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Cyanobacteria are oxygenic phototrophs with great potential as hosts for renewable fuel and 

chemical production. They grow very quickly (compared with plants) and can use sunlight for 

energy and CO2 as a carbon source (unlike yeast or E. coli). While cyanobacteria have been 

engineered to make many chemicals that are native and non-native parts of their metabolism, this 

work is concerned with the production of heptadecane in Synechocystis sp. PCC 6803. 

Heptadecane is in a class of natural products produced by all cyanobacteria, but in quantities 

insufficient for industrialization. Towards this future goal, we have built enabling systems for the 

overproduction of fuels and chemicals in Synechocystis 6803 and cyanoabacteria generally. 

These tools include plasmid vectors for the overproduction of heterologous proteins and genome-

scale metabolic models that can predict strategies for metabolite overproduction. We have shown 

that the vectors we developed are helpful in controlling the level and timing of heterologous 

protein expression using a fluorescent reporter, and have made progress towards heptadecane 

overproduction. During this process, we have also found that heptadecane is crucial for cold 

tolerance and modulates cyclic electron flow in photosynthesis. In addition to measuring this 

phenotype in vivo, we have analyzed it in silico using our genome-scale metabolic model and 

have gained insight into the role of cyclic electron flow in photosynthesis generally. 
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Chapter 1 

 

Synthetic Biology of Cyanobacteria: 

Unique Challenges and Opportunities 
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1.1. Introduction  

Cyanobacteria have garnered a great deal of attention recently as biofuel-producing 

organisms. Their key advantage over other bacteria is their ability to use photosynthesis to 

capture energy from sunlight and convert CO2 into products of interest. As compared with 

eukaryotic algae and plants, cyanobacteria are much easier to manipulate genetically and grow 

much faster, with doubling times as low as 2 hours. They have been engineered to produce a 

wide and ever-expanding range of products including fatty acids, long-chain alcohols, alkanes, 

ethylene, polyhydroxybutyrate, 2,3-Butanediol, ethanol, and hydrogen. These processes have 

been reviewed recently (Gronenberg et al. 2013; Nozzi et al. 2013) and will not be covered in 

great detail in this dissertation. The highest titers of ethanol (5.5 g/L) (Gao et al. 2012), 2,3-

butanediol (2.4 g/L) (Oliver et al. 2013) and lactic acid (2.2 g/L) (Varman et al. 2013) have been 

produced, but these product yields remain far lower than could be commercially viable and are 

produced far more slowly than using heterotrophic bacteria or yeast. On the other hand, an ever-

expanding array of products have been produced in cyanobacteria including volatile products 

that could ease separation from cultures such as ethylene (Guerrero et al. 2012), 

isobutyraldehyde (Atsumi et al. 2009), hydrogen (Berto et al. 2011) and isoprene (Bentley et al. 

2014). In addition, some more unique metabolites have been produced  in Synechocystis sp. PCC 

6803. These include the plant secondary metabolite p-coumaric acid (Xue et al. 2014) the 

isoprenoid squalene (Englund et al. 2014) and diesel-range alkanes (Wang et al. 2013). While 

these products have been produced only at much lower titers they are in some ways unique to the 

green lineage and thus may be preferable targets for production in cyanobacteria. 

In this dissertation we will look towards how the techniques of the emerging field of 

synthetic biology and a deeper understanding of cyanobacterial biology might bear fruit in 
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improving the output specifically of diesel-range alkanes. Due to the low price of these 

commodity fuels, it is critical to maximize the productivity of engineered strains to make them 

economically competitive.  I believe that the tools of synthetic biology can help with this 

challenge and that a detailed understanding of any system one is attempting to engineer is critical 

for success. Specifically, this initial chapter will cover systems, parts, and methods of analysis 

for synthetic biology systems. Synthetic biology requires a well-characterized host or ‘chassis’ 

strain that can be genetically manipulated with ease and predictability. Ideally, the host should 

grow quickly and tolerate a range of environmental conditions. The host should be simple to 

cultivate using readily available laboratory equipment and inexpensive growth media. Simple, 

rapid, and high-throughput techniques should be available for procedures like DNA/RNA 

isolation, metabolomics, and proteomics. To achieve modular, ‘plug-and-play’ modification of 

the host strain, its metabolism and regulatory systems must be well-characterized under a wide 

variety of relevant conditions. Since cyanobacterial biofuel production processes will need to use 

sunlight as an energy source to be economically and environmentally useful, the day/night cycle 

will be particularly relevant; The intermittent nature of this energy source will be a key 

engineering challenge. We will discuss which cyanobacterial chassis have been used and their 

relative merits and unique traits. Ultimately, the hope is that one of these strains might be 

developed to become a ‘green E. coli’ for which a wide variety of genetic parts and systems are 

available for easy modification. Next, we will discuss the critical issue of how gene expression 

can be controlled in cyanobacteria. Compared with other systems, there are few examples of 

simple and effective controllable promoters in cyanobacteria. We will also discuss methods for 

analysis of gene expression using light-emitting reporters and for global analysis of metabolism 

using either constraint-based modeling or measurement of 13C labeling. Examples of many of 
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these techniques’ use in Synechocystis sp. PCC 6803 make up the remainder of this thesis 

beyond this chapter and are mentioned at the end of this chapter (see “This Work”).  

 

1.2. Genetic Modification of Cyanobacteria 

Several strains of cyanobacteria are known which are readily amenable to genetic 

modification (See table 1.1). Such modifications can be performed either in cis (through 

choromosome editing) or in trans (through plasmid addition) and synthetic biology experiments 

have used both approaches. We discuss advantages and disadvantages of each approach, as well 

as recent technical developments below. While even the best cyanobacterial model systems are 

still far from being a ‘green E. coli’, many tools are already available and more are being 

developed. The future holds great promise for this field. 

1.2.1. Genetic Modification in Cis: Chromosome Editing 

Cis genetic modification is the most common approach in cyanobacterial synthetic 

biology. This approach takes advantage of the capability of many cyanobacterial strains for 

natural transformation and homologous recombination (see table 1.1) to create insertion, 

deletion, or replacement mutations in cyanobacterial chromosomes. Traditionally, strains have 

been transformed with selectable markers linked to any sequence of interest and flanked by 

sequences homologous to any non-essential sequence on the chromosome (See figure 1.1).   

This strategy allows the creation of targeted mutations to the chromosome, but sometimes 

raises concerns about segregation in polyploid strains. However, once segregated, such mutations 

can be stable over long time periods even in the absence of selective pressure from added 

antibiotics (Liu et al. 2011; Wang et al. 2013). While such stability is desirable, systems that 
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create major metabolic demand, by for example redirecting flux into biofuel-producing 

pathways, will face greater selective pressures for mutation or loss of heterologous genes. 

Recently, several methods have been developed that allow the creation of markerless 

mutations in cyanobacterial chromosomes (figure 1.1b). Two of these methods operate on a 

similar principle: First, a conditionally toxic gene is linked to an antibiotic resistance cassette and 

then inserted into the chromosome, with selection for antibiotic-resistant mutants. Next, a second 

transformation is carried out in which the resistance cassette and toxin gene are deleted, and 

markerless mutants are selected which have lost the toxic gene. A cassette containing an internal 

repeated region can also undergo a second recombination event under negative selection without 

a second transformation (Viola et al. 2014). This principle has been used in cyanobacteria with 

the B. subtilis levansucrase synthase gene sacB, which confers sucrose sensitivity (Lagarde et al. 

2000) as well as with E. coli mazF, a general protein synthesis inhibitor expressed under a 

nickel-inducible promoter (Cheah et al. 2013) and acsA from Synechococcus sp. PCC 7002, an 

acyltransferase that makes the strain sensitive to acrylic acid (Begemann et al. 2013). These 

latter systems have advantages for cyanobacterial strains that are naturally sucrose-sensitive. 

Either method allows the reuse of a single selectable marker for making multiple successive 

changes to the chromosome. In addition to these methods, a third system operates on a similar 

principle - a cyanobacterial strain that is streptomycin resistant due to a mutation in the rps12 

gene can be made streptomycin-sensitive by expressing a second heterologous copy of wild type 

rps12 linked to a kanamycin (or other antibiotic) resistance cassette as well as any sequence of 

interest. Streptomycin-resistant, kanamycin-sensitive markerless mutants can be recovered in a 

second transformation (Takahama et al. 2004). Although this method can also be used to make 

successive markerless mutants, it requires a background strain that is streptomycin-resistant due 
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to an altered ribosome. Thus, it may not be an ideal method for synthetic biology studies that 

seek to draw conclusions about translation in wild-type systems. For the ability to transfer any 

translated genetic part or parts involved in translation (such as ribosome binding sites) to other 

strains, this mutation could be problematic. A possible advantage of this system is that both 

selections are positive selections, whereas the sacB, mazF, or acsA systems require a negative 

selection in their second transformation. Care must be taken to ensure that resistance is due to 

loss, as opposed to mutation, of the counter-selectable marker. Recombinase-based systems 

including Cre-LoxP (in Anabaena sp. PCC7120, (Zhang et al. 2007)) or FLP/FRT (in 

Synechocystis sp. PCC6803 and Synechococcus elongatus PCC7942, (Tan et al. 2013)) have also 

been used to engineer mutants that lack a selectable marker. However, these methods leave a 

scar sequence, meaning that the final chromosomal sequence is not completely user-specifiable 

and also that multiple mutations using this technique in the same cell line may potentially lead to 

undesirable crossover events or other unexpected results. 

Until recently, it has been difficult to create mutants at high throughput in cyanobacterial 

strains, as transposon-based methods developed for use in other strains can work poorly in 

cyanobacterial hosts. However, libraries can be created in other strains and subsequently 

transferred to a cyanobacterial host via homologous recombination. A Tn7-based library 

containing ~10,000 lines was recently created to screen for strains with increased 

polyhydroxybutyrate (PHB) production (Tyo et al. 2009) and a similar approach has been taken 

for finding mutants in circadian clock function in Synechococcus 7942 (Holtman et al. 2005) and 

later extended to include insertions into nearly 90% of open reading frames in that strain (Chen 

et al. 2012). Chromosomal DNA fragments were first cloned into a plasmid library in E. coli and 

then the library was mutagenized with Tn7 before homologous recombination back into the 
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cyanobacterial host strain. This could be an especially valuable approach for validating genome-

scale models of cyanobacterial metabolism (see chapters 3-4 and appendix chapters 1-4). 

1.2.2 Genetic Modification in Trans: Foreign Plasmids 

Although transgene expression in cis is the most common approach in cyanobacterial 

research, genes are also routinely expressed in cyanobacteria in trans (Huang et al. 2010; Landry 

et al. 2012; Huang et al. 2013; Taton et al. 2015). In synthetic biology and metabolic engineering 

of other prokaryotes, this is by far the more common approach, and has led to such standardized 

approaches as “Bio-Brick” assembly in which standardized genetic ‘parts’ such as promoters, 

ribosome binding sites, genes, and terminators can be readily swapped in and out of standard 

plasmids (http://partsregistry.org). This move towards standardization of genetic parts is a 

critical aim for synthetic biology, independent of the chassis organism or method of 

transformation. However, a limited number of plasmids are available for expression in 

cyanobacterial hosts. Plasmid assembly for expression in cis or in trans in cyanobacterial hosts 

has generally been performed in E. coli because of the longer growth times that would be 

associated with assembling vectors in cyanobacterial hosts (figure 1.2a). This requires broad host 

range plasmids. However, with the rise of in vitro assembly methods such as SLIC (Li et al. 

2007), Gibson assembly (Gibson et al. 2009), CPEC (Quan et al. 2009), fusion PCR (Szewczyk 

et al. 2007), and Golden Gate (Engler et al. 2011), this limitation may become less important 

over time (figure 1.2b). These next-generation cloning methods have been reviewed elsewhere 

(Hilson et al. 2012) and will not be covered here. Fusion PCR has been used to construct linear 

DNA fragments for homologous recombination in cyanobacterial chromosomes (Nagarajan et al. 

2011), but to our knowledge replicative vectors for cyanobacteria have so far not been 

constructed without the use of a ‘helper’ heterotrophic strain. Techniques for in vivo assembly of 
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plasmids that have been developed for yeast (Shao et al. 2009) may be adaptable to 

cyanobacteria because of their facility for homologous recombination (figure 1.2c). Such an 

improvement could greatly speed up the process of making cyanobacterial mutant strains, either 

for modification in cis or in trans. The major technical challenge for such an approach is that the 

long time after transformation required to isolate cyanobacterial mutants (typically 1 week or 

more) means it is critical to have high-fidelity assembly methods to avoid a time-consuming 

screening process. 

Although shuttle vectors do exist for cyanobacteria, there has been little characterization 

of their copy numbers in cyanobacterial hosts, and the lack of replicative vectors with varied 

copy numbers limits the valuable ability to control the expression level of heterologous genes by 

selecting their copy number (Jones et al. 2000; Dunlop et al. 2011). Plasmids derived from 

RSF1010 appear to have a copy number of 10-30 (or ~1-3 per chromosome) in Synechocystis sp. 

PCC 6803 (Ng et al. 2000; Huang et al. 2010), but copy numbers of other broad host-range 

plasmids have not been quantified to date. Endogenous plasmids of cyanobacteria have also been 

used as target sites for expression of heterologous genes in Synechococcus sp. PCC 7002 (Xu et 

al. 2011) and in Synechocystis sp. PCC 6803 (This work, see chapter 2). This strain harbors 

several endogenous plasmids whose copy numbers range from ~1-8 per chromosome, with an 

approximate chromosome copy number of 6 per cell. Synechocystis sp. PCC 6803 also has 

plasmids whose copy numbers span a similar range (from ~0.4-8 per chromosome (Berla et al. 

2012)). The origins of replication from these plasmids constitute a source of genetic parts that 

could be used to generate cyanobacterial expression plasmids having a range of copy numbers, 

and which could potentially be modified to create higher or lower-copy plasmids that are 

compatible with existing plasmids in various cyanobacterial systems. The range of shuttle 
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vectors that have been used in cyanobacterial hosts has been recently reviewed (Wang et al. 

2012). While many tools are available for genetic modification of these biotechnologically 

promising strains, opportunities abound to develop new and improved tools that will allow 

research to proceed faster. 

 

1.3 Unique Challenges of the Cyanobacterial Lifestyle  

Organisms that survive using sunlight as a primary nutrient face unique challenges. These 

must be better understood and addressed to fulfill the biotechnological promise of cyanobacteria 

through synthetic biology. 

1.3.1 Life in a Diurnal Environment 

A primary goal of synthetic biology in cyanobacteria is to use photosynthesis to convert 

CO2 into higher-value products such as biofuels and chemical precursors. To make such a 

process economically and environmentally feasible will require using sunlight as a primary 

energy source. While some cyanobacteria are facultative heterotrophs, their key advantage over 

obligate heterotrophic bacteria is photosynthesis. Unlike heterotrophic growth environments 

where carbon and energy sources can be provided more uniformly both in space and time, 

sunlight will only be available during the day and will be attenuated as it passes through the 

culture. Under certain conditions, cultures may be able to take advantage of a ‘flashing light 

effect’ to integrate spatially uneven illumination by storing chemical energy when in bright light 

near the reactor surface and using that energy to conduct biochemistry during time spent in the 

dark away from the reactor surface (Sforza et al. 2012; He et al. 2015). This ability will depend 

on light intensity, mixing rates, reactor geometry, and likely other factors. Certain diazotrophic 
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cyanobacteria can even use daylight to continue growth during the night. Cyanothece sp. ATCC 

51142 and several other strains (Taniuchi et al. 2008; Latysheva et al. 2012; Pfreundt et al. 

2012) are unicellular diazotrophic cyanobacteria that perform photosynthesis and accumulate 

glycogen during the day, and then during the night break down their glycogen reserves to supply 

energy for nitrogen fixation. Thus, these strains spread out the energy available from sunlight 

over a 24-hour period. This process involves a genome-wide oscillation in transcription, with 

more than 30% of genes oscillating in expression between day and night (Stockel et al. 2008). To 

take full advantage of sunlight, synthetic systems must be created that are capable of responding 

appropriately to this challenging dynamic environment. It has recently been shown that biofuel-

producing strains that dynamically tune the expression of heterologous pathways in response to 

their own intracellular conditions produce more biofuel and exhibit greater stability of 

heterologous pathways (Zhang et al. 2012). As challenging as the design of such a system was 

for batch heterotrophic cultures, it will be even more challenging in production environments 

that include a diurnal light cycle. 

While not all strains exhibit as complete a physiological change between day and night as 

Cyanothece 51142, all cyanobacteria do have a circadian clock that adapts them to their 

autotrophic lifestyle. In non-diazotrophic strains, a large percentage of the genome remains under 

circadian control (Beck et al. 2014). The cyanobacterial circadian clock is anchored by master 

regulators KaiA, KaiB, and KaiC, which act by cyclically phosphorylating and 

dephosphorylating each other (Akiyama 2012). While the circadian rhythm can be reconstituted 

in vitro using the three Kai proteins in the presence of ATP (Nakajima et al. 2005), the accurate 

maintenance of this clock in vivo depends on proper protein turnover (Holtman et al. 2005), on 

codon selection in the kaiBC transcript (Xu et al. 2013), on transcriptional feedback (Teng et al. 
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2013), and on the controlled response of the entire program of cellular transcription to the output 

of the KaiABC oscillator. While disturbing rhythmicity can lead to strains that grow better under 

constant light, the circadian clock is adaptive for strains living in a dynamic environment 

(Woelfle et al. 2004; Xu et al. 2013). Therefore, integrating synthetic gene circuits such as 

biofuel production processes into the circadian rhythm of cyanobacterial hosts will likely lead to 

both improved production and improved strain stability in outdoor production environments. 

1.3.2. Redirecting Carbon Flux by Decoupling Growth from Production 

While redirecting carbon flux is a challenge in all metabolic engineering efforts, it has 

been suggested that stringent control of fixed carbon partitioning among central metabolic 

pathways poses a major limitation to chemical production especially in photosynthetic organisms 

(Melis 2013). During the growth phase, it may be true that carbon partitioning is tightly 

controlled by any number of mechanisms including metabolite channeling or simply high 

demand for metabolic intermediates. However, biofuel production during non-growth phases 

(Atsumi et al. 2009; Liu et al. 2011; Varman et al. 2013; Wang et al. 2013) demonstrates that 

under appropriate conditions, cyanobacterial hosts can produce biofuel compounds with higher 

selectivity, since biofuel can be produced by metabolically active cells even in the absence of 

growth. Enhancing their productivity in this phase is a major opportunity for cyanobacterial 

synthetic biologists to overcome these limits on carbon partitioning. Capturing this opportunity 

will require designing complete metabolic circuits that remain highly active during stationary 

phase. 

1.3.3 RNA-Based Regulation 

Recently, regulation of gene expression through RNA mechanisms has received great 

attention across bacterial clades (Selinger et al. 2000; Sharma et al. 2010; Mitschke et al. 2011). 
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While these mechanisms of regulation may be important in all bacteria, their prominence is 

perhaps the greatest in the cyanobacteria and may help these diurnal organisms adapt to their 

highly dynamic environment: in a recent dRNA-seq study, many of the most highly expressed 

RNAs belonged to families of non-coding RNAs which are present in nearly all sequenced 

cyanobacteria, but not in any other organisms (Gierga et al. 2009; Mitschke et al. 2011) and 

these transcripts were shown to be important in regulating the dirunal rhythm of this strain (Beck 

et al. 2014). While their high expression in Synechocystis 6803 suggests functional importance 

for non-coding RNAs, few have clearly elucidated functions to date. syr1 overexpression has 

been shown to lead to a severe growth defect in Synechocystis 6803 (Mitschke et al. 2011). 

Another small RNA, isiR, has a critical function in stress response in Synechocystis 6803. isiR 

binds to the mRNA (isiA) for the iron-stress inducible protein, which when translated, forms a 

ring around trimers of photosystem I,  preventing their activity and thus oxidative stress in the 

absence of sufficient iron (Duhring et al. 2006). The binding of isiR to isiA appears to result in 

rapid degradation. This particular arrangement allows a very rapid and emphatic response to iron 

repletion in cyanobacteria, since a large pool of isiA transcripts can be quickly silenced and 

marked for degradation by transcription of the antisense isiR. Of particular relevance to this 

dissertation is that while the clusters for alkane biosynthesis in cyanobacteria initially appeared 

to be polycistronic, all of the strains so far examined actually produce only monocistronic 

transcripts. Many of these strains also include a small non-coding RNA immediately upstream of 

ado whose function is so far unknown (Klahn et al. 2014). Although little is so far known about 

the generality of this type of regulation, the dynamics of this response might also be effective to 

use for synthetic systems in cyanobacteria that live in the presence of light as an intermittently 

available but critical nutrient. 
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While non-coding RNA has received a lot of recent attention, two-component systems 

make up the most widely studied family of environmental response regulators in cyanobacteria. 

Many of these systems have known functions in response to diverse environmental stimuli such 

as nitrogen, phosphorous, CO2, temperature, salt, and light intensity and quality (Ashby et al. 

2006; Montgomery 2007). Many of the most widely-used systems in the construction of 

synthetic biological devices (such as the ara and lux clusters) use 2-component systems, and 

even combine 2-component systems with non-coding RNA to control system dynamics (Waters 

et al. 2006). As synthetic biology advances into the construction of more and more complex 

systems, there will be a growing need to understand and use all of the different mechanisms 

available for control of gene expression and enzyme activity in cyanobacteria. 

 

1.4. Parts for Cyanobacterial Synthetic Biology  

While cyanobacteria are promising organisms for biotechnology, synthetic biology tools 

for these organisms lag behind what has been developed for E. coli and yeast (Heidorn et al. 

2011; Markley et al. 2014).  Furthermore, synthetic biology tools developed in E. coli or yeast 

often do not function as designed in cyanobacteria (Huang et al. 2010). Here, we discuss 

inducible promoters and reporters in cyanobacteria, and cultivation systems that will allow their 

testing at increased throughput. Refining such systems will make cyanobacterial synthetic 

biology more user-friendly, a central goal for developing the ‘green E. coli.’ 

1.4.1. Inducible Promoters 

Creation of synthetic biology systems that predictably respond to a specific signal often 

depends upon inducible promoters for transcriptional control. An ideal inducible promoter will 
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have the following properties: (1) It will not be activated in the absence of inducer. (2) It will 

produce a predictable response to a given concentration of inducer or repressor. This response 

may be digital (i.e., on/off) or graded change with different concentrations of inducer/repressor. 

(3) The inducer at saturating concentrations should have no harmful effect on the host organism. 

(4) The inducer should be cheap and stable under the growth conditions of the host. Finally, (5) 

the inducible system should act orthogonally to the host cell’s transcriptional program. Ideal 

transcriptional repressors should not bind to native promoters and if non-native transcriptional 

machinery is used (such as T7 RNA polymerase) it should not initiate transcription from native 

promoters. Promoters must perform as ideally as possible in order to be used in the construction 

of more complex genetic circuits (Moon et al. 2012). 

Many common inducible promoters in cyanobacteria respond to transition metals. These 

have often been the basis of metal detection systems (Erbe et al. 1996; Boyanapalli et al. 2007; 

Peca et al. 2007; Peca et al. 2008; Blasi et al. 2012).  Cyanobacteria balance metal intake for the 

organisms’ needs against potential oxidative stress and protein denaturation (Michel et al. 2001; 

Peca et al. 2008) via tightly regulated systems.  As shown in Table 1.2, cyanobacteria’s metal-

responsive promoters frequently show greater than 100-fold dynamic range.  For example, the 

promoter for the Synechocystis sp. PCC 6803 gene, coaA, was induced 500 fold by 6 µM 

Co2+(Guerrero et al. 2012), and Psmt from Synechococcus elongatus PCC 7942 was induced 300-

fold by 2 µM Zn2+ (Erbe et al. 1996).  The most responsive cyanobacterial promoters reported 

were PnrsB from Synechocystis sp. PCC 6803, responding 1000-fold to 0.5 µM Ni2+(Peca et al. 

2007), and PisiAB also from Synechocystis sp. PCC 6803, repressed 5000-fold by 30 µM Fe3+ 

following depletion (Kunert et al. 2003). 
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While the sensitivity of these promoters to low concentrations of ions may seem like an 

advantage, in practice it can make them difficult to use. Glassware must be thoroughly cleaned 

according to special protocols to remove trace metals and cells often have to be starved for 

extended periods, inducing stress responses, to use such inducible systems. Additionally, 

promoters endogenous to a chassis strain are woven into a complex, incompletely understood 

regulatory system. In this system, promoters are activated by multiple inducers, such as PcoaT 

(Co2+ and Zn2+) and PziaA (Cd2+ and Zn2+), both from Synechocystis sp. PCC 6803 and inducers 

can also activate multiple promoters, such as Cd2+ inducing PziaA and PisiA (Blasi et al. 2012). 

Thus, these promoters fall short according to criteria 2, 3, and 5 described above. 

While few good choices have so far been available for inducible promoters in 

cyanobacteria, it will be helpful to understand the differences in the cellular machinery of E. coli 

and cyanobacteria in order to adapt existing systems for use in a cyanobacterial ‘green E. coli’. 

First, RNA polymerase (RNAP) is structurally different between E. coli and cyanobacteria.  In 

cyanobacteria the β’ subunit of the RNAP holoenzyme is split into two parts, as opposed to one 

in most eubacteria, creating a different DNA binding domain (Imamura et al. 2009).  Being 

photosynthetic, circadian, and sometimes nitrogen-fixing, cyanobacteria also employ three sets 

of interconnected σ factors that are different than those used by E. coli (Imamura et al. 2009).  

Guererro et al. (2012) looked at the variation in the -35 and -10 regions of PA1lacO-1 and Ptrc.  Ptrc 

is not inducible in Synechocystis sp PCC 6803 and had the “standard” bacterial structure in these 

regions while PA1lacO-1, which produced an eight fold response to IPTG in the same host, had a 

different structure in both regions.  They postulated that Synechocystis 6803’s sigma factors had 

different selectivity for these two regions. In fact, by systematically altering the bases between -

10 and the transcription start site, a library of TetR-regulated promoters with improved 
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inducibility were created in Synechocystis sp. strain ATCC27184 (a glucose-tolerant derivative 

of Synechocystis 6803).  The best performing promoter induced a 290-fold change in response to 

1 ug/ml aTc (Huang et al. 2013).  This work demonstrates the improvements that can be seen 

when modifying parts to work in a particular chassis. However, the light-sensitivity of the 

inducer aTc required the use of special growth lights that may have had other effects on 

photoautotrophic metabolism. Another system that suffers from similar limitations has recently 

been developed that is inducible by green light (Abe et al. 2014). Although this system is useful 

in laboratory studies, filtering light to remove particular wavelengths at an industrial scale would 

be impractical. Further studies that follow in this vein of using well-characterized sythetic 

biology parts and modifying them to function optimally in a particular cyanobacterial chassis are 

likely to bear fruit. 

Recent progress has been made in creating more functional IPTG-inducible sysytems for 

cyanobacteria. By varying the inter-operator spacing within a library of Ptrc2O promoters 

(Camsund et al. 2014), a promoter that showed 13-fold induction by IPTG in Synechocystis sp. 

PCC 6803. In Synechococcus sp. PCC 7002, a library of hybrid promoters including elements of 

PcpcB from Synechocytis 6803 and lac operators showed nearly 50-fold induction (Markley et al. 

2014). The lack of inducibility seen in lac-derived promoters in cyanobacteria could also be a 

function of inadequate transport of IPTG into cells.  Concentrations of IPTG above 1 mM have 

been shown to induce lac-derived promoters in organisms without an active lactose permease, 

like many cyanobacteria. By introducing an active lactose permease into Pseudomonas 

fluorescens, inducibility was boosted 5 times at 0.1 mM IPTG (Hansen et al. 1998). Evolving the 

Lac repressor for improved inducibility is another strategy.  Gene expression improved ten times 

with 1 µM IPTG through rounds of error prone PCR and DNA shuffling (Satya Lakshmi et al. 
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2009). Strength of expression and inducibility may also vary between different cyanobacterial 

strains. IPTG caused as much as a 36-fold response using the trc promoter in Synechococcus 

elongatus PCC 7942, but little or no response in Synechocystis sp. PCC 6803 (See Table 1.2). 

Phylogenetic analysis of σ factors from six different cyanobacterial strains, including 

Synechocystis sp. PCC 6803, showed S. elongatus 7942 to be distinctive.  S. elongatus 7942 has 

σ factors that are unique to marine cyanobacteria as well as a group 3 σ factor similar to those 

from the heterocyst-forming Anabaena sp. PCC 7120 (Imamura et al. 2009). Understanding 

these strain-specific differences will enhance the synthetic biologist’s ability to design promoters 

with ideal characteristics in their chassis of choice. This relates to the ability to take up inducers 

as well as the optimal characteristics of inducers (as in the light-sensitivity of aTc) as described 

above.   

In addition to transcriptional control, recent progress has been made in inducible 

expression in cyanobacteria using translational control. A theophylline-responsive riboswitch at 

the 5’ end of a transcript adopts a conformation that makes its ribosome binding site inaccessible 

in the absence of theophylline. In the presence of the inducer, the riboswitch’s tail binds the 

inducer, freeing the ribosome binding site and enabling translation (Topp et al. 2007). These 

parts have been proposed as excellent choices for inducible expression in new systems because 

the interaction between inducer and transcript is direct and does not depend on other parts such 

as sigma factors, nor is it likely to have off-target interactions (Topp et al. 2010). This system 

has been adapted for use in cyanobacteria with some initial success in regulating the expression 

of reporter proteins (Nakahira et al. 2013; Ma et al. 2014). This system seems to succeed well on 

all of the conditions for an ideal inducible promoter mentioned above, and with further 

development could be an ideal system.  
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1.4.2. Reporters 

Characterization of synthetic biological circuits depends on a reporting method to track 

the expression, interaction and position of proteins.  Preferably the reporter should be detected 

without destruction of the organisms or additional inputs.  Bacterial luciferase and fluorescent 

proteins are the most common non-invasive reporters. The lux operon is frequently used for 

reporting in cyanobacteria (Michel et al. 2001; Mackey et al. 2007; Peca et al. 2008) and is well 

suited for real time reporting of gene expression due to the short half-life of the relevant enzymes 

(Ghim et al. 2010).  The superior brightness of fluorescent proteins makes them more ideal for 

subcellular localization via microscopy or for cell-sorting methods. Fluorescent proteins are 

produced in an array of colors and also do not require additional substrates. Their use in 

cyanobacteria is somewhat complicated by the fluorescence of the organism’s photosynthetic 

pigments, but Cerulean, GFPmut3B (a mutant of green fluorescent protein) and EYFP (enhanced 

yellow fluorescent protein) have all been used successfully in cyanobacteria as reporters of gene 

expression (Huang et al. 2010; Heidorn et al. 2011; Landry et al. 2012; Huang et al. 2013).   

Bacterial luciferase luminesces upon oxidation of reduced flavin mononucleotide 

(Meighen 1993). Fluorescent proteins also require oxygen to correctly fold and fluoresce 

(Hansen et al. 2001). The light-dark cycle of nitrogen-fixing cyanobacteria provides temporal 

separation of the oxygen-sensitive nitrogenase from oxygen-evolving photosynthesis (Golden et 

al. 1997).  During the dark cycle, respiration reduces intra-cellular oxygen levels so that 

nitrogenase can function. Therefore, neither bacterial luciferase nor traditional fluorescent 

proteins can likely be used to study cyanobacteria in their dark cycle or to report on synthetic 

biology systems that operate in these oxygen-depleted conditions.  Using blue light 

photoreceptors from Bacillus subtilis and Pseudomonas putida, oxygen-independent flavin 
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mononucleotide-binding florescent proteins have been devised (Drepper et al. 2007). With an 

excitation wavelength of 450 nm and an emission wavelength of 495 nm, they should perform 

well in cyanobacteria, although no data supporting this has been published yet. Functionality of 

these new fluorescent proteins was also improved by replacing a phenylalanine suspected of 

quenching with serine or threonine, resulting in a doubling of the brightness (Mukherjee et al. 

2012). This expanding variety of easily readable reporter systems will be extremely valuable for 

cyanobacterial synthetic biology. 

1.4.3. Cultivation Systems 

To date, most synthetic biology and metabolic engineering work in cyanobacteria has 

been performed using simple, low-tech cultivation methods such as shake flasks or bubbling 

tubes grown under standard fluorescent light sources. Often, laboratory incubators have simply 

been retrofitted by the addition of fluorescent light sources available in home improvement 

stores. However, as light and CO2 are major nutrients for cyanobacteria, it is critical to properly 

standardize the inputs of these resources to reliably characterize biological parts. It is also critical 

to increase the throughput of cyanobacterial growth systems to be able to screen the large 

numbers of variants that can be generated by combinatorial methods, as is routinely performed 

by growing heterotrophic bacterial cultures in 96-well plate format. Growth of cyanobacteria in 

6-well plates can be routinely performed in our lab and by others (Huang et al. 2013) along with 

24-well plates (Simkovsky et al. 2012), but growth in 96-well plates is poor, limiting assay 

throughput and requiring more space in lighted chambers under consistent illumination, which is 

often a limitation. Simple, low-cost systems to reproducibly grow many cyanobacterial cultures 

in parallel are necessary. 
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1.5. Genome-Scale Modeling and Fluxomics of Cyanobacteria 

A primary aim of cyanobacterial synthetic biology is the production of particular 

metabolites as biofuels or platform chemicals. As such, better understanding the metabolic 

phenotypes of wild-type and synthetic strains is a critical aim. While cyanobacterial 

metabolomics have been recently reviewed (Schwarz et al. 2013), here we describe recent 

progress in genome-scale modeling and fluxomics of cyanobacteria. These approaches can help 

guide the creation of synthetic strains with desirable metabolic phenotypes such as biofuel 

overproduction via in silico prediction or in vivo measurement of metabolic fluxes (See figure 

1.3). Specific to cyanobacterial systems, we highlight a number of challenges including 

complexity of modeling the photosynthetic metabolism and performing flux balance analysis, 

poor annotations of important metabolic pathways, and unavailability of in vivo gene essentiality 

information for most cyanobacteria. Finally, we focus on recent advancements in this area.  

1.5.1. Challenges 

Incorporating Photoautotrophy into Metabolic Models 

Flux balance analysis (FBA) is a tool to make quantitative in silico predictions about 

metabolism (Fell et al. 1986; Savinell et al. 1992; Varma et al. 1993; Orth et al. 2010). An FBA 

model incorporates the stoichiometry of all genome-encoded metabolic reactions and assumes 

steady-state growth, such as during exponential phase. This assumption leads to a model that 

consists of a system of algebraic equations stating that the rate of producing any given metabolite 

is equal to the rate of consuming that metabolite. A solution to this system of equations is a 

possible answer to the question “what are all the metabolic fluxes in this system?” Since there 

are usually more reactions than metabolites, this system of equations is underdetermined and has 

many possible solutions. Therefore, one has to pick a solution that satisfies a biological 
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objective, such as maximal growth, energy production, or byproduct formation (Varma et al. 

1994) or specify the ranges of each flux for which that objective is satisfied (Zomorrodi et al. 

2012). For this purpose, a model will also include upper and lower bounds of fluxes that 

constrain the model to produce physically and biologically reasonable solutions. 

Success of FBA greatly depends on the quality of the metabolic network reconstruction 

as well as the availability of regulatory constraints under a given environmental or growth 

condition. For instance, constraints can be added that disable or limit fluxes due to known 

regulatory constraints or substrate availability (Zomorrodi et al. 2012).  For cyanobacteria, the 

major challenges to develop a genome-scale metabolic model and subsequently perform FBA are 

the same ones faced by these organisms in their diurnal environment: how to incorporate light 

and how to differentiate light and dark metabolisms. Although it has been nearly a decade since 

publication of the first study applying flux balance analysis to cyanobacteria, it is only recently 

that models have incorporated complete descriptions of the light reactions of photosynthesis 

(Nogales et al. 2012; Saha et al. 2012; Vu et al. 2012; Knoop et al. 2013). In so doing, these 

authors were able to highlight the critical importance of alternate electron flow pathways to 

growth under diverse environmental conditions, and to identify differences in metabolism during 

carbon-limited and light-limited growth. Additionally, this work helped to resoluve conflicts 

about the alleged existence of a glyoxylate shunt in cyanobacteria (Knoop et al. 2013). However, 

debate remains among photosynthesis researchers about the exact form of the light reactions 

(Heyes et al. 2005; Kopecna et al. 2013). This uncertainty about the exact stoichiometry of 

metabolism is a challenge for the predictive power of FBA in photosynthetic systems. While 

FBA requires the assumption of a pseudo-steady state, all cyanobacteria must alternate between 

day and night metabolisms during a diurnal cycle. A recent model (Saha et al. 2012) of 
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Cyanothece sp. ATCC 51142 utilizes proteomic data to model the diurnal rhythm of this strain, 

which fixes carbon during the day and nitrogen during the night (see section 1.3.1 above).  

Incomplete Genome Annotation  

Genome-scale models are built starting with an annotated genome sequence (see figure 

1.3), which allows prediction of which metabolic reactions are available in a given strain. 

However, genome annotation is constantly evolving, and open questions remain about important 

metabolic reactions in cyanobacteria. 

The understanding of several key pathways in cyanobacteria has been recently revised. 

Zhang and Bryant (Zhang et al. 2011) identified enzymes from Synechococcus 7002 that can 

complete the TCA cycle in vitro and have homologues in most cyanobacterial species, which 

were previously thought to possess an incomplete TCA cycle. Based on this information, 

Synechocystis 6803 model iSyn731 (Saha et al. 2012) allows for a complete TCA cycle 

including these reactions. However, using flux variability analysis (Mahadevan et al. 2002; 

Mahadevan et al. 2003) it was determined that this alternate pathway is not essential for maximal 

biomass production (unpublished results). Recently, experiments using 13C metabolic tracers, 

detailed in appendix chapter 1 of this work (You et al. 2014), have provided direct, in vivo 

evidence for the activity of this pathway, but found that activity to be quite low under normal 

growth conditions.  

Fatty acid metabolism in cyanobacteria has unique properties that have been recently 

uncovered due to increased interest in these pathways for biofuel production. Both Synechocystis 

sp. PCC 6803 and Synechococcus elongatus sp. PCC 7942 contain a single candidate gene 

annotated for fatty acid activation. While in both organisms the gene is annotated as acyl-CoA 

synthetase, it shows only acyl-ACP synthetase activity instead (Kaczmarzyk et al. 2010). Further 
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analysis also shows the importance of acyl-ACP synthetase in enabling the transfer of fatty acids 

across the membrane (von Berlepsch et al. 2012). Quinone synthesis is another pathway with 

conflicting annotations. Cyanobacteria contain neither ubiquinone nor menaquinone (Collins et 

al. 1981). Despite the lack of ubiquinone within cyanobacteria, a number of cyanobacterial 

genomes contain homologs for six E. coli genes involved in ubiquinone biosynthesis (Sakuragi 

2004).  Given these homologous genes it is probable that plastoquinone, a quinone molecule 

participating in the electron transport chain, is produced in cyanobacteria using a pathway very 

similar to that of ubiquinone production in proteobacteria. Other recent work (Wu et al. 2010) 

showed that Cyanothece 51142 contains an alternative pathway for isoleucine biosynthesis. 

Threonine ammonia-lyase, catalyzing the conversion of threonine to 2-ketobutyrate, is absent in 

Cyanothece 51142. Instead, this organism uses a citramalate pathway with pyruvate and acetyl-

CoA as precursors for isoleucine synthesis. An intermediate in this pathway, namely 

ketobutyrate, can be converted to higher alcohols (propanol and butanol) via this non-

fermentative alcohol production pathway. These active areas of research will help to better 

define cyanobacterial metabolism and allow the generation of models that can more accurately 

predict cellular phenotypes. While newer fluxomics techniques can yield powerful results in 

well-characterized strains, developing a ‘green E. coli’ will also require expanded knowledge of 

biochemistry that to date can only come from older methods of single gene or single protein 

analysis. 

Fewer Mutant Resources to Test Model Accuracy 

The quality or accuracy of any genome-scale metabolic model can be tested by 

contrasting the in silico growth phenotype with available experimental data on the viability of 

single or multiple gene knockouts (Thiele et al. 2010). Any discrepancies between model 
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predictions and observed results can aid in model refinement (Kumar et al. 2009). For model 

strains besides cyanobacteria, concerted efforts to create complete mutant libraries have led to 

improvements in metabolic modeling. To the best of our knowledge, extensive in vivo gene 

essentiality data are available only for Synechocystis 6803 among the cyanobacteria in the 

CyanoMutants database (Nakamura et al. 1999; Nakao et al. 2010), but only for ~119 genes, 

compared with 731 genes associated with metabolic reactions in a recent genome-scale model 

(Saha et al. 2012). Thus, only a small subset of the model predictions on gene essentiality can be 

evaluated using available data for Synechocystis 6803, and the proportion is much less for any 

other strain. While a genome-wide library of knockout mutants has been created in 

Synechococcus 7942 (Chen et al. 2012) segregation (and thus essentiality) has only been checked 

for a small selection of these mutants and is not available in any large-scale public database to 

date. Unavailability of such mutant information limits model validation and in turn hurts the 

value of computational predictions from FBA. Efforts to create complete mutant libraries in 

model cyanobacterial strains would improve the fidelity of genome-scale metabolic models, 

leading to testable hypotheses about how to alter metabolism for metabolite overproduction.  

1.5.2. Recent Advances 

Detailed Genome-Scale Models 

Genome-scale models contain detailed Gene-Protein-Reaction associations, a 

stoichiometric representation of all possible reactions occurring in an organism, and a set of 

appropriate regulatory constraints on each reaction flux. They are differentiated from more basic 

FBA models simply by their completeness – they span all or nearly all of the metabolic reactions 

encoded in a genome. Thus, these models can have greater predictive value than those of only 

central metabolism. Cyanothece 51142 is one of the most potently diazotrophic unicellular 
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cyanobacteria characterized and the first diazotrophic cyanobacterium to be completely 

sequenced (Welsh et al. 2008). The first genome-scale model for Cyanothece 51142, iCce806, is 

recently developed (Vu et al. 2012), while another more recent genome-scale model iCyt773 

contains an additional 266 unique reactions spanning pathways such as lipid, pigment and alkane 

biosynthesis (Saha et al. 2012). iCyt773 also models diurnal metabolism by including flux 

regulation based on available day/night protein expression data (Stockel et al. 2011) and 

developing separate (light/dark) biomass equations. These models greatly enhance the ability to 

make computational predictions about this unique and promising diazotrophic organism. 

Since Synechocystis 6803 is a model cyanobacterial strain, it has long been the target for 

modeling of photosynthetic central metabolism (Yang et al. 2002; Shastri et al. 2005). More 

recent models (Knoop et al. 2010; Montagud et al. 2011) analyze growth under different 

conditions and detect bottlenecks and gene knock-out candidates to enhance metabolite 

production (e.g., ethanol, succinate, and hydrogen). In addition, some such predictions using 

iSyn731 are discussed in chapter 4 of this work. A recent model represents the photosynthetic 

apparatus in detail, detects alternate flow pathways of electrons and also pinpoints 

photosynthetic robustness during photoautotrophic metabolism (Nogales et al. 2012).  iSyn731, 

the latest of all Synechocystis 6803 models, integrates all recent developments and supplements 

them with improved metabolic capability and additional literature evidence. As many as 322 

unique reactions are introduced in iSyn731 including reactions distributed in pathways such as 

heptadecane and fatty acid biosynthesis (Saha et al. 2012). Furthermore, iSyn731 is the first 

model for which both gene essentiality data (Nakamura et al. 1999) and MFA flux data (Young 

et al. 2011) are utilized to assess the predictive quality.  This model has also recently been used 

to study the effect of cyclic electron flow on the growth of Synechocystis 6803 (Chapter 5 of this 
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work). Additionally, genome-scale modeling has been extended to include another model 

cyanobacterium, Synechococcus sp. PCC 7002 (Hamilton et al. 2012). Other model strains 

highlighted in table 1.1 have not yet had genome-scale models generated for their metabolism. 

