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ABSTRACT OF THE DISSERTATION 

Decipher ‘Yin-Yang’ Balance of Microbial Cell Factories by Data Mining, Flux Modeling, and 

Metabolic Engineering  

By  

Gang Wu 

Doctor of Philosophy in Energy, Environmental, and Chemical Engineering  

Washington University in St. Louis, 2015 

Professor Yinjie Tang, Chair 

 

The long-held assumption of never-ending rapid growth in biotechnology and especially in 

synthetic biology has been recently questioned, due to lack of substantial return of investment. 

One of the main reasons for failures in synthetic biology and metabolic engineering is the 

metabolic burdens that result in resource losses. Metabolic burden is defined as the portion of a 

host cell’s resources — either energy molecules (e.g., NADH, NADPH and ATP) or carbon 

building blocks (e.g., amino acids) — that is used to maintain the engineered components (e.g., 

pathways). As a result, the effectiveness of synthetic biology tools heavily dependents on cell 

capability to carry on the metabolic burden. Although genetic modifications can effectively 

engineer cells and redirect carbon fluxes toward diverse products, insufficient cell ATP 

powerhouse is limited to support diverse microbial activities including product synthesis. Here, I 

employ an ancient Chinese philosophy (Yin-Yang) to describe two contrary forces that are 

interconnected and interdependent, where Yin represents energy metabolism in the form of ATP, 

and Yang represents carbon metabolism. To decipher “Yin-Yang” balance and its implication to 

microbial cell factories, this dissertation applied metabolic engineering, flux analysis, data 



xviii 

 

mining tools to reveal cell physiological responses under different genetic and environmental 

conditions.   

      Firstly, a combined approach of FBA and 
13

C-MFA was employed to investigate several 

engineered isobutanol-producing strains and examine their carbon and energy metabolism. The 

result indicated isobutanol overproduction strongly competed for biomass building blocks and 

thus the addition of nutrients (yeast extract) to support cell growth is essential for high yield of 

isobutanol. Based on the analysis of isobutanol production, 'Yin-Yang' theory has been proposed 

to illustrate the importance of carbon and energy balance in engineered strains. The effects of 

metabolic burden and respiration efficiency (P/O ratio) on biofuel product were determined by 

FBA simulation. The discovery of ‘energy cliff’ explained failures in bioprocess scale-ups. The 

simulation also predicted that fatty acid production is more sensitive to P/O ratio change than 

alcohol production. Based on that prediction, fatty acid producing strains have been engineered 

with the insertion of Vitreoscilla hemoglobin (VHb), to overcome the intracellular energy 

limitation by improving its oxygen uptake and respiration efficiency. The result confirmed our 

hypothesis and different level of trade-off between the burden and the benefit from various 

introduced genetic components. On the other side, a series of computational tools have been 

developed to accelerate the application of fluxomics research. Microbesflux has been rebuilt, 

upgraded, and moved to a commercial server. A platform for fluxomics study as well as an open 

source 
13

C-MFA tool (WUFlux) has been developed. Further, a computational platform that 

integrates machine learning, logic programming, and constrained programming together has been 

developed. This platform gives fast predictions of microbial central metabolism with decent 

accuracy. Lastly, a framework has been built to integrate Big Data technology and text mining to 

interpret concepts and technology trends based on the literature survey. Case studies have been 



xix 

 

performed, and informative results have been obtained through this Big Data framework within 

five minutes.   

      In summary, 
13

C-MFA and flux balance analysis are only tools to quantify cell energy and 

carbon metabolism (i.e., Yin-Yang Balance), leading to the rational design of robust high-

producing microbial cell factories. Developing advanced computational tools will facilitate the 

application of fluxomics research and literature analysis.   
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CHAPTER ONE 

INTRODUCTION OF FLUXOMICS STUDIES AND METABOLIC 

BURDEN MODELING 

1.1. Background of fluxomics  

      Systems biology reveals intricate cellular metabolic and regulatory activities by a series of 

high-throughput methods. Development and application of those high-throughput methods raise 

up their respective research field defined as ‘omics’, including genomics (sequencing and 

annotation of genomic DNA), transcriptomics (determination of global gene transcriptional 

level), proteomics (characterization of structure and function of individual protein), 

metabolomics (assay of metabolite profile), and fluxomics (infer rate of each single biochemical 

reaction within metabolic network) (Tang et al. 2009a).  

      In the realm of fluxomics, 
13

C Metabolic Flux Analysis (
13

C-MFA) and Flux Balance 

Analysis (FBA) are basic quantitive approaches to unveil activities of metabolic reactions. Both 

approaches are built upon many assumptions, for instance, steady state or quasi-steady state 

assumption (which indicates there is no net flux of those intermediates, and the sum of input 

fluxes equals to sum of output fluxes), homogenous cell culture assumption (local environment 

and metabolic state of each cell is considered to be equally same). During the exponential growth 

phase of a well cultivated single cell organism culture, these assumptions are reasonable for most 

times and modeling calculations based on them seem relatively accurate.  

1.2. A brief overview of FBA  



2 

 

      FBA is a bio-mathematical approach to calculate metabolic flux profiles and has been 

extensively developed during recent two decades. By building up genome-scale metabolic 

network model, FBA is able to calculate large scale models with more than 2000 reactions which 

include over 30% of genes of the whole genome. (Orth et al. 2011; Monk et al. 2013) As a 

powerful mathematical modeling tool, FBA is able to make predictions on growth rate, product 

yield, nutrient requirements, physiology of knockout phenotype, track extreme pathways, and 

guide rational metabolic engineering based on only a few inputs. (Kauffman et al. 2003; 

Edwards et al. 2002; Orth et al. 2010a; Becker et al. 2007; Bordbar et al. 2014) Therefore, it 

became popular and widely accepted by researchers of diverse fields (Tang et al. 2009a). Until 

now, Genome scale model (GSM) reconstruction has been performed for more than one hundred 

species (http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms) including bacteria, 

eukaryotic, and archaeal species and this number is still increasing now (Orth et al. 2010a). 

Meanwhile, many efforts have been made to integrate FBA model with other omics data (e.g., 

transcriptomics, proteomics, and metabolomics) (Gowen and Fong 2010; Schellenberger et al. 

2011; Åkesson et al. 2004; Coquin et al. 2008; Winter and Krömer 2013). 

      A general procedure for GSM reconstruction and FBA is depicted in Figure 1.1.: first 

collecting information from pathway database and identify existing genes and pathways, then 

performing gap filling and patching the gaps among metabolic network of GSM. The 

stoichiometry matrix of metabolic reactions and list of metabolites will be extracted out 

subsequently. Constrained linear programming is carried out based on the guidance of objective 

function and flux profile will be obtained. Maximization of biomass growth is the most common 

objective function and has been proven to be reasonable in many case studies, especially for 

those microbes in exponential growth phase (Orth et al. 2010a; Khannapho et al. 2008).  

http://systemsbiology.ucsd.edu/InSilicoOrganisms/OtherOrganisms
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Figure 1.1 Procedure of GSM reconstruction and FBA 

       Calculation of FBA is a LP (Linear Programming) process. In general, there are much more 

fluxes than metabolites in FBA, resulting in large freedom of solution space and 

underdetermined system (Vallino and Stephanopoulos 1993). Even with a defined objective 

function, a series of constraints (e.g., thermodynamic properties, exchange/overflow fluxes, pH 

balance etc) and other information (e.g., biomass composition) are essential for meaningful 

simulation results of cellular metabolism. Among those constraints, overflow measurements are 

regularly used to define FBA boundaries. Precise measurements of some overflows require 

researchers developing professional skills in instruments such as HPLC. Similarly, biomass 

composition determination is expensive and labor intensive (Tang et al. 2009a). Recently, lots of 

efforts have been made to develop effective constraints to relieve the tiresome work of 

measurement, including addition of flux ratio on critical nodes (FBrAtio) (Yen et al. 2013; 
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McAnulty et al. 2012), linking with other omics data such as RNAseq or microarray data (as 

mentioned above), specific proton flux (SPF) (Senger and Papoutsakis 2008), enzyme activity 

assay, or even the flux values calculated from 
13

C-MFA results (Blank et al. 2005).       

1.3. Introduction of 
13

C-MFA  

      As an alternative tool for metabolic flux analysis, 
13

C-MFA adopts the information from 

labeling experiments as the constraints for modeling calculation and takes a different procedure 

to obtain the flux profile (Shown in Figure 1.2.). 
13

C labeling experiment is an important part in 

13
C-MFA. Labeled substrates are added into minimal medium to feed cells, and biomass is 

harvested when a metabolic & isotopic steady state is reached. Harvested biomass is pretreated 

and derivatized for further analysis (NMR or GC-MS). Proteinogenic amino acids can be 

analyzed via GC-MS measurement following a well-developed protocol (Fischer and Sauer 2003; 

Zamboni et al. 2009). The advantages of proteinogenic amino acids approach lie in its easy 

manipulation, fast process, relatively high accuracy, high robustness and relatively low 

requirements on instruments. Therefore, it can be potentially developed into an automatic 

process (e.g., use robot). Using labeling information from central metabolites requires different 

derivatization methods (You et al. 2014). Some unstable metabolites requires fast quenching 

method, and further analysis of many metabolites needs LC MS-MS (Young et al. 2011) , which 

provides more analytic power yet costs much more than GC-MS. 
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Figure 1.2. A general procedure of 
13

C-MFA 

     Normally mass isotopomer distribution data from 16 amino acids can be used for flux profile 

calculation (Tang et al. 2009a). The objective function of 
13

C-MFA is to minimize error between 

simulated and experimental determined mass isotopomer distribution of amino acids, which can 

be expressed as equation 1. The computational methods for 
13

C-MFA include the cumomer 

method (Möllney et al. 1999), isotopomer path tracing method (Forbes et al. 2001), and most 

recently, the Elementary Metabolic Unit (EMU) method (Antoniewicz et al. 2007a). Among 

them, EMU uses the minimum set of information to track atom transition among central 

metabolism, and is proven to be very efficient (Young et al. 2008).              
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13

C-MFA has proven its competence in finding new pathway (Tang et al. 2007a), validation 

of gene functions (Tang et al. 2007a), medium design (Zhuang et al. 2011a), and profiling 

metabolism of engineered strain (He et al. 2014; Becker et al. 2011). However, there are only a 

few cases with the aid of 
13

C-MFA can improve yield of desired product, (Tang et al. 2012), and 

13
C-MFA is employed as a powerful tool of validation rather than prediction. Furthermore, it is 

still difficult to quickly determine flux profiles of strain library (hundreds of strains) to know the 

variances among different phenotypes at the flux level.  

      A series of computational tools have been developed in the field of fluxomics. Among them, 

COBRA toolbox developed by Palsson’s group at UCSD is the most famous software (Becker et 

al. 2007; Schellenberger et al. 2011). COBRA is capable in many functions, including both FBA 

and 
13

C- MFA. In the field of 
13

C-MFA, published modeling framework includes 13C-FLUX 

and 13C-FLUX2 by Wiechert group (Wiechert et al. 2001; Weitzel et al. 2013), FiatFlux by 

Zamboni group (Zamboni et al. 2005a), Metran by Antoniewicz group, and INCA by Young 

group (Young 2014). All those software tools have greatly promote researches in the fluxomics 

field.  

1.4. Overview of published 
13

C-MFA papers on prokaryotic species 

            We collected most 
13

C-MFA papers on bacteria species published during the past twenty 

years (by Dec 2014). Through a brief survey, we found some important facts about 
13

C-MFA 

research: 

(1) Fact of microbial species that 
13

C-MFA papers worked on: Most 
13

C-MFA papers are 

focusing on three model species: E. coli, B. subtilis, and C. glutamicum, which cover nearly 70% 

of our paper collections (shown in Figure 1.3.). This can be explained by that genetic 
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manipulations are so mature for those three model species, that many mutants and engineered 

strains have been created by researchers around the world. Also, there are lots of reports on 

metabolic network and biomass composition for those model species, researchers don’t need to 

spend time or money on those experiments.  For the rest 30% papers, they are on pathogenic 

species, environmental essential species, and chemical or fuel potential producers.     

 

Figure 1.3 Percentage of 
13

C-MFA paper on each bacteria species 

(2)  Fact of scientific journals 
13

C-MFA papers published on:  the top three journals that 
13

C-

MFA published are ‘Metabolic Engineering’, ‘Applied and Environmental Microbiology’, and 

‘Biotechnology and Bioengineering’ (as shown in Figure 1.4.). This result is very informative: 

people employed 
13

C-MFA as a complimentary tool of metabolic engineering and 
13

C-MFA do 

provide quantitive information of central carbon metabolism.   
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Figure 1.4 Number of 
13

C-MFA papers published on each journal 

(3) Fact of researchers active in 
13

C-MFA field: the top three researchers published most 
13

C-

MFA papers are Dr. Uwe Sauer (mainly work on Bacillus subtilis and Escherichia coli), Dr. 

Christoph Wittmann (mainly work on Corynebacterium glutamicum), and Dr. Kazuyuki Shimizu 

(mainly work on Escherichia coli).       

 

1.5. Modeling work related with metabolic burden  

            Metabolic burden was first defined as ‘expression of foreign proteins utilize a significant 

amount of the host cell’s resources, removing those resources away from host cell metabolism 

and placing a metabolic load (or burden) on the host’ by Glick (Glick 1995). With product scope 

of genetic modifications extended to various chemicals; we also extend the concept of metabolic 
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burden to all cellular energy not used for biomass synthesis or product formation. There are six 

major sources of metabolic burden:  

(a)  Defense of internal stress (e.g., imbalanced NADH/NADPH or NAD/NADH ratio, excess 

proton). A famous example is that isobutanol production leads to imbalance of cofactor 

utilization in E.coli (Bastian et al. 2011).  

(b) Defense of environmental stress (e.g., toxic compounds, O2 stress). A good instance is that 

the fluxome of Shewanella oneidensis show robustness under salt stress (Tang et al. 2009b).  

(c) Cost of protein overexpression and plasmid maintenance (including the cost for turnover and 

protein incorrect folding). For instance, protein overexpression significantly boosted fluxes 

of the TCA cycle and acetate overflow (Heyland et al. 2011).  

(d) Defense of specific stress (toxicity) from metabolites or enzymes. A typical example is that 

overproduction of fatty acid will cause severe stress on cell membrane (Lennen et al. 2011).  

(e)  Energy spilling reactions (e.g., futile cycle). Cells just waste the energy when the energy 

source is sufficient (Hoehler and Jorgensen 2013a; Russell and Cook 1995). 

(f)  Energy for cell mobility, which only costs for 2% of total energy (Russell and Cook 1995).  

Burden from protein expression has been noticed even over fifty years ago: Induced E. 

coli cells demonstrated a significant decrease in growth rate compared with uninduced cells 

(Novick and Weiner 1957). With the advance of genetic manipulation technology (e.g., 

restriction enzyme, DNA sequencing method) and successful commercialization of recombinant 

protein (e.g., insulin by Genentech) during late 1970s and early 1980s, overexpression of various 

proteins in order to get desired products has been attempted. The negative effects of protein and 
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plasmid burden were realized by a broad range of researchers (Schaaff et al. 1989; Jensen et al. 

1993; Birnbaum and Bailey 1991). To better understand and simulate the impacts of metabolic 

burdens, a series of models were proposed or began to include the effect of burden into 

consideration. Ollis and Chang took the factor of plasmid instability into unstructured kinetic 

models; and their model is able to predict the effect of different inoculation ratio on final product 

formation (Ollis and Chang 1982). Lee and Bailey developed a model include the mathematical 

description of plasmid replication. And their model simulation results well matched the 

experimental observations that increased plasmid content leads to decrease growth rate. Further, 

the model also predicted the maximal intracellular product accumulation with respect to growth 

rate, which was simultaneously verified by experimental data.(Lee and Bailey 1984) In another 

work authored by Bailey, an empirical parabolic relationship was adopted to integrate with 

Monod equation to investigate the effects of different plasmid copies and various medium 

composition on beta-lactamase specific activity (Seo and Bailey 1985).  In a later work, Bailey 

employed a structure model mathematically describing the competition between chromosomal- 

and plasmid-based expression system for cellular resource (e.g., transcription and translation 

machinery). This model well predicted the influences of different promoters and RBS strength on 

growth rate. In addition, the simulation result also revealed that the capability of intracellular 

transcriptional machinery was a limiting factor of heterogeneous gene expression (Peretti and 

Bailey 1987).  

Other models rather than kinetic or structured model were also employed to simulate the 

effects of metabolic burden. For instance, Snoep et al. took the factor of protein burden into the 

metabolic control model by assigning a coefficient. Their model was able to appropriately 

explain the effects of glycolytic enzymes overexpression in Zymomonas mobilis (Snoep et al. 
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1995). An empirical model was also proposed to interpret protein heterologous expression in E. 

coli. This model was experimentally verified and the authors identified ribosome allocation as 

the limiting factor of growth during this process (Carrera et al. 2011; Somerville et al. 1994). A 

recent paper proposed a mechanistic model which considered three trade-offs on cellular 

resource (i.e., total protein, free ribosomes, and cellular energy) (Weiße et al. 2015). This model 

predicted well on cellular behaviors and the interaction between a synthetic circuit and its host.  

All those models provide reasonable quantifications of the effects by various factors related with 

the metabolic burden on cellular metabolism. However, it is still a challenge to apply those 

models (with their respective parameter set) directly into another system without extensive 

efforts on experiments and data fitting.  

Flux balance model potentially provides an alternative strategy to quantify the metabolic 

burden. Weber et al. first employed FBA to investigate the effects of recombinant protein 

production on flux distribution and growth.(Weber et al. 2002) In their work, the amino acid 

composition of human basic fibroblast growth factor (hFGF-2) was considered and calculated as 

a specific flux. With maximization of biomass growth as the objective function, FBA 

successfully predicted that increased energy demand was satisfied by up-regulation of fluxes 

within EMP pathway and TCA cycle, as well as activated transhydrogenase flux. Later, Ozkan et 

al. included the effect of heterogeneous plasmid maintenance and antibiotics marker protein 

expression into FBA model to simulate the heterogeneous protein expression induced by IPTG in 

a minimal medium supplied with amino acids (Özkan et al. 2005). The authors claimed that the 

predicted relative flux distribution was in the same trend as reported expression profiles; 

however, there are some apparent variations between prediction and real values (e.g., P/O ratio). 
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Besides, the researchers didn’t set any boundary of amino acid uptake fluxes, which might lead 

to further variations.    

13
C-MFA was also employed to interpret the metabolic burden of plasmid maintenance. 

(Wang et al. 2006a) The authors found that the strain hosting high copy plasmid had 

significantly lower relative flux in TCA cycle and higher flux in acetate secretion and ATP 

maintenance. The energy metabolism of engineered strains producing biofuel was also 

investigated by using 
13

C-MFA. And the researchers found that the maintenance energy of fatty 

acid producing strain is two-fold of maintenance energy in the control strain (He et al. 2014). 

And this result partially explained numerous failures of biofuel production scale-up projects: 

high maintenance requirement leads to strain instability. To further explore the metabolism of 

strains under industrial fermentation (normally use complex medium rather than minimal 

medium), dynamic flux analysis and fast quenching method are required to resolve the metabolic 

flux and energy metabolism (Antoniewicz et al. 2007b; Zamboni 2011). 

1.6. Outline of this dissertation 

In Chapter two, we integrated FBA and 
13

C-MFA to investigate the metabolism of several 

isobutanol-producing strains. In particular, the energy metabolism, and several related factors 

such as the P/O ratio, the oxygen condition, and the maintenance energy were investigated.  

In Chapter three, after reviewing recent successes and failures of metabolic engineering projects, 

we proposed the Yin-Yang theory of metabolic engineering: carbon metabolism and energy 

metabolic within microbial cell factories should be balanced. We employed FBA to predict the 

effects of maintenance energy (metabolic burden) and P/O ratio on biofuel yields in E. coli. We 

also provided several strategies to solve the energy bottleneck in engineered strains.  
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In Chapter four, we attempted to solve the energy bottleneck in fatty acid producing strain by 

insertion of vhb gene, which facilitates oxygen uptake of the host cell. We tested three VHB 

variants with different oxygen transfer capabilities. Compared with control strain, engineered 

strain with wild-type VHB only showed a decreased growth as well as reduced fatty acid 

production because genetic modification brought more metabolic burden than benefits; while 

strain with VHB50 demonstrated higher cell density, as well as increased fatty acid accumulation.    

In Chapter five, we developed a series of modeling tools for fluxomics studies. First, we rebuilt 

MicrobesFlux on a commercial server (Amazon AWS) to make the systems more usable. Second, 

we also developed an open source 
13

C-MFA tool (WUFlux) in MATLAB. Third, we designed 

and developed a web-based platform, to make all our fluxomics tools freely accessed and 

downloaded through the Internet.  

In Chapter six, we collected 
13

C-MFA data from published literature. Based on that information, 

we developed a web-based computational platform (MFlux) that directly predicts bacterial
 

central metabolism via machine learning, constraint programming, and quadratic programming. 

We performed cases studies with our platform and compared with FBA predictions. The results 

indicated that MFlux can yield decent results close to 
13

C-MFA values, and better than FBA 

predictions. 

In Chapter seven, we developed a platform providing fast literature analysis by using text mining 

and Big Data technology. We performed several case studies to demonstrate its functionality: (a) 

display word cloud of a specific term; (b) compare difference between different terms; (c) show 

the developing trend and current status of a specific term. 
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In Chapter eight, we summarized all projects in this dissertation and provided personal 

suggestions for the future directions.  
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CHAPTER TWO 

EVALUATING PHYSIOLOGICAL STATE OF ENGINEERED E. COLI 

STRAINS BY ISOTOPOMER CONSTRAINED FLUX BALANCE 

ANALYSIS 

2.1. Abstract 

Metabolic engineering, especially the introduction of exogenous plasmids into the cell, imposes 

considerable burdens on cell physiology. For example, plasmid replication, protein 

overexpression and metabolite accumulation significantly affect the growth rate, expression of 

native proteins, energetic metabolism, and cell composition of the host cell. Furthermore, 

biosynthesis of products may result in severe metabolic stresses and cause deleterious impact on 

both the cell membrane and the energy metabolism. This study aims to understand the metabolic 

shifts in engineered microbial hosts. Specifically, we have integrated 
13

C-MFA and genome-

scale FBA (flux balance analysis) to investigate the physiologies of engineered E.coli strains for 

isobutanol production. 

On the experimental side, we performed labeling experiments on several engineered E. coli 

strains (high performance JCL260 strain from James Liao Lab, low performance BW25113 wild 

type strain). Under aerobic growth conditions, we measured both the strain’s growth and 

isotopomer data of their key proteinogenic amino acids. Subsequently, we used a 
13

C-MFA (
13

C-

metabolic flux analysis) model to profile the central metabolism based on the isotopomer data. 

13
C-MFA could only determine scratchy ranges of fluxes in central metabolism. To obtain a 

broad metabolic solution, we built a large-scale flux balance analysis (FBA) model, which is 

constrained by 
13

C-MFA results. The integrated FBA model relied on objective functions to 
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evaluate flux distributions. In addition, we tested the sensitivity of the model prediction towards 

changes in the energy metabolism (ATP maintenance and P/O ratios) and biomass composition 

equations. By extensively comparing the fluxomics results between the engineered strains, we 

discovered several metabolic features of the high performance JCL260. First, the JCL260 strain 

could up-regulate its NADPH production pathways and minimize its overflow metabolism. 

Second, P/O ratios have relatively a small impact on its optimal isobutanol yield. Third, 

isobutanol overproduction strongly competes for biomass building blocks and thus addition of 

nutrients (yeast extract) to support cell growth is essential for high yield of isobutanol.  Finally, 

model sensitivity analysis also implied that isobutanol production is very sensitive to the 

metabolic burden. Furthermore, isobutanol production pathway is less susceptible to oxygen 

limitation therefore more likely to achieve high yield compared with biodiesel.  

Key words: isobutanol, 
13

C-MFA, P/O ratio, maintenance energy, production yield  

 

2.2. Introduction  

Metabolic engineering aims to get desired products through reshaping metabolic network with 

the aid of DNA recombination technology (Bailey 1991). In general, exogenous plasmids are 

introduced into host strains over-expressing enzymes to pull flux into related pathways; while 

chromosomal genes encoding bypass fluxes are knocked out to reduce flux competition. Genetic 

modifications, especially the presence of plasmids inside cell, impose a considerable influence 

on cell physiology. Metabolic burdens contributed by protein expression and plasmid replication 

significantly affect growth rate, expression of native proteins, energetic metabolism, and cell 

composition of host cells (Birnbaum and Bailey 1991; Özkan et al. 2005; Rozkov et al. 2004). 

Furthermore, generation of certain metabolites such as alcohol or fatty acid results in severe 
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oxidative stress in vivo, damages on cell membrane as well as on transport system and energy 

metabolism (Lennen et al. 2011; Nicolaou et al. 2010; 2009). All those factors enforce host cells 

to adjust their metabolism in response to burdens and stress (He et al. 2014). Quantitive 

understandings over such shifts would be beneficial for a deeper view of cellular regulation, and 

may shed light on strain rational design for the sake of metabolic engineering and bioprocess 

scale-up (Sauer et al. 1998; Garcia-Ochoa and Gomez 2009).  

       Fluxomics, the functional systems biology tool, have been employed to investigate the 

physiological alternations of engineered strains quantitively (Vallino and Stephanopoulos 1993; 

Antoniewicz et al. 2007b). As the two basic approaches in the realm of fluxomics, 
13

C-MFA (
13

C 

metabolic flux analysis) measures in vivo flux information mainly based on mass isotopomer 

distribution of amino acids (isotopic fingerprint), while FBA (Flux Balance Analysis) predicts 

flux distribution in genome-wide metabolic network under presumed objective functions, which 

describe the “possible” metabolic potential of microbial hosts (Orth et al. 2010a; Stephanopoulos 

1999). 
13

C-MFA is able to precisely determine flux profile, but limited its scope to central carbon 

metabolic pathways (Chen et al. 2011). FBA has been widely employed to interpret metabolism 

of a variety of species at the genome-scale, to identify gene essentiality, and to reveal the trend 

of adaptive evolution (Feist et al. 2009; Ibarra et al. 2002; Famili et al. 2003). Accurate 

quantification of cellular metabolism is highly dependent on the selection of appropriate 

objective function for FBA. Maximizing biomass growth is the most common objective function 

and it works well for cells in exponential growth phase (Schuetz et al. 2007; Knorr et al. 2007). 

However, in many cases, cell does not behave in the manner of any optimal strategies, which 

raise a challenge for choosing an appropriate objective function (Schuetz et al. 2007; Schuetz et 

al. 2012). On the other hand, introduction of a series of constraints in the process of linear 



25 

 

programming would greatly reduce the solution space; therefore enable more accurate 

predictions on flux profile. Constraints such as overflow flux, energy balance, membrane site 

occupancy, and proton gradient represent the laws of thermodynamics, physics and physiology 

working on cellular metabolism (Senger and Papoutsakis 2008; Beard et al. 2002; Zhuang et al. 

2011b). The idea to combine the advantages of both approaches together as synergistic tools to 

overcome shortcomings of individual has been attempted in distinctive ways by various groups 

(Blank et al. 2005; Chen et al. 2011).    

      To decipher physiological conditions of engineered strains by fluxomics tools, several 

challenges have to be seriously circumvented. The first challenge is regarding the ATP 

generation by oxidative phosphorylation: Theoretically, the ideal maximal P/O ratio is 2 for B. 

subtilis and 3 for E. coli under aerobic condition; however, realistic values are always lower and 

vary from case to case in different strains (Özkan et al. 2005; Sauer and Bailey 1999), precise 

determination of P/O ratio for a specific engineered strain requires labor-intensive measurements. 

The second challenge is the maintenance energy, which was found to be not only including the 

heat generation, but also related with cell mobility, protein and DNA turnover, osmoregulation, 

and pathway shift (Hoehler and Jorgensen 2013a). Traditionally, maintenance energy can be 

determined through employing chemostat culture at different dilution rates (Pirt 1965), which is 

not considered as a good reflection of maintenance energy now (Hoehler and Jorgensen 2013a). 

Due to the intricate and dynamic essence of maintenance energy and various types of genetic 

modifications, setting an appropriate value of maintenance energy for FBA also requires 

experimental assistant.   

      In order to address problems mentioned above, we propose an integrated platform of 
13

C-

MFA and FBA in this work as isotopomer constrained flux balance analysis (icFBA, shown in 
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Figure 1). This method is utilized to explore the physiological status of several engineered E. coli 

strains that produce isobutanol (Baez et al. 2011a). Isobutanol, a promising biofuel potentially to 

replace ethanol, has attracted enormous attentions from both biochemical engineers and the 

public since 2008 (Atsumi et al. 2008a). However, there are still obstacles on the way to scale-up 

laboratory high yield isobutanol producing strains into industrial production. Several approaches 

have been attempted to work out the concerns such as product toxicity (Atsumi et al. 2010). A 

thorough examination on isobutanol producing strains by this fluxomics platform might help us 

to gain more insights into their physiology and provide some hints for industrial-scale 

fermentation. Furthermore, the knowledge obtained from this study can potentially applied in the 

design of other engineered strains.  

    We performed 
13

C labeling experiments on several isobutanol engineered E. coli strains. The 

growth characteristics and amino acid labeling patterns were used for fluxomics studies. 

Consequently, we obtained the flux distribution of central carbon metabolism. Subsequently, flux 

values of central metabolic pathways determined by 
13

C-MFA are taken as constraints for 

genome scale FBA calculation (iJO1366 is employed here) (Orth et al. 2011). Different values of 

maintenance energy, oxygen flux, as well as P/O ratio are also employed in the simulation of 

FBA.  

2. 3. Materials and Methods 

2.3.1. Strains and plasmids 

BW25113 (CGSC# 7636) was the wild-type strain used in this study (Atsumi et al. 2008b) and it 

was purchased from the Escherichia coli Genetic Stock Center (http://cgsc.biology.yale.edu/).  

The knockout strain JCL260 (ΔadhE, ΔldhA, ΔfrdBC, Δfnr, Δpta, ΔpflB) and the plasmids 

pSA65 and pSA69 (Baez et al. 2011b; Atsumi et al. 2008c) were provided by Prof. James Liao 
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(University of California, Los Angeles).  The plasmid pSA65 contains the genes kivd and adhA 

from Lactococcus lactis.  The plasmid pSA69 contains the genes alsS of Bacillus subtilis and 

ilvCD of E. coli.  The detailed information of strains and plasmids are also listed in Table 2.1.  

2.3.2. Medium and culture conditions 

A minimal medium containing 0.5% [1, 2-
13

C] glucose, M9 salts (Difco), and 10 mg/L vitamin 

B1 was used for the labeling experiments. The antibiotics, Ampicillin (100 μg/mL) and 

Kanamycin (50 μg/mL) were added as appropriate. For the pre-culture, a single colony of cells 

from a fresh plate was used to inoculate a 5 mL Luria-Bertani (LB) media. The pre-culture was 

grown overnight at 37°C on a rotary shaker at 225 rpm.  The pre-culture was used to inoculate 

(0.2%, v/v) a main culture of 10 mL minimal medium, grown on a rotary shaker in 250 mL 

shake flasks at 30°C and 225 rpm.  The cultures were grown in duplicates and kept airtight by 

closing the flasks with rubber stoppers to prevent any loss of isobutanol due to evaporation. 

IPTG was added to a final concentration of 0.1 mM for induction.  Samples were collected 

before and after (both at mid-log phase and late-log phase) the addition of IPTG.  The liquid 

cultures (~10 mL) from each flask were centrifuged and the supernatant was separated from the 

biomass.  Both the biomass and the supernatant samples were stored in -20°C prior to analysis.   

2.3.3. Quantification of biomass and extracellular metabolites 

Growth of the E. coli cells was monitored by measuring the optical density of the cultures at 600 

nm (OD600) using an Agilent Cary 60 UV-Vis spectrophotometer. The dry biomass concentration 

in gram per liter was determined based on the correlation of, OD600 - 1 is equivalent to 0.338 g 

dry weight/L (Xiao et al. 2013).  The concentration of acetic acid and glucose were measured by 

using the corresponding enzymatic kit (R-Biopharm) and by following the manufacturer’s 

protocol. The enzymatic reactions were conducted at room temperature in a 96-well plate reader 



28 

 

(Infinite 200 PRO microplate photometer, TECAN).  Isobutanol analysis was done using a gas 

chromatograph (GC) (Hewlett Packard model 7890A [Agilent Technologies] equipped with a 

DB5-MS column [J&W Scientific]) and a mass spectrometer (MS) (5975C, Agilent 

Technologies) (Xiao et al. 2012). Isobutanol was extracted from 800 µL of the supernatant using 

400 µL of toluene as the extractant. Both the supernatant and the toluene were vortexed together 

for 2 minutes, followed by centrifugation at 10,000 × g for 5 min to separate the aqueous and 

organic phase. 1 μL of the organic layer was injected into the GC column with helium as the 

carrier gas. The GC oven was held at 70°C for 2 minutes and then raised to 200°C with a 

temperature ramp of 30°C min
−1

, and the post run was set at 300°C for 6 minutes. The MS scan 

mode was set from m/z of 20 to m/z of 200. The quantification of isobutanol was done based on 

a calibration curve prepared with known concentrations of isobutanol ranging from 25 mg/L to 

200 mg/L. Methanol was used as an internal standard for all the samples. 

2.3.4. Mass isotopomer distribution of proteinogenic amino acids 

The mass isotopomer distribution (MID) of proteinogenic amino acids were performed as 

described elsewhere (You et al. 2012). In short, the biomass pellets were hydrolyzed with 6 M 

hydrochloric acid and dried under a stream of air. The hydrolysates were dissolved in 

tetrahydrofuran and derivatized with N-Methyl-N-[tert-butyldimethyl-silyl] trifluoroacetamide 

(Sigma-Aldrich, MO) at 70°C for 1 hour. The amino acid analysis was also performed on the 

GC-MS equipped with a DB5-MS column. The sample injection volume was 1 μL and a 1:10 

split ratio was utilized with helium as the carrier gas (1.2 mL/min). The GC oven was held at 

150°C for 2 minutes and then raised to 280°C with a temperature ramp of 3°C min
−1

, followed 

by another temperature ramp of 20°C min
−1

 to a final temperature of 300°C and was held at 

300°C for 5 minutes. The mass spectra were acquired from the MS with an m/z range of 60 to 
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500. The mass isotopomer distributions of the amino acids were corrected for the presence of 

naturally abundant isotopes [
13

C - 1.13%, 
18

O - 0.20%, 
29

Si - 4.70%, and 
30

Si - 3.09%] using 

published algorithm (Tang et al. 2009a; Wahl et al. 2004). 

2.3.5. Central metabolic flux determined by 
13

C-MFA 

13
C-MFA was carried out based on the MID information from the proteinogenic amino acids. 

The metabolic network of E. coli strains includes major pathways such as the glycolysis, the 

pentose phosphate pathway, the Entner–Doudoroff (ED) pathway, the tricarboxylic acid (TCA) 

cycle, the glyoxylate shunt, and the anaplerotic pathways. For biomass flux, we adopted the 

same equation previously reported (He et al. 2014). In engineered strains that produce isobutanol, 

a simplified reaction was employed to describe the isobutanol flux (2*PYR + NADH + NADPH 

 IB + 2*CO2).  The detailed information of metabolic network is listed in Table 2.3.  The 

carbon substrate uptake rate was defined as 100, while other metabolic fluxes were normalized to 

a scale of 100. The energy metabolism was not included in 
13

C-MFA calculation, because 

different P/O ratio values affect the central carbon flux profiles seriously (data not shown). The 

EMU (elementary metabolite units) method was adopted for 
13

C-MFA. The MATLAB-based 

software WUFlux, developed by Tang lab, was employed for 
13

C-MFA calculation (available in 

13cmfa.org). 100 randomly generated initial values were used and the solution set with minimal 

objective function value (best fit) was selected as the final fluxes. The relative flux profile in 

each strain was calculated by minimizing the difference between predicted and measured 

isotopomer patterns. The measured production rates of acetic acid and biomass are used as the 

constraints for 
13

C-MFA, while isobutanol flux is predicted by the flux model. Since the precise 

measurement of volatile extracellular metabolites (i.e., acetate) is difficult, calculation of 
13

C-

MFA did not place tight constraints on overflow metabolite fluxes. Due to its high volatility, 

file:///C:/Users/tor/AppData/Roaming/Microsoft/Word/13cmfa.org
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isobutanol is difficult to be determined precisely thus the measured value will only be used as 

reference. 

2.3.6. Genome-scale model constrained by 
13

C-MFA flux 

The E. coli iJO1366 genome scale model was employed for FBA studies was minor 

modifications (Orth et al. 2011): the isobutanol flux (3mob[c] + nadh[c] + h[c] --> isobutanol + 

nad[c] + co2[c]) was added for engineered strains; a few specific fluxes were knockout for 

JCL260 strain and BW25113 strain (Monk et al. 2013). The 
13

C-MFA flux v
mfa

 was used as the 

boundaries to constrain central metabolic flux of genome scale model using the following rules 

(Blank et al. 2005): 

. . ' 0s t S v 
 

 
'(1 ) (1 )mfa mfa

i i iv v v        

δ = 20%  

The objective function is to maximize isobutanol production (for engineered strains, set growth 

rates to be experimental values) or to maximize growth rate (for control strain). Default 

boundary conditions of iJO1366 were employed here, except for the fluxes of glucose uptake, 

oxygen uptake, and maintenance energy. We test the sensitivities of oxygen uptake rate, the 

maintenance energy, and the P/O ratio on the isobutanol production flux. Considering of oxygen 

supply conditions in our 
13

C-MFA experiments, we set the oxygen flux to be 16 mmol/gCDW·h 

(Varma et al. 1993). For isobutanol production by strain 5 (JCL260/pSA65+69, see Table 2.1.) 

in the bioreactor, we employed a modified biomass equation based on the 
13

C labeling 

information -- non-labeled biomass derived from yeast extract was deducted (Xiao et al. 2012), 

as well as a reduced oxygen flux (average 13 mmol/gCDW·h) (Xu et al. 1999).   
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To access strain stability, we also employ evolutionary fitness to quantify each strain: measured 

growth rate relative to the predicted maximal growth rate by FBA under the same conditions 

(Steinmetz et al. 2002).  

2.4. Results and discussions  

2.4.1. Physiological states of different Strains 

      We performed labeling experiments by feeding E. coli strains with 1, 2-
13

C labeled glucose 

in minimal medium under aerobic conditions. The physiological states of different strains are 

recorded in Table 2.2.: As expected, the control strain (JCL260, strain 1) has a much higher 

specific growth rate compared with the other three isobutanol-producing (strains 2 – 4). 

Significant lower biomass yield was observed in engineered strains compared with control strain. 

