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Ultrasound computed tomography (USCT) and photoacoustic computed tomography (PACT)

are two emerging imaging modalities that have a wide range of potential applications from

pre-clinical small animal imaging to cancer screening in human subjects. USCT is typically

employed to measure acoustic contrasts, including the speed of sound (SOS) distribution,

while PACT typically measures optical contrasts or some related quantity such as the initial

pressure distribution. Their complementary contrasts and similar implementations make

USCT and PACT a natural fit for a hybrid imaging system. Still, much work remains to

realize this promise. First, USCT image reconstruction methods based on the acoustic wave

equation, known as waveform inversion methods, are computationally burdensome, limiting

their widespread use. Instead, image reconstruction methods based on geometric acoustics

are often employed. These methods do not model higher-order diffraction effects and conse-

quentially have poor resolution. In this dissertation, use of a novel stochastic optimization
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method, which overcomes much of the computational burden of waveform inversion, is pro-

posed. Second, most traditional PACT image reconstruction algorithms assume a constant

SOS distribution. For many biological applications, this is a poor assumption that can result

in reduced resolution, reduced contrast, and an increase in the number of imaging artifacts.

More recent image reconstruction algorithms can compensate for a known heterogeneous

SOS distribution; however, in practice, the SOS distribution is not known. Further, in gen-

eral, the joint reconstruction (JR) of the SOS and initial pressure distributions from PACT

measurements is unstable. Two methods are proposed to overcome this problem. In the

first, a parameterized JR method is employed. Under this approach, the SOS distribution

is assumed to have a known low-dimensional representation. By constraining the form of

the SOS distribution, the JR problem can be made more stable. In the second method,

few-view USCT measurements are added to the PACT data, and the initial pressure and

SOS distributions are jointly estimated from the combined measurements. This approach

effectively exploits acoustic information present in the PACT data, allowing both the initial

pressure and SOS distributions to be more accurately reconstructed.
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Chapter 1

Introduction

1.1 Overview and Motivation

Ultrasound computed tomography (USCT) is a promising imaging modality with numerous

applications including breast cancer screening [17, 27, 39, 42, 64, 93, 96, 113]. USCT is ideally

suited to breast imaging as it offers novel tissue contrasts that can help differentiate be-

nign masses from tumors [39]. It has several potential advantages over conventional imaging

methods, as it is radiation free, breast compression free, and relatively inexpensive. In ad-

dition, ultrasound imaging may offer some advantages over mammography for the detection

of breast cancer in women with dense breasts [29,56].

In USCT, a series of ultrasonic pulses are sent through the object-of-interest, and the re-

sulting pressure wavefield is recorded by a collection of ultrasonic transducers. While USCT

permits estimation of many possible acoustic contrasts, in this dissertation, the focus will be

on estimation of the speed of sound (SOS) distribution.

There are several ways to estimate the SOS distribution in USCT. One set of methods,

known as ray-based methods, are based on geometrical acoustics [5, 29, 43, 48, 80, 92, 96].
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These methods fail to model higher-order diffraction effects and consequently can have poor

resolution. Reconstruction algorithms based on the acoustic wave equation, known as wave-

form inversion methods, can produce high-resolution images, but are very computationally

demanding [41,60,62,85,90,113,124].

Recently, a method called waveform inversion with source encoding (WISE) was developed,

which eliminated much of this computational burden [57, 109, 124]. Under this approach,

the SOS distribution is estimated by solving a stochastic optimization problem. While the

stochastic formulation has many computational advantages, it also introduces additional

challenges. In particular, regularization of the inverse problem may become less effective in

the stochastic setting. Further, use of a line search to accelerate the image reconstruction

method may result in less accurate reconstructed images. In Chapter 3, the regularized dual

averaging method (RDA) is employed to overcome many of these challenges [72, 77,116].

Photoacoustic computed tomography (PACT) is a hybrid imaging modality that combines

optical excitation and acoustic detection [83, 110, 111]. It can provide both functional and

structural information for pre-clinical and clinical applications, including small animal imag-

ing [30, 31, 40, 58, 65, 114, 118] and human breast imaging [30, 32, 40, 58, 59, 117]. In PACT,

the image contrast arises from the absorption of light by molecules within the object. Often,

this light is in the form of a short laser pulse. The absorbed optical energy gives rise to

pressure waves via the photoacoustic effect that are then recorded by ultrasonic transducers

surrounding the object.

PACT has a number of advantages over other optical imaging techniques. In particular,

since it allows use of diffuse light to excite the object and since acoustic scattering is much

weaker in tissue than optical scattering, PACT has the ability to obtain high-resolution

images at large penetration depths [83, 110, 111]. Additionally, PACT has advantages over
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other non-optical functional imaging modalities: compared with MRI, it offers faster image

acquisition at lower costs; and compared with PET and SPECT, it does not involve use of

ionizing radiation [112].

Traditional image reconstruction methods for PACT assume that the medium is acoustically

homogeneous. This assumption is often violated for biological and biomedical applications

[45, 88, 120]. In particular, unaccounted for variations in the SOS distribution can give

rise to artifacts in the reconstructed initial pressure distribution. More recently, several

methods have been proposed to account for SOS variations, including time-reversal [44,106,

121], iterative full-wave inversion [7, 46], and the Neumann-series or iterative time reversal

approach [91, 101]. However, each of these methods requires some knowledge of the SOS

distribution in order to accurately reconstruct the initial pressure distribution. In practice,

the SOS distribution is typically unknown.

One solution is to try to jointly estimate the initial pressure and SOS distributions from the

PACT data alone. This is unstable in general [47,100]. In Chapter 4, a method for mitigating

this instability is introduced. This method relies on the use of a priori knowledge about the

structure of the SOS distribution, namely that the SOS distribution has a low-dimensional

parameterized representation. By constraining the SOS distribution according to this pa-

rameterization, accurate joint estimation of the initial pressure and SOS distributions can

be performed, at least in some cases.

One alternative is try to estimate the SOS distribution by use of adjunct imaging data.

As discussed earlier, USCT has previously been shown to allow accurate reconstruction of

the SOS distribution for breast imaging [17, 27, 39, 42, 64, 93, 113]. Consequently, several

groups have begun investigation of combined USCT/PACT imaging systems [31, 70, 115].

These systems offer the potential to obtain automatically co-registered images with both
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optical and acoustic contrasts. These complementary contrasts could aid in a variety of

medical imaging tasks, including breast cancer detection. In addition, the similar detection

hardware should make integration of these modalities comparatively simple and inexpensive.

In cases where combined USCT/PACT systems have been employed, the SOS and initial

pressure distributions were reconstructed in a sequential manner. First, the USCT data

were employed to estimate the SOS distribution. Then, the estimated SOS distribution was

employed when estimating the initial pressure distribution from the PACT data. As will be

shown, this approach is not optimal. Since the photoacoustic waves propagate according to

the acoustic properties of the medium, the measured PACT data contain information on the

SOS distribution. This information is ignored under the sequential approach, which estimates

the SOS distribution from USCT measurements alone. In Chapter 5, a novel approach that

jointly estimates the initial pressure and SOS distributions from combined PACT and USCT

measurements is proposed [73]. This synergistic approach effectively utilizes the acoustic

information in the PACT data, allowing the SOS distribution to be accurately estimated

from few-view USCT measurements. Further, it allows the initial pressure distribution to

be more accurately estimated by providing an improved estimate of the SOS distribution

compared to what could obtained from PACT measurements alone.

1.2 Approach to Image Reconstruction

The approach to image reconstruction adopted within this dissertation is based on two

pillars: (1) the development of realistic physics-based models for describing imaging systems

and (2) the use of optimization-based image reconstruction methods, which seek to minimize

a chosen cost function. Typically, this cost function includes one or more terms that relate
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to the distance between the measured data and the predicted data given the assumed model

and one or more regularization terms that incorporate a priori knowledge about the object

being imaged. While no mathematical model will perfectly describe an imaging system, the

hope is that by improving the accuracy of the assumed model, more useful reconstructed

medical images can be obtained. Similarly, the use of an optimization-based framework

for image reconstruction is motivated by the desire to improve performance on medical

imaging tasks through the use of constraints and regularization terms that are tailored to

the particular problem at hand. The flexibility in choosing the imaging model, as well

the opportunity to incorporate prior knowledge, may allow for improved performance over

competing approaches.

1.3 Outline of the Dissertation

In Chapter 2, background information on USCT and PACT is provided. Models for the

propagation of ultrasonic and photoacoustic waves, based on the acoustic wave equation,

are described in their continuous and discrete forms. Existing image reconstruction methods

based on these models are reviewed.

In Chapter 3, a novel stochastic optimization method for estimating the SOS distribution in

USCT is introduced. This approach, based on the regularized dual averaging method, offers

reduced image reconstruction times compared with conventional full waveform inversion

methods while still producing high-resolution images. Much of this work was previously

described in [72].
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In Chapter 4, parameterized joint reconstruction of the initial pressure and SOS distributions

from PACT data alone is investigated. Under this approach, a low-dimensional parameter-

ized model for the SOS distribution is employed in order to stabilized the joint reconstruction

problem.

In Chapter 5, a joint reconstruction method for estimating the initial pressure and SOS

distributions from combined PACT and USCT data is developed. The impact of the number

of USCT views on the accuracy of the estimated SOS distributions is investigated. Much of

this work was previously described in [73].

The results of the dissertation are summarized in Chapter 6.
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Chapter 2

Background

2.1 Imaging physics

In PACT, an object is illuminated with an optical source, typically a pulsed laser. The light

is absorbed by molecules within the object. Some of this absorbed energy is converted into

heat, leading to a small temperature rise and thermoelastic expansion. When the temporal

width of the laser pulse is sufficiently short, this expansion can be viewed as giving rise

to an initial pressure distribution [112]. This initial pressure distribution then propagates

according to the acoustic wave equation and the resulting pressure wavefield is recorded by

a collection of ultrasonic transducers surrounding the object [83, 112]. A schematic for this

process is shown in Fig. 2.1a.

The initial pressure distribution is related to the optical properties of the medium by

p0 (r) = η (r) Γ (r)A (r) , (2.1)

where p0 (r) is the initial pressure distribution, A (r) is the absorbed optical energy den-

sity, η (r) is the percentage of energy converted into heat, and Γ (r) is the dimensionless
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Grüneisen parameter [112]. The absorped optical energy density can be further divided into

two components as

A (r) = µa (r) Φ (r) , (2.2)

where µa (r) is the optical absorption coefficient and Φ (r) is the fluence distribution produced

by the optical source. While some image reconstruction methods for PACT seek to estimate

µa (r), or even the concentrations of different molecules, in this dissertation, the focus is on

the more modest task of estimating the initial pressure distribution. See [23] for a thorough

review of the estimation of chromophore concentrations from the initial pressure distribution.

(a)

(b)

Figure 2.1: Schematics of the data acquisition process for (a) PACT and (b) USCT. ( c© 2017
IOP Publishing)

In USCT, an acoustic pulse is emitted from an ultrasonic transducer outside of the object.

The generated acoustic wave then propagates through the object and the resulting wavefield

is recorded by a collection of ultrasonic transducers. This process is then repeated with some
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subset of the transducers serving as the emitter in turn (see Fig. 2.1b) [52, 61]. The goal is

to estimate some acoustic property of the medium from this collection of measured pressure

data. While many acoustic properties of the medium can potentially be estimated, in this

dissertation, the focus is on the estimation of the SOS.

2.1.1 The acoustic wave equation

For both PACT and USCT, the propagation of acoustic waves is a key component of the

image acquisition process. For this reason, the derivation of the acoustic wave equation,

which describes the propagation of acoustic waves, is briefly reviewed (see [22, 54, 76, 86,

102, 112] for a more thorough treatment). As an acoustic wave propagates, it creates a

perturbation in the material properties of the medium about some ambient values. As such,

these quantities can be decomposed into two components: their ambient values, denoted

with the subscript 0, and the perturbation about these ambient values due to the acoustic

wave, denoted with the subscript a. For example, consider the corresponding equations for

the pressure p, the particle velocity u, and the mass density ρ:

p = p0 + pa (2.3a)

u = u0 + ua (2.3b)

ρ = ρ0 + ρa. (2.3c)

Typically, one is most interested in the component that relates to the acoustic wave. Here,

the focus is on fluid media (i.e. materials whose shear modulus and viscosity are equal to

zero), which is often a sufficient analog for soft tissue.
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The acoustic wave equation can be derived from three fundamental equations: (1) the con-

tinuity equation, which is a statement of the conservation of mass; (2) Euler’s equation of

motion for a fluid, which is an analog of Newton’s Second Law for fluids; and (3) the pressure-

density relation, which describes the thermodynamic relationship between the pressure and

mass density for the material. Here, the focus will be on derivation of the linear acoustic

wave equation, which assumes that the perturbation in the mass density due to the acoustic

wave is small relative to the ambient mass density (ρa � ρ0). First, consider the continuity

equation, given by

∂ρ (r, t)

∂t
= −∇ · (ρ (r, t) u (r, t)) . (2.4)

This expression can be simplified by additionally assuming that the ambient mass density

does not change (∂ρ0/∂t = 0) and that there is no net flow of particles (u0 = 0):

∂ρa (r, t)

∂t
= −ua (r, t) · ∇ρ (r, t)− ρ0 (r)∇ · ua (r, t) . (2.5)

Expanding the expression for the mass density yields

∂ρa (r, t)

∂t
= −ua (r, t) · ∇ρa (r, t)− ua (r, t) · ∇ρ0 (r, t)− ρ0 (r)∇ · ua (r, t) . (2.6)

It can be shown that the first term on the right-hand side is negligible when he magnitude

of the particle velocity is small relative to the SOS (|u| � c) [22, 112]. In this case,

∂ρa (r, t)

∂t
= −ua (r, t) · ∇ρ0 (r, t)− ρ0 (r)∇ · ua (r, t) . (2.7)
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Next, consider Euler’s equation of motion for a fluid, given by

ρ (r, t)
Du (r, t)

Dt
= −∇p (r, t) , (2.8)

where the total, or material, derivative D/Dt is defined as

D

Dt
≡ ∂

∂t
+ (u · ∇) . (2.9)

The total derivative describes changes in some property when the underlying medium may

be moving [22,76]. For example, the mass density at some fixed position r could change both

because the particles originally at that position have changed or because the particles that

were originally at that position have been replaced by another collection of particles due to

some flow of the medium. This second effect depends both on the flow of the material as well

as the spatial variations in the underlying property. Assuming that the ambient pressure is

homogeneous (∇p0 = 0) and as assumed previously u0 = 0, ρa � ρ0, and |u| � c, Euler’s

equation can be simplified as

ρ0 (r)
∂ua (r, t)

∂t
= −∇pa (r, t) . (2.10)

When the underlying medium is in thermodynamic equilibrium (aside from the small pertur-

bation caused by the acoustic wave itself), the pressure can be expressed solely as a function

of the mass density and the entropy s of the medium [76,86]:

p = p (ρ, s) . (2.11)
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When the entropy is constant in the sense that Ds/Dt = 0, the pressure and mass density

are related by

Dp (r, t)

Dt
=

(
∂p

∂ρ

)
s

Dρ (r, t)

Dt
, (2.12)

where the subscript s indicates the case of constant entropy. Under these conditions, a

thermodynamic definition of the SOS can be given as

c2
0 ≡

(
∂p

∂ρ

)
s

. (2.13)

The pressure-density relation can be further simplified by assuming the ambient pressure is

time-independent (∂p0/∂t = 0) and by use of the previously stated assumptions,

∂pa (r, t)

∂t
+ ua (r, t) · ∇pa (r, t) = c2

0 (r)

(
∂ρa (r, t)

∂t
+ ua (r, t) · ∇ρ (r, t)

)
. (2.14)

Dropping the terms that are non-linear in the acoustic field variables yields,

∂pa (r, t)

∂t
≈ c2

0 (r)

(
∂ρa (r, t)

∂t
+ ua (r, t) · ∇ρ0 (r, t)

)
. (2.15)

Due to this approximation, the resulting acoustic wave equation is often referred to as the

linear acoustic wave equation. When the mass density is homogeneous, the pressure-density

relation has the simpler, more familiar, form:

pa (r, t) ≈ c2
0 (r) ρa (r, t) . (2.16)
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Solving for the time-derivative of the acoustic mass density and substituting the resulting

expression into Eqn. 2.7 gives

1

c2
0 (r)

∂pa (r, t)

∂t
= −ρ0 (r)∇ · ua (r, t) . (2.17)

Note that the two terms involving the gradient of the ambient mass density cancel. Combin-

ing this with Eqn. 2.10 gives a pair of differential equations that describe the propagation of

acoustic waves,

ρ0 (r)
∂ua (r, t)

∂t
= −∇pa (r, t) (2.18a)

1

ρ0 (r) c2
0 (r)

∂pa (r, t)

∂t
= −∇ · ua (r, t) . (2.18b)

Due to the assumptions on the entropy and viscosity, these equations neglect acoustic at-

tenuation. Further, in cases where the acoustic properties of the medium are discontinuous,

it may be necessary to solve the above equations as a series of boundary value problems as

described in [50]. For the SOS and mass density distributions considered in this dissertation,

this difficulty is avoided.

While Eqn. 2.18 is given in terms of the particle velocity and the acoustic pressure, for

the image reconstruction tasks considered in this dissertation, it is sufficient to model the

pressure, which is the quantity most directly recorded by the ultrasonic transducers. In this

case, the two equations can be combined to yield a single differential equation, which in some
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cases may be simpler to solve:

1

ρ0 (r) c2
0 (r)

∂2pa (r, t)

∂t2
= ∇ ·

(
1

ρ0 (r)
∇pa (r, t)

)
(2.19a)

pa (r, 0) = 0 (2.19b)

∂pa
∂t

(r, 0) = 0. (2.19c)

To distinguish between the two forms, this wave equation will be referred to as the second-

order wave equation as it involves a second-order temporal derivative, while the pair of

coupled first-order differential equations will be referred to as the first-order wave equation.

When the mass density is spatially homogeneous, Eqn. 2.19 can be further simplified to

1

c2
0 (r)

∂2pa (r, t)

∂t2
= ∇2pa (r, t) . (2.20)

In the rest of this dissertation, for cleanness of notation, the subscripts on the SOS, mass

density, acoustic pressure, and particle velocity will be suppressed.

2.1.2 Continuous forward models

By use of the linear acoustic wave equation, models for the data acquisition process, or

forward models, for both PACT and USCT can be developed. To start, the models will be

described in terms of the first-order acoustic wave equation.
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The propagation of the photoacoustic waves through the medium is described by

ρ (r)
∂u (r, t)

∂t
+∇p (r, t) = 0 (2.21a)

1

ρ (r) c (r)2

∂p (r, t)

∂t
+∇ · u (r, t) = 0 (2.21b)

p (r, 0) = p0 (r) (2.21c)

u (r, 0) = 0, (2.21d)

where p (r, t) is the acoustic pressure, u (r, t) is the particle velocity, c (r) is the SOS, and

p0 (r) is the initial pressure distribution.

Similarly, a forward model describing the data acquisition process for USCT can be developed

as

ρ (r)
∂um (r, t)

∂t
+∇pm (r, t) = 0 (2.22a)

1

ρ (r) c (r)2

∂pm (r, t)

∂t
+∇ · um (r, t) = 4π

∫ t

0

dt′sm (r, t′) (2.22b)

pm (r, 0) = 0 (2.22c)

um (r, 0) = 0, (2.22d)

where the subscript m denotes the m-th view and sm (r, t) is the excitation pulse emitted

by the ultrasonic transducer acting as the emitter for the m-th view. These differential

equations differ from those for PACT only in terms of the initial conditions and the acoustic

source term. In the case of homogeneous mass density, the equivalent forward model based
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on the second-order acoustic wave equation is given by

∇2pm (r, t)− 1

c (r)2

∂2pm (r, t)

∂t2
= −4πsm (r, t) (2.23a)

pm (r, 0) = 0 (2.23b)

∂pm
∂t

(r, 0) = 0. (2.23c)

The data measured by the ultrasonic transducers acting as receivers can be obtained from

the pressure over the whole domain as

gi (t) =Mip (r, t) , (2.24)

where gi (t) is the data recorded by the i-th receiver andMi is an operator that gives the data

recorded by the i-th transducer from the data over the whole domain. In this dissertation,

the operator Mi is chosen to have the form

Mi ≡ he (t) ∗t Λi, (2.25)

where Λi is the restriction of the pressure over the whole domain to the location of the

i-th receiver and he (t) is the electro-acoustic impulse response (EIR), which describes the

frequency dependence of the ultrasonic transducer. Here, for simplicity, all of the ultrasonic

transducers are assumed to have the same EIR. In some cases, the frequency dependence

of transducers may be ignored, which is equivalent to choosing he (t) = δ (t). The spatial

impulse responses of the transducers are not considered in this dissertation.
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2.1.3 Discrete forward models

While digital imaging systems are most naturally described by continuous-to-discrete imag-

ing models [10], for the purposes of iterative image reconstruction, it is often necessary to

develop a discrete-to-discrete (D-D) model. Such D-D models are also needed for certain

numerical methods for solving the acoustic wave equation.

