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ABSTRACT OF THE DISSERTATION

Geometric Inference with Microlens Arrays

by

Ian Peter Schillebeeckx

Doctor of Philosophy in Computer Science

Washington University in St. Louis, August 2016

Research Advisor: Robert Pless

This dissertation explores an alternative to traditional fiducial markers where geometric

information is inferred from the observed position of 3D points seen in an image. We offer

an alternative approach which enables geometric inference based on the relative orientation

of markers in an image. We present markers fabricated from microlenses whose appearance

changes depending on the marker’s orientation relative to the camera. First, we show how

to manufacture and calibrate chromo-coding lenticular arrays to create a known relationship

between the observed hue and orientation of the array. Second, we use 2 small chromo-coding

lenticular arrays to estimate the pose of an object. Third, we use 3 large chromo-coding

lenticular arrays to calibrate a camera with a single image. Finally, we create another type

of fiducial marker from lenslet arrays that encode orientation with discrete black and white

appearances. Collectively, these approaches offer new opportunities for pose estimation and

camera calibration that are relevant for robotics, virtual reality, and augmented reality.
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Chapter 1

Introduction

Understanding 3D positions is vital for measurement, navigation, grasping, and applications

like 3D surgery. Visual sensors offer convenient methods to describe the environment but

require geometric inference to understand 3D position.

Geometric inference most often starts by finding the image of known 3D points. To simplify

this process, 3D points are often designed to be easy to find and these easy to find points are

called fiducial markers. Fiducial markers are the standard for many applications, including

understanding the pose of an object relative to a camera or calibrating the optics of a camera.

Traditional fiducial markers create a relationship between their position and their projected

image location. Sometimes this is limiting because positional constraints must be combined

to give orientation constraints, and this is sometimes a weak relationship. For example, two

images of 3D points on a plane nearly perpendicular to the camera look very similar and

this ambiguity results in errors in inferring their 3D location.

Therefore, this dissertation considers an alternative fiducial marker design. We show how

to manufacture and use new fiducial markers that give extra orientation information for

geometric inference in pose estimation and camera calibration. These novel fiducial markers
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are created from small or large microlens arrays. More direct geometric inference is possible

with these objects because they produce an appearance based on relative orientation.

1.1 Creating Orientation Specific Appearances with Mi-

crolens Arrays

Figure 1.1: We show cross sections
of a microlens array to detail the in-
dividual microlens elements. (Left)
Parallel light rays are focused onto
the back focal plane of the array.
(Right) Local patterns behind each
lens makes a lenticular pattern whose
appearance depends on the viewing
angle. One can think of each mi-
crolens as a light source that projects
a different appearance, such as color,
in each direction.

Figure 1.1 depicts a cross section of how a microlens

array is able to create different appearances for spe-

cific relative orientations. All the optical elements

that comprise the microlens array focus parallel light

rays onto a designed pattern behind each microlens.

The pattern can be designed such that a) each mi-

crolens may focus on a similar local pattern and thus

create a single macro appearance for the entire ar-

ray, or b) each microlens may focus on a different

local pattern and thus create a unique appearance for

each microlens of the array. Regardless of how the

pattern is designed, the appearance of the microlens

array depends on the viewing angle and on the pat-

tern adhered to the back of the array. Therefore, we

explore how to create microlens arrays by designing patterns that affect appearance so that

the array has useful and interesting geometric properties.
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(a) Lenslet Array (b) Lenticular Array

Figure 1.2: In this dissertation, we use 2 types of microlens arrays for geometric inference.
The lenslet array (left) will have varying appearance for viewpoints in any direction in 2d
spherical coordinates. A special case of the lenslet array, the lenticular array (right) only
varies appearance for viewpoints rotated around the length of the individual optical elements.

In this work, we use microlens arrays whose focal length is equal to the thickness of the array.

Microlens arrays can be divided into 2 classes which describe the shape of the individual

optical elements comprising the array: spherical and cylindrical. The work presented in

this dissertation uses both classes of microlens arrays and we visualize the two types in

Figure 1.2. The spherical microlens arrays are typically used as light diffusers or collimators.

When we seek to specifically refer to these spherical microlens arrays, we will call them

lenslet arrays. These lenslet arrays can be designed such that their appearance changes for

viewpoint changes in spherical coordinates. The cylindrical microlens arrays, often used in

children’s toys and corporate promotional materials, are commonly referred to as lenticular

arrays. Because of their shape, these arrays change appearance as one rotates the lenticular

array around a single axis. In this dissertation, we use both types of microlens arrays and

we adopt this terminology to differentiate between the two.
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1.2 Problem Domain

Lenticular arrays and microlens arrays give orientation cues to solve two inter-related and

fundamental Computer Vision problems: pose estimation and camera calibration. Briefly,

pose estimation seeks to use images to understand the position and orientation, or the pose, of

an object relative to a camera in the physical world. This is important in manufacturing and

robotics applications, in order to manipulate and navigate in the physical world. However, to

accomplish accurate pose estimation, the geometric properties of a camera and its optics, such

as focal length, must be known. Camera calibration is the process to procure this knowledge.

Together, pose estimation and camera calibration seek to define how a 3D object in the

physical world is projected onto a 2D image taken by a given camera. Standard calibration

approaches with traditional fiducial markers often involves simultaneous estimation of the

pose of a reference object, as well as the camera properties. One of the advantages of the view

dependent fiducial markers considered here is that the camera calibration cues are partially

decoupled from pose estimation, leading to simpler approaches that use a single image. In

the following section, we detail the contributions of this dissertation.

1.3 Contributions

To support the research aim of creating new fiducial markers with microlens arrays, we have

developed prototypes, described geometric constraints, created algorithms, and characterised

pose estimation and camera calibration performance. Here, we give a brief overview of the

novel contributions presented in this dissertation, visualized in Figure 1.3.
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Figure 1.3: Organization of this dissertation. We use 2 types of microlens arrays for geometric
inference. We show how to create lenticular arrays which encode orientation by color in
Chapter 3. These lenticular arrays are used as fiducial markers for pose estimation in Chapter
4 and camera calibration in Chapter 5. Lenslet arrays, the 2D analog to lenticular arrays,
are used to create fiducial markers in Chapter 6 for pose estimation.

1.3.1 Color-coding Orientation with Lenticular Arrays

In Chapter 3, we describe how to create lenticular arrays which encode orientation by hue

and explore their properties. We detail how to assemble these chromo-coding lenticular

from blank lenticular arrays of a particular manufacturer. We document some of the major

challenges with encoding orientation with hue with lenticular arrays and show how to ad-

dress a major assembly challenge. These chromo-coding lenticular arrays are used for pose

estimation and camera calibration.

1.3.2 Pose Estimation with Lenticular Arrays

In Chapter 4, we create small fiducial markers from chromo-coding lenticular arrays, called

chromo-coded markers, to estimate the pose of an object. The chromo-coding lenticular

array has different hue appearance for different orientations and we can derive constraints

to solve for the orientation of the lenticular array relative to the camera independent of its

5



relative position. This constraint eliminates some limitations that challenge traditional fidu-

cial markers. With 2 chromo-coded markers, we can estimate the full pose of an object, and

with more, we can make our method tolerant to changing environmental lighting conditions.

1.3.3 Camera Calibration with Lenticular Arrays

In Chapter 5, we use 3 large chromo-coding lenticular arrays to create a calibration object.

This object derives constraints similar to those used for pose estimation, but because the

lenticular arrays are large, we can relate the appearance of all parts of the object to the cam-

era parameters. Depending on the focal length of an image, the rays imaging the calibration

object will having varying incident angles, resulting in more or less color change across the

large chromo-coding lenticular arrays. These cues enable the method to estimate the focal

length, in addition to pose from a single image of the calibration object.

1.3.4 Pose Estimation with Lenslet Arrays

In Chapter 6, we create a fiducial marker from a lenslet array to estimate the pose of an

object from a single image. This fiducial marker encodes viewpoint using discrete black or

white appearances of individual lenslets. When combined with traditional fiducial markers,

one can solve for the full pose of an object. This approach gives the best reported pose

estimation results and avoids issues with measuring color.
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1.4 Dissemination of Work

Much of the work in this dissertation has appeared in peer reviewd conference articles, each

of which I was the first and primary contributor. All code, experiments, and figures are

my work, except where explicitly noted. In each work, co-authors helped with text. The

following lists the publications used and in which chapters their content appears.

• “Structured Light Field Design for Correspondence Free Rotation Estimation” is a

paper that was presented at the International Conference on Computation Photography

2015 [55] and is co-authored with Robert Pless. The work characterizing the chromo-

coding lenticular arrays in this paper is the basis for Chapter 3.

• “The Geometry of Colorful, Lenticular Fiducial Markers” is a paper that was presented

at the International Conference on 3D Vision 2015 [54] and is co-authored with Joshua

Little, Brendan Kelly, and Robert Pless. In this work, Little wrote the code that

optimizes for pose using traditional markers and Brendan Kelly helped annotate marker

locations in experimental video. Chapter 4 presents the material from this paper.

• “Using Chromo-coded Light Fields for Augmented Reality” is a poster that was pre-

sented at the IEEE International Conference on Virtual Reality 2016 [58] and is co-

authored with Robert Pless. This work is included as the applications in Chapters 4

and 5.

• “Single Image Camera Calibration with Lenticular Arrays for Augmented Reality” is a

paper that was presented at the Conference on Computer Vision and Pattern Recogni-

tion 2016 [57] and is co-authored with Robert Pless. Most of this work was presented
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in Chapter 5, but work identifying and addressing some manufacturing challenges were

included in Chapter 3.

• “Pose Hashing with Microlens Arrays” is a paper that will be presented at the Euro-

pean Conference for Computer Vision 2016 [56] and is co-authored with Robert Pless.

This work and other unpublished work on back-plane texture analysis is presented in

Chapter 6.
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Chapter 2

Background

The work in this dissertation is related to a variety of topics in Computer Vision that attempt

geometric inference for pose estimation and camera calibration. Because geometric inference

is a core problem, there is a rich literature in pose estimation and fiducial marker design.

Traditional fiducial markers derive geometric constraints from point correspondences or the

relationship between known 3D points with known positions and the 2D projected location of

those points onto an image. As such, these markers are designed to be easy to detect for any

camera exposure setting or marker position. Our fiducial markers are fundamentally different

from traditional markers in that they present orientation cues from their varying appearance.

Some existing work has proposed using materials that also have different appearances for

different orientations for geometric inference. In fact, lenticular arrays and microlens arrays

have been used in the past to understand how light refracts through transparent objects in

order to reconstruct that object’s shape. Our work uses the changing appearance of microlens

arrays to directly solve for pose estimation and camera calibration. The most similar work

to ours uses lenticular arrays and microlens array to create a visual effect that changes the

position of a cross or line to indicate orientation for pose estimation. This technique has

some of the same challenges as other point correspondence methods. Our fiducial markers
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build on this method with explicit orientation cues based on a hue or grayscale value at a

pixel. In the following section, we review these topics in more depth to provide context and

contrast to our work.

2.1 Traditional Fiducial Markers

Most current fiducial marker approaches rely on correspondences between the image and

the apparent position of fiducial markers for pose estimation and camera calibration. These

fiducial markers typically have the following characteristics:

• known intra-marker 3D geometries for geometric inference

• high contrast for easy geometric interpretation and identification

• inter-marker differentiability

• robust to varying imaging conditions

• design to enable sub-pixel localization of marker position

All of these characteristics facilitate the consistent and precise use of point correspondences

for geometric inference.

For the pose of a plane to be uniquely determined from a single image, at least four point

correspondences are needed, and so most fiducial markers are based off of using a square

where each corner serves as a point correspondence. These squares are typically black on a

white background for easy identification. Because of the high contrast edges and corners of
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(a) Checkerboard (b) ARTtoolkit Markers (c) ARTag Markers

Figure 2.1: The most popular fiducial markers are based off of black squares, whose corners
give point correspondences for geometric inference in pose estimation and camera calibration.

the square, line-fitting approaches can give sub-pixel image coordinates to the corners of the

square. A black square on white background is advantageous as it retains its high contrast in

various camera exposure settings. In this subsection, we highlight some of the more popular

planar fiducial markers which rely on point correspondences from a black and white square

design. Examples of some of these markers can be seen in Figure 2.1.

For pose estimation, many planar fiducial markers build off a simple black square to provide

additional capabilities by including unique patterns inside the square. The unique inte-

rior patterns allows differentiation of several markers in an image. This interior pattern

changes for different types of markers and provides different attributes and capabilities. AR-

toolkit [28, 72] uses symbols and image matching to differentiate markers. To increase the

possible number of uniquely identified markers, ARTag [14, 15] uses binary check-sums, with

the added benefit of fault tolerance during image matching. Some work has been done to

automatically create interior patterns which maximize the inter-marker code distance while

minimizing the complexity of the pattern [19]. CALTag [3] is able to robustly handle occlu-

sions by individually identifying markers similar to ARTag in a checkerboard and locating

any missed calibration points using prior knowledge of the checkerboard layout. These black
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and white planar markers are frequently used for pose estimation in Augmented Reality

applications because they are easy to print with commodity printers.

The most popular fiducial marker for camera calibration is the planar checkerboard. As the

checkerboard is comprised of many squares, this method shares the advantages of square

fiducial markers, including easy fabrication, detection, and processing. In addition, many

more point correspondences, and thus constraints, can be derived from the dense number

of corners of the checkers, facilitating camera calibration. The checkerboard fiducial marker

was made popular in Zhang’s widely used camera calibration method [81], and continues

to be widely used and supported, for example in unofficial [7] and official [39] MATLAB

toolboxes and C++ libraries [8]. Despite the many correspondences that can be derived

from a single image of a checkerboard, many multiple images are needed for single camera

calibration because of the additional parameters for the camera, for example focal length.

However, with 2 checkerboards on non-parallel planes, one can calibrate a camera from a

single image [59].

Other research goes beyond the standard black and white planar fiducial markers to provide

additional characteristics. Some markers have been developed to provide robustness to

varying scale caused by significantly changing the distance of the camera from the fiducial

marker. Fractal Marker Fields [24] use a fractal approach to ensure that features can be

found at any scale. Similarly, Nested Markers [69] have a recursively layered structure of

smaller elements that can be identified and used at larger scales. Other markers have been

designed to be unnoticeable by the human eye. VRCodes [76] can create fiducial markers on

active displays by using rolling-shutter cameras to detect signals that are presented by the

display at a high frequency unperceivable by human vision.
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(a)

(b) (c)

Figure 2.2: Traditional fiducial markers that use point-correspondences suffer from a well-
understood ambiguity for orientations near front-parallel. We show the intuition in a): points
of 2 planes near fronto-parallel to the camera but rotated slightly differently will project to
nearly the same locations on the image. c) As a result, orientation estimations have larger
error for rotations near fronto-parallel views. To limit this effect, points are moved farther
away, making potential applications cumbersome to handle, like the wand used in stereotactic
surgery, shown in b).

The traditional black square markers, including instantiations presented above, have been

widely used and deployed for applications in augmented reality, robotics, and manufacturing.

However, with coplanar point correspondences, as is the case with all the above cited work,

there are well-documented ambiguities for relative orientations close to fronto-parallel to the

camera [59, 70, 1, 48]. Consider two images of a square that are nearly fronto-parallel to

the camera, but differ by a 1 degree rotation around one local axis: the projection of the

points on an image have approximately the same appearance. We visualize this intuition

in Figure 2.2a. Hence, pose estimations, especially for rotation, are challenged with large

error around fronto-parallel views. As shown in Figure 2.2c, this is especially pertinent for

orientation estimations within 10 degrees of fronto-parallel. A way to mitigate these errors is

by physically separating the fiducial points are far away as possible, such as the stereotactic

surgery tool shown in Figure 2.2b. By deriving orientation constraints from lenticular arrays
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and microlens arrays, our method does not face this traditional ambiguity and therefore our

methods have consistent performance across all possible orientations of the fiducial marker.

This is an important distinction and characteristic of our markers since most applications of

pose estimation encounter fiducial markers that are fronto-parallel to the camera.

2.2 Geometric Inference without Fiducial Markers

There are many research works in the Photogrammetry and Computer Vision communities

that cover geometric inference, particularly camera calibration, using various cues. We refer

the reader to more comprehensive works for a full scope of work done [2, 83, 51, 18, 52]. In

this section, we cover a few topics to give a sense of the variety of different techniques.

The Perspective-n-Point (PnP) problem tries to estimate the pose of a calibrated camera

given n 3D points with known relative position and the corresponding n 2D points in an

image. The version with 4 points, P4P, is the generalized algorithm to solve an object’s pose

based on cues using 4 point correspondences, for example the 4 corners of a square fiducial

marker. The P3P problem has been shown to have at most 4 solutions [16, 21, 17], while the

P2P and P1P problem have infinitely many solutions. However, with additional assumptions,

one can constrain the solutions for PnP problems with n≤4, and thus the minimum number

of point correspondences needed. In situations where the vertical direction is known for the

camera (e.g. from an Inertial Measurement Unit), it is possible to solve for the pose of a

camera with 2 corresponding points [32, 53]. Recent work also derives a two point solution

if the observed points in the world have a known direction that projects to the image (e.g.

building corners where the vertical edge is visible), and characterizes the degeneracies of

these constraints [6].
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The PnP problem assumes the configuration of 3D points in the world is known. Some

work considers only partial information of the points lying on regular shapes in the physical

world. Methods such as [42] use 5 point correspondences on 2 orthogonal 1D lines for

single image camera calibration. Other methods use co-planar circles to calibrate a camera

with a single image. One method [11] derives geometric constraints from conic surfaces.

A similar work uses vanishing lines of a plane containing two circles in order to calibrate

a camera [12]. These techniques leverage regular shapes that exist in the physical world,

instead of fabricated markers.

There are some camera calibration approaches that are not based on identifying exactly

corresponding points in a scene. Calibration patterns that consist of patches or parallel lines

can be used for intrinsic camera calibration and extrinsic calibration (including rotation

and translation relative to other cameras). Approaches that do not require correspondence

between specific lines are based on seeing the orientation and spacing of those parallel lines

on the image including those based on the prismatic line constraint [5, 4], and an approach

using the Radon transform as a filtering operator [38, 37]. In some circumstances there are

scenes that have large numbers of parallel lines with a known orientation, such as vertical

edges of buildings or plumb-lines; the orientation and position of those lines in an image

provide constraints for both intrinsic and extrinsic calibration even without matching the

pixel to a specific line in the world [41, 6].

Other approaches have used textures for camera calibration. The authors of [82] assume

that natural urban textures have low rank (for example, grids of windows on the exterior of

a building). Using this assumption, the authors solve for the calibration and lens distortion

that minimizes the rank of the textures in the image, using all pixels, not just point locations

of geometric points.
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Our approach of using microlens arrays as fiducial markers is interesting because we can

leverage existing research done for point correspondence based calibration methods and the

PnP problem. A microlens array can give point correspondence cues by identifying its

location in the image. However, we can build on this by inferring orientation information

at this point as well. Therefore, fiducial markers created from microlens arrays have a

higher density of geometric constraints than methods listed in this section. In fact, by

using microlens arrays, we show how to use a single image for pose estimation and camera

calibration; in Chapter 4, only two different measurements of 2 lenticular markers in an

image are needed for pose estimation; in Chapter 5, a single image of a lenticular array

calibration object is required for camera calibration; and in Chapter 6, 1 microlens array is

sufficient for pose estimation.

2.3 Fiducial Markers with Orientation Cues

A large majority of the Computer Vision literature around fiducial markers, pose estimation,

and camera calibration relies on point correspondences to infer the geometry of the imaged

physical world. However, there are a few prior works that have explicitly created fiducial

markers whose relative appearance depends on the direction from which they are viewed.

Agam markers [9, 10], inspired by the kinetic art of Yaacov Agam, are comprised of many

adjacent, long triangular prisms. Shown in Figure 2.3, it is comprised of many triangular

prisms, each colored white on one side, and black on the other. When viewed from afar,

the darkness of this pattern relates to the angle at which the prisms are viewed. Some work

has explored using Agam Fiducials and report how the markers change in appearance as

the camera is moved in simulation and empirically [47, 46]. Another type of marker called
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BoKodes [43], creates a highly structured pattern of light projected away from one point in a

scene. This structured pattern is based on thousands of small QR-codes. When a defocused

camera takes a picture of a scene, this pattern is visible, and the identity of QR-codes in

view indicates the relative direction of the camera relative to the bokode marker.

Figure 2.3: Agam fiducial markers are sim-
ilar to lenticular arrays in that many small
elements produce a similar appearance and
thus create a macro scale appearance for a
viewer. Agam Markers are constructed from
many parallel, small triangular prism, where
two sides of the prism are colored black and
white. Therefore, at different viewpoints, dif-
ferent amounts of each side will show, resolv-
ing as a gray with varying intensity. Similar
to lenticular arrays, this appearance could be
conceivably used to infer the relative orienta-
tion of a camera.

Both the BoKode markers and the AGAM

markers both vary appearance depending on

orientation. However in both cases, the set

of orientations is limited to a pencil of ray

directions that intersect the BoKode marker

or AGAM marker. The fiducial markers in

this dissertation build on this previous work

by varying appearance for a very large set

of orientations: as much as 40 degrees from

fronto-parallel.