JCL260 has higher efficiency for biomass yield while JCL260/pSA65 displays the lowest 

biomass yield compared with BW25113 engineered strain. Acetic acid production was found in 

cases of two BW25113 host strains, but was not detected for either JCL260 strain in the minimal 

medium. Strain JCL260/(pSA65+69) demonstrated poor or no growth repeatedly in minimal 

medium even without IPTG induction. Thereby, we used previous experimental data of  

JCL260/(pSA65+69) growth in presence of yeast extract, which was published by our lab three 

years ago (strain 5, in Table 2.2.) (Xiao et al. 2012).  Apparently, strain 5 exhibited a 

significantly higher yield of isobutanol in the presence of yeast extract, compared with other 

strains growth in a minimal medium. Previous reports have proved that yeast extract mainly 

contributed to the synthesis of biomass building blocks while most of isobutanol was converted 

from glucose (Xiao et al. 2012). However, yeast extract is indispensable for this process: 

Isobutanol production pathway poses considerable metabolic burdens on host strains, thereby, 

cellular energy generated from glucose catabolism is insufficient to power both biomass 
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synthesis and isobutanol production in high-yield strain JCL260/(pSA65+69). Biomass synthesis, 

especially the biosynthesis of amino acids consumes lots of ATP and NADH(Russell and Cook 

1995; Akashi and Gojobori 2002), while yeast extract relieves such burden by supplying most 

amino acids(Xiao et al. 2012; Selvarasu et al. 2009). Notably, isobutanol itself will disrupt cell 

membrane integrity and reduce the efficiency of oxidative phosphorylation, leading to decreased 

pH and ATP supply (Atsumi et al. 2010; Wu et al. 2015). Supplement of yeast extract relieves 

the burden from energy intensive biomass synthesis, thereby well solves the energy crisis inside 

isobutanol producing strains.  

2.4.2. Central metabolic flux determined by 
13

C-MFA 

      To quantify the intracellular fluxes of the central metabolic pathway, 
13

C-MFA was 

employed to solve the flux profile based on the mass isotopic distribution (MID) of 

proteinogenic amino acid. The results of the central flux map are illustrated in Figure 2.2a-d. 

Central metabolic flux profile always undergoes apparent adjustments in response to metabolic 

burdens and cell stress within engineered strains (He et al. 2014; Antoniewicz et al. 2007c). In 

this work, significant changes in central metabolism were observed in response to the genetic 

alternations and isobutanol production for engineered strain 2 (JCL260/pSA65): The pentose 

phosphate (PP) pathway is up-regulated in engineered strains to balance NADPH demanding 

(compared with JCL260, strain 1); the glyoxylate shunt increases to reduce the carbon loss as 

CO2; while the anaplerotic flux reduced significantly, enable more flux from glucose rerouting 

into pyruvate that is a precursor for isobutanol synthesis. The glucose-inhibited glyoxylate shunt 

is recovered by a decreased glucose uptake flux (inhibited by isobutanol)(Atsumi et al. 2010; 

Bowles and Ellefson 1985), while knocking out ppc gene leads to increase activity of glyoxylate 

shunt (Fong et al. 2006).  
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      Compared with BW25113 strains (strain 3 and 4), JCL260 strains (1, 2) only produced little 

amount of acetate in the minimal medium, which was even out of detection limit (Table 2.2). 

Knocking out acetate related genes not only leads to the loss of acetate production capability in 

JCL260, but also reroutes more carbon fluxes into isobutanol production pathway. However, 

significant acetate production was still observed for strain JCL260/(pSA65+69) in the presence 

of yeast extract. A possible source of acetate is the biosynthesis and degradation of amino acids 

(e.g., SER + AceCoA + 3 ATP + 4 NADPH == CYS + Ac), especially supplied with abundant 

exogenous amino acids (i.e., yeast extract).  

2.4.3. Energy metabolism and evolutionary fitness analysis 

      To illustrate the energy status of different strains under genetic modifications (e.g., gene 

knockout, exogenous plasmids) and internal stress (e.g., protein overexpression, isobutanol 

toxicity), we performed a simple analysis by assuming ideal energy metabolism (i.e., P/O ratio = 

3) and the results are shown in Table 2.4 and Figure 2.3. In ideal condition (Figure 2.3a), the 

control strain (JCL260) has highest excess energy while strain 2 (JCL260/pSA65) is of lowest 

excess energy; this situation overturned when inefficient energy metabolisms (P/O ratio = 1, 

shown in Figure 2.3b) apply for energy analysis. P/O ratio of 1 is closer to the real situations of 

13
C-MFA experiments, based on literature reports on E. coli strains (Özkan et al. 2005; Noguchi 

et al. 2004). The ‘excess energy’ actually is used as cellular maintenance cost, whereas the 

control strain (strain 1) has the lowest maintenance energy, while strain 2 (JCL260/pSA65) 

shows the highest maintenance energy cost. Further, strain 4 (BW/pSA65+69) has a higher 

maintenance requirement compared with strain 3 (BW/pSA65). Such differences in maintenance 

cost are caused by additional energy expense used for extra plasmid maintenance, as well as 

heterogeneous protein expression (Glick 1995).            
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      Strain stability is a crucial factor for industrial-scale fermentation. Evolutionary fitness is 

used to estimate the genetic stability of engineered strains, based on the assumption that cells 

with fastest growth at given conditions has the largest fitness of survival (Blank et al. 2005; 

Steinmetz et al. 2002). Considering of complicated genetic modifications in this study, 

evolutionary fitness is used here rather than physiological fitness (Blank et al. 2005). From the 

results shown in Figure 2.4, strain 1 (JCL260) has the highest evolutionary fitness while strain 4 

(BW/pSA65+69) demonstrates the lowest degree of evolutionary fitness. Besides, strain 5 may 

have even lower evolutionary fitness in the minimal medium because it contains dual plasmids in 

addition to a series of gene knockouts. It is well known that maintenance of exogenous plasmids 

brings considerable metabolic burdens that lead to increased instability of genotype (Silva et al. 

2012). Researchers have proposed a series of approaches to reduce the negative impacts from 

plasmids, such as employment of low copy plasmid (Jones et al. 2000) or insertion of genes into 

chromosome (Tyo et al. 2009). With advancements of novel genome editing tools (e.g., CRISPR, 

TALEN), genetic modifications at chromosome level will result in strains with improved genetic 

stability in the future (Luo et al. 2015).  

2.4.4. The effects of P/O ratio, oxygen flux, and maintenance energy on isobutanol 

production 

      One major bottleneck for metabolic engineering is that laboratory high-yield strains fail to 

make good performance during the scale-up process. Quantification of several factors involving 

this process (e.g., environmental factors, such as oxygen, nutrient availability, and strain 

physiological factors such as P/O ratio, maintenance energy) may provide novel insights into this 

problem. In this work, we employed FBA to investigate the effects of oxygen flux, nutrient 

availability, and maintenance energy on product yield. In particular, central metabolic fluxes 

determined by 
13

C-MFA are utilized to constrain flux boundary of FBA to ensure the final flux 
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profile to be in a reasonable range (Blank et al. 2005). Meanwhile, we also determine the effect 

of yeast extract on isobutanol production based on the 
13

C labeling data of strain 5. The details of 

simulations are described in section 2.3.5, and the results are presented in Figure 2.5 and 2.6.   

      The maximal yield of isobutanol differs from strain to strain: strain 5 > strain 2 > strain 4 > 

strain 3. This prediction exactly matches the experimental observations of isobutanol yield 

recorded in Table 2.2. Meanwhile, isobutanol production is more sensitive to the variation in 

maintenance energy and oxygen flux, rather than P/O ratio. Isobutanol synthesis requires 

NADH/NADPH rather than ATP in its synthetic pathway, which explains its robustness to P/O 

ratio change (Wu et al. 2015). Oxygen is not required for isobutanol synthesis; however, oxygen-

involved oxidative phosphorylation contributes most energy for biomass synthesis at growth 

phase. The competition between biomass growth/protein expression and isobutanol production 

on intracellular energy makes ATP-rich oxidative respiration pathway very favorable, leading to 

increased sensitivity to oxygen concentration. During industrial-scale fermentations, 

environmental conditions (e.g., pH, oxygen concentration) at different locations of the bioreactor 

are changing with the time (Garcia-Ochoa and Gomez 2009; Zou et al. 2012). Further, massive 

consumption of oxygen and insufficient mixing during exponential growth leads to 

heterogeneous oxygen distribution within the reactor. The conflict between increasing oxygen 

demand for cell growth and decreasing oxygen supply capability in many regions of bioreactor 

always leads to poor performance of engineered strains (fall off the cliff of isobutanol production 

as shown in Figure 2.5 and 2.6). In many cases, supply of rich nutrients will not only lesson the 

cost of carbon source, and energy/reducing power (ATP, NADH, and NADPH) on amino acids 

synthesis, but also alleviate the requirement on activation of corresponding synthesis pathways, 

that’s why strain 5 have the best performance of all test conditions in this study (results shown in 
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Table 2.2, Figure 2.5e, and Figure 2.6e). In practice, induction of protein overexpression at mid 

or late growth phase also can relieve the resource crisis mentioned above (Xu et al. 2014). 

Alcohol production process has an apparent advantage: Even cell membrane and oxidative 

phosphorylation system are destructed by aldehyde and alcohol, the synthesis process of 

isobutanol is still going on.    

 

2.5. Conclusions 

      In this work, we have resolved the central carbon metabolism of isobutanol-producing E. coli 

strains by 
13

C-MFA. The results indicated that genetically modified strains can make adjustments 

over their flux profile in response to the requirements of isobutanol production. Also, extensive 

genetic modifications will lead to decreased evolutionary fitness as well as increased 

maintenance cost. Further, isobutanol production is very sensitive to the increase of cellular 

maintenance energy while rich nutrients (e.g., yeast extract) can relieve the stress caused by 

metabolic burdens. Lastly, genome editing will bring less metabolic burden and more 

evolutionary fitness compared with plasmid-based modification, thus is suitable for bioprocess 

scale-up in the future.   
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Strain/ Plasmid Genetic Information 

JCL260 (Strain) 
BW25113/F′[traD36, proAB+ ,lacIq ZΔM15] ΔadhE, ΔfrdBC, 

Δfnr, ΔldhA, Δpta, ΔpflB 

pSA65 (Plasmid) ColE1ori;AmpR; PLlacO1: kivd-adhA (Lactococcus lactis) 

pSA69 (Plasmid) P15ori;KanR; PLlacO1: alsS(Bacillus subtilis)-ilvCD 

 

Table 2.1 Detailed information of plasmids and strains used in this study 

 

NO 
Host Strain/ 

Plasmid 

Growth 

rate (h
-1

) 

Biomass yield   

(g/g glucose) 

Acetate yield   

(g/g glucose) 

Isobutanol yield      

(g/g glucose) 

Glucose uptake 

rate 
(mmol/gDW*h) 

1 JCL260 0.345 0.432 ~0 0 3.921 

2 JCL260/pSA65 0.126 0.240 ~0 0.143 3.968 

3 BW25113/pSA65 0.095 0.353 0.065 0.098 1.943 

4 
BW25113/ 

(pSA65+pSA69) 
0.091 0.354 0.114 0.097 3.249 

5 
JCL260/ 

(pSA65+pSA69)* 
0.112 0.390 0.350 0.360 7.589 

* Data adopted from previous experiments published by Tang lab, with 5 g/L yeast extract in 

bioreactor (Xiao et al. 2012).  

Physiological information of strain 1-4 came from 
13

C-MFA experiments in this study, while 

physiological data of strain 5 was from a paper published by our lab. 

Table 2.2 Physiological information of strains used in this study 
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'Glucose + ATP == G6P' 

'G6P == F6P' 

'F6P + ATP == FBP' 

'FBP == F6P' 

'FBP == DHAP + GAP' 

'DHAP == GAP' 

'GAP == G3P + ATP + NADH' 

'G3P == PEP' 

'PEP == PYR + ATP' 

'PYR + 2*ATP == PEP' 

'PYR == AceCoA + CO2 + NADH' 

'AceCoA + OAA == CIT' 

'CIT == ICIT' 

'ICIT == AKG + CO2 + NADPH' 

'AKG == SucCoA + CO2 + NADH' 

'SucCoA == SUC + ATP' 

'SUC == FUM + FADH2' 

'FUM == MAL' 

'MAL == OAA + NADH' 

'MAL == PYR + CO2 + NADH' 

'MAL == PYR + CO2 + NADPH' 

'PEP + CO2 == OAA' 

'OAA + ATP == PEP + CO2' 

'ICIT == GLX + SUC' 

'GLX + AceCoA == MAL' 

'G6P == PG6 + NADPH' 

'PG6 == CO2 + Ru5P + NADPH' 

'Ru5P == X5P' 

'Ru5P == R5P' 

'X5P + R5P == GAP + S7P' 

'GAP + S7P == E4P + F6P' 

'X5P + E4P == GAP + F6P' 

'PG6 == PYR + GAP' 

'AceCoA == Ac + ATP' 

'AKG + NADPH == GLU' 

'GLU + ATP == GLN' 

'GLU + ATP + 2*NADPH == PRO' 

'GLU + GLN + CO2 + ASP + AceCoA + 5*ATP + NADPH == ARG + AKG + FUM 

+ Ac' 

'OAA + GLU == ASP + AKG' 

'ASP + 2*ATP == ASN' 

'PYR + GLU == ALA + AKG' 

'G3P + GLU == SER + AKG + NADH' 
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'SER == GLY + Methylene_THF' 

'GLY == Methylene_THF + CO2 + NADH' 

'Methylene_THF + NADH == Methyl_THF' 

'Methylene_THF == Formyl_THF + NADPH' 

'ASP + 2*ATP + 2*NADPH == THR' 

'THR == GLY + AceCoA + NADH' 

'SER + AceCoA + 3*ATP + 4*NADPH == CYS + Ac' 

'ASP + PYR + GLU + SucCoA + ATP + 2*NADPH == LYS + CO2 + AKG + SUC' 

'ASP + Methyl_THF + CYS + SucCoA + ATP + 2*NADPH == MET + PYR + SUC' 

'GLU + NADPH + 2*PYR  == VAL + AKG + CO2' 

'AceCoA + 2*PYR + GLU + NADPH == LEU + AKG + NADH + 2*CO2' 

'THR + PYR + GLU + NADPH == ILE + AKG + CO2' 

'E4P + 2*PEP + GLU + ATP + NADPH == PHE +  AKG + CO2' 

'E4P + 2*PEP + GLU + ATP + NADPH == TYR +  AKG + NADH + CO2' 

'SER + R5P + 2*PEP + E4P + GLN + 3*ATP + NADPH == TRP + GAP + PYR + 

GLU + CO2' 

'R5P + Formyl_THF + GLN + ASP + 5*ATP == HIS + AKG + FUM + 2*NADH' 

'NADH == NADPH' 

'NADH == 3*ATP' 

'FADH2 == 2*ATP' 

'ATP == 0*Ex' 

'Ac == Ace_measure' 

'CO2 == 0*Ex' 

'CO2_air + CO2 == CO2_cell + CO2' 

0.488*ALA + 0.281*ARG + 0.229*ASN + 0.229*ASP + 0.087*CYS + 0.250*GLU + 

0.250*GLN + 0.582*GLY + 0.090*HIS + 0.276*ILE + 0.428*LEU + 0.326*LYS + 

0.146*MET + 0.176*PHE + 0.210*PRO + 0.205*SER + 0.241*THR + 0.054*TRP + 

0.131*TYR + 0.402*VAL + 0.205*G6P + 0.071*F6P + 0.754*R5P + 0.129*GAP + 

0.619*G3P + 0.051*PEP + 0.083*PYR +2.510*AceCoA + 0.087*AKG + 0.340*OAA 

+ 0.443*Methylene_THF +33.247*ATP +5.363*NADPH==39.68*Biomass 

+1.455*NADH 

'2*PYR + NADH + NADPH == IB + 2*CO2' 

Table 2.3 Metabolic network for 
13

C-MFA calculation 
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NADH NADPH ATP FADH2 

 
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Glycolysis 169 175 173 175 0 0 0 0 109 152 142 154 0 0 0 0 

PP pathway 0 0 0 0 44 62 44 39 0 0 0 0 0 0 0 0 

TCA cycle 214 119 172 162 52 6 15 8 38 -2 4 -2 55 32 36 25 

Amino acid synthesis 25 9 16 12 -123 -57 -87 -76 -68 -29 -46 -38 0 0 0 0 

Acetic acid formation 0 0 0 0 0 0 0 0 0 0 14 30 0 0 0 0 

Biomass formation 13 7 10 9 -48 -26 -37 -35 -299 -163 -227 -216 0 0 0 0 

Isobutanol production 0 -43 -20 -20 0 -43 -20 -20 0 0 0 0 0 0 0 0 

One-carbon metabolism -1 -1 -1 -1 1 0 1 1 0 0 0 0 0 0 0 0 

Anaplerotic Pathway* 7 15 10 0 0 0 0 0 0 0 0 -5 0 0 0 0 

Net flux from central 
carbon metabolism 

426 281 359 339 -74 -58 -86 -82 -219 -41 -114 -78 55 32 36 25 

All flux values are normalized to a glucose uptake rate of 100 mol/h in each strain. 

a. The anaplerotic pathway is assumed to only produce NADH and consume minimal amount of 

ATP. 

b. The excessive NADH & FADH2 are assumed to be converted to ATP via oxidative 

phosphorylation at maximal P/O ratio (NADH  3 ATP, FADH2  2 ATP)  

Table 2.4 Energy metabolism of different strains 
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Figure 2.1 Diagram of 
13

C flux as constraints for FBA 
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1. JCL260 
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  2. JCL260/pSA65 
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3. BW25113/pSA65;  
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4. BW25113/( pSA65 + pSA69).  

Figure 2.2. Central metabolic flux determined by 
13

C-MFA on control strain (1. JCL260) and 

three engineered strains (2. JCL260/pSA65; 3. BW25113/pSA65; 4. BW25113/( pSA65 + 

pSA69). 
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Figure 2.3a Energy analysis of four strains at ideal energy condition (P/O ratio = 3)  

 

Figure 2.3b Energy analysis of four strains with low energy metabolism (P/O ratio = 1)  
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Figure 2.4 Evolutionary fitness of four strains in this study 

 

2.5a. Influence of P/O ratio and maintenance energy on growth rate of strain 1 
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2.5b. Influence of P/O ratio and maintenance energy on isobutanol production of strain 2 

 

2.5c. Influence of P/O ratio and maintenance energy on isobutanol production of strain 3 
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2.5d. Influence of P/O ratio and maintenance energy on isobutanol production of strain 4 

 

2.5e. Influence of P/O ratio and maintenance energy on isobutanol production of strain 5 

 

Figure 2.5a-e: Influence of P/O ratio and maintenance energy on isobutanol production potential 

(growth rate for strain 1, JCL260), simulated by FBA  
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2.6a. Influence of oxygen uptake flux and maintenance energy on growth rate of strain 1 

 

2.6b. Influence of oxygen uptake flux and maintenance energy on isobutanol production of strain 

2 
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2.6c. Influence of oxygen uptake flux and maintenance energy on isobutanol production of strain 

3 

 

2.6d. Influence of oxygen uptake flux and maintenance energy on isobutanol production of strain 

4 
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2.6e. Influence of oxygen uptake flux and maintenance energy on isobutanol production of strain 

5 

 

Figure 2.6.a-e: Influence of oxygen uptake flux and maintenance energy on isobutanol 

production potential (growth rate for strain 1, JCL260), simulated by FBA. Default P/O ratio of 

1.75 is employed here.   
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CHAPTER THREE  

INVESTIGATE ENERGY METABOLISM OF MICROBIAL CELL 

FACTORIES BY YIN-YANG THEORY 

 

3.1. Abstract 

In ancient Chinese philosophy, Yin-Yang describes two contrary forces that are 

interconnected and interdependent. This concept also holds true in microbial cell factories, where 

Yin represents energy metabolism in the form of ATP, and Yang represents carbon metabolism. 

Current biotechnology can effectively edit the microbial genome or introduce novel enzymes to 

redirect carbon fluxes. However, the limitation of the internal powerhouse prevents cells from 

achieving high carbon yields and rates. It is because that microbial metabolism could lose over 

60% of free energy as heat when converting sugar into ATP; while high cell maintenance in 

microbial hosts further aggravates cellular ATP shortage. Via a flux balance analysis model, we 

further demonstrate the penalty of ATP expenditure on biofuel synthesis. To ensure cell 

powerhouse being sufficient for microbial cell factories, we propose five principles: 1. Take 

advantage of native pathways for product synthesis. 2. Pursue biosynthesis relying only on 

pathways or genetic parts without significant ATP burden. 3. Combine microbial production with 

chemical conversions (semi-biosynthesis) to reduce biosynthesis steps. 4. Create ‘minimal cells’ 

or use non-model microbial hosts with higher energy fitness. 5. Develop a photosynthesis chassis 

that can utilize light energy and cheap carbon feedstocks. Meanwhile, metabolic flux analysis 

can be used to quantify both carbon and energy metabolisms and determine ‘the straw that broke 
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the camel’s back’. The fluxomics results are essential to evaluate the industrial potential of 

laboratory strains, avoiding false starts and dead ends during metabolic engineering.    

Key words: ATP, energy metabolism, flux analysis, free energy, maintenance loss, semi-

biosynthesis 

 

3.2. Introduction 

In the past decade, molecular biology tools have developed rapidly and now offer new 

opportunities for metabolic engineering of microbial hosts (Sun and Zhao 2013; Jiang et al. 2013; 

Pratt and MacRae 2009; Qi et al. 2013; Wang et al. 2009; Isaacs et al. 2011). These tools include 

the selection of plasmids with different copy numbers, promoter engineering, codon optimization, 

synthetic scaffolds, directed evolution or rational design of enzymes, ribosome binding sites 

editing, and competitive pathways deletion. Advanced genome engineering (e.g., CRISPRs and 

TALENs) and automation of conventional genetic techniques (e.g., MAGE) provide efficient 

capabilities for editing genomes and evolving new functions. At the same time, systems biology 

(e.g., genomics, transcriptomics, and proteomics) can characterize complex cell networks, mine 

useful genes, discover new enzymes, reveal metabolic regulations, and screen mutant phenotypes. 

The advent of these powerful tools seems to lead researchers into a new epoch of bioprocess 

industries using GMOs (genetically modified organisms) in the near future. However, that is not 

the whole story.  

The golden age of industrial biotechnology dawned in the early 1940s, driven by the 

mass production of penicillin and enjoyed a fast growth in the 1950s~1980s. Microbial 

bioprocess has produced diverse commodity chemicals (such as ethanol, amino acids, citric acid, 
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and lactate) as well as recombinant proteins and antibiotics in the last century. Those commercial 

products mainly rely on natural strains or strains with minor genetic modifications (usually only 

one or few new genes). Since the recent decade, in the hope of producing chemicals at low costs 

and reducing greenhouse gas emissions, an enormous amount of investment has been devoted to 

metabolic engineering in many nations. Although modern biotechnologies can engineer cells to 

synthesize diverse products in laboratories, there are only a few GMO products that have become 

commercially promising in the past decade (e.g., artemisinic acid and 1, 4-butanediol). GMOs 

are particularly used for biofuel manufacturers, such as short-chain alcohols, fatty acid derived 

chemicals, and isoprenoid-based biofuels (Atsumi et al. 2009; Lindberg et al. 2010; Oliver et al. 

2013). For example, Gevo and Butamax introduce the keto-acid/Ehrlich pathway into yeasts to 

produce isobutanol (Nielsen et al. 2014). Amyris extend the mevalonate pathway in 

Saccharomyces cerevisiae for branched and cyclic terpenes (e.g., farnesene) synthesis. However, 

these biofuel processes have not achieved strong net profit margin yet. To date, the industrial-

scale biofuel is still ethanol, which is cheaply manufactured from sugar cane in Brazil. In this 

perspective, we will address one of the hidden constraints in microbial cell factories (i.e., Energy 

metabolism).  

 

3.3. The energy losses in microbial cell factories   

Heterotrophic organisms obtain free energy in the form of ATP by breaking organic 

substrates into CO2 (Figure 3.1). Theoretically, oxidation of one mole of glucose to CO2 (∆cH
Θ

298 

≈ -2.8 MJ/mol) can generate 38 moles of ATP. Hydrolysis of these ATP to ADP (ΔG
Θ
 = -30.5 

kJ/mol) provide ~1.2 MJ of biochemical energy. Thereby, ~60% of energy from glucose is lost 

as heat during ATP synthesis (similar to a Carnot heat engine). Cell consumes ATP for diverse 
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activities, such as nutrient/metabolite transport, chemotaxis, chemical gradient preservation, 

biomass component repair, and macromolecule re-synthesis (Hoehler and Jorgensen 2013b). 

These maintenance costs, essential for cell survival and stress adaptation, compete for ATP 

resources for biomass growth and product synthesis. On the other hand, microbial hosts have not 

evolved towards optimal energy metabolism. Over billions of years of evolution, microbes with a 

higher growth rate gained a selective advantage when competing for shared energy resources, but 

these fast growing species have a lower yield of ATP from substrates (e.g., less than 30 

ATP/glucose) (Pfeiffer et al. 2001). The oxidative phosphorylation (P/O) ratio represents ATP 

generation efficiency through substrate oxidation. Theoretically, three ATP can be obtained from 

the reduction of one oxygen atom (i.e., P/O = 3) during oxidative phosphorylation. Although 

slow-growing mammalian cells can achieve P/O values close to 3, bacteria and yeasts often have 

P/O ratios below 2.5 (note: these microbes may dissipate the proton gradient before it can be 

fully used for charging the ATP synthase). Secondly, microbial hosts may lose ATP yield due to 

byproducts synthesis, membrane leakage, removal of reactive oxygen species, or suboptimal 

cultivations (insufficient mixing, shear stress, or biofilm formation). Lastly, the electron 

transport chain for ATP generation and nutrient transporters may compete for membrane and 

intracellular spaces so that the capacity of the microbial powerhouse cannot be easily upgraded 

(Ibarra et al. 2002; MacLean and Gudelj 2006).  

We introduce the terminology “metabolic entropy” to define the free energy in the 

substrates that is lost through cellular energy metabolism and becomes unavailable for 

biosynthesis. Metabolic entropy has gained attention from metabolic flux analysis researchers 

because the objective function of biomass production in FBA (flux balance analysis) always 

overestimates microbial growth rates. Moreover, FBA predictions highly depend on the 
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assumption of a fixed ATP maintenance coefficient. To address this problem, researchers 

developed 
13

C-metabolic flux analysis (MFA) to quantify the microbial “metabolic entropy” 

directly via tracer experiments. By examining Bacillus subtilis mutants, 
13

C-MFA has discovered 

that the suboptimal cell metabolism is associated with the increased energy usage in the face of 

environmental and random genetic perturbations (Fischer and Sauer 2005). This study suggests 

that mutating regulatory genes can drive carbon fluxes towards the desired pathways; however, 

such mutations reduce ATP availability for adaptive responses under adverse environmental 

conditions (i.e., metabolic engineering achieves microbial productivity by sacrificing their 

energy fitness).   

3.4. The tradeoff between product yield and energy fitness 

Traditional metabolic engineering uses plasmids and heterologous enzymes to redirect 

carbon fluxes. Early studies have shown high copy number plasmids cause significant alterations 

in cell properties and strongly influence metabolic engineering endeavors (Birnbaum and Bailey 

1991). 
13

C-MFA of E. coli strains revealed higher acetate production and O2 uptake rates in 

plasmid-containing strains than in the plasmid-free strains (Wang et al. 2006a). The presence of 

plasmids can increase cell maintenance, decrease growth rate and change intracellular fluxes, 

especially suppressing the oxidative pentose phosphate pathway (Ow et al. 2009). Similarly, 

synthetic biology parts (such as novel pathways, protein scaffolds, and genetic circuits) may also 

increase metabolic entropy if extra nucleic acids and proteins are required to be made by the 

hosts (note: elongation of one amino acid costs four ATP molecules) (Stephanopoulos et al. 

1998a). In reality, microbial systems have frugal enzymatic machinery (each native enzyme in a 

single E. coli cell may only have dozens of molecule copies and places minimal biosynthesis 

burden on cell metabolism) (Taniguchi et al. 2010). During pathway engineering, optimizing 
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enzyme levels is difficult because a large portion of over-expressed enzymes may be inactivated 

due to protein misfolding. Considerable ATP expenditure for heterologous enzyme synthesis can 

trigger stress responses and alternate hosts’ physiology. For example, 
13

C-MFA has been used to 

examine metabolic burdens in E. coli during biosynthesis of recombinant proteins. The results 

indicate a 25% increase in the total ATP expenditure rate in the highest yielding strain (up to 45 

mmol ATP/g CDW/h) (Heyland et al. 2011). To overcome such an energy limitation, E. coli has 

to reduce biomass synthesis and enhance oxidative phosphorylation for ATP generation. Besides, 

microbial hosts often suffer from increased non-growth associated maintenance as well as 

reduced respiration efficiency (poor P/O ratio) due to membrane stresses (Sauer and Bailey 1999; 

Varma and Palsson 1994). Therefore, introduction of an extended heterologous pathway into a 

microbial host often causes deleterious effects on cell metabolism. Ultimately, the host will lose 

the capability to grow in a minimal carbohydrate medium; while rich nutrients, such as yeast 

extract (producing 1 g of yeast extract consumes 3 g of glucose), have to be supplied to relieve 

the cell’s energy burden (Xiao et al. 2012).  

Our theory of energy burden can guide strain development to tolerate product stresses. 

For instance, an isobutanol-tolerant mutant has been isolated after serial transfers. However, the 

final isobutanol productivity of this evolved strain did not show improvement (Atsumi et al. 

2010). The export systems (e.g., ABC transporters) have been engineered for recovering cell 

growth under biofuel stresses (Dunlop et al. 2011). The ATP-driven efflux pumps show limited 

enhancement of short-chain alcohol productivity (~10%) (Foo et al. 2014). On the other hand, 

efflux pumps work well when they are introduced into low-performance strains, in which their 

product titers are well below 1 g/L (Dunlop et al. 2011). These observations explain the fact that 

cell adaptation to a stressful environment may require ATP expenditure and thus induce 
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significant metabolic burdens on biosynthesis (Zhang and Lynd 2005). For the same reason, 

tolerance engineering often works well on yeast strains for ethanol production because of simple 

synthesis pathway and net ATP generation from glycolysis. For example, engineering 

transcriptional machinery or up-regulation of the potassium/proton pumps in Saccharomyces 

cerevisiae can significantly improve ethanol tolerance and the production titer (well above 100 

g/L) (Alper et al. 2006; Lam et al. 2014). In conclusion, when the microbial hosts already have 

high biosynthesis burdens, we should focus on specific regulatory genes rather than efflux pumps. 

For example, a methionine biosynthesis regulator can significantly improve both biofuel 

tolerance and productivity in Escherichia coli (Foo et al. 2014). In yet another case, the 

inactivation of a histidine kinase may enhance the butanol productivity in Clostridium 

acetobutylicum by delaying cell sporulation (Xu et al. 2015). 

 

3.5. Sensitivity analysis of the energy penalty on biofuel synthesis  

We employ a genome-scale flux balance model (iJO1366) to simulate the adverse 

impacts of E. coli energy metabolism on biofuel product yields (Figure 3.2) (Orth et al. 2011). 

Apart from the intracellular stress caused by enzyme overexpression, the release of large 

amounts of biofuel molecules (alcohol or fatty acid) will interfere enzymatic reactions in vivo 

and disrupt the cellular membrane’s integrity, which results in reduced efficiencies of oxidative 

respiration (Lennen et al. 2011; Atsumi et al. 2010). Thereby, metabolic engineering approaches 

are effective in redirecting carbon fluxes to biosynthesis only in these low-productivity strains 

whose energy metabolism are not overloaded. We have FBA test the penalty of metabolic 

burdens (such as maintenance cost) and the decrease of P/O ratio on biofuel yields. The 

simulations show that microbial energy metabolism is usually abundant so that they can support 
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certain amount of metabolic burdens without having apparent biosynthesis deficiency (e.g., 

without having a slower growth). However, cell burden may increase during the routine genetic 

modifications. When cell powerhouse is unable to fully afford the increasing ATP expenditure, 

the biosynthesis yield will have a sudden drop (i.e., the straw that broke the camel’s back), 

forming a cliff in Figure 3.2.   

FBA simulations yield two insights into microbial biofuels. First, alcohol (ethanol and 

isobutanol) producing E. coli strains not only have higher carbon yields (0.67 C-product/C-

glucose), but also are insensitive to P/O ratios (Figure 3.2a, b). Comparing to isobutanol, ethanol 

production is less sensitive to the metabolic burden (larger energy sufficient zone). Anaerobic 

ethanol fermentation, an ancient bioprocess from the beverage industry, does not need additional 

energy from O2, lowering its process costs. From a stoichiometric perspective, glycolysis 

generates two net ATP per glucose, which fulfills the cell energy expenditure. In addition, 

ethanol synthesis only needs one native enzyme, and the hosts (e.g., Saccharomyces cerevisiae) 

are naturally tolerant to alcohols. The entire ethanol synthesis pathway is always inside of the 

cytosol, and thus they do not have mitochondrial transport limitations. These advantages explain 

why ethanol fermentation (over 100 g ethanol/L) is superior to any other biofuel processes. 

 Second, energy metabolism may become a critical issue for synthesizing fatty acid-based 

compounds, which are susceptible to changes in P/O ratio, ATP maintenance loss, and oxygen 

uptake fluxes. Comparing to alcohol production, fatty acid based fuels (such as biodiesel) 

requires longer biosynthetic pathways (more enzymes to overexpress) and considerable ATP 

usage for product synthesis (Steen et al. 2010). Besides, many enzymes in fatty acid pathway are 

tightly regulated during cell growth, leading to growth associated bio-production. The 

simultaneous biomass growth and fatty acid synthesis further exaggerates ATP shortage (He et al. 
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2014). Therefore, aerobic fermentation has to be performed to enhance energy metabolism, 

which reduces product yield and increases the fermentation costs for aeration. Furthermore, the 

accumulation of fatty acid damages cell membrane and reduces oxidative phosphorylation 

efficiency. To demonstrate these synergistic effects on fatty acid yields, Figure 3.2c and d 

simulate E. coli fatty acid yields under different P/O ratios and metabolic burdens. As shown in 

Figure 3.2c, fatty acid production can achieve a similar yield as ethanol if the host’s biomass 

growth rate (as 0.05 h
-1

) and energy maintenance is not high. In reality, fatty acid yield can drop 

to 50% or less of the theoretical maximum, which is in consistent with the model prediction if we 

considered a practical biomass growth, extra ATP maintenance, and low P/O ratio (< 1.5) in 

FBA (blue star in Figure 3.2d) (Orth and Palsson 2012). Figure 3.2d also indicates the high 

sensitivity of fatty acid yield in response to the P/O ratio (red star in Figure 3.2d). For instance, 

one unit change in P/O ratio leads to an abrupt drop in fatty acid yield -- from a theoretical 

maximum to zero.  

 

3.6. Yin-Yang theory in metabolic engineering    

To better understand the limitations of microbial cell factories, we refer to an ancient Chinese 

wisdom: Yin-Yang. Yin-Yang describes both the bright side and dark side of an object in the 

world. Yin and Yang oppose each other but are also interdependent. In the case of metabolic 

engineering, the microbial metabolism is operated by thousands of enzymatic reactions and mass 

transport processes that involve both carbon (Yang) and energy (Yin) transformations (Figure 

3.1). Through billions of years of evolution and environmental adaptations, biological systems 

have evolved closely interdependent carbon fluxes for biomass growth and energy fitness, which 

are similar to the intertwined Yin-Yang forces. Although it is easy to engineer microbial hosts to 

produce small amounts of diverse products, manufacturing a particular compound with titers and 
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rates beyond the economic break-even point is difficult. In microbial conversions of a substrate 

to a product, metabolic entropy always increases if more carbon flux is redirected to the final 

products (Figure 3.3a & b). Figure 3.3c calculates the energy loss during conversion of glucose 

to biofuels at their theoretical yields as well as the practical yields. Based on the stoichiometry, 

theoretical energy losses during the conversions of glucose to biofuel molecules (alcohols and 

fatty acids) are small. However, much bigger losses are observed in real cases because of the 

suboptimal energy metabolism in biological systems.  

        To leverage the “Yin-Yang” balance, early metabolic engineers tried a few effective 

approaches to promote energy metabolism and boost productivity. For instance, Vitreoscilla 

hemoglobin (VHb), a soluble bacterial protein, has been used to enhance energy metabolism by 

promoting oxygen delivery, which can significantly improve cell growth and enhance chemical 

production under oxygen-limited conditions (Wei and Chen 2008). Furthermore, an energy-

conserving pathway in E. coli was developed through metabolic evolution for high production of 

succinate from glucose fermentation (Zhang et al. 2009). This study indicates that the 

overexpression of a phosphoenolpyruvate carboxykinase increases the net production of ATP, 

compared to the primary mixed acid fermentation pathway via PEP carboxylase. The extra 

energy supply allows E. coli to produce succinate close to the theoretical maximum. In another 

case, an ATP-consuming reaction was introduced into S. elongatus PCC 7942 to drive carbon 

flux from acetyl-CoA to 1-butanol (Lan and Liao 2012). This study of 1-butanol production 

further validates that the ATP coupling reaction can make engineered pathways 

thermodynamically more favorable. To this end, we summarize the following suggestions to 

overcome the energy roadblocks.  
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       First, a clear understanding of the entire carbon and energy metabolisms in microbial species 

would help us to conquer the energy limitations. Using E. coli as an example, ATP significantly 

impacts the product distributions at the pyruvate node (Wang et al. 2010a). Understanding ATP 

fluxes can offer rational design of E. coli strains for improving product biosynthesis (Zhang et al. 

2009; Causey et al. 2003). Flux balance analysis (FBA) and 
13

C-metabolic flux analysis (MFA) 

are the only available tools that can quantify energy expenditures. FBA can characterize cell 

energy metabolism by dividing ATP cost into non-growth associated loss and growth-associated 

maintenance (Varma and Palsson 1994). Due to the metabolic nature of suboptimal carbon fluxes, 

FBA, relying on the objective functions, may overestimate the cell potential for biosynthesis 

capability. 
13

C-MFA uses tracer experiments to constrain the FBA model so that it can precisely 

measure enzyme reaction rates. 
13

C-MFA can profile carbon fluxes through all energy 

generation/consumption pathways and deduce energy flows in the cell metabolism (ATP and 

cofactor balancing) (He et al. 2014). Flux analysis not only allows us to determine the hidden 

Yin-Yang balance and to design rational engineering strategies, but also to characterize 

metabolic entropy and identify a strain’s energy potential for further improvement. Although 

13
C-MFA has not been widely accepted as a routine laboratory measurement tool to assess the 

engineered microbial hosts, this technology has excellent potential to reveal pathway engineering 

burdens (i.e., predict “the last straw” in genetic modifications). This tool can informatively tell 

metabolic engineers and project sponsors what can be done and what cannot be done.  

       Second, metabolic engineers need to exploit native pathways and avoid extensive pathway 

reconstruction. In history, many industrial successful cases of improved strain tolerance or 

productivity just relied on random mutation or evolution, leveraging Natural Selection of 

mutants for the best balance of ‘Yin-Yang’. Additionally, efforts should aim product synthesis at 
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pathways that do not require significant ATP expenditures (such as ethanol or organic acids). For 

example, the acetate overproduction pathway in E. coli generates abundant ATP, and the 

engineered strain performs very well even when its oxidative phosphorylation, TCA cycle and 

competing fermentation pathways are disrupted (Causey et al. 2003). When microbial hosts have 

low-burden biosynthesis pathways, they show robustness in industrial processes. Moreover, 

artificial synthetic circuits, efflux pumps, or novel pathways should be carefully considered in 

terms of the energy penalty. By revealing the tradeoffs behind synthetic biology parts via flux 

analysis approach, engineering strategies can be rationally designed. 

       Thirdly, although it is difficult to break the Yin-Yang balance in a natural microorganism, 

synthetic biologists may re-program the carbon metabolism and energy ‘‘fitness’’ by engineering 

novel microbial systems. Metabolic engineers often apply gene deletions, evolutionary 

engineering, or pathway overexpression to improve the strain productivity. These practices 

typically encounter adverse metabolic shifts due to energy imbalances. However, the creation of 

a “minimal or smart” cell can remove unnecessary genes in microbial hosts in effort to reduce 

cell burden and unlock the biosynthesis regulations (Forster and Church 2006; Trinh et al. 2008). 

