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Alzheimer’s disease (AD) affected approximately 48 million people worldwide in 2015. Its 

devastating consequences have stimulated an intense search for AD prevention and treatment. 

Clinically, AD is characterized by memory deficits and progressive cognitive impairment, 

leading to dementia. Over the past two to three decades, researchers have found that amyloid-

beta (Aβ) plaques and neurofibrillary tau tangles occur during a long pre-symptomatic period 

(preclinical stage) before the onset of clinical symptoms. As a result, identification of the 

preclinical stage is essential for the initiation of prevention trials in asymptomatic individuals. 

Currently, Positron Emission Tomography (PET) imaging with injected 11C or 18F containing 

radiotracers (e.g., Pittsburgh compound B, PiB or florbetapir-fluorine-18, 18F-AV-45) is widely 

used to detect amyloid deposition in vivo and to identify this preclinical stage. However, PET 

scans are time consuming (about 1 hour), require injection of a radiotracer, thus, exposing the 

patient to ionizing radiation. After the preclinical stage, AD patients begin to show clinical 

symptoms, referred as a very mild or mild AD group. Post-mortem studies show that neuronal 

damage is the most proximate pathological substrate of cognitive impairment in AD compared 



 

x 

 

with amyloid and tau deposition. Thus, a diagnostic tool is needed for detection of neuronal loss 

in vivo. As a faster, non-invasive, and radiation free imaging technique, Magnetic Resonance 

Imaging (MRI) plays an important role in the diagnosis of cognitive diseases. Conventional MRI 

yields superb definition of brain anatomy and structure and provide important volumetric 

information (e.g., brain atrophy). However, conventional MRI cannot provide microstructural 

and functional insight into the pathology of AD.  

The approach developed in Yablonskiy’s lab is based on the Gradient Echo Plural Contrast 

Imaging (GEPCI) protocol, which provides quantitative in vivo measurements of transverse 

relaxation properties of the tissue water 1H spins as determined from the gradient echo MRI 

signal. The measurements are corrected for macroscopic magnetic field inhomogeneity effects 

and physiologic-motion-driven fluctuations in magnetic field as these are the major artifacts 

present with the gradient echo technique. The principal relaxation property used in this 

dissertation is the tissue-specific transverse relaxation rate constant, R2*. The R2* value reflects 

the microscopic and mesoscopic magnetic field inhomogeneities rising from the complex tissue-

water-environment within the human brain. In turn, changes in R2* reflect changes in the 

tissue’s microscopic and mesoscopic tissue structure.  

However, because of the presence of the cerebral blood vessel network, the magnetic-

susceptibility-driven blood-oxygen-level dependent (BOLD) effect also makes a significant 

contribution to R2*. A previously developed approach, quantitative BOLD (qBOLD), allows the 

separation of R2* into a tissue specific R2t* without blood vessel effects and the BOLD 

component. Quantifying the BOLD component allows the calculation of cerebral hemodynamics 

parameters, such as oxygen extraction fraction (OEF) and deoxygenated cerebral blood volume 
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(dCBV). These parameters (R2*, R2t*, OEF, dCBV) describe structural and functional 

properties of tissue at the microstructural level in the human brain.  

In the study of normal aging, quantitative GEPCI measurements showed that R2t* increases with 

age while hemodynamic parameters, i.e., relative OEF and dCBV remain constant in most 

cerebral cortical regions. The comparison between quantitative GEPCI measurements and 

literature information suggest that (a) age-related increases in the cortical R2t* mostly reflect the 

age-related increases in the cellular packing density (or neuronal density); (b) regions in a brain 

characterized by higher R2t* contain a higher concentration of neurons with less developed 

cellular processes (dendrites, spines, etc.); and (c) brain regions characterized by lower R2t* 

represent regions with lower concentration of neurons but more developed cellular processes.   

