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ABSTRACT OF THE DISSERTATION 
 

A Reinforcement-learning Framework for  
Interpreting Trial-by-trial Motor Adaptation  

to Novel Haptic Environments 
by 

Ranjan Patrick Khan 
Doctor of Philosophy in Biomedical Engineering 

Washington University in St. Louis, 2014 
Professor Kurt A. Thoroughman, Chair 

 

Motor adaptation is often considered to occur under the influence of sensory signals, which is 

usually readily available for humans performing most motor tasks. However, humans can also 

use reward or other qualitative feedback to reinforce previous actions and perform adaptation. In 

these experiments, we introduce reward feedback to a traditional motor adaptation experiment: 

reach adaptation to a velocity-dependent force field. Drawing from the literature of computer 

science and machine learning, we use a reinforcement-learning framework to interpret the 

pattern of force generation and reward-prediction errors and observe the effects of concurrent 

and isolated reward and sensory feedback. 

It is important to understand how motor adaptation occurs in the absence of sensory 

feedback. If neurological damage occurs in the cerebellum, which is responsible for much of 

motor adaptation via sensed errors, it will become necessary to recruit other areas of the brain to 

assist in motor relearning. Learning from reward prediction errors appears to happen in the 

human brain and occurs mostly in the basal ganglia and striatum (Schultz, 1993; Bayer & 

Glimcher, 2005). If we can understand how the reinforcement-learning system influences motor 

adaptation, then we can leverage it to help those who cannot recover sufficiently under sensed 

feedback alone. 
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In Chapter 2, we develop an in silico model of adaptation to a viscous field when the reward 

signal is the only available feedback. We make predictions about the behavior of the model from 

the published mathematics and algorithms. In particular, we develop two predictive models that 

explain how value (i.e. reward predictions) and force generation change on a trial-by-trial basis. 

In Chapter 3, we design a psychophysical experiment that mirrors the in silico model 

conditions. Subjects are restricted to a straight path to a target while receiving reward. The 

reward signal is maximal when the subject generates velocity-dependent forces into the virtual 

walls that restrict them. These are forces that would perfectly compensate a viscous curl field. 

Our subjects never actually experience perturbation from the viscous field, but still learn to 

generate appropriate forces just from the reward signal alone. 

In Chapter 4, we use what we know about adaptation to a viscous field with isolated reward 

feedback and determine how this learning process interacts with sensed error feedback; that is, 

we allow are subjects to be perturbed by a real viscous field and layer reward feedback on top of 

this experience. Whether or not the subject has been exposed to a viscous field affects the rate at 

which you adapt to an oppositely signed field with the additional reward feedback signal. The 

reward signal seems to prevent anterograde interference that would normally occur when 

switching between viscous environments with opposite strengths and without reward feedback. 

Overall, we find that (1) a verbal report of the expectation of reward serves as a useful 

measure when calculating the relevant teaching signal, the reward prediction error, (2) subjects 

learn a value function in a manner predicted by a reinforcement-learning algorithm & (3) the 

magnitude of the reward prediction error correlates with the magnitude of trajectory and force 

change and (4), subjects are able to learn to produce forces that would compensate a viscous 
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field without ever experiencing the actual perturbation, (5) learning from reward and sensory 

errors concurrently leads to a different memory formation than learning from the senses alone.  
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Chapter 1: Introduction 
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1.1: Motivation 

As biomedical engineers, we are interested in revealing the calculations behind and 

interactions among the systems of the human body and brain, especially upon interacting with 

and adapting to a new environment; we can then use these insights to design devices and 

therapies that enhance and repair human movement. The healthy human mind can utilize all of 

its senses to create a cohesive model of the environment and how it will change as we interact 

with it. These models provide the brain with a target or expected sensory outcome or signal 

(Wolpert and Ghahramani, 1995); it can quickly calculate the distance between expectation and 

reality and use this error signal to update the model(s) and the current behavior in real-time 

(Wolpert and Kowato, 1998). Upon further interaction with the environment, the model becomes 

more and more accurate, and the behavior gradually drifts until the real consequences match the 

desired outcome. However, the brain is not always in a healthy state; there are, tragically, 

conditions in which humans cannot access all sensations or cognitive processes: stroke, paralysis, 

deafness, blindness, Parkinson’s disease, Huntington’s, Alzheimer’s, epilepsy; for every miracle 

of human experience, there is a possibility for that ability to be altered or lost. It is the charge of 

the biomedical engineer to uncover the inner workings of the human body: its mechanics, its 

biology, its physiology and the interaction of all of its systems; so that we might help those 

people who cannot experience the world in a previously familiar way.  

To that end, we design experiments that simulate impairment in healthy subjects and 

determine the best techniques to get those subjects back to their previous mode of behavior. Then 

we can carry these techniques into a clinical environment and determine their efficacy in the face 

of true impairment. In the typical motor learning experiment, subjects interact with a device (a 

manipulandum, a tablet pen, a treadmill, a balance beam/platform, a motion-tracking dot) and 
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practice simple movements: reaching, throwing, picking up, standing up, locomotion, etc. The 

device provides precise measurements of the signals necessary for us to perform system 

identification. System identification is the process through which scientists consider a set of 

calculations that relate an output signal to an input signal. Then, the experimenter perturbs their 

movement [i.e. a haptic force field (Shadmehr & Mussa-Ivaldi, 1994; Scheidt et al, 2005; 

Thoroughman & Shadmehr, 2000); a visuomotor transformation (Cunningham, 1989), uneven 

split-belt treadmill speeds (Choi et al, 2009)] and observes their behavior as they adapt to the 

perturbation and return to baseline performance. The brain must re-develop or adapt its existing 

model of the environment to incorporate this perturbation in order to overcome it. This process 

requires several repeated trials. We want compare the behavior of the naïve subject against the 

expert subject, but we must control their behaviors in order to draw these comparisons. The 

experimenter must control their subjects’ movements, which is often done by establishing 

thresholds of success, for instance, completing a reach within a 500 ± 50 ms, or moving through 

or a target area. The experimenter notifies the subject that they meet the threshold with a simple 

binary success/failure signal (or ternary too slow/just right/too fast). If the subject meets the 

threshold with enough frequency, the experimenter can then delve into their measurements and 

observe adaptation. 

The role of sensed error feedback in motor adaptation has been emphasized in many 

theoretical approaches. Most studies to date focus upon how the amplitudes of sensed errors 

influence adaptation (Kawato et al. 1987; Scheidt et al. 2001; Thoroughman, 2000; Wolpert, 

1998). The experimenter precisely measures both the subject’s experience (the strength of the 

perturbation, the amount of sensory distortion) and their behavior (position, velocity, timing) and 

considers the equations that can explain how the subjects arrived at their current behavior.  
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This approach works well in the laboratory, but in the real world we seldom care about the 

precise details of the outcomes of our behaviors. Instead, we select our behaviors based upon the 

value of the expected outcome. Did I grab the coffee cup correctly? Will the entrée be too salty? 

Did I lie down in bed without hurting myself (after invasive surgery)? In each of these scenarios, 

there is a qualitative (and subjective) reinforcement signal that tells us how rewarding the 

behavior was, and we use this feedback to guide us on our next attempt at the behavior.  

Many motor adaptation studies overlook how the subject values their behavior, but other 

scientists have been considering this question in the fields of machine learning and psychology. 

Usually, psychologists study value by presenting subjects with two or more options of reward. 

The subject must choose from a discrete list of options; the psychologist wants to determine why 

the subject makes that decision. This technique can reveal how individuals weigh reward 

magnitudes against temporal delay and uncertainty (less reward now vs. more reward later, 

certain small reward vs. uncertain large reward; Green and Meyerson, 2004). However, these 

tools are limited to the analysis of decision-making; and while it does highlight the impact of 

individual subjects tendencies it does not reveal how humans arrive at complex and continuous 

behaviors.  

Similarly, machine-learning theorists are interested in understanding how to create 

algorithms that recreate intelligent behavior. They construct artificial agents that are faced with a 

series of choices. For instance, a robot navigating a room with obstacles can choose to move 

north, south, east and west at each moment; the machine learning theorist asks, what kind of 

system can allow the robot to learn how to move from one end of the room to the other? There 

are numerous algorithms that can achieve this behavior and they are often divided into three 

groups based on the type of feedback that the agent receives: unsupervised, supervised and 
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reinforcement learning (RL). Supervised learning is most akin to learning with sensed feedback; 

given a current location and a target location, how to do I generate the motor pattern that 

traverses the two states? This algorithm develops two key models: a forward model, that predicts 

the state of the environment/body given a plan of action, and an inverse model, that derives a 

plan of action given a desired state of the environment (Wolpert & Ghahramani, 2000). 

Supervised learning is the kind of algorithm that has been focused upon in the existing motor 

adaptation literature; this theory has been a fruitful tool and accurately predicts human behavior 

with sensory feedback. There is even neurological evidence that the cerebellum performs 

supervised learning upon stored models of forward and inverse dynamics and calculates the 

teaching signal, the sensory prediction error, (Kawato, 1999; Wolpert and Kawato, 1998; 

Imamizo et al, 2003), while the parietal lobe is responsible for implementing the forward models 

and calculating the expected sensory outcome (Sirigu et al, 1996; Wolpert, Goodbody and 

Husain, 1998). What happens, however, when these complex sensory systems are perturbed or 

lost? What is the possible algorithm that predicts human behavior without sensed feedback? 

In reinforcement learning, the agent does not have access necessarily to precisely measured 

feedback from a sensory system and a target behavior from an inverse model; instead the agent is 

rewarded/punished by the environment at each trial/decision, and must learn a mapping between 

states of the environment/agent, possible actions in each state and the possible rewards accessible 

from that state (Sutton & Barto, 1998; Doya, 2000). Then, the agent can determine the behavior 

that maximizes the amount of reward accrued over its decision sequence. For instance, imagine a 

robot at the center of a labyrinthine maze. It will get a large reward for reaching the exit location 

(a fresh battery) and punished for walking into obstacles (damage) or taking too long in the maze 

(battery discharge). With each attempt at crossing the room, the robot starts with an expectation 
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of reward based off its previous performance: number of new dents and remaining battery life. In 

RL, it the difference between the expected reward and the actual reward that drives the agent to 

learn a mapping between actions, states and values (Sutton and Barto, 1998). There are several 

instantiations of the RL algorithm (e.g. actor-critic, Q-learning, SARSA), but each one requires 

the agent to learn the function that maps actions onto their resulting rewards/costs (either directly 

or indirectly through environmental states). Several computational implementations of RL have 

been constructed to model the acquisition of complex behaviors: biological arm motion (Izawa et 

al, 2004), cart-pole balancing (Malikopoulos et al, 2009), multi-room navigation (Potjans et al, 

2009). However, there has not been much investigation in the either the computational science or 

motor adaptation literature into whether these models of behavior are actually on par with human 

performance.. Even though humans can learn much faster than these models, there is evidence 

that learning from reward prediction errors appears to happen in the human brain & occurs 

mostly in the basal ganglia and striatum (Schultz, 1993; Bayer & Glimcher, 2005). 

The mathematics behind RL was designed in the 1980s, but there has been little application 

of this theory directly onto continuous human behavior (rather than a discrete series of choices) 

since then. Only in the past three years, movement scientists have begun asking how reward is 

incorporated into the learning process. Izawa and Shadmehr (2011) asked how subjects 

overcome visuomotor perturbations during a shooting reach task (i.e. subjects must move 

through a target and do not necessarily have to stop on top of it) under varying levels of visual 

and reward feedback. In this experiment, subjects are ‘rewarded’ by a binary signal: the 

explosion/non-reaction of a target. While this a great first step, the binary signal is a poor 

approximation of the reward experience. To a novice dart-thrower, hitting the bulls-eye is of 

course rewarding, but so is simply hitting the board in comparison ruining the tavern wall. There 
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is a gradation to the experience of reward that is not taken into account in this and most other 

motor adaptation experiments. In these cases, the subject can only develop all or nothing 

expectations of success/failure, and we (as experimenters) can only achieve a limited measure of 

the relevant learning signal: the difference between reward expectation and outcome.  

If we wish to observe how the subject learns action-values, we need: (1) a granular scale of 

reinforcement and (2) a means to gauge the subject’s expectation of reward. In the following 

studies, we layer these two elements upon a traditional motor adaptation experiment and 

compare subjects against the predictions of an RL algorithm. Subjects must learn a velocity-

dependent force field while reaching toward a target in order gain the maximum reward. They 

receive a score from 0-100 points at the end of each trial; these points are accrued over the 

course of the experiment and are translated into real world currency at the end of it. In this way, 

we motivate subjects to earn as many points as possible while they are participating in the 

experiment. We gauge reward expectation by having our subjects verbally report (out loud) the 

magnitude of reward (0-100 points) that they expect at the end of the upcoming trial. These 

evaluations occur before the beginning of each movement; similar to how the RL agent has an 

expectation of reward before any actions are made. 

 

1.2: The traditional psychophysical task for reaching movements in a two-dimensional 

plane 

We developed a novel isolated reward feedback task for investigating motor adaptation, and 

in chapters 3 & 4, we present the specific methods and results of our investigations with it. The 

task is based on a traditional haptic environment for psychophysical experiments. We use a five 

bar two-link robotic manipulandum (Interactive Motion Technologies, Cambridge, MA) to 
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perturb the reaching movements of right-handed subjects (Figure 1.1). The robot is capable of 

generating dynamic forces upon the handle through two DC-brushless motors & estimating the 

handle’s position and velocity at 1000 Hz. A padded-leather strap hanging from the celing 

suspends each subject’s arm in a horitzontal plane defined by their shoulder elbow and wrist; the 

height of the chair and length of the ceiling support are adjusted for each subject to achieve this 

horizontal plane. The subject is unable to witness their actual arm as they move; it is obstructed 

by a one-way mirror. Instead, the subject sees a virtual representation of the reaching 

environment projected onto the mirror through a diffusion screen, which removes the glare of the 

projector bulb. The reaching environemnt tradionally consists of three objects. A start area, a 

target area, and a cursor which represents where the subjects hand is. The projection is aligned 

such that the cursor is exactly above the handle of the robotic maniupulandum.  

1	
  

2	
  

3	
  

Figure 1.1 – Reaching task setup: (1) The subject’s 
arm is suspended by an adjustable strap hanging from 
the ceiling. (2) The subject’s chair height is adjustable. 
(3) The handle of the robotic manipulandum is in the 
same horizontal plane as the subject’s right-hand wrist, 
elbow and shoulder. (4) The robot generates forces and 
estimates the handle’s state at 1000 Hz, storing its 
recordings in a computer. (5) Another computer 
displays the movement environment via projector and 
reflector. (6) A diffusion screen removes the glare of 
the projector bulb. (7) A one-way mirror obstructs the 
subjects view of their arm and hand and reflects the 
projected environment. (8) The subject peers between 
the two panes of glass to witness the reaching 
environment. 