Additionally, synthetic biologists try to design and assemble minimal cells using synthetic 

chromosomes (Gibson et al. 2010). These artificial biological systems do not necessarily follow 

the natural Yin-Yang balance evolved over billions of years, so they may have an unusually 

efficient energy metabolism, and thus achieve product yields close to the theoretical maximum.    

       Fourth, biological conversion can be integrated with non-living processes to reduce the 

biosynthesis burden. We can use robust microbial hosts to make simple molecules with high 

yields and titers, and then convert these molecules into a desired product with a complicated 

structure via biological and chemical processes. For example, the Keasling Lab achieved the 
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total synthesis of artemisinin with a two-stage semi-synthetic approach. They used the 

mevalonate pathway in Saccharomyces cerevisiae to synthesize artemisinic acid, followed by a 

four-step chemical conversion of artemisinic acid to artemisinin (Paddon and Keasling 2014). 

The Zhang Lab has made biopolymers by using engineered E. coli as a first step, to produce a 

simple molecule mevalonic acid, and then chemically converting it into biopolymers (Xiong et al. 

2014). A significant advantage of these integrated processes is an extremely efficient 

bioconversion first step using a short pathway (Colletti et al. 2011). For instance, the titer of the 

semi-product mevalonic acid can reach as high as 88 g/L because its synthesis only requires 

three steps from the central metabolic node (acetyl-CoA) (Xiong et al. 2014). In another and 

more radical approach, an artificial cell-free system containing enzyme cocktails can mimic one 

or many functions of a biological system. Such systems can be used to synthesize products with 

near maximum theoretical yields (Hodgman and Jewett 2012; Ye et al. 2009). Cell-free systems 

can be designed to achieve optimal biosynthesis without cell maintenance cost.   

      Lastly, development of non-model microbial workhorses with desired traits in energy 

metabolism may achieve higher biosynthesis potentials, enabling the design of industrial 

biorefineries for the production of a broad range of products. In fact, even in the modern era of 

genomics, it is estimated that > 99% of all bacterial species remain unknown (Lasken and 

McLean 2014). Some non-model species might have a unique energetics that can facilitate 

product synthesis. For example, Algenol develops the engineered cyanobacteria for phototrophic 

ethanol production from CO2 (http://www.algenol.com/). Moreover, cyanobacterial species have 

shown faster growth and higher production rate/titer by co-utilization of organic substrates (You 

et al. 2014; Atsumi et al. 2009). Cyanobacterial photo-fermentations, may facilitate cost-

effective and large-scale biorefineries by using cheap feedstocks, CO2, and light energy. In fact, 

http://www.algenol.com/
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Nature is the best synthetic biologist and may have already prepared us an excellent chassis that 

we have not discovered yet. When we try to out-do Nature’s performance, we must first 

assimilate her lessons of ‘Yin-Yang’. 

3.7. Conclusions 

We have discussed the Yin-Yang concept as the underlying regulatory mechanism in cell 

metabolism. Biosynthesis of diverse useful products requires sophisticated genetic pathway 

engineering to steer a high flux to the final product while energy fitness requires the cell 

metabolism to be minimally changed. Since the powerhouse in microbial cell factory is not 

limitless, energy shortage eventually leads to metabolic shifts and reduced cell productivity in 

engineered microbes. The Yin-Yang balance may caution against the assumption that the host 

metabolism can be modified extensively to produce any desired products. By using fluxomics, 

we can formulate guidelines to avoid many false starts and dead ends during metabolic 

engineering. In addition, industrial bioprocess always faces numerous constraints and trade-offs 

(mass transfer limitations in fermentation, sterilization, strain stability, contaminations, and 

aeration costs). Feedstock selections, downstream product separation, and waste treatment are 

critical issues that impact product profitability. Thus, the design-build-test-learn cycle should 

cover both strain development and economic analysis. Nevertheless, the Yin-Yang philosophy 

provides general insights into biotechnology tradeoffs.      
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Figure 3.1. Cell carbon and energy metabolism illustrated by Yin-Yang Theory (note: engineered 

parts include plasmids, over-expressed enzymes, synthetic circuits, etc.)    
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Figure 3.2a E. coli strains producing ethanol (growth rate = 0.05 h
-1

)  

 

 

Figure 3.2b E. coli strains producing isobutanol (growth rate = 0.05 h
-1

)  
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Figure 3.2c E. coli strains producing fatty acid (growth rate = 0.05 h
-1

)  

 

 

Figure 3.2d E. coli strains producing fatty acid (growth rate = 0.20 h
-1

)  
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Figure 3.2a-d. Genome-scale FBA models for microbial biofuel mole-carbon yields from glucose. 

We use an E. coli FBA model (iJO1366) to predict production of different biofuels from glucose. 

Alcohol production is simulated under the microaerobic condition (O2 influx ≤ 1.85 

mmol/(gDW∙h)), while fatty acid is under aerobic condition (O2 influx ≤ 12 mmol/ (gDW∙h)). 

The medium conditions and glucose uptake rate (8 mmol/ (gDW∙h)) are same for all FBAs. Extra 

metabolic burden includes both protein overexpression and maintenance energy increase. Here, 

10% extra metabolic burden is equivalent to 10% overexpression of biomass protein plus a 

proportional increase of non-growth associated ATP loss by 10 mmol ATP/(gDW∙h). For each 

case, the objective function is set as to maximize the biofuel production. Abbreviations: DW 

(Dry Weight); FA (Fatty acid); Glc (Glucose); IB (Isobutanol). 
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Figure 3.3 Energy fitness and productivities in microbial cell factories.  

Figure 3.3a: The trend of metabolic entropy changes (unit: ATP generation per glucose). In 

optimal metabolism, one mole of glucose generates 38 ATP for biosynthesis. Under constraints 

of P/O ratios and maintenance loss, less ATP can be generated (i.e., increase of metabolic 

entropy).  

Figure 3.3b: The transition from carbon limitation to energy limitation with the increase of 

product yield. In many cases, the energy limitation prevents strains from achieving the yield and 

titer at break-even point.  
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Figure 3.3c: Cascade of energy changes (Heat of combustion) during biofuel synthesis from 

glucose. Reported yields: ethanol -- 96% of theoretical yield (Alper et al. 2006), isobutanol -- 85% 

of theoretical yield (Atsumi et al. 2008a), fatty acid --50% of theoretical yield (He et al. 2014), 

and H2 (dark fermentation) -- 50% of theoretical yield (Rachman et al. 1997).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 

 

CHAPTER FOUR 

ENHANCE ENERGY STATE OF FATTY ACID PRODUCING STRAINS 

WITH VITREOSCILLA HEMOGLOBIN 

  

4.1. Abstract 

Engineered microbial species provide a sustainable platform to produce a wide range of 

chemicals from renewable resources. However, production of those compounds imposes 

significant metabolic burdens on host cells, leading to shifted metabolism, disrupted membrane, 

and unstable phenotype; those effects become even significant when oxygen becomes limited in 

the cell culture. Heterogeneous expression of Vitreoscilla hemoglobin (VHb) is known to 

enhance growth and energy efficiency of various hosts under microaerobic condition. In this 

study, we engineered fatty acids producing E. coli strain by introducing VHb and its mutant 

(VHb50), to solve the intracellular energy crisis. Growth and fatty production experiments 

indicated that the strain with VHb50 (strain GW50) achieved higher cell density and increased 

titer of fatty acids (50% improvement). In contrast, the benefit from wild-type VHb expression 

(GW1) counteracted its metabolic burden, and there is no significant difference in biomass and 

fatty acid titer. Further, expression of VHb50 significantly increased the ratio of unsaturated fatty 

acid (C16:1 and C18:1), especially oleic acid (C18:1), compared with the control strain without 

VHb. Lastly, we integrated the effect of VHb into flux models to simulate the responses of 

different host strains. The results demonstrated a different level of trade-off between the burden 

and the benefit from introduced genetic components, indicating the importance of specific 

properties of each genetic part.  

4.2. Introduction 
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Metabolic engineering aims to obtain desired products through genetic modifications (Bailey 

1991). The common approaches of dragging carbon fluxes to target molecules include gene 

knockout and heterogeneous enzyme expression. Even before the birth of ‘Metabolic 

engineering’, the fact that metabolic burden contributed from heterogeneous protein expression 

and plasmid maintenance led to decreased growth and shifted metabolism have been realized by 

researchers (Schaaff et al. 1989; Birnbaum and Bailey 1991). With the advancement of DNA 

technologies (e.g., PCR (Saiki et al. 1985), compatible multiple plasmids system (Lutz and 

Bujard 1997), convenient genome DNA knockout (Datsenko and Wanner 2000), and advanced 

sequencing) as well as the increased demand of bulk chemicals production from green 

approaches, metabolic engineering have greatly extended its range of product to amino acids, 

drugs, polymers, and most recently biofuels(Stephanopoulos et al. 1998). After more than twenty 

years of development, the competition between introduced genetic parts and desired products for 

carbon and energy source became even intense, leading to unstable genotypes and phenotypes 

(production performance), and this situation became especially severe in engineered E. coli 

strains producing biofuels (Hollinshead et al. 2014; Wu et al. 2015; He et al. 2014; Lennen et al. 

2011).   

      Fatty acids are important precursors for productions of biodiesel, surfactants, and lubricants 

in the industry. Biosynthesis of fatty acids or related compounds through metabolic engineering 

or synthetic biology has been a hot field during recent years (Jones et al. 2015). A series of 

approaches have been employed to improve fatty acid or biodiesel production including 

introduction of heterogeneous enzymes (Lu et al. 2008), knockout degradation pathway (Lu et al. 

2008; Steen et al. 2010), reversal of degradation pathway (Dellomonaco et al. 2011), boosting 

regulatory factors that activate the fatty acid pathway (Zhang et al. 2012a), and employment of 
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dynamic sensor control system to relieve toxicity from intermediates (Zhang et al. 2012b; Xu et 

al. 2014). However, those high-yield fatty acid producing strains have been found to be unstable 

even at laboratory conditions (He et al. 2014). This situation became worse during process scale-

up when local culture conditions (e.g., pH, oxygen, toxic compounds) are unfavorable. 
13

C-MFA 

has been applied to study the central metabolism of fatty acid producing strains, and the results 

indicated that remarkably high cellular maintenance energy was required for engineered strains 

producing fatty acid (He et al. 2014). Fatty acid production flux was found to be sensitive to P/O 

ratio as well as oxygen flux, based on FBA simulation (Wu et al. 2015). Vitreoscilla hemoglobin 

(VHb) has been well known to promote oxygen uptake and ATP production under oxygen 

limited condition in many hosts including E. coli (Khosla and Bailey 1988a). The introduction of 

VHb into fatty acid producing E. coli strains may potentially solve the problem of intracellular 

oxygen and energy limitation.      

      Vitreoscilla hemoglobin was first discovered by Webster and Hackett as early as 1966 

(Webster and Hackett 1966). It was not realized as the first bacteria hemoglobin until its amino 

acid sequence was determined and showed high homology with eukaryotic hemoglobin 

(Wakabayashi et al. 1986). Heterogeneous expression of active VHb in E. coli was achieved two 

years later by two groups (Khosla and Bailey 1988a; Khosla and Bailey 1988b; Dikshit and 

Webster 1988). For the first time, Khosla and Bailey demonstrated that expression of VHb 

promoted oxygen uptake and improved the growth of host under microaerobic conditions. Later 

work by the same group further realized that VHb expression was able to enhance protein 

expression in E. coli under oxygen limited condition (Khosla et al. 1990). Considering of limited 

oxygen availability within cell culture at late exponential phase, the capability of VHb in 

enhancing growth and metabolites production have been widely applied to enhance production of 
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a wide range of compounds/proteins in various species (Zhang et al. 2007; Stark et al. 2015; Wei 

and Chen 2008). Those successful cases include: improved yields of cephalosporin C in 

Acremonium chrysogenum (DeModena et al. 1993), production improvement of human tissue 

plasminogen activator (tPA) in recombinant Chinese hamster ovary (CHO) cells (Pendse and 

Bailey 1994), promoted secretion/production of α-amylase and neutral protease in B. subtilis 

(Kallio and Bailey 1996), increased biomass weight, chlorophyll, nicotine, and reduced 

germination time (half time) in transgenic Nicotiana tabaccum (tobacco) (Holmberg et al. 1997), 

enhanced production rate and titer of erythromycin in engineered Saccharopolyspora erythraea 

(Minas et al. 1998). Several review papers have been published to summarize those successful 

applications of VHb in protein production and metabolic engineering (Zhang et al. 2007; Stark et 

al. 2015; Bülow et al. 1999; Frey and Kallio 2003; Stark et al. 2011).  

      Considering its competency and numerous successful applications of VHb, we proposed the 

hypothesis that VHb may also relieve the metabolic burden and intracellular stress caused by 

fatty acid production. To verify our hypothesis, we inserted VHb and its mutant into engineered 

E. coli strains that produced fatty acid. We also employed flux balance model to simulate the 

effects of VHb on fatty acid production.  

 

4.3. Experimental and Methods 

4.3.1. Chemicals and Strains  

All chemicals were reagent grade and purchased from either Sigma-Aldrich (St. Louis, MO, 

USA) or Fisher Scientific (Pittsburgh, PA, USA) unless otherwise noted. Restriction enzymes, 

Phusion DNA polymerase, and T4 ligase were from New England Biolabs (Ipswich, MA, USA). 
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The DNA clean and concentrating kit, Gel Recovery kit, and Miniprep kit were from Promega 

(Madison, WI, USA). 

      DNA sequence of vhb and its mutant vhb50 was based on previous report (Andersson et al. 

2000). Both genes were synthesized by GenScript Inc. (NJ, USA) and cloned into pUC57 vector. 

E.coli DH10B was used for plasmid manipulation. The fadE knockout E. coli DH1 strain (endA1 

recA1 gyrA96 thi-1 glnV44 relA1 hsdR17 (rK
-
 mK

+
) λ

-
) and the plasmid pA58c-TR were from Dr. 

Fuzhong Zhang’s lab (He et al. 2014).  

4.3.2. Plasmid construction 

Primers used in this study were synthesized from Integrated DNA Technologies (Coralville, IA) 

and the detailed sequences are listed in Table 4.1. Plasmids GW1 and GW50 were constructed 

based on the plasmid pA58c-TR, to insert vhb or vhb50 gene to the downstream of tesA gene. To 

ensure the expression of vhb/vhb50 gene under the control of pLacUV5 promoter, an RBS 

sequence was added upstream of vhb/vhb50 gene. (Figure 4.1) The vhb/vhb50 genes were 

amplified using the primers Vh_f and Vh_f, while the vector pA58c-TR was amplified by the 

primers of pA58C_f and pA58C_r (as shown in Figure 4.2). The PCR products were cleaned by 

DNA clean and concentrating kit (Promega) and then digested by XhoI and HindIII at 37 
o
C for 

two hours. The digested DNA fragments were purified through gel purification and ligated 

though quick ligation kit at room temperature for 10 min. Ligation products were subsequently 

transformed into DH10B chemical competent cells . After incubation overnight at 37 
o
C, colony 

PCR was employed to identify positive clones. A few positive clones were incubated in Luria-

Bertani (LB) medium (37 
o
C 220 rpm) supplied with appropriate antibiotics (30 μg/mL 

chloramphenicol) overnight for Miniprep. DNA sequences of both plasmids were validated by 

sequencing services in Genome center at Washington University School of Medicine.   



92 

 

 

4.3.3. Medium and culture conditions 

A M9 MOPS minimal medium was employed in this study for fatty acid production experiments 

(Neidhardt et al. 1974). The detailed composition of this medium is as following (per liter): 20 g 

of glucose, 6.8 g of Na2HPO4, 3.0 g of KH2PO4, 3.96 g of (NH4)2SO4, 0.58 g of NaCl, 

supplemented with 50 ml of 1.5 M MOPS with pH adjusted to 7.4 with KOH, 1 ml of 1 M 

MgSO4, 0.1 ml of 10 mg/ml vitamin B1, 1 ml of 0.1 M CaCl2, 1 ml of 1000X  micronutrients 

solution including 1.6 g of MnCl2·4H2O, 2.9 g of ZnSO4·7H2O, 2.5 g of H3BO3, 2.8 g of 

FeSO4·7H2O, 0.71 g of CoCl2·6H2O, 0.48 g of CuSO4·5H2O, and 0.37 g of (NH4)6Mo7O24·4H2O. 

      For fatty acid production in minimal medium, a single colony of cells from a fresh plate was 

used to inoculate a 5 ml of LB media for the pre-culture. The pre-culture was grown overnight at 

37°C on a rotary shaker at 225 rpm. The pre-culture was used to inoculate (2%, v/v) a 5 ml of 

minimal medium for overnight growth. After reaching stationary phase, the first minimal culture 

was subsequently inoculated into the second minimal medium (0.5%, v/v) grown on a rotary 

shaker in 25 ml tubes (25 x 150 mm) at 37°C and 225 rpm. IPTG was added at appropriate 

concentrations when cell growth reaches an early exponential phase (OD600 ~ 0.8), to induce 

gene expression under the control of PLacUV5 promoter. The liquid cultures from each tube were 

centrifuged and the supernatant was separated from the biomass.  Both the biomass and the 

supernatant samples were stored in -20 °C prior to analysis.   

 

4.3.4 Fatty acid measurement 

200 μl of cell culture was mixed with 300 μl of dH2O, and get acidified using 50 µl of 

concentrated HCl. 500 µl of EtAc spiked with C19:0 ME as internal standard was added to 

extract fatty acid from water phase. 400 µl of organic phase containing fatty acids separated by 
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centrifugation was transferred to a new tube and another 500 µl of EtAc was added again to 

repeat the extraction. 100 μl of MeOH:HCl (9:1) was added to the EtAc extract and mixed well. 

100 μl of TMS-diazomethane (2 M in hexanes) was also added under hood and the reaction was 

kept in the hood for 10 ~ 15 min at room temperature. The methyl esters of fatty acids were 

analyzed using a gas chromatograph mass spectrometer (GC-MS) (Hewlett Packard 7890A and 

5975C, Agilent Technologies) equipped with a DB5-MS column (J&W Scientific). The GC-MS 

program was as follows: the column temperature initially held at 80 ºC for 1 min, raised to 280 

ºC at 30 ºC·min
-1

 and held at 280 ºC for 3 min. Helium was used as the carrier gas. The mass 

spectra were analyzed using the Enhanced Data Analysis software (Agilent Technologies). The 

fatty acids were quantified based on the standard curve of standard mixtures of methyl esters of 

fatty acid. 

 

4.3.5. Simulate cellular physiologies with flux balance model 

Genome scale model iEcDH1_1363 (includes 1363 genes, 2752 reactions, and 1950 metabolites) 

was employed to simulate fatty acids production in DH1 strain (Monk et al. 2013). A simplified 

flux of fatty acid (C16:0) was added as representative of fatty acid production, and the objective 

function was set to maximize this flux (Wu et al. 2015). The growth rate of engineered strain 

was set as 0.2 h
-1

, considering that fatty acid production is growth associated (He et al. 2014; Lu 

et al. 2008). Default values were employed for the boundary of all fluxes except the followings: 

The upper and lower boundary of flux 1032 was set to be zero for △fadE; the sensitivity of 

maintenance energy was tested through FBA; the lower boundary of glucose uptake flux was set 

as experimental value. We assumed VHb improved the affinity of terminal oxidase (i.e., 
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cytochrome d or cytochrome o), leading to increase uptake flux of glucose. We also assumed that 

VHb had no influence on glucose uptake based on previous reports (Tsai et al. 1996a).  

      The COBRA toolbox and LibSBML library were employed for genome scale model 

manipulation (Schellenberger et al. 2011; Bornstein et al. 2008); while Gurobi 5.5 linear solver 

(Gurobi Optimization Inc.) was utilized for FBA calculation on MATLAB 2012b.   

 

4.4. Results and discussion 

4.4.1 Growth kinetics and fatty acid production  

Growth kinetics for all strains incubated in M9 minimal medium was described in Figure 4.6. 

Shaking tubes were employed here for obtaining microaerobic conditions. There is an obvious 

exponential phase rate for each strain after IPTG induction. The growth rate of exponential phase 

was very close to the previous report: pA58c 0.29 h
-1

, GW1 0.19 h
-1

, GW50 0.29 h
-1

 (He et al. 

2014). Introduction of VHb only showed apparent improvement during late exponential phase of 

GW50.  

      The trend of fatty acid production is quite similar to the biomass growth (shown in Figure 

4.6): after 24 hr of induction, GW50 produced most fatty acid, while GW1 produced least fatty 

acid. Fatty acid titer of the control strain pA58c in this study is much lower than previous report 

by our lab (He et al. 2014), mostly due to poor oxygen supply in shaking tubes compared with 

baffled shaking flasks. The importance of oxygen on cell growth and free fatty acid production 

can also be revealed from this difference.        

      To interpret the profiles in biomass growth and fatty acid production, two factors may 

contribute most: First, wild-type VHb did improve oxygen uptake and energy metabolism in 

GW1 strain; however, this benefit did not counteract the metabolic burden caused by VHb. This 
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observation reflected the importance of specific properties for each individual cellular 

component, where protein engineering (e.g., direct evolution or rational design) is able to 

improve/change catalytic kinetics of single enzyme, leading improved yield of desired products 

(Leonard et al. 2010; Bommareddy et al. 2014). On the other side, the impact of VHb50 was 

only significant when cell density was relatively high and oxygen condition was poor, agreeing 

well with all previous reports regarding VHb (Zhang et al. 2007; Tsai et al. 1996b). This nature 

actually limits further application of VHb is, because industrial production always requires high 

production rate where fully aerobic condition is employed. To resolve this bottleneck, a deep 

understanding of VHb mechanism is necessary. 

      The role of VHb has been considered to be improving oxygen transfer, boosting ATP 

generation, and promoting intracellular energy state when extracellular oxygen concentration is 

low (Tsai et al. 1996a; Tsai et al. 1996b; Kallio et al. 1994). Compared with other hemoglobin, 

purified VHb has a medium affinity for oxygen binding as well as relatively slow rate for oxygen 

release in vitro (Giangiacomo et al. 2001), implying its possible function as assisting oxygen 

transport rather than transporter (structure of active VHb shown in Figure 4.2). However, later 

work proved that lipid-bound VHb has a significantly higher affinity with oxygen (20 folder 

enhancement), suggesting its potential role in oxygen transport as a membrane protein (Rinaldi et 

al. 2006). Other functions of VHb have also been reported as relieving oxidative stress, 

detoxifying nitric oxide (NO) in vivo (Frey et al. 2002), and enhancing intracellular level of 

tRNA and ribosome (Roos et al. 2002). Further work will provide more insights over detailed 

mechanism of VHb.   

4.4.2 Expression of VHb affects the degree of unsaturation of free fatty acid  
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The profile of fatty acid also experienced a significant shift after the introduction of VHb (shown 

in Figure 4.6). At both early exponential (5 hr after IPTG induction) and late exponential phase 

(24 hr after IPTG induction), the percentage of unsaturated fatty acid (C16:1 and C18:1) 

increased significantly (from 0.37 to 0.46), especially for the oleic acid (C18:1). Cao et al. has 

reported that simultaneous overexpression of fabA and fabB will increase the ratio of unsaturated 

fatty acid (Cao et al. 2010). In another study, expression of FadR was also found to enhance the 

percentage of unsaturated fatty acid by activating expressions of fabA and fabB (Zhang et al. 

2012a). However, heterogeneous expression of VHb in Aurantiochytrium sp. led to a decreased 

percentage of unsaturated fatty acids (Suen et al. 2014). Previous studies also proved that VHb 

was able to boost the intracellular expression of heterogeneous proteins in E. coli (Khosla et al. 

1990). Based on those facts, we infer that VHb may promote the leaky expression of fadR in 

plasmid, leading to elevated level of fabA and fabB pathway. To further confirm this effect, 

evidence from transcriptional or proteomics level will be helpful.       

      Increased degree of unsaturation of fatty acid is desired for several reasons. One important 

fact is that biodiesel derived from high content of unsaturated fatty acids have lower melting 

temperature, which is suitable as fuels for cold environments (e.g. winter). Another feature is that 

uptake monounsaturated fatty acid may raise the level of high-density lipoprotein (HDL) 

cholesterol, which is considered as ‘good’ cholesterol. Introduction of VHb into algae may 

facilitate its production of omega-3 oil.    

4.4.3. Effect of oxygen and maintenance energy on fatty acid production  

To quantify the effect of oxygen and maintenance energy on fatty acid production, FBA 

simulation was employed as described in the section of methods. To simulate cellular 



97 

 

physiologies at different growth phases, we adopted two set of conditions describing early 

exponential phase (vglucose = 7.6 mmol/gCDW·h, growth rate μ = 0.29 h
-1

, default P/O ratio = 

1.75) and late exponential phase (vglucose = 4 mmol/gCDW·h, growth rate μ = 0.1 h
-1

, deceased 

P/O ratio = 1). These parameters were either from previous report or experimental measurement 

in this study (He et al. 2014). Considering of membrane disruption and proton leakage caused by 

free fatty acid accumulation (Lennen et al. 2011), we assumed a decreased P/O ratio as 1 for the 

late exponential phase (Heyland et al. 2011).     

      The simulation results were shown in Figure 4.7a (for early exponential phase) and Figure 

4.7b (for late exponential phase). At early exponential phase, theoretic maximal yield of fatty 

acid was ~ 0.24 g FA/g glucose (for growth rate μ = 0.29 h
-1

, 0.256 g FA/g glucose for growth 

rate μ = 0.26 h
-1

). In our previous report, the highest yield was 0.17 g FA/g glucose, which is 

already 66% of the theoretic value (He et al. 2014). Taken cellular maintenance energy of the 

fatty acid strain into consideration, 0.17 g FA/g glucose would be very close to the maximal 

yield at this condition. On the other side, a rough estimation of cellular maintenance energy can 

be made based on FBA prediction: The maximal maintenance energy for control strain pA58c 

was 30 mmol/gCDW·h in the minimal medium when oxygen supply is sufficient. Compared 

with other reports on maintenance energy for engineered strains (Heyland et al. 2011), that value 

is quite reasonable. Another obvious trend was that with the decrease of oxygen flux and the 

increase of maintenance energy to certain level, the yield of fatty acid would meet a sudden drop 

– ‘energy cliff’ as we discussed in our previous report (Wu et al. 2015). At this period, a slight 

improvement in oxygen flux (e.g., from 14 to 16 mmol/gCDW·h, assumed enhancement by VHb) 

would not make any significant difference in fatty acid yield.  In late exponential phase, when 

cell culture reaches a relatively high density, the oxygen condition in medium becomes 
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microaerobic (as shown in Figure 4.7b). A minor increase in oxygen flux (e.g., from 4 to 6 

mmol/gCDW·h, assumed enhancement by VHb) will harvest a significant improvement in fatty 

acid yield. That also explained why the effect of VHb was significant at microaerobic conditions. 

Notably, the expression of VHb from a medium copy of plasmid would bring a certain amount of 

metabolic burden. This metabolic burden is not too much, however, for fatty acid producing 

strain with high cellular maintenance energy, this additional burden may become ‘the straw that 

broke the camel’s back’ if oxygen is also limited.  There is no report regarding how the structure 

difference (i.e., amino acid mutations) leads to the function improvement in VHb50 (Andersson 

et al. 2000), compared with WT VHb. From FBA simulation, we infer the expression of VHb50 

may make a larger improvement in oxygen uptake flux, compared with WT VHb.  

4.5. Conclusion 

In this study, our hypothesis was confirmed that the introduction of VHb was able to relieve the 

metabolic stress of fatty acid producing strain and improve the final titer of biomass and fatty 

acid. We further revealed that VHb expression would improve the ratio of unsaturated fatty acid, 

which may shed light to further application of VHb to produce fuel with lower melting 

point(Zhang et al. 2012a) or other valuable products with high degree of unsaturation. Lastly, we 

demonstrated the importance of individual VHb properties on the performance of engineered 

strains. To sum up, engineered components (e.g., enzyme, transporter, or circuit) would only 

bring expected enhancement when its benefit beats it burden.      
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Name of 

primer 

Sequence (5’—3’) 

pA58C_f GCAC AAGCTT   CCAGGCATCAAATAAAACGA A 

pA58C_r CCTTA  CTCGAG  TTATG AGTCATGATTTACT 

Vh_f 
CG CAT CTCGAG TTTAAGAAGGAGATATACAT  

ATGTTAGACCAGCAAACCATTA 

Vh_r GCAC AAGCTT TTATTCAACCGCTTGAGCGTA 

Table 4.1 DNA sequence of all primers used in this work 

‘__’ indicates the restriction cutting sites.  
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Figure 4.1 Structure of Vitreoscilla hemoglobin in active dimer form, simulated by VMD 
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Figure 4.2 Genetic manipulations to insert VHb into pA58c-TR  
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Figure 4.3 Optimization of IPTG concentrations for VHb50 expression   

 

 

 

Figure 4.4 Growth curve for three fatty acid producing strains   
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Figure 4.5 Fatty acid productions after 24 hr of IPTG Induction  
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Figure 4.6a Free fatty acid production profile for control strain and VHb strain after 8 hr IPTG 

induction 

 

 

Figure 4.6b Free fatty acid production profile for control strain and VHb strain after 24 hr IPTG 

induction 

 

 



111 

 

 

Figure 4.7a Effect of oxygen flux and maintenance energy on fatty acid yield at exponential 

phase 

  

 

Figure 4.7b Effect of oxygen flux and maintenance energy on fatty acid yield at late exponential 

phase 

 

 

 

 



112 

 

CHAPTER FIVE 

BUILD WEB-BASED PLATFORM FOR FLUXOMICS STUDIES: 

MICROBESFLUX REBUILD AND WEBSITE DEVELOPMENT 

 

5.1. Abstract 

Metabolic flux analyses offer direct insights into cell metabolism. Metabolic flux analyses 

include genome-scale Flux Balance Analysis (FBA) and 
13

C-Metabolic Flux Analysis (
13

C-

MFA). To speed up fluxomics studies, we need a user-friendly platform to construct metabolic 

networks from genome information and perform flux calculations using 
13

C data. Four years ago 

(2011), Tang lab developed a web-based platform (MicrobesFlux) for reconstructing metabolic 

models from the KEGG database (Kyoto Encyclopedia of Genes and Genomes). The platform 

ran on a shared server system at Washington University in St. Louis. Unfortunately, this server 

was unstable and suffered from downtime occasionally. Hence, we set out to rebuild 

MicrobesFlux on a commercial server to make the systems more usable. The enhanced 

MicrobesFlux updates metabolic network information with the latest version from the KEGG 

database. In addition, we added MATLAB programs into the platform so that it can also provide 

13
C-MFA. The new program (called WUFlux, WU: Washington University) can carry out 

13
C-

MFA of different metabolic types for prokaryote species. Furthermore, WUFlux also contains a 

carbon fate map of central pathways, labeling correction programs, and user manuals. The 

systems we developed are open-source and free to use. The new platform for fluxomics study is 

now available at http://www.fluxomics.net, and we will continue to improve the functionalities 

of our software for both FBA and 
13

C-MFA.   

 

http://www.fluxomics.net/
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5.2. Introduction 

Metabolic flux analysis is widely used to predict or measure in vivo enzyme reaction rates in 

microbes. FBA studies microbial metabolism based on the stoichiometry of the metabolic 

reactions as well as the measurement of inflow (substrate uptake) and outflow fluxes (biomass 

and product synthesis). FBA requires an objective function (e.g., optimization of biomass yield) 

to estimate the flux values. A more rigorous flux analysis combines the flux stoichiometry with 

13
C isotopic tracing, i.e., 

13
C-MFA. 

13
C-experiments consist of feeding the cell culture with a 

defined 
13

C-substrate to fingerprint downstream metabolites with the labeled carbon (
13

C). The 

patterns of isotopic enrichment in metabolites, once 
13

C has reached a steady state distribution 

throughout the metabolic network, can be used to decipher flux distributions in the cell 

metabolism. The isotopomer information can discover novel pathways, resolve reversible and 

branched fluxes, and quantify circular metabolic routes (e.g., the TCA cycle). On the other hand, 

13
C-MFA, requiring both experimental and modeling efforts, is time-consuming and costly 

(Figure 5.1). In general, one 
13

C-MFA project can take several experienced researchers more 

than one year to accomplish (based on personal communications to 
13

C-MFA groups). Although 

13
C-MFA began as early as the 1980s, it has not been as widely used as other analytical/systems 

biology tools (Crown and Antoniewicz 2013). To date, published 
13

C-MFA papers are fewer 

than 1000 (Crown and Antoniewicz 2013). Based on Pubmed database, in 2012 and 2013, only 

41 papers (related to 
13

C metabolic flux analysis) have been published. Among them, 18 were 

review or method papers, while 10 were research papers on bacteria and the remaining 13 papers 

were research on yeast or mammalian cells. The progress of flux analysis has been slow because 

the construction of a metabolic network based on an annotated genome, 
13

C-labeling tracing, and 

flux calculation can all be very time-consuming. On the other hand, the world’s bacterial species 
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number between 10
7
 to 10

9
, and ~10

5
 species have been sequenced for their 16S rRNA genes 

(Schloss and Handelsman 2004). There are fewer than one hundred 
13

C-MFA studies for 

nonmodel species. The gap between 
13

C-MFA studies and sequenced bacterial species calls for 

broad-scope fluxomics tools for characterization of a large amount of unknown microbial species. 

To reduce modeling challenges, FBA platforms have been developed to facilitate reconstructing 

genome-scale metabolic networks. These platforms include SuBliMinal (Swainston et al. 2011), 

SEED (Henry et al. 2010), RAVEN (Agren et al. 2013), Pathway Tools (Karp et al. 2002), 

COBRA (Becker et al. 2007), and FAME (Boele et al. 2012). These platforms have been 

discussed in a recent review paper (Hamilton and Reed 2014). 
13

C-MFA software platforms are 

also being developed, including FiatFlux (Zamboni et al. 2005b), iMS2Flux (Poskar et al. 2012), 

INCA (Young 2014), Metran (Yoo et al. 2008), OpenFLUX (Quek et al. 2009a), OpenMebius 

(Kajihata et al. 2014), 13CFLUX (Wiechert et al. 2001) and 13CFLUX2 (Weitzel et al. 2012). 

With rapid advances in genome sequencing, network reconstructions and 
13

C-based functional 

analysis are concurrently required for metabolic characterizations.  

      To augment these tools, we built an integrated platform at www.fluxomics.net, combining 

the functions of both FBA -- MicrobesFlux, at (www.microbesflux.org, as shown in Figure 5.2) 

and 
13

C-MFA -- WUFlux, at (13cmfa.org, as shown in Figure 5.3). MicrobesFlux is a web 

platform to draft and reconstruct metabolic models from KEGG (www.genome.jp/kegg/). 

However, the test version of MicrobesFlux ran into problems on its shared server, which suffers 

from instability and occasional downtimes. To resolve this issue, we ported the system to the 

Amazon server EC2 (as shown in Figure 5.4) and rebuilt the genome modeling system. Our tool 

is a template-based package for tracking carbon transition and performing isotopomer 

corrections and 
13

C-MFA. WUFlux consists of three parts: a) a carbon transition map (CTM), 

http://www.fluxomics.net/
file:///C:/15spring/dessertation_defense/www.microbesflux.org
file:///C:/15spring/dessertation_defense/13cmfa.org
http://www.genome.jp/kegg/
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which is the basis for building 
13

C-MFA models; b) an isotopomer analysis package for 

analyzing both amino acids and key free metabolites in the central metabolism (based on a 

MATLAB program by the Wiechert group (Wahl et al. 2004)); c) and open source MATLAB 

program files which calculates 
13

C-MFA from MID information. Our websites can be accessed 

via the Internet and all fluxomics tools are free for use/download and easy to expand (for 

WUFlux). In summary, the new version of this web-based platform offers a programming-free 

and user-friendly broad scope tool that supports flux analysis studies.   

5.3. Implementation 

5.3.1. MicrobesFlux update  

MicrobesFlux is a free open-source platform. Our previous paper (Feng et al. 2012) has 

described the details of this platform and provided a user manual.  In a nutshell, MicrobesFlux 

consists of four parts: a web front-end (the user interface), a backend, a task processing system, 

and an optimization server. In the past, MicrobesFlux had issues with the host machine on which 

the task processing system and the optimization server were running. When we first built 

MicrobesFlux, there was no specific funding for the project. Therefore, we had to rely on a 

server provided by Washington University, which is shared by other users and frequently 

restarted, resulting in an unstable task processing system that can delay user-submitted tasks. 

Besides, we did not have access to the most up-to-date KEGG models due to KEGG’s paid 

subscription model. In the summer of 2014, we received a grant to continue work on this topic, 

fixing problems and updating our database versions. During the process of reloading 

MicrobesFlux, we moved the backend to a stable, commercial server and completely rewrote the 

task processing system. We also added a monitoring function to the platform to better manage 

the task processing system.  
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5.3.2. New features of reloaded MicrobesFlux 

a. We have updated our backend KEGG database. Users can run FBA on any KEGG organisms 

as of September 2014. The new database in MicrobesFlux includes 3192 species, compared to 

1304 species in the test version.  

b. We now support the SBML output format, which broke down earlier. 

c. Users can now store an unlimited number of models. Previously, we periodically purged 

models due to storage constraints. Now the backend, running on Amazon EC2, supports an 

unlimited number of models for any user. 

d. We now have a robust task management system. Users are guaranteed to get their results back 

within 24 hours of submitting the optimization job. 

5.3.3. Development of websites for fluxomics studies 

We have built a comprehensive web-based platform including various tools (most tools were 

developed by our lab) for fluxomics research (as shown in Figure 5.2). In our website 

(fluxomics.net, as shown in Figure 5.2), users can read the latest publications by clicking the 

button ‘Enter 13C Flux News’; they can also build up and calculate their genome-scale model by 

entering MicrobesFlux; they can further get 
13

C-MFA tools by visiting WUFlux. The use of 

MicrobesFlux is kept the same as it was released four years ago. For WUFlux, users can 

download 
13

C-MFA tools: the carbon transition map (CTM), the 
13

C-MFA software package, and 

the MS correction Tool (as shown in Figure 5.3) by simply clicking corresponding labels and 

saving packages into their PCs.  

5.4. Results  

A comprehensive platform incorporating both functions of FBA and 
13

C-MFA has been 

released. The new version of MicrobesFlux has been tested thoroughly. Additionally, the newly 
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integrated WUFlux software has a user-friendly interface; all functions are easy to operate, and 

calculation can be saved at any stage. Users can choose different templates for various labeled 

substrates and metabolic networks. By implementing WUFlux, researchers without professional 

knowledge of 
13

C-MFA can easily get flux data of high quality from raw MS data. Because the 

MATLAB codes of all program files in WUFlux are open to researchers, users can extend or 

enhance its capability by editing the MATLAB program. Finally, WUFlux includes a carbon fate 

map and a labeling correction tool for amino acids and free metabolite analysis, which can 

facilitate future application of 
13

C-MFA. The completely open-source platform makes good 

feasibility for further development. We will continue to collect users’ feedback and improve its 

performance in the future. We hope that our platform can not only provide broad-scope 

fluxomics functions for characterization of novel microbial species, but also facilitate rational 

metabolic engineering.   

5.5. Availability and requirements  

 Project name: Fluxomics 

 Project homepage: http://fluxomics.net (for each individual project, MicrobesFlux is at 

http://microbesflux.org and WUFlux is at http://13cmfa.org) 

 Operating systems: Platform independent  

 Programming language: Java, Python and MATLAB (for 2012b and later version) 

 License: Both MicrobesFlux and WUFlux are freely available. 