2.4 Geometric Inference

with Microlens Arrays

Micro-optic arrays have been used for their

unique optical properties in a variety of

ways. An early example includes the Integral Image” in 1908, when Gabriel Lippmann

first proposed using lenticular arrays to capture and display an autostereoscopic image [36].

Since then, microlens arrays have been used to capture the full plenoptic representation of

a scene with lightfield cameras [44, 35, 31, 49, 20] while lenticular arrays have been used
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to create 3D TVs without the need of additional equipment like special glasses for users to

wear [40, 25]. Microlens arrays have a wide variety of uses, but for this document, we review

only the literature which uses microlens arrays for geometric inference.

Figure 2.4: A light field probe is able to encode
the 2D location and 2D orientation of a ray of
light leaving the probe using the green and
red color channels (respectively) of an image.
As these colored rays of light refract through
a transparent medium, they change direction
which is detected by a calibrated camera.

One use of microlens arrays is to create light-

field probes which use color to encode the

relative path of a ray of light. As illus-

trated in Figure 2.4, this is done with a

light field probe which encodes the 2D ori-

gin location and 2D direction of light rays

by illuminating patterns on transparencies

through a lenslet array. Light field probes

have been used to detect the change of the

index of refraction in transparent mediums

for Schlieren photography [74] and to re-

construct the refractive index field of gas

flows [26]. In addition, light field probes

have been used to reconstruct the surface ge-

ometry of thin transparent objects [75]. Similar to these works, the BoKode [43], mentioned

in Section 2.3, has been used to reconstruct dynamic 3D fluid surfaces [79].

The light field probe shares a core characteristic of the fiducial markers described in this

dissertation: it encodes orientation using color. In fact, our fiducial markers can be described

as generating a light field as well. The above work uses a light field to observe how these

encoded rays change direction through a refractive medium. For this geometric inference,

the location and orientation of the light field probe as well as the camera properties must be
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known. The authors used a well calibrated system and use lightfield probes to understand

the reflective and refractive object. We use similar objects, but in our work, we describe

how to determine the optical properties, as well as the relative location of an uncalibrated

camera.

2.5 Microlens Arrays as Fiducial Markers

Figure 2.5: (Top) A LentiMark is comprised
of a traditional fiducial marker with the ad-
dition of a lenticular array which shows ori-
entation cues by the position of a black mark
relative to reference points. (Bottom) Simi-
larly, an ArrayMark is comprised of 4 reference
points that are used as traditional point cor-
respondences with the addition of a microlens
array which gives orientation cues by the po-
sition of a black cross relative to the 4 point
correspondences.

The works most similar to this disserta-

tion are a few cases were microlens arrays

have been explicitly used as fiducial markers.

Most recently, a patent from Sony [33] pro-

poses using lenticular arrays to track head

position. The patent proposes the concept

of using lenticular arrays that vary in color

based on the orientation and describes an

application to pose estimation in general.

This idea is very similar to the work pre-

sented in Chapters 4 and 5. However, our

work goes on to describe the necessary con-

straints to determine pose from lenticular

arrays and experimentally validate the con-

cept.

One group has used both lenticular arrays

and microlens arrays to augment existing
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traditional markers and 4-point correspondence methods. Shown in Figure 2.5, these mark-

ers, called Lentimark [64, 67] and Arraymark [62, 65, 66], change appearance based on

orientation and have been used in applications including Augmented Reality [68, 63, 61],

Robotics [29, 30, 71], and Motion Capture [60]. This appearance change manifests as a

black mark or cross that translates relative to the rest of the fiducial marker. The relative

translation of this black mark indicates the viewpoint orientation of the marker relative to

the camera. This orientation information given by the lenticular array (of the Lentimark) or

the lenslet array (of the Arraymark) improves orientation estimations of existing traditional

fiducial markers, especially for fronto-parallel marker orientations. Because the orientation

cues are found by comparing the relative position of points on a fiducial marker, however,

they suffer from some of the challenges of traditional fiducial markers. In particular, as a

Lentimark or Arraymark is moved farther away from the camera, the accuracy of the addi-

tional orientation information will decay. This is because as a Lentimark or Arraymark is

moved farther away from the camera, there are fewer pixels to measure the relative location

of the orientation mark on the lenticular array or microlens array relative to the rest of the

marker. Therefore, errors in locating these landmarks result in faulty orientation cues. Our

method also embraces visually encoding orientation by appearance, but builds on this by

explicitly encoding orientation information via hue or grayscale intensity. As a result, our

markers can be moved very far away and, as long as one pixel can image our fiducial markers,

an image will still be able to capture strong orientation constraints from the fiducial markers.
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2.6 Summary

The fiducial markers presented in this dissertation are related to other research in Computer

Vision, especially in the topic of fiducial markers and tasks of pose estimation and camera

calibration. Unlike traditional fiducial markers, fiducial markers made from microlens arrays

do not suffer from pose ambiguity. That is because these markers explicitly encode orien-

tation information by their appearance. Our work is similar in this way to other research

that uses microlens arrays for general geometric inference. However, ours is the first to be

designed and used for pose estimation and camera calibration. In addition, we derive geo-

metric constraints on orientation purely based on appearance and show a working prototype

and experimentally characterize performance.
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Chapter 3

Color Coding Orientation with

Lenticular Arrays

In this chapter, we show how lenticular arrays can be constructed to encode orientation with

color. Lenticular arrays are sheets of plastic comprised of many small cylindrical surfaces.

We discuss how the lenticular array can project patterns adhered to the back of the lentic-

ular array to a create orientation specific appearances. We design a lenticular array that

has different hue appearances and we provide details on how to fabricate a prototype. The

resulting prototype can encode orientation by hue through a a 1-to-1 function. This cali-

brated relationship enables geometric inference for pose estimation in Chapter 4 and camera

calibration in Chapter 5.
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3.1 The Lenticular Array

Lenticular arrays are plastic sheets which are able to produce different appearances for

different viewpoints in ambient light. Common children’s toys use lenticular arrays to show

different images to a viewer as the toy is rotated to give the illusion of an animated object [45].

Lenticular arrays can also be designed to show two images of the same scene undergoing

parallax to two particular viewpoints. These two appearances are designed to be perceived

by both eyes of a user to give the perception of depth without any external apparatus.

This has been exploited in some modern TVs to bring 3D video into the home any extra

equipment like special glasses [40, 25].

Figure 3.1: A lenticular array is comprised of a
series of parallel cylindrical surfaces that focus
parallel rays onto particular rows of a back-
plane. The geometry of the lenticular array is
described in terms of its major axis and minor
axis.

Physically, lenticular arrays are sheets of

plastic and have a flat surface, called the

back-plane, on one side, and a front sur-

face comprised of many parallel rows of small

half cylindrical surfaces, on the other. These

cylinders, called lenticules, act as lenses and

are designed such that the focal length is

equal to the thickness of the lenticular array.

Because of its repeating shape, a lenticular

array can have an orientation. We define

the direction parallel to the lenticules as the

major axis and the direction coplanar but

orthogonal to this, the minor axis. We show

this geometry in Figure 3.1. A specific pattern can be designed such that when adhered
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(a)

(b)

Figure 3.2: a) A cross-view of the lenticular array shows how lenticules focus parallel light
onto the back plane. This focus point translates across the back-plane for different incident
angles of parallel light. b) Therefore, to create different appearances, images of the desired
appearance are chopped up spatially and interleaved behind each lenticule. At a particular
incident angle, parallel light will focus on a single appearance image across all lenticules.

to the back-plane, the lenticular array will produce different appearances. We refer to this

pattern as the back-plane texture.

Lenticular arrays are able to create different appearances for different viewpoints because

the lenticules act as lenses which show the same local pattern adhered to the back of the

lenticular array. The lenticules focus parallel rays of light from a specific direction onto

the back-plane. Figure 3.2a shows this happening in a cross section of a lenticular array.

However, whereas a common spherical lens would focus entering parallel light onto a single

point, each lenticule focuses parallel light onto a line along the major axis. As the parallel

rays of light change angle incident to the lenticules, the focus line translates across the

back-plane along the direction of the minor axis. The focus line only translates for views

that change by rotating around the major axis. One could also think of the lenticules as

mini projectors which display some pattern along a line on the back-plane texture. Then,
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whatever local pattern is repeated under every lenticule on the back-plane texture will be

projected as various appearances out the lenticular array.

The back-plane texture, thus, is created by interleaving a series of images of specific appear-

ances. What this means is that each image is spatially segmented into strips and the same

spatial strip from each image is under each lenticule. We demonstrate this in Figure 3.2b.

Thus, for a viewer at a given orientation, all lenticules focus onto strips of a single frame to

give the viewer the macro appearance of that appearance image. In the case of children’s

toys that give the illusion of an animation, a series of frames of an animation are interleaved

to create the back-plane texture. Because the back-plane texture dictates what the set of

appearances a lenticular array will create, the back-plane texture defines the appearance of

the lenticular array.

3.2 Encoding Orientation with Lenticular Arrays

In this section, we leverage these properties to create a lenticular array that can encode

orientation with specific appearance. We can design a set of known appearance images and

interleave them to create a back-plane texture. This would allow us to design and calibrate

a visual encoding of the incident angle of a camera relative to the lenticular array. Then, for

images of the lenticular array, we could infer the orientation of the lenticular array relative

to the camera using its appearance.

The orientation of the lenticular array could be encoded in a number of visual ways. Images

or patterns with high details, like the animations of a common child’s toy, would be difficult

to use as this would require a process just to detect an appearance. Instead, some solid
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(a) (b) (c)

Figure 3.3: This figure shows different back-plane textures that could be used to encode
orientation from an appearance for a lenticular array with 5 lenticules. Similar to the Agam
markers, we could interleave images of various darkness to encode orientation with grayscale.
b) An alternative, could be to use a binary coding across one array, or many arrays. c) We
choose to use interleaved hues because hue appearance is invariant to scene light or camera
exposure settings. These pictures are dramatically enlarged; when placed under the lenticular
array each of the five repetitions of this color spectrum is scaled to fit under one lenticule,
which is typically < 1 mm wide.

appearance would be easier to detect and measure. Following the Agam fiducial marker [9],

we could interleave different shades of gray (shown in Figure 3.3a). Then, we could relate

orientation to the grayscale value measured from the lenticular array. Grayscale, however,

is variant to light intensity in the scene and exposure settings of a camera. As such, the

appearance of the lenticular array with such a back-plane texture could vary drastically for

the same viewpoint, for example by increasing the exposure time of the image. One way

to address this could be to use just black and white appearances to encode orientation.

Shown in Figure 3.3b, one could design a back-plane texture with some binary encoding

that has various frequencies of black and white stripes. This would require having a higher

spatial understanding of where measurements are coming from on the lenticular array, or

would require different frequencies to be divided among multiple lenticular arrays. Either

of these strategies would complicate any inference using an image of one or more lenticular
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arrays. Instead of using a grayscale appearance, we could use a hue appearance to encode

orientation. Hue is invariant to the amount of light that is captured by the camera, and so

would be a better orientation cue.

We thus propose to use hue to encode orientation with a lenticular array. Ideally, we would

like to encode for a wide range of orientations, while still having high contrast for appearances

from similar orientations. A binary encoding of two different hues could be used, but as

described above, would suffer from complexities in identifying different regions of a lenticular

array or require many lenticular arrays. A better approach would be to use appearances of the

different colors of the saturated hue color wheel to encode orientation. With this approach,

the back-plane texture would have a discrete sampling of the hue color wheel under each

lenticule. We show this in Figure 3.3c. By using the whole color wheel, we maximize the

number of orientations that could be encoded by different colors. In addition, because the set

of hues is continuous, the different appearances will be change continuously as the lenticular

array is rotated.

3.3 Chromo-coding Lenticular Array

By using a back-plane texture of a continuous set of hues, we can create a lenticular array

that explicitly changes hue appearance smoothly as the lenticular array is rotated around

its major axis. Therefore, this lenticular array encodes the orientation of the array relative

to a viewer or camera with hue. Because of this, we say that the lenticular array is chromo-

coding its orientation. Unless otherwise stated, we will will assume that all lenticular arrays

discussed in this dissertation have this quality. The lenticular array is unlike most imaging

27



Figure 3.4: Here we detail the chromo-coded lightfield produced from a lenticular array. We
define the major orientation to be the direction along the lenticular lenses. Depending on
the angle at which the pattern is viewed, it appears to have a different hue. For notation,
we define the major axis of the lenticular pattern to be ~o, and an example ray that would
be seen for each hue as ~vhue. Any ray that views the lenticular sheet in the plane spanned
by ~o and ~vhue has the same color, our derivations are written most simply in terms of ~nhue,
surface normal to that plane.

situations; for example, in Lambertian scenes, all rays coming from a given location are

assumed to have the same color and intensity.

Relative to the lenticular array, the lenticular array will have different hue appearances for

different directions to a viewer. Because of the geometry of the lenticular array, there will be

different appearances for different viewpoint directions that rotate around the major axis.

Then, all the viewing directions that have a particular hue will lie on a plane that is parallel

to the major axis. Therefore, all the set of views that have a particular hue will lie on one

of the respective hue planes that radiate out of the major axis.

Figure 3.4 visualizes this geometry. In the coordinate system of the lenticular array, ~o is the

direction of major axis, ~vhue is an example ray observed at a given color and ~nhue = ~vhue×~o is
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the surface normal to the plane containing all rays of that hue. This constraint is leveraged

in Chapters 4 and 5 for geometric inference.

3.4 Manufacture of the Chromo-coding Lenticular Ar-

ray

In this section, we introduce the physical chromo-coding lenticular array prototype that is

used in this dissertation. The prototype is based on the EcoLens Lenticular Array, pur-

chased from Pacur, Inc. This lenticular array has a design that includes lenticules that are

elliptical instead of cylindrical, eliminating some of the optical aberrations that happen at

each lenticule [27]. We use arrays where each lenticule was 0.34 mm wide, and the thickness

of the array was 0.4 mm.

To create orientation dependent hue appearance, we use a back-plane texture that includes

12 discrete samples of the hue, sampled every 30 degrees around a color wheel. Our pattern

is shown in Figure 3.3c. A pattern with 12 colors aligned along the major axis every 0.34

mm requires printing a texture at ≈ 900 dpi to get a stripe of each color 1 dot wide. This

back-plane texture is adhered to the back of a blank lenticular array with optical adhesive in

order to make the final object. Due to an exclusive availability of blank EcoLens lenticular

arrays, the back-plane texture was printed and mounted by professionals at Pixalen Studio.

Blank lenticular arrays are cheap commodity items and the appropriate back-plane textures

can be printed on commodity printers, so this prototype is broadly feasible to manufacture

even in application domains where cost is a factor.
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3.5 Hue Response Function

The relationship of the apparent viewing direction to the observed hue depends on the

orientation of the lenticular array relative to the camera, in particular the rotation angle of

the viewing direction around the major axis of the lenticular array. Therefore, the appearance

of the chromo-coded lightfield to an observer only depends on this single rotation parameter,

which we indicate as θ. The relationship between this rotation and observed color is captured

in the Hue Response Function (HRF), which is a 1-to-1 relationship for incident angles,

or θ, of up to ≈ 40 degrees (after which the colors repeat). In this section, we explore

this relationship. The HRF is useful for geometric inference because it defines the relative

orientation of a viewpoint given a measured hue.

Using a chromo-coded lenticular array described in Section 3.3, we test the hypothesis that

the hue appearance of the lenticular array only depends only on the rotation around the

major axis of the array. We measure the apparent hue of the lenticular array at various

orientations using two motorized rotation stages from ThorLabs. These motors are setup to

move the lenticular array in a controlled way around its major and minor axes. Images were

captured with a Nikon D60, with a 300mm lens to minimize perspective effects. In addition,

camera settings were set at ISO 100 and a static white balance level to ensure consistent and

saturated color measurements.

In the first experiment, we rotate the mounted lenticular array around its major axis at 1

degree increments (θ ∈ {−40◦, . . . , 40◦}) and image the pattern at each angle. This set of

angles is repeated with the lenticular array tilted at 5 rotations around its minor axis (φ ∈

{0◦, 10◦, 20◦, 30◦, 40◦}). Figure 3.5a shows the setup for the experiment: a large lenticular
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(a) (b) (c)

Figure 3.5: (a) We experimentally measure the HRF in the laboratory using a precision
rotation controller. The observed hue (b) has a nearly linear response as a function of
rotation around the major axis θ, even for different rotations around the minor axis (shown
for 5 different angles φ). The drastic jumps in hue at wide angles of θ are a consequence of the
design of our BFP texture. (c) The HRF resolution with our current prototype suggests that
accuracy is possible to about 1

4
to 1

2
of a degree. At smaller scales, noise in the measurement

process makes the hue/angle function non-monotonic.

array was mounted square on a right angled bracket attached to a motorized stage to vary

θ, while another motorized stage could be tilted to vary φ.

We take a series of images where the lenticular array is centered in the image. For each image,

we average a small 20 pixel region (5 lenticules wide) at the center of the image/lenticular

array to capture a representative hue value for each viewpoint. Because we sample at the

center of the image, we eliminate any perspective that would change the angle of incidence

of rays from the camera imaging the lenticular array. Figure 3.5b shows that for θ in the

range of [−35, 35], all five sets of images show an approximately linear HRF giving a 1-to-1

relationship between the hue and the angle rotated around the major axis. Furthermore, the

HRF does not vary greatly between different rotations around the minor axis (φ). This shows

that it is appropriate to model the chromo-coded lightfield by a single rotation parameter

via the HRF.
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For values of θ outside the range of [−40, 40], the optics of the lenticular array focus the rays

hitting one lenticule on the back-focal plane texture of the adjacent lenticule. Since the hue

spectrum is repeated under each lenticule on the BFP texture, the hue appearance of the

lenticular array rolls over on the hue color wheel (and jumps from 0 to 1 on the standard

mapping of hues to numbers from 0 to 1).

The next experiment explores the question: how small of angular changes can be differen-

tiated with an HRF? Here we set φ = 0 and change θ in increments of 1
10

◦
. Figure 3.5c

shows the observed hues for θ values between 10 and 14. The blue line shows a previous

measurement series measured at each integer degree, and the more jagged red line shows a

different set of measurements done every 1
10

◦
. The measurements done every 1

10

◦
have some

non-monotonic behavior that suggests that the HRF would be useful to predict orientation

angle only up to 1
4

to 1
2

◦
. Since our input hues are from averaging the hues in a small region

of the lenticular array, this error may be from camera noise in precisely measuring color.

In Chapters 4 and 5, the HRF of a lenticular array is leveraged for geometric inference. To

do this, first the HRF must be pre-calibrated using known rotations around the major axis,

using, for example, the motorized rotation method mentioned above. We have shown that

the chromo-coded light field produced by our designed lenticular array can be well modeled

by the HRF. Thus, two 1-to-1 functions can be fit in order to do hue → θ or θ → hue

lookups. Then, given an image with an unknown relative orientation of the lenticular array

to the camera, we could lookup the θ to constrain a direct estimation, or lookup the hue to

fit a model for estimation.

The remainder of this chapter explores the challenges and limits of using an HRF to determine

orientation from hue appearance.
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3.6 Challenges

As we have seen, chromo-coding lenticular arrays can give useful cues on orientation relative

to a camera. However, this method has a few challenges. Strong directional light and colored

ambient light can change the appearance of the lenticular arrays for some or all viewpoints.

In addition, the small size of the lenticules of the array makes it difficult to fabricate a

back-plane texture that creates a consistent HRF across the lenticular array. Finally, the

fact that cameras make discrete RGB measurements of hue limits the precision of encoding

orientation with hue. In this section, we discuss these challenges.

3.6.1 Scene Light Color

The appearance of an object is the product of the spectrum of the albedo, or light inde-

pendent color of an object, and the spectrum of the light illuminating the scene. The same

is true for a lenticular array: the observed hue appearance will depend on what hues were

printed on the back-plane texture, as well as what color light is illuminating the back-plane

texture of the lenticular array.

For extreme light environments where only a narrow band of color is illuminating the scene,

our method will only be able to encode a few orientations. To explain with an example,

consider an environmental light that is pure blue. The only color that will reflect off of

the back-plane texture will be blue. Therefore, only a small range of correct viewpoints will

reflect blue light off of the blue section of the back-plane texture to create a blue appearance.

Other viewpoints will be very dark, and if measurable, will erroneously appear to be blue.
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This means that the lenticular array will no longer be able to reliably encode a large useful

set of viewpoints.

For the more typical case, the spectrum of environmental light is fairly uniform, but has a

shift in power towards certain colors. For example, incandescent lights have more power in

the higher wavelength of the spectrum and so appear yellowish. In this case, there is a broad

enough spectrum to reflect all the hues from the back-plane texture, but the higher power

colors will cause higher reflectivity in the back-plane albedo matching and near the peaked

color. So in an environment with incandescent light, the lenticular array will be yellowish

for more sets of orientations. This sort of stretching of the set of reflected hues from the

lenticular array can be handled by calibrating the HRF in this specific environment. In

Section 4.4.3, we introduce an inference-time color-calibration strategy to address the case

where the HRF may be calibrated in one lighting environment and moved to another.