Thus, stoichiometric models are emerging as a valuable tool for use across model cyanobacterial 

systems. 

13C MFA Analysis  

While in silico models are great tools for generating hypotheses on how to use synthetic 

biology interventions to alter metabolism, they need to be complemented by fluxomics methods 

that allow in vivo measurement of metabolic fluxes to assess these interventions. Such a suite of 

tools allows the closure of the design-build-test engineering cycle in synthetic biology. To this 

end, Young et al. (2011) have developed a method to measure fluxes in autotrophic metabolism 

via dynamic isotope labeling measurements. In this approach, cultures are fed with a step-change 

from naturally labeled bicarbonate to  NaH13CO3 and the labeling patterns of metabolic 

intermediates are followed over a time-coures to determine relative rates of metabolic flux. 

Previous studies (Yang et al. 2002) have also assessed metabolic fluxes under mixotrophic 

growth conditions, using a pseudo-steady-state approach in which cells are fed with 13C labeled 

glucose and metabolic fluxes are inferred from labeling patterns of proteinogenic amino acids. 

These studies have been extremely useful in identifying fluxes that exist in vivo, but have 

previously been regarded as wasteful or futile cycles, such as the oxidative pentose phosphate 

pathway and RuBP oxygenation. Comparisons between flux measurements (Young et al. 2011) 

and flux predictions (Saha et al. 2012) for Synechocystis 6803 have revealed the necessity of 

additional regulatory information for accurate in silico predictions of phenotype. 13C-MFA 

coupled with simpler tracer experiments also helped to delineate the role of a recently identified 
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alternative TCA cycle in cyanobacteria, as detailed in appendix chapter 1 of this work (You et al. 

2014). These modeling and fluxomics efforts have resulted in deeper understanding of the 

metabolic capabilities of the modeled strains and of cyanobacteria in general.  

 

1.6 Conclusions 

Cyanobacterial synthetic biology offers great promise for enhancing efforts to produce 

biofuels and chemicals in photoautotrophic hosts. While several cyanobacterial chassis strains 

have been used in synthetic biology efforts, the tools for their manipulation and analysis need 

greater development to unlock this potential and develop a ‘green E. coli’. Metabolic modeling is 

a complementary tool that can help guide the creation of synthetic strains with desirable 

phenotypes. By developing the tools for strain manipulation and control, synthetic biologists can 

unlock a bright future for the biotechnological use of abundant light and CO2. 

 

1.7 This Work 

This initial chapter has outlined how the tools of systems and synthetic biology might in 

general contribute to metabolic engineering of cyanobacteria for biofuel production. The 

following chapters give examples of that as applied to production of heptadecane in 

Synechocystis sp. PCC 6803. In particular, chapter 2 details my attempts to characterize the 

physiological role of heptadecane as a metabolite in Synechocystis sp. PCC 6803 by analyzing a 

knockout mutant that does not produce heptadecane. The work in chapter 2 makes use a genome-

scale metabolic model to contextualize our observation that an alkane-free mutant displays 

increased cyclic electron flow, especially at low temperature where the mutant grows poorly. 



 28 

Chapter 3 details the construction and validation of that genome-scale metabolic model. Chapter 

4 covers my efforts to engineer cyanobacteria for overproduction of heterologous genes 

specifically at stationary phase by first analyzing microarray and plasmid copy number data to 

find genes and replicons whose expression is specific to stationary phase. Subsequently, we used 

the promoters of those genes and those replicons as genetic parts to construct a synthetic biology 

system for protein overexpression at stationary phase. Chapter 5 covers my attempts to 

overproduce alkanes in Synechocystis sp. PCC 6803 via metabolic engineering and modifications 

of growth conditions. This chapter also contains background on the production of alkanes by 

cyanobacteria.  

The appendix chapters to this dissertation are a number of other studies of which I have 

been a co-author during my time at Washington University. These studies are in the areas of in 

silico metabolic modeling and the measurement of metabolic fluxes using 13C-labeling methods 

in cyanobacteria. Appendix chapter 1 provides direct evidence for the existence of a complete 

TCA cycle in Synehocystis sp. PCC 6803 via a pathway that is common to most cyanobacteria. 

However, this pathway is different from the better known TCA cycle pathway in heterotrophs 

and appears to primarily act as a bifurcated pathway as opposed to a cycle. Appendix chapter 4 

details the analysis of the metabolism of Cyanothece sp. ATCC 51142 using 13C tracers in 

continuous light. Appendix chapter 3 gives a general method for the experiments in appendix 

chapters 1 and 4 with an accompanying video that provides a user-friendly explanation of these 

detailed procedures. Finally, appendix chapter 2 details a rapid method for the construction of 

genome-scale models of novel sequenced cyanobacteria. 
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Figure 1.1: Different methods for constructing cyanobacterial mutants. (a) shows the 

traditional method using double homologous recombination to insert a suicide vector into the 

genome at a neutral site (NS, gold) with upstream (US, orange) and downstream (DS, magenta) 

flanking regions in the vector. The insert contains an arbitrary sequence of interest (ATGCATG, 

green) and a selectable marker (SM, blue). (b) shows 2 methods of creating markerless mutants, 

either by selection-counterselection or by using a recombinase system such as FLP/FRT, The 

counter-selection method’s first step is the same as for the method in panel a, except that the 

insert also contains a counter-selectable marker (CSM, purple) such as sacB. A second 

transformation is performed to create a markerless mutant. Alternatively, the insert can contain 

recombinase recognition sites (RRS, gray) that are controlled by an inducible recombinase at a 

second (or the same) site in the genome. While it erases the selectable marker, this method does 

leave a scar sequence behind. (c) shows genetic modification in trans via expression plasmids. 
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Figure 1.2: DNA assembly methods. Traditionally in cyanobacterial synthetic biology, 

plasmids are assembled in vitro and then propagated in E. coli before being transformed into 

cyanobacteria (a). More recently, methods have been developed for in vitro assembly and direct 

transformation via fusion PCR (b). Recently, a method has been developed for in vivo plasmid 

assembly via homologous recombination in yeast which may also be applicable in certain 

cyanobacterial strains. 

!"#$!%&'

!""#$%&'

()!*"+,)$-.*(,-()#*'+!

.",&!(#-/&!"$.01-

()!*"+,)$-

2'!*,%!2(#).3$

!"#$!$'#!""#$%&'

!*0-()!*"+,)$!(.,*

!"#$!%&'

!""#$%&'

()!*"+,)$!(.,*

!4

%4

24



 45 

 
Figure 1.3: Using fluxomics and genome-scale models to link genotype to metabolic 

phenotype. From an annotated genome sequence, a stoichiometric model of metabolism can be 

constructed. That model can be solved via either prediction of an optimal flux phenotype (FBA) 

or measurement of actual flux phenotype (13C-MFA). These results can help suggest 

modifications for altering the phenotype of the cell in a desired manner. In this way, a synthetic 

biologist can design new strains, build them using genetic modification methods, and test their 

phenotypes before designing new modifications in an iterative fashion.



 

 

 

 

Chapter 2 

 

Cyanobacterial Alkanes Promote Growth in Cold Stress 

and Modulate Cyclic Photophosphorylation 
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2.1. Introduction 

Cyanobacteria are the most ancient group of oxygenic photosynthetic organisms. These 

bacteria evolved the first thylakoid membranes, the structures on which they, as well as algae 

and plants, split water to produce O2 and transform solar into chemical energy. In cyanobacteria, 

these membranes universally include alkanes and/or alkenes of 15-19 carbons. Recently, two 

pathways for production of these metabolites have been discovered (Schirmer et al. 2010; 

Mendez-Perez et al. 2011; Warui et al. 2011; Pandelia et al. 2013). Although these hydrocarbons 

were identified nearly 50 years ago (Han et al. 1968; Winters et al. 1969) and are produced at 

molar concentrations similar to chlorophyll a, little is known about their physiological role.  

2.1.1. Cyanobacterial Alkanes 

Medium-chain hydrocarbons are produced by a number of different organisms, including 

insects (Reed et al. 1994), birds (Cheesbrough et al. 1988), plants (Aarts et al. 1995), algae 

(Ladygina et al. 2006), and cyanobacteria and fulfill a wide variety of roles from waterproofing 

to energy storage. However, several factors distinguish cyanobacterial alkane biosynthesis in 

terms of its biological and biotechnological interest. For one, cyanobacteria produce large 

amounts of alkane, as much as 0.25% by weight in the wild-type strain (Coates et al. 2014), and 

most cyanobacteria do so using a small, soluble enzyme. This alkane abundance is similar on a 

molar basis to chlorophyll a and indicates that under appropriate conditions, the enzyme must 

operate quite efficiently. Although early studies on cyanobacterial ADO (aldehyde deformylating 

oxygenase) indicated that it operated extremely slowly or unstably, this may have been due to 

early confusion about the stoichiometry of the reaction and its mechanism. For example, while 

some studies reported that activity could only be detected under anaerobic conditions, it later 

became clear that the enzyme uses O2 as a substrate to oxidize the aldehyde carbon and convert it 
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to formate (Das et al. 2014). This abundance of cyanobacterial alkanes and their potential 

usefulness as diesel fuels makes them promising targets for biofuel production. However, despite 

this promise, limited progress has been made so far in engineering either cyanobacteria to 

overproduce alkanes or other organisms to overproduce them using cyanobacterial enzymes (See 

chapter 4 of this work for further discussion). 

From a biological perspective, the function of hydrocarbon-producing pathways in 

cyanobacteria has until recently been unknown. However, emerging evidence points to the 

importance of these pathways in cyanobacteria. There are two known pathways for 

cyanobacterial alka(e)ne biosynthesis, which either elongate and then decarboxylate fatty acids 

using a polyketide synthase-like complex (PKS-type), or reduce and then deformylate fatty acids 

using a pair of soluble enzymes (ADO-type). In general, the PKS-type pathway produces an α-

olefin, while the ADO-type pathway produces linear, saturated species, although methylated 

species have been found in organisms carrying either pathway.  One or the other of these 

pathways, but never both, is present in all fully sequenced cyanobacteria (Coates et al. 2014; 

Klahn et al. 2014). At the time of writing of this thesis, a small number of draft genomes exist in 

which no genes for alkane or alkene production have yet been found, but the fact that these are 

draft genomes combined with the universality of these genes in finished cyanobacterial genomes 

suggests that this absence is due to incomplete assembly or annotation. The ADO pathway is 

much more common – it has been identified in 164 strains as opposed to 17 for the PKS-type 

pathway (Coates et al. 2014; Klahn et al. 2014). The universality and abundance of 

cyanobacterial alka(e)nes indicates that they must have some important biological function.  
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2.1.2. The Cyanobacterial Thylakoid Membrane 

In this study, we have investigated the function of the heptadecane produced by 

Synechocystis sp. PCC 6803 (hereafter Synechocystis 6803). This model strain harbors the ADO-

type pathway and is easily amenable to genetic manipulation. It was the first photosynthetic 

organism to have its genome completely sequenced (Kaneko et al. 1996) and is a common model 

system for studies on photosynthesis as well as synthetic biology and metabolic engineering 

(Berla et al. 2013). Although efforts have been made to overproduce heptadecane as a biofuel 

molecule, they have met with limited success (Howard et al. 2013; Kaiser et al. 2013; Wang et 

al. 2013).  This resistance to overproduction of a promising biofuel highlights the gap that still 

exists between the dream of a plug-and-play microbial cell factory and the reality of a 

dynamically regulated, intricately interconnected, and often still mysterious cellular 

environment. Therefore, it is important to identify the mechanisms underpinning overproduction 

resistance to break down these barriers. 

The cyanobacterial thylakoid membrane is unique among biomembranes because it 

houses both oxygen-evolving photosynthesis and a full complement of respiratory enzymes 

(Schubert et al. 1995; Ohkawa et al. 2000; Cooley et al. 2001). This diversity of functions poses 

both a challenge and an opportunity – it allows the organism to adapt to a huge range of 

conditions and maintain balance in diverse metabolic pathways. However, this membrane system 

must also maintain both its physical composition and its activity across a wide range of 

environmental conditions. Any deviations in the redox poise of electron transport components 

can lead to metabolic imbalance and oxidative damage. Since photosynthetic organisms have a 

limited ability to not absorb light energy when the sun is out, their photosynthetic pathways must 

remain prepared to carry flux. While heterotrophs can slow their uptake of nutrients during 



 50 

stress, autotrophs have little ability to avoid the sun, and can not save sunlight for later when 

conditions are better – they must ‘make hay (or some other biomass) while the sun shines’. One 

particularly challenging and well-studied environmental condition for cyanobacteria is cold 

stress. Cyanobacteria modify their membranes in response to cold stress by synthesizing 

unsaturated lipids that remain fluid (Wada et al. 1990; Mikami et al. 2002; Ludwig et al. 2012). 

Recovery from photoinhibition depends on maintaining the fluidity of the membrane through 

fatty acid modification (Gombos et al. 1994). It has also been shown that cold-stress limits the 

ability of the cyanobacterium, Synechococcus sp. PCC 7002, to utilize nitrate, and requires urea 

as a reduced nitrogen source for optimal growth (Sakamoto et al. 1998; Sakamoto et al. 2002). 

Figure 2.1 gives an overview of the main components of the photosynthetic machinery 

housed in the thylakoid membrane. This additional membrane system exists inside the cytoplasm 

of nearly all cyanobacterial strains, often occupying most of its volume (Liberton et al. 2011). 

These components are responsible for capturing solar energy in the forms of ATP and NADPH 

to power carbon fixation as well as the rest of cellular metabolism. It is critical that these energy 

sources are produced so as to match their consumption. A number of pathways allow the cell to 

strike this balance while also maintaining the redox poise of all electron transfer components 

(Allen 2002; Nogales et al. 2012). Successful forward electron transfer depends critically on 

maintenance of redox poise for all components, with deviations leading to unintended reactions 

and oxidative stress. There are two primary pathways for photosynthetic energy production. In 

the linear electron transport pathway, electrons travel from water to NADP(H). They are first 

excited by light at photosystem II (PSII) where water is split and O2 is evolved. These excited 

electrons are then transported by plastoquinone (PQ) inside the thylakoid membrane to the 

cytochrome b6f complex. Next, they are transported by soluble acceptors such as plastocycanin 
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in the thylakoid lumen to PSI, where they are again excited by light before donation to final 

acceptors in the cytoplasm, including NADP(H), nitrate, and others. Along the way, various 

steps in the pathway are coupled to transport of protons into the thylakoid lumen to power ATP 

synthesis by an F1F0 ATP synthase. This ATP synthesis requires 14 protons to generate 3 ATP, 

unlike those found in most heterotrophs, which require only 12 protons (Seelert et al. 2000). The 

second pathway highlighted in Figure 2.1 is a cyclic pathway, in which electrons from PSI are 

donated back to the PQ pool. While several alternative cyclic routes have been proposed, the 

pathway with the highest quantum yield involves NDH-1 donating electrons from NADPH to the 

PQ pool, since this pathway pumps additional protons as compared with others (Battchikova et 

al. 2011; Kramer et al. 2011). When electrons are recycled in this pathway, no NADPH but more 

ATP is produced. Thus, it has been suggested that cyclic electron transport pathways are critical 

for achieving the appropriate balance of ATP and NADPH to power CO2 fixation (Allen 2002; 

Kramer et al. 2011; Nogales et al. 2012). However, these electron transport pathways must also 

power other cellular processes such as nitrogen assimilation, macromolecule synthesis, and the 

carbon-concentrating mechanism. In addition to the high-yield NDH pathway, cyanobacteria also 

include other forms of NDH-1 specialized for roles in the CO2-concentrating mechanism (Price 

2011) as well as succinate dehydrogenase (Cooley et al. 2001) that can participate in cyclic 

electron transport around PSI. Pseudo-cyclic pathways involving PSII and PSI can also supply 

extra ATP while reducing oxygen instead of NADP+ (Schubert et al. 1995; Howitt et al. 1998; 

Nogales et al. 2012; Vu et al. 2012). Table 2.1 gives an overview of the quantum efficiency of 

different alternative electron flow pathways in Synechocystis 6803 for ATP and NADPH 

production. Because of its prominent role as a model system for photosynthesis studies, far more 
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is known about such pathways in Synechocystis 6803 as compared with any other 

cyanobacterium. 

Until recently, no physiological role of the ubiquitous alkanes and alkenes found in 

cyanobacterial membranes had been identified. It was recently found that the α-olefins produced 

by the PKS-type pathway in Synechococcus sp. PCC 7002 play a role in cold-tolerance of that 

strain (Mendez-Perez et al. 2014). The strain produces a mono- and a diunsaturated olefin, and 

the diunsaturated species was found to accumulate at low temperature and to be essential for 

growth at low temperature (22 C compared to that organism’s optimum of 38 C). In the present 

work, we find a similar phenotype for heptadecane in Synechocystis sp. PCC 6803. We show that 

membrane alkanes support optimal photosynthesis at low temperatures. Beyond this growth 

phenotype, we show that a strain that does not produce alkanes relies more heavily on cyclic 

electron transport, especially at low temperatures. We examine this result in the context of a 

genome-scale metabolic model that we generated previously for this strain (Saha et al. 2012). 

We used Flux Balance Analysis (FBA) (Orth et al. 2010) to explore the role of this pathway in 

helping cyanobacteria respond to environmental stress. We argue that alkanes are critical 

metabolites at low temperature because they help to maintain the balance of critical 

photosynthetic activities in the thylakoid membrane. We hypothesize that in the absence of 

alkanes, excess cyclic electron transport is required to maintain redox poise and that this excess 

leads to the observed slow growth of the mutant strain. 
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2.2. Materials and Methods 

2.2.1. Mutant Construction  

Plasmid pSL2192 was constructed via SLIC (Li et al. 2012) and restriction-based 

cloning. Initially, the fragments immediately upstream and downstream of the Synechocystis 

6803 genes sll0208 and sll0209 encoding aldehyde deformylating oxygenase and fatty acyl-ACP 

reductase, respectively, were cloned into the pUC118 backbone on either side of a kanR cassette 

from pUC4K via SLIC. Primers were designed using j5 software (Hillson et al. 2012) and 

synthesized by IDT (Coralville, IA). Homologous sequences added to assembly fragments at the 

5’ ends of primers are in lowercase in table 2.2 below, while sequences binding to template DNA 

are in uppercase. Subsequently, this kanamycin cassette was replaced by a larger HincII 

fragment of the same plasmid. 

Wild-type Synechocystis 6803 was transformed with this plasmid via natural 

transformation and transformants were isolated on BG11 media containing 20 µg/mL of 

kanamycin. Once colonies appeared, they were restreaked onto fresh media containing 40 µg/mL 

of kanamycin and the expected insertion site was confirmed via colony PCR. Mutant segregation 

was confirmed by the absence of any detectable PCR fragment originating from the sll0208 or 

sll0209 loci as shown in figure 2.2. 

2.2.2. Culture Conditions 

Cultures were grown in shake flasks at 200 rpm with BG-11 media under 30 µE of white 

light. For growth experiments, cultures were pre-incubated at their respective growth 

temperature for 48 hours before being diluted to OD730 = 0.05 (~107 cells/mL) in fresh BG-11 

media. Cell growth was monitored by measuring OD730 daily using a BioTek plate reader 

(Biotek, Winooski, VT). For heptadecane analysis, samples were taken after 8 days of growth. 
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For redox kinetics experiments, cultures were grown for 5 days at 30 C, then resuspended in 

fresh media before measurement at either 30 C or 20 C. 

2.2.3. Extraction and Analysis of Alkanes 

2 mL of culture was pelleted by centrifugation and combined with 1 mL of ethyl acetate 

and 0.5 mL of 0.1 mm glass beads. Cells were lysed by bead beating for 3 cycles of 1 minute, 

with 5 minutes rest between cycles. Glass beads and debris were pelleted by centrifugation for 10 

minutes at 16,000 x g then the upper ethyl acetate layer was removed for analysis. Chlorophyll a 

was determined on a DW-2000 spectrophotometer according to the formula [chl a] (µg/mL) = 

(16.29*A665) - (8.24 x A652) (Lichtenthaler 1987). Alkanes were determined on an Agilent 6890 

GC-MS fitted with a 12 meter DB5-MS column as previously (Schirmer et al. 2010) and 

quantified by comparison with an n-heptadecane standard (Sigma-Aldrich, St. Louis, MO).  

2.2.4. Photophysiology Experiments 

For analysis of P700 redox kinetics, cultures were grown as above for 5 days, then diluted 

2-fold in fresh media and grown for 24 hours at either 20 C or 30 C. Cells were harvested by 

centrifugation and resuspended in fresh media to a chlorophyll concentration of 10 µg/mL. 

Samples were then maintained in the light at their growth temperature until ready for analysis 

(within several hours). Before each measurement, any required inhibitors were added and then 

the sample was dark-adapted for 2 minutes. A sub-saturating (130 µE/m2/sec) pulse of actinic 

light from an orange LED source was used to illuminate the sample for 5 seconds. During that 

pulse and for 10 seconds of recovery afterwards, the redox state of P700 was monitored by 

absorption at 705 nm. 



 55 

2.2.5. Flux Balance Analysis 

 Flux balance analysis (FBA)(Varma et al. 1994) was carried out on our previously 

developed Synechocystis iSyn731 model (Saha et al. 2012) to evaluate maximum biomass 

production in photosynthetic condition under various ratios of NDH-1 to PSI activity. The flux 

distribution for each of these states was inferred using FBA:   

Maximize   

Subject to 

                            (2.1) 

                          (2.2) 

                             (2.3) 

                            (2.4) 

                      (2.5) 

                        (2.6) 

                        (2.7) 

               
 
vCytox  !  "          (2.8) 

Here, Sij is the stoichiometric coefficient of metabolite i in reaction j and vj is the flux 

value of reaction j. Parameters vj,min and vj,max denote the minimum and maximum allowable 

fluxes for reaction j, respectively. vBiomass, vATPm, vH2CO3_uptake, vCO2_uptake, vPSIphoton_uptake, 

vPSIIphoton_uptake, vNDH, vPSI and vPSI_2  represent the flux of biomass formation, ATP maintenance, 

bicarbonate, carbon-di-oxide, PSI photon and PSII photon uptake, NAD(P)H dehydrogenase, PSI 

(involving reduced/oxidized plastocyanin) and PSI_2 (involving ferro/ferri-cytochrome) 
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reactions, respectively. And, n is the ratio of NDH-1 activity to PSI activity that is varied in the 

range of 0.01 and 2 with an increment of 0.01 (equivalent to a recycle rate between 0 and 100%). 

Based on the modeling practice (Saha et al. 2012; Vu et al. 2012), as shown in equations (2.4) 

and (2.5), photosynthetic conditions in Synechocystis sp. PCC 6803 are represented via setting a 

ratio of photon uptake (in the form PSI and PSII photon) to carbon uptake (in the form of CO2 

and H2CO3) to 1000:100.  Also the ATP maintenance requirement of the cell is set to be 10 

mmole/g-DW-h and activity of both the PSI reactions is assumed to be equal (Saha et al. 2012). 

In order to clarify the role of the recycle ratio on the fitness of the organism, the major pseudo-

cyclic electron flows involving cytochrome oxidase are downregulated using the constraint as 

described in equation (8). Here, the value of the parameter ε was set to 0.01. 

Once we had the values of optimal biomass for various ratios of NDH to PSI activity (as 

discussed above) from the Synechocystis iSyn731 model, flux variability analysis (Kumar et al. 

2011) for the reactions (which participate in electron transport chain in thylakoid lumen and 

photosynthesis) was performed based on the following formulation: 

Maximize/Minimize   

Subject to equations (2.1) – (2.8) as well as the additional constraint: 

                v
Biomass  

!  v
Biomass

min           (2.9) 

Here,  is the minimum level of biomass production. In this case we fixed it to be the 

optimal value obtained under a specific NADH to PSI activity ratio in photosynthetic condition 

for the Synechocystis iSyn731 model. 

CPLEX solver (version 12.4, IBM ILOG) was used in the GAMS (version 24.4.4, GAMS 

Development Corporation) environment for solving the aforementioned optimization models. All 

v
j

v
Biomass

min
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computations were carried out on Intel Xeon E5450 Quad-Core 3.0 GHz and Intel Xeon X5675 

Six-Core 3.06 GH that are part of the lionxj and lionxf clusters (Intel Xeon E and X type 

processors and 128 and 128 GB memory, respectively) of High Performance Computing Group 

of The Pennsylvania State University. 

 

2.3. Results  

2.3.1. Mutant Construction 

We constructed a plasmid vector, pNOalk (Figure 2.2A), to replace the ADO-type 

pathway for heptadecane biosynthesis in the naturally competent cyanobacterium Synechocystis 

sp. PCC 6803 with a kanamycin resistance cassette via double homologous recombination. After 

approximately six months and many rounds of patching on kanamycin-containing BG-11 media 

(20-40 µg/mL), we confirmed that no wild-type gene copies remained in the mutant strain via 

PCR (Figure 2.2B). Synechocystis 6803 has a high and flexible genome copy number and genes 

that confer a fitness advantage can be maintained in a merodiploid state when replaced by 

selective markers. In our experience most mutant strains segregate within 2-3 patchings, but even 

after several months we had to screen several mutant lines to identify one that was fully 

segregated. We also confirmed that the strain did not produce detectable heptadecane via GC-MS 

and regularly reconfirmed this throughout our experiments. 

2.3.2. Growth, Heptadecane Production, and Fatty Acids Analysis 

Synechocystis 6803 grows optimally at 30 C (Tasaka et al. 1996). Although the NOalk 

strain grew at nearly the same rate as the wild-type at 30 C, its growth was slower than the wild-

type at 25 C and severely hampered at 20 C (Figure 2.3A). Growth of the wild-type strain was 
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only slightly slower at 20 C than at 30 C. At these lower temperatures, the wild-type strain also 

produced approximately twice as much heptadecane as when grown at 30 C (Figure 2.3B). This 

increased production of heptadecane at low temperature and poor growth in its absence indicate 

that heptadecane plays an important role in cold tolerance. No significant differences were 

observed between the fatty acids profile of the wild type and mutant strains (Figure 2.3C). In 

both strains, 16:0 fatty acids were by far the most abundant, accounting for more than 70% of 

fatty acids. All other individual species accounted for less than 10% of the total fatty acids.  

2.3.3. Photosynthetic Analysis  

To investigate why the NOalk mutant grows poorly at low temperature, we analyzed the 

kinetics of PSI reaction center oxidation/reduction using a JTS-10 spectrophotometer (BioLogic, 

Grenoble, France). Photo-oxidized PSI reaction centers (P700
+) have much lower absorption of 

red light than the reduced form (P700), so a decrease in absorbance at 705 nm is correlated with 

increased oxidation of P700. This redox cycle occurs each time PSI absorbs a photon, and 

significant net oxidation of P700 can occur in the light, especially in the presence of 

photosynthetic inhibitors. Probing the kinetics of P700 reduction and oxidation is a powerful 

method for studying photosynthesis and especially cyclic electron transport (Joliot et al. 2005; 

Marathe et al. 2012). We suspended exponentially growing WT and NOalk cells in fresh BG-11 

media to a chlorophyll concentration of 10 µg/mL. We exposed dark-adapted cells to a 5 second 

pulse of actinic light and measured the oxidation of P700, then switched off the light and 

measured its re-reduction in the dark over 10 seconds (See figure 2.4). We measured these redox 

kinetics at both 30 C and 20 C and in the presence of the inhibitors DCMU (1,6-dichloromethyl 

urea) and DBMIB (2,5-dibromo-3-methyl-6-isopropyl benzoquinone). While DCMU blocks the 

activity of PSII and thus linear electron transport, it allows cyclic electron transport around PSI 
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to continue. DBMIB is a quinone analogue that inhibits cytochrome b6f and thus disables both 

linear and cyclic electron transport (Trebst 2007), as well as respiratory pathways involving 

cytochrome b6f (Ohkawa et al. 2000; Cooley et al. 2001).  

Figures 2.4A and 2.4C show the effects of these inhibitors at 30 C, while 2.4B and 2.4D 

show the kinetics at 20 C. Figures 2.4C and 2.4D show the details of the re-reduction of P700
+ in 

the dark for 2.4A and 2.4B, respectively. In the absence of inhibitors, the redox kinetics of P700 

are nearly the same in the WT and NOalk strains, with the oxidation being slightly faster and 

reduction slightly slower in the mutant. However, in the presence of inhibitors, the kinetics of 

reduction diverge. The wild-type strain shows a greater change in oxidation at steady-state than 

the mutant in the presence of either DCMU or DBMIB (fig. 2.4A and 2.4B). To account for this 

difference and allow easy comparison among conditions, the kinetics of P700
+ re-reduction in the 

dark (fig. 2.4C and 2.4D) have been normalized to the maximal oxidation observed within each 

measurement.  

While the re-reduction rates are similar for the WT and NOalk in the absence of 

inhibitors, the mutant is less sensitive to DCMU as seen by its faster re-reduction with this 

inhibitor. This difference indicates a lesser reliance on PSII activity to re-reduce P700
+ in the 

mutant. Therefore, the mutant must be supplying more electrons to P700
+ via cyclic electron 

transport or respiratory pathways, or else expending fewer electrons via quinol oxidases (See 

figure 2.1). Assuming that CEF is the major contributor to P700
+ re-reduction, we have used these 

data to calculate the percentage contribution of cyclic vs. linear electron transport to P700
+ re-

reduction (Marathe et al. 2012) (figure 2.5). The mutant strain at either 20 or 30 C has a greater 

reliance on cyclic electron transport. However, this difference becomes larger at 20 C, with the 

cyclic process accounting for nearly 20% of electron flow to P700
+. This would indicate that the 
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cells are recycling approximately 1 electron in 5 in the mutant at 20 C, as opposed to one 

electron in 11 in the wild-type at 20 C and 1 in 17 in the wild-type at 30 C. 

Another notable feature of the data presented in figure 2.4 is the greater sensitivity of the 

mutant to DBMIB. At low temperature, the re-reduction half time for the mutant approaches 1 

second, which is consistent with back-reaction from ferredoxin, or potentially with the transfer of 

electrons from NADPH to P700
+ by any number of non-physiological routes. However, for the 

wild-type at either temperature, the re-reduction is 1.5-2 times faster.  

2.3.4. Flux Balance Modeling of Linear and Cyclic Electron Transport 

We earlier developed a genome-scale model of photoautotrophic metabolism in 

Synechocystis 6803, iSyn731 (Saha et al. 2012). This model includes detailed descriptions of 

both linear and cyclic electron transport pathways, as well as alternative electron flow pathways, 

such as cytochrome oxidase, Mehler reaction, and photorespiration. In this study, we have used 

the model for flux balance analysis (FBA) (Orth et al. 2010) to predict the distribution of 

intracellular fluxes associated with a maximal growth rate under various rates of cyclic electron 

flow. Using similar techniques, it was recently found that a range of electron flow pathways 

allow for robust maintenance of redox poise under a range of environmental conditions in 

multiple cyanobacterial strains (Nogales et al. 2012; Vu et al. 2012). We chose to analyze the 

effect of varied CEF rates because of the observed effect of the mutation on cyclic electron 

transport. We found that biomass production is optimal at a recycle rate of 25% (Figure 2.6) and 

decreases approximately linearly both above and below that value albeit with different slopes. At 

lower cyclic electron flow rates, ATP production is limiting, while at high recycle rates NADPH 

production becomes limiting. However, the specific recycle rate associated with maximal growth 

is dependent on environmental conditions such as light intensity and spectral quality (PSI and 
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PSII have different absorption spectra), nitrogen source, and the presence of reduced carbon 

sources. Presumably owing to the many redundant pathways (see table 2.1) in the cell that allow 

for modulation of the ATP:NADPH ratio, growth was predicted to be possible at any recycle rate 

under the conditions tested. However, this complementation among pathways may only be 

possible in silico due to kinetic or redox poise limitations that exist in vivo (Vu et al. 2012) and 

are not captured in current models.  

A closer observation in the in silico flux ranges via flux variability analysis (Mahadevan 

et al. 2003) reveals that with the increase of the recycle ratio, the model predicts expanding 

ranges of ATP and NADPH production. Based on these results, the model is predicting that the 

cell is activating energy inefficient reactions and/or pathways in above-optimal recycle ratios to 

consume whichever energy source is produced in excess for a particular solution. Because the 

appropriate ATP:NADPH balance for biomass production must be maintained, these inefficient 

pathways decrease the quantum efficiency of biomass production. 

 

2.4. Discussion  

2.4.1. Alkane Production at Low Temperature 

Similarly to the alkane produced by Synechocystis 6803, α-olefins produced by 

Synechococcus 7002 were found to be essential for growth at low temperature. While this strain 

grows optimally at 38 C, a knockout mutant producing no alkanes did not grow at 22 C 

(Mendez-Perez et al. 2014). Synechococcus 7002 produces both a 19:1 and a 19:2 α-olefin. The 

level of the 19:2 olefin increased at 22 C, although the total alkene pool decreased. This finding 

is consistent with the classical paradigm of membrane unsaturation as a response to cold (Wada 
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et al. 1991). In contrast, we found that the unsaturated hydrocarbon heptadecane accumulated in 

response to cold. This difference may help to explain why the two pathways for alka(e)ne 

production are never found to occur together in the same strain (Coates et al. 2014), and suggests 

that their mechanisms of action may be distinct from each other despite the similar phenotypes of 

these mutants. 

2.4.2. P700 Redox Kinetics 

 Synechocystis 6803 exhibits increased cyclic electron flow at low temperature, especially 

in the NOalk mutant strain. Cyclic electron flow is known to serve diverse roles in autotrophs. 

Recent evidence suggests that cyclic electron transport in Chlamydomonas is regulated directly 

by the redox state of the cell and acts to prevent over-reduction of the stroma (Takahashi et al. 

2013). CEF is also crucial for acclimation of Arabidopsis thaliana to fluctuating light (Suorsa et 

al. 2012). Additionally, CEF can help to maintain the balance of ATP:NADPH required for CO2 

fixation (Shikanai 2014). Since the thylakoid membrane ATP synthase requires 14 protons to 

produce 3 ATP, linear electron flow can not provide for the 3:2 ratio of ATP:NADPH to power 

CO2 fixation by the Calvin Cycle (Allen 2002) or for the higher ratios required by the whole of 

metabolism (Nogales et al. 2012; Saha et al. 2012; Vu et al. 2012). For this reason alone, it has 

been suggested that PSI would have to recycle approximately 1 electron in 5 to the PQ pool or 

expend an even greater proportion in pseudo-cyclic electron flow in green algae. The story in 

cyanobacteria is a bit different. Because of the proton-pumping NDH-1 in the cyanobacterial 

thylakoid membrane (Kramer et al. 2011), only about 1 electron in 9 would need to be recycled 

to provide for CO2 fixation, although the optimal number depends on the exact mix of nutrients 

consumed for biomass production. Different nitrogen and carbon sources will require different 

inputs of ATP and NADPH for biomass synthesis, as discussed below in the context of our FBA 
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analysis. Additionally, because cyanobacterial thylakoid membranes include a cytochrome c 

terminal oxidase (CtaI/II) (Schubert et al. 1995), pseudo-cyclic electron flow around PSII can 

operate with the same quantum yield of ATP as CEF around PSI, yielding 0.86 ATP per photon 

(See table 2.1). Thus, the highly redundant cyanobacterial thylakoid membrane provides many 

options for the cell to balance ATP and NADPH production under different light quality and 

quantity, along with the redox state of various electron carriers. However, it appears that the 

higher rates of cyclic flow in the absence of alkanes lead to a reduction in this photosynthetic 

flexibility, perhaps because of the need to maintain the redox poise of certain electron transport 

components. It remains unclear what exactly the source of this limitation might be. One 

possibility is that the lack of alkanes reduces membrane fluidity at low temperature, leading to 

some loss of photosynthetic activity or restriction in electron transport, such as the 

intramembrane trafficking of reducing equivalents by plastoquinone. In turn, this metabolic 

inflexibility leads to non-ideal thylakoid reductant partitioning. While the mutant displayed a 

similar effect on its redox kinetics at either ideal or low temperature, the mutant only grew more 

slowly at low temperature. It seems that with alkanes present, cellular metabolism was able to 

accommodate the challenge of maintaining a near-maximal growth rate at 25 or 20 C. However 

without alkanes these low temperatures exceeded the capacity of the cell to adapt (See figure 

2.7). Taken together, these data suggest that enhanced CEF in the mutant contributes to 

maintaining redox poise, but restricts the flexibility of the cell to adapt to changing 

environmental conditions.  

 The slow re-reduction of P700
+ in the NOalk mutant with DBMIB might be explained in 

several ways. The re-reduction of P700
+ in the presence of DBMIB proceeds primarily by charge 

recombination within PSI in green algae (Alric 2010) and it is likely that the same holds true for 
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cyanobacteria. With a relatively oxidized NADP(H) pool, such charge recombination would 

proceed more slowly. Another possibility is that formate dehydrogenase contributes to the re-

reduction of P700
+ via cytochrome c553 under these conditions. Because alkane production from 

fatty acids is a source of formate in the cell, this pathway might be slowed in the mutant. While it 

is unlikely that this pathway is a major contributor to P700
+ reduction during normal growth, it 

might have an effect during low temperature and poisoning with DBMIB. 

2.4.3. Flux Balance Modeling 

 The FBA derived optimal recycle rate agrees with our observations of cyclic electron 

flow. We measured a recycle rate of approximately 1 electron in 5 in the mutant at 20 C 

compared to an optimal recycle ratio of 1 electron in 4 via FBA. While the measured recycle rate 

for optimal growth was a bit lower (1 electron in 17 in WT cells at 30 C), it is expected that 

experimental measurements would be underestimates of the actual rate and that modeling results 

would overestimate the ideal rate. Both of these discrepancies are caused by the potential activity 

of cytochrome oxidase. In vivo, this activity would lead us to underestimate CEF rates by 

intercepting some of the electrons donated to cytochrome b6f from reaching PSI. Others have 

attempted to block cytochrome oxidase activity using potassium cyanide in combination with 

DCMU for estimation of cyclic electron flow in cyanobacteria, but this inhibitor has given 

inconsistent results. In some cases, it leads to faster re-reduction of P700
+ (Bernat et al. 2011; 

Marathe et al. 2012), while in other cases the re-reduction is slower (Ivanov et al. 2000; Marathe 

et al. 2012) indicating that this inhibitor has non-target effects. Another possible reason for an 

underestimate of CEF is that the process is slowed in the presence of DCMU because of a 

relatively oxidized thylakoid lumen in the mutant. Transfer from PSI electron acceptors to the 

PQ pool has been regarded as the rate-limiting step in CEF, so an oxidized pool of PSI acceptors 
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could slow the kinetics of CEF (Maxwell et al. 1976; Alric 2010). In silico, by restricting the 

activity of cytochrome oxidase (and other alternative electron flow pathways) to explore the 

effect of the dominant cyclic pathway via NDH-1 (Ohkawa et al. 2000), we eliminated a 

potential source of ATP and thus required the cyclic pathway to carry a higher flux for ATP 

production. It should also be noted that an exact match between the simulated environmental 

conditions in our model and those experienced in our growth studies is difficult to assess, and as 

we have shown, environmental conditions have a significant impact on cyclic electron flow.  

 In future work, FBA will serve as a valuable tool for studying the effects of different 

environmental conditions on cyanobacteria in general and on cyclic electron transport 

specifically, as we believe this process is a key tool that allows photosynthetic organisms to 

acclimate to a dynamic environment. We have demonstrated here that FBA can serve to analyze 

phenotypes beyond what is explicitly included in the model. Our model contains no information 

related to the effects of temperature or the regulatory role of heptadecane, but by inputting our 

observations of those effects (increased CEF) into the model, we identified a likely secondary 

outcome of activation of inefficient metabolic cycles for growth. These metabolic reactions 

would have been impossible to directly measure using available technologies. Thus, an in silico 

approach helped us to understand the mechanistic role of alkanes in a unique way. 

 

2.5. Conclusions 

The low temperature of 20 C used in this study is well within the normal daily range that 

might be expected in a temperate climate where mid-day temperatures reached or exceeded the 

optimum of 30 C for Synechocystis 6803. At these temperatures, alkanes appear to play a role in 
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modulating reductant balance and maintaining the redox balance of the photosynthetic electron 

transport chain, as evidenced by increased cyclic electron flow in their absence. A photosynthetic 

strain adapted to living at a wide range of temperatures would gain a growth advantage from 

being able to use the light that is available in cooler morning and evening hours. Redox balance 

must be tightly controlled by cyanobacteria to avoid redox stress (Schuurmans et al. 2014), 

including across the full range of environmental conditions in the organism’s habitat. It is not 

unexpected that these hydrocarbons, which are both universal and unique metabolites to the 

cyanobacterial phylum, should be involved in the challenge of living with light as a primary 

energy source. While plants and algae face this same challenge, their chloroplasts’ thylakoid 

membranes are adapted to a very different set of challenges than those in cyanobacteria, which 

house both photosynthesis and respiration. These membranes also include different types of 

hydrocarbons, such as sterols. Thus, this paper puts forth and provides evidence for the 

functional role for this recently-characterized and biotechnologically important class of 

cyanobacterial metabolites. 
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Table 2.1: Alternative electron flow pathways and their quantum yields of ATP and 

NADPH. Cyclic electron flow pathways around PSI are highlighted in green, and pseudocyclic 

pathways involving PSII are highlighted in blue. 

Pathway PSII:PSI 
activity ratio 

ATP quantum 
yield (hν-1) 

NADPH quantum 
yield (hν-1) 

Linear electron flow 1:1 .32 .25 
Cyclic electron flow (NDH-1) 0:1 .86 0 
Cyclic electron flow  
(FQR/SDH/NDH-2/NO3 reductase) 

0:1 .43 0 

Cytochrome oxidase 1:0 .86 0 
Mehler reaction/Hydrogenase 1:1 .35 0 
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Table 2.2: Oligonucleotides used in this study. Sequences binding to template DNA are in 

capital letters, while sequences added to the 5’ end for assembly via SLIC (see methods) are in 

lowercase. 

Primer name Sequence 
sll0208_US_forward aacagctatgaccatgattacgaattCAAAATCTCCGGTCGGGTAAC 
sll0208_US_reverse gaatatggctcatAGGGGCGTTGGACTCCTG 
MCS_sll0209_DS_forw
ard gctcggatccggtaccgtcgactctagaGCCGACAGGATAGGGCGTG  
sll0209_DS_reverse tgtaaaacgacggccagtgccaagctGACAAAAGTGAATGGATGCCCG 
kanR_forward gtccaacgcccctATGAGCCATATTCAACGGGAAAC  

kanR_MCS_reverse 
tagagtcgacggtaccggatccgagctcTTAGAAAAACTCATCGAGCA
TCAAATG 

A_f CGCCCAAGCGGTTGCTGAAGA 
A_r GCGCCACAAACCGCTACCGT 
B_f AGATGGCGGAACTCTTGCCGGA 
B_r ATACCTTGGCGTCCCCCTGCA 
C_f TCAGCTACGGCGAAGCCCTCA 
C_r CCTAAAGAGCTACTAAAGGGC 
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Figure 2.1: Cartoon of cyanobacterial photosynthetic electron transport pathways. 

