures like in 

situ hybridization, the method used to identify the previously described markers for breast 

cancer. Genomic biomarkers can also include noncoding RNA sequences which can be shorter 

than 50 bases (e.g. microRNAs and PIWI-interacting RNAs) or as long as coding genes (e.g. 

large intergenic noncoding RNAs and circular RNAs) (13,14). Historically, noncoding RNA 

sequences were considered “junk” RNA, as they did not fit into the classical dogma of molecular 

biology, i.e. DNA is transcribed to RNA, which is translated to proteins (13). Relatively recently, 

some noncoding RNA species have been shown to be have a greater purpose; for example, 

microRNAs serve an important role in post-transcriptional regulation, which will be described 
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later in this chapter in greater detail (15). Similar to protein-coding transcripts, noncoding 

transcripts may also be dysregulated in tumor tissues when compared to normal tissues, or even 

when comparing between poor and fair patient prognosis. Given the regulatory implications of 

some of these RNA species, their biological effects may be as drastic as a typical protein 

regulatory element.  

The improved accessibility of genomic and sequencing platforms has also allowed for 

large-scale genomic studies for the characterization of various cancers. In 2004, the National 

Cancer Institute and the National Human Genome Research Institute launched a nationwide pilot 

program titled “The Cancer Genome Atlas” (TCGA) to perform such analyses on cancers of 

significant clinical interest (16). By pooling patient tumor samples from multiple treatment 

centers throughout North America, geographical bias could be eliminated in identifying 

tumorigenic and relevant clinical features. Additionally, TCGA was designed to provide a central 

data repository for both raw and processed data. The first publication from TCGA provided 

insights into the genetic makeup of glioblastoma that confirmed previous observations as well as 

identified novel tumor characteristics (17). Similar analyses were conducted on 32 other cancer 

types, including more common cancer species like breast, head and neck, and cervical cancers, 

and less common but higher risk types such as adrenocortical carcinoma and mesothelioma (16). 

The diversity of analysis types include whole genome sequencing, RNA-sequencing, short RNA-

sequencing (also described as miRNA-sequencing), and methylation analysis (16). By providing 

both the raw and the processed data, the research community has access to a large dataset of 

genomic data that can be mined for diagnostic and therapeutic biomarkers in a wide variety of 

cancer types. 



  

5 

 

Biomarker identification requires large datasets such as those made available by TCGA, 

so as to identify significant features that standout from the background. The process of 

identifying said biomarkers, as well as their biological relevance requires an understanding of 

bioinformatics, which utilizes statistical analysis for biological data. In this dissertation, I will be 

presenting the methods and principles of applying bioinformatics for the identification of 

transcript-based biomarkers in HPV-related cancers, and future directions for the clinical 

application of the results of this research. 

 

1.2 MicroRNAs: History and Functions in Biological Processes 

and Diseases 

1.2.1 MicroRNA Discovery, Biogenesis, and Function 

MicroRNAs (miRNAs) are short (~22 nucleotide) single-stranded RNA sequences that 

function within the post-transcriptional regulatory process known as RNA interference (RNAi). 

MicroRNAs were first described in 1993 in the nematode Caenorhabditis elegans, when the 

single-stranded 22nt long gene lin-4 was determined to regulate expression of the developmental 

gene lin-14 through complementary binding in the 3’ untranslated region (3’UTR) (18,19). A 

later study identified the developmentally miRNA let-7 in C. elegans, which was found to also 

be conserved in multiple species, including Homo sapiens, indicating that microRNAs and their 

regulatory effects were not limited to nematodes (20,21). In the years since, miRNAs have been 

identified in 223 species, with 2588 high-confidence mature miRNA sequences in humans alone 

(22). 

The biogenesis of microRNAs has been extensively reviewed by Ha and Kim (23). 

Canonically, after initial transcription by RNA-polymerase II, the pri-miRNA is processed 
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within the nucleus by the Drosha-DGCR8 complex into the hairpin-shaped stem-loop pre-

miRNA. The pre-miRNA is then exported to the cytoplasm by means of a transport complex 

comprised of exportin 5 and RAN-GTP. Once in the cytoplasm, the pre-miRNA is cleaved by 

 
Figure 1.1: miRNA biogenesis and function. The miRNA gene is transcribed by RNA polymerase II 

[1] into the pri-miRNA, which is cleaved by the Drosha/DGCR8 complex to form the pre-miRNA 

hairpin structure [2]. The pre-miRNA is transported from the nucleus to the cytoplasm by exportin 

5/RAN-GTP [3-4]. The hairpin is cleaved by Dicer [5] before the paired miRNA strands loaded into 

the Argonaute proteins [6]. HSP90 helps remove the passenger strand, resulting in the mature 

miRNA silencing complex [7], which can bind to the 3’UTR of target sequences and induce 

transcript degradation [8]. Image adapted from Ha and Kim (23). 
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Dicer near the terminal loop, resulting in a small RNA duplex. The resulting strands form the 3p 

and 5p species of the mature miRNA. The duplex is loaded into the Argonaute RNA-induced 

silencing complex (RISC) with the aid of the HSP90 protein, after which the passenger strand is 

removed (24). The RISC is then guided to messenger RNA strands and prevents translation 

through inhibition or degradation of the target transcript (15,25)  (Figure 1.1). 

 

1.2.2 Prediction of MicroRNA Targets 

The selection of target mRNA sequences is driven primarily by complementary matching 

of bases 2-8 of the miRNA, or its seed sequence, to regions of the 3’UTR, which suggests that 

miRNAs are able to modulate the expression of multiple gene targets. This particular 

characteristic of miRNA-target interactions has driven the research community to identify likely 

miRNA-target pairings and additional distinguishing attributes, starting with TargetScan in 2005 

(26).  As initially developed as a standalone package by the Bartel group, TargetScan 

implemented the seed match as the primary factor in defining miRNA targets, and scored each 

potential target interaction based on the Gibbs free energy of the binding site; subsequent score 

ranking was used to define a cutoff that maximized signal-to-noise ratio (27). This first iteration 

identified species conservation as a strong contributing factor, as the ratio was increased when 

miRNA-target interactions were identified in the three species used for model training: humans, 

mice, and pufferfish. The second version of TargetScan, which accompanied the launch of the 

TargetScan web database, confirmed species conservation as a significant feature by expanding 

the training cohort to five vertebrate species, including dogs, chickens, and rats, but removing 

pufferfish. Subsequent editions built on this framework included features such as supplementary 

binding sites, target location in the 3’UTR, and GC content, as well as identifying potential 
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compensatory mechanisms for non-canonical (i.e. not based on seed-complementarity) binding, 

including target site abundance (28-30) 

. The latest version, released in 2015, adds fourteen distinct feature which further account 

for non-canonical binding, and implemented step-wise regression based on the Akaike 

information criterion (AIC), which characterizes data loss within models (31). 

Although TargetScan is one of the better-known miRNA prediction algorithms, it is by 

far not the only one available to the research community. Additional resources have been 

created, including DIANA-microT, miRanda, RNA22, and MirTarget, which incorporate a 

variety of bioinformatics techniques to determine necessary and supplemental features in 

microRNA targeting (32-35). DIANA-microT also used stepwise-regression based on the AIC in 

2012 to identify features used in non-canonical binding. miRanda utilized a base scoring system 

similar to genome alignment scoring: perfect matches scored highly, G:U wobbles were 

permitted and scored moderately, and alignment gaps are strongly penalized. RNA22 identified 

sites using pattern recognition, without directly implementing species conservation as a filter. 

MirTarget, which hosts its results in miRDB, performs feature selection using support vector 

machine (SVM), a form of supervised learning that maximizes separation between two groups in 

a multidimensional space. The latest version of MirTarget identified 50 relevant features for 

miRNA target prediction through recursive feature elimination, and weights for each feature 

were calculated by SVM to generate a score. 

Across the majority of prediction algorithms, certain key features are identified as crucial 

for miRNA-targeted RNAi: seed sequence complementarity, species conservation, Gibbs free 

energy of RNA-RNA binding, and target site accessibility (36). Additional features include 

supplementary binding sites, as illustrated by TargetScan and MirTarget, and specific features 
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affecting site accessibility, such as nucleotide composition of the target site and neighboring 

regions, and location of the target site within the 3’UTR (35,37). Despite algorithmic differences, 

the identification of miRNA targets requires the integration of both wet and dry labs, i.e. the 

experimental detection of targets and the computational resources to determine the factors that 

influence true miRNA-target interactions. Experimental techniques used to both train and 

validate these prediction resources range from low-throughput methods such as luciferase assays 

to high-throughput methods that include microarrays and next-generation RNA sequencing after 

artificial miRNA dysregulation (38,39). The methods for manipulating miRNA expression can 

either increase miRNA levels, such as through miRNA overexpression, or decrease miRNA 

levels, which has been performed through miRNA sponges and, more recently, CRISPR-Cas9 

gene editing (40,41).  More recent techniques for identifying miRNA targets without overt 

manipulation of expression levels include CLIP-ligation and sequencing, in which the miRNA 

and target strands are cross-linked to the Argonaute protein, ligated to create a hybrid, and 

sequenced after Argonaute-immunoprecipitation (42,43). 

 

1.2.3. MicroRNAs as Biomarkers for Disease 

Expression changes in miRNAs have been associated with developmental growth in 

numerous organisms, such as nematodes, fruit flies, and zebrafish, in addition to mammals, 

including humans and mice (18,44-46). This suggests that miRNAs can be temporally expressed 

specifically to regulate certain cellular and physiological functions. Subsequent changes in 

miRNA expression have also been associated with cellular differentiation into various tissue 

types (47). By the same token, dysregulation of miRNAs may result in atypical phenotypes and 

presentation of various diseases, such as Alzheimer’s disease and cancer (48,49). Although 
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miRNA expression changes may not necessarily be the driving factors behind disease 

phenotypes, their roles as post-transcriptional regulators cannot be discounted in the propagation 

of disease.  

The roles of miRNA in cancer development and progression have been extensively 

reviewed in the literature, with various focuses such as: the roles of miRNAs on general cellular 

dysregulation leading to tumor formation (50-53); diagnostic applications of miRNAs such as in 

tumor classification and patient prognosis (54-58); and their potential as therapeutic targets 

(54,56,58,59).  In the context of tumor development, miRNAs can be expressed and dysregulated 

in a manner similar to known oncogenes or tumor suppressors. As a result, miRNAs that are 

overexpressed in tumor tissue compared to normal tissue have been described as “oncomiRs.” 

Considering the inhibitive regulatory mechanisms in which miRNAs are involved, oncomiRs 

typically target tumor suppressor genes, while tumor suppressive miRNAs target oncogenes. 

This sort of relationship has been observed with the better known cancer-related miRNAs. For 

example the classic oncomiR miR-21-5p, which has been reported as upregulated in 

glioblastoma, acute myeloid leukemia, breast cancer, and prostate cancer, among others, is 

known to target the tumor suppressor PTEN, PCDC4, TPM1 and TIMP3 (50). Comparatively, 

miR-34 acts as a tumor suppressor, targeting the cell cycle activators CDK4, CDK6, cyclin E2, 

EZF3, and met (50). It should be recognized, however, that the role of the miRNA as an 

oncomiR or a tumor suppressor can be tissue-dependent.  miR-221 and miR-222 both are 

confirmed to be upregulated and target the oncogene KIT in erythroblastic leukemia, thereby 

functioning as tumor suppressor. However, in other tumor types, confirmed targets of miR-221 

and miR-222 include the tumor suppressors p27, p57, PTEN and TIMP3, and upregulation of the 

miRNAs resulted in inhibition of expression (58). Additionally, the relevant categorization of the 
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miRNA as an oncomiR or tumor suppressor is dependent on its directional dysregulation in 

tumor tissue. 

The expression levels of miRNAs can also be evaluated in a diagnostic context without 

requiring an in-depth understanding of potential targets and resulting cellular response. In this 

capacity, miRNAs can serve as biomarkers, providing insight into patient risk for developing 

cancer, or further risk of cancer death. A number of studies have identified single miRNAs as 

potential biomarkers for cancer prognosis. For example, increased miR-126 expression has been 

correlated to metastasis in renal clear cell carcinoma while upregulation of miR-31 in cervical 

and oropharyngeal cancers is negatively associated with patient survival (41,60,61).  Some 

groups have also proposed using a panel of miRNAs as a diagnostic indicator, i.e. using the 

cumulative expression profile in the form of a prognostic signature. Such signatures have been 

derived for a variety of cancers, including cervical cancer (62,63), oropharyngeal cancer (64-66), 

and bladder cancer (67). The primary advantage of using multiple miRNAs in a clinical 

diagnostic panel is the ability to compensate for technical and biological variability both in 

screening techniques and patient cohorts. Even so, not all signatures can be validated despite the 

use of rigorous and comprehensive bioinformatics pipelines on large-scale patient cohorts.   

The implementation of miRNAs as potential therapeutic targets is a relatively new field 

and can be considered a branch of gene therapy in the sense that therapeutic goals are the 

inhibition of undesirable miRNA transcripts or enhancement and restoration of pro-survival 

miRNAs (68). Inhibition of miRNAs has been performed in vitro through antagomiRs, locked 

nucleic acid constructs (LNAs), anti-sense nucleotides and sponges (69).  Among animal models 

for in vivo miRNA inhibition, experiments have tested: the delivery of miR-10b antagomiRs to 

prevent metastasis in tumor bearing mice (70); LNA inhibition of miR-122 to improve hepatitis 
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C outlook in primates (71); and miRNA target saturation with sponges (72). Similarly, tumor 

suppressive and pro-survival miRNAs have been explored in the context of therapies that restore 

their functions. Mouse models have shown that delivery of let-7 miRNAs through lentiviral 

constructs and intravenous lipid emulsions were able to reduce tumor burden in mice (73,74), 

and restoration of the KRAS targeting miRNAs miR-143 and miR-145a with a nanovector 

delivery resulted in the reduction of xenografted pancreatic tumors (75).  Recent research has 

shown that miRNAs can be inhibited in vivo through CRISPR constructs (41); given the latest 

research showing the CRISPR can be used to edit human embryos, there may be future 

applications of CRISPR to either inhibit or restore miRNA expression at the genomic level (76). 

Despite their distinctively short sequence length, microRNAs function in a significant 

role in general cellular biology. As the crucial targeting member of the regulatory RISC body, 

miRNAs aid in controlling temporal cell growth and development, as well as later roles in 

maintenance of protein expression. Dysregulation of such a diverse controller can lead to disease 

formation, which has driven research to determine targets of miRNAs, mechanisms by which 

miRNA expression changes occur, and methods to adjust for these changes. Simultaneously, the 

relative expression of miRNAs can be explored within the clinical setting to aid diagnosticians in 

determining course of treatment, without requiring intervention in the miRNome. As a whole, the 

miRNome is a crucial aspect of the human transcriptome, and should not be overlooked in how it 

may be explored in the contexts of both general physiology and the course of disease. 

 

1.3 The Role of Human Papillomavirus in Tumor Formation 

1.3.1 A Brief History of Oncoviruses 
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Viruses are a class of infectious agents that rely on host cells for life cycle progression 

and replication. The official classification of viruses is the responsibility of the International 

Committee of the Taxonomy of Viruses (ICTV), which assigns viruses to one of eight orders or 

otherwise defines a virus order as “unclassified,” based on biological properties such as 

pathogenicity and epidemiology, and sequence relationships such as divergence phylogeny 

(77,78) (Table 1.3.1). Other classification systems include that proposed by David Baltimore in 

1971, which classifies viruses based on nucleic acid (i.e. RNA or DNA), strandedness (single or 

double), transcription direction (sense or antisense), and method of replication (e.g. reverse 

transcription) (79,80). As of 2017, the eight major ICTV orders can be classified into three 

different Baltimore groups, which, in conjunction with the high number of unclassified viral 

families, suggests that further classification is ongoing (Table 1.2). 

Viral replication can be described as either lytic or nonlytic. Lytic viral infection typically 

follows a five step process of adsorption, penetration, replication, assembly, and release (81). 

Adsorption and penetration describe the process by which the virus infects the host cell, and viral 

mRNAs are produced in the replication phase, either through viral enzymes or host transcription 

Table 1.1. ICTV classification of viruses into major orders  

Order 
Number of 

families 

Number of 

species 
Example family [f], genus [g], or species [s] 

Bunyavirales 9 157 [f] Hantaviridae 

Caudovirales 3 956 [g] T4virus 

Herpesvirales 3 103 [s] Human gammaherpesvirus 4 (Epstein-Barr virus) 

Ligamenvirales 2 11 [g] Rudivirus 

Mononegavirales 9 212 [g] Ebolavirus 

Nidovirales 4 64 [s] SARS coronavirus 

Picornavirales 6 196 [s] Foot-and-mouth disease virus 

Tymovirales 4 180 [g] Trichovirus 

Unassigned 85 2525 [f] Papillomaviridae 

Total 125 4404 
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factors; in either case, the host translation machinery is utilized to translate viral mRNA 

transcripts. Viral progeny is then assembled from the translated proteins and released in the final 

phase, which causes cell lysis (81). Nonlytic viruses include retroviruses, a special class that are 

able to integrate their own genomic sequences into the host genome. Transcription by the host 

produces the viral progeny, which can be then be released through exocytosis without 

necessitating host death and lysis (81).  

The degree to which various virus families hijack host cellular components for replication 

can also be used in classification. DNA viruses (Baltimore Classes I and II) require the host 

transcription machinery to produce viral mRNA transcripts before translation (79).  Double 

stranded RNA viruses (Class III) contain enough information for both protein synthesis and 

replication while single-stranded RNA viruses (Classes IV and V) necessitate host production of 

template strands (79). Both RNA and DNA retroviruses (Classes VI and VII, respectively), 

integrate into the host genome through transcription, which makes viral clearance by the host 

much more difficult (79,80). For these two particular viral classes, integration is crucial to 

replication and survival; however, genomic integration of viral sequences has been observed by 

 Table 1.2. Baltimore classification of viruses 

Group Name Abbreviation Known orders Example viruses 

I Double-stranded DNA viruses dsDNA viruses 

Caudovirales 

Herpesvirales 

Ligamenvirales 

Human papillomavirus, 

herpesviruses, 

adenoviruses 

II Single-stranded DNA viruses ssDNA virus 
 

Parvoviruses 

III Double-stranded RNA viruses dsRNA viruses 
 

Rotavirus 

IV 
Sense single-stranded RNA 

viruses 

(+)ssRNA 

viruses 

Nidovirales 

Picornavirales 

Tymovirales 

Rubella virus 

V 
Antisense single-stranded 

RNA viruses 

(-)ssRNA 

viruses 

Bunyavirales 

Mononegavirales 
Rabies virus 

VI 
Single-stranded RNA reverse-

transcribing viruses 

ssRNA-RT 

viruses  

Human 

immunodeficiency virus 

VII 
Double-stranded DNA reverse-

transcribing viruses  

dsDNA-RT 

viruses  
Hepatitis B virus 
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other classes, such as the Class I human papillomavirus, as a result of chromosomal instability 

and recombination of cellular and viral genome fragments (82). 

In addition to utilizing the transcription and translation machinery, viruses will also alter 

the cellular environment in order to favor viral replication. Examples include: the degradation of 

host mRNA via viral endoribonucleases by alphaherpesviruses, so as to reduce competition for 

translational machinery (83); viral stimulation of the cell cycle to improve environmental 

conditions for replication by polyomaviruses and adenoviruses (84,85); and competition for 

translational machinery through internal ribosome entry sites by hepatitis C virus (86). 

Additional viral responses may interfere with immune response or apoptotic signaling (87,88). 

The alteration of the internal environment to favor the viral life cycle is rarely to the benefit of 

the host, and in some organisms, can lead to abnormal cell growth and replication, and 

subsequent tumor formation. The subset of viruses that are capable of inducing such transition 

has accordingly been termed “oncoviruses.”  

The first known oncovirus was described in 1911 by Peyton Rous, who discovered the 

Rous sarcoma virus in chickens (89). The first human virus linked to tumorigenesis was the 

Epstein-Barr virus (EBV) which was strongly correlated with Burkitt’s lymphoma in the 1960s, 

and later to nasopharyngeal carcinoma (90,91). Through the 1970s and 1980s, the list of 

oncoviruses grew to include human papillomavirus (HPV) as a potential causative factor in 

cervical cancers, hepatitis B virus (HBV) as associated with hepatocellular carcinoma , and 

human T-cell leukemia virus type 1 (HTLV-1) (92-96). The existence of hepatitis C virus (HCV) 

was initially proposed in 1975, but was not confirmed until almost 15 years later, as well as its 

potential role in the development of hepatocellular carcinoma (97-99). More recent technologies 

have led to the identification of Kaposi’s sarcoma associated herpesvirus in the 1990s and the 
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role of Merkel cell polyomavirus in Merkel cell carcinoma (100,101). To date, these seven 

viruses make up the breadth of known human oncoviruses. Additional oncogenic viruses have 

been discovered in other species, including Marek’s disease virus in chickens, simian 

vacuolating virus 40 (SV40) in some animal models, and feline leukemia virus in chickens (102-

104). 

The primary mechanisms of infection and tumor formation can vary between the seven 

human oncoviruses (reviewed in depth by White et al. (11) and Mesri et al. (105)). Epstein-Barr 

virus is well-characterized as the causative agent of classical acute infectious mononucleosis; 

transmission primarily occurs via saliva, as well as potentially through sexual contact (106). The 

hepatitis viruses, despite being of different families, are both transmitted through bodily fluids 

via interactions such as sexual intercourse or shared intravenous needles (107,108). HPV 

transmission is through mucosal and skin-to-skin contact, the latter of which is further 

 Table 1.3. Human oncoviruses and associated viral oncoproteins 

Virus Abbreviation 

Family and  

Baltimore 

classification 

Associated cancers 
Selected  viral 

oncoproteins 

Epstein-Barr virus EBV 
Herpesviridae  

I (dsDNA) 

Burkitt’s lymphoma 

Nasopharyngeal 

carcinoma 

EBNA1 

LMP1 

LMP2A 

LMP2B 

Kaposi’s sarcoma-

associated herpesvirus 
KSHV 

Herpesviridae 

I (dsDNA) 
Kaposi’s sarcoma 

LANA 

LAMP 

Hepatitis B virus HBV 
Hepadnaviridae 

VII (dsDNA-RT) 

Hepatocellular 

carcinoma 
HBx 

Hepatitis C virus HCV 
Flaviviridae 

IV ((+)ssRNA) 

Hepatocellular 

carcinoma 

HCV core protein 

NS3 

Human T-cell 

leukemia virus type 1 
HTLV-1 

Retroviridae 

VI (ssRNA-RT) 
Adult T-cell leukemia Tax 

Merkel cell 

polyomavirus 
MCV 

Polyomaviridae 

I (dsDNA) 
Merkel cell carcinoma 

Large T-antigen 

Small t-antigen 

Human 

papillomavirus 
HPV 

Papillomaviridae 

I (dsDNA) 

Cervical cancer 

Anal cancer 

Penile cancer 

Oropharyngeal cancer 

E6 

E7 

 



  

17 

 

compounded by epithelial microabrasions (109). Transmission of HTLV-1 is conducted 

primarily through mother-to-child interactions, sexual intercourse, or blood transfusions, the 

latter of which has been mostly controlled for by screening donated blood (110). KSHV is 

transmitted in children through saliva, and in adults through high-risk sexual activity (111). The 

least understood mechanism of oncovirus transmission is that of MCV; current hypotheses 

suggest that dermal fibroblasts are infected by MCV and are either transformed into Merkel cells 

or infect neighboring cells (112). The viral mechanisms leading to tumorigenesis are much more 

clearly understood, and encompass a variety of cellular modifications and responses (Table 1.3).    

Both Epstein-Barr virus and Kaposi’s sarcoma-associated herpesvirus are members of the 

Herpesviridae family (Baltimore Group I), which are characterized by their latency states. EBV 

expresses the oncoproteins EBV nuclear antigen (EBNA1) and latent membrane proteins 1 and 2 

(LMP1 and LMP2A/B). The primary function of EBNA1 is to promote viral proliferation. By 

binding to host DNA and regulating host cellular transcription, EBNA1 encourages EBV 

episomal retention and segregation, as well as preventing cell death (113). LMP1 and LMP2 are 

two latency associated viral proteins that mimic oncogenic proliferative signals. LMP1 imitates 

an active CD40 receptor, which recruits TRAFs and causes NF-κB activation, a known factor in 

lymphoma formation (114). The LMP2 proteins mimic a cross-linked Ig receptor, which leads to 

the activation of the PI3K-Akt-MTor pathways, which in turn promotes B-cell differentiation, 

prolonged survival, and cell growth (115,116).  Similarly, KSHV expresses the KSHV latency 

associated nuclear antigen (LANA), which connects the KSHV episome to the host (117). In 

doing so, KSHV also compromises a number of cellular regulators, including p53, pRb, GSK-3β, 

and p300 (118). KSHV also expresses latency associated membrane protein (LAMP), which 
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resembles LMP1 in function and activates anti-apoptotic pathways, including Ras/MAPK, NF-

κB, and vIRF3 (119). 