3.6.2 Directed Light

Our lenticular arrays depend on ambient light to illuminate the back-plane texture. In effect,

scattered light from many different directions enters the lenticular array and illuminates the

back-plane texture evenly. Then, as the rays of light reflect off of a given hue strip, some rays

collimate as they exit the lenticule and are observed by a viewer. The rays from different

hues will collimate at different angles around the major axis, allowing the lenticular array

to encode orientation by hue.

If a strong collinear light, for example a desk lamp, is the only light source illuminating

the lenticular array, the lenticules will focus the collinear light only onto specific locations

and hues on the back-plane texture. As a result, only the views that are in plane with
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the collimated light source will see a strong hue appearance. Other viewpoints may have a

different hue appearance due to lenticule imperfections and internal light scattering, but the

appearance will be very dark. In most environments, this isn’t a challenge, however when it

is, this problem is easily addressed with a diffuse back-light attached behind the back-plane

texture aiming towards the cylindrical side of the lenticular array. This solution would also

enable the use of lenticular arrays in dark scenes or at night. Because the solution requires

only simple engineering, we do not explore this problem or solution.

3.6.3 Back-plane Texture Fabrication Challenges

The process of creating a lenticular array that encodes orientation with hue involves a few

simple steps. First, the back-plane texture must be designed to match the geometry of a

particular lenticular array. Second, this back-plane texture is printed and attached to the

back of that blank lenticular array. However, because of the size of lenticules of lenticular

arrays, one of the largest challenges is ensuring that hues are precisely repeating under each

lenticule. This is a challenge that spans the design and printing of the back-plane texture to

the array.

The largest challenge in designing the back-plane texture is matching the printing resolution

of an image to the physical properties of the lenticular array. Consider the case of trying

to print 12 discrete hues under each lenticule that is 0.34 mm wide. If each hue was a

pixel, then the image of the back-plane texture would have to be printed at 896.47 dpi to

ensure that the same set of hues were under each lenticule. This resolution is a property

of the back-plane texture image, and may not match the native resolution of a printer. If

the resolution was rounded or the texture was re-sampled, it would not be guaranteed that
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each color is precisely repeated under each lenticule. As an example, if we were to round

the resolution to 897 dpi, this means that we fit 1
2

of a discrete color strip into the same

unit length (an inch). In the scale of the lenticular array, this means 1 extra strip of color

every ≈ 5 cm. For a ≈ 5 cm wide (along the minor axis) large lenticular array, this means

that a specific incident viewpoint angle will produce two hue appearances at the ends of the

lenticular array that differ by ≈ 8% of the hue wheel and the consequential gradual hue shift

in-between.

Even despite this challenge in matching resolution, the physical process of printing presents

other challenges in creating the intended back-plane texture. First, it is unclear what kind of

re-sampling or color manipulations a printer does before physically printing a given image.

Despite precise resolutions being indicated in an image file, printers may up-sample or down-

sample the back-plane texture image file to match the machine’s representation as a dot

matrix. Second, as paper is fed through the printer, it is unclear how precisely paper is

moved or held stationary. For a back-plane texture with 12 hues under a 0.34 mm lenticule,

this means that discrete color strips are ≈ 28 microns wide. Even a small error in the papers

intended position could introduce a shift in the order of hue strips and drastically alter the

appearance of the lenticular array.

The small size of lenticules presents challenges in fabricating a back-plane texture. In the case

of making small lenticular markers, these challenges are addressed by individually calibrating

each marker. For the case of using a large array, the tolerances required to print the back-

plane texture consistently across the whole array were beyond our ability to overcome and

beyond the ability of the professional printers at Pixalen Studio, so in Section 3.7 we derive

a way to solve for a calibration that varies over the size of the array.
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3.6.4 Hue Measurements

The final limitation in the lenticular array arises because the measurement is an RGB color.

The HRF defines a map from an angle to a color. We consider the inverse case where we

are trying to infer the orientation of a lenticular array given an RGB measurement. In that

case, we are mapping a color to an angle. This is an interesting mapping because 1) the set

of fully saturated hues (which comprise the back-plane texture) is smaller than the set of

RGB colors, and 2) the set of RGB colors in images is finite. Therefore, there is a limit on

the angular accuracy that is possible from the hue of the RGB measurement. We present a

theoretical exploration of these limits in Section 3.8.

3.7 Addressing an Inconsistent HRF

In the previous section, we introduced the challenge of creating a lenticular array that pro-

duces a consistent HRF across the entire lenticular array. In this section, we experimentally

document this shift in the HRF in our most professionally produced prototype. We then

offer an approach to a spatially varying calibration and experimental evaluation.

In this section, we demonstrate this challenge, introduce a simple remedy, and then test the

remedy’s performance to give a limit on angular precision of a lenticular array.

3.7.1 Inconsistent HRF Across the Lenticular Array

For a lenticular array created as described in Section 3.3, we found that the relationship

between hue appearance and orientation varied across the array. We demonstrate this in
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Figure 3.6: (Left) an image of the calibration object taken with a very long lens, observing
all parts of the calibration array with a nearly orthographic imaging geometry. The observed
color differences indicate the the hue for a given viewing direction is not consistent. (Right)
The observed hue measured at the two yellow circles as the calibration object is rotated,
showing a consistent bias.

Figure 3.6, which shows a picture of a lenticular array taken from 1 meter away with a

300mm zoom lens, giving a field of view in this picture of ≈ 1 degree. Given the lack of

perspective, one would expect the hue appearance at these two locations to be very similar.

However, one can visually see a different in the hue of the array at opposite sides, and when

measuring the HRF at these two locations by rotating the lenticular array, we see a consistent

shift. This is due to the challenges of manufacturing and printing the back-plane texture

introduced in Section 3.6.3. The observed color shift in Figure 3.6 is explained by a 0.1 mm

stretch over the width of the array (≈ 10cm).
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Figure 3.7: To take hue measurements for calibration and estimation, we employ the following
strategy: With the original image (left), we identify anchor points, shown as blue points, at
the corners of the lenticular array. These points are used to learn a homography (center)
where we then take local measurements evenly across the array, shown as green dots. (Right)
a simplified image of the hue recorded at each calibration point.

3.7.2 Multiple HRFs per Array

Because even professionally printed HRFs had manufacturing errors, we try a calibration

approach to correct for these errors. We explicitly calibrate the HRF at regular intervals in

the local reference frame of the arrays. Similar to the method above, the lenticular array is

placed on a controlled rotation mount and rotated through 1 degree increments. For each

calibration point, we record the angle at which that calibration point is viewed (which may

vary across the calibration grid because of perspective effects), and the measured hue for that

angle. The result of this is a HRF like those shown in Figure 3.6 for each of the calibration

points. With this process, we have measured and pre-calibrated a grid of HRFs across the

entire array. Although the HRF may be drastically different on opposite sides of the array,

in the local neighborhood, HRFs may be only slightly different.
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Because we create location specific HRF models, we need to know where in the array a

hue value is measured, both in the aclibration phase and when used for inference. For this

purpose, we use the corners of a rectangular lenticular array as anchor points, and for each

image compute a homography that maps the observed lenticular appearance to a canonical

coordinate system. The process is illustrated in Figure 3.7. This approach may be especially

sensitive to estimating the position of the corners of the calibration object. We evaluate this

by rotating the lenticular array around the vertical axis in one degree increments from −35

to 35 degrees. For each image, we follow these steps:

1. determine 4 anchor points of the lenticular array,

2. project the lenticular array into a canonical reference frame via a homography

3. sample the hue from the grid-points of the local reference frame image.

For each grid point we compute the angle at which the point was viewed to the angle predicted

by the measured hue. To estimate the effect of noise in estimating the lenticular array corners,

we perturb the anchor points by 8 pixels in random directions 20 times per image and follow

the above procedure. We show the scale of one such perturbation in Figure 3.8. Using

previously calibrated HRF look-up tables at each of the grid points, we estimate the angle θ

using hue measurements at the perturbed locations caused by the perturbed anchor points.

We compare this angle against the true viewpoint angle to determine the robustness of the

grid of HRFs.

Figure 3.9 shows results. The top shows a box and whisker plot showing the distributions of

errors in estimating the angle for each of the 100 grid points where the HRF was calculated.

The box in each column shows the 25th and 75th percentiles of the distribution. This
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experiment shows that modeling the HRF at each location of the lenticular array leads to

nearly all angular measurements being within 0.25 degrees of the true incident angle. The

lenticular array shows colors across the hue spectrum over a range of about 40◦, so 0.25◦ is

less than 1% of the range of angles that are viewed.

Figure 3.8: In Section 3.7.2, we explored how
the anchor point localization affected HRF
prediction accuracy. In that experiment, we
randomly moved the 4 anchor points (blue) of
a lenticular array by 8 pixels in a random di-
rection (green).

We also evaluate if the errors in estimating

angle from hue depend on the angle at which

the calibration object is observed. Figure 3.9

computes the distribution of errors across

the entire array for each image angle. Again

the error is consistently small, even though

these statistics are computed using anchor

points that are substantially perturbed.

3.8 Orientation Encoding

Limits

We choose to encode orientation with hue

because hue is invariant to illumination in-

tensity or camera exposure settings. How-

ever, the saturation and value of the appearance is not invariant. In this section, we explore

how the saturation and value of the lenticular array appearance affects the theoretical angular

measurement precision of predicting θ given a hue.
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Figure 3.9: To create location specific HRF functions that map measured hues to angular
constraints, we sample hues of a lenticular array at a local grid of points. The location of
these points depends on localizing the anchor points at the corners of the lenticular array.
We show the small prediction errors for 8 px permutations of these anchor points per HRF
(top) and per image (bottom).
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Figure 3.10: The space of hues with a constant saturation and value lies on a 2D curve in
RGB space. This curve follows a few corners of a regular cube. Above we show 2 views
of the same plot to show the shape of the this curve. As the amount of light reduces, or
the saturation and value of HSV measurements reduces, the measurable space in RGB gets
smaller as well.

At first pass, the measured precision may be limited by the number of encodable values of

an 8-bit RGB image. The HRF maps a continuous set of angles to a continuous set of hues.

However, the measurement of hues is limited to the discrete set of 8-bit numbers in the RGB

image. Therefore, the precision of angular measurement would be governed by the ability to

measure a change of color in RGB space. For example, if we tried to measure 30 degrees of

angular change with just the red channel, we could theoretically measure an angular change

of 30◦

28
≈ 0.12◦.

However, the set of RGB values does not map perfectly to the set of HSV values. And

perhaps more importantly, since we are printing hues on the back-plane in full saturation

and value, the set of appearances of the lenticular array (the hue wheel) does not map to

the whole RGB space. In fact, the set of RGB values corresponding to the hue wheel for
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Figure 3.11: As the amount of light in a scene decreases, so too does the space of possible
measurements of the color of a lenticular array. On the left, we show the number of unique
RGB measurements for an 8-bit camera as a function of the saturation and value. On the
right, we show how this translates to angular precision. An 8-bit camera has a maximum
theoretical precision of 0.05 degrees, but would more realistically be limited to 0.1 degrees
for moderately illuminated scenes.

a given saturation and value level lie on a 2D curve in RGB space. This curve represents

the set of RGB measurements a camera would take of a lenticular array at any orientation.

In Figure 3.10, we show two views of this RGB sub-space for various levels of saturation

and value. The 2D curve is the shape of a cycle along the sides of a cube aligned with

the RGB space axes. As the intensity (saturation and value) goes down, the set of RGB

values corresponding to the hue wheel gets visually smaller. Since RGB measured values are

discrete, this means that the number of measurable orientations is smaller as well.

The theoretical limit of angular precision afforded by the HRF is thus the number of uniquely

encodable discrete hue measurements in this RGB sub-space. On the left of Figure 3.11, we

show the number of unique 8-bit RGB triplets for each 2D curve, for each saturation and

value level. Each RGB triplet maps to one angle in the 76 degree range of the lenticular array.

So, in the best case of a linear HRF, we expect an angular precision of 76
# of discrete RGB triplets

.

On the right of Figure 3.11, we show this angular precision for each level of saturation and
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Figure 3.12: We repeated the experiment depicted in Figure 3.11, but for a camera that
can capture 12-bit RGB images. As the camera can now measure color with 16 times more
values, we achieve an order of magnitude more of uniquely measurable hues in RGB space
(left) and therefore an order of magnitude smaller angular precision.

value. In the best possible case with maximum saturation and value, an 8-bit RGB camera is

able to uniquely encode the angle of a lenticular array at a precision of 0.05 degrees. However,

at a saturation and value level of 0.3, the precision drops to 0.55 degrees. In practice, we

notice appearance measurements to have a saturation and value of around 0.7 or 0.8 of a

maximum of 1 and so would expect a theoretical max precision of ≈ 0.1 degrees.

A natural way to increase the angular precision achievable by a camera, then, can be to

move to a larger color representation. In Figure 3.12, we show the same experiment as

before, but for 12-bit measurements. With 16 times more possible values for a single color

channel versus an 8-bit camera, the number of unique RGB values for the color wheel and

the angular precision both improve by an order of magnitude.

As mentioned in Section 3.6.1, the final appearance of the lenticular array depends on the

printed color of the back-plane texture and the illuminating ambient light color. In the

theoretical results presented above, we do not disambiguate these two. We also assume

that there is no noise in the measurements, and we do not consider the potential to average
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neighboring measurements to reduce that noise. We do this in order to provide an upper

bound on the performance of the entire optical system that creates and images the chromo-

coding lenticular arrays.

3.9 Chromo-coded Light Field

In Section 3.5, we described the ideal case where all rays of one color from a lenticular array

lie in a parallel set of planes. Several examples of these planes that will result in different hue

appearances are shown in Figure 3.4. Because of the organized structure of the appearances

of the lenticular array, it can be useful to describe this hue/orientation relationship as a

lightfield.

A lightfield is a complete representation of the light in a scene that describes the amount of

light going through every direction and point in space. Typically the light field is represented

by a 4D function, which parameterizes all the rays of the light in a given space by where they

enter a 2D plane and pass through a second 2D plane. This enables the ability to represent

not only the origin of rays, but also their direction.

We can describe the lenticular array as an object that creates a structured lightfield, where

rays of the same orientation leaving the lenticular array and entering space have the same

hue appearance. We call this the chromo-coded lightfield and visualize in in Figure 3.13a.

The hue of a ray depends only on its orientation parameterized by the rotation around the

major axis. Therefore, the chromo-coded lightfield is heavily structured and is 1 dimensional,

not 4 dimensional. In effect, the chromo-coded lightfield is comprised of rays that enter 3D

space with hues according to the lenticular array’s HRF and specific major axis orientation.
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(a) (b)

Figure 3.13: a) Each lenticule projects the same color ray at the same angle of incidence
creating a chromo-coded lightfield. b) In this light field, a pin-hole camera would capture the
same image for any translation, but would capture different hues for different orientations
and a different variety of hues depending on the optical properties of the camera.

It is interesting to consider an infinitely large lenticular array and what type of images

a pinhole camera would capture while in a chromo-coded lightfield. We visualize this in

Figure 3.13b. The images of the chromo-coded light field captured by the camera have 3

interesting properties:

• The color of a ray for an observer of the chromo-coded lightfield only depends on the

ray’s angle incident to the lenticular array. Therefore, any translation of the camera

would result in the same image of the chromo-coded lightfield.

• A pinhole camera captures a set of rays radiating from its optical center. These rays

will have different angles incident to the lenticular array, and therefore, the camera

will capture an image that will be a gradient of colors.

• Depending on the focal length and thus the field of view of the camera, the rays will

vary more or less in their incidence angle and the resulting images will see more or less

varying hues.

47



These observations motivated our exploration of lenticular arrays as camera calibration ob-

jects in Chapter 5.

3.10 Conclusion

In this chapter, we presented how to create lenticular arrays that encode orientation with

hue. The lenticular arrays are cheap plastic sheets that can create different appearances for

different orientations because of simultaneous lensing of each lenticule onto a similar local

pattern. To be invariant to light intensity, we choose to create lenticular arrays with hue

appearances over other potential appearances. The long cylindrical shape of the lenticules

means that there is a 1-to-1 relationship, called the HRF, between the hue of the lenticular

array and a limited amount of rotation around the major axis. Because of the optical

properties of the lenticular array, the HRF has challenges with extreme light color or direct

illumination.

Due to manufacturing challenges, we saw that localizing a hue measurement on the lenticular

array is important to properly infer the true orientation angle. When our system is limited

by the ability to accurately find reference points to localize a hue measurement, we saw

orientation inference errors of ≈ 0.25 degrees. On the other hand, if our hue measurements

are perfectly localized and the limiting challenge is color representation in our optical system,

then the lenticular array will have orientation estimation errors of ≈ 0.1 degrees for a typical

image. As such, the chromo-coding lenticular array can give precise, 1D orientation cues

relating the orientation of a lenticular array relative to the camera.
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Chapter 4

Pose Estimation using Lenticular

Arrays

This chapter uses a single image of at least 2 small, chromo-coding lenticular arrays to

estimate the pose of an object. Because markers are small, we consider a single HRF per

marker and derive de-coupled constraints on object rotation to more quickly solve for pose

estimation of an object with 2 small lenticular arrays. We show that our lenticular arrays have

slightly better pose estimation performance than traditional fiducial markers over various

imaging conditions. In addition, by over-constraining the pose estimation problem with

many lenticular arrays, we can mitigate some lighting color challenges that were detailed in

the previous chapter.
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4.1 Camera Geometry and Camera Calibration

First, we introduce the camera geometry used in this and future chapters. We consider a

pinhole camera imaging an object. The object, at 3D location P , is projected onto an image

at 2D pixel location p according to a linear transformation matrix K:

p̂ = KP (4.1)

where p̂ is the homogeneous representation of p.

K is an upper triangular 3x3 transformation matrix that describes the geometric properties

of the camera, including the optics and the sensor construction:

K =


fx s u

0 fy v

0 0 1

 (4.2)

where fx and fy are scaling factors that describe the focal length of the camera along 2

axes, s is the skewness and describes how rectilinear pixels on the imaging sensor are, and

u and v are the x and y coordinates of the center of the optical axis in the image. For more

general situations, having all the free parameters in K is useful. However, because of the

high quality of modern manufacturing of optics and image sensors, it is common to simplify

K to:

K =


f 0 u0

0 f v0

0 0 1

 (4.3)
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where f represents a single focal length; pixels are square and so s = 0; and the optical

center is designed to be in the center of the image and so u0 and v0 are the known center of

the image. Therefore, the only unknown parameter in K is f .

In the reprojective geometry of Equation 4.1, the 3D point P is measured relative to the the

same reference frame as the camera. However, often P is not known relative to the camera,

but rather relative to some different, local coordinate system. The 2 coordinate systems

are related via a 3D space rotation, R, and translation T . We can extend the projective

geometry to describe how a point in a different reference frame projects into an image:

p̂ = K (RP + T ) (4.4)

where P is now in a local reference frame, for example on a 2D plane in 3D space in front of

the camera. Typically, P is known from manufacturing or manual measurement.

In the above equation, there is often a distinction made between the intrinsic parameters

of the camera, K, and the extrinsic parameters, R and T . The relationship between a

world point P and its image p is fully defined with K,R, and T . Camera calibration aims

to estimate the K matrix, but often also estimates R, and T as a side-effect. When K is

known, the problem of solving for R and T is the pose estimation problem.

4.2 The Lenticular Constraint

In Chapter 3, we described how lenticular arrays can encode relative orientation by hue.

The image of the lenticular array may have a different hue depending on a ray angle incident

to the lenticular array. Consider the lenticular array in Figure 4.1. If the chromo-coding
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Figure 4.1: The Lenticular Constraint relates the color of the lenticular array to the orien-
tation of the camera. In this constraint, a ray viewing the lenticular array must be perpen-
dicular to the plane ~nhue that corresponds to the observed hue. In this case, ray r is red,
and so it must lie on the corresponding ~nhue.

lenticular array appears red, for example, the incident ray projecting from the camera must

lie on the plane perpendicular to ~nhue. ~nhue can be calculated as the cross product of any

example ray of that hue and the major axis orientation, ~o.

We will now formalize this geometric relationship. Using the standard geometric framework,

we assume the origin of the camera coordinate system is centered on the camera, and the

camera intrinsic properties are known and represented by a camera calibration matrix K.

Then, if a pixel p is represented in homogeneous coordinates, it views an object that appears

along a ray in space ~r that is defined as:

~r = K−1p̂ (4.5)

Therefore, if a pixel is imaging a lenticular array at pixel location p, then the lenticular array

must lie along the ray ~r.
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A characteristic constraint on the rotation of a lenticular array comes from the apparent color

of the lenticular array. We call this constraint, the lenticular constraint. In this constraint,

the ray ~r from the camera that observes that lenticular array must lie in the plane ~nhue

defined by the hue that the camera observes, and therefore ~r must be perpendicular to ~nhue.

In the coordinate system of the object, ~nhue is defined by the 2 vectors that span it: ~o×~vhue.

In practice, ~vhue is determined via the Hue Response Function, where a vector in the direction

of the lenticular array’s surface normal is rotated by θ degrees (inferred by hue) around ~o.