In the Alzheimer study, R2* and R2t* together demonstrated significant differences among the 

normal, preclinical and mild AD groups. First, the results uncovered strong correlations between 

R2* and Aβ deposition measured by the PiB PET-tracer in several cortical regions (e.g., medial 

temporal lobe and precuneus). This finding indicates that R2* may be a potential surrogate 

marker for Aβ deposition. The strongest correlation was found in the medial temporal lobe 

(MTL), particularly in the parahippocampal cortex, which can be used to distinguish the normal 

and preclinical groups.  

Second, R2t* in the hippocampus, which characterized the hippocampal cellular integrity 

demonstrated much stronger correlations with psychometric tests than volume quantification of 

hippocampal atrophy. Importantly, decreased R2t* characterizing cellular damage was detected 

even in the hippocampal areas not affected by atrophy. In addition, R2t* significantly decreased 

in the mild AD group but was preserved in the preclinical group compared with the normal 
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group. These results indicate a significant cellular density decrease in the mild group but not in 

the preclinical group, which is consistent with previous histological studies. 

In summary, GEPCI provides a new approach for evaluation of AD-related tissue pathology in 

vivo in the preclinical and early symptomatic stages of AD. Since MRI is widely available 

worldwide and does not require radiation exposure, it provides the opportunity to obtain new 

information on the pathogenesis of AD and for pre-screening cohorts (stratification) for clinical 

drug trials.  



 

1 

Chapter 1: Introduction to Gradient Echo 

Plural Contrast Imaging (GEPCI) 

 

1.1 MRI Basics 

1.1.1 Nuclear Spins 

In classic physics, a rotating object possesses a property known as angular momentum. The 

angular momentum is related to the object’s size, mass, and rotational velocity. However, in 

quantum mechanics, spin or spin angular momentum is an intrinsic property of atomic and 

subatomic particles. The quantum spin number s is quantized, which means that it only takes 

values of N/2, where N is a non-negative integer. So the spin angular momentum S of any 

physical system is also quantized with the spin quantum number s and Planck’s constant h: 

                                                           ( 1)
2

h
S s s


   .                                                      (1.1) 

The component of S along any direction is calculated as follows: 

                                                , { , 1,..., 1, }
2

i i i

h
S s s s s s s


      .                                        (1.2) 

Thus, we see that S has 2s+1 components in different directions.  

Due to the intrinsic spin, particles also have an intrinsic magnetic moment µ, which is the 

product of the gyromagnetic ratio  and the spin angular momentum S: 

                                                                         S   .                                                           (1.3) 
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The magnetic moment is used to describe how a small magnetic dipole (or current loop) interacts 

with an external magnetic field. The magnetic energy of a particle (E) is the dot product of its 

magnetic moment and the external magnetic field (B0):  

                                                                        0E B    .                                                    (1.4) 

Let us take the proton as an example, because it is the most common source of MRI signal. The 

quantum spin number s of a proton is ½. So there are 
1

2 1 2
2

    components of the spin angular 

momentum S. Assume that B0 is applied along the Z direction and substitute µ with  and S. Then 

the magnetic energy (E) of protons is written as follows: 

                                                                
0 0

4
z

h
E S B B 


    .                                         (1.5) 

We see that proton has two energy states in the presence of an external magnetic field (also 

referred to spin-up and spin-down). The energy difference between the two states is written as 

follows: 

                                                                         
0

2

h
E B


  .                                                 (1.6) 

According to Boltzmann statistics, the population ratio of the spins in the two states is calculated 

as follows: 

                                    
0( )

exp( ) exp( )
( ) 2

h BPopulation anti parallel E

Population parallel kT kT





 
     ,               (1.7)    

where k is the Boltzman constant and T is the absolute temperature. At body temperature in a 

field of 3.0 Tesla, the population ratio is nearly 1. Only a small excess on the order of 1 per 106 
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spins is expected to be found in the lower energy state. Fortunately, in a biological environment, 

there is a large enough population of 1H to provide a sufficient MRI signal. 