The hepatitis viruses HBV and HCV are members of different viral families linked only 

by their targeted infection of the liver. HBV is a double-stranded DNA hepadnavirus (Baltimore 

Group VII) that encodes the viral oncoprotein HBx, which can stimulate cell cycle entry, as well 

as survival pathways such as Ras and NF-κB (120). Regarding apoptosis, HBx can either prevent 

apoptosis by blocking caspase activity and directly interacting with p53, or or promot TNG-

mediated cell death, potentially to increase hepatocyte regeneration (120). HBx is also capable of 

activating the pRb-E2F1 oncogenic pathway through p16
INK4a

 inactivation via phosphorylation 

(121). In comparison, HCV is a single-stranded sense RNA virus (Baltimore Group IV), and as 

such, is not integrated into host genome. The primary viral proteins behind HCV-driven 

oncogenesis are currently believed to be the HCV core protein and nonstructured protein 3 

(NS3). HCV core protein has been shown to interact with a number of transcription factors and 

regulators, including p53, p21, and NF-κB, as well as the Ras/Raf/MAPK pathway, while NS3 

has been shown to bind and inactivate p53 (122,123). 

HTLV-1 is an RNA retrovirus (Baltimore Group VI) that encodes a variety of 

oncoproteins. The Tax protein is particularly effective in activating cell proliferation and survival 

through various mechanisms. Tax binds directly to CREB to induce and increase viral 

transcription, which is accentuated by the recruitment of p300 (124). Tax is also able to activate 

NF-κB to induce celluar transformation, as well advance cell cycle progression by activating 

cyclin E and Cdk2, stabilizing cyclins D2 and D3 and the cyclin D/Cdk4 complexes (124). 

Through these mechanisms, Tax is able to induce phosphorylation of pRb and E2F release (124). 

HTLV-1 also encodes HBZ, which is implied to activate the transcription of the pro-survival 
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genes JUND, JUN, and ATF, as well as promoting transcription of E2F to induce cell 

proliferation and hTERT expression to confer cell cycle immortality (124,125).  

Merkel cell polyomavirus is a polyomavirus (Group I) that was discovered to be 

integrated into the genome in most Merkel cell carcinomas. Given the relatively recent discovery 

of MCV as a causative agent of MCC, the mechanisms by which MCV integration induces tumor 

formation are still under investigation. Another tumorigenic polyomavirus, SV40, has provided 

some guidance, particularly with a focus on large T- and small t-antigen functions (126). Co-

immunoprecipitation experiments have shown that large T-antigen is bound to pRb, thereby 

inducing cell cycle progression, as well as disrupting lysosomal clustering by binding to Vam6p 

(127). The MCV small t-antigen also binds to and hyperphosphorylates the transcription 

initiation factor 4E-BP1 to dysregulate cap-dependent translation, and binds to the E3 ubiquitin 

ligase Fbw7, resulting in increased c-myc and cylin E activity (128,129). 

 

1.3.2 Functions of Human Papillomavirus Proteins 

Papillomaviruses (PVs) are a family of double-stranded DNA viruses with genomes that 

are approximately 8 kilobases long, encased in an icosahedral capsid (Figure 1.2) (130,131). 

Taxonomically, the Papillomaviridae family consists of 48 genera (with one “unclassified” 

genus), encompassing 123 clearly defined species, with an additional 18 species presently 

defined as “unclassified” (132). The PV species are divided into types, which can be further 

classified into subtypes and variants (130), 183 of which are human specific (i.e. human 

papillomavirus (HPVs)) and are members of the genera alphapapillomavirus, 

betapapillomavirus, gammapapillomavirus, mupapillomavirus, and nupapillomavirus. High-risk 

HPV types, specifically those associated with oncogenesis, are typically in the alpha-
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papillomavirus genus. HPV infects the basal layer of mucosal and epithelial cells, normally 

through microlesions and microabrasions (133). The most common visible symptoms of HPV 

 
 

 
 

Figure 1.2. Structure of the HPV viroid and genome. (A) L1 protein monomers self-

assemble into pentamers and L2 monomers reside in the center of the pentamers. 72 

capsomers form the icosahedral HPV virion. Adapted from Schiller and Muller (209). (B) 

The HPV16 genome, as a representative HPV type, is circular and encodes for eight 

proteins: E1, E2, E4, E5, E6, E7, L1, and L2. Adapted from the Papillomavirus Episteme 

(pave.niaid.nih.gov) (128). 

A 

B 
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are benign tumors, namely warts and papillomas. However, symptoms are often invisible to the 

naked eye, taking the form of microlesions. Overt lesions often are the result of immune 

suppression; otherwise, the majority of HPV types coexist silently with the host (133). 

 A typical papillomavirus encodes 7 proteins: the early proteins E1, E2, E4, E6, and E7, 

and the late proteins L1 and L2; some PV types, including those that infect humans, encode an 

additional early protein, E5 (134). The HPV replication cycle progresses through a number of 

well-characterized steps, which can be expounded on in the context of viral protein expression 

and function (reviewed concisely by Graham (134)). After infection of basal cells and successful 

translocation to the nucleus, the first viral genes to be expressed are E1 and E2.  Functionally, E1 

and E2 work in conjunction to bind to the viral origin of replication. E2 acts as a tether and 

recruits E1 to the binding site, and E1 recruits cellular transcription and replication factors for 

viral genome amplification (135,136). E2 also maintains viral genome levels by tethering the 

viral genome to host chromatin binding proteins, as well as temporally limiting viral 

transcription to prevent immune activation (136). E6 and E7 are transcribed initially during the 

early stages of the replication cycle, but transcript and protein expression levels are not likely to 

be depleted until the virus is cleared (134). Despite their primary recognition as the HPV 

oncogenes, their roles are vital for viral replication. E6 and E7 function in tandem to promote 

cell proliferation, and subsequently viral proliferation, without inducing apoptosis (137,138). The 

mechanisms by which this is performed can lead to oncogenesis when left unchecked. The E4 

and E5 proteins are not as well studied as the other HPV proteins, but their general functions 

have been elucidated. E4 is encoded within E2; it contributes to genome amplification and capsid 

synthesis, and may arrest cell-cycle in G2 phase (139). E4 has also been noted for its abundant 

expression in upper epithelial layers, and consequently been proposed as a biomarker for HPV 
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infection (139). E5 is not expressed by all papillomaviruses, but in those that do, it is shown to 

have a variety of possible functions (140). It is weakly oncogenic, possibly supplementing E6 

and E7 activity as a cofactor by upregulating EGFR signaling pathways, as well as possibly 

 

 
 

Figure 1.3. Oncogenic activity of the HPV E6 and E7 proteins. (A) The E6 protein induces 

tumor formation by binding to the E6 associated protein (E6AP) and the tumor suppressor 

p53. E6AP then recruits ubiquitins to target p53 for degradation. (B) The E7 protein 

functions by binding to the tumor suppressor pRB, which releases the transcription factor 

E2F1. E2F1 is then free to transcribe genes associated with cell cycle progression. Adapted 

from Yim and Park (140). 
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impairing intercellular communication by binding with vacuolar ATPase. This latter property, 

along with inhibition of HLA-1 intracellular transport, may contribute to immune evasion (140). 

The late proteins are the structural capsid proteins for HPV. The major capsid protein L1 

is a protein of approximately 55 kilodaltons that can spontaneously self-assemble into virus-like 

particles (131). The L1 proteins form a pentameric capsomer; 72 capsomers self-assemble into 

the icosahedral virion (131). Each capsomer binds to an L2 minor capsid protein, in such a 

manner that the mature virion keeps most the L2 protein body concealed below the capsid 

surface (131,141). When the virus encounters the host cell surface, L1 interacts with heparin 

sulfate carbohydrates on basement membrane proteoglycans (131). This induces a 

conformational change in L1 that exposed L2. L2 cleavage by furin allows for a conformational 

change that in turn binds to a secondary receptor on the cellular plasma membrane (141). 

Subsequent cell entry resembles micropinocytosis, after which the virion is transported to the 

nucleus through membrane bound cellular components and tubulin transport (134). Nuclear entry 

can occur either through nuclear pores or in the midst of nuclear envelope dissolution during 

mitosis (134). 

 As mentioned previously, E6 and E7 contribute to the viral life cycle but are also the 

primary drivers of HPV-induced oncogenesis and have been extensively reviewed in the 

literature (Figure 1.3) (142-145). The classical mechanism by which E6 induces oncogenesis is 

also arguably the best described function of the protein. E6 targets and binds proteins with an 

LXXL motif (137). Included among these is the E6 associated protein (E6AP), an ubiquitin 

ligase encoded by the UBE3A gene. This interaction results in a conformational change in E6 

that allows it to recruit the regulatory protein p53, forming a ternary complex. In doing so, 

ubiquitin peptides are transported from E6AP to p53, turning p53 into a target for degradation 
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(146). As a tumor suppressor, p53 is involved in promoting cell cycle arrest and apoptosis in the 

event of cellular stress; subsequently, p53 degradation can result in cell immortality and 

eventually tumor formation (147). E6 is also capable of targeting other cellular regulatory 

proteins, including p300/CBP, HIF-1α/HIF-2α, and MAML1 (148). It should be noted that these 

latter interactions are more often observed in lower-risk HPV types, and certain HPV types also 

exhibit preferential binding; experiments where E6 binding partners are coexpressed 

demonstrated that high-risk E6 proteins bind to E6AP more often than other candidates, and the 

low-risk HPV E6 prefers alternate candidates (148,149). 

 Another observed E6 interaction is the activation of the telomerase enzyme hTERT, 

which adds telomere repeats to the ends of chromosomes, and essentially conferring immortality 

(150). This particular response is notable for its independence from E6-p53 activity, but it does 

appear to require E6AP, at least in high-risk HPV types (151,152). E6 alterations of cellular 

transcription levels are mediated by its interaction with histone acetyltransferases, including 

degradation of Ada3 and Tip60, along with p300 (137). Further compromising cellular 

homeostasis are E6 effects on PDK1 and mTORC2, which lead to the activation of Akt and the 

mTORC1 signaling pathway, resulting in increased metabolism (153,154). E6 is also known to 

affect immune response by activating NF-κB, increase proliferation and prevent apoptosis by 

binding to and degrading Bak, and inhibit additional apoptotic signaling cascades by binding to 

procaspase 8 (155-157).  The interferon signaling cascade is also inhibited by E6 binding Tyk2, a 

member of the Jak/Stat signaling pathway, and IRF3, thereby preventing activation of interferon 

responsive genes (158,159). 

The primary oncogenic mechanism of E7 is through its interaction with the pRB 

pathway, by binding directly to the retinoblastoma protein (pRB) at an LXCXE domain, leading 
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to its phosphorylation and degradation (160,161). Reduced pRB level leads to the release of E2F, 

a transcription factor that controls for proliferative genes. An additional function of E2F is the 

activation of p53, which under normal circumstances would increase the likelihood of cell death; 

however, this is mitigated by E6-mediated p53 degradation (142). E7 has been proposed as the 

primary oncogenic mechanism of HPV, as transfection of the E7 gene initiated benign tumor 

growth, while E6 induced the conversion from benignity to malignancy (162). Recent research 

has also found that E7 conservation was crucial to tumor formation, supporting the hypothesis of 

E7 as the primary oncogenic factor; a significantly lower frequency of variants was identified in 

patients whose HPV infection progressed to cervical cancer (163). Supplementary E7 functions 

leading to tumor formation include binding and inhibiting cyclin-dependent kinase inhibitors, 

including p21
Cip1

 and p27
Kip1 

(164,165).  

 

1.3.3  Human Papillomavirus and Other Oncoviruses Can Alter MicroRNA 

Expression 

Oncoviruses are not restricted to direct interaction with cellular regulatory proteins in 

tumorigenesis; further indirect mechanisms, such as RISC, can be affected as well. The first 

discovery of viral encoded miRNAs was reported in B-cells infected with EBV (166). In the 

years since, over 500 miRNAs have been identified as virally encoded and curated in miRBase 

(22). The majority of functional viral miRNAs have been identified in members of the 

herpesvirus family, some of which have been previously described as oncoviruses; other 

potential viral miRNAs have been identified in polyomaviruses and adenoviruses (reviewed by 

Roberts, Lewis, and Jopling (167), and Skalsky and Cullen (168)). 
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Five major species of herpesvirus have been identified as coding functional miRNAs. Of 

note are the gammaherpesviruses, EBV and KSHV. Since the first discovery of viral miRNAs in 

EBV, 25 total pre-miRNAs have been reported (169,170). Notable miRNAs in EBV are miR-

BART2, miR-BART5, and miR-BHRF1-3. miR-BART5 targets the cellular proapoptotic protein 

PUMA  while miR-BHRF1-3 targets the cellular T-cell attractant CXCL11 (171,172). miR-

BART2 has been shown to target MICB, thereby improving immune evasion (173). Viral targets 

of EBV miRNAs include the lytic gene BALF5 by miR-BART2, presumably to stabilize viral 

latency, and LMP1 by three other EBV miRNAs (174,175). KSHV expresses a total of 12 pre-

miRNAs (168). Viral-viral interactions include the targeting of RTA by miR-K12-9-5p, which 

prevents early entry into the lytic cycle (176). Host cellular target interactions with KSHV 

miRNAs include: MICB by miR-K12-7; the apoptotic protein BCLAF1 by miR-K12-5, -9 and -

10; the T-cell attractant THBS1 by miR-K12-1, -3-3p, -6-3p, and -11; p21 by miR-K12-1; the 

transcriptional repressor MAF by miR-K12-6 and -11; and the transcriptional repressor BACH1 

by miR-K12-11 (173,177-181). 

As previously indicated, SV40 is a polyomavirus that has also been shown to be 

potentially oncogenic; it also encodes a single pre-miRNA that targets the viral large T-antigen, 

which improves immune invasion (182). Both the miRNA and target are conserved in other 

polyomaviruses, including MCV, human BK virus, and JC virus (183,184). Some adenoviruses 

have also been shown to produce non-coding RNAs, VAI and VAII, that interact with DICER 

and the miRNA RISC complex (185,186). The only known direct target is the proapoptotic RNA 

metabolism factor TIA-1, but no significant effects were observed (187). 

Alterations in miRNA activity in response to viral infection is not limited to virally 

encoded miRNAs, as the host miRNome also undergoes dysregulation. The interactions can be 
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essentially be classified into one of two categories: viral regulation of cellular miRNAs, and host 

regulation of viruses through miRNA-RISC. It should be noted, though, that sometimes both 

interactions are observed simultaneously. 

Virally induced dysregulation of miRNA expression typically results in a response 

favorable to viral survival, such as increased immune evasion or improved environment for 

replication.  Among the known oncoviruses, EBV upregulates miR-155 and miR-146a 

expression, both of which have been shown to target TRAF and IRAK1, which results in 

inhibited immune response (188-190). EBV also upregulates miR-29b, which targets TCL1, 

affecting cell survival, and miR-21, which is upregulated in several cancer types (175,191). 

KSHV, as previously described, encodes miR-K12-11, which is a functional mimic of miR-155; 

both the host and the viral mimic miRNAs target transcription factors, and subsequently 

contribute to oncogenesis (181).  This latter viral miRNA is also observed in other herpesviruses 

shown to cause cancer in other organisms, such as Marek’s disease virus in chickens (192). 

HCMV downregulates miR-100 and miR-101, which have been shown to inhibit HCMV 

replication (193). Among non-herpesvirus miRNA effectors, HIV-1 was shown to promote 

replication by downregulating members of the miR-17/92 cluster (194). 

Host miRNAs are also capable of targeting viral genes, although the infection agent may 

take advantage of the host response. This is observed in HCMV and HSV-1, as miR-200 targets 

the HCMV protein IE2 and miR-138 targets the HSV-1 protein ICP0; downregulation of these 

two proteins help promote viral latency and survival (195,196). Not all miRNA responses are to 

the detriment of the host, as miR-29a is upregulated in response to HIV infection, and 

specifically targets the HIV-1 transcript for degradation (197). Hepatitis C virus was also shown 

to indirectly induce the overexpression of a number of miRNAs, including miR-196, miR-296, 
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and miR-351 through increased IFN-β activity, but these miRNAs appear to modulate HCV 

replication (198). 

HPV has been shown to dysregulate a number of miRNAs, notably downregulating miR-

143, miR-145, miR-34a, and miR-203, resulting in increased cell motility (199-202). miR-145 

downregulation also results in genome amplification associated with cellular replication and 

growth (203). The downregulation of miR-218 by HPV results in increased translation of its 

target LAMB3, a protein specific to epithelial cells that may play a role in differentiation and 

oncogenesis (204). Upregulated miRNAs include miR-9, which has been shown to be 

upregulated in HPV(+) cervical cancers by the E6 protein, especially by HPV16 (205). HPV16 

E6 also specifically represses miR-23b in cervical cancer, which is an apoptotic tumor 

suppressor that regulates the anti-apoptotic oncogene c-MET (206). Additional HPV-associated 

miRNAs in cervical cancer include the upregulated miR-16, miR-25, miR-92a, and miR-378, 

and the downregulated miR-22, miR-27a, mir-29a, and miR-100 (207).  Within oropharyngeal 

cancers, HPV infection is associated with upregulation of miR-9, similar to the observation in 

cervical cancer, and miR-155, along with downregulation of miR-31, miR-223,and  miR-18a 

(64). A few analyses have looked at the role of HPV in miRNA expression changes for both 

oropharyngeal and cervical cancers, and have concluded that some similarities exist between the 

two cancer types, particularly upregulation of miR-10b, miR-16, and miR-20b, along with 

downregulation of miR-145, miR-199a and miR-199b (208).  Direct expression of E6 and 

E7proteins from HPV16 in non-tumor tissues yielded similar results, as well as demonstrating 

how characteristic oncomiRs and tumor suppressive miRs such as miR-203a can influence the 

transcriptome (209). 
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1.4 Characterization of Cervical and Oropharyngeal Cancer in the 

Context of HPV 

In the context of cervical cancer, Harald zur Hausen proposed a link between tumor 

formation and HPV infection status in 1974; this research garnered him the Nobel Prize in 

medicine in 2008 (92,93). Cervical cancer is the most common gynecological tumor in the 

world, with approximately 528,000 new cases diagnosed annually (210). Of these cases, it is 

estimated that 95% are the result of HPV infection (211). This direct causation has spurred 

research into HPV vaccines with the intent of reducing overall risk of cervical and other 

anogenital cancers, leading to the first marketed vaccines: Gardasil, from Merck, inoculated 

against HPV types 6, 11, 16, and 18; and Cervarix from GlaxoSmithKline, protected against 

types 16 and 18 (212,213).  HPV types 16 and 18 alone are estimated to be responsible for 70% 

of new cervical cancers. The next generation of Gardasil also protects against the high-risk HPV 

types 31, 33, 45, 52, and 58, thereby increasing the coverage to viral types responsible for  up to 

90% of potential cervical cancers (214).  

 

1.4.1 Tumor Source Site and Genomics Affect Cervical Cancer Prognosis 

Despite its oncogenic properties, HPV infection has also been shown to be a positive 

prognostic marker for overall patient tumor outcome (215-218). The mechanisms behind this 

duality are not entirely understood, which has encouraged deeper research into the genomic 

alterations that result from and occur independently of HPV infection. Some of these differences 

can be attributed to variance in tissue source site, as cervical cancer can be categorized primarily 

into cervical squamous cell carcinomas (which constitute approximately 75-80% of cervical 

cancer diagnoses), adenosquamous cell carcinomas, and adenocarcinomas (219-221). EGFR 
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mutations have been reported as more frequent in squamous cell carcinomas, while 

adenocarcinomas demonstrated a significantly higher rate of KRAS mutations; both cervical 

cancer types also demonstrated a notable rate of PIK3CA mutations that were a marker for 

poorer patient prognosis (222). Interestingly, it has also been reported that adenocarcinomas and 

adenosquamous cell carcinomas are infected by alphapapillomavirus 7 types, specifically HPV 

18, more frequently than squamous cell carcinomas; it should be noted that HPV16 is still the 

most prevalent infectious HPV type in cervical cancer independent of tumor source site (223).  

Additionally, infection by alphapapillomavirus 7 types has been indicated as a greater risk factor 

for survival than alphapapillomavirus 9 types (224-227). This variance may account for some of 

the reports that patients with squamous cell carcinomas generally have better outcomes than 

patients with adenosquamous cell and adenocarcinoma, although some literature also propose 

that there is no difference in patient outcome based on tumor source site (228-233).  

Nonetheless, research has consistently shown that HPV(-) tumors have worse outcome 

than tumors with any sort of HPV infection (227,234). This may be attributable to some of the 

genomic alterations that have been identified. This includes PIK3CA, KRAS, and EGFR, as 

previously described (222). Additional large-scale genomic studies have also been performed to 

confirm previously described genomic alterations, as well as identify novel features. One study 

published in 2014 analyzing samples from 115 cervical cancer patients confirmed literature 

reports of PTEN and STK11 in squamous cell carcinomas, as well as describing novel mutations 

in EP300, FBXW7, HLA-B, MAPK1, and NFE2L2 (235). Many of these mutations have been 

identified in other cancer types. Specifically, FBX27 and EP300 have been identified as mutated 

in endometrial and head and neck cancers, HLA-B mutants correspond with HLA-A and B2M 

mutants in lung squamous cell carcinomas. The specific MAPK1 mutations identified in this 
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study was also found in an oropharyngeal cancer cell line, and the NFE2L2 mutation was 

previously described in lung squamous cancers. Another notable large-scale genomic study was 

published recently by The Cancer Genome Atlas Research Network that included 178 patient 

samples (236). This study confirmed the aforementioned mutants as occurring with significant 

frequency, as well as identifying the novel mutants SHKBP1, ERBB3, CASP8, HLA-A and 

TGFRB2; notably, mutations in HLA-A, HLA-B, NFE2L2, MAPK1, CASP8, SHKB1 and 

TGFRB2 were exclusive to squamous cell carcinomas. This study also examined copy number 

alterations and transcriptome levels for both coding and noncoding RNAs to identify three major 

clusters of cervical cancers: high-keratin squamous cell tumors, low-keratin squamous cell 

tumors, and adenocarcinomas. Alphapapillomavirus 7 types were confirmed to be enriched in the 

adenocarcinoma and low-keratin clusters. Meanwhile, HPV(-) tumors demonstrated higher rates 

of KRAS, ARID1, and PTEN mutations, which may indicate possible rationales for higher 

treatment failure rates (236). 

 

1.4.2 HPV Distinguishes Oropharyngeal Cancers from Other Head and Neck 

Tumors 

This pattern of HPV status positively affecting cancer prognosis extends beyond 

anogenital tumors. Oropharyngeal tumors are cancers of the oropharynx, a region that includes 

the base of the tongue, the tonsils, soft palate, and walls of the pharynx. Traditional causes of 

OPSCC include tobacco and alcohol consumption, but there has been an increase of HPV(+) 

oropharyngeal cancer diagnoses despite the overall decrease in total new OPSCC cases (237). 

HPV(+) cases now approximate 75% of new oropharyngeal cancer diagnoses; this rise has been 

attributed to an increase in frequency of oral sexual behaviors (238,239). The mechanism for 
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HPV-induced oncogenesis is unchanged; however, due to differences in tissue type, the genomic 

characterization of additional oncogenic behavior differs somewhat from what has been observed 

in cervical cancers. 

Similarly to cervical cancers, large-scale genomic studies have been performed to analyze 

the host genome alterations associated with oropharyngeal tumor formation and progression. 

Two of the larger studies in the literature analyzed head and neck squamous cell carcinomas as a 

whole. The first study by Parfenov and colleagues analyzed the immediate effects of HPV 

infection in head and neck tumors (240). Of the 279 tumor samples retrieved, 35 were identified 

as HPV(+); 29 were HPV16(+), while the remainder were positive for HPV33 or HPV35, and of 

the 35, 25 showed genomic integration. Genomic integration tended to be near coding regions 

and may be associated with somatic mutations of genes near the integration sites, including the 

silencing mutations of the DNA repair protein RAD51B, the tumor suppressor ETS2, and the 

apoptotic gene PDL1, as well as amplification of the oncogene NR4A2 (240).  