This constraint can be used for pose estimation. It gives the constraint that the ray from

the camera must be perpendicular to ~nhue, once ~nhue is rotated into the camera coordinate

system by R. So the lenticular constraint on the rotation is that the viewing direction and

the hue surface normal are perpendicular:

R(~o× ~vhue) ·K−1p = 0

R~nhue · ~r = 0 (4.6)

This equation constrains the relative rotation between the lenticular array and the camera,

using the relative position and observed hue of a lenticular array. The lenticular constraint

is interesting for several reasons:

1. It is a simple mathematical relationship.

2. It does not require identifying a precise point-correspondence.

3. It is only dependent on the relative orientation R, not the relative position T , de-

coupling and simplifying the optimization.
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The lenticular constraint is a foundation for this chapter where it is used as a rotation

constraints for pose estimation.

4.3 Chromo-coded Markers and Pose Estimation

To support pose estimation, we create fiducial markers composed of small lenticular arrays,

called chromo-coded markers. Information about the pose of an object comes from both the

position and the hue of the observed chromo-coded markers. Many configurations of chromo-

coded markers are possible and interesting, but we first derive the constraints for 2 markers

attached to the same plane. Because the hue of a marker changes primarily due to rotations

around the major axis of the lenticular array, we orient the major axes of our chromo-coded

markers to be perpendicular to each other so that they provide complementary information

about the surface normal. This ensures that any change in orientation will produce a change

in appearance of the chromo-coded markers. The derivations of pose constraints for other

configurations of chromo-coded markers is similar, the only requirement being that at least

2 chromo-coded markers have major axes that are non-parallel.

Figure 4.2 shows an example of a skinny planar object with one chromo-coded marker at

location C1, and a coplanar chromo-coded marker at location C2 which is oriented orthog-

onally. A pinhole camera (on the right) observes an object (on the left), which contains 2

chromo-coded markers.

For simplicity, we assume that the coordinate system of the object is centered at point C1

so that, in the coordinate system of the object, the first chromo-coded marker has position

(0,0,0). We assume the second chromo-coded marker is a distance d away in the direction of
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Figure 4.2: A pinhole camera (right) sees an image of an example flat object (left), which has
2 chromo-coded markers. The pose estimation problem asks to solve for the R, T describing
the rotation and translation mapping the coordinate system of the camera to the coordinate
system of the object.

the x-axis of the object so C2 has object coordinates (d,0,0). These chromo-coded markers

are not just points, they also have an orientation, and this orientation affects the apparent

color of the patch. In Figure 4.2, the patch at C1 has its major axis along the x-axis of the

object and the patch at C2 is oriented along the y-axis of the object.

The pose estimation problem is to solve for the rotation matrix R and translation vector T

mapping a point in the object coordinate system to a point in the camera coordinate system.

In our case, the chromo-coded marker at C1 in the object coordinate system will move to

RC1 + T , and the marker at C2 will move to RC2 + T .

For pose estimation with chromo-coded markers, the question is to solve for the R, T that

is consistent with p1 being the image of RC1 + T and p2 as the image of RC2 + T , and both

p1 and p2 have the correct hue for the angle at which they are being viewed.

We consider the specific pose estimation problem illustrated above. We show the necessary

constraints from 2 chromo-coded markers for pose estimation and explain how to optimize
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for R and T . Using the standard geometric framework introduced in Section 4.1, if we see

chromo-coded markers at locations p1 and p2, then the fiducial markers must lie along rays

~r1 = K−1p̂1 and ~r2 = K−1p̂2. Since we assume that K is known, the remainder of this

derivation is based on ~r1 and ~r2.

4.3.1 Rotational Constraints

The first constraint on R is the lenticular constraint of the first chromo-coded marker which

comes from the marker’s apparent color. Using the hue of this marker and its pre-calibrated

HRF, we can determine the direction ~vhue1 . The orientation of the marker ~o is known, and

since it is along the x axis, we denote it by ~x. Therefore, the lenticular constraint indicates

that:

R(~x× ~vhue1) · ~r1 = 0

R~nhue1 · ~r1 = 0 (4.7)

A similar constraint applies when the camera observes the second chromo-coded marker,

except that the viewing direction is r2, the marker is aligned along the y-axis of the object,

and the observed hue and HRF may be different. This leads to a second lenticular constraint:

R(~y × ~vhue2) · ~r2 = 0

R~nhue2 · ~r1 = 0 (4.8)

A third constraint relies solely on the locations of the observed chromo-coded markers.

Specifically, three rays are co-planar: the direction from the camera to the first marker ~r1,
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Figure 4.3: The 3rd and final rotation constraint says that the displacement between the
two chromo-coded markers, must be perpendicular to the plane created by the directions of
the markers in the reference frame of the camera. The left shows the relative directions of
vectors used as they pertain to the image scene and the right visualizes the simplified math
of the constraint.

the direction from the camera to the second marker ~r2, and the displacement vector between

the first and second patch (RC2 + T )− (RC1 + T ) = R(C2 −C1). This leads to a geometric

constraint on rotation:

R(C2 − C1) · (~r1 × ~r2) = 0, (4.9)

If the coordinate system of the object is such that C1 is the origin, this simplifies to:

(RC2) · (~r1 × ~r2) = 0, (4.10)

We visualize this constraint in Figure 4.3.

Thus, 2 chromo-coded markers provide three constraints on the rotation matrix R that are

independent of the estimation of the translation vector T .
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4.3.2 Translational Constraints

Once the rotation is known, we can derive three linear constraints on the translation. The

first constraint is that the translation must be consistent with the observed location of the

first chromo-coded marker. Since any point C in the object coordinate system is mapped

to a location RC + T , the ray ~r viewing that point must be parallel to the vector from the

origin to RC + T . Because we define the first chromo-coded marker at location C1 to have

object coordinates (0,0,0), RC1 + T simplifies to just T , and we can use the fact that the

cross-product of 2 parallel vectors is zero to express the constraint as:

T × ~r1 = ~0. (4.11)

The final constraint needed to estimate the translation is similar to 4.11, but uses the pro-

jection of the second chromo-coded marker:

(
RC2 + T )× ~r2 = ~0 (4.12)

These 2 constraints on the translation are both vector equations. With the 3 rotation

constraints, collectively these 5 constraints let us solve the pose estimation problem visualized

in Figure 4.2.

4.3.3 Optimization

There are several possibilities to solve for R and T using this set of constraints. In our

experiments we first obtained the rotation matrix on its own by optimizing a non-linear

error function over the Rodrigues vectors ~ρ that define a rotation matrix Rρ. The error
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function is the sum of the squared arithmetic error for Equations 4.7, 4.8, and 4.10. We use

fminunc in matlab and initialize with a rotation that has the lenticular arrays facing the

camera.

After we have the rotation matrix R, equations 4.11 and 4.12 define a linear system of

equations for T . Both error functions return solutions with zero error because they are

optimizing a minimal set of constraints, as we are measuring 6 numbers (2 coordinates and 1

hue for each of the 2 markers) to solve the 6 DOF pose estimation problem. We can extend

this optimization routine for n ≥ 2 chromo-coded markers to improve pose estimation results

and add robustness to varying ambient light conditions.

4.4 Pose Estimation from n ≥ 2 Chromo-coded Mark-

ers

Our pose estimation method minimally constrains the 6 degrees of freedom of the pose esti-

mation problem with the 2 hue and 4 position measurements from 2 chromo-coded markers.

In this section, we now build on our algorithm to use more than 2 chromo-coded markers

to over-constrain the pose estimation problem and improve estimation results. First, we

generalize the existing rotation and translation constraints to optimize with n ≥ 2 markers.

Second, we formulate a second optimization that minimizes the hue and position reprojection

error of the chromo-coded markers to improve initial pose estimations. In the framework of

this reprojection optimization, we later introduce 2 additional color scaling variables to add

robustness of our method to different lighting environments.
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4.4.1 Generalized Pose Optimization

A common approach to improve fiducial marker pose estimation results is to increase the

number of fiducial markers and optimize the over-constrained system of equations. As an

example, only 4 corners of a square are needed to solve for pose, however, optimizing over

many corners of a checkerboard drastically improves pose estimation accuracy.

Inspired by this, we show how to optimize over the arithmetic constraints presented in

Section 4.3 for n ≥ 2 chromo-coded markers. We generalize these constraints so that each

ith marker has:

• a position Ci in the local reference frame

• an orientation ~oi in the local reference frame

• a hue direction ~vihue in the local reference frame

• an observed direction ~ri from the camera reference frame

In the generalized form, each marker has 2 constraints on rotation, 1 using hue and 1 us-

ing the relative position to an origin marker, and 1 constraint per marker on translation.

The rotation constraints do not depend on translation, so, similar to with 2 chromo-coded

markers, we can first optimize for the rotation over all markers with the following objective

function:

argmin
ρ

n∑
i

((
Rρ(~oi × ~vihue) · ~ri

)2
+
(
Rρ(Ci − Ci−1) · (~ri−1 × ~ri)

)2)
(4.13)
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where ρ is the rodrigues parameterization for rotation and Rρ is the 3x3 rotation matrix

corresponding to ρ. Then, we can optimize for the translation:

argmin
T

n∑
i

(
(RρCi + T )× ~ri

)2
(4.14)

The objective functions presented above use the arithmetic result of dot and vector products

as the error terms. Therefore, we refer to using these objective functions in optimization as

arithmetic optimization.

4.4.2 Reprojection Refinement

After using the arithmetic error to optimize for n ≥ 2 chromo-coded markers, we could

optimize over the reprojection error of all markers to refine pose estimation. This type of re-

projective refinement is common among traditional fiducial markers, especially the checker-

board. However, while traditional markers only minimize the reprojective error of their

point-correspondences, we also minimize the reprojective error of hue. Here we show the

objective function to simultaneously optimize for R and T over the reprojection error of hue

appearance and image position:

argmin
ρ,T

n∑
i

((
hi(ρ, T, Pi)− huei

)2
+ κ‖g(ρ, T, Pi)− pi‖22

)
(4.15)

where g(ρ, T, Pi) projects the position of the ith marker into the image according to the

translation and rotation parameters T and ρ and the marker local reference frame position
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Pi. hi(ρ, T, Pi) projects a hue according to the pre-calibrated HRF given for the ith chromo-

coded maker at the projected image location g(ρ, T, Pi) and according to the rotation ρ. The

normalizing value κ is found empirically to balance the hue and position reprojection costs.

4.4.3 Color Calibration

As discussed in Section 3.6.1, the appearance of chromo-coded markers can be affected by

environmental lighting factors. Ambient light color may affect the hue appearance of the

chromo-coded marker at any orientation, while glare may only change the hue appearance for

certain orientations. As a result, the pre-calibrated hue/viewpoint relationship of the HRF

which encodes ~nhue may not represent the observed images and orientations in a different

lighting environment. The extra information given by n > 2 chromo-coded markers, however,

makes it possible to correct for these uncalibrated lighting environments.

Inspired by white balancing methods, we therefore introduce 2 extra color scaling variables

to the objective function of Equation 4.15. These 2 variables, sr and sb, scale the red and

blue channels of the RGB measurement of chromo-coded markers to better fit the model

of how chromo-coded markers appear given a relative orientation. The purpose of sr and

sb is to color correct chromo-coded marker observations to fit the pre-calibrated HRF of

a different lighting environment. The optimization in Equation 4.15 can thus be updated

to include the 2 new color correcting variables by scaling the observed RGB color of each

chromo-coded marker:

argmin
ρ,T,sr,sb

n∑
i

((
hi(ρ, T, Pi)− hue(M ∗ rgbi)

)2
+ κ‖g(ρ, T, Pi)− pi‖22

)
(4.16)
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Here, rgbi is the vector representation of the RGB color measurement of a chromo-coded

marker,

M =


sr 0 0

0 1 0

0 0 sb


and hue(..) is a function that coverts an RGB measurement to HSV space and returns only

the hue.

Minimizing this objective function simultaneously solves for the R,T and color correction

consistent with all markers in the scene.

4.5 Experimental Results

In this section, we experiment with our chromo-coded markers and their ability to estimate

pose. First, we test the minimally constrained situation of using 2 chromo-coded markers

against the traditional fiducial marker methods. We notice that blurring deteriorates the pose

estimation performance for the traditional methods more than ours, so we then experiment

to determine the extend of noises effect in simulation. Next, we experiment with using

more than 2 chromo-coded markers to explore the performance in over-constrained systems.

Finally, we test the secondary reprojection optimization to see how much it improves pose

estimation results with and without the additional color calibration.
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4.5.1 Pose Estimation from 2 Chromo-coded Markers

In this subsection, we first compare end-to-end performance of a pose estimation procedure,

comparing traditional fiducial markers (4 small points at a known location on the object) and

our new chromo-coded markers. We build a physical prototype of the chromo-coded marker

to estimate the pose of an object throughout a video. For the experiment, we compare

accuracy for an object that is long and skinny.

We track a small pair of tweezers by placing chromo-coded markers 55mm apart. These

chromo-coded markers are made from the lenticular arrays discussed in Chapter 3. Each

fiducial marker is a 4mm square, comprising about 12 lenticules. For comparison, there

are also 4 small fiducial markers in a rectangular pattern that are also 55mm apart in one

direction, and 4 mm apart in the orthogonal direction. We determine the pose of these corner

markers following the ARToolkit algorithm [28]. To estimate the pose of the object using the

2 chromo-coded markers, we use the arithmetic optimizations detailed in Section 4.3. The

tweezers are mounted to a large checkerboard so that we can use a standard toolbox [7], to

give ground truth pose estimates per frame. Figure 4.4a shows this setup in a frame of the

experimental video.

We calibrate our chromo-coded markers and compute the HRF — and the inverse HRF that

maps a measured hue to a θ rotated around the major axis of a chromo-coded marker —

through a lookup-table from the experimental measurements in a calibration video using the

same setup. For each frame, we hand label the location of the chromo-coded marker and

corners. All frames that had substantial motion blur were discarded because fiducial dots

were difficult to label. For the chromo-coded marker, we click each corner of the small array,

and use the centroid as its location. The color of the entire area of the small chromo-coded
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(a) (b) (c)

Figure 4.4: We compared chromo-coded markers with the state of the art corner method on
a video (of which an example frame is shown in a). For the length of the video, the pose
estimation using chromo-coded markers produces a better normal direction estimation (b)
and position estimation (c) median with a much more compact distribution. Each box in b)
contains the median value in text.

marker is averaged to get the hue of each marker. To get a sub-pixel accuracy estimate for

the standard fiducial dots, we fit a Gaussian distribution over the small dot and use the

mean as the dot location.

Figure 4.4 shows the pose estimation results for the rotation error, defined as the angular

difference between the ground truth and estimated Z-axes, and translation error, defined

as the Euclidean distance of true position and estimated position. We show the results as

boxplots. The top and bottom blue lines of the box indicate 1st and 3rd quartiles, while the

red line in the center of the box indicates the median. For Figure 4.4b, the median error

is written in each fiducial marker box. The median rotation (Figures 4.4b) and translation

(Figures 4.4c) errors of pose estimation using the chromo-coded markers are less than that

of the state of the art corner method. In addition, the distribution of errors is much tighter

and indicates a more stable pose estimation. We hypothesize that this is due to the fact that

our system is more robust to fiducial marker position noise. In the next section, we test this

hypothesis in a simulated environment.
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4.5.2 Pose Estimation with Noise

To test the impact of noise on pose estimation using chromo-coded markers, we simulated

the physical implementation of the skinny forceps in the previous Section. We randomly

generate locations for the simulated object by defining translations uniformly distributed in

a box between 0.5 and 2 meters in front of the camera. Rotations are generated randomly

with the constraint that the angle between the surface normal of the object and the z-axis

of the camera is less than 35 degrees.

For each object location we project the locations of the standard fiducial markers and our

chromo-coded markers to get image positions of simulated markers. To simulate the color

of the chromo-coded marker, we assumed that the printing process created no artifacts and

implemented a simple ray tracer to model the optical effects at each lenticule (including the

failure of the elliptical lenticular lens to perfectly focus parallel rays) in order to compute

the hue.

With this setup, we model noise to hue measurements by adding noise in the range [−0.01, 0.01]

to capture un-modeled effects that might come from, for example, glare off the chromo-coded

marker. We model location error as a 2D Gaussian whose standard deviation is a multiple

of 0.1 pixels. Figure 4.5 shows the relative error in pose estimation as this noise increases.

Rotation and translation errors are defined as in the previous section. Pose was estimated

using the optimization detailed in Section 4.3.

Figure 4.5a show the rotation results for different noise levels. At zero added noise, the

standard approach based on tracking corners is perfect (because there is no error in the

simulated point locations) while our system has hue noise. However, for all but the smallest
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(a) (b)

Figure 4.5: By using chromo-coded markers instead of the typical 4 corner markers, we
improve rotation (a) and translation (b) estimations. In both figures, we increase the amount
of noise simulated along the x-axis, and show the errors by their median value for each
simulation surrounded by the 1st and 3rd quantiles.

noise levels, the chromo-coded marker has lower median error and more consistent error mag-

nitudes for both translation and rotation. For translation estimates, shown in Figure 4.5b,

the median error is comparable among both methods. However, the distribution of errors is

starkly larger using the traditional fiducial marker approach. This is likely due to the sensi-

tivity to fronto-parallel views the traditional point-correspondence methods have; any noise

introduced in the point locations on the images will result in very large errors in rotation

and translation estimations.

4.5.3 Pose Estimation from n ≥ 2 Chromo-coded Markers

While 2 chromo-coded markers are sufficient to determine pose, in this subsection we explore

using more than 2 chromo-coded markers to over-constrain the pose estimation problem.
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For this and subsequent experiments, we create an object shown in Figure 4.6. Four coplanar

markers are arranged in a rectangle, oriented so diagonal pairs have the same orientation,

but orthogonal to the other diagonal. We surround the chromo-coded markers with a radial

hue pattern inspired by [50] to facilitate automated identification. We use concentric hues as

a cue to refine centroid positioning of each chromo-coded marker. On the same plane as the

markers, we include a checkerboard. Video was taken by orbiting and rotating the camera

around the markers at about 50cm away. Using the camera calibration toolbox in Matlab

2014a [39], the checkerboard serves to ground truth the pose of the chromo-coded markers.

As before, we use this ground truth to also calibrate the HRF for each chromo-coded marker

with a calibration video.

Figure 4.6: With a setup that mounts 4
chromo-coded markers on the same plane as
a checkerboard, we can ground truth experi-
ments that explore pose estimation results for
more than 2 markers and color calibration rou-
tines.

In this experiment, we estimate the pose

of frames from a video 3 times, each iter-

ation adding the information from one addi-

tional chromo-coded marker. We estimate

pose using the arithmetic optimization of

Section 4.4.1. We estimate pose for the same

video frames used to calibrate each marker’s

HRF in order to avoid any deleterious effects

from different light environments. The video

has 700 frames and captures the minimum

and maximum relative orientations possible

for the chromo-coded markers. As before

with the physical prototype with 2 chromo-

coded markers, we show the summary rotation and translation errors as boxplots.
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(a) (b)

Figure 4.7: Although 2 chromo-coded markers are sufficient to constrain the pose estimation
problem, using more chromo-coded markers improves rotation performance. Here we show
the performance effects of increasing the number of chromo-coded markers in a) rotation
estimation and b) translation estimation.

Figure 4.7 shows pose estimation results. For both the rotation and translation results,

we group by trials using 2, 3, and 4 markers. Figure 4.7a shows the angular error of the

individual local axes of the plane. For example, X2 indicates the error of the x-axis estimation

when using 2 markers. Results show that additional chromo-coded markers reduces rotation

error for each axis. The accuracy for the z-axis or the surface normal is especially improved.

In addition, the inlier extremes and quantiles tend to become tighter, indicating a higher

precision in pose estimations. The improvement in performance is due to the extra angular

and positional information gained from adding markers across the plane.

Figure 4.7b shows the error in the translation estimates. We see slight gains in having 4

markers versus 2 or 3. The translation performance is already under 2 mm of error, so there

is little room for improvement.
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(a) (b) (c) (d)

Figure 4.8: From left to right, we show sample frames from the calibration, sunny, shade,
and office videos used to test robustness of pose estimation to different lighting conditions
in Section 4.5.4.

4.5.4 Reprojection and Color Calibration Refinement

Next, we experiment with pose estimation in various lighting conditions. We use 3 videos,

each containing around 300 frames, taken in lighting conditions different from the calibration

video used to determine the HRF. The calibration video was taken under fluorescent lights

away from any window. Two test videos were taken outside: one in full direct sun (sunny)

and one on a completely cloudy day (cloudy). The third video (office) was taken indoors

without lights turned on, but next to a window. We show a frame from each video in

Figure 4.8 and compare it to the video used in calibration. The indoor videos have similar

lighting, but the outdoor scenes in full sun and full shade have a noticeable blue tint. We

compare the pose estimation results using 4 chromo-coded markers 3 times:

• using the arithmetic optimization of Section 4.4.1,
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(a) (b)

Figure 4.9: Optimizing for reprojection error and color calibration variables mitigates the
negative effects of a lighting environment very different from calibration, such as full sun
shown here. The a) rotation error reduces for each axis and b) the translation error reduces
with the reprojection color calibration routine.

• initializing from this pose estimation and doing the reprojection optimization of Equa-

tion 4.15,

• and using the extended reprojection optimization that solves for 2 additional color

scaling variables shown in Equation 4.16.

