
Washington University in St. Louis
Washington University Open Scholarship
Engineering and Applied Science Theses &
Dissertations McKelvey School of Engineering

Summer 8-15-2016

Neural Representation of Vocalizations in Noise in
the Primary Auditory Cortex of Marmoset
Monkeys
Ruiye Ni
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

Part of the Biomedical Commons, and the Physiology Commons

This Dissertation is brought to you for free and open access by the McKelvey School of Engineering at Washington University Open Scholarship. It has
been accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open
Scholarship. For more information, please contact digital@wumail.wustl.edu.

Recommended Citation
Ni, Ruiye, "Neural Representation of Vocalizations in Noise in the Primary Auditory Cortex of Marmoset Monkeys" (2016).
Engineering and Applied Science Theses & Dissertations. 189.
https://openscholarship.wustl.edu/eng_etds/189

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Feng_etds%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng?utm_source=openscholarship.wustl.edu%2Feng_etds%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/267?utm_source=openscholarship.wustl.edu%2Feng_etds%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/69?utm_source=openscholarship.wustl.edu%2Feng_etds%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/189?utm_source=openscholarship.wustl.edu%2Feng_etds%2F189&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 

 

WASHINGTON UNIVERSITY IN ST. LOUIS 

School of Engineering and Applied Science 

Department of Biomedical Engineering 

 

Dissertation Examination Committee: 

Dennis L. Barbour, Chair  

ShiNung Ching 

Daniel W. Moran 

Baranidharan Raman 

Mitchell S. Sommers 

 

 

Neural Representation of Vocalizations in Noise  

in the Primary Auditory Cortex of Marmoset Monkeys  

by 

Ruiye Ni 

 

 

A dissertation presented to the  

Graduate School of Arts & Sciences 

of Washington University in 

partial fulfillment of the 

requirements for the degree 

of Doctor of Philosophy 

 

 

 

 

August 2016 

St. Louis, Missouri 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2016, Ruiye Ni



ii 

 

Table of Contents 
List of Figures ................................................................................................................................ iv 

List of Tables ................................................................................................................................. vi 

Acknowledgments......................................................................................................................... vii 

Abstract .......................................................................................................................................... xi 

Chapter 1: Introduction ................................................................................................................... 1 

1.1 Background and Motivation ............................................................................................. 1 

1.1.1 Auditory Scene Analysis ....................................................................................................... 3 

1.1.2 Marmoset Monkey Vocalization ........................................................................................... 5 

1.1.3 Marmoset Monkey Auditory Cortex ..................................................................................... 6 

1.2 Research Objectives ......................................................................................................... 7 

1.3 Research Approach and Overview of Dissertation .......................................................... 9 

Chapter 2: Experimental Methods ................................................................................................ 11 

2.1 Surgery and Recording Methodology ............................................................................ 11 

2.2 Acoustic Stimuli ............................................................................................................. 13 

2.3 Experimental Procedures................................................................................................ 18 

2.4 Data Analysis ................................................................................................................. 19 

Chapter 3: Feature-algined Responses to White Gaussian Noise ................................................. 20 

3.1 Introduction .................................................................................................................... 20 

3.2 Data Analysis ................................................................................................................. 21 

3.3 Results ............................................................................................................................ 23 

3.3.1 The Information Content of Neural Responses Decreases as a Function of SNR under the 

WGN Condition .................................................................................................................................. 23 

3.3.2 Feature-aligned Response to White Gaussian Noise .......................................................... 25 

3.3 Discussion ...................................................................................................................... 28 

Chapter 4: Contextual Effects of Noise on Vocalization Encoding in the Primary Auditory 

Cortex ............................................................................................................................................ 30 

4.1 Introduction .................................................................................................................... 30 

4.2 Data Analysis ................................................................................................................. 32 

4.3 Results ............................................................................................................................ 36 

4.3.1 Mean Discharge Rate and Response Reliability both Decreases as SNR Decreases .......... 36 



iii 

 

4.3.2 Low Correlation between Single Units’ Resistances to Different Noises........................... 40 

4.3.3 Intensity-invariance is Insufficient to Account for Noise-resistance .................................. 43 

4.3.4 Selecting the Number of Neural Response Groups ............................................................. 45 

4.3.4 Constant Response Groups with Dynamic Neuron Membership ........................................ 47 

4.3.5 Suppression and Addition of Spiking Activity within and between Vocalization Phrases . 54 

4.3 Discussion ...................................................................................................................... 55 

Chapter 5: Population Coding of Vocalizations at Multiple Intensities and SNRs ...................... 60 

5.1 Introduction .................................................................................................................... 60 

5.2 Data Analysis ................................................................................................................. 63 

5.3 Results ............................................................................................................................ 69 

5.3.1 Population Response Variability of Vocalizations at Multiple Intensities.......................... 69 

5.3.2 Population Response Trajectory of Vocalizations at Multiple Intensities in 3D Space ...... 71 

5.3.3 Population Response Discrimination of Vocalizations across Intensities .......................... 76 

5.3.4 Population Response Variability of Vocalizations at Multiple SNRs ................................. 81 

5.3.5 Population Response Trajectory of Vocalizations at Multiple SNRs in 3D Space ............. 84 

5.3.6 Population Response Discrimination of Vocalizations across SNRs .................................. 89 

5.3.7 Discrimination Generalization over Multiple SNRs ........................................................... 93 

5.3.8 Subpopulation Response Discrimination of Vocalizations across SNRs ............................ 95 

5.4 Discussion ...................................................................................................................... 96 

Chapter 6: Conclusions and Recommendations for Future Work .............................................. 100 

6.1 Conclusions .................................................................................................................. 100 

6.2 Recommendation for Future Work .............................................................................. 103 

References ................................................................................................................................... 105 

  



iv 

 

List of Figures 
Figure 2.1: Temporal waveforms and spectrograms of five vocalizations: Trillphee,  

 Peeptrill, Trilltwitter, Tsikstring, and Peepstring .......................................................14 

Figure 2.2: Acoustic stimuli used to investigate robust sound encoding in the primary 

 auditory cortex ............................................................................................................16 

Figure 3.1: Vocalizations consistently elicit more informative responses than WGN ..................24 

Figure 3.2: A large number of A1 neurons generate spikes that are feature-aligned  

 to WGN ......................................................................................................................27 

Figure 4.1: Clean vocalizations generally elicit the most spiking and the most  

 reliable spiking ...........................................................................................................38 

Figure 4.2: Babble tends to disrupt vocalization encoding more than WGN ................................41 

Figure 4.3: Intensity invariance correlates poorly with noise resistance .......................................43 

Figure 4.4: Selecting the number of response groups ....................................................................45 

Figure 4.5: All noisy vocalization responses fall into a consistent set of classes ..........................47 

Figure 4.6: Exemplar neurons for each response group ................................................................49 

Figure 4.7: Noisy vocalization response types are not consistent for individual units ..................51 

Figure 4.8: Difference of discharge rates to phrases and gaps of vocalizations ............................54 

Figure 5.1: Population-averaged responses to five vocalizations at multiple intensities 

 and the corresponding population activity variability with respect to time ...............69 

Figure 5.2: Trajectories of population responses to vocalizations at multiple intensities 

 in 3D space .................................................................................................................72 

Figure 5.3: Evolution of rotation angles relative to the first time point (in silence) of the 

 population response at multiple intensities in 3D space .............................................73 

Figure 5.4: Evolution of the rotation angles of population responses at multiple intensities 

 relative to the population response at 75dB SPL in 3D space ....................................75 

Figure 5.5: Population response discrimination across multiple intensities as a function 

 of temporal resolution ................................................................................................76 

Figure 5.6: Time course of population response discriminations across multiple 

 intensities (mean ± s.d.) ..............................................................................................77 



v 

 

Figure 5.7: Discrimination of population response as a function of number of neurons 

 in population (mean) ..................................................................................................79 

Figure 5.8: Population-averaged responses to vocalizations at multiple SNRs 

 in WGN/Babble condition and the corresponding population activity 

 with respect to time ....................................................................................................80 

Figure 5.9: Trajectories of population responses to vocalizations at multiple SNRs with 

 WGN/Babble in 3D space ..........................................................................................83 

Figure 5.10: Evolution of rotation angles of the population response at multiple SNRs, 

  relative to the first time point (in silence) with WGN/Babble in 3D space ..............85 

Figure 5.11: Evolution of rotation angles of the population response at multiple SNRs, 

  relative to clean vocalizations in WGN/Babble in 3D space ....................................87 

Figure 5.12: Population response discrimination across multiple SNRs in WGN/Babble 

  Condition as a function of temporal resolutions .......................................................88 

Figure 5.13: Classification performance of population neural responses ......................................89 

Figure 5.14: Time course of population response discrimination across multiple SNRs 

  in the WGN/Babble condition (mean ± s.d.) .............................................................90 

Figure 5.15: Discrimination of population responses using different training datasets ................92 

Figure 5.16: Discrimination of subpopulations of neurons using predictive models  

  trained by neural response to pure vocalization, 20dB SNR, and pure noise ...........94 

  



vi 

 

List of Tables 
Table 2.1: Vocalization repertoire ...............................................................................................13 

Table 5.1: Pearson correlation between spiking rate and variability for  

 vocalizations at multiple intensities ...........................................................................70 

Table 5.2: Pearson correlation between spiking rate and variability for  

 vocalizations at multiple SNRs in the WGN condition ..............................................82 

Table 5.2: Pearson correlation between spiking rate and variability for  

 vocalizations at multiple SNRs in the Babble condition ............................................82 

  



vii 

 

Acknowledgments 
 There are many people without whom this dissertation might not have been written and to 

whom I am deeply indebted.  

 Firstly, I would like to express my sincere gratitude to my advisor Dr. Dennis Barbour for 

his continuous support of my Ph.D. study and related research, and for his patience, motivation, 

and immense knowledge. His intellectual curiosity about the unknown greatly inspired me to 

keep making progress in my scientific research. His encouragement gave me the courage to 

move forward in the face of difficult situations. His guidance helped me through the research and 

writing of this dissertation. I cannot imagine having a better advisor and journey for my Ph.D. 

study.  

 Besides my advisor, I would like to thank the members of my thesis committee: Dr. Dan 

Moran, Dr. Baranidharan Raman, Dr. ShiNung Ching, and Dr. Mitchell Sommers, for their 

insightful comments and encouragement, but also for their hard questions which led me to widen 

my research from various perspectives. I was fortunate to be able to work over a semester in Dr. 

Moran’s Lab and Dr. Raman’s Lab, where I was first exposed to neurophysiology and developed 

a genuine interest in it. I would also like to thank Dr. Bruce Carlson, Dr. Alexandre Carter, and 

Dr. Vitaly Klyachko for time, talent and expertise they gave as committee members of my 

qualifying exam, thesis proposal, and thesis committee.  

 I would like to express my great gratitude to my fellow lab members Wensheng Sun, 

Jeffrey Gamble, and David Song for the relaxing and supportive working atmosphere they 

maintained, for stimulating discussion, and for all the fun we have had in the last five years. I 

especially thank Wensheng for her generous help with my neurophysiology experiment setup 

and for her dedicated work for caring the marmoset colony. My thanks also go to David Bender 



viii 

 

for his assistance with data collection. Among former lab members, I first would like to thank 

Kim Kocher for her outstanding work as a lab technician and for all her fascinating stories and 

jokes. I am indebted to Drew Sinha, who was an undergraduate research assistant when I joined 

the lab. My computational work might not have been possible without Drew’s excellent 

simulator framework. I thank former lab postdocs Dr. Noah Ledbetter and Dr. Ammar Hawaslia, 

who set good examples of researchers with critical thinking and great creativity for me to follow. 

 In the past six years, I have become acquainted with many friends both within and 

outside of Washington University. Their companion makes my time in St. Louis especially 

memorable. I will never forget the very first day I landed in St. Louis in August 2010 after flying 

a half-day overseas with my former roommate Jiami Wu. We’ve been family to each other ever 

since. I would like to thank Chen Zheng and Junye Zhang for being supportive neighbors for the 

first two years. I am thankful for my friends in different departments of Wash U: Lin Wang, 

Linjia Mu, Guoxi Xu, Hao Yang, Guannan He, Jin Hao, Jianqing Li, Yiqun Zheng, Fei Wang, 

Chao Li, Dongsu Du, Liren Zhu, Vynn Huh, Wandi Zhu, Debajit Saha and Kevin Leong. Special 

thanks go to staffs of Biomedical Engineering at Wash U: Karen Teasdale, Glen Reitz, and 

Amanda Carr, for taking care of the necessary logistics to make my work as smooth as possible. 

Among friends outside of Wash U, who made St. Louis feel like home to me, I would like to 

thank Master Miaohan, Xiaoli Gu, Huiping Dong, Ailian Liu, Wenfang Luo … and the list goes 

on and on.  

 This dissertation work was supported by a grant from the National Institutes of Health. I 

am beholden for its support to allow me to carry out my work.  I am also grateful for the 

Cognitive, Computational and Systems Neuroscience pathway grant and a Biomedical 

Engineering Department grand for my conference travels. 



ix 

 

 Last but not least, I would like to thank my dear families. Thank you to my husband Ning 

Cheng for being my rock. We’ve grown together and witnessed each other’s progress. I am 

greatly indebted to my parents Xiaodong Ni and Ni Lu. Words are powerless to express my 

gratitude. My parents have always encouraged me to be my best self and provided me with 

unconditional love and enormous support. I know that no matter what I do, I will never be able to 

repay even the half of what they’ve done for me. My great appreciativeness also goes to my in-

laws, Weisong Cheng and Nong Lv. Their selfless help has allowed me to focus on study and 

research. Ultimately, I would like to thank my baby boy Wentao for bringing joy to my life.   

   

 

Ruiye Ni 

Washington University in St. Louis 

August 2016 

  



x 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my parents. 

 

 

 

 

 

 

 

 

 

 



xi 

 

ABSTRACT OF THE DISSERTATION 

Neural Representation of Vocalizations in Noise in the Primary Auditory Cortex of Marmoset 

Monkeys 

by 

Ruiye Ni 

Doctor of Philosophy in Biomedical Engineering 

School of Engineering and Applied Science 

Washington University in St. Louis, 2016 

Professor Dennis Barbour, Chair 

Robust auditory perception plays a pivotal function in processing behaviorally relevant 

sounds, particularly when there are auditory distractions from the environment. The neuronal 

coding enabling this ability, however, is still not well understood. In this study we recorded 

single-unit activity from the primary auditory cortex of alert common marmoset monkeys 

(Callithrix jacchus) while delivering conspecific vocalizations degraded by two different 

background noises: broadband white noise (WGN) and vocalization babble (Babble).  

Noise effects on single-unit neural representation of target vocalizations were quantified 

by measuring the response similarity elicited by natural vocalizations as a function of signal-to-

noise ratio (SNR). Four consistent response classes (robust, balanced, insensitive, and brittle) 

were found under both noise conditions, with an average of about two-thirds of the neurons 

changing their response class when encountering different noises. These results indicate that the 

distortion induced by one particular masking background in single-unit responses is not 

necessarily predictable from that induced by another, which further suggests the low likelihood 

of a unique group of noise-invariant neurons across different background conditions in the 
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primary auditory cortex. In addition, for a relatively large fraction of neurons, strong 

synchronized responses can be elicited by white noise alone, countering the conventional 

wisdom that white noise elicits relatively few temporally aligned spikes in higher auditory 

regions.  

The variable single-unit responses yet consistent population responses imply that the 

primate primary auditory cortex performs scene analysis predominately at the population level. 

Next, by pooling all single units together, pseudo-population analysis was implemented to gain 

more insight on how individual neurons work together to encode and discriminate vocalizations 

at various intensities and SNR levels. Population response variability with respect to time was 

found to synchronize well with the stimulus-driven firing rate of vocalizations at multiple 

intensities in a negative way. A much weaker trend was observed for vocalizations in noise. By 

applying dimensionality reduction techniques to the pooled single neuron responses, we were 

able to visualize the dynamics of neural ensemble responses to vocalizations in noise as 

trajectories in low-dimensional space. The resulting trajectories showed a clear separation 

between neural responses to vocalizations and WGN, while trajectories of neural responses to 

vocalization and Babble were much closer to each other together. Discrimination of neural 

populations evaluated by neural response classifiers revealed that a finer optimal temporal 

resolution and longer time scale of temporal dynamics were needed for vocalizations in noise 

than vocalizations at multiple different intensities. Last, among the whole population, a 

subpopulation of neurons yielded optimal discrimination performance. 

Together, for different background noises, the results in this dissertation provide evidence 

for heterogeneous responses on the individual neuron level, and for consistent response 

properties on the population level. 
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Chapter 1: Introduction 

1.1 Background and Motivation 
Everyone’s daily life is composed of a series of events, such as eating, walking, talking, 

and reading. While most people can successfully complete these events easily, we are usually not 

aware of the underlying complex computations being processed by our brain in order to generate 

the corresponding behaviors. Neuroscience is the field of study that helps us to understand such 

phenomena. The investigation can be done at different levels, ranging from basic molecules, 

synapses, neurons, networks, maps, and systems to the central neural system which scales from 

angstroms to meters (Churchland and Sejnowsky, 1991). Neurons, the fundamental components 

of the brain, are electrically excitable, generating events called action potentials. They connect 

with each other through synapses to form networks and transmit information with spike trains, 

which are temporal sequences of action potentials.  

As a subfield of neuroscience, sensory neuroscience is mainly aimed at studying how 

different characteristics of an external stimulus, such as light, sound, or smell, are transformed by 

neural circuits into sequences of action potentials that will lead organisms to decide whether nor 

not to change their behaviors. Among all the sensory perceptions, auditory perception is crucial 

for our interaction with the surrounding environment. For instance, human babies are born with 

relatively mature hearing compared with other sensory modalities, which prepares them well for 

acquiring spoken language and bonding with their mothers (DeCasper and Fifer, 1980). When 

auditory stimuli are processed, sound is first transformed by the inner ear into spike trains and 

relayed along the ascending auditory pathway into the brain. The neocortex is a thin layered 

structure of mammalian brains. In large mammals, the neocortex has deep grooves and ridges. 
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Different regions of the neocortex perform different functions. The primary auditory cortex in 

the temporal lobe of the neocortex is mainly responsible for processing auditory information.  