 Any restrictions to use by non-academics: none 

http://fluxomics.net/
http://microbesflux.org/
http://13cmfa.org/
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Figure 5.1. 
13

C-MFA protocol and sources of flux analysis variance; in general, a 
13

C-MFA 

requires months of work to accomplish. MFA errors (in blue boxes) can come from both 

experimental measurements and modeling calculations. 
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Figure 5.2. The webpage of our platform for comprehensive fluxomics studies 

(http://fluxomics.net). 
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Figure 5.3. The webpage of WUFlux (http://13cmfa.org), which can be accessed and freely 

download 

 

 

 

 

 

 

 

 

 (a) 

http://13cmfa.org/
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(b) 

Figure 

5.4. The webpage of Amazon server EC2, (a) all Amazon web services, (b) buckets of our 

websites 
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CHAPTER SIX 

 RAPID PREDICTION OF BACTERIAL FLUXOMICS USING MACHINE 

LEARNING AND CONSTRAINT PROGRAMMING 

6.1 Abstract 

Metabolic flux reflects a functional aspect of cell physiology. 
13

C-MFA (
13

C metabolic 

flux analysis) has been widely used to measure in vivo enzyme reaction rates (i.e., metabolic flux) 

in microorganisms. Mining the relationship between environmental and genetic factors and 

metabolic fluxes hidden in existing fluxomic data will lead to predictive models that can 

significantly accelerate flux quantification. In this paper, we present a web-based platform 

(MFlux: http://130.101.92.205/influx/) that predicts the bacterial
 
central metabolism via machine 

learning, constraint programming, and quadratic programming, leveraging data from over 100 

13
C-MFA papers on heterotrophic microbial metabolisms. Three machine learning methods, 

namely Support Vector Machine (SVM), k-Nearest Neighbors, and Decision Tree, were 

employed to study the sophisticated relationship between environmental and genetic factors and 

metabolic fluxes. We performed a grid search of the best parameter set for each tested algorithm 

and verified their performance through 10-fold cross validation. SVM yielded the highest 

accuracy of all three algorithms, with average error rate under 5%. Further, we employed 

quadratic programming to adjust flux profiles to satisfy stoichiometric constraints. Experimental 

results showed that MFlux can reasonably predict fluxomes as a function of bacterial species, 

substrate types, genetic modifications, growth rates, oxygen conditions, and cultivation methods.  

 

http://130.101.92.205/influx/
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6.2. Authors’ Summary 

Metabolic information is important for disease treatment, bioprocess optimization, 

environmental remediation, biogeochemical cycle regulation, and our understanding of life’s 

origin and evolution. Fluxomics can quantify microbial physiology at the level of metabolic 

reaction rates. To speed up 
13

C-MFA, we hypothesize that genetic and environmental factors 

generate specific fluxome patterns that can be recognized by machine learning. Aided by 

constraint programming and quadratic optimization, our machine learning platform can predict 

meaningful metabolic information about bacterial species in their environments. Further, it can 

offer constraints to improve the accuracy of flux balance analysis. This study infers that the 

bacterial metabolic network has a certain degree of rigidity in allocating carbon fluxes, and 

different microbial species may share common regulatory strategies for balancing carbon and 

energy metabolisms. As a proof-of-principle, the use of data driven models (e.g., artificial 

intelligence) may assist mechanistic based models to elucidate the topology of microbial 

fluxomes.  

 

6.3. Introduction 

With the advent of systems biology tools such as genomics, transcriptomics, proteomics, 

and metabolomics during the last decade, the understanding of intracellular metabolisms from 

genotype to phenotype has been dramatically boosted. Notably, 
13

C-MFA enables the 

quantification of metabolic reaction rates in vivo [1]. It determines carbon metabolic fluxes using 

the mass isotopomer distribution (MID) of proteinogenic amino acids or free metabolites from 

13
C labeling experiments. 

13
C-MFA is considered as a reliable measurement of central metabolic 
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reaction rates [2], which has demonstrated its power in discovering novel pathways [3,4], 

validating gene functions [3], verifying engineered strains [5,6], and revealing energy 

metabolisms of host strains [7]. In the past decade, advanced parallel bioreactor systems, mass 

spectrometry, and computational tools resolving metabolic fluxes have been developed 

[8,9,10,11], which improved the precision of flux profiles [12] and extended 
13

C-MFA’s 

application to the non-stationary metabolic phase [13,14]. On the other hand, broad applications 

of 
13

C-MFA are still hindered because 
13

C-experiments, biomass analysis, and flux calculations 

are expensive and time-consuming [15]. Moreover, some microbial systems may not be 

amenable to 
13

C-MFA if they require complex nutrients or their genome annotation is incomplete 

[16]. Before performing 
13

C-MFA on non-model species, laborious work is needed to examine 

extracellular metabolites, to characterize unknown pathways, and to analyze biomass 

compositions. 

This study aimed to employ an artificial intelligence (AI) approach called machine 

learning (ML) to investigate bacterial fluxomics patterns. ML is a powerful tool in systems 

biology [17] and has demonstrated successes in omics studies [18,19]. For example, the precision 

of genome annotation on the model species C. elegans has been enhanced by employing a 

simplified SVM (support vector machine) method. Researchers have reached an accuracy of 75% 

on controversial genes [20]. At the transcriptomics level, ML approaches are used for disease 

identification. For instance, SVM has successfully recognized the gene expression patterns of 

hepatocellular carcinoma [21], diffuse large B-cell lymphoma [22], and ovarian cancer [23]. At 

the proteomics level, Supek et al., have employed a combined approach by integrating the 

Principal Component Analysis (PCA) method with SVM, to enhance analytic power in 

identifying ‘fingerprint’ proteins (i.e., unique proteins in each tissue) from different horseradish 
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tissues (leaf, teratoma, and tumor) grown in vitro [24]. In metabolomics, an SVM method can 

resolve the NMR data of metabolites in urine samples from different groups of people (healthy 

vs. pneumonia) [25]. In metabolic modeling, Karp’s group adopted ML algorithms to predict the 

existence of various pathways for metabolic network reconstruction in different organisms [19].  

The general idea of ML is to statistically build a predictive model or an estimator 

 that maps an n-dimensional real number vector called the feature vector to a real 

number called the target or label. If the target takes discrete values, we call the ML model a 

classifier; otherwise, a regressor. A pair of a feature vector and a target forms a sample. Given 

samples, a machine learning algorithm will find such a mapping, usually through solving a 

numerical optimization problem, to minimize the predictive error. Samples used to train a model 

form the training set while those for testing the performance form the testing set. The models 

learned through ML are usually not analytical models that can be represented using an equation. 

Rather, they are numerical operators. For example, an artificial neural network (ANN) model can 

be represented by many matrices, and when being used to predict, the input variables will be 

multiplied with those matrices sequentially. A bad model can only predict well on the training set 

as if it ‘remembers’ the training samples, while a good model can learn the patterns among data 

and still be accurate on samples it has never ‘seen’. Hence, researchers usually make the training 

and test sets mutually exclusive. A mechanism called cross validation is used to ensure the 

mutual exclusiveness of training and test sets while make full use of all data. 

A distinct advantage of ML applications is that they can reduce the need for costly 

experimental supplies and time-consuming bench work. Despite the progress in utilizing ML 

methods in systems biology, there is no similar application in the fluxomics field to predict the 

flux profile. Therefore, we conceived the idea of integrating ML strategies with fluxomics 
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research. To efficiently employ machine learning methods, a database with a sufficient number 

of samples is a prerequisite. Recently, a 
13

C-MFA database (‘CeCaFDB’) has been constructed, 

which includes over 100 papers (mostly on prokaryotic metabolisms) [26]. Based on this 

database, we initiated five categorical and sixteen continuous features to describe the 

environmental and genetic factors involved in 
13

C-MFA of bacterial species. Unlike most omics 

projects employing ML approaches, this work built regression models rather than classifiers: 

Twenty-nine lumped central metabolic fluxes were adopted as the outputs to describe bacterial 

carbon metabolisms. A 10-fold cross validation evaluated the performance of different 

algorithms. Furthermore, we included a knowledge-based system to check whether user inputs 

were biologically meaningful. Lastly, quadratic programming was employed to adjust the fluxes 

predicted by ML to satisfy the stoichiometric constraints. Our web-based platform (‘MFlux’) 

provides reasonable predictions for central metabolic flux profiles on 30 bacterial species, and it 

can be accessed online (http://130.101.92.205/influx/). Although our platform is still in the early 

phase, our attempt to employ an AI approach in fluxome studies will have broad impacts on both 

systems biology and metabolic engineering fields. 

6.4. Methods  

6.4.1. Data collection and preprocessing  

           All the training data for MFlux comes from the literature. The total uptake rate of 

carbon sources is defined as 100; all other fluxes are normalized to a scale of 100. We obtained 

13
C-MFA information for bacterial species from the CeCaFDB database and added a few recent 

papers (total ~120 papers, as of January 2015) [26]. 
13

C-MFA data related to photosynthetic 

bacteria was excluded in this study because of their unique fluxome topologies (such as the 

Calvin Cycle and the reversed TCA cycle) and insufficient sampling sizes for ML.    

http://130.101.92.205/influx/
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In heterotrophic microorganisms, interconversions between glycolysis metabolites 

(phosphoenolpyruvate and pyruvate) and TCA cycle metabolites (oxaloacetate and malate) 

involve a set of anaplerotic reactions (e.g., phosphoenolpyruvate carboxylase, 

phosphoenolpyruvate carboxykinase, pyruvate carboxylase, and malic enzyme), serving as a key 

switch points for carbon flux distribution in bacteria [27]. These reactions, balancing both carbon 

and cofactors, may be employed by different microbial species. For example, E. coli anaplerotic 

pathways involve phosphoenolpyruvate carboxylase and malic enzyme, while Bacillus species 

furnish pyruvate carboxylase (the pyruvate shunt). In the case of Corynebacterium, both 

phosphoenolpyruvate carboxylase and pyruvate carboxylase are functional [28,29]. These 

anaplerotic pathways can re-route fluxes when a central pathway such as pyruvate kinase is 

knocked out. To ease the machine learning efforts, the anaplerotic pathways are lumped into two 

routes that exchanges fluxes between the TCA cycle and the glycolysis nodes: MAL ←→ PYR 

+ CO2 and OAA ←→ PEP + CO2. This simplification also considered the fact that 
13

C-MFA has 

poor resolution on anaplerotic fluxes because various combinations of these reactions can 

generate similar labeling patterns in amino acids [30]. 

6.4.2. Feature selection and scaling  

ML can make predictions with iteratively-tuned parameters and well-trained models to 

account for influential factors in cell metabolism. Based on published 
13

C-MFA methodologies 

and microbial physiologies, we proposed five categorical features: species, nutrient types, 

oxygen conditions, genetic background, and cultivation methods. We had two considerations 

during feature selection: First, genetic modifications can significantly re-organize fluxomes. To 

improve the predictability on mutant strains, our platform allows “turn-off” or “turn-on” certain 

central pathways (by manually setting the flux boundaries) in engineered strains. Second, the 
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factor of cultivation method aims to reveal fluxome differences between shake flask cultures (a 

pseudo-steady state approach) and bioreactor cultures (a well-controlled fermentation or 

chemostat cultivation). Meanwhile, we have sixteen continuous features: growth rate, substrate 

uptake rate, and the ratios of substrate co-utilizations (glucose, fructose, galactose, gluconate, 

glutamate, citrate, xylose, succinate, malate, lactate, pyruvate, glycerol, acetate and NaHCO3, as 

shown in Figure 1). Since the training features include both categorical and continuous ones, 

"OneHotEncoder", a function of the Python scikit-learn module, was used to convert categorical 

feature values into real numbers. Each feature was then standardized into zero mean and unit 

variance as assumed by many ML approaches. For each predicted flux, we normalized the 

training dataset via the min-max method into the interval [0, 1]. In addition to the min-max 

method, we also tested unit-variance-zero-mean standardization for scaling flux values, and the 

result was quite similar.  

6.4.3. Machine learning algorithm selection 

The problem of predicting fluxes is formulated as a regression problem in ML, where a 

computer program learns from existing data to estimate continuous variables. Twenty-nine 

regressors were trained to predict the 29 fluxes. We tested three widely-applied ML algorithms, 

including k-nearest neighbors (k-NN), decision tree, and SVM. To ensure a fair comparison, we 

performed a grid search for the best parameter set of each algorithm. The detailed parameter sets 

for 29 regression models can be found in the prediction results on our web page 

(http://130.101.92.205/influx/svr_both_rbf_shuffle.log). The programming language used for 

this project was Python 2.7; the numpy and scikit-learn modules were utilized for machine 

learning [31]. Program files for training the models and testing them are wrapped in Supporting 

Information 1.  

http://130.101.92.205/influx/svr_both_rbf_shuffle.log
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6.4.4. Error evaluation and cross validation  

To evaluate the quality of the predictive model, we used mean squared error (MSE) and 

root mean squared error (RMSE). Depending on different evaluation tasks, we may represent 

RMSE relatively (RRMSE) with respect to the dynamic range of fluxes. Considering the limited 

number of samples in the current database, we adopt a 10-fold cross validation. An N-fold cross 

validation works as follows: All samples in our database are spliced into N equal parts. In each 

iteration, N-1 parts are used as the training set, while the remaining as the test set. In the next 

iteration, the test set will be rotated to another part of the data, and the training set will consist of 

all other samples. This procedure will stop when all parts of the data have been incorporated into 

the test set exactly once, and training set exactly N-1 times. Finally, the accuracy of the model 

can be calculated by checking the prediction result in each sample. 

6.4.5. Stoichiometric constraints and boundary 

One unique feature of our method is incorporating the overall mass balance through 

central metabolic pathways. The stoichiometric equations in Figure 1 under steady state are 

summarized as follows:  
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Specifically, v1 represents the flux from carbon substrate (either glucose or galactose) 

since both glucose and galactose can be catabolized to G6P, vaa1 and vaa2 represents fluxes 

involved in biomass building block synthesis [32], while vbm represents carbon fluxes going to 

biomass from different precursors.  

A series of linear constraints can be derived from the stoichiometric equations above and 

used to restrain fluxes predicted by the ML methods: 
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Among equations listed above, Eq. 22 indicates the case for co-metabolism of both C6 

sugars. Meanwhile, a list of inequality constraints can be drawn, given that all biomass 

fluxes are non-negative:  

 

Among all inequality constraints, constraint (Eq. 39) works well except for the case of 

zwf  knockout, where the directions of Eq. 39 could be reversed [33].  

6.4.6. Flux adjustment using stoichiometric constraints 
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We also adopted a quadratic programming method similar to minimization of metabolic 

adjustment (MOMA) [34], to adjust fluxes to satisfy the stoichiometric constraints. The 

CVXOPT package for Python was employed here for quadratic programming [35]. The 

optimization problem is modeled as 

                       

 

   

where the vector  is the flux values predicted by ML, the vector v = 

[v1, . . . , v29] is the flux values to be solved in this optimization problem, the function “Scaled (·)” 

uses Min-Max scaling to scale all fluxes into the range [0, 1], the matrix “S” is obtained 

from all equality constraints from Eq. 22 to Eq. 30, and the matrix A is obtained from all 

inequality constraints from Eq. 31 to Eq. 42. Scaling fluxes into the same range is done to avoid 

bias because fluxes have different dynamic ranges. The root mean squared error (RMSE) is used 

to evaluate the quality of flux prediction by examining the deviation of the predicted flux 

profile from the 
13

C-MFA flux. The objective function f(v’) can be rewritten into standard 

quadratic programming problem using the following steps: 
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where Maxi and Mini are the range of the i
th
 flux. Since the last term 
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and the coefficient 2 are constants, they can be omitted from the objective function. Hence, Eq. 

43 can be rewritten in standard quadratic programming form as 

 

For the upper and lower boundaries of each flux, i.e., Maxi and Mini, we use the 

maximal and minimal values observed in multiple datasets as the default values (shown in 

Figure 6.2). Users can manually set desired values for the upper/lower bounds of any specific 

flux in the MFlux webpage, or they can opt to not use any boundaries. For instance, users can 

simply set the bound value of a certain flux as zero if this specific gene is knocked out.  

6.4.7. Constraint programming and input checking 

To ensure user inputs are reasonable, MFlux first checks the satisfiability of input values. 

This system scans the inputs (e.g., growth rates, oxygen usage, and substrate uptake rates) and 

determines whether they are biologically meaningful (e.g., unrealistic high cell growth rate). If a 

set of inputs are suspected to be unreasonable, MFlux reports an error to warn the users.  

6.4.8. Overall system design 

Different parts of MFlux mentioned above are put together as illustrated in Figure 3. The 

prediction on 29 fluxes is done via an RBF-kernel SVM, whose outcome will be tuned by 

constraint programming to generate final prediction. Users can set boundary constraints to 
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represent information about genes that are knocked out on the species, and such information will 

be used by constraint programming. If parameter inputs by users are not biologically meaningful, 

a warning message will be attached in the final result. In the future, users will also have the 

option to enter fluxes and settings of their own experiment to enrich our database and improve 

the prediction accuracy of MFlux.  

6.5. Results and Discussion 

6.5.1. Pathway map and statistical analysis results 

The core metabolism of bacteria is summarized into a pathway map in Figure 1. 

Considering the availability of information, 29 major fluxes with 14 potential substrates were 

used to represent a universal heterotrophic carbon metabolism for non-photosynthetic 

prokaryotic species, which includes glycolysis, the tricarboxylic acid (TCA) cycle, the 

pentose phosphate (PP) pathway, the Entner–Doudoroff (ED) pathway, the glyoxylate shunt, 

and the anaplerotic pathways. The anaplerotic pathway fluxes cannot be determined when 

[1-
13

C] glucose is fed as a sole labeled substrate [36]. Information on the anaplerotic pathway 

is either incomplete or not precise in many publications in our database. Consequently, we 

simplified the anaplerotic pathway into two reversible fluxes. Similarly, we ignored several 

overflow fluxes which occasionally appear in 
13

C-MFA of anaerobic metabolisms (e.g., the 

secretion of formate, butyrate, or pyruvate), because of lacking sufficient samples for efficient 

machine learning. Omission of those fluxes can also partially explain the high prediction 

error in specific fluxes (e.g., v8: Pyruvate  Acetyl-CoA).  

By statistical analysis, we determined the variation between each flux profile and the 

average flux profile from our 
13

C-MFA database. The average value, the range, and the 95% 
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confidence interval for each individual flux are shown in Figure 2. The most conservative 

fluxes include the non-oxidative pentose phosphate pathway and the glyoxylate shunt. The 

former pathway supplies precursors for bio-synthesizing amino acids (i.e., histidine, 

phenylalanine, tryptophan, and tyrosine) and nucleotides. The latter acts as an alternative 

carbon-conserving path to the TCA cycle and is inhibited by the presence of glucose (most 
13

C-

MFA is based on the glucose metabolism). All 29 fluxes were found to have a narrow 95% 

confidence interval (compared to possible flux ranges), suggesting that fluxes of bacterial 

species in our database varies in a relatively small range. This is because most 
13

C-MFA studies 

are focusing on models species (e.g., E. coli and B. subtilis) and glucose-based metabolism, 

while there are much less MFA efforts to study non-model species or metabolism of carbon 

substrates other than sugars (i.e., bias of fluxome research across).  

6.5.2. Optimization of algorithm and parameters 

To decide the most suitable ML algorithm, we first performed a grid search on the 

parameter space, based on the collection of a wild type (WT) database for initial screening. After 

one week of running the search program on the server, the best results of the three different 

algorithms (for SVM, only the linear kernel was considered here) were presented in Figure 4. 

Evidently, SVM made better predictions than either decision tree or k-NN on most fluxes. After 

this step, we carried out a second round of grid searching to optimize parameters and improve 

the performance of SVM on the whole phenotype (WP) database (both WT and engineered). 

Both the linear kernel and radial bias function (RBF) kernel were included in this round of 

searching. 

Better cross-validation results were expected from the SVM model trained on the WT 

database, rather than on the WP database, considering that sophisticated genetic variations are 
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not included in the WT database. However, cross-validation results refuted our initial thought: 

the models from the WP database demonstrated better performance than those trained on the WT 

database (Figure 5). This result can be interpreted as meaning that the size of the training dataset 

is a major factor in determining the model quality, especially when the training database size is 

relatively small (the size of WT dataset is 154, and the size of WP dataset is 450). We also 

compared the SVM results with the linear kernel and the RBF kernel, and the RBF kernel 

showed slightly better performance (Figure 6). We finalized the parameter setting of MFlux by 

taking the parameter set which output the best cross-validation result. For all the algorithms 

tested, v11 (the second step of the oxidative PP pathway) and v24 (the glyoxylate shunt) are 

insensitive in terms of RRMSE. Two factors may contribute to this problem: v11 and v24 

have relatively narrow numerical ranges,  and consequently even small numerical variations 

will generate larger relative errors for both fluxes. Meanwhile, genetic modifications may 

influence both v11 (e.g., zwf knockout [37]) and v24 (e.g., ppc knockout [38,39]). For instance, 

knocking out zwf in E. coli will cause a zero flux in v10 (the oxidative pentose phosphate 

pathway, OPP pathway). However, lack of sufficient information on flux re-organization 

mechanisms in engineered microbes reduced ML predictability. This is because most engineered 

microbial fluxomics studies are focused on a few model species such as E. coli. To resolve this 

problem, the MFlux platform allows users to manually set the boundaries of central fluxes to 

improve prediction quality (e.g., give a zero flux through the OPP pathway for E. coli zwf 

mutant). 

6.5.3. Flux correction by quadratic programming  

After parameter optimization, the SVM models equipped with the best parameter sets can 

predict with relatively small variation. However, the flux profile predicted by the ML method 
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does not necessarily satisfy the inherent stoichiometric constraints of metabolic networks 

because the ML method does not consider them. Sometimes the situation could get even worse: 

Specific fluxes predicted by the ML algorithm may go beyond a reasonable range (e.g., the 

predicted glyoxylate shunt may have a negative value). To address those issues, we employed 

quadratic programming for flux correction, as described in the Methods section. More rational 

results with improved accuracy are expected after flux correction. An essential assumption of 

this step is that ML predictions are relatively close to the real values reported in the literature. 

This hypothesis is backed up by our cross-validation results and further validated in the 

following case studies. Notably, biomass equations may have differences among MFA papers 

(e.g., equation 18 and 19). Considering the variations in biomass fluxes, the revised quadratic 

programming didn’t include constraints from succinate mass balance equation (i.e., succinyl-

CoA flux towards biomass synthesis).     

6.5.4. MFlux case studies 

To demonstrate the functionality of MFlux, we carried out tests on twenty cases, and the 

results are illustrated in Figure 7. General information for each case is listed in Table 1, and 

comprehensive results are included in Supporting Information 2. In general, MFlux can achieve 

decent flux predictions. Here we will demonstrate two cases which are case 8 and 16 in 

Supporting Information 2. In case 8, B. subtilis strain uptakes the mixed substrates succinate and 

glutamate. 

To illustrate mixed substrates co-metabolisms, we tested MFlux with 
13

C-MFA data of B. 

subtilis strain reported by Chubukov et al. [40]. Microbial fermentation fed with multiple 

substrates of low price is promising for the biotechnology industry. However, there are few 

quantitative analyses of this topic. In this test, we adopted the same set of parameters found in 
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the literature (Supporting Information 2, Case 8) as the inputs of MFlux. For flux correction, we 

directly took the default boundary setting for quadratic programming. A comparison of flux 

profiles reported by 
13

C-MFA, predicted by ML, and predicted by MFlux is illustrated in Figure 

8. ML and MFlux produce good predictions on most fluxes, closely matching the 
13

C-MFA flux 

profile (the RMSE is less than 5). For ML, the predictions have large variation on specific fluxes 

(e.g., v11 - oxidative PP pathway and v19 – TCA cycle). Quadratic programming can further 

adjust flux profiles and reduce deviations of flux predictions. The corrected flux profiles also 

meet the basic stoichiometric relationship of the metabolic network. The final prediction from 

MFlux shows improvement, with RMSE reduced to 3.2. 

In case 16, G. thermoglucosidasius grows under microaerobic conditions. G. 

thermoglucosidasius is a thermophilic and ethanol-tolerant bacterium which can convert both 

hexose and pentose into ethanol [30]. To predict its central fluxomes, the parameter set we used 

is listed in Supporting Information 2 (with the default boundary setting for flux correction). A 

heat map compares 
13

C-MFA fluxes with ML-only fluxes and MFlux results (Figure 9). The 

results are encouraging: ML alone gives an RMSE of 4.0, while MFlux uses both ML and 

quadratic programming to improve the prediction to an RMSE of only 3.0. According to 20 case 

studies, the average flux set has very large variations (average RMSE of 33.5) from actual 
13

C-

MFA fluxes (Supporting Information 2). In this case, MFlux reduces the deviations of predicted 

fluxes from 
13

C-MFA values.  

      For species with genetic modifications in major pathways (cases 2, 3, 4, 12, and 13, E. 

coli and C. glutamicum), MFlux predictions have an average RMSE between 5 and 10, higher 

than the RMSE for prediction of wild type strains. Since MFlux is currently unable to capture 

complex regulatory mechanisms of flux reorganization, Human-Computer Interaction can be 
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employed by manually tuning boundary values of certain fluxes to improve flux prediction 

quality. For example, knocking out ppc on E. coli may activate the glyoxylate shunt [38,39], so 

users can assign a non-zero lower boundary of the glyoxylate shunt when running MFlux.  

6.5.5. Compare flux balance analysis with MFlux for E. coli metabolism  

Stoichiometry-based flux balance analysis (FBA) is an important tool to predict unknown 

cell metabolism. Accurate FBA prediction relies highly on appropriate setting the objective 

function and the flux constraints appropriately (based on thermodynamics or experimental 

analysis) [41]. Here, we compare FBA with MFlux for predicting E. coli metabolisms. The latest 

version of E. coli iJO1366 genome-scale model (2583 fluxes) was used [42,43]. Two 

comparative case studies were performed on E. coli fluxomes: One case for glucose based 
13

C-

MFA via parallel labeling experiments [12], the other case for glucose and glycerol co-utilization 

(unpublished data from the Shimizu Group). Neither of the test cases was included in the training 

database of MFlux. Given 
13

C-MFA results as the control, MFlux results have smaller RMSEs 

than FBA predictions. In the first case, the FBA has an RMSE of 11.3, while MFlux has an 

RMSE of 6.5 (Figure 10a). In the second case, the FBA has an RMSE of 22.5, while MFlux has 

an RMSE of 5.1 (Figure 10b). To circumvent variations caused by alternative solutions in FBA, 

we also employed pFBA and geometricFBA in cases study [44,45] (results were included in 

Supporting Information 3). In general, pFBA didn’t show better results compared with FBA for 

either case, while geometricFBA did not converge during our calculation. 

FBA alone has been shown to give good predictions of growth rate as well as input and 

output fluxes, but not of intercellular fluxes [2,46]. It is difficult to obtain actual P/O ratios, the 

non-growth associated maintenance energy, the oxygen flux, and the transhydrogenase activities 

[47]. These energy/cofactor variables strongly affect the fluxes in the oxidative PP pathway 
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(NADPH generation) and the TCA cycle (NADH, NADPH, and FADH2 generation). Without 

proper flux constraints and objective functions, it is challenging for FBA to narrowly determine 

intracellular fluxomes in suboptimal metabolisms, especially for co-metabolism dual substrates 

(i.e., there are large solution spaces for the cell metabolism to optimize biomass growth using 

two substrates). As a complementary tool, MFlux may offer a quick metabolic overview and 

provide reasonable flux boundaries to reduce FBA solution spaces when proper constraints for 

FBA are not available.  

6.5.6. Perspective of metabolic robustness and machine learning of fluxome patterns  

‘Robustness’ was originally defined as closed-loop process stability under perturbations 

in the control field. This definition is applicable to biochemical networks. To maintain the 

physiological output (i.e., the fluxome) within a desired range, microorganisms employ 

sophisticated control disciplines at different architecture levels, from the genome to the 

phenotype [48]. In contrast to chaotic transcriptional profiles, the microbial fluxome shows 

robustness so that cells can survive in constantly-altering environments or in response to genetic 

mutations [49,50,51]. Metabolic rigidity at the flux level was first reported by Stephanopoulos in 

the early 1990s [52,53]: NADPH is important for anabolism in the exponential growth phase, 

and the flux ratio around glucose-6-phosphate is rigid to form NADPH at the oxidative PP 

pathway [53]. Moreover, 12 precursors from the central metabolism are required for biomass 

formation, which all have relatively small variations (mainly dependent on biomass 

compositions). Due to both thermodynamic and mass balance constraints, cell metabolism aims 

to minimize variations in flux ratios under environmental perturbations. This rule also works for 

engineered microbes with moderately over-expressed pathways or strains from random 
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mutations. Those metabolic patterns can be identified by computational intelligence methods to 

facilitate fluxome prediction. 

Flux pattern recognition enables MFlux to predict metabolism of new species by learning 

from a small set of fluxome information from the same genus. For example, the metabolisms of 

Pseudomonas aeruginosa, Pseudomonas fluorescens, and Pseudomonas putida have been 

studied by 
13

C-MFA in the past decade[54,55,56,57,58]. The results show that different 

Pseudomonas species employ remarkably identical fluxomics types: They employ a highly 

active ED pathway for glycolytic metabolism and keep a low flux on the PP pathway for biomass 

synthesis, due to the lack of the pfk gene [59]. The ED pathway has less cost for protein 

formation than the Embden–Meyerhof–Parnas (EMP) pathway, yet only one ATP is formed per 

glucose [60,61]. Pseudomonas species have slow cell growth rates, and their aerobic 

metabolisms do not yield any by-products. They also demonstrate a very active pyruvate shunt 

(malate  pyruvate) and NADPH overproduction flux (a benefit for counteracting oxidative 

stress). On the other hand, the TCA cycle in Pseudomonas species shows plasticity under genetic 

and environmental variations [62], and can respond to increased ATP and NADH demands under 

stress conditions [63].  

For different bacterial families (e.g., E. coli and Bacillus), their fluxomes (e.g., glucose 

metabolisms) can also be similar, because central fluxes in catabolism are regulated by energy 

and building block requirements that show much smaller variations than genome or 

transcriptional differences. On the other hand, change of carbon substrates may alternate flux 

distributions. For example, co-utilization of glucose and glycerol (case study 3) in E. coli cause 

significant re-organization of fluxomes. In a same microbial strain, different fluxome patterns 

can be employed for metabolizing different substrates (e.g., glucose based fluxome vs acetate 
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based fluxomes). Recognizing these metabolic patterns allows the use of a relatively small 

training database to perform a decent metabolic prediction of diverse metabolic types. 

Consequently, these common principles of certain classes of microorganisms can be captured by 

machine learning for fluxome predictions.   

6.5.7. Limitations of machine learning  

There are still several major challenges regarding MFlux. First, the 
13

C-MFA flux in 

literature database may have errors and bias, which would be included in the learning/training 

process of MFlux and lead to further variations. For example, current 
13

C-MFA studies are not 

evenly distributed among a broad scope of microbial genus. Most reported MFAs are 

concentrated in a few model microbial species using glucose as substrates, while there are much 

fewer papers on non-model species or metabolism of diverse substrates other than sugar. Such 

problem (bias of fluxome in the database) can be resolved after more papers on 
13

C-MFA can be 

published for non-model species. 

Second, the predictability of ML is limited to species and pathways that are already 

included in learning. More information and effort are required to deal with cases of strains with 

engineered pathways that hijack flux for synthesis of diverse commodity chemicals [13]. In 

future versions of MFlux, new metabolic knowledge and rules should be applied for flux 

corrections.  

Third, it is still difficult to incorporate regulation mechanisms into the current model due 

to insufficient 
13

C-MFA studies. For instance, various catabolite repression mechanisms regulate 

the cell fluxome in the presence of multiple substrates (e.g., glucose shows catabolite repression 

for fast growing E. coli when both glucose and glycerol are available, Figure 10) [64]. These 
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hierarchy regulations among substrate utilization can be dependent on growth rates or can differ 

among microbial species (E. coli, Bacillus, and Corynebacterium).  

Fourth, when oxygen is not available, fast sugar utilization will activate mixed acid 

fermentation (e.g., by utilizing lactate dehydrogenase and pyruvate formate lyase) to produce 

complicated overflow metabolites. This mechanism is also furnished in yeast and mammalian 

cells. However, 
13

C-MFA studies on anaerobic metabolisms are much less frequent than on 

aerobic metabolisms. MFlux cannot predict the complicated patterns of overflow fluxes at this 

stage.  

Lastly, ML cannot directly estimate fluxes for carbon sources which are not part of the 

learning dataset. To predict fluxomes for new substrates, users need to make assumption that 

similar entry-points of carbon sources into the central metabolic network may cause similar flux 

distributions (e.g., sucrose has to be treated as a combination of glucose and fructose).  

6.6. Conclusion 

This proof-of-principle study demonstrates that AI methods can facilitate fluxomics 

research with reasonable precision. 
13

C-MFA is a very small field: There are just hundreds of 

MFA research papers on microbial species published in the past two decades. In the long term, 

ML methods may solve this problem: With a large and reliable fluxomics dataset and more 

information from 
13

C-MFA and AI scientists, the future model can make broad-scope 

metabolism predictions. To sum up, MFlux presents the first platform that incorporates machine 

learning, constraint programming, and quadratic programming in the field of fluxomics. It will 

inspire the development of similar computational tools to advance omics and metabolic 

engineering fields [47,65].  
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6.7. Supporting information 

Appendix II S1 MFlux Computer Program (Source codes). 

Appendix II S2 Results of 20 case studies: Detailed information for 20 cases studies using 

MFlux, including literature references, input conditions, 
13

C-MFA fluxes, the flux profiles 

predicted by only Machine Learning, and the flux profiles predicted by MFlux with additional 

constraints.  
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Table 6.1.  Summary of 20 cases of study 

Species 
Carbon 

source 

Oxygen 

condition 
Reactor Genetics Case Reference 

E.  coli Glc 
 

aerobic 
 

shake tube 
 

WT 
 

1 

 
(Crown et al. 

2015) 

 
E. coli 

 
Glc 

 
aerobic 

 
shake flask 

 
ppc KO 

 

2 - 4 

 
(Fong et al. 

2006) 

 
B. subtilis 

 
Glc 

 
aerobic 

 
shake flask, 

CSTR 

 
WT,  spo0A 

KO 

 

5 - 7 

 
(Tannler et 

al. 2008) 

B. subtilis 
Multiple 

substrates 
aerobic shake flask mutant 8 -11 

(Chubukov 

et al. 2013) 

C. glutamicum 
 

Glc 
 

aerobic 
 

shake flask 
 

WT 
 

12 

 
(van Ooyen 

et al. 2012) 

 
C.  glutamicum 

 
Glc 

 
aerobic 

 
shake flask 

 
mutant 

 
13 

 
(Bommaredd

y et al. 2014) 

 
P. denitrificans Glc 

 
aerobic, 

microaerobic 

 
fermentor 

 
WT 

 

14, 15 

 
(Wang et al. 

2012) 
 

G. 

thermoglucosidasius 

 
Glc 

 
microaerobic 

 
shake flask 

 
WT 

 

16 

 
(Tang et al. 

2009c) 
 

Thermoanaerobacter 

sp. 
Xyl 

 
anaerobic Sealed bottle 

 
WT 

 

17, 18 

 
(Hemme et 

al. 2011) 

 
D. vulgaris Lac 

 
anaerobic Sealed bottle 

 
WT 

 

19 

 
(Tang et al. 

2007b) 

 
G. metallireducens Ace 

 
anaerobic Sealed bottle 

 
WT 

 

20 

 
(Tang et al. 

2007a) 

 

Table  notes:  Glc: glucose, Xyl: xylose, Lac: lactate, Ace: acetate, KO: knockout 
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Figure 6.1: A universal central metabolic pathway for bacteria: The central carbon metabolic 

pathway is simplified into 29 fluxes in MFlux.  
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Figure 6.2. Statistical analysis of central metabolic fluxes collected in our database. “Flux range” 

represents variations of each fluxes among 
13

C-MFA database; “95% confidence interval” 

represents 95% of flux data were within a small range; “Average flux value” are the mean of flux 

values from 
13

C-MFA database.     
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Figure 6.3. Flow chart of MFlux algorithm. This diagram is to illustrate the detailed procedures 

for our algorithm. 
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Figure 6.4. A comparison of three different algorithms: SVM, kNN, and decision tree: The best 

cross-validation results on 29 fluxes are compared. All tests in this step were performed only on 

the WT database. 
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Figure 6.5. Best results by SVM for WT and WP databases. Both the linear and the RBF kernels 

are considered in a grid search, and the results from WP database is much better than from the 

WT database 
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Figure 6.6. A comparison between the linear kernel and the RBF kernel for SVM. The results are 

quite similar. 
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Figure 6.7. Summary of root mean squared error (RMSE) from 20 case studies: averaged flux 

from 
13

C-MFA database; machine learning, and MFlux. The average RMSE is 7.7 from machine 

learning alone and 5.6 from MFlux. The RMSE is calculated by:    

29
2

1

( )

29
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v v
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Figure 6.8. A comparison of 
13

C-MFA, the flux predicted by ML, and the flux predicted by 

MFlux in case 8. B. subtilis was incubated in a shake flask (37 
o
C, 300 rpm, aerobic condition), 

and supplied with labeled succinate and glutamate as carbon sources in M9 minimal medium. 

The detailed information is in supporting file 2. 

. 
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Figure 6.9. A comparison of 
13

C-MFA, the flux predicted by ML flux, and the flux predicted by 

MFlux. G. thermoglucosidasius M10EXG was incubated in sealed bottles (micro-aerobic 

condition), supplied with glucose as a carbon source. RMSEML = 4.0, RMSEMFlux = 3.0. The 

detailed information is in supporting file 2. 
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Figure 6.10. A comparison of 
13

C-MFA, MFlux and the flux predicted by FBA. FBA Analysis is 

simulated by E. coli iJO1366 model with defaulted boundary settings from the reference (Orth et 

al. 2011). (A) E.coli fluxome of glucose metabolism was precisely measured via parallel labeling 

experiments (a recent paper not in our database) (Crown et al. 2015). RMSEFBA = 11.3, 

RMSEMFlux = 6.5. (B) E. coli fluxome of glycerol and glucose co-metabolism were measured by 

Dr. Yao and Dr. Shimizu (unpublished data). E. coli strain was cultured in chemostat fermentor 

with a working volume of 1 L (37℃). The dilution rates in the continuous culture were 0.35 h
-1

. 