Figure 1.2 – Virtual representation of the reaching 
environment: (1) The start area for each movement is 
positioned directly in front of the subject’s sternum and 
positioned such that the subject’s elbow is at a 90 
degree angle. (2) The target area is 10 cm away from 
the start area. Neither circle changes location 
throughout any task in these experiments. (3) A yellow 
cursor represents the subject’s position in the 
environment. It is projected directly over the handle of 
the robotic manipulandum. 

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  
8	
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In our experiments, subjects must reach from the start area to the target within a time window 

of 675-825 ms. The reach is 10 cm long and the robot returns the subject’s hand to the start area 

at the end of each movement. The robot flags a movement start whenever the subject leaves the 

start circle, surpassing a distance threshold of 5 mm and a speed of 15 mm/sec; a movement is 

finished whenever the cursor is within 8 mm of the target and moving slower than 25 mm/sec. If 

the movement is completed within the instructed time window the target turns green and 

explodes like fireworks as added stimulation. If the movement is too slow, the target turns blue; 

if it is too fast, the target turns red and in both of these cases does not explode like fireworks. The 

target color system is designed to control the subjects movements, to keep them all similarly 

timed so that we can compare them easily between trials. Often, subjects are given a block of 

movements at the start of each day so that they can practice the timing of the task; this is referred 

to as a familiarizaiton block. 

After subjects are familiar with the baseline task, we often perturb their movement so that we 

can watch them adapt and return to baseline behavior. The perturbation must be unlike any other 

day-to-day environment, so that we know our subjects truly have no experience and that we can 

Figure 1.3 – Velocity-dependent lateral perturbation: The 
standard perturbation for a reaching task is viscous in nature, that is, 
proportional to the subject’s velocity, but perpendicular to their 
motion. The robot measures the subject’s velocity in y direction and 
produces forces proportional to it in the x direction (magnitude of 
arrow. 
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observe their naïve behavior. Viscous environments present forces that oppose motion of objects 

in the environment and in proportion to their speed through it. While we are familiar with these 

kinds of spaces (think of the difference betwen stirring chocolate milk and stirring honey) where 

the forces are antiparallel to our motion, we seldom encounter a viscous environment that pushes 

perpendicular to our velocity. This is exactly the kind of field that we have our robotic 

manipulandum generate (Figure 1.3).  

The purpose of many motor adaptation studies is to determine how subjects adapt to the 

velocity-dependent (or sometimes viscous curl) environment. It has been demonstrated that 

subjects can generate velocity-dependent forces that compensate this field when exposed to 

varying levels of sensory feedback (Melendez-Calderon et al, 2011; Scheidt et al, 2005). Our 

goal is to demonstrate that humans can learn to generate velocity-dependent lateral forces 

without any relevant feedback, without ever actually being perturbed by the viscous 

environment. In order to accomplish this we must: (1) create a reward signal or numeric 

feedback that motivates adaptation, (2) create a method for gauging the subject’s expectation of 

reward and thus the relevant error for adaptation, and (3) remove the visual and proprioceptive 

experience of lateral perturbation by the viscous field. 

 

1.3 Novel additions to the reaching task; creating the isolated numeric feedback task 

First, we discuss the reward feedback signal. It is based on a point scale that ranges from 0 to 

100 points; the points are exchanged for real currency at the end of the experiment. On each day, 

subjects are paid $10 and have a change to earn an extra $20 through points. For the 

investigation involving the isolated numeric feedback task (chapter 3),  there were 400 rewarded 

trials on each day, resulting a payout rate of at the rate of $0.0005 per point; in the mixed 
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feedback task, subjects experienced 160 rewarded trials, resulting in $0.00125 per point. The 

points are determined by a gaussian reward function over the force error (chapter 3) or the 

trajectory error (chapter 4) (Figure 1.4). The reward signal is presented below the start area in a 

numeric format; appears at the end of each movement where the target turns green, and 

disappears at the beginning of the next reach. 

 

With a graded reward signal in place, we now have a scale within which subjects can make 

meaningful evaluations of their movements, but we need a means to gauge the subjects 

expecation of reward. This is a relatively simple problem. Before each reaching movement, the 

subject verbally predicts the score that they expect to get at the end of it. After the subject 

reaches the target, the reward signal appears and remains on the screen until the subject begins 

the next movement. Thus, the subject makes each evaluation while the previous reward signal is 

visible. We will have to demonstrate that the verbal prediction is a meaningful signal: one that is 

37 

Figure 1.4 – Errors that determine 
reward magnitude: (A) In the mixed 
feedback task subjects receive 
numeric reward based on the area 
traced out by their trajectory in 
Cartesian space, measured in square 
meters (gray area). Maximum reward 
is achieved when the area is zero and 
decreases monotically with a 
Gaussian function as this area 
increases. (B) In the isolated reward 
feedback task, we integrate the 
subject’s velocity dependent force 
error through out the reach. The black 
line in the far-right figure represents 
perfect velocity-dependent lateral 
force generation; the (red) area 
between this and the subject’s real 
force profile (here, a straight zero-
force profile) determines reward 
magnitude. Subjects have no 
knowledge of either underlying error 
area. 

A	
   B	
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not just randomly generated, but can be used to estimate the all-important reward prediction error 

signal that should drive adaptation in the absense of sensed error feedback.  

Lastly, we need a means to remove the relevant sensory feedback that results from 

perturbation from the lateral velocity dependent force field, mainly the visual and proprioceptive 

experience of deviation from the direct trajectory. This is done with a trajectory clamp (Scheidt 

et al, 2000) (Figure 1.5), which simultaneously locks the subject onto a straight path to the target 

(removing the relevant sensed feedback of viscous perturbation) and allows us to measure the 

lateral force generated by the subject. We use this force measure to determine how closely the 

subject is generating a velocity-dependent pattern and reward them accordingly (Figure 1.4).	
   

 

  

Figure 1.5 – The trajectory clamp: The robot 
generated two virtual viscoelastic walls that restrict the 
subject to the direct path between reach start and target. 
Using a viscous parameter 150 Ns/m and a stiffness 
parameter 6000 N/m, the robot generates forces that 
oppose the subject’s lateral motion to a range within 2 
mm. 
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1.4: Chapter outlines 

With these additions, we are interested in answering three questions: (1) does the RL theory 

predict how subjects change their reward expectations on each trial (and thus are verbal 

evaluations sufficient proxies of expected reward), (2) does the RL theory predict the changes in 

movement errors from trial to trial, and (3) how does the reinforcement signal interact with 

sensed feedback in human adaptation?  

In order to answer these questions, we first develop an RL model of the reaching task and 

measure the trial-by-trial changes in values and actions (Chapter 2). This model only uses 

reinforcement as a means of feedback. For ideal comparison with human behavior, we need to 

isolate the numeric score from the sensed feedback in the experimental task (Chapter 3). With 

predictions from the model in hand, we compare our subjects’ trial-by-trial adaptation against the 

computational model. Finally, with an understanding of how the reward signal influences 

adaptation, we allow our subjects to experience sensed feedback (i.e. no trajectory clamp) and 

observe the differences in their adaptation to the viscous field when the reward is present and 

when it is not (Chapter 4). 

In the end, we observed that both reward prediction error and movement error decrease 

significantly over the course of 160 trials in both of our experiments. This was surprising; reward 

alone could drive subjects to generate forces appropriate for countering a velocity-dependent 

perturbing environment, without having actually experienced the environment. Furthermore, we 

discovered that subjects perform reach adaptation with isolated reward feedback in a manner 

predicted by the RL theory. The algorithm predicts that changes in evaluations and actions 

should be correlated with the reward prediction error; and that learning hyperparameters will 

affect both the performance of the learner and the variance accounted for by the reward 
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prediction error. Since the RL process is basically trial-and-error learning, a stochastic process, 

the reward prediction error will not and should not explain all of the variance among force 

updates, trajectory updates, and evaluation updates.  

Lastly, we observed that the reinforcement signal, when layered with sensed feedback, 

affects the way the motor memories are stored. When subjects experience reward and sensation 

together the learned dynamics are stored differently than when reward is not present. It has been 

demonstrated that training in a positive viscous field generates anterograde interference with 

subsequent learning of the opposing field (Caithness et al, 2004); movement errors are 

significantly larger at the beginning of adaptation on the second day. However, if the subject 

experiences both reward and sensation on the first day, this memory is less likely to interfere 

with adaptation on the second day. Inversely, if the subject experiences sensed feedback only on 

the first day, this memory interferes with adaptation on the second day (when reward is present); 

the rate of trajectory adaptation tends to be slower when reward feedback is available on the 

second day in the oppositely signed field. 

We have developed novel tools that allow movement scientists and biomedical engineers to 

consider how value and reward affect our subjects’ behavior. Rewarding stimuli are ubiquitous 

in our day-to-day environments and intrinsically involved in any experiment involving the 

repetition of controlled behaviors; these tools (granulated reward, self-evaluation, and isolated 

reward feedback) can be carried into other domains of human learning to elucidate the role of 

reward and to possibly use reinforcement to change or enhance the way subjects behave. 

  



	
  

	
  	
  15	
  

Chapter 2: A computational reinforcement-learning model of state-dependent force 

generation while reaching towards a target 
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ABSTRACT  

In this chapter we outline the mathematical principles behind reinforcement learning and set 

up a framework for analyzing trial-by-trial changes in errors during adaptation to an isolated 

numeric feedback task. A reinforcement-learning agent must adapt a mapping of actions and 

their resulting rewards in order to find the optimally reward behavior. This function 

approximation is driven by an error signal: the difference between expected reward and actual 

reward. The mathematical principles reveal that trial-by-trial changes in reward prediction error 

and errors in force generation should be correlated, to a degree, with the reward prediction error 

itself. The degree of this correlation depends upon the setting of at least two hyper-parameters: 

the reinforcement learning rate and the inverse exploration temperature, which determines how 

stochasticity of action selection. As the inverse exploration temperature increases and favors an 

exploitative mode, the strength of correlation in this trial-by-trial predictive models increases, but 

the over all performance, as measured by average reward per trial, decreases; and as the inverse 

exploration temperature decreases favoring broader action-space exploration, so does 

performance & the degree of correlation. Similarly, when we increase and decrease the 

reinforcement-learning rate, the performance of the model increases and decreases. The 

relationship between the strength of correlation in our trial-by-trial predictive models and the 

performance of the in silico agent serve the foundation upon which we compare human behavior 

in a parallel isolated numeric feedback task.   
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2.1: Selecting an appropriate reinforcement learning algorithm 

In the basic reinforcement-learning paradigm, the goal is for an agent to learn to take an 

action in response to that state of environment so that the acquired reward is maximized overall 

(Sutton and Barto, 1998). There are many structures of RL algorithms; agents can either learn a 

state-value function and a state-transition function, or learn an action-value function directly. The 

prior structure is often referred to as an actor-critic model, while the latter is referred to as Q-

learning. The choice of which algorithm to use depends upon if there are multiple states for the 

agent to move through. In the actor-critic formalism, the agent also learns a state-transition 

function, which determines how actions taken in a particular state lead to other states of the 

environment. In Q-learning, the agent compares the expected utility of the available actions 

without requiring a model of the environment and its state-transition function. In our 

experiments, we are not currently interested in the moment-to-moment evolution of value and 

action during the movement between states; instead we are focused upon the outcome of entire 

trials. As such, in silico we pre-determine how the cursor moves through states of the reach, 

measured by the position and velocity of the cursor. 

In many environments, the action taken at one instant affects all future states and accordingly 

all future rewards. For instance, as a robot navigates across a maze, the decision to make any 

individual turn affects its ability to reach the maze’s end. A temporal discounting factor must be 

incorporated so that the robot can learn the appropriate sequence of actions that results in 

delayed reward. This factor assigns less weight on the reward expected in the far future and 

forces a limit on the maximum expected reward. This limit must exist; otherwise the agent will 

not be able to maximize reward (Sutton and Barto, 1998). However, the causality does not apply 

across multiple attempts at the maze. If the robot makes a particular turn in a static maze on the 
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nth attempt, it does not affect the outcome of the n+1th navigation attempt. In our experiments, the 

subject makes several attempts at one continuous action. While temporal discounting may play a 

role in the moment-to-moment expectation of final reward, it is not necessary to consider on a 

trial-by-trial basis. The subject’s decision to reach in a particular way on the nth trial, does not 

affect the outcome of the n+1th trial. Furthermore, we are only asking our subjects to predict the 

outcome of an individual trial, not their total reward at the end of the day. As such, we do not 

consider temporal discounting in our implementation of reinforcement learning models. 

 

2.2: Mathematical outline of the Q-learning model 

In this model, the simulated agent learns an action-value function. That is, by exploring the 

action space across multiple trials, the agent learns their corresponding values and gradually 

finds the highest rewarded action, which it can exploit. Before we get into how the action-value 

function is learned, let us first discuss how we define an action and what the action-space looks 

like. 

As described in Section 2.1, the state-transition function  (or trajectory of the cursor) is pre-

determined in silico, since we are interested in the outcome of entire movements of humans and 

not the moment-to-moment changes in expected outcome. The cursor exists in a 2-dimensional 

Cartesian coordinate system, but the trajectory is restricted to the y-axis: a direct path to the 

target. States are defined as the position and velocity of the cursor at each time, T, within the 

movement.  

𝑠 𝑇 = 𝑦 𝑇
𝑦 𝑇       (2.1) 
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We measure time in seconds, position in meters, and velocity in meters per second. The 

trajectory is defined by a function of minimum jerk: a polynomial defined in the time domain 

determined by the boundary conditions of the reach. Jerk is one of the many parameters that are 

theoretically minimized during a stereotypical human reach (Lan, 1997; Flash & Hogan, 1984), 

and serves a decent approximation of a real human trajectory. The boundary conditions are:  

𝑠 0 = 0
0        (2.2) 

𝑠 0.75 = 0.1
0       (2.3) 

These boundaries determine the quintic minimum-jerk time-domain polynomial of position in 

meters: 

𝑦 𝑇 = 2.37𝑚 𝑠𝑒𝑐! ∙ 𝑇
! − 4.74𝑚 𝑠𝑒𝑐! ∙ 𝑇

! + 2.53𝑚 𝑠𝑒𝑐! ∙ 𝑇
!   (2.4) 

This defines the motion of the cursor, but what we want the in silico agent to learn is a particular 

setting of velocity-dependent lateral force generation, the kind of force generation that would 

exactly compensate a viscous curl field. Velocity-dependence, b (Ns/m), is thus one dimension 

of the action-space that our in silico agent must explore. We add complexity to the action-space 

with a position-dependent lateral force generation parameter k (N/m); any non-zero k is 

detrimental to compensating a viscous curl field. The action-space is thus 2-dimensional and 

exists in a Cartesian coordinate space [b, k] that we refer to as the state-dependent force-

generation space. There is evidence that humans, when learning a viscous environment, have an 

initial response that has mixed position- and velocity- dependence (Sing et al, 2009); the [b,k] 

space provides dimensions that are relevant in human adaptation. We use the same reward 

function definition in silico that we plan to use in our psychophysical experiments (see equations 
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3.4-3.9). In the state-dependent parameter space, the action-reward function looks like a bivariate 

Gaussian function (Figure 2.1). 