1.1.2 Free Induction Decay (FID) Signal 

For convenience, in the field of magnetic resonance imaging, nuclear spins are usually 

considered as the analogue of spins in classical physics. Thus, spins are considered to precess 

around the magnetic field B0. The frequency of the precession is known as the Larmor frequency: 

                                                                        0 0B   .                                                         (1.8)    

We see that ΔE is proportional to the Larmor frequency as well, which is the frequency required 

for the transition of the two energy states. Spins at equilibrium produce a net magnetization M0 

along B0. It is convenient to use this net magnetization M0 to interact with B0 instead of 

considering all the spins.  

To understand the formation of the MRI signal, let us define a space with X, Y, and Z directions. 

The external magnetic field, B0, is along the Z direction. In reality, the receiver coils are placed 

on the transverse plane to detect the currents generated by the precession of the transverse 

magnetization around B0. Thus, an electromagnetic radio frequency (RF) pulse with a nearly 

Larmor frequency is usually applied perpendicular to B0 to flip M0 towards the XY plane by a 

certain angle. At the quantum level, nuclear spins absorb the energy from the RF pulse with 

Larmor frequency and are excited to the higher energy state. After the RF pulse is turned off, two 

independent relaxations, T1 and T2* relaxations, occur simultaneously. A T1 relaxation is also 

called a thermal relaxation, in which the spins release the absorbed energy to the surrounding 

environment and return to the thermal equilibrium. As a result, the Z component (Mz) of the 

magnetization grows back to M0 over time. For example, consider a 90 RF pulse that is applied 
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to flip M0 onto the transverse plane. After the RF pulse is turned off, Mz changes over time (t) in 

accord with the following equation: 

                                                         0 1(1 exp( / ))zM M t T     .                                             (1.9)    

In the meantime, the nuclear spins start to dephase on the transverse plane due to magnetic-field 

inhomogeneities—a process that is characterized as a T2* relaxation. The inhomogeneities 

include irreversible and reversible parts. The irreversible part is caused by the fluctuating 

magnetic fields generated from the spin-spin interactions—a process that is characterized as a T2 

relaxation. There are three sources that induce a microscopic inhomogeneous field on the atomic 

level: electron spin, electron orbital current, and nucleus spin. The reversible part is mainly due 

to external fixed inhomogeneities, such as imperfect magnet and field distortion at the air/tissue 

interface. The transverse magnetization (Mx,y) changes over time t, as in the following equation: 

                                              
*

, 0 2 0 0exp( / ) cos( )x yM M t T t       .                                  (1.10) 

Due to T2* relaxation, the transverse magnetization Mx,y decays over time, which is referred to 

as a free induction decay (FID) signal. 

1.1.3  Gradients, Gradient Echo Sequence and K-Space  

Although the FID can be measured, the signal comes from the whole object, and the signal at 

each location on the object needs to be computed. Thus, a constant magnetic field gradient is 

applied so that the overall magnetic field is linearly dependent on the location. For example, 

consider a one-dimensional situation: The homogeneous magnetic field B0 is along the X 

direction, and a gradient Gx is applied along the same direction. Then the distribution of the 

overall magnetic field is linearly dependent on the location x:  
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                                                                    0 xB B G x    .                                                  (1.11)    

Accordingly, the precession frequency is dependent on the location x: 

                                                               0 xB G x         .                                           (1.12) 

As a result, the location of a proton is encoded by its precession frequency, which is known as 

frequency encoding. Frequency encoding provides a one-dimensional projection of spin density. 

To get a two-dimensional image, we need to apply a gradient (Gy) in the orthogonal direction 

(e.g., the Y direction) to the frequency-encoding gradient, which is known as the phase-encoding 

gradient. The phase-encoding gradient is applied after the RF pulse and before the frequency-

encoding gradient for a short period (on the order of millisecond). In this short duration, spins 

accumulate a certain amount of phase to encode the location along Y direction. Likewise, a 

three-dimensional image is created by adding an additional phase-encoding gradient along the Z 

direction. The location along the Y and Z directions is encoded by the accumulated phase, while 

the location along X is encoded by the precession frequencies. 