[1-
13

C] glucose and [1,3-
13

C] glycerol were used for tracer experiments. The flux calculation is 

based on previous method (Fong et al. 2006; Peng et al. 2004). RMSEFBA = 22.5, RMSEMFlux = 

5.1 
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CHAPTER SEVEN 

ENABLE FAST LITERATURE ANALYSIS BY TEXT MINING AND BIG 

DATA TECHNOLOGY 

 

7.1. Abstract 

Information acquisition by human being is severely limited by the speed and time of reading, as 

well as the background of readers. To gain a deep understanding on a specific research subject 

requires even longer time of training and learning. With information gradually digitalized, text 

mining method provides an automatic way for literature analysis. In this study, we built up a 

workflow integrating text mining and the emerging Big Data technology for fast literature 

analysis. We also performed several case studies to demonstrate its functionality. A comparison 

between ‘metabolic engineering’ and ‘synthetic biology’ finds that energy metabolism terms (i.e., 

‘NADH’, ‘NADPH’, ‘ATP’) and non-glucose carbon substrate (i.e., ‘xylose’, ‘acetate’, 

‘glycerol’) have significant higher frequency for ‘metabolic engineering’, while researchers on 

‘synthetic biology’ talk more on regulatory modules such as ‘circuit’, ‘loop’, ‘switch’, ‘IPTG’, 

‘LacI’. In another case the transition of ‘metabolic engineering’ between ‘2000 - 2009’ and 

‘2010 - 2015’ has also been identified: more focuses were put on model species such as ‘B. 

subtilis’ and ‘P. pastoris’ as microbial cell factories and ‘hydrogen’ during 2000 ~ 2009, while 

the focuses have been shifted to photosynthetic species ‘cyanobacteria’ as well as ‘butanol’, 

‘isobutanol’, ‘lipid’. Each comparison takes less than three minutes and is easily extended with 

various specific searching settings. To sum up, this proof-of-principle study demonstrates that 

Big Data technique can quickly capture similarity/difference and provide quantitive information, 
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which enable us have more reflections over the past and make more reasonable choices in the 

future.   

 

7.2. Introduction 

As a cornerstone of human society, technology development is accompanied with emerging 

fields and changing focuses in different field. Understanding those similarities and differences 

between various fields, as well as the same field of different time periods will not only bring 

novel insights to researchers, but also provide invaluable historical experiences for a broader 

audience (e.g., industry, government). To gain a deep understanding over a specific subject, 

information from Wikipedia is far away from sufficient; extensive reading over thousands of 

papers is a perquisite, which is very time-consuming yet difficult to avoid bias.  

      The trend of information digitalization was emerged with wide adoptions of personal 

computer and Internet. (Arms 2000) It has revolutionized the manner of information record and 

storage in human civilization: tons of information can be stored in small hard disks and can be 

easily duplicated and spread. Based on the increasing availability of digital information, text 

mining provides an automatic approach for information analysis (Dorre et al. 1999). Text mining 

have been widely adopted in many fields such as biomedical literature analysis (Cohen and 

Hersh 2005), systems biology (Ananiadou et al. 2010), and human phenome (van Driel et al. 

2006).    

      As the size of data and information is increasing with time, the concept of ‘Big Data’ also 

comes out several years ago. Correspondingly, analyzing large amount of data comes across the 

limitation of hardware. For instance, searching a specific term from 60 GB of data in txt formate 
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takes about 10 hours in a powerful working station, which is unacceptable if similar search 

actions are carried out all the time. Two major approaches have been developed by Google, to 

deal with those challenges: the first one is MapReduce, which is suitable for batch processing of 

large datasets; the other one is BigQuery, which works well with interactive analysis over large 

datasets (Tigani and Naidu 2014).  

      In this study, we propose to build up a workflow which provides rapid literature analysis 

based on an integrated platform of text mining and BigQuery. Development of such a workflow 

will bring a novel approach for fast acquisition of professional knowledge.  

  

7.3. Methods 

7.3.1. Database availability and record structure 

All full-text papers are downloaded from NCBI PMC database 

(http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/).  PMC database contains ~1.1 million full-text 

papers (without images) from ~5600 different journals with a focus on the biomedical research. 

This database is updated weekly; hence, the total number of papers and journals are still 

increasing (shown in Figure 7.1.).  

There are two basic formats of papers in PMC database: .txt type and .nxml type. Txt files have 

to lose lots of essential contents of original papers, due to their format limitation. In contrast, 

nxml files contain most important information of papers except images.  Therefore, we choose 

nxml files for further literature analysis.  
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Nxml files contain structured information extracted from papers. In general, there are three parts 

for each nxml file as shown in Figure 7.2.:  

(1) Front: which contains information such as paper title, pmcid, author name, author email, 

and author affiliation. 

(2)  Body: the major part of the manuscript, including the section of methods, results, 

discussions, supporting information. 

(3)  Back: list of references  

Most information illustrating research topics of papers normally is included in the part of ‘body’.  

7.3.2. Text mining methods 

To extract information from each paper (nxml file), a powerful language processing toolbox is 

indispensable. The most common Natural Language Processing libraries includes NLTK (in 

Python) (Bird 2006; Bird et al. 2009), Stanford NLP Toolbox (in Java), OpenNLP (in Java), 

Gate (in Java). Different libraries have their advantages and disadvantages; for nxml format files, 

Beautiful Soup library (in Python) can work well with them. Therefore, we employed Beautiful 

Soup and NLTK library together in this study. All programming language is Python 2.7.  

To demonstrate the functionality of our workflow, we only extract PMC id, year, whole body, 

unique words in body, and frequency of each word in this work. A simple procedure of text 

mining is listed below:   

1. A paper in nxml format is read in by Beautiful Soup library 

2. The PMC id, article name, as well as the body, are extracted by using Beautiful Soup 

library with following codes:  

pmc_id = soup.find_all('article-id',attrs={"pub-id-type": "pmc"}) 
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body_raw = soup.find_all('body'); 

front_raw = soup.find_all('front'); 

back_raw = soup.find_all('back'); 

body_text = body_raw[0].get_text(); 

front_text = front_raw[0].get_text(); 

back_text = back_raw[0].get_text(); 

real_body = 

(body_text.replace(back_text,'')).replace(front_text,'').encode(

'ascii', 'ignore').lower(); 

 

      To our surprise, the part of body extracted by Beautiful Soup function still contains the front 

and the back part. Hence, we artificially remove strings of both parts by using ‘replace’ function. 

3. We remove all symbols in the body and tokenize body text by the following code:  

real_text = (((((((real_body.replace("\n"," ")).replace(',',' 

')).replace('.',' ')).replace('(',' ')).replace(')',' 

')).replace(':',' ')).replace(';',' ')); 

   
paper_word = nltk.word_tokenize(real_text); 

 

4. We employ the library of common English words (stopwords) such as ‘I’, ‘and’, and add 

a few more. The final library of common words is about 200. Since those words do not have any 

exact meanings related with research topics, we can remove them from the text. The total size of 

text strings can also be reduced to about 55% of their original size through step 2 - 4.  

5. We convert all words to be lowercase, and then extract all unique words and their 

respective relative frequency. Considering of significant difference in text size of different 

papers (the average word number for papers is about 5,800; a technical note can be as short as 

1,500 words; while a reviewer paper can be as along as 14,000 words), to equalize the impact of 

each paper, we use relative frequency rather than absolute frequency in our analysis.  

6. We store the following information in a CSV file with five columns:  

                PMC id, year, body, unique word, relative word frequency 

7.3.3. Fast search via BigQuery 
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The final CSV file generated from text mining is around 21.7 GB, about 30% volume of their 

original files. This file contains more than 1 million records, searching a single term takes at least 

several hours using traditional methods. To accelerate this process, we employed Google 

BigQuery for the search process. BigQuery is the commercialized product of Dremel, the search 

engine for Google insiders. (Tigani and Naidu 2014) Equipped with columnar structure data, 

BigQuery performs a searching task in parallel (on several thousands of servers), and can finish a 

searching task over several billion of records within ten seconds.   

      First, we need create a bucket in Google Cloud and upload the large CSV file into the bucket. 

A stable internet connection is necessary because the uploading process may take several hours.  

      Second, we create a project under BigQuery and create a Big Table under this project. 

During table creation process, we need to get the link address of the big CSV file in Google 

Cloud and use for data uploading. Also, we need to define the names of columns, as well as their 

type and mode in the step of ‘Edit Schema’.  

      Third, to enable script based Google BigQuery search, we need to download a secret key 

‘client_secret. json’ from Google Big Query. This file stores a personalized keyword linked with 

your Google client account. Thus, each BigQuery task can directly charge your account via this 

information. After that, we can download the demo code program (in Python) from BigQuery 

and perform the test in local PC. Once client verification is finished in local PC, we can modify 

the searching program to perform any search tasks.       

7.3.4. Data analysis  

For a specific term, we need to input its lowercase string in Python program for BigQuery search. 

Information of any records contained the specific term will be recorded locally upon searching 
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request. This local record can be processed through Python program and converted into 

cumulative relative frequencies of unique words. Through simple sorting over cumulative 

relative frequencies, word list with a descending order is the output. For more specified search, 

for instance, search ‘metabolic engineering’ during 2010 ~ 2015, we can modify the program and 

include more searching parameters in BigQuery.   

      To visualize top 300 related words of a specific searching term, we employ the library of 

word cloud in R to display them. For simple quantification, we define the word of highest 

cumulative relative frequency as 100. Frequencies of other words are normalized in a scale of 

100. 

      To identify the similarity and the difference between two different search term, we perform a 

simple match between top 500 words for different terms, to determine the percentage of 

similarity and difference. We also extract those words of difference as an output.      

7.4. Results and Discussions 

To demonstrate the functionality of our workflow, we carried out several case studies and put the 

results as below. 

7.4.1. Most related words of ‘metabolic engineering’, ‘environmental engineering’, 

‘synthetic biology’, ‘systems biology’, and ‘metabolic flux’ 

The first function of this Big Data workflow is to define related words of a specific term. To run 

this function, we first search this term within the column ‘body’ via BigQuery. After word list of 

top cumulative frequency is given, we use R to display their word cloud.  
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      We performed case studies on several terms including ‘metabolic engineering’, 

‘environmental engineering’, ‘synthetic biology’, ‘systems biology’, and ‘metabolic flux’, and 

the results of their word cloud are listed as Figure 7.3. – 7.7. The results provide us much 

meaningful information: 

      For instance, the word with highest frequency related with ‘metabolic engineering’ is 

‘production’, which reflects the aim of ‘metabolic engineering’ field is to develop production 

processes through metabolism of microbial cell factories (Stephanopoulos 1999).    

      In another instance, the most frequent words related with ‘environmental engineering’ is 

‘health’, which reveals the motivation of researches on environmental engineering is the health 

of human beings.  

7.4.2. Compare the difference and similarity between two different terms  

The second function we want to demonstrate is the comparison of two different terms. This time, 

we take ‘metabolic engineering’ and ‘synthetic biology’ as a case study, because researchers 

have different opinions over those two concepts (Nielsen and Keasling 2011; Carothers et al. 

2009; Lee et al. 2008; Church et al. 2014).  Through this Big Data workflow, we can provide a 

comparative analysis based on published papers in PMC database.  

      The result is shown in Table 7.1.: they have a similarity of 69.6% -- indicating that both 

terms have a large range of scope overlapped, such as ‘gene’, ‘PCR’, ‘E. coli’. The difference 

between ‘metabolic engineering’ and ‘synthetic biology’ is also apparent: The word of highest 

frequency for ‘metabolic engineering’ is ‘production’; and there are several words with 

significantly higher cumulative frequency related with ‘metabolic engineering’, including FBA, 

NADH, NADPH, ATP, xylose, acetate, glycerol, HPLC, transport, and tolerance.  For ‘synthetic 
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biology’, the most frequent word is ‘gene’, words with significantly higher cumulative frequency 

are: circuit, loop, IPTG, lacI, RBS, Switch egfp, Phage, and virus. To explain this difference, we 

can refer to their background and origins: ‘metabolic engineering’ comes from biochemical 

engineering at the early 1990s (Bailey 1991). With the development of genetic modification tools 

(e.g., PCR, restriction enzymes), as well as successful commercialization of heterogeneous 

protein expression (e.g., insulin by Genentech), researchers tried to expand the product scope of 

biochemical engineering through extensive genetic modifications over microbial metabolism. 

Thereby, metabolic engineering focus more on energy metabolism (NADH, NADPH, and ATP), 

substrate utilization (xylose, acetate, and glycerol), engineering and model (transport and FBA), 

product measurement (HPLC), and microbial physiology (tolerance) (Stephanopoulos et al. 

1998b). In contrast, ‘synthetic biology’ first appeared in early the 2000s, coming from the 

background of biophysics and electric engineering. Researchers tried to redefine biological 

modules via the standards and rules applied in electrical circuit and chips. Successful 

demonstration of simple logic parts such as ‘toggle switch’ and ‘oscillator’ in biological systems 

motivated further work in a similar manner (Gardner et al. 2000; Elowitz and Leibler 2000). 

With a broad spread of iGEM (International Genetically Engineered Machine) (Smolke 2009; 

Brown 2007), ‘synthetic biology’ has been widely recognized. And it focuses more on electrical 

engineering concepts (circuit, switch, and loop), and genetic demonstration tools (IPTG, lacI, 

RBS, egfp, Phage, and virus)(Canton et al. 2008).                

7.4.3. Identify the developing trend of a specific term   

Another function we want to show is the comparison with a time specification. This function is 

quite similar to the second function, except that we need to specify a period during BigQuery 
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search. We perform two case studies here; one is ‘metabolic engineering’, and the other is 

‘biofuel’, and the results are presented in Table 7.2 and 7.3. 

Case study on ‘metabolic engineering’: 

From Table 7.2., we can see two obvious trends in metabolic engineering from 2000~ to 2010~.  

The first trend is that the focus of microbial working horse has been changed to from ‘B. subtilis’ 

and ‘P. Pastoris’ to ‘cyanobacteria’ and ‘C. glutamicum’: B. subtilis  is a gram-positive model 

species widely used to produce vitamin and enzymes, however, the disadvantages for B. subtilis 

as a host include high maintenance energy (Tannler et al. 2008), existence of many proteases 

(Zhang et al. 2005). P. Pastoris is a methylotrophic yeast species widely used for recombinant 

protein expression in industry because of its powerful secretion system and ease to reach high 

cell density and to avoid contamination in large-scale fermentation (with methanol) (Cregg et al. 

2009). However, the disadvantage for P. Pastoris also lies in its methylotrophic property: 

methanol is volatile and highly toxic; it is highly risky for students with little experience to work 

on this strain. Researchers turned to species ease to manipulate such as cyanobacteria and C. 

glutamicum’ during recent years. The second trend is that the list of hot products has been 

slightly changed: publications on hydrogen, PHB, and lysine go down, and lipid, butanol, and 

isobutanol gain more focus. Biosynthesis of PHB and lysine has been successfully 

commercialized, and most research work supported by the industrial funding will not send for 

publication. The bottleneck of hydrogen is storage, rather than synthesis. Novel biofuels (butanol, 

isobutanol, and lipid) with higher energy density than ethanol and ease-to-storage and utilization 

have gained attentions from both scientific and industrial fields during recent years. With 

funding pouring into those topics, the outcomes – the number of related papers increased.             



177 

 

Case study on ‘biofuel’: 

The development trend of ‘biofuel’ is fascinating, the trend have changed significantly from 

‘Lignocellulosic’, ‘hemicellulose’, ‘Emissions’, ‘policy’, ‘Economic’, ‘market’, ‘Feedstock’ 

from 2000 to 2009, to ‘Glycerol’, ‘acetate’, ‘xylan’, ‘Algae’, ‘microalgae’, ‘Cyanobacteria’, 

‘Lipid’, ‘Chromosome’, ‘cDNA’ within recent years. Lots of researches were focusing on 

degradation and pretreatment of cellulosic material (e.g., lignocelluloses, hemicellulose) to sugar 

during 2000 to 2009, also there are lots of comments and perspectives on economy/market 

analysis, and carbon neutral economy. With the support of DOE (Department of Energy) on 

three energy centers (2007-currently), as well as production of biofuels through metabolic 

engineering (Atsumi et al. 2008a; Atsumi et al. 2009; Steen et al. 2010), the trend has been 

shifted to microbial substrates utilization (Glycerol, acetate, and xylan), and photosynthetic hosts 

(microalgae and cyanobacteria).    

7.4.4. Advantages and Limitations of Big Data workflow 

Current workflow provides fast, reproducible, and quantitive analysis over literature database. 

The whole process takes less than 3 min from search to the comparison, and can be easily 

modified and extended with the addition of more sophisticated functions through programming. 

For instance, we can easily extract the author information or the institute information in data 

mining process and store in Big Table. Moreover, such information can be used to track 

publication records related with specific authors or specific institutes.   

The major limitation of the current workflow is the information available in the database. 

Although PMC is the largest full-text database online, the papers it includes are only 1.1 million 

currently. Considering the total number of papers available, which counts over 65 million 
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currently and this number is increasing now. The large gap between the resource we can access 

and the total number of papers available can be explained by two reasons: first, lots of old papers 

are still not digitized. Lots of efforts are needed to put all those information into the digital 

library; second, accessing lots of digital libraries are charged (Hull et al. 2008). There will be 

copyright issues, as well as conflict of interests to make digital libraries freely access now.  

Further, data storage and Big Query search will lead to some cost, but is relatively low ($5/TB 

for either storage or query), which will not be a big issue for further development.    

 

7.5. Conclusion 

We have successfully built up a literature analysis workflow based on text mining and Big Data 

technology. The capability of this workflow has been demonstrated through case studies and can 

be further enhanced by integrating with other information sources. Considering of its fast speed, 

reproducible results, scalability with other databases, and ease-to-modify, we believe the further 

development of this platform will provide deeper insights into literature as well as bringing more 

benefits for researchers.  
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Terms Metabolic engineering Synthetic biology 

Most frequent words Production Gene 

Major differences in 500 

most frequent words 

FBA (flux model) 

NADH/NADPH 

(cofactor) 

ATP (energy) 

Xylose/acetate/glycerol 

HPLC 

transport/tolerance 

circuit/loop 

IPTG/lacI (inducer) 

RBS 

Switch (regulation) 

egfp 

Phage/virus 

 

Table 7.1. Comparison of ‘metabolic engineering’ and ‘synthetic biology’, similarity 69.6% 
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Terms  
Metabolic engineering  

2000 ~  2010 ~  

Most frequent words  Metabolic  Production  

Major differences in 500 

most frequent words  

PHB/Lysine 

PTS 

B. subtilis 

hydrogen 

P. Pastoris 

butanol/isobutanol  

HPLC 

cyanobacteria  

Lipid 

C.  glutamicum  

 

Table 7.2. Development trend of ‘metabolic engineering’ during 2000 ~ 2009 and 2010 ~ 2015, 

similarity 81% 
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Terms 

Biofuel 

2000 ~ 2010 ~ 

Most frequent words Production Genes 

Major differences in 500 

most frequent words 

Lignocellulosic 

hemicellulose 

Emissions 

policy 

Economic/market 

Feedstock 

Glycerol/acetate 

xylan 

Algae/microalgae 

Cyanobacteria 

Lipid 

Chromosome/cDNA 

 

Table 7.3. Development trend of ‘biofuel’ during 2000 ~ 2009 and 2010 ~ 2015 similarity 72.4%  
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Figure 7.1a. Total number of journals in the database at different time 

 

 

 

Figure 7.1b. Total number of papers in the database increase at different time 
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Figure 7.2. Structure of nxml file 
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Figure 7.3. Word cloud of ‘metabolic engineering’ 
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Figure 7.4. Word cloud of ‘environmental engineering’ 
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Figure 7.5. Word cloud of ‘synthetic biology’ 
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Figure 7.6. Word cloud of ‘systems biology’ 
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Figure 7.7. Word cloud of ‘metabolic flux’ 
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CHAPTER EIGHT 

 CONCLUSIONS AND FUTURE PERSPECTIVES 

8.1 Conclusions 

In this dissertation, I first employed fluxomics tools (FBA and 
13

C-MFA) to investigate the 

metabolisms of isobutanol-producing E. coli strains in chapter two. 
13

C-MFA results indicated 

that isobutanol production reshaped the central metabolism with increased activities in Pentose 

Phosphate pathway (supply more NADPH for isobutanol synthesis), and glyoxylate shunt 

(reserve more carbon). To gain an overview on how the factor of oxygen concentration, P/O ratio, 

and maintenance energy affects isobutanol production, we set up an integrated flux model (use 

13
C-MFA flux values to constrain genome scale FBA) to test the sensitivity of each factor. The 

simulation result revealed that the maintenance energy played a more important role in affecting 

isobutanol yield than P/O ratio and oxygen flux. Further, we found a ‘cliff’ in isobutanol yield 

landscape which can be triggered by increased maintenance energy, decreased P/O ratio or 

decreased oxygen supply. Discovery of this cliff explained many failures observed in isobutanol 

experiments and scale-up processes. Besides, we also quantify the impacts of yeast extract and 

the results show that supply of rich nutrients such as yeast extract can efficiently relieve the 

intracellular crisis in carbon and energy resource, thereby can significantly boost isobutanol 

production without directly contributing to the product. The limitation of this work is industrial 

isobutanol production mainly focus on the non-growth phase, which central metabolites tracing, 

fast quenching, as well as dynamics 
13

C-MFA are required to resolve cellular metabolism at this 

phase. 
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      We expanded the analysis to other biofuel producing cases in chapter three. FBA simulations 

indicated that alcohol (i.e., ethanol, isobutanol) production is more robust to P/O ratio change 

(efficiency of energy metabolism) than fatty acid production in E. coli strains. In addition, we 

took an overview of those successful and failure cases in biotechnology industry and realized 

that avoiding extensive genetic modification is important for high yield and strain stability. 

Heterogeneous plasmid or enzyme expression introduces extra metabolic burden, leading to 

shifted central metabolism, and even imbalance between carbon and energy metabolism (Yin-

Yang Balance). We proposed several approaches to solve this problem, such as employment of 

fluxomics tools (i.e., 
13

C-MFA) to decipher energy metabolism, relying on native pathways, 

performing minimal engineering, etc. Based on the Yin-Yang theory, we tried to insert 

Vitreoscilla hemoglobin (vhb) gene into fatty acid producing strains to improve its oxygen 

uptake ability and thus fatty acid production, which is discussed in chapter four. 

Chapter four 

Besides energy metabolism related projects, I also developed a series of computational tools for 

fluxomics studies and literature analysis.  In chapter five, I rebuilt the MicrobesFlux platform, 

moved it from a share server at Washington University to a commercial server (Amazon EC2 

server). In addition, I enhanced the functionality of MicrobesFlux by including much more 

species (previously: 1304 species; currently: 3192 species), supporting the SBML file format, 

having unlimited storage space. Further, I participated in the development of MATLAB based 

open-source 
13

C-MFA software (WUFlux). In addition, I designed and built several website 

platforms (fluxomics.net, 13cmfa.org) for fluxomics studies, also we shared all fluxomics tools 

used in our group on the website for free.    
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In chapter six, we built a computational platform that can calculate microbial metabolism very 

quickly based on user input. This computational platform named MFlux (MFlux) is developed 

based on an integration of machine learning, constraint programming, and quadratic 

programming. Through grid searching, we chose Support Vector Machine as machine learning 

algorithm and optimize its parameters. Quadratic programming can adjust predicted flux profile 

to satisfy the stoichiometry constraints and constraint programming is used to avoid non-sense 

inputs. To sum up, we build up the correlations between genetic/environmental factors and 

central metabolic fluxes.   

In chapter seven, I developed a Big Data based framework which can perform fast literature 

analysis based on user inputs.  We first employed the text mining approach to extract information 

from full text papers. Subsequently, we upload all information into Google Cloud server and set 

up a fast search tool through Google BigQuery. Finally, through BigQuery search plus searching 

results processing, we get meaningful information from literature database. We performed 

several case studies, and the results turned to be fast (whole process less than 2 min), reliable 

(results repeatable), and informative. The limitation of this work is that current literature 

database only contains 1.1 million papers focusing on biomedical research; and we need more 

information to avoid bias in analysis.  

 

8.2. Future directions to solve intracellular energy crisis  

To circumvent the energy bottlenecks within microbial cell factories, we propose the following 

approaches in addition to those already mentioned in Chapter three: 

1. Improve energy efficiency by engineering respiration metabolism 
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In aerobic metabolism, energy generation mainly comes from ATP synthesis through oxidative 

phosphorylation (respiration). However, in real cases, respiration rates in many strains are far 

below theoretical maximum (Varma and Palsson 1994; Wu et al. 2015; Sauer and Bailey 1999). 

Thereby, improving oxidative respiration efficiency is an efficient manner to enhance energy 

supply. The first successful case of knocking out inefficient respiration metabolism was reported 

by Zamboni and Sauer, to enhance riboflavin production in Bacillus subtilis (Zamboni et al. 

2003). In this work, knockout of cytochrome bd oxidase also leads to a 40% reduction of cellular 

maintenance energy. Afterwards, this strategy has been adopted and combined with other 

strategies, to enhance the yield of other products (e.g., N-acetylglucosamine) in B. subtilis (Liu et 

al. 2014). Observations of reduced maintenance energy were also reported in model species E. 

coli (ndh knockout) (Calhoun et al. 1993) and  C. glutamicum (cydAB knockout) after 

eliminating the  energy metabolism component of low efficiency (Kabus et al. 2007). Further, 

the cytochrome bd knockout mutant was reported to enhance lysine production by ~12% in 

Corynebacterium glutamicum (Kabus et al. 2007). This strategy may apply to species with 

several sets of respiration chains with different efficiency. Notably, successful applications of 

this strategy are also closely related with other factors, such as oxygen concentration, medium 

composition and etc. (Kabashima et al. 2009).  

2. Utilization of other energy sources  

As a traditional energy source, hydrogen can be utilized by a broad range of microbes (B 

Friedrich and Schwartz 1993; Petersen et al. 2011), Utilization of hydrogen as the energy 

supplier in industrial fermentation is not preferred, albeit the well-known syngas fermentation. 

This is due to those undesired properties of hydrogen gas such as low solubility, easy-to-leak, 
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and explosive. Compared with hydrogen, formate is a better source of energy supply in terms of 

the uptake efficiency.  

      The utilization of formate by microbes as extra energy source was discovered more than 

thirty years ago. In 1983, Bruinenberg et al. discovered that Candida utilis can uptake formate as 

an additional energy source in the presence of glucose (Bruinenberg et al. 1983). Utilization of 

formate leads to an increased biomass yield. Meanwhile, similar phenomenons were also 

observed in Hansemula polymorpha by Babel et al. and in Pichia pastoris by Hazeu et al. (Babel 

et al. 1983; Hazeu and Donker 1983). Saccharomyces cerevisiae CBS 8066 also joined this list 

of formate utilization species. However, formate utilization did not make any improvement in 

biomass yield of S. cerevisiae.(Bruinenberg et al. 1985)  It was then realized that utilization of 

formate normally requires the functionality NAD-dependent formate dehydrogenase (FDH, EC 

1.2.1.1). The strategy of employing formate as extra energy source has been extended to other 

species with FDH, such as oleaginous yeasts (Cryptococcus curvatus, Rhodotorula glutinis, and 

Lipomyces starkeyi) for improving lipid production (Lian et al. 2012), Penicillium chrysogenum 

for enhancing penicillin G productivity (Harris et al. 2007), and Bacillus thuringiensis for 

promoting thuringiensin yield (Zhi et al. 2007). Formate can also be generated through an 

electrochemical process, to feed engineered Ralstonia eutropha H16 strain to produce isobutanol 

and 3-Methyl-1-butanol (Li et al. 2012). On the other side, heterologous expression of an fdh 

gene enables formate usage in those species without this gene. For instance, after insertion of the 

fdh gene into the chromosome, Corynebacterium glutamicum was able to utilize formate and 

produce 20% more succinate anaerobically in the presence of glucose. Formate was used as the 

NADH and CO2 donor in this case  (Litsanov et al. 2012). In yet another case, fdh was 

introduced into a succinate-producing E. coli strain, leading to significantly reduced byproduct 
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formate and improve succinate yield and productivity (Balzer et al. 2013). Metabolic burden of 

fdh overexpression may offset its benefit; thus, careful consideration is necessary at the stage of 

strain design.    

2Formate + NAD CO +NADH  

      Photosynthetic microorganisms (cyanobacteria and microalgae) convert CO2 to useful 

products with light as the energy source. The list of their products has been greatly boosted with 

the advent of advanced genetic tools (Wijffels et al. 2013). However, scale-up photosynthetic 

microbial process to industrial production has been severely hindered by a limited range of light 

penetration, which leads to a series of problems such as high-cost photobioreactor, low cell 

density, and cost-inefficient harvesting. To circumvent these problems, a photomixotrophic 

strategy has been proposed (You et al. 2015). Under light and glucose sufficient condition, 

Synechocystis sp. PCC 6803 is able to consume both CO2 and glucose for biomass production 

which potentially leads to higher biomass density.  

3. Minimize maintenance energy in host strain 

During industrial fermentation, cellular maintenance energy is released out as heat, leading to 

increased temperature of fermentation broth, which is undesired for the whole process. Further, 

low maintenance energy requirement indicates more energy allocated on biomass & product 

synthesis (Sauer et al. 1996). Thereby, hosts of low maintenance energy are preferred. In a 

comparative study, cellular metabolisms of several bacilli strains (both wide type and mutant) 

close to Bacillus subtilis were investigated. And the result show that the B. licheniformis T380B 

strain has the lowest maintenance energy (0.20 mmol/g*h) of all strains analyzed in that work. 

Therefore, the authors consider it as a potential host to replace B. subtilis (maintenance energy 

0.39 mmol/g*h) for vitamin and other chemical production (Tannler et al. 2008).  
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       On the other side, cellular maintenance energy is positively correlated with incubation 

temperature (Price and Sowers 2004; Lever et al. 2015). From energy point of view, lower 

temperature is preferred for fermentation process, in the sake of lower maintenance energy and 

enhanced strain stability. However, temperature is an essential factor affecting many processes 

within cellular metabolism (e.g., enzymes kinetics, regulation). In practice, a trade-off between 

production rate and strain stability requires careful consideration during temperature control 

(Dunn-Coleman et al. 1992).  

8.3 Personal views on the future of microbial cell factories  

8.3.1. Limitation of microbial systems 

Each closed system has its limitation. For instance, enzymatic systems are facing the trade-off 

between its kinetic efficiency (Kcat/Km) and thermostability: it is very challenging to obtain 

enzymes with both good thermostability and high catalytic efficiency (Ye et al. 2012; Romero 

and Arnold 2009). In a similar manner, microbial systems have a series of physical limitations: 

the trade-off between cell membrane surface area/volume and material exchange efficiency, the 

limited cell membrane surface area decides the upper limit of nutrient and oxygen uptake rate 

(Zhuang et al. 2011), pose a further restriction on the total carbon/energy available within a cell. 

Taken all limiting factors together before the design, we are able to realize what is impossible 

even before many failures after extensive engineering.      

8.3.2. The success of distributed system in computational system shed lights on microbial 

systems 

Computational systems have their limitation: the CPU frequency is strictly limited by the speed 

of signal travel (light of speed), therefore, after we had 3GHz CPU more than ten years (2002), it 
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is difficult to get more improvements in CPU clock. Expensive multi-core high performance 

working stations were the first choice to handle those extensive computation, however, are being 

replaced by distributed computational systems (GDFS, Google Distributed File System or HDFS, 

Hadoop Distributed File System, both are based on MapReduce algorithm) due to high costs and 

low robustness to error. Reliability (robustness) is an important factor deciding the commercial 

values of any systems, and that is the reason distributed computational systems wins the battle 

with working stations.  Similarly, extensive genetic modification on microbial cells bring extra 

burdens on cell metabolism which leads to increased instability of cell itself, as well as its poor 

reliability, which has been verified by many failed bioprocess scale-up. In a similar manner, 

microbial distributed systems (e.g., coculture (Zhou et al. 2015), integrated bio-chem process 

(Xiong et al. 2014)) are still in its infant phase. The key point for successful microbial distributed 

systems is to have a universal framework (similar as MapReduce) to improve the reliability of 

the system substantially, which current synthetic biology or metabolic engineering does not 

solves.     
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Appendix II Supporting information of Chapter 6 

S1. Source code 

-------------------------------------------------------------------------------------------------------------- 

clp.py 

def process_species_db(File): 

    """Load the species database which is Suppliment Information I 

 

    Format 

    ======== 

    Fields separated by tab 

 

    Species Spcies name Oxygen condition    Substrate uptake rate 

upper bound (mmol/gDW*mol )   1   2   3   4   5   6   7   8   9   10  

11  12  13  14  Growth rate upper bound (h-1)   Reference 

    1   Escherichia coli    1,3,2   20  Y   Y   Y   Y   Y   Y   Y   Y   

Y   Y   Y   Y   Y   N   1.2 1 

    2   Corynebacterium glutamicum  1,3,2   40  Y   Y   Y   Y   Y   Y   

Y   Y   N   Y   N   Y   Y   N   1   2 

 

    Returns 

    ======== 

    DB: A list of tuples. Each tuple is (species, Oxygen, rate, 

Carbon1, Carbon 2, ..., Carbon 14, Growth_rate_upper) 

        Oxygen itself is a string, e.g., "1,2,3" 

 

    """ 

    Carbon_sub = {"Y":True, "N":False} 

    DB = [] 

    with open(File, "r") as F: 

        F.readline() # skip the header 

        for Line in F: 

            Field = Line.split("\t") 

#            print Field 

            [Species, Substrate_rate] = map(int, [Field[0], Field[3]]) 

            Oxygen = Field[2] #map(int, Field[2].split(",")) 

            Carbon_src = [ Carbon_sub.get(x, False) for x in 

Field[4:4+13+1]  ] 

            Growth_rate_upper = Field[4+14]  

            DB.append(tuple([Species, Oxygen, Substrate_rate]+ 

Carbon_src + [Growth_rate_upper])) 

 

    return DB 
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def species_db_to_constraints(DB, Debug=False): 

    """Turn the species DB into a CSP problem (constraints only, no 

variable ranges) 

 

    Parameters 

    ============= 

    DB: list of tuples 

        Each tuple is (species, Oxygen, rate, Carbon1, Carbon 2, ..., 

Carbon 14) 

        Oxygen itself is a tuple, e.g., (1,3) 

 

    Returns 

    ========= 

    problem: an instance of python-constraint 

        containing only constraints but no variable domains 

 

    Notes 

    ======== 

    the problem has a solution if any of the rules set in species 

database is VIOLATED.  

    In other words, if the problem has solution, then the input does 

NOT make sense.  

 

    """ 

    import constraint # python-constraint module 

    problem = constraint.Problem() # initialize the CSP problem 

 

    # create variables 

#    problem.addVariable("Species", range(1,41+1)) 

#    problem.addVariable("Substrate_rate", range(0, 100+1)) 

#    problem.addVariable("Oxygen", [1,2,3]) 

#    for i in xrange(1, 14+1): 

#        problem.addVariable("Carbon"+str(i), [True, False]) # create 

one variable for each carbon source 

    # This part should be from user input 

 

    # add constraints, where each entry in DB is a constraint.  

    #   create the lambda functions 

    All_vars= ["Species", "Substrate_rate", "Oxygen"] + 

["Carbon"+str(i) for i in xrange(1, 14+1)] + ["Growth_rate_upper"] 

    for Entry in DB: 

        Oxygen_values = Entry[1] # as string 

        Foo = "lambda " 

        Foo += ", ".join(All_vars) # done with listing all variables 

        Foo += ": "  

        Logic_exp = ["Substrate_rate<=" + str(Entry[2]), "Species==" + 

str(Entry[0]), "Growth_rate_upper<=" + str(Entry[4+13])] 

 

        for i in range(3, 3+14): # carbon sources 

            if not Entry[i]: # only use false ones to create the 

constraint 
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                Logic_exp.append( ( All_vars[i] + "==" + 

str(Entry[i]) ) ) 

 

        Logic_exp.append( ( "Oxygen in [" + Oxygen_values + "]" )  )  

 

        Logic_exp = " and ".join(Logic_exp) 

        Logic_exp = "not (" + Logic_exp + ")"  # De Morgan's Law 

        if Debug:  

            print Logic_exp 

        problem.addConstraint(eval(Foo + Logic_exp), tuple(All_vars)) 

 

    return problem # just return one solution, if no solution, return 

is NoneType 

 

def input_ok(problem, Vector): 

    """Turn user inputs into domains of variables for the CSP problem 

and then solve.  

 

    Parameters 

    ============ 

    problem: a python-constraint instance with constraints built  

    Vector: the feature vector, float numbers, [Species, Reactor, 

Nutrient, Oxygen, Method, MFA, Energy, Growth_rate, 

Substrate_uptake_rate] + ratio of 14 carbon sources in the order: 

"glucose", "fructose", "galactose", "gluconate", "glutamate", 

"citrate", "xylose", "succinate", "malate", "lactate", "pyruvate", 

"glycerol", "acetate",  "NaHCO3" 

 

    Notes 

    ======== 

    In current formulation, the problem has a solution if any of the 

rules set in species database is VIOLATED.  

    In other words, if the problem has solution, then the input does 

NOT make sense.  

 

    Example 

    ========= 

    >>> import clp  

    >>> DB = clp.process_species_db("SI_1_species_db.csv") 

    >>> P  = clp.species_db_to_constraints(DB) 

    >>> Vector = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.72, 10.47, 1.0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0]   

    >>> print clp.input_ok(P, Vector) 

    True 

    >>> P.reset() # another test, violating the carbon source it takes 

    >>> P  = clp.species_db_to_constraints(DB) 

    >>> Vector = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.72, 17, 1.0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0.0]  

    >>> print clp.input_ok(P, Vector) 

    False 

    >>> P.reset() # another test, violating growth rate upper boundary 

    >>> P  = clp.species_db_to_constraints(DB) 
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    >>> Vector = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.72, 10.47, 1.0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0] 

    >>> print clp.input_ok(P, Vector) 

    False 

 

 

    """ 

 

    problem.addVariable("Species", [Vector[0]]) 

    problem.addVariable("Substrate_rate", [Vector[8]]) 

    problem.addVariable("Oxygen", [Vector[3]]) 

    problem.addVariable("Growth_rate_upper", [Vector[7]]) 

    for i in xrange(1, 14+1): 

        problem.addVariable("Carbon"+str(i), [True if Vector[i+8]>0 

else False]) # create one variable for each carbon source 

 

    Solutions = problem.getSolution() 

     

    if Solutions == None:# no a single solution, pass test 

        return True 

    else: 

        return False 

 

 

 

------------------------------------------------------------------------------------------------------------- 

compute.py 

#!/usr/bin/env python 

 

import cgi 

form  = cgi.FieldStorage() # instantiate only once! 

 

import cgitb; cgitb.enable() 

 

# Feature_names =  ["Species", "Reactor", "Nutrient", "Oxygen", 

"Method", "MFA", "Energy", "Growth_rate", "Substrate_uptake_rate", 

"Substrate_first", "Ratio_first", "Substrate_sec", "Ratio_sec", 

"Substrate_other"] 

Feature_names =  ["Species", "Reactor", "Nutrient", "Oxygen", "Method", 

"Growth_rate", "Substrate_uptake_rate", "Substrate_first", 

"Ratio_first", "Substrate_sec", "Ratio_sec"] 

 

Features = {"Energy":1.0, "MFA":1.0, "Substrate_other":0.0} 

 

# Avoid script injection escaping the user input 

#Purpose ="sdfsd" 

 

print "Content-Type: text/html" 

print 
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print """\ 

<html> 

<head><title>Result of Influx analysis </title></head> 

 

<body> 

<h2>Parameters entered:</h2> 

""" 

 

# Process the form values 

for Feature_name in Feature_names: 

    Feature_value = form.getfirst(Feature_name) 

    Feature_value = cgi.escape(Feature_value)  

    Features[Feature_name] = float(Feature_value) # convert all string 

to numbers 

 

    print """\ 

    %s is %s,  

     """ % (Feature_name, Feature_value) 

 

import libflux  

Vector, Substrates = libflux.process_input(Features) 

Boundary_dict = libflux.process_boundaries(form, Substrates) 

 

#libflux.test("hello, world") 

Influxes = libflux.predict(Vector, Substrates, Boundary_dict) # use 

the feature vector to predict influx values  

 

print """\ 

<p><a href="index.html">Go back to submission page</a></p> 

 

<hr> 

<p> 

This project is supported by National Science Foundation. <a 

href="http://www.nsf.gov/awardsearch/showAward?AWD_ID=1356669">More 

info</a> <br> 

Information on this website only relects the perspectives of the 

individuals.<br> 

</p> 

</body> 

</html> 

""" 

 

 

 

 

--------------------------------------------------------------------- 

get_model.py 

# extract the training data from spreadsheet 

 

from collections import defaultdict 
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import cPickle 

 

import numpy 

from sklearn import cross_validation, preprocessing, grid_search 

from sklearn.neighbors import KNeighborsRegressor 

from sklearn.svm import SVR 

from sklearn.tree import DecisionTreeRegressor 

 

 

class RegressionModel(object): 

    """A help class to store model's name and the actual model.""" 