To start, we show results for the test data in full sun, shown in Figure 4.9. Similar to

before, we show the rotation and translation error grouped by each local axes and vary

the optimization method. As examples, X4, XR, and XC label the rotation error for the

arithmetic optimization, the reprojection optimization, and the color calibration optimiza-

tion for the x-axis, respectively. In Figure 4.9a we analyze the rotation error. We can see

that for each axis, reprojection substantially improves precision and accuracy; the median

error reduces, and the distribution of errors also gets narrower. However, by adding color

calibration, we ameliorate the effect of the varied lighting: rotation estimation error drops
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(a) (b)

Figure 4.10: Despite these varying lighting conditions, reprojection optimization with color
calibration produces results with very high accuracy and precision in a) surface normal
estimation and b) translation estimation. Sunny, Office, and Cloudy datasets are denoted
by S, O, and C respectively and 4, P, and C correspond to the three optimization routines
discussed in Section 4.4.

down to about 1-1.5 degrees of median error, with most errors being less than 2 degrees. The

same improvements can be seen in translation estimation results shown in Figure 4.9b. Us-

ing reprojection refinement improves translation precision and accuracy substantially, with

additional (smaller) improvements by color calibrating as well. The median translation error

for color calibration is 1.6 mm versus 1.9 mm with only reprojection optimization.

Figure 4.10 shows pose estimation results for the cloudy and office videos as well. Because

the results are representative of other axes, we only present the z-axis error for rotation

results. We denote the different datasets by S for sunny, O for Office, and C for Cloudy and

the 3 optimization methods as 4,R, and C. For both rotation and translation results across all

datasets, we see an improvement over arithmetic optimization with reprojection refinement,

where the highest accuracy and precision is achieved by optimizing for additional color scaling

variables. Across a variety of light environments using our color calibration optimization,
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we see the median rotation error is around 2 degrees of error and median translation error

less than 3 mm.

4.6 Applications

Pose estimation can enable a variety of computer vision applications including object track-

ing, robotics, metrology, or augmented reality. In this section, we show 2 applications of

using chromo-coded markers to estimate pose for frames in a video: tracking hand writing

and augmented reality.

4.6.1 Recording Hand Writing

Because of the advantages of chromo-code markers, we can accuractly measure the pose of

small hand tools like a marker pen. In addition, we can place the chromo-coded markers on

the end of a marker pen, so that the natural hand position is not compromised and so that

the markers can be seen by a camera from an unburdensome position.

As a potential use case, we imagine a user wearing a head-mounted display such as Google

Glass or Oculus Rift writing in real time. Cameras on these systems would be blocked from

seeing what is written by a writer’s hand, but would be able to see the end of the pen. The

head-mounted display could track writing, decipher the images to text, and perhaps offer

grammar correction or spelling checks in real-time.

In Figure 4.11, we show how the chromo-coded markers could enable this use case. A point of

view camera records a user writing with a marker pen labeled with 2 chromo-coded markers.
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(a) (b)

Figure 4.11: a) We show an application of chromo-coded markers, where we can track hand
writing in a video. b) For each frame we can estimate the pose of the end of the marker, and
with knowledge of the length of the marker, we can track what is being written. Results of
the hand writing tracking is readable and matches the input video.

Figure 4.11a shows an example frame, where the hand has blocked some writing, but the

colorful chromo-coded markers are visible at the end of the pen. At each frame, the pose of

the end of the pen is determined, and with knowledge of the length of the pen, the position

of the writing point of the pen is understood. By tracking the locations of the writing end

of the pen, an algorithm can rebuild what is being written.

The rest of Figure 4.11 shows the pose of the pen for all frames. In Figure 4.11b, we see

the position of the end of the pen in blue, the pen as a black line, and the position of the

writing end of the pen in red. A video with frame by frame results is available on YouTube

from the linked text. The writing is indecipherable by looking at just the position of the

end of the pen in blue. However, because of accurate and precise rotation estimations, the

writing end of the pen can be inferred to reveal what was written in the video. Even by

just visualizing the individual positions of the pen’s writing end for each frame, without
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smoothing or motion, it is clear that “CVPR 2016” was written. Determining the position

of the writing end is difficult because it relies on a strong rotation estimation at the end of

the pen; small rotation errors are exacerbated by the long length of the pen.

4.6.2 Augmented Reality

Because they give an orientation constraint as well as a position constraint, chromo-coded

markers provide a higher density of geometric constraints. Even using a few small markers

provides better constraints than a large checkerboard. As a result, the chromo-coded markers

can give more reliable orientation estimations than traditional fiducial markers, even for

fronto-parallel views. These 2 properties are important for any Augmented Reality (AR)

application.

AR can be useful for recreation, work, or educational purposes. Here we show an example,

where a user would like to see 3D models of objects as if they were actually in front of

them, resting on a desk, through a digital window provided by a cell phone or tablet. The

tablet or cell phone could capture images of the desk which is labeled with 4 chromo-coded

markers. For each frame, the pose of the desk plane is estimated. Then, a 3D model of the

Eiffel Tower or a moving creature is rendered over the input frame using projective geometry.

This rendered frame is output via the cellphone or tablet display screen in real-time. As a

result, these 3D models seem to be on the desk in front of a user. A user can tilt and move

the cellphone or table while viewing the desk through the screen in order to see different

sides of the Eiffel Tower or moving creature.

We show output frames of the display in this hypothetical interaction in Figure 4.12, where

the original scene, with 4 chromo-coded markers, is seen with the additional 3D model. The
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(a) Eiffel Tower (b) Creature

Figure 4.12: With the chromo-coded markers, we can understand the relative pose of the
plane in view for every frame in the video. Therefore, we can position a 3D model on the
plane and render it as if it was actually in the scene imaged by the camera. As examples,
we render a model of the Eiffel Tower (left) and a moving 3D monster (right) into the scene
captured by the camera.
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full AR videos of the eiffel tower and the running monster can be found on YouTube from

the linked text. This AR application enables a natural and intuitive way to investigate a 3D

model.

4.7 Conclusion

In this chapter, we have introduced how to use small chromo-coding lenticular arrays for pose

estimation. We derived the lenticular constraint that relates the rotation of the lenticular

array relative to the camera. This orientation cue is the core rotation constraint for pose

estimation and is less sensitive to noise than point-correspondence constraints. As a result,

our method results in better pose estimates than the traditional point-correspondence based

approaches. When we use more than 2 markers, we can solve for 2 additional white balancing

parameters, improving initial pose estimates in the case of lighting variation. In the end, our

marker can achieve less than 2 degrees of orientation error and less than 1% position error

across a variety of lighting environments.

Chromo-coded markers have two advantages over traditional point-correspondence based

markers. First, our markers can continue to give consistent rotation constraints on the

orientation of an object. Whereas traditional fiducial markers give unpredictable orientation

estimations for fronto-parallel views, our markers can give precise orientation cues because

the hue to angle relationship of the HRF is 1-to-1 for a large range of orientations. This

is useful for most pose estimation applications where a camera tries to determine pose of

an object that is fronto-parallel, for example, a robot estimating its position in a room.

Second, our chromo-coded markers give consistent constraints even when the markers are

relatively close to each other in an image. Traditional point-correspondence markers, such
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as the ARTag [14], have the strongest constraints when the distance between points in an

image is large. In this case, even small changes in pose will result in significant changes in

the pixel locations of the points. In contrast, chromo-coded markers give reliable rotation

constraints no matter the relative proximity or size in an image because the markers directly

constrain rotation from the hue appearance. This has two corollaries: 1) our method thus

gives more reliable orientation estimation when the object is far from the camera, and 2) our

method can be deployed in use cases where the marker configuration is limited because of an

object’s shape, movement, or usability, for example hand tools. These two advantages make

our chromo-coded markers a reliable alternative to other traditional point-correspondence

based fiducial markers.
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Chapter 5

Camera Calibration with Lenticular

Arrays

Chromo-coding lenticular arrays offer substantial advantages for single image camera cali-

bration. In Figure 5.1, we show how a chromo-coded lightfield created by a large lenticular

array might look in images taken by a pinhole camera at two different focal lengths. For a

camera with a long focal length (left), the incident angle of rays viewing the lightfield are

almost parallel, so an image would have similar hues across its width and height. However,

for a camera with a short focal length (right), the opposite is true: rays radiating out of

the camera along the width or height will have different incident angles to the lightfield and

therefore the image will be a gradient of many different hues.

This chapter explores making a larger lenticular array and deriving constraints on camera

calibration from a single image. One interesting feature of this approach is that every pixel

that views the calibration object measures a hue, so every pixel adds new constraints –

offering thousands of measurements rather than just a few per image.
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Figure 5.1: Consider a camera viewing a chromo-coded lightfield. At the scale of the whole
lenticular array, this means that the perspective of a camera with a narrow field of view will
only see a few hues (left), while a camera with a wider field of view will see many different
hues (right).

5.1 Chromo-coded Calibration Object

We use the same chromo-coding lenticular arrays introduced and used in Chapter 3 to

create chromo-coded markers, but now make an object with three lenticular arrays mounted

perpendicular to each other on a plane. The 2 flanking arrays have the same orientation,

but orthogonal to the middle array. These arrays are orthogonal so that any rotation of

the calibration object creates a change; when the object is oriented as shown on the left of

Figure 5.2, rotation around the horizontal axis causes the central part to change color, while

rotating around the vertical axis causes the two edge arrays to change color. Small black

strips are added to make it easier to distinguish the 3 arrays when they are oriented so that

their colors are similar.

Figure 5.2 visually validates the predictions on views of the chromo-coded lightfield produced

by a lenticular array for different focal lengths. For an image captured with a 300mm focal

length lens (left), the lenticular array looks to have the same hue appearance across the
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Figure 5.2: A calibration object made from 3 lenticular arrays. Each lenticular array has
an observed color that changes depending on its viewing angle. (Left) When viewed from
reasonably far away, the arrays have relatively consistent colors because they are being
viewed from approximately the same angle. (Right) A wide angle view from much closer
has significant color variation because the direction from the camera to different parts of the
object varies substantially. This paper uses this color variation to derive strong geometric
constraints for simultaneous, single-image pose estimation and camera calibration.

lenticular arrays. However, for an image captured at a 4.1mm focal length (right), the

lenticular array changes hue drastically across the array. These two different appearances

are due to largely different incident rays viewing the lenticular arrays. Therefore, the chromo-

coded calibration object will be able to give cues about focal length from the difference in

appearance across the large lenticular arrays.

5.2 Camera Calibration

In this section, we show how to use an image of the calibration object for camera calibration.

We seek to estimate the camera intrinsic properties, K, and extrinsic properties, R and T ,

that relate an object’s location relative to the camera to its projected location in an image.

We do this by deriving many lenticular constraints from the hues sampled along a grid across
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each lenticular array that comprises the calibration object. We optimize for the R and K

using these cues, and then add point-correspondences from the corners of the lenticular

arrays to estimate T . Similar to pose estimation with chromo-coded markers, we can then

minimize a reprojection error to refine estimations.

5.2.1 Rotation Constraints

Similar to pose estimation with chromo-coded markers, we derive constraints on the cali-

bration object rotation relative to a camera and the camera focal length from the hue of

lenticular arrays. We follow the presentation of the lenticular constraint in Section 4.2 and

pose estimation in Section 4.3. Consider one pixel at p that captures light traveling from

the calibration object along a ray ~r, according to some unknown intrinsic properties of the

camera, K:

~r = K−1p̂ (5.1)

Any ray ~r imaging a lenticular array of the calibration object must satisfy the lenticular

constraint:

R~nhue · ~r = 0 (5.2)

R~nhue ·K−1p̂ = 0 (5.3)

By transposing one of the terms in the dot product, this constraint can be calculated by

matrix multiplication:
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(R~nhue)
>K−1p̂ = 0 (5.4)

which is equivalent to:

~n>hueR
>K−1p̂ = 0 (5.5)

Given a pixel location p and a ~nhue, this is a linear constraint on the 3x3 matrix R>K−1.

The QR decomposition can be used to extract K and R, although practically this constraint

is used within a non-linear optimization. In the ideal case, every pixel imaging the chromo-

coded calibration object would give a constraint. However, as we analyzed in in Chapter 3,

the chromo-coding lenticular arrays are difficult to create with a perfectly consistent HRF

across the entire array. This can be mitigated by calibrating multiple HRFs across the array.

Therefore, the number of constraints we can accurately derive is limited by the number of

calibrated HRFs for a single lenticular array. In the future Section 5.3.2, we explore how

many sample points/lenticular constraints is necessary to ensure good camera calibration.

5.2.2 Camera Calibration Algorithm

For each frame, our algorithm follows the following steps to get an initial estimate of the

calibration object pose and camera focal length:

1. Find the four corners of the chromo-coded calibration object.

2. Solve for the homography to map image coordinates onto object coordinates.
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3. Measure the hues along a grid on the homography, and use these hue measurements

and positions to solve for an initial estimate of the rotation and the focal length.

4. Given that initial rotation and focal length, use a nonlinear optimization using the four

corners of the lenticular calibration object to get an estimate of the object translation.

5. Given the initial rotation, translation, and focal length, use a second nonlinear repro-

jection optimization to improve pose and focal length estimations.

In the following 2 sections, we describe the two optimizations used to estimate the camera

parameters.

5.2.3 Initial Rotation and Focal Length Estimation

For the initial rotation and focal length estimation, we use an optimization similar to the

one used to estimate rotation with chromo-coded markers in Section 4.3, but do not assume

we know K. We use an updated objective function which parameterizes K by a focal length

f and R by the Rodrigues parameters ρ:

argmin
ρ,f

∑
i

(
~nihue

>R>ρK(f)−1p̂i
)2

(5.6)

where Rρ is the 3x3 rotation matrix for the Rodrigues parameters ρ and ~nihue and p̂i are

particular to the ith sample point on the lenticular arrays. K is parameterized by f according
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to the same simplification as introduced in Section 4.1:

K(f) =


f 0 u0

0 f v0

0 0 1

 (5.7)

This simplified intrinsic matrix takes the common assumptions that pixels are square, that

there is a single proportional focal length, and that u0 and y0 are the center of the image.

5.2.4 Initial Translation Estimation

With an initial R and K estimate, we now estimate T . Consider the jth corner of the chromo-

coded calibration object at the 3D location Qj and its measured location in an image at qj.

To determine an initial translation T , we use the initial estimate of K and R to minimize

the reprojection error of all the corner points:

argmin
T

∑
j

‖qj −K (RQj + T ) ‖22 (5.8)

We emphasize that in this equation we use the corners of the lenticular arrays, not the sample

points across the lenticular array.

5.2.5 Refined Intrinsic and Extrinsic Property Estimation

We refine our initial estimations ofK, R, and T by minimizing the hue and point-correspondence

reprojection error. The initial estimate is refined by minimizing the following cost function:
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argmin
ρ,T,f

∑
i

(
hi(ρ, T, f, Pi)− huei

)2
+ µ

∑
j

‖g(R(ρ), T, f,Qj)− qj‖22 (5.9)

where the first term penalizes the difference between the measured hue, huei, and the pro-

jected hue, hi(ρ, T, f, Pi), at the ith grid point across all lenticular arrays of the chromo-coded

calibration object. This projected hue is a function of the intrinsic and extrinsic properties,

ρ, T, f , the pre-calibrated HRF at grid point i, and the direction of the 3D local locations

Pi. The second term measures the spatial reprojection error between the observed image

location qj and the projected location, g(R, T, F,Qj), for the corners of each lenticular array.

This projected location depends on the intrinsic and extrinsic properties, ρ, T, f and the 3D

location Qj. The function g is identical to the reprojection done in Equation 5.8. A rela-

tive weighting function µ was found empirically to balance hue and position error which are

measured in very different coordinate systems and with very different number of samples.

In all experiments we show, µ was set to 1/4000.

5.3 Simulated Camera Calibration Experimental Re-

sults

In this section, we explore the sensitivity of the lenticular constraint and the calibration

object design with a simulated model of our system. First, we explore the effect of noise

on rotation and focal length estimations. Second, we test the effect on camera calibration

performance when varying the number of sample points used for geometric inference. Finally,

we test various designs of the chromo-coded calibration object.
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To explore and characterize these various aspects of camera calibration with a chromo-coded

calibration object, we create a simulator that allows us to change parameters that control:

• the amount of noise in the measured hue of a simulated lenticular array

• the number of measurements taken from a simulated calibration object

• the orientation and relative positioning of various lenticular arrays that make up a

simulated calibration object

This simulator randomly generates a known position and orientation for the virtual calibra-

tion object that is modeled to be 110 mm tall and 70 mm wide. This object can appear

anywhere in the field of view of a virtual camera from 150 to 850 mm away. In addition, the

virtual calibration object cannot be rotated more than 30◦ from fronto-parallel. Unless ex-

perimenting on the design of the calibration object, we use the design detailed in Section 5.1.

With a randomly generated position and orientation, the simulator projects the object from

a camera’s 3D space onto an image plane. We model the pinhole geometry of an iPhone

sensor (a 1/3.2” format image sensor at a default 4.1 mm focal length). This image is used

to optimize the arithmetic error presented in Equation 5.6 to get a rotation and focal length

estimation. These estimations are compared against the true simulated conditions to gauge

the performance of the derived geometric constraints.

5.3.1 Sensitivity to Noise

First, we start with exploring the effect of noise on camera calibration. Most of our mea-

surements for geometric inference are the hues observed from the chromo-coding lenticular
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arrays at a given pixel location. Therefore, a large potential source of error could be from

measuring an incorrect hue. In terms of the lenticular constraints in Section 4.2, this error

manifests as an improper direction of ~vhue, and thus ~nhue. Therefore, to simulate the geo-

metric effects of measurement noise, we introduce normally distributed aberrations to the

direction of ~vhue. These aberrations are created by randomly choosing a 3D vector from

a Gaussian distribution with a given standard deviation, adding that vector to ~vhue, and

re-normalizing to again get a unit vector.

Figure 5.3: This plot shows the quartiles of
angular error introduced to ~nhue for a given
standard deviation of noise.

We start with zero noise as a baseline and

add a maximum of 0.2 standard deviation of

noise to the unit vector. Figure 5.3 gives in-

sight into the practical effects of adding noise

to ~vhue and then computing ~nhue, by showing

the angular error in the geometric constraint

(the computed direction of ~nhue) as a func-

tion of the standard deviation of the added

noise. Considering that our chromo-coding

lenticular arrays have an effective range of

viewpoints of ≈ 70 degrees, 15 degrees of

angular error is very significant. Figure 5.4 shows the sensitivity to noise in estimation

rotation as a function of the amount of noise.

In Figure 5.4a, we show the 1st, 2nd (median), 3rd quartiles of the errors in rotation esti-

mation. We display the angular error for each axis of a rotated local reference frame of the

calibration object. The angular error for each axis is measured as the difference (in degrees)

of a coplanar ground truth projected axis and the estimated projected axis. For all three
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(a) (b)

Figure 5.4: As more noise is introduced to ~nhue, the a) rotation error for all axes and b) focal
length error increases and is less consistent.

axes, the trend has higher median amounts of rotational error with wider distributions for

increasing amount of noise. The x and y axes have slightly more error than the z axis. This

is due to the fact that our lenticular arrays are directly measuring rotation around the x

and y axes and not around the z axis. Thus, error in rotation around the z axis manifests

as error in the angular error of the x and y axes. Even at very high noise levels, the median

estimated rotation has less than 2 degrees of error.

In Figure 5.4b, we show the 1st, 2nd (median), 3rd quartiles of the errors in estimating the

focal length. With more noise, the variance of focal length error gets larger. Perhaps more

striking, however, is that with more noise, the focal estimate becomes smaller. We typically

see less than 3 degrees of noise in our ~nhue measurements, which corresponds to a noise

standard deviation of 0.05 in this figure. At that noise level, our experiment shows focal

length errors of about less than 1% and a rotation error of much less than 1 degree.
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(a) (b)

Figure 5.5: Using more measurements, and thus geometric constraints, in the optimization
results in a lower and more consistent a) rotation error, and b) focal length error.

5.3.2 Sensitivity to Number of Measurements

Because our calibration approach does not need point correspondences for rotation and focal

length estimation, it is easy to use a large number of measurements to provide redundancy.

Thus, we analyze how the number of measurements of the calibration object increases cali-

bration performance.

We ran 300 trials of randomly generated calibration object poses with 0.08 standard devi-

ation in noise and used an increasing amount of measurements sampled evenly across the

calibration object for optimization. Results are shown in Figure 5.5.

In Figure 5.5a, we show the 1st, 2nd (median), 3rd quartiles of the errors in rotation estima-

tion. As more measurements are used, rotation error reduces and becomes more narrowly

distributed. The number of measurements does not seem to to affect the median results for

focal estimation, shown in Figure 5.5b. However, the estimations become more consistent

as more measurements are used in the optimization.
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Practically, a measurement represents the hue at one pixel of the image. One can get

more measurements of the calibration object by having the calibration object fill more of

the image — bringing it closer or by using a higher resolution camera. For subsequent

simulation experiments we use about 30,000 measurements (200 x 150 pixels), which are

feasible to capture with commodity cameras at reasonable distances.