Indicated are photosystems I (PSI/P700) and II (PSII). In the linear electron transport pathway 

(dotted violet line), light is first absorbed by PSII, then excited electrons are transported inside 

the membrane by plastoquinone (PQ) to cytochrome b6f, then through the thylakoid lumen by the 

soluble carrier plastocyanin (PC) to PSI. At PSI, electrons are excited by light a second time and 

then reduce NADP+. Along the way, protons are transported inside the lumen to power ATP 

synthesis via the F1F0 ATP synthase. In the cyclic pathway (dotted magenta line), electrons are 

re-donated from PSI to the PQ pool. Thus, the cyclic pathway produces ATP at the expense of 

NADPH. Inhibitors used in this study and their sites of inhibition are also indicated in red 

octagons. DCMU blocks electron transfer from PSII to PQ and DBMIB prevents oxidation of 

plastoquinone by the cytochrome b6f complex. 
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Figure 2.2: Knockout mutant construction strategy (A) and confirmation by PCR (B). We 

constructed a plasmid, pNOalk, containing sequences flanking the genes for the ADO-type 

heptadecane biosynthesis pathway in Synechcocystis 6803 around a kanamycin resistance 

cassette (A). We confirmed the absence of these genes from the mutant strain via PCR with 3 

different primer sets (B) using genomic DNA from the wild-type strain or the mutant strain 

(NOalk), or the plasmid pNOalk as template. Binding sites of the three primer sets (1,2,3) on the 

wild-type chromosome are indicated in panel a.  
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Figure 2.3: Growth and alkane production of WT and noALK strains at various 

temperatures. (A) Cultures were grown in shake flasks at 200 rpm with BG-11 media under 30 

µE of white light. Cultures were pre-incubated at their respective growth temperature for 48 

hours before being diluted to OD730 = 0.05 (~107 cells/mL) in fresh BG-11 media. Cell growth 

was monitored by measuring OD730 daily on a BioTek (Winooski, VT) plate reader. (B) After 8 

days, aliquots were taken and extracted with ethyl acetate and glass beads in a bead-beater. 

Heptadecane was measured via GC-MS and normalized to chlorophyll a concentration. Error 

bars are ± SD for n=3 for both A and B. Where error bars are not seen, the error is smaller than 

the symbol shown.
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Figure 2.4: P700 redox kinetics for WT and noALK strains at 20 and 30 C. Using a JTS-10 

spectrophotometer, cell suspensions were dark-adapted and then exposed to a pulse of orange 

actinic light (to excite both PSII and PSI) for 5 seconds. The actinic light was then turned off 

(indicated by black/white bar above panel A). During this time-course, measuring flashes of 705 

nm light probed the redox state of the P700 reaction center. Data were collected from cells that 

had been grown at 30 C, then measured at 30 C (panel A,C) or shifted to 20 C before 

measurement (panel B,D). Panels C and D show the details of re-reduction of P700
+ in the dark 

for the experiments in panels A and B, respectively. Inhibitors of linear (10 µM DCMU, which 

inhibits transfer from PSII to the quinone pool), and linear + cyclic (1 µM DBMIB, which blocks 

cytochrome b6) were added to assess the mechanism of growth inhibition for the noALK strain 

at low temperature. Each trace is an average of 3 independent experiments.  
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Figure 2.5: Strain NOalk uses a higher ratio of cyclic:linear electron transport. Panel A 

gives the half-times for re-reduction of P700
+ in the dark, calculated from the traces shown in 

figure 2.3C and 2.3D. Panel B shows the percentage of electron flow to P700
+ that is cyclic, 

calculated from the data in panel A.
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Figure 2.6: The simulated effect of cyclic electron transport on growth rate using iSyn731. 

We modeled the effect of varying the recycle rate of electrons from PSI to the PQ pool on light-

limited growth of Synechocystis 6803. Optimal biomass yield was achieved at a recycle rate of 

0.25. Biomass production remained possible at any recycle rate between 0.00 and 0.99. The 

recycle rate was defined as the NDH-1 catalyzed electron flux from NADPH to plastoquinone 

divided by the electron flux into PSI. These simulations were carried out with alternative 

electron flow pathways (including succinate dehydrogenase and cytochrome oxidase, see table 

2.1) restricted to minimal flux. See methods section for further details.
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Figure 2.7: Alkanes impact the adaptability of cyanobacteria to environmental conditions. 

The lack of alkanes constrains the thylakoid electron transport chain to a higher recycle rate of 

electrons from photosystem I to the plastoquinone pool. This inflexibility in reductant 

partitioning leads to a narrower range of environmental conditions (in particular temperature) in 

which the strain can grow optimally
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Chapter 3 

 

Reconstruction and Comparison of the Metabolic Potential  

of Cyanobacteria Cyanothece sp. ATCC 51142  

and Synechocystis sp. PCC 6803 
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3.1. Introduction 

Cyanobacteria are primary producers in aquatic environments and contribute significantly 

to biological carbon sequestration, O2 production and the nitrogen cycle (Bryant et al. 2006; 

Popa et al. 2007; Moisander et al. 2010). Their inherent photosynthetic capability and ease in 

genetic modifications are two significant advantages over other microbes in the industrial 

production of valuable bioproducts. In contrast to other microbial production processes requiring 

regionally limited cellulosic feedstocks, cyanobacteria only need CO2, sunlight, water and a few 

mineral nutrients to grow. The short life cycle and transformability of cyanobacteria combined 

with a detailed understanding of their biochemical pathways are significant advantages of 

cyanobacteria as efficient platforms for harvesting solar energy and producing bio-products such 

as short chain alcohols, hydrogen and alkanes (Ducat et al. 2011).     

The genus Cyanothece includes unicellular, diazotrophic cyanobacteria. Cyanothece sp. 

ATCC 51142 (hereafter Cyanothece 51142) is one of the most potent diazotrophs characterized 

and the first to be completely sequenced (Welsh et al. 2008). This organism can fix atmospheric 

nitrogen at rates higher than many filamentous cyanobacteria and also accommodates the 

biochemically incompatible processes of photosynthesis and nitrogen fixation within the same 

cell by temporally separating them (Zehr 2005). Synechocystis sp. PCC 6803 (hereafter 

Synechocystis 6803), the first photosynthetic organism with a completely sequenced genome 

(Kaneko et al. 1996), is probably the most extensively studied model organism for 

photosynthetic processes (Knoop et al. 2010). It is also closely related to Cyanothece 51142 and 

shares many characteristics with all Cyanothece. The genome of Cyanothece 51142 is about 35% 

larger than that of Synechocystis 6803 mostly due to the presence of genes related to nitrogen 

fixation and temporal regulation (Welsh et al. 2008). Synechocystis 6803 has been the subject of 
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many targeted genetic manipulations (e.g., expression of heterologous gene products) as a photo-

biological platform for the production of valuable chemicals such as poly-beta-hydroxybutyrate, 

isoprene, hydrogen and other biofuels (Wu et al. 2001; McHugh 2005; Turner et al. 2008; Liu et 

al. 2009; Navarro et al. 2009; Bandyopadhyay et al. 2010; Knoop et al. 2010; Lindberg et al. 

2010; Min et al. 2010). However, genetic tools for Cyanothece 51142 are still lacking thus 

hampering its use as a bio-production strain even though it has many attractive native pathways. 

For example, Cyanothece 51142 can produce (in small amounts) pentadecane and other 

hydrocarbons while containing a novel (though incomplete) non-fermentative pathway for 

producing butanol (Schirmer et al. 2010; Wu et al. 2010). 

A breakthrough in solar biofuel production will require following one of two strategies: 

1) obtaining photosynthetic strains that naturally have high-throughput pathways analogous to 

those in known biofuel producers, or 2) creating cellular environments conducive for 

heterologous enzyme function. Despite its attractive capabilities including nitrogen fixation and 

H2 production (Bandyopadhyay et al. 2010), unfortunately genetic tools are not currently 

available to efficiently test engineering interventions directly for Cyanothece 51142. Therefore, a 

promising path forward may be to use Synechocystis 6803 as a “proxy” (for which a 

comprehensive genetic toolkit is available) and subsequently transfer knowledge gained during 

experimentation with Synechocystis 6803 to Cyanothece 51142. This requires high quality 

metabolic models for both organisms. Comprehensive genome-wide metabolic reconstructions 

include the complete inventory of metabolic transformations of a given cyanobacterial system. 

Comparison of the metabolic capabilities of Cyanothece 51142 and Synechocystis 6803 derived 

from their corresponding genome-scale models will provide valuable insights into their niche 

biological functions and also open up new avenues for economical biofuel production. 
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As discussed in Chapter 1.5 of this work, Genome-scale models (GSM) contain gene to 

protein to reaction associations (GPRs) along with a stoichiometric representation of all possible 

biotransformations known to occur in an organism combined with a set of appropriate regulatory 

constraints on each reaction flux (Reed et al. 2006; Puchalka et al. 2008). By defining the global 

metabolic space and flux distribution potential, GSMs can assess allowable cellular phenotypes 

under specific environmental conditions (Reed et al. 2006; Puchalka et al. 2008). The first 

genome-scale model for Cyanothece 51142 was recently published (Vu et al. 2012). The authors 

addressed the complexity of the electron transport chain (ETC) and explored further the specific 

roles of photosystem I (PSI) and photosystem II (PSII). In contrast, Synechocystis 6803 has been 

the target for metabolic model reconstruction for quite some time (Yang et al. 2002; Shastri et al. 

2005; Hong et al. 2007; Fu 2009; Knoop et al. 2010; Montagud et al. 2010; Montagud et al. 

2011; Nogales et al. 2012). Most of these earlier efforts for Synechocystis 6803 focused on only 

central metabolism (Yang et al. 2002; Shastri et al. 2005; Hong et al. 2007). Knoop et al. 

(Knoop et al. 2010) and Montagud et al. (Montagud et al. 2010; Montagud et al. 2011) 

developed genome-scale models for Synechocystis 6803, analyzed growth under different 

conditions, identified gene knock-out candidates for enhanced succinate production and 

performed flux coupling analysis to detect potential bottlenecks in ethanol and hydrogen 

production. A more recent model describes in detail the photosynthetic apparatus, identifies 

alternate electron flow pathways and highlights the high photosynthetic robustness of 

Synechocystis 6803 during photoautotrophic metabolism (Nogales et al. 2012). (Knoop et al. 

2013) extended their earlier efforts to address recent developments in the central metabolism of 

cyanobacteria, including detection of a novel complete TCA cycle and ongoing debates about the 

presence of a glyoxylate shunt in this clade. All these efforts have brought about an improved 
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understanding of the metabolic capabilities of Synechocystis 6803 and cyanobacteria in general. 

This chapter introduces high-quality genome-scale models for Cyanothece 51142, 

iCyt773, and Synechocystis 6803, iSyn731, (as shown in Table 3.1) that integrate recent 

developments (Nogales et al. 2012; Vu et al. 2012), supplements them with additional literature 

evidence and highlights their similarities and differences. The detailed descriptions of the model 

are not included in this work, but can be found in the supplementary materials of the original 

article on which it is based (Saha et al. 2012). As many as 322 unique reactions are introduced in 

the Synechocystis iSyn731 model and 266 in Cyanothece iCyt773. New pathways include, 

among many, a TCA bypass (Zhang et al. 2011), heptadecane biosynthesis (Schirmer et al. 

2010) and detailed fatty acid biosynthesis in iSyn731 and comprehensive lipid and pigment 

biosynthesis and pentadecane biosynthesis (Schirmer et al. 2010) in iCyt773. For the first time, 

not only extensive gene essentiality data (Nakamura et al. 1999) is used to assess the quality of 

the developed model (i.e., iSyn731) but also the allowable model metabolic phenotypes are 

contrasted against MFA flux data (Young et al. 2011). This comparison is extremely valuable 

because it validates the model by comparing its predictions to in vivo measurements of metabolic 

fluxes. The diurnal rhythm of Cyanothece metabolism is modeled for the first time via 

developing separate (light/dark) biomass equations and regulating metabolic fluxes based on 

available protein expression data over light and dark phases (Stockel et al. 2011).  
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3.2. Materials and Methods  

3.2.1. Measurement of Biomass Precursors 

Growth Conditions 

Wild-type Synechocystis 6803 and Cyanothece 51142 were grown for several days from 

an initial OD730 of ~0.05 to ~0.4. Synechocystis 6803 was grown in BG-11 medium (Allen 1968) 

and Cyanothece 51142 in ASP2 medium (Reddy et al. 1993) with (+N) or without (-N) nitrate. 

All cultures were grown in shake flasks with continuous illumination of ~100 µmol 

photons/m2/sec provided from cool white fluorescent tubes. Synechocystis was maintained at 

30°C and Cyanothece at 25°C. For Synechocystis, the illumination was constant and doubling 

time was ~24 hours. Cyanothece alternated between 12 hours of light and 12 hours of darkness, 

with a doubling time of ~48 hours. 

Pigments 

1 mL of cells of both Synechocystis 6803 and Cyanothece 51142 (from light and dark 

phases) was pelleted and extracted twice with 5 mL 80% aqueous acetone and the extracts 

pooled. Spectra of this extract and of a sample of whole cells were taken on a DW2000 

spectrophotometer (Olis, GA, USA) against 80% acetone or BG-11 media as a reference. 

Chlorophyll a contents were calculated as reported (Porra et al. 1989) from the acetone extract. 

Total carotenoid concentrations were also calculated from the acetone extract according to a 

published method (Lichtenthaler 1987). The relative amounts of different carotenoids included in 

the biomass equation were estimated according to known ratios (Steiger et al. 1999). 

Concentrations of phycocyanin were estimated from the spectra of intact cells (Arnon et al. 

1974). All measurements were taken in triplicate. 
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Amino Acids 

Total protein contents were measured using a Pierce BCA Assay kit. Amino acid 

proportions were determined according to published shotgun proteomics data for both 

Cyanothece 51142 and Synechocystis 6803 across a range of conditions (Stoeckel et al. 2008) 

according to the following procedure: From peptide-level data, each mass spectral observation of 

a peptide was taken as an instance of a particular protein. The amino acid composition of each 

protein was taken from data in Cyanobase (http://genome.kazusa.or.jp/cyanobase) and thus the 

‘proteome’ was taken to include all of the proteins whose peptides were observed in our data set, 

in proportion according to how often their peptides were observed. Amino acid frequencies were 

averaged across the proteome by a weighting factor of number of observations divided by the 

number of amino acids in the protein, similar to RPKM normalization for next-gen sequencing 

(Mortazavi 2008). 

Other Cellular Components 

The compositions of other cellular components of Synechocystis 6803 and Cyanothece 

51142 were estimated based on values in the literature. DNA and RNA contents for 

Synechocystis 6803 were reported by Shastri and Morgan (Shastri et al. 2005). The remaining 

biomass components of Synechocystis 6803 (i.e., lipid, soluble pool and inorganic ions) were 

extracted from the measurements carried out by Nogales et al.(Nogales et al. 2012). For 

Cyanothece 51142, biochemical compositions of macromolecules such as lipids, RNA, DNA and 

soluble pool were extracted from the measurements reported by Vu et al. (Vu et al. 2012). 
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3.2.2. Model Simulations 

Flux balance analysis (FBA) (Varma et al. 1994) was employed in both the model 

validation and model testing phases. Cyanothece iCyt773 and Synechocystis iSyn731 models 

were evaluated in terms of biomass production under several scenarios: light and dark phases, 

heterotrophic and mixotrophic conditions. Flux distributions for each one of these states were 

inferred using FBA:   

Maximize vbiomass 

Subject to 

 

 

Sijv j = 0, !i "  1,...,N
j=1

M

#                   (3.1) 

  

 

vj,min  !  v j !  v j,max,  "j #  1,...,M  (3.2) 

Here, Sij is the stoichiometric coefficient of metabolite i in reaction j and vj is the flux value of 

reaction j. Parameters vj,min and vj,max denote the minimum and maximum allowable fluxes for 

reaction j, respectively. Light and dark phases in Cyanothece 51142 are represented via 

modifying the minimum or maximum allowable fluxes with the following constraints, 

respectively: 

 vGlytr = 0 and vGlyctr = 0 (3.3) 

 

 

vCO2tr = 0 , 

 

vGlytr = 0 , 

 

vlight = 0 , 

 

vcf = 0  (3.4) 

Here, vBiomass is the flux of biomass reaction and vGlytr, vGlyctr and vCO2tr are the fluxes of glycerol, 

glycogen and carbon dioxide transport reactions and vlight and vcf are the fluxes of light reactions 

and carbon fixation reactions. For light phase, constraint (3.3) was included in the linear model, 

whereas for dark phase constraint (3.4) was included.    
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Once the Synechocystis iSyn731 model was validated, it was further tested for in silico 

gene essentiality. The following constraint(s) was included individually in the linear model to 

represent any mutant:  

 vmutant = 0 (3.5) 

Here, vmutant represents flux of reaction(s) associated with any genetic mutation.  

Flux variability analysis (Kumar et al. 2011) for the reactions (for which photoautotrophic 13C 

MFA measurements (Young et al. 2011)  were available) was performed based on the following 

formulation: 

Maximize/Minimize vj 

Subject to                   

  (3.6) 

   (3.7) 

    (3.8) 

 

Here, vmin
Biomass is the minimum level of biomass production. In this case we fixed it to be the 

optimal value obtained under light condition for the Synechocystis iSyn731 model. 

 CPLEX solver (version 12.1, IBM ILOG) was used in the GAMS (version 23.3.3, GAMS 

Development Corporation) environment for implementing GapFind and GapFill (Satish Kumar 

et al. 2007) and solving the aforementioned optimization models. All computations were carried 

out on Intel Xeon E5450 Quad-Core 3.0 GH and Intel Xeon E5472 Quad-Core 3.0 GH 

processors that are the part of the lionxj cluster (Intel Xeon E type processors and 96 GB 

memory) of High Performance Computing Group of The Pennsylvania State University.
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3.3. Results and Discussion 

3.3.1. Model Components 

Biomass Composition and the Diurnal Cycle  

The biomass equation approximates the dry biomass composition by draining all building 

blocks or precursor molecules in their physiologically relevant ratios. Most of the earlier 

genome-scale modeling efforts (Fu 2009; Knoop et al. 2010; Montagud et al. 2010) of 

Synechocystis 6803 contain approximate biomass equations completely or partially adopted from 

other species without direct measurements. This can adversely affect the accuracy of maximum 

biomass yield calculations, gene essentiality predictions and knockouts for overproduction.  

Biomass composition for Synechocystis iSyn731 and Cyanothece iCyt773 models were 

generated by defining all essential cellular biomass content values by experimental measurement 

or collection from existing literature (see ‘Materials and Methods’ for details). Macromolecules 

present in both cyanobacteria such as protein, carbohydrates, lipids, DNA, RNA, pigments, 

soluble pool and inorganic ions were assigned to their corresponding metabolic precursors (e.g., 

L-glycine, glucose, 16C-lipid, ATP, dGTP, beta-carotene, coenzyme A and potassium 

respectively, see Supplementary file S3 for the complete list of biomass components). Based on 

the experimental measurements of precursor molecules needed to form a gram of the biomass, 

stoichiometric coefficients were assigned. For Synechocystis 6803 we measured compositions of 

proteins and pigments and extracted compositions of the remaining biomass macromolecules 

from the model by Nogales et al. (Nogales et al. 2012). Thereby we developed biomass 

equations for three different conditions: photoautotrophic, mixotrophic and heterotrophic (see 

Supplementary file S3). Experimental measurements (described in the Materials and Methods 

section and also in Supplementary File S3) showed that biomass composition (i.e., mainly 
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pigments) varies for Cyanothece 51142 between light and dark conditions and nitrogen 

supplementation. Since pigments such as chlorophyll, carotenoids and phycocyanobilin play 

important roles in photosynthetic processes their quantities are consequently higher under light 

conditions. In the presence of light Cyanothece 51142 uses photosynthesis to store solar energy 

in the form of carbohydrates (i.e., glycogen), while in dark it expends that energy to fix nitrogen. 

Surprisingly, no significant change was measured in the carbohydrate pool between light and 

dark phases due to infinitesimal contribution of photosynthetically stored carbohydrates to total 

carbohydrate content in the biomass of Cyanothece 51142. Aggregate quantities of the remaining 

biomass macromolecules for Cyanothece 51142 such as lipids, RNA, DNA and soluble pool 

were extracted from the most recent Cyanothece 51142 model by Vu et al. (2012) to develop 

biomass equations for light and dark phases (see Supplementary file S3).  

An earlier characterization study for Cyanothece 51142 revealed that 113 proteins are 

expressed in higher abundance in the light phase while 137 are expressed in higher abundance in 

dark conditions (Stockel et al. 2011). The constructed model spans 26 light-specific proteins, 

associated with 36 reactions mainly involved in fatty acid, pigment, and amino acid metabolism 

and 11 dark-specific proteins accounting for 16 reactions from glycolysis, purine, pyrimidine, 

pyruvate, and amino acid metabolism (see Supplementary files S4).  Separate biomass equations 

as well as two regulatory structures for the model were derived in order to represent diurnal 

metabolic differences for Cyanothece 51142 (see Supplementary File S4). In contrast, diurnal 

differences observed in Synechocystis 6803 (Kucho et al. 2005) are less pronounced (i.e., 

observed for only 54 genes) and less well functionally annotated (i.e., 32 genes with 

‘unassigned’ functions). When compared to existing biomass equations of Synechocystis 6803 

(Knoop et al. 2010; Montagud et al. 2010) we found significantly lower values for the percent 
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weight contribution of proteins towards the biomass pool (i.e., 52% for Synechocystis 6803 and 

53% for Cyanothece 51142 vs. 84% and 66%, respectively). The new protein biomass 

contribution is in better agreement with the previously reported value of 55% for Cyanothece 

51142 (Tredici et al. 1986). 

Identification and Correction of Network Gaps 

Upon ensuring biomass formation, GapFind (Satish Kumar et al. 2007) was applied to 

assess network connectivity and blocked metabolites. By applying Gapfill (Satish Kumar et al. 

2007), putative reconnection hypotheses were identified for blocked metabolites. Only the 

suggested modifications that were independently corroborated using literature sources and also 

did not lead to the introduction of thermodynamically infeasible cycles were included in the 

model. For Synechocystis iSyn731 model, GapFind identified 207 blocked metabolites. Note that 

there exist 125 blocked metabolites in the iJN678 model (Nogales et al. 2012). GapFill identified 

unblocking hypotheses for 138 blocked metabolites. However, 88 of them led to the generation 

of infeasible thermodynamic cycles and thus were excluded. For only 5 blocked metabolites 

corroborating evidence for reconnection was obtained by adding 10 reactions (i.e., 2 metabolic, 4 

transport and 4 exchange reactions). The added metabolic reactions have unknown gene 

associations (see Supplementary file S1 for detailed information) while all 4 added transport 

reactions involve passive diffusion and thus are not associated with any specific gene(s) or 

protein(s). Ultimately, the 45 remaining blocked metabolites with reconnection mechanisms 

suggested by GapFill (but unconfirmed) along with 69 blocked metabolites with no reconnection 

hypotheses were retained in the model iSyn731, while metabolites such as ubiquinone, a 

potential alternate substrate for succinate dehydrogenase (Nogales et al. 2012), was excluded 

from iSyn731. 
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For the Cyanothece iCyt773 model, 74 blocked metabolites were found after applying 

GapFind. Note that there are 66 blocked metabolites in iCce806 (Vu et al. 2012). Two exchange 

reactions were added to allow the uptake of glucose and thyaminose ensuring biomass 

production under heterotrophic or mixotrophic conditions. Four blocked metabolites directly 

adopted from iCce806 (during the draft model creation phase) were linked to five reactions with 

spurious gene associations and thus both metabolites and reactions were removed from iCyt773. 

GapFill suggested re-connection mechanisms for 52 blocked metaboloites (out of a total of 70). 

However, for 12 blocked metabolites the re-connection model modifications led to the creation 

of thermodynamically infeasible cycles and thus were discarded. Corroborating evidence for the 

reconnection of 30 blocked metabolites was identified through the addition of 19 GapFill 

suggested reactions (i.e., 8 metabolic, 7 transport and 4 exchange reactions). Of the eight added 

metabolic reactions we found direct literature evidence for five, homology-based evidence for 

one while two reactions are spontaneous (see Supplementary file S2 for detailed information). 

All seven added transport reactions are through passive diffusion and thus are not connected with 

any specific gene(s) or protein(s). Ten remaining blocked metabolites for which GapFill 

suggested reconnection hypotheses (along with 22 with no reconnection hypotheses) were left 

blocked in iCyt773 as no information to corroborate the GapFill suggested changes was found in 

the published literature and databases. For example, biotin is produced in Cyanothece 51142; 

however, there is no literature evidence to support the presence of the initial step of the primary 

production pathway (i.e., conversion of pimeloyl-CoA from pimelate) and the intermediate step 

(i.e., biotransformation of 7,8-diamino-nonanoate from 8-amino-7-oxononanoate). This indicates 

that Cyanothece 51142 may utilize a currently unknown pathway for producing biotin. The six 

other blocked metabolites are involved in the nonfermentative alcohol production pathway (as 
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explained in model comparison section) known to be incomplete in Cyanothece 51142. Table 3.2 

summarizes the results related to connectivity restoration of Synechocystis iSyn731 and 

Cyanothece iCyt773 models. 

GPR Associations and Elemental and Charge Balancing  

GPR associations connect genotype to phenotype by linking gene(s) (G) that code for the 

protein(s) (P) that catalyze a particular reaction (R). They are important to trace correctly as they 

provide the means to target at the gene level any change in the network desired at the reaction 

level. This is critical because genes may catalyze multiple reactions in multiple pathways. Many 

earlier models for Synechocystis 6803 do not provide in detail complex GPR associations, rather 

list only gene(s) and enzyme(s) involved in a specific reaction (Knoop et al. 2010; Montagud et 

al. 2010; Montagud et al. 2011). For both iCyt773 and iSyn731 models, we included 

comprehensive GPR associations (see Table 3.1 for detailed information). All four intracellular 

compartments (i.e., periplasm, cytosol, thylakoid lumen and carboxysome) were assumed to have 

the same pH (7.2) and subsequently, metabolites were assigned appropriate protonation states 

corresponding to this pH and each reaction was elementally and charge balanced.  

Under high light intensity in photoautotrophic conditions, Cyanothece iCyt773 model 

produces 0.026 mole biomass/mole carbon fixed whereas Synechocystis iSyn731 yields 0.021 

mole biomass/mole carbon fixed. These yields are almost identical to the ones calculated using 

the most recent models of Cyanothece 51142 (Vu et al. 2012) and Synechocystis 6803 (Nogales 

et al. 2012). Experimental measurements of biomass yields are in the same order of magnitude 

with model predictions for the two organisms, 0.072 (Reddy et al. 1993; Vu et al. 2012) and 

0.082 mole biomass/mole carbon fixed (Bentley et al. 2012), respectively.  
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3.3.2. Comparing Flux Predictions of iSyn731 Against Experimental Measurements  

We superimposed photoautotrophic flux measurements (Young et al. 2011) for 

Synechocystis 6803 onto iSyn731 model predictions to assess if the measurements are consistent 

with the model and whether the biomass maximization assumption correctly apportions fluxes to 

the metabolic network. For each reaction that was assigned a flux we calculated the flux-range 

under the maximum biomass assumption. Table 3.3 and Figure 3.1 summarize the obtained 

results for a basis of 100 millimole of CO2 plus H2CO3 uptake (Young et al. 2011). In seven (out 

of thirty one) cases the measured flux is fully contained within the model predicted ranges 

obtained upon maximizing biomass formation implying model consistency with MFA 

measurements. In contrast, under the maximum biomass assumption for thirteen fluxes the 

ranges underestimate and for four fluxes the ranges overestimate the experimentally deduced 

flux ranges while for seven fluxes the model derived flux ranges partially overlap with the 

experimental ones. 

Perhaps the most informative discrepancy is for the CO2 fixing RuBisCO (RBC) reaction, 

which has a measured flux range of (123.00 to 132.00) vs. the model-calculated range of (102.49 

to 106.33). In both cases the increased RBC flux (in comparison to the basis of 100 millimole of 

CO2 plus H2CO3 uptake) is needed to counteract the carbon loss due to the CO2 releasing 

reactions such as isocitrate dehydrogenase (ICD) and pyruvate dehydrogenase (PDH). We find 

that flux ranges, under the maximum biomass production assumption, of reactions such as 

glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconolactonase (6PGL) and 

phosphogluconate dehydrogenase (6PGD) in oxidative pentose phosphate (OPP) pathway are 

negligible (0.00 to 0.03). In contrast, the experimentally derived range for OPP is from 12 to 21. 

This is approximately equal to the difference between the model-predicted vs. experimentally 
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deduced RBC reaction range implying the persistence of OPP flux even under the 

photoautotrophic condition (Young et al. 2011) despite the presence of a more efficient NADPH 

production route through photosynthesis as predicted by the model (under max biomass). The 

high values Young et al. (2011) obtained for the OPP fluxes were surprising as OPP is not a very 

efficient route for cyanobacteria to generate reducing power. This may reflect some inherent 

biological constraint that is not captured by the optimality assumption. For example, 

photosynthetic NADPH production may be limited by the need to maintain the redox poise of the 

electron transport chain (See chapter 5 of this work). Although this strategy may not be optimal 

from a flux balance perspective, the need to avoid oxidative damage may explain the use of this 

apparently inefficient pathway. 

Model predicted lower flux ranges for RBC are propagated to seven other reactions in the 

Calvin cycle (i.e., phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase 

(13PDG), triose-phosphate isomerase (TPI), transketolase (TKT1), ribose-5-phosphate isomerase 

(RPI), ribulose 5-phosphate 3-epimerase (RPE) and phosphoribulokinase (PRK). The remaining 

six reaction fluxes with lower model predicted fluxes compared to measurements (Young et al. 

2011) are all in the TCA cycle (i.e., citrate synthase (CS), aconitase (ACONT), isocitrate 

dehydrogenase (ICD), succinate dehydrogenase (SUCD) and malic enzyme (ME1 and ME2) 

reactions). Even under the max biomass assumption, SUCD is not required to carry any flux due 

to the presence of other succinate dehydrogenases (as part of respiratory chain) in the iSyn731 

model. This is in keeping with more recent 13C-MFA data showing that flux through the 

cyanobacterial TCA bypass is minimal during normal growth (You et al. 2014). Furthermore, in 

contrast with experimental observations, under the maximum biomass assumption, the model 

predicts no flux through the malic enzyme (ME) reactions presumably because it is a less 
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energy-efficient route (i.e., phosphoenolpyruvate  oxaloacetate  malate  pyruvate) for 

pyruvate generation than the pyruvate kinase (PYK) reaction (Young et al. 2011). 

There are nine reactions with experimentally derived ranges completely subsumed within 

the ones derived under the maximum biomass assumption.  Five of them are in the Calvin cycle: 

fructose-bisphosphate aldolase (FBA), fructose-bisphosphatase (FBP), Sedoheptulose 1,7-

bisphosphate D-glyceraldehyde-3-phosphate-lyase (SBGPL), sedoheptulose-bisphosphatase 

(SBP) and bidirectional transaldolase (TAL). The first four reactions are essential with 

experimentally deduced flux ranges of (53.00 to 66.00) for FBA and FBP and (29.00 to 43.00) 

for SBGPL and SBP. In contrast, the calculated flux ranges (-0.08 to 73.17) for FBA and SBGPL 

and (0.00 to 73.17) for FBP and SBP imply that they are in silico non-essential. As depicted in 

Figure 3.1, these reactions are involved in the production of sedoheptulose 7-phosphate (S7P) 

from fructose 1,6-bisphosphate (FDP). An alternative production route for S7P is afforded in the 

model through the bidirectional transaldolase (TAL) reaction from fructose 6-phosphate (F6P) 

alluding to an explanation for the wider flux ranges derived using the model.  Experimental and 

model predicted flux ranges for TAL are (-6.00 to 9.00) and (-35.93 and 37.32), respectively. 

Upon restricting the TAL flux ranges in the calculations to the ones found experimentally, the 

flux variability analysis shrinks the flux ranges for FBA and FBP to (28.22 to 43.27) and (28.22 

to 43.33) and for SBGPL and SBP to (29.82 to 44.87) and (29.82 to 44.87), respectively which 

are very close to the experimentally measured ranges. This is indicative that in addition to the 

maximization of biomass formation, additional restrictions (e.g., photosynthetic efficiency and 

relative selectivity of RuBISCO for carboxylation over oxidation) limit the range of fluxes that 

the aforementioned glycolytic fluxes may span in vivo. Note that the presence of experimentally 
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measured fluxes is important to test the model and the adopted maximization principle. We were 

fortunate in this case to have access to such data as for most organisms they are absent. 

Phosphoglycerate mutase (PGM) and enolase (ENO) reactions have very similar model 

derived and experimentally obtained flux ranges. Model-predicted flux values of the remaining 

two reactions, pyruvate kinase (PYK) and pyruvate dehydrogenase (PDH), could reach as low as 

zero due to the metabolic flexibility that the iSyn731 model possesses by having alternate 

enzymes with different cofactor specificities. The max biomass flux range of fumarase (FUM) is 

found to be (-7.26 to 1.49), compared to the experimentally measured (1.70 to 2.00). Therefore, 

it appears that under the photoautotrophic condition, the forward direction is kinetically 

favorable. By restricting the reaction to be irreversible the model predicted a FUM flux range of 

(0.00 to 1.49) which is close to the experimentally derived one (see Figure 3.1). However, 

contrary to MFA measurements these reactions (FUM and ME) are dispensable for in silico 

biomass production. 

3.3.3. iSyn731 Model Testing Using in Vivo Gene Essentiality Data 

The quality of model iSyn731 for Synechocystis 6803 was tested using experimental data 

on the viability (or lack thereof) of single gene knockouts. We used the CyanoMutants database 

(Nakamura et al. 1999; Nakao et al. 2010) that includes in vivo gene essentiality data for 119 

genes (i.e., 19 essential and 100 nonessential) with metabolic functions in iSyn731 model. Cases 

that were flagged with incomplete segregation in the database were omitted in iSyn731 model 

comparisons. We examined the feasibility of biomass production for the model iSyn731 by 

comparing the maximum biomass formation upon imposing the gene knockout with the 

maximum theoretical yield of the wild-type organism. A threshold of 10% of the maximum 

theoretical yield was used as a cutoff (Kumar et al. 2009). Comparisons between in vivo and in 



 98 

silico results led to four possible outcomes, as previously delineated by Kumar et al., GG, GNG, 

NGG and NGNG (Kumar et al. 2009). Initially, the model correctly predicted 18 out of 19 

essential genes (i.e., 18 NGNG and 1 GNG) and 74 out of 100 non-essential genes (i.e., 73 GG 

and 27 NGG). We next explored the causes of these discrepancies and attempted to mitigate 

them whenever possible. 

The single GNG case corresponds to mutant ∆chlAI exhibiting no growth under aerobic 

conditions (Minamizaki et al. 2008). The ChlAI system is a Mg-protoporphyrin IX 

monomethylester (MPE) cyclase system that is responsible for forming the isocyclic ring (E-

ring) in chlorophylls under aerobic conditions. The model allowed for the BchE and ChlAII 

systems (alternate cyclase systems) to complement for the loss of the ChlAI system leading to an 

in silico viable mutant. However, the same literature source suggested that both BchE and ChlAII 

systems are unlikely to be active under aerobic conditions and thus rescue mutant ∆chlAI. This 

prompted the introduction of a regulatory restriction in iSyn731 model where only ChlAI 

reactions were active under aerobic conditions as MPE while ChlAII and BchE system reactions 

were deactivated. Using these regulatory restrictions resolves the single GNG inconsistency. 

Twenty (out of 27) NGG cases were associated with Photosystem I (PSI), Photosystem II 

(PSII) and other photosynthesis reactions. While reconstructing the model, we assumed that all 

genes involved in photosynthetic reaction system were essential to the functioning of the overall 

system.  Published literature (Jansson et al. 1987; Chitnis et al. 1989; Burnap et al. 1991; 

Nakamoto 1995; Shen et al. 1997) suggests that genes involved in photosynthetic reactions form 

complex interdependencies. We used NCBI COBALT multiple sequence alignment tool 

(Papadopoulos et al. 2007) to construct a phylogenetic tree of the genes associated with each 

photosystem along with BLASTp searches to identify putative complementation relationships 
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between genes to explain the inconsistencies between the predicted in silico and in vivo growth.  

Genes deemed homologous (i.e., lie adjacent in the phylogenetic tree) were linked with “OR” 

GPR relations implying that the loss of one gene can be complemented by the other. Seven out of 

twenty NGG cases (i.e., psaD, psaI and psbA2 for PSI and PSII and cpcC2, cpcC1, cpcD, and 

apcD for other photosynthesis reactions) were resolved by modifying the corresponding GPR 

using an OR relation (Chitnis et al. 1989; Chitnis et al. 1989; Delorimier et al. 1990; Nakamoto 

1995; Ughy et al. 2004; Jallet et al. 2012). However, no phylogenetically adjacent or related (or 

homologous) genes were found for the remaining 13 NGG cases (psaE, psbD2, psbO, psbU, 

psbV, psb28, psbX, psb27, petE, cpcA, cpcB, apcE, apcF) (Chitnis et al. 1989; Burnap et al. 

1991; Shen et al. 1993; Shen et al. 1995; Manna et al. 1997; Shen et al. 1997; Shen et al. 1998; 

Jallet et al. 2012). For these cases, the genes were deemed nonessential to the functioning of the 

reactions in question (i.e., photosynthesis reactions) and thereby the corresponding GPRs were 

modified to show an OR relation between each of these genes and an ‘unknown gene’, similar to 

what was previously performed in the refinement of the iMM904 model (Mo et al. 2009) (see 

Supplementary File S5 for detailed information). This procedure incorporates the fact that while 

many of these gene products participate in some way in an optimal an robust photosynthesis, 

they are not always required for growth. 

The remaining seven NGG cases are associated with a variety of metabolic functions. 

One such case is the ΔmodBC mutant corresponding to the sole ABC molybdate transporter in 

the model. Literature evidence (Zahalak et al. 2004) revealed that a related cyanobacterium, 

Anabaena variabilis ATCC 29413, could continue to grow despite the loss of its molybdate ABC 

transporter due to the presence of another low affinity molybdate transporter or an inducible 

sulfate transport system that can serve as a low affinity molybdate transporter when required. We 
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found the same gene coding for the sulfate transporter in A. variabilis (cysA) in the iSyn731 

model allowing the resolution of the discrepancy by adding a cysA-linked alternate molybdate 

transporter. Another NGG case is mutant ΔcrtO that cannot produce echinenone (a biomass 

component) in iSyn731 with no effect on observed growth. Therefore, it appears that iSyn731 

cannot capture the flexibility of Synechocystis 6803 metabolism (Fernandez-Gonzalez et al. 

1997) when echinenone production is restricted. The remaining five NGG cases are spread 

across many metabolic pathways. The ΔctaA mutant eliminates the copper ABC transporter 

without affecting growth, which alludes to the existence of another unknown mode of copper 

uptake not present in iSyn731 (Tottey et al. 2001; Tottey et al. 2002). The ΔmenG mutant 

eliminates a reaction for the production of phylloquinone while mutant Δppd affects the 

production of homogentisate, a precursor for both tocopherols and plastoquinone. Finally, the 

Δvte3 mutant affects the production of both plastoquinone and α-tocopherol (Cheng et al. 2003) 

and the viable ΔccmA mutant restricts the production of chorismate (a precursor to aromatic 

amino acids) and also restricts carboxysome formation (Ogawa et al. 1994; Dahnhardt et al. 

2002; Sakuragi et al. 2002). These six inconsistencies between the model predictions and growth 

data imply that the cyanobacterium can co-opt another metabolic process to (partially) 

complement for the gene loss.  Unlike the case of the ΔmodBC mutant, we have found no 

plausible mechanism for the six remaining mutants.  

After resolving the discrepancies, as described above, iSyn731 correctly predicted all 19 

essential genes (i.e., 19 NGNG and 0 GNG) and 94 (out of 100) non-essential genes (i.e., 94 GG 

and 6 NGG). Figure 3.2 shows our results and comparisons against two other available 

Synechocystis 6803 models by (Knoop et al. 2010) and (Nogales et al. 2012). We used the 

CyanoMutants database (Nakamura et al. 1999)  to identify 114 genes (i.e., 19 essential and 95 
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nonessential) having metabolic functions in the iJN678 model by (Nogales et al. 2012). Out of 

114 genes the iJN678 model correctly predicted 18 essential genes (i.e., 18 NGNG and 1 GNG) 

and 69 non-essential genes (i.e., 69 GG and 26 NGG). The model by Knoop et al. was tested for 

51 mutants but we found that only 43 (i.e., 7 essential and 36 non-essential) of them were 

reported to have complete segregation (Nakamura et al. 1999). Of these 43, Knoop et al.’s model 

correctly predicted 5 essential genes (i.e., 5 NGNG and 2 GNG) and 32 nonessential genes (i.e., 

32 GG and 4 NGG). The specificity and sensitivity of each of these three models were also 

calculated and displayed at the bottom of Figure 3.2. Although an updated version of the model 

from (Knoop et al. 2013) was released in between the original publication of this article and its 

revision for this thesis, we did not re-test gene essentiality or any other parameters of that model. 

All 114 genes tested for iJN678 were also present in the iSyn731 model. 26 NGG and 

one GNG cases present in iJN678 model correspond to NGG and GNG cases that were either 

fixed or still present in iSyn731 as discussed before. Lethal mutant ∆ppa is correctly predicted as 

NGNG in iSyn731 but deemed GNG in (Knoop et al. 2010) model.  This was because ppa in 

iSyn731 codes for the degradation of both triphosphate into diphosphate and diphosphate to 

phosphate.  Only the latter activity is linked to ppa in Knoop et al’s model. Out of 4 NGG cases, 

two involve ∆cmpA and ∆cmpB mutants. Both these genes are involved in the ABC transporter 

system for bicarbonate from periplasm to cytosol. iSyn731 avoids this inconsistency as it 

contains an alternate sodium and bicarbonate co-transport system. 

3.3.4. Model Comparisons 

Synechocystis 6803 Model Comparisons 

 The iSyn731 model integrates the description in the photosystems of the model presented 

by Nogales et al. and adds additional detail. One notable difference is that iSyn731 uses a 
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separate photon for each reaction center (i.e., PSI and PSII) as they are optimized for different 

ranges of wavelength (Taiz et al. 2002), whereas iJN678 uses a single photon shared by both 

photosystem reactions. As many as 322 new reactions (see Figure 3.3A), are added in iSyn731 

distributed across many pathways. Most of the additions are in the lipid and fatty acid 

metabolism to support the synthesis of measured fatty acids and lipids present in the biomass 

equation.  This list includes myristic acid (14-carbon saturated fatty acid) and lauric acid (12-

carbon saturated fatty acid). iJN678  contained four reactions exhibiting unbounded flux (i.e., 

two duplicate glycine cleavage reactions and two duplicate leucine transaminase reactions). They 

form a thermodynamically infeasible cycle (see Figure 3.4A for leucine transaminase reactions) 

that was resolved in iSyn731 by eliminating redundant functions. In addition, the glycine 

cleavage system was recast in detail by abstracting the separate action of the four enzymes 

(named the T-, P-, L-, and H-proteins) that ultimately catalyze the demethylamination of glycine.  

iSyn731 improves upon iJN678 by eliminating lumped reactions whenever a multi-step 

description is available and expands the range of functions carried out with alternate cofactors. 

As many as twelve reactions with an enoyl-[acyl-carrier-protein] reductase function were linked 

with not only NADP but also with the more rare NAD cofactor specificity. Another important 

difference between iSyn731 and iJN678 is the cellular location of CO2 fixation by RuBisCO. 