 

Given an infinite number of trials, the Q-learning algorithm will learn an action-value 

function that exactly replicates the action-reward function. Notice that the peak reward falls at 

the coordinate [b, k] = [15, 0]. Before exposure the reward signal, we assume that the agent is 

biased to select a zero-force generation action, [b, k] = [0, 0]. Therefore, we initialize the model’s 

action-value function to a bivariate Gaussian centered upon the origin. How then does the in 

silico agent learn the action-value function? 

The error signal that is minimized while learning the action-value function is the reward 

prediction error: 

𝛿! 𝑡 = 𝑟 𝑡 − 𝑉 𝑡      (2.5) 

which signals the inconsistency of the current estimate of the action-value function. The trial 

number is represented by the variable t (distinguished from the time within trials, T). 

We represent the action-value function using a weighted sum of basis functions: 

Figure	
   2.1	
   –	
   Action-­‐reward	
   function	
   in	
   state-­‐
dependent	
   force-­‐generation	
   space:	
   States	
   are	
  
defined	
   by	
   position	
   and	
   velocity	
   along	
   the	
   y-­‐axis	
  
and	
   actions	
   are	
   defined	
   by	
   parameters	
   of	
   state-­‐
dependent	
   force-­‐generation.	
   The	
   in	
   silico	
   agent	
  
gradually	
   approximates	
   this	
   function	
   with	
   an	
  
action-­‐value	
  function	
  as	
  it	
  learns	
  on	
  each	
  trial.	
  The	
  
maximally	
   rewarded	
   action	
   lies	
   at	
   the	
   coordinate	
  
[15,0]	
   resulting	
   in	
   100	
   points.	
   The	
   origin	
   [0,	
   0]	
  
results	
   in	
   50	
   points,	
   and	
   all	
   actions	
   have	
   non-­‐
negative	
  rewards.	
  



	
  

	
  	
  21	
  

𝑣!" 𝑏, 𝑘 = 𝑒
!!!

!!!!
!!

!
!

!!!!
!!

!

     (2.6) 

𝑉 𝑏, 𝑘 = 𝑤!"𝑣!" 𝑏, 𝑘!,!      (2.7) 

where vij are the radial basis functions, Bi and Kj are the function centers, σv is the function 

breadth (in our simulations, σv = 12), (b, k) is the action selected on trial t, and wij are the basis 

function weights. In order to update the action-value function, the weight parameters are updated 

with: 

Δ𝑤!" = 𝛼𝛿!𝑣!" 𝑎       (2.8) 

where α is the learning rate for controlling how quickly the old memory is updated by 

experience. Equations 2.7 and 2.8 are drawn from [Doya, 2002]. This algorithm, however, can 

only increase the accuracy of the action-value function around the selected actions; it cannot 

learn about non-experienced actions and thus must explore the action-space in some way. The 

method that the agent uses to select actions is called the policy. 

A common way of defining the policy is through the action-value function itself; again, this 

is what distinguishes Q-learning from the actor-critic formalism. The agent compares the 

predicted outcome of an action against all the others and selects the actions that result in higher 

reward with larger probability. For our model, we implement Boltzmann selection, in which the 

policy is given by: 

𝑃 𝑏, 𝑘 = !!" !,!

!!" !!,!!!
      (2.9) 

The parameter β, the inverse exploration temperature, determines the stochasticity of the policy. 

When β = 0, the action selection is uniformly random; the expected outcomes are not taken into 

account and all actions are selected from a uniform distribution of probability. A larger inverse 

exploration temperature exaggerates the peaks in the action-value function. As β increases, 
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action selection approaches a winner-take-all rule; in the limit as β → ∞, the agent exploits the 

highest valued action and selects it with 100% probability. 

 

2.3: Simulation of training in an isolated numeric feedback task 

Several computational implementations of RL have been constructed to model the 

acquisition of complex behaviors: biological arm motion (Izawa et al, 2004), cart-pole balancing 

(Malikopoulos et al, 2009), multi-room navigation (Potjans et al, 2009). These models are 

limited in that they require tens of thousands of trials in order for the simulated agents to acquire 

the new behavior in those highly dimensioned control domains. Our model has the advantage of 

simplicity, and as we will soon discover acquires the desired velocity-dependent behavior on a 

time scale much closer to human performance.  

Figure	
  2.2	
  –	
  In	
  silico	
  learning	
  in	
  
the	
   isolated	
   numeric	
   feedback	
  
task:	
   (A)	
   The	
   value	
   of	
   the	
  
selected	
   action	
   (blue	
   line),	
   the	
  
expected	
   reward	
   of	
   the	
   highest	
  
valued	
  action	
  (green	
  line)	
  and	
  the	
  
reward	
   earned	
   for	
   the	
   selected	
  
action	
   (red	
   points).	
   The	
   black	
  
vertical	
  line	
  represents	
  the	
  points	
  
at	
   which	
   reward	
   feedback	
  
becomes	
   available.	
   (B)	
   The	
  
evolution	
   of	
   the	
   selected	
   action	
  
along	
   the	
   velocity-­‐dependent	
  
axis.	
  Colors	
  correspond	
  to	
  chosen	
  
and	
   best	
   actions	
   as	
   in	
   A.	
   The	
  
dotted	
   line	
   at	
   15	
   Ns/m	
   is	
   the	
  
highest	
   rewarded	
   b.	
   (C)	
   Same	
   as	
  
in	
   B,	
   but	
   for	
   position-­‐dependent	
  
parameter	
   k.	
   (D)	
   The	
   action-­‐
value	
  function	
  at	
  the	
  end	
  of	
  block	
  
1,	
   where	
   the	
   reward	
   signal	
   has	
  
not	
   yet	
   been	
   turned	
   on.	
   Colors	
  
correspond	
   to	
   chosen	
   and	
   best	
  
actions	
   as	
   in	
   A.	
   (E)	
   The	
   action-­‐
value	
  function	
  at	
  the	
  end	
  of	
  block	
  
2,	
   where	
   the	
   reward	
   signal	
   has	
  
been	
  turned	
  on	
  for	
  160	
  trials.	
  

A	
  

B
	
  

D	
  

E	
  

C	
  
D	
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The model runs through two blocks of trials. In the first block of 80 trials, there is no reward 

feedback; we can observe the stochasticity of action-selection. No learning takes place during 

this block. Then, we turn on the reward feedback, and allow the algorithm to run for 160 trials. 

As it progresses through the trials, the action-value function approaches the true action-reward 

function.  

The stochasticity of the policy makes it difficult to predict what errors the in silico agent will 

make on the next trial. However, the mathematics of the algorithm dictates that trial-by-trial 

updates to the action and the value should be correlated to the reward prediction error. That is, 

equations 2.8 and 2.9 dictate that equations 2.10 and 2.11 should account for some of the 

variance among ΔDM and ΔV.  

Δ𝑉 𝑡 = 𝛼!𝛿! 𝑡       (2.10) 

Δ𝐷! 𝑡 = 𝛼!𝛿! 𝑡      (2.11) 

These two predictive equations provide the foundation upon which we compare in silico 

behavior against human behavior. It is important to note that these models do not include an 

offset or axis intercept. We assume a priori that these relationships cross through the origin; 

when the relevant teaching signal δC is zero, the agent should not update its action-value 

function. The chosen settings of the model’s hyper-parameters α and β will affect the amount of 

variance accounted for (VAF) by these models. We calculate the variance in a particular signal 

z(t) accounted for by a model m(t) with the following equation: 

𝑉𝐴𝐹 = 1− ! ! !! ! !
!

! ! !! !
!

!
= 1− !!!"#!"$$%&'

!!!"!#$
   (2.12) 
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Figure	
  2.4:	
  In	
  silico	
  trial-­‐by-­‐trial	
  value	
  adaptation	
  –	
  We	
  
show	
   here	
   the	
   trial-­‐by-­‐trial	
   value	
   adaptation	
   of	
   single	
  
simulation	
  with a learning rate α = 0.05. The value adaptation 
rate, αC, is the slope of the correlation between value updates, 
ΔV(t) = V(t+1) – V(t), and reward prediction errors, δC(t) = r(t) 
– V(t), which is depicted by the dashed black line.	
  

Figure	
  2.5:	
   In	
  silico	
   trial-­‐by-­‐trial	
  changes	
   in	
   force	
  –	
  We	
  
show	
   here	
   the	
   trial-­‐by-­‐trial	
   changes	
   in	
   force	
   of	
   single	
  
simulation	
   with a learning rate α = 0.05; the same simulant 
from figure 2.3. The rate of force change, αA, is the slope of the 
correlation between value updates, ΔDM(t) = DM(t+1) – DM(t) , 
and reward prediction errors, δC(t) = r(t) – V(t), which is 
depicted by the dashed black line.	
  

Trial-by-trial 
Changes in Error of  
Force Production 

Figure	
   2.3:	
   The	
   affect	
   of	
   learning	
   rate	
   on	
   in	
   silico	
  
trial-­‐by-­‐trial	
  adaptation	
  and	
  performance	
  –	
  We	
  run	
  
300	
   simulations	
   at	
   randomly	
   selected	
   values	
   of	
   each	
  
hyperparameter.	
  A	
  generalized	
  linear	
  model	
  is	
  used	
  to	
  
determine	
  (A)	
  αC	
  and	
  (C)	
  αA. (B & D) VAF is calculated 
according to equation 2.12. Notice that the VAF of the 
force change model does not get above 0.5, and has a 
maximum around α = 0.01. (E) The effective exploration 
slope does not change much in response to the learning 
rate. (F) Reward is a gauge of performance; we show here 
the mean reward/trial attained by the in silico agent. 
Notice that there is a peak in performance at around α = 
0.06.	
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2.4: The affect of learning rate on in silico performance and trial-by-trial adaptation 

In order to determine how the learning rate affects trial-by-trial adaptation, we run 100 

simulations with α drawn from a logarithmically uniform distribution between 0.001 and 0.1 

while β is held at 0.1. On top of measuring trial-by-trial adaptation rates, we consider the 

‘success’ of the model with a measure of mean reward per trial. We expect to see improved 

performance as the learning rate increases form zero. However, if α gets too close to 1 the 

system does not retain enough information from previous trials and the action-value function 

grows to magnitudes well outside the 0-100 point range.  

First, let us consider how the evaluations change from trial to trial. We calculate the 

difference between consecutive evaluations, ΔV, plot it against the reward prediction error, δC, 

for each trial and fit a generalized linear model over the data, assuming that the model crosses 

through the origin (i.e. intercept is zero). The linear model explains about 45% of the variance 

among evaluation updates in the model when the learning rate is within a reasonable range 

(0.005-0.05). We find that as the learning rate decreases, the amount of variance explained by the 

linear model decreases, and the model performance (as gauged by mean reward/trial) decreases. 

have stronger correlation in trial-by-trial value adaptation and a steeper slope (αC). 

Second, let us consider how the error in force production, Dm, changes from trial to trial. As 

above, we plot the changes in force, ΔDm, between consecutive trials against the reward 

prediction error and observe the correlation. The RL model predicts that for reasonable learning 

rates, we should observe a weak correlation between them. The relationship between 

performance and the strength of correlation in change in error of force production is more 

complex than in value adaptation. A medium α setting shows the highest amount of correlation 

between changes in force and reward prediction error.  
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It is important to note that the slope of this correlation is positive. This indicates that when 

the agent over-predicts reward, they are more likely to decrease the error in their force 

production. Notice that the reward prediction errors are mostly negative. The subject values zero-

force movements the most initially (Figure 2.2D); however, zero-force generation is only worth 

50 points (Eq 3.6) but to the in silico agent this action initially had a value of 100, so the agent 

will tend to over-predict reward in the beginning of training. While the most valued action moves 

closer to [15, 0], the change in error of force production tends to be negative, resulting in the 

positive correlation between reward prediction error and the change in error of force production.  

Knowing how the model behaves under different learning rates, we now have a means to 

compare this model against real human performance. We expect to see a moderate correlation in 

value adaptation, especially in subjects that learn an action that regularly earns more than 50 

points. There should be a weak correlation in force adaptation, regardless of the subject’s 

performance. If subject demonstrates these linear relationships with reward prediction error, we 

will have evidence that the verbal evaluations made my subjects are reasonable approximations 

of expected reward and that the subject is using a learning process similar to the RL theory. 

 

2.5: The affect of inverse exploration temperature on in silico performance and trial-by-

trial adaptation 

The inverse exploration parameter, β, determines the amount of stochasticity in the action 

selection policy. Lower settings result in broader action selection (i.e. exploration) and higher 

settings result in narrower action selection (i.e. exploitation). This is not a parameter that we can 

directly measure in our healthy subjects, but perhaps there is a proxy measure that is affected by 

β.  
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We start with an intuition from how exploration plays out in a continuous action space. If the 

agent happens upon an action that results in high reward, they should tend to stay in the area of 

that action, if β > 0. However, if the agent is in a more exploratory mood, as the resulting reward 

gets smaller the agent should tend to make larger leaps in the continuous action space (in an 

effort to find the more rewarding action sooner). If the agent is more exploitative, these leaps 

should be considerably smaller; the agent is exploiting the knowledge it has of the immediately 

local action space and stays close to their previously selected action.  

In our model, the leap between to consecutive actions is easily calculated as the Euclidian 

distance between them in the state-dependent force-generation space. The trial-by-trial change in 

actions is referred to ΔBK. From our intuitions above, when we plot ΔBK against reward, we 

should see a negative slope with smaller leaps resulting after larger rewards. While holding the 

learning rate constant (α = 0.05), we vary β at three different levels and observe the relationship 

between ΔBK and reward. 