Utilizing the same cohort, The Cancer Genome Atlas Research Network identified 36 

HPV(+) tumors (241). Additionally, 33 samples were identified as oropharyngeal cancers, 21 of 

which were in the HPV(+) cohort, indicating an enrichment  of HPV(+) tumors in the 

oropharynx as compared to other tumor source sites in the head and neck.  Throughout the 

HPV(+) cohort, there was a significant number of deletions and truncations of TRAF3, as well as 

amplification of E2F1. Comparatively, HPV(-) HNSCCs were noted for having deletions in 

NSD1, as well as tumor suppressors such as NOTCH1 and CDKN2A. In addition to this, HPV(-) 

tumors in the head and neck showed amplification of receptor tyrosine kinases such as EGFR 

and ERBB2, which promote cell proliferation, as well as activating mutations of the oncogene 

HRAS and inactivating mutations of the proapoptotic factor CASP8. Independently of HPV 
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status, TCGA identified amplifications of a chromosomal region containing the transcription 

factors TP63and SOX2, as well as the oncogene PIK3CA. HPV(-) tumors also contained 

inactivating mutations of CDKN2A, TP 53, and FAT1 at a higher rate than HPV(+) tumors; 

comparatively, HPV(+) tumors were contained activating mutations of PIK3CA in addition to 

the HPV-independent regional amplification (241). 

 

1.4.3 Applications of Human Papillomavirus in the Diagnostic Setting 

Beyond the obvious implications of HPV presenting as a possible factor for oncogenesis, 

HPV status is also being used as a diagnostic criterion in the clinic. A pair of studies including 

111 patients in Canada and 323 patients in the United States both confirmed the utility of HPV 

status as an independent prognostic factor in head and neck cancers (216,217). As a treatment 

target, HPV vaccines have been described as a preventative measure. Additionally, some 

treatments have been designed to target HPV(-) tumors more specifically, such as the use of the 

hybrid human/mouse mAb cetuximab (trade name Erbitux) or the pure human mAb 

panitumumab (Vectibix) to target and inhibit EGFR, in addition to the current standard of 

cisplatin and radiotherapy (242-244). On the opposite end of the treatment spectrum, HPV(+) 

oropharyngeal cancer patients may qualify for de-escalation protocols, some which have been 

reviewed by Masterson and colleagues (245). In their review and meta-study, it was concluded 

that reduction in radiation intensity for lower-risk, i.e. HPV(+), patients merited continued 

investigation. Regarding the change in treatment modalities to replace cisplatin with EGFR 

inhibitors, reports were mixed, with one study suggesting that the treatment was more effective 

in the HPV(-) cohort, thereby increasing the risk for HPV(+) patients unnecessarily. Despite this, 
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authors still recommended continued investigation, as metastasis-free survival after EGFR-mAb 

treatment was not yet clearly defined. 

In the years since HPV was hypothesized to be an oncovirus, and later confirmed to be a 

the primary cause of cervical cancer, there has been a concentrated study of how an external 

factor such as a virus can alter the cellular environment so drastically as to induce tumor 

formation. Simultaneously, clinical studies have focused on prevention and treatment, leading to 

the creation of the HPV vaccine, with the long-term goal of eliminating virally-induced cervical 

cancer. Until the time that universal vaccination eradicates HPV as a sexually-transmitted 

infection, there remains a need for biological studies to elucidate mechanisms of HPV-based 

tumor formation and survival. Such research is translatable to the clinical setting, where 

treatments can be designed to target and interfere with HPV-controlled functions, as well as 

determine appropriate courses of treatment in accordance with modern paradigm of personalized 

medicine. As such, further diagnostic parameters that can stratify patients based on risk of 

treatment failure, both independently and in concordance with HPV status, will continue to be in 

demand and relevant until widespread vaccination and prevention is attained. 

 

1.5  Project Aims 

The goals of this project were threefold: 

1. To develop a bioinformatics pipeline to identify  biomarkers in HPV-related cancers 

available in TCGA, and design prognostic signatures for HPV-related cancers based on 

RNA sequencing and miRNA sequencing data; 

2. To apply this bioinformatics pipeline to the cancer data from TCGA as a whole and 

identify potential biomarkers across multiple cancer types; 



  

35 

 

3. To obtain insight into how these biomarkers function within HPV-related cancers and the 

mechanisms effected in increasing or decreasing patient risk. 

In order to conduct this first aim, we developed a comprehensive approach to identify HPV 

status of tumor samples in oropharyngeal and cervical cancer patients using RNA-Seq data, as 

well as determine the expression level of coding transcripts. A parallel pipeline was also 

designed to identify dysregulated miRNA transcripts from miRNA-Seq data. By combining the 

results of these transcriptomic datasets with clinical data provided by TCGA, we were able to 

determine the contribution of miRNA and RNA expression levels to overall patient survival. A 

rigorous process was then used to select a subset of these biomarkers in the design of prognostic 

survival signatures. Within oropharyngeal cancer, we were able to not only design an HPV-

independent prognostic signature based on the expression level of four microRNAs, but also 

experimentally validate the signature in an independent dataset using quantitative reverse 

transcription polymerase chain reaction, thereby demonstrating that the signature can potentially 

be applied and evaluated within a clinical setting in a cost-effective manner. 

The purpose of the second aim is to show that these bioinformatics pipelines can be extended 

beyond the scope of HPV-dependent cancers. By developing statistical programs to perform 

automated analysis, we were able to identify miRNAs in the TCGA dataset that were related to 

cancer development, progression, and cancer survival in a type specific manner. Additionally, we 

extended the miRNA analysis to incorporate target prediction, so as to identify potential genes 

that may be controlled by dysregulated miRNAs both within and between cancer types. The 

results of this analysis have been made publicly available at oncomir.org, a combined database 

and web server for cancer-related miRNAs. The server is also capable of performing de novo 



  

36 

 

analysis for miRNA-based survival signatures and the identification of miRNA-based clusters of 

cancer types. 

The third aim of this project is to expand on the known biology of HPV-induced 

carcinogenesis and tumor survival. The mechanisms by which high-risk HPV types lead to tumor 

formation through the E6 and E7 proteins are extremely well-documented, and more recent 

studies have begun to examine the rationale behind HPV being a positive biomarker for disease-

free and overall patient survival. Intermediate regulatory networks, such as those mediated by 

miRNAs, are less well-studied, but may provide a greater insight into properties of HPV-related 

tumor survival. By conducting a pathway analysis based on miRNA response to HPV that 

focuses on the miRNA-target regulatory interactions, we demonstrate which pathways 

supplement the traditional E6/E7 mechanisms in tumor formation, as well as the mutation-driven 

pathways in HPV(-) tumors that portend less favorable patient outcomes. This also provides 

guidance for future research, as the pathways identified may be candidates for pharmaceutical 

therapies in HPV-defined patient populations. 
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Chapter 2: Prognostic miRNA Signatures 

Derived from The Cancer Genome Atlas for 

Cancers of the Head and Neck and the 

Cervix 

This chapter is adapted from and expanded upon the following publication (1): 

Wong, Nathan, Shariq S Khwaja, Callie M Baker, Hiram A Gay, Wade L Thorstad, Mackenzie 

D Daly, James S Lewis, Xiaowei Wang. (2016) Prognostic microRNA signatures derived from 

The Cancer Genome Atlas for head and neck squamous cell carcinomas. Cancer Medicine 5(7): 

1619-1628.  

2.1 Abstract 

BACKGROUND: Identification of novel prognostic biomarkers typically requires a large 

dataset which provides sufficient statistical power for discovery research.  To this end, we took 

advantage of the high-throughput data from The Cancer Genome Atlas (TCGA) to identify a set 

of prognostic biomarkers in head and neck squamous cell carcinomas (HNSCC) including 

oropharyngeal squamous cell carcinoma (OPSCC) and other subtypes, and cervical squamous 

cell carcinomas (CESC). 

METHODS: In this study we analyzed miRNA-seq data obtained from TCGA patients to 

identify prognostic biomarkers for OPSCC. The identified miRNAs were further tested with an 

independent cohort.  miRNA-seq data from TCGA was also analyzed to identify prognostic 

miRNAs in oral cavity squamous cell carcinoma (OSCC), laryngeal squamous cell carcinoma 

(LSCC), and cervical squamous cell and endocervical carcinoma (CESC). 
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RESULTS: Our study identified that miR-193b-3p and miR-455-5p were positively associated 

with survival, and miR-92a-3p and miR-497-5p were negatively associated with survival in 

OPSCC. A combined expression signature of these four miRNAs was prognostic of overall 

survival in OPSCC, and more importantly, this signature was validated in an independent 

OPSCC cohort. Furthermore, we identified four miRNAs each in oral squamous cell carcinoma 

(OSCC) and laryngeal squamous cell carcinoma (LSCC) that were prognostic of survival, and 

combined signatures were specific for subtypes of HNSCC. An additional signature was 

developed for CESC that was significant across cervical tumor subtypes. 

CONCLUSIONS: A robust 4-miRNA prognostic signature in OPSCC, as well as prognostic 

signatures in other subtypes of HNSCC and within CESC, was developed using sequencing data 

from TCGA as the primary source. This demonstrates the power of using TCGA as a potential 

resource to develop prognostic tools for improving individualized patient care. 

2.2 Introduction 

Head and neck squamous cell carcinoma (HNSCC) constitutes approximately 3% of all 

cancer diagnoses in the United States, with about 45,000 new cases in 2015 (2). Among head and 

neck cancers, oral cavity, oropharyngeal and laryngeal cancers are the most common, accounting 

for 24%, 23% and 27% of all diagnosed cases, respectively (3).  

Due to the heterogeneity of these subtypes of HNSCC, a single prognostic signature 

identifying high- and low-risk patients cannot be generated to cover all types of HNSCC. 

However, multiple studies have indicated that individual biomarkers can stratify high-risk and 

low-risk patients within the various subtypes (4-6). These biomarkers are not limited to coding 

genes. Included among the proposed biomarkers are microRNAs (miRNAs), which are short 

single-stranded RNA sequences (~22 n.t.) that function in post-transcriptional regulation. Further 
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studies have shown that within oropharyngeal cancer, infection by human papillomavirus (HPV) 

is a favorable prognostic marker (7). Greater prognostic power has been attained by combining 

groups of biomarkers into a single signature for different subtypes of HNSCC, with various 

degrees of success (8,9).   

The other major cancer type associated with HPV infection is cervical cancer (CESC). 

An estimated 528,000 new cases of cervical cancer worldwide are diagnosed annually, 95% of 

which are caused by HPV (10,11).  Cervical cancers can be further categorized by their tumor 

source site, the majority of which can be classified as either cervical squamous cell carcinomas 

(CSCC), or cervical adenosquamous carcinomas or adenocarcinomas (cervical adeno-type 

cancers or CASC). As with oropharyngeal cancer, miRNAs have been examined as potential 

biomarkers for determining patient prognosis, with several signatures having been published in 

the literature (12,13). 

The identification of novel biomarkers and subsequent development of prognostic 

signatures requires in-depth analysis of genetic profiles. For example,  high-throughput gene 

expression profiling data have been made available by The Cancer Genome Atlas (TCGA), a 

joint effort of the National Cancer Institute and the National Human Genome Research Institute 

to provide a comprehensive set of patient genetic profiles across multiple cancer types (14). This 

has extended to HNSCC, with a total of 529 HNSCC and 304 CESC samples being made 

available (15,16). Included in the available data are RNA-seq and miRNA-seq profiles for the 

majority of the provided patient samples. 

 In the current study, we investigated the prognostic value of miRNA biomarkers for 

oropharyngeal squamous cell carcinoma (OPSCC), oral squamous cell carcinoma (OSCC), and 

laryngeal squamous cell carcinoma (LSCC), using profiling data obtained from TCGA. These 
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biomarkers were then used to develop unique prognostic signatures that robustly predicted 

overall survival in the respective subsets of HNSCC. An additional signature was identified 

through TCGA analysis for cervical cancer that maintained significance in both squamous cell 

carcinoma (CSCC) and cervical adenosquamous carcinomas and adenocarcinomas (CASC). We 

further demonstrate that use of the TCGA public dataset can provide a more general picture of 

head and neck cancer as the prediction models obtained can be applied to an independently 

obtained dataset. Through a combined analysis of TCGA data and independently generated data, 

we have provided an additional set of biomarker tools for the clinical setting that can assist in 

determining the best course of treatment for patients with head and neck cancer. 

 

2.3 Materials and Methods 

Retrieval of Public Data  

A total of 523 anonymized patients in the TCGA database were identified as having primary 

HNSCC.  The clinical patient files were downloaded from TCGA Data Portal (tcga-

data.nci.nih.gov). Of the 523 HNSCC patients, 82 patients had a primary tumor in the 

oropharynx, 313 patients had a primary tumor of the oral cavity, and 115 patients had primary 

tumors in the larynx. A total of 304 patients were identified as having primary CESC. Of the 

307, 254 patients had a primary CSCC, 50 had a primary CACC, and 3 had a primary endothelial 

carcinoma. A cutoff of five years was applied to all patient survival data. 

All gene sequences were downloaded from the UCSC Genome Browser (17). Index files 

mapping transcript accessions to NCBI Gene IDs were downloaded from the NCBI ftp site (18). 

All mature miRNA sequences were downloaded from miRBase (19). Raw miRNA-seq data was 

obtained for 81 of the 82 OPSCC patients, 311 of 313 OSCC patients, and all of the laryngeal 
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cancer patients. Raw RNA-seq data was obtained for 72 of the 82 oropharyngeal cancer patients. 

In the cervical cancer cohort, miRNA-Seq and RNA-Seq data were obtained for 227 CSCC 

patients and 45 CACC patients. All raw RNA-seq and miRNA-seq files were downloaded 

through the Cancer Genomics Hub (20). 

 

TCGA Sequence Analysis 

Sequence alignment was performed using the Bowtie program (21). Raw miRNA-seq 

reads were aligned to the human miRNome.  The read counts were then normalized to reads per 

million reads mapped per sample and set to a floor value of 1 for lowly expressed miRNAs. Raw 

RNA-seq reads were aligned sequentially to human RefSeq annotated sequences, the human 

reference genome, and the virome. The read counts were normalized to reads per kilobase per 

million mapped reads, then to the 2000
th

 gene before being set to a floor of 5 normalized reads 

for lowly expressed mRNAs. Both miRNA-seq and RNA-seq reads were subsequently log2 

normalized. 

 

Statistical Analysis for Survival and Correlation 

Overall survival analysis was conducted using the ‘survival’ package in R (http://www.r-

project.org).  Correlation and covariance analysis was conducted in MATLAB (22). Univariate 

Cox proportional hazards regression analyses were performed to evaluate the correlation 

between individual miRNAs or mRNAs with overall survival. The p-values for outcome 

correlation were calculated using the Wald test. The final prognostic signatures were also 

evaluated in this manner. Multivariate Cox proportional hazards analyses were conducted to 

evaluate the independent prognostic value of the miRNA signature after controlling for common 
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clinical variables. The Kaplan-Meier estimator was used to determine the empirical survival 

probabilities and p-values from the log-rank test indicated the significance of the miRNA 

prediction outcome model. 

 

Collection of Independent Validation Data Sets 

A total of 95 OPSCC cases were included in this study for validation.  Patients were 

treated at Washington University School of Medicine with definitive chemoradiation, or with 

primary surgery followed by radiation therapy with or without chemotherapy. Clinical data were 

collected from the patients and then updated retrospectively after follow-up review. 

 For all 95 of the patients, formalin-fixed, paraffin-embedded (FFPE) tumor tissues were 

collected for pathological analysis before radiotherapy or chemotherapy. Sections from each case 

were stained with hematoxylin and eosin and reviewed by a study pathologist at Washington 

University to confirm the diagnoses. Tumor regions from each section were identified and 

macrodissection was conducted. Total RNA was extracted from the identified tumor regions 

using the miRNeasy FFPE kit (Qiagen) according to the manufacturer’s protocol. 66 patients 

were used for the validation of the OPSCC miRNA prognostic model, and 39 patients for the 

validation of the OPSCC mRNA model. 

 

Quantitative Reverse Transcription PCR for miRNA model validation 

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to 

profile the miRNAs identified as significant in OPSCC and CESC. The details of this 

experimental procedure have been described previously (23) .  Briefly, the RT reaction was 

performed with the High Capacity cDNA Reverse Transcription Kit (Life Technologies). Each 
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RT reaction included 100 ng of tumor RNA and a pool of RT primers for selected miRNAs and 

control RNAs. Quantitative PCR was performed with Power SYBR Green PCR Master Mix 

(Life Technologies) and specific PCR primers for selected miRNAs or control RNAs. miRNA 

raw profiling data for individual samples were normalized with four small RNA controls 

(SNORD48, SNORD47, RNA5-8S5 and RNU6-1). Specifically, the expression levels of the four 

small RNAs were averaged and used as the reference to control for sample variations during 

miRNA profiling analysis. 

The expression of p16 protein was determined by immunohistochemistry as previously 

described (24). The expression profiles of E6 and E7 transcripts from six oncogenic HPV types 

were determined by qRT-PCR, including types 16, 18, 33, 39, 56, and 59. The details of the HPV 

assays and the experimental protocol have been described previously (24). In brief, primer 

sequences for the assays were selected from the E6 and E7 coding regions of the high-risk HPV 

genomes. The expression profiles of GAPDH and β-actin were used as reference controls for 

data normalization. 

 

2.4  Results 

Validation of an existing miRNA prognostic signature 

To verify that the miRNA data obtained from The Cancer Genome Atlas (TCGA) could 

be used in further biomarker identification, we evaluated our previously published prognostic 

model for OPSCC (9) with TCGA data. Briefly, this model identified miR-24-3p, miR-31-5p, 

and miR-193b-3p as negatively associated with survival, and miR-26b-5p, miR-142-3p, and 

miR-146a-5p as positively associated with survival.  The expression levels of these 6 miRNAs 

were then combined to create a single prognostic model as described previously (9): 
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S  = 2.62EmiR-24-3p + 3.16EmiR-31-5p + 2.45EmiR-193b-3p – 2.69EmiR-26b-5p – 3.34EmiR-142-3p – 2.81EmiR-

146a-5p 

 

A 

miRNA Name Fold change P-value 

miR-24-3p 0.08 0.62 

miR-31-5p 0.14 0.11 

miR-193b-3p 0.83 4.6E-03 

miR-26b-5p -0.33 0.097 

miR-142-3p -0.31 0.065 

miR-146a-5p -0.30 0.05 

B 

 
Figure 2.1. Validation of an existing miRNA signature with TCGA data. (A) The six miRNAs from 

our previously published prognostic model for OPSCC were examined for association with the overall 

survival of TCGA patients. Fold change values were log2 transformed and represent the average 

expression difference of the miRNAs in the deceased patient group compared to the living patient 

group. Statistical significance was determined with the logrank test in Cox regression analysis. (B) 

Kaplan-Meier survival analysis to evaluate the prognostic performance of the six-miRNA signature 

for predicting overall survival in OPSCC.  
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We examined each miRNA individually with TCGA data and found that two miRNAs 

were significantly associated with survival, two miRNAs maintained borderline significance 

(p<0.1), and two miRNAs was not found to be significant (p>0.1) (Figure 2.1A). It should be 

noted, however, that the directions of expression changes in relation to survival outcome were 

maintained for all six miRNAs (i.e. positive correlations for miR-26b-5p, miR-142-3p, miR-

146a-5p, and negative correlations for miR-31-5p, miR-193b-3p, miR-26b-5p) (Figure 2.1A). 

When we analyzed this prognostic model as whole, it was able to significantly differentiate 

between high- and low-risk OPSCC patients from TCGA (Figure 2.1B). This demonstrated that 

this previously published model was robust and could be applied to patient miRNA profiles 

obtained from other institutions, while also indicating that the data from TCGA was a valuable 

resource for further biomarker identification and analysis.  

 

Unique TCGA miRNA expression profiles correlated with overall survival in OPSCC 

miRNA expression analysis was performed for the 81 OPSCC patients obtained from TCGA. 

The characteristics of these patients are summarized in Table 1.  The miRNAs were examined 

individually using Cox univariate proportional hazards analysis to determine which miRNAs 

were correlated with overall survival. This analysis provides a log-rank p-value, which indicates 

the significance of the miRNA in relation to survival, as well as a Wald coefficient, which 

indicates the weight associated with the expression level of the miRNA.  

We then implemented recursive feature elimination (RFE) technique to determine the 

relative prognostic performance of individual miRNAs. In this process, a regression model was 

generated using the given miRNA features and outcomes (i.e. miRNA expression and overall 

survival, respectively), and the least impactful feature was eliminated. The process was then 
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Table 2.1. Characteristics of the HNSCC patients included in TCGA. 

CHARACTERISTICS 

OPSCC 

(n=81) 

OSCC 

(n=311) 

LSCC 

(n=115) 

Age at diagnosis (mean + SD, y) 55.9 + 9.3 61.9 + 13.2 61.9 + 9.1 

Sex 

   Male 69 (85.2%) 206 (66.2%) 95 (82.6%) 

Female 12 (14.8%) 105 (33.8%) 20 (17.4%) 

Race 

   White 75 (92.6%) 268 (86.2%) 91 (79.1%) 

Other 6 (7.4%) 43 (13.8%) 24 (20.9%) 

Smoking 
a
 

   Unreported 1 (1.2%) 10 (3.2%) 4 (3.5%) 

Non-smoker 25 (30.8%) 88 (28.3%) 6 (5.2%) 

Long-term former smoker 8 (9.9%) 51 (16.4%) 11 (9.6%) 

Other former smoker 25 (30.9%) 68 (21.9%) 36 (31.3%) 

Current smoker 22 (27.2%) 94 (30.2%) 58 (50.4%) 

T classification 

   T1 13 (16.0%) 29 (9.3%) 7 (6.1%) 

T2 36 (44.4%) 102 (32.8%) 20 (17.4%) 

T3 20 (24.7%) 64 (20.6%) 33 (28.7%) 

T4 12 (14.8%) 116 (37.3%) 55 (47.8%) 

N Classification 

   NX 0 (0.0%) 4 (1.3%) 2 (1.7%) 

N0 21 (25.9%) 142 (45.7%) 52 (45.2%) 

N1 52 (64.2%) 52 (16.7%) 12 (10.4%) 

N2 3 (3.7%) 110 (35.4%) 46 (40.0%) 

N3 5 (6.2%) 3 (1.0%) 3 (2.6%) 

Stage 

   I 5 (6.2%) 19 (6.1%) 2 (1.7%) 

II 11 (13.6%) 62 (19.9%) 15 (13.0%) 

III 12 (14.8%) 57 (18.3%) 18 (15.7%) 

IV 53 (65.4%) 173 (55.6%) 80 (69.6%) 

Deceased 14 (17.2%) 109 (35.0%) 33 (28.7%) 

Abbreviations: OPSCC, oropharyngeal squamous cell carcinoma; OSCC, oral cavity squamous cell 

carcinoma; LSCC, laryngeal squamous cell carcinoma; SD, standard deviation 
a 
Smoking was defined as no history of smoking, a former smoker of >= 15 years, other former smoker 

of <15 years, or a current smoker. 

repeated until the final iteration identified the most significant feature associated with the 

classifier. This was performed on a subset of top-ranking 189 miRNAs in OPSCC ordered by 

log-rank p-value while maintaining a Wald coefficient greater than or equal to one, and an 
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average expression across all samples greater than 1.414 (i.e. a log2Expression of 0.5). In this 

way, we were able to initially identify a set of promising miRNA candidates for further model 

development.  

In examining the 50 most significant miRNAs in accordance with the RFE, miR-193b-3p, 

miR-455-5p, miR-92a-3p, and miR-497-5p were identified as maintaining a high RFE ranking 

after 10-fold cross-validation, as well as being statistically significant in the univariate Cox 

  

  
 

Figure 2.2. Four significant miRNAs associated with overall survival of TCGA OPSCC patients.  

Fold change values were log2 transformed and represent the average expression difference of the 

miRNAs in the deceased patient group compared to the living patient group. Significance was 

determined with the logrank test in Cox regression analysis. 
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proportional hazards analysis (Figure 2.2). All four of these miRNAs have been reported as 

dysregulated in other cancer types, including colorectal cancer and pancreatic cancer (25-28). 

We further confirmed the validity of miR-193b-3p as a prognostic marker in OPSCC, which we 

had previously reported and incorporated in our previous model  for outcome prediction (9).    

 

A combined miRNA prognostic signature predicts overall survival in OPSCC 

We further hypothesized that a combination of prognostic miRNAs within OPSCC could be 

effectively used to predict overall survival.  The miRNAs chosen in the aforementioned analysis 

were used to build the following prognostic model: 

 

SOPSCC = 11.31EmiR-193b-3p + 13.53EmiR-455-5p – 7.25EmiR-92a-3p – 7.3EmiR-497-5p, 

 

where S indicates the risk score for each patient and E represents the normalized expression level 

of the identified miRNA from the primary tumor.  The coefficients in this equation are the Wald 

scores from the Cox regression analysis and are representative of the relative importance of the 

miRNA towards survival status. 