 

    def __init__(self, name, **kwargs): 

        self.name = name 

        self.model = eval(name)(**kwargs) 

 

    def __str__(self): 

        return self.name 

 

 

class RegressionModelFactory(object): 

    """A factory to create new instances of RegressionModel.""" 

 

    def __init__(self, name, **kwargs): 

        self.name = name 

        self.kwargs = kwargs 

 

    def __str__(self): 

        return "{} ({})".format(self.name, self.kwargs) 

 

    def __call__(self): 

        """Create a new RegressionModel instance each time.""" 

        return RegressionModel(self.name, **self.kwargs) 

 

def shuffle_data(Training_data): 

    """Shuffle the order of data in training data 

 

    Shuffle by scrambling the index 

 

    (New)_training_data: a dict, keys are EMPs (e.g., v1, v2, etc.), 

                   values are 2-tuples (Feature, Label), where 

                   Feature is a 2-D list, each sublist is 24-D feature 

vector for one sample 

                   and 

                   Label is a 1-D list, labels for all samples. 

 

 

    """ 

    import random 

    New_training_data = {} 

    for i, (Feature_vector, Labels) in Training_data.iteritems(): 

        Num_Samples = len(Feature_vector) 
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        if Num_Samples != len(Labels): 

            print "Error! Inconsistent numbers of Features Vectors and 

Labels" 

        Shuffled_index = range(Num_Samples) 

        random.shuffle(Shuffled_index) 

        New_Feature_vector = [Feature_vector[j] for j in 

Shuffled_index] 

        New_Label = [Labels[j] for j in Shuffled_index] 

 

        New_training_data[i] = ([New_Feature_vector, New_Label]) 

 

    return New_training_data 

 

 

def read_spreadsheet(filename): 

    """Turn spreadsheet into matrixes for training 

 

    Returns 

    ======== 

 

    training_data: a dict, keys are EMPs (e.g., v1, v2, etc.), 

                   values are 2-tuples (Feature, Label), where 

                   Feature is a 2-D list, each sublist is 24-D feature 

vector for one sample 

                   and 

                   Label is a 1-D list, labels for all samples. 

 

    Notes 

    ============ 

    EMPs are N.A. for some samples, training features were dropped for 

them. 

    That's why we need one training feature matrix for each EMP. 

 

    We have 29 influxes values to predict and thus the index/key for 

training_data goes from 1 to 29 

 

    AA is 26 for 0-index 

    BA is 32 for 0-index 

    """ 

 

    training_data = {} 

    for i in range(1, 29+1):# prepare the data structure 

        training_data[i] = ([],[]) # the 1st list is the features and 

the 2nd the labels for i-th influx 

 

    reports = defaultdict(list) 

    with open(filename, 'r') as f: 

        for i, line in enumerate(f.readlines(), 1): 

            line = line.strip() 

            line = line.split("\t") 

            vector = line[2:26+1] # training vector, from Species (C) 

to Other carbon (AA). 
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                              # one empty column 

            key = ", ".join(vector) 

            reports[key].append(i) 

 

            if "" in vector: 

                vector.remove("") 

            if not vector : 

                print line 

                exit() 

 

            labels = line[26+3: 26+3+26+5] # AD to BF, v1 to v29 

#            print Labels 

 

            try: 

                vector = map(float, vector) 

            except ValueError: 

                print vector 

 

            # Now create the dictionaries we need, one dictionary for 

each influx 

            for i in range(1, 29+1): 

                label = labels[i-1] 

                try: 

                    label = float(label) 

                except ValueError: 

#                    print Label, "=>" 

#                    print Line 

                    continue # this label for this influx is not 

numeric 

 

                training_data[i][0].append(vector) # add a row to 

feature vectors 

                training_data[i][1].append(float(label)) # add one 

label 

 

    print("checking duplicate lines...") 

    for k, v in reports.iteritems(): 

        if len(v) > 1: 

            print("line number: {}".format(v)) 

    print("Done.") 

    return training_data 

 

 

def one_hot_encode_features(training_data): 

    """Use one-hot encoder to represent categorical features 

 

    Feature from 1 to 7 are categorical features: 

    Species, reactor, nutrient, oxygen, engineering method, MFA and 

extra energy 

 

    """ 

    import numpy 
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    encoded_training_data, encoders = {}, {} 

    for vid, (vectors, targets) in training_data.iteritems(): 

            encoder = preprocessing.OneHotEncoder() 

            vectors = numpy.array(vectors) # 2-D array 

            encoded_categorical_features = 

encoder.fit_transform(vectors[:, 0:6+1]) 

            encoded_categorical_features = 

encoded_categorical_features.toarray() 

            encoded_vectors = 

numpy.hstack((encoded_categorical_features, vectors[:, 6+1:])) 

            encoded_training_data[vid] = (encoded_vectors, targets) 

            encoders[vid] = encoder 

    return encoded_training_data, encoders 

 

def standardize_features(training_data): 

    """Standarize feature vectors for each influx 

 

    Later, a new feature vector X for i-th influx can be normalized as: 

    Scalers[i].transform(X) 

 

    """ 

    std_training_data, scalers = {}, {} 

    for vid, (vectors, labels) in training_data.iteritems(): 

        vectors_scaled = preprocessing.scale(vectors) 

        std_training_data[vid] = (vectors_scaled, labels) 

 

        scalers[vid] = preprocessing.StandardScaler().fit(vectors) 

 

    return std_training_data, scalers 

 

 

def train_model(training_data, Parameters): 

    """Train a regression model for each of the 29 influxes 

 

    Returns 

    ================ 

    Models: dict, keys are influx indexes and values are regression 

models 

    parameters: dict, keys are intergers 1 to 29, values are dicts, 

such as 

                'epsilon': 0.01, 'c': 100.0, 'gamma': 0.001, 'kernel': 

'rbf' 

 

 

    Notes 

    =========== 

    Parameters are not in use. Now use same parameters for all v's. 

 

    """ 

    models = {} 

    for i in range(1, 29+1): 

        vectors, label = training_data[i] 
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        Parameter = Parameters[i] 

        model_gen = RegressionModelFactory("SVR", **Parameter) 

#        model_gen = RegressionModelFactory("SVR", kernel="linear", 

C=0.1, epsilon=0.01) 

#        model_gen = RegressionModelFactory("KNeighborsRegressor", 

n_neighbors=10, weights="distance") 

        model = model_gen().model 

        model.fit(vectors, label) # train the model 

        models[i] = model 

    return models 

 

 

def cross_validation_model(training_data, model_gen, Folds, N_jobs): 

    """Do a cross validation on a model using the given training data. 

 

    :param training_data: A dict with keys as v, and values as 

[vectors, label]. 

    :param model_gen: A RegressionModel generator or a list of that. 

    :param Folds: number of CV folds 

 

 

    """ 

    import sklearn 

#    print("model: {}".format(model_gen)) 

    print("v\tscore_accuracy") 

    folds = Folds 

    for i in range(1, 29 + 1): 

        vectors, label = training_data[i] 

        label = numpy.asarray(label) 

        if type(model_gen) == dict: 

            model = model_gen[i]() 

        else: 

            model = model_gen() 

        # allow shuffleSplit on dataset 

#        print len(label) 

        if Folds < 1: 

            folds = sklearn.cross_validation.ShuffleSplit(len(label)) 

 

        scores = cross_validation.cross_val_score(model.model, vectors, 

label, 

                                                  cv=folds, 

                                                  

scoring="mean_squared_error", 

                                                  n_jobs = N_jobs 

#                                                  scoring="r2" 

                                                  ) 

        print("{}\t{} (+/- {})" 

              .format(i, scores.mean(), scores.std() * 2)) 

# This needs to scaled back to real range of fluxes. 

 

def grid_search_cv(training_data, model_gen, params, SCORINGS, 

CORE_NUM, FOLDS): 
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    """Do a grid search to find best params for the given model. 

 

    :param training_data: A dict with keys as v, and values as 

[vectors, label]. 

    :param model_gen: A RegressionModel generator. 

    :param params: All parameters the grid search needs to find. It's 

a subset 

        of all the optional params on each model. i.e. for 

KNeighborsRegressor 

        model, it's a subset of 

 

        ``` 

        { 

            "n_neighbors": [1, 5, 10, ...], 

            "weights": ["uniform", ...], 

            "algorithm": ["auto", ...], 

            "leaf_size": [30, 50, ...], 

            "p": [2, 5, ...], 

            "metric": ["minkowski", ...], 

            "metric_params": [...], 

        } 

        ``` 

 

    """ 

    print("model: {}".format(model_gen)) 

    print("v\tscoring\tbest_score\tbest_params") 

    for i in range(1, 29 + 1): 

        vectors, label = training_data[i] 

        model = model_gen() 

        for scoring in SCORINGS: 

            clf = grid_search.GridSearchCV(model.model, params, 

scoring=scoring, n_jobs=CORE_NUM, cv=FOLDS) 

            clf.fit(vectors, label) 

            print("{}\t{}\t{}\t{}".format(i, scoring, clf.best_score_, 

                                          clf.best_params_)) 

 

def grid_search_tasks(std_training_data): 

    """One function to run grid search on different regressors 

 

    CORE_NUM: int, number of CPU cores to be used 

    FOLDS: int, number of folds for cross validate 

 

    """ 

    import numpy 

    knn_model_gen = RegressionModelFactory("KNeighborsRegressor", 

n_neighbors=10, weights="distance") 

    svr_model_gen = RegressionModelFactory("SVR", kernel="linear", 

C=10, epsilon=0.2) 

    dtree_model_gen = RegressionModelFactory("DecisionTreeRegressor", 

random_state=0) 

 

    KNN_PARAMS = { 
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        "n_neighbors": range(1, 16), 

        "weights": ["distance", "uniform"], 

        "algorithm": ["ball_tree", "kd_tree", "brute"], 

        "metric": ["euclidean", "chebyshev", "minkowski", ] 

    } 

 

    SVR_PARAMS = { 

        "C": 10.0 ** numpy.arange(-4,4), 

        "epsilon": [0., 0.0001, 0.001, 0.01, 0.1],  # experience: 

epsilon>=0.1 is not good. 

        "kernel": [ 

       "linear", 

#        "rbf", 

#        "poly",  # polynomial kernel sucks. Never use it. 

#        "sigmoid", 

        # "precomputed" 

        ], 

#        "degree": [5,], # because polynomial kernel sucks. Never use 

it. 

        "gamma": 10.0 ** numpy.arange(-4, 4), 

  } 

 

    DTREE_PARAMS = { 

#        "criterion": ["mse"], 

        "splitter": ["best", "random"], 

        "min_samples_split": range(2, 16), 

        "min_samples_leaf": range(1, 16), 

        "max_features": ["sqrt", "log2"], 

#        "random_state": [0, 1, 10, 100], 

    } 

 

    SCORINGS = ["mean_squared_error", 

#                "mean_absolute_error" 

    ] 

 

 

    TRAINING_PARMAS = [ 

#        (knn_model_gen, KNN_PARAMS), 

        (svr_model_gen, SVR_PARAMS), 

#      (dtree_model_gen, DTREE_PARAMS), 

    ] 

 

    FOLDS = 10 

    CORE_NUM = 32 

 

    [grid_search_cv(std_training_data, k, v, SCORINGS, CORE_NUM, FOLDS) 

for k, v in TRAINING_PARMAS] 

 

def cv_tasks(std_training_data, Folds, N_jobs, Label_scalers, 

Parameters): 

    """Cross-validation on all v's 
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    :param Folds: number of CV folds 

    :param N_jobs: number of CPU cores 

    :param label_scaler: dict, keys are fluxes and values are sklearn 

scaler objects 

    :param Parameters: dict, keys are fluxes and values are parameters 

for all fluxes 

 

    """ 

    import sklearn 

    knn_model_gen = RegressionModelFactory("KNeighborsRegressor", 

n_neighbors=10, weights="distance") 

#    dtree_model_gen = RegressionModelFactory("DecisionTreeRegressor", 

random_state=0) 

 

    if Parameters != None: # need to create one instances for one flux 

        svr_model_gen = {} 

        for i in xrange(1, 29+1): 

            svr_model_gen[i] = RegressionModelFactory("SVR", 

**(Parameters[i])) 

    else: # same set of parameters for all SVR models. 

        svr_model_gen = RegressionModelFactory("SVR", kernel="linear", 

C=0.1, epsilon=0.01) 

 

    Classifier_models = [ 

#        knn_model_gen, 

        svr_model_gen, 

#        dtree_model_gen, 

    ] 

 

 

    [cross_validation_model(std_training_data, m, Folds, N_jobs) for m 

in Classifier_models] 

 

def svr_training_test(std_training_data, Parameters, 

Label_scalers=None): 

    """Test SVR training accuracy 

 

    Parameters 

    ============= 

    std_training_data: dict, keys are vID, values are tuples (vector, 

label) 

                       each vector is 2-D array and label is a 1-D 

array 

 

    Parameters: dict, keys are intergers 1 to 29, values are dicts, 

such as 

                'epsilon': 0.01, 'c': 100.0, 'gamma': 0.001, 'kernel': 

'rbf' 

 

    Label_scalers: dict, keys are int 1 to 29, value sare sklearn 

scaler objects  
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    """ 

    from numpy import square, mean, sqrt 

    Models = train_model(std_training_data, Parameters) 

    Influxes = {} 

 

    for vID, Model in Models.iteritems(): 

        (Vectors_for_this_v, Label_for_this_v) = std_training_data[vID] 

        Label_predict = Model.predict(Vectors_for_this_v) 

        if Label_scalers != None: 

            Label_predict = 

Label_scalers[vID].inverse_transform(Label_predict) 

            Label_for_this_v = 

Label_scalers[vID].inverse_transform(Label_for_this_v) 

 

        MSE = Label_predict - Label_for_this_v 

#        if vID==2: 

#            print Label_predict 

#            print Label_for_this_v 

#            print MSE 

        MSE = sqrt(mean(square(MSE))) 

 

        print "\t&\t".join(map(str, [vID, MSE 

        , max(Label_for_this_v), min(Label_for_this_v) 

        ])) + "\t\\\\" 

#        for i, j in enumerate(list(MSE)): 

#            print i+1, j 

#        print list(square(MSE)) 

#        print Label_predict 

#        break 

 

def _validate_training_data(training_data): 

    reports = [] 

    for _, d in training_data.iteritems(): 

        report = defaultdict(list) 

        vectors = d[0] 

        for i, v in enumerate(vectors): 

            key = ", ".join(map(str, v)) 

            report[key].append(i) 

        # only keep duplicated rows 

        report_ = {k: v for k, v in report.iteritems() if len(v) > 1} 

        reports.append(report_) 

 

    return reports 

 

def label_std(Training_data, Method="Norm"): 

    """standardize the labels in training data 

     training_data: a dict, keys are EMPs (e.g., v1, v2, etc.), 

                   values are 2-tuples (Feature, Label), where 

                   Feature is a 2-D list, each sublist is 24-D feature 

vector for one sample 

                   and 

                   Label is a 1-D list, labels for all samples. 
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    Label_scalers: dict, keys are vIDs and values are 

sklearn.preprocessing.MinMaxScaler instances for 29 influxes 

 

    sklearn's preprocessing MixMaxScaler does column-wise Minmax 

scaling. 

    Since influxes have different number of intances, we must loop 

thru the 29. 

 

    """ 

    import sklearn 

    Label_scaled_data = {} 

    Label_scalers = {} 

    if Method == "None": # No label std needed  

        return Training_data, None 

 

    for vID, (Vector, Label) in Training_data.iteritems(): 

        if Method == "Norm": 

            Label_scaler = 

sklearn.preprocessing.StandardScaler().fit(Label) 

#            Label_scaled = sklearn.preprocessing.scale(Label)  # 

option 1 of standarization 

        elif Method == "MinMax": 

            Label_scaler = 

sklearn.preprocessing.MinMaxScaler().fit(Label) 

        else: 

             print "Unrecognized label standarization method " 

        Label_scaled = Label_scaler.transform(Label) # Option 2, 

MinMax scaler 

 

        Label_scaled_data[vID] = (Vector, Label_scaled) 

        Label_scalers[vID] = Label_scaler 

 

    return Label_scaled_data, Label_scalers 

 

def load_parameters(File): 

    """Load a parameter file from grid search print out 

 

    The format of grid search print out: 

 checking duplicate lines 

 model: SVR ({'epsilon': 0.2, 'C': 10, 'kernel': 'linear'}) 

 v scoring best_score best_params 

 1 mean_squared_error -0.00462588529703 {'epsilon': 0.01, 

'C': 100.0, 'gamma': 0.001, 'kernel': 'rbf'} 

 2 mean_squared_error -0.0103708930608{'epsilon': 0.01, 'C': 

1000.0, 'gamma': 0.0001, 'kernel': 'rbf'} 

 3 mean_squared_error -0.00713773093885 {'epsilon': 0.01, 

'C': 1000.0, 'gamma': 0.0001, 'kernel': 'rbf'} 

 4 mean_squared_error -0.0115793576617 {'epsilon': 0.001, 

'C': 1000.0, 'gamma': 0.0001, 'kernel': 'rbf'} 

 

    """ 
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    import re 

    Parameters = {} 

    with open(File, 'r') as F: 

        F.readline() # Skip first line 

        F.readline() # Skip second line 

        F.readline() # Skip 3rd line 

        for Line in F.readlines(): 

            [v, _, _, Parameter] = Line.split("\t") 

            v = int(v) 

            exec "Parameter = " + Parameter 

            Parameters[v] = Parameter 

 

    return Parameters 

 

def test_label_std(): 

    """Test the accuracy on labels using different label std methods 

 

    The 3 methods are: no std, normalization, MinMax. 

    We will study RMSE under different normalization  

   """ 

    training_data = read_spreadsheet("wild_and_mutant.csv") 

    training_data = shuffle_data(training_data) 

    encoded_training_data, encoders = 

one_hot_encode_features(training_data) 

    std_training_data, Feature_scalers = 

standardize_features(encoded_training_data) 

 

    Parameters = load_parameters("svr_both_rbf_shuffle.log") 

     

    for Std_method in ["None", "Norm", "MinMax"]: 

        final_training_data, Label_scalers = 

label_std(std_training_data, Method=Std_method)  # standarize the 

labels/targets as well. 

 

#    grid_search_tasks(std_training_data) 

#     cv_tasks(std_training_data, 10, 32) 

        svr_training_test(final_training_data, Parameters, 

Label_scalers=Label_scalers) 

 

def prepare_data(Datasheet, Parameter_file=None, 

Label_std_method="MinMax"): 

    """Prepare all data including scaling 

 

    Patermeters 

    ============ 

    Datasheet: str, full path to database spreadsheet file 

    Parameters_file: str, full path to file that defines best 

parameters for different v.  

    Label_std_method: str, label preprocessing method, one in ["None", 

"Norm", "MinMax"]  

    Feature_std_method: str, feature preprocessing method, currentlyl 

not used 
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    """ 

    Training_data = read_spreadsheet("wild_and_mutant.csv") 

    Training_data = shuffle_data(Training_data) 

    Encoded_training_data, Encoders = 

one_hot_encode_features(Training_data) 

    Std_training_data, Feature_scalers = 

standardize_features(Encoded_training_data) 

 

    if Parameter_file != None: 

        Parameters = load_parameters(Parameter_file) 

    else: 

        Parameters = None     

 

    Final_training_data, Label_scalers = label_std(Std_training_data, 

Method=Label_std_method)  # standarize the labels/targets as well. 

 

    return Final_training_data, Feature_scalers, Label_scalers, 

Encoders, Parameters 

 

if __name__ == "__main__": 

#    test_label_std() 

#    exit() 

 

    Datasheet = "wild_and_mutant.csv" 

    Parameter_file = "svr_both_rbf_shuffle.log" 

    Training_data, Feature_scalers, Label_scalers, Encoders, 

Parameters\ 

    = prepare_data(Datasheet, Parameter_file=Parameter_file, 

Label_std_method="MinMax") 

 

#    grid_search_tasks(std_training_data) 

#    cv_tasks(Training_data, 10, 4, Label_scalers, Parameters) 

 

 

#    reports = _validate_training_data(std_training_data) 

#    for i, report in enumerate(reports, 1): 

#        print("v = {}, duplicate data index = {}".format(i, 

report.values())) 

 

    models = train_model(Training_data, Parameters) 

    cPickle.dump(models, open("models_svm.p", "wb")) 

    cPickle.dump(Feature_scalers, open("feature_scalers.p", "wb")) 

    cPickle.dump(Encoders, open("encoders.p", "wb")) 

    cPickle.dump(Label_scalers, open("label_scalers.p", "wb")) 

 

#    cPickle.dump(training_data, open("training_data.p", "wb")) 

#    cPickle.dump(encoded_training_data, 

open("encoded_training_data.p", "wb")) 

#    cPickle.dump(std_training_data,  open("std_training_data.p", 

"wb")) 
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---------------------------------------------------------------------------------------------------------------- 

libflux.py 

 

def quadprog_adjust(Substrates, Fluxes, Boundary_dict, Debug=False, 

Label_scalers=None): 

    """adjust values from ML 

 

    Parameters 

    ============ 

    Substrates: OrderedDict, keys as integers and values as floats, 

e.g., {1:0.25, 2:0, 3:0.75, ...} 

    Fluxes: Dict, keys as integers and values as floats, e.g., {1:99.5, 

2:1.1, ...} 

    Debug: Boolean, True for showing debug info and False (default) 

for no. 

    Label_scaler: sklearn.preprocessing.standardScaler 

or .MinMaxScaler  

                  Forward transform is from fluxes in true range to 

scaled range  

                  Inverse transform is from scaled range to true range 

    Boundary_dict: Upper boundaries and lower boundaries for 29 fluxes, 

depending on user inputs,  

                   e.g., {"lb29":999, "ub8":50}, populate ub and lb 

inequalities from them 

 

    Returns  

    ========= 

     Solution: Dict, keys as integers and values as floats, e.g., 

{1:99.5, 2:1.1, ...} 

 

    Notes  

    ======== 

    In Substrates, the mapping from keys to real chemicals is as 

follows: 

        1. Glucose 

        2. Fructose 

        3. Galactose 

        4. Gluconate 

        5. Glutamate 

        6. Citrate 

        7. Xylose 

        8. Succinate 

        9. Malate 

        10. Lactate 

        11. Pyruvate 

        12. Glycerol 

        13. Acetate 

        14. NaHCO3 
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    Formulation of quadratic problems in MATLAB optimization toolbox 

are different from that in cvxopt. 

    Here is a mapping between variables 

    * H => P (the quadratic terms in objective function) 

    * f => q (the linear terms in objective function) 

    * A and eyes for boundaries => G (coefficients for linear terms in 

inequality constraints) 

 * b, -lb, ub => h (coefficients for constant terms in inequality 

constraints) 

    * Aeq => A  

    * Beq => b 

 

    Unimplemented features: 

    1. Using scaled values for quadprog 

 

 

    Example 

    ============ 

    >>> Substrates = {1:1, 2:0, 3:0, 4:0, 5:0, 6:0, 7:0, 8:0, 9:0, 

10:0, 11:0, 12:0, 13:0, 14:0} 

    >>> Fluxes = {1: 100.0, 2: -2.7159, 3: 15.2254, 4: 17.7016, 5: 

110.9973, 6: 91.8578, 7: 137.7961, 8: 91.1558, 9: -0.7373, 10: 94.1518, 

11: 24.1126, 12: 21.231, 13: 2.8816, 14: 11.0324, 15: 10.1986, 16: 

11.0324, 17: 79.4203, 18: 79.4203, 19: 67.9442, 20: 67.8806, 21: 

79.3567, 22: 79.3567, 23: 64.0876, 24: 11.4761, 25: 70.0392, 26: -

1.2424, 27: 0.0059, 28: 23.2159, 29: 26.7451} 

    >>> import libflux 

    >>> libflux.quadprog_adjust(Substrates, Fluxes, {}, Debug=True) 

    >>> import cPickle 

    >>> Label_scalers = cPickle.load(open("label_scalers.p", "r")) 

    >>> libflux.quadprog_adjust(Substrates, Fluxes, {}, Debug=True, 

Label_scalers = Label_scalers) 

    >>> libflux.quadprog_adjust(Substrates, Fluxes, {"ub1":50}, 

Debug=True, Label_scalers = Label_scalers) 

 

    """ 

 

    import numpy 

    import cvxopt, cvxopt.solvers 

 

    Substrate2Index= {"glucose":1, "galactose":3, "fructose":2, 

"gluconate":4, "glutamate":5, "citrate":6, "xylose":7, "succinate":8, 

"malate":9, "lactate":10, "pyruvate":11, "glycerol":12, "acetate":13} 

 

    Ubs = numpy.array([[100,99.5,99.3,99.3,216.6, 

           196.2,232,213.1,135,151.4, 

           113.7,94.1,41.2,47.5,71, 

           47.5,189,189,189,194, 

           194,194,181.5,55,148, 

           193.2,151,149.8,104.2043714]]) 

    Ubs = Ubs.transpose() # turn it into column vector, 29x1 
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    Lbs = numpy.array([[0,-99.9,-51.5,-51.5,-13.5, 

           -23.3,-36,-7.9,-144,0, 

           0,-33,-94.4,-2,-6.6, 

           -2,0,-0.1,-0.1,0, 

           -105,-106,-144.3,0,0, 

           0,-100,-67.60986805,-13.5]]) 

    Lbs = Lbs.transpose() # turn it into column vector, 29x1 

 

    Aineq_bound, Bineq_bound = 

populate_boundary_inequalities(Boundary_dict) 

 

    Aineq = numpy.zeros((12+1, 29+1)) # the plus 1 is to tackle MATLAB 

1-index 

    Aineq[1,1] = 1; Aineq[1,2] = -1; Aineq[1,10] = -1;     

#    Aineq[2,2] = 1;Aineq[2,3] = -1; Aineq[2,15] = 1; Aineq[2,16] = 1;  

#    Aineq[3,3] = 1; Aineq[3,4] = 1; Aineq[3,5] = -1;Aineq[3,14] = 1; 

Aineq[3,15] = 1; Aineq[3,16] = 1; Aineq[3,25] = 1; 

    Aineq[2,2] = 1;Aineq[2,3] = -1; Aineq[2,16] = 2;  

    Aineq[3,3] = 1; Aineq[3,4] = 1; Aineq[3,5] = -1;Aineq[3,14] = 1; 

Aineq[3,25] = 1; 

    Aineq[4,5] = 1; Aineq[4,6] = -1;  

#    Aineq[5,6] = 1; Aineq[5,7] = -1; Aineq[5,28] = -1;     

    Aineq[6,7] = 1; Aineq[6,8] = -1; Aineq[6,25] = 1;Aineq[6,27] = -1; 

Aineq[6,29] = 1; 

    Aineq[7,8] = 1; Aineq[7,9] = -1; Aineq[7,17] = -1;Aineq[7,24] = -1; 

Aineq[7,26] = -1;  

    Aineq[8,13] = 1; Aineq[8,14] = -1;   

    Aineq[9,16] = 1; Aineq[9,15] = -1;  

    Aineq[10,19] = 1; Aineq[10,20] = -1; 

    Aineq[11,23] = 1; Aineq[11,17] = -1;Aineq[11,28] = 1; 

    Aineq[12,21] = -1; Aineq[12,22] = 1; 

    Aineq = Aineq[1:, 1:] # convert 1-index to 0-index 

    Aineq = -1 * Aineq # because in standarized formulation, it's 

Ax<=b but in our paper it is Ax>=b 

   

#    if Label_scalers == None: # if flux in their true range instead 

of scaled range 

#        Aineq = numpy.vstack([Aineq, -numpy.eye(29), numpy.eye(29)]) 

# add eye matrixes for Lbs and Ubs 

 

    if not Aineq_bound == None : 

        Aineq = numpy.vstack([Aineq, Aineq_bound]) 

    else: 

        Aineq = numpy.matrix(Aineq)     

 

 

    bineq = numpy.zeros((12+1, 1+1)) 

    bineq[2,1]= 100 * Substrates[Substrate2Index["fructose"]] 

    bineq[6,1]= 100 * Substrates[Substrate2Index["pyruvate"]] 

    bineq[10,1] = 100 * Substrates[Substrate2Index["glutamate"]] 

    bineq = bineq[1:, 1:] # convert 1-index to 0-index 

 



226 

 

#    if Label_scalers == None: # if flux in their true range instead 

of scaled range 

#        bineq = numpy.vstack([bineq, -Lbs, Ubs]) 

    if not Bineq_bound == None: 

        bineq = numpy.vstack([bineq, Bineq_bound]) 

    else: 

        bineq = numpy.matrix(bineq) 

  

    Aeq = numpy.zeros((10+1, 29+1)) 

    Aeq[1,1] = 1;  

    Aeq[2,3] = 1; Aeq[2,4] = -1;  

    Aeq[3,11] = 1; Aeq[3,12] = -1; Aeq[3,13] = -1;  

    Aeq[4,14] = 1; Aeq[4,16] = -1;   

    Aeq[5,10] = 1; Aeq[5,11] = -1; Aeq[5,25] = -1;  

    Aeq[6,18] = 1; Aeq[6,17] = -1;   

    Aeq[7,15] = 1; Aeq[7,12] = -1; Aeq[7,14] = 1;  

    Aeq[8,24] = 1; Aeq[8,18] = -1; Aeq[8,19] = 1;  

    Aeq[9,22] = -1; Aeq[9,23] = 1; Aeq[9,24] = -1; Aeq[9,29] = 1;  

    Aeq[10,20] = 1; Aeq[10,24] = 1;Aeq[10,21] = -1;  

    Aeq = Aeq[1:, 1:] # convert 1-index to 0-index 

    Aeq = numpy.matrix(Aeq) 

#    Aeq = Aeq.transpose().tolist() 

 

    beq = numpy.zeros((10+1,1+1)) 

    beq[1,1] = 100 * (Substrates[Substrate2Index["glucose"]] + 

Substrates[Substrate2Index["galactose"]]) 

    beq[2,1] = -100 * Substrates[Substrate2Index["glycerol"]] 

    beq[5,1] = -100 * Substrates[Substrate2Index["gluconate"]] 

    beq[6,1] = 100 * Substrates[Substrate2Index["citrate"]] 

    beq[7,1] = 100 * Substrates[Substrate2Index["xylose"]] 

    beq[9,1] = 100 * Substrates[Substrate2Index["malate"]] 

    beq[10,1]= -100 * Substrates[Substrate2Index["succinate"]] 

    beq = beq[1:, 1:] # convert 1-index to 0-index 

    beq = numpy.matrix(beq) 

 

    if Label_scalers == None: 

        P = numpy.eye((29)) 

        q = [[Fluxes[i] for i in range(1, 29+1)]] 

    else: # convert non-scaled fluxes into [0,1] 

        P = numpy.square(numpy.diag([Label_scalers[i].scale_ for i in 

range(1, 29+1)])) 

        q = [[Label_scalers[i].scale_**2 * Fluxes[i] for i in range(1, 

29+1)]] 

        if Debug: 

#            print P 

            for i in range(1,29+1):  

                pass 

 

    q = -1*numpy.array((q)).transpose() # -1 is because -v_i but f.T*x 

in standard quadprog formalization 

 

#    print map(numpy.shape, [Aineq, bineq, Aeq, beq, P, q]) 



227 

 

#    print map(type, [Aineq, bineq, Aeq, beq, P, q]) 

 

#    [bineq] = map(cvxopt.matrix, [bineq]) 

 

#    [beq] = map(cvxopt.matrix, [beq]) 

 

#    [Aineq, bineq, Aeq, beq] = map(cvxopt.matrix, [Aineq, bineq, Aeq, 

beq]) 

 

    [Aineq, bineq, Aeq, beq, P, q] = map(cvxopt.matrix, [Aineq, bineq, 

Aeq, beq, P, q]) 

 

    cvxopt.solvers.options['show_progress'] = False 

 

    Solv = cvxopt.solvers.qp(P, q, Aineq, bineq, Aeq, beq) 

 

    Solution = Solv['x'] 

 

    Solution = numpy.array(Solution)[:,0] # conversion from cvxopt's 

matrix to numpy array 

 

    if Debug: 

 

        numpy.set_printoptions(precision=4, suppress=True) 

 

        print "<pre>" 

        print "".join([" V", "   Adjusted ", " Predicted ", "   Diff  

",  "  Diff%  ", " Diff%Rg   "]) 

        for Idx, Value in enumerate(Solution): 

#            print type((Ubs-Lbs)[Idx][0]) 

            Diff =  Value-Fluxes[Idx+1] 

            print 

"{0:2d}{1:10.3f}{2:10.3f}{3:10.3f}{4:8.1f}{5:8.1f}".\ 

                  format(Idx+1, Value, Fluxes[Idx+1], Diff, 

Diff/Fluxes[Idx+1]*100, Diff/((Ubs-Lbs)[Idx][0])*100) # convert from 

0-index to 1-index 

        print "</pre>" 

   

    Solution = {i+1: Solution[i] for i in xrange(29)} # turn from 

numpy array to dict  

 

    return Solution 

 

def test(S): 

    print S 

 

def print_influxes(Influxes): 

    """Print influxes 

     

    Influxes: dict, keys are influx id, values are floats 

    """ 
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    import sys 

    sys.stderr = sys.stdout 

 

#    print Influxes 

    print """\ 

    <h2>Influx values based on given parameters:</h2> 

    """# % len(Vector)  #"\t".join(map(str, Vector)) 

 

    print """\ 

    <table border=0 border-spacing=5px> 

      <tr> 

       <td> 

        

    """ 

 

#    for x in range(5): 

#        print x 

 

    for ID, Value in Influxes.iteritems(): 

        print """\ 

        v%s = %.4f, <br>  

        """ % (ID, Value) 

 

    print """\ 

      </td> 

       <td> 

          <img src=\"centralflux.png\"> 

       </td> 

      </tr> 

    </table> 

    """ 

 

#    for ID, Value in Influxes.iteritems(): 

#        print """\ 

#        v%s = %.4f, <br>  

#        """ % (ID, Value) 

 

def populate_boundary_inequalities(Boundary_dict, Debug=False): 

    """ 

    Boundary_dict: Upper boundaries and lower boundaries for 29 fluxes, 

depending on user inputs,  

                   e.g., {"lb29":999, "ub8":50}, populate ub and lb 

inequalities from them 

 

    Aineq: X-by-29 binary matrix, where N is the number of Ubs and Lbs 

set by user 

    Bineq: X-by-1 column vector 

 

    for any v_j <= p, there is Aineq[i][j] ==  1 and Bineq[j] ==  P 

    for any v_j >= p, there is Aineq[i][j] == -1 and Bineq[j] == -p 

    Note the inequalities are: Ax <= B 
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    """ 

    import numpy 

    if Boundary_dict == {}: 

        return None, None 

 

    Row_vectors  = [] # must be 29 columns and X rows where X is the 

number of Ubs and Lbs set by user 

    Boundary_column_vectors = [] # X rows and 1 column 

    for Polarity_Id, Bound_value in Boundary_dict.iteritems(): 

        Bound_type, Flux_ID = Polarity_Id[:2], int(Polarity_Id[2:]) 

        Row_vector = numpy.zeros(29) 

        if Bound_type == "lb": 

            Bound_value = -1*Bound_value 

            Row_vector[Flux_ID-1] = -1. 

        elif Bound_type == "ub":    

            Row_vector[Flux_ID-1] = 1.  

        else:  

            print "wrong boundary" 

        Row_vectors.append(Row_vector) 

        Boundary_column_vectors.append(Bound_value) 

#        print "<br>", Bound_type, Flux_ID, Bound_value 

     

    Aineq = numpy.vstack(Row_vectors) 

    Bineq = numpy.vstack(Boundary_column_vectors) 

 

    if Debug: 

        print "<pre>" 

        print Aineq 

        print Bineq 

        print "</pre>" 

 

    return Aineq, Bineq 

 

def process_boundaries(Form, Substrates): 

    """Extract boundaries for fluxes from user input 

 

    Form: cgi object 

    Features: {}, empty dictionary by default 

   

    Notes 

    ======= 

    In Substrates, the mapping from keys to real chemicals is as 

follows: 

        1. Glucose 

        2. Fructose 

        3. Galactose 

        4. Gluconate 

        5. Glutamate 

        6. Citrate 

        7. Xylose 

        8. Succinate 

        9. Malate 
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        10. Lactate 

        11. Pyruvate 

        12. Glycerol 

        13. Acetate 

        14. NaHCO3 

     

    """ 

    import itertools 

    import cgi 

    Substrate2Index= {"glucose":1, "galactose":3, "fructose":2, 

"gluconate":4, "glutamate":5, "citrate":6, "xylose":7, "succinate":8, 

"malate":9, "lactate":10, "pyruvate":11, "glycerol":12, "acetate":13}  

    Feature_names = ["".join([Bound, ID]) for  (Bound, ID) in 

itertools.product(["lb", "ub"], map(str, range(1, 29+1))) ] 

 

    Features= {} 

    for Feature_name in Feature_names: 

        Feature_value = Form.getfirst(Feature_name) 

        if Feature_value: 

#            print Feature_name, Feature_value 

            Feature_value = cgi.escape(Feature_value)  

            Features[Feature_name] = float(Feature_value) # convert 

all string to numbers 

 

    if Substrates[Substrate2Index["acetate"]] == 0: 

        Features["lb9"] = 0 

    if Substrates[Substrate2Index["lactate"]] == 0: 

        Features["lb27"] = 0 

 

    for Feature_name in Feature_names: 

        print """\ 

        %s is %s,  

        """ % (Feature_name, Features[Feature_name]) 

 

    return Features 

 

def process_input(Features): 

    """Process the result from CGI parsing to form feature vector 

including substrate matrixi 

 

    Substrates: OrderedDict, keys as integers and values as floats 

        1. Glucose 

        2. Fructose 

        3. Galactose 

        4. Gluconate 

        5. Glutamate 

        6. Citrate 

        7. Xylose 

        8. Succinate 

        9. Malate 

        10. Lactate 

        11. Pyruvate 
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        12. Glycerol 

        13. Acetate 

        14. NaHCO3 

     

    Feature vectors order: [Species, Reactor, Nutrient, Oxygen, Method, 

MFA, Energy, Growth_rate, Substrate_uptake_rate] + ratio of 14 carbon 

sources in the order above  

 

    """ 

 

    Num_substrates = 14 # excluding other carbon 

    # Generate substrate matrix 

    import collections 

    Substrates = collections.OrderedDict([(i,0) for i in range(1, 

Num_substrates+1)]) # substrate values, initialization 

    Substrates[int(Features["Substrate_first"])] += 

Features["Ratio_first"] 

    Substrates[int(Features["Substrate_sec"])] += Features["Ratio_sec"] 

 

    # Form the feature vector 

    Vector = [Features[Feature_name] for Feature_name in ["Species", 

"Reactor", "Nutrient", "Oxygen", "Method", "MFA", "Energy", 

"Growth_rate", "Substrate_uptake_rate"]] 

    Vector += [Substrates[i] for i in range(1, Num_substrates+1)] 

    Vector.append(Features["Substrate_other"]) # Other carbon source 

 

    # Print input check  

    import clp 

    DB = clp.process_species_db("SI_1_species_db.csv") 

    P  = clp.species_db_to_constraints(DB) 

    if not clp.input_ok(P, Vector): 

        print "<p><font color=\"red\">The input data might violate the 

oxygen, substrate uptake rate or carbon sources of the selected 

species. Therefore, the following prediction may not be biologically 

meaningful. Please check your inputs!</font></p>" 

 

    # Print debug info 

 

    Substrate_names = ["glucose", "fructose", "galactose", "gluconate", 

"glutamate", "citrate", "xylose", "succinate", "malate", "lactate", 

"pyruvate", "glycerol", "acetate",  "NaHCO3"] 

    Substrate_dict = collections.OrderedDict([(i+1,Name) for i, Name 

in enumerate(Substrate_names)]) 

    print "<p>Feature Vector (pre-one-hot-encoding and pre-scaling):", 

Vector, "</br>" 

    print "in which the substrates ratios are:", 

[(Substrate_dict[Index],Ratio) for Index, Ratio in 

Substrates.iteritems()],  

    print "<br>Feature vector size is ", len(Vector), "</p>" 

 

    return Vector, Substrates 
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def rule_adjust(Influxes, Substrates): 

    """Adjust influxes values using rules 

    """ 

 

    Substrate2Index= {"glucose":1, "galactose":3, "fructose":2, 

"gluconate":4, "glutamate":5, "citrate":6, "xylose":7, "succinate":8, 

"malate":9, "lactate":10, "pyruvate":11, "glycerol":12, "acetate":13} 

 

    #Step 1: Compute dependent influxes  

#    Influxes[1] = 100 * Substrates[Substrate2Index["glucose"]] 

#    Influxes[13] = Influxes[11] - Influxes[12] 

#    Influxes[16] = Influxes[14] 

#    Influxes[25] = Influxes[10] - Influxes[11] + 100 * 

Substrates[Substrate2Index["gluconate"]] 

#    Influxes[18] = Influxes[17] + 100 * 

Substrates[Substrate2Index["citrate"]] 

#    Influxes[15] = Influxes[12] - Influxes[14] + 100 * 

Substrates[Substrate2Index["xylose"]] 

#    Influxes[24] = Influxes[18] - Influxes[19] 

#    Influxes[21] = Influxes[20] + Influxes[24] + 100 * 

Substrates[Substrate2Index["succinate"]] 

#    Influxes[22] = Influxes[21] 

#    Influxes[29] = Influxes[22] + Influxes[24] - Influxes[23] + 100 * 

Substrates[Substrate2Index["malate"]] 

 

    # Step 2: Correct flux values 

    if Substrates[Substrate2Index["acetate"]] != 0: 

        Influxes[9] = -100 * Substrates[Substrate2Index["acetate"]] 

    if Substrates[Substrate2Index["lactate"]] != 0: 

        Influxes[27] = -100 * Substrates[Substrate2Index["lactate"]] 

 

    return Influxes 

 

def predict(Vector, Substrates, Boundary_dict): 

    """ Predict and adjust all influx values 

 

    Vector: 1-D list of floats, the feature vector, including 

substrate matrix, size = 24 

    Substrates: dict of floats, 1-indexed part of Feature_vector, 

ratio of substrates 

    Boundary_dict: Upper boundaries and lower boundaries for 29 fluxes, 

depending on user inputs,  

                   e.g., {"lb29":999, "ub8":50}, populate ub and lb 

inequalities from them 

                   If no boundary set by user, it can be an empty 

dictionary 

    Models: dict of models, 1-indexed, 29 moddels for 29 influxes.  