One typical way to get access to the electrical activities of individual neurons is single-

unit recording (Boulton et al., 1990). By inserting a metal microelectrode or a glass micropipette 

with a fine tip and high impedance into the brain, we can measure the electrophysiological 

responses of individual neurons in response to a sensory stimulus across time. A single, firing 

neuron with a distinctive action potential shape, called a single unit, can be isolated from the 

recording microelectrode. Depending on where the microelectrode is placed relative to the cell, 

we can have intracellular or extracellular recording. Intracellular recording is implemented by 

inserting the electrode through the cell membrane, while extracellular recording only places the 

electrode close to the neuron so that spiking activity can be captured. Though intracellular 

recording allows us to gain more information with regard to a neuron’s activity, such as 

postsynaptic potentials and resting membrane potentials, extracellular recording is more stable, 

especially in awake experimental subjects. Based upon the collected single-unit activity, data 

analysis can be done on a single-unit level.  

Single-unit recording is not efficient if a large number of single units need to be recorded. 

Multichannel microelectrode recording techniques permit simultaneous recordings of neuron 

populations (Buzsáki, 2004). The distributed coding hypothesis that stimulus-related information 

is distributed over a large population of neurons can thus be tested. The related analysis is called 

neural population or neural ensemble analysis (Brown et al., 2004; Bartho et al., 2009). In some 

studies, when the multichannel recoding technique is not available, a pseudo-population analysis 

is implemented based upon the population of individual neurons recorded by single-unit 

recording (Gutnisky and Dragoi, 2008; Meyers et al., 2008). 
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1.1.1 Auditory Scene Analysis 

In natural settings, behaviorally relevant acoustic signals are usually contaminated by 

ambient sounds, for example, the thrumming of the rain, the roar of rushing traffic, and 

background conversations among people attending a conference. Different sound sources mix 

together and arrive at our ears simultaneously. Do we perceive the mixed signal as a whole, or 

are we able to distinguish the different sound sources? In reality, both humans and animals 

exhibit reliable auditory detection in the presence of substantial amounts of noise. For instance, 

when you are talking with a friend at a party, you are still able to focus your listening attention 

and maintain the conversation with your friend although there are hundreds of other people 

talking around you. This is well known as the cocktail party effect (Cherry, 1953). 

Though we behaviorally demonstrate the striking ability of reliable perception under 

adverse listening conditions, how our brain addresses this challenge is still a mystery. 

Psychologists and neuroscientists have strived to provide answers to this interesting phenomenon, 

and the term “auditory scene analysis” was coined and introduced by psychologist Albert 

Bregman in his book with the same title to define this research topic (Bregman, 1994). The 

underlying assumption is that sounds emitted by different sources have their own unique 

temporal and spectral features, and by integrating the information across time and frequencies 

belonging to the same source, one is be able to form a sound “stream” or “auditory object” 

corresponding to a perceptually meaningful sound unit. Meanwhile, the information about other 

sound sources is segregated from the target sound source to form additional “streams” and 

“auditory objects”. 

Extensive studies on this topic have been carried out based upon different experimental 

models. The addition of distractive background sounds, called sound masking, is used to study 
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speech signal with human subjects. There are two main different types of masking: “energetic” 

masking and “informational” masking (Brungart, 2001; Scott et al., 2004). In energetic masking, 

the masking element simultaneously contains energy in the same critical band as the target 

element, and part or all of either the masking or the target element is not perceived. Speech 

intelligibility under energetic masking decreases monotonically with the signal-to-noise ratio 

(SNR) (French and Steinberg, 1947; Fletcher and Galt, 1950). In informational masking, subjects 

are able to hear both the target and masking elements, but are not able to tell them apart. This 

type of masking has a non-linear effect on the speech intelligibility with performance plateaued 

at SNRs below 0 dB (Egan et al., 1954; Dirks and Bower, 1969; Brungart, 2001).  

Advances in technology have allowed researchers to monitor subjects’ brain activity 

under different masking conditions. Using magnetoencephalography, Ding and Simon found out 

that in the auditory cortex of humans, low-frequency brain activity seems to provide neural cues 

for stable speech recognition under both energetic and informational masking (Ding and Simon, 

2012, 2013). With the application of invasive neural recording technologies, neuroscientists have 

revealed more detail of the underlying neural responses in animal models. For example, under 

interference from noise stimuli, single neurons in auditory brain area filed L of songbirds tend to 

suppress their activities corresponding to the informative elements in sound stimuli, while 

increasing their spike activities in response to the noise element (Narayan et al., 2007). In 

addition, individual neurons with robust resistance to background noise have been discovered in 

avian models (Moore et al., 2013; Schneider and Woolley, 2013). 

Although we now have a more profound understanding of auditory scene analysis 

regarding the effects of different masking types on speech intelligibility and the associated neural 

activities, there are still many questions. One question being addressed in this dissertation is the 
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effects of different background noises on the functional identity of individual neurons in 

response to behaviorally relevant acoustic signals and on the discriminability of collective single 

units. In other words, if a neuron behaves as a robust vocalization encoder under one noise 

condition, does it still function in a robust way under another noise condition? Because we need 

to investigate the neural responses of individual neurons, which are typically acquired with 

invasive recording techniques, an appropriate animal model is essential. 

1.1.2 Marmoset Monkey Vocalization 

Vocalization is an essential communication channel used by humans and animals for 

social interaction. Common marmoset monkeys (Callithrix jacchus), a New World monkey, 

represent one of the closest evolutionary relative to human beings and exhibit a complex vocal 

communication system. Due to their densely vegetated living environment in nature, marmosets 

rely on vocalization to compensate for the lack of visual contact. Marmosets have a rich 

vocalization repertoire, and they use vocalizations for numerous purposes, such as to claim their 

own territory, to keep track of their group members, and to warn of the presence of a potential 

predator. Due to their complex social system, marmosets are highly vocal even within a captive 

colony, and the varieties of vocalizations are very similar to those produced by wild colonies 

(Bezerra and Souto, 2008). Marmosets are easy to handle and breed in the laboratory 

environment. Adult marmosets usually weigh between 300 to 500 grams, and they can give birth 

to twins or triplets twice a year. These traits make marmosets a good candidate primate model 

for neuroscience study. 

Xiaoqin Wang’s lab at the Johns Hopkins University has systematically quantified the 

vocalization repertoire of marmosets (Agamaite et al., 2015). In their studies, vocalizations were 

quantified by their temporal and spectral properties, such as length, frequency corresponding to 
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the maximum in the spectrum, and modulation rate. According to their complexity, there are two 

main kinds of vocalizations: simple and compound calls. Simple calls are the basic acoustic 

elements/phrases uttered by marmosets. There are four major types: twitters, phees, trills and 

trillphees. Theses vocalizations are named based upon their pronunciation. Compound calls are 

combinations of multiple simple calls with less than a 0.5 s interval between phrases, such as 

peep-string, peep-trill, and tsik-string. Marmoset vocalizations contain acoustic information over 

distributed frequencies and a wide range of time scales (DiMattina and Wang, 2006; Agamaite et 

al., 2015). The vocalization’s acoustic energies are maximized around 6 KHz to 8 KHz, and their 

durations last from hundreds of milliseconds to several seconds. Very few studies, however, have 

systematically investigated the association between vocalization content and behaviors. 

Generally speaking, twitter is a between-group territorial call, trills and phees are within-group 

contact calls, and tsik is an alarm call (Marmosetcare.com, 2011).  

Given their rich vocalization repertoire and easiness to house and handle in laboratory 

settings, marmoset monkeys are ideal animal models to study the auditory perception of 

communication sounds. 

1.1.3 Marmoset Monkey Auditory Cortex 

A reliable brain structure model of marmosets has been built (Hashikawa et al., 2015). 

The brain structure of marmosets shares many common characteristics with other primate species 

(Paxinos et al., 2012). The brain area involved in the auditory perception process is called 

auditory cortex, and it has been extensively studied. The auditory cortex is located on both the 

left and right brain hemispheres, at the upper side of the temporal lobes along the lateral sulcus. 

Researchers are able to further divide the auditory cortex into subareas according to their 

architectonic features, neuronal response properties, and input/output connections. Like that of 



7 

 

other primates and humans, the auditory cortex of marmosets is mainly composed of two parts: a 

“core” region and a “belt” region (Hackett et al., 2001). Three subdivisions are further identified 

within the core region: the primary auditory cortex, the rostral field, and the rostrotemporal field 

(Morel and Kaas, 1992; Petkov et al., 2006; Bendor and Wang, 2008).  The three areas are all 

responsive to narrowband acoustic stimuli, for instance, tones, and are tonotopically organized. 

Among the three areas, the primary auditory cortex tends to have stronger responses and shorter 

response latencies (Bendor and Wang, 2008). Studies of neural responses to stimuli with 

complex spectral and temporal features, such as marmoset vocalizations, have been conducted in 

the primary auditory cortex. Neurons in the primary auditory cortex are selectively more 

responsive to natural vocalizations rather than other synthetic stimuli with the same spectral 

content but disrupted temporal features (Wang et al., 1995).  Given the rich responsiveness to 

natural vocalizations, the primary auditory cortex is a reasonable marmoset brain area for 

studying auditory scene analysis. 

1.2 Research Objectives 
The goal of this dissertation is to enhance our understanding of the neural processing in 

the non-human primate auditory cortex related to vocal communication in noisy conditions. In 

particular, using the marmoset monkey model, I aim to study the neural representation of 

conspecific vocalizations embedded in noisy background. The activities of individual auditory 

neurons and neural ensembles evoked by vocalizations with different levels of noise will be 

investigated under two noise conditions: white Gaussian noise and marmoset vocalization 

babble. Marmoset babble is generated by mixing multiple marmoset vocalizations to simulate the 

situation of multiple callers in the background. I hypothesize that individual neurons that provide 

more informative spikes about clean vocalizations are less likely to suffer from spiking 
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suppression with increasing noise interference. Furthermore, I hypothesize that the spiking 

activities of neural ensembles are more informative than the spiking of single neurons with 

regard to the target vocalization masked with noise, since population coding has been 

demonstrated to be more robust in other sensory modalities.  

Objective 1: Characterize single neuron responses to clean vocalizations and 

broadband white noise in the primary auditory cortex. Auditory cortex neurons generate 

more spikes in response to vocalizations than to other sound stimuli, but how differently they 

encode vocalizations from other stimuli (e.g., white noise) is not clear. I hypothesize that the 

activities of single auditory neurons are spectral-temporally modulated by vocalizations and 

systematically encode the stimulus with higher information rates, while single neurons’ 

responses to pure wide-band noise are less structured, with lower information encoding rates. To 

test the hypothesis, 20 marmoset vocalizations and pure wideband white noise were delivered to 

awake marmosets (N = 2) and the corresponding single neuron activity was evaluated for 

information content. 

Objective 2: Quantify the effects of different levels of broadband white noise and 

babble noise on the single-neuron representation of target vocalizations in the primary 

auditory cortex. Single neurons’ computational strategy for processing noisy vocalizations in 

the primary auditory cortex is largely unknown. I hypothesize that the same neurons that provide 

more information about the target clean vocalizations, either in absolute terms or relative to pure 

noise, are also more resistant to noise interference and with less spiking suppression. To test the 

hypothesis, the responses of single neurons in the primary auditory cortex of awake marmosets 

(N = 2) were recorded while a set of stimuli was presented. Five marmoset vocalizations were 

presented to the animals, and were masked with different levels of background noise and 
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presented later in a random order. Clustering methods were used to identify neuron response 

patterns.   

Objective 3: Quantify the effects of different levels of broadband white noise and 

babble noise on the neural ensemble coding of target vocalizations in the primary auditory 

cortex. Large variance exists between responses of neurons to the same stimulus; however, 

whether the variance provides more stimulus-related information to account for behavioral 

performance is not clear. In this aim, I explored the neural ensemble coding of clean 

vocalizations and noisy vocalizations. I hypothesize that neuron populations are more resistant to 

the contamination of useful sensory information by noise than single neurons. To test this 

hypothesis, sufficiently large ensembles of neurons’ responses were recorded in the primary 

auditory cortex of awake marmosets. The stimuli were five marmoset vocalizations degraded by 

various levels of background noise, presented in random order. Dimensionality reduction 

techniques and discriminative analysis were used to analyze the population coding.  

1.3 Research Approach and Overview of Dissertation 
To study the single and population neuron responses to natural communication sounds, 

single neurons in the primary auditory cortex of four marmoset monkeys were recorded using 

invasive extracellular recording techniques. A neural population response study was conducted 

based upon a collection of single neurons. Data collection was conducted when animals were 

passively listening to the delivered acoustic stimuli, and more details about experimental setup 

are introduced Chapter 2. The results of the first objective are presented and discussed in Chapter 

3. The single unit analysis of objective two is presented and discussed in Chapter 4. Chapter 5 

presents the results of population analysis in the third objective. Data analysis is introduced 
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separately for Chapter 3, Chapter 4, and Chapter 5. Chapter 6 gives an overall summary of 

conclusions and recommends future work to extend the research of this dissertation.   
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Chapter 2: Experimental Methods 
This chapter describes the methodologies that I used to investigate how neurons in the 

primary auditory cortex (A1) of awake marmoset monkeys represent and encode vocalizations 

delivered together with different masking sounds. It is composed of four parts: preparation of 

animal subjects and neurophysiology recording, acoustic stimulus generation, experimental 

procedure, and data analysis. The data analysis section includes a general summary, and details 

of analytic techniques are addressed in subsequent chapters.  

2.1 Surgery and Recording Methodology 
Adult common marmoset monkeys (Callithrix jacchus) were the subjects of this research. 

All training, recording, and surgical procedures complied with the US National Institute of 

Health Guide for the Care and Use of Laboratory Animals and were approved by the Animal 

Studies Committee of Washington University in St. Louis. Subjects were initially trained to sit 

upright in a custom, minimally restraining primate chair inside a double walled sound-

attenuation booth (IAC 120a-3, Bronx, NY) for the same duration as would be used for later 

physiology recording. After they had become accustomed to this setup, a custom head cap for 

neural recording was surgically affixed to the skull of each subject. The animals were allowed to 

sufficient time to recover following surgery and were given pain medication to eliminate 

discomfort during recovery. The animals were able to feed themselves properly afterwards. The 

location of the vasculature running within the lateral sulcus was marked on the skull. Using the 

lateral sulcus as a guide, microcraniotomies (<1 mm diameter) were drilled through the skull 

over the temporal lobe with a custom drill, for physiology experiments. An active recording hole 

was partially filled with ointment and dental cement to prevent excess tissue growth and 

infections after each recording session. The hole was permanently sealed with dental cement 
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before the next craniotomy was drilled. In this way, we largely preserved the intactness of the 

bone and the landmarks. Daily recordings lasted about 4 hours for each animal and were 

continued for several months. The animal’s awake state was monitored with a camera throughout 

the recording session. The location of A1 was identified anatomically based upon the lateral 

sulcus and bregma landmarks and confirmed with physiological mapping (Stephan et al., 2012).  

Within each microcraniotomy, a single high-impedance tungsten-epoxy 125 µm electrode 

(~5 MΩ @ 1 kHz, FHC, Bowdoin, ME) was advanced perpendicularly to the cortical surface by 

a hydraulic system. Microelectrode signals were amplified using an AC differential amplifier 

(AM systems 1800, Sequim, WA) with the differential lead attached to a grounding screw on the 

animal’s head. Initially, the electrode was advanced at a speed of 10 µm per step for the first 200 

µm, which is a rather shallow level for single unit detection. As the electrode went deeper, a 

“hash” of background sounds gradually built up as the acoustic stimuli were delivered. The 

background sound would pause during the intervals between acoustic stimuli. The buildup of 

background sounds was an important indicator, confirming that the electrode was approaching 

populations of auditory neurons. Once the “hash” sound began, the electrode was slowly 

advanced at 1 µm per step to detect single units. Single-unit action potentials were sorted online 

using manual template-based spike-sorting hardware and software (Alpha Omega, Nazareth, 

Israel). Each single unit was confirmed by its consistent distinctive action potential shape. Single 

units were usually collected at depth between 400 µm and 2000 µm below the surface of the 

auditory cortex. The median signal-to-noise ratio for single units recorded with this technique 

was 24.5 dB. When a template match occurred, the spike-sorting hardware relayed a TTL pulse 

to the DSP system (TDTRX6, Alachua FL) that temporally aligned recorded spike times (2.5 µs 
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accuracy) with stimulus delivery. Recording locations within the head cap were varied daily, 

eventually covering all regions of interest.  

2.2 Acoustic Stimuli 
 

Table 2.1 Vocalization repertoire 

 

No. Vocalization Name 

1 phee_m87_t449da10_415 

2 pheestrg_m60107_t459b010_042 

 

 

 

 

3 pheepeep_m335_t4530c11_454 

4 peepphee_m290_t397ca10_414 

5 trilphee_m70100_4580010_020 

6 trill_m87_t449e011_112 

7 peeptril_m60107_t459dd10_495 

8 peeptril_87_t450da10_182 

9 trilpeep_m70100_t462ad10_133 

10 twitter_m363_t455da10_263 

11 twitpeep_m87_t450ad10_181 

12 triltwit_m70100_t448uc10_064 

13 triltwit_m87_t449cb11_394 

14 trtwpp_m87_t4490d11_492 

15 twitphee_m87_t449a010_263 

16 tsikbark_m60107_t4592d11_055 

17 tsikstrg_m87_t499e011_245 

18 tsikstrg_m335_t451ea10_003 

19 dtwitter_m86dtwit1nat 

20 peepstrg_m87_t450aa10_034 

 

 A vocalization repertoire of 20 vocalizations was used. These vocalizations were 

recorded from the marmoset colony maintained at The Johns Hopkins University School of 

Medicine, and were sampled across animals of different ages and genders (Agamaite et al., 

2015). Vocalization types, along with animal caller identities, are listed in Table 2.1. All 20 

vocalizations were used for studying the WGN effect on information encoding rate of 

vocalizations.  
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Figure 2.1 Temporal waveforms and spectrograms of five vocalizations: Trillphee, Peeptrill, Trilltwitter, Tsikstring, 

and Peepstring.  
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 Five vocalizations were selected from the vocalization repertoire to further study the 

masking effect of different noises. They are No. 5 trilphee_m70100_4580010_020, No.7 

peeptril_m60107_t459dd10_495, No.12 triltwit_m70199_t448uc10_064, No.18 

tsikstrg_m335_t451ea10_003, and No.20 peepstrg_m87_t450aa10_034. These five vocalizations 

are called Trillphee, Peeptrill, Trilltwitter, Tsikstring, and Peepstring in the rest of the 

dissertation.   