 In this prediction model, higher scores indicate higher risk and predict a poor survival 

outcome for the patient. The patients were stratified internally by median risk score to produce 2 

cohorts of similar size, so as to determine the validity of the prognostic model. By this method, 

40 OPSCC patients were pre dicted to be high-risk (with > median score) and 41 patients were 

predicted to be low-risk (i.e. with < median score); significantly different risks of death were 

observed based on this classification (p = 6.8E-04) (Figure 2.3A).  
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One primary concern for prognostic model development is the risk of overtraining. To 

address this issue, we performed leave-one-out cross-validation. For this cross-validation, within 

each iteration, we removed one sample from the training set and trained a model with the 

miRNA profiles from the remaining samples. The removed sample was then used for 

independent model testing. The process was repeated until all the samples had been used 

independently for model testing. For each validation round, the Wald coefficient for the 

   

  
 

Figure 2.3. Kaplan-Meier survival analysis to evaluate the novel OPSCC 4-miRNA prognostic 

signature. Patients were stratified into the low risk group or high risk group based on risk score. (A) 

The signature was evaluated for overall survival in the training set from TCGA. Significance was 

determined using the logrank test. (B) Leave-one-out cross-validation to evaluate the miRNA 

modeling strategy. The cross-validated results from all rounds were combined for prognostic 

evaluation of overall survival. (C) Independence of the miRNA signature in HPV(+) patients. (D) 

Survival analysis to evaluate the miRNA signature for overall survival in the validation cohort. 

 

 

A B 

C D 
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candidate miRNAs were calculated based on the training set and used to generate a slightly 

different model for testing. Cross-validation still yielded a significant separation of high- and 

low-risk patients (Figure 2.3B), indicating that the model is robust within the training data.  

 

The miRNA prognostic signature was independent of clinical features 

We assessed if the miRNA signature maintained its prognostic value within the context of 

commonly used clinical parameters, including age at diagnosis, gender, race, smoking history, 

initial tumor staging, and treatment type. This analysis was conducted through multivariate Cox 

hazards analysis. This miRNA signature was found to maintain statistical significance, with a 

hazards ratio of 11.85 and p-value of 3.9E-03 (Table 2.2). 

 

The OPSCC miRNA signature maintained its prognostic value independent of HPV status 

Previous work has shown that HPV positivity is a favorable prognostic marker in 

OPSCC, and thus we extended our miRNA signature to explore whether the prognostic 

significance was maintained independently of HPV status. OPSCC patients were identified as 

HPV-positive if sequencing reads from the RNA-seq data that did not align to the human 

Table 2.2. Multivariate Cox regression analysis to evaluate independence of the prognostic miRNA 

signatures from clinical parameters. 

Parameter OPSCC OSCC LSCC 

 
HR P-value 

a 
HR P-value

 a 
HR P-value 

a 

miRNA signature 11.847 0.0039 1.88 1.8E-03 2.843 1.3E-02 

Age 1.056 0.054 1.017 6.1E-02 0.978 0.32 

Sex 0.741 0.68 1.129 0.6 0.455 5.6E-02 

Stage (I/II/III vs IV) 2.936 0.11 2.155 6.3E-04 1.013 0.91 

Tobacco 1.386 0.31 1.052 0.54 1.17 0.40 

Treatment (chemotherapy vs 

radiotherapy vs combined) 
0.637 0.034 0.906 0.96 0.866 0.17 

Race (White vs. other) 7.906 0.11 0.919 0.95 2.369 2.6E-02 
a 
P-values were calculated using the Wald test. 
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genome aligned to any of the 143 types of HPV. Of the 72 OPSCC patients with RNA-seq data, 

46 were identified as having reads aligned to one of three types of HPV. Specifically, 39 patients 

were positive for HPV16, four for HPV33, and three for HPV35, leaving 26 patients as HPV-

negative.  

Table 2.3. Characteristics of the OPSCC patients at Washington University 

 

 
OPSCC miRNA validation 

cohort  (n=66) 

OPSCC mRNA validation 

cohort (n=39) 

Age at diagnosis (mean + SD, y) 58.5 + 10.2 55.8 + 10.3 

Sex 
  

Male 54 (81.8%) 36 (92.3%) 

Female 12 (18.2%) 3 (7.7%) 

Race 
  

White 65 (98.5%) 36 (92.3%) 

Other 1 (1.5%) 3 (7.7%) 

Smoking 
  

Unreported 1 (1.5%) 4 (10.3%) 

Non-smoker 22 (33.3%) 12 (30.8%) 

Former smoker 27 (40.9%) 20 (51.3%) 

Current smoker 16 (24.2%) 3 (7.7%) 

T Classification 
  

Tx 6 (9.1%) 6 (15.4%) 

T1 28 (42.4%) 14 (34.9%) 

T2 15 (22.7%) 9 (23.1%) 

T3 7 (10.6%) 4 (10.3%) 

T4 10 (15.2%) 6 (15.4%) 

N Classification 
  

NX 0 (0.0%) 6 (15.4%) 

N0 12 (18.2%) 2 (5.1%) 

N1 13(19.7%) 4 (10.2%) 

N2 37 (56.1%) 24 (61.5%) 

N3 4 (6.1%) 3 (7.7%) 

Stage 
  

Unreported 0 (0.0%) 6 (15.4%) 

I 4 (6.1%) 1 (2.6%) 

II 5 (7.6%) 0 (0.0%) 

III 15 (22.7%) 5 (12.8%) 

IV 42 (63.6%) 27 (69.2%) 

Deceased 10 (15.2%) 14 (35.9%) 
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Of the 46 patients who were identified as HPV positive, 35 were identified as low-risk 

and 11 as high-risk by the miRNA prognostic signature. Kaplan-Meier survival analysis 

indicated that the high-risk group had poor survival as compared to the low-risk group (p = 7.9E-

03) (Figure 2.3C).  The model was not statistically significant when applied to HPV-negative 

patients (data not shown); however, it should be noted that the HPV-negative set was a much 

smaller cohort (n=26), which significantly reduced the power of the model.   

 

Validation of the OPSCC miRNA signature with an independent cohort  

To confirm the validity of the 4-miRNA model for OPSCC prognosis, we applied our 

miRNA signature to an independent cohort of 66 OPSCC patients treated at the Washington 

University School of Medicine in St. Louis. The clinical characteristics of these patients are 

outlined in Table 2.3.  We hypothesized that the miRNA signature provides independent 

prognostic value from HPV biomarker. Since HPV positivity is a favorable prognostic marker 

for OPSCC, we were interested to know whether the new miRNA signature maintains its 

prognostic value by further risk-stratifying HPV-positive patients. 

All 66 patients were pre-selected to be p16 positive by immunohistochemistry, as p16 is a 

robust surrogate biomarker for HPV expression (24). HPV expression in these tumors was 

further validated by quantitative reverse-transcription PCR (qRT-PCR, see Methods for details). 

Of the 66 tumors, 61 were HPV16 positive and two were HPV18 positive. HPV transcripts were 

not detected in the remaining three samples.  

Furthermore, qRT-PCR was conducted on the tumor samples for the four miRNAs 

included in the signature. miRNA expression readings were normalized using four internal small 

RNA controls (see Methods for details). The risk score was then calculated for each of these 
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patients based on the miRNA signature. The patients were then stratified into high-risk and low-

risk groups by the median risk score. Kaplan-Meier survival analysis indicated that the miRNA 

model was significantly predictive of survival outcome for the 63 HPV-positive cases (p = 1.6E-

03, Figure 2.3D). The miRNA signature had a similar prognostic performance when applied to 

all 66 p16-positive cases (p = 2.8E-03). 

We also analyzed the signature prediction scores with a receiver operating characteristic 

(ROC) curve, which evaluated both the true positive rate (sensitivity) and the false positive rate 

(specificity). In the training and validation sets, the areas under the curve were 0.84 and 0.84, 

respectively, indicating robust performance of the model for both sensitivity and specificity 

when applied to independent cohorts (Figure 2.4).  

 

Unique miRNA expression profiles correlated with distinct subtypes of head and neck cancer 

We extended our miRNA expression profiling analysis to the 311 OSCC and 115 LSCC 

patients obtained from TCGA. The characteristics of these patients are summarized in Table 1.  

 

Figure 2.4. Receiver operating characteristic (ROC) curves for the training and validation cohorts 

from TCGA. The high Area Under the Curve (AUC) values indicate strong sensitivity and specificity. 
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For each additional subtype of HNSCC, we conducted similar analyses as described for OPSCC 

and identified 4 miRNAs in each subset that were predictive of overall survival (Table 2.4). 

These miRNAs were then combined to generate the following prognostic models: 

 

SOSCC = 10.73EmiR-337-3p + 7.82EmiR-369-5p + 6.21EmiR-218-5p + 7.01EmiR-127-5p, 

 

SLSCC = –10.70Elet-7a-3p - 6.96EmiR-145-5p + 4.59EmiR-129-5p – 6.43EmiR-26b-5p, 

 

As described earlier, the median score was used within each subset to separate patients 

into high- and low-risk groups, which were also found to have significantly different risks of 

death (p = 1.8E-04 in OSCC and p = 2.4E-03 for LSCC) (Figures 2.5A and B). We also 

conducted leave-one-out cross-validation analysis for these two signatures and found a 

significantly different risk of survival in the miRNA-stratified groups of OSCC and a borderline 

significance for LSCC (Figures 2.5C and D). Despite borderline significance of the LSCC model 

in cross-validation analysis, the LSCC prognostic miRNA model may still be useful for 

prediction of patient survival. In particular, these models maintained statistical significance 

Table 2.4. Significantly dysregulated miRNAs associated with overall survival and used to develop 

prognostic models for OSCC and LSCC, respectively. 

 

miRNA name Fold change
 a
 p-value

 b 

OSCC 

hsa-miR-337-3p 0.220 8.6E-04 

hsa-miR-369-5p 0.428 5.5E-03 

hsa-miR-218-5p 0.197 1.4E-02 

hsa-miR-127-5p 0.381 7.0E-03 

LSCC 

hsa-let-7a-3p -0.710 5.2E-04 

hsa-miR-145-5p -0.440 6.2E-03 

hsa-miR-129-5p 1.349 3.8E-02 

hsa-miR-26b-5p -0.333 8.4E-03 
a
 Fold change is log2 normalized. 

b
 P-values are from the logrank score from Cox univariate analysis.
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independently of clinical features when analyzed with multivariate Cox analysis, with the OSCC 

model having a hazards ratio of 1.88 and a p-value of 1.8E-03, and the LSCC model having a 

hazards ratio of 2.84 and a p-value of 1.3E-02 (Table 2.2).  

It is noteworthy that each miRNA signature carried prognostic significance when applied 

to the HNSCC subtype where it was derived. On the other hand, when applied to other subtypes 

of HNSCC, none of the signatures were able to effectively distinguish high-risk and low-risk 

patients (Figure 2.6). We also observed this phenomenon when we applied the 

  

  
 

Figure 2.5. Kaplan-Meier survival analysis to evaluate the OSCC and LSCC miRNA prognostic 

models. (A, B) The models were evaluated in the respective training sets. (C, D) Leave-one-out cross-

validation results were combined for prognostic evaluation. 

 

A B 

C D 
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Figure 2.6. Kaplan-Meier survival analysis to evaluate the miRNA prognostic signatures in other 

subtypes of HNSCC. (A, B) Survival analysis of the OPSCC miRNA signature in OSCC (A) and 

LSCC (B). (C, D) Survival analysis of the OSCC miRNA signature in OPSCC (C) and LSCC (D). (E, 

F) Survival analysis of the LSCC miRNA signature in OSCC (E) and LSCC (F). 
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previously developed 6-miRNA prognostic model to OSCC and LSCC (Figure 2.7). In 

conjunction with previous studies indicating significant genetic heterogeneity between subtypes 

of HNSCC (15), our results indicate that the miRNome is just as unique for each HNSCC 

subtype.  

 

Cervical cancer miRNA signatures maintain significance across tumor source sites 

The Cancer Genome Atlas also provided samples for cervical cancer. We were able to 

analyze 276 total cancers that were identified to have sufficient miRNA-Seq results and 

appropriate follow-up data (Table 2.5).  Through similar analyses, we first aimed to validate a 

previously described survival signature for cervical cancer based on 2 miRNAs (12): 

 

S = 17.9 – 0.284EmiR-9-5p – 0.376EmiR-200a-3p, 

 

where 17.9 was chosen as the zeroing coefficient. Given the change in quantification platforms 

from qRT-PCR to RNA-Seq, the signature was modified by removing the coefficient and using 

  

Figure 2.7. Kaplan-Meier survival analysis to evaluate an existing OPSCC miRNA signature in 

OSCC (A) and LSCC (B). 

 

 
A 
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Table 2.5. Characteristics of the CESC patients included in TCGA. 

CHARACTERISTICS 
Total Cervical 

Cancer (n=276) 

Squamous Cell 

Carcinoma 

(n=227) 

Adenocarcinoma and 

Adenosquamous Cell 

Carcinoma (n=45) 

Age at diagnosis + SD 48.2+13.9 48.7+14.2 45.1+12.2 

Median follow up time (days) 469 471 306 

Race 
   

White 197 158 35 

Black or African American 28 26 2 

Other 22 19 3 

Unreported 29 24 5 

HPV (+) 254 216 37 

Smoking
a 

   
Nonsmoker 137 109 24 

Long-term former smoker 8 7 1 

Other former smoker 42 34 8 

Current smoker 60 51 9 

Unreported 29 26 3 

T classification 
   

TX 17 15 2 

Tis 1 1 0 

T1 131 103 26 

T2 63 51 11 

T3 17 14 2 

T4 10 9 1 

Unreported 37 34 3 

N classification 
   

NX 65 54 10 

N0 122 95 24 

N1 52 44 8 

N2 0 0 0 

N3 0 0 0 

Unreported 37 34 3 

Stage 
   

I 152 117 33 

II 61 55 5 

III 37 34 2 

IV 20 15 5 

Unreported 6 6 0 

Deceased in study 63 53 10 
a 
Smoking was defined as no history of smoking, a former smoker of >= 15 years, other former smoker 

of <15 years, or a current smoker. 
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the median scores across all TCGA samples as the cutoff value to distinguish high- and low-risk 

groups. The trend was accurate, but was unable to reach statistical significance (Figure 8). 

We then aimed to develop a novel miRNA-expression prognostic signature, using TCGA 

as the primary training set. The analysis identified four miRNAs as statistically significant for 

survival: miR-361-3p, miR-532-3p, and miR-150-5p are positively associated with survival, and 

miR-335-3p is negatively associated (Table 2.6). By using the z-scores obtained from univariate 

Cox survival analysis as coefficients, the resulting signature is as follows:  

Table 2.6. Significantly dysregulated miRNAs associated with overall survival and used to develop 

prognostic models for CESC. 

miRNA name Fold change
 a
 P-value

 b 
z-score 

hsa-miR-361-3p -0.481 3.8E-07 -5.08 

hsa-miR-532-5p -0.514 8.7E-05 -3.92 

hsa-miR-150-5p -0.911 2.7E-03 -4.90 

hsa-miR-335-3p 0.544 1.8E-02 3.00 
a
 Fold change is log2 normalized. 

b
 P-values are from the logrank score from Cox univariate analysis.

 

 

 
 

Figure 2.8. Kaplan-Meier survival analysis to analyze an existing 2-miRNA prognostic signature in 

cervical cancer. 

Low risk (n=138) 
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S = -5.08EmiR-361-3p – 3.92EmiR-532-3p – 4.90EmiR-150-5p + 3.00EmiR-355-3p 

 

In the training data, this signature was confirmed to significantly separate high-risk and low-risk 

  

Figure 2.9. Kaplan-Meier analysis for a novel 4-miRNA prognostic signature in cervical cancer. The 

model was evaluated in (A) the training data from TCGA and (B) with 10-fold cross-validation. 

Significance is determined using the logrank p-value from Cox univariate survival analysis. 

A B 

 

Figure 2.10: The receiver operating characteristic (ROC) curve for the novel CESC signature in the 

TCGA training cohort. The area under the curve was 0.716. 

Low risk (n=138) 

High risk (n=138) 

Low risk (n=139) 
High risk (n=137) 
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patients (p = 8.6E -07) without overtraining, as shown in 10-fold cross-validation (1.8E-06) 

(Figures 2.9A and B).  ROC analysis also indicated model robustness in the context of sensitivity 

and specificity, with an area under the curve of 0.716 (Figure 2.10). More importantly, Kaplan-

Meier analysis also showed that this signature was able to distinguish between high-risk and low-

risk patients in both squamous cell carcinomas and adeno-type carcinomas. High-risk and low-

risk cohorts in the squamous cell patient group were separated with a p-value of 1.9E-05, and in 

the adeno-type carcinomas with a p-value of 9.5E-03 (Figure 2.11).  However, this signature 

could not be validated in an independent cohort of 59 cervical cancer patients treated at 

Washington University, likely due to significant patient-to-patient variations from different 

cohorts or treatment regimens (Figure 2.12).  

 

 

Figure 2.11: Kaplan-Meier analysis for the novel CESC signature in (A) cervical squamous cell 

carcinomas and (B) cervical adenosquamous carcinomas and adenocarcinomas. Significance is 

determined using the logrank p-value from Cox univariate survival analysis. 
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2.5 Discussion 

Identification of novel prognostic biomarkers typically requires a large dataset which 

provides sufficient statistical power for discovery research.  To this end, we took advantage of 

the high-throughput data from TCGA for biomarker analysis. The TCGA consortium has 

published many studies identifying the mutations and dysregulations associated with tumors in 

comparison to matched normal tissue samples.  There are also a number of studies that used 

TCGA data for independent validation of existing biomarkers (13,29,30).  Additionally, many 

studies exploring miRNA biomarkers in head and neck cancer, including the miR-34 family and 

miR-200a species, have indicated their roles in oncogenesis (31). However, few studies have 

utilized TCGA data in systematically identifying biomarkers associated with patient outcome. 

In this study, we have presented a new strategy to identify prognostic miRNA biomarkers 

by analyzing TCGA data directly, followed by experimental validation using an independent 

cohort.  As the first step, we utilized TCGA data as the primary source to identify biomarkers 

and develop prognostic models for OPSCC. Within OPSCC, infection by HPV has already been 

 
 
Figure 2.12: Kaplan-Meier analysis of the novel CESC signature in an independent cervical cancer 

cohort. Significance was determined using the logrank test from univariate Cox survival analysis. 
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indicated as a favorable prognostic factor (7). Our model was able to further improve the 

prognostic value of HPV positivity by identifying a high-risk cohort among HPV(+) patients. 

Next, we were able to validate the robustness of this signature using an independent cohort that 

consisted only of HPV(+) OPSCC patients. This confirmed that the miRNA signature was able 

to further distinguish high- and low-risk patients within HPV(+) OPSCC patients. 

Among the subtypes of HNSCC, OPSCC has unique characteristics as HPV infection is 

associated with most OPSCC cases. Although the total number of HNSCC cases has decreased 

steadily on a yearly basis, the number of reported OPSCC cases has increased significantly as a 

result of rapid rise in HPV(+) OPSCC cases (32,33). Our clinical goal of building a powerful 

prognostic model is to reliably stratify OPSCC patients for treatment failures after standard 

therapy. The availability of such a reliable prognostic model is critical for providing 

individualized cancer therapy, including both de-intensifying treatment for low-risk patients as 

well as intensification for high-risk patients. In particular, there is currently significant clinical 

interest in identifying a subset of OPSCC patients who have low-risk of treatment failures, in 

order to de-intensify their overall treatment. As present, multi-institutional de-escalation clinical 

trials are underway for HPV(+) OPSCC patients (34,35). However, there is still a significant 

portion of HPV(+) OPSCC cases that have poor outcome. For these cases, de-escalation 

treatment should not be applied and instead the treatment should be intensified. Thus, there is a 

critical need to develop robust prognostic models to further stratify HPV(+) OPSCC patients for 

enrollment in de-escalation trials. To this end, our proposed miRNA-based prognostic model will 

fill in a critical need by selecting HPV(+) OPSCC patients who will most likely benefit from de-

escalation treatment. Further work would be required to bring this signature fully to the clinical 
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setting, such as the inclusion of reference genes to standardize the signature score and allow 

clinicians to determine the appropriate treatment modality.  

Our analysis involving cervical cancer demonstrated that the methods for identifying 

miRNA biomarkers in TCGA data, or other large public –omics datasets, can be extended 

beyond head and neck cancers. The signature we described was robust within the training data 

from TCGA, as demonstrated through cross-validation and ROC analysis, but was unable to 

maintain significance in an independent dataset.  Despite this drawback, it was notable that the 

signature was able to separate high- and low-risk patients across cervical cancer species. It has 

been noted in the literature that patients with adeno-type cervical carcinomas are genetically 

distinct from squamous type carcinomas, as well as conferring higher risk (16,36). Therefore, the 

possibility of using a single prognostic signature to stratify patients prior to determination of 

tumor source in cervical cancers merits further investigation. Additional work in this field would 

incorporate more individualized approaches, as genomic heterogeneity may also require unique 

miRNomic profiles for the differing cervical tissues. 

Besides OPSCC, we have also shown that our strategy on TCGA-based biomarker 

discovery can be extended to the study of other subtypes of HNSCC, as well as CESC. In this 

way, we have demonstrated that TCGA represents a rich resource for cancer prognostic studies. 

We expect that prognostic tools developed using TCGA data, with proper validation, will 

significantly expand our ability to more precisely manage cancer patients by applying 

individualized treatment plans. 
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Chapter 3: Development of an Online 

Resource for Exploring Pan-Cancer 

MicroRNA Dysregulation 

This chapter is adapted from and expanded upon the following publication (1): 

Wong, Nathan, Yuhao Chen, Shuai Chen and Xiaowei Wang. (2017). OncomiR: An online 

resource for pan-cancer microRNA dysregulation. Bioinformatics, btx627. DOI: 

10.1093/bioinformatics/btx627. 

3.1 Abstract 

Dysregulation of microRNAs (miRNAs) is extensively associated with cancer development and 

progression. miRNAs have been shown to be biomarkers for predicting tumor formation and 

outcome. However, identification of the relationships between miRNA expression and tumor 

characteristics can be difficult and time-consuming without appropriate bioinformatics expertise. 

To address this issue, we present OncomiR (http://oncomir.org), an online resource for exploring 

miRNA dysregulation in cancer. Using combined miRNA-Seq, RNA-Seq, and clinical data from 

The Cancer Genome Atlas, we systematically performed statistical analyses to identify 

dysregulated miRNAs that are associated with tumor development and progression in most major 

cancer types. Additional analyses further identified potential miRNA-gene target interactions in 

tumors. These results are stored in a backend database and are presented through a web server 

interface. Moreover, through a backend bioinformatics pipeline, OncomiR can perform dynamic 

analysis with custom input data for in-depth characterization of miRNAs in cancer. 
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3.2 Introduction 

MicroRNAs (miRNAs) are short, single-stranded RNA sequences of approximately 22 

nucleotides that function in post-transcriptional regulation of gene expression. By targeting RNA 

transcripts for degradation or inhibition of translation, miRNAs are actively involved in 

controlling downstream proteomic profiles. This phenomenon is observed in numerous 

physiological or disease processes, such as embryonic development, tissue differentiation, 

immune response, and tumor progression (2). Furthermore, miRNAs can serve as biomarkers for 

various diseases, with particular clinical interest in predicting likelihood of cancer development 

and progression. 

 miRNA biomarkers have been discovered in nearly all cancer types. For example, in 

breast cancer, miR-21-5p and miR-155-5p, among others, have been reported as upregulated as 

compared to normal tissue, while miR-34a-5p and miR-145-5p are downregulated (3). However, 

it has also been noted that miR-221-3p and miR-222-3p are both downregulated in erythroblastic 

leukemia but upregulated in in thyroid carcinoma and hepatocellular carcinoma, which suggests 

that the mechanisms driving tumor formation and progression are not uniform across all cancer 

types (3) . The majority of studies that identify miRNA biomarkers focus on a single or a subset 

of miRNAs; however, with the growth of affordable high-throughput sequencing technologies, it 

is possible to analyze the complete miRNomes from many patients across multiple cancer types. 