 

    Calls adjust_influxes() to compute dependent influxes.  

    """ 

    import cPickle 

    import time 
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    import collections 

    import sys 

 

    Models = cPickle.load(open("models_svm.p", "r")) 

    Feature_scalers = cPickle.load(open("feature_scalers.p", "r")) 

    Encoders = cPickle.load(open("encoders.p", "r")) 

    Label_scalers = cPickle.load(open("label_scalers.p", "r")) 

 

    print "<p>Models, feature and label Scalers and one-hot Encoder 

loaded..</p>"  

    #  Models: dict, keys are influx indexes and values are regression 

models 

 

    T = time.clock() 

    Influxes = {} 

#    Influxes = 

{Iundex:Model.predict(Scalers[Index].transform(Vector))[0] for Index, 

Model in Models.iteritems()}# use dictionary because influx IDs are 

not consecutive 

 

    print "Standardized (zero mean and unit variance) influx 

prediction from ML:" 

    for vID, Model in Models.iteritems(): 

        Vector_local = list(Vector) # make a copy; o/w Vector will be 

changed in one-hot encoding and standarization for different models 

        One_hot_encoding_of_categorical_features =  

Encoders[vID].transform([Vector[:6+1]]).toarray().tolist()[0]  # one-

hot encoding for categorical features 

#        print len(One_hot_encoding_of_categorical_features), "\n" 

        Vector_local =  One_hot_encoding_of_categorical_features + 

Vector_local[6+1:] # combine one-hot-encoded categorical features with 

continuous features (including substrate matrix) 

#        print Vector_local, len(Vector_local) 

        Vector_local = Feature_scalers[vID].transform(Vector_local) # 

standarization of features 

#        print Vector_local  

        Influx_local = Model.predict(Vector_local)[0] # prediction 

        print "v{0:d}={1:.5f}, ".format(vID, Influx_local) 

        Influx_local = 

Label_scalers[vID].inverse_transform([Influx_local])[0] 

        Influxes[vID] = Influx_local 

     

    Influxes = quadprog_adjust(Substrates, Influxes, Boundary_dict, 

Label_scalers=Label_scalers, Debug=True) 

    Influxes = rule_adjust(Influxes, Substrates)  

 

    T = time.clock() -T 

  

    print_influxes(Influxes) 

 

    print """</p>\ 
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    <p>Using RBF kernel SVM as regressor. Parameters vary for 

different fluxes. For details, refer to <a 

href="svr_both_rbf_shuffle.log">this document generated by grid search 

on SVM parameters</a>. </p> 

    <p>Standardization and Regression done in %s seconds.</p> 

    """ % T 

    return Influxes  

 

 

--------------------------------------------------------------------------------------------------------------- 

 

 

 

 

 

 

 

 

 

 

 

 

S2: Detailed information of case study (20 cases) 

Summary of 20 cases 

Case 
number 

Root mean squared error (RMSE) 

Average flux ML MFlux 

1 27.1 6.9 6.5 

2 23.9 17.5 10.6 

3 22.8 16.8 8.2 

4 22.1 16.5 7.6 

5 20.9 7.0 6.9 

6 22.3 8.8 8.2 

7 27.2 5.9 5.3 

8 58.5 4.5 3.2 
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9 36.1 4.2 3.2 

10 55.8 4.2 3.3 

11 24.0 5.9 4.3 

12 14.7 9.4 8.8 

13 15.8 11.7 10.1 

14 27.1 4.1 3.4 

15 21.6 2.9 3.6 

16 34.4 4.0 3.0 

17 46.7 6.5 4.1 

18 46.6 6.6 4.3 

19 62.1 5.1 4.0 

20 60.2 5.1 3.6 

average  33.5 7.7 5.6 

 

 

 

 

 

 

 

 

 

 

Case 1 

Reference: Crown SB, Long CP, Antoniewicz MR (2015) Integrated 
13

C-metabolic flux analysis 

of 14 parallel labeling experiments in Escherichia coli. Metabolic Engineering 28: 151-158. 
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Case 1 heat map 

 

 

 

 

 

 

Case 1 results 

 

 

13C-
flux ML  MFlux 

v1 EMP 100.0 100.0 100.0 
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v2 EMP 71.6 73.3 73.3 

v3 EMP 82.6 80.0 81.1 

v4 EMP 82.6 79.9 81.1 

v5 EMP 170.5 175.8 173.2 

v6 EMP  157.6 164.6 164.6 

v7 EMP 127.1 130.1 130.1 

v8 114.0 116.6 116.6 

v9 66.8 73.8 73.8 

v10 26.8 26.8 24.2 

v11 25.4 17.2 19.1 

v12 11.5 8.7 8.3 

v13 13.9 11.5 10.8 

v14 7.1 5.8 5.8 

v15 4.4 2.5 2.5 

v16 7.1 5.7 5.8 

v17 TCA cycle 19.0 25.6 33.5 

v18 TCA cycle 19.0 41.1 33.5 

v19 TCA cycle 16.6 30.5 30.2 

v20 TCA cycle 4.9 19.3 16.0 

v21 TCA cycle 10.9 19.0 19.3 

v22 TCA cycle 13.7 18.5 19.3 

v23 TCA cycle 10.9 12.8 20.3 

v24 Glyoxylate 2.5 4.0 3.4 

v25 ED  1.4 1.5 5.1 

v26 ETOH 0.0 0.1 0.2 

v27 LAC 0.0 0.0 0.0 

v28 24.7 15.5 15.5 

v29 5.3 1.4 2.4 

RMSE 

 
6.9 6.5 

 

 

 

 

 

Case 2-4 

Reference: Fong SS, Nanchen A, Palsson BO, Sauer U (2006) Latent Pathway Activation and 

Increased Pathway Capacity Enable Escherichia coli Adaptation to Loss of Key Metabolic 

Enzymes. Journal Of Biological Chemistry 281: 8024-8033. 
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Case 2 heat map 
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Case 3 heat map 
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Case 4 heat map 
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Case 2 - 4 results 

 
case 2       case 3                         case 4 

  

 

13C-
flux ML MFlux 

13C-
flux ML  MFlux 

13C-
flux ML  MFlux 

v1 EMP 100.0 100.2 100.0 100.0 100.0 100.0 100.0 100.1 100.0 

v2 EMP 62.0 65.0 61.0 61.0 67.6 67.6 61.0 67.8 67.8 

v3 EMP 76.7 79.1 79.1 76.3 79.0 79.4 74.7 79.2 79.6 

v4 EMP 76.7 79.2 79.1 76.3 79.8 79.4 74.7 80.0 79.6 

v5 EMP 166.7 161.7 161.7 165.0 167.0 167.0 162.7 166.6 166.6 

v6 EMP  156.0 142.0 142.0 151.0 156.1 156.1 149.0 155.4 155.4 

v7 EMP 156.0 125.4 125.4 150.0 122.4 122.4 147.0 121.1 121.1 

v8 149.0 118.7 139.5 144.0 117.8 128.1 147.0 116.3 126.0 

v9 37.0 31.2 30.0 35.0 42.1 30.0 32.0 40.4 30.0 

v10 38.0 35.1 39.0 39.0 29.0 27.4 38.0 28.9 27.3 

v11 30.0 53.0 39.0 31.0 26.7 25.0 29.0 26.2 25.0 

v12 16.7 18.9 18.2 15.0 16.1 12.8 13.3 16.1 12.7 

v13 13.3 5.9 20.8 16.3 8.7 12.3 16.0 9.1 12.3 

v14 10.0 7.5 9.1 8.8 5.9 6.4 8.0 5.9 6.4 

v15 6.7 7.0 9.1 6.3 5.3 6.4 5.3 5.3 6.4 

v16 10.0 7.4 9.1 8.8 5.3 6.4 8.0 5.3 6.4 

v17 TCA 
cycle 53.0 61.5 69.5 51.0 48.8 58.1 54.0 47.9 56.0 

v18 TCA 
cycle 53.0 78.1 69.5 51.0 53.0 58.1 54.0 49.4 56.0 

v19 TCA 
cycle 11.0 44.1 29.5 11.0 40.0 18.1 11.0 37.8 16.0 

v20 TCA 
cycle 0.0 39.3 17.0 0.0 34.0 9.9 0.0 33.0 8.9 

v21 TCA 
cycle 42.0 49.5 57.0 40.0 32.3 49.9 43.0 31.4 48.9 

v22 TCA 
cycle 42.0 46.3 57.0 40.0 50.0 49.9 43.0 49.1 48.9 

v23 TCA 
cycle 73.0 40.9 79.0 70.0 25.8 69.4 67.0 25.3 69.1 

v24 
Glyoxylate 42.0 7.2 40.0 40.0 5.4 40.0 43.0 5.6 40.0 

v25 ED  8.0 1.7 0.0 7.0 0.9 2.4 9.0 0.7 2.3 

v26 ETOH 0.0 -0.1 0.0 0.0 0.2 0.0 0.0 0.3 0.0 

v27 LAC 0.0 -0.1 -0.1 0.0 -0.1 -0.1 0.0 -0.1 -0.1 

v28 -7.0 14.3 0.0 -6.0 26.3 0.0 0.0 25.6 0.0 

v29 11.0 13.0 18.0 10.0 14.7 20.4 19.0 14.1 19.8 

          RMSE 
 

17.5 10.6 
 

16.8 8.2 
 

16.5 7.6 

 

Case 5-7 
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Reference: Tannler S, Decasper S, Sauer U (2008) Maintenance metabolism and carbon fluxes in 

Bacillus species. Microbial Cell Factories 7: 19. 

 

Case 5 heat map 
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Case 6 heat map 
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Case 7 heat map 
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case 5 case 6 

 
case 7 

 

 

13C-
flux ML MFlux 

13C-
flux ML  MFlux 

13C-
flux ML  MFlux 

v1 EMP 100.0 99.4 100.0 100.0 98.9 100.0 100.0 99.0 100.0 

v2 EMP 66.3 63.1 63.1 66.8 60.6 58.6 66.4 65.3 65.3 

v3 EMP 82.6 81.1 81.1 83.6 79.2 80.0 82.8 83.6 82.9 

v4 EMP 82.6 81.0 81.1 83.6 80.2 80.0 82.8 82.1 82.9 

v5 EMP 170.9 170.2 170.2 173.4 172.4 171.7 169.9 167.7 167.7 

v6 EMP  158.8 158.5 158.5 162.6 167.1 167.1 161.2 158.5 158.5 

v7 EMP 162.0 130.2 130.2 159.2 128.8 128.8 168.8 172.5 172.5 

v8 103.3 94.6 94.6 113.1 107.2 107.2 113.8 104.9 105.4 

v9 45.8 43.2 43.2 62.1 47.6 47.6 0.0 0.9 0.1 

v10 31.9 34.2 36.2 31.8 37.3 41.4 29.2 33.9 34.1 

v11 31.9 35.7 36.2 31.8 42.6 41.4 29.2 36.7 34.1 

v12 16.3 20.4 19.7 16.7 20.2 19.8 16.4 16.2 18.8 

v13 15.6 18.8 16.5 15.0 24.0 21.6 12.9 12.0 15.4 

v14 10.0 11.0 11.4 10.0 10.5 11.7 9.6 11.1 11.0 

v15 6.4 8.9 8.4 6.8 8.7 8.1 6.8 7.6 7.8 

v16 10.0 11.9 11.4 10.0 13.2 11.7 9.6 10.9 11.0 

v17 TCA 
cycle 49.5 42.5 47.8 44.3 45.9 47.5 100.7 100.4 105.2 

v18 TCA 
cycle 49.5 49.4 47.8 44.3 36.8 47.5 100.7 116.0 105.2 

v19 TCA 
cycle 49.5 51.5 47.8 44.3 59.7 47.5 100.7 99.5 105.2 

v20 TCA 
cycle 39.8 31.1 31.2 35.7 38.6 37.0 92.2 89.8 87.8 

v21 TCA 
cycle 39.8 31.6 31.2 35.7 33.5 37.0 92.2 83.2 87.8 

v22 TCA 
cycle 39.8 33.0 35.6 35.7 50.5 45.7 92.2 103.4 97.7 

v23 TCA 
cycle 31.8 29.2 26.2 19.2 26.1 31.7 77.9 87.6 94.3 

v24 
Glyoxylate 0.0 -1.7 0.0 0.0 -2.8 0.0 0.0 -0.6 0.0 

v25 ED  0.0 -1.0 0.0 0.0 -0.6 0.0 0.0 -0.1 0.0 

v26 ETOH 0.0 0.0 0.1 0.0 -0.2 0.0 0.0 0.5 0.1 

v27 LAC 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 

v28 33.0 30.9 30.9 38.8 27.9 27.9 35.2 23.5 23.5 

v29 8.1 9.8 9.4 16.5 13.3 14.0 14.4 2.6 3.4 

RMSE 
 

7.0 6.9 
 

8.8 8.2 
 

5.9 5.3 
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Case 8 – 11 

Reference: Chubukov V, Uhr M, Le Chat L, Kleijn RJ, Jules M, et al. (2013) Transcriptional 

regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Molecular 

Systems Biology 9 

  
succinate + glutamate glycerol 

 
Malate 

 
Fructose 

 
case 8 case 9 case 10 case 11 

 

13C-
flux ML MFlux 

13C-
flux ML MFlux 

13C-
flux ML  MFlux 

13C-
flux ML MFlux 

v1 EMP 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 

v2 EMP -7.1 -5.0 -8.2 -2.4 -4.4 -5.7 -8.3 
-

10.3 -10.6 -26.5 -16.4 -19.5 

v3 EMP -6.5 -5.0 -4.3 -5.1 -4.2 -4.8 -4.8 -4.2 -4.4 83.9 90.5 89.7 

v4 EMP -6.5 -6.3 -4.3 94.9 94.7 95.2 -4.8 -4.7 -4.4 83.9 88.9 89.7 

v5 EMP 0.0 2.2 -6.5 76.9 79.2 79.2 0.0 -2.3 -5.7 152.2 149.9 152.3 

v6 EMP  -23.3 -21.0 -21.0 76.9 79.2 79.1 -13.5 
-

11.3 -11.3 152.2 154.4 152.3 

v7 EMP 45.8 46.0 46.0 72.2 74.9 74.9 43.7 46.4 46.4 143.7 146.5 146.5 

v8 44.0 41.9 41.9 41.7 43.9 43.9 52.7 50.6 52.7 88.7 90.9 90.9 

v9 0.0 -2.9 -2.9 1.8 4.6 4.6 39.1 39.8 36.5 11.0 8.2 8.2 

v10 4.2 4.2 8.2 0.1 0.2 5.7 7.5 7.5 10.6 23.4 23.4 19.5 

v11 4.2 15.6 8.2 0.1 11.5 5.7 7.5 15.3 10.6 23.4 16.3 19.5 

v12 0.6 1.9 2.6 -2.6 -1.3 -0.4 3.5 4.7 5.1 10.4 12.1 9.6 

v13 3.6 3.7 5.7 2.8 2.9 6.1 4.0 3.9 5.5 13.0 12.9 9.9 

v14 1.2 0.7 2.0 -0.2 0.3 0.5 2.3 2.5 3.1 7.2 7.7 7.2 

v15 -0.6 0.2 0.6 -2.4 -1.6 -0.9 1.2 1.6 2.0 3.2 2.4 2.4 

v16 1.2 1.7 2.0 -0.2 0.3 0.5 2.3 2.7 3.1 7.2 6.7 7.2 

v17 TCA 
cycle 35.3 35.3 42.8 32.2 32.2 38.4 10.7 10.7 16.2 66.3 66.3 72.9 

v18 TCA 
cycle 35.3 37.2 42.8 32.2 34.1 38.4 10.7 12.6 16.2 66.3 67.2 72.9 

v19 TCA 
cycle 35.3 54.2 41.2 32.2 48.9 38.4 10.7 26.8 16.2 66.3 85.2 72.9 

v20 TCA 
cycle 69.3 67.3 65.5 26.0 25.2 26.4 7.6 5.6 5.5 55.3 57.3 59.3 

v21 TCA 
cycle 129.5 126.6 127.4 26.0 29.1 26.4 7.6 8.5 5.5 55.3 63.9 59.3 

v22 TCA 
cycle 129.5 126.5 127.4 26.0 29.0 26.7 7.6 5.5 5.5 55.3 58.4 63.5 

v23 TCA 
cycle 111.4 108.1 110.6 10.0 13.3 16.0 68.5 71.7 75.4 37.7 41.0 34.9 

v24 
Glyoxylate 0.0 3.4 1.6 0.0 -0.4 0.0 0.0 -6.5 0.0 0.0 -2.4 0.0 

v25 ED  0.0 -1.5 0.0 0.0 0.4 0.0 0.0 0.9 0.0 0.0 -12.0 0.0 

v26 ETOH 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.1 

v27 LAC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

v28 -67.6 -65.5 -65.5 31.6 29.5 29.5 -53.1 - -55.3 45.4 47.7 47.7 
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55.3 

v29 18.1 18.1 18.4 16.0 10.4 10.7 39.0 29.6 30.1 17.6 29.4 28.6 

RMSE 
 

4.5 3.2 
 

4.2 3.2 
 

4.2 3.3 
 

5.9 4.3 

 

 

 

Case 9 heat map 
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Case 10 heat map 
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Case 11 heat map 
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Case 12  

Reference: Van Ooyen J, Noack S, Bott M, Reth A, Eggeling L (2012) Improved L-lysine 

production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and 

activity. Biotechnology And Bioengineering 109: 2070-2081. 

 
case 12 

 
13C-flux ML MFlux 

v1 EMP 100.0 100.0 100.0 

v2 EMP 66.9 45.3 45.3 

v3 EMP 81.4 76.3 76.4 

v4 EMP 81.4 76.5 76.4 

v5 EMP 168.5 166.1 166.1 

v6 EMP  155.6 153.4 153.4 

v7 EMP 150.4 147.6 147.6 

v8 89.4 78.4 78.4 

v9 0.0 0.9 0.9 

v10 31.3 57.9 50.5 

v11 31.3 44.8 50.5 

v12 15.1 27.9 27.9 

v13 16.3 24.9 22.6 

v14 8.7 14.6 16.0 

v15 6.4 12.6 11.9 

v16 8.7 17.7 16.0 

v17 TCA 
cycle 64.0 58.6 55.3 

v18 TCA 
cycle 64.0 62.2 55.3 

v19 TCA 
cycle 64.0 45.0 55.3 

v20 TCA 
cycle 53.3 51.2 50.2 

v21 TCA 
cycle 43.1 47.8 50.2 

v22 TCA 
cycle 55.5 52.4 55.6 

v23 TCA 
cycle 64.1 55.7 51.9 

v24 
Glyoxylate 0.0 5.0 0.0 

v25 ED  0.0 0.5 0.0 

v26 ETOH 0.0 0.0 0.1 

v27 LAC 0.0 0.0 0.0 

v28 32.7 30.8 30.8 

v29 N.A. 4.2 3.7 

    RMSE 
 

9.4 8.8 
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Case 12 heat map 

 

 

 

 

 

 

 

Case 13 
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Reference: Bommareddy RR, Chen Z, Rappert S, Zeng A-P (2014) A de novo NADPH 

generation pathway for improving lysine production of Corynebacterium glutamicum by rational 

design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metabolic 

Engineering 25: 30-37. 

 
case 13 

 
13C-flux ML MFlux 

v1 EMP 100 99.7 100.0 

v2 EMP 40.2 43.8 43.1 

v3 EMP 70.9 75.3 75.4 

v4 EMP 70.9 75.5 75.4 

v5 EMP 155.9 169.3 169.3 

v6 EMP  147.6 164.3 164.3 

v7 EMP 147.8 165.0 165.0 

v8 70.6 84.3 84.3 

v9 1.1 6.6 6.6 

v10 55.1 58.9 56.9 

v11 55.1 53.0 53.7 

v12 32.5 28.5 29.1 

v13 22.6 24.3 24.6 

v14 17.8 14.7 16.3 

v15 14.7 13.0 12.9 

v16 17.8 17.9 16.3 

v17 TCA 
cycle 50.2 65.4 63.9 

v18 TCA 
cycle 50.2 66.6 63.9 

v19 TCA 
cycle 50.2 54.9 59.2 

v20 TCA 
cycle 42.1 59.1 57.2 

v21 TCA 
cycle 42.1 58.2 61.9 

v22 TCA 
cycle 42.1 59.6 61.9 

v23 TCA 
cycle 42.1 61.3 59.4 

v24 
Glyoxylate 0 4.3 4.7 

v25 ED  0 1.6 3.2 

v26 ETOH 0 0.0 0.1 

v27 LAC 2.2 0.2 0.2 

v28 28.5 26.4 26.4 

v29 N.A. 7.4 7.1 

RMSE 
 

11.7 10.1 
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Case 13 heat map 

 

 

 

 

 

 

 

 

 

Case 14, 15 
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Reference: Wang Z-J, Wang P, Liu Y-W, Zhang Y-M, Chu J, et al. (2012) Metabolic flux 

analysis of the central carbon metabolism of the industrial vitamin B12 producing strain 

Pseudomonas denitrificans using 13C-labeled glucose. Journal of the Taiwan Institute of 

Chemical Engineers 43: 181-187. 

 
case 14 case 15 

 
13C-flux ML MFlux 13C-flux ML MFlux 

v1 EMP 100.0 99.5 100.0 100.0 99.0 100.0 

v2 EMP 1.1 3.2 2.4 1.8 -0.2 -0.2 

v3 EMP 7.6 9.1 8.5 18.6 17.1 17.7 

v4 EMP 7.6 7.8 8.5 18.6 18.4 17.7 

v5 EMP 96.7 99.0 99.0 109.5 107.3 107.3 

v6 EMP  84.5 86.7 86.7 90.7 88.5 88.5 

v7 EMP 97.2 100.0 100.0 123.8 121.1 121.1 

v8 106.7 104.5 104.5 96.9 99.2 99.2 

v9 0.0 -1.0 -1.0 0.0 2.7 2.7 

v10 97.7 97.7 97.6 97.1 97.1 96.3 

v11 18.0 20.3 19.7 33.1 25.1 29.9 

v12 9.1 10.4 10.4 21.6 20.3 18.7 

v13 8.9 8.7 9.3 11.5 11.6 11.1 

v14 5.6 6.1 5.9 11.8 11.3 11.1 

v15 3.5 4.3 4.5 9.8 9.0 7.6 

v16 5.6 5.6 5.9 11.8 12.3 11.1 

v17 TCA 
cycle 86.4 86.4 81.5 78.6 78.6 77.9 

v18 TCA 
cycle 86.4 84.5 81.5 78.6 76.8 77.9 

v19 TCA 
cycle 86.0 67.1 75.0 79.0 72.7 72.3 

v20 TCA 
cycle 73.1 71.1 66.0 65.0 67.1 60.9 

v21 TCA 
cycle 70.0 67.0 72.6 59.0 62.1 66.5 

v22 TCA 
cycle 70.0 67.0 72.6 59.0 62.0 66.5 

v23 TCA 
cycle 70.0 66.8 67.4 59.0 62.4 68.0 

v24 
Glyoxylate 0.0 6.2 6.6 0.0 6.5 5.6 

v25 ED  79.7 78.2 77.9 64.1 65.7 66.5 

v26 ETOH 0.0 0.1 0.1 0.0 0.1 0.2 

v27 LAC 0.0 -0.1 -0.1 0.0 0.0 0.0 

v28 23.7 21.5 21.5 27.3 25.2 25.2 

v29 NA 11.7 11.7 NA 3.3 4.0 

RMSE 
 

4.1 3.4 
 

2.9 3.6 
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Case 14 heat map 
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Case 15 heat map 

 

 

 

 

 

 

 

 

 

Case 16 
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Reference: Tang YJ, Sapra R, Joyner D, Hazen TC, Myers S, et al. (2009) Analysis of metabolic 

pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain. 

Biotechnology And Bioengineering 102: 1377-1386. 

 
case 16 

 
13C-flux ML MFlux 

v1 EMP 100 99.4 100.0 

v2 EMP 80 82.0 80.5 

v3 EMP 91 92.6 91.5 

v4 EMP 91 91.2 91.5 

v5 EMP 187 184.7 184.7 

v6 EMP  181 178.9 178.9 

v7 EMP 192.5 195.3 195.3 

v8 112 109.8 114.1 

v9 46 48.9 42.1 

v10 19.5 19.5 19.5 

v11 19.5 20.3 19.4 

v12 10.5 9.3 10.4 

v13 9 8.9 9.0 

v14 6 5.5 5.5 

v15 4.5 5.3 4.9 

v16 6 5.5 5.5 

v17 TCA cycle 25 25.0 31.1 

v18 TCA cycle 25 27.0 31.1 

v19 TCA cycle 10.5 29.5 15.0 

v20 TCA cycle 7 7.6 6.0 

v21 TCA cycle 21.5 18.5 22.1 

v22 TCA cycle 21.5 24.6 30.8 

v23 TCA cycle 36 39.3 35.1 

v24 Glyoxylate 14.5 18.0 16.1 

v25 ED  0 1.6 0.1 

v26 ETOH 28 28.0 24.8 

v27 LAC 73 72.9 72.9 

v28 -7.5 -5.3 -3.9 

v29 NA 12.75 11.80 

RMSE 
 

4.0 3.0 

 

 

 

 

Case 17-18 
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Reference: Hemme CL, Fields MW, He Q, Deng Y, Lin L, et al. (2011) Correlation of genomic 

and physiological traits to biofuel yields in Thermoanaerobacter species. Applied And 

Environmental Microbiology. 

 
case 17 case 18 

  
X514 

  
39E 

 

 
13C-flux ML MFlux 13C-flux ML MFlux 

v1 EMP 0.0 1.0 0.0 0.0 1.1 0.0 

v2 EMP -1.0 3.0 -4.9 -1.0 3.0 -5.2 

v3 EMP 65.0 66.4 65.0 65.0 66.6 64.9 

v4 EMP 65.0 65.1 65.0 65.0 65.2 64.9 

v5 EMP 163.0 160.8 160.9 163.0 160.9 162.0 

v6 EMP  163.0 160.7 160.7 163.0 160.9 162.0 

v7 EMP 171.0 169.5 169.5 171.0 168.4 165.4 

v8 152.0 154.2 155.7 153.0 153.3 153.8 

v9 21.0 23.8 21.4 24.0 21.3 20.5 

v10 0.0 -0.4 4.9 0.0 0.0 5.2 

v11 0.0 11.2 4.9 0.0 11.3 5.2 

v12 -33.0 -10.3 -30.1 -33.0 -10.0 -29.8 

v13 33.0 32.9 35.0 33.0 33.1 35.1 

v14 33.0 32.5 35.0 33.0 32.7 35.1 

v15 33.0 32.2 35.0 33.0 32.4 35.1 

v16 33.0 32.5 35.0 33.0 32.8 35.1 

v17 TCA 
cycle 1.0 1.0 6.5 1.0 1.3 6.8 

v18 TCA 
cycle 1.0 3.0 6.5 1.0 2.8 6.8 

v19 TCA 
cycle 1.0 19.5 6.5 1.0 19.9 6.8 

v20 TCA 
cycle 0.0 1.8 2.0 0.0 2.0 2.3 

v21 TCA 
cycle 0.0 2.6 2.0 0.0 3.1 2.3 

v22 TCA 
cycle 0.0 2.6 11.1 0.0 3.0 12.4 

v23 TCA 
cycle 8.0 10.4 8.7 8.0 11.3 10.2 

v24 
Glyoxylate 0.0 -4.7 0.0 0.0 -4.4 0.0 

v25 ED  0.0 -1.4 0.0 0.0 -1.6 0.0 

v26 ETOH 129.0 128.9 127.8 127.0 126.9 126.6 

v27 LAC 10.0 10.0 10.0 8.0 8.0 8.0 

v28 -8.0 -6.0 -2.2 -8.0 -5.9 -3.4 

v29 -8.0 3.8 2.4 -8.0 3.7 2.2 

       RMSE 
 

6.5 4.1 
 

6.6 4.3 
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Case 17 heat map 

 

 

 

 

 



260 

 

 

 

Case 18 heat map 
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Case 19 

Reference: Tang Y, Pingitore F, Mukhopadhyay A, Phan R, Hazen TC, et al. (2007) Pathway 

Confirmation and Flux Analysis of Central Metabolic Pathways in Desulfovibrio vulgaris 

Hildenborough using Gas Chromatography-Mass 

 
case 19 

 
13C-flux ML MFlux 

v1 EMP 0.0 1.0 0.0 

v2 EMP -0.7 1.4 -2.8 

v3 EMP -2.2 -0.7 -2.0 

v4 EMP -2.2 -2.1 -2.0 

v5 EMP -2.5 -0.1 -3.7 

v6 EMP  -3.4 -1.1 -3.7 

v7 EMP -3.8 -1.1 -1.1 

v8 91.1 88.8 90.8 

v9 84.0 81.1 78.0 

v10 0.0 0.0 2.8 

v11 0.0 11.4 2.8 

v12 -0.4 -1.6 -0.3 

v13 0.4 0.5 3.1 

v14 -0.1 -0.6 0.4 

v15 -0.3 -1.1 -0.7 

v16 -0.1 -0.6 0.4 

v17 TCA cycle 0.7 0.8 8.2 

v18 TCA cycle 0.7 2.6 8.2 

v19 TCA cycle 0.7 19.7 3.6 

v20 TCA cycle 0.0 2.1 0.7 

v21 TCA cycle -0.8 2.2 5.2 

v22 TCA cycle -0.8 2.3 7.6 

v23 TCA cycle 0.0 3.3 2.0 

v24 Glyoxylate 0.0 6.5 4.6 

v25 ED  0.0 0.9 0.0 

v26 ETOH 0.0 0.0 0.0 

v27 LAC -100.0 -100.0 -99.9 

v28 1.8 4.0 6.2 

v29 -0.8 11.0 10.1 

RMSE 
 

5.1 4.0 
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Case 19 heat map 
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Case 20 

Reference: Tang YJ, Chakraborty R, Martin HG, Chu J, Hazen TC, et al. (2007) Flux Analysis 

of Central Metabolic Pathways in Geobacter metallireducens during Reduction of Soluble 

Fe(III)-Nitrilotriacetic Acid. Applied And Environmental Microbiology 73: 3859-3864. 

 
case 20 

 
13C-flux ML MFlux 

v1 EMP 0.0 1.0 0.0 

v2 EMP -0.7 -2.6 -4.6 

v3 EMP -1.6 -3.1 -2.0 

v4 EMP -1.6 -1.8 -2.0 

v5 EMP -1.7 0.6 -2.7 

v6 EMP  -2.3 -0.1 -2.7 

v7 EMP -1.9 1.0 1.0 

v8 -7.9 -9.9 -7.8 

v9 -100.0 -102.7 -100.0 

v10 0.3 0.3 4.6 

v11 0.3 11.7 4.6 

v12 0.1 1.4 2.4 

v13 0.2 0.2 2.2 

v14 0.1 0.6 1.3 

v15 0.0 0.8 1.1 

v16 0.1 0.6 1.3 

v17 TCA 
cycle 90.1 90.1 85.9 

v18 TCA 
cycle 90.1 88.2 85.9 

v19 TCA 
cycle 90.1 71.2 79.6 

v20 TCA 
cycle 88.5 86.5 79.6 

v21 TCA 
cycle 88.5 85.7 85.9 

v22 TCA 
cycle 88.5 85.4 85.9 

v23 TCA 
cycle 88.5 85.2 92.2 

v24 
Glyoxylate 0.0 6.5 6.3 

v25 ED  0.0 1.4 0.0 

v26 ETOH 0.0 0.0 0.0 

v27 LAC 0.0 0.0 0.0 

v28 4.2 6.4 6.4 

v29 0.0 11.8 0.0 

RMSE 
 

5.1 3.6 
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Case 20 heat map 
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Attachment is two research papers on nanotechnology and electrospray published as first author 

separately. 
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Abstract 

This study assesses the biological effects of nanoparticles (NPs) based on seed 

germination and root elongation tests. Lettuce, radish and cucumber seeds were incubated with 

various metal oxide NPs (CuO, NiO, TiO2, Fe2O3, Co3O4), of which only CuO and NiO showed 

deleterious impacts on the activities of all three seeds.  The measured EC50 for seed germinations 

were: lettuce seed (NiO: 28 mg/L; CuO: 13 mg/L), radish seed (NiO: 401 mg/L; CuO: 398 

mg/L), and cucumber seed (NiO: 175 mg/L; CuO: 228 mg/L). Phytotoxicity of TiO2, Fe2O3 and 

Co3O4 to the tested seeds was not significant, while Co3O4 NP solution (5 g/L) was shown to 

improve root elongation of radish seedling. Metal oxide NPs tended to adsorb on seed surfaces in 

the aqueous medium and released metal ions near the seeds. Therefore, metal oxide NPs had 

higher phytotoxicity than free metal ions of the equivalent concentrations. Further, the surface 

area-to-volume ratio of seeds may also affect NPs phytotoxicity, whereby small seeds (i.e., 

lettuce) were the most sensitive to toxic CuO and NiO NPs in our experiments. 

Key words: CuO, EC50, NiO, root elongation, metal ions, seeds germination 
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Introduction 

As applications for metal oxide nanoparticles (NPs) are employed by industry, the release 

of nanomaterials into the environment may pose severe threats for ecological systems and human 

health [(Roco 2005; Lin and Xing 2008; Klaine et al. 2008; Marambio-Jones and Hoek 2010)]. 

Risk assessments of nano-toxicities have already attracted public attention [(Roco 2005)]. Toxic 

effects of NPs on microorganisms and animals have also been reported [(Marambio-Jones and 

Hoek 2010; Wang et al. 2010b; Ji et al. 2011; Ma et al. 2010a; Wang et al. 2006b; Navarro et al. 

2008a; Menard et al. 2011)], where metal oxide nanoparticles are the most extensively studied.  

Their toxicities are attributed to three mechanisms: 1. Generation of reactive oxygen species 

(ROS), which can damage the cell membrane; 2. Penetration of nanoparticles into the cell  where 

they interfere with intracellular metabolism (nano-Trojan horse effect) [(Limbach et al. 2007)]; 3. 

Release of metal ions that hinder enzyme functions. Moreover, the phytotoxicity profile of NPs 

has also been investigated by researchers via seed germination and root elongation tests which 

evaluate the acute effects of NPs on plant physiologies [(Di Salvatore et al. 2008)]. For instance, 

alumina and zinc oxide NPs have been applied to different plant species [(Lin and Xing 2007; 

Yang and Watts 2005)]. Inhibition of seed germination and root elongation has been found to be 

highly dependent on both plant type and NP properties.  This paper explores the impacts of 

additional metal oxide NPs on seed activities. In particular, we investigate three common 

vegetable seeds after they were incubated in aqueous NP-containing solutions: lettuce (Lactuca 

sativa) seed (length/width: 3 mm /1 mm); radish (Raphanus sativus) seed (length/width:  3 mm 

/3 mm) and cucumber (Cucumis sativus) seed (length/width: 8 mm /6 mm). This work aims to 

increase understanding of both NPs phytotoxicity on various edible plants and the potential 

impact of NPs on agricultural processes [(Mondal et al. 2011; Rico et al. 2011)]. 



269 

 

Materials and Methods 

Chemicals. All chemicals used were reagent grade and purchased from Sigma (St. Louis, 

MO, US) or Fisher (Pittsburg, PA, US). TiO2 NP (30-50 nm). Fe2O3 NPs (20-40 nm), CuO NPs 

(30-50 nm), NiO NPs (30 nm) and Co3O4 NPs (10-30 nm) were obtained from Nanostructured & 

Amorphous Materials, Inc. (Houston, TX, US). The pH of germination solutions (containing 

deionized water and NP suspensions) was adjusted to 7 for all toxicity studies done in aqueous 

phases.   