5.3.3 Sensitivity to Orientation and Relative Position of Lenticu-
lar Arrays

The constraints created by observing a single lenticular array are not sufficient to solve

for the camera rotation. To get a system of equations for Equation 5.6 that is not rank

deficient, we need to include observations of chromo-coded lenticular arrays of at least 2

different orientations. Thus, our chromo-coded light field object must have 2 lenticular

arrays, which have major axis in different directions. Beyond this, there is also the design

consideration of relative positioning of the differently oriented lenticular arrays. We explore

different design choices by simulating various designs with the same simulation system as

the previous experiments.

We assess how the relative orientation and placement of lenticular arrays affect the estimation

accuracy by creating a large set of designs. Each design is depicted in Figure 5.6(a-g). For

each design, we show sample points as blue circles and the direction of the major axis at

that sample point is shown by a green arrow. For clarity in the design figures, we reduce

the number of sample points. For each design, we run 400 simulations with varied position

and rotation, adding 0.2 standard deviation in appearance noise (the maximum tested in

Section 5.3.1) to 30,000 measurements. We measure the rotation estimation error for each

axis.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i)

Figure 5.6: Various designs (a-g) change the orientation and relative positions of lenticular
arrays to make a calibration object. Estimations achieved for design c) has the lowest
combination of h) rotation error and i) focal length error.
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We see that the design in Figure 5.6b is the worst in estimating rotation, because the

non-orthogonal lenticular orientations give less complementary cues about rotation angle.

Otherwise, most of the patterns are similar in estimating the rotation angle, and the design

shown in Figure 5.6c gives the best estimate of the focal length. We believe this is because

it has parallel lenticular arrays farthest apart, maximizing the angular difference at which

parallel lenticular arrays are viewed and therefore maximizing the hue difference at different

parts of the array. This is important because this hue difference at different parts of the

array is the primary cue for estimating focal length.

5.3.4 Sensitivity to Noise as a Function of Focal Length

Figure 5.7: The focal length error
that arises from mis-estimating the
field of view by 0.25◦ changes as the
field of view gets smaller (and, cor-
respondingly, the focal length gets
longer).

To derive the lenticular constraints, we use the hue to

lookup the direction of ~nhue. If there is any noise in

the hue measurement, then the direction of ~nhue would

have error. We explored this for various noise levels

in Section 5.3.1 for a short focal length (4.1mm).

However, the effects of this type of noise are likely a

function of the focal length of the image. Very long

focal lengths correspond to imaging geometries with

a smaller field of view, whereas a short focal length

has a large field of view. Therefore, the same angular

error is proportionally much larger for a small field of

view than the wide field of view. Therefore, we would expect that long focal lengths would

be more affected by noise. To ground this, we show the impact of mis-estimating the field of
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view by 0.25◦ degrees on the estimate of the focal length in Figure 5.7. Although an error of

0.25◦ degrees is minute, the effect on focal length estimation error is as large as 5% for very

long focal lengths (300mm).

5.4 Empirical Camera Calibration Experimental Re-

sults

In this section, we experiment with the prototype chromo-coded calibration object described

in Section 5.1 for single image camera calibration. In the first group of experiments, we

assess the performance of rotation, translation, and focal length estimation across different

viewpoints in a laboratory setting. We conclude with an experiment where we use the

chromo-coded calibration object for an augmented reality application with a variable zoom.

5.4.1 Rotation Estimation

In our first set experiments, we test in a laboratory environment. On a motorized stage we

rotate the calibration object in increments of 5 degrees from −25 to 25 degrees around the

vertical axis and take images at each increment. We calibrate the ground truth camera focal

length with the MATLAB 2014a implementation of Zhang’s method [81].

Figure 5.8 shows the rotation estimation performance per image in the left column as well as

in summary in the right column. We show rotation error for each local axis as the angular

difference of our estimate to the true rotation. The estimates from our initialization algorithm

are shown in the top row and show errors at the scale of a few degrees for all axis. Similar to

previous simulated experiments with the chromo-coded calibration object (Sections 5.3.1 and
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Figure 5.8: We compare the rotation estimations our method gets initially and after re-
finement. In the left column, we see the rotation error per local axes for each image as
the calibration object is rotated, while in the right column we see the summary statistics.
Although we start with good rotation estimates (top row), the refinement process still gives
improvement (bottom row).
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Figure 5.9: We report the focal length estimations for different orientations of the calibration
object per image (on the left) and in summary (on the right). The initial estimates (top) start
with considerable error in focal length estimation. After reprojection refinement, however,
the results are improved significantly achieving a median of less than 5% error.

5.3.3), we generally see a bit more error for the x and y axes. This is because the lenticular

arrays give cues about the rotation around the local x and y axes, leading to a very good z

axis estimate. What is lacking are direct cues about rotation around the local z axis, so any

error in estimating the rotation around the local z axis shows up as error in the x and y axes

in the data. The bottom of this plot shows results after minimizing the reprojection error as

defined in Equation 5.9. With this refinement, we see a significant improvement over initial

estimations, with a final median error of ≈ 0.5 degrees for all axes. With this refinement, we

see the performance discrepancy between z and x,y axes disappear. This is because in the

refinement, we employ point-correspondence constraints from the corners of the lenticular

arrays which directly constrain the rotation around the z axis.
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Figure 5.10: We present the per image (left column) and summary performance statistics
(right column) for initial translation estimation (top) and refined translation estimation
(bottom). In these plots, we show the distance error for each axis. The overwhelming
majority of error is in the Z-axis, which is the depth of the camera. The z-axis translation
errors reflect errors in estimating focal length.
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5.4.2 Focal Length and Translation Estimation

For the same set of rotated views used above, Figure 5.9 quantifies error in the focal length

estimation, and Figure 5.10 quantifies error in the translation estimation. Both the initializa-

tion and refinement results shown strong correlations between the focal length error and the

translation error per frame. The refinement step reduces the error of focal length estimation

to a median error of about 4%. The translation estimates show the most substantial error

in determining depth. For the images used in this experiment, the camera was placed ≈ 1m

away from the chromo-coded calibration object. So the refined translation median error of

≈ 18mm represents an error of < 2%. The correlation in error between the focal length and

the translation arises from the ambiguity that an object can appear bigger either by moving

closer to the camera or by the camera changing its focal length. In the Augmented Reality

experiments shown in the next experiment, we see that a 4% error does not appear to lead

to a perceptually noticeable error in rendering the correct perspective of the object.

To give a sense for the general applicability of camera calibration with the chromo-coded

calibration object, we shows quantitative results in Figure 5.11 for focal length and rotation

estimation from single images of the calibration object taken at different orientations, dif-

ferent focal lengths, and with different cameras. For each image, we show the results that

visualize rotation by rendering the local coordinate system on top of the original image. The

image title shows the ground truth focal length, our estimated focal length, and the percent

error. We include images from cell phone cameras, as well as a DSLR camera. The first

image is from an iPhone 5 and the next two are from a Galaxy S6. These two cameras

have focal lengths of 4.4mm and 5.8 mm, which differ slightly from specification numbers

reported in other sources because changing focus changes the effective focal length. The

images following those are from a Nikon D90 at focal lengths of 18, 49, 90, 115, and 185 mm.
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Figure 5.11: Nine examples of single frame estimation of the focal length and object rotation
estimates. From the top-left, the first image is taken from an iPhone; the next two, from a
Galaxy S6; and the remaining, from a Nikon DSLR camera at different zoom settings.
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5.4.3 Augmented Reality Experiments

Figure 5.12: We show the focal length esti-
mates used to render a box into a video in our
AR experiment. We show how our estimates
follow the focal length changes from zooming.

In this next section, we experiment with

the ability to apply camera calibration to

an Augmented Reality application. Specifi-

cally, we are interested in seeing how the sin-

gle image focal length calibration is able to

give realistic perspective effects of a super-

imposed 3D object in a video with changing

zoom.

In a desktop scene, we record video of the

calibration object while moving the camera in a freehand trajectory. When the camera is

moved farther away from the scene and the calibration object, we digitally zoom to keep the

calibration object as large as possible in the image. For each frame we estimate the camera

focal length, rotation, and translation using the same calibration object as the previous

experiment. In Figure 5.12, we compare our estimated focal length with the ground truth

focal length (which we know because this is a digital zoom) per frame. We can see that

the focal length estimations follow the zooming trajectory well. We emphasize that our

algorithm does not have access to this digital zoom information.

As a comparison, we consider an AR algorithm that does not have access to the digital zoom

and does not have the ability to estimate it from image data. When such an algorithm uses

a pre-calibrated focal length which becomes wrong in part of the video sequence, virtual

objects are rendered with incorrect perspective. Figure 5.13 shows 3 frames from the video

in each column. We render a virtual wire-frame box to highlight perspective effects. The top
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Figure 5.13: We show focal length estimation results in 3 frames of a video where we render a
box over the calibration object. The original image (top row) is digitally zoomed to maximize
the size of the calibration object in the image. By estimating the focal length dynamically
in each image (middle row) versus estimating a single static focal length (bottom row), we
achieve a much more natural rendering that is the correct relative size and has the right
amount of perspective.
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row shows the original images, the center row shows the box rendering given the estimates

made with a dynamic focal length (our method), and the bottom row shows the box rendering

given the estimates made with a static focal length. The digital box has a base that is the

size of the calibration object and is 45mm deep.

Our scene contains graph paper that is aligned to show a cartesian coordinate to help the

viewer assess perspective effects. The wire-frame box should appear aligned just short (10mm

or 2 boxes) of the end of the paper grid and should fall parallel to lines on the paper grid.

In comparing our method of estimating a dynamic focal length against estimating a static

focal length, we see that the rendered box looks unnaturally too large and with too much

perspective in the case of a static focal length. This holds true in general for all frames. The

full experimental video can be found on Youtube from the linked text.

5.5 Camera Calibration Augmented Reality Applica-

tion

The camera calibration method described in this chapter is interesting because it can estima-

tion the focal length of a camera using a single image of a relatively simple fiducial marker.

Zhang’s established method [81] requires 5 to 10 images of a checkerboard at non-parallel

positions or two checkerboards on different planes in a single image for reliable camera

calibration. This theme holds for any traditional point-correspondence based calibration

method. Since our method can do single image calibration with a relatively small fiducial

marker, it can be readily used in difficult applications like Augmented Reality (AR) with a

variable zoom throughout the input video.
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In this section, we show an AR application where users would see 3D objects projected over

the calibration object in real time on a portable device with a camera and a screen, such as

a tablet. This type of application would be useful for outreach or education. For example,

a student learning about the solar system may be able to visually inspect the astronomical

relationship between the earth and moon while another student moves the calibration object.

Another example may be to expose young children to the variety of animals at the zoo and

around the world. Using the calibration object and an AR viewing system, a child could be

able to visually see any animal without having to physically go to a zoo, or without being

limited by the types of animals at the zoo. Similarly, some moving animal could be displayed

and inspected visually at different angles. The child could zoom in on parts of the animal

that may be unique or visually interesting. These 2 AR applications may be more intuitive

than using some 3D software. Indeed, this type of interaction is more akin to that done with

a physical object and so may be more natural and stimulating for a child.

In Figure 5.14, we show frames captured from implementations of these 2 hypothetical

examples. We take a video of our prototype camera calibration object rotating in space.

While recording the video, we change the zoom by hand. Without an encoder on the lens,

it would be very difficult to know the changing focal length per frame in order to correctly

project a digital 3D object into the image. With our method, we calibrate the extrinsic and

extrinsic properties of the camera per frame in order to realistically project a globe or parrot.

In Figure 5.14, we show different frames and different zoom levels with the calibration object

at different rotations per row. The full AR videos of the parrot and the earth and moon can

be found on YouTube from the linked text. These frames demonstrate the potential to use

our camera calibration method for difficult AR input video.
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(a) Parrot (b) Earth and its Moon

Figure 5.14: With a chromo-coded calibration object made of lenticular arrays, we can
estimate the focal length, rotation, and translation for each frame of a video. This enables
Augmented Reality applications even for video with changing focal length. For the same
input video, we show two Augmented Reality outputs with different 3D models. On the left,
we show different angles of a parrot by rotating the calibration object. On the right, we
show the earth and its moon at different angles and zoom levels.
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5.6 Conclusion

In this chapter, we described how 3 large lenticular arrays can be combined to make a camera

calibration object. This fiducial object enables estimation of the focal length and pose based

on the observed hues of the calibration object in a single image. This enables interesting

applications, for example Augmented Reality for video input that has a variable zoom.

This camera calibration method is enabled by many lenticular constraints that are derived

from hue measurements all across the lenticular arrays, giving 100’s of constraints per image.

The rotation and focal length is optimized independently from the translation, similar to

chromo-coded markers. In empirical experiments, we saw the the calibration method worked

with a variety of cameras at a variety of focal lengths, and for a medium focal length we saw

median rotation, focal length, and translation estimation errors of ≈ 0.5 degrees, 4% of true

focal length, and 2% of the distance to the object.

The calibration object used in this chapter is similar to the chromo-coded markers of the

last section. These two fiducials use the same lenticular arrays and derive the same lentic-

ular constraints for geometric inference. As a result, the camera calibration method in this

chapter shares the same strengths and challenges as chromo-coded markers relative to tra-

ditional fiducial markers: our camera calibration method will estimate accurate orientations

regardless of distance to camera or orientation but will have challenges with color measure-

ment and depth estimation when the calibration object is far away from the camera. In this

chapter, we did not directly address lighting challenges, but it would be natural to extend

the camera calibration reprojection optimization with extra white balancing parameters in

a similar way as the chromo-coded markers.
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As we saw in Section 5.3.4, our method will suffer from poorer focal length estimations for

long focal lengths because a small error in estimating the angle of ~nhue at a sample point is

relatively large compared to the small field of view when the calibration object is far away.

Because the estimated focal length is correlated with estimated depth, depth estimates are

also less accurate for situations where the object is far from the camera.
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Chapter 6

Pose Estimation with a Lenslet Array

This chapter considers angularly sensitive patterns that are black and white. This avoids

challenges that arise in measuring color because the measured color depends on the light

intensity, the surface reflectance, the physical measurement process used by the camera, and

post processing often done before the image data is available. This is especially pertinent

for lenticular arrays, where hue measurements are used for geometric inference. By using

more chromo-coded markers and employing additional optimizations, we were able to miti-

gate some effects on measuring the correct hue, for example changing lighting environments.

However, this added complexity may not be appropriate for different pose estimation settings,

for example small hand tools that may not have space for more than 2 markers or real-time

mobile pose estimations which have minimal computational resources. Even grayscale mea-

surements require knowledge of lighting and camera response functions, so here we explore

the extreme case of thresholding grayscale values into a few discrete categories.

In this chapter, we explore using black and white cues for geometric inference. We explore

how to estimate viewpoint with a lenslet array, the 2D analog to the lenticular array, by

discretely encoding orientation with a pattern of black or white appearances. Whereas every

lenticule in our chromo-coding lenticular arrays changed colors for an orientation change, we
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design lenslet arrays where each lenslet has potentially different black or white appearances

which change quickly and independently for small orientation changes. Therefore, a range

of viewpoints of the lenslet array can be uniquely identified by measuring the discrete black

or white appearance of all lenslets in an array. By using additional point-correspondences,

we can recover the full pose of the lenslet array.

6.1 Lenslet Array

A lenslet array is a planar plastic sheets that is comprised of many small lenses called

lenslets, that are arranged in a regular grid. They are similar to lenticular arrays, except

that the individual elements are spherical instead of cylindrical. Typically they are used to

diffuse or collimate light, however, they have been used to capture and create view-dependent

appearances. In 1908, Gabriel Lippman used lenslet arrays for “Integral Photography”[36].

Here, integral is used in the sense of complete, where lenslet arrays were used to both capture

and display the full lightfield in a scene. These lenticular arrays displayed perspective effects

as a viewer moved. More recently, lenslet arrays have been used to create lightfield probes

to infer about the refraction of light rays through transparent mediums [74, 26, 75]. In these

methods, the lenslet arrays showed hue appearances that changed for different orientations.

When the lenslets have a focal length equal to the thickness of the sheet, lenslet arrays can

create orientation specific appearances similar to lenticular arrays. A lenslet focuses parallel

rays of light from a given orientation onto a specific point on the back-plane of the lenslet

array. We show this in Figure 6.2. Adhered to the back of the array is a pattern called the
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Figure 6.1: We show three hypothetical images of a lenslet. We show the direction from the
origin of the lenslet to the camera by its intersecting point on the surface of the lenslet shown
as a red dot inside a red circle. From the appearance of the lenslet we may be able to infer
the 2D spherical direction to the camera from the lenslet. However, this viewpoint direction
does not encode the full rotation that relates the local reference frame of the lenslet to that
of the camera. As a result, rotating by any amount (in this case 60 and 180 degrees) around
the axis pointing in the direction of the camera will result in the same lenslet appearance
for different 3D rotations.

back-plane texture. As a result of the lensing, the lenslet appears to be a magnified version

of the back-plane texture underneath the lenslet at the focus point.

Since the lenslet is spherical, the set of orientations which focus onto a different point can

be expressed in spherical coordinates; appearances can vary for orientations in 2 dimensions:

azimuth and polar angle. This encodes the direction of the viewpoint from a camera to a

lenslet array. However, it would not encode the full 3 degrees of freedom of rotation for

pose estimation. It cannot because the back-plane texture is only 2 dimensions. There is

an ambiguity from rotating around the ray from the viewer to the lenslet array. We show

this ambiguity in Figure 6.1. As terminology, to differentiate against the full 3D rotation,

we refer to a 2D orientation inferred from a lenslet array as a viewpoint.
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6.2 Discretely Encoding Viewpoint with Lenslet Ar-

rays

There are a few lenslet array methods that encode viewpoint direction with color. For

example, in the lightfield probe used for Schlieren Photography, the back-plane texture

consisted of a circle of different colors which varied conically by hue. If measuring viewpoints

by their direction in spherical coordinates relative to the lenticular array, this back-plane

texture would encode the azimuth angle. Adding a saturation gradient along the radius

of the circle pattern of the back-plane texture would facilitate encoding the polar angle of

viewpoints as well. However, as discussed at the beginning of this chapter, these types of

color cues would be challenging to measure accurately. We would like to design black and

white appearances that change abruptly for small orientation changes.

One way to do this is to employ binary coding on the back-plane texture of a microlens

array. In Section 3.2, we proposed a potential design for lenticular arrays which distributes

different frequencies of binary patterns across the array. In this case, sections of lenticules

would have different back-plane textures to produce appearances which change more or less

quickly. In the ideal case, each lenticule would have a different frequency of black and white

bars underneath it. However, the lenticules are very small (0.3mm wide) and so would be

difficult to measure separately in an image.

Instead, we propose a back-plane texture of many small, randomly placed black blocks. With

this back-plane texture, the lenslet array would have an appearance of random flickering as

each lenslet changes appearance independently of the others. Figure 6.2 shows two example

viewpoints of a lenslet array with this random back-plane texture. Because this texture is
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Figure 6.2: A lenslet array placed on top of a pattern creates an image where each lenslet
magnifies a piece of the pattern below it. (Left) The lenslet array is designed so that parallel
rays focus at a point on the back of the array, so that point is magnified. (Left center) We
show an example of a pattern with randomly placed black squares. For different viewpoints,
each lenslet will focus at a different location on the pattern and thus produce the different
sets of black and white appearances. (Right center and Right) We show the appearances
for two different viewpoints after being transformed with a homography to make the images
more easily comparable. The appearance of the array changes dramatically, and the discrete
measurement of which lenslets are dark and light encodes its orientation.

high contrast, the resulting lenslet appearance changes abruptly for very small viewpoint

changes.

By thresholding the grayscale appearance of each lenslet, one can limit a lenslet to 2 states

to carry a bit of information. Considered together for a single viewpoint, all lenslets on

the lenslet array express a bit string that varies based on viewpoint. In an ideal case,

a lenslet array with n independent lenslets, could encode 2n unique bit strings, and thus

2n uniquely encoded appearances. With 12 lenslets giving binary measurements, this could

suffice to encode viewpoints in the viewsphere up to 30 degrees from fronto-parallel to within

1 degree.

While this intuition of a discrete encoding of pose inspired us, random patterns may not give

optimal encodings, and there is value in a non-binary classification of lenslet appearance that

has more than 2 states. In the next section we consider practical approaches to choosing
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patterns that are most useful and consider what is the best discretization of the apparent

lenslet brightness.

6.3 Discretization and Entropy of Single Lenslet Mea-

surements

A single lenslet will share the same appearance for a set of viewpoints because it is magni-

fying the black and white pattern directly beneath it. This magnified view constrains the

orientation at which the lenslet is being viewed. To model this constraint, we consider a

measurement of the intensity at the center of each lenslet, and experimentally measure the

response across a set of viewpoints to create a response map. We explore thresholding the

measured intensity at k intervals. The response map characterizes the apparent intensity of

each lenslet when viewed from each orientation, and the state-map is the discretization of

that response map in k states. Section 6.4 describes our measurement setup and Figure 6.6

shows examples of the measured response map and discrete state maps.

We characterize the value of a lenslet based on its entropy. The entropy H for a given lenslet

and its map from viewpoint to state is:

H = −
k∑
i

pi ∗ log2(pi) (6.1)

where pi is the frequency in the range (0, 1) of a lenslet being in state i for all viewpoints.