 Analysis of high-throughput data is difficult for researchers with little computational 

expertise. To address this issue, a number of databases have been previously established to 

characterize miRNA functions in cancer. For example, miRCancer, miR2Disease, and 

OncomiRDB present experimentally validated relationships between miRNA expression and 

cancer development, based on literature reports (4-6). Other resources, including starBase, 
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cBioPortal and FireBrowse, among others, provide results of statistical analyses on high-

throughput sequencing studies of cancer genomics as a whole, but not specifically focused on 

miRNA analysis (7-11).  

Incorporating all the facets of miRNA biology into a comprehensive user-friendly toolset 

is a daunting task, as it requires identifying potential miRNA biomarkers and their targets as well 

as establishing their functional relationships in the context of cancer biology. To address this 

need, we present OncomiR, an online pan-cancer resource for analysis of miRNA dysregulation. 

OncomiR contains three major features: 1) A database of statistically dysregulated miRNAs 

associated with clinical characteristics of cancer; 2) miRNA-target expression correlation and 

prediction across cancer types; and 3) tools for dynamic analysis of miRNA-derived survival 

signatures and clustering of cancer types. The diverse functionality of OncomiR would make it a 

valuable resource to the miRNA and cancer research community. 

 

3.3 Materials and Methods 

Data Retrieval 

Anonymized patient clinical data, normalized mature miRNA-Seq read counts, and normalized 

RNA-Seq read counts were obtained from The Cancer Genome Atlas data portal (tcga-

data.nci.nih.gov, gdc-portal.nci.nih.gov). Patients were excluded from subsequent analysis if the 

clinical data indicated no follow up time, the tissue specimens were not obtained from primary 

tumors, or the sample lacked either miRNA-Seq or RNA-Seq data. In total, 9,498 patients were 

analyzed across 30 cancer types (Table 3.1). miRNA-Seq read counts less than 1 read per million 

reads mapped (RPM) were fixed to a floor value of 1 RPM and log2 transformed. RNA-Seq read 
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counts less than 5 reads per kilobase per million reads mapped (RPKM) were fixed to a floor 

value of 5 RPKM prior to log2 transformation. 

 

Data Analysis 

Patient survival time is defined as the days between the start of treatment and the most 

recent follow up appointment or patient death. Follow up time was truncated to five years in 

order to determine the five-year survival status. 

Table 3.1. Summary of cancer types and patient counts from The Cancer Genome Atlas. 

Cancer Type (abbreviation) Total patients 
Patients analyzed 

(patients excluded) 

Adrenocortical carcinoma (ACC) 80 80 (0) 

Bladder urothelial carcinoma (BLCA) 412 407 (5) 

Brain lower grade glioma (LGG) 515 508 (3) 

Breast invasive carcinoma (BRCA) 1098 1065 (33) 

Cervical squamous cell carcinoma and endocervical 

adenocarcinoma (CESC) 
308 289 (19) 

Cholangiocarcinoma (CHOL) 36 36 (0) 

Colon adenocarcinoma (COAD) 459 424 (35) 

Esophageal carcinoma (ESCA) 185 184 (1) 

Head and neck squamous cell carcinoma (HNSC) 528 522 (6) 

Kidney chromophobe (KICH) 66 65 (1) 

Kidney renal clear cell carcinoma (KIRC) 536 514 (22) 

Kidney renal papillary cell carcinoma (KIRP) 291 288 (3) 

Liver hepatocellular carcinoma (LIHC) 377 366 (11) 

Lung adenocarcinoma (LUAD) 521 500 (21) 

Lung squamous cell carcinoma (LUSC) 504 472 (32) 

Mesothelioma (MESO) 87 86 (1) 

Ovarian serous cystadenocarcinoma (OV) 585 484 (101) 

Pancreatic adenocarcinoma (PAAD) 185 177 (8) 

Pheochromocytoma and paraganglioma (PCPG) 179 179 (0) 

Prostate adenocarcinoma (PRAD) 498 494 (4) 

Rectal adenocarcinoma (READ) 171 155 (16) 

Sarcoma (SARC) 261 259 (0) 

Skin cutaneous melanoma (SKCM) 570 96 (474) 

Stomach adenocarcinoma (STAD) 443 413 (13) 

Testicular germ cell tumor (TGCT) 150 134 (16) 

Thyroid carcinoma (THCA) 507 505 (2) 

Thymoma (THYM) 124 123 (1) 

Uterine corpus endometrial carcinoma (UCEC) 548 536 (12) 

Uterine carcinosarcoma (UCS) 57 56 (1) 

Uveal melanoma (UVM) 80 80 (0) 

   

Total 10,361 9,497 (864) 
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 Paired tumor and non-tumor samples were obtained from 670 patients in the data set. The 

relationship between tumor formation and miRNA expression within these cancer types were 

evaluated using paired Student’s t-test. For each clinical feature, analysis of variation (ANOVA) 

was used to determine the association between miRNA expression and relevant feature values. 

Survival analysis was performed using Cox proportional hazards analysis. Univariate analysis 

was conducted to determine the influence of the expression of a single miRNA on survival time; 

multivariate analysis was implemented to determine if the effect of the miRNA was independent 

of clinical characteristics. Additionally, the unpaired Student’s t-test was employed to evaluate 

the difference in the average miRNA expression between living and deceased patients.  

The likelihoods of miRNA-gene target pairings were evaluated using Pearson’s 

correlation analysis based on the expression profiles of both miRNAs and mRNAs, in 

conjunction with target prediction scores obtained from miRDB (12). For each individual cancer 

type, all available tumor samples were incorporated in the correlation analysis. Additionally, all 

paired tumor/normal tissue types were evaluated as a single set, so as to provide a miRNA-target 

interactome specific to tumor formation by comparing to normal tissues. All statistical analysis 

was conducted using the R statistical program (www.r-project.org).  

 

3.4 Results 

Database and Web Server Construction 

OncomiR consists of a primary backend database and a dynamic web server. Results from the 

statistical analyses are stored in a MySQL database accessible through Perl CGI and Perl DBI 

(Figure 3.1A). The OncomiR web server implements Perl CGI in conjunction with the R 

statistical program in order to conduct ad hoc backend analysis (Figure 3.1B).  
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The primary database design uses keys based on miRNA accession, cancer type, gene GI, 

and clinical diagnostic parameter (Figure 3.2). The resulting combinations can be used to search 

for: miRNAs associated with tumor formation; miRNAs dysregulated between cancer diagnostic 

stages; miRNAs correlated patient overall survival in individual cancer types; average miRNA 

expression levels in cancers; and miRNA-target interactions specific to cancer types. 

 

  

 

Figure 3.1.  Database and server design for OncomiR. (A) The OncomiR database contains the results 

of statistical analysis of miRNA expression in relation to patient characteristics for biomarker 

identification, and with mRNA expression to identify potential gene targets. (B) The OncomiR web 

server can perform de novo analysis for miRNA survival signatures and miRNA expression-based 

clustering for most cancer types. 

A 

B 
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miRNA Dysregulation in Cancer Development and Progression 

The identification of novel RNA-derived molecular biomarkers in the clinical setting 

requires a combination of high-throughput data, such as next-generation sequencing, and robust 

statistical analysis. With this in mind, we have conducted such analyses using miRNA-Seq data 

from TCGA and evaluated the significance of miRNA expression in relation to clinical 

 

 

Figure 3.2. Database schematic for OncomiR. Each box represents an individual table in the 

OncomiR database. Arrows indicate the keys used by MySQL database. Arrow sources show the 

home tables of the key, and the destinations show how the keys can be used in combination for rapid 

data retrieval. 
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parameters. The results of these studies have been included in OncomiR, encompassing 30 major 

cancer types and 1,171 distinct mature miRNA sequences.  

 OncomiR features a web query interface for the retrieval of miRNA associations to three 

primary clinical features: tumor development, tumor staging and grade, and overall patient 

 

 

Figure 3.3. Search for miRNA biomarkers in the OncomiR database. A screenshot of a miRNA 

search in relation to clinical parameters (A) produces a table of results containing the miRNA and 

related cancer types, and p-values from relevant statistical tests (B). 

 

A 

B 
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survival. For all there categories, users can search by miRNA name as assigned in miRBase 

Release 21 (13); users are also able to filter results by selecting one or more cancer types (Figure 

3.3A).  In this way, users can retrieve lists of miRNAs associated with specific clinical features 

in selected tumor types.  

The results are presented in a tabular format, where each row shows the paired miRNA 

and specified cancer types and clinical features, with relevant statistics indicating the 

significance of the miRNA interaction. A screenshot of search results for diagnostic parameters 

associated with a specific miRNA is shown in Figure 3.3B: each row in the results shows the 

miRNA, cancer type, diagnostic criteria, and relevant p-values. Such results are similar across 

different search parameters. For example, searching for miRNAs associated with survival in 

different cancer types will return a list of miRNAs, with raw and adjusted p-values from 

unpaired Student’s t-test comparing expression between living and deceased patients, as well as 

univariate Cox proportional hazards analysis, which includes survival time as a factor (Figure 

 
 

Figure 3.4. Search results for survival-associated miRNAs. Results indicate the relevant miRNAs in a 

given cancer type, their associated statistical significance with survival, and the cohort in which the 

miRNA is upregulated. 
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3.4). 

OncomiR also offers the users to compare the mean expression values of miRNAs across 

two or more cancer types. When selecting a single miRNA, the results are presented both as a 

table of mean values and as a bar graph (Figure 3.5), while a search for multiple miRNAs will 

produce a table containing the search results.  

 

miRNA-Target Prediction for Tumor Samples 

Since miRNAs function as post-transcriptional regulators of gene expression, 

dysregulation of miRNAs implies that downstream regulation of mRNA targets would also be 

affected. To address this within the context of cancer biology, OncomiR offers the ability to 

 
 

Figure 3.5. Search results for average miRNA expression levels. The results are presented in the form 

of log2 mean expression in each cancer type, as well as a bar graph for a visual comparison of mean 

expression. 
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search for significant expression correlations between miRNAs and potential gene targets in 

tumor samples. The likelihood of a miRNA targeting a specific transcript is dependent on 

multiple features, such as the miRNA seed sequence (nucleotides 2-8) and target site 

accessibility. OncomiR combines the results of expression correlation analysis between miRNAs 

and mRNAs with the results of the recently updated MirTarget algorithm (version 3) to identify 

likely targeting effects within specific cancer types (14). All target prediction data were retrieved 

from miRDB.org (12). 

 Users are able to search for potential interactions by querying either for miRNA or gene 

target and selecting one or more cancer types. The inclusion of cancer types as a search 

parameter is necessary, considering the genomic heterogeneity between different tissues. Each 

miRNA-target pair within the set is presented with the correlation coefficient and p-value from 

Pearson’s correlation analysis, along with MirTarget prediction score, as obtained from miRDB 

(Figure 3.6). The most likely miRNA-target pairs have both strongest negative correlation 

 
 

Figure 3.6. OncomiR search results for miRNA target prediction. The paired miRNA-target 

interactions are evaluated in individual cancer types for directional correlation and prediction score, 

obtained from the MirTarget algorithm. 
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coefficients among the tumors and highest target prediction scores by MirTarget.  The selection 

criteria can be further loosened to include more miRNA-target pairs that have lower Pearson’s 

correlations or MirTarget scores. 

 

Server Interface for Custom miRNA Analysis 

One of the most significant clinical applications of cancer biomarker research is the 

stratification of patients for individualized therapy based on treatment outcome. To make our 

analysis more accessible to the clinical research community at large, OncomiR can analyze 

miRNA-derived survival outcome signatures dynamically for one or more cancer types. Users 

are able to input their selected miRNAs with pre-determined coefficients, as well as a percentile 

cutoff to determine the sizes of high- and low-risk cohorts (Figure 3.7A). The coefficient options 

also include using raw miRNA expression levels, or using z-scores resulting from a preliminary 

univariate Cox proportional hazards analysis. The results are presented in the form of a Kaplan-

Meier survival curve and the logrank p-value to indicate the significance of cohort separation 

(Figure 3.7B). This feature is particularly useful for the evaluation of new biomarker signatures 

discovered with TCGA data, or validation of existing signatures derived from other independent 

studies.  

 Another feature of OncomiR is the ability to dynamically cluster major cancer types by 

miRNA expression. To this end, OncomiR offers dynamic clustering, whereby users can 

evaluate the suitability of using miRNA subsets to distinguish different cancer types. The mean 

expression of each miRNA was calculated within the individual cancer types; this average 

miRNomic profile can then be used as the basis of k-means or hierarchical clustering. (Figure 

3.7C). Briefly, k-means clustering requires a predetermined number of groups, or clusters, into 
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which patients are sorted on the basis of expression similarity; hierarchical clustering initially 

treats each sample as its own individual cluster and builds a dendrogram by connecting clusters 

that are most closely related (15). Both clustering options return a list of cancer types that cluster 

  
 

  

Figure 3.7. De novo analysis in OncomiR for survival signature and tumor clustering. (A) Survival 

analysis is conducted by selecting one or more cancer types, a list of miRNAs, and a list of 

coefficients. (B) The results of survival analysis are shown as a Kaplan-Meier curve. (C) Clustering of 

cancer types can be conducted using all miRNAs or a user-defined subset of miRNAs. (D) An 

example of hierarchical clustering is shown as a heat map. 
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C 
D 



  

101 

 

together, and hierarchical clustering also produces a heatmap to visualize the similarities and 

differences between clusters (Figure 3.7D).  

 

3.5 Discussion 

The identification of novel molecular biomarkers often requires comprehensive high-

throughput datasets that are sufficiently large to minimize potential noise from patient-to-patient 

variations while also being thoroughly inclusive of less well-studied genes.  Through TCGA, we 

obtained high-throughput miRNA-Seq and RNA-Seq data across 30 cancer types, with 

corresponding clinical profiles from thousands of patients. To systematically analyze miRNA-

related TCGA data, we established a comprehensive bioinformatics pipeline to evaluate miRNA 

expression changes in relation to various clinical parameters such as tumor staging and patient 

survival status. In this way, we identified many dysregulated miRNAs involved in tumor 

formation, progression, and survival, and we have presented these results in OncomiR, a web 

accessible database. 

 By focusing primarily on miRNAs and miRNA-mediated biological functions, OncomiR 

can provide a greater insight into the miRNomic effects on tumor biology. Navigating OncomiR 

for miRNA biomarkers is designed to be both intuitive and informative.  Users are able to select 

a preliminary search criterion, and navigate through a single search to find the desired results. In 

addition, flexible options are provided for more advanced analyses. In combination, these 

analyses can identify dysregulated miRNAs and targets in specific tumor types, and subsequently 

suggest potential pathways involved in the observed clinical phenomena, such as metastatic 

staging or overall survival. Multiple well-established miRNAs have been rediscovered through 

our analyses as being involved in cancer, consistent with previously reported studies. For 
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example, miR-92a-3p functions as an oncogenic miRNA, i.e. is overexpressed in tumor tissue as 

compared to normal tissue (16). More importantly, many new miRNA/cancer associations have 

been identified through our systematic analysis, especially in the context of specific cancer types. 

These new data provide useful clues for further characterization of miRNA functions in various 

types of cancer. 

 By incorporating the R statistical program, OncomiR performs clustering analysis of 

most known cancer types based on miRNA expression profiles.  Subsets of miRNAs may be able 

to provide insight into similarities between cancer types. For example, our miRNA clustering 

analysis reveals that two subtypes of lung cancer, lung adenocarcinoma (LUAD) and lung 

squamous cell carcinoma (LUSC) cluster together as expected, while a less intuitive similarity is 

observed as prostate adenocarcinoma (PRAD) clusters with three subtypes of kidney cancer 

(chromophobe, KICH; renal cell carcinoma, KIRC; and renal papillary carcinoma, KIRP) 

(Figure 3.7D). By evaluating the similarities as well as differences in miRNA expression in 

various cancer types, a greater understanding of how these cancers, and by extension, their 

original tissue sources, could in turn lead to improved clinical interpretations and subsequent 

interventions. 

 Currently, the strength of OncomiR lies in its ability to identify significant miRNAs 

based on clinical parameters shared across multiple cancer types, such as diagnostic staging and 

patient survival (Figure 3.8). Future updates of the database would benefit greatly from 

identifying biomarkers associated with cancer-specific traits. One example is the association of 

miRNAs with oncogenic viral infection, such as human papillomavirus in cervical and 

oropharyngeal cancers or hepatitis infection leading to liver cancer (17-19). Additional work 

may also include potential pathways mediated by miRNA dysregulation. Tools for analyzing 
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comprehensive gene sets, as compared to individual genes, include PANTHER and Gene Set 

Enrichment Analysis (20,21). Such studies would be conducted on the gene transcripts regulated 

directly by the dysregulated miRNAs, as shown in the current target analysis results. 

 
 

Figure 3.8.  Overview of OncomiR’s functionality. The data was obtained from TCGA and 

analyzed before being stored in a backend database. The database is accessible through a web 

interface that allows users to search for and identify miRNAs associated with cancer 

classification and clinical diagnostic parameters. 
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 In summary, OncomiR is a user-friendly web resource for exploring miRNA 

dysregulation in cancer. We have conducted statistical analyses on miRNomes from TCGA to 

provide a readily accessible repository of miRNA associations with cancer characteristics. 

Additionally, correlation and target analysis were conducted to provide insights into possible 

miRNA-mediated mechanisms leading to cancer development and progression. Moreover, 

OncomiR also provides a set of dynamic tools for researchers to conduct custom miRNA 

analyses. Thus, OncomiR is a comprehensive tool that allows and encourages flexible 

miRNomic analysis across many cancer types. 
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Chapter 4: Pathway Analysis Identifies 

MicroRNA-Mediated Mechanisms of HPV-

Induced Oncogenesis and Tumor Survival 

 

4.1 Abstract 

Human papillomavirus (HPV) is the primary cause of 95% of new cervical cancer 

diagnoses and 75% of new oropharyngeal cancer diagnoses. Despite its role in causing tumor 

formation, HPV is also established as a positive prognostic marker for tumor survival. Through 

infection HPV can induce expression changes in the host transcriptome, as well as regulatory 

elements such as microRNAs (miRNAs). The responsiveness of regulatory elements, such as 

those controlled by miRNAs, may explain the tumorigenic/pro-survival dichotomy of HPV 

infection. To determine how these effects are induced from both the host miRNome and host 

transcriptome, we have identified HPV infection status in 301 cervical cancers and 79 

oropharyngeal cancers obtained from The Cancer Genome Atlas. Based on HPV status, we 

performed comprehensive statistical analysis to identify dysregulated miRNAs and gene 

transcripts. Potential gene targets were subjected to pathway analysis using the PANTHER 

database, so as to observe the cumulative effects in the context of Gene Ontology-defined 

biological processes. Pathway analysis revealed that significantly upregulated genes in both 

HPV(+) and HPV(-) tumors favored cellular reproduction and growth processes; HPV(-) tumors 

indicated underrepresentation of cellular adhesion pathways, which hint at possible mechanisms 

for tumor migration and poorer survival. More focused miRNA-target analysis showed 
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upregulation of both tumor suppressors and oncogenes, indicating that miRNA mediation may 

partly explain the dichotomy of HPV infection inducing tumor formation yet encouraging overall 

patient survival. 

 

4.2 Introduction 

With his Nobel Prize winning hypothesis that human papillomavirus is a correlative, and 

ultimately causative, factor in cervical cancer, Harald zur Hausen demonstrated that cancer may 

not only be treated after diagnosis, but that the potential existed that if the cause is known, cancer 

as a disease may also be preventable (1,2). In the years since, research has shown that the 

primary mechanisms of HPV-induced oncogenesis are based in the activities of the E6 and E7 

viral proteins. E6 induces the ubiquitination of the regulatory protein p53, which is also known 

to function as a tumor suppressor (3). At the same time, E7 binds to and inactivates the tumor 

suppressor pRB, which in turn leads to the release of the transcription factor E2F1, which 

controls for a number of transcription factors associated with cell growth and proliferation (4). 

HPV has also been shown to induce alteration in the expression profiles of microRNAs 

(miRNAs), short non-coding RNA transcripts of approximately 22 bases. miRNAs function as 

the guide sequence of the RNA-induced silencing complex (RISC), a post-transcriptional 

regulatory body that targets and degrades coding sequences, thereby preventing the translation of 

the protein. By controlling regulatory complexes such as RISC, in addition to altering cellular 

response through viral proteins, HPV may be able to prolong its own replicative cycle, while also 

making more subtle changes that can assist in the development of tumor growth.  HPV does not 

encode any of its own miRNAs, but has been shown to induce changes in host miRNA 

expression level. Examples include miR-9-5p, which has been reported as upregulated in 
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HPV(+) cervical and oropharyngeal cancers, miR-145-5p, which has been shown as 

downregulated by HPV33, and miR-23b, which has been shown to be downregulated by HPV16 

(5-8). The subsequent cellular responses can include increased motility, as associated with miR-

9-5p targets, genome amplification through the suppression of miR-145-5p, and increased 

expression of the oncogene cMet, through miR-23b downregulation (5,7,8).  

Interestingly, HPV has also been shown to be a powerful prognostic marker for improved 

cancer survival. In this context, a number of studies have also examined miRNA-mediated 

responses, and the potential mechanisms by which miRNAs can function as biomarkers for 

survival. The former has been demonstrated in the development of miRNA-profile derived 

survival signatures in cervical and oropharyngeal cancers, which may be used in the clinical 

setting to aid in determining course of treatment (9-13). Due to the varying survival rates based 

on HPV infection status, a common focus of these studies, especially in oropharyngeal cancers, 

is to demonstrate that these miRNA-based signatures can maintain significance in both HPV(+) 

and HPV(-) cohorts. However, the mechanisms by which HPV is capable of both inducing tumor 

formation as well as improving patient survival after diagnosis are unclear. 

With this in mind, we have aimed to identify distinct miRNA-mediated pathways that 

indicate either HPV-induced tumor growth or HPV-related tumor survival. Using 79 

oropharyngeal cancer samples and 301 cervical cancer samples obtained from The Cancer 

Genome Atlas, we have identified HPV-dysregulated microRNAs and coding transcripts. 

Further, we have identified potential miRNA targets, and by implementing pathway analysis, we 

have also identified a number of distinct mechanisms as potentially controlled through the 

miRNA regulatory mechanism. In summary, we have identified miRNA-controlled mechanisms 
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that supplement HPV-induced oncogenesis, as well as revealed potential genomic and 

miRNomic responses that may result in improved tumor survival. 

 

4.3 Materials and Methods 

Data Retrieval 

A total of 81 oropharyngeal cancer patients and 303 cervical cancer patients were 

identified in The Cancer Genome Atlas (Table 4.1). Through the Genomic Data Commons Data 

Portal (portal.gdc.cancer.gov), raw RNA-seq and miRNA-seq data were obtained for 79 patients 

in the oropharyngeal cancer group, and 301 cervical cancer patients (14).  All gene sequences 

were downloaded from the UCSC Genome Browser (15). Index files mapping transcript 

accessions to NCBI Gene IDs were downloaded from the NCBI ftp site (16). Complete HPV 

genomes were downloaded from the Papillomavirus Episteme (17). All mature miRNA 

sequences were downloaded from miRBase (18).  

 

TCGA Sequence Analysis 

Sequence alignment was performed using the Bowtie program (19). Raw miRNA-Seq 

reads were aligned to the human miRNome. The read counts were then normalized to reads per 

million reads mapped per sample and set to a floor value of 1 for lowly expressed miRNAs 

before being log2 normalized. Raw RNA-seq reads were aligned sequentially to human RefSeq 

annotated sequences, the human reference genome, and the virome. The read counts were 

normalized to reads per kilobase per million mapped reds (RPKM), then to the 200
th

 gene before 

being set to a floor of 5 normalized reads for lowly expressed transcripts. 
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 Statistical Analysis for miRNA Correlation to HPV Status  

miRNA and coding transcript expression levels were examined for significance  in 

Table 4.1: Patient characteristics of the HPV cancer cohorts 

 
All Cervical 

Cancer 

Cervical 

Squamous Cell 

Carcinoma 

Cervical Adeno-

type Carcinoma 

Oropharyngeal 

Squamous Cell 

Carcinoma 

Total patient count 307 254 50 81 

Patients included 301 252 49 79 

Age at diagnosis + SD 48.2+13.9 48.8+14.1 45.3+12.3 55.9+9.3 

Median follow up time (days) 350 471 241 637 

Sex 
    

Female 301 252 49 11 

Male 0 0 0 68 

Race 
    

White 206 169 37 73 

Black or African American 30 28 2 6 

Other 29 24 5 0 

Unreported 36 31 5 0 

HPV (+) 281 (93.4%) 240 (95.2%) 41 (83.6%) 52 (65.8%) 

Smoking
a 

    
Nonsmoker 142 114 28 23 

Long-term former smoker 9 8 1 8 

Other former smoker 44 36 8 25 

Current smoker 63 54 9 22 

Unreported 43 40 3 1 

T classification 
    

TX 17 15 2 4 

Tis 1 1 0 0 

T1 137 110 27 13 

T2 71 58 13 31 

T3 20 18 2 19 

T4 10 9 1 4 

Unreported 45 41 4 0 

N classification 
    

NX 66 56 10 3 

N0 130 104 26 21 

N1 60 51 9 8 

N2 0 0 0 43 

N3 0 0 0 4 

Unreported 45 41 4 0 

Stage 
    

I 159 125 34 5 

II 76 69 7 10 

III 38 35 3 13 

IV 21 16 5 49 

Unreported 7 7 0 2 

Deceased in study 72 61 11 22 
a 
Smoking was defined as no history of smoking, a former smoker of >= 15 years, other former smoker of <15 

years, or a current smoker. 
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relation to HPV status in individual tumor types. Coding transcripts were evaluated using the 

Student’s t-test. miRNA expression levels were evaluated using a permutation test, also called 

label shuffling. Specifically, HPV status was randomly assigned to samples in the cohort while 

maintaining the same proportion of HPV positive patients. Expression fold change for the 

miRNA was calculated for the shuffled cohort. After one million iterations of this permutation, 

the true expression fold change was ranked in comparison to the randomly determined fold 

changes; its position in relation to the shuffled set constituted its significance. 