 The temporal and spectral features of each vocalization are displayed in Figure 2.1. 

Among the five vocalizations, Trillphee, Trilltwitter, and Peepstring have durations around 1000 

ms. Peeptrill and Tsikstring are two relatively shorter calls, with duration about 400 ms. In terms 

of complexity, Trillphee is a simple call, as it is a complete call without temporal gaps. Peeptrill, 

Trilltwitter, Tsikstring, and Peepstring are all considered compound calls, composed of multiple 

acoustic elements separated by gaps of less than 100 ms. The five vocalizations were selected to 

represent most of the acoustic features of the marmoset vocalization repertoire, so that the 

conclusions obtained from the dissertation could be generalized to the overall vocalization 

repertoire.  
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Figure 2.2 Acoustic stimuli used to investigate robust sound encoding in the primary auditory cortex. (A) Power 

spectrum of five vocalizations (solid lines), WGN (gray lines) and Babble noise (dashed lines). Background noises 

were truncated to have the same duration as each vocalization. The temporal waveform of each vocalization is 

displayed above each power spectrum. (B) Example spectrogram of vocalization Trillphee in noise at 10 different 

SNR levels, including pure noise and pure vocalization. The first column is Trillphee with WGN as background 

noise, and the second column is with Babble as background noise. The temporal waveforms of WGN and Babble are 

shown below each column.  
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  Using MATLAB, two types of noise, WGN and Babble, were mixed individually with 

five natural marmoset conspecific vocalizations, generating noisy vocalizations at eight different 

signal-to-noise ratios (SNR; -15 dB to 20 dB at 5dB intervals, plus pure noise and pure 

vocalizations) as shown in Figure 2.2. The average spectral power of the noise at each SNR 

level Pnoise(SNR) was calculated relative to the average spectral power of pure vocalization Pvoc, as 

in equation (2.1). The waveform of noise at each SNR Anoise(SNR) was further scaled and added to 

the waveform of clean vocalization to generate the acoustic waveform of noisy vocalization ASNR 

at each SNR level in equations (2.2) ~ (2.3). The resulting ASNR was normalized between -1 and 

1.  
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 In order to distinguish the onset responses induced by the components of noise and 

vocalization in the synthesized stimuli, a 250 ms interval of pure noise was concatenated to 

either end of each noisy vocalization. Babble sharing certain acoustic attributes of vocalizations 

was created by shuffling superimposed 50 ms-long pieces of four different randomly selected 

vocalization instances from the remaining 15 vocalizations in the repertoire (Trillpeep, Peeptrill, 

Twitterpeep, and Trillphee), which were different from the five test vocalizations. Both WGN 
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and Babble were synthesized with durations equivalent to the longest vocalization, the Trillphee. 

For the other four vocalizations, WGN and Babble were truncated to the same length as each 

vocalization. 

2.3 Experimental Procedures 
 Acoustic stimuli were delivered in free-field through a loudspeaker (B&W 601S3, 

Worthing, UK) located 1 meter along the midline of and in front of the animal’s head.  The 

output of the speaker was calibrated so that the maximum sound level delivered was 

approximately 105 dB SPL with a flat frequency response from 60 Hz to 32 kHz (Watkins and 

Barbour, 2011). Single-unit activities in A1 were recorded from two alert adult marmoset 

monkeys while they passively listened to the playback of natural and synthesized conspecific 

vocalizations. Auditory neurons were detected based upon their responses evoked by pure tones 

and vocalizations. Once an auditory neuron was isolated, its characteristic frequency was 

estimated using random spectrum stimuli (RSS) (Barbour and Wang, 2003a) and/or pure tones to 

confirm that the response field of the neuron overlapped with at least some vocalization energy. 

Next, the rate-level function of each of the five vocalizations was measured at four intensities, 

ranging from 15 dB SPL to 75 dB SPL in 20 dB steps. Each of the 20 combinations was 

presented in random order at ten times. The intensity evoking the strongest responses to most of 

the vocalizations was selected to deliver noisy vocalizations, which were also randomly 

delivered at between five and ten repetitions. A rate-level function covering the same range of 

intensities as the vocalizations was also obtained for WGN.  

 In order to assess the neural responses as a function of SNR from the perspective of 

information theory, we also recorded a second data set from two additional alert adult marmoset 

monkeys using a similar recording procedure. The main difference is that each auditory neuron 
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in these additional experiments was first evaluated with rate-level functions of twenty marmoset 

vocalizations. The vocalization at a particular attenuation evoking the most modulated responses 

was identified visually. Neural responses to degraded versions of the vocalization were presented 

at eight SNR levels (-15 dB to 20 dB at 5 dB intervals, plus pure WGN and pure vocalization) 

and were further recorded at 30 to 50 repetitions. Given the limited time a single unit can be 

stably recorded in this procedure, we investigated only the information coding of WGN noisy 

vocalizations in this dissertation. 

2.4 Data Analysis 
 Collected data were subjected to both single-unit analysis and population analysis. 

Single-unit analysis was emphasized to investigate the response properties of each individual 

neuron in response to acoustic stimuli, such as information coding rate, response reliability, 

vocalization intensity-invariance, and noise-invariance. Single-unit analysis revealed how 

neurons encode acoustic stimuli with sequences of action potentials. Detailed calculations for 

each single-unit analysis are explained in Chapter 3 and Chapter 4.   

 In contrast to single-unit analysis, population analysis investigated how individual 

neurons work together to discriminate vocalizations at different intensities/SNRs, without 

considering the particular identity of each individual neuron. Population analysis is mainly based 

upon building neural response classifiers to predict the identities of acoustic stimuli, which is a 

decoding process. How to build neural decoding models is described in Chapter 5. 
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Chapter 3: Feature-algined Responses to 

White Gaussian Noise 

3.1 Introduction 
 The early stations of the auditory pathway, such as the auditory nerve fibers, can produce 

spike train patterns that faithfully follow the time-varying spectral features of complex stimuli, 

because auditory nerve fibers can encode fine temporal details of a stimulus (Delgutte and 

Kiang, 1984; Carney and Geisler, 1986). This kind of phase-locked response can be generated by 

auditory nerve fibers even in response to white Gaussian noise (WGN) (Ruggero, 1973).  As the 

stimulus information encoded in spike trains is transmitted to higher stations of the auditory 

pathway, the neuronal responses are less likely to be faithful replicas of the acoustic stimuli. For 

instance, a majority of neurons at the level of the primary auditory cortex (A1) produce 

responses following the envelope of marmoset vocalizations, synchronized to the phrases of the 

vocalizations, instead of the fine temporal details (Wang et al., 1995). Neurons in A1 generate 

even sparser responses to encode WGN (de Boer and Kuyper, 1968; Aertsen and Johannesma, 

1981; Valentine and Eggermont, 2004). Therefore, WGN is conventionally considered a poor 

stimulus to drive neurons in A1.  

 In our preliminary dataset, however, we discovered A1 neurons with phase-locked 

responses to WGN, as if they were synchronized to spectrotemporal features in the same way 

they often are to complex stimuli. This finding drove us to investigate the hypothesis that there 

exists a positive correlation between neurons’ encoding properties for WGN and vocalizations. 

In addition, the proportion of A1 neurons with feature-aligned responses was quantified. 
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3.2 Data Analysis 
 In order to compare the distribution of single-unit response reliability to pure noise and 

pure vocalizations, we pooled neurons from the WGN noisy vocalization datasets of four 

monkeys.  

 We adopted a correlation metric proposed by Schreiber et al., to evaluate neuronal 

response reliability across repetitions (Schreiber et al., 2003). Spike trains of neural responses to 

the same stimulus presented n  times were first convolved with a Gaussian filter having a 

window length of 50 ms to obtain the vectors iS


 
(i = 1, …, n). Correlations between all pairs of 

filtered spike train vectors iS


 and jS


 
were computed, and the resulting average correlation value 

was defined as the response reliability of that single unit to a particular stimulus, as displayed in 

equation (3.1). If either iS


 or jS


 was empty, the correlation between them was set to zero. 
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This correlation value ranges from zero to one, with higher values denoting more consistent 

responses across trials.  

  We implemented an information measurement in the extended dataset. Information 

theoretic measures can describe how much information about a stimulus is encoded in neural 

responses. As described in other studies (de Ruyter van Steveninck et al., 1997; Vinje and 

Gallant, 2002), the information content of the spike trains was calculated in the following way. 

First, the full complement of spike trains resulting from the same experimental condition for 
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each unit was digitized by counting the number of spikes within bins of width Δτ, using non-

overlapping rectangular windows. By specifying the number of letters constituting a word, we 

defined a K-letter word, which had a time length of T = K × Δτ. The total response variability of 

the words in the spike trains is termed total response entropy, and is given by the following 

equation: 

 
2( ) ( ) log ( )

W

H r P W P W  , (3.2) 

where ( )P W  is the occurrence probability of word W  through all the spike trains. Total response 

entropy quantifies the variations across time and the capacity of the spike train to carry 

information. By quantifying the variability of the responses across time from trial to trial, 

conditional response entropy can be defined as 

 
2( | ) ( | ) log ( | )

W

H r s P W t P W t  , (3.3) 

where ( | )P W t  is the probability of obtaining the word W  at time t . Finally, mutual information 

(called “information” for short in what follows) between the spike train and the stimulus 

quantifies the amount of variation in the spike train resulting from changes in the stimulus. It is 

simply the difference between the total response entropy and conditional response entropy: 

 ( , ) ( ) ( | )I r s H r H r s  . (3.4) 

 By normalizing the information in (3.4) with word time length T , we can obtain the 

information rate in bits/s. We can also calculate information per spike by dividing the 

information rate by the average number of spikes generated during word length T . In addition, 

information efficiency measures the fraction of available bandwidth that a neuron actually uses 
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to transmit information, i.e., the ratio of the amount of information actually transmitted divided 

by the theoretical maximum amount of information that could be transmitted, as in (3.5): 

 ( ) ( | ) ( , )

( ) ( )

H r H r s I r s
E

H r H r


  . (3.5) 

 The information rate and efficiency of neurons with empty responses to a particular 

stimulus were set to 0. We implemented information calculations using Δτ = 3, 5, 10, 20, and 30 

ms and K = 1, 2, and 3, yielding qualitatively similar trends for all combinations. The results 

presented in this study used  = 3  ms and K = 1. 

3.3 Results 

3.3.1 The Information Content of Neural Responses Decreases as a Function 

of SNR under the WGN Condition 

 Information theory provides a useful tool for neuroscientists to uncover important 

features of sensory processing and perception (Abolafia et al., 2013). We studied how much 

information was transmitted via spike trains of A1 neurons in response to vocalizations in WGN 

as a function of SNR. For each single unit, one out of twenty vocalizations was selected for 

further study because it evoked the greatest response. Twenty sample vocalizations spanning the 

marmoset vocalization repertoire were delivered in a WGN background at eight different SNRs 

(-15 to 20 dB, in 5 dB steps) and repeated for 30-50 repetitions. Altogether, 273 single units were 

isolated from two marmoset monkeys and 191 single units passing the response criteria were 

analyzed. The distribution of the neuron counts for each vocalization is shown in Figure 3.1A. 

Some vocalizations elicited neural activity more commonly than others, such as vocalization No. 

7, Peeptrill. 
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Figure 3.1 Vocalizations consistently elicit more informative responses than WGN. (A) Distribution of number of 

responsive units to twenty different vocalizations spanning the marmoset repertoire. (B) Scatter plot of information 

rate of single units to pure vocalization versus pure WGN. (C) Boxplot of information rate of single units to pure 

vocalization and pure WGN. The asterisk denotes that the information rate of WGN is significantly lower than pure 

vocalization (see text). (D) Population average information rate (mean ± s.e.m) of vocalizations under WGN 

background as a function of SNR. (E) Population average information per spike (mean ± s.e.m) of vocalizations 

under WGN background as a function of SNR. (F) Population average information efficiency (mean ± s.e.m) of 

vocalizations under WGN background as a function of SNR. 

 

 By calculating the information embedded within spike trains based upon the distribution 

of the occurrence of spiking “words”, (i.e., the number of spike counts in a defined bin width of 

3 ms), we determined the relationship between information rate (information normalized by time 

bin width) elicited by pure vocalizations and by pure WGN in Figure 3.1B. The result indicates 

that most single units in A1 encode natural vocalizations with a higher information rate than 

WGN, and these two values are fairly highly correlated (r = 0.74). The trend can be better 

observed in Figure 3.1C, with a paired Wilcoxon signed-rank test showing significantly higher 
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information rate of pure vocalizations (Z = -11.52, p = 1.0×10
-30

). Extending the calculation of 

information along the SNR axis, a monotonically increasing information rate is revealed in the 

population average in Figure 3.1D as SNR increases. Interestingly, the information rate of WGN 

was still relatively high in absolute terms, rather than dropping close to zero. It is plausible that 

the high information rate originates primarily from a high discharge rate, given that vocalizations 

usually induce higher discharge rates than WGN. 

 What about the amount of information transmitted by each spike? Are vocalizations 

encoded at a faster information rate because each spike conveys more information than WGN? 

We address this question in Figure 3.1E, where the information rate normalized by the mean 

number of spikes occurring per word length is displayed against SNR. As expected, individual 

spikes carry more information about a stimulus at increasing SNR values. Although decreasing 

vocalization content leads to a nearly linear drop in information rate (Figure 3.1D), the decrease 

in the information amount transmitted by each spike is rather shallow across SNRs down to very 

low SNRs. This result suggests that auditory cortical neurons not only encode natural stimuli  

such as conspecific vocalizations with more spikes overall, but also are more efficient in 

transferring information by individual spikes for such stimuli compared to behaviorally 

irrelevant noise. The high encoding efficiency for vocalizations is further revealed in Figure 

3.1F, which shows the efficiency of total entropy in neural responses transformed into stimulus-

relevant information. Information efficiency followed the same trend as information rate. 

3.3.2 Feature-aligned Response to White Gaussian Noise  

 The neural responses underlying the aforementioned non-trivial information content 

encoded for WGN are of potential interest. Units with strong temporal-structured responses to 

WGN were found in all four marmosets. Feature-aligned responses to WGN are well established 
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in the auditory periphery (de Boer and Kuyper, 1968; Ruggero, 1973), whereas the response to 

unmodulated WGN in auditory cortex has been deemed very inefficient,  equivalent to the poor 

stimuli for high-level auditory neurons in animals such as songbirds and cats (Valentine and 

Eggermont, 2004; Theunissen and Elie, 2014). The original rationale for using WGN as one of 

the masking noises in our study was based upon the assumption that reliable A1 responses to 

WGN would be insignificant. In that case, information measures of responses to vocalizations 

could be evaluated on an absolute scale. Figure 3.1 clearly shows that substantial stimulus-

specific information exists in spike trains of A1 neurons even when WGN is delivered, implying 

that at least some individual cortical neurons must be encoding WGN directly. 

 We therefore directly examined the feature-aligned WGN stimulus-encoding properties 

of A1 neurons. This temporal alignment can be viewed from repeated presentations of the same 

frozen WGN. Units with feature-aligned spiking activities in response to WGN were arbitrarily 

selected as having a response reliability value equal to or greater than 0.5. Forty-eight WGN-

reliable neurons from one monkey with feature-aligned responses to the same WGN are 

displayed in Figure 3.2A. Structured responses to WGN are visually apparent in this subset of 

units because stimuli were repeated for 20-50 trials. Except for four units with only onset-aligned 

responses, the majority of neurons exhibited temporally aligned spikes at various time points of 

the WGN. 
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Figure 3.2 A large number of A1 neurons generate spikes that are feature-aligned to WGN. (A) Raster plots of 

example single units with feature-aligned responses to a single frozen WGN. (B) Histogram of single units’ response 

reliability to pure WGN (in red and blue) and pure vocalizations (black line) from WGN noisy vocalization 

protocols. Feature-aligned (in red) and non-feature-aligned responses (in blue) to WGN were differentiated with a 

response reliability threshold value of 0.5. (C) Scatterplot of the spontaneous rate and the discharge rate to pure 

WGN of single units in (B).  

 

 By investigating the neural responses to pure WGN for all four monkeys (N = 442), we 

obtained the distribution of single unit response reliabilities shown in Figure 3.2B. In 

comparison to the WGN response reliability distribution with a median of 0.22, vocalization 

responses resulted in a right-shifted distribution with a median of 0.56. Around 20% of A1 units 

exhibited an ability to encode WGN in a feature-aligned fashion by our reliability criterion ≥ 0.5. 

In Figure 3.2C, we also plotted the corresponding spontaneous rates and discharge rates, to 
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evaluate any potential association between feature-aligned response property and neuron activity. 

It turns out that A1 neurons are more likely to have a structured response to WGN when their 

discharge rate is above 5 spikes per second. While feature-aligned units have spontaneous rates 

spanning a wide range, from highly inactive to extremely active, more units are identified as 

feature-aligned when their spontaneous rates are above 1.5 spikes per second.  

3.3 Discussion 
 A widely accepted yet poorly documented viewpoint regarding the responsiveness of A1 

neurons under awake conditions to unfiltered, unmodulated WGN is that this represents a poor 

stimulus class to drive these neurons, presumably because of the frequency selectivity of the 

neurons active under awake conditions and the relatively sluggish response of A1 neurons 

(Depireux et al., 2001; Elhilali et al., 2004; Nelken, 2004). In practice, filtered noise is often used 

when a simple stimulus having bandwidth wider than a pure tone is desired (Wang et al., 2005). 