The D-D forward model for PACT can be denoted as

gPA = MHPA (c) p0, (2.26)

where p0 ∈ RN is a discrete representation of the initial pressure distribution p0 (r), c ∈ RN

is a discrete representation of the SOS c (r), HPA (c) ∈ RNL×N is an operator that gives a

discrete approximation of the solution of the wave equation specified in Equation 2.21. Here,

a pixel-basis is employed to represent the SOS and the initial pressure distributions. As will

be shown, this representation allows for an efficient numerical solution to the acoustic wave

equation. Thus, N ≡ NxNy is the total number of pixels, and Nx and Ny are the number

of pixels along the x- and y-dimensions, respectively. Additionally, M ∈ RNrecL×NL is an

operator that gives the pressure recorded by the transducers from the pressure over the whole

domain (i.e. it is a concatenation of the discrete approximations of Mi for all transducers),

gPA ∈ RNrecL is the measured data for all receivers, and Nrec is the number of transducers

acting as receivers.

The D-D forward model for USCT can be denoted as

gm = MHUS (c) sm, (2.27)
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where sm ∈ RNL is a discrete approximation of the excitation pulse for the m-th view,

HUS (c) ∈ RNL×NL is an operator that gives a discrete approximation to the solution to

the acoustic wave equation given in either Eqn. 2.22 or Eqn. 2.23 depending on the chosen

numerical method, and gm ∈ RNrecL is the measured data for the m-th view.

2.1.4 Numerical wave solvers

In order for the proposed forward models to be computationally practical, efficient methods

for solving the acoustic wave equations given in Equations 2.18 and 2.19 are needed. The k-

space pseudospectral methods fulfill this requirement [71,103]. These time-domain methods

calculate the acoustic pressure (and possibly the particle velocity) at a series of time points

in a sequential manner starting from some initial conditions.

A key computational advantage of the k-space pseudospectral methods is their ability to

accurately simulate the acoustic pressure with very few spatial samples per wavelength com-

pared with finite-difference-based methods [35, 71, 103]. This is achieved by calculating the

spatial derivatives in the acoustic wave equation using the following property of the Fourier

transform

F
{
∂f

∂x

}
= jkxF {f} , (2.28)

where F is the Fourier transform, f (x) is some function, j is the imaginary number, and kx

is the Fourier variable corresponding to x [35, 104].
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Another distinguishing feature of the k-space pseudospectral method, compared with other

pseudospectral methods, is the use of a non-standard finite-difference scheme for the tem-

poral derivatives. This scheme is chosen such that, prior to discretization, the obtained

solution to the difference-based acoustic wave equation is exact for the case of an acousti-

cally homogeneous medium. As an example, the update step for the second-order acoustic

wave equation is given below [71]:

Q(k, t+ ∆t)− 2Q(k, t) +Q(k, t−∆t)

∆t2sinc2 (kcref∆t/2)
= −c2

refk
2P (k, t) + 4πc2

refS(k, t), (2.29)

where ∆t is the time step, k is the Fourier variable corresponding to r, cref is some constant

reference SOS, and

P (k, t) ≡ F2D {p(r, t)} (2.30a)

S (k, t) ≡ F2D {s(r, t)} (2.30b)

Q (k, t) ≡ F2D

{(
c2
ref/c(r)2

)
p(r, t)

}
, (2.30c)

where F2D {·} is the 2D spatial Fourier transform. The sinc term in the denominator of

the left-hand side provides a correction to the approximation of the second-order temporal

derivative that helps reduce the numerical error for large time steps. This correction factor

approaches one as the time step approaches zero. More detailed information on the k-space

pseudospectral method can be found in [71,103].

While the first-order and second-order acoustic wave equations, given in Equations 2.18 and

2.19, are equivalent in a continuous setting, there are some important practical differences

between the numerical methods employed to solve each equation. In particular, both of

those equations describe free-space propagation, but in a discrete setting, the simulation
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grid is necessarily finite. Without care, erroneous reflections or wrap-around effects can

occur near the boundaries of the simulation grid. For the implementation of the first-

order k-space pseudospectral method, a perfectly matched layer (PML) is introduced in

order to absorb, without reflection, the pressure waves as they approach the boundaries

of the simulation grid. The PML employed in this dissertation is based on a split-field

formulation originally proposed for modeling the electromagnetic wave equation [13]. As

part of this approach, the pressure field must be split into x- and y-components. Together

with the x- and y-components of the particle velocity, this yields four different field variables

that must be updated at each time step compared with one for the second-order k-space

formulation. However, in its original form, the second-order k-space pseudospectral method

does not include a PML [71]. Thus, the simulation grid must be sufficiently large to avoid

any errors in the measured pressure due to wrap-around effects. For the purposes of image

reconstruction, only errors in the simulated acoustic field that are recorded by the transducers

are significant. Therefore, the relative trade-off between these two approaches will depend

on the size of the transducer array relative to the pixel size as well as the record time for

each of the transducers.

The choices of the temporal and spatial sampling rates have a large impact on the compu-

tational effort required to solve the acoustic wave equation. Choosing these rates to be too

fine will result in wasted computational effort, but choosing them to be too coarse can result

in numerical instability and large errors in the simulated pressure. The level of error that

can be tolerated will depend on the specific task for which the numerical wave solver is being

employed. In the case of image reconstruction, small numerical errors may not be the dom-

inate source of artifacts in the reconstructed images. Other sources of error, such as model

error, may play a more dominate role. In this dissertation, the following rules of thumb

are roughly employed. The spatial sampling interval is chosen to be between λmin/3 and
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λmin/2.5, where λmin is the smallest wavelength expected within the simulation grid. The

temporal sampling rate is then chosen so that the Courant-Friedrichs-Lewy (CFL) number,

defined as c0∆t/∆x where ∆x is the pixel size, is between 0.3 and 0.5 [71,104].

2.2 Image reconstruction

While there are many possible image reconstruction methods for both PACT and USCT, this

dissertation will focus on use of optimization-based image reconstruction methods [36, 37].

These methods provide a flexible framework for image reconstruction that can accurately

model the underlying physics of the imaging system.

2.2.1 Estimation of the initial pressure in PACT

An estimate of the initial pressure distribution can be obtained by solving the penalized

least-squares optimization problem

p̂0 = arg min
p0≥0

FPA (p0, c) + λR (p0) , (2.31)

where FPA (p0, c) is a data fidelity term, R (p0) is a regularization term, and λ is a regular-

ization parameter, which controls the relative weight of the two terms. Here, FPA (p0, c) is

given by

FPA (p0, c) =
1

2
‖gPA −MHPA (c) p0‖2

2, (2.32)

21



where gPA is measured data, which may be inconsistent with the chosen imaging model due

to noise or model error. For this problem, the data fidelity term is differentiable and convex

with respect to p0. When the regularization function is chosen to be convex, Eqn. 2.31

represents a convex optimization problem since the constraint p0 ≥ 0 defines a convex set.

In this dissertation, R (p0) is chosen to be the total variation (TV) semi-norm, given by

RTV (p0) = ‖∇p0‖1, (2.33)

which is convex, but non-smooth.

While there are many possible optimization methods for solving Eqn. 2.31, in this disser-

tation, the Fast Iterative Shrinkage / Thresholding Algorithm (FISTA) is employed. This

method has a number of advantages over alternative first-order optimization methods (i.e.

methods that require knowledge of the gradient, but not higher-order derivatives). First, it

permits the use of non-smooth regularization terms, such as the TV semi-norm. Second, it

belongs to a family of algorithms that for weakly convex optimization problems achieves the

optimal asymptotic convergence rate. Namely, for a weakly convex function F (x), FISTA

obtains the convergence rate

F (xk)−min
x
F (x) ∼ O

(
1/k2

)
, (2.34)

where k is the iteration number and xk is the estimate of the sought-after quantity for the

k-th iteration. The problem given by Eqn. 2.31 represents a weakly convex optimization

problem whenever MHPA is not full rank and R (p0) is convex.
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2.2.2 Estimation of the speed of sound in PACT

While not typically done, it is possible to estimate the SOS distribution from PACT data

alone. In this dissertation, to investigate the sensitivity of the estimated SOS distribution to

the assumed initial pressure distribution, the following optimization problem is considered

ĉ = arg min
c

FPA (p0, c) + λR (c) . (2.35)

Errors in the estimated SOS distribution induced by an inaccurate assumed initial pressure

distribution may provide some insight into the stability of the JR problem (see [47] for a

detailed investigation). In order to provide flexibility in the type of optimization method

employed, a smoothed version of the TV penalty is utilized,

RSTV (c) =
∑
i,j

√(
[c]i,j − [c]i−1,j

)2

+
(

[c]i,j − [c]i,j−1

)2

+ ε, (2.36)

where [c]i,j denotes the (iNx + j)-th element of c and ε > 0 is a small smoothing parameter

used to prevent division by zero when calculating the gradient. Here, we choose ε = 10−12.

2.2.3 Estimation of the speed of sound in USCT

For USCT, the SOS distribution can be estimated by full-waveform inversion as

ĉ = arg min
c

FUS (c) + λR (c) , (2.37)
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where

FUS (c) ≡ 1

2

M−1∑
m=0

‖gm −MHUS (c) sm‖2
2 (2.38)

and gm ∈ RNrecL is the measured data for m-th view and M is the total number of views.

This approach can produce more accurate and higher-resolution estimated SOS distributions

than ray-based methods [109], but can be computationally expensive as evaluating the cost

function requires the wave equation to be solved M times. Recently, a source encoding

technique has been employed to efficiently estimate the SOS distribution in USCT [57, 109,

124]. Using this technique, the SOS distribution can be estimated as

ĉ = arg min
c

Ew

{
1

2
‖gw −MHUS (c) sw‖2

2

}
+ λR (c) , (2.39)

where w is a random encoding vector, chosen to according to a Rademacher distribution

[57,107], Ew is the expectation with respect to w, and

gw =
M−1∑
m=0

[w]m gm and sw =
M−1∑
m=0

[w]m sm (2.40)

are the encoded measurement data and the encoded source term, respectively. Under this

approach, rather than simulating the pressure wavefield for each emitter separately, the pres-

sure is simulated for the case where all emitters are fired simultaneously. For each emitter,

the excitation pulse is scaled by the corresponding element of w. Since the acoustic wave

equation is linear with respect to the source term, the measured data can be similarly en-

coded. When w has zero mean and an identity covariance matrix, the optimization problems

given in Eqns. 2.37 and 2.39 are equivalent [107]. For brevity, this new data fidelity term
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will be denoted as

FSUS (c) ≡ Ew

{
1

2
‖gw −MHUS (c) sw‖2

2

}
. (2.41)

This data fidelity term is non-convex with respect to the SOS distribution. As a result, the

initial guess for c can have a large impact on the estimated SOS distribution.

Previously, the optimization problem given in Eqn. 2.39 was solved by use of stochastic

gradient descent (SGD) [109]. This approach involves choosing a single realization of w for

each iteration of the SGD method, greatly reducing the number of times that the acoustic

wave equation must be solved.

The task of estimating the value of Eqn. 2.41 from limited samples of w can be related

to randomized trace estimation [107]. While many choices for the distribution of w will

produce unbiased estimates of FUS (c), different distributions may produce estimates with

different variances. In this dissertation, the Rademacher distribution is chosen as it produces

low variance estimates when compared with some alternative distributions [8]; however, in

practice, it was observed that several different choices for the distribution of w yielded similar

accuracies [107].
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Chapter 3

Reconstruction of the speed of sound

in ultrasound tomography

3.1 Overview

As discussed in Chapter 2, waveform inversion methods for USCT image reconstruction

can produce high-resolution SOS images, but have high computational cost. An approach

that combines waveform inversion with source encoding and alleviates much of the compu-

tational burden was previously proposed [57, 109, 124]. This approach reframes the image

reconstruction problem as a stochastic optimization problem where the data fidelity term is

the expectation of a random quantity.

In [109], this optimization problem was solved by use of SGD. Under this approach, the

stochastic data fidelity term and the deterministic regularization term are treated jointly

as part of a single cost function. This approach has several limitations. First, it fails to

exploit the structure of the objective function [116]. In other words, SGD treats the cost

function as a black box, ignoring potentially useful information about the nature of the cost
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function. For example, in Eqn. 2.39, the cost function consists of two terms: a stochastic

but differentiable data fidelity term and a deterministic regularization term. In SGD, this

knowledge is ignored, and the gradients of the stochastic and deterministic terms are lumped

together. Second, it assumes that all terms in the cost function are differentiable. This is

not true of many sparsity-promoting regularization functions, such as the `1-norm and the

total variation (TV) semi-norm. In some cases, the non-smooth regularization term can

be approximated by a smoothed differentiable version through the introduction of a small

smoothing parameter [109]. While this approach can be effective in some cases, the strategy

could be difficult to apply to certain non-smooth regularization functions. Third, it fails to

exploit information from previous iterations. For SGD, at each iteration, only the gradient

corresponding to a single realization of the encoding vector is considered when determining

the search direction. When combined with a line search for choosing the step size, this can

lead to overfitting [95]. In this case, the line search method will choose a large step size

that effectively minimizes the cost function evaluated for a single realization of the encoding

vector, but which increases, or less effectively minimizes, the cost function evaluated for a

large number of realizations. This problem can be overcome by the use of a fixed step size,

at the expense of slowing the convergence rate.

Here, we propose use of a structured optimization method, known as the regularized dual av-

eraging method (RDA), that considers the two terms in the cost function separately [77,116].

This approach can mitigate the impact of the stochastic data fidelity on the deterministic

regularization term and result in more effective regularization that offers superior trade-offs

between image resolution and noise variance by exploiting the structure of the cost func-

tion. It also provides the opportunity to employ non-smooth penalties in the waveform

inversion cost function, which can be designed to exploit certain sparseness properties of the

object [9, 15,99].
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3.2 Dual averaging method

The dual averaging method is a primal-dual optimization method originally developed by

Nesterov [77] and later extended by Xiao to include regularization [116]. It can be employed

to solve stochastic optimization problems of the same form as given in Eqn. 2.39. Here, we

review the RDA method and detail its application to waveform inversion. For clarity, we do

not attempt to describe the most general form of the RDA method, but merely one that has

proven effective for waveform inversion. This application differs from the class of problems

originally considered by Xiao and Nesterov in that the data fidelity term of our cost function

is non-convex [77,116].

For context, SGD is briefly reviewed [98]. When solving Eqn. 2.39, the update step for the

(k + 1)-th iteration of SGD can be written as

c(k+1) = arg min
c

{〈
G

(k)
US, c

〉
+

1

2αk
‖c− c(k)‖2

2 + λR (c)
}
, (3.1)

or equivalently,

c(k+1) = c(k) − αk
(
G

(k)
US + λ∇cR

(
c(k)
))
, (3.2)

where c(k) is the estimate of the SOS distribution at the k-th iteration, αk is the step size,

〈·, ·〉 denotes the standard Euclidean inner product, and

fUS (c,w) ≡ 1

2
‖gw −MHUS (c) sw‖2

2 (3.3)

G
(k)
US ≡ ∇cfUS

(
c(k),w(k)

)
, (3.4)
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where ∇c is the gradient with respect to c. A more detailed summary of SGD is given in

Algorithm 1.

Algorithm 1 Stochastic gradient descent (SGD)

Input: c(0), λ
Output: ĉ
1: k ← 0 {k is the algorithm iteration number.}
2: while stopping criterion is not satisfied do
3: Draw w(k) according to chosen distribution.
4: Calculate G← ∇cfUS

(
c(k),w(k)

)
+ λ∇cR

(
c(k)
)

5: Choose step size αk
6: c(k+1) ← c(k) − αkG
7: k ← k + 1
8: end while
9: ĉ← c(k)

For the RDA method described in Algorithm 2, the update step for the (k + 1)-th iteration

is given by

c(k+1) = arg min
c

{〈
G

(k)

US, c
〉

+
1

2µk
‖c− c(0)‖2

2 + λR (c)

}
, (3.5)

where G
(k)

US is the average gradient of the data fidelity term over all past iterations, and

µk > 0 is a scalar. This update step is different from the update step for SGD in two key

ways. First, the average gradient across iterations is employed instead of the gradient for a

single iteration. By averaging across iterations, some of the stochastic noise associated with

the data fidelity term can be mitigated without increasing the per-iteration computational

cost of the algorithm. Second, the proximal term, 1
2
‖c − c(0)‖2

2, is independent of the iter-

ation number. Together these two differences allow the RDA method to utilize non-local

information when determining the estimate of the object for the next iteration.
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In the case of simple averaging, the average gradient of the data fidelity term is given by

G
(k)

US =
1

k + 1

k∑
i=0

∇cf
(
c(i),w(i)

)
. (3.6)

A weighted average of gradient estimates can also be considered as [77]

G
(k)

US =
1∑k
i=0 αi

k∑
i=0

αi∇cf
(
c(i),w(i)

)
, (3.7)

where {αi}ki=0 are weights for each of the gradient estimates. Here, the weights are chosen

using a line search via a method analogous to existing line search procedures in conventional

gradient descent. However, the proposed line search procedure for the weights does differ

in some important ways from the conventional approach. Since the search direction for the

RDA method is given by the average gradient, adjusting the current weight will determine

the contribution of the most recent gradient estimate to the search direction. As a result,

the search direction changes as the weight is adjusted. In conventional line search methods,

the search direction is fixed and only the magnitude of the update is adjusted. Further, as

the search direction for the RDA method incorporates information from multiple iterations

corresponding to different realizations of the encoding vector, it is less prone to overfitting

than SGD with a line search.

When the regularization function R is convex, the dual averaging update step can be written

in terms of the proximity operator of R as

c(k+1) = proxλµkR

(
c(0) − µkG

(k)

US

)
, (3.8)
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where the proximity operator is defined as [84]

proxλR (x) ≡ min
y

{
R (y) +

1

2λ
‖x− y‖2

}
(3.9)

for λ > 0. Proximity operators are a common way to handle non-smooth terms in an

optimization problem. Many existing works give expressions and procedures for evaluating

the proximal operator for different common regularization functions [11, 19, 21, 119]. Unless

otherwise noted, the regularization function is chosen to be the TV semi-norm as the TV

semi-norm has been shown to be effective at mitigating noise while preserving sharp edges

[18]. While the proximity operator of the TV semi-norm has no closed form expression, it

can be efficiently computed using the fast gradient projection method described in [11, 19].

Under this approach, the computational cost of applying the proximity operator is much

less than that of computing the gradient; so the computational cost of the RDA method is

approximately the same as SGD on a per-iteration basis.

From Eqn. 3.8, it can be seen that the update step for the dual averaging method can be

divided into two parts. First, a reference value, or initial guess, for the sought-after object

is updated based on a weighted sum of all past gradient estimates of the data fidelity term.

Second, regularization is incorporated by use of the associated proximity operator of the

regularization term. In this way, the stochastic data fidelity term is handled separately

from the deterministic regularization term. Additionally, averaging the gradients of the data

fidelity term obtained over several iterations may help minimize the impact of the variance

of the gradient due to the random encoding vector.