 

We first split the rewards in to 10 points ranges and plot the box-and-whisker distribution of 

ΔBK in those bins. Then we fit a linear model across the means of these bins. The slope of this 

relationship is negative (at more exploratory β settings) as expected. As β increases, we see a 

Figure	
  2.6:	
  The	
  affect	
  of	
  inverse	
  exploration	
  temperature	
  on	
  in	
  silico	
  distributions	
  of	
  reward	
  and	
  trial-­‐
by-­‐trial	
  changes	
  in	
  action	
  in	
  the	
  state-­‐dependent	
  force-­‐generation	
  action	
  space	
  –	
  We	
  vary	
  the	
  inverse	
  
exploration	
  temperature	
  while	
  hold	
  the	
   learning	
  rate	
  constant.	
  After	
  splitting	
  up	
   the	
   rewards	
   into	
  10-­‐point	
  
bins,	
  we	
  fit	
  a	
  linear	
  model	
  through	
  the	
  means	
  of	
   these	
  bins.	
  Notice	
  how	
  the	
  slope	
  tends	
  towards	
  zero	
  as	
  the	
  
inverse	
  exploration	
  temperature	
  increases	
  (i.e.	
  becomes	
  more	
  exploitative).	
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decrease in the slope magnitude. Furthermore, we see that β has a middle range that results in 

higher performance. Notice that the more exploratory setting has a broad distribution of rewards 

across 0-100 points, while the more exploitative setting has a narrower distribution centered 

around 50 points (zero-force reward). The more exploiting agent does not vary their movements 

much from the initial location around zero-force production. 
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A B 
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Figure	
   2.8:	
   In	
   silico	
  
trial-­‐by-­‐trial	
  
adaptation	
   of	
   an	
  
exploratory	
  agent	
  –	
  (A)	
  
Evaluation	
   updates	
   and	
  
(B)	
   change	
   in	
   error	
   of	
  
force	
   production	
   of	
   a	
  
simulant	
  with	
   a	
   learning	
  
rate	
   α = 0.05, and an 
inverse exploration 
temperature β = 0.01. 
Notice how reward 
prediction errors more 
negative that in Figure 2.3 
or 2.7, and that the VAF 
for our adaptation models 
are much lower.	
  

Figure	
   2.9:	
   In	
   silico	
  
trial-­‐by-­‐trial	
  
adaptation	
   of	
   an	
  
exploitative	
  agent	
  –	
  (A)	
  
Evaluation	
   updates	
   and	
  
(B)	
   change	
   in	
   error	
   of	
  
force	
   production	
   of	
   a	
  
simulant	
  with	
  a	
   learning	
  
rate	
   α = 0.05, and an 
inverse exploration 
temperature β = 1. Notice 
how the VAF for our 
adaptation models are 
much higher.	
  

Trial-by-trial 
Changes in Error of  
Force Production 

Trial-by-trial 
Changes in Error of  
Force Production 

Figure	
   2.7:	
   The	
   affect	
   of	
   inverse	
   exploration	
  
temperature	
   on	
   in	
   silico	
   trial-­‐by-­‐trial	
   adaptation	
  
and	
   performance	
   –	
   We	
   run	
   300	
   simulations	
   with	
  
hyperparmeters	
   drawn	
   from	
   a	
   uniform	
   logarithmic	
  
distribution.	
   A	
   generalized	
   linear	
   model	
   is	
   used	
   to	
  
determine	
  the	
  value	
  of	
  (A)	
  αC	
  and	
  (C)	
  αA. (B & D) VAF 
is calculated according to equation 2.12. (E) As the 
inverse exploration temperature increases, measure of 
exploration slope approaches zero. (F) Reward is a gauge 
of performance; we show here the total earned reward 
over 160 trials and the mean reward/trial attained by the 
in silico agent. We tabulate here the mean and standard 
deviation of all these measures across the 100 
simulations. 	
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The inverse exploration temperature also has a complex affect on the trial-by-trial measures 

of adaptation. Low β settings greatly disrupt the variance accounted for by the linear models 

outlined in the section above. More exploration results in a larger number of negative reward 

prediction errors, most of which are associated with small value updates and small changes in 

error of force production. Conversely, agents that exploit more demonstrate stronger correlation 

in our trial-by-trial adaptation measures. The agent is basically selecting the same action over 

and over and learning the value of that one action (and its immediate neighbors) without 

stochasticity, so the linear model accounts for more of the variation.	
   

This analysis provides us with yet another tool to infer human hyperparameters (α and β). 

We know that in silico, the linear models of adaptation should account for 25-50% of the 

variation among trial-by-trial adaptation steps. We expect to see a similar relationship between 

the VAFs of our two adaptation models and the performance of the human subjects. 

Trial-by-trial 
Changes in Error of  
Force Production 

Figure 2.10: The relationship between performance and linear 
adaptation model VAFs – We run 300 simulations levels of hyper-
parameters drawn from a logarithmically uniform distribution. We see 
that lower performance is associated with lower VAF in the value 
adaptation model & that performance is somewhat uncorrelated with 
force change VAF; though we should see the best performance at around 
25% VAF.  
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Chapter 3: Human performance in the isolated numeric feedback task 

  



	
  

	
  	
  32	
  

ABSTRACT  

Humans are capable of adapting to complex external haptic perturbations even in the face of 

impoverished sensory feedback. In these experiments we ask if humans can learn to create 

velocity-dependent forces with any relevant sensory feedback and with an isolated numeric 

feedback. This number is directly related to the amount of money that we pay our human 

subjects. Using the trajectory clamp developed by Scheldt et al (2000), we limit our subjects’ 

reaches to a direct path from start to target. Before we turn on the reward feedback and even 

after, our subjects never experience the perturbation of a viscous field. However, through reward 

feedback we see a significant change in force production towards compensation for a viscous 

field. Adaptation to a viscous curl field has never been demonstrated without relevant sensory 

feedback. We use the interpretive framework outlined in Chapter 2 to compare our subjects 

against the behavior of the in silico model of the isolated numeric feedback task. We demonstrate 

here the verbal predictions of reward function as a useful measure when determining reward 

prediction error and the reward prediction error is correlated with trial-by-trial changes in errors 

made by our human subjects. Our subjects learn a useful action-value function that guides their 

adaptation to the isolated numeric feedback task. Just as the computational model demonstrates 

variegated levels of performance according the setting of its hyperparameters, we observe a 

similar distribution of performance among our subjects. Furthermore, we see a similar 

distribution of variances accounted for by our linear models of adaptation for our subjects an in 

silico.   
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3.1: Methods of the isolated number feedback task 

The in silico model outlined in Chapter 2 is based on a scenario where the learning agent has 

no access to sensory feedback (to perform supervised learning) and only knows the reward 

resulting from the their action. We designed an experiment that mimics those conditions as 

closely as possible. This allows us to compare our predictions from the computational model 

against human performance. 

Subjects perform two blocks of movements; one familiarization block where they practice 

the movement timing without reward feedback or evaluation (80 trials), a second block still all in 

the trajectory clamp but with reward feedback on and evaluations at the beginning of each trial. 

Each reach is to be completed within 750 ± 75 ms, this timing is practiced in the first block. Each 

movement starts 10 cm in front of the subject’s sternum and extends to a point 20 cm from the 

chest (resulting in a 10 cm long reach). The trajectory clamp walls are generated using visco-

elastic dynamics; the robot generates force according to the subject’s real-time position and 

velocity along the x-axis: 

𝐹!"#"$ = −𝐵 ∙ 𝑥 − 𝐾 ∙ 𝑥      (3.1) 

We use B = 150 Ns/m and K = 6000 Ns/m, and the trajectory clamp effectively limited deviation 

from the straight path to about 2 mm. 

Before beginning the experiment, each subject is told that after the first 80 trials there will be 

numeric feedback that ranges from 0-100 points. The score appears at the end of the movement, 

and only if the subject reaches within the prescribed time limit; the score then disappears when 

the subject begins the next movement. The number of points is directly related to the amount of 

money they are paid on the end of their participation, so higher scores results in higher payout. 

They are presented with the following payout equation: 
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𝑝𝑎𝑦𝑜𝑢𝑡 = $20+ $40 ∗ !"#"$%&'()  !"#$%&
!""""  !"##$%&'  !"#$%&

    (3.2) 

This demonstrates that their score and payout are directly correlated, but we do not explicitly 

reveal that each point is worth $0.0005. Subjects are not given any information about the action-

reward function. They are only told that their movements will be restricted along the y-axis 

direction and that they are able to exert force in along the x-axis direction.  

We want our subjects to learn a pattern of velocity-dependent force generation: one that 

would perfectly compensate a viscous curl field with viscosity, B* = ±15 Ns/m. B* has a constant 

sign throughout the second block for each subject. Reward is calculated by the following 

formulae, where Fx is the force (N) generated by the subject in the x direction, vy is the velocity 

(m/s) of their hand in the y-direction. The action-reward function is defined the same way as it is 

in the computational model and depends upon the real-time generation of force into the trajectory 

clamp walls. We assume that the force generated by the robot to create the viscoelastic walls is 

equal and opposite to the subject’s force along the x-axis. 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡!𝑠  𝑙𝑎𝑡𝑒𝑟𝑎𝑙  𝑓𝑜𝑟𝑐𝑒:                    𝐹! = 𝐹!"#$%&' ≈ −𝐹!"#"$ 

𝑒𝑟𝑟𝑜𝑟  𝑖𝑛  𝑓𝑜𝑟𝑐𝑒  𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛:                𝐷! = 𝐵∗ ∙ 𝑣! − 𝐹! 𝑑𝑦
!!!.!!

!!!
  

𝑧𝑒𝑟𝑜 − 𝑓𝑜𝑟𝑐𝑒  𝑒𝑟𝑟𝑜𝑟:            𝐷!! = 15 ∙ 𝑣! 𝑑𝑦
!!!.!!

!!!
  

𝑧𝑒𝑟𝑜 − 𝑓𝑜𝑟𝑐𝑒  𝑟𝑒𝑤𝑎𝑟𝑑:                𝑅! = 50  𝑝𝑜𝑖𝑛𝑡𝑠  

𝑚𝑎𝑥𝑖𝑚𝑢𝑚  𝑟𝑒𝑤𝑎𝑟𝑑:      𝑅!"# = 100  𝑝𝑜𝑖𝑛𝑡𝑠  

𝑏𝑟𝑒𝑎𝑑𝑡ℎ  𝑜𝑓  𝑟𝑒𝑤𝑎𝑟𝑑  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:                𝜎! =
𝐷!!

−2 ∙ ln 𝑅!
𝑅!"#
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𝑟𝑒𝑤𝑎𝑟𝑑:                      𝑟 = 𝑟𝑜𝑢𝑛𝑑 𝑅!"# ∙ 𝑒
!!!

!!
!!

!

 

The robot directly samples or calculates Frobot, vy and dy at 1000 Hz. We use Eulerian 

approximation to calculate the integral in equation 3.4 in real-time, and the high sample rate 

ensures that the error in integral approximation is very small. 

In total, 12 subjects participated in this experiment, ages 26 ± 7.4. Half of them had a B* = 

+15 Ns/m (Eq. 3.4), and for the other half B* = -15 Ns/m. We discuss the results from the first 

two blocks of movements (80 trials + 160 trials) in the main part of this chapter. Two additional 

blocks of movements (160 trials + 80 trials) were also performed; the analyses of these blocks 

are included in appendix 3.6 of this chapter. Instead, we focus here upon the block of movements 

where the reward signal and evaluations are introduced. See Appendix 3.6 for a full outline of 

the methods used in this experiment. 

 

3.2: Evidence for learning in the isolated numeric feedback task 

Before we begin comparing subject performance against the RL model, we wish to first 

determine if they are actually learning a velocity-dependent force generation patter. To 

D
M

 (N
m

) 

Figure 3.1: Human error in force production error averaged across all subjects –We 
calculate the average error in force production (DM, Eq. 3.4) in the first 20 trials (top row) 
and last 20 trials of the each block for each subject, and then plot the average of all 
subjects here. Error bars represent the standard deviation across subjects. The most 
important observation is that DM, tends to decrease within the second block across our 
subjects (p = 0.13).  

Mean Error in 
Force Production 
Across Subjects 

(n=12) 

Block End 

p = 0.13 
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accomplish this, we compare the errors if force production between the first 20 trials (after the 

first reward) and the last 20 trials of each block. Figure 3.1 demonstrates a trend for error in force 

generation to decrease after the subject is exposed to the first reward. 

A velocity-dependent force generation requires the most amount of lateral force during the 

peak speed of the movement. We consider the continuous force profile error for each subject in 

each trial, and it is calculated as such: 

𝐹!"" = 𝐵∗ ∙ 𝑦 − 𝐹!      (3.10) 

In the peak speed range of this function, there is enough signal magnitude to detect a decrease in 

error. We average the continuous force profile error across the first 20 trials (after the first 

reward) and the last 20 trials of each block for each subject. Next we consider the portion of the 

movement where the subject is required to generate the most force: during the moments of peak 

speed. We calculate the mean and standard deviation of the timepoint of peak speed across all 

trials and subjects. The peak speed falls in the range 237-323 ms after movement start. We 

calculate the mean force error in this range, average it across the 20 trial ranges and perform a 

paired t-test within subjects to determine if there is a trend for subjects to decrease the FPE 

around peak speed.  

Subjects do not significantly change their error in force generation in the first block, which is 

based off of a B* = 0 Ns/m (p = 0.38). There is no reward signal and thus no action function to 

learn; the only value that exists at this point is determined by the energetic cost of generating un-

needed lateral force. As such, the subjects are generating basically zero-force in the first block of 

80 trials. Once reward turns on and B* changes to ±15 Ns/m, the continuous force profile error 

increases drastically (though the subject is not aware of this). By the end of the second block, 
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subjects have significantly decreased their mean continuous force profile error in the peak speed 

range (p = 0.014). 

This demonstrates that subjects are truly learning to generate force in the appropriate 

direction. Notice at the end of block 2 that there is a tendency to over-produce force at the 

beginning of the movement (the positive deflection from 0-70 ms), but not towards the end of 

movement. This is an indication that the subject is not learning to produce some mean force into 

the correct wall but recognizes that the timing of force plays a role in their reward. 

With some evidence that our subjects are indeed capable of learning in the isolated numeric 

feedback task, we are now ready to use the RL tools developed with the model to analyze trial-

by-trial learning and gain a insight into whether the verbal evaluations are viable measures for 

our subjects’ expected rewards and into the learning rates and inverse exploration temperatures. 