We had predicted given this conventional wisdom that the average information rate of A1 spike 

trains in response to WGN would be near 0 bits/s. To our surprise, this rate was actually 20 

bits/s, and many neurons had visible feature-aligned spiking responses to WGN that were robust 

across different stimulus intensities. A continuum of spiking reliability exists across the 

population studied, and we estimate that about 20% of our population could comfortably be 

classified as generating feature-aligned spikes in response to WGN.  

 Perceptually this finding raises interesting questions because it seems unlikely that 

individuals could reliably distinguish two distinct WGN stimuli with the same statistics, yet the 

neural population, even at high levels of the auditory system, would be able to do so. The 

possibility exists that training might influence top-down modulation in order to improve WGN 

discrimination, though with unknown significance. Furthermore, using pure noise stimuli 
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without requiring intermediate stimulus modifications, the original formulation of receptive field 

estimation using spike-triggered averages might be useful in a subset of central auditory neurons 

(de Boer and Kuyper, 1968; Aertsen and Johannesma, 1981; Eggermont et al., 1983), much as 

can be done in auditory nerve because of temporally aligned spiking to WGN (Ruggero, 1973).  

 Natural communication sounds contain more semantic information than typical 

experimental sounds. In the auditory nerve, for example, naturalistic stimuli are encoded at a 

higher information rate than WGN (Rieke et al., 1995). We have shown that in A1 neurons, as 

well, information in natural communication sounds was transmitted at a higher rate than WGN. 

Naturalistic noise has been shown to decrease information in different temporal codes as noise 

increases (Kayser et al., 2009). Additionally, overall information content in spike trains 

decreases along the ascending auditory pathway (Chechik et al., 2006), implying that the nature 

of vocalization coding changes at higher levels of processing, as well.  
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Chapter 4: Contextual Effects of Noise on 

Vocalization Encoding in the Primary 

Auditory Cortex 

4.1 Introduction 
In natural settings, behaviorally relevant acoustic signals usually co-occur with other 

acoustic sources. Therefore, the auditory system’s ability to process multiple competing sound 

sources is closely linked with our ability to perceive individual sounds.  Although humans and 

animals exhibit reliable auditory detection against substantial amounts of noise, the underlying 

neural representation of sound in such contexts is still not well understood.  

Individual auditory neurons are believed to represent behaviorally relevant natural sounds 

effectively, particularly animal vocalizations and human speech. Animal call/song-selective 

neurons have been discovered in multiple sensory system models, such as crickets, frogs, 

songbirds, guinea pigs and non-human primates (Newman and Wollberg, 1973; Feng et al., 1990; 

Libersat et al., 1994; Wang et al., 1995; Grace et al., 2003; Grimsley et al., 2012). To cope with 

distortion induced by noise, mammalian auditory cortex appears to be actively involved in 

recovering the disrupted upstream neural representation (Anderson et al., 2010). Neurons in 

primary auditory cortex (A1) have been found to be sensitive to the masking component of 

complex stimuli (Bar-Yosef and Nelken, 2007) , and neuronal adaptation to stimulus statistics 

has been identified to be responsible for building noise-invariant responses (Rabinowitz et al., 

2013; Willmore et al., 2014). In the auditory cortex of humans, low-frequency activity has been 

suggested to provide neural cues for stable speech recognition against both energetic and 

informational masking (Ding and Simon, 2012, 2013). This line of research is more advanced in 
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avian models: individuals neurons in higher avian auditory brain regions have been identified 

with robust encoding of noisy vocalizations (Moore et al., 2013; Schneider and Woolley, 2013) . 

Furthermore, multiple complex background maskers affect neuronal discriminability differently, 

but behavioral discriminability is degraded to the same degree regardless of masking type 

(Narayan et al., 2007).  

Relatively few studies, however, have investigated reliable auditory discrimination of 

complex sounds in noise in nonhuman primates. One study has explored neural coding of 

degraded marmoset twitter calls in anesthetized marmosets, showing robust neural responses to 

vocalizations at medium signal-to-noise ratios (SNR) (Nagarajan et al., 2002). But how noisy 

vocalizations are encoded in awake marmoset auditory cortex remains uncertain. In addition, 

only one type of vocalization in a single type of noise was studied with limited levels of SNR; 

therefore no generalized conclusions can be drawn for the quantitative effects of noise on the 

neural representation of natural calls.  

Marmoset vocalizations contain acoustic information over distributed frequencies and a 

wide range of time scales (DiMattina and Wang, 2006; Agamaite et al., 2015). Neurons in 

marmoset A1 exhibit multiple encoding strategies (Barbour and Wang, 2003b; Wang, 2007; 

Watkins and Barbour, 2011), with a majority of them responsive to vocalizations. Here we 

evaluate the effects of white Gaussian noise (WGN) and four-marmoset-talker babble (Babble) 

on the auditory cortical representation of conspecific vocalizations in alert adult common 

marmoset monkeys. Babble noise covers a similar frequency range as natural vocalizations, 

while WGN has considerably different statistics and has historically been considered to be a poor 

stimulus for driving neurons in higher auditory areas (Miller and Schreiner, 2000; Theunissen et 

al., 2000; Valentine and Eggermont, 2004). We predicted that Babble noise would generally 
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result in more disruption of the neural representation of targeted vocalizations than WGN and 

that a subclass of vocalization-responsive neurons would preferentially be responsible robust 

vocalization encoding in the face of either type of noise. In particular, we predicted that neurons 

robustly encoding vocalizations across intensity might be also encode them robustly across noise 

classes. While we did discover clear evidence of robust vocalization encoding in awake 

marmoset A1, the form this encoding takes appears to be considerably more complex than 

originally anticipated.  

4.2 Data Analysis 
 Because average neural responses to vocalizations in A1 do not necessarily surpass mean 

spontaneous activity (Wang, 2007), we implemented a relatively loose criterion for defining 

responsive neurons in our dataset. Neurons generating at least one spike in the presence of a 

clean vocalization in at least 50% of the trials were defined to be responsive. A total of N = 326 

single units were extracellularly isolated from A1 of two marmosets. After applying the 

responsiveness criterion for each of the five vocalizations, 216 (Trillphee), 191 (Peeptrill), 222 

(Trilltwitter), 200 (Tsikstring) and 224 (Peepstring) single units were included for further data 

analysis. All data analyses were conducted in MATLAB R2014a (The MathWorks Inc, Natick, 

MA).  

 For each unit of the dataset, mean spontaneous rates and mean discharge rates (excluding 

the two concatenated noise portions) were measured for each stimulus. Neuronal response 

reliability across repetitions was calculated in the same way as in Chapter 3 (Schreiber et al., 

2003). Basically, spike trains were first binned into vectors with a 50 ms window. Pairwise 

correlations of spike trains were computed for all trials of neuron responses to the same stimulus. 

The response reliability of a single unit to a particular stimulus is the averaged correlation. 
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Correlation between empty spikes trains were set to zero. This correlation value ranges from zero 

to one, with higher values denoting more consistent responses across trials.  

 To evaluate the influence of noise upon neural representation of vocalizations, we 

quantified the amount of vocalization encoded by single neurons at a particular SNR level by 

calculating an extraction index (EI) adapted from a similar study in songbirds (Schneider and 

Woolley, 2013). This metric is based upon the repetition-averaged peristimulus time histogram 

(PSTH) of neural response, a temporal sequence of spike counts, with a time bin of 50 ms. 

Different window bins of 5 ms, 10 ms, and 20 ms were also evaluated, which yielded 

qualitatively similar results. In this chapter, we only report results based upon 50 ms time bins. 

The initial and final 250 ms-long noise segments were again excluded from the PSTH during this 

analysis. The number of time bins used to calculate EI is 113 (Trillphee), 43 (Peeptrill), 104 

(Trilltwitter), 41 (Tsikstring), and 91(Peepstring). EI is computed as in equation (4.1): 
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is the distance between PSTHs nP
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of vocalization at a particular 

SNR, while
 vsnrD  is the distance between vP



 
of pure vocalization and snrP



. EI is bounded 

between -1 and 1: a positive value indicates the neural response to noisy vocalization is more 

vocalization-like, and a negative value implies the neural response is more noise-like. The EI 

profile for each single unit was determined by computing EI at every SNR level. The normalized 
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inner product was utilized to compute distance between /n vP P
 

 
and snrP



, as shown in (4.2). For 

computational purposes, empty PSTHs were replaced by a vector generated from a Gaussian 

distribution with mean rate of zero and standard deviation of 0.001 so that we could report the 

distance between two empty PSTHs as 0. In order to reduce the artifact introduced by using an 

artificial PSTH vector, while calculating distance between an empty PSTH and non-empty 

PSTH, the non-empty PSTH was augmented with the same artificial vector used to replace the 

empty PSTH. 

 To probe the hidden response patterns, we further implemented an exploratory analysis 

based upon the calculated EI profiles. By applying k-means clustering on the blended EI profiles 

from both noise conditions together, we obtained subgroups of EI profiles, which divided single 

units into clusters according to the similarity of their EI profiles. Similarity was quantified by 

Euclidean distance. The number of clusters was determined by the mean squared error (MSE) of 

clustering as in equation (4.3), where N  is number of neurons, iEIP
 
is the EI profile of a single 

neuron, and cluster iEIP   is the mean EI profile of the cluster that this neuron is categorized into.  
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(4.3) 

 We selected the number of clusters based upon two criteria. We first narrowed down the 

candidates of number of clusters to the ones where the decrease of MSE flattens according to the 

elbow method (Tibshirani et al., 2001). We furthered selected the appropriate number of clusters 

from the candidates, which yielded response groups with distinguished functionality in terms of 

their resistance to noise. This analysis was performed by pooling EI profiles from all five 
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vocalizations together for each unit. Hierarchical clustering was also implemented and yielded 

very similar results; therefore, we report the results of k-means clustering only. 

 To examine if a link exists between neurons’ intensity-invariance and noise-resistance, 

discriminative analysis of single units responding to vocalizations at varied intensities was 

implemented to compute an intensity-invariance index (Billimoria et al., 2008). This value 

represents the discriminability of neural representations of a particular vocalization at multiple 

intensities from all the other vocalization-intensity instances. Neural responses to five 

vocalizations at four intensity levels (15, 35, 55, and 75 dB SPL) were truncated to the same 

length as the vocalization with the shortest duration. To calculate the intensity-invariance index 

for a particular vocalization, a single trial of neural responses at 75 dB SPL was randomly 

selected for each of five vocalizations as master templates and all the remaining trials were 

classified into the vocalization type as the most similar master trial based upon normalized inner 

product metric. The process was repeated 100 times. Classification accuracies were obtained for 

the investigated vocalization at each intensity level. We measured the deviation of the 

classification accuracies iC  ( 1,2,..., Atteni N ) at all tested intensities from the classification 

accuracy masterC  of the intensity of the master template, denoted as I  in (4.4), where AttenN  is 

number of tested intensities. We further linearly scaled I  so that it takes values between zero 

and one and therefore represents an intensity-invariance index. 
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 We quantified the alternation in the number of spiking activities induced by noisy 

vocalizations relative to clean vocalizations by measuring the firing rate within and between 
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vocalization phrases. For each vocalization, we manually segmented to mark the temporal 

boundaries of phrases and gaps between phrases. We furthered computed the firing rate change 

within each phrase and gap for noisy vocalization at 20 dB SNR relative to clean vocalization. 

The resulted differences in firing rates within and between phrases were averaged across trials, 

phrases/gaps and vocalizations.  

 Normality was verified by the Lilliefors test. Unless otherwise indicated, hypothesis 

testing was conducted using a two-sided Wilcoxon signed-rank test. The significance criterion 

was set to 0.05.  

4.3 Results 

4.3.1 Mean Discharge Rate and Response Reliability both Decreases as SNR 

Decreases 

 We recorded single-unit responses in A1 to five vocalizations embedded within two 

different background noises, WGN and Babble, at multiple SNR levels (–15 dB to 20 dB, 5 dB 

steps) from two marmosets. Figure 4.1A shows an example of a typical neuronal response. For 

this example unit, all vocalizations presented alone evoked neural responses that were locked to 

particular acoustic features, which can be observed from the temporal patterns formed by aligned 

spikes in the raster plots. As the amount of noise in the stimuli increased, the neural responses 

gradually deviated from the pure vocalization response. Neural encoding of vocalizations was 

particularly susceptible to the presence of Babble noise, given that spikes corresponding to the 

acoustic features of target vocalizations started to diminish even at 20 dB SNR, where the noise 

component was quite small. Responses at lower SNR values appeared to be mainly dominated by 

the Babble noise component. In comparison, this particular unit’s responses to WGN were not as 

strong as responses to vocalizations. As a result, the temporal firing patterns to vocalization 
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components were maintained at lower SNR levels. Additionally, response nonlinearities can also 

be discerned. For example, responses to vocalization Peepstring between -5 dB and -15 dB SNR 

under the WGN condition elicited stronger activity than in response to vocalization or WGN 

present alone.  
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Figure 4.1 Clean vocalizations generally elicit the most spiking and the most reliable spiking. (A) Example spike 

raster plots of one unit’s responses to five noisy vocalizations under two different noise conditions. Each point 

denotes an action potential generated by this unit. Black dots with white background are the neural activities in 

silence. Black dots with light blue backgrounds are neural activities occurring during two concatenated noise 

presentations. Red dots with light blue background are spikes driven by noisy vocalizations. Response to 

vocalizations and noises alone are highlighted with gray background for distinction. (B) Mean discharge rates to five 

vocalizations at multiple SNRs (mean ± s.e.m). Lines with filled circles are discharge rates of vocalizations in 

Babble. Lines with open circles are discharge rates of vocalizations in WGN. Single-asterisk/double-asterisk 

indicates average discharge rate to WGN/Babble alone is significantly lower than vocalization alone (see text).(C) 

Mean response reliabilities to five vocalizations at multiple SNRs (mean ± s.e.m). The same color and line type 
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denotations as in (B) are depicted. Single-asterisk/double-asterisk indicates mean discharge rate to WGN/Babble 

alone is significantly lower than vocalization alone (see text). 

 

 To quantify noise effects upon the discharge rates in response to noisy vocalizations as a 

function of SNR, we calculated the mean discharge rate (absolute spiking rate without 

subtracting spontaneous spiking rate) evoked during noisy vocalizations in Figure 4.1B. 

Generally, mean discharge rates of single neurons to vocalizations masked with both noises 

increased as SNR increased. Discharge rates of pure WGN were significantly lower than 

discharge rates of all pure vocalizations (Trillphee: Z = -5.31, p = 1.10×10
-7

; Peeptrill: Z = -7.88, 

p = 3.40×10
-15

; Trilltwitter: Z = -8.91, p = 5.10×10
-19

; Tsikstring: Z = -7.95, p = 1.84×10
-15

; 

Peepstring: Z = -9.09, p = 9.04×10
-22

). With regard to Babble, the same trend was observed for 

four out of five vocalizations (Trillphee: Z = -0.438, p = 0.661; Peeptrill: Z = -5.71, p = 1.10×10
-

8
; Trilltwitter: Z = -5.37, p = 7.74×10

-8
; Tsikstring: Z = -3.91, p = 9.10×10

-5
; Peepstring: Z = -

4.28, p = 1.83×10
-5

). It is noteworthy that under Babble noise conditions, more spikes were 

evoked on average at higher SNR levels than clean vocalizations. One extreme case is 

vocalization Trillphee, to which the neural responses were as strong as or even stronger at all 

SNR levels than the vocalization component alone. In addition, the mean responses to WGN 

alone were relatively weaker than responses to Babble, but were still comparable. This is 

surprising given the traditional view of WGN that it is a poor stimulus for activating auditory 

neurons at higher processing levels (Miller and Schreiner, 2000; Theunissen et al., 2000; 

Valentine and Eggermont, 2004). 

 Due to the stochastic nature of neural spike timing, neurons produce varied spike trains in 

response to a stimulus presented multiple times (de Ruyter van Steveninck et al., 1997; Oram et 

al., 1999). We also examined the noise-induced alteration in response reliability of neurons to 
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vocalizations. By computing the mean value of pair-wise correlation between individual spike 

trains, we quantified stability of single-neuron response as a function of SNR in Figure 4.1C. In 

the WGN condition, more noise resulted in decreased neural response reliability for all five 

vocalizations. Additionally, pure WGN induced a significantly lower response reliability than 

pure vocalizations (Trillphee: Z = -7.15, p = 8.6×10
-13

; Peeptrill: Z = -9.05, p = 1.5×10
-19

; 

Trilltwitter: Z = -10.34, p = 4.46×10
-25

; Tsikstring: Z = -9.53, p = 1.54×10
-21

; Peepstring: Z = -

10.55, p = 5.04×10
-26

). Although the response reliability degradation induced by Babble noise 

was weaker, the response reliability was still significantly lower than most pure vocalizations 

except Trillphee (Trillphee: Z = -1.88, p = 0.0608; Peeptrill: Z = -4.46, p = 8.34×10
-06

; 

Trilltwitter: Z = -5.69, p = 1.26×10
-8

; Tsikstring: Z = -4.97, p = 6.54×10
-7

; Peepstring: Z = -5.08, 

p = 3.81×10
-7

). 

 To summarize, vocalizations generally elicited more spikes and more reliable spikes than 

either noise alone in this neuronal population. A more prominent increase in neuronal discharge 

rate and response reliability was observed as SNR increased in the WGN case compared to 

Babble. Finally, rates and reliability elicited by WGN were both higher than anticipated at this 

high level of auditory processing. 