In the RDA method, the weights of the individual gradient realizations are separate from

the distance to step along the search direction. This later responsibility is handled by the
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Algorithm 2 Regularized dual averaging (RDA) method

Input: c(0), λ
Output: ĉ
1: k ← 0 {k is the algorithm iteration number.}
2: A−1 ← 0
3: while stopping criterion is not satisfied do
4: Draw w(k) according to chosen distribution.
5: Calculate G

(k)
US ← ∇cfUS

(
c(k),w(k)

)
6: Choose weight αk > 0 {Unweighted case: αk = 1}
7: Ak ← Ak−1 + αk

8: G
(k)

US ←
(

1− αk

Ak

)
G

(k−1)

US + αk

Ak
G

(k)
US {Compute weighted average of gradient.}

9: Choose µk {For example, µk = γAk, where γ > 0 is a constant.}
10: c(k+1) ← c(0) − µkG

(k)

US

11: c(k+1) ← proxλµkR
(
c(k+1)

)
12: k ← k + 1
13: end while
14: ĉ← c(k)

sequence {µk}. For simplicity, we choose µk = γAk, where Ak =
∑k

i=0 αi and γ > 0 is a

constant. In the this case, line 10 in Algorithm 2 reduces to

c(k+1) ← c(0) − γ
k∑
i=0

αiG
(i)
US. (3.10)

Under this formulation, γ plays the role of the step size, and the unweighted RDA method

corresponds to the case where αk = 1. As with step sizes in other optimization methods,

the constant γ should be chosen to be sufficiently small to insure convergence. For example,

when the Lipschitz constant of the gradient of the data fidelity term is known, γ could be

chosen to be the inverse of the Lipschitz constant in the unweighted case or the inverse of

the product of the Lipschitz constant and the maximum allowable weight of the gradient

αmax in the weighted case.
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The line search procedure for the weighted RDA method is described by Alg. 3. The goal

of this procedure is to find weights that improve the convergence rate of the algorithm

while minimizing the computational cost needed to select those weights. The goal is not

necessarily to choose weights that most minimize the cost function at each iteration as this

might be a less efficient use of computational resources than updating the estimate of the

object more regularly with less precisely chosen weights. Each weight value considered for a

given iteration requires the cost function to be evaluated one additional time. Since the data

fidelity term is evaluated for only one realization of the encoding vector, this requires only

one additional wave solver run. This computational cost is the same as for the line search

procedure employed for SGD.

Algorithm 3 Line search for RDA method

Input: c(0), Ak−1, w(k), G
(k)
US, G

(k−1)

US , fUS
(
c(k),w(k)

)
, λ, αmax

Output: αk {Weight for k-th iteration.}
1: α̃← αmax {αmax is the initial guess for the weight.}
2: found← false
3: while not found do
4: Ã← Ak−1 + α̃

5: G̃←
(

1− α̃
Ã

)
G

(k−1)

US + α̃
Ã

G
(k)
US

6: µ̃← γÃ {Should be consistent with Alg. 2.}
7: c̃← proxλµ̃R

(
c0 − µ̃G̃

)
8: if fUS

(
c̃,w(k)

)
+ λR (c̃) < fUS

(
c(k),w(k)

)
+ λR

(
c(k)
)

then
9: found← true
10: else
11: α̃← α̃/2
12: end if
13: end while
14: αk ← α̃
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3.3 Description of computer-simulation studies

3.3.1 Methods

The use of SGD and RDA for USCT image reconstruction was evaluated through two-

dimensional computer-simulation studies. The studies can be grouped into two parts: (1)

studies based on estimation of the SOS distribution for a numerical breast phantom (shown

in Fig. 3.2a) and (2) a bias-variance analysis based on a low-contrast phantom with two

homogeneous bars (shown in Fig. 3.2b). For both studies, the same measurement geometry,

excitation pulse, and numerical simulation methods were employed.

Measurement Geometry

The geometry of the measurement system was chosen to match an existing USCT imaging

system [27, 28, 64]. It consisted of a circular transducer array with a radius of 110 mm and

256 evenly distributed elements. The pressure wavefield data were simulated for 256 views

using the first-order k-space method as described in Section 2.1.4 [103, 104, 109]. For each

view, one transducer served as the emitter and the pressure was recorded by all transducers.

All transducers were modeled as ideal point emitters and receivers. Within the ring array

was a circular field-of-view over which the SOS distribution was to be estimated (see Fig. 3.1

for a schematic of this measurement geometry).
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Simulation grid

Transducer ring array

Reconstruction region

Field-of-view

Figure 3.1: A schematic of the measurement geometry. The measurement system consists
of a circular ring array of ultrasonic transducers. These transducers are located in a larger
rectangular simulation grid, over which the acoustic wave equation is solved. Within the
ring array is a smaller rectangular region representing the reconstructed image. The esti-
mated SOS distribution is calculated within the gray circular field-of-view within that region.
( c© 2017 IOP Publishing)
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Excitation pulse

The acoustic excitation pulse was given by

s (t) = exp

(
−(t− tc)2

2σ2

)
sin (2πfct) , (3.11)

where fc = 0.8 MHz is the central frequency, and tc = 3.2 µs and σ = 0.75 µs are the

center and width of a Gaussian window, respectively. This corresponds to roughly three

cycles. Nearest neighbor interpolation was employed to place the transducers on the discrete

simulation grid. As a result, the source term for the m-th view is given simply by

sm (r, t) = s (t) δ (r− rm) , (3.12)

where rm is the location of the pixel nearest to the emitter for the m-th view.

Numerical phantoms

A previously developed numerical breast phantom, composed of 8 structures representing

adipose tissues, parenchymal breast tissues, cysts, benign tumors, and malignant tumors,

was employed to compare the two optimization methods [109]. It had a radius of 49 mm

and SOS values ranging from 1.47 mm/µs to 1.57 mm/µs depending on the tissue type

(see Fig. 3.2a). The phantom employed for the bias-variance analysis consisted of two low-

contrast homogeneous bars (see Fig. 3.2b). The bars were placed far apart in order to

minimize the impact of one bar on the other in the reconstructed images.
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Figure 3.2: Sound speed distribution of (a) the numerical breast phantom and (b) the low-
contrast two bar phantom employed in the bias-variance analysis, given in units of mm/µs.
( c© 2017 IEEE)

Simulation of pressure data

In order to avoid inverse crime [20], both the first-order and second-order k-space pseudo-

spectral methods were employed to simulate the pressure. When generating the pressure data

recorded by each transducer, the acoustic wave equation was solved by use of the first-order

k-space pseudo-spectral method discussed in Sections 2.1.2 and 2.1.4 [103]. The calculation

domain consisted of a 2048 × 2048 uniform Cartesian grid with a pixel size of 0.25 mm,

resulting in a physical size of 512 × 512 mm2. The pressure was simulated at a sampling

rate of 20 MHz for 3600 time points. Additive Gaussian white noise, with zero mean and

a standard deviation of 5% of the maximum pressure amplitude received by the transducer

opposite the emitter for a homogeneous medium, was added to the pressure data.

When reconstructing the SOS images, the operator HUS (c) was computed by use of the

second-order k-space pseudo-spectral method [71]. In this case, the calculation domain

consisted of a 1024×1024 uniform Cartesian grid with a pixel size of 0.5 mm, corresponding
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to a physical size of 512 × 512 mm2. The sampling rate and number of time points were

reduced to 10 MHz and 1800, respectively. Both numerical wave solvers were implemented

using NVIDIA’s CUDA platform [1].

3.3.2 Image reconstruction

Reconstructed images of the numerical breast phantom were obtained by use of both SGD

and RDA. In order to provide a clear and fair point of comparison of the two methods,

the hyperparameters for each method were individually tuned via a grid search. The value

of the regularization parameter was tuned in order to minimize the root-mean-square error

(RMSE). In cases where a constant step size was employed, the value of this constant step

size was tuned in order to achieve the fastest convergence in terms of the RMSE. While

in practice it is not possible to tune these parameters according to the RMSE as the true

object is typically unknown, by optimizing the parameters in this way, we compare the

two optimization methods irrespective of the particular strategies adopted for choosing the

hyperparameters. Developing such strategies is challenging and outside the scope of this

current study.

For simplicity of presentation, the results are broken up into three parts. First, results are

shown for SGD. These results are meant to serve as a reference. Second, the properties

of the RDA algorithm are investigated. Third, the results for SGD and RDA are directly

compared. In addition to comparing the final images in terms of RMSE, the convergence

rates of the two approaches are also compared. The convergence rates are evaluated in terms

of the number of iterations and the number of times that the wave equation must be solved

in order to reach a certain accuracy. This later measure, which we refer to as the number of
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wave solver runs, is a good proxy for overall computational cost of the method. Use of a line

search increases the number of wave solver runs for each iteration relative to use of a constant

step size. Every step size considered as part of the line search will add one additional wave

solver run.

3.3.3 Bias-variance analysis

A bias-variance analysis was performed to compare the statistical properties of the images

produced by SGD and RDA. The measured pressure data were generated using the same pro-

cedure described in Section 3.3.1. Then, the measured data were corrupted by five different

noise realizations, each with 5% noise. For each noise realization, images were reconstructed

for six different regularization parameter values by use of SGD with a constant step size

and the unweighted RDA method. Due to the long image reconstruction times (approx. 1

hr for 250 iterations), it was not feasible to reconstruct images for a large number of noise

realizations. Instead, each reconstructed image was divided into 20 identical regions (10

per bar), which were treated as independent samples for the purposes of this analysis. The

corresponding pixels in these regions were treated as having arisen from additional noise

realizations, resulting in a total of 100 samples per regularization parameter value.

Let each pixel in the reconstructed images be treated as a random variable ĉi (for the i-th

pixel), whose true value in the original phantom is ci. Further, let Ĉi denote the set of values

for the i-th pixel for the five noise realizations. Then, an augmented set C̃i can be created

such that

C̃i =
Nc⋃
j=1

ĈIi(j), (3.13)
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where Nc is the total number of regions (20) and Ii is an iterator that gives the indices of

all pixels (across regions) that correspond to the i-th pixel.

The bias for each pixel within a region was calculated by averaging the 100 samples and

computing the difference between the average value and the corresponding value in the true

phantom:

Biasi =
1

Ns

∑
ĉ∈C̃i

ĉ− ci, (3.14)

where Ns is the total number of samples. As a summary measure, the `2-norm of the bias

values across pixels was calculated. Similarly, the sample variance of each pixel across all

samples was computed as

Vari =
1

Ns − 1

∑
ĉ∈C̃i

ĉ− 1

Ns

∑
ĉ∈C̃i

ĉ

2

. (3.15)

As a summary measure, the average variance for the pixels was computed. While corre-

sponding pixels in different regions may not have the same expected values and variances,

the above bias and variance measures still provide insight into the ability of the two recon-

struction algorithms to mitigate noise.
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3.4 Results of computer-simulation studies

3.4.1 Images reconstructed by SGD

First, the regularization parameter value for SGD that results in the most accurate re-

constructed image, as quantified by the RMSE, was determined. As seen in Fig. 3.3, a

regularization parameter value of 5× 10−4 results in the most accurate reconstructed image.

As such, this value will be taken as the optimal value for SGD-based USCT image recon-

struction and will be employed when making comparisons with the results obtained by use

of the RDA method.
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Figure 3.3: Plot of RMSE versus the number of iterations for images reconstructed by use
of SGD with a constant step size of 0.1 for several regularization parameter values. ( c© 2017
IEEE)

Next, the optimal constant step size for SGD was estimated by sweeping over a range of step

sizes. These results were also compared with use of a line search method. As seen in Fig. 3.4,
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the optimization algorithm will diverge when the constant step size is too large. However,

when the step size is too small, the convergence of the optimization algorithm will be slow.

Use of a line search method produces the fastest initial convergence, both in terms of the

number of iterations and in terms of the number of wave solver runs. In addition, use of a line

search removes the need to determine an appropriate constant step size, a time-consuming

task which is often accomplished through trial-and-error. From Fig. 3.4, it can be seen that

a constant step size of 0.1 produces the fastest convergence rate among all the constant step

size results while still resulting in an accurate reconstructed image.
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Figure 3.4: Plot of RMSE versus (a) the number of iterations and (b) the number of wave
equation solver runs for images reconstructed by use of SGD with a line search and with
several constant step size values for a regularization parameter value of 5 × 10−4. ( c© 2017
IEEE)

However, there are some downsides to employing a line search method with SGD. As can

be seen in Fig. 3.4, use of a line search results in oscillations in the RMSE of the recon-

structed image, while use of a constant step size produces a smoother convergence curve

with fewer jumps. In addition, the final RMSE is lower for the constant step size method
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(RMSE = 1.42 × 10−3) than for the line search method (RMSE = 1.73 × 10−3). These

differences are also reflected in the apparent image quality of the reconstructed images (see

Fig. 3.5).2 cmRMSE = 1.73e-03
(a)

2 cmRMSE = 1.42e-03
(b)

Figure 3.5: Images reconstructed by use of SGD using (a) a line search and (b) a constant
step size of 0.1, shown after 500 iterations for a regularization parameter value of 5× 10−4.
The insets in the upper right corners of each image correspond to a zoomed-in image of the
inclusion located at about 7 o’clock. The larger images are shown in a grayscale window of
[1.47, 1.58] mm/µs, while the insets are shown in a grayscale window of [1.50, 1.53] mm/µs.
( c© 2017 IEEE)

3.4.2 Images reconstructed by RDA

The regularization parameter value that resulted in the most accurate reconstructed image

was also determined for the RDA method. Reconstructed images for different regularization

parameter values, shown in Fig. 3.6, suggest that TV regularization behaves largely as ex-

pected for this new optimization method. The impact of the regularization term increases
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smoothly and continuously as the the value of the regularization parameter is increased.

When the regularization parameter is small, a noisy background texture to the reconstructed

images can be detected. When the regularization parameter is large, a smoother background

is observed. From Fig. 3.7a, it can be seen that a regularization parameter value of 1× 10−42 cm
(a)

2 cm
(b)

2 cm
(c)

2 cm
(d)

Figure 3.6: Images reconstructed by the unweighted RDA method with a fixed step size
of 0.1 for regularization parameter values of (a) 1 × 10−5, (b) 5 × 10−5, (c) 1 × 10−4, and
(d) 5 × 10−4, shown after 300 iterations. All images are shown in a grayscale window of
[1.47, 1.58] mm/µs. ( c© 2017 IEEE)

results in the most accurate reconstructed image for the RDA method. This is smaller than

the value obtained for SGD, emphasizing the importance of individually tuning hyperparam-

eters for each optimization method. Next, the optimal constant step size (or, equivalently,

value of γ in line 9 of Algorithm 2) was determined. From Fig. 3.7b, the optimal constant

step size value is 0.1, the same value obtained for SGD.

The weighted RDA method, in which the gradients at different iterations are given unequal

weights, can be used to achieve faster convergence compared with the unweighted case. To

confirm that this weighting strategy did not have a large impact on the regularization, images

were reconstructed for several regularization parameter values (see Fig. 3.8). The weighting

strategy does not appear to have had an outsized effect on the regularization performance.

As with the unweighted case, a regularization parameter value of 1 × 10−4 results in the
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Figure 3.7: Plot of RMSE versus the number of iterations for (a) several regularization
parameter values and a fixed step size of 0.1 and (b) several constant step size values and
a fixed regularization parameter value of 1 × 10−4 for images reconstructed by use of the
unweighted RDA method. ( c© 2017 IEEE)

2 cm 2 cm 2 cm 2 cm

Figure 3.8: Images reconstructed by the weighted RDA method for regularization parameter
values of (a) 1×10−5, (b) 5×10−5, (c) 1×10−4, and (d) 5×10−4, shown after 300 iterations.
All images are shown in a grayscale window of [1.47, 1.58] mm/µs. ( c© 2017 IEEE)
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smallest RMSE. While the final image obtained after many iterations is largely unchanged

by the weighting strategy, the accuracy of reconstructed images obtained at early iterations

is greatly improved. As seen in Fig. 3.9, the RMSEs and the apparent visual quality of

the reconstructed images after 20, 50, and even 100 iterations are improved by use of the

weighted RDA method. This improved accuracy can also be seen in the profiles through2 cmRMSE = 8.18e-03
(a)

2 cmRMSE = 3.43e-03
(b)

2 cmRMSE = 1.88e-03
(c)

2 cmRMSE = 1.22e-03
(d)2 cmRMSE = 3.92e-03

(e)

2 cmRMSE = 1.98e-03
(f)

2 cmRMSE = 1.44e-03
(g)

2 cmRMSE = 1.25e-03
(h)

Figure 3.9: Images reconstructed by use of the unweighted RDA method with a fixed step
size of 0.1 after (a) 20, (b) 50, (c) 100, and (d) 250 iterations. Images reconstructed by use
of the weighted RDA method after (e) 20, (f) 50, (g) 100, and (h) 250 iterations. All results
are shown for a regularization parameter value of 1 × 10−4 and in a grayscale window of
[1.47, 1.58] mm/µs. The RMSEs for each reconstructed image are displayed in the bottom
left of each subfigure. ( c© 2017 IEEE)

the reconstructed images shown in Fig. 3.10. As shown in Fig. 3.11, this improvement is

maintained even when the convergence of the reconstruction methods is viewed in terms

of the number of wave solver runs as opposed to the number of iterations. Eventually,
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Figure 3.10: (a) Profiles through y = -6.5 mm for reconstructed images obtained by use of
the weighted RDA method and the unweighted RDA method with a fixed step size of 0.1,
shown after (a) 20 iterations and (b) 250 iterations. ( c© 2017 IEEE)

after approximately 250 wave solver runs (or 250 iterations for the unweighted method), the

weighted and unweighted approaches produce images of similar accuracy.

3.4.3 Images reconstructed by SGD and RDA

In the previous sections, the SGD and RDA methods were evaluated individually. Now, the

images produced by use of the two methods are compared directly. Images reconstructed by

four different optimization strategies are shown in Fig. 3.12: (1) SGD with a constant step

size, (2) unweighted RDA, (3) SGD with a line search, and (4) weighted RDA. The RMSE

of each reconstructed image is noted in the bottom left. Together with the apparent visual

quality of the images, this measure demonstrates that the initial convergence rates of SGD

with a line search and the weighted RDA method are much faster than that of either SGD
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Figure 3.11: Plot of RMSE vs. (a) the number of iterations and (b) the number of wave
solver runs for the weighted and unweighted RDA methods. ( c© 2017 IEEE)

with a constant step size or the unweighted RDA method. However, the two RDA methods

produce reconstructed images with higher accuracy at later iterations when compared with

the SGD-based methods. Specifically, although use of a line search limited the final accuracy

of images produced by SGD, the accuracy of the image reconstructed by the weighted RDA

method is better than that obtained by SGD with a constant step size. This demonstrates

that the weighted RDA method can provide both fast convergence and more accurate images

than using the SGD method.

As shown in Fig. 3.13, the improved accuracy of the weighted RDA method compared with

SGD with a line search is reflected in the profiles through the reconstructed images. The

profile for the image obtained by use of SGD is noticeably noisier than that obtained by use

of RDA. This may indicate that the RDA method is more effective at mitigating noise than

SGD. In Section 3.4.4, this potential benefit will be considered more closely through the use

of a bias-variance analysis.
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Figure 3.12: Images reconstructed by (Row 1) SGD with a constant step size of 0.1 and
λ = 5×10−4; (Row 2) unweighted RDA with a fixed step size of 0.1 and λ = 1×10−4; (Row 3)
SGD with a line search and λ = 5 × 10−4; and (Row 4) weighted RDA with λ = 1 × 10−4.
The columns correspond to the images obtained, from left to right, after 20, 50, 100, and
250 iterations. All images are shown in a grayscale window of [1.47, 1.58] mm/µs. ( c© 2017
IEEE)
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Figure 3.13: Profiles through y = -6.5 mm for images reconstructed by the use of SGD with
a line search and weighted RDA. ( c© 2017 IEEE)

The benefits provided by the RDA method are further confirmed by the plots of the conver-

gence rates, shown in Fig. 3.14. While SGD with a line search has a fast initial convergence

rate, it ultimately results in a less accurate final image. In addition, the estimates of the

object provided by SGD with a line search also exhibit a high variance, even at later itera-

tions. This is likely due to overfitting, caused by the fact that the line search only evaluates

the cost function for a single realization of the encoding vector. As a result, the line search

will overestimate how much moving in the given search direction will reduce the overall cost

function. As a result, the line search will tend to chose a larger step size that effectively

minimizes the cost function evaluated for that encoding vector, but which increases the cost

function when all, or a large number, of encoding vectors are considered. This behavior is

not observed for the weighted RDA method. For the RDA method, the search direction is
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given by a weighted average of the gradient estimates for all past encoding vector realiza-

tions. Consequently, it does not overfit the cost function evaluated for a single realization of

the encoding vector. Thus, the high variance of the object estimates is eliminated while the

computational cost of the line search for the RDA method is the same as for SGD.
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Figure 3.14: Plot of RMSE versus (a) the number of iterations and (b) the number of wave
solver runs for SGD with a line search, SGD with a constant step size of 0.1, unweighted
RDA with a step size of 0.1, and weighted RDA. ( c© 2017 IEEE)

3.4.4 Bias-variance analysis

Previously, it was observed that the RDA method could produce reconstructed images with

lower RMSEs than SGD. One possible explanation for this observation is that the regulariza-

tion term under the RDA method is able to more effectively mitigate noise. The hypothesis

is consistent with the idea that grouping together the stochastic data fidelity term and the

deterministic regularization term may not be optimal. To evaluate this idea, it is necessary
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to confirm that the observed differences between the two methods are not simply due to

superior hyperparameter tuning in one of the two cases.