 

3.3: Value adaptation among human subjects in the isolated numeric feedback task 

If our subjects are learning an appropriate value function, then their evaluations should 

become more accurate as they progress through training. In the first 20 movements, subjects 

Figure 3.2: Human continuous force profile error averaged across all subjects – (Left) We calculate the average 
continuous force profile error (Eq. 3.10) in the first 20 trials (top row) and last 20 trials of the familiarization block 
for each subject, and then plot the average of all subjects here. (Right) We calculate the average continuous force 
profile error in the first 20 trials after the first reward (top row) and last 20 trials of the training block for each 
subject, and then plot the average of all subjects here. The vertical black lines indicate the peak speed range (237-
323 ms). We calculate the mean of the continuous force profile error in this range, and perform a paired t-test within 
subjects across block ends. We find no significant change in block 1 within subjects (p = 0.38) and a significant 
decrease in block 2 within subjects (p = 0.014). 
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produce absolute reward prediction errors that are 20 ± 9.6 points, and reduce this magnitude to 

15 ± 5.2 points. A paired t-test suggests that there is not a significant decrease (p = 0.37), but 

there is a trend. There is surface evidence that subjects are learning a value function and the 

reported evaluations are a good proxy for the true expected reward. Next, we wish to determine 

if their adaptation is reflective of the algorithm used by our RL model. 

Following the analyses outlined in Chapter 2, we determine the correlation between reward 

prediction error and evaluation updates for each of our 12 subjects. Appendix 3.7 shows all 12 

value adaptation plots for our subjects. We find the reward prediction error accounts for about 

44% ± 25% of the variation among evaluation updates (Figure 3.3). The RL theory and analyses 

outlined in Chapter 2 predict some of the performance of our human observations, which 

demonstrates that verbal evaluations behave similarly to a true signal of reward prediction. Prior 

to this experiment, there was no evidence that subjects would attempt to speak real predictions of 

reward. They could have just said random numbers if they wanted (no correlation and the 

measured value adaptation rate αC  ≈ 0) or simply parroted the last reward (which would produce 

a measured value adaptation rate αC  ≈ 1); however, our analysis show a value adaptation rate αC  

= 0.25±0.17. Our subjects earn 51 ± 22 points per trial, which again puts them in a low to 

moderate learning rate range according to the predictions from in silico learning.  

To make this point more clear, we plot the performance of each subject against the VAF of 

the value adaptation model (Figure 3.4A). Our computational model demonstrated optimal 

performance when the Q-learning rate (α, Eq. 2.8) took on a setting around 0.05 (Figure #2.3). If 

α is lower, the in silico agent performs worse and the VAF by Eq. 2.10 decreases. As α 

increases, the model places too much emphasis on the last action and forgets useful information 

gained from exploring the action space, the performance decreases but the VAF of the value 
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adaptation model increases. Figure 3.4A demonstrates this same peak in performance around 

middle ranges of the VAF of the value adaptation model. 

Thus, we have demonstrated two key facts: (1) the verbal report serves as a viable proxy for 

expected reward in this task, and (2) the verbal reports update in a manner predicted by our RL 

model under a moderate to low learning rate.  

Subject 
(Group) 

Value Adaptation Change in Force Inv. 
Expl. 
Temp. 

Reward/Trial 
ΔV=αC*δC ΔDM=αA*δC 

αC VAF αA VAF ΔΔBK/Δr mean std 
9 (I) 0.52 0.56 0.0008 0.3 -0.17 87 8 
2 (II) 0.073 0.52 0.0031 0.7 -0.14 78 11 
1 (I) 0.096 0.7 0.0022 0.71 -0.016 71 10 
5 (I) 0.43 0.63 0.001 0.7 0.028 65 8 
6 (II) 0.28 0.7 0.0007 0.79 -0.053 55 15 

11 (III) 0.41 0.21 0.00038 0.01 0.059 51 29 
7 (III) 0.07 0.02 0.00074 0.01 -0.51 50 24 

12 (IV) 0.18 0.21 0.00012 0.0004 -0.16 50 28 
4 (IV) 0.17 0.64 -0.0003 0.8 -0.33 39 6 
3 (III) 0.066 0.69 0 0 -0.4 28 37 
10 (II) 0.44 0.22 0.00067 0.007 -0.15 21 22 
8 (IV) 0.27 0.13 0.00001 0.0057 -0.044 20 1 
mean 0.25 0.44 0.0008 0.34 -0.16 51 18 
std 0.17 0.25 0.001 0.37 0.16 22 10 

 

3.4: Trial-by-trial change in error of force production in human subjects 

We have already demonstrated that as a group, our subjects are capable of reducing 

movement error from numeric feedback alone. Now, we need to determine if the changes in the 

error of force production are correlated with reward prediction error as the RL theory predicts. 

Figure 3.3: Human trial-by-trial adaptation and performance in the isolated numeric feedback task – 
Following the analysis methods outlined in Chapter 2, we determine the correlation between reward prediction error and our two 
adaptation signals. We also calculated the average reward per trial in the second block. Subjects are sorted by performance; 
notice how the subjects with most reward tend to have middle ranged VAFs. See Appendix 3.6 for an explanation of subject 
groups. A two-way ANOVA revealed that parameters are not affected by subject group (order and sign of isolated/mixed 
feedback task). 
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We perform the same trial-by-trial analysis outlined in Chapter 2. Appendix 3.8 shows the trial-

by-trial adaptation plot of all 12 subjects; we compare Figure 2.5 (and other simulations) against 

the similar trial-by-trial plots of our human subjects. The reward prediction error accounts for 

about 34% of the variation among changes in the error of force production in our subjects; from 

what we have observed with their value adaptation, this supports the notion that subjects use a 

low to moderate learning rate. In chapter 2, we examined the relationship between performance 

on the behavioral task and how well our linear models fit the trial-by-trial data (Fig. 2.10). We 

observe that both in silico and human agents that perform well on the task tend to have a middle-

ranged VAF on the value adaptation model, and a low VAF on the force adaptation model.  

3.5: Inverse exploration temperature as measured by the exploration plot technique 

As outlined in Chapter 2, we analyze inverse exploration temperature by measuring the trial-

by-trial distances between actions in a Euclidian space and plotting it against their earned 

Figure 3.4: Human relationship between performance and the VAF of each adaptation model – We plot the 
performance of each subject against the VAF of the (A) value adaptation model and (B) the change in error of force 
production. We see a middle range of each VAF that predicts higher performance in in our subjects. This is the same 
relationship that we predicted from the parallel analysis of in silico performance under different hyperparameters. If 
the hyperparmeters get too high or too low, the performance decreases and the VAF of our linear models drops off 
as well. 
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reward. However, our subjects are not necessarily selecting actions from this same two-

dimensional space. We use a state-dependent model to break down each of their force profiles 

into the [b, k] coordinates. 

𝐹! = 𝑏 ∙ 𝑦 + 𝑘 ∙ 𝑦       (3.11) 

This model accounts for about 45% ± 17% of the variance in force profiles among all subjects 

and trials. It is not a perfect breakdown of their true action, but as we as a first measure it can 

still provide a useful insight into their action-space exploration.  

If we measure the slope of the relationship between ΔBK (the distance between two 

consecutive actions in the state-dependent force-generation action space) and reward and plot it 

against the performance of each subject, we see a similar trend as in the model. Figure 3.5 shows 

two examples of subjects who demonstrated a moderate level exploration (Subject 9) and high 

exploitation (Subject 6). Appendix 3.9 shows the slope of exploration analysis of all 12 subjects. 

In figure 3.5C, a moderate level of exploration, as measured by our analysis, does not necessarily 

result in high performance in the subject. Where in silico a moderate slope ΔΔBK/Δr is associated 

Figure 3.5: Human relationship between performance and the measured slope of exploration – (A) The 
exploration plot of a subject (#9) with a moderate exploration slope. We fit the linear regression through the means 
of ΔBK in 10-point bins of reward. (B) The exploration plot of a subject (#5) with a low exploration slope, which 
corresponds to high exploitation. (C) A plot of the performance of each subject against the slope of the linear 
relationship between mean ΔBK and reward. In silico we see a middle range of exploration slopes that consistently 
result in higher performance; we do not observe the same consistency of performance among subjects with a middle 
range of exploration slope ΔΔBK/Δr, but our most rewarded subjects do fall in this range. 
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with maximum performance, our subjects portray a wide array of performance in the middle 

range of exploration slopes. This is mostly likely because our state-dependent decomposition of 

the force profile in the 2-coordinate space does not completely capture their behavior or changes 

in behavior. 

Finally, we consider how the inverse exploration temperature affects the linearity of trial-by-

trial adaptation. We find that subjects 9, 10, 11 and 12 show a ‘smearing’ of movement error 

updates towards more negative RPEs (Appendix 3.9). However, these subjects did not 

necessarily demonstrate high exploration as measured by our analysis. This further corroborates 

our observation in the ΔBK space; successful subjects utilize a moderate level of exploration or 

high exploitation, but a moderate beta does not predict high performance. 

 

3.6: Conclusions 

On the whole, our subjects are capable of learning an action-value function in the isolated 

numeric feedback task. We observe a trend for the mean absolute reward prediction error to 

decrease by the end of 160 trials and the reward prediction error explains about 44% of the 

variance among evaluation updates and a significant correlation. These two observations 

demonstrate that verbal evaluation is a useful approximation of expected reward and that the 

evaluations adapt in a manner predicted by RL theory. 

We also see a significant decrease in the mean of the continuous force profile error over the 

peak speed range (action adaptation). Adaptation to a viscous curl field has been demonstrated 

over all permutations of proprioceptive and visual feedback except none of either (Melendez-

Calderon et al, 2011; Scheidt et al, 2005). We have successfully demonstrated that numeric 
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feedback can be a sufficient signal to teach subjects how to compensate a viscous curl field, even 

without ever experiencing the perturbation!  

Among our subjects there is a wide range of learning rates and inverse exploration 

temperatures. We observe these parameters indirectly through the VAF by the linear adaptation 

model and the relationship between ΔBK and reward. Our subjects demonstrate a low-moderate 

learning rate, and a moderate-high inverse exploration temperature. 

Individual subjects generated performance that was best mimicked by differing combinations 

of model parameters. Our model predicts that different parameter settings will result in varying 

levels of performance, and our subjects reflect these levels in accordance to the learning rates 

and inverse exploration temperatures that we indirectly observe. The reward prediction error 

affectively predicts the trial-by-trial adaptation of our subjects in the isolated numeric feedback 

task.  
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Appendix 3.8: Extended methods for the isolated numeric feedback task human 

experiment 

Subjects come into the laboratory on two consecutive days. On each day, they perform 480 

reaching movements, either with the trajectory clamp on or in a viscous curl field; when 

adaptation occurs mostly in trajectory clamped trials, we refer this as a virtual field since the 

subject does not experience true viscous perturbation in the first two and last block of 

movements. Half of the subjects experienced the viscous field on the first day, and half of the 

subjects experienced the negative (viscous or virtual) field on the first day (Figure 3.6.1). Each 

reach begins with the hand centered in front of the chest such that the elbow is at a 90° angle, 

and the ends 10 cm further from the chest. The robot returns the subject’s hand to the start 

position at the end of each movement. If the subject arrives at the target within a 675-825 ms 

window, the target turns green (and explodes in fireworks); in the last 400 movements, the 

subject also sees their reward in points until the next movement begins. If the subject arrives too 

soon or too late the target turns red or blue, respectively, and the reward signal is not displayed.  

 

Group	
  
Day	
  1	
   Day	
  2	
  
Field	
   B*	
  (Ns/m)	
   Field	
   B*	
  (Ns/m)	
  

I	
   virtual	
   negative	
   viscous	
   positive	
  
II	
   virtual	
   positive	
   viscous	
   negative	
  
III	
   viscous	
   negative	
   virtual	
   positive	
  
IV	
   viscous	
   positive	
   virtual	
   negative	
  
Figure #3.6.1: Perturbation conditions by group and day: 
Each of 12 subjects were assigned a treatment group. Each 
group experiences 80 trials without perturbation, then 160 
with the above conditions on each day, then a 160 trials with 
20% replaced with the opposite environment, then 80 trials 
of wash out. The groups are designed to observe/remove the 
effect of the viscous field sign and order of rewarded set 
presentation. 
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Before they begin making movements, they are told that the reward ranges from 0-100 points 

and that they only receive reward when the target turns green. They are not told how to control 

the amount of reward. They are given 80 trials at the beginning of each day to practice turning 

the target green (the familiarization block). They are also told that the amount they are paid is 

proportional the total number of points they earn; thus motivating them to earn as many points as 

possible over all trials. Subjects are paid between $20 and $60, depending upon their 

performance in the task: 

𝑝𝑎𝑦𝑜𝑢𝑡 = $20+ $40 !"!#$  !"#$%&  !"#$!%
!""""  !"##$%&'  !"#$%&

     (2.A.1) 

After the familiarization block, the subject experiences two blocks of 160 trials and a block 

of 80 washout trials. In the second block (trials 81à240), the subject experiences only one 

environment (either the viscous or virtual field, depending on their day) at ± 15 Ns/m. In the 

third block (241à400), subjects experience the other environment on 20% of trials, which are 

selected pseudo-randomly. These ‘replacement trials’ occasionally put the subject in the viscous 

environment, in an effort to teach them the proper force generation pattern. For the last block 

(trial 401 à 480), B* is turned down to 0 and the viscous field is turned off, while the reward 

signal is still present. In this block, we can hopefully observe the washout of what was learned in 

the second and third blocks of movements. 

If the subject is reaching in a trajectory clamp, maximum reward is achieved by generating 

lateral force into the virtual wall with a magnitude that is proportional to the velocity of their 

hand. The desired velocity-dependence parameter, B* = ±15 Ns/m, has a constant sign on each 

day of movements. Six of 12 subjects perform the isolated numeric feedback task in the positive 

field, and the other half in the negative field. Reward is calculated by the following formulae, 
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where Fx is the force (N) generated by the subject in the x direction, vy is the velocity (m/s) of 

their hand in the y-direction: 

𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡  𝑒𝑟𝑟𝑜𝑟:                𝐷! = 𝐵∗ ∙ 𝑣! − 𝐹! 𝑑𝑦
!!!.!!

!!!
  

𝑧𝑒𝑟𝑜 − 𝑓𝑜𝑟𝑐𝑒  𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡  𝑒𝑟𝑟𝑜𝑟:            𝐷!! = 15 ∙ 𝑣! 𝑑𝑦
!!!.!!

!!!
  

𝑧𝑒𝑟𝑜 − 𝑓𝑜𝑟𝑐𝑒  𝑟𝑒𝑤𝑎𝑟𝑑:                𝑅! = 50  𝑝𝑜𝑖𝑛𝑡𝑠  

𝑚𝑎𝑥𝑖𝑚𝑢𝑚  𝑟𝑒𝑤𝑎𝑟𝑑:      𝑅!"# = 100  𝑝𝑜𝑖𝑛𝑡𝑠  

𝑏𝑟𝑒𝑎𝑑𝑡ℎ  𝑜𝑓  𝑟𝑒𝑤𝑎𝑟𝑑  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛:                𝜎! =
𝐷!!