Cyanobacteria possess a micro-compartment (Badger et al. 2003; Yeates et al. 2008) called the 

carboxysome encapsulating RuBisCO and carbonic anhydrase (CA). iSyn731 adds carboxysome 

as a cellular compartment and also all  necessary transport reactions. Recently, Zhang and Bryant 

(2011) hypothesized the existence of a functional TCA cycle in most cyanobacterial species 

using a 2-ketoglutarate to succinate bypassing step. iSyn731 allows for a complete TCA cycle 

using the bypassing step. In addition, iSyn731 contains an intact heptadecane biosynthesis 



 103 

pathway as recently described (Schirmer et al. 2010) unlike earlier Synechocystis 6803 models 

(Fu 2009; Knoop et al. 2010; Montagud et al. 2010; Nogales et al. 2012) (see Figure 3.5A for 

distribution of unique reactions in iSyn731). 

Cyanothece 51142 Model Comparisons  

The iCyt773 model for Cyanothece 51142 improves upon the iCce806 model (Vu et al. 

2012). iCyt773 segregates reactions into the periplasm, thylakoid lumen, carboxysome, and 

cytoplasm compartments thus introducing an additional 60 transport reactions compared to 

iCce806. Unlike iCce806, iCyt773 does not track macromolecule synthesis for DNA, RNA, and 

proteins to maintain consistency with the Synechocystis 6803 model. This difference accounts for 

69 genes present in iCce806 but absent from iCyt773. iCce806 contained 15 reactions which 

formed five cycles that could carry unbounded metabolic flux (i.e., thermodynamically infeasible 

cycles). All these cycles were eliminated by restricting reaction directionality and eliminating 

reactions that were linear combinations of others coded by the same gene (see Figure 3.4B). 

iCyt773 contains 43 unique genes and 266 unique reactions (including transport and 

alternate cofactor utilizing reactions) as shown in Figure 3.3B. Figure 3.5B depicts the 

distribution of the new reactions across different pathways. Most of the additions are found in 

lipid and pigment biosynthesis pathways. The iCyt773 model captures in detail the lipid 

biosynthesis pathway composed of 73 reactions and links as many as 28 biomass precursor lipids 

(e.g., sulfoquinovosyldiacylglycerols, monogalactosyldiacylglycerols, digalactosyldiacyl-

glycerols, and phosphatidylglycerols) directly to the biomass equation. The porphyrin and 

chlorophyll metabolism and carotenoid biosynthesis pathways were updated to include 24 

reactions for the production of accessory pigments such as echinenone, an accessory pigment, 

and (3Z)-phycocyanobilin, a phycobilin. Accessory pigments donate electrons to chlorophyll 
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rather than directly to photosynthesis. Phycobilins are adapted for many wavelengths not 

absorbed by chlorophyll thus broadening the spectrum useful for photosynthesis. The variety of 

pigments in cyanobacteria is well documented (Glazer 1977; Paerl 1984; Poutanen et al. 2001) 

providing so far untapped avenues for engineering increased efficiency in photosynthesis and 

control of electron transfer processes in biological systems. Another new function in iCyt773 is 

L-Aspartate Oxidase. L-Aspartate Oxidase allows the deamination of aspartate, forming 

oxaloacetate a key TCA-cycle metabolite and ammonia. The impact of this addition to iCyt773 is 

not evident under the photoautotrophic condition but becomes relevant for growth in a medium 

containing aspartate. iCyt773 also uniquely supports the synthesis of pentadecane as documented 

by (Schirmer et al. 2010) and contains an (almost) complete non-fermentative citramalate 

pathway as suggested by (Wu et al. 2010). 

A number of lumped reactions in iCce806 were recast in detail. For example, pyruvate 

dehydrogenase (PDH) is a three-enzyme complex that carries out the biotransformation of 

pyruvate to acetyl-CoA in three steps using five separate cofactors (i.e., TPP, CoA, FAD, lipoate, 

and NAD). Similar detail was used for lumped steps in the metabolism of glycine, histidine, and 

serine. All additions to the list of reactions in iCyt773 were corroborated using genome 

annotations (Welsh et al. 2008) or published literature (Collins et al. 1981; Min et al. 2010; 

Schirmer et al. 2010; Wu et al. 2010) with the exception of ten enzymes, whose function in the 

lipid and pigment biosynthesis pathways was required for biomass production.  

 A shift in biomass composition was observed under light, dark, and nitrate supplemented 

(light and dark) conditions. These differences were captured in four separate biomass 

descriptions present in iCyt773. In addition, we used data from (Stockel et al. 2011) on the 

diurnal oscillations for approximately 20% of proteins in Cyanothece 51142 to identify 
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regulatory reaction shutdowns in our metabolic model. Supplementary File S4 lists the reactions 

that were inactivated under light and dark conditions, respectively. As expected, the nitrogenase 

genes cce_0559 and cce_0560, known to be active in the absence of light, exhibited low spectral 

counts under light conditions. In contrast, photosystem II gene cce_1526, showed no spectral 

count under dark conditions. Unexpectedly, the data suggested that the Mehler reactions 

associated gene (cce_2580), known to be active in Synechocystis 6803 (Allahverdiyeva et al. 

2011) and expected to be active in Cyanothece 51142, exhibited lower expression in light than in 

dark conditions. 

iSyn731 and  iCyt773 Models Comparison 

 Figure 3.3C illustrates the total number of common and unique reactions and metabolites 

between iSyn731 and iCyt773 models. The Cyanothece 51142 genome (Welsh et al. 2008; 

Bandyopadhyay et al. 2011) is 1.5 times larger than that of Synechocystis 6803 (Kaneko et al. 

1996), nevertheless iCyt773 is smaller than iSyn731 due to differences in the level of detail of 

annotation and biochemical characterization. As many as 670 reactions and 596 metabolites are 

shared by both models corresponding to 47% and 63% of the total reactome and metabolome, 

respectively (see Figure 3.3C). The higher degree of conservation of metabolites (as opposed to 

reactions) across the two cyanobacteria suggests that lifestyle adaptations tend to usher new 

enzymatic activities that most of the time make use of the same metabolite pool without 

introducing new metabolites. There are 486 reactions that are unique to iSyn731 with no 

counterpart in iCyt773. These reactions are not preferentially allotted to specific pathways. 

Instead they are spread over tens of different pathways. Primary metabolism reactions dispersed 

throughout fatty acid biosynthesis, lipid metabolism, oxidative phosphorylation, purine and 

pyrimidine metabolism, transport and exchange reactions account for 295 reactions. Secondary 
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metabolism including chlorophyll and cyanophycin metabolism, folate, terpenoid, 

phenylpropanoid and flavonoid biosynthesis accounts for the remaining 191 iSyn731-specific 

reactions.  Interestingly, the 276 iCyt773-specific reactions span the same set of diverse 

pathways implying that the two organisms have adopted unique/divergent biosynthetic 

capabilities for similar metabolic needs. Fifty-eight span primary metabolism pathways such as 

purine and pyrimidine metabolism, fatty acid and lipid biosynthesis, amino acid biosynthesis. 

The remaining 218 reactions describe secondary metabolism such as terpenoid biosynthesis, 

chlorophyll and cyanophycin biosynthesis, plastoquinone and phyloquinone biosynthesis (see 

Supplementary File S6 for detail information). The much larger set of unique iSyn731-specific 

reactions compared to iCyt773 reflect more complete genome annotation and biochemical 

characterization rather than augmented metabolic versatility.   

 A number of distinct differences in metabolism between the two organisms have been 

accounted for in the two models. For example, iCyt773 does not have the enzyme threonine 

ammonia-lyase, which catalyzes the conversion of threonine to 2-ketobutyrate and as a 

consequence lacks the traditional route for isoleucine synthesis. Instead it employs part of the 

alternative citramalate pathway for isoleucine synthesis with pyruvate and acetyl-CoA as 

precursors. Follow up literature queries revealed the existence of this alternative pathway in 

Cyanothece 51142 (Wu et al. 2010). Ketobutyrate, an intermediate in the citramalate pathway, 

can be readily converted to higher alcohols, such as propanol and butanol, via a non-fermentative 

alcohol production pathway. Using the iCyt773 model, we determined that only 2-ketoacid 

decarboxylase is missing from these three-step processes. In contrast, iSyn731 was found to have 

only the traditional route for isoleucine production with the citramalate pathway completely 

absent (see Figure 3.6A). In another example, the fermentative 1-butanol pathway is known to be 
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incomplete in both organisms. By querying the developed models we can pinpoint exactly which 

steps are absent. Specifically, the conversion between 3-hydroxybutanoyl-CoA and butanal is 

missing in both models. In addition to higher alcohols, higher alkanes (C13 and above) are 

important biofuel molecules as the main constituents of diesel and jet fuel (Schirmer et al. 2010).  

Recently reported (Schirmer et al. 2010) novel genes involved in the biosynthesis of alkanes in 

several cyanobacterial strains were incorporated in the models. Metabolic differences in 

Cyanothece 51142 and Synechocystis 6803 lead to the production of pentadecane in Cyanothece 

51142 and heptadecane in Synechocystis 6803, presumably according to the selectivity of the 

respective fattyl acyl-ACP reductases (see Figure 3.6B). 

 Model iCyt773, in contrast to iSyn731, does not have a complete urea cycle as it lacks the 

enzyme L-arginine aminohydrolase catalyzing the production of urea from L-arginine.  

Literature sources (Quintero et al. 2000; Bandyopadhyay et al. 2011) support this finding and 

explain the absence of a functional urea cycle as a consequence of the nitrogen-fixation ability of 

Cyanothece 51142 (Solomon et al. 2010; Tripp et al. 2010). Because Cyanothece 51142 can fix 

nitrogen directly from the atmosphere and produce ammonium via the enzyme nitrogenase, 

genes corresponding to the activity of L-arginine aminohydrolase and urease (for breaking down 

urea) become redundant. In addition to nitrogen metabolism, iCyt773 and iSyn731 models reveal 

marked differences in anaerobic metabolic capabilities. Unlike iSyn731, iCyt773 includes an L-

lactate dehydrogenase activity that enables the complete fermentative lactate production 

pathway. On the other hand, iSyn731 contains the anaerobic chlorophyll biosynthetic pathway 

using enzyme protoporphyrin IX cyclase (BchE) that is absent in iCyt773. Other differences in 

metabolism include lipid and fatty acid synthesis, fructose-6-phosphate shunt and nitrogen 

fixation. Model iSyn731 traces the location of the double bond for unsaturated fatty acid 
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synthesis pathways, as two separate isomers of unsaturated C18 fatty acids are part of the biomass 

description. iCyt773 allows for the shunting of fructose-6-phosphate into erythrose-4-phosphate 

along with acetate and ATP using the fructose-6-phosphate phosphoketolase activity. Finally, 

both iSyn731 and iCyt773 contain multiple hydrogenases allowing both to produce hydrogen. 

However, only the latter has a nitrogenase activity that can fix nitrogen while simultaneously 

producing hydrogen. 

3.3.5. Using iSyn731 and iCyt773 to Estimate Production Yields 

We tested the recently developed models iSyn731 and iCyt773 by comparing the 

predicted maximum theoretical product yields with experimentally measured values for two very 

different metabolic products: isoprene and hydrogen.  Isoprene, a volatile hydrocarbon and 

potential feedstock for biofuel, is mostly produced in plants under heat stress (Lindberg et al. 

2010). Cyanobacteria offer promising production alternatives as they can grow to high densities 

in bioreactors and produce isoprene directly from photosynthesis intermediates (Lindberg et al. 

2010). Synechocystis 6803 has all but one gene (encoding isoprene synthase) in the methyl-

erythritol-4-phosphate (MEP) pathway for isoprene synthesis from dimethylallyl phosphate 

(DMAPP). Upon cloning the isoprene synthase from kudzu vine (Pueraria montana) into 

Synechocystis 6803 isoprene production was demonstrated using sunlight and atmospheric CO2 

of 4.3x 10-4 mole isoprene/mole carbon fixed (Connor et al. 2010). We calculated the maximum 

isoprene yield using iSyn731 to be 3.63 x 10-5 mole isoprene/ mole carbon fixed upon adding the 

isoprene synthase activity to the model and simulating the conditions described in (Bentley et al. 

2012) under maximum biomass production. Similar isoprene yields were obtained with iJN678 

(Nogales et al. 2012) while earlier models of Synechocystis 6803 (Fu 2009; Knoop et al. 2010; 

Montagud et al. 2010; Montagud et al. 2011) lack the MEP pathway (partially or completely) 
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and thus do not support isoprene production. The underestimation of the experimentally 

observed isoprene yield by the model predicted maximum yield may be due to sub-optimal 

growth of the production strain, differences in the list of measured biomass components, missing 

isoprene-relevant reactions from the model or more likely a combination of the above factors.  

Both Cyanothece 51142 and Synechocystis 6803 produce hydrogen by utilizing 

nitrogenase and hydrogenase activities, respectively (Bandyopadhyay et al. 2010). Under 

subjective dark conditions (Bandyopadhyay et al. 2010) whereby (i) stored glycogen acts as a 

carbon source, (ii) photosynthesis harnesses light energy, and (iii) nitrogenase activity is not 

restricted, hydrogen production yield for Cyanothece 51142 was measured at 49.67 mole/mole 

glycogen consumed. Simulating the same conditions in iCyt773 and iCce806 (Vu et al. 2012) 

leads to maximum theoretical yields for hydrogen production of 48.43 mole/mole glycogen and 

102.4 mole/mole glycogen, respectively. The entire amount of hydrogen produced in iCyt773 is 

due to the nitrogenase activity. In contrast, the predicted doubling of the maximum hydrogen 

yield in iCce806 is due to the utilization of the reverse direction of two hydrogen dehydrogenase 

reactions without any nitrogenase activity. Utilization of the nitrogenase reaction requires the use 

and recycling of more ATP than simply running the dehydrogenase reactions in reverse. 

However, it has been reported that hydrogen production in Cyanothece 51142 is primarily 

mediated by the nitrogenase enzyme (Bandyopadhyay et al. 2010) in the dark phase. This lends 

support to the irreversibility of the dehydrogenase reactions (under dark condition) as present in 

the iCyt773 model. Experimental results for Synechocystis 6803 support up to 4.24 mole/mole 

glycogen consumed (Antal et al. 2005; Bandyopadhyay et al. 2010) of hydrogen production. 

iSyn731 predicts a maximum hydrogen theoretical yield of 2.28 mole/mole glycogen consumed 

while iJN678 yields a value of 2.00 mole/mole glycogen consumed. Again the factors outlined 
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for isoprene production may explain the lower theoretical yields predicted by the two models. 

The small difference between the model predicted yields is due to the presence of one step 

lumped biotransformation between isocitrate and oxoglutarate via isocitrate dehydrogenase in 

iJN678. iSyn731 describes this biotransformation in two steps (isocitrate  oxalosuccinate  

oxoglutarate) (Muro-Pastor et al. 1996) generating an additional NADPH and subsequently more 

hydrogen via the hydrogenase reaction. 

 

3.4. Conclusion 

In this paper, we expanded upon existing models to develop two genome-scale metabolic 

models, Synechocystis iSyn731 and Cyanothece iCyt773, for cyanobacterial metabolism by 

integrating all available knowledge available from public databases and published literature. All 

metabolite and reaction naming conventions are consistent between the two models allowing for 

direct comparisons. Systematic gap filling analyses led to the bridging of a number of network 

gaps in the two models and the elimination of orphan metabolites. Two separate biomass 

equations as well as two different versions of Cyanothece iCyt773 models were developed for 

light and dark phases to represent diurnal regulation. The development of two separate models 

for Cyanothece 51142 (i.e., light and dark) provides the two “end-points” for the future 

development of dynamic metabolic models capturing the temporal evolution (Stoeckel et al. 

2008; Colijn et al. 2009; Jensen et al. 2011; Stockel et al. 2011; Landry et al. 2013) of fluxes 

during the transition phases DFBA (Mahadevan et al. 2003). Comparisons against available 13C 

MFA measurements for Synechocystis 6803 (Young et al. 2011) revealed that the iSyn731 model 

upon biomass maximization yields flux ranges that are generally consistent with experimental 
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data. Discrepancies between the two identify metabolic nodes where regulatory constraints are 

needed to recapitulate physiological behavior. The ability of iSyn731 to predict the fate of single 

gene knock-outs was further improved (specificity of 0.94 and sensitivity of 1.00) by reconciling 

in silico growth predictions with in vivo gene essentiality data (Nakamura et al. 1999). Similar 

analyses could also be carried out for Cyanothece iCyt773 model once such flux measurements 

and in vivo gene essentiality data become available.  

It is becoming widely accepted that focusing on a single pathway at a time without 

quantitatively assessing the system-wide implications of genetic manipulations may be 

responsible for suboptimal production levels of various biofuels and products. By accounting for 

both primary and some secondary metabolic pathways, the Cyanothece iCyt773 model can be 

used to explore in silico the effect of genetic modifications aimed at increased production of 

useful biofuel molecules. By taking full inventory of Cyanothece 51142 metabolism (as 

abstracted in iCyt773), and applying available strain optimization techniques (Kim et al. 2010; 

Ranganathan et al. 2010) optimal gene modifications could be pursued for a variety of targets in 

coordination with experimental techniques. In particular, the availability of a microaerobic 

environment in Cyanothece 51142 at certain times during the diurnal cycle can be exploited for 

the expression of novel pathways that are not usually found in oxygenic cyanobacterial strains 

that largely maintain an aerobic environment. However, the use of Cyanothece 51142 as a bio-

production platform is currently hampered by the inability to efficiently carry out genetic 

modifications.  

By systematically cataloguing the shared (and unique) metabolic content in iSyn731 and 

iCyt773, successful genetic interventions assessed experimentally for Synechocystis 6803 can be 

“translated” to Cyanothece 51142. For example, it has been reported (Tan et al. 2011; Gao et al. 
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2012) that overproduction of fatty alcohols can be achieved in Synechocystis 6803 upon cloning 

a fatty acyl-CoA reductase (far) from Jojoba (Simmondsia chinensis) and the over-expression of 

gene slr1609 coding for an acyl-ACP synthetase. By using models iSyn731 and iCyt773 we can 

infer that in addition to cloning far from Jojoba, over-expression of gene cce_1133 coding for a 

native acyl-ACP synthetase would be needed to bring about the same overproduction in 

Cyanothece 51142. 

As Synechcocystis 6803 is also a popular host for metabolic engineering efforts, iSyn731 

can also offer insights in how to improve production in this strain. In chapter 4 of this work, we 

describe attempts to use iSyn731 and the OptForce algorithm to enhance production of 

heptadecane.  

 

3.5. Supplemental Data  

The following materials are available in the online version of the original article on which this 

chapter is based (Saha et al. 2012):  

1. Supplemental File S1. Synechocystis iSyn731 model along with established GPR, 

metabolite, gene and protein information. 

2. Supplemental File S2. Cyanothece iCyt773 model along with established GPR, metabolite, 

gene and protein information. 

3. Supplemental File S3. Biomass component measurements and stoichiometry of biomass 

equation. 

4. Supplemental File S4. Reactions with diurnal activation/inactivation. 
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5. Supplemental File S5. Comparison of in silico vs. in vivo gene essentiality results for 

iSyn731 and modifications made in GPR associations. 

6. Supplemental File S6. Comparison between Synechocystis iSyn731 and iCyt773 models in 

terms of genes, proteins, reactions and metabolites. 

7. Supplemental File S7. SBML file of Synechocystis  iSyn731 model. 

8. Supplemental File S8. SBML file of Cyanothece 51142 iCyt773 model. 
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Table 3.1: Synechocystis 6803 iSyn731 and Cyanothece 51142 iCyt773 model statistics 

 Synechocystis 6803 
iSyn731 model 

Cyanothece 51142 
iCyt773 model 

Included genes 731 773 
Proteins 511 465 
Single functional proteins 348 336 
Multifunctional proteins 91 83 
Isozymes 4 1 
Multimeric proteins 32 22 
Othersa 36 23 
Reactions 1,156 946 
Metabolic reactions 972 761 
Transport reactions 127 128 
GPR associations   

Gene associated (metabolic/transport) 827 686 
Spontaneousb 180 158 
Nongene associated 
(metabolic/transport) 59 16 

No protein associated 90 86 
Exchange reactions 57 57 
Metabolitesc 996 811 
Cytosolic 862 675 
Carboxisomic 8 8 
Thylakoidic 10 9 
Periplasmic 59 62 
Extracellular 57 57 

 

a - Others include proteins involve in complex relationships, e.g. multiple proteins act as protein 

complex which is one of the isozymes for any specific reaction. 
b - Spontaneous reactions are those without any enzyme as well as gene association. 
c - Metabolites represent total number of metabolites with considering their compartmental 

specificity. 
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Table 3.2: Summary of connectivity restoration in Synechocystis 6803 iSyn731 and Cyanothece 

51142 iCyt773 models  

 Synechocystis 
6803 iSyn731 

Cyanothece 
51142 iCyt773 

Number of blocked metabolites 207 74 
Number of metabolites with GapFill (Satish 
Kumar et al. 2007) suggested reconnection 
strategies 

138 52 

Number of metabolites whose reconnection 
forms a cycle 88 12 

Number of metabolites with validated 
reconnection mechanisms 5 30 

Number of added reactions to the model 10 19 
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Table 3.3: 13C MFA flux measurements (Young et al. 2011) vs. model flux predictions.  

Flux measurements by 
Young et al., (2011)  

Flux ranges predicted by  
iJN678 model            

(With max biomass) 

Flux ranges predicted by 
iSyn731 model         

(With max biomass) Reaction 

95% LB 95% UB LB UB LB UB 
RBC 123.00 132.00 109.02 109.10 102.49 106.33 
PGK 219.00 237.00 187.11 187.25 182.70 182.92 

13PDG 219.00 237.00 187.11 196.36 182.70 201.96 
GAPDH 90.00 99.00 74.98 75.07 73.40 73.50 

FBA 53.00 66.00 -0.17 74.85 -0.08 73.17 
FBP 53.00 66.00 0.00 74.85 0.00 73.17 
PGI 15.00 24.00 0.68 0.73 0.82 0.84 

G6PD 12.00 21.00 0.00 0.05 0.00 0.03 
6PGL 12.00 21.00 0.00 0.05 0.00 0.03 
6PGD 12.00 21.00 0.00 0.05 0.00 0.03 
PRK 123.00 132.00 109.02 109.10 106.24 106.32 

SBGPL 29.00 43.00 -0.17 74.85 -0.08 73.17 
SBP 29.00 43.00 0.00 74.85 0.00 73.17 
TAL -6.00 9.00 -36.74 38.28 -35.93 37.32 

TKT1 37.20 37.50 36.57 36.60 36.66 36.79 
RPI 35.40 35.70 35.18 35.21 35.82 35.86 

TKT2 35.40 35.70 37.25 37.28 36.18 36.23 
RPE 75.50 76.20 73.83 73.88 72.01 72.10 
PGM 22.90 23.60 26.83 26.95 25.92 29.79 
ENO 23.40 23.80 26.84 26.95 25.92 29.79 
PYK 7.90 11.10 0.00 13.88 0.00 16.72 
PDH 11.50 12.00 0.00 8.97 0.00 13.46 
CS 3.00 3.40 2.15 2.21 1.35 1.37 

ACONT 3.00 3.40 2.15 2.21 1.35 1.37 
ICD 3.00 3.00 2.15 2.21 1.32 1.37 

SUCD 0.00 0.40 0.00 0.00 0.00 0.00 
FUM 1.70 2.00 -5.44 1.55 -7.26 1.49 
MDH 1.90 5.20 5.35 5.61 7.15 7.32 
ME1 3.70 6.90 0.00 0.17 0.00 0.08 
ME2 3.70 6.90 - - 0.00 0.08 
PPC 9.90 13.20 11.74 11.98 12.25 12.37 
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Figure 3.1: Comparison of model derived and experimentally measured flux ranges for 

Synechocystis sp. PCC 6803 under the maximum biomass condition. The basis is 100 

millimole of CO2 plus H2CO3. Experimental measurements are from Young et al. (2011) 
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Figure 3.2: Comparison of gene essentiality/viability data with predictions by a number of 

Synechocystis  6803 models. (A) Tabulated growth (G) or non-growth (NG) predictions and 

experimental data. The first number denotes the number of GG, GNG, NGG and NGNG 

combinations whereas the second number signifies the number of experimentally observed lethal 

or viable mutants. (B) Specificity and sensitivity of all three models. Note that GG denotes both 

in silico and in vivo growth, NGG represents no growth in silico but in vivo growth. NGNG 

implies no growth for either in silico or in vivo, whereas GNG marks growth in silico but no 

growth in vivo. 
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Figure 3.3: Venn diagram depicting (common and unique) reactions and metabolites 

between models. (A) iJN678 (Nogales et al. 2012) and iSyn731, (B) iCce806 (Vu et al. 2012) 

and iCyt773, and (C) iSyn731 and iCyt773 models. 
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Figure 3.4: Schematics that illustrate the thermodynamically infeasible cycles and 

subsequent resolution strategies. (A) Cycles present in iJN678 (Nogales et al. 2012) and (B) 

Cycles present in iCce805 (Vu et al. 2012). Blue colored lines represent the original reaction 

directionality whereas green ones denote modified directionality to eliminate cycles. 
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Figure 3.5: List of added reactions across pathways. (A) iSyn731 compared to iJN678 

(Nogales et al. 2012), and (B) iCyt773 compared to iCce806 (Vu et al. 2012).  
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Figure 3.6: Examples of pathways that differ between the two cyanobacteria. (A) 

Nonfermentative alcohol production pathway highlighting the present and absent enzymes in 

Cyanothece 51142 and Synechocystis 6803, and (B) Alkane biosynthesis pathways in 

Cyanothece 51142 and Synechocystis 6803. 
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Chapter 4 

 

Neutral sites on endogenous plasmids  

in Synechocystis sp. PCC 6803 enable increased protein 

expression and are composable with strong promoters. 
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4.1. Introduction 

4.1.1. Synthetic Biology Tools in Cyanobacteria 

As discussed in detail in chapter 1 of this dissertation, synthetic biology tools to 

enable metabolic engineering in cyanobacteria, though under active development, still 

limit progress in this area. While a range of strong promoters have been identified 

including variants of Ptrc (Camsund et al. 2014), PcpcB (Zhou et al. 2011; Markley et al. 

2014), and others, promoter controllability is still an obstacle. While chemical inducers 

are a common laboratory strategy for controlling activity of heterologous pathways, 

autonomously controlled pathways that respond to the environment can reduce the 

operating costs of bioprocesses, simplify their operation, and ultimately lead to higher 

product yield (Zhang et al. 2012). Therefore, we set out to create a system for high-level 

protein expression in Synechocystis 6803 that is specific to stationary phase. By first 

allowing biomass to accumulate and then inducing product formation, competition 

between growth and product formation can be reduced and stability of production strains 

can be improved.  

This process is likely to require the use of several well-characterized synthetic 

biology parts working together. For this reason, the composability of parts, meaning their 

ability to function together in ways that are predictable based on how they work alone, is 

a key property. This chapter will describe and analyze the creation of parts and systems 

for high-level expression of proteins specifically during stationary phase. 

4.1.2. Stationary Phase 

Bacterial cultures enter stationary phase when either nutrient limitation or build-

up of growth byproducts ceases cell division. However, this does not necessarily imply 
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that cells become metabolically inactive. Well after the growth period had ended, a strain 

of Synechococcus elongatus PCC 7942 engineered to produce isobutyraldehyde 

continued to make this biofuel precursor (Atsumi et al. 2009). Artificial ‘leaves’ have 

been constructed from Rhodopseudomonas palustris cells embedded in latex that can 

produce H2 photoheterotrophically for over 5 months without cell growth (Gosse et al. 

2010). Pfic in Escherichia coli was recently used to produce a high titer of a bacteriotoxin 

at stationary phase without any inducer, and without detectable growth-limiting toxin 

during exponential phase (Cao et al. 2011). Separating growth from production of 

biofuels has been identified as a key strategy for developing economically viable 

photosynthetic biofuel processes (Melis 2013).  

In the present study we have performed microarray studies to identify genes in 

Synechocystis sp. PCC 6803 whose expression continues after a culture has stopped 

growing. We propose that the 5’ UTRs of these genes might contain promoters that 

would be useful in synthetic biology applications for expression of heterologous proteins 

during stationary phase. Interestingly, the genes whose expression is highest after growth 

ceases are almost all genes of unknown function, and many are located on the small 

plasmids of the Synechocystis 6803 genome. We have identified neutral sites on both the 

chromosome of Synechocystis 6803 and on a small plasmid. We tested the expression of 

a reporter protein (EYFP) from these sites using a strong promoter and found that 

expression was higher during stationary phase. 
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4.2 Analysis of Expression at Stationary Phase 

4.2.1. Cultures and Microarray Analysis 

To identify genes active during stationary phase in Synechocystis 6803, we grew replicate 

cultures in BG11 medium bubbled with air + 5% CO2 (autotrophic) or with air + 5 mM glucose 

(mixotrophic). Temperature was maintained at 30°C and light intensity at 100 µE m-2 s-1 from 

cool white fluorescent lamps. Cell growth was monitored by measurement of OD730 on a BioTek 

µQuant plate reader (BioTek, Vermont, USA). Cultures were sampled for microarrays in 

exponential phase and twice during stationary phase (see figure 1), and analyzed as described 

(Singh et al. 2008). Briefly, 2 replicate microarrays were analyzed for each of 2 replicate cultures 

for each nutritional condition. Data were LOWESS-normalized in the MATLAB Bioinformatics 

Toolbox. Normalized probe intensities were grouped by genes and t-tested to determine 

significant up- or down-regulation (p < 0.05). The complete table of genes analyzed by these 

microarrays is available online as supplementary material to this dissertation. 

4.2.2. Stationary Phase Promoter Score (SPPS) 

To quantify the activity of potential promoters at stationary phase, we calculated a 

‘Stationary Phase Promoter Score’ (SPPS) for each open reading frame (ORF) in our microarray 

experiment, which is given by equation 4.1. 

SPPS = log2(fold-change) + log2(normalized expression) (4.1) 

The fold-changes between expoential and stationary phase were averaged across the two 

time points in stationary phase sampled and nutritional conditions. Normalized expression is the 

mean LOWESS-normalized intensity of all microarray spots corresponding to a gene divided by 
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the mean normalized intensity for all genes. This normliazed expression calculation was at 

stationary phase only.  

Many of the genes with the highest SPPS are located on endogenous plasmids, especially 

pSysA, pCA2.4, and pCC5.2 (Table 4.1). The upstream sequences of those ORFs are given in 

Table 4.2. The genome of Synechocystis 6803 includes 1 circular chromosome of 3.57 Mb, 4 

larger plasmids of 44 to 120 kb (pSysA, pSysG, pSysM, pSysX), and 3 smaller plasmids of 2.4 

to 5.2 kb (pCA2.4, pCB2.4, pCC5.2) (Yang et al. 1993; Yang et al. 1994; Kaneko et al. 1996; 

Xu et al. 1997; Kaneko et al. 2003). Although the plasmids of Synechocystis 6803 have received 

limited study, plasmid-borne genes are required for glucose tolerance (Kahlon et al. 2006) and 

encode a 2-component system responsive to low-oxygen (Summerfield et al. 2011). The 3 

smaller plasmids contain only 10 ORFs, and repA on pCA2.4 is the only one with an annotated 

function (Nakao et al. 2010). Most genes on pSysA, pSysG, and pSysM were up-regulated 

during stationary phase in either nutritional condition. Under mixotrophic conditions, nearly all 

genes on the smaller plasmids (12/14) were also up-regulated (Table 4.3). 

In terms of function, our results agree with previous studies of the exponential to linear 

growth transition in Synechocystis 6803 (Foster et al. 2007) and E. coli (Haddadin et al. 2005), 

which found that photosynthesis (in Synechocystis 6803) and energy production processes (in 

both strains) were down-regulated. However, the largest category of regulated genes in our study 

is that of unknown and hypothetical genes. Despite their unknown functions, the promoters of 

these genes are expected to serve as useful parts in synthetic biology studies (Shimada et al. 

2004; Miksch et al. 2005). Attempts to harness these promoters as parts for synthetic biology are 

discussed later in this chapter.
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4.2.3. Plasmid Copy Numbers 

Because plasmid copy numbers often increase during stationary phase, we were 

interested to test whether this phenomenon might explain the observed up-regulation of plasmid 

genes (Table 4.4). We measured plasmid copy numbers per chromosome via qPCR (Lee et al. 

2006). Briefly, we designed qPCR primer sets targeting each of the 8 replicons in the 

Synechocystis 6803 genome. These primer sequences are given in Table 4.4. We extracted 

genomic DNA from the same cultures sampled for our microarray experiments via phenol-

chloroform extraction. For each replicon, we produced and purified a PCR product using the 

qPCR primers, and constructed standard curves of threshold cycle number vs. amount of 

template DNA to determine the efficiency of each PCR reaction. In the same qPCR run, we 

determined the plasmid copy numbers in each growth stage and nutritional condition using the 

chromosome as a reference. These data were corrected for the efficiency of each PCR reaction 

and the analysis was performed on 2 separate days. The data shown in Table 4.4 are the average 

of those 2 separate experiments. 

The 3 smaller plasmids have higher copy numbers in the range of ~3 to 7 at stationary 

phase under autotrophic conditions, and at both exponential and stationary phase under 

mixotrophic growth conditions. The copy numbers of the 4 larger plasmids range from ~0.3 to 

1.2 per chromosome, and vary less with growth phase. Copy numbers of pSysA, pSysM, and 

pSysX are about twice as high during mixotrophic growth as during autotrophic growth, but only 

slightly higher for pSysG. 

Copy numbers of pSysA, pCA2.4, and pCC5.2, the plasmids containing the highest-SPPS 

genes, did not increase at stationary phase in all nutritional conditions, indicating that expression 

levels of such genes are controlled both at the gene dosage and transcriptional levels. For 
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synthetic biology applications, the flexibility afforded by a range of available gene copy numbers 

and promoter specificities will serve as a benefit, since higher-copy plasmids have been 

associated with growth deficits, lower productivity and lower inducibility (Jones et al. 2000). 

High copy plasmids from E. coli have been modified for use in Synechocystis 6803 (Huang et al. 

2010) and have copy numbers between ~1 (Marraccini et al. 1993) and ~3 (Ng et al. 2000) per 

chromosome (10-30 per cell). These plasmids can be maintained with antibiotics, in contrast to 

endogenous cyanobacterial plasmids that have higher copy numbers and can be modified to 

contain heterologous genes and maintained based on essential sequences they carry (Xu et al. 

2011). 

We have identified genes up-regulated during the transition to stationary phase under 

various nutritional conditions in Synechocystis 6803. These genes are mostly encoded on 

plasmids, whose copy numbers range between ~0.4 and 7 per chromosome. The transcriptional 

behavior of these genes’ promoters may make them useful for synthetic biology in applications 

where expression is desired only at stationary phase, to maximize production while not 

interfering with biomass accumulation during the growth phase. The higher copy numbers of 

these plasmids relative to the chromosome may also make them useful insertion sites for high 

expression of heterologous genes. 

 

4.3. High-Copy Plasmids for Heterologous Gene Expression  

To test the utility of the small plasmids of Synechocystis 6803 as neutral sites for cloning, 

we created reporter strains that express EYFP from a site on one of those plasmids. We identified 

a neutral site (NSP1) on plasmid pCC5.2 by inspection of the annotated plasmid sequence for a 
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region that did not contain any predicted genes. Figure 4.2A shows our strategy for this work. 

Figure 4.2B shows a map of this small plasmid with the targeted neutral site identified. In 

addition, using recently published RNA-seq data, we identified 2 neutral sites on the 

chromosome of Synechocystis 6803 from which no expression appears to occur under reference 

conditions (Mitschke et al. 2011). These regions are also indicated in Figure 4.2B. We 

constructed neutral site-targeting vectors via CPEC containing ~600 bp upstream and 

downstream of each neutral site flanking a Ptrc_eyfp_KmR cassette (Huang et al. 2010). We 

created kanamycin-resistant mutants of Synechocystis 6803 expressing the EYFP cassette from 

each of these three locations, as well as a 4th carrying the broad host range vector pPMQAK1 

from which the expression cassette was derived. After growing starter cultures for 3 days, we re-

diluted cultures in fresh media to OD730 of 0.02. Three independent replicates of each culture 

were then transferred to 12 well plates for growth at 30 C under ~50 µE m-2 s-1 of light. Every 24 

hours, samples were taken and EYFP fluorescence was measured using a BioTek Synergy Mx 

plate reader at excitation/emission wavelengths of 485/528 nm. All fluorescence measurements 

were normalized to OD730. The results of this experiment are shown in figure 4.3. The cassette 

placed in NSP1 gives much higher expression than the cassette placed in NSC1 or NSC2, which 

are virtually identical to each other. At day 2, the ratio of NSP1 expression to NSC1 is 8.2, and 

this value increases to 14.5 after 8 days of culture. This 1.8-fold increase agrees reasonably well 

with the 4-fold increase we observed earlier in plasmid copy number at stationary phase under 

autotrophic conditions (Table 4.4). The EYFP cassette expressed from pPMQAK1 gave 

intermediate levels of expression, which did not change relative to the chromosome during the 

period examined. 
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Figure 4.3C shows results of PCR to confirm the insertion of the EYFP cassette at its 

target site in either NSC1, NSC2, or NSP1. Even after extensive restreaking on kanamycin-

containing media, the mutation in NSC1 did not segregate. However, as the lower panel of figure 

4.3B shows, the mutation was still maintained after growth for one month in the absence of 

antibiotic, albeit at a seemingly lower allele frequency. A similar lack of segregation was 

observed for a mutant created in the pAQ1 small plasmid of Synechococcus sp. PCC 7002 

(Begemann et al. 2013). One explanation of this observation is that the increased copy number of 

the plasmid makes segregation less likely and thus it will require more time. This explanation 

assumes that segregation is essentially a random process – after enough cell divisions, a 

population of daughter cells will emerge that no longer contains any wild type plasmids. For a 

replicon with a higher copy number, this is less likely to occur in a short time. It is also possible 

that NSC1 is not, in fact a neutral site, and that some essential transcript originates from this 

locus. Further experiments will be needed to resolve this question.  

Finally, we sought to show that our neutral sites could be composed predictably with 

different promoters. In addition to the mutants described above, we constructed mutants with 

Ptrc1O replaced by PcpcB560 (Zhou et al. 2011), PpsbA2, Pslr9003, and PpSysA_116. The latter 

two promoters are those defined as having the highest SPPS in this study (see table 4.1). They 

originate both from replicons that increased their abundance at stationary phase (slr9003 is on 

pCC5.2) and those that did not (pSysA). We conducted similar growth curve experiments as for 

the Ptrc1O strains described above with these new strains (see figure 4.4). Surprisingly, PpsbA2, 

Pslr9003, and PpSysA_116 gave barely detectable fluorescence in our experiments, so those data 

are not shown here. PcpcB560 has previously been shown to be an extremely strong promoter. 

CpcB is one of the most abundant proteins in Synechocystis 6803 and this promoter can lead to 
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expression of a heterologous protein as among the most abundant in the cell. We observed that 

this promoter was 2-4 times stronger than Ptrc1O during exponential phase, but later in growth 

the expression from these two promoters converged to very similar levels. In our microarray 

experiments, we observed that cpcB itself was down-regulated by ~60% at stationary phase in 

autotrophic conditions. If Ptrc1O itself is not regulated by the transition to stationary phase, then 

this down-regulation of PcpcB would nicely explain our observations. Thus, we find that novel 

combinations of promoters, genes, and expression sites can show composability in 

Synechcocystis 6803. This property will aid in the future construction of novel synthetic 

biological systems. 

 

4.4. Conclusions and Future Directions  

We have shown that small plasmids in Synechocystis 6803 can be used for expression of 

heterologous proteins, and that these proteins will be expressed more highly at stationary phase if 

appropriate promoters are chosen. We have also identified promoters that might be useful as 

parts for increasing the specificity of expression at that phase of culture. However, of the two 

putative stationary phase-active promoters that we tested, neither one gave significant 

expression. Given the increasing availability of RNA-seq data for Synechocystis 6803, it should 

be possible to better understand the transcriptional units on the plasmids of Synechocystis 6803 

and use that detailed knowledge to locate more active promoters with desired growth-phase 

specific expression. By composing these promoters with neutral sites that become more abundant 

at stationary phase, a functional auto-inducing system that first grows a dense culture and then 

uses available CO2 and sunlight to make a product can be constructedm, with a higher fold of 
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induction that observed here (1.8-fold). By responding to the culture environment, this system 

would relieve the need to add chemical inducers of transcription or translation.  

 

4.5. Supplementary Material 

Supplementary file 1 (.xls) included with the online version of this dissertation includes a 

full table of the microarray data described in this chapter.
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Table 4.1: Top genes ranked by Stationary Phase Promoter Score (SPPS). 

ORF Replicon Annotation 
Stationary Phase 
Promoter Score  

Normalized 
Expression 

Fold-Change 
(Autotrophic/ 
Mixotrophic)    

slr9003 pCC5.2 Unknown 8.53 7.46 1.76 / 0.38 
pSysA_116 pSysA Unknown 7.37 3.82 4.19 / 2.90 
slr9002 pCC5.2 Unknown 6.87 4.41 0.44 / 4.47 
sll9006 pCC5.2 Unknown 6.41 4.24 1.02 / 3.31 
pSysA_145 pSysA Unknown 6.40 3.53 4.02 / 1.72 

sll1982 Chromosome 
putative 
transposase 6.32 4.85 2.28 / 0.66 

slr9101 pCA2.4 
replication 
protein A 6.31 6.55 0.28 / -0.77 

ssr9005 pCC5.2 Unknown 6.03 3.46 -0.14 / 5.28 
pSysA_39 pSysA Unknown 5.97 3.44 2.89 / 2.17 

sll5036 pSysM 

Sulfide-
quinone 
reductase 5.94 2.40 3.61 / 3.47 

pSysA_27 pSysA Unknown 5.92 3.32 2.96 / 2.24 
ssl9001 pCC5.2 Unknown 5.90 3.58 0.05 / 4.59 
sll8019 pSysG Unknown 5.84 4.42 2.03 / 0.81 
pSysA_25 pSysA Unknown 5.83 3.17 2.99 / 2.33 

slr0915 Chromosome 
putative 
endonuclease 5.68 3.81 1.93 / 1.81 

pCA24_1 pCA2.4 Unknown 5.61 3.88 -0.01 / 3.47 
pSysA_24 pSysA Unknown 5.60 3.11 2.81 / 2.18 
ssr9004 pCC5.2 Unknown 5.44 3.07 -0.48 / 5.22 
pSysA_34 pSysA Unknown 5.44 2.52 3.10 / 2.72 
pSysA_22 pSysA Unknown 5.24 2.37 3.03 / 2.72 
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Table 4.2: Upstream sequences of high-SPPS genes. 