Bias-variance curves, which depict the inherent trade-off between noise mitigation and close

agreement with the measured data, offer one solution for systematically evaluating the two

methods. As described in Section 2.2.3, an estimate of the SOS distribution is obtained

by solving an optimization problem consisting of two terms, the data fidelity term and the

regularization term. The relative weight of these terms is controlled by a scalar regularization

parameter. For TV regularization, noise can be more severely suppressed by increasing the

value of the regularization parameter at the possible expense of reduced resolution or other

forms of bias.
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Figure 3.15: Bias-variance curve for SGD with constant step size and the unweighted
RDA method. The corresponding regularization parameter values are given by each point.
( c© 2017 IEEE)
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Bias-variance curves were generated for SGD with a constant step size and the unweighted

RDA method by reconstructing a collection of images for six different regularization param-

eter values. As seen in Fig. 3.15, the RDA method consistently produces lower variance

images (less noisy) for a given level of bias. This difference can also be seen in the recon-

structed images shown in Fig. 3.16. In that figure, the reconstructed images have the same

bias level, but the image reconstructed by use of SGD with a constant step size is noticeably

noisier than the image obtained by use of the unweighted RDA method.
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Figure 3.16: Example reconstructed images from bias-variance analysis. (a) Image recon-
structed by SGD with a regularization parameter value of 5×10−5. (b) Image reconstructed
by RDA with a regularization parameter value of 1 × 10−4. The two images have approxi-
mately the same bias. Both images are shown in their full dynamic ranges. The SOS values
are given in units of mm/µs. ( c© 2017 IEEE)

3.5 Description of clinical studies

The utility of the proposed approach was also evaluated through clinical studies. The clinical

data were acquired previously by Delphinus Medical Technologies and the Karmanos Cancer
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Institute by use of the SoftVue USCT scanner [28]. The imaging system consists of a ring

array with a radius of 110 mm and 2048 evenly-distributed transducers. The ultrasonic

transducers had a central frequency of 2.75 MHz with a pitch of 0.34 mm. Each element

was elevationally focused to isolate a 3-mm-thick slice of the breast. Additional information

regarding the measurement system and clinical studies can be found in [27,28].

Every other transducer element served as an emitter, and the resulting pressure waves were

then measured by the same set of 1024 transducers. The pressure data were recorded by

the ultrasonic transducers at a sampling rate of 12 MHz for 2112 time points, corresponding

to approximately 176 µs. As a calibration step, this measurement process was repeated

without the object. By manual inspection, 48 transducers were identified as having low

sensitivity or poor performance. The data from these transducers were discarded, resulting

in measurements from 976 transducers. The pressure data were upsampled to a sampling

rate of 20 MHz by use of linear interpolation in order to avoid the introduction of numerical

errors by the wave solver [71]. After upsampling, the number of samples in each time trace

was 3500. Additionally, each signal was filtered by a Butterworth bandpass filter with cutoff

frequencies of 0.5 and 1.0 MHz. The shape of the excitation pulse was estimated from the

calibration data taken without the object using the method described in [109].

An initial estimate of the SOS distribution was reconstructed by use of an adjoint state

method (see Fig. 3.17) [6]. This estimate was also used to generate a set of synthetic mea-

sured data. As detailed in [109], measurements near the emitter may not contribute positively

to the reconstructed image due to a variety of factors, including mechanical cross-talk, model

mismatch, and measurement noise. To mitigate the impact of these effects, the measure-

ments near the emitter were replaced with synthetic data. Only the 512 measurements from

transducers opposite the emitter were kept.
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2 cm
Figure 3.17: Initial estimate of the object reconstructed by use of an adjoint state method
described in [6]. ( c© 2017 IEEE)

The images were reconstructed by solving Eqn. 2.39, where the operator HUS (c) was cal-

culated by use of the second-order k-space pseudo-spectral wave solver as described in Sec-

tion 3.3.1 [71]. The calculation domain consisted of a 2560×2560 Cartesian grid with a pixel

size of 0.2 mm, corresponding to a physical size of 512 × 512 mm2. The SOS was updated

within a field-of-view of radius 105 mm. The images were reconstructed using a NVIDIA

Tesla K40 GPU.

While image quality is most objectively assessed using task-based methods of image quality

[10], such studies are often a substantial undertaking. As a result, the contrast-to-noise

(CNR) ratio was employed as a proxy for the detectability of the tumor. The CNR of

the reconstructed images was calculated by identifying three regions: (1) the tumor, (2)

parenchymal breast tissue, and (3) the water bath. The tumor was identified by visual

inspected and manually segmented. Circular regions of a similar size corresponding to the
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parenchymal tissue and the water bath were also identified. The contrast was calculated by

comparing the tumor and parenchymal tissue regions. The noise, however, was calculated

based on the water bath, which was assumed to be homogeneous, to avoid mis-attributing any

real variations within the parenchymal tissue to noise. With this, the CNR was calculated

as

CNR =
c̄t − c̄p
σn

, (3.16)

where c̄t is the average SOS of the tumor, c̄p is the average SOS over a comparably sized

region of the parenchymal tissue, and σn is the standard deviation over a comparably sized

region of the water bath.

3.6 Results of clinical studies

Images were reconstructed for several different regularization parameter values for both SGD

with a constant step size and the weighted RDA methods. The CNRs of each image are

indicated in the bottom left corner of the image. As seen in Fig. 3.18, the weighted RDA

method consistently produces reconstructed images with higher CNRs than SGD with a con-

stant step size. This is observed across a range of regularization parameter values. Further,

the CNR obtained by SGD is lower even when the regularization parameter value is tuned

to maximize the CNR. This improvement in the CNR for the RDA method is consistent

with the superior noise mitigation performance observed in the computer-simulation studies.

While the CNRs of all the images shown in Fig. 3.18 are quite high, the improvement in the

CNR could be more impactful for cases where the tumors are smaller or have lower contrast.
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2 cmCNR = 21.1
(a)

2 cmCNR = 23.2
(b)

2 cmCNR = 25.95
(c)

2 cmCNR = 24.5
(d)2 cmCNR = 22.1

(e)

2 cmCNR = 24.2
(f)

2 cmCNR = 28.07
(g)

2 cmCNR = 31.2
(h)

Figure 3.18: (Top row) Images reconstructed by use of SGD with a constant step size of
2.5×105 and regularization parameter values of (a) 1×10−10, (b) 3×10−10, (c) 1×10−9, and
(d) 3× 10−9. (Bottom row) Images reconstructed by use of the weighted RDA method with
regularization parameter values of (e) 1×10−10, (f) 3×10−10, (g) 1×10−9, and (h) 3×10−9.
Images are shown after 100 iterations and in a grayscale window of [1.38, 1.60] mm/µs.
( c© 2017 IEEE)
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To compare the differences in the convergence rates of the two optimization methods, recon-

structed images for a series of iteration numbers are shown in Fig. 3.19. Since a non-constant

initial guess was provided, the differences in the convergence rates of SGD with a constant

step size and the weighted RDA method are less pronounced than observed in the computer-

simulation studies. Still, the weighted RDA method produces a higher CNR at each iteration

even though the regularization parameter value was chosen to maximize the CNR for the

SGD case. The difference between the CNRs of the two methods grows over the first 50

iterations before decreasing at later iterations. This might suggest that the weighted RDA

method is able to provide some initial improvement in the convergence rate as was observed

with the computer-simulation studies.2 cmCNR = 18.94
(a)

2 cmCNR = 21.55
(b)

2 cmCNR = 24.23
(c)

2 cmCNR = 25.95
(d)2 cmCNR = 19.67

(e)

2 cmCNR = 22.90
(f)

2 cmCNR = 27.35
(g)

2 cmCNR = 28.07
(h)

Figure 3.19: (Top row) Images reconstructed by use of SGD with a constant step size of
2.5 × 105 after (a) 5, (b) 20, (c) 50, and (d) 100 iterations with a regularization parameter
value of 1× 10−9. (Bottom row) Images reconstructed by use of weighted RDA after (e) 5,
(f) 20, (g) 50, and (h) 100 iterations with a regularization parameter value of 1× 10−9. All
images are shown in a grayscale window of [1.38, 1.60] mm/µs. ( c© 2017 IEEE)
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Another key benefit of the RDA method is its ability to allow natural incorporation of non-

smooth penalties. This may allow the optimization problem be tailored for a given image

reconstruction task or to exploit known properties about the object to be reconstructed.

While the determination of an optimal choice of regularization function is outside the scope

of this dissertation, to demonstrate the flexibility of RDA method, a second non-smooth

regularization function was considered. The regularization function was chosen to be

R (c) = ‖Φc‖1, (3.17)

where Φ is the 2-D wavelet transform and the mother wavelet was the 12-tap Daubechies

wavelet [69]. The wavelet transform was computed by use of the GNU Scientific Library [37].

Images reconstructed with several regularization parameter values are shown (see Fig. 3.20).2 cmCNR = 22.34
(a)

2 cmCNR = 24.83
(b)

2 cmCNR = 25.39
(c)

2 cmCNR = 25.96
(d)

Figure 3.20: Images reconstructed by use of the weighted RDA method with a wavelet-based
penalty and regularization parameter values of (a) 3 × 10−10, (b) 1 × 10−9, (c) 3 × 10−9,
and (d) 1 × 10−8. Images are shown after 100 iterations and in a grayscale window of
[1.38, 1.60] mm/µs. ( c© 2017 IEEE)
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3.7 Conclusions

Waveform inversion with source encoding can produce high-resolution SOS images while re-

ducing the computational burden that have hindered other time-domain waveform inversion

approaches. Using this method, estimates of the SOS distribution can be obtained by mini-

mizing an objective function consisting of a stochastic data fidelity term and a deterministic

regularization term. The RDA method offers several advantages when solving this optimiza-

tion problem compared with use of SGD. First, it exploits knowledge of the structure of the

cost function, resulting in more effective regularization. In the case of the TV semi-norm,

noise is more effectively reduced while preserving the accuracy and contrast of the recon-

structed images. Second, it does not assume that all terms in the regularization function

are differentiable, allowing natural incorporation of non-smooth penalties, such as the TV

semi-norm and the `1-norm of the wavelet transform. Third, it exploits information from

past iterations to determine the search direction. This allows the method to employ a line

search while avoiding overfitting the cost function evaluated for a particular realization of the

encoding vector. This allows a fast initial convergence rate without sacrificing the accuracy

of the final image. These benefits were demonstrated through computer-simulation studies

involving a numerical breast phantom, generation of a bias-variance curve, and experimental

studies involving clinical data.

Still, several opportunities for further improvement exist. The assumed forward model ig-

nores a number of important factors that could lead to artifacts in the reconstructed images.

In particular, the model ignores mass density variations, acoustic attenuation, dispersion,

and out-of-plane scattering. Since the assumed imaging model is 2-D, scattering out of the

plane defined by the transducer ring array is not considered. It also treats the transducers
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as ideal point detectors and emitters, ignoring their spatial and electro-acoustic impulse re-

sponses. Additional investigation of the numerical properties of this approach remains an

interesting topic for future study. For example, the frequency content of the excitation pulse

and the strength of the acoustic heterogeneities have a sizable impact on the reconstructed

images [109]. Comparison with other USCT image reconstruction methods is also needed,

e.g. [2, 38,94,113].
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Chapter 4

Joint reconstruction of the speed of

sound and initial pressure

distributions from PACT data alone

4.1 Overview

Traditional image reconstruction methods for estimating the initial pressure distribution in

PACT assume that the medium is acoustically homogeneous even though this is not true for

many biomedical applications [45,88,120]. To mitigate artifacts induced by this assumption,

half-time and partial-time image reconstruction methods, which seek to exploit redundant

information in data and eliminate parts of the data that are disproportionately affected by

acoustic inhomogeneities, have been proposed [3, 4, 88]. Some recent image reconstruction

methods have the ability to compensate for SOS variations if the SOS distribution is known

[7, 44, 46, 65, 91, 101, 106], but in practice, the SOS distribution is not known. Adjunct

imaging data, such as USCT measurements, could be acquired to allow estimation of the

SOS distribution (this approach is discussed in detail in Chapter 5) [51,70,73,115], but not
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all PACT imaging systems are capable of acquiring the necessary measurements. Thus, there

is a need to estimate some approximation of the SOS distribution from PACT measurements

alone.

One approach for image reconstruction methods that assume a constant SOS is to tune

the SOS according to some image quality metric. For example, Treeby, et al., proposed

a method by which the SOS was automatically chosen by maximizing a measure of image

sharpness [105]. However, such approaches can be difficult to apply when the assumed SOS

is not constant and more SOS values need to be estimated.

Another option is to jointly estimate the SOS and initial pressure distributions from PACT

measurements alone [47, 55, 66, 82, 100, 122, 123]. Others have also considered the related

problem of joint estimation of the SOS and optical absorption coefficient distributions [25].

However, this approach can be very challenging. For example, Stefanov and Uhlmann consid-

ered the joint estimation problem for the linearized wave equation and demonstrated that, in

general, the SOS and initial pressure distributions could not both be stably recovered [100].

Huang, et al. made similar observations via computer-simulation studies for the full acoustic

wave equation [47].

Previously, Zhang et al. proposed use of a low-dimensional representation of the SOS dis-

tribution in order to stabilize the joint reconstruction (JR) problem [123]. In that work, the

SOS and initial pressure distributions were estimated by minimizing an objective function

consisting of a data fidelity term and a pair of regularization terms by use of a gradient-based

alternating minimization approach. The acoustic wave propagation was modeled by use of

a generalized Radon transform model, which assumes that the acoustic heterogeneities are

relatively weak. In addition, the gradient of the objective function with respect to the pa-

rameterized SOS distribution was calculated using a finite-difference-based approach, which

63



can be computationally expensive when the number of parameters in the SOS distribution

is large.

Here, the idea of stabilizing the JR problem by use of a parameterized SOS model is revis-

ited and extended in several key ways. First, the forward model is replaced with a full-wave

acoustic model, which does not assume that the acoustic heterogeneities are weak. This

allows consideration of bone and other materials, whose acoustic properties differ greatly

from the background medium. Second, the adjoint state method is employed to compute the

gradients with respect to the initial pressure and SOS distributions. This efficient approach

has a computational cost that is independent of the number of parameters in the parameter-

ized SOS model. Third, the optimization method is updated to allow use of constraints and

non-smooth regularization terms. Fourth, the feasibility of the approach is demonstrated

through application to experimental data.

4.2 Parameterized speed of sound

To constrain and stabilize the JR problem, a low-dimensional parameterized representation

of the SOS distribution is considered. Let Q denote the number of unique SOS values in this

parameterized representation. Then, the parameterized vector of SOS values cp ∈ RQ can

be related to the SOS over the whole simulation grid as

c = Φcp, (4.1)

where Φ is some differentiable mapping that relates the two representations. While the

proposed approach permits many possible parameterized representations, here we will focus
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on the case where the SOS at each pixel in the simulation grid corresponds to one of Q

possible values. In this case, Φ ∈ RN×Q is a binary matrix defined as

[Φ]i,j ≡


1 i ∈ Ij

0 otherwise

, (4.2)

where Ij denote the set of indices of pixels that correspond to the j-th parameterized SOS

value, and [A]i,j denotes the (i, j) element of the matrix A.

4.3 Joint reconstruction

Given some choice for Φ, the parameterized JR problem is given by

p̂0, ĉp = arg min
p0≥0,cp

FPA (p0,Φcp) + λR (p0) . (4.3)

where FPA is the data fidelity term given in Eqn. 2.32, R is a regularization function for

the initial pressure distribution, and λ is the corresponding regularization parameter value.

Use of the adjoint state method to calculate the gradient of FPA with respect to p0 and c

is detailed in Appendix B. With that, the gradient of the data fidelity term with respect to

the parameterized SOS distribution can be related to the gradient with respect to the SOS

over the whole domain via the chain rule. In particular, when Φ corresponds to a real-valued

linear mapping, the gradient with respect to the parameterized SOS distribution is given by

∇cpFPA (p0,Φcp) = ΦT∇cFPA (p0,Φcp) . (4.4)
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For the choice of Φ given by Eqn.4.2, this expression reduces to

[
∇cpFPA (p0,Φcp)

]
j

=
∑
i∈Ij

[∇cFPA (p0,Φcp)]i . (4.5)

Since the gradients with respect to the initial pressure and SOS distributions are calculated

via the adjoint state method as described in Appendices A and B, only two wave solver runs

are needed to compute both gradients.

Based on Eqn. 4.5, the magnitude of j-th component of ∇cpFPA will depend on the cardinal-

ity of the set Ij or equivalently the number of pixels that correspond to the j-th component

of cp. As a result, the gradient may be poorly scaled, leading to slow convergence. To combat

this, a diagonal, positive definite scaling matrix is introduced, defined as

[B]j =
1

|Ij|
. (4.6)

This matrix can be employed to generate a new search direction B∇cpFPA that represents

the average gradient over the pixels for each component of the parameterized SOS distri-

bution. This new search direction is always a descent direction as B is positive-definite

by construction. Other choices for B could result in even faster convergence; however, the

choice given by Eqn. 4.6 requires little additional computational cost and ensures that the

magnitude of each gradient component does not depend strongly on the number of pixels

corresponding to each parameter.

With this, Eqn. 4.3 may be solved by the weighted proximal gradient descent method sum-

marized in Algorithm 4. This algorithm can be split into two major parts, one in which

the initial pressure distribution is updated via a proximal gradient descent step and one in

which the parameterized SOS distribution is updated via a weighted gradient descent step.

66



This separation is possible since the constraint and non-smooth regularization function R

only involve p0 and since the the diagonal elements of B differ from one only for cp. For

brevity, the following notation is employed to describe the algorithm,

F
(k)
PA ≡ FPA

(
p

(k)
0 , c(k)

p

)
(4.7a)

G
(k)
PA,p ≡ ∇p0FPA

(
p

(k)
0 , c(k)

p

)
(4.7b)

G
(k)
PA,c ≡ ∇cpFPA

(
p

(k)
0 , c(k)

p

)
, (4.7c)

where the superscript k refers to the k-th iteration of the algorithm.

Algorithm 4 Parameterized joint reconstruction method

Input: c
(0)
p ,p

(0)
0 , λ

Output: ĉp, p̂0

1: k ← 0 {k is the algorithm iteration number.}
2: while stopping criterion is not satisfied do
3: Calculate G

(k)
PA,p and G

(k)
PA,c

4: Choose αpk and αck via Algorithm 5

5: p
(k+1)
0 ← proxαp

kλR

(
p

(k)
0 − α

p
kG

(k)
PA,p

)
6: c

(k+1)
p ← c

(k)
p − αckBG

(k)
PA,c

7: k ← k + 1
8: end while
9: ĉp ← c

(k)
p

10: p̂0 ← p
(k)
0

To choose the step sizes for updating the initial pressure and parameterized SOS distribu-

tions, a two-part backtracking line search procedure, detailed in Algorithm 5, is employed.

First, a step size is chosen for updating the initial pressure distribution, following the line

search method outlined in [12,84] for proximal methods. During this step, the parameterized

SOS distribution is kept fixed at its current value. Then, a step size for updating the param-

eterized SOS distribution is chosen via a conventional backtracking line search. During this
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step, the cost function is evaluated at the updated initial pressure value by use of the step

size found during the earlier line search. In some cases under this procedure, the previously

calculated gradient for the parameterized SOS distribution may no longer represent a descent

direction at the updated initial pressure distribution value. This could occur if the gradient

with respect to the parameterized SOS distribution changes rapidly for small variations in

the initial pressure distribution. To address this case, the update to the parameterized SOS

distribution is skipped if a suitable step size cannot be found in lmax line search steps. These

steps ensure that the chosen step sizes lead to a decrease in the value of the cost function,

but may lead the parameterized SOS distribution to be updated less frequently. This issue

could be avoided by recalculating the gradient with respect to the parameterized SOS distri-

bution at the updated initial pressure value or by performing a grid search over the two step

sizes. Whether the additional computational cost for either of these options is justified will

depend on how sensitive the gradient with respect to the parameterized SOS distribution is

to changes in the initial pressure distribution, which may be problem-dependent.