4.3.2 Low Correlation between Single Units’ Resistances to Different Noises 

 We next studied the ability of single units to consistently encode vocalizations despite the 

influence of background noises by calculating an EI profile for each neuron as a function of 

SNR. The EI measurement was previously implemented in a songbird study and was 

demonstrated to be able to reflect single neurons’ vocalization-coding ability more accurately 

than average discharge rate, given that both vocalization and noise components elicited strong 

responses in that study (Schneider and Woolley, 2013). Essentially, EI is designed to quantify 
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whether a trial-averaged response is more vocalization-evoked or more noise-evoked. For 

example, EI of 1 suggests that the evaluated response is evoked by vocalization alone, and EI of 

-1 suggests the response is evoked by noise alone. By calculating EI at each SNR level, we 

obtained an EI profile for each neuron. We further computed the mean value of EI profile at SNR 

levels ranging from -15 dB to 20 dB to obtain an overall picture of the pairwise relationship 

between single-neuron responses to vocalizations mixed with WGN and Babble. The results are 

shown in Figure 4.2. 

 

Figure 4.2 Babble tends to disrupt vocalization encoding more than WGN. (A) Scatter plot of mean of EI profile 

values under WGN and Babble conditions. Neuron counts are indicated above each plot.(B) Boxplots of medians of 

EI profile mean values under WGN and babble conditions. Neuron counts are the same as in (A). Boxplots with 

open circles display distribution of mean EI values under WGN condition, and boxplots with filled circles display 

distribution of mean EI values with background of Babble noise. Outliers are indicated by black open circles. 

Asterisks indicate mean EI values under WGN and Babble are significantly different (see text). 
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 We visualized the data in two ways. In Figure 4.2A, EI profile mean values of single 

units under WGN and Babble were first scattered so that the pairwise relationship can be better 

observed and quantified by Pearson correlation. This analysis indicates that a weak positive 

correlation exists between single units’ rejection of WGN and Babble for vocalization Trillphee, 

Trilltwitter and Tsikstring (Trillphee: r = 0.413, p = 3.09×10
-10

, Trilltwitter: r = 0.424, p = 

5.03×10
-11

, Tsikstring: r = 0.332, p = 2.41×10
-6

), while the correlation is low for vocalization 

Peeptrill and Peepstring (Peeptrill:  r = 0.191, p = 8.70×10
-3

, Peepstring: r = 0.130, p = 4.41×10
-

2
). This result implies that a relatively large variability exists in the relationship of individual 

neurons’ resistance to disruption by WGN and Babble. In other words, the ability to predict a 

single unit’s responses to vocalizations in WGN based upon its responses to vocalizations in 

Babble is limited, and vice versa. 

 Additionally, Figure 4.2A demonstrates that more points are located below the diagonal 

than above. We can better observe this trend in Figure 4.2B across vocalizations, where medians 

of population EI mean values are mostly positive in WGN while medians of population EI mean 

values are mostly negative in Babble. A paired Wilcoxon signed-rank test shows that the mean 

EI values under the two noises are significantly different for four out of five vocalizations 

(Trillphee: Z = 7.43, p = 1.13×10
-13

; Peeptrill: Z = 5.04, p = 4.55×10
-7

; Trilltwitter: Z = 7.27, p 

=3.59×10
-13

; Tsikstring: Z = 1.69, p = 0.0900; Peepstring: Z = 5.67, p =1.39×10
-8

). Therefore, 

while there is large variability among single unit responses to vocalizations under different noise 

conditions, a majority of neurons is more resistant to vocalization degradation by WGN than by 

Babble. 
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4.3.3 Intensity-invariance is Insufficient to Account for Noise-resistance 

 
Figure 4.3 Intensity invariance correlates poorly with noise resistance. (A) Intensity-invariance versus noise-

resistance in WGN condition. (B) Intensity-invariance versus noise-resistance in Babble condition. 

  

 Acoustic signals can be varied in terms of a rich set of parameters. Previous evidence 

points to the existence of intensity-invariant neurons that retain neural responses to natural 

stimuli delivered at multiple intensities (Billimoria et al., 2008; Sadagopan and Wang, 2008; 

Schneider and Woolley, 2010; Watkins and Barbour, 2011). We examined the relationship 

between neurons’ intensity-invariance and noise-resistance to test the hypothesis that neurons 

whose responses are intensity-invariant are also noise-resistant (i.e., robust). Single units with 

rate-level functions measured using vocalizations were included in this portion of analysis. 

Neural responses were truncated to the length of the shortest vocalization in order to determine 

the intensity-invariance index. The intensity-invariance index was scaled for each vocalization 

separately, and was bounded between 0 and 1. The higher the index value, the better the unit is at 

discriminating vocalizations in an intensity-invariant manner. We associated the intensity-
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invariance index of single units with their noise-resistance as reflected by EI profile values using 

Pearson correlation in Figure 4.3. Generally, a weak but significant positive correlation between 

intensity invariance and noise resistance exists in the WGN condition (Trillphee: r = 0.376, p = 

3.72×10
-8

; Peeptrill: r = 0.198, p = 7.60×10
-3

; Trilltwitter, r = 0.370, p = 3.81×10
-8

; Tsikstring: r 

= 0.198, p = 6.00×10
-3

; Peepstring: r = 0.349, p = 1.90×10
-7

). On the other hand, no significant 

correlation exists between intensity invariance and noise resistance in the Babble situation 

(Trillphee: r = 0.00860, p = 0.904; Peeptrill: r = -0.142, p = 0.0569; Trilltwitter, r = 0.0328, p = 

0.638; Tsikstring: r =0.0542, p = 0.455; Peepstring: r = 0.0626, p = 0.364). The relatively low 

correlations in both noise cases imply that intensity invariance and noise resistance reflect two 

mostly separate processes. The weak but significant correlations for WGN raise the possibility 

that these processes are related and perhaps overlap in some way, at least under the conditions 

evaluated by WGN. 
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4.3.4 Selecting the Number of Neural Response Groups 

 

Figure 4.4 Selecting the number of response groups. (A) Mean squared error of EI clustering as a function of 

number of clusters for each vocalization under two noise conditions. (B) Population-averaged EI profile clusters of 

Trillphee vocalization with different number of response groups. Numbers of response groups vary between 2 and 5 

from left to right. 

 

 Babble noise was demonstrated to induce more distortion in neural responses to 

vocalizations than WGN in terms of mean discharge rate and EI value. Next, we examined each 

single unit’s EI profile more closely to elucidate in detail the large variability of neural responses 

to vocalizations in noise. To investigate the potential patterns embedded within EI profiles, we 
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implemented unsupervised k-means clustering on the raw EI profiles across SNR levels from -15 

dB to 20 dB. EI profiles with similar shapes were grouped together automatically by this method 

in order to minimize the distance between group centroids and individual profiles. According to 

the MSE values for different numbers of clusters in Figure 4.4A, 2, 3 and 4 number of clusters 

all appear to be potential candidates. 

  We applied clustering with respect to cluster numbers of 2, 3, 4, and 5 respectively. The 

resulting population-averaged EI profiles for vocalization Trillphee are displayed in Figure 

4.4B. In all cases, this analysis revealed clusters the appeared to preferentially encode the 

vocalization or the noise. Higher cluster numbers revealed intermediate responses that appeared 

to encode neither. Given that five clusters revealed two redundant clusters both tending to 

encode the noise, and visual inspection of raster plots revealed that the four clusters 

corresponded to easily discernible spiking patterns, we completed further analysis with four 

clusters. It is worth noting, however, that all the results that follow were also found for all the 

other cluster numbers that we considered (data not shown). 
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4.3.4 Constant Response Groups with Dynamic Neuron Membership 

Figure 4.5 All noisy vocalization responses fall into a consistent set of classes. (A) Raw EI profiles of single units 

are sorted in the order of clusters they were classified into. Four similar EI profile clusters were identified 

automatically in all five vocalizations. Each row is an EI profile of a single unit. Four stacked colors on the right 

side of each panel indicate the identity of the neurons under each noise condition, with the top panels indicating the 

WGN condition and the bottom panels indicating the Babble condition. The robust group is in blue (cluster 1), 

balanced group in gray (cluster 2), insensitive group in purple (cluster 3), and brittle group in red (cluster 4). (B) 

Population-averaged EI profile of each cluster (mean ± s.e.m). The relative numbers of neurons classified into each 

group are displayed at the lower right of each panel. The cluster identities are indicated with the same color 

denotations as in (A).   
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 The clustering methodology described above yielded constant EI profile groups across all 

five vocalizations under both noise conditions. As exhibited in Figure 4.5A, single units’ EI 

profiles were sorted based upon their group identity to form a matrix for each vocalization and 

noise combination. The four groups of responses can be identified by the color transition in the 

matrix, which reflects their noise resistance ability. The first group (blue) exhibits positive EI 

values down to the lowest SNR. Neurons in this group can individually encode more 

vocalization than noise as long as some vocalization component exists in the auditory scene, 

even if it is small. We refer to this group as robust. The second group (gray) appears to have a 

more varied pattern in the EI profile matrix given that blue occupies the upper half of SNR 

values, through red dominates the lower half of SNR values. This trend indicates that neural 

responses in this group encode either noise or vocalization, depending upon which is more 

prominent in the auditory scene. We refer to this group as balanced. The third group (purple) is 

the least varied group in EI profile matrix. Instead of dominated by blue and red, most areas are 

filled with white mixed with little read and blue, indicating that this group of neural responses 

exhibits little preference for either vocalization or noise, having EI values deviating little from 

zero. We refer to this group as insensitive. The fourth group (red) exhibits a matrix mostly 

dominated by red. Neural responses in this group thus are more susceptible to the presence of 

noise, and they are more likely to mainly encode noise even if only a small amount of noise 

exists in the stimulus. We refer to this group as brittle. 

 These four distinctive encoding patterns are summarized graphically in Figure 4.5B, 

where EI profiles of individual neurons were averaged with others sharing the same group 

identity. Robust profiles can be identified by predominantly positive EI, brittle profiles can be 

distinguished by predominantly negative EI values, balanced profiles can be recognized by near-
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equal positive and negative EI values and insensitive profiles show EI around zero. The fractions 

of profiles classified into one of the four groups are depicted in the lower right of each panel. 

Generally, more than 30% of EI profiles were classified into the insensitive group irrespective of 

vocalization-noise combination. The fraction of profiles categorized into the robust and brittle 

groups was vocalization-dependent. Consistent with the observation from the mean values of EI 

profiles in Figure 3B, more EI profiles were classified into the robust group in the WGN 

condition than Babble condition for all vocalizations. Still, considerable variance can be 

observed in the distribution of EI profiles across the four groups. 
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Figure 4.6 Exemplar neurons for each response group. (A) Exemplar units are displayed for each of the four groups 

of robust, balanced, insensitive and brittle. The top panels show raster plots of four different single units’ responses 

to the Trilltwitter call in WGN and the bottom panels display the same unit’s responses to the Trilltwitter call in 

Babble. Color denotations of dots in raster plots are the same as in Figure 2A. (B) EI profiles corresponding to the 

same four exemplar neural responses shown in (A). 

  

 One single unit from each response group with distinct response patterns to Trilltwitter in 

WGN/Babble is displayed in Figure 4.6A. The top panels show spike raster plots of four single-

unit responses to Trilltwitter degraded by WGN, and they were classified into insensitive, robust, 

brittle and balanced groups, respectively, as indicated by the panel frames colors. The 

corresponding neural responses of the same four neurons to Trilltwitter degraded by Babble are 

displayed at the bottom panels in Figure 4.6A. It is worth noting that these neurons’ response 

memberships were not the same in the WGN condition as in Babble. This phenomenon can be 

more easily observed directly from EI profiles corresponding to each raster plot, as shown in 

Figure 4.6B.  

 The previous observation in Figure 4.5B of consistent response group forms under all 

stimulus conditions tested, yet individual units’ inconsistent response group identities in Figure 

4.6B, led us to ask whether the majority of units retain their group identities under different noise 

conditions. To address this question, we evaluated the proportional distribution of constituent 

units in the four response groups with Babble masking given the neurons’ group identity in 

WGN condition in Figure 4.7A. Two possible scenarios might be predicted, as illustrated in the 

top panel of Figure 4.7A. One is an invariant model, in which all units completely retain their 

response group identities across the two noise types. For example, units falling into the robust 

group under the WGN condition as W1 fully preserve their group response identity in Babble as 

B1. In a similar way, W2-W4 and B2-B4 share the same subgroup of units. This model predicts a 
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diagonal group switching matrix. Another model is a random model, in which all units randomly 

change their response group identities under different noise conditions. This model predicts a 

uniform group switching matrix. 
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Figure 4.7 Noisy vocalization response types are not consistent for individual units. (A) Group switching matrices 

of unit membership in response clusters under WGN and Babble conditions. Two hypothetical models are depicted 

in the top panels: the invariant model and the random model. Group switching matrices of five vocalizations are 

displayed in the bottom panels. For each matrix, the abscissa indicates cluster identity in the Babble condition (B1-

4), and the ordinate represents cluster identity in the WGN condition (W1-4). The grayscale value in each unit 

square denotes the proportion of units originally falling into a particular cluster identity in the WGN condition being 

reclassified into a particular cluster identity in the Babble conditions. (B) Scatterplots of mean discharge rate elicited 

by pure vocalizations and pure WGN noises (top panels) or Babble (bottom panels). Mean discharge rates of single 

units are colored with their corresponding cluster identity as determined by their EI profiles. Color conventions are 

the same as those used in Figure 4.  

  

 The group switching matrices of our neuronal population can be seen in the bottom panel 

of Figure 4.7A. These matrices lie between the invariant and random models, though 

considerably closer to random. As a consequence, units appear to change their response group 

identities as background noise is altered, and less than 40% (M = 0.37, SD = 0.04) of neurons in 

general retain the same response group when the background noise shifts from WGN to Babble. 

For example, with vocalization Tsikstring, we might naively expect that a majority of units in the 

brittle group under the WGN condition would still be classified into the same group under the 

Babble situation, given that Babble noise has a more disruptive effect upon vocalization 

encoding, as seen in Figure 4.2. In actuality, however, more than 50% of neurons in the WGN 

brittle group have response group identities as balanced, insensitive or even robust in the Babble 

condition. The proportion of neurons that retained their response group identity across masking 

noises was considerably less than expected, indicating strong noise-dependent response 

properties in A1. Under both noise conditions, about 5% of the 163 single units responsive to all 

five tested vocalizations retained their response group identity across all vocalizations. Among 

those neurons, most of them kept their identity as insensitive or brittle. About 80% of single units 

fell into 2 or 3 different response groups across vocalizations, and the remainder covered all four 

response group identities across vocalizations. Therefore, despite four consistent clusters of 
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neural responses for all vocalization-noise combinations tested, the individual units constituting 

each of these groups differed substantially. 

 We further examined the mean discharge rates of single units in response to pure 

vocalizations and noises with units’ response groups being specified in colors in Figure 4.7B. 

We found that a majority of units belonging to robust groups in both noise scenarios were 

situated below the diagonal, indicating that units with stronger responses elicited by pure 

vocalization than pure noise are more likely to encode vocalizations at lower SNR values. The 

discharge rates of units belonging to other response groups, however, were more blended without 

a clear boundary. Neuronal response reliability to pure WGN and pure vocalizations was also 

compared in terms of response groups, and a similar trend was observed (data not shown). 

Therefore, neither discharge rate nor response reliability alone is sufficient to explain neuronal 

response type in the face of noise interference. 
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4.3.5 Suppression and Addition of Spiking Activity within and between 

Vocalization Phrases 

 
Figure 4.8 Difference of discharge rates to phrases and gaps of vocalizations. Discharge rates at 20dB SNR within 

and between gaps of vocalization phrases relative to clean vocalizations were displayed for each neural response 

type (mean ± s,e,m). The same color denotations as in Figure 4.4A were used. 

 

 To investigate how the addition of noise affected the spiking activity elicited by 

vocalizations in terms of acoustic features, we measured the discharge rate within vocalization 

phrases and between gaps of vocalization phrases in Figure 4.8. By comparing vocalizations at 

20 dB SNR with clean vocalizations, the brittle response group showed increased spiking activity 

both within and between vocalization phrases under both noise conditions. This finding serves as 

a strong evidence for the existence of a group of neurons that can detect a barely audible noise 

stream once it is present in the auditory scene. In contrast to the brittle response group, the robust 
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response group, along with balanced and insensitive groups, showed suppression of neural 

activity within vocalization phrases under both noise conditions, indicating that the response 

patterns to vocalizations might be largely preserved but with smaller amplitude. While the robust 

response group also showed suppression of activities in gaps between vocalization phrases in  

both noise conditions, the activities of less robust groups (balanced and insensitive) during the 

gaps are more subjective to the interference of noise under Babble condition than WGN.  

4.3 Discussion 
 Introducing either White Gaussian Noise or Babble noise reduced mean vocalization-

induced discharge rates in A1 neurons. Similar observations were made in other preparations 

under different stimulus conditions (Gai and Carney, 2008; Schneider and Woolley, 2013). Both 

noise types also reduced mean reliability, which was correlated with the decreases in mean 

discharge rates. Higher average discharge rates alone are not the source of higher response 

reliability, however, because reliability calculations were based upon correlation of neuron 

responses across trials, unaffected by the absolute firing rate. 

 Nagarajan et al. observed that 15% of barbiturate-anesthetized A1 neurons respond more 

strongly to calls in white noise than to pure calls alone (Nagarajan et al., 2002). Similar neural 

responses were also noticed in our awake animals, such that on average 13% of units exhibited 

responses stronger than 1.5 times the response to pure vocalizations at 20 dB SNR in the WGN 

condition and 19% in the Babble condition. This phenomenon therefore appears to be 

independent of animal state (i.e., anesthetized vs awake). One potential explanation might be the 

widespread nonmonotonic rate-level functions of marmoset A1 (Sadagopan and Wang, 2008; 

Watkins and Barbour, 2011). A nonmonotomic, vocalization-selective neuron with best intensity 

somewhat lower than the one at which the noisy vocalizations were delivered might respond 
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better as some noise is added in power-normalized fashion, thereby reducing the intensity of the 

vocalization component. Another feasible explanation is that these neurons might dynamically 

adjust their contrast gains under this specific combination of acoustic signal and noise (Barbour 

and Wang, 2003b; Willmore et al., 2014).  