Because all of the MRI experiments in my projects are based on the gradient echo (GE) 

sequence, a diagram of the sequence to obtain a 2-D MRI image is shown below in Figure 1.1: 
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Figure 1.1 A diagram of the gradient echo sequence to obtain a 2-D MRI image. 

 

First, a frequency-selective RF pulse is applied to flip the original magnetization M0 by a certain 

angle (30 in GEPCI experiments). Concurrently, a slice-selective gradient is applied along the 

slice direction (the Z direction) to excite spins in a targeting slice. However, the gradient brings 

magnetic-field inhomogeneity and causes unwanted dephasing of the spins, which starts in the 

middle of RF pulse duration. Thus, a rewinding gradient with exactly half the power of the slice 

gradient follows to refocus the spins. Then a single step of the phase-encoding gradients is 

applied over a certain duration to let the spins accumulate spatially dependent phase along the Y 

direction. Next, a pre-rewind gradient is applied over exactly half of the read-out duration (t/2) 

along the X direction. Then the readout gradient is turned on to refocus the spins and form an 

echo at the gradient echo time (TE). In the meantime, the signal receiver is also turned on to 

sample signals over time. The signal sampled during one read-out gradient is a single line of the 

k-space. The same procedure is repeated at every time of repetition (TR) to fill in lines in k-

space. Notice that, in every repetition, the phase-encoding gradients move to the next step (a new 



 

7 

gradient). When all of the repetitions are completed, the phase-encoding gradients move to the 

last step and the k-space is fully filled. To obtain a 3-D image, replace the slice-selective gradient 

with an additional phase-encoding gradient. 

Assume that there is no other magnetic-field inhomogeneity except for the gradients along the 

XYZ directions. The signal at each point during the read-out sampling can then be written as, 

               
~

0

, ,

( ) ( , , ) exp[ ( ) ]x y y z z

x y z

S t x y z i TE t i G xt i G yt i G zt dxdydz           ,         (1.13)          

where ( , , )x y z  is the “ideal” signal at location (x, y, z) on the object. Notice the time is 

represented as TE+t, where t is the time during GE acquisition (t is zero at the center of the GE). 

To compute ( , , )x y z , we substitute 2 ( , , )j j jk G t j x y z   , and the equation is rewritten as 

follows: 

          
~

0

, ,

( , , ) ( , , ) exp[ ( ) 2 2 2 ]x y z x y z

x y z

S k k k x y z i TE t k x k y k z dxdydz           .      (1.14) 

~

( , , )x y zS k k k  is the so called “k-space”. In GEPCI experiments, the k-space at each slice is 

comprised of 256 lines, and each line is comprised of 256 points. Notice that k-space is the 3D 

Fourier transform of the signal in the image domain ( , , )x y z . So inverse Fourier transform is 

applied to the k-space data to generate ( , , )x y z : 

                                                             
~

1( , , ) [ ( , , )]x y zx y z FT S k k k   .                              (1.15) 
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But in reality, the sampling during read-out duration is discrete. As a result, the signals in both 

the k-space and the image domain are stored in voxels ( , ,x y zk k k  are integers). The signal within 

a voxel is considered an integral over the locations. Thus, a fast Fourier transform (FFT) 

algorithm is used in this case. Then the transformed image also stores signals in voxels. Different 

notations would be used to distinguish the signal at a continuous point and a voxel.  

1.2  Gradient Echo Plural Contrast Imaging (GEPCI)  
The GEPCI technique is based on, (i) a 3D gradient echo (GE) sequence with multiple gradient 

echoes (currently available from most MRI scanner manufacturers), and (ii) a set of post-

processing algorithms (1-6) that make it possible to generate images and quantitative maps with 

several contrasts that reflect the anatomic and microstructural properties of biological tissue. 

Importantly, all these GEPCI images are simultaneously acquired and are thus naturally co-

registered.  