4.4 Description of computer-simulation studies

The proposed approach was validated through the use of two-dimensional computer-sim-

ulation studies. While most studies were performed with a piece-wise constant numerical

mouse phantom, an additional study was performed with a vessel-like numerical phantom in

order to investigate the impact of high frequency content in the measured pressure on the

inverse problem.
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Algorithm 5 Two-parameter backtracking line search

Input: αp0, α
c
0, F

(k)
PA,G

(k)
PA,p, G

(k)
PA,c, lmax

Output: α̂pk, α̂
c
k

1: α̂pk ← αp0
2: found ← false
3: while not found do
4: p̃0 ← prox

α̂p
kλR

(
p

(k)
0 − α̂

p
kG

(k)
PA,p

)
5: if FPA

(
p̃0, c

(k)
p

)
> F

(k)
PA +

〈
G

(k)
PA,p, p̃0 − p

(k)
0

〉
+ 1

2α̂p
k

‖p̃0 − p
(k)
0 ‖2

2 then

6: α̂pk ← α̂pk/2
7: else
8: found ← true
9: end if
10: end while
11: l← 0 {l is the line search step number.}
12: α̂ck ← αc0
13: found ← false
14: while not found and l < lmax do
15: c̃p ← c

(k)
p − α̂ckBG

(k)
PA,c

16: if FPA

(
p̃0, c

(k)
p

)
< FPA (p̃0, c̃p) then

17: α̂ck ← α̂ck/2
18: else
19: found ← true
20: end if
21: l← l + 1
22: end while
23: if l is lmax then
24: α̂ck ← 0
25: end if
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4.4.1 Methods

Numerical mouse phantom

The chosen numerical phantoms are based on tissue type maps generated from segmented

µCT images of a mouse produced by the DigiMouse project [26]. The phantoms for the

initial pressure and SOS distributions were produced by assigning each segmented region a

constant initial pressure value and a constant SOS value, respectively, based on the tissue

type (see Fig. 4.1). The values for the initial pressure were chosen based on the relative

concentration of blood in each tissue type, as hemogloblin is one of the strongest endogenous

optical absorbers in the body over the visible and near-infrared wavelength ranges [49]. The

impact of optical fluence variations were not considered in this work. For most studies,

unless otherwise noted, the mass density was assumed to be homogeneous. The values for

the initial pressure and the SOS for each tissue type are summarized in Table 4.1.

(a) (b) (c) (d)

Figure 4.1: (a) A schematic of the segmented tissue types within the mouse. The labels for
each numbered tissue type are given in Table 4.1. Phantoms for (b) the normalized initial
pressure distribution, given in arbitrary units, (c) the SOS distribution, given in units of
mm/µs, and (d) the mass density distribution, given in units of mg/mm3. In order to better
visualize the soft tissue variations for the SOS distribution, the grayscale window for this
phantom was set to [1.47, 1.7] mm/µs resulting in saturation of the bone, which has a SOS
value of 3.198 mm/µs.
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Index Region Initial pressure Speed of sound Mass density
[mm/µs] [mg/mm3]

0 Water 0.0 1.480 1.00
1 Bulk tissue 0.3 1.540 1.00
2 Bone 0.1 3.198 1.99
3 Kidney 0.9 1.560 1.00
4 Liver 1.0 1.578 1.00
5 Pancreas 0.3 1.591 1.00
6 Spleen 0.5 1.567 1.00

Table 4.1: Parameter values for the initial pressure, SOS, and mass density distributions for
each tissue type. The normalized initial pressure values are roughly based on the relative
concentration of blood for each tissue type [33,53,68,102].

Imaging system

The imaging system contained 512 ultrasonic transducers evenly distributed about a ring of

radius 50 mm. The transducers were treated as point-like detectors with the electro-acoustic

impulse response (EIR) given in Fig. 4.2. The ultrasonic transducers were placed on the

simulation grid by use of nearest neighbor interpolation.

Simulation of pressure data

In order to avoid inverse crime [20], the pressure data were simulated with different temporal

and spatial sampling rates when generating the measured data and performing image recon-

struction. While generating the measured data, the simulation grid consisted of a Cartesian

grid with 1536× 1536 pixels and a pixel size of 0.075 mm, corresponding to a physical size

of approximately 115 × 115 mm2. The pressure data were recorded at a temporal sampling

rate of 120 MHz for 8000 time steps. Additive Gaussian white noise with zero mean and a
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Figure 4.2: (a) The pressure amplitude and (b) frequency spectrum of the EIR employed in
the main computer-simulation studies.

standard deviation of 2% of the maximum pressure amplitude was added to the measured

data. The k-Wave toolbox was employed to simulate the measured pressure data [104].

Image reconstruction

During image reconstruction, the simulation grid consisted of 768× 768 pixels with a pixel

size of 0.15 mm, corresponding to a physical size of approximately 115 × 115 mm2. The

pressure wavefield was simulated at a temporal sampling rate of 60 MHz for 4000 time

steps. During the image reconstruction step, the pressure was simulated by use of a C-based

numerical wave solver, implemented using NVIDIA’s CUDA framework [1]. The gradients

with respect to the initial pressure and parameterized SOS distributions were estimated

within a field-of-view of radius 20 mm.
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4.4.2 Fixed constant speed of sound

Initial pressure distributions were reconstructed by solving Eqn. 2.31 for several fixed con-

stant SOS values and choices of λ values. The stopping criterion was when the change in the

`2-norm of the initial pressure distribution between successive iterations was less than 10−4.

Most traditional image reconstruction algorithms in PACT assume a constant SOS. In prac-

tice, the value of this constant SOS is often tuned according to some criteria. Three such

criteria were considered for tuning a constant SOS value: (1) the root-mean-square error

(RMSE), (2) the value of the cost function given in Eqn. 2.31, and (3) the Tenenbaum

sharpness [105]. Use of the Tenenbaum sharpness for tuning a constant SOS value was pre-

viously proposed by Treeby, et al. [105]. Joint reconstruction with a 1-parameter SOS model

can be viewed as choosing the SOS value according to the value of the cost function. While

the best criteria to employ to select a constant SOS value will depend on the task or tasks

for which the image will be utilized [10], here, only a few simple measures are considered.

4.4.3 Joint reconstruction

Several different SOS parameterizations were considered, each with a different number of

parameters (see Table 4.2). For this initial investigation, the boundaries of these regions

were based on the true boundaries of the different tissue types shown in Fig. 4.1a. When

the assumed parameterization is too simple to describe the true SOS variations within the

object, model error will lead to artifacts in the reconstructed images. When the assumed

parameterization is very complex, the inverse problem may be poorly conditioned and may

suffer from many local minima or saddle points. By considering a collection of different
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parameterizations with different number of parameters, this trade-off between model error

and the conditioning of the inverse problem is investigated.

Q Regions

1 Constant SOS
2 (1) Background, (2) Mouse
3 (1) Background, (2) Soft tissue, (3) Bone
7 (1) Background, (2) Bulk tissue, (3) Bone, (4) Kidney,

(5) Liver, (6) Pancreas, (7) Spleen
55869 All pixels within field-of-view

Table 4.2: Different SOS parameterizations employed during image reconstruction.

The initial guess for initial pressure distribution was the vector of all zeros. The initial

guess for the parameterized SOS distribution depended on the number of parameters and

the corresponding tissue types. The initial guesses for the different tissues were 1.48 mm/µs

for the background, 1.50 mm/µs for all soft tissues, and 3.00 mm/µs for the bone. For

fairness of comparison, the initial guess for the 55869-parameter model was chosen such that

the initial guess for SOS distribution, namely Φc
(0)
p , was the same as for the 3-parameter and

7-parameter models, even though this high-dimensional model does not suggest any prior

knowledge of the different tissue types present in the object.

The numerical wave solver can become inaccurate when there are high spatial frequencies

in the SOS distribution [103]. To avoid sharp discontinuities between the different parame-

terized regions, the SOS distribution was smoothed with a Gaussian filter with a standard

deviation of one pixel prior to running the numerical wave solver.

The stopping criterion was when the change in the `2-norm of the object between successive

iterations was less than 10−4. In this case, the object refers to the concatenation of the initial

pressure and parameterized SOS distributions.
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4.4.4 Mass density variations

For most studies, mass density variations are ignored during the JR process. While the

derived methods can naturally be extended to include mass density variations, for simplicity,

the mass density is assumed to be homogeneous. However, this assumption may be poor

when bone or air voids are present in the object. To better understand the impact of

ignoring mass density variations, the measured data were simulated with the heterogeneous

mass density distribution shown in Fig. 4.1d. The values for mass density for each of the

tissue types are summarized in Table 4.1. During image reconstruction, a homogeneous mass

density distribution was assumed.

4.4.5 Imperfect parameterization

For the prior studies, it was assumed the boundaries between the different tissue types were

known exactly. However, in practice, this is not the case. To better understand the impact

of errors in the assumed parameterization, the boundaries of the different tissue types were

estimated by segmenting a pair of reconstructed initial pressure distribution images. Two

approximate parameterizations, shown in Fig. 4.3, were considered. The first was a two-

parameter SOS model, obtained by segmenting the outer boundary of the mouse from the

reconstructed initial pressure image obtained by JR with a one-parameter SOS model. The

segmented region was determined by thresholding the initial pressure image with a cutoff

of 0.1. The second model was a three-parameter SOS model. The outer boundary of the

mouse was the same as for the first approximate parameterization. The outer boundary of

the bone was estimated by manually segmenting a reconstructed initial pressure distribution

image obtained by assuming a fixed constant SOS value of 1.51 mm/µs. It was observed
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that the boundary of the bone could be more readily determined for this SOS value, which

was higher than that obtained by JR.

6 mm

(a)

6 mm

(b)

Figure 4.3: Estimated segmented regions for (a) a two-parameter SOS model and (b) a
three-parameter SOS model.

4.4.6 High-frequency pressure data

Due to the nature of the chosen initial pressure phantom, shown in Fig. 4.1b, the measured

data contained predominately low-frequency content. Accurate estimation of the SOS dis-

tribution, and in turn accurate JR, can be challenging from high-frequency data due to the

phenomenon of cycle skipping [14, 108]. Cycle skipping occurs when the cumulative phase

error for a given frequency component exceeds π (or, equivalently, when the traveltime error

exceeds half of the period). In this case, the optimization method may align a peak (or

trough) in the simulated data with a neighboring peak in the measured data rather than

with the true corresponding peak.
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Several methods have been employed to address cycle skipping in USCT and geophysics.

When a frequency-domain wave solver is utilized, a common strategy is to use a frequency

hopping method in which progressively higher frequencies are used to estimate the SOS

distribution [97]. For time-domain wave solvers, a similar result can be achieved by low-pass

filtering the measured data or by use of multi-scale methods [14,16].

To investigate the utility of these approaches for parameterized JR, the topology of the data

fidelity term was determined for measured data that were filtered with several low-pass filters

with different cutoff frequencies.

To obtain high-frequency measured data, a new vessel-like numerical phantom, which con-

tains much finer structures, was utilized. This phantom was included with the k-Wave

toolbox [104]. The SOS phantom consisted of a circle with a radius of 15 mm and SOSs of

1.50 mm/µs for the background and 1.54 mm/µs for the tissue-mimicking circle. Both phan-

toms are shown in Fig. 4.4. In order to better capture the high-frequency content generated

by the new phantom, a new EIR, shown in Fig. 4.5, with a higher central frequency was also

needed. The measured pressure was simulated on a grid with 2048×2048 pixels and a pixel

size of 0.05 mm, corresponding to a physical size of approximately 102 × 102 mm2. The

pressure data were recorded at a sampling rate of 160 MHz for 8000 time points. Additive

Gaussian white noise with zero mean and a standard deviation of 0.5% of the maximum of

the measured pressure was added to the data. The data were then filtered with several Hann

low-pass filters with cutoff frequencies of 2 MHz, 4 MHz, and 6 MHz. The filtered data were

downsampled to a sampling rate of 80 MHz. The value of data fidelity term was evaluated

by employing a simulation grid of 1024×1024, a pixel size of 0.1 mm, a sampling rate of

80 MHz, and 4000 time points. The data fidelity term was evaluated for a range of tissue

SOS values and a fixed background SOS equal to its true value. Separately, the data fidelity
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(a) (b)

Figure 4.4: Phantoms for (a) the initial pressure distribution, given in arbitrary units, and (b)
the SOS distribution, given in units of mm/µs, for the high-frequency computer-simulation
studies.
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Figure 4.5: (a) The pressure amplitude and (b) frequency spectrum of the EIR employed in
the high-frequency computer-simulation studies.
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term was evaluated for a range of background SOS values for a fixed tissue SOS equal to its

true value. In both cases, the initial pressure distribution was set to its true value.

4.5 Results of computer-simulation studies

4.5.1 Fixed constant speed of sound

The initial pressure distributions were reconstructed for several fixed constant SOS values

and λ = 10−3 (see Fig. 4.6). The RMSEs of each image are shown in the lower left-hand

corner. The value of λ was tuned in order to minimize the RMSEs for each SOS.

6 mm

RMSE = 8.11e-02

(a)

6 mm

RMSE = 7.34e-02

(b)

6 mm

RMSE = 6.83e-02

(c)

6 mm

RMSE = 8.19e-02

(d)

Figure 4.6: Reconstructed initial pressure distributions for λ = 10−3 and fixed constant SOS
values of (a) 1.480 mm/µs, (b) 1.490 mm/µs, (c) 1.500 mm/µs, and (d) 1.510 mm/µs. The
images are shown in a grayscale window of [0.0, 1.1].

Three criteria for selecting the optimal constant SOS are compared: (1) the Tenenbaum

sharpness [105], (2) the value of the cost function given in Eqn. 4.3, and (3) the RMSE.

The values of these metrics for several constant SOS values can be found in Table 4.3. For

consistency, all results are reported for the λ = 10−3 case, even though the RMSE is lower

for a lower value of λ for a SOS of 1.495 mm/µs.

79



Metric 1.485 1.49 1.495 1.50 1.505 1.51

Sharpness ×103 2.55 3.65 4.00 3.04 2.65 2.60
Cost 58.9 32.7 22.2 33.0 55.7 78.3
RMSE ×10−2 7.42 7.34 7.17 6.83 7.15 8.19

Table 4.3: Values of different metrics that could be employed for selecting a constant SOS
value. The optimal value according to each metric is shown in bold.

The sharpness and cost metrics both suggest that a constant SOS value of 1.495 mm/µs

is the optimal value, while the RMSE suggests a similar, though slightly higher, value of

1.500 mm/µs. In practice, it is not possible to use the RMSE to tune the SOS as the true

initial pressure distribution is unknown. Both the sharpness and cost metrics may serve as

adequate proxies or alternatives. In some cases, performing JR, in which a single image is

reconstructed, may be quicker than reconstructing a series of images for different SOS values

and evaluating them according to some metric. It may also be possible to design the cost

function such that it tracts the most relevant image quality measure.

4.5.2 Joint reconstruction

Initial pressure and parameterized SOS distributions were jointly reconstructed for the five

parameterizations given in Table 4.2. The reconstructed initial pressure distributions are

shown in Fig. 4.7. For consistency with the fixed constant SOS results, the value of λ

was tuned to minimize the RMSE of the initial pressure distribution. The accuracy of

the reconstructed initial pressure distributions is greatly improved when the chosen SOS

parameterization includes compensation for the bone (Q ≥ 3), which is the strongest source

of acoustic heterogeneity in the phantom. This is can be seen in both the apparent visual

quality of the images and the RMSEs. Additionally accounting for SOS variations within
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the soft tissue (Q = 7) leads to a further minor improvement in the RMSE. The RMSE of

reconstructed initial pressure distribution when the SOS parameterization allows the SOS

values to vary independently for each pixel (Q = 55869) is worse than either the Q = 3 or

Q = 7 cases. However, there is little obvious visual difference in the reconstructed initial

pressure distributions for the three cases where Q ≥ 3.

6 mm

RMSE = 7.16e-02

(a)

6 mm

RMSE = 3.60e-02

(b)

6 mm

RMSE = 1.31e-02

(c)

6 mm

RMSE = 8.16e-03

(d)

6 mm

RMSE = 1.41e-02

(e)

Figure 4.7: Reconstructed initial pressure distributions for parameterized JR for λ = 10−4

with (a) 1 parameter, (b) 2 parameters, (c) 3 parameters, (d) 7 parameters, and (e) 55869
parameters. The images are shown in a grayscale window of [0.0, 1.1].

The corresponding reconstructed SOS distributions are shown in Fig. 4.8. The equivalent

pixel-wise representations of the reconstructed parameterized SOS distributions are pre-

sented for ease of visualization and comparison with the true SOS phantom. The estimated
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SOS values for Q ≤ 7 are also summarized in Table 4.4. For the Q = 7 case, the estimated

SOS distribution closely matches the true SOS distribution. For Q < 7, the true SOS distri-

bution cannot be recovered due to the choice of the SOS parameterization. In these cases,

effective SOS values are estimated for certain regions. For example, for the Q = 2 and Q = 3

cases, a single effective SOS value is estimated for the soft tissue of the mouse. This esti-

mated SOS falls between the lower SOS value of the bulk tissue and the higher SOS values

of the organs (1.555 mm/µs for Q = 2 and Q = 3). Similarly, for the Q = 1 case, a single

effective SOS is estimated for the entire simulation grid. The value of this effective SOS is

between the background SOS and the bulk soft tissue SOS of the mouse (1.495 mm/µs).

When each pixel is allowed to independently vary, the estimated SOS distribution contains

strong artifacts.

Water Bulk tissue Bone Kidney Liver Pancreas Spleen

True 1.480 1.540 3.198 1.560 1.578 1.591 1.567

Q = 1 1.495 – – – – – –
Q = 2 1.481 1.555 – – – – –
Q = 3 1.480 1.555 3.171 – – – –
Q = 7 1.480 1.540 3.258 1.558 1.578 1.588 1.566

Table 4.4: Estimated SOS values for different parameterized SOS models. For models with
Q < 7, the estimated SOS values represent effective SOSs across several different tissue
types.

4.5.3 Mass density variations

The previous results were reconstructed from measured data that were generated assuming

a constant mass density. However, the mass density of bone is very different from the mass

density of soft tissue. In principle, the proposed JR approach could be employed to jointly

estimate the mass density distribution along with the initial pressure and SOS distributions.
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(a)
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RMSE = 9.62e-02
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(c)
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RMSE = 7.32e-03

(d)

6 mm

RMSE = 2.54e-02

(e)

Figure 4.8: Reconstructed SOS distributions for parameterized JR for λ = 10−4 with (a) 1 pa-
rameter, (b) 2 parameters, (c) 3 parameters, and (d) 7 parameters, and (e) 55869 parameters.
The images are shown in a grayscale window of [1.47, 1.70] mm/µs.
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However, this could result in an inverse problem that is more ill-conditioned. In order to

evaluate the impact of ignoring mass density variations, the measured data were generated

for the heterogeneous mass density distribution shown in Fig. 4.1d. Then, parameterized JR

was performed assuming a constant mass density. The reconstructed initial pressure and SOS

distributions are shown in Fig. 4.9. The initial pressure and SOS distributions reconstructed

from measured data that did not include mass density variations are also shown as references.