 We found that the single-unit neural representation of communication sounds in 

marmoset A1 is also context-dependent (Narayan et al., 2007). Four consistent response groups 

were identified by their responses to noisy vocalizations. We first determined that the group 

identity of a neuron’s responses to a vocalization in WGN poorly predicted its responses to the 

same vocalization in Babble. A small subset of neurons demonstrated sustained high 

responsiveness to WGN but suppressed responses to Babble, implying a complex 

spectrotemporal integration. We further concluded that the responses of A1 neurons to a sound 

mixture were dominated by the stimulus that more efficiently induced a response when delivered 

alone, which is consistent with the “strong signal capture” observed with pure tones and 

broadband noise (Phillips and Cynader, 1985; Gai and Carney, 2008).  

 One critical question for auditory scene analysis is where the auditory segmentation 

initially occurs (Shamma and Micheyl, 2010). Formation of auditory objects has been widely 

studied both at cortical and subcortical levels using multiple recording techniques (Fishman et 

al., 2001; Fishman et al., 2004; Bar-Yosef and Nelken, 2007; Pressnitzer et al., 2008). A unifying 

principle from previous studies is that auditory streaming processing exists at least as late as A1 

and possibly begins as early as cochlear nucleus. In our study, the presence of four noisy 

vocalization response groups supports A1 as a source of stream segregation processing. 
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 Regarding functionality, the robust group represents a neural substrate for the 

vocalization stream, while the brittle group represents a neural signature of the noise stream. The 

balanced group provides another coding dimension reflecting the SNR between two auditory 

streams (i.e., indicating which stream is relatively more intense). The insensitive group responds 

equally to both streams and is not particularly useful for segregating either of them but may have 

other coding functions. Given that these response groups emerged consistently under every 

signal and noise condition tested, we speculate that this may be general coding mechanism for 

representing sounds. It is worth emphasizing again that individual A1 neurons can generate 

responses that fall into any of these classes depending upon stimulus context.  

 How can A1 project to downstream areas so that noise-invariant responses to sounds 

become possible? Feedforward suppression is suggested to be the underlying mechanism of 

noise-invariant responses(Schneider and Woolley, 2013). In the context of our dataset, the 

readout from the robust group would be strengthened while the readout from the brittle group is 

suppressed. Top-down regulation is probably needed for such enhancement (Jancke et al., 1999; 

Tervaniemi et al., 2009), and this control signal would also need to be contextually dependent 

and possibly under attentional control. 

 No evidence of a strong positive relationship between intensity-invariance and noise-

resistance exists in our dataset. One potential explanation is our observation that if a neuron is 

very responsive to vocalizations alone, it is also likely to be actively driven by noise alone. When 

these two stimuli are combined we often see sensitivity to both. Alternatively, we tested a limited 

range of intensity levels, which may be insufficient to capture neurons’ full intensity-invariance. 

Combinations of different auditory objects evoke some A1 neurons to respond predominantly to 

the weaker object (Bar-Yosef et al., 2002; Bar-Yosef and Nelken, 2007). This type of response 
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may be reflected in our brittle group; nevertheless, this response pattern in the population would 

lower the probability that simple context-independent rate-level response features induced by 

single stimuli can explain the present results. 

 Vocalizations in WGN yield a generally lower neuronal detection threshold than in 

Babble, in agreement with human listeners’ susceptibility to different types of masking (Carhart 

et al., 1969; Brungart, 2001). Nevertheless, the lack of behavioral performance in the current 

study makes it challenging to infer this perception accurately. The auditory stream processing we 

observed occurred without requiring attention to a particular auditory stream. An important 

additional goal would be to determine whether this attention-modulation neural encoding affects 

neural representations of already formed auditory streams, or if it influences the representation 

formation process itself.  

 By segmenting the neural activities based upon the spectrotemporal phrases of 

vocalizations, we revealed the underlying firing rate alternation of different response groups at 

20 dB SNR relative to the firing rates in response to clean vocalizations. It explicitly shows the 

distinctive difference between the robust and brittle group. The robust group suppressed spiking 

activities both within and between phrases, and the brittle group behaved oppositely. The 

previous songbird reported suppression of neural activities within song syllables and addition of 

spikes between song syllables on population level (Narayan et al., 2007). Our results, however, 

further exhibited that the influence of noise on the neural activities varies between different types 

of neural response group, and the suppression/addition of spikes was dominated by different 

subgroups of neurons. The emergence of different response groups who preferentially encoding 

individual auditory streams in the primary auditory cortex servers as the evidence of the 

underlying neural processing for the auditory scene analysis. 
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 We have studied neural encoding of vocalizations presented in conjunction with two 

types of background noises in marmoset monkey A1. Subsets of single units with high 

discrimination performance existed under both noise conditions. The dynamic role of single units 

indicates there are relatively few individual neurons in primary auditory cortex that can robustly 

encode stimuli in the presence of different noises. Robust encoding clearly exists in A1 when 

considering population responses, however, and future studies should consider evaluating 

integrated population responses and the effects of top-down influences mediated by attention. 
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Chapter 5: Population Coding of 

Vocalizations at Multiple Intensities and 

SNRs 

5.1 Introduction 
 Due to the inherent noise in the activity of individual neurons, multiple presentations of 

an identical sensory stimulus do not yield exactly the same spike trains. By computing the 

spiking rate averaged across trials to get rid of the response noisiness, researchers have generally 

expected to estimate the true firing rate driven by a stimulus. Large amounts of single-unit 

analysis have been conducted in this fashion. In studying neural responses to auditory stimuli, 

much insight has been gained from analyzing coding properties of individual neurons based upon 

the simplistic rate-coding hypothesis (Aitkin et al., 1986; Imig et al., 1990; Bendor and Wang, 

2005; Woolley et al., 2006; Barbour, 2011). However, the information represented by the 

ensemble of individual neurons has typically been overlooked. This seems to be a minor concern 

for studies investigating relatively simple acoustic stimuli, such as pure tones, but there are 

studies showing that even stationary acoustic stimuli induce dynamic responses on a population 

level. For more complicated acoustic signals with rich temporal-spectral structures, such as 

marmoset vocalizations (Gehr et al., 2000; Nagarajan et al., 2002), an analytical method for 

inspecting the response properties among neural population is needed. Here in Chapter 5, subsets 

of dataset used in Chapter 4 are analyzed from a population perspective.  

 In contrast to single-unit coding, population coding hypothesizes that the stimulus 

information is encoded in the brain by a large population of neurons via distributed firing rate 

patterns (McIlwain, 2001). Over the past two decades, multiple population analyses have 
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emerged to reveal the neural encoding and decoding properties at the population level, such as 

population variability analysis and spatiotemporal coding analysis. Population responses have 

been demonstrated to vary meaningfully (Churchland et al., 2010). The onset of a sensory 

stimulus leads to an acute decrease in the population response variability, indicating that the 

brain prepares itself to be in a stable state to process the coming stimulus. Churchland et al. 

claimed this phenomenon to be universal because the driving down of population response 

variability by the stimuli exists in the visual cortex, the parietal reach region, the dorsal premotor 

cortex, and the orbitofrontal cortex independent of the behavioral state. The auditory cortex, 

however, is not explicitly addressed in their study. Here, a trivial hypothesis to test is that the 

onset of complicated acoustic signals suppresses the population response variability. More 

importantly, to study the dynamics of population variability in response to vocalizations at 

multiple intensities and SNR levels, I further ask whether acoustic features of vocalizations 

modulate the population variability of the ongoing neural activities. If the answer is yes, then it 

suggests that the response variance, in addition to the spiking rate, can potentially encode 

information about vocalizations.  

 Neocortical neurons generate time-varying firing patterns with particular temporal 

structures. In the sensory areas, even presentation of a temporally unstructured stimulus, such as 

a stationary odor or pure tone, is likely to induce a complex temporal pattern of spiking (Stopfer 

et al., 2003; Bartho et al., 2009). By unifying the temporally-structured responses of individual 

neurons, we can visualize the complex spatiotemporal patterns at the population level. The 

spatiotemporal patterns of the population responses vary with the stimulus when a particular 

feature of the stimulus is slightly changed, such as intensity (Stopfer et al., 2003). Such 

visualization analysis has revealed the dynamics of responses to relative simple stimuli, however, 
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little is known about the spatiotemporal patterns of complex vocalization stimuli. Here, by 

varying intensities and SNR levels, we also studied the alteration of spatiotemporal patterns of 

population neural responses to five marmoset conspecific vocalizations and tested the hypothesis 

that the population responses are not just a linear scaling of their amplitude.  

 Neurometric analysis is a useful tool for linking neural activity with perception to 

identify the underlying neural substrate that generates the sensory perception and behaviors of 

interest (Walker et al., 2008). Individual neurons vary widely in their ability to discriminate 

complex acoustic stimuli (Narayan et al., 2006; Wang et al., 2007; Schneider and Woolley, 

2010). However, the degree to which a population of neurons can recognize different types of 

vocalizations at multiple intensities and SNR levels is not well known. Would distributed firing 

rate patterns across a whole population of recorded cells optimize the performance of the 

stimulus discrimination task, or is there a subpopulation of neurons that yields the best 

performance? With respect to the dynamics along the time course, does a population of neurons 

have a constant discriminability, or are the neural responses at certain time epochs better than 

other epochs? These questions were investigated by building population response decoding 

models that are sensitive to temporal discharge patterns. Using this decoding tool, we further 

inferred the perception intensity threshold of vocalizations and the detection threshold of 

vocalizations masked with WGN/Babble noise. 

 In summary, in this Chapter, by pooling the activities of individual together, we analyzed 

population responses to vocalizations at multiple intensities and SNR levels from three aspects: 

population response variability with respect to time, spatiotemporal structures of population 

responses, and the ability of population responses to identify stimuli in different experimental 

conditions.  
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5.2 Data Analysis 
 Two sets of data were studied using the population analysis in this chapter. The first 

dataset is single-unit responses to five vocalizations (Trillphee, Peeptrill, Trilltwitter, Tsikstring, 

and Peepstring) at four intensities (from 15 dB SPL to 75 dB SPL, in 20 dB SPL steps). In total, 

N = 326 single units were included in the analysis. For the second dataset, a subset of N = 172 

single units was used to study noise interference with population responses to five vocalizations 

at 10 SNR levels (from -15 dB to 20 dB, in 5 dB steps) including pure vocalization and noise, 

delivered at 75 dB SPL.  

 For each unit of both datasets, a peristimulus time histogram (PSTH) for each response 

trial was calculated by binning spike trains into rate vectors with a 50 ms window in 10 ms steps. 

The following data analyses are based upon this preprocessing, unless otherwise stated. All data 

analyses were conducted in MATLAB R2014a (The MathWorks Inc, Natick, MA). Because 

most of the neurons in our dataset were recorded sequentially one at a time, we created pseudo-

populations to substitute for simultaneous recordings. Creating these pseudo-populations 

potentially ignores the correlation between individual neurons that exists in a simultaneously 

recorded neuronal population, and may change the estimates of the absolute level of 

performance. The majority of conclusions drawn in this chapter, however, would most likely not 

be altered by the sequential recording, because previous studies show that similar conclusions are 

obtained by simultaneously recorded neurons and sequentially recorded neurons (Gochin et al., 

1994; Baeg et al., 2003; Panzeri et al., 2003; Aggelopoulos et al., 2005; Nikolić et al., 2006; 

Anderson et al., 2007).  

 We used the Fano factor to quantify the population response variability to a particular 

stimulus with respect to time. For a time bin at time t, the mean of spike count µbin,t and variance 
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bin,t across trials were calculated for each neuron separately. The Fano factor for a single 

neuron at time t is just the ratio between the variance and the mean of the spike count as 

displayed in (5.1).  
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(5.1) 

 With regard to the calculation of Fano factor for a population of neurons, a slightly 

different procedure was implemented. First, a scatterplot of the trial-averaged mean of the spike 

count and variance of a population of neurons at time t was obtained. A regression was later 

performed to relate the distribution of variances with the distribution of means of spike count. 

The resulting slope was the Fano factor of the population response at time t. The MATLAB code 

used to compute the Fano factor is available at 

(http://www.stanford.edu/~shenoy/GroupCodePacks.htm) (Churchland et al., 2010).  

 Visualization of population responses in 3D space could help us gain an intuitive 

understanding about highly complicated neural responses (Stopfer et al., 2003; Bartho et al., 

2009; Saha et al., 2013). Such visualization can be realized by principal component analysis 

(PCA). PCA is a linear dimensionality reduction technique. It identifies a set of linearly 

uncorrelated variables, called “principal components”, from an original dataset composed of a 

large number of possibly correlated variables and captures as much of the variability in the 

dataset as possible (Jolliffe, 2002). The principal components are ordered by the amount of 

variability that each component accounts for, and the first principal component has the largest 

variance. With regard to neural population responses, each single unit counts as one dimension in 

the population response space. Given the neural response of n single units in a neural population, 

http://www.stanford.edu/~shenoy/GroupCodePacks.htm
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an n-dimensional response vector R
n
 can be generated. By applying PCA on the n-dimensional 

response space, we can obtain m virtual neurons to constitute an m-dimensional response space 

preserving as much of the variance in the original dataset as possible, where m <= n. If we keep 

only the first three virtual neurons’ responses (m = 3), we can visualize the population responses 

as a trajectory in a 3D space by connecting the responses at a series of time points. In the 

following analysis, PCA was implemented for each vocalization type separately. The first three 

principal components accounted for about 30% of the original dataset’s variance for each 

vocalization at multiple intensities, and for about 22% of the variance for each vocalization at 

multiple SNR levels, under either WGN or Babble noise. For visualization, trajectories were 

smoothed with a 10-point running window for pure vocalizations, and a 20-point running widow 

for noisy vocalizations. 

 Based upon the trajectory visualization analysis, we can further quantify the structure of 

trial-averaged population responses. To quantify the rotation of the population response vectors 

in response to a particular stimulus 0s
 
in 3D space, the angle between a response vector tr  at 

time t and a reference response vector 0r  at time 0t  can be computed as in (5.2) (Bartho et al., 

2009). By defining the first point of the spontaneous population response corresponding to 

stimulus 0s  as the reference vector, the angle evolution of population response vectors can be 

obtained by concatenating the angles calculated at all the available time points, 0 1, ,..., nt t t t , 

during pre-stimulus, stimulus, and post-stimulus. We calculated the intra-trajectory angle 

evolution for the five vocalizations at four intensities and ten SNR levels under WGN and 

Babble noise conditions as follows:  
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 Similarly, we also computed the inter-trajectory angle evolution of population response 

vector sr


corresponding to stimulus s  relative to response vector 
0sr



, which in turn corresponds 

to stimulus 0s  across time, 0 1, ,..., nt t t t , as displayed in (5.3).  
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(5.3) 

 The angles of population responses to vocalizations at three softer (15 dB SPL, 35 dB 

SPL, and 55 dB SPL) levels relative to the population response to vocalization at 75 dB SPL 

were calculated. The noise effects on population response angle evolution were also investigated 

by computing the angles of responses to noisy vocalizations and pure noise relative to pure 

vocalizations.  

 To investigate the discriminability of population responses trial-by-trial (Meyers et al., 

2008; Bartho et al., 2009), template-based stimulus identity predictive models were built based 

upon neural population responses. For predictive model decoding of vocalizations at multiple 

intensities, there are three types of models: single-bin based, sliding-bin based, and varying-cell-

number based. To build a single-bin based model, for each stimulus condition (five vocalizations 

at four intensities), five trials of single-unit responses at a particular time bin were randomly 

sampled out of, at most, 10 trials for each neuron (N = 326, each has 5~10 trials). The five trials 

were concatenated to form a 100 × 326 population response matrix. The stimulus identity 
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corresponding to each response trial is called a label. There are a total of five labels, each 

representing a vocalization type (c = 5). Four trials of the neural population responses to each of 

five vocalizations delivered at the highest intensity, 75 dB SPL, were further randomly selected 

as the training templates. The remaining 80 trials of neural population responses were used as the 

testing dataset, and the label corresponding to a test trial was decoded by calculating the cosine 

distance between this trial and the 20 template trials. The vocalization type or stimulus label 

corresponding to the template trial with the shortest distance from the test trial was assigned as 

the predicted label. This whole process was repeated 50 times. The performance of the predictive 

model was evaluated by its overall accuracy and confusion matrix. The overall accuracy is 

defined as the percentage of stimulus labels that are correctly predicted, and the confusion matrix 

revealed the chance of a particular label being predicted as one of the five labels. 

 While a single-bin based model was built to investigate the neural discriminative 

performance at each time point, a sliding-bin based model was used to study the effect of time 

accumulation on neural discriminability. The process of building a sliding-bin based model was 

very similar to that of a single-bin based model, except for that the response bin from each single 

unit were varied from 1 to 41, where 41 is the number of bins that the shortest vocalization 

Tsikstring has. Performance as a function of temporal resolutions (time bin width) was 

investigated with predictive model using 41 bins, and the temporal resolution was varied from 5 

ms, 10 ms, 20 ms, … , to 100 ms. Last, a varying-cell-number based model was created by 

changing the number of neurons in the population, and only models with 41 bins were studied. 

 The population neural discriminability of vocalizations at multiple SNR levels was 

investigated, much like that of vocalizations at multiple intensities. Predictive models under 

WGN and Babble conditions were built separately. Here, the training templates had six labels, 
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including five pure vocalizations and one type of noise (c = 6). In addition, to further study 

population decoding with a subpopulation of neurons, a predictive model for each vocalization 

type was built by using the number of time bins available for that particular vocalization. For 

each vocalization, a different subpopulation of neurons was included because of the contextual 

dependent effect in Chapter 4. There were only two labels, vocalization and pure noise (c = 2). 

Population neural responses from ten SNR levels were decoded as either vocalization-present or 

vocalization-absent. A linear support vector machine (SVM) classifier was used instead of the 

template-based predictive model to accomplish the binary classification task. The SVM 

classified the neuronal responses by training a separating hyperplane based upon the labeled 

training trials and had very good performance for binary classification (Van Gestel et al., 2002), 

while the template-based method did not have a particular training session. The generalizability 

of the classifier over lower SNR levels was studied by using different training data, for instance, 

neural responses to vocalizations at 20 dB SNR.  