ORF Upstream sequence (-250 to -1 relative to start codon) 

slr9003a 

TCCAACAAAAAAAAGCTTTTCAGGAGGGAATTAAGATTGCTGCAGTAAAAAACGTA
AGAAGTTTAGTTGACGCTAAAAAACTTACCTACAGACAATAACCCGGCCCAAAAAGC
CAACAAAATACTTCAAAAATATTGTCTCTACTGTAGCTCTAAAAATTCCCAAAAGAA
AAGCGGTCAACTCTTGAACCCGAGACCGCT 

pSysA_116 

ATATTTCTGGACGTGGAATGACTCTTGTTCAGGTTTATGACACTGTCAGCAATTGAGA
TACTTTTGCTGATCGTTTCAGTCCCCTAACGGGGAAAAGAGGGTGTTGAACGAGCCA
TGGGGTCACTATTGACCACCTCAGGCGCGTTTCAGTCCCCTGACGGGGAAAAGAGGG
TGTTGAACCTTGGAAGAAGTTTCCCCTT 

slr9002 

ACGCACGATGACGTATGACCCTTTTAGCACGGTAGGGAGCGTGATAATCTTCTGCAA
CACCTATATAGTATTGTTGCGATCGCGAGCGATGGCGTATGACCGGCAATAAGCTAC
ACTGCGCCGATTCCAGCAAAGATAATCCCCTAAGCAACGCAATAATCTTCTGCGAAC
CTTATATAAGGTTCTGCATATAACGCACG 

sll9006 

TTGGCTAGGGAATCCTTGGAAAATTCCCCTATCCCGGTAAGGAATCTTTCAAAGCCC
AATACTTTAAGGAAGTGAACGGGGACGGTGAGAGTCTTCCGGCTAGCATCCTTGGCA
CAAACCTTTCCATCTTCCCCGGCCAAATTTTGGAGCCTTTGGCTGTCCCTTGCCTGTA
AAAATTCTGCACCGGTGGTGAAGTAATA 

pSysA_145 

ATATTTCTGGACGTGGAATGACTCTTGTTCAGGTTTATGACACTGTCAGCAATTGAGA
TACTTTTGCTGATCGTTTCAGTCCCCTAACGGGGAAAAGAGGGTGTTGAACGAGCCA
TGGGGTCACTATTGACCACCTCAGGCGCGTTTCAGTCCCCTGACGGGGAAAAGAGGG
TGTTGAACCTTGGAAGAAGTTTCCCCTT 

sll1982 

TCCCTGGCAATTACGCTCAAAACGCAACTCTCGATTGTTCAAACAGAGTTGATAAAA
CTGCTCATCGGAAAGGGATAGGCTGTCAAGTTTGACGGTTATGGCGGCGGGCATTGG
CTTTACCCCAAAGGCATTGATGTGGCATTGGCTCCCATTCTAAGTGATGTTTACGGTG
ACAGAATACCTATCGCTCTTCTATCATT 

slr9101b 

AAATATGGCATTTCATCTTTTCAGGTTTCCCCAAGGTTTCAACTTTCCTCCTTATATTT
ATTACTGAGGGATAAGTCGCGGATGACAAAATTTGCTGAAACCCTTACCAGATAAGG
CATAGAAGCCTATTGACAAAGTAGAAACCCTCTAGCTAAGCTTTGAGTGTCACTTCA
AAAACTCAATATCTAGAGGGCTCCAAG 

ssr9005a 

TAAGGATGAAGTGCAGGGCATTATTGACCGCTACAGGGAAGACTTACTGGCAGGAA
GACAGCTCCAAGATGTTCCCAGCTCCTACGAGGTCAAAACGGCGATCGCCATTCTGA
CGGAGGCACTCAGCCTTAAAGCCAATGCCGGTGGAGCCATCAAAGCAAAAATCAGA
GAAGCCCTAGCTATCTTGGAAAGGAACTGAA 

pSysA_39 

GGATTAGTAGAAGGAAAGATTGCCGACCGTTCAGGACAATATGCTGGGAGCGATGG
TTTCAGTCCCGATCGCCGGGATTAGTAGAAGGAAAGCTGTTGGCGAAACAGGAAAA
ATCTACGTAACAGAAGAGTTTCAGTCCCGATCGCCGGGATTAGTAGAAGGAAAGAA
GTATTAAAGGAGTTGGGCGGTGGCTAGTAACA 

sll5036 

ATGCCTTCTTTTGCTAGGGAATCCTTTACTAATCCGATAGCTTCATCAAATCCTACCA
GCAATTTTTTACTAAAGTAATACATTTTATATCTCTGATTTTTATTGAACTAGTCCTTG
CCAAATCGAACAAGCACCAATATTATAAGAATATAACTACATAGTTGTATTCGTCAA
TAGTTTTTGGGGGGAGGGAGTTTAAA 

pSysA_27 

CTTCAGCAGTTTCAGTCCCGATCGCCGGGATTAGTAGAAGGAAAGTAGACATTGTTG
AAGAACTTGGACTGATGGAAGAAGTTTCAGTCCCGATCGCCGGGATTAGTAGAAGG
AAAGAACGGGCTGGGTCTGGAACCGGAATTCGTGTCTATTGTTTCAGTCCCGATCGC
CGGGATTAGTAGAAGGAAAGTCAAGTCTTC 

ssl9001 

TGCGTGTCAGCAACAGACCTATAGGTGTTGCAGTAGATTATCGCGTTCCCTACCGTGC
TAGCTTTGCTCTGATAGGGTCAATGTGGTTTTTTGCCGGTCATACTTCATAACGCTTTT
CTACGGGAGTACCCTAGGGTAGTCGCAGTAGATTATCGTGCTTCCCAGCGTGCTAAA
ACTGGCTTGATAGGGGCAATGTAGGT 
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Table 4.2: Upstream sequences of high-SPPS genes (continued). 

ORF Upstream sequence (-250 to -1 relative to start codon) 

sll8019 

TTAAGAGAGGTAATTAACCTAACTTAACAAGAACATCGAGTTCTTAACGTACACCCCA
GAAAAAGTTAAAGCCACCTGGCAAAGCGTGTTTCTCAGGCACGCCACAGGTAGCTAC
ACAGACTAAAATCTTATGTTGTTAGTGTAGCATGCCAATTTGCCGGATAGCTCCTCCTG
GGAAAAATTAGGAGAGTATCTAAGCA 

pSysA_25 

CTTCAGCAGTTTCAGTCCCGATCGCCGGGATTAGTAGAAGGAAAGTAGACATTGTTGA
AGAACTTGGACTGATGGAAGAAGTTTCAGTCCCGATCGCCGGGATTAGTAGAAGGAA
AGAACGGGCTGGGTCTGGAACCGGAATTCGTGTCTATTGTTTCAGTCCCGATCGCCGG
GATTAGTAGAAGGAAAGTCAAGTCTTC 

slr0915 

GTTGTGACCATTGCAGTAAAGTACCGCCCGTATACTTCGAAAATCCCTAAAATTCTTA
CTCTTCAGTGCATAGACTATGGGATGAATCTGCCCTAAAAATAAAGTTTGGCAAAAAT
TCCCCCGATCAGTTATGATATTCGAAGCGACGCGGGATAGAGCAGTCTGGTAGCTCGT
CGGGCTCAGGTCGCAAGATGTAAACC 

pCA24_1b 

TATGGTCATTCAACGCCCCCTAATTAGTCCCTAAACCCTGCCAAATATGGCATTTCATC
TTTTCAGGTTTCCCCAAGGTTTCAACTTTCCTCCTTATATTTATTACTGAGGGATAAGTC
GCGGATGACAAAATTTGCTGAAACCCTTACCAGATAAGGCATAGAAGCCTATTGACA
AAGTAGAAACCCTCTAGCTAAGCT 

pSysA_24c 

GGATTAGTAGAAGGAAAGCCACCACCACCACCACGATTAATCAGCAATTATTAGTTTC
AGTCCCGATCGCCGGGATTAGTAGAAGGAAAGCTGATAGATCGTAGCGGAATGCTAT
GGGATGCCTTAGTTGTTTCAGTCCCGATCGCCGGGATTAGTAGAAGGAAAGTTCTGAG
GTTCTTTCTAAAATTCTTCCCTATATT 

ssr9004a 

ACTAAGCGACATTATGGCCCCGCCAATATTGACCCCGATGGGCGATCGGCTATTTTTT
CCCGGTGGTTTGAGCGGGATTCTATTTTGTATCACTCTGATACCGTATCCACTGAATCC
TTATTAATTAATCAAGCCTAGGAACTGGATACCAAAAACAGGGAGTTATGATGGGAAT
ATAATCCCGTTAACAGGCTAAACCC 

pSysA_34 

TCGCCGGGATTAGTAGAAGGAAAGACCACTCGACGATCAGATCTTCATCAATCAACCG
AAGTTTCAGTCCCGATCGCCGGGATTAGTAGAAGGAAAGTCGGAGCCAGGCCCACCA
AAAGCCGCTTGGTAGGATTGTTTCAGTCCCGATCGCCGGGATTAGTAGAAGGAAAGCC
GACTTTTGGATCGATTAGAATCCGACG 

pSysA_22c 

CCTTAGTTGTTTCAGTCCCGATCGCCGGGATTAGTAGAAGGAAAGTTCTGAGGTTCTTT
CTAAAATTCTTCCCTATATTTTGGTTTCAGTCCCGATCGCCGGGATTAGTAGAAGGAAA
GCCACATTCATCGCTACAGACTTAGAAGGTAGTTACGAGTTTCAGTCCCGATCGCCGG
GATTAGTAGAAGGAAAGCTAGCCT 

a – These 3 ORFs appear to be in an operon, with slr9003 at the 5' end 

b – The predicted ORFs slr9101 and PCA24_1 overlap, and the latter includes an additional 42 

nucleotides at its 5' end. 

c – These 2 ORFs appear to be in an operon, with pSysA_24 at the 5' end 
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Table 4.3: Number of genes up- and down-regulated at stationary phase by replicon at stationary 

phase vs. exponential phase in autotrophic and mixotrophic conditions. 

Regulated Genes 
Autotrophic Mixotrophic Replicon Total ORFs 

Up Down Up Down 
Chromosome 3,239 792 1278 658 1245 
pSysA 134 105 2 123 2 
pSysG 52 48 1 44 1 
pSysM 141 104 9 95 13 
pSysX 114 51 31 42 14 
pCA2.4 4 1 2 3 1 
pCB2.4 4 0 4 4 0 
pCC5.2 6 3 2 5 0 
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Table 4.4: Effects of nutritional condition and growth phase on plasmid copy numbers per 

chromosome. For stationary phase, data are averaged across the early and later stationary phase 

time points. Primer sequences used to assess copy number via qPCR are also given. 

Copy Number per Chromosome 
Autotrophic Mixotrophic Replicon  

Exponential Stationary Exponential Stationary 
pSysA 0.34 + 0.00 0.33 + 0.00 0.64 + 0.01 0.60 + 0.01 
pSysG 0.64 + 0.01 0.54 + 0.01 0.72 + 0.02 0.83 + 0.01 
pSysM 0.33 + 0.00 0.31 + 0.00 0.69 + 0.01 0.49 + 0.01 
pSysX 0.65 + 0.01 0.66 + 0.01 1.24 + 0.02 1.09 + 0.01 
pCA2.4 0.75 + 0.01 5.41 + 0.10 6.26 + 0.06 7.39 + 0.09 
pCB2.4 0.40 + 0.00 2.46 + 0.02 3.74 + 0.04 2.68 + 0.02 
pCC5.2 0.93 + 0.01 3.72 + 0.04 6.02 + 0.05 7.33 + 0.07 

Primer Sequences 
Replicon Primer 1 Primer 2 
Chromosome CACCAGCACTCGCCTCACCG CCTGGATGGTGGCACAGGCG 
pSysA GAATCTGGCGGAGCACCTCGG TGATGAAGCGGTGGTGGTGGC 
pSysG GGTGGCTTCTGTGACCTTCTGCC CCTACCAGGCGATCGTCGCC 
pSysM GCTCGATCACAAGTCTGGCATTGGC AGATAGCCGATTGACGGTACTGCGG 
pSysX AGGAACATGAGGCTCGCATTCGC TGCCTGGACCAATTCAACGTGCC 
pCA2.4 TGCCAGTGGCGGAGGTCTCT CCAGCTCGCAATTCCTAACGGTCA 
pCB2.4 GGTGCGGTTAGCAACTTGTGCC AATAGCACGCCTACTTCGTGACGG 
pCC5.2 CCAAGGGCACGGGAAAGACGG TCTTCTCGCCGTTGCTCCACC 
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Figure 4.1: Growth curves of Synechocystis 6803 under autotrophic and mixotrophic 

conditions. Time points sampled for nucleic acid analysis are indicated with filled symbols. 

Duplicate cultures were grown in bubble column bioreactors bubbled with air + 5% CO2 

(autotrophic) or with air + 5 mM glucose (mixotrophic). Temperature was maintained at 30°C 

and light intensity at 100 µE m-2 s-1 from cool white fluorescent lamps. 
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Figure 4.2: Selection of neutral sites on plasmid pCC5.2 and the chromosome of 

Synechocystis 6803. A) shows the Ptrc1O_eyfp_KmR cassette (Huang et al. 2010) and a general 

scheme for its insertion via double homologous recombination. Suicide vectors were constructed 

in the pUC118 backbone containing the 600 bp indicated on either side of an ~50-100 bp region 

to be replaced (the neutral site). B) shows the locations of the three neutral sites used in this 

study. Numbering on the chromosome corresponds to GenBank accession NC_000911. C) shows 

PCR confirmation of correct cassette insertion in all three mutants. Primers binding to the US 

and DS regions were used. The upper gel image is after growth in BG11 + 20 µg/mL of 

kanamycin, and the lower panel is after 1 month of growth with weekly subculturing in BG11 

without antibiotic. “P”, “M”, and “WT” refer to use of suicide plasmid, mutant genomic DNA, or 

wild-type genomic DNA as PCR templates, respectively.
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Figure 4.3: Different neutral sites influence expression level and timing. (A) Normalized 

fluorescence intensity over 8 days of growth for mutants expressing Ptrc-EYFP in NSC1, NSC2, 

NSP1, or the medium copy-number plasmid pPMQAK1 (Huang et al. 2010). Error bars are ± SD 

for n=3 replicate cultures. 
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Figure 4.4: Composability of promoters with neutral sites. Fluorescence is shown from the 

EYFP cassette expressed on either NSC1 (upper chart), NSP1 (middle chart) or pPMQAK1 

(lower chart). Error bars are ± SD for n=3 replicate cultures. 
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Chapter 5 

  

Attempts to Overproduce Heptadecane  

in Synechocystis sp. PCC 6803 
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5.1 Introduction 

5.1.1. Previous Attempts to Overproduce Cyanobacterial Alkanes 

 Since the initial discoveries of the genes responsible for alkane (Schirmer et al. 2010) and 

alkene (Mendez-Perez et al. 2011) production in cyanobacteria, a number of groups have 

attempted to overproduce these compounds in cyanobacteria and E. coli. However, success in 

these projects has been limited. The highest titer so far achieved in E. coli has been 7 µg mL-1 

(Howard et al. 2013) and in cyanobacteria it has been 5.5 µg mL-1 OD730
-1, from Synechococcus 

sp. PCC 7002 (Mendez-Perez et al. 2011). Synechocystis 6803 has been engineered to produce 

1.2 µg mL-1 OD730
-1 of heptadecane and heptadecene, approximately 8 times more than the 

reference wild-type strain (Wang et al. 2013). In my own attempts to increase alkane production, 

low temperatures led to increased alkane production per cell (~2-fold, see chapter 2 of this 

dissertation). 

 A number of studies using metabolic engineering strategies, different environmental 

conditions, or alternative end products have sought to increase the output of either the ADO-type 

of PKS-type pathways from cyanobacteria (See chapter 2 of this work or Coates et al. (2014)). 

These studies are outlined in table 5.1. Wang et al. (2013) expressed two heterologous copies of 

the native ado-far cassette from alternate sites on the chromosome of Synechocystis 6803. This 

led to a more than 8-fold increase in heptadecane and heptadecene production to 1.3% of dry cell 

weight. They also eliminated ddh (slr1556) in an attempt to redirect carbon flux from pyruvate 

towards their end product, though their data do not make it clear that the deletion had any impact 

on their intended product yield. Also, while they added a strong rbc promoter to the 5’ end of 

their over-expression cassette, more recent work has shown that several alternative transcripts 

exists within the wild-type sll0208-sll0209 cassette encoding ado and far, and that far has a 
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separate promoter from ado (Klahn et al. 2014). It is also interesting to note that Wang et al. 

(2013) detected 3 different hydrocarbons in their wild-type strain: pentadecane, heptadecane, and 

heptadecene. In my own work and in other published work (Coates et al. 2014), only 

heptadecane has been detected in Synechocystis 6803, while the other two compounds have been 

detected in other cyanobacteria. Unsaturated hydrocarbons have only been detected in strains 

possessing the PKS-type pathways, which is absent in Synechocystis 6803. Synechococcus sp. 

PCC 7002 has also been engineered to overproduce the alkene products of its PKS-type pathway 

(see chapter 2 of this work). By replacing the promoter of the olefin synthase with the promoter 

of psbA from Amaranthus hybridus, they achieved a 2.5-fold increase in alkene production to 4.2 

µg mL-1 OD730
-1 (Mendez-Perez et al. 2011) although this same group reported higher alkene 

production than this (5.5 µg mL-1 OD730
-1) in their wild-type strain in a later publication 

(Mendez-Perez et al. 2014). This difference could be due to different growth conditions in the 

two experiments, as detailed growth conditions were not reported in the earlier study. Alkanes 

have also been produced using ADO from Nostoc punctiforme in E. coli (Howard et al. 2013). 

By replacing the aldehyde synthase activity of cyanobacterial far with luxCED from 

Photorabdus luminescens in a synthetic pathway, they were able to produce 7 µg mL-1 of n-

alkanes and alkenes between 13 and 17 carbons in length. Attempts have also been made to 

improve alkane biosynthesis via protein engineering. One identified problem with the use of the 

ADO-type pathway in vitro is that the enzyme generates H2O2 as a byproduct, which in turn 

poisons the reaction. Fusing a catalase from E. coli to ADO from Nostoc punctiforme, led to an  

approximately 6-fold improvement in in vitro enzymatic activity (Andre et al. 2013). 

 As discussed in chapter 2 of this work, low temperature also leads to increased alkane 

and alkene production in both wild-type Synechocystis 6803 and Synechocystis 7002 (Mendez-
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Perez et al. 2014). In either strain, these products are necessary for optimal growth at low 

temperature. In Synechocystis 6803, low temperature leads to enhanced production of 

heptadecane by about 2-fold (See chapter 2 of this work). In Synechoccus 7002, low temperature 

(30 C, vs. an optimal growth temperature of 38 C) leads to unsaturation of 1-nonadecene to 1,14-

nonadecadiene, although the total alkene pool is unchanged. At more extreme temperature (22 C) 

at which the strain grows poorly, the 19:1 alkene is decreased but the 19:2 alkadiene remains 

abundant. 

 Attempts have also been made to repurpose elements of the ADO-type pathway for 

making other biofuel molecules. Synechococcus elongatus PCC 7942 has been engineered to 

overexpress far along with WS/DGAT from Acinetobacter baylyii under control of Ptrc (Kaiser 

et al. 2013). Although the latter overexpression alone did not enhance alkane yield from the 

strain, the combination of those genes led to accumulation of wax esters in lipid bodies inside the 

cell. However, following induction of this pathway by IPTG, the cultures became inviable, 

possibly due to membrane disruption by the wax esters, which accumulated in droplets visible in 

electron micrographs. Synechocystis 6803 has also been engineered to produce alternative end-

products from its ADO-type pathway (Yao et al. 2014). By deleting ado and replacing it with 

alcohol-forming acyl-coA reductase from Marinobacter aquaeolei VT8 under control of PpetE, 

fatty alcohols and also free fatty acids accumulated to as much as 16 mg gDW-1. This is similar 

to the yield of alkane achieved by the same group in earlier work (1.3% DCW), as mentioned 

above (Wang et al. 2013). Building on the above work and using the engineering strategies 

outlined in the previous chapters, I have also attempted to overproduce heptadecane in 

Synechocystis 6803, although these experiments have met with little success. This chapter 
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documents the strategies I have used and attempts to give insight as to why I have so far been 

unsuccessful. 

5.1.2. The Complete Pathway for Heptadecane Biosynthesis in Synechocystis sp. PCC 6803 

 Figure 5.1 shows the ADO-type pathway by which Synechocystis 6803 converts CO2 to 

heptadecane and formate, with emphasis on energy requirements for this pathway. Although it is 

not shown in the figure here, Synechocystis 6803 includes a formate dehydrogenase complex that 

can oxidize formate to CO2 and recover 1 NADPH, or ATP via cyclic electron flow (see chapter 

2 of this work). Using this pathway requires 225 photons to synthesize one molecule of 

heptadecane from CO2. Given the heat of combustion of heptadecane (Prosen et al. 1945), the 

quantum requirement of heptadecane biosynthesis, and the energy content of light theoretically 

extractable by photosynthesis (Walker 2009; Blankenship et al. 2011), the maximum possible 

efficiency of photosynthetic heptadecane production is given by equation 5.1. 

  (5.1) 

However, this does not account for the synthesis of enzymes, the growth of the organism, 

shading within cultures, or any other sources of inefficiency. 

5.1.3. A Note of Caution About This Chapter 

This chapter documents experiments that are unpublished elsewhere and are, for the most 

part, negative results. I view the primary audience of this chapter to be other researchers 

interested in successfully overproducing heptadecane or another product in Synechocystis 6803 

or some other microbial chassis. Towards that end, I wish to make all the data I have generated 

available to such researchers in this openly accessible forum in the hope that my failures might 

enable their success. An important caveat to this chapter is that many of these experiments have 

! 

2,713 kcal 
mol C17H36

"
1 C17H36 

225 photons
"

1 mole PAR 
100 kcal light

"100% =12.0% efficiency
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not been replicated and their results should be interpreted with caution. If you are such a 

researcher, I look forward to reading of your success in the pages of a prestigious journal some 

day! 

 

5.2. Materials and Methods 

5.2.1. OptForce 

We used the metabolic model iSyn731 of Synechocystis 6803 that we created (see chapter 

3 of this work) to predict strategies for optimizing alkane production using the OptForce 

algorithm (Ranganathan et al. 2010). While the details of this protocol are beyond the scope of 

this dissertation, the basic procedure is to use data from Flux Balance Analysis (FBA) to predict 

the minimal set of metabolic interventions required to increase production of a given metabolite. 

First, FVA (Flux Variability Analysis) is run to determine the range of each metabolic flux 

associated with maximal biomass production. Second, FBA is re-run with the added constraint of 

over-producing the metabolite of interest to a target level. Third, the flux ranges in the first and 

second scenarios are compared. Non-overlapping fluxes require some intervention to achieve the 

overproduction target. Finally, genetic interventions are prioritized by defining the minimal set 

of interventions required to achieve a given overproduction target. The final output of the 

algorithm is a group of so-called FORCE sets of genes/reactions that must be over-expressed as 

well as the yield of metabolite of interest achievable by doing this. 

5.2.2. Alkane Extraction and Analysis 

Approximately 2 mL of culture (OD730 ~0.5, 109 cells/mL, or 20 µg chlorophyll/mL) 

was pelleted by centrifugation and combined with 1 mL of ethyl acetate and 0.5 mL of 0.1 mm 

glass beads in a screw-top microcentrifuge tube. Cells were lysed in a bead beater for 3 cycles of 
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1 minute, with 5 minutes rest between cycles, or in some cases in an MP Bio FastPrep at its 

maximum speed setting. Glass beads and debris were pelleted by centrifugation for 10 minutes at 

16,000 x g and then the upper ethyl acetate layer was removed for analysis. Chlorophyll a was 

determined on a DW-2000 spectrophotometer according to the formula [chl a] (µg/mL) = 

16.29(A665) - 8.24(A652) (Lichtenthaler 1987). Usually, the ethyl acetate extract was diluted 50-

fold in methanol for chlorophyll determination as the exctinction coefficients determined by 

Lichtenthaler (1987) were in methanol. This method gave good agreement for chlorophyll 

concentration with extraction by pure methanol. However, the lower miscibility of ethyl acetate 

with water made it a preferred solvent for GC-MS analysis. We also attempted to use other 

solvents such as THF and hexane, but these solvents either created difficulties by rapid 

evaporation, were incompatible with plastic labware, or took a much longer time to extract 

alkanes from wet biomass. Alkanes were determined on an Agilent 6890 GC-MS fitted with a 12 

meter DB5-MS column as previously (Schirmer et al. 2010) and quantified by comparison with 

an n-heptadecane standard (Sigma-Aldrich, St. Louis, MO). Extracts were also compared with 

other standards including n-pentadecane and heptadecene to confirm the identity of the product. 

5.2.3 Growth Conditions 

 Growth conditions for the experiments outlined below are summarized in table 5.1. The 

details of each experiment are given in the results section.  

5.2.4. Mutant Construction and Genetic Parts  

 A list of mutant strains constructed for these studies is given in table 5.2, and a complete 

list of genetic parts used for their construction is given in Table 5.3. The plasmids were 

assembled using Circular Polymerase Extension Cloning (CPEC) (Quan et al. 2011) The detailed 

protocol is given in chapter 4 of this work. Briefly, parts were amplified from their sources by 
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PCR using primers having 5’ overlaps of between 15 and 30 base pairs, to achieve a part-to-part 

annealing temperature of around 55 C. In most cases, these primers were automatically designed 

using SnapGene (GSL Biotech). After necessary purification, parts were assembled in a second 

thermocycling reaction without additional primers. Phusion DNA polymerase (Thermo 

Scientific) was used for all PCR and CPEC reactions. For all mutants made, ~109 cells 

resuspended in 200 µL of fresh BG11 of either wild-type Synechocystis 6803 or the alkane-free 

mutant described in chapter 2 of this work was transformed with ~1 ug of plasmid DNA, then 

maintained overnight in dim light at 30 C. The next day, the cells were plated on selective media 

containing 2-5 µg/mL of gentamicin and colonies appeared after ~5-9 days. Correct insertions of 

overproduction cassettes were confirmed via colony PCR and each strain was re-streaked several 

times before analysis of alkanes. 

 

5.3. Results and Discussion 

5.3.1. Environmental Conditions Affecting Alkane Production 

We assessed the effects of several different environmental conditions on heptadecane 

production in wild-type Synechocystis 6803. These conditions included growth temperature, light 

intensity, and macronutrient deprivation. 

Figure 5.2 shows the effects of growth temperature on alkane production. We grew 

cultures for 2 days at 30, 25, or 20 C and then diluted those cultures to OD = 0.05. For the 

culture pre-incubated at 20 C, we transferred daughter cultures to both 20 C and 30 C. After 3 

and 8 days, we took samples and measured the heptadecane content. As shown in chapter 2 of 

this work, low temperatures led to increased alkane production. Here, we also show that the 

effect on alkane content is temporary. After 3 days of growth at 30 C, a culture pre-incubated at 
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20 C had the same alkane content as a culture grown continuously at 30 C. After 3 or 8 days of 

growth at a low temperature of 20 or 25 C, Synechocystis 6803 produced approximately twice as 

much heptadecane as at 30 C. 

Another possible role that we had considered for heptadecane was as a storage molecule 

or alternative reductant sink. Because other storage molecules such as glycogen and PHB are 

known to accumulate at stationary phase in Synechocystis 6803 (Panda et al. 2007), we reasoned 

that heptadecane might also accumulate. However, we did not find that this was the case. During 

a 20-day culture, the heptadecane content increased in nearly exact proportion to optical density 

(figure 5.3). Similarly to stationary phase, nutrient deprivation has often been used to accumulate 

secondary metabolite storage compounds. Towards this end, we examined the effect of 

macronutrient depletion on alkane content of Synechocystis 6803. While nutrient deprivation did 

lead to decreased growth, alkanes continued to accumulate at a rate similar to the still-growing 

cultures in complete BG11 media. In the microarray data presented in chapter 4, ado and far 

transcripts did not decrease at stationary phase under autotrophic conditions, but far transcripts 

did decrease slightly under mixotrophic conditions. 

In chapter 2 of this work, we showed that an alkane-free mutant has increased cyclic 

electron flow in photosynthesis and grows poorly at low temperature, and that the wild-type 

strain also uses increased cyclic electron flow at low temperature. Increased cyclic electron flow 

has also been associated with high-light conditions in Synechococcus sp. PCC 7002 (Marathe et 

al. 2012). Thus, we were interested to see whether high light conditions might lead to increased 

alkane content and how high light might interact with low temperature. We grew wild-type 

cultures in BG11 media at a range of light intensities between 25 and 300 µE m-2 s-1 and at either 

20 or 30 C. While we again observed increased alkane content at low temperature, it does not 
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appear that high light led to over-accumulation of alkane. More heptadecane was produced per 

cell and per chlorophyll, but only at light intensities that caused chlorosis and/or poor growth. 

5.3.2. Mutant Strains for Alkane Production 

Several converging lines of evidence led us to attempt to overexpress a 5-gene cluster for 

alkane production from Cyanothece sp. PCC 7425 to increase alkane production in 

Synechcocystis 6803. First, this cluster, which contains ado and far in addition to accA, a short-

chain dehydrogenase and a GTP cyclohydrolase is found to exist in many of the cyanobacterial 

strains that contain the ADO-type pathway (Klahn et al. 2014). We have identified the 4th and 5th 

genes of this pathway as fabG and folE via BLAST searches in preparation of a model of 

Cyanothece 7425 (see appendix chapter 2 of this work). In addition, AccA catalyzes the first 

committed step in fatty acid biosynthesis and over-expression of this gene has been shown to 

lead to accumulation of free fatty acids in Synechocystis 6803 (Liu et al. 2011). Finally, the 

OptForce algorithm identified both accA and fabG as potential targets for overproduction of 

alkane in Synechocystis 6803. With the reactions encoded by these 2 genes overexpressed, 

OptForce predicted that Synechocystis could potentially produce heptadecane from CO2 at as 

much as 87% of its maximum theoretical yield. Based on this evidence, we created 4 strains 

(T2303-T2306) in the ΔadoΔfar background as outlined in Table 5.2. In each case, the strain 

contained PpsbA2 consisting of 250 bp immediately upstream of the start codon for psbA2 from 

Synechocystis 6803 along with either ado and far; ado, far, and accA; ado, far, accA, and fabG; 

or ado, far, accA, fabG, and folE from Cyanothece sp. PCC 7425. In each case, the fragment 

started with the start codon of ado and ended with the stop codon of the final included gene. 

While ado and far were sufficient for alkane production in the mutant background, the 

production was only around 20% of that observed in the wild-type strain (figure 5.6). Addition of 
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accA and fabG both contributed to increased alkane production, but folE had a negative effect. 

However, none of these strains made as much heptadecane as the wild-type strain. One reason 

for this low production might be that, as discussed in chapter 4, PpsbA2 has often been used as a 

strong promoter, but its activity is not actually very high. According to my analysis of the 

microarray data presented in chapter 4 of this work, the psbA2 transcript appears to be less 

abundant than the transcripts for far and ado in the wild-type strain based on microarray spot 

intensities.  

In an attempt to improve output of the alkanes pathway, we constructed another set of 

mutants expressing the same alkane cluster as in T2306 and also in the knockout mutant 

background, but under control of several different promoters. Figure 5.7 shows the results of 

these experiments. Mutants with Ptrc1O and PcpcB250 (T2310 and T2311) still gave lower alkane 

content that the wild-type, but similar output to T2306 with PpsbA2. Mutants with PpSysA_116 

and Pslr9003 gave very low alkane production that was near the lower end of the detection range 

in these experiments. As discussed in chapter 4, these do not appear to be useful promoters for 

heterologous protein expression despite their apparent high activity in our microarray data. More 

recent data on transcription start sites in Synechocystis 6803 (Mitschke et al. 2011) as well as 

promoter engineering experiments (Markley et al. 2014; Zhou et al. 2014) also seem to indicate 

that this shorter cpcB 5’ fragment does not actually contain the promoter for this gene, which 

resides farther upstream from the start codon. In light of recent data showing that additional 

copies of the native ado and far led to increased alkane production in Synechocystis 6803, we 

attempted to use the super-strong PcpcB560 discussed in chapter 4 of this work to drive enhanced 

alkane production. In the wild-type background, we used this promoter to drive expression of  

alkane biosynthetic genes from the NSP1 locus (see table 5.2): ado and far from Cyanothece 
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7425, with and without the addition of accA and fabG from this same strain. These strains grew 

on plates under autotrophic conditions, but required glucose (5 mM) for growth in liquid BG-11. 

While this was a promising sign that they might be redirecting metabolic flux towards 

heptadecane, none of these strains produced detectably more alkane than the wild-type strain 

(Figure 5.8). It is possible that the metabolic burden of overexpressing multiple enzymes under 

such a strong promoter from the NSP1 locus was simply too high, limiting synthesis of other 

necessary proteins. Another possibility that should be tested is that the strains are exporting 

alkanes to the media under these conditions. So far, I have only tested for alkanes in the cell 

pellet of cultures of these strains. 

One potential reason for the inability of all of these strains to produce more alkane is that 

the operon structure we believed to exist when designing them actually does not exist. More 

recent studies of transcription start sites in a number of different strains suggest that the far genes 

that reside downstream of ado in so many cyanobacterial strains have their own separate 

promoters (Klahn et al. 2014), and so it is not necessarily the case that placement of a strong 

promoter upstream of the cluster will lead to overexpression of the entire cluster. Further 

experiments will be needed to both understand the structure of gene clusters coding for alkane 

biosynthesis and for engineering balanced overexpression of all of the necessary genes. As tools 

for synthetic biology in cyanobacteria develop, including in silico models and parts for control of 

transcription and translation, this should become increasingly possible. 

 

5.4. Conclusions 

Although I have so far been unsuccessful in enhancing alkane production in 

Synechocystis 6803, this thesis represents significant progress towards that eventual goal. 
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Working with labmates and collaborators, I have developed tools for the in silico analysis of this 

promising strain (see chapter 3 and appendix chapter 2), Have advanced understanding of 

cyanobacterial carbon and light metabolism (see chapter 2 and appendix chapters 1, 3, and 4) and 

have created tools for the engineering of Synechocystis 6803 (see chapter 4). I have applied these 

tools in attempts to engineer enhanced heptadecane production and have generated some 

promising initial data that suggests that with further development, strains can be engineered to 

produce heptadecane in larger quantities, or any other biofuel molecule of interest. 
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Figure 5.1: The pathway for production of n-heptadecane from CO2 in Synechocystis sp. 

PCC 6803. Synthesis of 1 molecule each of heptadecane and formate from CO2 requires 57 

NADPH and 72 ATP. These cofactors require a minimum of 225 photons for their 

photosynthesis, assuming that the formate generated is re-oxidized to CO2 to recover NADPH. 
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Figure 5.2: The effect of growth temperature on heptadecane content in Synechocystis 6803. 

Cultures were pre-incubated for 2 days at 20, 25, or 30 C, then diluted in fresh BG-11 media to 

OD = 0.05 and grown at that same temperature. Cultures pre-incubated at 20 C were also 

transferred to 30 C. All cultures were grown in shake flasks under 35 µE m-2 s-1 of white LED 

light. After 3 and 8 days, samples were taken, extracted with ethyl acetate, and heptadecane 

content was measured via GC-MS. Error bars are ± SD for n = 3 separate cultures.
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Figure 5.3: The effect of growth phase on heptadecane content in Synechocystis 6803. 

Cultures were grown in BG-11 media at 30 C in shake flasks, under ~50 µE m-2 s-1 of white 

fluorescent light. At specified intervals, samples were taken containing ~2 billion cells 

(estimated according to OD730) extracted with ethyl acetate, and heptadecane content was 

measured via GC-MS. Data shown are the average of 2 separate cultures, although some data are 

missing and so some points represent only a single measurement. 
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Figure 5.4: The effect of macronutrient deprivation on growth and alkane production in 

Synechocystis 6803. A single culture was grown for 5 days, then subcultured into depletion 

media. For N and S, the depletion media had 0.1X concentration of that nutrient, while the – P 

media was phosphate-free. OD730 was monitored daily and after 9, 11, 13, and 15 days, samples 

were taken extracted with ethyl acetate, and heptadecane content was measured via GC-MS. 

Error bars are ± SD for n = 3 separate cultures. 
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Figure 5.5: The effect of light intensity on alkane content in Synechocystis 6803. Cultures 

were grown at either 20 or 30 C and bubbled with air in the MC-1000 multicultivator (PSI, 

Czech Republic). Light intensity was varied from 25 to 300 µE m-2 s-1. After several days of 

growth, samples were taken extracted with ethyl acetate, and heptadecane content was measured 

via GC-MS.  
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Figure 5.6: Production of alkanes in Synechocystis 6803 using the alkane biosynthesis 

cluster from Cyanothece 7425. Each strain was constructed in a ΔadoΔfar background and 

contained PpsbA2 driving either ado and far (T2303); ado, far, and accA (T2304); ado, far, 

accA, and fabG (T2305); or ado, far, accA, fabG, and folE (T2306) from Cyanothece sp. PCC 

7425. In each case, the fragment started with the start codon of ado and ended with the stop 

codon of the final included gene. Cultures were grown at 30 C in shake flasks with BG-11 media 

under ~50 µE m-2 s-1 of white fluorescent light. After several days of growth, samples were taken 

extracted with ethyl acetate, and heptadecane content was measured via GC-MS. Error bars 

represent ± SD for n = 3 separate cultures. 
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Figure 5.7: Production of alkanes using different promoters on alkane biosynthesis in 

Synechocystis 6803. Strain T2303 was modified to contain either Ptrc1O, PcpcB250, 

PpSysA_116, or Pslr9003. Cultures were grown at 30 C in shake flasks with BG-11 media under 

~50 µE m-2 s-1 of white fluorescent light. After several days of growth, samples were taken 

extracted with ethyl acetate, and heptadecane content was measured via GC-MS. Error bars 

represent ± SD for n = 3 separate cultures. 
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Figure 5.8: Production of alkanes in Synechocystis 6803 using the alkane biosynthesis 

cluster from Cyanothece 7425 and a neutral site on pCC5.2. Each strain was constructed in 

the wild-type background and contained PcpcB560 driving ado and far from Cyanothece 7425, 

with (T2410) and without (T2408) the addition of accA and fabG from this same strain. Cultures 

were grown at 30 C in shake flasks with BG-11 media supplemented with 5 mM glucose under 

~50 µE m-2 s-1 of white fluorescent light. After several days of growth, samples were taken 

extracted with ethyl acetate, and heptadecane content was measured via GC-MS. Error bars 

represent ± SD for n = 3 separate cultures.
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Future Directions 
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6.1. About this Chapter 

Although the topics addressed in this brief chapter are also addressed elsewhere in this 

dissertation, they are collected here for the convenience of readers interested in what I believe is 

the future of these research topics. This chapter is roughly organized according to chapters of the 

dissertation. 

 

6.2. Cyanobacterial Engineering for Alkane Overproduction 

 As detailed in chapter 5, our attempts so far to produce large amounts of  heptadecane in 

Synechocystis sp. PCC 6803 have not been successful. However, recent progress on several 

fronts holds promise for these efforts. Two areas of particular interest are the regulation and 

mechanism of action of the enzymes responsible for alkane biosynthesis, AAR and ADO. 

Although AAR and ADO have been shown to be both necessary and sufficient for alkane 

production in a heterologous host (Schirmer et al 2010), it is not known what other genes might 

be involved in the process. It was recently shown that many cyanobacteria contain a genomic 

cluster associated with fatty acid biosynthesis and the ADO-type alkane biosynthesis pathway 

(Klahn et al 2014). While these genes often appear together in genomes, they appear not to be 

cotranscribed. Thus, refactoring and the creation of synthetic operons and other control circuits 

may be necessary or helpful to enhance alkane production. Further discussion of the transcription 

of genes associated with alkane biosynthesis can be found in chapter 5. In addition, the unusual 

deformylase mechanism of alkane biosynthesis used by the ADO-type pathway is still not fully 

understood. Very recently, it was discovered that ADO and AAR from Nostoc punctiforme 

appear to form a complex when expressed in E. coli (Warui et al 2014). Such a complex might 
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help to solve problems associated with the aldehyde intermediate that is both very insoluble and 

likely a very toxic compound to cells. It is possible that there are additional interaction partners 

and/or chaperone proteins that facilitate the integration of the final alkane product into the 

membrane. While we believe based on its chemistry that the alkane product would have to reside 

in the membrane, we have not shown this unequivocally and we do not know whether the 

hydrophobicity of this product would limit its overproduction. While hydrocarbons have an 

important role in helping cyanobacteria adapt to their environment at their natural concentration, 

the effects of higher concentrations remain unknown. 

 

6.3. Synthetic Biology of Cyanobacteria 

While chapter 1 of this dissertation is devoted to discussing this topic in much greater 

detail, I think this is an area that holds great promise and so deserves brief mention here. Great 

progress has been made in imagining and designing genetic circuits that confer all manner of 

functions in engineered biological systems. However, the bulk of this progress has been limited 

to E. coli and S. cerevisiae. Even basic tools like controllable promoters and plasmids with a 

range of copy numbers have only recently become available for use in cyanobacteria. As 

compared with heterotrophic hosts, cyanobacteria have a unique advantage in converting the 

pollutant carbon dioxide into useful and potentially profitable organic molecules. Tools that 

allow fine-tuning and autonomous control of transcription and translation in response to 

environmental cues will be especially important for harnessing the power of these promising 

bugs. For example, expression of energy-intensive pathways for biofuel synthesis should only 

occur when adequate energy from sunlight is available. For anaerobic production processes, 
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oxygenic photosynthesis must be separated, either in time or space, from the anaerobic portion of 

the process. Such tools are certainly within reach and could contribute greatly to the progress of 

this field. Control circuits that respond to the unique challenges of the cyanobacterial lifestyle 

such as diurnal rhythms will be especially important. 

 

6.4. Cyclic Electron Flow as a Flexible Nutritional Strategy 

Chapter 2 discusses the interaction between alkanes, cyclic electron flow, and chill 

tolerance in cyanobacteria. However, in the process of developing this chapter and conducting 

modeling studies, I came to believe that the role of cyclic electron flow is perhaps much broader 

than I had previously thought. CEF has often been regarded as a way to balance the 

ATP:NADPH ratio provided by linear electron flow (1.28:1) with the demands of carbon fixation 

(1.5:1) (Allen 2002). However, while carbon fixation is a major reductant sink, it is far from 

being the only reductant sink in a cell.  In the modeling studies discussed in chapter 2 of this 

dissertation, CO2 fixation by the Calvin Cycle required only about 59% of the energy produced 

in the form of ATP and NADPH by photosynthesis. This process accounted for 75% of NADPH 

produced and only 45% of ATP. While clearly the Calvin Cycle is a major consumer of cellular 

resources, it is far from being the only consumer, and so it is critical to consider the rest of 

metabolism, as well. During the development of figure 2.6, we experimented with different 

nitrogen sources and found that growth on ammonium instead of nitrate led to a nearly 2-fold 

higher optimum for the rate of cyclic electron flow. Presumably, this is because less NADPH 

was required to reduce nitrate to ammonium before incorporation into glutamate and other 

downstream metabolites. Thus, the overall ATP:NADPH ratio of metabolism was higher and 

more CEF was required for balanced growth. This view of cyclic electron flow as a valve that 
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regulates the balance between ATP and NADPH production is a significant departure from 

previous thinking, but we believe that it will lead to new insights into the function of this still 

controversial energy-generating pathway. Such an extension of this work is also appealing from 

my own perspective as a natural extension of the model, the development of which is described 

in chapter 3 of this dissertation. Flux balance modeling has often been associated with the field 

of metabolic engineering, but I believe that this technique can also have application in more 

basic sciences. For example, in this case we can use flux balance modeling to investigate the 

interaction between environmental conditions and modes of energy generation to meet the cell’s 

metabolic needs.  
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Appendix Chapter 1 

 

13C-MFA Delineates the Photomixotrophic Metabolism of 

Synechocystis sp. PCC 6803 Under Light- and Carbon-

Sufficient Conditions 
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A1.1. Abstract of the Chapter 

The topology of cyanobacterial central carbon metabolism remains under debate. For 

over 50 years, the lack of α-ketoglutarate dehydrogenase has led to the belief that cyanobacteria 

have an incomplete TCA cycle. Recent in vitro enzymatic experiments and in silico models 

suggest that this cycle may in fact be closed. In this study, we employed 13C isotopomers to 

delineate central pathways in cyanobacterium Synechocystis sp. PCC 6803. By tracing the 

incorporation of supplemented glutamate into the downstream metabolites in the TCA cycle, we 

observed a direct in vivo transformation of α-ketoglutarate to succinate. In addition, isotopic 

tracing of glyoxylate didn’t show a functional glyoxylate shunt and glyoxylate was used for 

glycine synthesis. The photomixotrophic central carbon metabolism was then profiled with 13C-

MFA under light and carbon sufficient conditions. We observed that 1) the in vivo flux through 

the TCA cycle reactions (α-ketoglutarate  succinate) was minimal (<2%); 2) the relative flux 

of CO2 fixation was six times higher than that of glucose utilization; 3) the relative flux through 

the oxidative pentose phosphate pathway was low (<2 %). Our 13C-MFA results improve the 

understanding of the versatile metabolism in cyanobacteria and will shed a light on their 

application for biosynthesis of various valuable chemical compounds. 