Seed Germination and Root Elongation Assay. Lettuce, radish and cucumber seeds 

purchased from Ferry-Morse Seed Co. (Fulton, KY, US) were used in this study (Lettuce, Black 

Seeded Simpson, 2846; Radish, Icicle, Short Top, 3236; Cucumber, Marketmore 76, 2646). All 

three species are commonly used and recommended for phytotoxicity tests [(Rivetta et al. 1997; 

Wang et al. 2001; U.S.EPA 1996)]. Seeds were first sterilized by soaking them in 3% H2O2 

solution for 1 min and then rinsing twice with deionized water (dH2O). After, seeds were placed 

into dH2O (control) or certain NP solutions and shaken gently for two-hours [(Lin and Xing 

2007)]. All seeds were subsequently transferred into 15 mm × 100 mm Petri dishes containing 

one piece of filter paper (90 mm in diameter, Whatman NO.1). 10 seeds of radish and cucumber 

or 15 seeds of lettuce were evenly spaced on top of the filter paper in each Petri dish.  The dishes 

were filled with 5 ml of dH2O or NP solutions and sealed before being incubated at 25 
o
C in dark 

conditions [(Reddy and Singh 1992; El-Temsah and Joner 2010)]. After 3 days of incubation, the 

root length of each seed was measured. Experimental procedures are summarized in Figure 1. In 

this study, root length greater than 1 cm for lettuce seeds and 2 cm for radish and cucumber 

seeds was considered positive for germination based on our preliminary experiments. For each 
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condition, experiments were conducted in triplicate, from which standard deviations were 

calculated.       

Data Analysis. Three parameters were adopted in this analysis to evaluate the conditions 

of seed germination: Relative germination rate, Germination Index and EC50 value. They were 

calculated based on the following equations according to previous reports [(Barrena et al. 2009; 

Thompson et al. 2001)]: 

Seeds germinated in test sample
Relative germination rate = 100

Seeds germinated in control


           

Mean root length in test sample  
Relative root elongation = 100

Mean root length in control


                                                                                       

Relative germination rate  Relative root elongation  
Germination Index =

100
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EC50 is defined as the effective concentration of a certain drug/chemical that reaches half 

of its maximal effects or reduces growth of the control by 50%. We employed the software 

provided by the USEPA ([19] http://www.epa.gov/eerd/stat2.htm#tsk) which utilizes the 

Trimmed Spearman-Karber Method to calculate EC50 values for different chemicals [(Hamilton 

et al. 1977)]. Student’s t-test was performed to analyze the variations in root length and 

germination rate between different treatments and control groups. Statistics Toolbox of Matlab 

(MathWorks, MA, US) was employed to conduct all statistical analyses and statistically 

significant was defined at the level of P < 0.05.  

Determination of metal ions released from NP suspensions. To measure the 

concentration of metal ions released from NP solutions, aliquots of all five NP suspensions were 

drawn after the suspensions were incubated at room temperature for 2 hours. The extracts were 

centrifuged at 19,000 g for 20 min, and supernatants were collected and filtered with 0.22 μm 

nylon filters (GE Water & Process Technologies, CT, US). Inductively coupled plasma mass 

spectroscopy (ICP-MS, Agilent, CA, US) was used to conduct concentration assays of metal ions, 

and duplicated samples were measured for each condition. 

Protocols for Scanning Electron Microscope (SEM) and Dynamic Lighting 

Scattering (DLS). Seeds sprayed with NPs or incubated with NP suspensions were dried 

overnight in a fume hood. They were then coated with gold nanoparticles by a low vacuum 

sputter coater (SPI supplies, PA, US) prior to image taking. Images of seed surfaces were taken 

with a scanning electron microscope (SEM) (Nova 2300 FEI, OR, US) and Zeta potential of NP 

suspensions was determined by dynamic lighting scattering (Malvern Instruments, 

Worcestershire, UK) after 30 minutes of incubation in room temperature.    

Results and Discussion 

http://www.epa.gov/eerd/stat2.htm#tsk
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The toxicities of different metal oxide NPs at various concentrations on lettuce, radish, 

and cucumber seeds were tested. Seeds incubated in dH2O (pH = 7) were considered as the 

control upon which all statistical analysis was performed. From results shown in Table 1 and 

Figure 2, CuO and NiO NPs were far more toxic than the other three NPs on all three species of 

seeds, while lettuce seeds were the most sensitive to NPs in terms of germination. Our results 

showed that the toxicities of the NPs were also dependent upon the plant species, which was in 

accordance with a previous report [(Lin and Xing 2007)]. The relative toxicities based on the 

germination index (combined seed germination and root elongation) for the tested NPs were 

listed below: 

Lettuce   CuO > NiO >> Fe2O3 > TiO2 ≈ Co3O4   

Radish   NiO > CuO >> TiO2 > Fe2O3 > Co3O4 

Cucumber   NiO > CuO >> Fe2O3 > TiO2 > Co3O4  

Interestingly, Co3O4 NP solution did not inhibit the germination of cucumber seeds and 

even improve root elongation of radish seedling at high concentrations (5 g/L). Previous studies 

have provided similar reports of the positive effects of NPs on germination and growth of plants. 

For example, TiO2 and SiO2 NPs are found to enhance both the germination and growth of 

Glycine max seeds [(Lu et al. 2002)], carbon nanotubes (CNT) are discovered to improve 

germination and root elongation of tomato seeds (Khodakovskaya et al. 2009)], and Nano-Al are 

shown to augment root elongation of radish and rape seedling (Lin and Xing 2007)]. Such 

observations are likely due to an increased water uptake by seeds in the presence of high 

concentrations of NPs (Nair et al. 2010)].  
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The biological effects of NPs in aqueous solutions are closely associated to the 

concentration of released metal ions [(Ji et al. 2011; Navarro et al. 2008b)]. In this study, we 

measured the concentrations of metal ions released from all five types of NPs. We did not detect 

any metal ions released from TiO2 NP solution, while Fe2O3 and Co3O4 NPs both released trace 

metal ions. For example, the aqueous solution with Co3O4 NPs contained ~2 mg/L cobalt ion, but 

its inhibition of seed activity was minimal. Similarly, both Cu and Ni ions were released from the 

metal oxide NPs during incubation with the seeds (Table 2). To compare phytotoxicity between 

metal ions and NPs, we assessed seed activity in copper chloride and nickel chloride solutions 

and determined their EC50 values. When CuCl2 or NiCl2 solutions were used to treat seeds (Table 

2), the EC50 concentrations of Cu
2+

 and Ni
2+

 were 5 ~ 8 mg/L and 9 ~ 19 mg/L, respectively. 

However, at their EC50 concentrations, CuO or NiO NPs released much lower free metal ions 

(less than 2 mg/L). For example, a 13 mg/L CuO NP solution was able to strongly inhibit lettuce 

seed germination, while the released Cu
2+

 concentration in the culture medium was only ~ 0.2 

mg/L. Therefore, the phytotoxicity of metal oxide NPs is not only due to their dissolved metals 

ions, but also to their interactions with the seed/root surface. 

It has been widely accepted that smaller NPs would have higher surface energy and thus 

cause more toxic to the cell [(Krug and Wick 2011)]. However, metal oxide NPs often 

agglomerate in the aqueous phase to minimize surface energy, and disaggregating is extremely 

difficult [(Lin and Xing 2007; Yang and Watts 2005)]. The actual size of our tested NPs in the 

aqueous solution was therefore up to 1 micrometer due to agglomeration (Table 3 and Figure 3). 

Previous studies reported that increasing the size of particle aggregates would reduce the toxic 

effect of the metal oxide particles [(Lin and Xing 2007; Yang and Watts 2005)]. On the other 

hand, suspended metal oxide NPs tend to agglomerate and accumulate on root/seed surfaces 
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[(Nair et al. 2010)], and  phytotoxicity in our tests was not likely caused by mono-dispersed NPs. 

Instead, we observed that a large amount of NPs (e.g., TiO2 or CuO) adsorbed on the surface of 

the seeds in all experiments (Figure 3). The main factors contributing to such adsorption can be 

concluded as increased surface area due to a rough seed surface, surface charges of NP 

agglomeration (e.g., 1000 mg/L of CuO NPs: -23.5 ± 94.5 mV, determined by DLS) and 

hydrophobic interactions between the NPs and the seed coat. Variations in the ratio of lipid to 

fatty acid content and the wax to fatty acid layer of the seed coat would affect the strength of 

such hydrophobic interactions, and thus NPs phytotoxicity [(Zhu et al. 2005; Zeng et al. 2005; 

Hu et al. 1994)]. The adsorption of NPs on the seed surface can enhance the effect of locally 

concentrated ions (released from NPs) on seed activities. The adsorption of metal oxide NPs on 

the seeds’ surface also explains why small-size lettuce seeds are particularly sensitive to NP 

phytotoxicity. Because of the relatively high ratio of surface area to volume, more NPs per unit 

volume can be absorbed on the seed surface, thus increasing their toxic effect (Krug and Wick 

2011; Stark 2011) . Therefore, the toxic NPs are more inhibitory on the germination of lettuce 

seeds (Figure 4).    

Conclusion  

Our experiments determined the impact of five different nanoparticles on common plant 

seeds. It was discovered that smaller sized seeds, such as lettuce seeds, are more sensitive to 

toxic NPs. Additionally, this study shows that engineered metal oxide nanoparticles may hold 

significant potential applications in agriculture and gardening, as they may selectively inhibit 

unwanted plants (such as weeds), kill harmful fungi and bacteria in plant fields, and release 

essential metal elements for plant growth.    
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Figure Legend 

Figure 1. Flow chart of experimental procedures 

Figure 2. Effects of NPs on seed germination and elongation; Red line: relative germination 

rate; Blue dashed line: germination index.   

Figure 3. SEM images for NPs/lettuce seeds. In the aqueous phase, the SEM image shows 

that metal oxide NPs (TiO2 NPs 1000 mg/L) (a) and (CuO NPs 1000 mg/L) were adsorbed 

on the seed surface (b). 

Figure 4. Effects of CuO NPs on seed germination and root elongation (incubation at 25 
o
C 

in dark for 3 days, NPs could be observed on the seed surface.) 

Figure 4-1. Lettuce seeds (a) Incubated in dH2O; (b) Incubated in 500 mg/L of CuO NPs. 

Figure 4-2. Radish seeds (a) Incubated in dH2O; (b) Incubated in 500 mg/L of CuO NPs.  

Figure 4-3. Cucumber seeds (a) Incubated in dH2O; (b) Incubated in 500 mg/L of CuO NPs. 
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Figure 1. Flow chart of experimental procedures 
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Figure 2. Effects of NPs on seed germination and elongation. Red line: relative germination 

rate; Blue dash line: germination index.   

                   Lettuce                                    Radish                                  Cucumber 

 

 

 

 

 



285 

 

Figure 3. SEM images for NPs/lettuce seeds. In the aqueous phase, the SEM image shows 

that metal oxide NPs (TiO2 NPs 1000 mg/L) (a) and (CuO NPs 1000 mg/L) were adsorbed 

on the seed surface (b). 

(a)                                                                      (b) 
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Figure 4. Effects of CuO NPs on seed germination and root elongation (incubation at 25 
o
C 

in dark for 3 days, NPs could be observed on the seed surface.) 

 

1. Lettuce seeds (a) Incubated in dH2O; (b) Incubated in 500 mg/L of CuO NPs.  

 

2. Radish seeds (a) Incubated in dH2O; (b) Incubated in 500 mg/L of CuO NPs. 

  

3. Cucumber seeds (a) Incubated in dH2O; (b) Incubated in 500 mg/L of CuO NPs.  

 

a b 

b 

a b 
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Table 1. Effects of NPs on seeds activities  

 NP 

  

Lettuce Radish Cucumber 

Types 
EC50 

(mg/L) 

GI affected 

by 1000 

mg/L NP 

EC50 

(mg/L) 

GI affected 

by 1000 

mg/L NP 

EC50 

(mg/L) 

GI affected 

by 1000 

mg/L NP 

CuO 12.9 -100%* 397.6 -100%* 175.4 -100%* 

NiO 27.9 -100%* 400.7 -100%* 228.2 -100%* 

Fe2O3 > 5000 -55.0%* > 5000 -38.4% 1682 -68.4%* 

TiO2 > 5000 -36.2% > 5000   -47.6%* > 5000 -10.2% 

Co3O4 > 5000 -43.6% > 5000 +13.7% > 5000 -20.7% 

GI – Germination Index; ‘+’ - enhancement, ‘-’ – inhibition, ‘*’ – significant difference      

 

 

 

 

Table 2. EC50 values of Cu
2+

/Ni
2+

 vs. released ions from NPs at their EC50 concentration 

      Seeds Lettuce Radish Cucumber 

EC50 for ions 

(mg/L) * 

Cu
2+

 4.9 [3.9, 6.0] 8.0 [5.8, 11.0] 4.8 [3.5, 6.6] 

Ni
2+

 8.8 [6.5, 11.9] 18.7 [15.9, 22.0] 15.7 [12.6, 19.6] 

Released ions in 

solution from CuO 

and NiO NPs 

(mg/L) ** 

Cu
2+

 0.20 ± 0.16 (13) 1.75 ± 0.45 (400) 0.47 ± 0.28 (230) 

Ni
2+

 0.26 ± 0.19 (28) 1.97 ± 0.64 (400) 1.32 ± 0.11 (175) 

* Values of 95% confidence interval of free metal ions were in the bracket [].  

** Concentrations of released metal ions from NP solutions incubated with different seeds: NPs 

in the experiments were at the concentrations of their approximate respective EC50 values (in 

parentheses). Data were averaged based on duplicated samples.  

 

 

 

Table 3. Size distribution of typical metal oxide NP solutions 

Total *NP in 

solution 

(mg/L) 

CuO NiO Fe2O3 Co3O4 TiO2 

100 100 1000 1000 1000 

**Average 

size (nm)  
984 576 246 440 562 

 

* NPs suspension were prepared in dH2O (pH = 7)  

** Average sizes (Z average) were determined by DLS after NPs incubated at room temperature 

for 30 min.  
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Abstract 

      We proposed a new approach to enhance the plant seed germination via the electrospray of 

nanoparticles (NPs). A single-capillary electrospray system with a particle deposition stage 

(where seeds are placed) was set up for this investigation. For demonstration, lettuce (Lactuca 

sativa) seeds were bombarded by TiO2 NPs via the electrospray for 2~4 minutes in order to 

promote their germination. Based on our study, the enhancement on germination was significant 

in cases with aged seeds or seeds placed in an unfavorable growth condition (e.g., low pH 

medium). The electrospray of other NPs (i.e., Au and CuO) were as also shown to be effective in 

enhancing the germination of aged lettuce seeds. TEM (Transmission Electron Microscopy) and 

SEM-EDX (Scanning Electron Microscopes and Energy-Dispersive X-ray Spectroscopy) 
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analyses suggested that sprayed NPs penetrate the seed coat via the frequent bombardment of 

NPs at high speeds, thus breaking the coat-imposed seed dormancy. The enhancement on the 

germination of grass seeds was also observed in this study. The proposed seed treatment may 

have the potential to improve the germination of various recalcitrant crop seeds. 

 

Keywords: aerosolized TiO2 NP, crop seeds, lettuce, shelf life, TEM, seed dormancy 
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1. Introduction 

In recent years, Nanotechnology and Nanoparticle-related research have undergone rapid growth 

in various fields, including nanomedicines, drug delivery, biomedical imaging and sensing, and 

solar energy conversion (Yoo et al. 2011; Guo and Dong 2011; Wei et al. 2007). Nanoparticles 

are defined as objects with at least two dimensions less than 100 nm. The unique surface area 

and solubility of nanoparticles distinguish them from their molecular and bulk counterparts, 

contributing to various biological effects (Menard et al. 2011; Nel et al. 2006). In work related to 

plants, several studies have focused on the translocation of NPs in plants (Lin and Xing 2008; 

Khodakovskaya et al. 2009; Ma et al. 2010b). For instance, nanomaterials can be used as a 

vector to deliver DNAs or other chemicals into plant cells and tissues (Nair et al. 2010; Torney et 

al. 2007; González-Melendi et al. 2008; Liu et al. 2009; Martin-Ortigosa et al. 2012). There are 

also extensive studies on nanotoxicity on plants in the hopes of advancing nanobiotechnology 

into agricultural applications while relieving the public concern of its potential risk (Rico et al. 

2011).  Zheng et al. (2005) has showed that a low dosage of TiO2 NPs had no harmful effects on 

spinach plants, but rather promoted photosynthesis and nitrogen metabolism that benefited the 

plant’s growth(Zheng et al. 2005). Multi-walled carbon nanotubes and zinc oxide NPs were 

found to be able to stimulate the seed germination, thus enhancing the plant’s growth in the 

aqueous culture (Khodakovskaya et al. 2009; Prasad et al. 2012). More, a series of approaches 

(i.e., genetic, photo-thermal and photo-acoustic methods) were combined to characterize the 

interactions between multiwalled carbon nanotubes and tomato tissues, providing new insights 

into the gene transcription regulations of plants under the influence of nanomaterials 

(Khodakovskaya et al. 2011). However, colloidal suspensions of NPs were used in the previous 

literature. It is known that NPs in suspended solutions tend to agglomerate in general, resulting 
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in the reduction of their nanoscale effect (Nel et al. 2006). It is thus more desirable to have the 

NPs in their singlet form to study the effect of NPs. Electrospray has been demonstrated to 

accomplish the above task (Kim et al. 2010).  

In this study, we employed a single-capillary electrospray setup to simultaneously 

disperse and deliver individual NPs onto the surface of plant seeds. TiO2 NPs were applied in 

this investigation because of their low cost and low toxicity. Lactuca sativa (an edible lettuce) 

was selected as an example plant to demonstrate the feasibility of the proposed treatment for crop 

seeds. Tests on other NPs (Au and CuO) and grass seeds were also performed to support our idea.     

 

2. Experiment 

2.1 Electrospray setup 

The detail of the experimental setup has been described in the work of Wu et al. (2010). 

A brief description is provided herein for the reference. The schematic diagram of the 

experimental setup is shown in Figure 1. The single-capillary electrospray setup consisted of four 

components: a spray head, a particle deposition stage, a high voltage power supply (Bertan 

Model 230), and an optical monitor system. The electrospray head was a single capillary, 

connected to a syringe driven by a programmable Harvard syringe pump (PHD 2000). Sprayed 

TiO2 suspension was fed through the spray head at 2 μL/min. A non-uniform electrical field was 

established between the spray head and deposition stage by applying a positive high voltage on 

the spray nozzle and electrically grounding the stage.  The deposition stage provided a platform 

on which the lettuce seeds (typically 30 lettuce seeds for each run) were exposed to the NP 

electrospray. The distance between the capillary tip and the seed platform was kept at 2.0 cm. In 
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this study, a typical working voltage was about 7 kV ~ 10 kV for operating the electrospray at 

the so-called cone-jet mode (Chen et al. 1995). The optical monitor system, which included a 

microscopic lens (InfiniGage, Infinity Photo-Optical Co. Japan), CCD camera (XC-ST 70, 

Infinity Photo-Optical Co. Japan) and a LCD screen, magnified the liquid meniscus at the 

capillary exit in order to monitor the cone-jet operation.  

All spray suspensions were freshly prepared by dispersing the NPs (via 1min of 

sonication, 15 W, Misonix XL-2000 Ultrasonic Liquid Processors, NY, US) in 1 mM of a 

sodium acetate buffer (pH = 7) to ensure that the conductivity of sprayed suspensions was in the 

range of 150-200 μS/cm.  

2.2 Chemicals and Materials.  

TiO2 NPs (30-50 nm, rutile) and CuO NPs (30-50 nm) were obtained from 

Nanostructured & Amorphous Materials, Inc. (Houston, TX, US), while Au NPs (50 nm) was 

obtained from BBInternational Inc. (Cardiff, UK). The lettuce seeds (Lactuca sativa, Black 

Seeded Simpson, #2846) were purchased from Ferry-Morse Seed Co. (Fulton, KY, US), while 

the yarrow (Achillea millefolium) and common ragweed (Ambrosia artemisiifolia) seeds were 

purchased from Herbiseed Company (Twyford, UK).  

To investigate the effect of the electrospray treatment on seed germination in an acidic or 

basic environment (e.g., to mimic the growth conditions in acidic & alkaline soil), we prepared 

the following buffer solutions for the seed culture: 2 mM of citric acid buffer for a pH of 3; 2 

mM of MES (2-(N-morpholino) ethanesulfonic acid) buffer for a pH of 5; 2 mM of HEPES (4-2-

hydroxyethyl-1-piperazineethanesulfonic acid) buffer for a pH of 7; 2 mM of Tricine (N-tris 
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(hydroxymethyl) methylglycine) buffer for a pH of 9; and 2 mM of N-cyclohexyl-3- 

aminopropanesulfonic acid buffer for a pH of 11(Reddy and Singh 1992).  

2.3 Determination of size distribution of Electrosprayed NPs.  

The size distribution of TiO2 NPs after electrospray was characterized by a scanning 

mobility particle sizer (SMPS, TSI, USA) via the electrospray setup described by Chen et al 

(1995).  The size distribution of the TiO2 NPs in suspension was determined by dynamic light 

scattering (DLS) (Zetasizer, Malvern Instruments, Worcestershire, UK). 

2.4 Protocol for SEM and TEM Images of Treated Seeds 

To observe the NPs’ bombardment on the seeds, the sprayed lettuce seeds were air dried 

and subjected to scanning electron microscopy (SEM, Nova 2300 FEI, OR, US). When 

necessary, samples were coated with gold by a low vacuum sputter coater (SPI supplies, PA, US) 

to increase the surface conductivity before imaging. To validate the penetration of nanoparticles 

through the seed coat, a TEM (Transmission Electron Microscope, JEOL 1200 EX, MA, US) 

was used to image the cross sections of treated seeds. Seeds were first fixed overnight at 4 
o
C in 

a phosphate buffer solution containing 2% paraformaldehyde and 2.5% glutaraldehyde (pH 7.2), 

followed by post-fixing with 1% osmium tetroxide for 2 hours after a phosphate buffer wash. 

Subsequently, these samples were stained with 1% aqueous uranyl acetate overnight at 4 
o
C. 

After dehydration with sequential ethanol concentrations ranging from 50 to 100%, sections of 

each sample were cut with a Leica Ultracut UCT ultramicrotome (Leica Microsystems Inc., 

Bannockburn, IL, US) and placed on grids for TEM imaging. To further confirm the existence of 

nanoparticles in the seed sections, the sections were characterized by an energy dispersive X-ray 

spectroscopy, coupled with SEM (SEM-EDX) for elemental analysis of titanium.  
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2.5 Seed germination.  

Thirty lettuce seeds were placed on the electrically-grounded deposition stage to undergo 

NP electrospray treatment for time periods of approximately 5 minutes. After the spray, all seeds 

were transferred into petri dishes (15 mm x 100 mm) containing 5 mL of medium solution. 

Fifteen lettuce seeds were incubated in each petri dish to ensure adequate space to germinate and 

grow. All dishes were sealed and incubated at 25 
o
C in the dark (Reddy and Singh 1992). After 

the end of the germination period (usually three days), the seedling’s length were measured (note: 

majority of lettuce seeds were germinated in the first three days of incubation). The lettuce seeds 

with seedling lengths longer than 1 cm were considered to be well-germinated seeds. A total of 

60 seeds were used for each treatment condition for analysis. Similar protocols were performed 

for the other seeds with slight variances in seed number per petri dish (i.e., Yarrow seed: about 

120 per petri dish/2 weeks; Common ragweed seed: 50 per petri dish/2 weeks.). 

 The impact of NP electrospray was evaluated based on the seed germination percentage, 

calculated by the following equation:  

Germination percentage= 
Number of seeds well germinated

Total number         
 

Note that we used the germination percentage as the sole parameter to evaluate the effect 

of the NP electrospray treatment. The Statistics Toolbox of MATLAB was employed to conduct 

the data analyses based on the Z test for germination percentage, where statistically significant 

was defined as P < 0.05. 

 

3. Results and Discussion 
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3.1 The electrospray of TiO2 NP onto plant seeds 

Figure 2 shows the size distribution measurement of TiO2 NPs in aqueous solutions. It is 

evidenced that TiO2 NPs in aqueous solution formed agglomerates up to several μm in size. The 

agglomeration of NPs reduces the particle size effect, particularly on cellular function (Wu et al. 

2010). By adjusting the electrical conductivity and the feeding flow rate of TiO2 NP suspensions, 

the single-capillary electrospray operated at the cone-jet mode ensured the production of 

monodisperse droplets in sub-micrometer and nanometer size ranges (Chen et al. 1995; Jaworek 

2007). When the concentration of TiO2 NPs in the solutions was diluted, the solvent in the 

droplets evaporated during electrospray so that singlet TiO2 NPs could be dispersed onto seed 

surface.  

Figure 2 shows the size distributions measured by the SMPS when freshly prepared TiO2 

NP suspensions of 1 g/L are electrosprayed. The measured particle size distribution exhibited a 

narrow peak at 36.0 nm, suggesting that most particles were singly dispersed after the 

electrospray process. Once electrosprayed, gas-borne NPs were accelerated by the presence of a 

DC electric field. The terminal velocity of sprayed NPs was estimated to be in the range of 100 

to 500 m/s prior to bombarding the seed coat (Pui and Chen 2000). The penetration of NPs 

through the seed coat under the proposed treatment was verified by the SEM images (shown in 

Figure 3). To our knowledge, this is the first report demonstrating the application of using 

aerosolized NPs to penetrate plant seed coats.  

     The seed coat, consisting of layers of the testa and endosperm envelope (Welbaum et al. 

1998), provides protection against the entry of parasites and mechanical injury. However, the 

coat may impose the seed dormancy (Zeng et al. 2005). To improve seed germination, we 
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employed NPs with high electrical charges to facilitate the break of seed coat by accelerating 

them in a DC electrical field. Different from the delivery of particles into plant cells via high-

pressure gas (Torney et al. 2007; Gordon-Kamm et al. 1990), the electrospray accelerates 

particles primarily through the space charge effect (due to the presence of highly charged 

particles in high concentration) (Chen et al. 2000). The NP’s entry into seeds via electrospray 

demonstrates the potential of this proposed method for delivering various materials (DNAs or 

plant hormones) into embryos (Gu et al. 2011). By tuning the electrical field strength and 

controlling the charges on the NPs, a broad range of particle velocities can be achieved for the 

bombardment of targeted organelles. The optimal speeds needed for the successful delivery of 

nanomaterials (varying in size, density, and shape) into various types of seeds would be an 

interesting topic to explore in the near future.  

3.2 Seed germination enhancement  

Two factors may affect the germination of seeds. First factor, if the seeds were stored for a long 

period of time, their germination are typically reduced (i.e., become more recalcitrant). Second 

factor is the soil pH, an important factor influencing seed germination, and plants have to adapt 

in acidic or alkaline environments. Thereby, we tested the effectiveness of NP treatment for seed 

germination under unfavorable conditions. Figure 4 summarizes the experimental results of seed 

germination of lettuce seeds when treated with TiO2 NPs electrospray and incubated in buffer 

solutions. Figure 4a is the germination percentage of aged lettuce (stored for 10 months) treated 

by the NP electrospray as a function of NP concentration and spray time. After planting aged 

lettuce seeds in an unfavorable pH condition for germination (pH 5), treated lettuce seeds 

showed clear germination enhancement. Aged lettuce seeds (stored for over 10 months) in a 

MES buffer (pH = 5, a typical pH in acidic soils) had a natural germination percentage of ~ 40%. 
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The germination of the same lettuce seeds reached its peak value (65%) when seeds were 

pretreated by electrospraying TiO2 NP suspension (at the concentration of 1 g/L) for about 4 min. 

Prolonged NP electrospraying displayed less effectiveness on the seeds’ germination. 

Figure 4b shows the germination of lettuce seeds when they were incubated in the buffer 

solutions of various pH values. Three sets of fresh lettuce seeds were used in each test incubation 

condition: untreated seeds (black bars), pre-treated seeds by electrospraying the solvent only 

(grey bars), and pre-treated seeds by electrospraying with TiO2 NPs (white bars).  When lettuce 

seeds were fresh (i.e., recently purchase from the seed company), the control seeds (seeds 

without pretreatment) usually had high germination percentages (~ 80%) even without NP 

electrospray treatment under a wide range of pH growth conditions (i.e., pH = 5~9, normal soil 

range). When the lettuce seeds were placed in an extreme harsh pH conditions (i.e., pH = 3), the 

control seeds showed minimal germination (~ 0%) while the NP-treated seeds recovered to a 

germination percentage of 20%. This result indicates that NP-treated plant seeds may be useful 

in to vegetate the polluted lands (e.g., phytoremediation of acid contaminated soil).     

3.3 Effect of various NPs on the seed germination enhancement 

To verify the feasibility of this proposed treatment, CuO and Au NPs were also applied in 

this study to pre-treat different sets of aged lettuce seeds. Figure 5a shows the seed germination 

results when aged lettuce seeds (stored for 16 months) were electrosprayed by CuO NP 

suspensions. Figure 4b gives the germination percentage when the same aged lettuce seeds were 

pre-treated by electrospraying Au NP suspensions at various concentrations. The germination 

percentages for the controls were also included in the figure as the reference. The results indicate 

that the electrospray of either CuO NP (1 g/L) or Au NP suspensions had significant 

enhancement effects on aged lettuce seeds. Similar to TiO2 NP electrospray, the best seed 
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germination percentage for CuO NP electrospray were obtained in the case of a short spray time 

of 4 min. For the 4-min spray period, the best germination percentage occurred at the 

concentration of 10
7
 NPs/cm

3
 for Au NP suspensions. Based on the above observation, nano-

materials of different compositions are possible to use for enhancing the seed germination.  

We further performed the comparison test to characterize the effectiveness of various 

NPs on the germination of aged lettuce seeds in a prolonged incubation period (shown in Figure 

6). Figure 6a shows the germination percentage under the electrospray treatment by suspensions 

of TiO2, CuO and Au NPs. The results indicate that the treatment by electrospraying either TiO2 

or Au NP suspensions gave the most improved germination percentage. These pretreated seeds 

also germinated faster, while the control samples (seeds without pretreatment) showed a longer 

germination window (over seven days). Although the electrospray of the buffer solution (1 mM 

NaAc) accelerated the seed germination, we did not observe an improvement in the overall 

germination percentages in a seven-day incubation period. For agricultural and horticultural 

crops, delayed and sporadic germination is undesired because it reduces the harvest efficiency. 

NP-electrospray treated seeds may have the advantage of better crop productivity because of 

their early and homogeneous germination behavior.  

No significant difference on the shoot length of germinated lettuce seeds among all 

treatment conditions (only the case with CuO NPs showing somewhat negative impact on the 

shoot length) was observed in this study (shown in Figure 6b). This observation suggests that the 

proposed treatment has no adverse effect on the early state of shoot development and could 

probably improve overall seed germination.      

3.4 Mechanism for lettuce seed germination enhancement by TiO2 NP electrospray 
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Plant seeds are incapable of germination at 100% even under the favorable conditions of 

temperature and hydration. In this study, we have demonstrated that the electrospray of NP 

suspensions can enhance the germination of lettuce seeds while immersing seeds in the buffer 

solution only (without spray) showed no significant impact on the seed germination percentage. 

Although the electrospray of buffer solutions without NPs showed minor positive enhancement 

on the seed germination, it was not as effective as the electrospray of NP suspensions. The 

possible explanation to the observed enhancement on seed germination due to NP electrospray 

treatment is the breaking of the coat-imposed seed dormancy. Electrosprayed NPs bombarding 

the seed coat may weaken the structure of the seed coat (Figure 3), which is considered as an 

influential factor in controlling seed dormancy (Gleiser et al. 2004).  

     In an aqueous suspension of NPs, it has been previously reported that NPs can slowly 

penetrate into seeds of various types and affect their metabolism in vivo (Navarro et al. 2008a; 

Ma et al. 2010b). For example, multiwalled carbon nanotubes (MWCNTs) were able to penetrate 

through the coat of tomato seeds after several days of co-incubation (Khodakovskaya et al. 2009). 

In such bulk solutions, NPs are often observed in the agglomerate form and their interaction with 

seeds is weak. In this study, the electrospray process effectively disperses most of NPs in singlet 

form, accelerates the velocity of NPs via the presence of electric field and space charge effect, 

and bombards the seeds by NP collision at high frequency. The proposed process thus increases 

the chance for NPs entering into seeds via piecing their coats or through natural pores. In case 

that nano-sized holes are created on the seed coat, oxygen transfer and water uptake might occur 

and drive the metabolic process for plant growth (Khodakovskaya et al. 2009).  

Further, the effect of metal ions on seed germination can be excluded in our study as 

TiO2 NPs are considered to be insoluble (< 5 ppb, confirmed by our ICP-MS measurement). 
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Because the incubation process for seed germination took place in the dark, the production of 

oxidative H2O2 through the reaction of light with TiO2 NPs was minimized in this study. It may 

explain why toxicity of TiO2 NPs, reported in the works of Menard et al. (2011) and Hund-Rinke 

and Simon (2006), was not observed in our investigation (Menard et al. 2011; Hund-Rinke and 

Simon 2006). For the case of CuO NP spray, the decrease in seed germination effectiveness is 

presumably because of the known phytotoxicity of CuO NP (e.g., release of Cu
2+

 ions to 

interfere with seed functions) (Wang et al. 2010b; Baek and An 2011; Karlsson et al. 2008). 

3.5 Shelf life of treated lettuce seeds          

The shelf life test was performed on the lettuce seeds which had undergone the NP electrospray 

treatment, in order to evaluate the practical potential of the proposed method (Schwember and 

Bradford 2010). Aged lettuce seeds treated by NP electrospray were sealed and stored in the dark 

and at room temperature for various time periods (i.e., 1 day, 1 week, and 1 month) prior to the 

incubation. Figure 7 shows the germination percentage of aged and TiO2 NP treated lettuce seeds 

after the defined storage periods. Significant enhancement on the germination of NP-treated 

seeds was observed when compared with the control. The germination percentage of aged seeds 

slightly dropped after one month storage, indicating that the seed coat of NP-treated seeds 

remained a sufficient protection for the seed embryo during the storage.  

3.6 NP electrospray treatment of grass seeds 

Several types of grass seeds (e.g., recalcitrant yarrow seeds and ragweed seeds) which have 

naturally low germination percentages under favorable growth conditions (typically 1~2% each 

year) were also used in this study to demonstrate broad applications of the proposed seed 

treatment. In this part of experiment, recalcitrant yarrow and ragweed seeds were subjected to 5 

min electrospray of suspension with 1 g/L TiO2 NPs. After culturing in de-ionized H2O at pH = 7, 
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the germination percentages of recalcitrant yarrow seeds were enhanced from 1.6 (untreated) % 

to 6.8% (pre-treated) (shown in Figure 8). The germination percentage of ragweed seeds was 

improved from 1% (untreated) to 3% (treated). The germination percentage of grass seeds 

studied herein has the potential to be further improved by optimizing the electrospray operation 

conditions and NP concentration in spray suspensions. Because of the diversity of structure of 

seeds & coat of seeds in different species (Finch-Savage and Leubner-Metzger 2006), it may 

require different electrospray conditions to achieve the best result for various species as 

compared to that for lettuce seeds. 

 

4. Conclusion 

     Electrospray of NP suspension was proposed to treat plant seeds for the enhancement of 

seed germination. A single-capillary electrospray system having a particle deposition stage was 

set up for this investigation. By applying a positive high voltage on the spray capillary and the 

electrically grounded stage, the electrospray was operated at the cone-jet mode for the production 

of monodisperse droplets. The solvent in droplets evaporated right after the droplet production, 

resulting in highly charged NPs in singlet form. Charged NPs were then accelerated in the 

presence of DC electrical field and space charge effect, and bombarded lettuce seeds on the 

deposition stage.  Our study demonstrates that NP electrospray effectively dispersed NPs for 

breaking the seed coat to enhance seed germination. Our study further shows that the proposed 

treatment enables seeds to germinate under harsh environments (i.e., low pH soil). The 

enhancement on seed germination were also observed when electrospraying NP suspension of 

CuO and Au, independent of particle composition. Such treatment was further investigated and 

proven to be effective for certain weed seeds. 
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Our proposed seed treatment method can be further optimized by varying the NP 

concentrations/sizes, electric fields, and spray time. Such method can be cost effective for 

scaled-up for industrial applications because dilute NP suspensions were used in the treatment 

(estimate: 1 g of NPs can spray 3.6 million lettuce seeds). We believe that the proposed NP 

electrospray has the potential to be applied to various plant seeds (Pui and Chen 2000; Nadjafi et 

al. 2006). Meanwhile, environmental friendly NPs (Rieter et al. 2008; Yan et al. 2010) can be 

employed in the future to alleviate the concerns on the cytotoxicity of metal oxide NPs (Walser 

et al. 2012). In addition, the use of engineered NPs carrying DNA, plant hormone or other 

chemicals in the proposed process for seed treatment may open up new opportunities for broad 

application of nanotechnology in agricultural industry.  
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Figure Captions 

Figure 1   A schematic diagram of single-capillary electrospray setup with the particle 

deposition stage (used in this study). 

 

Figure 2 The measurement of TiO2 NP size distributions: (a) for a freshly prepared NP 

suspension (at 1 g/L TiO2 NPs) measured by dynamic light scattering; (b) for gas-borne TiO2 

NPs after electrospray; (c) SEM image of freshly prepared NP solution (1 g/L) and (d) SEM 

image of TiO2 NPs after electrospray. 

 

Figure 3  SEM (a), TEM (b) and SEM-EDX (c, d) images of lettuce seeds treated by 

electrospray of TiO2 NP suspension at a concentration of 1 g/L for 5 min. The SEM image (a) 

shows that TiO2 NPs were individually adsorbed onto the seed surface. The TEM image (b) and 

SEM-EDX images (c, d) are for the cross sections of treated lettuce seeds. The images evidenced 

that the TiO2 NPs can penetrate the coat of lettuce seeds and reside in the seeds. The scale bar in 

(b) indicates the length of 200 nm on the image.  

 

Figure 4   Germination percentage of lettuce seeds after treated by TiO2 NP electrospray as 

a function of spray time and NP mass concentration in spray solutions: (a) for the case with aged 

seeds (stored for 10 months) and incubated in buffer solution of pH 5; (b) for the cases with fresh 

seeds and incubated in the buffer solutions of pH = 3~11. Error bars in the figure are adapted 

from four replicates in each treatment. 

 

Figure 5 Germination percentage of lettuce seeds after treated by NP electrospray: (a) for 

the cases with fresh seeds, using CuO NPs and incubated in the buffer solutions of pH = 7 for 

three days, and (b) for the cases with aged seeds (stored for 16 months), using Au NPs and 

incubated in the buffer solutions of pH = 7 for three days.  Error bars in the figure are adapted 

from four replicates in each treatment. 

 

Figure 6  Comparison of lettuce seed germination after the electrospray treatment using 

NPs of various materials (i.e., TiO2, CuO and Au). Also included in the figure are the data for the 

control (without the treatment) and the case treated by electrospraying buffer solutions only for 

the reference. (a) germination percentage of seeds at both Day 3 and Day 7; (b) shoot length of 

seeds at Day 3 and Day 7; Error bar in (a) and (b) are adapted from four replicates in each 

treatment with aged seeds (Stored for 14 months and incubated in the buffer of pH = 5). 
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Figure 7 Germination of aged lettuce seeds (stored for 10 months) treated by TiO2 NP 

electrospraying after being placed in the dark for one day, one week and one month prior to the 

incubation. 

 

Figure 8 Germination of yarrow seeds after being treated by TiO2 NP electrospray and 

incubated for 15 days. Also included in the figure are the germination of untreated seeds and 

those treated by spraying buffer solutions only (for the reference). 
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Figure 4  
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Figure 5  
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Figure 6 
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Figure 7 

 

Note: * indicates a significant improvement in seed germination as compared with the control 

(based on Z-test, SE is based on four replicates). 
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Figure 8 
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