 Normality was verified by the Lilliefors test. Unless otherwise indicated, hypothesis 

testing was conducted using a two-sided Wilcoxon signed-rank test. The significance criterion 

was set to 0.05.  
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5.3 Results 

5.3.1 Population Response Variability of Vocalizations at Multiple Intensities 

 

Figure 5.1 Population-averaged responses to five vocalizations at multiple intensities and the corresponding 

population activity variability with respect to time. 

  

 The spectrotemporal acoustic patterns of marmoset vocalizations can induce correlated 

discharge patterns in a subpopulation of individual neurons in A1 of marmosets (Wang et al., 

1995). We wondered whether the same correlated patterns exist in the variability of population 

neural responses, in comparison with averaged population response at multiple intensities. 

Figure 5.1 shows that population responses to all five vocalizations at the loudest 75 dB SPL 
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exhibited discharge patterns that follow the acoustic envelope belonging to each vocalization 

(see Figure 2.1). As intensity decreased, the population responses diminished to near the 

spontaneous activity range at the softest level. Though the intensity decreased over an equal 

interval, population responses were not scaled linearly. In addition to the general trend, 

vocalization-dependent changes were also observed. For instance, spiking rates over time at 55 

dB SPL were very similar to those at 75 dB SPL, while spiking rates at 35 dB SPL not only 

shrank in scale but were also deformed, leading to delay in onset responses for some 

vocalizations. It is most noticeable for the vocalizations Peeptrill and Trilltwitter, to which the 

onset responses were delayed about 100 ms and 200 ms, respectively, at 35 dB SPL. The 

probable reason is that 35 dB SPL is around the hearing threshold and serves as a transition point 

at which some acoustic features in the vocalizations were not well perceived. For vocalizations 

Trillphee, Tsikstring, and Peepstring, neural responses largely maintained their structures even at 

35 dB SPL.  

Table 5.1 Pearson correlation between spiking rate and variability for vocalizations at multiple intensities  

Vocalization 75 dB SPL 55 dB SPL 35 dB SPL 15 dB SPL 

Trillphee 
r = -0.886 

p = 2.60e-17 
r = -0.801 

p = 4.99e-12 
r = -0.582 

p = 1.12e-05 
r = 0.331 

p = 0.0200 

Peeptrill 
r = -0.737 

p = 1.39e-04 
r = -0.930 

p = 1.04e-09 
r = -0.962 

p = 3.39e-12 
r = 0.719 

p = 2.38e-04 

Trilltwitter 
r = -0.785 

p = 2.95e-10 
r = -0.853 

p = 1.83e-13 
r = -0.937 

p = 9.06e-21 
r = -0.571 

p = 5.09e-05 

Tsikstring 
r = -0.938 

p = 3.54e-10 
r = -0.962 

p = 3.79e-12 
r = -0.959 

p = 7.44e-12 
r = -0.531 

p = 0.0133 

Peepstring 
r = -0.5573 

p = 1.88e-04 
r = -0.856 

p = 1.96e-12 
r = -0.878 

p = 9.45e-14 
r = -0.625 

p = 5.16e-06 
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 The variability of population responses was a mirror image of the spiking rate of 

population responses over time. The Pearson correlation coefficients between these two metrics 

were computed and as displayed in Table 5.1. Variability was significantly correlated in a 

negative way with spiking rate for all vocalizations above 15 dB SPL. The strongest correlation, 

however, was not necessarily associated with the loudest intensity. For example, Peepstring’s 

correlation value at 75 dB SPL was relatively much lower than those at 55 and 35 dB SPL, and 

the variability over time did not show a profile that tracked individual phrases in the vocalization. 

The relationship between variability and spiking rate at the softest 15 dB SPL was less consistent 

across vocalizations, and either positive or negative correlation was possible. The population 

response variability of Trilltwitter, Tsikstring, and Peepstring at that level still had a negative 

correlation with spiking rate, indicating that A1 neurons are probably more sensitive to the three 

vocalizations than Trillphee and Peeptrill.  

 Therefore, the information of the vocalization envelope is also represented in the 

population activity variability. Furthermore, a nonlinear relationship between vocalization 

intensity and population response variability was revealed.  

5.3.2 Population Response Trajectory of Vocalizations at Multiple Intensities 

in 3D Space 

 An intuitive understanding of population neural responses can be obtained by visualizing 

their spatiotemporal structure. A powerful tool to achieve this is to project the high-dimensional 

response vectors onto a lower dimensional space, in which enough variance in the high-

dimensional dataset is captured by three principal components (i.e., virtual neurons). 
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Figure 5.2 Trajectories of population responses to vocalizations at multiple intensities in 3D space. 

 

 For each vocalization at multiple intensities, population responses were reduced to the 

same 3D space, and the resulting response trajectories are displayed in Figure 5.2. Trajectories 

were formed by connecting the response points from three time stages: pre-stimulus, during-

stimulus, and post-stimulus (not explicitly marked in Figure 5.2). Skeletons, which link the first 

point on the trajectory with the remaining points, were plotted to visualize the response 
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hyperplane. Hyperplanes belonging to different vocalizations all have very distinct shapes. Some 

are relatively smooth and simple, such as Trillphee, while some are more tangled and twisted, 

such as Peepstring.  

 

Figure 5.3 Evolution of rotation angles relative to the first time point (in silence) of the population response at 

multiple intensities in 3D space. 
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 How does the population hyperplane change in response to a decrease in intensity? Here 

we consider the hyperplane at 75 dB SPL as the reference hyperplane. If neuronal populations 

linearly scaled their responses’ amplitudes, we would expect to see the response hyperplane 

shrink without changing its position in 3D space. Alternatively, the hyperplane could change in a 

way that only rotates its position relative to the reference hyperplane. As a matter of fact, the 

hyperplane seems to both resize and rotate. It is worth noting that the more the intensity 

decreases, the further the hyperplane deviates from the reference, in a consistent direction.  

 To quantify the response hyperplane and the changed induced by intensity, we calculated 

the angle between response vectors in two ways. First, we quantitatively described the 

spatiotemporal structure of a hyperplane by computing the angle between the first response 

vector on the hyperplane and the remaining response vectors over time in Figure 5.3. Clearly, 

across vocalizations and intensities (except for 15 dB SPL), the intra-trajectory angle fluctuated 

between 0 and 60 degrees at the pre-stimulus stage. To process the upcoming stimulus, an acute 

increase in the angle immediately followed the stimulus onset and further evolved during the 

stimulus presentation. As the end of the stimulus presentations approached, the angles acutely 

declined back to the pre-stimulus level. Therefore, the angles of response vectors during the 

stimulus presentations occupied a distinctively different range from the pre/post presentation. 

Comparing the angles over time across different intensities, we noticed that at measured 

intensities above 15 dB SPL, the angles over time were very similar without the scaling shown in 

the spiking rate and response variability. This similarity indicates that population responses may 

represent a vocalization identity in an intensity-invariant manner by encoding the information in 

the angle evolution of a trajectory. 
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Figure 5.4 Evolution of the rotation angles of population responses at multiple intensities relative to the population 

response at 75dB SPL in 3D space. 

 

 Next, we quantified the influence of intensity on the deviation of response trajectories by 

computing the inter-trajectory angles between response trajectories of decreasing intensities 

relative to the reference trajectory at 75 dB SPL over time, as shown in Figure 5.4. The less 

intense the vocalization, the further away the corresponding population trajectory was from the 

reference trajectory in terms of angle rotations, which is consistent with a qualitative visual 

inspection in Figure 5.2. The rotation angles, however, are not equal over time. The pre-stimulus 
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and post-stimulus periods have rotation angles that fluctuated in the same range as that in Figure 

5.3. For the stimulus-driven angle evolution, finer structures potentially related to the acoustic 

features of vocalizations can be observed. With regard to the angles between two neighboring 

intensities, for instance, 55 dB SPL vs 35 dB SPL, their difference at each time point is generally 

smaller than the angle difference between different points belonging to the same intensity. 

Rotation of population responses may serve as an indicator to encode the information of 

intensity. 

 To summarize, population responses to the same vocalization largely retain their intrinsic 

structures within trajectories in 3D space at multiple intensities. By contrast, the relationship 

between hyperplanes at different intensities is more complicated than just an equal angle shift.  

5.3.3 Population Response Discrimination of Vocalizations across Intensities  

 

Figure 5.5 Population response discrimination across multiple intensities as a function of temporal resolution.  

 

 In previous analyses, we studied the variability and spatiotemporal structures of 

population responses to vocalizations at multiple intensities. Population responses averaged over 
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five to ten trials exhibited rich temporal dynamics in terms of rotation angles. Marmoset 

vocalizations have features spanning a wide range of time scales (Agamaite et al., 2015). Here, 

we further ask how the trial-by-trial population response discrimination between vocalizations at 

multiple intensities depends on the temporal resolution. How does the discrimination evolve over 

time? And how does the number of neurons in the population affect the discrimination? 

We quantified the discriminability of population spike trains by building predictive 

models to decode vocalization types based upon a series of different temporal resolutions, which 

were used to bin spike trains into response vectors (spike trains of all vocalizations were 

truncated to the length of the shortest vocalization). As shown in Figure 5.5, the discrimination 

accuracy reaches an optimal level at ~ 10 ms, and degrades substantially with widened temporal 

resolutions. The minimum temporal resolution we tested here is 5 ms, and performance at that 

level also shows a decreasing trend.  
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Figure 5.6 Time course of population response discriminations across multiple intensities (mean ± s.d.). (A) 

Discrimination with a single time bin. (B) Discrimination with cumulatively increasing numbers of time bins. 

Dashed lines denote performance at chance level.  

  

 To describe the discrimination dynamics over time, we built predictive models with both 

a single time bin and with increasing numbers of time bins, and obtained the results in Figure 

5.6. Performance of predictive models based upon spontaneous activities is displayed in Figure 

5.6A, along with that of models based upon stimulus–driven activities, as a control. 

Discrimination with a single time bin begins at the chance level, gradually increases following 

the onset of vocalizations, and achieves a steady state within 200 ms after stimulus onset. 

Discrimination with increasing lengths of spike trains is shown in Figure 5.6B, demonstrating a 

similar but slightly different trend. It also begins at the chance level, and steadily increases at a 

relatively fast speed within the first 100 ms after the onset of vocalizations. Later, it enters an 

oscillating and slowly increasing mode for about 300 ms, and finally reaches a plateau not long 

before the whole spike train is included. 

 Lastly, to evaluate the influence of the number of neurons on discriminability, we 

randomly sampled various numbers of neurons to build predictive models classifying 20 stimulus 

labels, until all neurons were included. The resulting discrimination result for each vocalization 

intensity condition is displayed in Figure 5.7A. Generally speaking, as more and more neurons 

are included, discrimination improves from the chance level to a plateau when the neuron 

numbers are between 200 and 300. Neural responses to all vocalizations at 75 dB SPL can be 

100% classified when enough neurons are included. The responses at other intensities, however, 

are not all well classified. In addition, a relative higher intensity does not necessarily guarantee a 

better performance, as seen by comparing the 55 dB SPL performance of Trillphee and Peeptrill 
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comparing with their 35 dB SPL performance. A better evaluation of the classification 

performance can be obtained by the confusion matrix in Figure 5.7B. The confusion matrix 

provides a clearer view of how likely each neural response to a particular stimulus is to be 

mistakenly classified as another label. It shows that neural responses to the same vocalization but 

at different intensities above 15 dB SPL are less likely to be classified as other vocalization types. 

The matrix demonstrates that the vocalization type is relatively more robustly encoded than the 

intensity. At 15 dB SPL, misclassified labels seem to be equally distributed among different 

vocalizations, which makes sense given that the vocalizations are hardly audible at that level.  
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Figure 5.7 Discrimination of population response as a function of number of neurons in population (mean). (A) 

Discrimination accuracy for each vocalization intensity condition as a function of number of neurons. (B) Confusion 

matrix of discrimination performance averaged over numbers of neurons.  

  

 In the second half of this chapter, the influences of two noises on the population neural 

responses were studied in a similar way as that of intensity.  
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5.3.4 Population Response Variability of Vocalizations at Multiple SNRs 

 

Figure 5.8 Population-averaged responses to vocalizations at multiple SNRs in WGN/Babble condition and the 

corresponding population activity variability with respect to time. The WGN condition is shown in the left column, 

and the Babble condition is shown in the right column.  
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 How do the two different noises affect the population responses in terms of response 

variability? We computed the population-averaged spiking rate and the corresponding variability 

with the results shown in Figure 5.8. For visualization, only four SNR conditions out of ten were 

plotted. The onset responses under both noise conditions are very distinct across SNR levels, 

keeping in mind that the onset of the pure vocalization stimuli is 250 ms later than the 

vocalizations with noise, which have a preceding pure noise component. For vocalizations with 

20 dB SNR, the neural responses seem to have a second onset once the vocalization component 

is introduced, while for -10 dB SNR, the second onset response is hardly discernable. The 

population response variability declines consistently at the stimulus onset for all stimuli, and the 

later introduction of vocalization in the auditory scene is somewhat captured by a second slight 

decline, but the degree of change compared to the preceding variability is much smaller than the 

first onset decline. The variability dynamics during noisy vocalization presentation fluctuate 

greatly, and do not seem to mirror the spiking rate.  

 We further computed the correlation between spiking rate and variability under both 

noise conditions in Table 5.2 and Table 5.3. Comparing with pure vocalizations, which have 

significant negative correlation between these two metrics, population response variability at 20 

dB SNR is less strong correlated with spiking rate in a negative way. As noise becomes the 

dominant component in the stimulus, correlations belonging to different vocalization types do 

not follow a consistent trend, with a wide of range values from negative to positive. Population 

neural responses to WGN generally do not exhibit significant correlation between spiking rate 

and variability, while for Babble, both significant positive and negative correlations are possible. 

Therefore, population neural responses to auditory scenes have a degrading negative correlation 
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between the time course of the spiking rate and variability as SNRs become lower, and the 

increase of noises yield a less simple and consistent trend .  

Table 5.2 Pearson correlation between spiking rate and variability for vocalizations at multiple SNRs in 

the WGN condition 

Vocalization Voc 20 dB -10 dB   WGN 

Trillphee 
r = -0.725 

p = 3.77e-09 
r = -0.339 

p = 0.0173 
r = 0.195 

p = 0.181 
r = -0.329 

p = 0.0211 

Peeptrill 
r = -0.6124 

p = 0.00320 
r = -0.256 

p = 0.264 
r = 0.727 

p = 1.91e-04 
r = -0.0618 

p = 0.790 

Trilltwitter 
r = -0.306 

p = 0.0435 
r = -0.246 

p = 0.108 
r = -0.754 

p = 3.52e-09 
r = -0.123 

p = 0.426 

Tsikstring 
r = -0.851 

p = 1.00e-06 
r = -0.495 

p = 0.022 
r = -0.197 

p = 0.391 
r = 0.00880 

p = 0.961 

Peepstring 
r = -0.664 

p = 2.99e-06 
r = -0.207 

p = 0.201 
r = 0.0812 

p = 0.618 
r = 0.084 

p = 0.608 

 

 

Table 5.3 Pearson correlation between spiking rate and variability for vocalizations at multiple SNRs in 

the Babble condition 

Vocalization Voc 20 dB -10 dB  Babble 

Trillphee 
r = -0.725 

p = 3.77e-09 
r = -0.533 

p = 8.19e-05 
r = -0.326 

p = 0.0225 
r = 0.321 

p = 0.0245 

Peeptrill 
r = -0.6124 

p = 0.00320 
r = -0.206 

p = 0.370 
r = 0.154 

p = 0.504 
r = -0.0341 

p = 0.883 

Trilltwitter 
r = -0.306 

p = 0.0435 
r = -0.0386 

p = 0.803 
r = -0.361 

p = 0.016 
r = -0.145 

p = 0.348 

Tsikstring 
r = -0.851 

p = 1.00e-06 
r = -0.572 

p = 0.00670 
r = -0.5051 

p = 0.0195 
r = 0.43 

p = 0.0535 

Peepstring 
r = -0.664 

p = 2.99e-06 
r = -0.198 

p = 0.221 
r = -0.476 

p = 0.00190 
r = -0.647 

p = 6.455e-06 
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5.3.5 Population Response Trajectory of Vocalizations at Multiple SNRs in 

3D Space  

 

Figure 5.9 Trajectories of population responses to vocalizations at multiple SNRs with WGN/Babble in 3D space. 

The WGN condition is shown in the left column, and the Babble condition is shown in the right column.  
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 To characterize the spatiotemporal structures of population responses to vocalizations 

with increasing amounts of noise, the associated population response trajectories based upon 

three principal components are displayed in Figure 5.9. Responses were projected to different 

3D spaces under two noise conditions, but a salient differences can detected between how 

increasing the amount of different types of noise affects the population response structures. 

Under the WGN condition, two groups can be identified. Trajectories to vocalization and 20 dB 

SNR are clustered together, while trajectories to -10 dB SNR and pure WGN noise share a 

similar subspace. In contrast, trajectories to vocalizations masked with Babble noise do not form 

individual clusters, with a large portion overlapped across SNR levels. 

  

  



86 

 

 

Figure 5.10 Evolution of rotation angles of the population response at multiple SNRs, relative to the first time point 

(in silence) with WGN/Babble in 3D space.  
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 Rotation angles of each trajectory are quantified in Figure 5.10. Trajectories start with a 

pre-stimulus portion fluctuating below 60 degrees, greatly increase rotation angles to over 150 

degrees following the stimulus onset, and further evolve during stimulus presentation, with 

particular structures associated with each vocalization. Trajectories at 20 dB SNR share a 

majority of features with those of clean vocalizations, and trajectories at -10 dB SNR are more 

noise-like. Again, angle evolution within trajectories of pure vocalizations and pure noise are 

more separated from each other in the WGN condition than in the Babble condition.  

 To quantify the distance between trajectories, we computed the rotation angles of 

trajectories of vocalizations at multiple SNRs levels relative to the trajectories of pure 

vocalizations, with the results shown in Figure 5.11. Two big peaks indicate the onset and offset 

responses induced by the two 250-ms noise segments. Time courses between these two peaks 

show that trajectories at 20 dB SNR have the smallest angular difference from that of pure 

vocalizations, below 30 degrees. Trajectories of -10 dB SNR and pure noise are further away. 