−2 ∙ ln 𝑅!
𝑅!"#

  

𝑟𝑒𝑤𝑎𝑟𝑑:                      𝑟 = 𝑟𝑜𝑢𝑛𝑑 𝑅!"# ∙ 𝑒
!!!

!!
!!

!

 

The reward function is designed such that if the subject pushes with zero force in the x  

direction throughout the movement, they earn 50 points. Though they do not know it a priori, 

they can push in one direction to improve their score, while the other direction decreases their 

score. If they push too hard in either direction they receive no points.  

If the subject is not reaching in the force channel, then they are reaching in a viscous field 

where the viscosity is ±15 Ns/m. The movement error in the viscous field is a measure of the 

absolute area between the straight path and the subject’s trajectory. 

𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦  𝑒𝑟𝑟𝑜𝑟:      𝑑! = 𝑥 𝑑𝑦!!!.!!
!!!   

𝑟𝑒𝑤𝑎𝑟𝑑:        𝑟 = 𝑟𝑜𝑢𝑛𝑑 𝑅!"# ∙ 𝑒
!!!

!!
!  !"!

!
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We observed that the error in force generation tends to decrease within each block of 

movements (Figure3.6.1). We perform a similar analysis on the mean continuous force profile 

error in the peak speed range, 237-323 ms (Figure 3.6.2) as in section 3.2. 

 

 

 

 

 

 

 

 

D
M

 (N
m

) 

Figure	
  3.6.2:	
  Human	
  error	
  in	
  force	
  production	
  error	
  averaged	
  
across	
   all	
   subjects	
   –We	
   calculate	
   the	
   average	
   error	
   in	
   force	
  
production	
  (DM,	
  Eq.	
  3.4)	
   in	
  the	
   first	
  20	
  trials	
   (top	
  row)	
  and	
   last	
  20	
  
trials	
  of	
  the	
  each	
  block	
  for	
  each	
  subject,	
  and	
  then	
  plot	
   the	
  average	
  
of	
   all	
   subjects	
   here.	
   Error	
   bars	
   represent	
   the	
   standard	
   deviation	
  
across	
   subjects.	
  The	
  most	
   important	
  observation	
   is	
   that	
  DM,	
   tends	
  
to	
  decrease	
  within	
   the	
   second,	
   third	
  and	
   fourth	
  blocks	
  across	
  our	
  
subjects	
  (p	
  values	
  for	
  each	
  comparison	
  between	
  block	
  ends	
  shown	
  
in	
   legend).	
   Exposure	
   to	
   the	
   replacement	
   trials	
   significantly	
  
decreases	
  the	
  error	
  in	
   force	
  production,	
  while	
  other	
  blocks	
  do	
  not	
  
quick	
  reach	
  significance.	
  

Mean Error in Force 
Production 

Across Subjects 
(n=12) 

Block End 
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Figure	
   3.6.3:	
   Human	
  
continuous	
   force	
   profile	
   error	
  
averaged	
   across	
   all	
   subjects	
   –	
  
We	
   calculate	
   the	
   average	
  
continuous	
   force	
   profile	
   error	
  
(Eq.	
  3.10)	
  in	
  the	
  first	
  20	
  trials	
  (y-­‐
axis	
   labeled	
  with	
  ‘intial’)	
  and	
   last	
  
20	
  trials	
  (y-­‐axis	
   labeled	
   ‘final’)	
  of	
  
each	
   block	
   for	
   each	
   subject,	
   and	
  
then	
   plot	
   the	
   average	
   of	
   all	
  
subjects	
   here.	
   The	
   vertical	
   black	
  
lines	
   indicate	
   the	
   peak	
   speed	
  
range	
  (237-­‐323	
  ms).	
  We	
  calculate	
  
the	
  mean	
  of	
   the	
  continuous	
  force	
  
profile	
   error	
   in	
   this	
   range,	
   and	
  
perform	
   a	
   paired	
   t-­‐test	
   within	
  
subjects	
   across	
   block	
   ends.	
   We	
  
find	
   no	
   significant	
   change	
   in	
  
block	
  1	
  within	
  subjects	
  (p	
  =	
  0.38)	
  
and	
   a	
   significant	
   decrease	
   in	
   the	
  
magnitude	
   of	
   this	
   error	
   signal	
  
across	
   blocks	
   2,	
   3	
   and	
   4	
   within	
  
subjects	
  (p	
  <	
  0.021).	
  
	
  

Force Error throughout Profile 
Averaged across all subjects (n = 12) 



	
  

	
  	
  49	
  

This analysis reveals that the replacement trials effectively decrease the error in force 

production, as predicted that they would. Furthermore, subjects are able to quickly recognize that 

the reward function changes at the onset of the 4th block without being told. Over the course of 

the 80 trials they significantly reduce the mean continuous force profile error in the peak speed 

range, but they still generate a small amount of force in the direction learned during blocks 2 and 

3. 

We performed an analysis of variance with two factors and replication (3 subjects/subgroup) 

among our subjects to determine if order or sign had an affect on the parameters of trial-by-trial 

adaptation in the isolated numeric feedback field task. For the rate of value adaptation, αC, 

neither the sign of the virtual field (p = 0.61), nor the order of field experience (p = 0.31) or their 

interaction (p = 0.78) had a detectable affect. For the rate of change in error of force production 

as a function of reward prediction error, αA, neither the sign of the virtual field (p = 0.60), nor the 

order of field experience (p = 0.30) nor their interaction (p = 0.83) had a significant affect. For 

the slope of exploration ΔΔBK/Δr, neither the sign of the virtual field (p = 0.94), nor the order of 

field experience (p = 0.44) or their interaction (p = 0.55) had a significant affect. There does not 

appear to any transfer of learnt information between the two different tasks (virtual field 

adaptation vs. viscous field adaptation). 

  



	
  

	
  	
  50	
  

Appendix 3.7: Human value adaptation in the isolated numeric feedback task 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Human trial-by-trial value adaptation in the isolated numeric feedback task – Each plot shows the 
trial-by-trial changes in trial-by-trial change in evaluations,  ΔV	
   against	
   the	
   reward	
  prediction	
  error,	
  δC, for an 
individual subject. We fit equation 2.10 to this data, measure the αC and the VAF by this model (shown in the legend 
of each plot). Notice that some subjects (like 8, 10, 11 and 12) demonstrate more negative reward prediction errors 
than positive. In silico this is indicative of a low inverse exploration temperature (high exploration, low 
exploitation).  

Subject 1 Subject 2 Subject 3 Subject 4 

Subject 5 
 

Subject 6 Subject 7 Subject 8 

Subject 9 Subject 10 Subject 11 Subject 12 
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Appendix 3.8: Human trial-by-trial changes in the error of force generation in the isolated 

numeric feedback task as a function of reward prediction error  

 

 

  

Figure 3.8: Human trial-by-trial changes in error of force generation – Each plot shows the trial-by-trial 
changes in the error of force generation,  ΔDM	
  against	
  the	
  reward	
  prediction	
  error,	
  δC, for an individual subject. 
We fit equation 2.11 to this data, measure the αA and the VAF by this model (shown in the legend of each plot). 
Notice that some subjects (like 8, 10, 11 and 23) demonstrate more negative reward prediction errors than positive. 
In silico this is indicative of a low inverse exploration temperature (high exploration, low exploitation).  

Subject 1 Subject 2 

	
  
Subject 3 

	
  
Subject 4 

	
  

Subject 5 
	
  

Subject 6 
	
  

Subject 7 
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Appendix 3.9: Human inverse exploration temperature analysis in the isolated numeric 

feedback task 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3.9: Human inverse exploration temperature analysis in the isolated numeric feedback task – Each plot 
shows the inverse exploration temperature analusis (as outlined in section 2.5) for an individual subject. We split 
rewards into 10-point wide bins and plot the box-and-whisker distribution of ΔBK’s in those bins. ΔBK is the distance 
between two consecutive actions when we break the subject’s action down into the state-dependent force-generation 
action-space (eq. 3.11). Some subjects demonstrate a positive slope, which was not predicted by in silico adaptation. 
We do see that subjects with a steeper exploration slope ΔΔBK/Δr portray a wider range of earned rewards (coded along 
the x-axis) and most subjects with a near-zero slope earn rewards mostly centered around 50 points; this was predicted 
by in silico adaptation, but does not hold true for all zero-slope subjects. Deviation from in silico predictions may arise 
because state-dependent model does not completely describe the subject’s actions (VAF = 45% ± 17% across all 
subjects and trials), and so ΔBK does not portray the true distance between consecutive human actions. 
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Chapter 4: Human performance in a task with mixed numeric feedback and sensed 

feedback 
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ABSTRACT  

Motor adaption is often considered to occur under the influence of sensory signals, which is 

usually readily available for humans performing most motor tasks. However, humans can also 

use reward or other qualitative feedback to reinforce previous actions and perform adaptation. In 

these experiments, we introduce reward feedback to a traditional motor adaptation experiment: 

reach adaptation to a velocity-dependent force field. Drawing from the literature of computer 

science and machine learning, we use reinforcement learning framework to interpret the pattern 

of motor and reward-prediction errors and observe the effects of concurrent reward and sensory 

feedback. We find that (1) subjects learn a value function in a manner predicted by the 

reinforcement-learning algorithm & (2) the magnitude of the reward prediction error correlates 

with the magnitude of trajectory adaptation and (3) learning from reward interacts strongly with 

sensed error learning when subjects are previously exposed to a viscous field of opposite sign 

without reward. We also observed that the reward signal did not motivate our subjects to 

decrease their final movement errors at the end of training any further than the isolated sensed 

error task. Subjects who experience the rewarded viscous environment first did not demonstrate 

the typical anterograde interference in the rate of adaptation that usually occurs while training 

consecutively in oppositely signed fields; while those subjects who experienced the isolated 

sensed error feedback task did demonstrate a decrease in the rate of movement adaptation with 

reward feedback in the opposite field.  
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4.1: Expanding the kinds of feedback available human 

Up to this point, we have been interested in determining how humans utilize reward feedback 

to determine the value of their movements and change their behaviors. To that end, we have 

isolated the reward feedback as much as possible and observed their trial-by-trial changes. We 

are motivated to explore this scenario because reinforcement is a ubiquitous consequence of 

action; every decision/movement has an outcome that is valued differently by each agent. 

Though it is an important and often-overlooked component of human learning, reinforcement is 

seldom the only feedback to which an agent is exposed. In this chapter, we begin to determine 

how sensed feedback interacts with reward feedback. 

Similar to the experiment in Chapter 3, we have our subjects adapt to a velocity-dependent 

force field while performing reaching movements to a target. Whereas we previously used a 

trajectory clamp to remove the sensation of perturbation from the viscous field, we now allow 

our subjects to fully experience the haptic forces while being exposed to similar numeric 

feedback. 

 

4.2: Methods 

Subjects perform sets of reaching movements while holding a five-link, two-bar robotic 

manipulandum (IMT, Cambridge, MA). On each day of training, subjects perform 160 

movements in a null (zero external force) environment, followed by 160 movements in a 

constant perturbing environment (±15 N⋅s/m). Each movement starts in front of the subject’s 

chest (with the elbow at 90°), ends 10 cm further from the subject’s chest, and is intended to be 

750±75 ms long. For the first 10 trials of each block of movements, subjects witness a grey dot 

that leaves the start position with them and demonstrates to the subject the appropriate movement 
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speed. At the end of every movement, the target either turns blue, green, or red to indicate that 

the movement duration was too long, just right, or too short, respectively. On each trial, we 

sample the position and velocity of the movement and the forces produced by the robot at 1000 

Hz.  

On one of two days, subjects simply experience the perturbing force of a viscous field while 

trying to reach toward the target within the time limit. The field pushes their hand in proportion 

and perpendicular to their velocity, thus deflecting their movement from a direct path to the 

target. On the other day, subjects also receive a score between 0-100 points for each movement. 

The subjects do not know beforehand how the points are calculated from their movement. The 

area between the straight trajectory and the subject’s path is calculated in real time during the 

movement. The number of rewarded points is a Gaussian function of this area, with 0 cm2 

rewarding 100 points and 8 cm2 rewarding 61 points (one standard deviation).  

𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦  𝑒𝑟𝑟𝑜𝑟:                    𝑑! = 𝑥 𝑑𝑦!!!.!!
!!!!     (4.1) 

𝑟𝑒𝑤𝑎𝑟𝑑:                    𝑟 𝑡 = 100 ∙ 𝑒!
!
!
!! !
!  !"!

!

            (4.2) 

In the above equation, x and y represent the Cartesian coordinates of the subject’s hand, where 

the origin is placed at the movement start. 

Subjects are told the money they earn relates to the points they receive and the color that the 

target turns, and are provided this formula: 

𝑝𝑎𝑦𝑜𝑢𝑡 = $20+ $40 ∙ !"!#$  !"#$%&  !"#"$%"&
!""  p!"#$%∗!"#  !"#$%&

∙ #!"##$  !"#$%!&
!"#  !"#$%&

        (4.3) 

This reward function influences subjects to earn as many green targets as possible by controlling 

movement speed and to earn as many points as possible by controlling movement straightness. 

Before each rewarded trial, subjects are requested to estimate, out loud, how many points they 



	
  

	
  	
  57	
  

expect to earn (not how much they want to earn, which is ostensibly 100 points). We use this 

signal, V(t), to represent the expected reward of each movement. 

We ran 12 subjects, aged 27 ± 7.2 years; six of them experienced the rewarded trials on the 

first day, and the other six experienced the perturbation only on the first day. Six of them also 

moved in the positive viscous field first, and the other six moved in the negative viscous field 

first. These divisions produce four groups of three subjects, each experiencing the same order of 

field strength and reward conditions (Figure #4.1). 

In each condition, we must consider the trial-by-trial adaptation of two signals: the subject’s 

evaluation and the subject’s movement error. As in chapter 2, we also consider the trial-by-trial 

adaption of action evaluations. We refer to this here as value adaptation, which is dependent 

upon the reward prediction error, δC. 