 

A1.2. Introduction 

Synechocystis sp. PCC 6803 is a naturally transformable cyanobacterium (Grigorieva et 

al. 1982) and a model organism for studying photosynthesis (Berry et al. 2002). Synechocystis 

6803 and other cyanobacterial species are promising phototrophic cell factories for synthesis of 

valuable chemicals and biofuels (Deng et al. 1999; Chisti 2008; Atsumi et al. 2009; Lindberg et 
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al. 2010; Lan et al. 2011). To explore cyanobacterial metabolism for biotechnology applications, 

genomics and transcriptomics approaches have been used to study Synechocystis 6803 

(Yoshikawa et al. 2013). Complementing these approaches, fluxomics tools (flux balance 

analysis, FBA, and 13C-metabolic flux analysis, 13C-MFA) are also powerful in deciphering 

genome functions and unraveling cell phenotype in phototrophs under autotrophic, mixotrophic, 

and heterotrophic metabolisms (Yang et al. 2002; Yang et al. 2002; Shastri et al. 2005; Knoop et 

al. 2010; McKinlay et al. 2010; McKinlay et al. 2011; Yoshikawa et al. 2011; Young et al. 2011; 

Nogales et al. 2012; Saha et al. 2012; Knoop et al. 2013). These multi-omics studies have 

improved our understanding and application of cyanobacterial cell factories (Kohlstedt et al. 

2010).  

Nevertheless, cyanobacterial metabolism is still not completely resolved. Due to the lack 

of α-ketoglutarate dehydrogenase, cyanobacteria were thought to have an incomplete 

tricarboxylic acid (TCA) cycle (Smith et al. 1967; Pearce et al. 1969). This assumption has been 

employed in most cyanobacterial metabolic models so far (Yang et al. 2002; Shastri et al. 2005; 

Young et al. 2011). Recently, a pair of enzymes from Synechococcus sp. PCC 7002, α-

ketoglutarate decarboxylase and succinic semialdehyde dehydrogenase, were found to transform 

α-ketoglutarate into succinate in vitro (Zhang et al. 2011). These two enzymes have homologues 

throughout the cyanobacterial phylum. Contemporaneously, Nogales et al. (2012) identified an 

overlapping GABA (γ-aminobutyric acid) shunt in silico that could also complete the TCA cycle 

via GABA and succinic semialdehyde. Such a pathway in cyanobacteria would help explain 

previous observations that α-ketoglutarate added to cultures of a Synechocystis double mutant 

strain (knockout succinate dehydrogenase and fumarate reductase) led to accumulation of 
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succinate (Cooley et al. 2000). However, an in vivo flux from α-ketoglutarate to succinate has 

not been measured (Knoop et al. 2010). 

Another open question has been whether the glyoxylate shunt was active or even existed. 

Glyoxylate shunt activity in some cyanobacterial species were reported (Pearce et al. 1967; Eley 

1988) and thus were included in the metabolic models of Synechocystis 6803 (Yang et al. 2002; 

Shastri et al. 2005; Fu 2009; Montagud et al. 2010). But homologues encoding isocitrate lyase 

and malate synthase have still not been found. Moreover, the oxidative pentose phosphate 

pathway (OPP pathway) in Synechocystis 6803 has been considered inactive under light 

conditions (Yang et al. 2002), but this pathway was recently proved to be highly active in 

photoautotrophic metabolism (Young et al. 2011). The previous application of 13C-MFA to 

photomixotrophic metabolism in Synechocystis 6803 was operated in a CO2-limited culture 

lacking carbonate and atmospheric CO2 (Yang et al. 2002). Moreover, the application of 13C-

MFA requires the attainment of a metabolic steady state. In a photobioreactor, cyanobacteria are 

continuously moving between “light” (near surface of bioreactor) and “dark” zones (depending 

on mixing, cell density, and reactor size/geometry). In the light zone, cells fix CO2 and 

accumulate glycogen, while they may use this storage component (or glucose in the medium) for 

“heterotrophic” metabolism in the dark zone. To minimize such heterogeneous growth, this study 

has performed 13C-MFA experiments using small culture volume (<50mL) and low biomass 

density (OD730<0.5) to ensure cell metabolism under light and carbon sufficient conditions. This 

approach may provide a better understanding of photomixotrophic metabolism in Synechocystis 

6803.  
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A1.3.  Materials and Methods 

A1.3.1. Photomixotrophic Culture 

Synechocystis 6803 cultures were grown in a modified BG-11 medium depleted of 12C. 

Ferric ammonium citrate was replaced with ferric ammonium sulfate (Katoh et al. 2001). 13C 

was supplied as ~2 g/L NaH13CO3 and 5 g/L glucose (U-13C6 or 1-13C1). The purity of 13C-

substrates was >98% (Cambridge Isotope Laboratories, Tewksbury, MA, USA.). Inocula from an 

unlabeled Synechocystis 6803 autotrophic culture (OD730 = ~0.9) was added into 30 mL 13C-

labeled medium in 100 mL serum bottles, which were then sealed with rubber septa to prevent 

atmospheric CO2 intrusion.  

All cultures were started with only a 0.5 % inoculation volume to minimize the 

inoculation effect. Cell growth was under continuous illumination (~50 µmol photons m-2 s-1) on 

a shaker at 150 rpm at 30 °C. Cell density was monitored by a UV-Vis spectrophotometer 

(GENESYS, Thermo Scientific) at 730 nm. The conversion ratio between OD730 and dry 

biomass weight was 1 unit OD730 = 0.45 g dry cell weight L-1. Total Organic Carbon Analyzer 

(inorganic carbon measurement mode) with non-dispersive infrared detector (Shimadzu 

Corporation, Japan) was used to determine sodium bicarbonate concentration in the culture 

supernatant. Enzyme kits (R-Biopharm, Darmstadt, Germany) were used to measure the glucose 

concentrations in the culture. 

A1.3.2. Isotopic Dilution Experiments 

Isotopic dilution experiments were employed to identify the presence of certain pathways 

in vivo. To investigate the structure of the TCA cycle, we used glutamate (instead of α-

ketoglutarate) as the tracer since cyanobacteria exhibited very low capability to uptake α-

ketoglutarate (Vázquez-Bermúdez et al. 2000). To examine the presence of the glyoxylate shunt, 
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we used glyoxylate as the tracer. Specifically, unlabeled glutamate (10 mM) or unlabeled 

glyoxylate (15 mM) was added into 13C-labeled cultures (grown on NaH13CO3 and U-13C6 

glucose) during the exponential growth phase (OD730 = ~0.4). After 30 minutes of incubation 

with a respective tracer, samples from two biological replicates were harvested and free 

metabolites were extracted. To identify whether Synechocystis 6803 used glutamate or 

glyoxylate for biomass synthesis, Synechocystis 6803 cultures were grown with a respective 

unlabeled tracer (10 mM glutamate or 15 mM glyoxylate), NaH13CO3 and U-13C6 glucose for 48 

hours (OD730  reached ~0.4). Samples from two biological replicates were then collected to 

analyze the 12C incorporation into proteinogenic amino acids.  

A1.3.3. Metabolite Extraction and GC-MS Analysis 

Isotopomer analysis of free metabolites and proteinogenic amino acids is based on 

previous reports (Meadows et al. 2008; Tang et al. 2009; You et al. 2012). GC-MS analysis had 

three technical replicates per sample. 

Intracellular free metabolites were used to qualitatively characterize functional pathways. 

Supporting information Figs. A1.S1A, B, and C illustrate the molecular structure of TMS-

derivatized amino acids, succinate, and α-ketoglutarate used for analysis. The fragment [M-15]+, 

minus a methyl group from the TMS group, includes the labeling information of the entire 

molecule. The [M-15]+ fragment, together with [M-43] + or [M-117] +(minus the α-carboxyl 

group from a metabolite), was used for GC-MS analysis.  

Proteinogenic amino acids were used to determine the function and quantify the 

metabolic fluxes. The mass fragments of ten key amino acids provided sufficient constraints for 

flux calculations (Pingitore et al. 2007; Tang et al. 2007; Tang et al. 2009). The fragments ([M-

57]+, [M-159]+ or [M-85]+, and f302) were used for flux analysis (Antoniewicz et al. 
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2007)_ENREF_1. In addition, because of overlap peaks and product degradations, several amino 

acids (proline, arginine, cysteine, and tryptophan) were not analyzed. The isotopic labeling data 

are shown as mass fractions, i.e., M0, M1, M2, etc., representing fragments containing 

unlabeled, singly labeled, and doubly labeled metabolites, etc. 

A1.2.4. 13C-Metabolic Flux Analysis 

13C-MFA was used to quantify in vivo fluxes through the central metabolic network in 

Synechocystis 6803. Photomixotrophic cultures were grown on 1-13C1 glucose and NaH13CO3. 

Biomass was collected during the exponential growth phase for proteinogenic amino acids 

analysis. The metabolic network of Synechocystis 6803 was reconstructed based on tracer 

experiments and previous reports (Pelroy et al. 1972; Smith 1983; Robert Tabita 2004; Bauwe et 

al. 2010; Young et al. 2011) that included glycolysis, the Calvin Cycle, complete TCA Cycle, 

glyoxylate shunt, and photorespiration pathways (Table A1.S1). In our 13C-MFA, relative 

metabolic fluxes through the central metabolism were profiled with the assumption that the 

Calvin cycle flux from Ru5P to RuBP was 100. The minimization of a quadratic function that 

calculated the difference between predicted and measured isotopomer patterns solved the relative 

metabolic fluxes (Table A1.S2). The biomass composition (Table A1.S1) was based on a 

previous report (Saha et al. 2012). Reaction reversibility was characterized by the exchange 

coefficient exch, defined as 

 

vexch! =
exch
1" exch

, where vexch was the exchange flux and β was the 

exchange constant (Dauner et al. 2001). In this study, β was equal to 500 and exch ranged from 0 

to 1. The forward flux (vforward) and backward flux (vbackward) in the model were transformed from 

the vexch and the net flux, vnet, using the following formulation (Wiechert et al. 1997): 
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 .  

 

The optimization for 13C-MFA was performed as follows: 

 min(Mexp - Msim(v))T(Mexp - Msim(v)) (A1.1) 

s.t. v 

 

! (lb, ub) (A1.2) 

 S  v = 0 (A1.3) 

 Ai  Xi = Bi  Yi (i=1, 2, 3, 4, 5) (A1.4) 

Equation A1.1 is the quadratic error function that was optimized and Mexp is the vector of 

experimentally measured labeling patterns of amino acids. Msim is the counterpart of the 

simulated data as a function of fluxes. v is the flux vector that is to be determined. Equation A1.2 

gives the boundary conditions of the flux variables. Equation A1.3 represents the metabolite 

balances. Equation A1.4 represents the elementary metabolite unit (EMU) balance, where Xi and 

Yi represent the unknown and known EMU variables of size i, respectively, and Ai and Bi are 

matrices of linear functions of the fluxes (Antoniewicz et al. 2007; Leighty et al. 2012).  

The MATLAB optimization solver ‘fmincon’ was employed to minimize the quadratic 

error function. To avoid local minima, 100 initial guesses were randomly generated, and the 

solution set that minimized the objective function was used as the best fit. The Monte Carlo 

method was used to calculate 95% confidence intervals (Zhao et al. 2003).  The measured 

isotopomer data was perturbed 1000 times with normally distributed noise within measurement 

error, and the optimization solver was restarted with the optimal solution. The determination of 

confidence intervals of the fluxes (95%) was based on 1000 simulations, and confidence 

intervals were used to calculate standard deviations. 
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A1.4. Results 

A1.4.1. Photomixotrophic Biomass Growth and Metabolic Pseudo-Steady State 

Figure A1.1 shows the growth curves in serum bottles and shake flasks. Cell doubling 

times were similar in both containers. The similarity of growth indicates that O2 accumulation in 

the serum bottle headspace had minimal effect on photomixotrophic growth. During the early 

growth phase, the specific growth rate in the early exponential phase was 0.079 h-1. After 

cultivation in serum bottles for 75 hours, cell growth slowed down and the culture pH rose from 

8 to 10.     

To determine a pseudo-steady state metabolic period for 13C-MFA, biomass samples 

from serum bottles were collected at different time points to analyze amino acid labeling (Table 

A1.S2). The labeling patterns in biomass protein were relatively stable (standard deviation were 

below 0.01) between samples taken within the first 48-hour cultures (Table A1.S2). Thereby, our 

13C-MFA was based on 13C-biomass samples taken at early growth phase (OD730 = ~0.4, Table 

A1.S2). 

A1.4.2. 13C-based Pathway Investigation 

Based on isotopic dilution of downstream metabolites after incubating cells with 

unlabeled precursors, in vivo enzyme functions were investigated in tracer experiments. Prior to 

12C-glutamate pulse treatment, α-ketoglutarate (Figure A1.2A), succinate (Figure A1.2B), and 

malate (Figure A1.2C) were nearly fully labeled (M5 for α-ketoglutarate; M4 for succinate and 

malate) in 13C labeled cultures. After 30-minute of incubation with unlabeled glutamate, 12C 

carbon from glutamate was incorporated into the downstream metabolites of α-ketoglutarate. 12C 

abundance increased, to over 65% in succinate, 90% in α-ketoglutarate, and 30% in malate. Mass 

spectra of these metabolites before and after glutamate addition are shown in Supporting 
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information Fig. A1.S1. After incubation with unlabeled glutamate for 40 hours, all amino acids, 

except glutamate, from biomass protein remained fully 13C labeled (Figure A1.3 and A1.S2).  

Labeled cultures pulsed with unlabeled glyoxylate showed a shift from fully 13C to 12C in 

free glycine and glyoxylate (M2 to M0, Figure A1.4A). However, no significant shift was 

observed in succinate and α-ketoglutarate, both of which are downstream metabolites of malate. 

After the labeled culture was incubated with unlabeled glyoxylate for 40 hours, 12C was only 

incorporated into proteinogenic glycine (Figure A1.4B), while other proteinogenic amino acids 

remained highly labeled.  

A1.4.3. Flux Analysis Results 

13C-MFA results are sensitive to model network construction, the labeling patterns of 

substrates, and the completeness of isotopomer data. In this study, the isotopic dilution 

experiments were employed to reconstruct a 13C-MFA network with a complete TCA cycle and 

an active glyoxylate shunt in Synechocystis 6803. Singly labeled glucose and fully labeled 

bicarbonate were used to generate unique isotopomer data in amino acids. Via advanced EMU 

simulations and isotopomer information from different MS fragments, 13C-MFA profiled the 

photomixotrophic metabolism under light/carbon sufficient conditions. Relative flux 

distributions, exchange coefficients for reversible reactions, and 95% confidence intervals are 

shown in Figure A1.5 and Supporting information Table A1.S1. The simulated fluxes fit the 

isotopomer data well (r2 > 0.99, Supporting information Fig. A1.S3).  

13C-MFA indicated that Synechocystis 6803 had a high CO2 fixation flux through the 

Calvin cycle (~100) than the glucose uptake flux (~18) in the early photomixotrophic growth 

phase. Consistent with this observation, less than 0.1 g L-1 glucose was consumed during early 

growth phase. In contrast, previous 13C-MFA of photomixotrophic metabolism in Synechocystis 
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6803 under CO2 limiting conditions found the glucose uptake flux to be ~50 (Yang et al. 2002). 

In another study, when cell culture was dense (OD730 up to 20), Synechocystis 6803 utilized 

significantly more glucose than CO2 for its growth (Varman et al. 2013). Thereby, CO2 and light 

conditions can significantly affect the photomixotrophic metabolism in Synechocystis 6803.  

Under photomixotrophic conditions with sufficient light and carbon sources, the flux 

from α-ketoglutarate to succinate was not significant (< 2% of total CO2 uptake). Most of the 

flux from α-ketoglutarate went to glutamate biosynthesis. The glyoxylate shunt did not show a 

measureable flux (<0.1% of total CO2 uptake). Additionally, the OPP pathway showed a 

measurable flux (1.9% of total CO2 uptake), which played a minor role in C5 carbon synthesis 

and NADPH production. The flux through photorespiration, however, was limited to 0.1% of 

total CO2 uptake. Although the confidence intervals (Table A1.S1) of these anaplerotic reactions 

(PEP + CO2 OAA; MAL  CO2 + PYR) were larger than those of other fluxes, malic enzyme 

showed significant flux and was the main route for supplying pyruvate.  !

!

A1.5. Discussion 

A1.5.1. TCA Cycle Metabolism 

Cyanobacteria are prokaryotic bacteria responsible for the conversion of the early 

atmosphere into our current oxygen-rich atmosphere (Riding 2006). Primitive anaerobic 

prokaryotes developed two separate TCA pathways: the reductive branch (oxaloacetate to 

succinate) and the oxidative branch (citrate to α-ketoglutarate) (Figure A1.2D.i). Some anaerobic 

bacteria, such as Clostridium acetobutylicum, use a bifurcated TCA cycle that terminates at 

succinate (Figure A1.2D.ii). As atmospheric oxygen levels rose, the two branches linked to 

complete the TCA cycle. For example, TCA cycle in facultative anaerobes (e.g., E. coli) can be 
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complete if oxygen is present (Figure A1.2D.iii). A phototrophic bacterium, Chlorobaculum 

tepidum, employs a reverse TCA cycle (Feng et al. 2010) seen in Figure A1.2D.iv. 

 In our study, the labeling patterns of free metabolites indicated that the pathway for 

converting α-ketoglutarate to succinate can be complete under glutamate addition conditions. 

Significant amounts of unlabeled α-ketoglutarate, succinate, and malate (Figure A1.2A, B and C) 

were observed after unlabeled glutamate was added into 13C labeled cultures. Since α-

ketoglutarate dehydrogenase activity has never been shown to exist in cyanobacteria, we 

presume that this conversion was accomplished by a newly discovered pathway through succinic 

semialdehyde (Knoop et al. 2010; Zhang et al. 2011; Nogales et al. 2012).  On the other hand, 

key proteinogenic amino acids, e.g., aspartate (derived from oxaloacetate), alanine (derived from 

pyruvate), and serine (derived from 3-phosphoglycerate), had very little 12C incorporation (< 5%) 

from glutamate after two-day incubation with unlabeled glutamate (Figure A1.3). These results 

qualitatively indicated that the flux from α-ketoglutarate towards the complete TCA cycle was 

very small compared to other fluxes (e.g., fluxes through glycolysis and Calvin Cycle). The low 

conversion from α-ketoglutarate to its TCA cycle downstream metabolites was also observed in a 

Synechococcus elongatus PCC 7942 mutant (with an engineered α-ketoglutarate permease), in 

which α-ketoglutarate was mainly converted into glutamate and glutamine instead of TCA cycle 

downstream metabolites (Vázquez-Bermúdez et al. 2000).  

Although our 13C-study cannot distinguish whether the conversion of α-ketoglutarate to 

succinate was via α-ketoglutarate decarboxylase or the GABA shunt (Nogales et al. 2012), this 

reaction may be notable in cyanobacterial metabolism only under certain conditions (e.g., with 

the presence of large amount of glutamate or α-ketoglutarate). The poor activity of this reaction 

may also explain why the previous tracer studies did not observe the conversion of α-
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ketoglutarate to succinate in which they used an assay to detect α-ketoglutarate dehydrogenase 

activity (Pearce et al. 1969), as opposed to the decarboxylase activity that has been more recently 

observed to convert α-ketoglutarate to succinate  (Zhang et al. 2011). 

Although many cyanobacterial species appear to have a complete TCA cycle pathway, it 

may not be adapted to carry a large flux. A recent FBA model indicates that a complete 

cyanobacterial TCA cycle via AKG dehydrogenase may reduce biomass growth due to the 

unnecessary metabolic burden for the synthesis of multi-protein enzymes (Knoop et al. 2013). 

For organisms that obtain sufficient reducing equivalents from light reactions, the use of a 

complete TCA cycle to oxidize carbon is unnecessary. Thereby, the complete TCA pathways in 

Synechocystis 6803 may serve only to regenerate intermediates or fine-tune the metabolic 

balance under certain photomixotrophic conditions (such as the presence of extracellular 

glutamate). 

A1.5.2. The Glyoxylate Shunt   

This study also examined the presence of glyoxylate shunt and determined its function in 

Synechocystis 6803. Previous metabolic models predicted that Synechocystis 6803 contains a 

bacterial-like glyoxylate shunt (Yang et al. 2002). However, Synechocystis 6803 and nearly all 

other sequenced cyanobacteria, lack homologues of known genes that encode isocitrate lyase and 

malate synthase. Some 13C-MFA (Young et al. 2011) and FBA (Shastri et al. 2005; Yoshikawa 

et al. 2011) studies have also suggested that the glyoxylate shunt in Synechocystis 6803 was 

incomplete under photoautotrophic and photomixotrophic conditions. In our tracer experiments 

with the addition of unlabeled glyoxylate during the exponential phase, we observed the uptake 

of glyoxylate and its conversion to glycine (Figure A1.4A). However, in the proteinogenic amino 

acids of 13C-cultures grown with 12C glyoxylate (Figure A1.4B), we did not see significant 12C 
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accumulation in proteinogenic amino acids downstream of malate (i.e., the end-product of the 

glyoxylate shunt), including alanine and aspartate (Figure A1.4B). Statistically, 13C-MFA 

showed that the in vivo flux through the presumed glyoxylate shunt was essentially zero (Figure 

A1.5). This observation of the glyoxylate shunt is supported by a recent enzymatic test using 

crude extracts of Synechocystis 6803 cells, in which no isocitrate lyase activity was detected 

(Knoop et al. 2013).  

A1.5.3. Malic Enzyme Activity 

Under continuous light illumination, the malic enzyme is important for optimal 

Synechocystis 6803 growth. Its gene expression (slr0721) is high under photomixotrophic 

conditions compared to photoautotrophic conditions (Yoshikawa et al. 2013). Moreover, 13C-

MFA revealed significant malic enzyme flux in Synechocystis 6803 under photoautotrophic 

(Young et al. 2011) and CO2 limited photomixotrophic cultures (Yang et al. 2002). Previous 

reports indicated that the malic enzyme reaction (MalatePyruvate +CO2 +NADPH) is 

instrumental in a carbon concentration mechanism akin to that in C4 plants, and this enzyme may 

indirectly transport NADPH between different cell locations. In this study, high malic enzyme 

activity was observed when the bicarbonate and reduced carbon source were sufficient. In fact, 

deletion of malic enzyme gene significantly reduces Synechocystis 6803 growth under both 

autotrophic and glucose-based mixotrophic conditions, while the growth can be recovered by 

providing pyruvate (Bricker et al. 2004).  Thereby, high flux through malic enzyme (~31) is 

likely to serve as a key route for pyruvate synthesis when pyruvate kinase is inhibited by ATP a 

negative allosteric inhibitor under photosynthetic conditions (Bricker et al. 2004).  



 199 

A1.5.4. The Oxidative Pentose Phosphate Pathway 

The OPP pathway is an important NADPH synthesis route in heterotrophic organisms. 

Since photosynthetic light reactions produce significant amounts of NADPH, the OPP pathway 

becomes futile in photoautotrophic metabolism. A mutant (Δzwf) of Synechococcus elongatus 

PCC 7942, that lacks the OPP pathway enzymes, exhibited a similar growth rate to the wild-type 

strain under autotrophic conditions (Scanlan et al. 1995). Moreover, glucose in phototrophic 

cultures has been shown to either increase or have a small effect on key OPP pathway enzyme 

transcriptions (Yang et al. 2002; Kahlon et al. 2006; Yoshikawa et al. 2013). Taken together, 

these data indicate that the OPP pathway is dispensable under light conditions. However, the 

OPP pathway mutant described above exhibits decreased viability under dark incubations 

(Scanlan et al. 1995). FBA models also predicted that the OPP pathway was active only under 

light-limited conditions (Shastri et al. 2005). Our experiments measured a low flux (~1.5) 

through the OPP pathway under early photomixotrophic growth conditions. However, biomass 

samples collected from the late growth phase (Table A1.S2) showed a higher unlabeled 

proteinogenic histidine (M0 fraction, Table A1.S2), indicating that more glucose was directed to 

OPP for ribose-5-phosphate synthesis (precursor of histidine). These results suggest a flexibility 

of the OPP pathway in balancing NADPH under different growth conditions. 

A1.5.5. Limitations of Our 13C-MFA Techniques for Cyanobacterial Study  

13C-MFA accuracy is highly dependent on metabolic model construction. Nevertheless, 

incomplete annotations, errors, or inconsistencies are prevalent in cyanobacterial genome 

databases, rendering it difficult to generate a comprehensive metabolic network for 13C-MFA. 

Tracer experiments were used here to examine the structure of a cyanobacterial metabolic 

network.  Since the key intermediate tracers (e.g., 13C-glutamate and 13C-glyoxylate) are 
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prohibitively expensive, an inverse tracer labeling approach was employed to save experimental 

costs. A 13C-culture background was first built with commonly used 13C-substrates (bicarbonate 

and glucose). Unlabeled glutamate or glyoxylate were then added into the 13C-cultures as tracers. 

Their incoropration into downstream metabolites was used to determine pathway functions. 

Since the addition of intermediate tracers may change cell metabolism, the results from isotopic 

dilution experiments were only used to build a more accurate 13C-MFA model.  

In addition, the application of 13C-MFA requires the attainment of a steady state with 

minimal labeling changes in the central metabolism. Therefore, metabolisms under 

photoautotrophic or circadian conditions cannot be analyzed using steady-state 13C-MFA. 

Although an advanced isotopic non-stationary MFA (Young et al. 2011) has been developed to 

capture the  transient states of metabolic networks, it is difficult to precisely measure the labeling 

patterns of low-abundant and unstable free metabolites. It is also difficult to resolve the 

unexpected labeling kinetics of free metabolites caused by metabolic channeling (Young et al. 

2011). Furthermore, the degradation-regeneration of certain cellular polymers (e.g., 

cyanophycin) may exchange carbons between free metabolites and macromolecules, interfering 

with non-stationary metabolite labeling (Huege et al. 2011). Therefore, a steady-state 13C-MFA 

is more suitable to probe cyanobacteria metabolisms. Synechocystis 6803’s metabolism is diverse 

and affected by both light and carbon conditions, so the observed results pertain solely to 

photomixotrophic conditions when light and carbon sources are sufficient. 

 

A1.6. Conclusion 

This study used 13C-metabolism analysis to delineate the photomixotrophic metabolism 

of Synechocystis 6803. 13C-analysis confirmed the in vivo conversion of α-ketoglutarate to 
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succinate when an additional source was supplied to increase the α-ketoglutarate pool size (e.g., 

glutamate) while this flux under photomixotrophic conditions is negligible compared to all other 

fluxes in the model. Glyoxylate was discovered as a potential source for glycine synthesis, while 

the activity of the glyoxylate shunt was not observed. Under photomixotrophic conditions, malic 

enzyme, rather than pyruvate kinase, is fundamental route for pyruvate synthesis. Oxidative 

pentose phosphate pathway flux is low when light and inorganic carbons are sufficient. These 

findings complement information of previous multiple-omics studies which have shown the 13C-

tools to greatly advance the understanding of cellular metabolisms (Tang et al. 2012). This study 

also suggests that the photomixotrophic metabolism of cyanobacterial cell factories can 

efficiently incorporate both sugar and CO2 for biosynthesis, resulting higher growth rate and 

biomass density.  

 

A1.7. Supporting Information 

The following supporting information is available online with the originally published 

version of this article (You et al. 2014) at DOI: 10.1002/biot.201300477. 

Figure A1.S1:  Mass spectra of several free metabolites from Synechocystis 6803.  

Figure A1.S2:  Long-term tracer experiments and proteinogenic amino acid analysis. 

Figure A1.S3: 13C-MFA model fitting. 

Table A1.S1:    Complete list of estimated fluxes in central metabolism and exchange 

coeffecients. 

Table A1.S2:  Comparison of experimental and simulated labeling profiles of proteinogenic 

amino acids from mixotrophic culture grown on NaH13CO3 and 1-13C glucose. 
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Item A1.S1:  Model Assumption Description. 

Item A1.S2:  Calculation of glucose consumption rates. 

File A1.S1:  Biomass Formation Equation. 

File A1.S2:  Carbon transition in reactions included in the 13C-MFA. 
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Figure A1.1: Representative growth curve of Synechocystis 6803 under photomixotrophic 

conditions. The cultures were grown in shake flasks (open circles) or serum bottles (closed 

circles) in modified liquid BG-11 medium supplemented with 5 g/L glucose and ~2 g/L sodium 

bicarbonate. The circle highlights the metabolic pseudo-steady state period of cultivation. The 

dot-dash line represents the growth curve under photoautotrophic conditions (in shake flasks). 

Each symbol represents the mean value of biological triplicate cultures.  
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Figure A1.2: Tracing the Synechocystis 6803 TCA pathway by isotopic dilution 

experiments. A, B, and C show the isotopomer distributions of the [M-15]+ fragment in α-

ketoglutarate (AKG), succinate (SUC), and malate (MAL). Data are from biological duplicates 

and technical triplicates. Synechocystis 6803 was grown in the labeled medium with U-13C 

glucose and NaH13CO3. Unlabeled glutamate was added during OD730 = ~0.4. Biomass samples 

were harvested after 30-min incubation from cultures with ( ) or without ( ) unlabeled 

glutamate. D shows different scenarios of microbial TCA pathways. Error bars indicate standard 

deviations of averages from two biological and three technical replicates. Stars in the figures 

indicate 0 values.  Other abbreviations used are ICT for isocitrate and OAA for oxaloacetate. 
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Figure A1.3: Long-term tracer experiment results with unlabeled glutamate. Biomass 

samples (OD730 = ~0.4, data from biomass duplicates and technical triplicates) were harvested 

after a 48-hour incubation in fully labeled photomixotrophic cultures with ( ) or without ( ) 

unlabeled glutamate. The 12C-enrichment is calculated by  (n is the total carbon 

number of an amino acid; M the relative molar concentration of mass isotopomer n-i). The error 

bars in the figure represent the standard deviation among samples (n=2). The inset figure shows 

growth of cultures with ( ) or without ( ) unlabeled glutamate (i.e., glutamate showed inhibition 

to cyanobacterial growth). 

 

Abbreviations: ALA, alanine; ASP, aspartate; GLU, glutamate; HIS, histidine; LEU, leucine; 

SER, serine. 



 210 

 
 

Figure A1.4: Tracing Synechocystis 6803 glyoxylate shunt by tracer experiments. A shows 

the 12C-ratio of free metabolites. Biomass samples were harvested after 30-min incubation in 

fully labeled cultures (OD730 = ~0.4) with ( ) or without ( ) unlabeled glyoxylate. The inset 

shows the isotopomer distribution of free glycine. B shows the 12C-enrichment of proteinogenic 

amino acids (n=2). Biomass samples were harvested after a 48-hour incubation in fully labeled 

cultures with ( ) or without ( ) unlabeled glyoxylate. The inset shows the isotopomer 

distribution of proteinogenic glycine. The error bars represent the standard deviations of 

averages from two biological and three technical replicates. Stars in the figure indicate that the 

MS peaks cannot be detected by GC-MS. 

 

Abbreviations: AKG, α-ketoglutarate; ALA, alanine; ASP, aspartate; GLU, glutamate; GLX, 

glyoxylate; GLY, glycine; HIS, histidine; ICT, isocitrate; ILE, isoleucine; LEU, leucine; MAL, 

malate; OAA, oxaloacetate; SER, serine; SUC, succinate. 
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Figure A1.5: (Previousorry. 

 Page). Flux distribution in the central metabolism of Synechocystis 6803 under 

photomixotrophic conditions. All the estimated relative flux rates are shown beside the 

pathways, which are normalized to the Calvin cycle flux (note: Ru5P   RuBP flux was assumed 

to be 100). The standard deviation of each flux was shown in the figure, which was calculated 

based on the 95% confidence intervals (Table A1.S1). The grey arrows represent the fluxes to 

biomass. The estimated glucose consumption rate was 0.24 mmol g-1 dry cell weight hour-1 

(Supporting information S2).  

 

Abbreviations: 3PG, 3-phosphoglycerate; AKG, α-ketoglutarate; ALA, alanine; ASP, aspartate; 

CIT, citrate; DHAP, dihydroxyacetone phosphate; E4P, erythrose 4-phosphate; F6P, Fructose 6-

phosphate; FUM, fumarate; G6P, glucose 6-phosphate; GAP, glyceraldehyde 3-phosphate; GLC, 

glycolate; GLU, glutamate; GLX, glyoxylate; GLY, glycine; HIS, histidine; ICT, isocitrate; ILE, 

isoleucine; LEU, leucine; MAL, malate; MTHF, 5,10-Methylenetetrahydrofolate; OAA, 

oxaloacetate; PEP, phosphoenolpyruvate; PYR, pyruvate; R5P, Ribose 5-phosphate; Ru5P, 

ribulose-5-phosphate; RuBP, ribulose-1,5-diphosphate; S7P, sedoheptulose-7- phosphate; SER, 

serine; SUC, succinate; THF,  tetrahydrofolate; X5P, xylulose-5-phosphate
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A2.1. Abstract of the Chapter 

A2.1.1. Background 

Cyanobacteria are photoautotrophic prokaryotes that exhibit robust growth under diverse 

environmental conditions with minimal nutritional requirements. They can use solar energy to 

convert CO2 and other reduced carbon sources into biofuels and chemical products. The genus 

Cyanothece includes unicellular nitrogen-fixing cyanobacteria that have been shown to offer 

high levels of hydrogen production and nitrogen fixation. The reconstruction of quality genome-

scale metabolic models for organisms with limited annotation resources remains a challenging 

task. 

A2.1.2. Results 

Here we reconstruct and subsequently analyze and compare the metabolism of five 

Cyanothece strains, namely Cyanothece sp. PCC 7424, 7425, 7822, 8801 and 8802, as the 

genome-scale metabolic reconstructions iCyc792, iCyn731, iCyj826, iCyp752, and iCyh755 

respectively. We compare these phylogenetically related Cyanothece strains to assess their bio-

production potential. A systematic workflow is introduced for integrating and prioritizing 

annotation information from the Universal Protein Resource (Uniprot), NCBI Protein Clusters, 

and the Rapid Annotations using Subsystems Technology (RAST) method. The genome-scale 

metabolic models include fully traced photosynthesis reactions and respiratory chains, as well as 

balanced reactions and GPR associations. Metabolic differences between the organisms are 

highlighted such as the non-fermentative pathway for alcohol production found in only 

Cyanothece 7424, 8801, and 8802. 

 

 



 215 

A2.1.3. Conclusions 

Our development workflow provides a path for constructing models using information 

from curated models of related organisms and reviewed gene annotations. This effort lays the 

foundation for the expedient construction of curated metabolic models for organisms that, while 

not being the target of comprehensive research, have a sequenced genome and are related to an 

organism with a curated metabolic model. Organism specific models, such as the five presented 

in this paper, can be used to identify optimal genetic manipulations for targeted metabolite 

overproduction as well as to investigate the biology of diverse organisms.  

 

A2.2. Introduction 

Genome-scale models (GSMs) are the collection of gene to protein to reaction 

associations (GPRs), charge and elementally balanced reactions, and constraints on molecular 

functions found within a cell (Price et al. 2004; Reed et al. 2006; Feist et al. 2009; Thiele et al. 

2010). The constraints placed on molecular function define the possible phenotypes of an 

organism under specific conditions (Price et al. 2004). There are a number of applications for 

GSMs beyond the prediction of wildtype phenotypes in varying environments. These include the 

identification of optimal gene and medium modifications, non-native routes for metabolite 

production, and lethal gene deletions (Carneiro et al. 2006; Suthers et al. 2009; Ranganathan et 

al. 2010; Ranganathan et al. 2010; Zomorrodi et al. 2012). A genome-scale model of Cyanothece 

ATCC 51142, iCyt773, was recently published (Saha et al. 2012). It contains 4 compartments, 

with 811 metabolites and 946 charge and elementally balanced reactions. iCyt773 is an 

improvement upon the previously published iCce806 model (Vu et al. 2012), and contains 43 
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genes and 266 reactions unique from iCce806 (Saha et al. 2012). Further comparison of the two 

models can be found in the work by Saha et al. (2012). iCyt773 also models the diurnal rhythm 

of Cyanothece metabolism. Since Cyanothece ATCC 51142 is closely related to all five 

Cyanothece species discussed in this paper (Bandyopadhyay et al. 2011), it was used in the 

development of the reconstructions for five organisms, Cyanothece PCC 7424, 7425, 7822, 

8801, and 8802, as iCyc792, iCyn731, iCyj826, iCyp752, and iCyh755 respectively (all five 

models are included in Additional Files 1 and 2). All models were named using their associated 

KEGG organism code. The objective of this study is to expediently generate models for a 

collection of members of a genus, using as a foundation an existing high-quality metabolic 

model for a representative member of the genus, while integrating information from a range of 

available sources.     

The genus Cyanothece belongs to the phylum of Cyanobacteria. Cyanobacteria have a 

number of properties that make them ideal candidates for bio-production. Photosynthetic 

cyanobacteria bypass the need for sugar carbon substrates while having higher solar energy 

conversion efficiencies (i.e., 3-9%) than C3 (2.4%) and C4 plants (3.7%) (Dismukes et al. 2008). 

Cyanothece generate not only hydrogen (Tamagnini et al. 2002; Min et al. 2010; 

Bandyopadhyay et al. 2011; Melnicki et al. 2012) but also fix atmospheric nitrogen by 

temporally segregating the photosynthesis and nitrogenase activities (Welsh et al. 2008; Stockel 

et al. 2011). In addition, Cyanothece possess the potential to grow in air and can be easily fixed 

to solid matrices (Hall et al. 1995).  All five species discussed in this paper are capable of fixing 

nitrogen and producing hydrogen, while Cyanothece sp. PCC 7425 is the only species that is not 

capable of accomplishing this task in an aerobic environment (Bandyopadhyay et al. 2011). PCC 
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7425 also varies in a number of physical characteristics, enough so that it has been suggested that 

it should be reclassified to another genus pending further review (Porta et al. 2000). 

Cyanothece PCC 7424, 7425, 7822, 8801, and 8802, were all sequenced following the 

promising discoveries made concerning the metabolic capabilities of Cyanothece ATCC 51142 

(Bandyopadhyay et al. 2011). These five species exhibit unique metabolic characteristics that 

motivated the development of five separate reconstructions. Fragments of a butanol producing 

pathway have been postulated to exist in all strains through an inspection of the Cyanothece 

genomes (Wu et al. 2010). Metabolic capabilities such as the alkane biosynthetic pathway and 

alternative pathways for breaking down arginine across species (Bandyopadhyay et al. 2011) 

have been hypothesized to exist as well. Given differences in metabolism, developed genetic 

systems (Min et al. 2010), and variations in growth characteristics, phenotype, and rhythms of 

nitrogen fixation and respiration (Bandyopadhyay et al. 2012), it is important to globally assess 

the metabolic repertoire of each strain separately.   

There exist numerous databases devoted to gene annotations for a wide variety of 

organisms (Kanehisa et al. 2000; Gillespie et al. 2011; Kanehisa et al. 2012; The Uniprot 

Consortium 2012). However, the number of gene annotations is skewed towards a handful of 

extensively studied organisms. Escherichia coli K-12, the strain modeled in the iAF1260 

metabolic reconstruction (Feist et al. 2007), has approximately 16 times the number of reviewed 

annotations (4,326) in the Universal Protein Resource (Uniprot) compared to Cyanothece PCC 

7424 (271) (The Uniprot Consortium 2012). For most (microbial) organisms Uniprot contains 

only a small subset of required gene annotations (i.e., 200-300).  Faced with this paucity of 

organism-specific gene annotation information, most metabolic reconstructions rely on a single 

database (i.e., typically KEGG) from which to pull gene annotations (Dal'Molin et al. 2011; 
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Balagurunathan et al. 2012; Licona-Cassani et al. 2012; The Uniprot Consortium 2012). This 

may introduce errors in the reconstruction as absent functionalities could be included in the 

model due to permissive homology cutoffs or errors in the original annotation source. In 

addition, specific and non-specific references to the same metabolite (e.g. D-Glucose vs. α-D-

Glucose) and generic or unbalanced reactions (Dal'Molin et al. 2011) may also affect the 

consistency of the reconstruction. Integrating and contrasting information from multiple 

databases can remedy many of these shortcomings. 

A systematic workflow is put forth that addresses the aforementioned challenges. It   

allows for the parallel reconstruction of genome-scale models for organisms that have a 

sequenced genome and are closely related to a species with a curated genome-scale model. Using 

this workflow, reconstructions were developed for all five Cyanothece species using iCyt773 and 

reviewed annotations from Uniprot (The Uniprot Consortium 2012), NCBI Protein Clusters 

(Klimke et al. 2009), and the Rapid Annotations using Subsystems Technology (RAST) method 

(Aziz et al. 2008). These annotations were used to retrieve charge and elementally balanced 

reactions from both the iCyt773 model and the SEED database (Overbeek R et al. 2005) for the 

construction of draft models. No reconciliation between the iCyt773 and SEED reactions or 

metabolites was required as iCyt773 was initially constructed using SEED notation when 

possible. The five models are all capable of producing biomass using the iCyt773 biomass 

equations under diverse nutrient conditions. All five models are free of thermodynamically 

infeasible cycles, and the fractions of reactions mapped to specific genes (i.e., GPRs) are within 

the range of manually curated reconstructions. The use of multiple annotation sources helps to 

mitigate errors that may arise from a single source. Unlike automated draft models (i.e., Model 

SEED (Henry et al. 2010)),  organism-specific metabolites such as pigments are included in the 
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biomass equation and light reactions are fully traced. This workflow is also more adept at 

excluding metabolites present in related species but absent in the reconstructed organism. For 

example, menaquinone and ubiquinone are known to not exist within Cyanothece (Collins et al. 

1981), but are often pulled into draft models generated by automated software.         