Figure 5.11 also quantitatively shows that WGN leads to more separated response trajectories 

than Babble. 
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Figure 5.11 Evolution of rotation angles of population responses at multiple SNR, relative to clean vocalizations in 

WGN/Babble in 3D space. 
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5.3.6 Population Response Discrimination of Vocalizations across SNRs 

 

Figure 5.12 Population response discrimination across multiple SNRs in WGN/Babble condition as a function of 

temporal resolutions. 

 

  To evaluate the dependence of discriminability of population responses for vocalizations 

across multiple SNRs on the temporal resolution, we built predictive models based upon spiking 

trains binned by time windows of different lengths. Models were built to classify single trial 

population response to one of the five vocalizations or pure noise (c = 6), and evaluated by the 

percentage of correctly classified labels. Here, the number of time bins possessed by the shortest 

vocalization was used. The temporal resolution, in Figure 5.12, appears to be negatively 

associated with the classification accuracy. Based upon the range of time bins we investigated 

(5ms ~ 100 ms), a finer temporal resolution appears to provide a better discriminability. In 

addition, discrimination performance under WGN is about twice that under Babble.  



90 

 

 
Figure 5.13 Classification performance of population neural responses. (A) Probability of detecting the presence of 

vocalizations as a function of SNR level under WGN/ Babble condition. (B) Confusion matrix under WGN/Babble 

condition. Labels of vocalizations are indicated by numbers from 1 to 5.  

 

 More details of the classification performance can be obtained by segregating the 

accuracy for each vocalization and SNR level as in Figure 5.13. The performance of each 
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vocalization is displayed as a function of SNR in Figure 5.13A. For the WGN condition, neural 

responses to vocalizations delivered with SNR above 5 dB can largely be identified as driven by 

the correct vocalization type, and neural responses delivered with SNR under -10 dB SNR are 

most likely to be classified as purely noise-induced, with -5dB and 0dB as the transition points. 

Neural responses to vocalizations under Babble noise tend to have higher detection thresholds 

between 0 dB SNR and 10 dB SNR. Under both noise conditions, Peepstring vocalization had 

the best discrimination over lower SNR levels than other four vocalizations. Whether those 

wrongly classified neural responses were classified as other types of vocalization of pure noise 

can be further inferred from Figure 5.13B. The confusion matrices clearly show that neuron 

responses driven by a particular vocalization are rarely wrongly classified as other types of 

vocalizations, except for Tsikstring at -5dB under WGN condition. Noises, instead, exert more 

interference on the neural responses.  

 

Figure 5.14 Time course of population response discrimination across multiple SNRs in the WGN/Babble condition 

(mean ± s.d.). (A) Discrimination with a single time bin. (B) Discrimination with cumulatively increasing numbers 

of time bins. Dashed lines denote performance at chance level. 
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 We next studied the evolution of population discrimination over time by building 

predictive models using a single time bin and increased numbers of time bins, as shown in 

Figure 5.14. Discrimination based upon a single bin begins at the chance level, stabilizes at 0.1 

for 250 ms of noise preceding the vocalization, and steadily increases following the onset of 

vocalization in the auditory scene (Figure 5.15A). Babble has a rather low performance based 

upon single bin response, even below the chance level. When information was integrated over 

more and more time bins, the discrimination of population neural responses improved with a 

steep slope for the first 100 ms following the vocalization onset, and were further boosted under 

the WGN condition, but reached a plateau under the Babble condition.  
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5.3.7 Discrimination Generalization over Multiple SNRs 

 

Figure 5.15 Discrimination of population responses using different training datasets (mean). (A) Performance of 

classifiers using neural responses to pure vocalization and pure noise as training samples (left, WGN; right, Babble). 

(B) Performance of classifiers using neural responses to pure vocalization, 20 dB SNR, and pure noise as training 

samples (left, WGN; right, Babble).  

  

 Performances of classifiers heavily depend on the quality of the training dataset. In the 

machine learning field, it is well known that adding an extra small amount of noise to the 

training dataset can improve the classifiers’ generalization and obtain better performance 

(Bishop, 1995). Here, we explored the generalization of neural response classifiers by using 

different training datasets.  
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 For each vocalization, we built separate binary SVM classifiers by using different 

numbers of time bins, ranging from a single time bin to all the time bins available to that 

vocalization. Given a trial of population response, the task of the classifiers was to predict 

whether the response was induced by pure noise or not. The performances of classifiers were 

averaged over different numbers of time bins. Two groups of training datasets were studied. The 

first group includes only neural responses to pure noise (labeled as noise) and pure vocalization 

(labeled as vocalization). The second group includes neural responses to 20 dB SNR as extra 

training samples labeled as vocalization. The resulting classifier performances are displayed in 

Figure 5.15. When only responses to pure noise and pure vocalization are used as training 

samples, the performances under both noise conditions are not ideal, and greatly degrade around 

15 dB SNR. The performance of classifiers trained by the second group of neural responses 

shows an overall improvement, however. All the lines shift towards the left, with smaller 

differences between vocalizations, and lead to a lower detection threshold of around 5 dB SNR 

regardless of noise type. Therefore, by training on neural responses contaminated by a small 

amount of noise in the stimuli, we can obtain classifiers with more generalized performance over 

multiple SNR levels. 
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5.3.8 Subpopulation Response Discrimination of Vocalizations across SNRs 

 

Figure 5.16 Discrimination of subpopulations of neurons using predictive models trained by neural response to pure 

vocalization, 20dB SNR, and pure noise (mean). (left, WGN; right,: Babble) (A) Performance of classifiers built 

upon only the robust group of neurons. (B) Performance of classifiers built upon a population of neurons, excluding 

the brittle group. 

 

 In Chapter 4, we showed that responses of individual neurons to noisy vocalizations can 

be categorized into four different groups: robust, balanced, insensitive, and brittle. Here, we 

investigate the discrimination of subpopulations of neurons by using pure vocalization, 20 dB 

SNR and pure noise collectively to train the classifiers. Two subpopulations of neurons are 
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shown in Figure 5.16: the robust group of neurons and population of neurons excluding the 

brittle group. Compared with Figure 5.16B, robust groups of neurons generally produce 

classifiers with a slightly lower detection threshold, but their performance curves are less 

smoothed. Considering all neurons except the brittle group adds smoothness and consistency 

between vocalizations. 

5.4 Discussion 
 We examined how the responses of a population of A1 neurons encodes vocalizations at 

multiple intensities and SNR levels by studying the time course of population response 

variability and the spatiotemporal structures of reduced population responses. We also 

investigated how well the combined responses of populations of neurons could be used to 

discriminate among vocalizations under different conditions.  

 Stimulus-driven decline in the variability of neural states has been demonstrated to be a 

widespread feature of cortical responses, from the occipital to frontal cortex (Churchland et al., 

2010).  In our datasets of neural responses in the auditory cortex, the same trends, declining in 

the across-trial variability of the underlying firing rate following the onset of stimulus were 

overserved for both different intensity and SNR levels. The result is consistent with previous 

studies (Monier et al., 2003; Finn et al., 2007; Monier et al., 2008; Churchland et al., 2010). 

Moreover, we further probed the dynamics of variability during the stimulus presentation, and 

found that the firing-rate variability was significantly negatively correlated with the firing rate 

for vocalizations at multiple intensities. Under a more difficult perception condition, in auditory 

scenes, the negative correlation was not clearly exhibited. One potential explanation for the 

inconsistent findings between intensity and SNR is that we have nearly twice as many individual 

neurons in the dataset of intensity than noisy vocalizations. The relationship between the firing-



97 

 

rate variability and the firing rate might not be well captured by a relatively small population of 

neurons. Alternatively, such a relationship might exist in subpopulations of neurons in response 

to noisy vocalizations, for instance, the robust group of neurons revealed in Chapter 4. If the 

second explanation holds, the change in variability might serve as a coding channel for 

vocalizations. 

 Temporally unstructured stimuli presentations have been demonstrated to induce neural 

codes of dynamic evolution (Sugase et al., 1999; Friedrich and Laurent, 2001; Stopfer et al., 

2003; Hegdé and Van Essen, 2004; Bartho et al., 2009). By projecting high-dimensional neural 

responses into a lower dimensional space, we visualized the spatiotemporal structures of 

population responses induced by complex stimuli: vocalizations at multiple intensities and 

multiple SNR levels. Even though vocalizations delivered at different intensities are perceptually 

similar, population responses were progressively differentiated over time, and produced finer 

discrimination. Different vocalizations can be easily identified by their unique trajectories in 

space. Some trajectories are relatively smooth and simple, while others are more convoluted, and 

this variety is associated with the acoustic features of the vocalizations. Differentiation of 

population response trajectories over time in an auditory scene was dependent on the noise type. 

WGN noise led to more separable trajectories across SNR levels than Babble, and demonstrated 

spatiotemporal analysis as a useful indicator of the difficulty of vocalization perception. 

Consistent with the population coding of tone stimuli (Bartho et al., 2009), population response 

vectors had the largest rotation during the initial hundreds of milliseconds in response to 

vocalizations under different conditions, which is probably a common feature shared by 

population responses to acoustic stimuli regardless of the complexity of stimuli. In addition, we 

also implemented the same angle evolution analysis using raw population PSTH (data not 
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shown), and revealed a much weaker relationship between the angle evolution and vocalization 

temporal envelope. This finding indicates that the information of vocalizations is well encoded in 

a subset of neurons, as the reduced population responses are actually representations of partial 

covariance in the whole population. 

 Building neural response classifiers allowed us to investigate the optimal temporal 

resolution and temporal dynamics of cortical detection and discrimination. Cortical 

discrimination has been extensively studied for single units, and the optimal temporal resolution 

was demonstrated to be 10 ms (Rieke, 1999; Machens et al., 2003; Narayan et al., 2006; 

Schneider and Woolley, 2010). For our population of neurons, we also found that the temporal 

resolution for cortical discrimination between vocalizations at multiple intensities on the 

population level was optimized around 10 ms. This time scale is small enough to capture 

temporal structures of vocalization, and wide enough to allow integration of information over 

time, thereby reducing noise. The temporal resolution for cortical discrimination between noisy 

vocalizations, however, was smaller than 10 ms. In our analysis, the best value was at 5 ms, 

which is the finest temporal resolution studied here. It is possible that the optimal temporal 

resolution for noisy vocalization discrimination is below 5 ms. A finer temporal resolution might 

reduce the interference of the noise component in the auditory scene on vocalization recognition, 

because a longer time window potentially introduces more noise information, thus confounding 

the vocalization discrimination. The analysis of the temporal dynamics of discrimination 

revealed a range for the time scale of integration on the order of hundreds of milliseconds, with 

~100 ms for vocalizations at multiple intensities and ~300 ms for noisy vocalizations. The time 

scale of integration provides information about the speed of accumulation of discrimination 

accuracy at the population level, and is in similar range to that of single units.  
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 Whether information about sensory stimuli is best represented by the whole population of 

neurons or a subpopulation of neurons was debated. The discrimination by subpopulations of 

neurons was particularly studied for noisy vocalizations. We found that the subpopulation of the 

robust group of neurons and the subpopulations of neurons excluding the brittle group both 

yielded slightly lower detection thresholds than the whole population, thus a better 

discrimination performance. This result indicates that the brittle group of neurons contributes as 

a neural distractor for noisy vocalization discrimination, and that information about vocalization 

is better encoded by a subpopulation of neurons instead. We also built classifiers to demonstrate 

that we can generalize the discrimination over lower SNR levels by using neural responses 

contaminated by a little acoustic noise as training samples. While we are not saying that the brain 

actually decodes vocalization information in the same way that our classifiers do, the results are 

consistent with a previous psychoacoustic study that demonstrated that introducing weak noises 

in perception improved the detection thresholds of target signals (Zeng et al., 2000). 

  In summary, we investigated our data with population analytic techniques and revealed 

population response dynamics that cannot be fully evaluated by single-unit analysis alone. 
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Chapter 6: Conclusions and 

Recommendations for Future Work 

6.1 Conclusions 
A long-standing puzzle in auditory neuroscience is the neural mechanism of robust 

perception of behaviorally relevant acoustic signals. Auditory scene analysis was proposed as a 

model to explain this phenomenon, which refers to the ability of integrating segregated acoustic 

elements and form auditory streams. In this dissertation, individual neurons in the primary 

auditory cortex of awake marmoset monkeys were collected, and their responses to marmoset 

conspecific vocalizations masked with WGN/Babble noise were investigated. Datasets were 

analyzed using both single-unit analysis and population analysis. The results generally showed 

there were subgroups of neurons to correspondingly encode the vocalization and noise streams in 

the stimuli. 

 Several conclusions were drawn from the single-unit analysis. First, response averaged 

over individual neurons demonstrated that Babble had a greater degradation on the vocalization 

encoding than WGN regarding spiking rate and response reliability. Second, four consistent 

response types (robust, balanced, sensitive, and brittle) in terms of individual neurons’ ability to 

resist noise were found regardless of noise types. However, which response type an individual 

neuron belongs to was noise-dependent. Third, the ability of individual neurons to discriminate 

vocalizations at multiple intensities was not significantly correlated with each neuron’s ability to 

resist noise interference. Last, a subset of neurons in A1 was found to have feature-aligned 

responses to WGN, and these neurons encoded both vocalizations and WGN with high 

information rates. 
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 In this dissertation, only neurons in A1 were investigated. It is possible that neurons in 

other core areas, such as the rostral (R) field or the rostrotemporal (RL) field, may have shown 

greater resistance to noise degradation of vocalization-induced activities given those areas’ 

different response properties from A1. There is also evidence that noise degradation would be 

less pronounced in the belt areas, such as anterolateral belt (AL), in old-world monkeys. For the 

neurons recorded in A1, their responses to noisy vocalizations were categorized into four 

different groups based upon EI profiles. However, this does not mean individual neurons’ 

responses are strictly discrete. As the distribution of mean EI values is unimodal instead of 

multimodal, it is more likely that individual neurons’ noise resistance lies on a continuum 

between vocalization sensitive and noise sensitive, while the location of the individual neurons’ 

noise resistance on the continuum is still noise-dependent. 

One limitation of the study is the fundamental response properties of each group of 

neurons were not explicitly studied. Given the response properties of higher-order auditory 

neurons and the previous literature, neurons can be highly responsive to vocalizations without a 

clearly meaningful response field, as indicated by our spike-triggered analysis on neurons with 

feature-aligned responses to both vocalizations and WGN. It is likely that neural response 

properties such as integration time and input-output function slope do correlate with 

vocalization-in-noise response classes described in this dissertation, but the limitation on holding 

neurons long enough to acquire their responses to many similar yet slightly different features 

prohibited this additional analysis in this case. Our finding that robust A1 vocalization responses 

were often generated by different neurons in different contexts likely means that the important 

acoustic features for this phenomenon vary, and/or the robust extraction of vocalization is 

incomplete at the level of A1. A productive future study may be to repeat this analysis in 
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downstream areas to determine if robust vocalization encoding appears there, as it seems to in 

songbird forebrain.  

 Complementing the single-unit analysis, the population analysis revealed more details 

about the dynamics of a population of neurons. First, population response variability was found 

to mirror the population spiking rate in response to vocalizations at multiple intensities, but the 

trend was much less significant for vocalizations in noise at multiple SNR levels. Second, 

population responses to vocalizations across intensities exhibited distinct spatiotemporal 

structures and differences in masking effects of WGN and Babble could be visualized by the 

angle distance between population response trajectories to noisy vocalizations and pure 

vocalizations. Third, discrimination of population responses to noisy vocalizations had a finer 

optimal temporal resolution and a longer time scale for integration than those of discrimination 

of population response to pure vocalizations. Finally, we demonstrated that subpopulations of 

neurons had slightly better discrimination than the whole population when the brittle group of 

neurons was not considered. 

 Consistent with studies in the olfactory system, our population analysis showed that 

population response trajectories are able to systematically track the alternation induced in neural 

responses by modulation of complex acoustic stimuli, which were quantified by intra-trajectory 

and inter-trajectory angle evolutions. There are two limitations in the current trajectory analysis, 

which can be further addressed in future study. First of all, the current trajectory analysis was 

conducted on trial-averaged population responses. It would be helpful to visualize the variance of 

trial-by-trial population response trajectories as a supplement to the trial-by-trial discriminability 

analysis.  Furthermore, dimensionality reduction was implemented for each vocalization 

separately, thus population responses to different vocalizations were projected to different 
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reduced spaces. Although it is shown that each vocalization is represented by a population 

response with unique spatiotemporal structures, we cannot directly compare those trajectories 

belonging to different vocalizations. To determine whether similar acoustic features also lead to 

similar spatiotemporal structures, population responses to different vocalizations should be 

reduced to the same 3D space. With regard to the discriminability analysis, it was very 

interesting to show that adding 20 dB SNR level neural response as training dataset achieved 

more robust classifiers. A more systematic investigation could be done to sequentially test the 

effect of neural response of each individual SNR level as training dataset, and finding the highest 

SNR level where overall performance begins to decline. 

6.2 Recommendation for Future Work 
 Both the single-unit and population analysis enhanced our understanding of how neurons 

in A1 cope with the noise distractions. Extensions based upon this dissertation are 

recommendation for future work. Contextual effects of individual neurons were demonstrated 

using two types of noises. To further test the degree of generalizability of this effect, more types 

of noise could be investigated, such as natural environment sounds. Further, the auditory scene 

studies in this dissertation only have two sources: vocalization and one distracting noise. It is 

worth well to add a third stream into the auditory scene to test whether the neuron response types 

would vary as the number of auditory streams in the stimuli. Though there is evidence to show 

that sequential recording and simultaneous recording yield roughly the same results, 

simultaneous recording is of great value for future work. Simultaneous recording is more 

efficient to collecting a large number of neurons in a relatively short time frame, and allows us to 

form and test new hypothesis more conveniently.  Last but not least, experimental design can 
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include behavioral tasks so that both neural representation and perception can be probed, and 

also allows for studying the effect of attention on the auditory scene analysis. 
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