  

Target and Pathway Analysis  

Likely miRNA-target interactions were initially identified using the MirTarget (version 3) 

algorithm, the results of which were obtained from miRDB.org (20,21).  Additional filters were 

used to confirm that the results were properly associated, i.e. that miRNA expression was 

negatively correlated with target expression in the given cohort.  

 Pathway analysis was conducted on significantly dysregulated targets using the 

PANTHER algorithm (22). Raw p-values calculated using the binomial test were used to identify 

significantly overrepresented or underrepresented pathways associated with the Gene Ontology 

Consortium definitions (23,24). 

 

4.4 Results 

Dysregulation of miRNAs in Cervical and Oropharyngeal Cancers in Response to HPV Infection 

Within oropharyngeal cancers, 440 miRNAs were identified as being expressed, i.e. 

having a log2 mean expression greater than 0.5 across all samples. Of these 440 expressed 

miRNAs, permutation analysis using a 2-tailed curve identified 207 as significantly 



  

113 

 

dysregulated; 62 miRNAs maintained significance after Bonferroni multiple testing correction 

(Table 4.2). Similar numbers were observed in the cervical cancer cohort. Using the entire 

patient cohort across all HPV types, 426 miRNAs were defined as expressed. By raw p-value, 

191 miRNAs were significantly dysregulated in response to HPV, 44 of which were maintained 

after Bonferroni correction (11 upregulated, 33 downregulated) (Table 4.3). 

Table 4.2: HPV-dysregulated miRNAs in OPSCC 

miRNA 
raw p-

value 
FWER 

log2 fold 

change 
miRNA 

raw p-

value 
FWER 

log2 fold 

change 

hsa-miR-20b-5p 0 0 3.517471 hsa-miR-30e-5p 1E-06 0.00044 0.829569 

hsa-miR-9-5p 0 0 3.28475 hsa-miR-625-5p 9E-06 0.00396 0.816012 

hsa-miR-363-3p 0 0 2.995527 hsa-miR-1295a 4E-06 0.00176 0.800879 

hsa-miR-106a-5p 0 0 2.31328 hsa-miR-30e-3p 0 0 0.751577 

hsa-miR-20b-3p 0 0 2.282462 hsa-miR-7-1-3p 1.4E-05 0.00616 0.725956 

hsa-miR-9-3p 0 0 2.0645 hsa-miR-548b-3p 2.1E-05 0.00924 0.698775 

hsa-miR-99a-5p 0 0 1.955681 hsa-miR-25-3p 2E-06 0.00088 0.688253 

hsa-miR-125b-2-3p 1.6E-05 0.00704 1.754344 hsa-miR-107 2.5E-05 0.011 0.634541 

hsa-miR-150-3p 1.1E-05 0.00484 1.514754 hsa-miR-34a-5p 3.8E-05 0.01672 0.627293 

hsa-let-7c-5p 1.1E-05 0.00484 1.457579 hsa-miR-2277-5p 6E-06 0.00264 0.607582 

hsa-miR-378c 0 0 1.415099 hsa-miR-3610 2.8E-05 0.01232 0.593877 

hsa-miR-1266-5p 2.4E-05 0.01056 1.302272 hsa-miR-22-3p 0.000021 0.00924 -0.55274 

hsa-miR-148a-5p 3E-06 0.00132 1.214824 hsa-miR-22-5p 0.000015 0.0066 -0.7918 

hsa-miR-29c-3p 2.3E-05 0.01012 1.214248 hsa-miR-365a-3p 0.000016 0.00704 -0.87431 

hsa-miR-598-3p 4.2E-05 0.01848 1.164478 hsa-miR-655-3p 0.00002 0.0088 -0.90531 

hsa-miR-378a-3p 1.2E-05 0.00528 1.158094 hsa-miR-455-5p 0.000013 0.00572 -0.96418 

hsa-miR-378a-5p 4E-06 0.00176 1.057344 hsa-miR-193b-5p 0.000016 0.00704 -0.98032 

hsa-miR-15b-5p 0 0 1.049673 hsa-miR-199b-5p 0.000023 0.01012 -1.04124 

hsa-miR-148a-3p 6E-06 0.00264 1.049506 hsa-miR-493-3p 0.000045 0.0198 -1.1074 

hsa-miR-101-3p 0 0 1.036463 hsa-miR-369-3p 0.000024 0.01056 -1.13486 

hsa-miR-16-2-3p 2E-05 0.0088 1.018546 hsa-miR-214-3p 0.00002 0.0088 -1.13489 

hsa-miR-582-3p 2E-06 0.00088 1.007475 hsa-miR-2355-5p 0.000001 0.00044 -1.17311 

hsa-miR-3917 0 0 0.993058 hsa-miR-376c-3p 0.000009 0.00396 -1.1785 

hsa-miR-15b-3p 2E-06 0.00088 0.960788 hsa-miR-493-5p 0.000049 0.02156 -1.18468 

hsa-miR-200b-3p 1E-06 0.00044 0.936816 hsa-miR-214-5p 0.000006 0.00264 -1.23375 

hsa-miR-30d-3p 0 0 0.935208 hsa-miR-299-5p 0.000001 0.00044 -1.2757 

hsa-miR-200b-5p 1E-05 0.0044 0.934769 hsa-miR-432-5p 0.000013 0.00572 -1.32626 

hsa-miR-200a-5p 1.7E-05 0.00748 0.923817 hsa-miR-193b-3p 0 0 -1.43176 

hsa-miR-625-3p 1E-06 0.00044 0.886313 hsa-miR-2355-3p 0.000001 0.00044 -1.44537 

hsa-miR-30d-5p 0 0 0.852316 hsa-miR-584-5p 0 0 -1.6966 

hsa-miR-16-5p 3E-06 0.00132 0.833649 hsa-miR-31-3p 0.000026 0.01144 -2.02521 
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Of the two Bonferroni corrected sets, there are only three miRNAs that are significant in 

both oropharyngeal and cervical cancers: miR-31-3p, miR-369-3p, and miR-432-5p. The most 

notable of the three overlapping miRNAs is miR-31-3p, which was identified as upregulated by 

HPV in cervical cancer but downregulated by HPV in oropharyngeal cancer. The remaining two 

miRNAs in this subset were both downregulated by HPV. 

 

Pathway Analysis of Dysregulated miRNA Targets Indicates miRNA Effects Supplement Basal 

HPV Activity 

Identification of distinct microRNA-target interactions was performed independently 

through the significantly dysregulated miRNAs and the significantly dysregulated gene 

Table 4.3: HPV-dysregulated miRNAs in CESC 

miRNA 
raw p-

value 
FWER 

log2 fold 

change 
miRNA 

raw p-

value 
FWER 

log2 fold 

change 

hsa-miR-944 0 0 3.397764 hsa-miR-425-3p 0 0 -1.02183 

hsa-miR-205-5p 3E-06 0.001278 3.127832 hsa-miR-181c-3p 0.000004 0.001704 -1.03397 

hsa-miR-31-5p 0 0 2.597114 hsa-miR-539-5p 0.00004 0.01704 -1.05188 

hsa-miR-31-3p 0 0 2.196549 hsa-miR-130b-5p 0.000002 0.000852 -1.06675 

hsa-miR-224-5p 3.7E-05 0.015762 1.569408 hsa-miR-96-5p 0.00001 0.00426 -1.10145 

hsa-miR-205-3p 8E-06 0.003408 1.49973 hsa-miR-369-3p 0.000034 0.014484 -1.10919 

hsa-miR-224-3p 3.1E-05 0.013206 1.063936 hsa-miR-744-3p 0.000035 0.01491 -1.11066 

hsa-miR-221-3p 5.8E-05 0.024708 1.053583 hsa-miR-1468-5p 0 0 -1.11834 

hsa-miR-21-3p 6E-06 0.002556 0.928698 hsa-miR-191-5p 0 0 -1.12185 

hsa-let-7b-5p 1.8E-05 0.007668 0.677123 hsa-miR-425-5p 0.000001 0.000426 -1.12377 

hsa-miR-21-5p 4.6E-05 0.019596 0.478553 hsa-miR-501-3p 0.000005 0.00213 -1.15102 

hsa-miR-151a-5p 0.000015 0.00639 -0.61152 hsa-miR-323b-3p 0.000007 0.002982 -1.16143 

hsa-miR-148b-5p 0.000022 0.009372 -0.6658 hsa-miR-495-3p 0.000025 0.01065 -1.16932 

hsa-miR-324-5p 0.000036 0.015336 -0.77744 hsa-miR-183-5p 0.00001 0.00426 -1.18963 

hsa-miR-744-5p 0.000039 0.016614 -0.78916 hsa-miR-432-5p 0.000029 0.012354 -1.21449 

hsa-miR-93-3p 0.000011 0.004686 -0.79362 hsa-miR-483-3p 0.000054 0.023004 -1.2179 

hsa-miR-340-3p 0.000001 0.000426 -0.80925 hsa-miR-323a-3p 0.000006 0.002556 -1.33359 

hsa-miR-324-3p 0.000041 0.017466 -0.81764 hsa-miR-191-3p 0 0 -1.36666 

hsa-miR-887-3p 0.000056 0.023856 -0.82948 hsa-miR-431-3p 0.000002 0.000852 -1.57704 

hsa-miR-874-3p 0.000039 0.016614 -0.90159 hsa-miR-3200-3p 0 0 -1.84847 

hsa-miR-103a-2-5p 0.000022 0.009372 -0.94129 hsa-miR-767-5p 0.000036 0.015336 -2.47921 

hsa-miR-500a-3p 0.000008 0.003408 -0.94769 hsa-miR-105-5p 0.000026 0.011076 -2.73646 
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transcripts (Figure 4.1). In the first method, targets of miRNAs significantly associated to HPV 

status were determined to be affected if the target fulfilled the following criteria: 1) the target is 

identified in miRDB as associated with the miRNA with a score greater than 50; 2) the target has 

an average expression greater than 6 RPKM; and 3) the transcript expression is negatively 

correlated with miRNA expression. In this technique, the significance of the target expression in 

relation to HPV status was not taken into account. A total of 2607 potential targets were 

identified as being targeted by dysregulated miRNAs in oropharyngeal cancer: 2333 in the 

HPV(+) cohort and 274 in the HPV(-) cohort. In the cervical cancer cohort, a total of 2638 

potential miRNA targets were identified: 2051 in the HPV(+) cohort and 587 in the HPV(-) 

group. The inverse relationship was also explored; specifically, the significance of gene 

transcripts in response to HPV as the experimental factor was determined, and potential miRNA 

regulators were identified using the same criteria including miRDB score, expression as defined 

 

Figure 4.1: Mechanism for identifying miRNA-target interactions in cancers. After determining 

HPV status through alignment to the virome, miRDB was used to identify targets of dysregulated 

miRNAs were identified through miRDB (left fork) and potential miRNA regulators of dysregulated 

transcripts (right fork). 

TCGA: RNASeq
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previously, and negative correlation between miRNA and target. In OPSCC, this yielded 500 

significant transcripts in the HPV(+)cohort and 354 transcripts in the HPV(-) cohort; in CESC, 

this yielded 1583 transcripts in the HPV(+) group and 384 in the HPV(-) group.  

The targets of the potential miRNA interactions were then analyzed using the PANTHER 

database, available at pantherdb.org (22). PANTHER implements the Gene Ontology (GO) 

database to determine if certain gene sets, such as those defined by GO as members in the same 

biological process, are overrepresented in a submitted set of genes. Significance is determined 

with the binomial test.  When using significant miRNAs as the initial feature, a total of 55 

biological processes were identified as significantly overrepresented by upregulated genes in the 

HPV(+) oropharyngeal cancer dataset, while 53 processes were significantly underrepresented 

(Supplementary Table 4.1). In the HPV(+) cervical cancer datasets, 43 biological processes were 

overrepresented and 23 processes underrepresented (Supplementary Table 4.2).  Among the 

HPV(-) datasets, 24 biological processes were significantly overrepresented by potential miRNA 

targets among oropharyngeal cancers, and 10 were underrepresented (Supplementary Table 4.3). 

The HPV(-) cervical cancer set, although limited in scope, showed 22 overrepresented biological 

processes and 31 underrepresented processes (Supplementary Table 4.4). Notable processes that 

were upregulated in HPV(+) tumors of both species include DNA processes of replication, 

recombination and repair, metabolic processes, cellular component organization, mitosis, and 

stress response; while downregulated pathways include cell recognition, complement activation, 

and GPCR signaling pathways. Processes upregulated in both HPV(-) cancer types include 

cellular component organization and rRNA metabolic processes. The only process 

downregulated in both HPV(-) tumor types was immune response.  
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Using dysregulated gene transcripts as the initial focus yielded similar results. After 

filtering by using potential miRNA dysregulation and interaction, 28 pathways were 

overrepresented in HPV(+) oropharyngeal tumors and 9 pathways were downregulated 

(Supplementary Table 4.5), while 45 pathways were upregulated in HPV(+) cervical cancer and 

23 were downregulated (Supplementary Table 4.6). In HPV(-) oropharyngeal tumors, 37 

biological processes were overrepresented and 27 underrepresented (Supplementary Table 4.7). 

Comparatively in HPV(-) cervical cancers, 9 processes were upregulated and 23 were 

underrepresented (Supplementary Table 4.8).   The HPV(+) cohorts shared an overrepresentation 

of cellular defense response, immune responses, signaling cascades, and metabolic processes, 

while also demonstrating an underrepresentation of translation and defense response to 

bacterium. In the HPV(-) cohort, both cancer types showed an overrepresentation of cellular 

component biogenesis, metabolic processes, organelle organization, and translation, along with 

an underrepresentation of general biological regulation, immune response, and both intercellular 

and intracellular communication. Similar results were observed when comparing the pathway 

analyses generated with the two different methods of identifying potential targets, suggesting 

that the observed biological processes may be supplemented, rather than exclusively moderated, 

by miRNA dysregulation. 

  

Individual miRNA-Target Interactions are Conserved in HPV-Related Cancers 

By evaluating statistical significance of downregulated targets, in addition to statistical 

significance of miRNAs, a small subset of potential miRNA-target interactions were identified to 

be conserved between the two HPV-related cancer types (Table 12). These interactions were 

identified using significance for both miRNA expression and target expression (p<0.05), in 

addition to the same criteria as described previously: miRDB score, target expression, and 
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directional correlation. In doing so, 96 target interactions resulting from HPV-downregulated 

Table 4.4: miRNA-Target Interactions Conserved Between Cervical and Oropharyngeal Cancers in 

Response to HPV Status 

Targets of miRNAs Downregulated in HPV(+) Tumors 
Targets of miRNAs Upregulated in 

HPV(+) Tumors 

hsa-miR-105-5p FCER1A hsa-miR-483-3p MECP2 hsa-miR-101-3p XPO5 

hsa-miR-105-5p MECP2 hsa-miR-485-3p PIGK hsa-miR-101-3p PMPCB 

hsa-miR-105-5p TAF9B hsa-miR-485-3p KLF6 hsa-miR-142-5p CNOT11 

hsa-miR-105-5p SNIP1 hsa-miR-485-3p MAPKBP1 hsa-miR-16-1-3p NLN 

hsa-miR-105-5p MED14 hsa-miR-485-3p MAT2B hsa-miR-205-3p CIAO1 

hsa-miR-136-5p BTN3A2 hsa-miR-493-3p KLF6 hsa-miR-29c-3p GCSH 

hsa-miR-136-5p IFNGR1 hsa-miR-493-5p IRF2   

hsa-miR-154-3p KDM6A hsa-miR-493-5p LAMP2   

hsa-miR-154-5p PCNA hsa-miR-493-5p KDM6A   

hsa-miR-154-5p CLOCK hsa-miR-493-5p SNN   

hsa-miR-181a-2-3p TMEM173 hsa-miR-493-5p CLOCK   

hsa-miR-181a-2-3p IL13RA1 hsa-miR-495-3p IRF2   

hsa-miR-181a-2-3p LY75 hsa-miR-495-3p DCLRE1B   

hsa-miR-181a-2-3p MED14 hsa-miR-495-3p STAT3   

hsa-miR-181b-5p COL16A1 hsa-miR-495-3p UGCG   

hsa-miR-181b-5p KLF6 hsa-miR-495-3p SNIP1   

hsa-miR-181b-5p GANC hsa-miR-495-3p CARD6   

hsa-miR-181b-5p TAF9B hsa-miR-495-3p RUNX3   

hsa-miR-181b-5p ZFP36L1 hsa-miR-495-3p CLOCK   

hsa-miR-181b-5p SNN hsa-miR-514a-3p KLF6   

hsa-miR-3127-5p CLOCK hsa-miR-514a-3p SNIP1   

hsa-miR-323a-3p PIGK hsa-miR-539-5p CCDC50   

hsa-miR-323a-3p STAT3 hsa-miR-539-5p FAM120C   

hsa-miR-323a-3p KLF11 hsa-miR-539-5p CPPED1   

hsa-miR-337-3p CCDC50 hsa-miR-539-5p DCLRE1B   

hsa-miR-337-3p IL13RA1 hsa-miR-539-5p ZFP36L1   

hsa-miR-337-3p STAT3 hsa-miR-539-5p KDM6A   

hsa-miR-369-3p PIGK hsa-miR-539-5p CLOCK   

hsa-miR-369-3p DPYD hsa-miR-654-3p CENPI   

hsa-miR-369-3p UGCG hsa-miR-654-3p FUNDC2   

hsa-miR-370-3p MESDC2 hsa-miR-654-3p MED14   

hsa-miR-370-3p GJB3 hsa-miR-654-3p LITAF   

hsa-miR-370-3p PMAIP1 hsa-miR-654-5p EDARADD   

hsa-miR-370-3p DCLRE1B hsa-miR-655-3p PIGK   

hsa-miR-370-3p STAT3 hsa-miR-655-3p UBD   

hsa-miR-370-3p N4BP2L1 hsa-miR-655-3p DPYD   

hsa-miR-382-5p FAM120C hsa-miR-655-3p MOB3B   

hsa-miR-382-5p PRPS2 hsa-miR-675-3p ATG4A   

hsa-miR-409-3p DCLRE1B hsa-miR-675-3p FAM120C   

hsa-miR-409-3p MED14 hsa-miR-675-3p MED14   

hsa-miR-410-3p KLF6 hsa-miR-758-3p PLP2   

hsa-miR-410-3p HS3ST1 hsa-miR-758-3p KDM6A   

hsa-miR-432-5p MECP2 hsa-miR-758-3p MOB3B   

hsa-miR-432-5p N4BP2L1 hsa-miR-767-5p KLF6   

hsa-miR-450b-5p ENOX2 hsa-miR-767-5p CCDC50   

hsa-miR-450b-5p ADRB2 hsa-miR-767-5p NASP   

hsa-miR-483-3p ICAM1 hsa-miR-767-5p N4BP2L1   
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miRNAs were identified as conserved between OPSCC and CESC, spanning 30 unique miRNAs 

and 52 unique targets. A number of gene transcripts were targeted by multiple miRNAs in this 

set; considering that the respective miRNAs are downregulated, these particular transcripts were 

upregulated. Of note are the tumor suppressor KLF6, the circadian rhythm gene CLOCK, and 

STAT3. Interestingly, increased activation of STAT3, a vital component of the JAK/STAT 

signaling pathway, promotes cancer growth and angiogenesis, while overexpression of CLOCK 

and KLF6 are both associated with tumor survival and reduction in tumor size (25-28). Only 6 

total miRNA-target interactions were conserved by HPV-upregulated miRNAs; none of the 

targets of the identified interactions are noted in the literature for their involvement in cancer. 

 

4.5 Discussion 

Human papillomavirus infection causes approximately 95% of all cervical cancers, and 

may be responsible for up to 75% of new oropharyngeal cancer diagnoses (29,30). The role of 

HPV in tumor formation has been well-characterized, along with its prognostic significance after 

diagnosis (31,32). However, the mechanisms that result in this unusual dichotomy are not well 

characterized and may be controlled through some more subtle regulatory mechanisms, such as 

the RNAi mechanism in which miRNAs are involved. 

 

Figure 4.2: A diagram of potential miRNA-mediated dysregulation in response to HPV. HPV 

infection can induce changes in miRNA expression levels, which result in the opposite effect of the 

potential gene transcript targets. Through the miRNA regulatory network, mechanisms of tumor 

formation may be supplemented, and additional mechanisms of tumor survival may be characterized. 

HPV
miRNA 

expression

Gene 
Targets

Tumor formation/
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The dysregulation of miRNA expression in response to HPV infection can result in 

downstream effects in the transcriptome prior to translation (Figure 2). Therefore, we aimed to 

identify both significantly dysregulated miRNA regulators and potential gene targets between 

HPV(+) and HPV(-) tumors. Contemporary pathway analysis, including PANTHER and Gene 

Set Enrichment Analysis, focuses primarily on coding transcripts and occasionally long non-

coding RNAs (22,33). Therefore, we employed the PANTHER database to analyze the gene 

transcripts that we identified as potential targets of dysregulated miRNAs; to confirm our results, 

we also performed the analysis based on dysregulated transcripts, and performed target analysis 

to identify potential miRNA actors. Many of the biological processes that were determined to be 

significantly selected through both techniques could be inferred as associated with HPV-induced 

oncogenesis. For example, overrepresented processes in HPV(+) tumors included processes that 

are conceivably associated with cell growth and replication, such as mitosis, cellular component 

organization, metabolism, and cell cycle, while underrepresented processes included immune 

responses such as cell recognition. The underrepresented immune response in HPV(+) tumors 

suggest immune evasion, which has been indicated in the literature as one of the roles of the E2 

protein (34). The HPV(-) tumors also show overrepresentation of the processes that can be 

inferred as relevant in oncogenesis, as well as a lack of immune response, which in this context 

may simply be unnecessary; however, HPV(-) tumors also indicate that biological processes 

associated with cell adhesion and cell communication are significantly underrepresented; this 

may account for poorer prognosis in the sense of encouraging metastasis and unchecked cell 

replication and growth. One of the primary weaknesses of PANTHER analysis is its inability to 

account for expression level, especially when compared to GSEA; however, PANTHER is more 

effective than GSEA when examining smaller gene sets. 
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Individual miRNA-target interactions were not ignored in this analysis; although a top-

level pathway analysis can provide guidance as to how miRNAs may operate in response to HPV 

infection, individual miRNA-target interactions can also indicate potential therapeutic targets.  

This type of analysis has been proposed previously using HPV-infected NIKS cells (35), but to 

the best of our knowledge, this study is the first to examine such interactions using transcriptome 

and miRNome data from patient tissue samples. CLOCK, KLF6, and STAT3 have already been 

highlighted. Other targets that were overexpressed in HPV(+) tumors and targeted by 

downregulated miRNAs include the pro-survival gene CCDC50, the tumor suppressor KDM6A, 

and the oncogene SNIP1 (36-38). This combination of pro-survival and tumor suppressor genes 

with oncogenes among targets of dysregulated miRNAs indicate possible divergent mechanisms 

for tumor formation and later survival; these particular interactions are strong candidates for 

direct analysis through cellular and in-house experiments.  