A lenslet which is in all states equiprobably has maximum entropy, and it should be easy to

design a pattern to put underneath the lenslet array which has this property. However, chal-

lenges in accurate printing, aligning a pattern to a lens array, and imperfectly manufactured
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Figure 6.3: Here we show the state maps which show the discrete state maps of lenslets for a
viewing dome. Each subplot is a different lenslet, and the color of the x,y coordinate in each
subplot is the discrete state of the lenslet for a viewpoint direction that is rotated around
that respective axis from -30 to 30 degrees from fronto parallel. Green represents the views
where the lenslet is in state 0; red, state 1; and blue for viewpoints not observed. The five
lenslets whose discrete state map has the lowest (top row) and highest (bottom row) entropy.
The bottom lenslets are much more likely to be useful in estimating orientation; the median
entropy of 90 lenslets in an array covering random dots is 0.8.

lenslets that may be out of focus led us to use a random pattern. So, our first question is,

what is the entropy of a lenslet array mounted on top of a random dot pattern?

Using the prototype array and texture patten shown in Figure 6.2 we calculate the entropy

of each lenslet. Figure 6.3 shows the binary response maps and entropy measures for lenslets

that are thresholded at a intensity of 100 (out of 255). We show the 5 lenslets with the

smallest entropy in the first row, and the 5 lenslets with the highest entropy in the 2nd row.

The median entropy for all lenslets is about 0.8 highlighting that using random textures is

a reasonable choice.

In Figure 6.4a, we show the distribution of entropies for all 90 lenslets for optimal discretiza-

tions of 2,3,4,5, and 6 states. In Figure 6.4b, we show these optimal thresholds. This shows
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(a) (b)

Figure 6.4: We experimentally measure the entropy in discrete measurements from a lenslet
array covering a random pattern of small squares. Optimizing to choose discretization thresh-
olds over all lenslets gives a distribution of the measured entropy that is close to the maximum
entropy. On the right we show the optimized thresholds. This motivates the use of a random
pattern as having nearly as much information as an optimal pattern.

two interesting features. First, measurements of the lenslet intensity are not binary and

discrete states can be selected to give a discrete encoding that maximizes the (per lenslet)

entropy. Second, when more than 2 discrete states are used, the thresholds often clump,

highlighting the value of noticing when a lenslet is changing between black and white.

6.4 Viewpoint Estimation

The state map can be used to characterize the discrete measurement for a lenslet viewed from

a given viewpoint. We parameterize the viewpoint with the two-vector Θ which captures

the direction of the camera rotated around the local x and y axes, and we define ai to be

the measured appearance of the lenslet. If a lenslet can exist in k states, then the lenslet

appearance, ai, is one of the first k positive integers.
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Figure 6.5: The left shows the set of viewpoints from which we image the lenticular array,
represented as points on a sphere. The right is a depiction of our image setup which includes
a DSLR camera viewing the lenslet array on a 2-axis motorized mount.

We empirically determine the measurement ai for each rotation Θ by imaging the lenslet

array for a grid of viewpoints with a DLSR camera. The lenslet array is rotated with two

programatically controlled motors which can change the orientation of the lenslet array to

any rotation around the x and y axis. We scanned over the dome of viewpoints that are

(30,−30) degrees from fronto parallel in 2 degree increments, yielding 677 images. We

visualize the sampled viewing dome and show the motor setup in Figure 6.5.

For each image, four reference points on the corners of the lenslet array are tracked and

a homography is used to warp the image to a common coordinate system. Once warped,

the center of each lenslet is sampled to create response maps for each lenslet. We show the

response map and the responses thresholded into a trinary state map in Figure 6.6.

We up-sample the response maps to have approximate measurements at every 0.5 degrees,

using linear interpolation, then threshold to create the state map. The experimental section

explores the performance gains for different amounts of up-sampling.
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Figure 6.6: For each lenslet, our calibration process characterizes the response as a function
of viewpoint. Each row shows a different lenslet. From the left, the figure depicts first the
raw, then the up-sampled response map. Third is the discrete state map where the response
map is thresholded into one of three categories. The last three maps show the 0-1 likelihood
function of the orientation as a function of each of the three possible discrete measurements.
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6.4.1 Inference

Using the lenslet array, our task is to determine the 2D viewpoint orientation of camera

in the reference of the lenslet array. In the ideal case, the different appearances of each

lenslet would uniquely encode the relative viewpoint. With this 1-to-1 relationship, we could

employ a simple look-up table to determine a viewpoint. However, this look-up table would

be limited to a domain of discrete measurements for a discrete set of viewpoints. Therefore,

it would not be robust against discrete measurements from a continuous set of viewpoints.

In addition, any noise or error in measuring a particular lenslet could lead to unreliable

viewpoint predictions.

Instead, we seek to find the most probable viewpoint given the observed discrete appearance

of all lenslets in the array. We employ a simple approach where black and white appearances

at each lenslet vote for the most likely viewpoint.

Consider a lenslet at inference time with a state bi. For all the Θs in that lenslet’s statemap

with state ai that match bi, we give one vote. Each lenslet will have a different statemap

and will vote for a different set of Θs.

To estimate the viewpoint using the entire lenslet array, we choose the Θ with the maximum

number of votes. In the case of a tie, which sometimes happens for similar Θs, we take

the average. This enables inference for continuous viewpoints which lie between the discrete

range we have encoded in the statemaps of each lenslet.

In Section 6.7, we explore the ability for a lenslet array to encode viewpoints. We test the

design and environmental factors that may impact the ability to infer a viewpoint from a

lenslet array. These include the response map granularity, the maximum number of lenslets,
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and the light environment, the number of states, and the number of maximum entropy

lenslets lenslets. The next section describes how to combine this voting inference method

with measurements of the corner points of the lenslet array to determine the full pose of the

lenslet array.

6.5 Pose Estimation

The pose estimation problem seeks to estimate the R and T needed to transform the camera

reference frame into the lenslet array reference frame. We consider the pose estimation

problem for images whose geometry is defined by a pinhole camera model. Using the standard

geometric framework, we assume the origin of the camera coordinate system is centered at

the pinhole, and the camera calibration K is known. According to this model, a point in the

camera reference from P is thus projected to the image location p, via K:

p̂ = KP (6.2)

where p̂ is the homogeneous representation of p.

Therefore, a reference point Q in the reference frame of the lenslet array is projected at the

pixel location q on the image according to the following linear projection:

q̂ = K (RQ+ T ) (6.3)

where q̂ is the homogeneous representation of q.
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Because the viewpoint estimate derived in the former section is in spherical coordinates, it

only gives 2 of the 3 rotation parameters (because the appearance of a lenslet is invariant

to rotation around the line from it to the camera). Our approach is to use the θ and φ

estimate of the rotation of the lenslet around the x and y axis from before. We construct R

parameterized by the unknown rotation ψ around the z-axis as:

R = Rz(ψ)Rx(φ)Rz(θ) (6.4)

where Rx,z(w) are the rotation matrices to rotate around the respective cartesian axes. We

denote this transformation to determine R from θ,φ, and ψ as R(θ, φ, ψ).

We solve for the rotation parameter ψ and the translation vector T by using the known

pixel and local locations of the 4 reference points used to rectify images of the lenslet array

and θ and φ estimated previously. Using a non-linear optimization, we solve for these four

parameters via reprojection error:

min
ψ,T

4∑
i

∥∥qi −K(R(θ, φ, ψ)Qi + T
)∥∥2

2
(6.5)

where qi is the measured pixel location of a reference point, θ and φ are known and held

constant, Qi is the location of the reference point in the local reference frame, and ‖.‖2

denotes the euclidean norm. After optimizing for ψ, we can recover the full R matrix using

R(θ, φ, ψ).

The estimated R and T capture the orientation and position of the lenslet array relative to

the camera. In Section 6.8 we show experimental results with a lenslet array for full pose
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estimation for a variety of orientations. We put these results in context by comparing against

other fiducial markers which use microlens arrays, including our chromo-coded markers.

6.6 Simulation Experiments on Back-plane Textures

In this section, we explore different back-plane textures. Using a simulator, we generate

the discrete lenslet appearances at each viewpoint to gauge the texture’s performance. A

good back-plane texture will have certain properties, such as the ability to uniquely encode

many different viewpoints with as few lenslet as possible. In this section, we first explore a

random texture where each pixel has a random and uniform chance of being black. Then, we

compare this type of pattern against a more structured binary pattern using Discrete Cosine

Transform bases. Finally, we explore a random texture where we enforce a local criteria to

prevent a lenslet from creating the same appearance for similar viewpoints.

6.6.1 Properties of an Ideal Back-plane Texture

An ideal back-plane texture will create a set of appearances which have certain properties.

Let us consider a lenslet array with binary discrete appearances. Then, we can describe a

lenslet discrete appearance with a bit, and all lenslet appearances for a given viewpoint by a

bit string, which we call a state string. To describe good back-plane texture properties, we
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consider a hypothetical example with 6 lenslets and the state strings for 4 viewpoints:

a = {000100}

b = {000001}

c = {110101}

h = {001110}

With state strings, there are two ways to compare viewpoints. If two viewpoints have

similar incident angles to the lenslet array, we say that they are angle-wise close, and if two

viewpoints have similar state strings, we say that they are bit-wise close. In this example, the

viewpoints a,b,and c are angle-wise close but angle-wise far from h. In addition, viewpoint

pairs a b and c h are both bit-wise close.

The first ideal property is that the state strings for all viewpoints are unique and therefore

the lenslet array uniquely encodes every viewpoint. In our example above, all viewpoints

have a unique combination of bits in their state string to encode the viewpoint. Viewpoint

uniqueness, or the percentage of uniquely encoded viewpoints for a dome of viewpoints, is a

proxy for how well the lenslet array will perform in pose estimation.

A second ideal property is viewpoint uniqueness with as few bits as necessary. Since using

fewer bits would be a more compact representation of all viewpoints, we call this property

compactness. A back-plane texture with high compactness makes the system robust to

noise, as a bit not in the compact representation is not necessary to differentiate between

viewpoints. In our example above, the 3rd and 4th bit are the minimum necessary to

distinguish between all 4 state strings. If when measuring the viewpoint a, the first bit

flipped to give the measured state string {100100}, it is still possible to infer that this
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state string belongs to viewpoint a. This robustness would translate into pose estimation

robustness for varying lighting conditions or camera perspective effects.

A third ideal property is that the most similar state strings for all viewpoints have a maximal

Hamming distance [22] between them. We refer to this property as dissimilarity. Typically,

viewpoints that are in angle-wise local neighborhoods will have similar state strings. We refer

to the dissimilarity in this local neighborhood as local dissimilarity. For example, in the local

neighborhood that includes viewpoints a, b, and c, the local dissimilarity is 2 since a and b

have a Hamming distance of 2. It can be useful to understand how large of a neighborhood

of viewpoints must be excluded before the two bit-wise nearest viewpoints are no longer

angle-wise near. For example, by excluding the viewpoints in the neighborhood around a,

the closest bit-wise viewpoint is h. We refer to the dissimilarity in this condition as global

dissimilarity. By maximizing local and global dissimilarity, we minimize local and global

viewpoint inference error. For pose estimation, reducing local error will increase precision,

while reducing global error will increase accuracy.

In the experiments in this section, we measure these properties to analyze and compare

different back-plane textures with the aim to find the best back-plane texture for viewpoint

estimation, and thus pose estimation.

6.6.2 Lenslet Array Simulator

In order to quickly explore various back-plane textures, we create a simulator that allows us

to create the back-plane texture and compute the appearance of a virtual lenslet array for a

variety of viewpoints. We use a simplified model of the optics to create appearances. This

models the lenslet array appearance as the result of integrating the product of a Gaussian
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filter placed at a particular location on the back-plane texture. The parameters of the

Gaussian were adjusted to give visually similar response maps as shown in Figure 6.7. The

position of the Gaussian moves linearly across the back-plane for different angular rotations

around the x and y axes, which is consistent with informal laboratory observations.

(a)

(b)

Figure 6.7: We use a measured response
map (a) to guide the parameters of our
simulator to create virtual response maps
(b).

The output of the simulator is a response map

for each lenslet which can be thresholded to cre-

ate a statemap. For the upcoming experiments,

we translate the statemaps for each lenslet into

state strings for each viewpoint. State strings are

the complement to state maps; the state strings

describes the discrete appearance for each lenslet

for a particular viewpoint, while a state map de-

scribes the set of discrete appearances of a dome

of viewpoints for a single lenslet.

In the remainder of this Section, we use the sim-

ulator to produce statemaps for various types of

back-plane textures. We evaluate different tex-

tures and design parameters based on viewpoint

uniqueness, compactness, and dissimilarity.

6.6.3 Random Texture

In the first experiment, we investigate a back-

plane texture that has pixels that are randomly made black according to some probability.
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Figure 6.8: Example simulated response maps produced from 5 back-plane textures. From
left to right, the respective random back-plane textures are 10,20,40,50, and 60 % black.

The texture has a 10x10 grid of pixels underneath each lenslet. The manufacturing process

of mounting a back-plane texture to the lenslet array is challenging, particularly aligning the

texture precisely under each lenslet. To model this, we up-sample the generated texture by 10

and slightly rotate the texture. We experiment with different versions of this random back-

plane texture where a pixel has a 10,20,40,50, and 60% chance to be black. In Figure 6.8,

we show example lenslet response maps output from our simulator for these 5 different

back-plane textures.

Using simulated state strings, we evaluate the viewpoint uniqueness of different random

textures as a function of the granularity of viewpoints. We test a viewing dome at 2, 1, 1
2
,

and 1
4

degree increments. We examine uniqueness with 3 different thresholding strategies

where:

• all textures use a threshold of 100 (out of 255)

• all textures use a threshold of 200

• each texture has a different threshold which maximizes entropy across all lenslets

In Figure 6.9, we show viewpoint uniqueness results for the 3 different thresholding strategies.

From these plots, we observe 3 results. First, the viewpoint uniqueness of a measured
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(a) (b) (c)

Figure 6.9: A good quality for a back-plane texture is that it produces appearances which
are unique for different viewpoints. We show the effect of the state threshold on viewpoint
uniqueness for 5 randomly generate back-plane textures. From left to right, we show thresh-
olds for each texture that are: 1) 100 (out of 255) for all textures, 200 for all textures,
and individual thresholds which maximize entropy across all lenslets for each texture. The
threshold is important for a texture to perform well, however, the best threshold is one that
maximizes entropy. The best performing texture with this type of threshold is one that is
50% black, however, it still performs well with non-optimal thresholds.

prototype with 20% black random pattern matches the performance of the 20% simulated

textures. This shows that our simulator creates lenslet appearances that give plausible

performance. Second, the choice of threshold impacts the viewpoint uniqueness of a back-

plane texture. For some textures, a higher or lower threshold improves uniqueness, but

ultimately, a threshold that maximizes entropy also maximizes viewpoint uniqueness. In

Figure 6.9c, we indicate the optimal threshold in the legend for each texture. Third, a random

back-plane texture that is 50% black has the highest viewpoint uniqueness. This texture’s

performance is maximized with a threshold that maximizes entropy, but also performs well

compared to other textures with non-optimal thresholds.
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Figure 6.10: The 2D components of the Discrete Cosine Transform that were used in a
back-plane texture.

6.6.4 Discrete Cosine Transform Texture

In this section, we evaluate a second type of back-plane texture which uses the Discrete

Cosine Transform (DCT). DCT is a way to express a signal as a linear combination of various

cosine signals at different frequencies and is most popularly known for its use in lossy image

compression standard JPEG [73]. Because the DCT basis has orthogonal components, it

seems natural that using each component as a back-plane texture for a lenslet gives an

encoding unique to each viewpoint.

We create a back-plane texture by concatenating together a 9x10 grid of 2D DCT components

at π radian increments. With this texture, each lenslet has a different spatial and frequency

cosine pattern. In Figure 6.10 we show the 90 DCT sinusoidal components used for each

lenslet in the back-plane texture. Because we rotate the texture underneath the virtual

lenslet array, the texture for each lenslet is not precisely the DCT component.

Using our simulator, we perform a similar experiment to above to determine the viewpoint

uniqueness achieved by using a DCT component for the back-plane texture of each lenslet.
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(a) (b)

Figure 6.11: A good quality for a back-plane texture is that it produces appearances which
are unique for different viewpoints and can do so compactly with as few lenslets as possible.
We show the viewpoint uniqueness (left) and compactness (right) for a back-plane texture
made from Discrete Cosine Transform bases. This texture has less viewpoint uniqueness and
compactness compared to a 50% random texture with an optimal state threshold.

We compare this DCT back-plane texture against the empirically measured back-plane tex-

ture use above, and a simulated random back-plane texture with 50% black pixels. For all

3 back-plane textures, we create state strings using discretization thresholds that maximize

the average entropy across all lenslets of a given back-plane texture. We show the viewpoint

uniqueness results for these 3 textures in Figure 6.11a. The random texture that is 50%

black uniquely encodes the most viewpoints.

In a second experiment, we evaluate the compactness of these 3 textures. In a Monte Carlo

style experiment, we remove a random permutation of bits from the state strings 1 by 1, until

all viewpoints are no longer uniquely encoded. This is repeated 3000 times and the number

of lenslets needed is recorded each time. We test for viewpoints at 2 degree increments in a

dome that is 30 degrees from fronto-parallel. Better textures will encode the same number

of unique viewpoints with fewer lenslets.
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We show results of this experiment in Figure 6.11b. These results show that the simulated

random texture can encode all unique viewpoints with many fewer lenslets and so has a

higher compactness. At a minimum, the random texture would need 53 lenslets to uniquely

encode all viewpoints. In contrast, the DCT texture would need 62 and the random texture

of 20% black would require 70. For this experiment, the distribution of values indicates

the best and worst case scenario for expressing all viewpoints with fewer lenslets. The

max value represents the adversarial case, where we remove the lenslets that give the most

information. The minimum value represents the best case, where we remove lenslets that

give redundant information. Both the 50 and 20% textures have the same distribution of

lenslets because they have the same type of pattern. The DCT texture, however, has a much

larger distribution. This is because the DCT texture has many low frequency components,

making it more sensitive to removal of lenslets. The lenslets with back-plane textures of

these low frequency components must remain to uniquely encode viewpoints.

From these experiments, we have shown that a back-plane texture made from a random

pattern that is 50% black has higher viewpoint uniqueness and compactness, making it the

better texture.

6.6.5 Locally Constrained Texture

In this section, we explore a different type of random texture that constrains a local pattern

at the scale of a lenslet. With the previous random texture, each pixel was colored indepen-

dently. As an alternative, we create a texture where we enforce that a small neighborhood of

pixels does not have too many or too few black pixels. With this texture, we hope to create
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(a) Unconstrained (b) Unconstrained De-
tail

(c) Constrained (d) Constrained Detail

Figure 6.12: We experiment with 2 types of random back-plane textures. In a unconstrained
random texture (a), each pixel has a random and independent chance of being black and so
big areas of the same color may result (b). In contrast, a locally constrained texture (c),
enforces a local criteria that there not be too much black (d) and so creates a more diverse
set of appearances for similar viewpoints.

lenslet response maps which transition from black to white as often as possible to encourage

local dissimilarity.

We call this new type of texture locally constrained random to contrast with the random

texture used above. For this locally constrained random back-plane texture, we enforce a

local constraint in a 5x5 pixel neighborhood that each row and column should have 2 or 3

black pixels. To create the texture, we use a linear program to seed a 5x5 neighborhood

and then slide a window by 1 pixel and randomly assign pixel color. If the pixel breaks the

local constraint, we change the pixel’s color. In Figure 6.12 we show examples of a locally

constrained random and unconstrained random back-plane texture. When viewing the whole

texture in Figure 6.12c, the locally constrained texture has some global structures. However,

when zoomed-in in Figure 6.12d, this is not longer visible. This locally constrained texture

avoids situations where many pixels in a neighborhood are the same color and thus create the

same appearance for many similar viewpoints, as can happen with a unconstrained random

texture as shown in Figure 6.12b.
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(a) Global Texture (b) Local Texture

Figure 6.13: A good quality of a back-plane texture is that it produces appearances which
are very different for similar and different viewpoints, called dissimilarity. In this plot,
we compare this property of two different random textures: (left) 1 unconstrained random
texture which has all randomly colored pixels and (right) 1 locally constrained texture which
has a local constraint to ensure color diversity. The locally constrained texture has higher
local dissimilarity, but lower global dissimilarity compared to the globally random texture.

We perform experiments with these two random textures to measure the local and global

dissimilarity of each texture. The simulator creates state strings for these 2 back-plane

textures for a virtual array with a 9x10 grid of lenslets. We generate state strings for a dome

of viewpoints that differ by 2 degrees. For each texture instance, we measure the Hamming

distance between the bit-wise closest viewpoints that are no closer than x degrees in angle-

wise distance. We do this for 100 different texture instances, in order to generalize results

for a type of back-plane texture.

In Figure 6.13, we show experimental results for the unconstrained (left) and locally con-

strained (right) random back-plane textures. Along the x axis, we vary the angle-wise dis-

tance of viewpoints that are considered. For each size of excluded neighborhoods, we show

the distribution of Hamming distances between the two bit-wise nearest viewpoints for all
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the back-plane texture instances. We use the median Hamming distance for each excluded

neighborhood to analyze the performance of the locally constrained and unconstrained ran-

dom back-plane textures.