1.2.1  MRI Data Acquisition  

The scans were made in a 3T PET-MR scanner (Siemens, Erlangen, Germany). A 3D multi GE 

sequence and a 12-channel phased-array head coil were used to obtain the data. The sequence 

parameters were as follows: resolution 1×1×2 mm3 (read, phase, slab), FOV 256 mm×192 mm, 

repetition time TR = 50ms, flip angle 30°, 10 gradient echoes with first gradient echo time TE1 = 

4 ms, and echo spacing ∆TE = 4ms. An additional phase stabilization echo (the navigator data) 

was collected for each line in k-space to correct for image artifacts due to the physiological 

fluctuations (4). The total acquisition time of GEPCI was 11 mins 30s.  
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1.2.2   Image Construction by Combining Multi-channel Data 

Notice that MRI data is collected through a 12-channel RF coil. After the multi-channel data was 

transformed from k-space to the image space by using inverse FFT, it was combined using the 

following algorithm (2): 

                               
2

1 2
1 1

1
( ) ( ) ( );

M M
ch ch

n ch n n ch ch

ch chch

S TE S TE S TE
M

  




 

   


  ,                  (1.16)     

where the sum was taken over all M channels (ch), nS  represents the signal at the nth voxel in 

the image domain (
~

S is the signal in the k-space), S  denotes complex conjugate of S , ch  are 

weighting parameters, and ch  are noise amplitudes (r.m.s.) outside the human skull on the MRI 

image. Index n corresponds to the voxel position. This algorithm allows for the optimal 

estimation of quantitative parameters (2, 7) and removes the initial phase incoherence among the 

channels (2).  

Notice that we previously used ( , , )x y z to denote the “ideal” signal at location (x, y, z) in the 

image domain. Herein, we use nS  to represent the signal at a single voxel. It is not “ideal” 

because of the effects of magnetic inhomogeneity. 

1.2.3  Voxel Spread Function for Macroscopic Field Inhomogeneity Effects 

Although gradient echo sequence is fast, the images can be adversely biased by macroscopic 

magnetic-field inhomogeneities. So ( )nS TE  includes not only the “ideal” signal within the voxel, 

but also the signal due to magnetic-field inhomogeneities. Yablonskiy’s lab reanalyzed a basic 

theory of gradient echo MRI signal formation and developed a voxel spread function to model 

the signal behavior in the presence of macroscopic magnetic-field inhomogeneities (3). For 
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example, Figure 1.2 shows that this function can significantly reduce artifacts on in vivo MRI 

images due to the macroscopic magnetic-field inhomogeneity at the air/water interface. 

 

 

 

 

 

 

 

Figure 1.2 Example of an R2* map corrected with and without the voxel spread function from a 

healthy individual. Obviously, huge artifacts appear on the uncorrected R2* map on the left due 

to the macroscopic magnetic-field inhomogeneity at the air/water interface (around nose). The 

artifacts disappeared (right image) after the voxel spread function was applied.  

 

The theory of this algorithm is briefly introduced here. Consider a 1-dimensional GE experiment. 

In the presence of an inhomogeneous magnetic field ( )b x , the MRI signal during the readout 

period t is expressed in the following equation: 

                 

~

0( ; ) ( ; ) exp[ 2 ( )( ) ( )]

2

x x

x x x

S k TE x TE ik x i b x TE t i x dx

k G t

   

 

      



 ,                    (1.17)       

where TE is the gradient echo time, x is the location in the image space, kx is a voxel in k-space, 

xG is the read-out gradients, xt is the duration of the gradient, ( ; )x TE  is the “ideal” signal at the 
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continuous location x in the absence of magnetic-field inhomogeneities, and 0 ( )x is the signal 

phase shift at TE=0 (which results mainly from RF field inhomogeneities). Notice again that the 

time is represented as TE+t, where t is the time during GE acquisition (t is zero at the center of 

the GE).  