𝛿! = 𝑟 − 𝑉       (4.4) 

Δ𝑉 = 𝛼!𝛿!        (4.5) 

Adaptation has already been demonstrated in this kind of task; the novel component that we 

add is the reward feedback. With now two kinds of signals for our subjects to utilize, we 

consider three kinds of adaptation models: supervised learning (learning from the sensation of 

Group	
  
Day	
  1	
   Day	
  2	
  

Reward	
   Viscous	
  
Field	
   Reward	
   Viscous	
  

Field	
  
I	
   on	
   positive	
   off	
   negative	
  
II	
   on	
   negative	
   off	
   positive	
  
III	
   off	
   positive	
   on	
   negative	
  
IV	
   off	
   negative	
   on	
   positive	
  

Figure #4.1: Perturbation conditions by group and day: 
Each of 12 subjects were assigned a treatment group. Each 
group experiences 160 trials without perturbation, then 160 
with the above conditions on each day. The groups are 
designed to observe/remove the effect of the viscous field 
sign and order of rewarded set presentation. 
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perturbation), reinforcement learning (learning from the reward signal and expected return), and 

a mixture of the two. 

First, we consider adaptation from the reward prediction error, which we refer to here as 

actor adaptation. 

Δ𝑑! 𝑡 = 𝛼!𝛿! 𝑡       (4.6) 

This is the same relationship that we observed in the isolated numeric feedback task (Section 

2.3). 

The second, more traditional dependence is upon the previous movement error and the 

previous and current force environment (Scheidt, Dingwell and Mussa-Ivaldi, 2001). In our 

experiment we use constant field strengths from trial to trial, which reduces adaptation to a 

function of the movement error. We refer to this as the sensed error adaptation model. 

∆𝑑! = 𝛼! 𝑑! − 𝑑!!      (4.7) 

This is a difference equation that represents an exponential decay of movement error from trial to 

trial. Subjects are not capable of completely removing the movement error, so we incorporate a 

non-zero asymptote parameter dM∞.  

Finally, we consider a movement adaptation model where the decay of movement error and 

actor adaption occurs in parallel. We refer to this as the mixed adaptation model. 

∆𝑑! = 𝛼!!𝛿! + 𝛼!! 𝑑! − 𝑑!!"      (4.8) 

We compare these models of movement adaptation using an equation of explained variance in 

the ΔdM: 

𝑉𝐴𝐹 = 1− !!!"#$%&'(
!!!"!#$

       (4.9) 
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Subj 
(Group) 

Value 
Adaptation 

Actor 
Adaptation 

Sensed Error 
Adaptation Mixed Adaptation 

ΔV = αC*δC ΔdM = αA*δC ΔdM = αM*[dM-dM∞] ΔdM = αA2*δC+αM2*[dM-dM∞2] 

αC VAF αA VAF αM dM∞ VAF αA2 αM2 dM∞2 VAF 

1 (I) 0.56 0.65 0.10 0.18 -0.90 3.9 0.62 0.015 -0.86 3.8 0.62 
2 (II) 0.23 0.26 0.046 0.08 -0.85 6.8 0.42 0.0021 -0.84 6.8 0.42 
3 (III) 0.83 0.30 0.00 0.00 -0.78 6.7 0.39 -0.045 -0.85 6.6 0.42 
4 (IV) 0.23 0.19 0.094 0.25 -0.48 2.6 0.37 0.071 -0.41 2.5 0.50 
5 (I) 0.30 0.28 0.071 0.23 -0.92 3.4 0.46 0.011 -0.85 3.5 0.46 
6 (II) 0.32 0.30 0.053 0.03 -1.00 5.7 0.50 -0.012 -1.01 5.7 0.50 
7 (III) 0.14 0.12 0.064 0.11 -0.83 5.8 0.50 0.032 -0.78 6.1 0.52 
8 (IV) 0.66 0.62 0.00 0.00 -0.75 2.8 0.39 -0.0037 -0.75 2.8 0.39 
9 (I) 0.40 0.39 0.086 0.16 -0.85 6.0 0.45 0.022 -0.78 6.0 0.45 
10 (II) 0.59 0.45 0.064 0.09 -0.76 4.7 0.41 0.020 -0.72 4.7 0.41 
11 (III) 0.46 0.43 0.078 0.27 -0.58 3.0 0.39 0.038 -0.45 3.0 0.43 
12 (IV) 0.31 0.18 0.076 0.14 -0.31 5.4 0.16 0.063 -0.25 6.5 0.25 

Mean 0.42 0.35 0.061 0.13 -0.75 4.7 0.42 0.018 -0.71 4.8 0.45 
Std 0.20 0.17 0.033 0.093 0.20 1.5 0.11 0.032 0.22 1.6 0.090 

4.3: Value adaptation in the mixed feedback task 

Using equation 4.9, we model the trial-by-trial adaptation of our subject’s movement 

evaluations. The results of the value adaptation model fit for each subject are displayed in Figure 

#4.2 and Appendix 4.9. Subjects demonstrated a value adaptation rate αC = 0.42 ± 0.20 

(unitless). All 12 subjects had a value adaptation coefficient that was significantly different from 

zero (Appendix 4.9, H0: αC = 0, p < 2.0E-6). The positive correlation between reward prediction 

error and the change in reward prediction (Figure #4.4) indicates that subjects generally attempt 

to make their predictions more accurate. At the end of training, subjects are generally over-

Figure 4.2: Human adaptation parameters of four models of trila-by-trial adaptation – Here we tabulate the 
linear slopes of each model fit and the VAF by that model. Notice that the value adaptation model has a non-zero 
and non-unity	
   αC, this value demonstrates that subjects use a meaningful estimate of reward prediction when 
generating evaluations. Surprisingly, the reward prediction error can predict about 13% of the variance among trial-
by-trial trajectory updates (the actor adaptation model). The mixed model only explains more variance than the in 
the trajectory error updates sensed error adaptation model alone among subjects in Groups III and IV (Figure 4.1), 
those who experience the mixed feedback condition on the second day. 
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predicting reward; they decrease their mean absolute reward prediction error by about 8 points 

(Figure #4.3).  

 

The value adaptation model explains about 35% of the variance in the value predictions 

(Figure #4.2, VAFs). However, the equations are fit over the entire course of training, which 

assumes that the value adaptation parameter is constant or changes very slowly. In theory, these 

signals and parameters can affect each other. For example, it is thought that as the variance of the 

reward prediction error decreases, the value adaptation rate should decrease as well (Doya, 

2002). For some subjects, we observe this phenomenon; towards the end of training, subject 4 

did not update their reward prediction for long stretches, guessing the same score repeatedly. 

This is indicative of a value adaptation rate equal to zero. However, the subject was learning the 

value function much faster in the first 40 trials, resulting in a parameter fit that is significantly 

different from zero yet explains only 19% of the variation in the data.  

We divided the 12 subjects into two sub-groups (Figure #4.1): those that experienced 

adaptation without reward on the first day (Groups I and II), and those that did on the second 

Figure 4.3: Human change in mean absolute reward 
prediction error – We calculate the absolute reward prediction 
error, take the arithmetic average over the first 20 trials after the 
first reward and the last 20 trials in the second block. A paired t-
test within subjects reveal a significant decrease in mean 
absolute reward prediction error (p = 6.3e-4)Subjects reduce the 
magnitude of reward prediction error by about 8 points. 
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(Groups III and IV). We compared the value adaptation rate between the two groups to observe 

any transfer of knowledge between the two days. Subjects who evaluated themselves on the first 

day do not appear to valuate differently from those who did on the second day; a two-tailed t-test 

for each of failed to reveal a significant difference between the means of the two groups for this 

parameter (Figure #4.4, p = 0.75). 

Similarly, we divided the 12 subjects into two different sub-groups: ones that were rewarded 

in the positive viscous field (Groups I and IV), and ones that were rewarded in the negative 

viscous field (Groups II and III). The sign of the field did not appear to affect how subjects 

valuate their movements; two-tailed unpaired t-tests of each critic parameter failed to reveal a 

significant difference between the two group means, p > 0.34.  

  

Figure #4.5: Actor Adaptation of Subject #11 - 
We fit movement errors and temporal difference 
errors to the actor adaptation model (Eq. 18). The 
actor learning rate among subjects was αA = 0.061 
± 0.033 (cm2/point), and the VAF = 0.13 ± 0.093. 
The unaccounted variance, however, may be 
explained partly by the actor exploration, ñA. 

Figure #4.4: Value Adaptation of Subject #11 – The 
reward prediction error is derived from the parameter fits 
of Eq. 3.6 This figure demonstrates the linear relationship 
between the reward prediction error and the trial-by-trial 
changes in reward predictions. We expect to see this 
relationship in agents that utilize the TD-learning 
algorithm. All 12 subjects demonstrate this linearity, which 
is significantly different from zero correlation (p < 0.05). 
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4.4: Actor adaptation model 

We calculated an actor-learning rate, αA, for each subject using Eq. 3.6, the pattern of motor 

errors and the reward prediction error. Using this method, we observe that ten subjects had an 

actor learning rate αA = 6.1E-2 ± 3.2E-2 cm2/point (Appendix 4.10, H0: αA = 0, p < 2.2E-2); the 

other two subjects did not have an actor learning rate significantly different from zero (H0: αA = 

0, p > 0.28). There was no significant affect of reward condition order on actor adaptation rate 

(Figure #4.7F). This model explains nearly one eighth of the variance in ΔdM among subjects 

(VAF = 0.13 ± 0.093 cm2). 

Subjects may not be using a model like Eq. 3.6 because the reward prediction error is not the 

only signal driving learning. They have access to many kinds of feedback besides the reward 

signal. Next, we characterize motor learning using more traditional methods.	
   

 

 

 

Figure	
  #4.6:	
  Motor	
  Errors	
  and	
  Fits	
  of	
  Subject	
  #11	
   	
  -­‐	
  The	
  
movement	
  error	
  (Eq.	
  1)	
   is	
  determined	
  for	
  each	
  trial	
  and	
  we	
  
fit	
  a	
  model	
  of	
  trial-­‐by-­‐trial	
  adaptation	
  (Eq.	
  19)	
  to	
  this	
  signal.	
  
The	
   movement	
   adaptation	
   rate	
   and	
   asymptotic	
   movement	
  
error	
   were	
   not	
   significantly	
   different	
   between	
   reward	
  
conditions	
   within	
   subjects;	
   among	
   all	
   conditions	
   and	
  
subjects,	
   αM	
   =	
   -­‐0.81	
   ±	
   0.18	
   (unitless,	
   slope	
   of	
   dotted	
   line),	
  
δM(∞)	
  =	
  4.9	
  ±	
  1.4	
  cm2	
  (white	
  cross,	
  x-­‐intercept	
  of	
  dotted	
  line),	
  
VAF	
  =	
  41%	
  ±	
  9.0%.	
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4.5: Sensed error adaptation model 

The sensed error adaptation rate among our subjects under the reward condition was αM = -

0.81 ± 0.18 (Appendix 4.11, H0: αM = 0, p < 1.5E-7); they decayed to a final movement error, dM∞ 

= 4.9 ± 1.4 cm2. For all of our subjects, this model (Eq. 4.7) explained more of the variance in 

ΔdM than the actor model alone, (Figure 4.2, VAF = 41% ± 9%).  

The movement adaptation parameters are not significantly affected by the reward condition 

within subjects. Using a paired t-test, we compared the sensed error adaptation rate and final 

trajectory error (Figure #4.7A p = 0.17, Figure #4.7D p = 0.29, respectively). However, those 

who have feedback reward on the second day adapt at a slower rate than the subjects who 

experienced reward on the first day (Figure #4.7B). This is most likely do to anterograde 

interference from training in opposite fields on consecutive days (Caithness et al, 2004).  

Figure	
   #4.7:	
   Parameter	
   comparison	
   between	
   conditions	
   (unmixed	
   models)	
   	
   -­‐	
  We	
  
compare	
   the	
   parameter	
   fits	
   for	
   our	
   two	
   unmixed	
   models	
   of	
   adaptation	
   between	
   the	
  
reward	
  condition	
  (on	
  vs	
  off)	
  and	
  the	
  order	
  condition	
  (reward	
  1st	
  v	
  reward	
  2nd).	
  We	
  find	
  no	
  
significant	
  affect	
  of	
  either	
  condition	
  on	
  the	
  parameter	
  fits.	
  Notice,	
  however,	
  that	
  there	
  is	
  a	
  
trend	
  for	
   subjects	
  who	
  experience	
  reward	
  on	
  the	
  1st	
  day	
   to	
  match	
  the	
   rate	
  of	
  adaptation	
  
with	
   their	
   2nd	
   day,	
   while	
   subjects	
   in	
   the	
   opposite	
   group	
   adapt	
   their	
   trajectories	
   slower	
  
when	
  they	
  are	
  not	
  exposed	
  to	
  reward	
  on	
  the	
  first	
  day.	
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4.6: Mixed adaptation model 

In the mixed model, we consider movement adaptation as linear function of movement error 

and reward prediction error governed by the coefficients αM2 and αA2, respectively. For seven of 

the subjects, there is little movement adaptation that is explained by reward prediction error (H0: 

αA2 = 0; p > 0.13). The remaining five subjects performed the rewarded task on the second day, 

αA2 = 0.032 ± 0.046 cm2/point (H0: αA2 = 0; p < 7.3E-3). Among these subjects, the mixed model 

only explains about 2-8% more variance than the sensed error adaption model due to only 

trajectory error (Eq. 4.7). Only one of these subjects had a negative αA2. Note that this subject 

still adjusts predictions in the correct direction (i.e. αC > 0), but corrective adaptation occurs after 

a positive reward prediction error rather than negative. 

All subjects demonstrate a significant linearity between trajectory adaptation and trajectory 

Figure	
   #4.8:	
   Parameter	
   comparison	
   between	
   conditions	
   (mixed	
   model)	
   	
   -­‐	
   We	
  
compare	
   the	
   parameter	
   fits	
   for	
   our	
   mixed	
   model	
   of	
   adaptation	
   between	
   the	
   reward	
  
condition	
   (on	
   vs	
   off)	
   and	
   the	
   order	
   condition	
   (reward	
   1st	
   v	
   reward	
   2nd).	
   We	
   find	
   no	
  
significant	
  affect	
  of	
  either	
  condition	
  on	
  the	
  parameter	
  fits.	
  Notice,	
  however,	
  that	
  there	
  is	
  a	
  
trend	
  for	
   subjects	
  who	
  experience	
  reward	
  on	
  the	
  1st	
  day	
   to	
  match	
  the	
   rate	
  of	
  adaptation	
  
with	
   their	
   2nd	
   day,	
   while	
   subjects	
   in	
   the	
   opposite	
   group	
   adapt	
   their	
   trajectories	
   slower	
  
when	
  they	
  are	
  not	
  exposed	
  to	
  reward	
  on	
  the	
  first	
  day.	
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error (H0: αM2 = 0, p < 1.1E-5). These parameters are not significantly different from their 

unmixed model counterparts (paired t-test, H0: αM2 = αM, p = 0.82). 