Adenocarcinomas and adenosquamous cell carcinomas of the cervix (cervical adeno-type 

carcinomas) are both histologically and genetically distinct from cervical squamous cell 

carcinomas (39,40). Additionally, there have been reports that members of the 

alphapapillomavirus 9 species enriched in adenosquamous cell carcinomas and adenocarcinomas 

of the cervix, in comparison to squamous cell carcinomas of the cervix (41). In conducting our 

HPV sequencing analysis, we determined that these previous findings are consistent within the 

cervical cancer cohort from TCGA (Table 4.5). The distribution of HPV types in cervical adeno-

type carcinomas significantly favors members of the Alphapapillomavirus type 9 species, as well 

as HPV(-) tumors, at the expense of the more common Alphapapillomavirus type 7 species (χ
2
 

p= 0.027). This observation is not observed in cervical squamous cell carcinomas (χ
2
 p= 0.71). 

Interestingly, HPV(+) OPSCCs from TCGA are all infected by members of the 
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Alphapapillomavirus 9 species; considering that such tumors can cluster together with cervical 

squamous tumors, this preferential infectivity is not entirely unexpected. 

Additional analysis can also be performed on the basis of HPV species. It has been shown 

that miR-9-5p is upregulated to a greater extent by HPV16, a member of the alphapapillomavirus 

9 species, than HPV18, a member of the higher risk alphapapillomavirus 7 species (5).  

However, the effect of HPV type on the dysregulation of the miRNome as a whole is unclear, 

especially considering that there is a preference for infection of adeno-type carcinomas by the 

higher risk species (41-43). This correlation begs the question of whether the higher risk of 

Table 4 5: HPV types in cervical and oropharyngeal cancers, separated by tumor source site 

HPV 

species 
HPV type 

All Cervical 

Cancer 

Cervical 

Squamous Cell 

Carcinoma 

Cervical Adeno-

type Carcinoma 

Oropharyngeal 

Squamous Cell 

Carcinoma 

Alpha9 HPV16 163 136 27 45 

 
HPV31 7 7 0 0 

 
HPV33 9 9 0 4 

 
HPV35 6 6 0 3 

 
HPV52 8 8 0 0 

 
HPV58 7 7 0 0 

 Total 200 173 27 52 

Alpha7 HPV18 37 27 10 0 

 
HPV39 6 6 0 0 

 
HPV45 22 19 3 0 

 
HPV59 3 3 0 0 

 
HPV68 2 2 0 0 

 Total 70 57 13 0 

Other HPV26 1 1 0 0 

 
HPV30 1 1 0 0 

 
HPV51 1 1 0 0 

 
HPV56 1 1 0 0 

 
HPV69 1 1 0 0 

 
HPV70 2 2 0 0 

 
HPV73 2 2 0 0 

 Total 9 9 0 0 

Multiple 
 

2 1 1 0 

HPV(-) 
 

20 12 8 27 
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adeno-type cancers results from the higher risk papillomaviruses, and the role of regulatory 

miRNAs in promoting patient survival. 

Through these analyses, we have laid the foundation for examining miRNA-controlled 

mechanisms for supplementing HPV-derived tumor formation, as well as HPV-related tumor 

survival. By modulating and altering the host miRNome, HPV is able to prolong cell survival 

and replication, as well as activate various pro-survival and tumor suppressors after tumor 

formation. We have demonstrated some of the miRNA-based mechanisms that may be induced 

by HPV, and believe that a continued focus on how regulatory systems such as RNAi will be 

able to elucidate the unusual behavior of HPV that causes infection to be both oncogenic and 

pro-survival. 

 

4.6 References 

1. zur Hausen, H., Meinhof, W., Scheiber, W. and Bornkamm, G.W. (1974) Attempts to 

detect virus-secific DNA in human tumors. I. Nucleic acid hybridizations with 

complementary RNA of human wart virus. Int J Cancer, 13, 650-656. 

2. zur Hausen, H., Schulte-Holthausen, H., Wolf, H., Dörries, K. and Egger, H. (1974) 

Attempts to detect virus-specific DNA in human tumors. II. Nucleic acid hybridizations 

with complementary RNA of human herpes group viruses. Int J Cancer, 13, 657-664. 

3. Vande Pol, S.B. and Klingelhutz, A.J. (2013) Papillomavirus E6 oncoproteins. Virology, 

445, 115-137. 

4. Roman, A. and Munger, K. (2013) The papillomavirus E7 proteins. Virology, 445, 138-

168. 

5. Liu, W., Gao, G., Hu, X., Wang, Y., Schwarz, J.K., Chen, J.J., Grigsby, P.W. and Wang, 

X. (2014) Activation of miR-9 by human papillomavirus in cervical cancer. Oncotarget, 

5, 11583-11593. 

6. Gao, G., Chernock, R.D., Gay, H.A., Thorstad, W.L., Zhang, T.R., Wang, H., Ma, X.J., 

Luo, Y., Lewis, J.S. and Wang, X. (2013) A novel RT-PCR method for quantification of 

human papillomavirus transcripts in archived tissues and its application in oropharyngeal 

cancer prognosis. Int J Cancer, 132, 882-890. 



  

124 

 

7. Gunasekharan, V. and Laimins, L.A. (2013) Human papillomaviruses modulate 

microRNA 145 expression to directly control genome amplification. J Virol, 87, 6037-

6043. 

8. Yeung, C.L., Tsang, T.Y., Yau, P.L. and Kwok, T.T. (2017) Human papillomavirus type 

16 E6 suppresses microRNA-23b expression in human cervical cancer cells through 

DNA methylation of the host gene C9orf3. Oncotarget, 8, 12158-12173. 

9. Gao, G., Gay, H.A., Chernock, R.D., Zhang, T.R., Luo, J., Thorstad, W.L., Lewis, J., 

James S and Wang, X. (2013) A microRNA expression signature for the prognosis of 

oropharyngeal squamous cell carcinoma. Cancer, 119, 72-80. 

10. Hu, X., Schwarz, J.K., Lewis, J., James S, Huettner, P.C., Rader, J.S., Deasy, J.O., 

Grigsby, P.W. and Wang, X. (2010) A microRNA expression signature for cervical 

cancer prognosis. Cancer Res, 70, 1441-1448. 

11. Hui, A.B., Lin, A., Xu, W., Waldron, L., Perez-Ordonez, B., Weinreb, I., Shi, W., Bruce, 

J., Huang, S.H., O'Sullivan, B. et al. (2013) Potentially prognostic miRNAs in HPV-

associated oropharyngeal carcinoma. Clin Cancer Res, 19, 2154-2162. 

12. How, C., Pintilie, M., Bruce, J.P., Hui, A.B., Clarke, B.A., Wong, P., Yin, S., Yan, R., 

Waggott, D., Boutros, P.C. et al. (2015) Developing a prognostic micro-RNA signature 

for human cervical carcinoma. PLoS One, 10, e0123946. 

13. Wong, N., Khwaja, S.S., Baker, C.M., Gay, H.A., Thorstad, W.L., Daly, M.D., Lewis, 

J.S. and Wang, X. (2016) Prognostic microRNA signatures derived from The Cancer 

Genome Atlas for head and neck squamous cell carcinomas. Cancer Medicine, 5, 1619-

1628. 

14. Grossman, R.L., Heath, A.P., Ferretti, V., Varmus, H.E., Lowy, D.R., Kibbe, W.A. and 

Staudt, L.M. (2016) Toward a Shared Vision for Cancer Genomic Data. N Engl J Med, 

375, 1109-1112. 

15. Karolchik, D., Barber, G.P., Casper, J., Clawson, H., Cline, M.S., Diekhans, M., Dreszer, 

T.R., Fujita, P.A., Guruvadoo, L., Haeussler, M. et al. (2014) The UCSC Genome 

Browser database: 2014 update. Nucleic Acids Res, 42, D764-770. 

16. Coordinators, N.R. (2015) Database resources of the National Center for Biotechnology 

Information. Nucleic Acids Res, 43, D6-D17. 

17. Van Doorslaer, K., Li, Z., Xirasagar, S., Maes, P., Kaminsky, D., Liou, D., Sun, Q., Kaur, 

R., Huyen, Y. and McBride, A.A. (2017) The Papillomavirus Episteme: a major update to 

the papillomavirus sequence database. Nucleic Acids Res, 45, D499-D506. 

18. Kozomara, A. and Griffiths-Jones, S. (2014) miRBase: annotating high confidence 

microRNAs using deep sequencing data. Nucleic Acids Res, 42, D68-D73. 

19. Langmead, B., Trapnell, C., Pop, M. and Salzberg, S.L. (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol, 10, 

R25. 



  

125 

 

20. Wong, N. and Wang, X. (2015) miRDB: an online resource for microRNA target 

prediction and functional annotations. Nucleic Acids Res, 43, D146-D152. 

21. Wang, X. (2016) Improving microRNA target prediction by modeling with 

unambiguously identified microRNA-target pairs from CLIP-ligation studies. 

Bioinformatics, 32, 1316-1322. 

22. Mi, H., Huang, X., Muruganujan, A., Tang, H., Mills, C., Kang, D. and Thomas, P.D. 

(2017) PANTHER version 11: expanded annotation data from Gene Ontology and 

Reactome pathways, and data analysis tool enhancements. Nucleic Acids Research, 45, 

D183-D189. 

23. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, 

A.P., Dolinski, K., Dwight, S.S., Eppig, J.T. et al. (2000) Gene ontology: tool for the 

unification of biology. The Gene Ontology Consortium. Nat Genet, 25, 25-29. 

24. The Gene Ontology Consortium. (2017) Expansion of the Gene Ontology knowledgebase 

and resources. Nucleic Acids Res, 45, D331-D338. 

25. Yu, H., Lee, H., Herrmann, A., Buettner, R. and Jove, R. (2014) Revisiting STAT3 

signalling in cancer: new and unexpected biological functions. Nat Rev Cancer, 14, 736-

746. 

26. Cadenas, C., van de Sandt, L., Edlund, K., Lohr, M., Hellwig, B., Marchan, R., Schmidt, 

M., Rahnenführer, J., Oster, H. and Hengstler, J.G. (2014) Loss of circadian clock gene 

expression is associated with tumor progression in breast cancer. Cell Cycle, 13, 3282-

3291. 

27. Sangodkar, J., Shi, J., DiFeo, A., Schwartz, R., Bromberg, R., Choudhri, A., McClinch, 

K., Hatami, R., Scheer, E., Kremer-Tal, S. et al. (2009) Functional role of the KLF6 

tumour suppressor gene in gastric cancer. Eur J Cancer, 45, 666-676. 

28. Masilamani, A.P., Ferrarese, R., Kling, E., Thudi, N.K., Kim, H., Scholtens, D.M., Dai, 

F., Hadler, M., Unterkircher, T., Platania, L. et al. (2017) KLF6 depletion promotes NF-

κB signaling in glioblastoma. Oncogene, 36, 3562-3575. 

29. Schiffman, M., Wentzensen, N., Wacholder, S., Kinney, W., Gage, J.C. and Castle, P.E. 

(2011) Human papillomavirus testing in the prevention of cervical cancer. J Natl Cancer 

Inst, 103, 368-383. 

30. Moore, K.A. and Mehta, V. (2015) The Growing Epidemic of HPV-Positive 

Oropharyngeal Carcinoma: A Clinical Review for Primary Care Providers. J Am Board 

Fam Med, 28, 498-503. 

31. Lombard, I., Vincent-Salomon, A., Validire, P., Zafrani, B., de la Rochefordière, A., 

Clough, K., Favre, M., Pouillart, P. and Sastre-Garau, X. (1998) Human papillomavirus 

genotype as a major determinant of the course of cervical cancer. J Clin Oncol, 16, 2613-

2619. 



  

126 

 

32. Ang, K.K., Harris, J., Wheeler, R., Weber, R., Rosenthal, D.I., Nguyen-Tân, P.F., Westra, 

W.H., Chung, C.H., Jordan, R.C., Lu, C. et al. (2010) Human papillomavirus and 

survival of patients with oropharyngeal cancer. N Engl J Med, 363, 24-35. 

33. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., 

Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S. et al. (2005) Gene set 

enrichment analysis: A knowledge-based approach for interpreting genome-wide 

expression profiles. Proc Natl Acad Sci U S A, 102, 15545-15550. 

34. McBride, A.A. (2013) The papillomavirus E2 proteins. Virology, 445, 57-79. 

35. Harden, M.E., Prasad, N., Griffiths, A. and Munger, K. (2017) Modulation of 

microRNA-mRNA Target Pairs by Human Papillomavirus 16 Oncoproteins. MBio, 8. 

36. Farfsing, A., Engel, F., Seiffert, M., Hartmann, E., Ott, G., Rosenwald, A., Stilgenbauer, 

S., Döhner, H., Boutros, M., Lichter, P. et al. (2009) Gene knockdown studies revealed 

CCDC50 as a candidate gene in mantle cell lymphoma and chronic lymphocytic 

leukemia. Leukemia, 23, 2018-2026. 

37. Nickerson, M.L., Dancik, G.M., Im, K.M., Edwards, M.G., Turan, S., Brown, J., Ruiz-

Rodriguez, C., Owens, C., Costello, J.C., Guo, G. et al. (2014) Concurrent alterations in 

TERT, KDM6A, and the BRCA pathway in bladder cancer. Clin Cancer Res, 20, 4935-

4948. 

38. Liang, X., Zheng, M., Jiang, J., Zhu, G., Yang, J. and Tang, Y. (2011) Hypoxia-inducible 

factor-1 alpha, in association with TWIST2 and SNIP1, is a critical prognostic factor in 

patients with tongue squamous cell carcinoma. Oral Oncol, 47, 92-97. 

39. Wentz, W.B. and Reagan , J.W. (1959) Survival in cervical cancer with respect to cell 

type. Cancer, 12, 384-388. 

40. Network, C.G.A.R., Medicine, A.E.C.o., Services, A.B., Hospital, B.C., Medicine, 

B.C.o., Hope, B.R.I.o.C.o., Aging, B.I.f.R.o., Centre, C.s.M.S.G.S., School, H.M., 

Services, H.F.G.C.C.R.I.a.C.C.H. et al. (2017) Integrated genomic and molecular 

characterization of cervical cancer. Nature, 543, 378-384. 

41. Bulk, S., Berkhof, J., Bulkmans, N.W., Zielinski, G.D., Rozendaal, L., van Kemenade, 

F.J., Snijders, P.J. and Meijer, C.J. (2006) Preferential risk of HPV16 for squamous cell 

carcinoma and of HPV18 for adenocarcinoma of the cervix compared to women with 

normal cytology in The Netherlands. Br J Cancer, 94, 171-175. 

42. Clifford, G. and Franceschi, S. (2008) Members of the human papillomavirus type 18 

family (alpha-7 species) share a common association with adenocarcinoma of the cervix. 

Int J Cancer, 122, 1684-1685. 

43. Galic, V., Herzog, T.J., Lewin, S.N., Neugut, A.I., Burke, W.M., Lu, Y.S., Hershman, 

D.L. and Wright, J.D. (2012) Prognostic significance of adenocarcinoma histology in 

women with cervical cancer. Gynecol Oncol, 125, 287-291. 

 



  

127 

 

4.7 Supplementary Tables 

Supplementary Table 4.1: Significant biological processes in HPV(+) OPSCC, through initial 

identification of significantly dysregulated miRNAs and subsequent targets 

Overrepresented Processes  Underrepresented Processes  

Process Name (GO Number) P-value Process Name (GO Number) P-value 

apoptotic process (GO:0006915) 2.15E-02 system process (GO:0003008) 1.41E-20 

biosynthetic process (GO:0009058) 2.03E-04 angiogenesis (GO:0001525) 8.19E-06 

carbohydrate metabolic process 

(GO:0005975) 3.86E-03 anion transport (GO:0006820) 5.56E-04 

catabolic process (GO:0009056) 5.83E-10 B cell mediated immunity (GO:0019724) 1.09E-03 

cell cycle (GO:0007049) 8.91E-10 behavior (GO:0007610) 2.50E-02 

cell death (GO:0008219) 3.80E-02 biological adhesion (GO:0022610) 2.20E-03 

cellular amino acid metabolic process 

(GO:0006520) 2.44E-02 biological regulation (GO:0065007) 8.28E-05 

cellular component organization 

(GO:0016043) 6.24E-07 blood circulation (GO:0008015) 4.73E-06 

cellular component organization or 

biogenesis (GO:0071840) 4.68E-06 cation transport (GO:0006812) 4.91E-02 

cellular process (GO:0009987) 1.87E-04 cell adhesion (GO:0007155) 2.20E-03 

cellular protein modification process 

(GO:0006464) 4.44E-04 cell communication (GO:0007154) 1.93E-03 

chromatin organization (GO:0006325) 1.38E-09 cell differentiation (GO:0030154) 1.55E-03 

chromosome segregation (GO:0007059) 2.15E-03 cell recognition (GO:0008037) 3.66E-02 

cytoskeleton organization (GO:0007010) 1.22E-04 

cell surface receptor signaling pathway 

(GO:0007166) 3.98E-08 

death (GO:0016265) 3.80E-02 cell-cell adhesion (GO:0016337) 1.61E-02 

DNA metabolic process (GO:0006259) 4.20E-13 cell-cell signaling (GO:0007267) 1.84E-05 

DNA recombination (GO:0006310) 3.39E-04 cell-matrix adhesion (GO:0007160) 4.52E-03 

DNA repair (GO:0006281) 3.96E-08 complement activation (GO:0006956) 9.89E-03 

DNA replication (GO:0006260) 1.44E-07 

defense response to bacterium 

(GO:0042742) 1.80E-03 

fatty acid beta-oxidation (GO:0006635) 2.06E-03 developmental process (GO:0032502) 1.77E-04 

induction of apoptosis (GO:0006917) 3.83E-02 

digestive tract mesoderm development 

(GO:0007502) 2.72E-02 

lysosomal transport (GO:0007041) 1.08E-02 ectoderm development (GO:0007398) 1.28E-05 

meiosis (GO:0007126) 2.76E-04 female gamete generation (GO:0007292) 3.51E-02 

metabolic process (GO:0008152) 5.24E-24 fertilization (GO:0009566) 4.47E-02 

mitosis (GO:0007067) 2.35E-05 

G-protein coupled receptor signaling 

pathway (GO:0007186) 2.41E-07 

mRNA processing (GO:0006397) 3.86E-16 heart development (GO:0007507) 1.02E-03 

mRNA splicing, via spliceosome 

(GO:0000398) 5.69E-13 immune response (GO:0006955) 2.17E-04 

nitric oxide biosynthetic process 

(GO:0006809) 4.32E-02 immune system process (GO:0002376) 6.70E-03 

nitrogen compound metabolic process 

(GO:0006807) 2.01E-12 ion transport (GO:0006811) 4.44E-05 

nuclear transport (GO:0051169) 1.14E-02 macrophage activation (GO:0042116) 3.31E-02 

nucleobase-containing compound metabolic 

process (GO:0006139) 1.63E-25 mesoderm development (GO:0007498) 5.97E-04 
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nucleobase-containing compound transport 

(GO:0015931) 3.03E-02 

multicellular organismal process 

(GO:0032501) 4.96E-19 

organelle organization (GO:0006996) 1.06E-14 muscle contraction (GO:0006936) 8.34E-06 

phosphate-containing compound metabolic 

process (GO:0006796) 4.39E-10 muscle organ development (GO:0007517) 9.76E-04 

phospholipid metabolic process 

(GO:0006644) 5.58E-03 natural killer cell activation (GO:0030101) 1.56E-02 

primary metabolic process (GO:0044238) 1.88E-19 nervous system development (GO:0007399) 8.25E-05 

protein acetylation (GO:0006473) 1.95E-03 neurological system process (GO:0050877) 5.40E-15 

protein localization (GO:0008104) 2.36E-03 pattern specification process (GO:0007389) 4.41E-02 

protein methylation (GO:0006479) 4.92E-02 

regulation of biological process 

(GO:0050789) 8.62E-05 

protein targeting (GO:0006605) 5.86E-03 

regulation of vasoconstriction 

(GO:0019229) 1.75E-02 

pyrimidine nucleobase metabolic process 

(GO:0006206) 7.55E-03 response to biotic stimulus (GO:0009607) 1.41E-02 

regulation of cell cycle (GO:0051726) 1.27E-05 response to stimulus (GO:0050896) 5.17E-07 

regulation of nucleobase-containing 

compound metabolic process (GO:0019219) 2.45E-05 sensory perception (GO:0007600) 2.19E-15 

regulation of phosphate metabolic process 

(GO:0019220) 2.65E-02 

sensory perception of chemical stimulus 

(GO:0007606) 2.12E-19 

regulation of transcription from RNA 

polymerase II promoter (GO:0006357) 6.10E-05 sensory perception of smell (GO:0007608) 2.22E-14 

regulation of translation (GO:0006417) 1.17E-02 sensory perception of sound (GO:0007605) 2.74E-02 

response to stress (GO:0006950) 4.78E-02 sensory perception of taste (GO:0050909) 3.95E-02 

RNA catabolic process (GO:0006401) 2.29E-03 signal transduction (GO:0007165) 3.60E-03 

RNA localization (GO:0006403) 1.75E-02 

single-multicellular organism process 

(GO:0044707) 1.58E-18 

RNA metabolic process (GO:0016070) 2.07E-12 skeletal system development (GO:0001501) 3.97E-04 

RNA splicing, via transesterification 

reactions (GO:0000375) 6.02E-11 steroid metabolic process (GO:0008202) 2.37E-02 

transcription from RNA polymerase II 

promoter (GO:0006366) 1.73E-06 synaptic transmission (GO:0007268) 5.54E-04 

transcription initiation from RNA 

polymerase II promoter (GO:0006367) 1.01E-02 system development (GO:0048731) 4.03E-07 

transcription, DNA-dependent 

(GO:0006351) 4.86E-04 
  

tRNA aminoacylation for protein translation 

(GO:0006418) 1.72E-03 
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Supplementary Table 4.2: Significant biological processes in HPV(+) CESC, through initial 

identification of significantly dysregulated miRNAs and subsequent targets 

Overrepresented Processes  Underrepresented Processes  

Process Name (GO Number) P-value Process Name (GO Number) P-value 

7-methylguanosine mRNA capping 

(GO:0006370) 3.15E-02 cell recognition (GO:0008037) 5.00E-03 

antigen processing and presentation 

(GO:0019882) 1.27E-02 complement activation (GO:0006956) 1.49E-02 

biological adhesion (GO:0022610) 3.06E-03 

defense response to bacterium 

(GO:0042742) 6.39E-04 

catabolic process (GO:0009056) 1.80E-02 gamete generation (GO:0007276) 4.17E-02 

cell adhesion (GO:0007155) 3.06E-03 

G-protein coupled receptor signaling 

pathway (GO:0007186) 3.27E-02 

cell cycle (GO:0007049) 1.23E-05 mitochondrion organization (GO:0007005) 1.30E-02 

cellular component morphogenesis 

(GO:0032989) 4.98E-04 

multicellular organismal process 

(GO:0032501) 1.88E-05 

cellular component movement 

(GO:0006928) 3.29E-03 muscle organ development (GO:0007517) 3.49E-02 

cellular component organization 

(GO:0016043) 7.51E-04 neurological system process (GO:0050877) 1.27E-06 

cellular component organization or 

biogenesis (GO:0071840) 9.96E-03 oxidative phosphorylation (GO:0006119) 1.11E-02 

cellular defense response (GO:0006968) 2.86E-02 phagocytosis (GO:0006909) 1.17E-02 

cellular process (GO:0009987) 2.25E-04 protein metabolic process (GO:0019538) 1.44E-02 

chromatin assembly (GO:0031497) 1.34E-02 response to biotic stimulus (GO:0009607) 1.56E-02 

chromatin organization (GO:0006325) 2.22E-02 RNA metabolic process (GO:0016070) 3.60E-02 

chromosome segregation (GO:0007059) 2.17E-04 rRNA metabolic process (GO:0016072) 4.29E-02 

cytoskeleton organization (GO:0007010) 4.22E-04 sensory perception (GO:0007600) 1.09E-11 

DNA metabolic process (GO:0006259) 5.53E-09 

sensory perception of chemical stimulus 

(GO:0007606) 3.30E-16 

DNA recombination (GO:0006310) 1.12E-02 sensory perception of smell (GO:0007608) 3.44E-12 