The goal is to compute the “ideal” signal in a voxel, so we need to convert the continuous 

equation to a discrete equation on the voxel level. Because the scale of macroscopic field 

inhomogeneities is much larger than the size of a voxel, the distribution of ( )b x  and 0 ( )x  in the 

mth voxel is represented as a linear approximation: 

                                                                   
0 0,

( )

( )

m m mx

m mx

b x b g x

x x  

 

 
 ,                                          (1.18)       

where mb  and 0,m  are constants within the mth voxel but vary over voxels, and where mxg and 

mx  are the background gradients within the mth voxel. The “ideal” signal in the mth voxel 

( )m TE  is represented as a sum of ( ; )x TE  across the volume (V) of the voxel:.  

                                                             ( ) ( ; )m mTE V x TE      ,                                    (1.19) 

where ( ; ) mx TE   is the averaged signal in the mth voxel. So the signal is first integrated 

across x in a single voxel and then the integral is substituted into Equation (1.17) with 

summations of voxels:  

          

~

0,( ; ) ( ) exp( 2 ) exp( ) sinc[( ) ]

2

x m x m m x mx x

m

mx mx mx

S k TE TE ik x i b TE i k k a

k g TE

   

  

        

 


 .   (1.20) 
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Inverse Fourier transform is applied to transform the k-space to an image domain. Thus, we have 

the expression for the signal at the nth voxel in the image domain corrected for the macroscopic 

magnetic-field inhomogeneity:

0, , ,

1
( ) { ( ) exp( ) sinc( ) exp[2 ( )]}n m m m x j x mx x x j x

m j

S TE TE i b TE i k a k a ik a n m
N

            . (1.21)  

In general, the overall signal in the nth voxel is determined by all the voxels in the image 

domain, including the “ideal” signal ( ( )m TE ), the accumulated phase due to the local 

macroscopic magnetic inhomogeneity ( mb , 0,m ), and the interactions between a certain voxel 

and other voxels (the sinc function part).  

To make this algorithm computationally feasible, we have another approximation that the signals 

from neighboring voxels evolve similarly over time in the absence of magnetic-field 

inhomogeneities so that, 

                                                          
| ( 0) |

( ) ( )
| ( 0) |

m
m n

n

S TE
TE TE

S TE
 





 .                                 (1.22)    

Under this approximation, we can extract ( )n TE  from the sum and reduce Equation (1.21) to, 

0, , ,

( ) ( ) ( )

1
( ) | (0) | exp( ) sinc( ) exp[2 ( )]

| (0) |

n n n

n m m m x j x mx x x j x

m jn

S TE TE F TE

F TE S i b TE i k a k a ik a n m
S



  

 

         

.                                                                                                                                               (1.23) 

where the F function ( )nF TE  is the voxel spread function describing the influence of 

macroscopic magnetic-field inhomogeneities at the nth voxel on the MRI image. The F-function 

can also be extended to 2D or 3D versions. To finish the computation projects in a reasonable 
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time, we used only neighboring voxels of the target voxel to compute ( )nF TE  instead of using all 

the voxels.  

1.2.4  Basic GEPCI Images (T1-weighted and R2*) 

With the signals in the image space ( )S TE , the voxel spread function ( )F TE  and a series of 

TEs, the standard R2* = 1/T2* map, and a T1-weighted (A0) image and frequency (Δf) map will 

be produced by fitting the following equation to experimental data on a voxel basis: 

                  *

0 1 1( ) exp 2 ( ) 2 ( ( )S TE A R TE TE i f TE TE F TE           ,              (1.24)    

where TE is the gradient echo time, Δf is the frequency shift (dependent on tissue structure and 

also on the macroscopic magnetic field created mostly by tissue/air interfaces),  and where the 

function F(TE) describes the effects of macroscopic magnetic-field inhomogeneities (8). We use 

a voxel spread function (VSF) method (3) to calculate F(TE). 

Derived contrast images can also be constructed by using the same acquisition data according to 

(6). But they are not used in the current projects. 

 

1.3  Quantitative Blood-oxygen-level Dependent (BOLD) 

Imaging 

1.3.1  Blood-oxygen-level Dependent (BOLD) Effect 
R2* is a good quantitative measurement for evaluating microstructural tissue properties. 