Ignoring mass density variations did have a small impact on the accuracy of the reconstructed

6 mm

RMSE = 8.16e-03

(a)

6 mm

RMSE = 1.51e-02

(b)

6 mm

RMSE = 7.32e-03

(c)

6 mm

RMSE = 9.82e-03

(d)

Figure 4.9: Initial pressure distributions reconstructed by parameterized JR for λ = 10−4

with 7 parameters from measured data that (a) ignored mass density variations and (b) in-
cluded mass density variations. SOS distributions reconstructed by parameterized JR with
7 parameters from measured data that (c) ignored mass density variations and (d) included
mass density variations. Mass density variations were not included in the reconstruction
process. The initial pressure images are shown in a grayscale window of [0.0, 1.1]. The SOS
images are shown in a grayscale window of [1.47, 1.70] mm/µs.

initial pressure and SOS distributions. In particular, the SOS value of the bone was over-

estimated (3.340 vs. 3.198 mm/µs). Modeling the mass density variations when generating

the measured data increased the percentage of acoustic energy reflected at the bone soft

tissue interface. Increasing the SOS value of bone during the reconstruction, in the absence

of mass density variations, also results in more acoustic energy being reflected. This could

explain the overestimation of the bone SOS.
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4.5.4 Approximate segmentations

Figure 4.10 shows the reconstructed initial pressure and SOS distributions obtained by pa-

rameterized JR for the approximate tissue type segmentations shown in Fig. 4.3. As refer-

ences, the reconstructed initial pressure and SOS distributions obtained by use of the true

tissue type boundaries are also shown. For the Q = 2 case, the approximate segmentation is
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(a)

6 mm

RMSE = 3.58e-02

(b)
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(d)
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(e)

6 mm

RMSE = 9.63e-02

(f)

6 mm

RMSE = 1.16e-02

(g)

6 mm

RMSE = 7.74e-02

(h)

Figure 4.10: Reconstructed initial pressure distributions obtained by parameterized JR for
λ = 10−4 with (a) 2 parameters with perfect segmentation, (b) 2 parameters with imperfect
segmentation, (c) 3 parameters with perfect segmentation, and (d) 3 parameters with im-
perfect segmentation. Reconstructed SOS distributions obtained by parameterized JR with
(e) 2 parameters with perfect segmentation, (f) 2 parameters with imperfect segmentation,
(g) 3 parameters with perfect segmentation, and (h) 3 parameters with imperfect segmen-
tation. The initial pressure images are shown in a grayscale window of [0.0, 1.1]. The SOS
images are shown in a grayscale window of [1.47, 1.70] mm/µs.

very close to the true segmentation, as the outer boundary of the mouse can be estimated

relatively accurately. As a result, there is close agreement between the reconstructed images
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for the exact and approximate segmentations. For the Q = 3 case, the outer boundary

of bone could not be estimated very accurately. As a result, the differences between the

reconstructed images for the exact and approximate segmentations are large. Still, the re-

constructed initial pressure and SOS images for the Q = 3 with approximate segmentations

both have lower RMSEs than the corresponding images for the Q = 2 case with exact param-

eterizations. This suggests that the parameterized JR method is at least somewhat robust

to errors in the assumed parameterization.

4.5.5 Impact of frequency content

The values of the data fidelity term, evaluated at the true initial pressure distribution and

the true background SOS, for different values of the tissue SOS are shown in Fig. 4.11a.

The values of the cost function are normalized in order to allow comparison for measured

data subjected to low-pass filters with different cutoff frequencies. The width of the basin of

attraction about the true tissue SOS of 1.54 mm/µs grows wider as the cutoff frequency for

the low-pass filter is reduced. This helps demonstrate how low-pass filtering the measured

data can help avoid local minima. As an example, consider the case where the initial guess

for the tissue SOS was equal to the background value of 1.5 mm/µs. For the data with a

cutoff frequency of 6 MHz, the estimated tissue SOS value would become smaller instead

of approaching its true value. This is not true for the data with lower cutoff frequencies.

However, there is a downside to filtering the data too aggressively. As the cutoff frequency

is decreased, the basin of attraction also becomes shallower, potentially resulting in slower

convergence. This observation is consistent with prior work that recommends maximizing

bandwidth while avoiding cycle skipping [108].
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Figure 4.11: Normalized cost function values for (a) different tissue SOSs and (b) different
background SOSs after applying a Hann low-pass filter to the measured data. Results are
shown for several cutoff frequencies.

Similar phenomena can be observed for the case where the background SOS is swept and

the initial pressure distribution and the tissue SOS are held fixed at their true values (see

Fig. 4.11b). In this case, the width of the basin of attraction is even narrower as the

propagation distance through the background is longer than that through the tissue for the

considered phantom. As a result, phase errors due to an incorrect background SOS can

accumulate over longer distances, leading to a greater sensitivity to absolute errors in the

estimated SOS.

4.6 Description of experimental studies

The utility of the proposed approach was also evaluated through experimental studies.
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4.6.1 Methods

In vivo measurements of the trunk of an anesthetized adult nude mouse (Hsd:Athymic Nude-

FoxlNU, Harlan) were previously acquired by the Optical Imaging Laboratory [65]. All

experimental procedures were carried out in conformity with laboratory animal protocols

approved by the Animal Studies Committee at Washington University in St. Louis.

The imaging system consisted of a ring array with a radius 50 mm and 512 evenly distributed

ultrasonic transducers. The transducers were elevationally focused and had a central fre-

quency of approximately 5 MHz. The pressure data were recorded for 2000 time steps at a

sampling rate of 40 MHz. Twelve transducers were identified as having low sensitivity by

manual inspection and were excluded from the image reconstruction process. A 1064 nm

pulsed laser (DLS9050, Continuum) with a 5-9 ns pulse width and pulse repetition rate of

50 Hz was used to illuminate the mouse. The fluence on the surface of the mouse was ap-

proximately 18 mJ/cm2. More detailed information on this imaging system can be found

in [65].

The EIR of the ultrasonic transducers was estimated by measuring the pressure from a

point-like absorber placed in the center of the ring array as described in the supplementary

material of [65]. The measured pressure signals were shifted to align the peaks in order to

account for small differences in the propagation distances among the transducers. Then, the

frequency response of a point source was deconvolved from the measured pressure data by

use of Wiener deconvolution. Finally, the responses were averaged across all transducers and

the resulting estimated EIR is shown in Fig. 4.12.

The measured data were upsampled to a sampling frequency of 80 MHz by linear interpola-

tion in order to increase the numerical stability of the wave solver [103]. The resulting data
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Figure 4.12: (a) The pressure amplitude and (b) frequency spectrum of the estimated EIR
for the experimental system.

were then low-pass filtered with a Butterworth filter with a cutoff of 12 MHz. In addition,

the measured pressure data were temporally shifted to account for any unwanted shift in-

duced by the EIR. The size of this shift was calculated by convolving a narrow pulse with

the EIR and observing the shift in the envelope of the narrow pulse.

4.6.2 Fixed speed of sound

The initial pressure distribution was estimated for several fixed constant SOS values by

solving Eqn. 2.31. The simulation grid consisted of 2048×2048 pixels with a pixel size of

0.05 mm, corresponding to a physical size of approximately 102 × 102 mm2. A temporal

sampling rate of 80 MHz was employed, and the radius of the field-of-view was 40 mm. The

stopping criterion was when the change in the `2-norm of the initial pressure distribution

between successive iterations was less than 10−4.
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4.6.3 Joint reconstruction

Joint reconstruction was performed for the two-parameter SOS model shown in Fig. 4.13.

This parameterized model was estimated by manually segmenting the outer boundary of

the mouse from the reconstructed initial pressure distribution for a fixed constant SOS of

1.50 mm/µs.

Figure 4.13: Estimated segmented regions of the mouse for a 2-parameter SOS model.

To avoid the phenomenon of cycle skipping discussed in Section 4.4.6, the JR images were

estimated by a multi-stage process. First, a Hann low-pass filter with a cut-off frequency of

1 MHz was applied to the measured data. Due to the low cutoff frequency, the temporal

sampling frequency was reduced from the 80 MHz to 40 MHz. The pixel size and the number

of pixels in the simulation grid were also reduced to 0.1 mm and 1024×1024, respectively.

The initial guess for the initial pressure distribution was the vector of all zeros, while the

initial guess for the parameterized SOS distribution was 1.48 mm/µs for the background

and 1.54 mm/µs for the mouse. This stage was run for 600 iterations. It was observed

that additional iterations resulted in minimal changes to the estimated parameterized SOS

90



distribution. Second, the estimated initial pressure and SOS distributions were refined by JR

with the measured data with a 12 MHz cutoff frequency. By raising the cutoff frequency, it is

hoped that finer structures in the object can be recovered. The estimated initial pressure and

SOS distributions obtained from the previous stage served as the initial guess for this later

stage. This second stage was run for 500 iterations. Finally, the initial pressure distribution

was reconstructed by use of FISTA for the fixed SOS distribution obtained during the second

stage [11]. The stopping criterion was when the change in the `2-norm of the initial pressure

distribution between successive iterations was less than 10−4. Since the final stage employed

an accelerated first-order optimization method (FISTA), faster convergence could be achieved

compared with the unaccelerated proximal gradient method employed as part of the earlier

stages. Use of FISTA also avoids the two-step line search method employed as part of the

parameterized JR procedure.

4.7 Results of experimental studies

The initial pressure distributions were reconstructed for several fixed constant SOS values

(see Fig. 4.14). Strong surface and interior vessel structures can be observed in the recon-

structed images. The interior vessel structures appear most in focus for a constant SOS

value of 1.500 mm/µs; however, for this SOS value, some surface vessels, particularly along

the lower right side of the mouse, appear as arcs rather than points, suggesting that they are

out-of-focus. As a result, there is no single constant SOS value for which all of the features

of the image are in focus.

The initial pressure and SOS distributions were estimated by a multi-stage JR process.

Following the first-stage, the estimated SOS values were 1.489 mm/µs for the background
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Figure 4.14: Reconstructed initial pressure distributions for several fixed constant SOS values
of (a) 1.490 mm/µs, (b) 1.495 mm/µs, (c) 1.500 mm/µs, and (d) 1.505 mm/µs. Results are
shown for λ = 10−1 in a grayscale window of [0, 8000].

and 1.565 mm/µs for the body of the mouse. These were refined to 1.492 mm/µs for the

background and 1.561 mm/µs for the mouse body during the second stage. In Fig. 4.15, the

reconstructed initial pressure distribution assuming a SOS distribution equal to the initial

guess for the SOS distribution and a SOS distribution equal to the final SOS distribution

obtained by JR are shown. In the image obtained with the final SOS distribution, the

vessels can be much more clearly visualized compared with the image obtained with the

SOS corresponding to the initial guess. By employing a multi-stage reconstruction process,

a focused initial pressure distribution image can be obtained even if there are moderate errors

in the initial guess for the parameterized SOS distribution.

The initial pressure distribution image obtained by JR also demonstrates improvement over

the image obtained with a tuned constant SOS. For example, consider the zoomed-in regions

of the reconstructed initial pressure distributions shown in Fig. 4.16. Several structures

appear more in focus in the JR image. In particular, the rightmost surface vessel appears as

an arc in the constant SOS image and a point in the JR image. Additionally, several interior

vessels are better focused in the JR image.
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Figure 4.15: Reconstructed initial pressure distributions for λ = 10−1 assuming (a) the
SOS distribution employed as the initial guess for the first stage of JR and (b) the SOS
distribution obtained by parameterized JR for Q = 2. Results are shown in a grayscale
window of [0, 8000].

(a) (b)

Figure 4.16: Zoomed-in region of the reconstructed initial pressure distributions for λ = 10−1

assuming (a) a tuned constant SOS of 1.500 mm/µs and (b) the SOS distribution obtained
by parameterized JR for Q = 2. The arrows point to structures that are in focus in the JR
image, but not in the tuned constant SOS image. Results are shown in a grayscale window
of [0, 6000].
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4.8 Conclusions

Parameterized JR can produce accurate estimates of the initial pressure distribution and

a low-dimensional representation of the SOS distribution from PACT measurements alone.

Use of a low-dimensional parameterized form for the SOS distribution can help stabilize the

JR problem. Further, this approach can result in more accurate reconstructed initial pressure

distributions than assuming a constant SOS. Parameterized JR may also offer advantages

compared with manually tuning a parameterized SOS model, particularly when the number

of parameters in the SOS model is large.

The proposed approach is one example of the possible benefits of employing different dis-

cretizations of the object for the forward and inverse problems. By choosing the discretiza-

tions independently, the representation of the object may be individually tailored for the

intended task. For example, the numerical wave solver may require a small pixel size in

order to limit errors in the simulated pressure, leading to a high-dimensional representa-

tion of the SOS distribution [103]. However, a low-dimensional representation for the SOS

distribution may be more beneficial for the inverse problem as the number of unknowns is

reduced.

Parameterized JR does not eliminate all of the challenges associated with JR of the initial

pressure and SOS distributions in a general setting. Avoiding local minima can be difficult,

particularly for the case of high-frequency measured data. Additional practical methods for

determining useful parameterizations for the SOS distribution in an experimental setting

are needed. The cost function could be more carefully designed in order to ensure that

minimizing the cost function produces images that maximize the most relevant image quality

measures. The assumed acoustic model also has a number of limitations. For example, a 2-D
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imaging model is assumed, the spatial impulse response of the transducers is ignored, and

acoustic attenuation and mass density variations are neglected. In addition, the proposed

method is somewhat computationally expensive. Use of more efficient optimization methods

for solving the JR problem, such as accelerated first-order or second-order methods, may

reduce this computational burden and thus increase the attractiveness of this approach.
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Chapter 5

Joint reconstruction of the speed of

sound and initial pressure

distributions from combined

PACT/USCT data

5.1 Overview

As mentioned in Chapter 4, most traditional image reconstruction methods for PACT assume

that the SOS is constant throughout the medium. This assumption does not hold for many

biological imaging applications [45, 88, 120]. Failure to account for variations in the SOS

distribution can give rise to artifacts in the reconstructed initial pressure distribution. Several

PACT image reconstruction methods, including time-reversal [44, 106, 121], iterative full-

wave inversion [7, 46], and the Neumann-series or iterative time reversal approach [91, 101],

have been proposed to account for known SOS variations. However, in practice, the SOS
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distribution is unknown. Further, it has been shown that, in general, JR of the SOS and

initial pressure distributions from PACT measurements alone is unstable [47, 100]. While

use of a low-dimensional parameterization for the SOS distribution can help mitigate this

instability (as seen in Chapter 4), determination of an appropriate parameterization may

not always be straight-forward.

One alternative is to employ adjunct imaging data to estimate the SOS distribution when

such data is available. As demonstrated in Chapter 3 and shown in several previous studies,

USCT permits accurate reconstruction of the SOS distribution for breast imaging [17,27,39,

42,64,93,113]. Further, USCT and PACT commonly employ similar detection hardware and

similar imaging geometries. Consequently, combined USCT/PACT imaging systems have

become an emerging area of exploration [31,70, 115]. These integrated systems offer several

advantages over independent or single-modality systems. First, they can produce automat-

ically co-registered images with both optical and acoustic contrasts. These complementary

contrasts could aid in a variety of medical imaging tasks, including breast cancer detection.

Second, integration of these modalities should be comparatively simple and inexpensive due

to their similar detection hardware. Third, an improved estimate for the SOS distribution,

enabled by the USCT data, may allow the initial pressure distribution to be more accurately

reconstructed in PACT.

In cases where combined USCT/PACT systems have been previously employed, the SOS

and initial pressure distributions were reconstructed in a sequential manner. First, the SOS

distribution was estimated from USCT data alone. Then, the initial pressure distribution

was estimated from the PACT data alone by use of the previously estimated SOS distri-

bution. As will be shown, this approach is not optimal. Since the photoacoustic waves

propagate according to the acoustic properties of the medium, the measured PACT data
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contain information on the SOS distribution. This information is ignored under the sequen-

tial approach, which estimates the SOS distribution from USCT measurements alone. Here,

a JR approach that estimates the initial pressure distribution and the SOS distribution from

combined PACT and USCT measurements is proposed. This synergistic approach offers dual

benefits over the conventional approach: (1) it effectively utilizes the acoustic information

in the PACT data, allowing the SOS distribution to be accurately estimated from few-view

USCT measurements, and (2) it allows the initial pressure distribution to be accurately esti-

mated by providing a more accurate estimate of the SOS distribution than could be obtained

from PACT measurements alone.

5.2 Joint reconstruction

Instead of estimating the SOS distribution from USCT measurements alone, as described in

Section 2.2.3, the SOS distribution can be estimated from combined PACT and USCT mea-

surements in order to leverage the acoustic information present in the PACT measurements.

This can be accomplished by jointly estimating the SOS and initial pressure distributions as

p̂0, ĉ = arg min
p0≥0,c

FPA (p0, c) + βFSUS (c) + λpRp (p0) + λcRc (c) , (5.1)

where FPA is the data fidelity term for PACT defined in Eqn. 2.32, FSUS is the data fidelity

term for USCT defined in Eqn. 2.41, β > 0 is a scalar that controls the relative weight of the

two data fidelity terms, Rp is the regularization term for the initial pressure distribution,

λp is the corresponding regularization parameter, Rc is the regularization term for the SOS

distribution, and λc is the corresponding regularization parameter. Based on the approach

suggested by Huang, et al. [47] for JR from PACT measurements alone, this optimization
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problem is solved by use of an alternating minimization approach. As described in Algo-

rithm 6, this approach consists of solving two subproblems in an alternating fashion. For the

first subproblem, the initial pressure distribution is estimated for a fixed SOS distribution

from PACT measurements alone. This problem is identical to the one previously discussed in

Section 2.2.1. For the second subproblem, the SOS distribution is estimated from combined

USCT and PACT measurements for a fixed initial pressure distribution as

ĉ = arg min
c

FPA (p0, c) + βFSUS (c) + λcRc (c) . (5.2)

This subproblem can be solved by SGD by employing a combination of the procedures

described in Chapters 3 and 4. For this approach, the gradients with respect to the SOS

distribution are needed for the three terms in the cost function. The gradient of FPA can

be found via the adjoint state method as described in Chapter 4 and Appendix B. For

computational expediency, the gradient of FSUS is computed for only a single realization of

the random encoding vector w. It is this approximation that leads to the stochastic nature

of the optimization problem. Finally, for simplicity, Rc is chosen to be the smoothed variant

of the TV semi-norm, given by Eqn. 2.36, so that the gradient can readily be computed.

Like the previously described problems for estimating the SOS distribution given by Eqns. 2.35

and 2.39, this optimization problem given by Eqn. 5.2 is non-convex. As such, the problem

may have many local minima or saddle points, and a good initial guess for the SOS distribu-

tion is needed in order to avoid converging to an estimated SOS distribution that is far from

the true SOS distribution. In addition to providing acoustic information to stabilize the JR

approach, the USCT measurements can be employed to address this problem. An estimate

of the SOS distribution can be obtained, for example, by a bent-ray image reconstruction
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method, which produces lower-resolution images but which is less sensitive to the choice of

the initial guess [43].

Algorithm 6 Alternating joint reconstruction method

Input: c(0),p
(0)
0 , λc, λp, β

Output: ĉ, p̂0

1: k ← 0 {k is the algorithm iteration number.}
2: while stopping criterion is not satisfied do
3: p

(k+1)
0 ← arg minp0 FPA

(
p0, c

(k)
)

+ λpRp (p0)

4: c(k+1) ← arg minc FPA

(
p

(k+1)
0 , c

)
+ βFSUS (c) + λcRc (c)

5: k ← k + 1
6: end while
7: ĉ← c(k)

8: p̂0 ← p
(k)
0

5.3 Description of computer-simulation studies

The proposed JR approach was evaluated through two-dimensional computer-simulation

studies.

5.3.1 Methods

The numerical phantoms for the initial pressure and SOS distributions, shown in Fig. 5.1,

were based on tissue type maps generated from segmented clinical MRI images of a human

breast [67]. The SOS phantom was obtained by assigning a SOS of 1.470 mm/µs to the fatty

tissue, a SOS of 1.515 mm/µs to the fibroglandular tissue, and a SOS of 1.500 mm/µs to

the background medium, which is taken to be water. Similarly, the initial pressure phantom
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was obtained by assigning a large initial pressure value to the blood vessels, whose cross-

sections can be seen in Fig. 5.1b, a smaller non-zero initial pressure value to the parenchymal

breast tissue, and an initial pressure value of zero to the background. The ratio between the

maximum initial pressure value for the blood vessels and the initial pressure value for the

parenchymal tissue was about 40.

(a) (b)

Figure 5.1: (a) The SOS distribution, given in units of mm/µs, and (b) the initial pres-
sure distribution, given in arbitrary units, of the numerical breast phantom. ( c© 2017 IOP
Publishing)

The imaging system consisted of a circular ultrasonic transducer array with 512 evenly-

distributed elements and a radius of 110 mm. This geometry was chosen to be similar to

existing USCT and PACT imaging systems [27,114]. The ultrasonic transducers were treated

as point emitters and detectors and were placed on the simulation grid by use of nearest

neighbor interpolation. The EIR of the transducers was not considered in this study.