DNA repair (GO:0006281) 1.73E-04 

single-multicellular organism process 

(GO:0044707) 2.21E-05 

DNA replication (GO:0006260) 3.77E-07 system process (GO:0003008) 1.99E-06 

I-kappaB kinase/NF-kappaB cascade 

(GO:0007249) 4.39E-03 translation (GO:0006412) 6.14E-03 

immune system process (GO:0002376) 4.81E-03 tRNA metabolic process (GO:0006399) 9.60E-03 

intracellular signal transduction 

(GO:0035556) 1.71E-03 Unclassified (UNCLASSIFIED) 2.48E-04 

locomotion (GO:0040011) 5.03E-03   

MAPK cascade (GO:0000165) 4.22E-02   

metabolic process (GO:0008152) 1.34E-02   

mitosis (GO:0007067) 4.37E-02   

negative regulation of apoptotic process 

(GO:0043066) 1.77E-02  
 

nitrogen compound metabolic process 

(GO:0006807) 4.51E-02  
 

nucleobase-containing compound metabolic 

process (GO:0006139) 1.44E-03 
  

organelle organization (GO:0006996) 4.73E-03   

phosphate-containing compound metabolic 

process (GO:0006796) 2.83E-03 
  

primary metabolic process (GO:0044238) 3.02E-02   
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protein localization (GO:0008104) 3.58E-02   

pyrimidine nucleobase metabolic process 

(GO:0006206) 4.25E-02 
  

regulation of catalytic activity 

(GO:0050790) 1.89E-02 
  

regulation of molecular function 

(GO:0065009) 2.54E-02 
  

regulation of nucleobase-containing 

compound metabolic process (GO:0019219) 3.98E-02 
  

regulation of transcription from RNA 

polymerase II promoter (GO:0006357) 2.43E-02 
  

response to abiotic stimulus (GO:0009628) 3.56E-02   

response to external stimulus (GO:0009605) 3.35E-02   

response to interferon-gamma 

(GO:0034341) 3.32E-03 
  

response to stress (GO:0006950) 1.16E-02   
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Supplementary Table 4.3: Significant biological processes in HPV(-) OPSCC, through initial 

identification of significantly dysregulated miRNAs and subsequent targets 

Overrepresented Processes  Underrepresented Processes  

Process Name (GO Number) P-value Process Name (GO Number) P-value 

anion transport (GO:0006820) 3.00E-02 gamete generation (GO:0007276) 4.32E-02 

cellular component morphogenesis 

(GO:0032989) 
9.32E-10 immune response (GO:0006955) 1.54E-03 

cellular component movement 

(GO:0006928) 
2.15E-06 

regulation of nucleobase-containing 

compound metabolic process (GO:0019219) 
1.90E-02 

cellular component organization 

(GO:0016043) 
4.29E-06 

regulation of transcription from RNA 

polymerase II promoter (GO:0006357) 
3.33E-02 

cellular component organization or 

biogenesis (GO:0071840) 
1.38E-07 reproduction (GO:0000003) 1.30E-02 

cellular process (GO:0009987) 4.89E-06 response to stimulus (GO:0050896) 1.57E-02 

chromosome segregation (GO:0007059) 1.31E-02 sensory perception (GO:0007600) 4.33E-02 

developmental process (GO:0032502) 3.36E-02 
sensory perception of chemical stimulus 

(GO:0007606) 
4.01E-03 

gluconeogenesis (GO:0006094) 3.04E-02 sensory perception of smell (GO:0007608) 2.47E-02 

intracellular protein transport (GO:0006886) 1.29E-03 
Unclassified (UNCLASSIFIED) 

 

6.04E-04 

 

ion transport (GO:0006811) 1.21E-02   

localization (GO:0051179) 7.59E-05   

locomotion (GO:0040011) 2.18E-03   

mesoderm development (GO:0007498) 2.55E-03   

muscle organ development (GO:0007517) 3.31E-02   

nuclear transport (GO:0051169) 4.51E-02   

pentose-phosphate shunt (GO:0006098) 1.25E-02   

polysaccharide metabolic process 

(GO:0005976) 
1.83E-02   

protein targeting (GO:0006605) 4.69E-02   

protein transport (GO:0015031) 1.83E-03   

regulation of carbohydrate metabolic 

process (GO:0006109) 
4.32E-03   

rRNA metabolic process (GO:0016072) 2.90E-02   

secondary metabolic process (GO:0019748) 6.18E-03   

transport (GO:0006810) 2.93E-04   
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Supplementary Table 4.4: Significant biological processes in HPV(-) CESC, through initial 

identification of significantly dysregulated miRNAs and subsequent targets 

Overrepresented Processes  Underrepresented Processes  

Process Name (GO Number) P-value Process Name (GO Number) P-value 

biosynthetic process (GO:0009058) 2.61E-04 

anatomical structure morphogenesis 

(GO:0009653) 4.26E-02 

cellular amino acid metabolic process 

(GO:0006520) 5.32E-03 B cell mediated immunity (GO:0019724) 5.14E-03 

cellular component biogenesis 

(GO:0044085) 4.24E-06 biological regulation (GO:0065007) 1.28E-04 

cellular component organization or 

biogenesis (GO:0071840) 2.85E-03 cell communication (GO:0007154) 5.92E-05 

cellular protein modification process 

(GO:0006464) 2.69E-02 cell differentiation (GO:0030154) 6.38E-03 

metabolic process (GO:0008152) 8.60E-08 

cell surface receptor signaling pathway 

(GO:0007166) 1.04E-03 

mitochondrial transport (GO:0006839) 5.25E-03 cell-cell signaling (GO:0007267) 1.09E-05 

mitochondrion organization (GO:0007005) 7.35E-04 complement activation (GO:0006956) 3.73E-02 

nitrogen compound metabolic process 

(GO:0006807) 2.14E-02 

cytokine-mediated signaling pathway 

(GO:0019221) 3.43E-02 

nucleobase-containing compound metabolic 

process (GO:0006139) 7.53E-03 

defense response to bacterium 

(GO:0042742) 2.99E-02 

organelle organization (GO:0006996) 1.17E-03 developmental process (GO:0032502) 1.69E-02 

oxidative phosphorylation (GO:0006119) 1.19E-02 

G-protein coupled receptor signaling 

pathway (GO:0007186) 4.43E-03 

porphyrin-containing compound metabolic 

process (GO:0006778) 3.88E-02 immune response (GO:0006955) 1.07E-05 

primary metabolic process (GO:0044238) 4.39E-07 immune system process (GO:0002376) 1.11E-02 

protein acetylation (GO:0006473) 2.13E-02 

intracellular signal transduction 

(GO:0035556) 4.44E-02 

protein metabolic process (GO:0019538) 2.76E-07 macrophage activation (GO:0042116) 4.28E-02 

respiratory electron transport chain 

(GO:0022904) 4.99E-02 

multicellular organismal process 

(GO:0032501) 2.72E-09 

RNA metabolic process (GO:0016070) 1.12E-03 muscle organ development (GO:0007517) 4.56E-02 

rRNA metabolic process (GO:0016072) 9.50E-05 nervous system development (GO:0007399) 4.51E-05 

translation (GO:0006412) 6.34E-13 neurological system process (GO:0050877) 8.23E-08 

tRNA aminoacylation for protein translation 

(GO:0006418) 4.23E-05 

regulation of biological process 

(GO:0050789) 1.35E-04 

tRNA metabolic process (GO:0006399) 1.08E-03 response to biotic stimulus (GO:0009607) 1.05E-02 

  response to stimulus (GO:0050896) 1.76E-07 

  sensory perception (GO:0007600) 6.72E-06 

  

sensory perception of chemical stimulus 

(GO:0007606) 8.01E-06 

  sensory perception of smell (GO:0007608) 3.82E-04 

  signal transduction (GO:0007165) 7.25E-05 

  

single-multicellular organism process 

(GO:0044707) 3.95E-09 

  synaptic transmission (GO:0007268) 6.12E-04 

  system development (GO:0048731) 4.36E-05 

  system process (GO:0003008) 9.43E-08 
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Supplementary Table 4.5: Significant biological processes in HPV(+) OPSCC, through initial 

identification of significantly dysregulated genes 

Overrepresented Processes  Underrepresented Processes  

Process Name (GO Number) P-value Process Name (GO Number) P-value 

apoptotic process (GO:0006915) 2.26E-02 
multicellular organismal process 

(GO:0032501) 
3.02E-07 

biosynthetic process (GO:0009058) 9.61E-03 
single-multicellular organism process 

(GO:0044707) 
3.22E-05 

cell communication (GO:0007154) 3.46E-02 
anatomical structure morphogenesis 

(GO:0009653) 
9.70E-04 

cell death (GO:0008219) 1.56E-02 biological regulation (GO:0065007) 4.86E-03 

cellular defense response (GO:0006968) 2.98E-02 cell communication (GO:0007154) 6.93E-03 

cellular process (GO:0009987) 2.07E-03 
cell surface receptor signaling pathway 

(GO:0007166) 
2.51E-02 

cytokine-mediated signaling pathway 

(GO:0019221) 
3.13E-02 cell-cell signaling (GO:0007267) 3.74E-02 

death (GO:0016265) 1.56E-02 developmental process (GO:0032502) 3.97E-02 

developmental process (GO:0032502) 1.61E-02 ectoderm development (GO:0007398) 4.54E-02 

endoderm development (GO:0007492) 4.35E-03   

hemopoiesis (GO:0030097) 1.91E-02   

I-kappaB kinase/NF-kappaB cascade 

(GO:0007249) 
7.30E-04   

immune response (GO:0006955) 1.33E-02   

immune system process (GO:0002376) 3.10E-02   

intracellular protein transport (GO:0006886) 3.48E-03   

JNK cascade (GO:0007254) 1.96E-04   

macrophage activation (GO:0042116) 2.29E-02   

MAPK cascade (GO:0000165) 4.94E-02   

metabolic process (GO:0008152) 4.71E-02   

mitosis (GO:0007067) 3.59E-02   

negative regulation of apoptotic process 

(GO:0043066) 
3.16E-02   

phospholipid metabolic process 

(GO:0006644) 
8.08E-03   

protein localization (GO:0008104) 4.21E-02   

protein transport (GO:0015031) 3.05E-03   

proteolysis (GO:0006508) 4.83E-02   

pyrimidine nucleobase metabolic process 

(GO:0006206) 
1.96E-02   

regulation of sequence-specific DNA 

binding transcription factor activity 

(GO:0051090) 

2.33E-02   

response to interferon-gamma 

(GO:0034341) 
1.01E-04   
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Supplementary Table 4.6: Significant biological processes in HPV(+) CESC, through initial 

identification of significantly dysregulated genes 

Overrepresented Processes  Underrepresented Processes  

Process Name (GO Number) P-value Process Name (GO Number) P-value 

antigen processing and presentation 

(GO:0019882) 
1.02E-02 cell recognition (GO:0008037) 4.20E-04 

antigen processing and presentation of 

peptide or polysaccharide antigen via MHC 

class II (GO:0002504) 

2.60E-02 complement activation (GO:0006956) 1.80E-02 

biological adhesion (GO:0022610) 5.47E-03 
defense response to bacterium 

(GO:0042742) 
5.68E-04 

catabolic process (GO:0009056) 4.41E-02 gamete generation (GO:0007276) 3.98E-02 

cell adhesion (GO:0007155) 5.47E-03 mitochondrion organization (GO:0007005) 3.13E-02 

cell cycle (GO:0007049) 1.34E-05 
multicellular organismal process 

(GO:0032501) 
2.36E-04 

cell proliferation (GO:0008283) 3.50E-02 muscle organ development (GO:0007517) 3.01E-02 

cell-matrix adhesion (GO:0007160) 4.38E-02 neurological system process (GO:0050877) 6.59E-05 

cellular component morphogenesis 

(GO:0032989) 
7.20E-04 oxidative phosphorylation (GO:0006119) 2.31E-02 

cellular component movement 

(GO:0006928) 
4.87E-03 phagocytosis (GO:0006909) 1.15E-02 

cellular component organization 

(GO:0016043) 
9.28E-04 protein folding (GO:0006457) 3.39E-02 

cellular component organization or 

biogenesis (GO:0071840) 
9.55E-03 protein metabolic process (GO:0019538) 2.23E-02 

cellular defense response (GO:0006968) 6.25E-03 reproduction (GO:0000003) 4.45E-02 

cellular process (GO:0009987) 6.05E-04 response to biotic stimulus (GO:0009607) 2.95E-02 

chromosome segregation (GO:0007059) 3.39E-04 RNA metabolic process (GO:0016070) 2.63E-02 

cytokine-mediated signaling pathway 

(GO:0019221) 
3.17E-02 sensory perception (GO:0007600) 2.85E-09 

cytoskeleton organization (GO:0007010) 2.46E-04 
sensory perception of chemical stimulus 

(GO:0007606) 
1.64E-13 

DNA metabolic process (GO:0006259) 1.31E-06 sensory perception of smell (GO:0007608) 2.48E-10 

DNA recombination (GO:0006310) 9.02E-03 
single-multicellular organism process 

(GO:0044707) 
3.61E-04 

DNA repair (GO:0006281) 2.41E-04 system process (GO:0003008) 9.41E-05 

DNA replication (GO:0006260) 9.62E-05 translation (GO:0006412) 2.69E-03 

ectoderm development (GO:0007398) 2.86E-02 tRNA metabolic process (GO:0006399) 3.09E-02 

endoderm development (GO:0007492) 3.85E-02 Unclassified (UNCLASSIFIED) 1.02E-03 

glycolysis (GO:0006096) 4.97E-02   

hemopoiesis (GO:0030097) 3.71E-02   

I-kappaB kinase/NF-kappaB cascade 

(GO:0007249) 
2.86E-03   

immune system process (GO:0002376) 1.40E-02   

intracellular signal transduction 

(GO:0035556) 
7.80E-04   

locomotion (GO:0040011) 5.76E-03   

MAPK cascade (GO:0000165) 2.73E-02   

metabolic process (GO:0008152) 2.73E-02   

mitosis (GO:0007067) 4.73E-02   

negative regulation of apoptotic process 

(GO:0043066) 
2.59E-02   



  

135 

 

nervous system development (GO:0007399) 3.41E-02   

nucleobase-containing compound metabolic 

process (GO:0006139) 
6.45E-03   

organelle organization (GO:0006996) 2.77E-03   

phosphate-containing compound metabolic 

process (GO:0006796) 
4.57E-03   

protein localization (GO:0008104) 4.47E-02   

pyrimidine nucleobase metabolic process 

(GO:0006206) 
4.60E-02   

regulation of nucleobase-containing 

compound metabolic process (GO:0019219) 
4.70E-02   

regulation of transcription from RNA 

polymerase II promoter (GO:0006357) 
1.28E-02   

response to abiotic stimulus (GO:0009628) 3.44E-02   

response to external stimulus (GO:0009605) 2.97E-02   

response to interferon-gamma 

(GO:0034341) 
7.20E-04   

response to stress (GO:0006950) 3.88E-02   
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Supplementary Table 4.7: Significant biological processes in HPV(-) OPSCC, through initial 

identification of significantly dysregulated genes 

Overrepresented Processes  Underrepresented Processes  

Process Name (GO Number) P-value Process Name (GO Number) P-value 

biosynthetic process (GO:0009058) 6.28E-03 
multicellular organismal process 

(GO:0032501) 
6.57E-06 

catabolic process (GO:0009056) 3.73E-04 
single-multicellular organism process 

(GO:0044707) 
8.26E-06 

cellular amino acid catabolic process 

(GO:0009063) 
1.69E-02 

anatomical structure morphogenesis 

(GO:0009653) 
4.40E-02 

cellular amino acid metabolic process 

(GO:0006520) 
7.68E-03 biological regulation (GO:0065007) 5.58E-03 

cellular component biogenesis 

(GO:0044085) 
7.83E-10 cell communication (GO:0007154) 6.49E-04 

cellular component organization 

(GO:0016043) 
1.92E-02 

cell surface receptor signaling pathway 

(GO:0007166) 
7.84E-03 

cellular component organization or 

biogenesis (GO:0071840) 
3.54E-06 cell-cell signaling (GO:0007267) 6.03E-03 

cellular process (GO:0009987) 6.03E-03 developmental process (GO:0032502) 4.11E-03 

cellular protein modification process 

(GO:0006464) 
2.23E-02 ectoderm development (GO:0007398) 1.26E-02 

coenzyme metabolic process (GO:0006732) 1.06E-02 
G-protein coupled receptor signaling 

pathway (GO:0007186) 
2.03E-02 

generation of precursor metabolites and 

energy (GO:0006091) 
1.27E-04 immune response (GO:0006955) 6.43E-04 

glycolysis (GO:0006096) 3.08E-03 
intracellular signal transduction 

(GO:0035556) 
1.78E-02 

metabolic process (GO:0008152) 7.42E-08 mesoderm development (GO:0007498) 6.93E-03 

mitochondrial transport (GO:0006839) 9.70E-03 muscle organ development (GO:0007517) 1.71E-02 

mitochondrion organization (GO:0007005) 1.42E-03 neurological system process (GO:0050877) 8.61E-05 

nitrogen compound metabolic process 

(GO:0006807) 
4.79E-04 

regulation of biological process 

(GO:0050789) 
9.29E-03 

nuclear transport (GO:0051169) 4.99E-04 
regulation of nucleobase-containing 

compound metabolic process (GO:0019219) 
1.87E-02 

nucleobase-containing compound metabolic 

process (GO:0006139) 
1.77E-03 

regulation of phosphate metabolic process 

(GO:0019220) 
2.82E-02 

nucleobase-containing compound transport 

(GO:0015931) 
1.77E-02 response to stimulus (GO:0050896) 6.47E-05 

organelle organization (GO:0006996) 2.89E-03 sensory perception (GO:0007600) 2.10E-05 

phosphate-containing compound metabolic 

process (GO:0006796) 
1.33E-02 

sensory perception of chemical stimulus 

(GO:0007606) 
5.99E-04 

primary metabolic process (GO:0044238) 1.29E-07 sensory perception of smell (GO:0007608) 6.89E-03 

protein complex assembly (GO:0006461) 7.60E-03 signal transduction (GO:0007165) 3.01E-03 

protein complex biogenesis (GO:0070271) 7.87E-03 skeletal system development (GO:0001501) 4.63E-02 

protein folding (GO:0006457) 2.43E-02 system development (GO:0048731) 4.50E-03 

protein metabolic process (GO:0019538) 4.56E-06 system process (GO:0003008) 2.19E-05 

protein methylation (GO:0006479) 1.57E-02 Unclassified (UNCLASSIFIED) 4.79E-03 

protein targeting (GO:0006605) 1.45E-03   

regulation of translation (GO:0006417) 2.77E-03   

respiratory electron transport chain 

(GO:0022904) 
1.45E-02   

RNA catabolic process (GO:0006401) 1.90E-02   

RNA metabolic process (GO:0016070) 6.67E-07   
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rRNA metabolic process (GO:0016072) 4.54E-06   

translation (GO:0006412) 7.88E-06   

tricarboxylic acid cycle (GO:0006099) 1.08E-02   

tRNA aminoacylation for protein translation 

(GO:0006418) 
4.41E-02   

tRNA metabolic process (GO:0006399) 2.82E-05   
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Supplementary Table 4.8: Significant biological processes in HPV(-) CESC, through initial 

identification of significantly dysregulated genes 

Overrepresented Processes  Underrepresented Processes  

Process Name (GO Number) P-value Process Name (GO Number) P-value 

cellular component biogenesis 

(GO:0044085) 
2.81E-02 B cell mediated immunity (GO:0019724) 2.76E-02 

metabolic process (GO:0008152) 1.24E-04 biological regulation (GO:0065007) 2.27E-02 

mitochondrion organization (GO:0007005) 1.00E-02 cell communication (GO:0007154) 4.75E-04 

nucleobase-containing compound metabolic 

process (GO:0006139) 
2.21E-02 cell differentiation (GO:0030154) 3.36E-02 

organelle organization (GO:0006996) 2.36E-02 
cell surface receptor signaling pathway 

(GO:0007166) 
1.30E-03 

oxidative phosphorylation (GO:0006119) 1.39E-02 cell-cell signaling (GO:0007267) 4.16E-04 

primary metabolic process (GO:0044238) 8.46E-05 
G-protein coupled receptor signaling 

pathway (GO:0007186) 
1.23E-02 

protein metabolic process (GO:0019538) 4.66E-04 immune response (GO:0006955) 2.97E-04 

translation (GO:0006412) 7.18E-05 immune system process (GO:0002376) 3.31E-02 

  
multicellular organismal process 

(GO:0032501) 
1.02E-05 

  nervous system development (GO:0007399) 8.00E-04 

  neurological system process (GO:0050877) 2.83E-05 

  
regulation of biological process 

(GO:0050789) 
1.16E-02 

  response to biotic stimulus (GO:0009607) 4.49E-02 

  response to stimulus (GO:0050896) 7.50E-05 

  sensory perception (GO:0007600) 7.50E-04 

  
sensory perception of chemical stimulus 

(GO:0007606) 
3.38E-04 

  sensory perception of smell (GO:0007608) 4.70E-03 

  signal transduction (GO:0007165) 7.09E-04 

  
single-multicellular organism process 

(GO:0044707) 
1.29E-05 

  synaptic transmission (GO:0007268) 6.47E-03 

  system development (GO:0048731) 6.52E-04 

  system process (GO:0003008) 2.45E-05 
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Chapter 5: Conclusions 
 

In this dissertation, we set out to identify transcript-based biomarkers in HPV-related 

cancers. Human papillomavirus infection is a distinctive biomarker in cancer, due to its dual 

roles as a tumorigenic factor, as well as a positive biomarker for patient survival.  Consequently, 

there is a demand for additional biomarkers to supplement the existing diagnostic role of HPV in 

the clinical setting. To do so, we developed a set of comprehensive bioinformatics tools to 

identify transcript-based biomarkers from RNA-seq expression data.  

We first applied these bioinformatics techniques to HPV-related cancers in the head and 

neck and cervix, using data obtained from The Cancer Genome Atlas. In head and neck 

squamous cell carcinomas, we identified a novel set of miRNAs associated with overall survival 

in subtypes based on tumor source site; these miRNA biomarkers were also combined to create 

an expression-based survival signature that could accurately distinguish between high- and low-

risk patients. Of note, the oropharyngeal cancer signature was able to differentiate patients based 

on risk even within the HPV(+) cohort, which can further the goal of personalized medicine in 

the treatment of oropharyngeal cancers. This signature was also validated in an independent 

dataset, using a different quantification technique, which indicates the robustness of the miRNA 

expression signature and its potential applicability within the clinical setting.  When comparing 

the miRNA signatures to other subtypes of head and neck cancers, these miRNAs were 

determined to be subtype-specific, demonstrating the genomic heterogeneity between tumor 

source sites also extends to the miRNome. Consequently, the origin of the tumor should also be 

considered when determining course of treatment. This tissue speciation in terms of treatment 

modality has been previously observed in cervical cancer, as squamous cell carcinomas have 

better prognosis than adenocarcincomas and adenosquamous carcinomas. In spite of the genomic 



  

140 

 

variability, we were able to identify four distinct miRNAs related to overall survival that were 

prognostic in both squamous cell and adeno-type cervical cancers, and formulate an expression-

based signature that was significant independently of tumor source site. This signature could not 

be validated in an independent sample cohort; however, the potential of a subtype-independent 

signature in cervical cancer shows that these results should not dissuade further research. 

With the head and neck cancer cohort, we demonstrated that the techniques for 

identifying significant miRNA biomarkers associated with cancer diagnostic parameters could be 

extended beyond HPV-related cancers, as well as beyond survival. We obtained miRNA- and 

RNA-sequencing data for 30 different cancer types from TCGA and applied the bioinformatics 

pipelines to determine the relevance of miRNA expression to tumor formation, diagnostic 

staging parameters, and patient survival. The role of differential miRNA expression in various 

tumor types was also explored by combining correlation analysis with target prediction analysis 

within different tumor types. In addition to providing the static results of these analyses in a web-

accessible database, we created a web server that could produce dynamic results for custom 

survival signature analysis and clustering analysis to classify the major cancer types. These tools 

are all publicly accessible at the website www.oncomir.org. 

The underlying biological role of miRNA biomarkers in HPV-related cancers was then 

analyzed through a combination of target and correlation analysis integrated with pathway 

analysis. By identifying miRNAs dysregulated between HPV(+) and HPV(-) cohorts and 

subsequent targets, it was shown that the oncogenic aspect of HPV was supplemented by the 

miRNA-guided regulatory mechanism; HPV(-) tumors also demonstrated overrepresentation of 

similar biological pathways associated with tumor growth. However, the pathway analysis also 

indicated that HPV(-) tumors significantly disfavored biological processes that may prevent 
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metastasis. Such insights can guide further research into reason for poorer prognosis in HPV(-) 

tumors. 

Through this dissertation, we have highlighted clinical and biological applications of 

miRNA biomarkers in cancer. The miRNA-mediated mechanisms for HPV-influenced tumor 

formation and survival are still under investigation, but the immediate applicability of miRNA 

expression levels in the diagnostic setting have been demonstrated. We have also demonstrated 

that the tools for identifying transcript biomarkers are applicable across all cancers, and have 

made the results of the analysis publicly available. In summary, tools for transcript biomarker 

identification have been developed, broadly applied, and produced actionable results for the 

research community at large. 
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