A way to quantify global dissimilarity is by how many bits distinguish the two bit-wise closest

viewpoints that are angle-wise far. This depends on the size of an angle-wise neighborhood of

viewpoints outside of which is considered far. Figure 6.13 shows the bit-wise distance between

the two most similar state stings excluding some angle-wise neighborhood of viewpoints.

What is striking in these plots, is that at a certain size neighborhood, the Hamming distance

between bit-wise closest viewpoints does not grow. This is the point at which the bit-wise

closest viewpoint is not the angle-wise closest viewpoint. Therefore, this elbow in the plots

defines the size of the neighborhood at which point viewpoints are far enough apart that

they no longer are likely to have related state strings and the bit-wise distance at this

neighborhood defines the global dissimilarity.

In Figure 6.13, we can see that for the locally constrained texture, this elbow is at 6 degrees,

while for the globally random texture, 8 degrees. This difference is a result of constraining the

back-plane texture in a small pixel neighborhood. At these neighborhood sizes, the global

dissimilarity for the locally and globally random textures are 17 and 24 bits. Therefore,

the globally random texture has ≈ 30% more global dissimilarity. This difference in global

similarity is a function of the local constraint. There are a finite number of possible 5x5

patterns with our constraint and so lenslet appearances are more likely to be redundant for

angle-wise far viewpoints.

A way to quantify local dissimilarity is by calculating how many bits distinguish the two bit-

wise closest viewpoints in a local angle-wise neighborhood. The closest angle-wise viewpoints

depends on the size of this defined local neighborhood and cannot be smaller than the
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granularity of discrete viewpoints. In this experiment, we test with viewpoints every 2

degrees, so we analyze neighborhoods from 2 degrees up to the elbow.

In Figure 6.13, we can see that for the locally constrained texture, the bit difference in the

angle-wise neighborhoods of 2,4, and 6 degrees is 4, 9, and 15; while for the globally random

texture, it is 3, 8, and 13. This higher local dissimilarity is because of the local constraints

that ensure the back-plane texture does not have clumps of the same color and therefore

produce angle-wise similar viewpoints that have the same appearance.

This experiment shows that the locally constrained texture has better local dissimilarity but

worse global dissimilarity. The dissimilarity allows robustness against noise in measuring

the state string. Therefore, the locally random texture will tolerate noise better for small

changes in viewpoint, but worse for large changes. However, the global dissimilarity is 17 out

of 90 bits, so there is still a large amount of robustness to noise for large viewpoint changes.

Because of its dissimilarity properties, we would expect the local random texture to have

higher precision and equal accuracy in practice.

6.7 Viewpoint Experiments with a Physical Prototype

In this section, we explore the performance of using lenslet arrays for viewpoint estimation.

First, we explore how different design and environmental factors affect viewpoint estima-

tion. Second, we explore how the number of lenslet states and the number of lenslets affect

viewpoint estimation.
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6.7.1 Experimental Setup

For the experiments evaluating viewpoint estimation, we test on 88 images randomly sampled

from the dome of viewpoints 30 degrees from fronto parallel. These images are taken with the

lenslet array on the programmable motorized stage. The Θ values are randomly selected,

and not at the same location as calibration images, but known to make comparisons to

ground-truth possible. We use a lenslet array with a 9x10 regular grid of lenslets, and unless

otherwise stated, we use all constraints from all 90 lenslets for viewpoint estimation.

In assessing the accuracy of our viewpoint estimations, we calculate the angular difference

between a vector in the direction of the estimated viewpoint direction and a vector in the

direction of the true viewpoint. We show summary statistics for all 88 random views as a

boxplot. Each boxplot shows the median error in red, a box that shows the range from the

25 percentile to 75 percentile. Red crosses depict outliers, and have values more than 2.7 σ

away from the mean, where σ is computed assuming that the data are normally distributed.

6.7.2 Design and Environmental Factors

We first characterize the effect of design and environmental factors on viewpoint estimation.

These factors affect estimation regardless of the number of states the lenslets can occupy.

Therefore, to simplify this first set of experiments, we employ binary (2-state) measurements

and threshold at an intensity value of 100. This threshold reflects general observations that

that near white lenslets have intensities above 120 and near black lenslets had intensities

below 50.
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Figure 6.14: (Left) Orientation estimation accuracy, as a function of the angular spacing
of the response maps. The original measurements have an angular spacing of 2 degrees; all
other data is based on up-sampling and interpolating this response map. (Center and Right)
As fewer lenslet provide orientation cues, estimation accuracy goes down.

We first look at performance gains from up-sampling the response map. Second, we explore

the effect of the number of lenslets on viewpoint estimation. Finally, we test the lenslet

arrays in varying lighting environments.

Response Map Precision

We build response maps for each lenslet by sampling rotations of the lenslet array in 2 degree

increments. How much can we improve our rotation estimates by up-sampling these response

maps? We create increasingly more up-sampled response maps and assess their orientation

estimation performance. Figure 6.14 shows that at the initial resolution, the lenslet array

constrains the orientation to a median error of 0.7 degrees. Increasing the precision of the

response maps to 0.5 degrees (upsampling and linearly interpolating the response maps by

a factor of 4) gives a substantial improvement, and further up-sampling the response maps

has little additional benefit. We use this precision for the rest of the paper.
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Number of Lenslets

Section 6.2 discusses the potential of combinatorial encodings of orientation, with the claim

that in an ideal case 14 binary lenslets is sufficient to uniquely encode 1
2

degree increments

in a viewing dome of 30 degrees. This section gives an experimental evaluation of the

correlation between estimation performance and number of lenslets. In this experiment,

we randomly select k lenslets, and then perform orientation estimation. Figure 6.14 shows

results using 20-90 lenslets in increments of 10 in the center, as well as a finer grain analysis

with 10-20 lenslets in increments of 1 on the right. With 20 of the total 90 lenslets, we achieve

orientation estimation accuracy with a median error below 1 degree. With fewer lenslets, the

performance degrades. With less than 14 lenslets, the maximum error surpasses 10 degrees

of error, anecdotally we see that sometimes in these cases there are far apart viewpoints that

have very similar discrete encodings. To achieve a median viewpoint estimation error of 0.5

degrees, about 30 randomly chosen lenslets are necessary.

In simulated experiments in Section 6.6.4, we saw that a 50% unconstrained random texture

could uniquely encode viewpoints at a granularity of 2 degrees with 53 lenslets. This means

that in the worst case, we wouldn’t expect more than 2 degrees of error with 53 lenslets. In

this experiment, we saw that typically, we were able to infer the viewpoint with 20 lenslets

with an error below 1 degree. Although the median error is quite low, on the right of

Figure 6.14 we see large outlier errors of 30 degrees. This shows, that 20 lenslets can be used

for viewpoint estimation but may suffer from viewpoint estimation error of 30 degrees in the

worst case. To limit this worst case error, ≈ 50 lenslets would be necessary.

Light Environments
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Figure 6.15: Viewpoint estimation error as a
function of lighting environment. Overhead
lights match the calibration environment, and
adding a spotlight light source has minimal
impact. Lighting the scene with strong blue
lights increases the median estimation error by
about half a degree.

Related work uses hue to encode orientation

with lenticular arrays [54], and one motiva-

tion of this work is use discrete measure-

ments of black and white patterns to avoid

problems that arise with varying lighting en-

vironments. We test the sensitivity of bi-

nary lenslet arrays to different lighting en-

vironments and exposure settings by explor-

ing 3 different lighting conditions. The first

lighting environment is inside under over-

head lights. This is the lighting environment

used to generate the response maps for all

lenslets and is used for all other of the ex-

periments in this paper. The second lighting environment is similar to the first, but with

an additional, strong white directional light. The third lighting environment has the scene

lit entirely by 2 blue directional lights. In Figure 6.15, we show the estimation results of

these 3 different lighting environments. The common office environment with overhead lights

achieves the lowest error with a median error of 0.3 degrees. However, even with the very

extreme lighting environment of only blue directional light, the lenslet array is able to esti-

mation orientation with a median error of 0.6 degrees. This experiment suggests that even

extreme lighting environments have a minimal effect on the binary encoding of orientation

given by the lenslet arrays.
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6.7.3 Measurement Discretization and Lenslet Selection

Here we explore choices driven by the entropy in the discrete state space for each lenslet.

First we experiment with the number of discretized states using all lenslets, and then we

determine the effect of using the most informative lenslets.

Number of States

In Section 6.3, we showed that individual lenslets with more states had a larger maximum

entropy, and that by optimizing the threshold value allows a random texture to create appear-

ances that have entropies approaching the maximum. In this section, we validate whether

there is a corresponding improvement in viewpoint estimation by optimizing for high en-

tropy. From the same response maps, we create state maps with 2,3,4,5, and 6 states. We

use the same optimal thresholds for these state maps as described in Figure 6.4. We also

create a second binary statemap, but using a threshold of 100, as used in section 6.7.2.

To differentiate between the two binary conditions, we label one 2 opt to indicate use of a

threshold that maximizes entropy. With each choice of our discretization we get different

state maps, and we use these to estimate the viewpoint. We report error versus the known

true viewpoint.

The results of using all 90 lenslets are shown on the left in Figure 6.16. In all cases, the

median error is less than 0.5 degrees. There is no discernible trend, except that a binary

threshold at the entropy maximizing cutoff is worse than a default threshold of 100, perhaps

because 100 was hand-chosen to be as far as possible from the appearance of completely

white and completely black lenslets.
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Figure 6.16: The effect of the number and choice of lenslets on orientation estimation.
Left, using all 90 lenslets, the median orientation error is less then 0.5 degrees across all
discretization choices. The middle and right show the same plot at two scales. They highlight
that using the 9 lenslets with highest entropy gives plausible results, and when using fewer
lenslets it is especially important to go beyond a binary classification.

Using Minimal Lenslets

In order to test the limits of a the number of lenslets, we tested the viewpoint estimation

with the same conditions of the previous section, but only using 9 lenslets. The 9 lenslets

used were the lenslets with the highest entropy state maps. The middle of Figure 6.16 shows

these results. With fewer lenslets, and less information, the trend suggests that more states

results in better estimates. In addition, using an optimal threshold with 2 states shows

advantages with few lenslets. The right of Figure 6.16 magnifies the y axis to better analyze

estimation results for state maps with more than 2 states. Having more than 2 states results

in median errors less than 1 degree. A statemap with 6 states results in the best performance,

with 0.6 degrees of median error. These empirical results corroborate that, when a limited

number of lenslets can be used, using more states results in better viewpoint estimation

performance. However compared to a binary threshold, this is less likely to be robust in high

noise environments because more discrete measurements will be wrong.
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Figure 6.17: We show how many lenslet change states for rotations of 0.05 degrees. On the
left, we show results using a state threshold of 130 (of 255) and on the right we show a
threshold of 150. Lenslets change state for rotations of around 0.1 degrees, which suggest a
precision limit of this lenslet array prototype.

6.7.4 Precision Limit of Lenslet Array

In the previous experiments, the lowest median rotation error was ≈ 0.25 degrees. This error

is limited by the sampling granularity of the state map which had viewpoint encodings that

were measured for viewpoints every 2 degrees and up-sampled to 0.5 degrees. To encode a

high granularity of viewpoints, the lenslets of the array must change states for very small

rotations.

Here, we perform an experiment to understand the minimal angle change encodable by the

lenslet array. On a similar motor as used above, we started a lenslet array at fronto-parallel

and rotated by 0.05 degrees around the vertical axis for a total of 1 degree. We compared

the states of each lenslet for each orientation against the fronto-parallel orientation.
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In Figure 6.17, we show the number of lenslets with different states for each orientation. We

show the results for 2 different choices of state thresholding. For both plots, we see that

for rotations of ≈ 0.1 degrees, there is a lenslet that changes state. Due to measurement

noise, some lenslets seem to flip states for these very small orientation changes. These re-

sults suggest that the minimal angular change that can be encodable is 0.1 degrees. At this

granularity, the calibration process to record the statemaps of each lenslet would take con-

siderable longer, however. We estimate that it would take ≈ 30 hours to calibrate viewpoints

within 30 degrees from fronto-parallel at 0.1 degree increments. Therefore, we continue to

use statemaps that have a granularity that is up-sampled from 2 to 0.5 degrees.

6.8 Pose Estimation Experiments with a Physical Pro-

totype

The unique appearance of a lenslet array results in low error viewpoint estimations. It is

therefore useful to use lenslet arrays for pose estimation as well. In the next section, we

determine the poses of a new set of images. In these images, we place the lenslet array ≈ 1

m away and rotate it around the vertical axis from 30 to -30 degrees in 1 degree increments.

We compare pose estimation to the standard fiducial marker, ARToolkit, by using the same

anchor points used by the lenslet array. We also use these results to compare against other

published results of a similar experiment.
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Figure 6.18: We compare the rotation and translation estimation accuracy of our result with
the method employed by the popular ARToolkit. In contrast to most position based fiducial
markers like those used with the ARToolkit, our fiducial marker does not suffer from the
well-known ambiguities of points that lie on a plane near fronto-normal
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6.8.1 Direct Comparison to ARToolkit

In Figure 6.18, we show pose estimation results of using the lenslet array. As a comparison,

we also include results of using just the 4 reference points as used by ARToolkit [28] to

estimate pose.

In the top 2 plots of Figure 6.18, we show the rotation estimation errors per axis using just

4 reference points (left) and using the lenslet array (right). The rotation error is defined as

the angular difference between the unit axes using the true and estimated rotations. For

each plot, the title shows the median errors over all frames for the axes in x,y,z order. For all

views, the lenslet array is able to determine rotations accurately. In contrast, the standard

4 corner method suffers from the well understood ambiguity of points on a fronto-parallel

plane [70, 1, 48]. Since the lenslet array gives orientation cues directly from the viewpoint

estimation, our method does not suffer from this ambiguity.

In Figure 6.19, we show an example input image with the local reference frame visualized

by the unit axis directions from the origin. The X,Y, and Z axis are represented by the red,

magenta, and yellow arrows. For the rotation movement around the vertical axis from 30

to -30 degrees in this experiment, we would expect that for translation trajectory, 1) the X

component will be parabolic, first decreasing and then increasing, 2) the Y component will

be static, 3) the Z component will linearly increase.

In the bottom 2 plots of Figure 6.18, we show translation estimation results of the two

types of fiducials. On the left, we show the X and Y components of translation, where the

Y component is a dotted line. For both lenslet array and ARToolkit markers, we see the

expected translation trends. However, the Y component slowly decreases. This is because of

a slight rotation of the camera around the Z axis. On the right, we show the Z component
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of translation. The lenslet array produces depth estimates that linearly increase, albeit

with some noise. The ARToolkit has a increasing trend, but we see a large deviation near

fronto-parallel orientation. These unexpected depth estimates are a symptom of the same

ambiguity mentioned above.

6.8.2 Indirect Comparison Against Microlens Array Fiducial Mark-
ers

Figure 6.19: Here we show the lenslet array
fiducial marker used for pose estimation. Us-
ing the lenslet array we can estimate a view-
point and use that to initialize pose estimation
using 4 point-correspondences. In this image,
we visualize the local reference frame by the
unit axis directions from the origin.

In the final experiment, we share a com-

parison of our rotation estimation results

from above with the results in Section 4.5.3

using 2 chromo-coded markers and the re-

sults reported in work that uses the Lenti-

mark [64] and the Arraymark [62]. The

Lentimark and Arraymark papers perform

similar rotation estimation experiments sim-

ilar to above, where the fiducial marker is

rotated around a single axis. In addition,

both papers also report the rotation error

for the x,y, and z local axes. Table 6.1 sum-

marizes results of the chromo-coded mark-

ers and those reported for the Lentimark,

and the lenslet array. The 4 microlens array

based fiducial markers have comparably low rotation errors. However, the lenslet array has

slightly superior rotation estimation error for the z axes.
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LentiMark Chromo-coded Marker ArrayMark Lenslet Array

x 0.372 0.910 0.63 0.488

y 1.359 0.703 0.47 0.469

z 0.324 1.222 0.61 0.269

Table 6.1: The lenslet array has similar or better accuracy than other work based on fiducial
markers whose appearance is viewpoint dependent.

6.9 Conclusion

In this chapter, we introduce a new type of fiducial marker whose appearance is designed

to give a combinatorial encoding of its orientation. This marker was created using a lenslet

array with a random texture of black dots. By considering the discrete measurements of

all individual lenslets together, a simple voting method allows inference of the viewpoint

direction. With black and white cues, this method is robust to extreme lighting conditions

such as direct light and monochromatic light. The full pose of the marker is recovered by

combining with standard point-correspondence based fiducials.

Despite using point-correspondence based fiducials to infer the full pose, the lenslet array

markers do not adopt the same orientation ambiguity for fronto-parallel orientations. We

saw this same advantage for chromo-coded markers, however the lenslet array is able to do

so in a manner robust to extreme lighting conditions, without the additional complexity

of additional markers and optimizations. In our experiments we used an array of lenslets,

however, the method would still work for different form factors where lenslets are disjointly

organized across the surface.
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As we saw in Chapter 5, some of the same rotation constraints derived from lenticular arrays

for pose estimation could be used for focal length estimation. Similarly, we believe that the

lenslet array could be used for camera calibration. One way could be to use the viewpoint

estimations from two lenslet arrays in a single image. Then, the angle between the two

viewpoint estimations would depend on the field of view of the camera and could be used to

constrain the focal length. This single-image camera calibration method would inherit the

same advantages of pose estimation with a lenslet array, such as robustness to fronto-parallel

orientations and to extreme lighting environments.
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Chapter 7

Conclusion

In this dissertation, we introduced new fiducial markers created from microlens arrays that

are designed to create difference appearances for different orientations. Our microlens fiducial

markers can be used for pose estimation and camera calibration. These fiducial markers

overcome some of the challenges of traditional fiducial markers because they give visual cues

on orientation.

To support one type of fiducial marker, we designed lenticular arrays that encode orientation

by hue. To do this, we created a back-plane texture comprised of repeating stripes of the hue

wheel. We showed how to fabricate and manufacture this chromo-coding lenticular arrays

using readily available printers and blank lenticular arrays. The chromo-coding lenticular

arrays create a 1-to-1 relationship between orientation and hue in order to constrain the

relative orientation of the lenticular array to the camera, independent on the relative position

of the lenticular array.

We used small versions of these chromo-coding lenticular arrays to create chromo-coded

markers for pose estimation. We derived de-coupled constraints on object rotation to more

quickly optimize for pose. Each marker gives position and orientation constraints, so only 2
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markers are necessary to solve for pose. With more than 2 markers, we can solve for addi-

tional white balancing parameters to make our technique more robust to changing lighting

environments. The small size and orientation cues of chromo-coded markers make it useful

for pose estimation applications with size and configuration limitations, such as hand tools.

In a similar fiducial marker, we used large chromo-coding lenticular arrays to create a cali-

bration object for camera calibration. Due to the size of each lenticular array, we can derive

many constrains from the observed hue. The variation in hue across the chromo-coding

lenticular arrays are related to the focal length of the camera, because rays observing the

calibration object have different incident angles due to perspective. As a result, the focal

length of the camera can be estimated from a single image. This enables applications in

Augmented Reality for difficult input videos which have variable zooms.

We also create a different fiducial marker using the 2D analog of lenticular arrays, lenslet

arrays. These lenslet arrays are design to produce discrete black and white appearance

and address the challenge of measuring color accurately faced by chromo-coding lenticular

arrays. These lenslet arrays encode 2D viewpoint direction and, with additional traditional

point-correspondences, can be used for pose estimation. Because the orientation cues are

from discrete black and white appearances, this pose estimation method is robust against

extreme lighting environments.
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Exploring Other Visual Cues

In this dissertation, we explored using microlens arrays to encode orientation by an appear-

ance. There may be other materials worth exploring that may also give visual cues for pose.

Glitter and holograms have different appearances for changes in light and camera directions.

Iridescent materials are also sensitive to changes in light and camera direction. They add

but add a dependency on the wavelength of the illuminating light and the relative position

of the light and object. There may be still other materials whose color appearance depend

on pose and thus could be used for geometric inference, as well.

Beyond pose, there are other physical states such as force and movement that may be

interesting to visually measure in a generalized fiducial marker. Photonic gels change color

based on mechanical pressure [78] and so might be able to give visual cues to infer about the

atmospheric or mechanical pressure on an object. Gold nanoparticle chains change color to

record the peak mechanical stress on a polymer[23]. Still yet, materials made from photonic

crystals change color from the high pressure of an explosive blast [13]. Further work with

these 3 materials could result in a material that can dynamically create color appearances for

various forces. Another previous method has used the polarization state of light to measure

the stress on tendons [80] and a material designed on this principle may enable dynamic

measurement of mechanical stress on an object. Visual cues from single images could enable

measurement at single time instances for movement rates such as velocity or acceleration. A

material made from arrays of macroscopic pillars changes optical properties when the pillars

bend sideways [34, 77] and could be used to measure acceleration. In this dissertation, we

created a new type of fiducial markers which gave visual cues for the orientation of an object.

These various new materials offer the opportunity to capture even more useful information
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about the physical state of an object and could be used in a generalized fiducial marker to

better understand the world.
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