In keeping with the studies described in Chapter 3, the excitation pulse for the USCT

measurements was a windowed sine wave with a central frequency of 0.8 MHz and a length

of approximately 3 cycles. When the number of emitters was less than the total number of
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ultrasonic transducers, the emitters were chosen to be evenly-distributed over the circular

transducer array.

In order to simulate the pressure data recorded by the transducers, the acoustic wave equa-

tions for PACT and USCT, given by Eqns. 2.21 and 2.22, respectively, were solved by use of

the first-order k-space pseudo-spectral method [103]. The corresponding discrete operators,

HPA (c) and HUS (c), were implemented using NVIDIA’s CUDA platform [1].

In order to avoid inverse crime [20], the measured pressure data were generated with different

spatial and temporal sampling rates than were employed for image reconstruction. When the

measured data were being generated, the simulation grid was a 2048×2048 uniform Cartesian

grid with a pixel size of 0.125 mm, corresponding to a physical size of 256× 256 mm2. The

pressure data were recorded at a temporal sampling rate of 40 MHz for 7000 time steps,

corresponding to a simulation time of 175 µs. During the reconstruction, a simulation grid

was a 1024× 1024 uniform Cartesian grid with a pixel size of 0.25 mm, corresponding to a

physical size of 256 × 256 mm2. The pressure data were recorded at a temporal sampling

rate of 20 MHz for 3500 time steps.

Images were reconstructed from both noiseless and noisy data. For the noisy data, additive

Gaussian white noise was added to both the PACT and USCT data. For the PACT data,

the noise had zero mean and a standard deviation equal to 1% of the maximum pressure

recorded by the transducers. For the USCT data, the noise had zero mean and a standard

deviation equal to 5% of the maximum pressure recorded by the transducer opposite the

emitter for a homogeneous medium.
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5.3.2 Reconstruction of the initial pressure from PACT data

Most traditional image reconstruction methods in PACT for estimating the initial pressure

distribution assume a constant SOS. In order to investigate the impact of ignoring variations

in the SOS, the initial pressure distribution was reconstructed from noiseless PACT data

assuming two different fixed SOS distributions: the true SOS distribution and a constant

SOS equal to the background SOS. In both cases, the images were reconstructed by solving

Eqn. 2.31 for λ = 0. The optimization problem was solved by use of FISTA with adaptive

restart and a backtracking line search [11,12,81]. The gradient of the data fidelity term was

computed as discussed in [46]. The initial guess for the initial pressure distribution was the

vector of all zeros.

5.3.3 Reconstruction of the SOS from PACT data

The SOS distribution was reconstructed from PACT data assuming two different, fixed ini-

tial pressure distributions: the true initial pressure distribution and the true initial pressure

distribution shifted by 1 mm along the x-direction. The first case was performed in order

to investigate the feasibility of extracting information on the SOS distribution from PACT

measurements. The second was done to assess the sensitivity of the estimated SOS distri-

bution to errors in the assumed initial pressure distribution. In both cases, the images were

reconstructed from noiseless PACT data by solving Eqn. 2.35 for λ = 10−6. The optimiza-

tion problem was solved by use of the L-BFGS method [75,78]. A method of computing the

gradient of the data fidelity term with respect to the SOS can be found in Appendix B. A

similar methodology for computing the gradient was employed in [47]. The initial guess for

the SOS was a constant value equal to the background SOS.
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5.3.4 Reconstruction of the SOS from USCT data

The SOS distribution can also be estimated from USCT measurements [17, 27, 39, 42, 64,

93, 113]. One key factor in determining the accuracy of the reconstructed SOS distribution

in USCT is the number of views in the measured data. More views may allow the SOS

distribution to be estimated more readily [24], while using less views may be decrease image

acquisition times and allow for less complex and less expensive imaging hardware. Images

were reconstructed from noisy USCT data for 512, 32, 16, and 8 views by solving Eqn. 2.39.

For each case, the regularization parameter was swept across a range of values. The op-

timization problem was solved by use of SGD as described in [109]. The initial guess for

the SOS was the image reconstructed by use of a bent-ray method from the corresponding

USCT data [43].

5.3.5 Reconstruction of initial pressure and SOS distributions us-

ing a sequential approach

When both USCT and PACT measurements are available, the conventional approach is to

reconstruct the SOS and initial pressure distributions sequentially. First, the SOS distribu-

tion is reconstructed from USCT measurements alone. Then, the initial pressure distribution

is reconstructed from the PACT measurements by use of the previously estimated SOS dis-

tribution. The estimated initial pressure distributions will depend on the accuracy of the

previously estimated SOS distributions. When the number of views for the USCT measure-

ments is large, the estimated SOS distributions may be quite accurate even without utilizing

the acoustic information present in the PACT measurements. As a result, we will focus on
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the case where the number of USCT views is small, e.g. only 8 or 16 views. In this case, the

differences between the sequential approach and the JR approach may be more pronounced.

5.3.6 Joint reconstruction from combined PACT/USCT data

Under the proposed method, the initial pressure and SOS distributions are jointly estimated

from combined PACT and USCT measurements by solving Eqn. 5.1. This optimization prob-

lem is solved by use of the alternating minimization approach described by Algorithm 6. This

approach involves iteratively solving two subproblems, one to estimate the initial pressure

distribution and one to estimate the SOS distribution. Each of the subproblems require

specification of stopping criteria. For the initial pressure subproblem, iteration was stopped

when the `2-norm of the change in the object between successive iterations was less than 10−4

or the number of iterations exceeded 50. For the SOS subproblem, iteration was stopped

when the `2-norm of the change in the object between successive iterations was less than

10−4 or the number of iterations exceeded 200. While these stopping criteria were found

to result in accurate reconstructed SOS and initial pressure distributions, other stopping

criteria could potentially accelerate the alternating JR method.

The proposed JR approach introduces a tunable parameter β (see Eqn. 5.1) that controls the

relative weight of the two data fidelity terms. As the value of β is increased, the estimated

SOS distribution will depend more on the information present in the USCT measurements.

When β is small, the estimated SOS distribution will depend largely on the acoustic infor-

mation present in the PACT measurements. In this case, the estimated SOS distribution

may be similar to that obtained by JR of the SOS and initial pressure distributions from

PACT measurements alone. As a result, it may be subject to the same sources of error.
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When β is too large, the acoustic information present in the PACT measurements is largely

ignored. To investigate the impact of β, JR of the initial pressure and SOS distributions was

performed from combined noiseless PACT and USCT data for 512 USCT views for different

values of β. No regularization was employed in this case as the data were noiseless and the

number of USCT views was large. The initial guess for the SOS was chosen to be the image

reconstructed by use of a bent-ray method from the corresponding USCT data [43].

The convergence of the alternating minimization approach was investigated for the case of

noiseless data with 8 USCT views and parameter values of λc = 1 × 10−3, λp = 0, and

β = 104. The convergence rate was evaluated in terms of the cost function values for the

initial pressure and SOS subproblems of the alternating minimization approach and in terms

of the root-mean-square errors (RMSEs) of the two estimated distributions. The initial guess

for the SOS distribution was the image reconstructed from USCT measurements alone by

use of waveform inversion for λc = 10−7 [109].

The proposed approach was compared against the conventional sequential approach for noise-

less data with 16 and 8 USCT views and noisy data with 8 USCT views. Both approaches

require specification of multiple tunable parameters. While ideally the values of these pa-

rameters would be chosen to maximize performance on a specified task [10], this approach

is infeasible given the high computation cost of the proposed method. Instead, these pa-

rameters were tuned to maximize the accuracy of the reconstructed images, as quantified by

the RMSE. For the JR approach, the values of the parameters were chosen to minimize the

RMSE of the estimated SOS distribution as it was observed that this measure also resulted

in accurate recovery of the initial pressure distribution.

For noiseless data, tuning the regularization parameter λp did not lead to meaningful im-

provement in the accuracy of the reconstructed images. Thus, in this case, only λc and β
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were tuned. For noisy data, the regularization parameter λp has a larger impact on the ac-

curacy of the reconstructed images. To keep the number of tunable parameters manageable,

the values of λp and λc were swept for β = 103 and for β = 104. These values of β were

found to offer a good tradeoff between the two data fidelity terms during JR studies from

noiseless data. The initial guesses for the SOS distributions were taken to be the images

reconstructed from USCT measurements alone by use of waveform inversion [109].

5.4 Results of computer-simulation studies

5.4.1 Reconstruction of the initial pressure from PACT data

To study the impact of modeling variations in the SOS distribution, the initial pressure

distribution was reconstructed from noiseless PACT data assuming the true SOS distribution

and a constant SOS equal to the background SOS. The reconstructed images and profiles

through the reconstructed images are shown in Fig. 5.2. These results confirm that ignoring

the heterogeneities in the SOS distribution can result in significant errors in the reconstructed

initial pressure distribution. In the initial pressure image obtained assuming a constant SOS

distribution, the blood vessels are noticeably blurred and the maximum amplitude of the

initial pressure distribution is underestimated. This observation is consistent with prior work

demonstrating the impact of ignoring SOS variations on the reconstructed initial pressure

distribution [44,46,51,120].
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Figure 5.2: Initial pressure distributions reconstructed from noiseless data assuming (a) the
true SOS distribution and (b) a constant SOS equal to the background SOS. (c) Profiles
through the reconstructed images at y = 14.25 mm. Results are shown after 50 iterations.
No regularization was employed. ( c© 2017 IOP Publishing)

5.4.2 Reconstruction of the SOS from PACT data

The SOS distribution was reconstructed from PACT data assuming two different, fixed

initial pressure distributions (see Fig. 5.3). When the SOS is estimated assuming the true

initial pressure distribution, the reconstructed SOS distribution is accurate. This suggests

that the PACT measurements contain valuable information on the acoustic properties of the

medium. However, when there are small errors in the assumed initial pressure distribution,

the accuracy of the estimated SOS distribution may be much worse. This can be seen

in Fig. 5.3(b), which shows the reconstructed SOS distribution when the assumed initial

pressure distribution is shifted by 1 mm. This suggests the estimated SOS distribution

is fairly sensitive to errors in the assumed initial pressure distribution. Thus, while the

PACT measurement contain useful information on the SOS distribution, it may be difficult

to extract this information via JR of the initial pressure and SOS distributions from PACT

measurements alone.
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(a) (b)

Figure 5.3: Reconstructed SOS distribution from noiseless PACT data given (a) the true
initial pressure distribution and (b) an initial pressure distribution shifted 1 mm in the
x-direction from the true distribution. ( c© 2017 IOP Publishing)

5.4.3 Reconstruction of the SOS from USCT data

The SOS distribution was reconstructed from noisy USCT measurements for different num-

bers of views (see Fig. 5.4). The RMSE is shown in the lower left of each image. In each

case, the value of the regularization parameter was tuned in order to minimize RMSE. As

expected, the accuracies of the reconstructed images decrease as the number of views is de-

creased. The apparent visual quality of the reconstructed image is noticeably degraded for 16

views, even when the regularization parameter value is tuned. The image quality is reduced

even further for the case of 8 USCT views. The obvious artifacts in the reconstructed SOS

images for 8 and 16 views suggests that the accuracy of these images could be improved

through the addition of PACT measurements.
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Figure 5.4: Reconstructed SOS distributions from noisy USCT measurements for (a) 512
views and λc = 3×10−6, for (b) 32 views and λc = 3×10−7, for (c) 16 views and λc = 3×10−7,
and for (d) 8 views and λc = 1×10−7. All reconstructed images are shown after 400 iterations
and in a grayscale window of [1.467, 1.520] mm/µs. ( c© 2017 IOP Publishing)

5.4.4 Reconstruction of initial pressure and SOS distributions us-

ing a sequential approach

The conventional approach when both USCT and PACT measurements are available is to

first reconstruct the SOS distribution from USCT measurements alone and then reconstruct

the initial pressure distribution from the PACT measurements by use of the previously

estimated SOS distribution. In this case, the estimated SOS distributions are simply those

described in Section 5.4.3. As an example of the sequential approach, the initial pressure

distribution was reconstructed from noiseless PACT assuming a SOS distribution equal to

that obtained from noiseless USCT measurements for 8 views (see Fig. 5.5). In this case, the

estimated initial pressure distribution is relatively accurately estimated even though there

are small errors in the assumed SOS distribution. This suggests that the largest differences

between the sequential and JR approaches may be seen in the estimated SOS distributions.

In this case, the acoustic information present in the PACT measurements is the most directly

impactful.
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Figure 5.5: (a) Reconstructed initial pressure distribution from noiseless data assuming the
SOS distribution obtained from 8 noiseless USCT views. (b) Profile through the recon-
structed image at y = 14.25 mm. The profile through the reconstructed initial pressure
distribution assuming the true SOS distribution is shown as a reference. ( c© 2017 IOP
Publishing)

5.4.5 Joint reconstruction from combined PACT/USCT data

Impact of the parameter β.

The proposed JR approach introduces a tunable parameter β (see Eqn. 5.1) that controls

the relative weight of the two data fidelity terms. The reconstructed SOS distributions for

different values of β can be seen in Figure 5.6. When β is too small, the estimated SOS

distribution depends largely on the acoustic information present in the PACT measurements.

Consistent with this, the reconstructed image for β = 10−1 has artifacts that are qualitatively

similar to those found in Fig. 5.3(b), which was reconstructed from PACT data alone. When

β is too large, the acoustic information present in the PACT data may be largely ignored,

reducing the accuracy of the estimated SOS distribution. Since the number of USCT views
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Figure 5.6: SOS distributions reconstructed from combined noiseless PACT and USCT data
for 512 USCT views for (a) β = 10−1, (b) β = 103, and (c) β = 106. No regulariza-
tion was employed. Results are shown after 2 outer iterations in a grayscale window of
[1.467, 1.520] mm/µs. ( c© 2017 IOP Publishing)

is large in this example, the SOS distribution can be accurately reconstructed from USCT

measurements alone, and so there is only a minor increase in the RMSE when β is large.

Convergence of the alternating minimization approach.

Figure 5.7 shows the convergence of the proposed alternating minimization approach. For

the chosen stopping criteria for the two subproblems, the method converges after only a few

outer iterations. The estimated initial pressure distribution, in particular, changes little after

only two outer iterations. This is consistent with the prior observation that the estimated

initial pressure distribution is somewhat insensitive to small errors in the assumed SOS

distribution [47,82].
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Figure 5.7: Convergence of (a) the cost function value for the initial pressure subproblem,
(b) the cost function value for the SOS subproblem, (c) the initial pressure RMSE, and
(d) the SOS RMSE for the case of combined noiseless PACT and USCT data for 8 USCT
views. The parameters were λc = 1 × 10−3, λp = 0, and β = 104. For computational
expediency, the value of FSUS (c) was evaluated only for a single realization of the encoding
vector w. ( c© 2017 IOP Publishing)
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Comparison of sequential and joint reconstruction approaches.

The proposed JR approach was compared against the conventional sequential approach for

noiseless data with 16 and 8 USCT views and noisy data with 8 USCT views. Recall

that in the sequential approach, detailed in Section 5.3.5, the SOS distribution is estimated

from USCT measurements alone. As a result, the sequential approach fails to utilize the

acoustic information present in the PACT measurements, possibly leading to less accurate

reconstructed SOS distributions.

The best result for the JR approach, in terms of the RMSE of the SOS, was compared

with the corresponding best result obtained by use of the sequential approach for the case of

noiseless data with 16 USCT views. As shown in Fig. 5.8, the JR approach is able to produce

a more accurate reconstructed image for the SOS compared with the sequential approach,

which only utilizes the USCT measurements to estimate the SOS. From the profiles, it can be

seen that the reconstructed image for the sequential approach exhibits lower contrast and has

more oscillations in the background. However, there is little difference in the reconstructed

initial pressure distributions between the two approaches.

The sequential and JR approaches were also compared for the case of noiseless data corre-

sponding to 8 USCT views. Again, the best reconstructed images, in terms of the RMSE

of the SOS, for the JR approach are compared against the best reconstructed images ob-

tained by use of the sequential approach (see Fig. 5.9). In this case, with fewer USCT views,

the differences between the JR and sequential approaches are more pronounced. Still, the

same general behavior is observed. The reconstructed SOS image for the sequential ap-

proach exhibits lower contrast and has more oscillations in the background. There is only a

small difference in the estimated initial pressure distributions. The JR approach produced a
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Figure 5.8: SOS distributions reconstructed from (a) noiseless USCT data and (b) noiseless
PACT and USCT data for 16 USCT views. (c) Profiles through the reconstructed images at
y = 16.75 mm. Initial pressure distributions reconstructed by (d) the sequential approach and
(e) the JR approach for noisy data and 16 USCT views. (f) Profiles through the reconstructed
images at y = 14.25 mm. The sequential SOS distribution is shown for λc = 1× 10−7 after
400 iterations. The sequential initial pressure distribution is shown for λp = 0 after 50
iterations. The JR results correspond to 4 outer iterations for β = 104, λc = 3 × 10−4, and
λp = 0. ( c© 2017 IOP Publishing)
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slightly lower RMSE, but there is little obvious visual difference between the reconstructed

initial pressure images.

Finally, the comparison was performed for the case of noisy measurements with 8 USCT

views. Since the largest differences between the JR and sequential approaches were seen for

the 8 USCT view case, only this case was considered here. Like before, the best reconstructed

images for the JR and sequential approaches are compared. As seen in Fig. 5.10, the results

are comparable to those observed in the noiseless case.

Tuning of joint reconstruction parameters

The proposed JR approach, as outlined in Algorithm 6, requires specification of several

tunable parameters: β, which controls the relative weight of the USCT data fidelity term,

λp, which controls the relative weight of the regularization term for p0, and λc, which controls

the relative weight of the regularization term for c. Tuning such a large number of parameters

to maximize some measure of image quality can be a significant undertaking. Here, we briefly

investigate the impact of each of these tunable parameters.

The value of the regularization parameter λp most directly affects the estimated initial pres-

sure distribution. It has only an impact on the estimated SOS distribution in that the

accuracy of the estimated initial pressure distribution affects how easily useful acoustic in-

formation can be extracted from the PACT data. In the case of noiseless measurements,

the initial pressure distribution may be accurately estimated even when λp = 0. Thus, for

noiseless data, only β and λc are tuned. However, these two parameters must be tuned

jointly. Consider that as β is increased, not only is the relative weight of the USCT data

fidelity term increased relative to the PACT data fidelity term, but also the relative weight
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Figure 5.9: SOS distributions reconstructed from (a) noiseless USCT data and (b) noiseless
PACT and USCT data for 8 USCT views. (c) Profiles through the reconstructed images at
y = 16.75 mm. Initial pressure distributions reconstructed by (d) the sequential approach
and (e) the JR approach for noiseless data and 8 USCT views. (f) Profiles through the recon-
structed images at y = 14.25 mm. The sequential SOS distribution is shown for λc = 1×10−7

after 400 iterations. The sequential initial pressure distribution is shown for λp = 0 after 50
iterations. The JR results correspond to 4 outer iterations for β = 104, λc = 1 × 10−3, and
λp = 0. ( c© 2017 IOP Publishing)
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Figure 5.10: SOS distributions reconstructed from (a) noisy USCT data and (b) noisy
PACT and USCT data for 8 USCT views. (c) Profiles through the reconstructed images at
y = 16.75 mm. Initial pressure distributions reconstructed by (d) the sequential approach and
(e) the JR approach for noisy data and 8 USCT views. (f) Profiles through the reconstructed
images at y = 14.25 mm. The sequential SOS distribution is shown for λc = 3× 10−7 after
400 iterations. The sequential initial pressure distribution is shown for λp = 3 × 10−3 after
50 iterations. The JR results correspond to 4 outer iterations for β = 103, λc = 1 × 10−4,
and λp = 1× 10−2. ( c© 2017 IOP Publishing)
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of the USCT data fidelity term is increased relative to the SOS regularization term. Thus,

the optimal value of λc according to some measure may be different for different values of β.

For noisy measurements, all three parameters must be jointly tuned.