 

A2.3. Results and Discussion 

A2.3.1. Model Comparisons 

The five models were developed by combining reactions from the curated metabolic 

model, iCyt773, with reactions taken from the SEED database whose presence in that organism 

were confirmed by reviewed annotations. The statistics for the five developed models are shown 

in Table A2.1 (See Additional Files 1 and 2 for model files). The model development workflow 

identified reactions that are in some cases unique to each reconstruction. However, closely 

related Cyanothece 8801 and 8802 have no unique reactions though they do contain a set of 30 

reactions that are not found in any other reconstruction. All five models contain four 

compartments; cytosol, periplasm, thylakoid lumen, and carboxysome. The number of genes 

present in each reconstruction is similar to the number of open reading frames (ORFs) associated 

with the iCyt773 and iSyn731 models. Figure A2.1 shows that the percent of non-exchange 

reactions without associated genes falls within ranges comparable to those of numerous manually 

curated models (Feist et al. 2007; Saha et al. 2012; Vu et al. 2012; Knoop et al. 2013). Biomass 

yields were also calculated for each of the five models using the same photoautotrophic 

conditions used to calculate the biomass yield for iCyt773 (Saha et al. 2012). All five models had 

an identical yield of 0.026 mole biomass / mole carbon fixed. 
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Figure A2.2 shows the number of reactions shared between iCyt773 and each one of the 

models. A total of 922 reactions from iCyt773 are shared with at least one of the five models 

while 169 reactions have been added to all five models during the SEED reaction retrieval step 

of the workflow. The removal of these 169 reactions only affects biomass production in 

iCyn731. It does not grow when the reactions are removed since one of the reactions is essential 

as it is the only Fe(II) oxidoreductase present within iCyn731. The other four models contain 

another Fe(II) oxidoreductase.. The number of reactions shared between each of the five models 

and iCyt773 (Figure A2.2A) generally matches the phylogenetic relationships between the 

organisms (Bandyopadhyay et al. 2011). Cyanothece 7425, which is the farthest removed of the 

five species from Cyanothece 51142, also has the fewest identified homologs with Cyanothece 

51142. The two most closely related pairs, Cyanothece 7424/7822, and 8801/8802, have the 

highest reaction similarities (see Figure A2.2B) while the farthest removed species, Cyanothece 

7425, has the lowest similarity. This divergence lends support to the possibility of 

reclassification (Porta et al. 2000). 

A2.3.2. Model Validation Using Published Findings 

The effect of a gene knockout on an organism’s phenotype is frequently used in assessing 

GSM quality (Knoop et al. 2010; Saha et al. 2012). However, unlike the CyanoMutants database 

for Synechocystis PCC 6803 (Nakamura et al. 1999; Nakao et al. 2010), none of the five species 

have a detailed repository of known mutants. The ΔnifK mutant for Cyanothece 7822 was shown 

to not be able to grow without the presence of combined nitrogen (nitrate) (Min et al. 2010). This 

finding implies the critical involvement of nifK in the fixation of nitrogen. In iCyj826 this gene is 

involved in the GPR of the nitrogen fixation reaction present within the model. Given that the 

GPR describes nifK as one of three critical subunits of the enzyme, its deletion results in the 
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inability for that reaction to carry flux. Upon its removal from iCyj826, the model is unable to 

grow without the addition of nitrate or ammonium, showing that the model reacts to the 

knockout in the same manner as the organism does in vivo. 

Despite the many similarities between the 5 species, significant differences also exist 

(Bandyopadhyay et al. 2011). Genes that code for isocitrate lyase and malate synthase 

(glyoxylate shunt) are present only in Cyanothece 7424 and 7822 as reflected in the models. 2-

oxoglutarate decarboxylase and succinic semialdehyde dehydrogenase, found in many 

cyanobacteria, complete the TCA cycle despite the absence of 2-oxoglutarate dehydrogenase 

(Zhang et al. 2011). Both of the enzymes in the alternate pathway are present within iCyt773, 

and were transferred to all five models. The associated genes are also bidirectional best hits with 

the two genes in Synechococcus PCC 7002 that are associated with the aforementioned enzymes 

(Zhang et al. 2011). iCyn731, iCyp752, and iCyh755 all contain an alkane biosynthetic pathway 

similar to what is present within iCyt773. While iCyt773 contains the pathway that enables the 

production of pentadecane from Hexadecenoyl-ACP, Schirmer et al. have measured heptadecane 

but not pentadecane production from Cyanothece 7425 (Schirmer et al. 2010). iCyn731 contains 

only heptadecane production, while iCyp752, and iCyh755 contain pathways for both 

pentadecane and heptadecane (neither specific literature evidence neither in support nor in 

conflict with this was found). The two enzymes required, Hexadecenoyl-ACP reductase and 

Hexadecenal decarbonylase (EC 1.2.1.80 and 4.1.99.5 respectively per iCyt773), have no 

corresponding annotations or orthologous genes in Cyanothece 7424 or 7822 (Schirmer et al. 

2010).  

Polyhydroxyalkanoates (PHAs) are a complex family of polyesters that can be 

synthesized by a wide variety of bacteria (Steinbuchel et al. 1995). Cyanothece 7424, 7425 and 
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7822 all contain the enzymes keto-thiolase and acetoacetyl-CoA reductase, which are necessary 

for the synthesis of polyhydroxyalkanoic acids (Steinbuchel et al. 1995; Rehm et al. 1999; Philip 

et al. 2007). There are RAST and unreviewed Uniprot annotations that identify genes within 

each of these three organisms associated with a PHA synthase. The non-fermentative pathway 

for higher alcohols exist in the 7424, 8801, and 8802 strains (Bandyopadhyay et al. 2011). The 

same pathway has been seen in E. coli (Atsumi et al. 2008; Clomburg et al. 2010) after the 

addition of the kivD gene from Lactococcus lactis (de la Plaza et al. 2004) and the adh2 gene 

from Saccharomyces cerevisiae (Russell et al. 1983). The pathway uses the 2-keto acid 

intermediates of amino acid biosynthesis and diverts them towards the synthesis of alcohols 

(Atsumi et al. 2008). The kivD gene encodes a 2-keto acid decarboxylase that acts on a wide 

range of substrates and enables the conversion of the 2-keto acids into aldehydes. The workflow 

identified genes in Cyanothece 7424, 8801 and 8802 which are bidirectional best hits with the 

kivD gene from Lactococcus lactis, and also annotated as being associated with the same EC 

number as kivD. An alcohol dehydrogenase, such as adh2, then converts these aldehydes into 

alcohols. The adhA gene (slr1192) in Synechocystis 6803 has been found to have wide substrate 

specificity that includes the aldehydes associated with butanol and propanol (Vidal et al. 2009). 

All five species contained a gene that was a bidirectional best hit with slr1192. While both the 

forward and reverse BLAST searches for Cyanothece 7425 had e-values in the order of 10-28 and 

percent identities of 30%, the searches, both forward and reverse, for the other four organisms 

had e-values ranging between 10-138 and 10-153 with percent identities ranging from 58 to 61%. 

The presence of orthologs to both a 2-keto acid decarboxylase and alcohol dehydrogenase with 

wide ranges of specificity in Cyanothece 7424, 8801, and 8802 provides annotation evidence for 
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the hypothesized presence of non-fermentative higher alcohol pathways (Bandyopadhyay et al. 

2011).  

Significant variations in nitrogen metabolism between the five species has been 

documented (Bandyopadhyay et al. 2011). Arginine decarboxylase is present in all 5 

reconstructions, but differences arise in the subsequent agmatine catabolism. Cyanothece 51142 

does not contain the associated genes for the conversion of agmatine to putrescine, and this is 

reflected in the iCyt773 model (Bandyopadhyay et al. 2011; Saha et al. 2012) as these reactions 

are absent. Both iCyc792 and iCyj826 contain agmatinase and urease. The proposed pathway for 

agmatine breakdown into putrescine in Cyanothece 7425, 8801, and 8802 is through N-

carbamoylputrescine. The two reactions required for this degradation can be found in all 3 

associated models. Finally, as predicted by Bandyopadhyay et al. (2011), iCyc792, iCyj826, 

iCyp752, and iCyh755 contain the reactions required to break putrescine down into spermidine 

and spermine.  

A2.3.3. Validation of Proposed Reconstruction Workflow  

Additional reactions retrieved using reviewed annotations have provided a number of 

insights into the five species that would not have been either found or confirmed if reactions 

were only pulled from iCyt773. The diverging nitrogen metabolism reactions were retrieved 

using SEED, as agmatine is the preferred polyamine for Cyanothece 51142 (Bandyopadhyay et 

al. 2011).  An alternative butanol pathway is present in varying stages of completion in the five 

models. While butanol can be produced from a 2-keto acid as previously discussed, it can also be 

produced through the coenzyme A dependent pathway (Ezeji et al. 2007; Papoutsakis 2008). The 

coenzyme A dependent pathway was found to exist within a Clostridium species (Sillers et al. 

2008; Yu et al. 2011). Figure A2.3 shows the comparative level of completion of the 
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fermentative butanol pathway within each of the 5 species. Cyanothece 7425 is the only 

organism to contain the complete pathway. The alcohol dehydrogenase exists within the models 

given the identification of homologs to the Synechocystis adhA gene (Vidal et al. 2009). The 

7424/7822 and 8801/8802 pairs have the same enzymes. Figure A2.3 also shows e-values for the 

BLAST searches between the genes and the genes in the fermentative butanol pathway of 

Clostridium acetobutylicum ATCC 824. Given the lower e-value for Butanoyl-CoA 

dehydrogenase, it is the gene most likely to not be present or functional within Cyanothece 7425. 

The enzymes present in the five pathways mirror the phylogenetic relationship trends of the five 

species in a manner comparable to what was initially seen in the reaction similarities from Figure 

A2.2, as well as with the glyoxylate shunt and nitrogen metabolism.  

The proposed workflow also served to complete unfinished pathways from iCyt773. All 

five models are capable of converting galactose-1-phosphate to fructose-6-phosphate as in 

iCyt773. Three of the models, iCyn731, iCyj826, and iCyh755, also include the reaction that 

converts galactose into galactose-1-phosphate, enabling them to process galactose in the 

glycolysis pathway. Tetrahydrobiopterin (BH4) is a pteridine compound that acts as a cofactor 

for nitric oxide synthases and aromatic amino acid hydrolases in higher animals (Thony et al. 

2000). Pteridine glycosides have been found in cyanobacteria, although their function is still 

unknown (Choi et al. 2001), and the first isolated pteridine glycosyltransferase from 

Synechococcus elongatus PCC 7942 acted on BH4 (Chung et al. 2000). Even though iCyt773 

does not contain the complete BH4 pathway as described by Thony et al. (2000), our workflow 

completed the pathway in all five species, identifying a gene that is a bidirectional best hit with 

the gene in Synechococcus elongatus PCC 7942. The reaction was not included in the models, as 

it does not exist within the SEED reaction database. All enzymes that were retrieved from 
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annotations but were not included in the model because of a lack of associated reaction in the 

subset of the SEED database used for model development are listed in Additional File 3. 

Reactions not transferred from iCyt773 offer insight into divergences between the 

metabolism of the new organism and the reference model. Two of the reactions that were not 

transferred from iCyt773 to the models for Cyanothece 7424 and 7822 are responsible for the 

conversion of hexa- or octadecenoyl-ACP to n-hepta- or pentadecane. As previously mentioned 

it is accepted that the alkane biosynthetic pathway does not exist in these organisms (Schirmer et 

al. 2010). Another compound that is generally not found in the 5 species is xanthine, a purine 

base involved in the breakdown of purine ribonucleotides such as inosine-5’-phosphate and 

xanthosine-5’-phosphate, into uric acid. iCyt773 can produce xanthine from either hypoxanthine 

or xanthosine, iCyc792 only contains the reactions for production from xanthosine and cannot 

break xanthine down into uric acid. iCyn731 only contains the reactions for production from 

hypoxanthine, but can convert xanthine into uric acid. The other three species do not contain any 

reactions involving xanthine and thus cannot process purine ribonucleotides through this 

pathway. Six reactions involved in transporting metabolites between the cytoplasm and 

periplasm or extracellular space were not transferred, such as molybdate transport via the ABC 

system.  Given the likelihood that such reactions still exist within the other Cyanothece strains, it 

is possible that the associated GPR in iCyt773 should be reevaluated for these reactions.  

A2.3.4. Comparisons with Other Model Development Methods 

Current model development methods can be generally characterized as manual, semi-

automated, or automated. The workflow presented in this paper is best classified as semi-

automated. This workflow allows for more expedited model development while avoiding some 

of the sources of error plaguing automated model generation and allowing for a wide range of 
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customization. This workflow can be adapted for use with any models, annotation sources, and 

additional reaction sets given annotation availability and user preferences.  

Many draft models are nowadays generated through the identification and comparison of 

homologs with the GPRs of curated models (Sun et al. 2009; Pinchuk et al. 2010; Sun et al. 

2010; Hamilton et al. 2012). Hamilton et al. (2012) identified the possibility for bidirectional 

BLAST searches to identify false positive ortholog pairs. The E-value cutoff for the searches 

performed for the test was 10-5. Here we use a more conservative cutoff of 10-30 to safeguard 

against such instances. When the cutoff was relaxed from 10-30 to 10-5 for the bidirectional 

BLAST between Cyanothece 51142 and the five species there were between 280 and 403 

additional best-hit pairs for each of the organisms. The number of these pairs that involved genes 

present in iCyt773 varied between 15 for Cyanothece 7424 and 8801, and 26 for Cyanothece 

7425. The reliance of manually constructed models on reviewing every annotation and manually 

curating the model greatly increases the time spent on development. This workflow helps to 

mitigate the need for manual review of each annotation by only using annotations that are 

reviewed or are derived from reviewed sources. Manual curation can then be reserved for certain 

key steps. Some of these models only include additional reactions beyond those retrieved from 

the curated models if the reactions are required for biomass production (Sun et al. 2009; Sun et 

al. 2010; Hamilton et al. 2012). This restricts the inclusion of reactions unique to either that 

organism or a subset of organisms that the reference models do not belong to. This introduces the 

risk of not including secondary metabolism pathways, which could be of great interest. The 

workflow presented here aims to overcome this through the use of outside annotations to retrieve 

SEED reactions.  
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There are a number of approaches for the automated development of metabolic 

reconstructions (Henry et al. 2010; Liao et al. 2011; Reyes et al. 2012; Vitkin et al. 2012) 

affording significant gains in development time, however, at the expense of some omissions and 

erroneous additions. The Cyanothece models created using the MIRAGE method contain 

generalized lipids along with a non-specific acceptor metabolite (Vitkin et al. 2012). Both the 

KBase and MIRAGE models constructed for Cyanothece 7424 contain menaquinone and 

ubiquinone, compounds shown to not exist within that organism (Collins et al. 1981).  

Conversely, there are a number of metabolites present in the biomass composition of the five 

reconstructed models that do not exist within either in the KBase or MIRAGE models (i.e., 22 

specific lipid metabolites, 4 pigments and cyanophycin). The model produced through KBase 

also does not contain the pigment β-carotene. Many of these models do not have specified 

compartments apart from cytoplasm and extracellular space (Henry et al. 2010; Reyes et al. 

2012; Vitkin et al. 2012). Automated model development can exclude unique metabolic 

pathways if they are absent from the training set of models. Specifically, both the MIRAGE and 

KBase models generally lack light reactions. 

Other methods that combine manual and automated steps provide their own distinct 

approach to model reconstruction. The RAVEN toolbox (Agren et al. 2013) allows for the 

curation of a reconstruction from models of related species using homologs identified through 

BLAST bidirectional best hits, and additional unique functions supplied through annotations 

taken from KEGG Orthology (Kanehisa et al. 2000). This method was employed for the 

construction of the Penicillium chrysogenum model iAL1006 (Agren et al. 2013). Our workflow 

can currently pull from up to three sources, with the ability to quickly expand the number of 

sources sampled, resulting in more identified EC numbers with higher confidence. 
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A2.4. Conclusions 

In this paper we presented a workflow that was used to rapidly develop curated models 

for five Cyanothece strains using the previously published iCyt773 model and reviewed 

annotations from numerous sources. The comparisons between these five models line up with the 

established phylogenetic relationships between the species. Specific reactions that were both kept 

from being taken from iCyt773 or added from the SEED database demonstrate the efficacy of 

this workflow and provide insights into the metabolism of the five species, as well as suggesting 

areas for further curation in the iCyt773 model. This workflow can easily be adapted to work 

with other metabolic models, annotation sources, and reaction databases. All five models 

(iCyc792, iCyn731, iCyj826, iCyp752, and iCyh755) are included in the supplementary material.  

 

A2.5. Methods  

A2.5.1. Draft Model Development 

Draft models for the five organisms were developed using the workflow shown in Figure 

A2.4, which uses a combination of reviewed gene annotations and identified homologs between 

the new organism and Cyanothece 51142. Reactions that were determined to exist in both 

Cyanothece 51142 and the organism being modeled were transferred from iCyt773 to the draft 

model. This reaction sharing was established through a comparison of homologs between the two 

genomes. These homologs were determined using a bidirectional BLAST search between the 

genomes of Cyanothece 51142 and the organism, using an E-value cut off of 10-30 and the 

requirement of mutual best hits. The Boolean logic given by each GPR in iCyt773 was evaluated 

using these bidirectional hits. If the organism contained the homologs required to satisfy the 
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logic and encode the protein, the reaction was transferred to the draft model. This only requires 

one isozyme to be present within the organism (i.e. if the associated genes for a reaction are 

listed as “gene A OR gene B OR gene C”, only one of the three genes must have a homolog), yet 

requires that all genes that code for an essential protein complex have a homolog. These 

identified reactions were added to the draft model with the GPRs modified to reflect the 

homologs present in the organism. Both the homology searches and identification of reactions to 

be included in the model were automated steps.    

Reviewed annotations retrieved from Uniprot (The Uniprot Consortium 2012), NCBI 

Protein Clusters (Klimke et al. 2009), and RAST (Aziz et al. 2008), are used to support the 

inclusion of additional reactions into the draft models. An automated process was used to 

retrieve annotations that reference specific enzyme commission (EC) numbers, along with the 

EC numbers associated with the reactions retrieved using bidirectional BLAST. Only specific 

EC numbers were used to avoid the inclusion of unnecessary reactions. For some genes the 

annotations are inconsistent. These discrepancies are resolved through a manual multi-step 

procedure shown in Figure A2.4. First the EC numbers are checked to confirm that they have not 

been transferred to a new number. An example of this transfer of EC numbers can be seen with 

the annotations for the Cyanothece 7424 gene, PCC7424_1895. Both Uniprot and NCBI Clusters 

assigned the EC 2.5.1.75 to the gene, whereas the RAST method assigned the EC number 

2.5.1.8. Despite the apparent mismatch, EC 2.5.1.8 had previously been transferred to 2.5.1.75, 

resolving any conflict between the annotations. If the enzymes are uniquely classified, a search 

of literature, specifically the InterPro database (Hunter et al. 2012), is then performed to validate 

their existence (or non-existence) in the organism. The Cyanothece 7424 gene, PCC7424_2477 

has an associated annotation of 1.1.1.29 from iCyt773, whereas RAST assigns both 1.1.1.26 and 
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1.1.1.81 to the gene. InterPro states that the 1.1.1.26 enzyme belongs to a protein family that is 

found in hyperthermophilic archaea, thus ruling out its existence in Cyanothece 7424. After 

using the InterPro information to rule out a possible associated enzyme, the annotation is 

resolved through order of confidence (described below), and 1.1.1.29 is attributed to the gene. 

Next, any enzymes that are associated with generic metabolites, or metabolites known to not be 

found within the organism, are removed. Such filtering can be seen with the Cyanothece 7425 

gene Cyan7425_1569. Both the model and RAST annotation suggest that succinate 

dehydrogenase (1.3.99.1) is associated with this gene. However NCBI Protein Clusters suggests 

enzyme 1.3.5.1, which is a succinate dehydrogenase specific to ubiquinone. As ubiquinone is not 

present within Cyanothece (Collins et al. 1981), this conflict is resolved. The list of all reactions 

removed from each model for containing generic metabolites is included in Additional File 4. If 

discrepancies still exist, annotation resolutions are made based on a confidence order of iCyt773, 

Uniprot, NCBI, and RAST. The order of confidence is derived from the likelihood that a source 

has been manually reviewed and is applicable to the individual gene in question. iCyt773 GPR 

relationships were curated specifically for a Cyanothece model. Uniprot reviewed annotations 

are manually annotated individually (The Uniprot Consortium 2012), while the protein cluster 

annotations used in this study are curated as a group of related genes (Klimke et al. 2009), and 

RAST annotations are developed using the manually curated FIGfams (Aziz et al. 2008; Meyer 

et al. 2009). Lower confidence is placed in these annotations, as it is possible that the automated 

RAST program could improperly assign annotations in some cases. If all of the enzymes 

proposed by the other annotation sources are contained within the list of enzymes found to relate 

to the gene through inspection of iCyt773, the annotation is not listed as conflicting and the 

enzymes from the model are used. There were on average between 40 and 50 genes with 



 231 

conflicting annotations. Between 55 and 70% of conflicts required order of confidence to 

resolve. Using multiple sources allows for the identification of probable errors in the databases. 

These annotations can also reveal errors in other databases not used in the model development. 

One such example is gene PCC7424_2817 in the Cyanothece 7424 genome. All sources used in 

this paper, along with KEGG Orthology (Kanehisa et al. 2012), indicate that the enzyme 

associated with this gene is 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylic-

acid synthase (EC 2.2.1.9). Both the KEGG and REFSEQ (Pruitt et al. 2012) annotations list the 

same enzyme name, but list the EC number as 4.1.1.71 (associated with 2-oxoglutarate 

decarboxylase). 

Subsequently, this resolved list of EC numbers is referenced against the iCyt773 model. 

Reactions with a matching EC number are retained, and the remaining EC numbers are used to 

retrieve reactions from the SEED database (Overbeek R et al. 2005). Reactions are only taken 

from the subset used by the SEED service for GapFilling (Satish Kumar et al. 2007), as these 

reactions are confirmed to be charge and elementally balanced. Those EC numbers that did not 

have an associated reaction within this set of SEED reactions and were therefore not included 

within the models are compiled in Additional File 3. All duplicate reactions retrieved from 

iCyt773 are removed while the remaining reactions necessary for photosynthesis are included. 

These reactions are known to exist within the organisms, as they can grow autotrophically. Any 

oxidative phosphorylation reactions or diffusion transport reactions that had not previously been 

added to the model are appended given their obvious essentiality. This set of reactions 

constitutes the draft model. All steps in draft model development are automated except for the 

EC annotation reconciliation. The time required to complete this step is reduced as more models 

are developed, and results can be applied to related organisms.  
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A2.5.2. Biomass and Removal of Thermodynamically Infeasible Cycles 

The four biomass descriptions developed for the iCyt773 model were used in the 5 

models (Saha et al. 2012). Initially, all draft models were not capable of producing biomass. A 

subset of reactions from iCyt773 needed to be included in the draft models to allow for the 

generation of biomass. A mixed integer linear program was used to determine the minimal set of 

additional reactions required for the production of biomass. All alternative solutions within two 

reactions of the global minimum were found, and every reaction was examined for evidence 

suggesting its existence within the organism. Given the necessity of their inclusion for biomass 

production even reactions with no identified evidence were included in the models. In situations 

with several alternate solutions, the solution that contained the most reactions with evidence for 

their inclusion was chosen. Necessary reactions, which could not have previously been included 

in the models as they did not have associated enzymes or genes, were added at this point. 

Between 3 and 8 reactions with a GPR in iCyt773 that did not have direct literature or annotation 

evidence were included in order to produce biomass. A substantial number of these reactions did 

not have both a gene and enzyme associated in iCyt773, which would lower their chance to be 

included during the initial stages of draft model development (See Additional File 5 for a full list 

of reactions included in this step). While the initial reaction set was generated for the production 

of 1% of the maximum biomass when all iCyt773 reactions were included, the inclusion of two 

reactions expected to be present in all models, the exchange reaction for oxygen and the diffusive 

transport of carbon dioxide between the periplasm and cytoplasm, allowed for biomass 

production exceeding 90% of the maximum. The 7425 model requires an additional two 

reactions to produce maximum biomass, but the other four models are capable of such 

production with the addition of the carbon dioxide transport and oxygen exchange reactions. This 
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process was performed for both autotrophic and heterotrophic growth conditions. For autotrophic 

growth, 16 reactions were added to iCyc792, 24 to iCyn731, and 18 to iCyj826, iCyp752, and 

iCyh755. The same approach was used for heterotrophic growth, where only iCyn731 required 

the inclusion of one reaction to grow under heterotrophic conditions.   

The models were further modified to avoid the presence of thermodynamically infeasible 

cycles. Flux variability analysis was performed to identify unbounded reaction fluxes. Given the 

absence of thermodynamically infeasible cycles within iCyt773, added reactions from SEED 

were solely responsible for the creation of any cycles. The number of SEED reactions present in 

cycles varied between 39 in iCyh755 and 51 in both iCyn731 and iCyj826. Three steps were 

taken to modify the SEED reactions involved in the cycles. First the Gibbs free energy values 

provided by SEED were examined. Any reactions where the entire free energy value range, 

factoring in error, was more than 4 kcal/mol removed from zero was restricted to the 

directionality specified by Gibbs free energy. Any SEED reactions whose fluxes still hit the 

bounds were restricted to the direction opposite of the cycle. The annotations of the few SEED 

reactions that were still involved in cycles were inspected. All of these reactions were supported 

solely by RAST annotations. Given this lower confidence due to the single-source annotation, 

the reactions, (between 4 and 10 for each model) were removed. Additional File 6 lists all SEED 

reactions found in cycles, along with any reaction modifications made to eliminate the cycles.  

A2.5.3. GPR Development 

GPR relationships were primarily derived from either the previous bidirectional blast 

analysis of iCyt773 reactions or the analysis of retrieved annotations. Bidirectional best hits were 

previously used to evaluate the presence of each reaction in the new organism. If a reaction is 
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added to the model, the GPR for every isozyme or complete subunit that is present is translated 

to the list of genes for the new organism. 

The GPR relationships for reactions retrieved from SEED were developed by applying 

the Autograph method (Notebaart et al. 2006). All genes that were linked to an enzyme through 

an annotation were used for the GPR for each reaction associated with that enzyme. If there are 

RAST annotations for each of these genes with the correct EC annotation, then they are used for 

the comparison. For all five species there were no ECs for which this was not the case. Genes 

that shared the same annotation designation were determined to be isozymes while those with 

different names were seen to be subunits of a protein. There is a small subset of reactions in the 

models that were taken from iCyt773 because of either proof of their existence (e.g. 

photosynthetic reactions) or their requirement for biomass production. Many of these GPR 

relationships are missing a small number of bidirectional best hits. For these genes the BLAST 

cutoff was reduced to 10-10. These few additional best hits aided in the resolution of many of the 

remaining reactions, leaving between 6 and 13 of the reactions without a transferred GPR. 

A2.5.4. Model Simulations and Analysis 

Flux balance analysis (Jeffrey D Orth et al. 2010) was used in both the model 

development and model validation phases to determine flux distribution under varying 

conditions.  

Maximize vbiomass 

Subject to 

 

 

Sijv j = 0, !i "  1,...,N
j=1

M

#                   (A2.1) 

  

 

vj,min  !  v j !  v j,max,  "j #  1,...,M  (A2.2) 
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Where Sij is the stoichiometric coefficient for metabolite i in reaction j, vj,min and vj,max denote the 

minimum and maximum flux values for reaction j, while vj represents the flux value of reaction 

j. N and M denote the total number of metabolites and reactions respectively. 

A mixed integer linear program was used in the determination of a minimal set of 

reactions necessary for biomass production using the following formulation.  

 

 

Minimize y j
j

M

!   

Subject to 

 

 

Sijv j = 0,!i "  1,...,N
j=1

M

#  (A2.3) 

 

 

vj,min  y j !  v j !  v j,maxyj,  "j #  1,...,M  (A2.4) 

 

 

vBiomass ! vBiomass
min  (A2.5) 

 All reactions were assigned a binary variable yj, which when equal to zero eliminates flux 

through reaction j. The value of y for all reactions present in the draft model was fixed at one. 

Biomass production was fixed at greater than 1% of the maximum value when all iCyt773 

reactions were included, and the number of included reactions was minimized.  

 Flux variability analysis was used for identification of reactions present within cycles, 

and used the following formulation. 

 

 

Max /Min v j

Subject to

Sijv j = 0,!i "  1,...,N
j=1

M

#
vj,min  $  v j $  v j,max,  !j "  1,...,M

% 

& 

' 
' 
' 
' 
' 
' 

( 

) 

* 
* 
* 
* 
* 
* 

 (A2.6) 

 

 

!j "  1,...,M  (A2.7) 
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No constraints were placed on the biomass growth so as to identify all possible cycles within the 

model. This analysis was performed iteratively after each series of modifications was made to 

the reactions present within the cycles. 

 The reaction similarity between any two models is calculated using the following 

formula, 

 

 

Similarity =
A2

(A + B)(A +C)
 (A2.8) 

A denotes the total number of shared reactions between the two organisms, whereas B and C 

represent the number of unique reactions in each model.  

CPLEX solver (version 12.3 IBM ILOG) was used in the GAMS (version 23.3.3, GAMS 

Development Corporation) environment for solving the optimization models. All computations 

were carried out on Intel Xeon X5675 Six-Core 3.06 GHz processors that are a part of the lionxf 

cluster, which was built and operated by the Research Computing and Cyberinfrastructure Group 

of The Pennsylvania State University. All codes used in model development were written using 

the Python programming language. 

 

A2.6. Supplemental Material 

The following supporting information is available online with the originally published 

version of this article (Mueller et al. 2013) at DOI:10.1186/1752-0509-7-142. 

 

Additional File 1 (.xlsx):  All five genome-scale reconstructions (iCyc792, iCyn731, 

iCyj826, iCyp752, and iCyh755), along with GPR and metabolite 

information. 
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Additional File 2 (.zip):  A zipped file containing all five genome-scale reconstructions 

(iCyc792, iCyn731, iCyj826, iCyp752, and iCyh755), along with 

GPR and metabolite information in SBML format. 

Additional File 3 (.xlsx):  List of retrieved EC numbers not associated with any reactions in 

the SEED subset of reactions used for draft model development. 

Additional File 4 (.xlsx):  List of reactions removed from the five models for containing 

generic metabolites. 

Additional File 5 (.xlsx):  Set of reactions added to each model to insure biomass production, 

along with associated support for inclusion. 

Additional File 6 (.xlsx):  All reaction modifications made to eliminate thermodynamically 

infeasible cycles. 
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Table A2.1: Statistics for the five developed models. Genes, reactions, and metabolites for 

each of the five models are listed, along with reactions that are unique to that reconstruction. 

 Strain - Reconstruction 

 
7424 - 

iCyc792 
7425 - 

iCyn731 
7822 - 

iCyj826 
8801 - 

iCyp752 
8802 - 

iCyh755 
Reactions 1242 1306 1258 1172 1161 
Metabolites 1107 1160 1110 994 973 
Genes 792 731 826 752 755 
Unique Reactions 41 149 40 0 0 
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Figure A2.1: Comparisons of five species models with previously curated models. 

Comparison of the number of non-exchange reactions without associated genes between the five 

models and five curated models, iCyt773, iSyn731 (Saha et al. 2012), iCce806 (Vu et al. 2012), 

iAF1260 (Feist et al. 2007), and the Synechocystis PCC 6803 model developed by Knoop et al. 

(2013). The model-organism correlations are iCyt773 and iCce806: Cyanothece ATCC 51142, 

iSyn731 and Knoop et al: Synechocystis PCC 6803, and iAF1260: Escherichia coli K-12 

MG1655. 
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Figure A2.2: Comparison of reaction similarity to phylogenetic relationships. (A) Venn 

Diagram comparing the number of reactions each model shares with the iCyt773 model (B) 

Similarity matrix for the five models. See Methods for description of the similarity calculation 

done to compare reactions between two models. Both model names and organism numbers are 

included.  
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Figure A2.3: Comparison of fermentative butanol pathway enzymes present in each of the 

5 species. The enzymes highlighted are present in the organism’s reconstruction along with the 

associated reaction. Listed e-values are for BLAST searches between the genes of the five 

species and the associated gene in Clostridium acetobutylicum and the adhA gene in 

Synechocystis 6803. EC-gene relationships: 2.3.1.9: CA_C2873, 1.1.1.36: CA_C2708, 4.2.1.17: 

CA_C2712, 1.3.99.2: CA_C2711, 1.2.1.10: CA_P0035, 1.1.1.-: slr1192.  
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Figure A2.4: Workflow for development of draft models. These models are developed from a 

sequenced genome and curated genome-scale model of related organism. The right hand side 

outlines the steps required to evaluate the reactions in iCyt773 for their presence in the other 

organisms. The steps to retrieve gene annotations and resolve any conflicts are shown on the left 

hand side. The steps in gray were automated, whereas the manually performed step, the 

resolution of conflicting annotations, is shown in white.
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Appendix Chapter 3 

 

Metabolic Pathway Confirmation and Discovery 

through 13C-Labeling of Proteinogenic Amino Acids 
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A3.1. Introduction 

Microbes have complex metabolic pathways that can be investigated using biochemistry 

and functional genomics methods. One important technique to examine cell central metabolism 

and discover new enzymes is 13C-assisted metabolism analysis (Zamboni et al. 2009). This 

technique is based on isotopic labeling, whereby microbes are fed with 13C-labeled substrates. 

By tracing the atom transition paths between metabolites in the biochemical network, we can 

determine functional pathways and estimate the carbon flux through these pathways.  

As a complementary method to transcriptomics and proteomics, approaches for 

isotopomer-assisted metabolic pathway analysis contain three major steps, as shown in figure 

A3.1 (Tang et al. 2009). First, we grow cells with 13C labeled substrates. In this step, the 

composition of the medium and the selection of labeled substrates are two key factors. To avoid 

measurement noise from non-labeled carbon in nutrient supplements, a minimal medium with a 

specific carbon source is required. Further, the choice of a labeled substrate is based on how 

effectively it will elucidate the pathway being analyzed. Because novel enzymes often involve 

different reaction stereochemistry or new intermediate products, in general, singly labeled carbon 

substrates are more informative for detection of novel pathways than uniformly labeled ones for 

detection of novel pathways. By using a substrate with a single labeled carbon, we can easily 

trace the fate of the labeled carbon from reactant to products, while with multiple labeled carbons 

substrates may confound the carbon tracing (Tang et al. 2007; Tang et al. 2009).  Second, we 

analyze amino acid labeling patterns using GC-MS. Amino acids are abundant in protein and 

thus can be obtained from biomass hydrolysis. Amino acids can be derivatized by N-(tert-

butyldimethylsilyl)-N- methyltrifluoroacetamide (TBDMS) before GC separation. TBDMS-

derivatized amino acids fragment in MS and result in characteristic arrays of fragments. Based 
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on the mass to charge (m/z) ratio of fragmented and unfragmented amino acids, we can deduce 

the possible labeling patterns of the central metabolites that are precursors of the amino acids. 

Third, we trace 13C transitions in the proposed pathways and, based on the final labeled data, 

confirm whether these pathways are active (Tang et al. 2009). Measurement of amino acids can 

provide isotopic labeling information about crucial precursor metabolites in central metabolism 

(Figure A3.2). These key metabolic nodes reflect the operation of carbon fluxes in associated 

central pathways. 

13C-assisted metabolism analysis via proteinogenic amino acids is widely used for 

functional characterization of poorly-characterized microbial metabolisms (Zamboni et al. 2009). For 

example, we have used this technique to investigate photosynthetic microbes including 

cyanobacteria for mixotrophic or heterotrophic carbon utilization (Feng et al. 2010).  In this 

paper, we will use Cyanothece sp. ATCC 51142 as the model strain to demonstrate the use of 

labeled carbon substrates for discovering new enzymatic functions. On the other hand, 13C-

assisted metabolism analysis can be significantly improved by including measurements of 

intracellular metabolites besides amino acids. Direct measurement of intracellular metabolites 

allows the investigation of complex metabolisms with coverage of more pathways. If a rich 

medium is used for cell culture, measurement of intracellular metabolites, instead of amino acids, 

also reduces the interference in labeling data that arises from exogenous non-labeled amino 

acids. In this paper, we also briefly introduce mass spectrometry techniques to measure the 

labeling pattern of intermediate metabolites in central metabolic pathways. 
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A3.2. Protocol 

A3.2.1. Cell Culture 

1.i) Grow cells in minimal medium with trace elements, salts, vitamins, and specifically labeled 

carbon substrates that are best for pathway investigation. Use either shaking flasks or bioreactors 

for cell culture.  

Note: Organic nutrients, such as yeast extract, may interfere with the measurement of 

amino acid labeling and thus cannot be present in the culture medium.  

1.ii) Monitor cell growth by the optical density of the culture at an optimal wavelength (e.g., 

OD730 for Cyanothece 51142) with a UV/Vis spectrophotometer. 

1.iii) Cells can first be grown in a non-labeled medium. The middle-log growth phase cells are 

preferred to be used for inoculation (3% (v/v) by volume inoculation ratio) of the labeled 

medium. The labeled culture should be sub-cultured (3% (v/v) by volume inoculation ratio) in 

the same labeled medium to further dilute non-labeled carbon from the initial inoculum.   

A3.2.2. Amino Acid Extraction 

2.i) Harvest sub-cultured cells (10mL) in the middle-log growth phase by centrifugation (10 min, 

8000×g). 

2.ii) Resuspend the pellet in 1.5mL of 6M HCl and transfer it to a clear glass, screw-top GC vial. 

Cap the vials and place them in a 100oC oven for 24 hours to hydrolyze the biomass proteins into 

amino acids. Hydrolysis of biomass pellets can yield 16 of the 20 common amino acids. Cysteine 

and tryptophan are degraded, and glutamine and asparagine are converted to glutamate and 

aspartate, respectively (Dauner et al. 2000). 
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2.iii) Centrifuge the amino acid solution at 20,000×g for 5 min using 2 ml Eppendorf tubes, and 

transfer the supernatants to new GC vials. This step removes solid particles in the hydrolysis 

solution.  

2.iv) Remove the GC vial lids and dry the samples completely under a stream of air using a 

Thermo Scientific Reacti-Vap evaporator (note: a freeze dryer can also be used to dry samples). 

This step can be done overnight.     

A3.2.3. Amino Acid Derivatization and GC-MS Conditions 

Analysis of amino acids or charged/highly polar metabolites via gas chromatography 

requires that these metabolites be derivatized, so that the amino acids are volatile and can be 

separated by gas chromatography (Tang et al. 2009).  

3.i) Dissolve the dried samples with 150 µL of tetrahydrofuran (THF) and 150 µL of TBDMS 

reagent.   

3.ii) Incubate all samples in an oven or a water bath between 65 and 80oC for 1 hour. Vortex 

occasionally to make sure the metabolites in the vial are dissolved. 

3.iii) Centrifuge the samples at 20,000×g for 10 min, and then transfer the supernatant to new 

GC vials. The supernatant should be a clear and yellowish solution. Due to saturation of the 

detectors, GC-MS measurement accuracy can be affected by the high concentration of injected 

TBDMS derivatized amino acids (these samples often show dark brown color), therefore, we 

should dilute these samples using THF before GC-MS measurement (Wittmann 2007). 

3.iv) Analyze the samples by GC-MS (use a 1:5 or 1:10 split ratio, injection volume = 1 µL, 

carrier gas helium = 1.2 mL/min). Use the following GC temperature program: Hold at 150oC for 

2 minutes, increase at 3oC per min to 280oC, increase at 20oC per min to 300oC, and then hold for 
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5 minutes. Solvent delay can be set as ~5 min (for a 30 meter GC column). The range of the 

mass to charge ratio (m/z) in MS can be set between 60 and 500.  

A3.2.4. GC-MS Data Analysis 

Note: TBDMS-derivatized amino acid measurements can be affected by isotope 

discrimination in GC separation, since light isotopes move slightly faster than heavy isotopes in 

a GC column.  

4.i) To reduce potential measurement errors, average the mass spectrum of the whole denoted 

amino acid peak range (Wittmann 2007). 

4.ii) The GC and MS spectra of TBDMS derivatized metabolites have been reported 

before.(Antoniewicz et al. 2007) The GC retention time and the unique m/z peaks for each 

amino acid are illustrated in Figure A3.3. In general, TBDMS-derivatized amino acids are clearly 

cracked by MS into two charged fragments: fragment (M-57)+, containing the entire amino acid, 

and fragment (M-159)+, which lacks the α carboxyl group of the amino acid. For leucine and 

isoleucine, the (M-57)+ peak was overlapped by other mass peaks. We suggest using fragment 

(M-15)+ to analyze the entire amino acid labeling. Also, the (f302)+ group is often detected in 

most amino acids, and it contains only the first (α-carboxyl group) and second carbons in an 

amino acid backbone. However, because this MS peak often has high noise-to-signal ratios, 

(f302)+ is not recommended for quantitatively analyzing the metabolic fluxes (Antoniewicz et al. 

2007). 

4.iii) Derivatization of amino acids or central metabolites introduces significant amounts of 

naturally-labeled isotopes, including 13C (1.13%), 18O (0.20%), 29Si (4.70%), and 30Si (3.09%). 

The measurement noise from natural isotopes in the raw mass isotopomer spectrum can be 

corrected by using published software (Dauner et al. 2000; Wahl et al. 2004). The final isotopic 
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labeling data are reported as mass fractions, i.e., M0, M1, M2, M3 and M4 (representing fragments 

containing zero to four 13C labeled carbons). 

A3.2.5. Pathway Analysis Using Labeled Amino Acid Data 

An increasing number of genome sequences for non-model microbial species are being 

published each year. However, functional characterization of these species has lagged far behind 

the pace of genomic sequencing. 13C-labeling experiments can play important roles in the 

confirmation and discovery of metabolic pathways in these non-model organisms.  

In this protocol, measurement of amino acids can provide isotopic labeling information 

about eight crucial precursor metabolites: 2-oxo-glutarate, 3-P-glycerate, acetyl-CoA, erythrose-

4-P, oxaloacetate, phosphoenolpyruvate, pyruvate, and ribose-5-P. Although the m/z ratio gives 

just the overall amount of labeling of MS ions, we can partially assess the isotopomer 

distributions of amino acids by examining the m/z ratios of both unfragmented (M-57)+ and 

fragmented amino acids (M-159)+ or (f302)+. Furthermore, we can perform several cell cultures 

with a chemically identical medium but substrates that have different labeling patterns (1st 

position labeled, 2nd position labeled, etc.). The labeling information about amino acids from 

these experiments can be integrated to decode the actual carbon transition routes through the 

central metabolic pathways. 

For pathway analysis, the choice of a labeled substrate is important. In general, singly 

labeled carbon substrates are easier to use in tracing central pathways. Also, such singly labeled 

substrates are more informative to elucidate unique molecule structures in metabolites than 

uniformly labeled substrates (Tang et al. 2007). For example, the (Re)-type citrate synthase has 

different reaction stereochemistry from normal citrate synthase, and thus causes citrate to have 

different chemical structures. On the other hand, substrates are different in their suitability to 
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detect their associated pathways. Glucose is best for detecting the split ratio between the 

glycolysis and pentose phosphate pathways, while pyruvate or acetate are best for analyzing the 

TCA cycle and some amino acid pathways. Therefore, it is always good to use different substrate 

and different tracer experiments to investigate the overall picture of cell metabolism.  

By investigating only a few key amino acids produced from well-designed 13C tracer 

experiments, we may reveal several unique pathways or enzyme activities in the central 

metabolism without performing sophisticated 13C-metabolic flux analysis. However, the outcome 

of the labeling experiments should be further confirmed using other biochemistry methods:  

5.i) Entner–Doudoroff pathway: [1-13C] glucose can be used as the carbon source. If the pathway 

is active, serine labeling will be significantly lower than labeling in alanine (Tang et al. 2009).  

5.ii) Branched TCA cycle: [1-13C] pyruvate can be used as the carbon source. If the TCA cycle is 

broken, aspartate can be labeled by two carbons, while glutamate is labeled with only one carbon 

(Feng et al. 2009; Tang et al. 2010).  