 

4.7: The interaction of reward and sensory feedback 

In this experiment we have two treatments with two levels each: reward condition (on v off) 

and viscous field sign (positive v negative). We observed the sign of the field does not 

significantly affect the parameters of our four adaptation models (value, actor, trajectory and 

mixed adaptation), p > 0.47.  

Surprisingly, when subjects are further motivated to reduce their trajectory error with the 

numeric feedback, there is barely a change in the completeness (final error) of their adaptation 

(Figure #4.7D p = 0.29, #3.6D p = 0.052). We expected that subjects would attempt to earn as 

close to 100 points as possible when the numeric feedback is available; instead subjects earn 84 

± 10 points in the last 20 trials, which corresponds to ~4.7cm2 trajectory error. This is either 

because those last 16 points are only worth $0.008 and is not enough to motivate the subject, or 

subjects are not able to control their movement so finely as to remove the last 4.7 cm2 of error. 

Furthermore, we see that the order of the treatments does affect trajectory adaptation rate. 

Subjects who experience reward on the second day adapt their trajectories at a significantly 

slower rate than subjects who experience reward (Figure #4.7B and #4.8B). It has been 

demonstrated that experiencing opposite fields on consecutive days can lead to anterograde 

interference. Caithness et all (2004) exposed subjects to opposite fields on consecutive days for 

three days (first A, second B, third A) and they observed that initial trajectory errors are 

significantly larger on the second and third days. They do not measure the trial-by-trial rate of 

adaptation, but this evidence suggests that their data suggest that the rate of adaptation is slower 
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on the second day than on the first. If we assume that this is how our subjects would have 

behaved without the additional numeric reward feedback, we conclude that the reward signal 

blocks the interference affect when it falls on the first day and allows for the formation of a new 

motor memory on the second day. Perhaps the reward is a significant cue that influences the 

subject to store the memory differently, or perhaps memory consolidation occurs differently for 

information learned through reinforcement than through sensed errors.  

 

4.8: Conclusions 

While reaching through a perpendicular viscous field with reward feedback, subjects 

generate meaningful predictions of reward. These predictions become more accurate as training 

progresses. Furthermore, the reward prediction error can explain a small amount of the trajectory 

adaptation on a trial-by-trial basis. Both of these findings suggest that subjects are learning a 

useful action-value function while adapting to the viscous field, which in turn supports our 

assumption that a verbal report is a close proxy to our subjects’ true expected reward. Our 

subjects are healthy humans with completely sealed skulls. There is evidence that dopaminergic 

neurons encode a quantitative reward prediction error signal (Bayer & Glimcher, 2005); it would 

be fruitful to perform this experiment in an animal model where we could measure reward 

prediction error with the activity of dopaminergic neurons in the basal ganglia and striatum. We 

expect to see a similar correlation between trial-by-trial changes in trajectory errors, reward 

prediction errors, and evaluation updates. 

We also see a borderline decrease in final trajectory error when the reward signal is available. 

This level of reinforcement is not sufficient to motivate our subjects to move more directly (with 
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less trajectory error) than they normally would without reward feedback. Perhaps if the per trial 

payout were higher (more than $0.00125/point) subjects would indeed decrease this error. 

Most interestingly, we observed a complex interaction between the order of reward 

conditions and the rate of trajectory adaptation in both the mixed and unmixed models. We 

expected to see anterograde interference when subjects are exposed to the second (and opposite) 

field. Instead, if reward was available during the first viscous field experience, subjects did not 

demonstrate a slower adaptation rate on the second day. Subjects appear to store the motor 

memory learned with reward feedback in a different manner than those learned with sensed 

feedback alone. Perhaps if reward were presented on both days, we would not have observed 

interference at all. 
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Appendix 4.9: Human trial-by-trial value adaptation in the mixed feedback task 

  

Figure 4.9: Human trial-by-trial value adaptation in the mixed feedback task – Each plot shows the trial-by-
trial changes in trial-by-trial change in evaluations,  ΔV	
  against	
  the	
  reward	
  prediction	
  error,	
  δC, for an individual 
subject. We fit equation 2.10 to this data, measure the αC and the VAF by this model (shown in the legend of each 
plot), and report both values in Figure 4.2.  
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Appendix 4.10: Human trial-by-trial actor adaptation in the mixed feedback task 

 

  

Figure 4.10: Human trial-by-trial actor adaptation in the mixed feedback task – Each plot shows the trial-by-
trial changes in trial-by-trial change in trajectory errors, ΔdM	
   against	
   the	
   reward	
   prediction	
   error,	
   δC, for an 
individual subject. We fit equation 2.11 to this data, measure the αA and the VAF by this model (shown in the legend 
of each plot), and report both values in Figure 4.2.  
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Appendix 4.11: Human trial-by-trial sensed error adaptation in the mixed feedback task 

and the isolated sensed error feedback task 

 

  

Figure 4.11: Human trial-by-trial sensed error adaptation in the mixed feedback task and isolated sensed 
feedback task – Each plot shows the trial-by-trial changes in trial-by-trial change in trajectory errors, ΔdM	
  against	
  
the	
  magnitude	
  of	
  the	
  trajectory	
  error,	
  dM, for an individual subject. We fit equation 4.7 to thes data, measure the 
αM, dM∞ and the VAF by this model and report both values in Figure 4.2.  
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Chapter 5: Future Directions 

This dissertation demonstrates that humans are capable of learning velocity-dependent forces 

with only numeric feedback, that is, without ever being perturbed by a velocity-dependent force 

environment. We have shown that this adaptation is correlated with the reward prediction error 

generated by an ongoing approximation of an action-reward function. We have provided the 

framework for studying learning from rewards, and there are several interesting directions that 

can extend from this framework. 

The reinforcement-learning algorithm requires the presence of three signals: a reward signal, 

an expectation of reward, and a reward prediction error. Neurophysiological experiments in other 

primates have revealed putative brain regions where these signals are generated and calculated. 

For instance, Bayer & Glimcher (2005), suppose that the basal ganglia calculate a reward signal 

while the dopaminergic neurons in the striatum appear to calculate a reward prediction error. 

Furthermore, Padoa-Schioppa & Assad (2006) have discovered evidence that the orbitofrontal 

cortex encodes information about the value of potential actions. It will be interesting to see if the 

predictions about the relationship between these signals and motor commands also apply for 

neurophysiological recordings made from these areas. This will demonstrate that humans not 

only behave like a reinforcement-learning agent, but indeed perform the same calculations. 

We can also ask more traditional psychophysical questions. For instance, we could 

investigate how the knowledge gained from reaching once generalizes across directions. 

Thoroughman and Taylor (2005) determined the shape of generalization across directions in 

response to sensed errors in varying complexity of fields. They observed that generalization 

become narrower as the force environment becomes more complex across directions. Izawa and 

Shadmehr (2011) demonstrated that performing a shooting task under isolated binary reward 
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generalizes narrowly across directions. We could combine the experimental design of 

Thoroughman and Taylor with the reinforcement leaning framework of this dissertation to 

support the notion that reward leads to narrower generalization. 

We can also investigate the affect of the evaluation process. There is nothing that is 

motivating the subjects to accurately predict their rewards. Perhaps there is some meta-reward 

signal that the subject experiences for predicting their reward and that this affects how the 

action-reward function is learned. We could use a two-day experimental set-up to compare 

subjects’ behavior in the isolated reward feedback task with and without evaluation. We should 

still observe them learning velocity-dependent forces in either case; perhaps the verbal task is 

slightly distracting and we will actually see improved performance. The importance of the verbal 

signal is that is a viable proxy for reward prediction; the verbal task is not necessary for learning 

in the isolated reward feedback task. 

Most interestingly, we can extend this research in a direction that explicitly tries to find ways 

to make adaptation faster or more complete. This can be achieved by manipulation of the reward 

function. In this experiment, we used a Gaussian reward function over the non-negative error 

parameter. We observed that subjects were not able to attain more complete trajectory adaptation 

in the mixed feedback task, but perhaps if the reward function were steeper around the zero-error 

domain subjects would be motivated to further decease trajectory error. We could also perhaps 

manipulate the rate of adaptation by artificially boosting the reward signal whenever the subject 

made a ‘significant’ change towards the target behavior; thus increasing the reward prediction 

error and perhaps drive a larger action change. Conversely, we could punish the subject for 

generating actions very far from the target behavior; in our experiment, we only used positive 

rewards. There is evidence that there are separate systems that respond to positive and negative 
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reinforcers (Lammel et al, 2012), and perhaps we can see evidence of their different affects upon 

action selection. 

Now that we have the framework for understanding how subjects respond to reward in motor 

adaptation tasks, we can begin to ask these interesting questions. Eventually, we will be able 

design ways that leverage all forms of human learning: via sensation, reward & correlation; to 

enhance and repair human movement.  
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Chapter 6: Acknowledgements 

The goals of the research in this dissertation were inspired by a gap in motor control 

literature between the way we reward our subjects for performing tasks and the way we consider 

how our subjects value their actions. I had to develop two new techniques, previously unseen in 

the motor adaptation literature: (1) the involvement of a graded numeric reward feedback signal, 

and (2) the incorporation of the subject’s expected reward. These innovations grew naturally 

from two inspiring studies.  

Izawa and Shadmehr (2011) were the first motor control theorists to ask how reward interacts 

with adaptation in a motor domain, but their feedback lacked variegation and thus the possibility 

of measuring meaningful sensitivity to reward prediction errors. From here, I developed the idea 

for graded reward that directly influenced how we pay our subjects for their participation.  

A meeting with Yael Niv upon her visit to the Washington University in St. Louis campus 

revealed (yet unpublished work) on the adaptation and generalization of reward expectations in a 

decision task. She utilized a sliding scale of certainty that her subjects would position to denote 

how certain the subject was  that they would get binary success from that decision. She was able 

to demonstrate similar adaptation in this sliding scale as we describe here. Continued 

correspondence with Dr. Niv let to the development and testing of the verbal reward prediction 

protocol.  

Finally, Dr. Robert Scheidt’s development of the trajectory clamp, Dr. Maurice Smiths 

subsequent experiments in the interaction of learning position- velocity- dependent perturbation 

fields led to the realization that I can have subjects that never experience perturbation but can 

still measure the state-dependent nature of the lateral force generation.  
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The most difficult task was developing a model of reinforcement learning could make 

meaningful predictions about the trial-by-trial nature of adaptation in a trial-and-error scenario. 

In 2010, I had an opportunity to study with five of the leading scientists in computational theory 

and neuroscience. The course, titled Beliefs and Decisions: of Mind and Machines, took place 

over the course of one week in Budapest, Hungary, and was taught by Máté Lengyel, Jozsef 

Fiser, Zoubin Ghahramani, Michael Shadlin, and Daniel Wolpert. While there, I had an 

opportunity to learn many different kinds of learning algorithms (clustering algorithms, neural 

decoding, reinforcement learning, supervised learning, unsupervised learning, and many more) 

and how these scientists apply them in their research. I found much inspiration in this course as 

the mathematics came easily to me and the professors emphasized the uniquely unexplored 

territory that lay at the intersection of computational theory and neuroscience. 

A local professor, Dr. Bill Smart (now at Oregon State University) and expert in robotics and 

reinforcement learinng helped me through some considerations of how reinforcement learning 

might play out in human adaptation, and ultimately made clear the gap in the machine learning 

literature that describes the rapid exploration of a multi-dimensional action space. 

It is ultimately the discovery of Dr. Alaa Ahmed, an expert in human movement and 

decision-making and several meetings at both Society for Neuroscience conferences, a visit to 

her lab in Boulder, CO, and her visiting our lab in St Louis that led to my development and 

subsequent confidence in the exploration temperature analysis technique. Without the continuous 

communication between her, Dr. Kurt Thoroughman and myself, I would not have realized that 

mathematical relations that I had been tinkering with were indeed the correct lenses to view trial-

by-trial motor adaptation in a continuous domain with reward feedback.  
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In reality, I conducted this dissertation research in exactly the opposite order that it is 

described here. My initial experiment was in the interaction of sensed and reward prediction 

error (Chapter 4). I used this experiment to demonstrate the viability of the verbal reward 

prediction; only then was I certain that it could be a useful tool for describing adaptation in the 

trajectory clamp. In this first experiment, subjects could see the reward feedback on every trial, 

but were paid in proportion to the number of green targets that they received. 

When I tried to carry this same method into the isolated numeric feedback task (Chapter 3), I 

found that value adaptation behaved wildly different than expected and subjects were controlling 

their movements very well. They recognized quickly that they could slow the overall speed of 

their movement, which in the background calculations of the robot meant that did not have to 

generate as much force, and they were able to gain high rewards. Then they would just get a few 

greens targets and boost their overall reward with more slowly timed movements. Dr. Kurt 

Thoroughman created the idea of a gated reward signal, where the subject would not see the 

reward unless the target turned green. Initially, I was worried that not presenting the reward on 

every trial would greatly change the way subjects adapt their evaluations; but alas we were able 

to demonstrate meaningful adaptation in the value space with the gated reward, the same kind 

that we observed in the mixed feedback task. 

As said above, the hardest and actually last element of the dissertation that was developed 

was the computation model (Chapter 2). I already understood that the mathematical implications 

of Eq. 2.8 were a fuzzy linear change in values and actions in accordance with the reward 

prediction error. At this time, Dr. Smart left our school, and as such my local expert on 

reinforcement learning was gone as well. I had to develop expertise in reinforcement learning 

mostly through my individual effort, not having a guru to show me how I may or may not have 
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been interpreting the RL algorithm correctly. Though Dr. Throughman and Dr. Ahmed were of 

great help and support, they themselves were not well-versed in the language of machine 

learning.  

In the end, this dissertation has brought me great fulfillment as a research scientist. I have 

proven to myself that I can understand most existing mathematical concepts of human or 

machine learing, and that I have the wherewithal to find the right people to assist in the 

development of novel research methods and analyses and the refinement of my understanding of 

the scientific literature. I take away with me a vast, new understanding of machine learning from 

the Ph.D. dissertation experience: one that I look forward to finding novel applications for in 

domains beyond biomedical engineering and human learning. 

Computational science has been making leaps and bounds towards developing new and more 

robust algorithms for system control in the past three decades; evolution and natural selection 

have been working for tens of thousands of years on the human brain, honing its ability to 

control the physical body, and has achieved incredible success. There is a common ground to be 

discovered between the two. This dissertation is an example of how we can combine 

developments in seemingly distant fields of research; and perhaps we, as biomedical engineers 

and neuroscientists, can formulate our own theories of the calculations of the human brain that 

can one day inform the field of computational science. 
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