As summary measures, the RMSEs of the reconstructed SOS images obtained by tuning β

and λc for noiseless measurements for 16 USCT views are given in Table 5.1. The RMSEs

of the reconstructed images obtained by JR are reduced relative to the RMSEs obtained for

images reconstructed from USCT measurements alone for a wide range of values of β and λc.

This suggests that the proposed JR approach is not overly sensitive to the three parameters

and some improvement in the accuracy of the reconstructed images can be achieved without

precise tuning the values of β and λc. As a further example, the RMSEs of the reconstructed

SOS images for tuning β and λc for noiseless measurements for 8 USCT views are summarized

in Table 5.2. The results similarly show an improvement in RMSEs obtained by JR compared

with those obtained from USCT measurements alone for a wide range of values of β and λc.

For noisy measurements, all three parameters must be tuned. For computationally expedi-

ency, results are shown for only a couple of values of β. For the case of noisy measurements

for 8 USCT views, λp and λc are jointly tuned for β = 103 and β = 104. The RMSEs for

the reconstructed SOS images for the two approaches are summarized in Table 5.3. In this

case, changing the value of λp does impact the accuracy of the reconstructed SOS. How-

ever, the impact is predictably less significant than that of λc. As in noiseless case, there is

an improvement in the RMSE of the reconstructed images compared with those for USCT

measurements alone across a wide range of values of the parameters.
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Table 5.1: RMSEs (×10−3) of the reconstructed SOS images for JR from noiseless data for
16 USCT views for different parameter values. The lowest RMSE value is shown in bold.
( c© 2017 IOP Publishing)

λc

β 3E-6 1E-5 3E-5 1E-4 3E-4 1E-3 3E-3 1E-2 1E-2

102 1.18 1.14 1.15 1.52 – – – – –
103 – 0.87 0.84 0.86 1.14 – – – –
104 – – 0.59 0.57 0.50 0.64 – – –
105 – – – – – 0.56 0.52 0.60 1.09

Table 5.2: RMSEs (×10−3) of the reconstructed SOS images for JR from noiseless data for
8 USCT views for different parameter values. The lowest RMSE value is shown in bold.
( c© 2017 IOP Publishing)

λc

β 1E-5 3E-5 1E-4 3E-4 1E-3 3E-3 1E-2 3E-2

102 3.11 2.99 3.05 4.06 – – – –
103 2.62 2.52 2.40 2.65 – – – –
104 – – 2.45 2.27 2.25 2.71 – –
105 – – – – 3.22 3.02 2.65 2.94

Table 5.3: RMSEs (×10−3) of the reconstructed SOS images for JR from noisy data for
8 USCT views for different parameter values. The lowest RMSE value is shown in bold.
( c© 2017 IOP Publishing)

β = 103 β = 104

λc λc

λp 1E-5 1E-4 1E-3 λp 1E-4 1E-3 1E-2

3E-3 6.21 2.61 3.70 1E-2 5.56 2.92 4.32
1E-2 5.42 2.47 3.78 3E-2 5.53 2.87 4.31
3E-2 6.84 2.79 3.54 1E-1 5.63 2.92 4.33
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5.5 Conclusions

For the first time, JR of the initial pressure and SOS distributions was performed from

combined PACT/USCT measurements, enabling the acoustic information in the PACT

data to be effectively utilized. Exploiting this information allows both the initial pres-

sure and the SOS distributions to be more accurately estimated. Compared with use of

the sequential approach, which estimates the SOS distribution from USCT measurements

alone, the JR approach allows the SOS distribution to be more accurately estimated from

few USCT views. In turn, the initial pressure distribution may be more accurately recon-

structed due to the improved estimate of the SOS distribution. By requiring only few-view

USCT data, the proposed approach could allow for construction of simpler and lower cost

combined PACT/USCT imaging systems that require fewer transducers to act as emitters.

Additionally, image acquisition times could be reduced. By jointly considering combined

PACT/USCT measurement data, a synergistic improvement in the reconstructed image qual-

ity is observed. The initial pressure distribution is more accurately estimated by the use of

USCT measurements and the SOS distribution is more accurately estimated by the use of

PACT measurements.

The proposed approach, however, does have some limitations. First, the method requires

specification of a number of tunable parameters, in particular β, λp, and λc. Choosing these

parameters to maximize image quality can require time-consuming manual tuning. Second,

the method is computationally expensive. Each outer iteration of the JR approach requires

solving two subproblems, one to estimate the SOS distribution and one to estimate the

initial pressure distribution. The subproblem for estimating the SOS, in particular, is very

computationally demanding. Fortunately, only a few outer iterations are needed to reach

convergence. Third, the imaging models employed for these initial studies ignore several
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aspects of experimental imaging systems. In particular, the assumed models simulate 2-

D acoustic wave propagation rather than the 3-D propagation that occurs experimentally.

Further, density variations, acoustic attenuation, and the spatial and electro-acoustic impulse

responses of the ultrasonic transducers are ignored.
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Chapter 6

Summary

In this dissertation, we have developed methods for image reconstruction in USCT and

PACT. These approaches sought to obtain accurate high-resolution images by employing

imaging models based on the acoustic wave equation and incorporating these models within

an optimization-based image reconstruction framework.

In USCT, a new stochastic optimization method was proposed for reconstruction of the

SOS distribution. This approach built on previously developed source encoding methods to

greatly reduce the computational cost of waveform inversion. By use of the RDA method,

three key shortcomings of previous methods were overcome. First, the proposed method

allows use of non-smooth regularization functions that permit the known sparseness prop-

erties of the object to be exploited during image reconstruction. Second, the RDA method

employs knowledge of the structure of the cost function, namely the stochastic nature of the

data fidelity term and the deterministic nature of the regularization term, to achieve more

effective regularization that offers a superior tradeoff between noise and bias. Third, the

approach allows use of a line search to improve convergence rates without reducing accuracy

due to overfitting.
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In PACT, two approaches were proposed to compensate for the unknown SOS distribution.

In the first, the initial pressure and SOS distributions were jointly estimated from PACT

data alone by use of a low-dimensional parameterized model for the SOS. By use of a low-

dimensional model, the instability of the general (unparameterized) JR problem can be

mitigated. The detailed approach allowed the gradients with respect to both the initial

pressure and SOS distributions to be calculated with only two wave solver runs. It also

permitted use of non-smooth regularization functions and constraints for the initial pressure

distribution and was capable of accurately modeling objects with large variations in the SOS

distribution (for example, like those found between soft tissue and bone). In the second

approach, the initial pressure and SOS distributions were jointly estimated from combined

PACT/USCT measurements. By exploiting the acoustic information present in the PACT

measurements, few USCT views were needed to accurately reconstruct the SOS distribution.

Additionally, the reconstructed initial pressure distributions were more accurate than those

obtained by assuming a constant SOS.

Many areas remain for further improvement. While the chosen imaging models sought to

more accurately model the underlying physics of the imaging system, they still have sev-

eral shortcomings. For example, the models all consider 2D acoustic propagation while the

propagation for experimental systems is inherently 3D. They also ignore mass density varia-

tions, acoustic absorption and dispersion, and do not model the spatial impulse responses of

the ultrasonic transducers. The JR problems could be extended to other imaging contrasts

such as the density or shear properties of the medium. This could be useful for transcranial

PACT where the acoustic properties of the skull are typically unknown and have a transfor-

mative impact on the recorded pressure signals [74,89]. Further, acceleration of the proposed

approaches, in particular the JR approaches, could help increase their attractiveness.
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Appendix A

Adjoint state method

Many optimization methods require an efficient method to calculate the gradient of the ob-

jective function with respect to the sought-after parameters in order to be practical. While

finite-difference-based methods provide a straight-forward approach to calculating the gra-

dient, this approach requires the objective function to be evaluated a number of times that

scales linearly with the number of parameters [36]. This can make the approach infeasible

for large-scale optimization problems.

For linear least squares objective functions, such as

F (x) =
1

2
‖y −Ax‖2

2, (A.1)

the gradient can be calculated simply by use of matrix calculus [34]. When A is a real-valued

matrix, the gradient is given by

∇xF = AT (Ax− y) , (A.2)
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where the subscript T denotes the transpose. In this case, assuming the computational cost is

dominated by the application of A, the cost of calculating the gradient is roughly equivalent

to evaluating the objective function twice (and therefore is independent of the number of

parameters). When estimating the initial pressure distribution in PACT, the data fidelity

term falls into this category. The application of this approach for forward models based on

the acoustic wave equation and the elastic wave equation have previously been described by

Huang, et al. [46] and Mitsuhashi, et al. [74], respectively.

When the model is nonlinear with respect to the sought-after parameters, the above approach

cannot be employed. Thankfully, there is an alternative method, known as the adjoint state

method, that allows the gradient of an arbitrary functional to be efficiently computed. This

approach has seen widespread application in number of different fields. The backpropagation

algorithm employed in machine learning arises from this approach, for example [63]. The

presentation, here, follows the excellent reviews found in the inverse scattering and geophysics

literature [79, 87]. First, a general overview of the adjoint state method is provided. Then,

in Appendix B, an example of applying the method for joint reconstruction in PACT is

given. While the adjoint state method can be derived using several different approaches,

here, the Lagrangian interpretation is given. For simplicity, the presentation is performed in

a continuous setting.

The goal of the adjoint state method is to calculate the gradient of a functional F with

respect to some model parameters m. Let us assume the functional depends on the model

parameters, in part, through some state variables Ψ,

F (m) = f (Ψ (m) ,m) . (A.3)
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For example, m could be the SOS or initial pressure distributions, Ψ could be the acoustic

pressure, and F could be the least squares error between the measured acoustic pressure

and the estimated acoustic pressure given some model. This model defines the relationship

between m and Ψ. As will be seen, it can be useful to denote this model by a collection of

K constraints,

hk (Ψ,m) = 0, (A.4)

for k ∈ [0, K − 1]. These constraints could correspond to the acoustic wave equation, given

by Eqn. 2.18.

The derivative of F with respect to m can be calculated via the chain rule as

dF

dm
=
∂f

∂Ψ

∂Ψ

∂m
+
∂f

∂m
. (A.5)

Direct application of this expression, however, seems to indicate that calculation of dF
dm

requires calculation of ∂Ψ
∂m

, which is often high-dimensional and expensive to compute.

A key benefit of the adjoint state method is that it provides a prescription for calculating dF
dm

without explicitly computing ∂Ψ
∂m

. Consider the augmented functional L, which incorporates

the model-based constraints, given by

L (Ψ,m, λ) = f (Ψ,m)−
∑
k

〈λk, hk (Ψ,m)〉 , (A.6)

where λk are the adjoint state variables and λ is shorthand for the collection of all K adjoint

state variables. This expression is actually the Lagrangian for the optimization problem of

minimizing f with respect to Ψ subject to the constraints hk (Ψ,m) = 0. When Ψ and m
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are related by these constraints,

dF

dm
=
∂L
∂Ψ

∂Ψ

∂m
+
∂L
∂m

. (A.7)

This holds independent of the choice of λ. In order to allow Eqn. A.7 to be evaluated

efficiently, λ is chosen such that

∂L
∂Ψ

=
∂f

∂Ψ
−
∑
k

∂

∂Ψ
〈λk, hk〉 = 0. (A.8)

This is known as the adjoint state equation. Let λ̃ denote the solution to Eqn. A.8 and let

Ψ̃ satisfy the constraints hk (Ψ,m) = 0. Then,
(

Ψ̃, λ̃
)

represents a saddle point of L since

∂L
∂Ψ

= 0 and ∂L
∂λk

= −hk (Ψ,m) = 0 at that point. Once Ψ̃ and λ̃ are known, the derivative of

F with respect to m can finally be calculated as,

dF

dm
=
∂L
(

Ψ̃,m, λ̃
)

∂m
=
∂f

∂m
−
∑
k

〈
λ̃k,

∂hk
∂m

〉
. (A.9)

Thus, the adjoint state method follows a three-part prescription. First, calculate the state

variable Ψ̃ consistent with m and the chosen model. Second, compute of the value of the

adjoint state variables λ̃. Third, compute the derivative of the cost function by use of Ψ̃

and λ̃. While the adjoint state method has broad applicability, several conditions must be

met for the method to be employed in practice: (1) F , f , hk and Ψ must be continuously

differentiable; (2) each m must correspond to a unique Ψ; and (3) there must exist an efficient

method for solving Eqn. A.8.
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Appendix B

Applications of the adjoint state

method

In Appendix A, a general, and somewhat abstract, overview of the adjoint state method was

provided. In this section, the adjoint state method is employed to compute the gradients

of the data fidelity term given in Eqn. 2.32 with respect to the initial pressure and SOS

distributions. The adjoint state method has previously been employed to calculate the

gradients of data fidelity terms in PACT and USCT with respect to the SOS distribution

[47,109].

For simplicity, the presentation focuses on the first-order acoustic wave for PACT given in

Eqn. 2.21. The approaches for USCT and for the second-order acoustic wave equation follow

the same basic method and have been detailed previously [79, 87, 109]. When comparing

expressions for first-order and second-order acoustic wave equations, keep in mind that the

definitions of the time-varying source terms differ (see Eqns. 2.22 and 2.23). Additionally,

integration-by-parts allows the temporal derivatives to be moved about the expression for

the gradient yielding several seemingly distinct yet equivalent expressions.
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To start, consider the constraints correspond to the acoustic wave equation given by Eqn. 2.18,

h0 (p,u, p0, c) = ρ (r)
∂u (r, t)

∂t
+∇p (r, t) (B.1a)

h1 (p,u, p0, c) =
1

ρ (r) c (r)2

∂p (r, t)

∂t
+∇ · u (r, t) (B.1b)

h2 (p,u, p0, c) = p (r, 0)− p0 (r) (B.1c)

h3 (p,u, p0, c) = u (r, 0) , (B.1d)

where p and u are the state variables and c and p0 are the sought-after model parameters.

A method for computing the values of the acoustic pressure and particle velocity given the

SOS and initial pressure distributions, i.e. a method for solving the acoustic wave equation,

was previously discussed in Section 2.1.4. Thus, we shall move on to the task of determining

the adjoint state variables for this model.

To do this, it is necessary to define the functional to be minimized, which is taken to be

f (p) =
1

2

M−1∑
i=0

∫ T

0

dt
(
gi (t)−Mip (r, t)

)2
(B.2)

where gi (t) is the pressure recorded by the i-th transducer and Mi is the restriction of

the pressure over the whole domain to the location of the i-th transducer. Note that this

function depends only on the acoustic pressure and not directly on the particle velocity. The

130



corresponding augmented functional is given by

L =
1

2

M−1∑
i=0

∫ T

0

dt (gi (t)−Mip (r, t))2

−
∫ T

0

dt

〈
λ1, ρ

∂u

∂t
+∇p

〉
U

−
∫ T

0

dt

〈
λ2,

1

ρc2

∂p

∂t
+∇ · u

〉
V

− 〈λ3,u (r, 0)〉U − 〈λ4, p (r, 0)− p0 (r)〉V ,

(B.3)

where

〈x,y〉U =
n∑
i=1

∫
dr xi (r) yi (r) and 〈a, b〉V =

∫
dr a (r) b (r)

are the inner products for vector-valued and scalar-valued quantities, respectively. Here,

n is the number of components in the vector-valued quantity and xi represents the i-th

component of x.

To compute the derivatives needed to solve the adjoint state equations defined by Eqn. A.8,

it is useful to rearrange the constraint terms. This is done by use of integration-by-parts

and by the fact that the adjoint of the gradient operator is the negative divergence operator.

With this, the term in the Lagrangian corresponding to Eqn. B.1a can be rewritten as

∫ T

0

dt

〈
λ1, ρ

∂u

∂t
+∇p

〉
U

=

∫ T

0

dt

[〈
λ1, ρ

∂u

∂t

〉
U

+ 〈λ1,∇p〉U
]

=

∫ T

0

dt

[〈
ρλ1,

∂u

∂t

〉
U

− 〈∇ · λ1, p〉V
]

= 〈ρλ1,u〉U |
T
0 −

∫ T

0

dt

[〈
ρ
∂λ1

∂t
,u

〉
U

+ 〈∇ · λ1, p〉V
]
.
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Similarly, the term in the Lagrangian corresponding to Eqn. B.1b can be rewritten as

∫ T

0

dt

〈
λ2,

1

ρc2

∂p

∂t
+∇ · u

〉
V

=

∫ T

0

dt

[〈
λ2,

1

ρc2

∂p

∂t

〉
+ 〈λ2,∇ · u〉V

]
=

∫ T

0

dt

[〈
1

ρc2
λ2,

∂p

∂t

〉
V

− 〈∇λ2,u〉U
]

=

〈
1

ρc2
λ2, p

〉
V

∣∣∣∣T
0

−∫ T

0

dt

[〈
1

ρc2

∂λ2

∂t
, p

〉
V

+ 〈∇λ2,u〉U
]
.

Finally, the overall Lagrangian can be rewritten as

L =
1

2

M−1∑
i=0

∫ T

0

dt (gi (t)−Mip (r, t))2

− 〈ρλ1,u〉U |
T
0 +

∫ T

0

dt

[〈
ρ
∂λ1

∂t
,u

〉
U

+ 〈∇ · λ1, p〉V
]

−
〈

1

ρc2
λ2, p

〉
V

∣∣∣∣T
0

+

∫ T

0

dt

[〈
1

ρc2

∂λ2

∂t
, p

〉
V

+ 〈∇λ2,u〉U
]

− 〈λ3,u (r, 0)〉U − 〈λ4, p (r, 0)− p0 (r)〉V .

(B.4)

Now the derivatives of the Lagrangian with respect to the state variables can be readily

computed. To obtain an expression for the adjoint state equation, compute ∂L
∂p

and ∂L
∂u

and

set the expressions equal to zero. Then, group the terms by their time dependence. This
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yields

ρ (r)
∂λ1 (r, t)

∂t
+∇λ2 (r, t) = 0 (B.5a)

∇ · λ1 (r, t) +
1

ρ (r) c (r)2

∂λ2 (r, t)

∂t
= −S̃ (r, t) (B.5b)

λ1 (r, T ) = 0 (B.5c)

λ2 (r, T ) = 0 (B.5d)

λ3 (r) = ρ (r)λ1 (r, 0) (B.5e)

λ4 (r) =
1

ρ (r) c (r)2λ2 (r, 0) , (B.5f)

where

S̃ (r, t) =
M−1∑
i=0

M†
i

(
Mip (r, t)− gi (t)

)
. (B.6)

The superscript † is employed to denote the adjoint. The action of M†
i can be computed as

M†
ig (t) = Λ†i

(
h†e (t) ∗t g (t)

)
, (B.7)

where the action of Λ†i can be computed by placing the corresponding value at the location

of the i-th transducer. Further, the temporal convolution can be computed as

h†e (t) ∗t g (t) = he (−t) ∗t g (t)

= F−1 {F {he}∗F {g}} ,

where F is the Fourier transform and ∗ denotes the complex conjugate.
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The set of differential equations given by Eqn. B.5 bear a close resemblance to the first-order

acoustic wave equation given by Eqn. 2.18. This suggests that a solution to these differential

equations could possibly be computed by a similar approach. However, one difficulty is that

Eqn. B.5 involves final conditions on λ1 and λ2 rather than the initial conditions specified

in Eqn. 2.18. A change of variables can be employed to change the final conditions to initial

conditions:

qi (r, t) = λi (r, T − t) . (B.8)

This gives a set of differential equations for the adjoint state variables that can be solved by

the same method as employed to solve Eqn. 2.18:

ρ (r)
∂q1 (r, t)

∂t
+∇q2 (r, t) = 0 (B.9a)

∇ · q1 (r, t) +
1

ρ (r) c (r)2

∂q2 (r, t)

∂t
= −S̃ (r, T − t) (B.9b)

q1 (r, 0) = 0 (B.9c)

q2 (r, 0) = 0. (B.9d)

As such, the computational cost of calculating the adjoint state variables is the same is

solving the acoustic wave equation for the forward problem.

The last step is to compute the gradients with respect to the model parameters by use of

the previously calculated state and adjoint state variables. This can be done as

dF

dp0

(r) = λ4 (r) =
1

ρ (r) c (r)2 q2 (r, T ) (B.10)

dF

dc
(r) = −

∫ T

0

dt
2

ρ (r) c (r)3

∂p (r, t)

∂t
q2 (r, T − t) . (B.11)
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In a discrete setting, the above quantities may be replaced by their corresponding discrete

approximations (see Section 2.1.3).
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