5.iii) CO2 fixation (i.e., Calvin cycle activity in mixotrophic metabolism): Non-labeled CO2 with 

labeled carbon substrates can be used as the carbon sources. If the Calvin cycle is functional, 

serine and histidine labeling will be significantly diluted, compared to other amino acids (Feng et 

al. 2010). Such a method can quantify microbial CO2 fixation when organic carbon sources are 

present in the medium. 

5.iv) Oxidative pentose phosphate pathway: [1-13C] glucose can be used as the carbon source. If 

the pathway is active, non-labeled alanine will be > 50% (Feng et al. 2009). 

5.v) Anaplerotic pathway (e.g., pyruate  oxaloacetate): 13CO2 can be used as the carbon source. 

If the pathway is active, aspartate labeling will be enriched (Feng et al. 2010). 
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5.vi) (Re)-citrate synthase: [1-13C] pyruvate can be used as the carbon source. If the enzyme is 

active, glutamate is labeled in β-carboxyl group (Tang et al. 2007; Tang et al. 2009). 

5.vii) Citramalate pathway: [1-13C] pyruvate, [2-13C] glycerol, or [1-13C] acetate can be used as 

the carbon source. If the pathway is active, leucine and isoleucine labeling amounts are identical 

(Tang et al. 2007).  

5.viii) Serine-isocitrate lyase cycle: [1-13C] pyruvate or [1-13C] lactate can be used as the carbon 

source. If the pathway is active, the third position carbon in serine will be labeled (Tang et al. 

2007). 

5.ix) Utilization of nutrients (e.g., exogenous amino acids) by organisms: a culture medium with 

fully labeled carbon substrates and non-labeled amino acids can be used. If the cells selectively 

transport and utilize these supplemented non-labeled nutrients, we will see significant labeling 

dilution of these amino acids in the protein. This method can be used to investigate which 

nutrient supplements the cell prefers (Zhuang et al. 2011). 

 

A3.3. Representative Results 

Recent bioenergy studies have revived interests in using novel phototrophic 

microorganisms for bioenergy production and CO2 capture. In the past years, quite a few 13C-

assisted metabolism analyses, including 13C-Metabolic Flux Analyses (13C-MFA), have been 

applied to investigate central metabolisms in phototrophic bacteria, because biochemical 

knowledge of the central metabolic pathways is not well-founded in these non-model organisms 

(Erb et al. 2007; Tang et al. 2009; Feng et al. 2010; McKinlay et al. 2010; Tang et al. 2010; 

McKinlay et al. 2011). Here, we present an example of the discovery of an alternate isoleucine 

pathway in Cyanothece 51142 (Wu et al. 2010). Cyanothece 51142 does not contain the enzyme 
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(EC 4.3.1.19, threonine ammonia-lyase), which catalyzes conversion of threonine to 2-

ketobutyrate in the typical isoleucine synthesis pathway. To resolve the isoleucine pathway, we 

grew Cyanothece 51142 (20mL) in ASP2 medium (Reddy et al. 1993) with 54 mM glycerol (2-

13C, >98%). Cyanothece 51142 utilizes 2nd position labeled glycerol as the main carbon source 

and we observe that threonine and alanine (whose precursor is pyruvate) have one labeled 

carbon, while isoleucine was labeled with three carbons. Therefore, synthesis in Cyanothece 

51142 cannot be derived from the threonine route employed by most organisms (Figure A3.4). 

On the other hand, leucine and isoleucine have identical labeling patterns based on fragment (M-

15)+ and fragment (M-159)+. For example, the isotopomer data from [M-15]+ (containing 

unfragmented amino acids) showed identical labeling for leucine (M0=0.01, M1=0.03, M2=0.21, 

M3=0.69) and isoleucine (M0=0.01, M1=0.03, M2=0.24, M3=0.67). Thus leucine and isoleucine 

must be synthesized from the same precursors (i.e., pyruvate and acetyl-CoA). This observation 

is consistent with the labeled carbon transition in the citramalate pathway for isoleucine 

synthesis. To further confirm this pathway, we searched the Joint Genome Institute database and 

found the presence of a citramalate synthase CimA (cce_0248) in Cyanothece 51142, and the 

expression of this gene was also revealed by RT-PCR. 

 

A3.4. Discussion  

We demonstrate that 13C-isotope labeling is a useful technique for determining pathways 

in microorganisms under defined growth conditions. The experimental protocol consists of 

feeding the cell with a labeled substrate and measuring the resulting isotopic labeling patterns in 

the synthesized amino acids. The labeling information can be integrated with genomic 
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information to identify novel pathways, and it can also be used to decipher absolute carbon 

fluxes via metabolic flux analysis (Zamboni et al. 2009). Therefore, this technique can be used in 

analyzing microorganisms related to biofuel, ecological and medical applications.  

This technique has several limitations. First, it is suited only to analysis of carbon 

metabolism using organic carbon substrates, as it cannot directly resolve metabolism in 

autotrophic metabolisms when CO2 is used as the sole carbon source. Bacterial culture using 

CO2 as the only carbon source labels all amino acids to the same extent as the input 12CO2/13CO2 

mixture (Shastri et al. 2007). This makes pathway analysis impossible, as 13C-assisted 

metabolism analysis has to be inferred from a rearrangement of 13C concentrations in metabolites 

by different metabolic pathways. Second, this paper presents solely qualitative results 

discriminating between “active” and “non-active” pathways. Precise quantification of 

metabolism (13C-MFA) requires a sophisticated modeling approach to decipher metabolic fluxes 

from isotopomer data. Third, 13C-metabolism analysis is limited by technical challenges in 

measuring low abundance and unstable intracellular metabolites such as phosphate metabolites. 

The scope of metabolism analysis can be significantly extended and more pathways can be 

covered by measuring free metabolites besides amino acids. Broader study of measured 

metabolites requires both highly-efficient metabolite extraction methods and highly-sensitive 

analytical platforms. LC-MS, FT-ICR MS, and CE-MS have been used for identifying the 

labeling patterns of free metabolites in the central metabolism, and provide more insight into 

these active pathways (Tang et al. 2009). Fourth, 13C-assisted pathway analysis is best done in 

minimal medium, because addition of non-labeled nutrient supplements leads to falsely lower 

labeling concentrations and complicates quantitative 13C-MFA. Also, if metabolism analysis is 
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based on proteinogenic amino acids, then cells may utilize exogenous amino acids extensively 

for protein synthesis and dilute the labeling of proteinogenic amino acids (Tang et al. 2009).  

 

A3.5. Supplementary Material 

The following supporting information is available online with the originally published 

version of this article at DOI:10.3791/3583  

Video protocol: An 8-minute video describing this protocol is available with the online 

version of this article.  
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Table A3.1: Specific reagents and equipment 

Name of the reagent Company Catalogue number Comments 
TBDMS Sigma-Aldrich 19915 - 

THF Sigma-Aldrich 34865 - 

Labeled carbon 
substrate 

Cambridge Isotope 
Laboratories 

Depend on the 
experimental 
requirement 

Website: 
http://www.isotope.com 

Gas chromatograph Agilent Technologies Hewlett-Packard, 
model 7890A - 

GC Columns J&W Scientific, 
Folsom, CA DB5 (30m) - 

Mass spectrometer Agilent Technologies 5975C - 
Reacti-Vap 
Evaporator Thermo Scientific TS-18825 For drying amino acid 

samples 
 



 263 

 
 
Figure A3.1. Steps for 13C-assisted pathway analysis.  
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Figure A3.2. Key amino acids used for acquiring the labeling pattern of their central 

metabolic precursors. (ACoA, acetyl-CoA; AKG, α-Ketoglutarate; C5P, ribose 5-phosphate; 

CIT, citrate; E4P, erythrose 4-phosphate; G6P, glucose 6-phosphate; OAA, oxaloacetate; PEP, 

phosphoenolpyruvate; PGA, 3-phosphoglycerate; PYR, pyruvate.). 
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Figure A3.3. Gas chromatography peaks for 17 amino acids (arginine fragmentation cannot 

be deciphered). 
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Figure A3.4. Labeling transitions in isoleucine pathways in Cyanothece 51142 (Wu et al. 

2010).
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A4.1. Chapter Summary 

The unicellular diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142 (Cyanothece 

51142) is able to grow aerobically under nitrogen-fixing conditions with alternating light-dark 

cycles or continuous illumination. This study investigated the effects of carbon and nitrogen 

sources on Cyanothece 51142 metabolism via 13C-assisted metabolite analysis and biochemical 

measurements. Under continuous light (50 µmol photons/m2/s) and nitrogen-fixing conditions, 

we found that glycerol addition promoted aerobic biomass growth (by twofold) and nitrogenase-

dependent hydrogen production [up to 25 µmol H2 (mg chlorophyll)-1 h-1], but strongly reduced 

phototrophic CO2 utilization. Under nitrogen-sufficient conditions, Cyanothece 51142 was able 

to metabolize glycerol photoheterotrophically, and the activity of light dependent reactions (e.g. 

oxygen evolution) was not significantly reduced. In contrast, Synechocystis sp. PCC 6803 

showed apparent mixotrophic metabolism under similar growth conditions.  Isotopomer analysis 

also detected that Cyanothece 51142 was able to fix CO2 via anaplerotic pathways, and to take up 

glucose and pyruvate for mixotrophic biomass synthesis. 

 

A4.2. Introduction 

Rising concerns about global warming due to the greenhouse effect have renewed 

research focused on biological capture of CO2. Cyanobacteria have versatile metabolic 

capabilities, which allow them to grow under autotrophic, heterotrophic, and mixotrophic 

conditions (Bottomley & Baalen, 1978; Eiler, 2006; Yang et al., 2002). More importantly, some 

cyanobacteria can capture solar energy to fix nitrogen and generate H2, thereby serving as a 

source of biofertilizer and biofuel, while simultaneously consuming atmospheric CO2 (Bernat et 
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al., 2009; Dutta et al., 2005; Fay, 1992; Madamwar et al., 2000; Tamagnini et al., 2007; Tuli et 

al., 1996). Cyanothece, sp. ATCC 51142 (Cyanothece 51142), a unicellular diazotrophic 

cyanobacterium, is able to grow aerobically under nitrogen-fixing conditions and has been 

recognized as contributing to the marine nitrogen cycle (Zehr et al., 2001). The recent 

sequencing of the Cyanothece 51142 genome and its transcriptional analysis have uncovered the 

diurnally oscillatory metabolism of the bacterium in alternating light-dark cycles (photosynthesis 

during the day and nitrogen fixation at night) (Stöckel et al., 2008; Toepel et al., 2008; Welsh et 

al., 2008). In general, cyanobacteria use spatial or temporal separation of oxygen-sensitive 

nitrogen-fixation and oxygen-evolving photosynthesis as a strategy for diazotrophic growth 

(Benemann & Weare, 1974; Fay, 1992). Interestingly, Cyanothece 51142 demonstrates 

simultaneous N2 fixation and O2 evolution under continuous-light conditions, though it appears 

to be unicellular (Colon-Lopez et al., 1997; Huang & Chow., 1986). For example, a recent study 

on transcriptional and translational regulation of continuously-illuminated Cyanothece has 

revealed strong synthesis capability for nitrogenase and circadian expression of 10% of its genes 

(Toepel et al., 2008).  Furthermore, Cyanothece strains usually utilize exogenous carbon 

substrates for mixotrophic growth under light conditions and for heterotrophic growth under dark 

conditions (Reddy et al., 1993). Carbon substrates are key factors controlling the efficiency of 

cyanobacterial aerobic growth and hydrogen production (Berman-Frank et al., 2003; Reddy et 

al., 1993; Tamagnini et al., 2007). Genome analysis studies have revealed that Cyanothece 

51142 has a unique gene cluster on its linear chromosome that contains key genes involved in 

glucose and pyruvate metabolism (Welsh et al., 2008). However, the ability of this strain to 

metabolize glucose or pyruvate remains unknown.  
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To quantitatively examine the effect of carbon and nitrogen sources on Cyanothece 

central metabolism, this study investigated the effects of three carbon sources (glucose, glycerol, 

and pyruvate as representatives of sugar, lipid derivatives, and organic acids from central 

metabolic pathways, respectively) on Cyanothece 51142 growth and metabolism. Two nitrogen 

sources other than N2, ammonia and nitrate, were also examined. Precise readouts on metabolic 

state and activity were based on 13C-assisted metabolite analysis integrated with biochemical 

assays and the gene expression patterns obtained by reverse transcription PCR (RT-PCR) (Fong 

et al., 2006; Pingitore et al., 2007; Tang et al., 2007c; Tang et al., 2009; Wu et al., 2010). Our 

work demonstrates that 13C-assisted metabolite analysis can be used as a high throughput tool to 

study cyanobacterial metabolisms. Superior to the traditional 14C method (Bottomley & Baalen, 

1978), the non-radioactive 13C method can provide rich information about which carbons within 

a metabolite are labeled, and thus enable an in-depth understanding of carbon utilization and 

metabolic regulation in Cyanothece 51142.   

 

A4.3. Materials and Methods 

A4.3.1. Bacterial Strains and Growth Conditions  

Cyanothece 51142 was first grown in 150 mL Erlenmeyer flasks fed with ASP2 medium 

(Reddy et al., 1993) without nitrate. Ambient CO2 provided the sole carbon source. For 

experiments examining the effect of nitrogen sources, 18 mM NaNO3 or 17 mM NH4Cl was 

added into the medium. Cultures were grown aerobically under continuous light (50 µmol 

photons·m-1·s-1) on a shaker at 150 r. p. m. and 30°C. Cells at late-mid exponential phase were 

sub-cultured into different culture media with various nitrogen and carbon sources. Isotopically-
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labeled carbon substrates (Cambridge Isotope Laboratories, Andover, MA) were used for 

mixotrophic growth, including 54 mM glycerol (2-13C, >98%), 26 mM glucose (U-13C, >98%) 

and 11 mM sodium pyruvate (3-13C, >98%). For tracer experiments, a 3% inoculum from 

unlabeled stock culture was used to inoculate a 50 mL medium containing labeled carbon 

sources. At the mid-exponential phase of growth, a 3% inoculum from the first isotopic labeled 

culture was used to inoculate 50 mL sub-cultures with the same medium to remove the effect of 

unlabeled carbon introduced from the initial inoculum. Cell growth was monitored by a UV-Vis 

spectrometer (GENESYS, Thermo Scientific, USA) at 730 nm. To perform a comparative study, 

a glucose tolerant Synechocystis strain PCC 6803 (a model cyanobacterium for studying 

fundamental processes of photosynthetic metabolism) was also cultured in BG11 medium 

(pH=7.6) under the same growth conditions (continuous light and 30 oC, Stanier et al., 1971). 

The BG11 medium was supplemented with 6 mM glucose (U-13C, >98%) to support mixotrophic 

growth. Synechocystis PCC 6803 was also sub-cultured in the same labeled medium twice before 

sampling for 13C-labeled metabolite analysis. 

A4.3.2. Metabolite and Photosynthetic Activity Analysis 

To analyse metabolites in Cyanothece 51142, biomass was harvested at the mid-

exponential phase of growth (~90 h) by centrifugation at 7,000 rpm for 15 min at 10˚C.  The 

concentrations of pyruvate, glucose and glycerol were analyzed with enzymatic assay kits (R-

Biopharm). To measure hydrogen produced by Cyanothece 51142, 20 ml of culture solution was 

taken from the culture flask after three days and transferred into a 35.2 ml glass vial sealed with 

a rubber septum and kept under continuous light (50 µmol photons m-2 s-1). A modified protocol 

was used to quantify hydrogen (Rey et al., 2007).  Briefly, hydrogen that accumulated in the 

headspace of the sealed culture vials (for 5 h) was withdrawn with a Hamilton gas-tight syringe 
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and quantified on an Agilent 6890N Gas Chromatograph with a molseive 5A 60/80 column 

[inner dimensions 6’×1/8” (1830x3.17 mm)] and Thermal Conductivity Detector.  Injection, 

oven, and detector temperatures were 100°C, 50°C, and 100°C, respectively.  Argon was the 

carrier gas (flow rate of 65 ml min-1). All measurements included three biological replicates. 

Photosynthesis activities were determined based on measurements of chlorophyll 

fluorescence and oxygen evolution. Chlorophyll fluorescence profiles of photosystem II (PSII) of 

Cyanothece 51142 under different nutrient conditions were detected by a FL100 fluorometer 

(Photon Systems Instruments, Brno, Czech Republic) as described previously (Roose & Pakrasi, 

2004). All samples taken for measurement were diluted to OD730 ~0.2 using cell-free ASP2 

medium.  The samples were first adapted for 3 min in total darkness. During the measurement 

(performed at room temperature), the fluorometer emitted saturating light pulses to determine the 

fluorescence yield of the samples. The photosynthesis activity was derived by the maximum 

quantum yield (Fv/Fm) according to the formula Fv/Fm = (Fm - F0)/Fm, where F0 is initial 

fluorescence and Fm is maximum fluorescence at the beginning of measurement (Krause & Weis, 

1991).  

Oxygen evolution rates of Cyanothece 51142 grown under different nutrient conditions 

were measured with a Hansatech oxygen electrode. Assays were performed at 30 °C on whole 

cells in ASP2 media with a saturating light intensity of 8,250 µmol photons m-2 s-1 for 2 min at a 

2.5 ml reaction volume. For each reaction, the chlorophyll concentration of each sample was 

diluted and ~6 µg mL-1. The oxygen evolution rates [µmol O2 (mg chlorophyll)-1 h-1] were then 

measured and normalized based on chlorophyll concentration.  
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A4.3.3. RNA Extraction and RT-PCR 

The bacteria grown under different cultural conditions were harvested at mid-exponential 

phase according to the corresponding growth curves. The total RNA was extracted by using a 

PureLinkRNA Mini kit (Invitrogen), following the manufacturer’s instruction. cDNA was 

synthesized from ~2 µg RNA by using a High-Capacity cDNA Reverse Transcription Kit 

(Invitrogen). The primers for RT-PCR were designed using Primer Premier 5 software 

(PREMIER Biosoft) and analyzed by OligoAnalyzer 3.0 software (Integrated DNA 

Technologies). The forward primer 5’-AGCGGTGGAGTATGTGGT-3’ and reverse primer 5’-

GGCTGGGTTTGATGAGATT-3’ were employed to amplify a 16S rRNA gene as a control. 

The forward primer 5’-CCGACTACACTCCGAAAG-3’ and reverse primer 5’-

ACGTAACGCCCGTAATGC-3’ were used to amplify the Rubisco (rbcL) gene and the forward 

primer 5’-TAATCACGAAACGGGAG-3’ and reverse primer 5’-CACCACATCAGCGTATTG-

3’ to amplify the prk gene. The PCRs were conducted with the following cycle conditions: 2 min 

of activation of the polymerase at 94 °C, followed by 30 cycles consisting of 1 min at 94 °C, 30 s 

at 53 °C and 2 min at 72 °C; finally, a 10 min extension was performed at 72 °C. The final PCR 

product was observed directly on 2% agarose gels after electrophoresis. 

A4.3.4. Isotopic Analysis  

 The preparation and isotopic analysis of proteogenic amino acids were performed as 

previously described (Tang et al., 2007a,b).  In brief, exponentially growing biomass from ~20 

ml culture was collected by centrifugation (8,000×g, 10 min, 4˚C) and hydrolyzed in 6 M HCl at 

100°C for 24 h.  The amino acid mix was dried and derivatized in tetrahydrofuran (THF) and N-

(tert-butyl dimethylsilyl)-N-methyl-trifluoroacetamide (Sigma-Aldrich) at 70°C for 1 h.  A gas 

chromatograph (Hewlett-Packard model 7890A, Agilent Technologies) equipped with a DB5-
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MS column (J&W Scientific) and a mass spectrometer (5975C, Agilent Technologies) were used 

for analyzing amino acid labeling profiles.  The ion [M-57]+ from unfragmented amino acid was 

detected and mass fractions of key amino acids were calculated (Wahl et al., 2004). The 

substrate utilization ratios R (reflecting the degree of mixotrophic metabolism) for an amino acid 

X was calculated from the labeling patterns of proteogenic amino acids by the following 

equation:  

Amino acid X:                    (A4.1) 

  

where the ratio R indicates the utilization of labeled carbon substrate over unlabeled CO2 for 

producing an amino acid X (and its precursors). Mi is the GC-MS isotopomer fraction for amino 

acid X (i.e., M0 is the unlabeled fraction, M1 is the singly labeled fraction, M2 is the doubly 

labeled fraction, M3 is the triply labeled fraction, etc), C is the total number of carbon atoms in 

the amino acid molecule, Vsub is the carbon flux from 13C labeled substrate, VCO2 is the carbon 

flux from CO2, 0.98 is the purity of the labeled carbon substrate; 0.01 is the natural abundance of 

13C, m is the total number of carbons in the substrate molecule, and n is the total number of 

labeled carbons in the substrate molecule. R indicates the amount of labeled carbon that 

percolated through the central metabolic networks (Figure A4.1).  
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A4.4. Results 

A4.4.1. Cell Growth with Different Carbon and Nitrogen Sources 

Figure A4.2 and Supplementary Figure A4.S1 show the effect of carbon and nitrogen 

substrates on the growth of Cyanothece 51142 under continuous light. Biomass growth was 

significantly enhanced by the addition of glycerol to ASP2 medium. For example, glycerol 

addition doubled the specific growth rate from 0.28 to 0.63 day-1 under N2-fixing conditions. 

These results are consistent with an earlier report on two Cyanothece strains (Reddy et al., 1993). 

On the other hand, Cyanothece growth was not apparently enhanced by either glucose or 

pyruvate (Supplementary Figure A4.S1), and a high concentration of pyruvate (64 mM) inhibited 

Cyanothece growth. Compared with nitrogen fixing cultures, the presence of nitrate salts in the 

growth media increased Cyanothece autotrophic growth rates from 0.28 day-1 (N2-fixation 

condition) to 0.37 day-1 (nitrate-sufficient condition). Similarly, the presence of glycerol 

enhanced growth rate by approximately two-fold (from 0.60 to 1.02 day-1). As expected, high 

concentrations of ammonium salts (17 mM) fully inhibited growth (data not shown) because of 

their well-known deleterious effect on the photosystems of cyanobacteria (Drath et al., 2008; Dai 

et al., 2008). 

A4.4.2. Isotopic Analysis of Amino Acids 

13C enrichment patterns in key metabolites were used to estimate the relative utilization 

of labeled carbon substrates (i.e., glucose, pyruvate, and glycerol) and CO2 for metabolite 

synthesis under mixotrophic growth. Figure A4.1 shows the central metabolic pathways in 

Cyanothece 51142 (http://www.genome.jp/kegg/). The labeling of five amino acids was 

analyzed: histidine (precursors: ribose-5-phosphate and 5,10-methyl-THF), synthesized from the 

Calvin cycle and pentose phosphate pathway; serine (precursor: 3-phosphoglycerate, a product 
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from the Calvin cycle); alanine (precursor: pyruvate, originated from carbon substrate or CO2 

fixation ); and aspartate and glutamate (precursors: oxaloacetate and 2-oxoglutarate, respectively, 

synthesized from the citric acid cycle). Under nitrate-sufficient conditions, glycerol could be 

used as the sole carbon source for synthesis of alanine, serine, and histidine (as indicated by R 

values approaching infinity). This indicates that the cell was undergoing completely 

heterotrophic metabolism. R values of some of the key amino acids in glucose and pyruvate 

cultures were positive and thus these two carbon sources were actually utilized for biomass 

synthesis (Table 1). However, their measured R values were between 0 and 0.3, which indicated 

that CO2 was the main carbon source for metabolite synthesis. This result was consistent with the 

fact that glucose and pyruvate did not apparently improve the biomass growth. Compared with 

nitrogen-sufficient conditions, nitrogen-fixing conditions further limited glucose and glycerol 

utilization, as shown by the decreased labeling fractions of three key amino acids (i.e., alanine, 

serine, and histidine, Table A4.1).  

A4.4.3. Nitrogenase-Dependent H2 Production, Photosynthesis and Calvin Cycle Activity 

Hydrogen production was under continuous light with different carbon substrates (N2 as 

the sole nitrogen source) was measured in the exponential (day 4) and stationary (day 9) growth 

phases (Supplementary Figure A4.S2). In the exponential growth phase under nitrogen fixing 

conditions, hydrogen production rates were as follows: glycerol, 25±6 µmol H2 (mg 

chlorophyll)-1 h-1; glucose, 13±9 µmol H2 (mg chlorophyll)-1 h-1; pyruvate, 4±2 µmol H2 (mg 

chlorophyll)-1 h-1 ; and under photoautotrophic conditions; 5±1 µmol H2 (mg chlorophyll)-1 h-1. 

Under all nitrate or ammonium chloride conditions, hydrogen production was not detected, 

regardless of the carbon substrate.  
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The measurement of photosynthetic parameters (Fig. A4.3) suggested that, compared 

with photoautotrophic conditions, addition of an exogenous carbon source (glycerol, glucose, or 

pyruvate) did not strongly suppress the maximal quantum yield of PSII (Fv/Fm) or the oxygen 

evolution rate. Nitrate-sufficient conditions enhanced the oxygen evolution rates by two- to 

threefold compared with nitrogen-fixing conditions, while the changes of quantum yields of PSII 

were much less significant (10-30%). Gene expression in the carbon fixation pathway was also 

determined (Fig. A4.4). RT-PCR results indicated that two key enzymes in Calvin Cycle 

([Rubisco, (rbcL) and phosphoribulokinase (prk)] were functional under conditions of growth 

with glyverol or glucose. The above measurements confirmed that the light-dependent reactions 

were active under all culture conditions, even though carbon substrates reduced the relative 

contribution of CO2 fixation to biomass synthesis.  

 

A4.5. Discussion  

A4.5.1. Carbon Substrate Utilization and Regulation 

In continuous light, Cyanothece 51142 can efficiently utilize glycerol for aerobic growth. 

Based on the measurement of carbon substrates in the culture medium during the exponential 

growth phase, the uptake rates for glycerol were 0.22±0.05 g (g dry biomass)-1 day-1 under 

nitrogen fixing and 0.35±0.06 g (g dry biomass)-1 day-1 under nitrate-sufficient conditions. 

Glycerol promoted Cyanothece 51142 growth because it provided carbon and energy sources. 

Under nitrate-sufficient conditions, the high values of R for the serine, alanine and histidine 

labeling data indicated that 3-phosphoglycerate, pyruvate and ribose-5-phosphate nodes in the 

central metabolic pathways (Figure A4.1) originating completely from glycerol, while the 
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contribution of CO2 photofixation to these metabolite nodes was negligible. As a comparison, the 

glucose-tolerant strain of Synechocystis sp. 6803 was cultured with fully labeled glucose under 

continuous light and nitrogen-sufficient conditions (Supplementary Figure A4.S3). The 

measured R values (Table 1) for serine (0.87), alanine (0.92) and histidine (1.73) indicated that 

Synechocystis 6803 had a typical mixotrophic growth.  In general, cyanobacterial heterotrophic 

growth has been reported only under three conditions: complete darkness, dim light and pulses of 

light (Anderson & McIntosh, 1991; Van Baalen et al., 1971). When the light is sufficient for 

photoautotrophy, Cyanothece photoheterotrophic growth is only achieved by addition of PSII 

inhibitors (Reddy et al., 1993). This study shows that rapidly growing Cyanothece 51142 cells 

can shift their metabolic strategies from mixotrophic or autotrophic growth to photoheterotrophic 

growth, possibly because maximal utilization of an energy-rich carbon substrate (glycerol) can 

reduce energy costs related to CO2 fixation (fixation of one CO2 consumes two ATP and one 

NADPH) and building block synthesis, so that maximal biomass growth can be achieved.  

On the other hand, glucose was not apparently consumed by Cyanothece 51142, as the 

consumed concentrations were below 1 mM in all experiments. In the [U-13C] glucose 

experiments (Table 1), all five amino acids contained labeled carbons, which indicated that the 

labeled glucose had percolated through all the entire central metabolic pathways, thereby 

confirming the ability of Cyanothece 51142 to metabolize glucose. The R values of all key 

amino acids were below 0.05 for both nitrogen-fixation and nitrate-sufficient conditions, 

suggesting that a large fraction of the carbon in the biomass had originated from CO2 fixation. In 

contrast, glucose is the most favorable carbon source for Synechocystis species (Yang et al., 

2002), and the R values (Table 1) from key amino acids were around ~0.4-1.7. While both 

Synechocystis 6803 and Cyanothece 51142 have completely annotated central pathways for 
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glucose metabolism, Synechocystis 6803 contains a glucose transporter (gene code Sll0771) that 

shares a sequence relationship with mammalian glucose transporters (Bottomley & Baalen, 1978; 

Flores & Schmetterer, 1986; Schmetterer, 1990). So far, the presence of a glucose transporter in 

Cyanothece 51142 has not been rigorously verified. From the genome database (DOE Joint 

Genome Institute, www.jgi.doe.gov/), a gene (cce_3842) has been identified as a glucose 

transport protein that shared weak (25%) amino acid identity with the Sll0771 protein of 

Synechocystis PCC 6803. Based on the glucose-dependent growth data, we conclude that the 

enzymes involved in glucose transport or utilization in Cyanothece 51142 may not be as efficient 

as those of Synechocystis PCC 6803. 

Analysis of labeled pyruvate-grown Cyanothece cells showed that serine (precursor 3-

phosphoglycerate) and histidine (precursor ribose-5-phosphate) were completely unlabeled 

(R=0). Such a labeling profile suggests that CO2 was used as the sole carbon source for synthesis 

of metabolites in glycolysis and the pentose phosphate pathway (i.e., there was no 

gluconeogenesis activity). Pyruvate was used only to synthesize alanine (R=0.3~0.6) and 

metabolites in the tricarboxylic acid cycle: (pyruvateoxaloacetateAsp) 

(pyruvateacetylCoAcitrate2-oxoglutarateGlutamate), as reflected by the labeled carbon 

present in glutamate and aspartic acid. Interestingly, the R values for alanine (0.60) and 

glutamate (1.25) were higher under nitrogen-fixing conditions than under nitrate-sufficient 

conditions, indicating that relatively more labeled pyruvate was used for glutamate synthesis 

under these conditions. The nitrogen fixation was via nitrogenase: N2 + 6 H+ + 6 e− → 2 NH3,  

and the nitrogenase-generated ammonium was assimilated into amino acids through the 

glutamine synthetase/glutamate synthase pathway (Postgate, 1998). Utilization of supplemented 

pyruvate for glutamate synthesis could facilitate the nitrogen fixation process.  
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The enzyme RuBisCO is known to be the rate-limiting factor in the Calvin Cycle for 

capturing CO2 to synthesize three-carbon sugars (glycerate 3-phosphate) (Atsumi et al., 2009). 

We examined RuBisCO (rbcL) and phosphoribulokinase (prk) gene expression to reveal the 

metabolic regulation in the Calvin cycle at transcription level. Under photoautotrophic, 

mixotrophic, and heterotrophic   growth conditions, expression of the two genes was clearly 

observed. Although Calvin cycle genes were expressed, Cyanothece 51142 still grew 

heterotrophically in the presence of glycerol and nitrate, based on the isotopomer data (no 

apparent incorporation of CO2 from the Calvin cycle). These inconsistencies indicate that 13C-

assisted metabolite analysis provides a direct readout of actual metabolic status, while gene 

expression results alone cannot be relied upon, as there are many points of possible post-

transcriptional regulation.   

Furthermore, Cyanothece 51142 can fix CO2 via anaplerotic pathways (i.e., C4 carbon 

fixation) (Slack & Hatch, 1967). In the presence of glycerol and under nitrate-sufficient 

conditions (Table 1), R ratios for aspartate synthesis was 1.53, much smaller than the R ratios 

(R=∞) for Ala, Ser, and His. This indicates that, even though phototrophic CO2 fixation was 

significantly inhibited, CO2 was utilized for the synthesis of C4 metabolites in the tricarboxylic 

acid cycle via anaplerotic pathways: (1) PEP+CO2oxaloacetate (catalyzed by 

phosphoenolpyruvate carboxylase or phosphoenolpyruvate carboxykinase) or (2) 

pyruvate+CO2malate (catalyzed by malic oxidoreductase). Such anaplerotic pathways 

synthesized key TCA cycle metabolites such as oxaloacetate and succinate (precursors for 

chlorophyll).  

Meanwhile, CO2 was generated by two reactions (i.e., pyruvateacetylCoA+CO2; 

isocitrate2-oxoglutarate+CO2), which are essential steps for glutamate synthesis. These 
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catabolic processes cause the loss of unlabeled carbon when the 2nd position labeled glycerol is 

used as the main carbon source. Therefore, the coefficients VCO2 (CO2 utilization flux) and R 

(carbon utilization ratio) were both negative for glutamate synthesis (Equation 1) in glycerol 

supplemented cultures (under both nitrogen fixation and nitrate-sufficient conditions) (Table 1). 

A4.5.2. Photosynthesis Activity 

Photosynthesis activity was estimated by the Fv/Fm parameter (maximum quantum 

efficiency of photosystem II) (Pirintsos et al., 2009). When glycerol or glucose was utilized, the 

maximum quantum yield Fv/Fm (i.e, efficiency of  PSII) in Cyanothece 51142 was not 

significantly affected (changes were within ~30%, Figure A4.3A). Although chlorophyll 

fluorescence estimation is not an accurate method for determination of absolute PSII activity 

(Schreiber et al., 1995; Ting & Owens, 1992), we have used it in our study as a tool only to  

confirm active photon capture in the light-harvesting antenna complexes of  PSII under both 

heterotrophic and mixotrophic conditions.  

Oxygen evolution was measured as one molecule of the pigment chlorophyll absorbs one 

photon and uses its energy to generate NADPH, ATP, and O2 in the light-dependent reactions 

(Kaftan et al., 1999). The oxygen evolution rates in Cyanothece 51142 rose by 2-3 fold under all 

nitrate-sufficient conditions compared to corresponding nitrogen fixation conditions (Fig. 

A4.3B). The significantly higher rates of oxygen evolution indicated that the photosynthetic 

process of water splitting was more active and provided more energy (ATP and NADPH) to 

support biomass growth.  

Finally, precise determination of the photosynthesic activity of Cyanothece 51442 is 

difficult, as its metabolic behavior fluctuates under continuous light due to its circadian rhythm 

(Colon-Lopez et al., 1997; Toepel et al., 2008). The photoreaction activity data in Fig. A4.3 
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represent only qualitative (not quantitative) evidence to support the presence of active light-

dependent reactions under all culture conditions.  

A4.5.3. Nitrogen Utilization and Nitrogenase-Dependent Hydrogen Production 

Under anaerobic conditions (using argon gas to flush the culture), hydrogen production rates of 

Cyanothece 51142 were as high as 100 µmol (mg chlorophyll)-1 hr-1 (Data not shown). Under 

aerobic conditions, the hydrogen production enzyme (hydrogenase) is completely inactivated by 

oxygen (Tamagnini et al., 2007). Cyanothece 51142 uses nitrogenase for both nitrogen fixation 

and hydrogen production. Nitrate, ammonium and some amino acids inhibit nitrogenase activity 

and thus fully prohibit aerobic hydrogen production by cyanobacteria (Rawson, 1985). 

Furthermore, NH4
+ is a direct nitrogen source (nitrate is reduced to NH4

+) that can be 

incorporated into biomass via glutamine/glutamate synthase (Muro-Pastor et al., 2005).  

Cyanothece 51142, however, only grows at low concentrations of NH4
+ (below 1 mM) because 

of an inhibition effect (Galmozzi et al., 2007; Rawson, 1985). Nitrogen fixation is an energy 

demanding process: N2+8H++8e-+16ATP→2NH3+H2+16ADP+16Pi. The addition of glycerol 

reduces CO2 fixation via the Calvin Cycle, so more energy (ATP and NADH) can be directed to 

nitrogen fixation, thus promoting hydrogen production by 4-5 fold (Dutta et al., 2005; 

Madamwar et al., 2000). Glucose and pyruvate cannot significantly promote hydrogen 

production because their utilization is very low and their effect on the energy economy limited. 

Hydrogen production rates dropped for all mixotrophic cultures of Cyanothece 51142 after 9 

days, suggesting that inhibitory metabolites that reduced nitrogenase activity accumulated during 

cultivation (Atsumi et al., 2009; Nyström, 2004). Finally, the coexistence of oxygen-evolving 

photosynthesis and oxygen-sensitive nitrogen fixation (indicated by hydrogen evolution) is an 

attractive characteristic in some cyanobacteria (Benemann & Weare, 1974; Huang & Chow., 
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1986). Unlike filamentous cyanobacterial species, in which nitrogen fixation and oxygenic 

photosynthesis are spatially segregated (Berman-Frank et al., 2001), Cyanothece 51142 is able to 

maintain activities for N2 fixation, respiration, and photosynthesis within the same cell under 

continuous light. This strain not only has a strong ability to scavenge intracellular oxygen and 

synthesize nitrogenase (Colon-Lopez et al., 1997; Fay, 1992), but also develops a highly 

circadian mechanism for nitrogen fixation (Elvitigala et al., 2009). 

  This study improves our understanding of Cyanothece 51142 physiology with  different 

carbon and nitrogen sources as well as its potential application for hydrogen production. In 

general, exogenous carbon substrates may improve cellular growth but have strong negative 

effects on CO2 fixation. Continuously illuminated Cyanothece 51142 shows simultaneous 

oxygen evolution and nitrogenase-dependent hydrogen production, while hydrogen production 

can be significantly enhanced by the addition of glycerol. A comparison of metabolic status 

under autotrophic, mixotrophic and heterotrophic growth conditions indicated that Cyanothece 

51142 has an inherent metabolic strategy for maximal biomass production at low energy cost. 

Finally, this study has further confirmed that 13C-assisted metabolite analysis is a high-

throughput method which can provide new and precise information to understand a biological 

system. 

 

A4.6. Supplementary Materials 

The following supporting information is available online with the originally published 

version of this article (Feng et al. 2010) at DOI: 10.1099/mic.0.038232-0. 
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Supplementary Fig. S1:  The growth of Cyanothece 51142 in the presence of different 

carbon and nitrogen substrates under continuous light. 

Supplementary Fig. S2:  Hydrogen production under mixotrophic conditions 

Supplementary Fig. S3:  Growth of Synechocystis 6803 in the presence of glucose under 

continuous light 
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Table A4.1. Isotopic analysis of the labeling profiles of amino acids in Cyanothece 51142 and 

Synechocystis 6803 under different growth conditions (the standard error for GC-MS 

measurement is below 0.02, technical replicates, n=2).  

Amino  N2 NaNO3 PCC 6803  
(NO3-medium) 

Acids 

[M-57]+ 

Glucose R1 Pyruvate R Glycerol R Glucose R Pyruvate R Glycerol R Glucose R 

M0 0.67 0.41 0.19 0.61 0.51 0.07 0.04  

M1 0.19 0.55 0.71 0.19 0.48 0.85 0.05 0.92 Ala 

M2 0.11 

 

0.032 

0.03 

 

0.597 

0.10 

 

4.2 

0.17 

 

0.042 

0.01 

 

0.327 

0.07 

 

+∞ 

0.28  

M0 0.65 0.98 0.20 0.58 0.97 0.08 0.04 

M1 0.22 0.02 0.72 0.22 0.03 0.81 0.06 Ser 

M2 0.10 

 

0.033 

0 

 

0 

0.09 

 

3.7 

0.16 

 

0.046 

0 

 

0 

0.10 

 

+∞ 

0.28 

 

    0.87 

M0 0.58 0.54 0.10 0.59 0.94 0.07 0.04 

M1 0.24 0.43 0.64 0.20 0.06 0.78 0.05 

M2 0.11 0.04 0.25 0.17 0 0.15 0.19 
Asp 

M3 0.06 

 

0.030 

0 

 

0.195 

0.01 

 

2.2 

0.03 

 

0.032 

0 

 

0.005 

0 

 

1.53 

0.47 

 

0.44 

M0 0.43 0.15 0.02 0.38 0.47 0.01 0.02 

M1 0.26 0.44 0.14 0.22 0.49 0.15 0.02 

M2 0.21 0.37 0.62 0.27 0.04 0.74 0.04 

M3 0.07 0.04 0.21 0.09 0 0.10 0.07 

Glu2 

M4 0.02 

 

0.041 

0 

 

1.25 

0.01 

 

- 1.78 

0.03 

 

0.051 

0 

 

0.170 

0 

 

- 2.11 

0.53 

 

0.76 

M0 0.44 0.91 0.05 0.33 0.92 0.01 0.01 

M1 0.28 0.08 0.28 0.24 0.08 0.21 0.01 

M2 0.17 0 0.50 0.22 0 0.55 0.02 

M3 0.07 0 0.16 0.12 0 0.20 0.03 

M4 0.03 0 0 0.07 0 0.03 0.06 

His 

M5 0 

 

 

0.032 

0 

 

 

0 

0 

 

 

2.83 

0.01 

 

 

0.049 

0 

 

 

0 

0 

 

 

+∞ 

0.22 

 

 

1.73 

 

1 - Bold values were the carbon substrate (glycerol, pyruvate, or glucose) utilization ratios 

(substrate/CO2 fixation) for amino acid synthesis calculated according to Equation (1). 
2 - The glutamate synthesis pathway involved the loss of two carbons from pyruvate to 

ketoglutarate. Such a microbial process changed the labeling enrichment, and the negative value 

indicated the net loss of unlabeled CO2. 
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Figure A4.1. Central metabolic pathways of Cyanothece 51142 with glucose, glycerol, and 

pyruvate as carbon substrates. The dashed line shows the metabolic pathway with glycerol as 

carbon substrate; the bold line indicates glucose; the solid line shows the common pathway for 

all carbon conditions.  Abbreviations: ACCOA, acetyl-coenzyme A; Ala, alanine; E4P, 

erythrose-4-phosphate; F6P, fructose-6-phosphate; G6P, glucose-6-phosphate; GAP, 

glyceraldehyde 3-phosphate; 3PG, 3-phosphoglycerate; GLY, glycerol; GLU, glucose; His, 

histidine; ICIT, citrate/isocitrate; MAL, malate; OAA, oxaloacetate; OXO, 2-oxoglutarate; PEP, 

phosphoenolpyruvate; PYR, pyruvate; R5P, ribose-5-phosphate (or ribulose-5-phosphate); R15P, 

ribulose-1,5-bisphosphate; S7P, sedoheptulose-7-phosphate; Ser, serine; Xu5P: xylulose-5-

phosphate. 
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Figure A4.2. Cyanothece 51142 growth curves under different nitrogen and carbon sources 

(biological replicates, n=3). Diamond: Gly+Nitrate; Square: Gly+N2; Triangle: CO2+ Nitrate; 

Circle: CO2+N2. The glycerol-growing samples were taken at day four when the remained 

glycerol in the culture medium was sufficient for biomass growth (>30mM).    
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Figure A4.3. Maximum quantum yields (Figure 2A) of PSII and oxygen evolution rates 

(Figure 2B) in Cyanothece 51142 under different growth conditions. All samples were taken 

at the exponential growth phase based on the growth curve. Black column, N2 as nitrogen source; 

white column, NaNO3 as nitrogen source. Data are for 3 biological replicates.
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Figure A4.4. Reverse transcription PCR (RT-PCR) study for ribulose-1,5-bisphosphate 

carboxylase oxygenase (rbcL) and phosphoribulokinase (prk) under different mixotrophic 

growth conditions. (A) CO2+N2; (B) CO2+NaNO3; (C) glycerol+NaNO3; (D) glucose+NaNO3. 

The 16S rRNA gene was used as the internal reference; the no template control (NTC) was 

added under each mixotrophic growth conditions.
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