However, except for the effect of the macroscopic magnetic-field inhomogeneity, there are more 

complicated and subtle susceptibility effects in the tissue-water environment. Unlike the 

macroscopic effect that biases the data, these susceptibility effects may provide interesting 
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information about the tissue on the cellular level. One of the most important susceptibility effects 

on the MRI signal is the blood-oxygen-level dependent (BOLD) effect discovered by Ogawa in 

1990 (9). The paramagnetic deoxyhemoglobin in blood vessels causes additional FID signal 

decay. Hemoglobin (Hb or Hgb) is a type of protein in red blood cells that contains iron and 

transports oxygen. When it carries oxygen from respiratory organs, it becomes diamagnetic 

oxyhemoglobin, the susceptibility of which is about -9 ppm, similar to that of water molecules in 

the soft tissue. When it releases the oxygen to provide energy and collects the resultant carbon 

dioxide back into the respiratory organs, it becomes paramagnetic deoxyhemoglobin with a 

susceptibility of about 0.15 ppm. The difference of the magnetic susceptibility distorts the local 

magnetic field and generates the BOLD contrast.   

One of the most important applications of the BOLD effect focuses on temporal changes in the 

MR signal during changes in brain activity, which is also known as function MRI (fMRI). 

Furthermore, the quantitation of the BOLD signal can provide information about the 

concentration of deoxyhemoglobin, which depends primarily on the oxygen extraction fraction 

(OEF) and the deoxygenated cerebral-blood volume (dCBV). This allows the BOLD contrast to 

be useful in understanding brain activities. However, the only clinically accepted OEF 

measurement relies on PET techniques (10), which are limited in human study and clinical 

practice due to their low spatial resolution and exposure to radiation.  

A quantitative MRI-based approach has been developed to analytically describe the MRI signal 

in the presence of a blood vessel network in the static dephasing regime (11). At first, this 

approach was developed to evaluate the NMR signal in the presence of magnetic inclusions, such 

as a blood vessel network, bone marrow, and a ferrite contrast agent. There are some common 

behaviors for all the systems. If the echo time TE is less than a characteristic time tc for a given 
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system, the signal decays exponentially with an argument which depends nonlinearly on TE. 

When TE is greater than tc, the signal follows a simple exponential decay and the relaxation rate 

does not depend on the echo time. 

This approach was used to separate tissue-specific R2t* and BOLD-related contributions from 

the total R2* relaxation (5, 12). The results for OEF, dCBV, and the concentration of 

deoxyhemoglobin in the gray matter can also be robustly calculated using this approach. The 

mean values of OEF and dCBV are 47% and 4.6%, respectively, which is in reasonable 

agreement with the literature (5). 

Several studies have been published to validate different aspects of this approach. Specifically, 

we have developed a theoretical model of the BOLD effect (11), validated it in phantom studies 

(8), conducted detailed measurements of blood magnetic susceptibility (13), validated the BOLD 

model in vivo using a rat model (14), and provided an analysis of systematic errors due to 

diffusion effects (15) and errors due to noise in the data (12, 16) 

1.3.2  qBOLD Model for Magnetic Inclusions in the Static Dephasing Regime 
Notice that this approach was developed on the assumption of a static dephasing regime in which 

diffusion may be ignored (11). In general, the diffusion phenomena would average out the phases 

of different nuclei. If NMR signal decay caused by magnetic moment dephasing occurs faster 

than diffusion—which means that the signal would decay before the diffusion averages the 

dephasing—then we are in the so-called static dephasing regime. If the water-diffusion 

coefficient D=1 µm2/ms and the transverse size of blood vessel is ~10 µm, it takes 100 ms to 

diffuse around a blood vessel. We can treat water molecules as static in the scan time (<40 ms). 

That is a mesoscopic scale. On the microscopic scale, a transverse size of a molecule may be 

~10A, so the water molecule would diffuse around and average the phase out before the signal is 
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measured. Thus, the diffusion needs to be considered, and we can treat the medium (water 

molecules, other small molecules) as a whole. 

1.3.3 qBOLD Model for the Blood Vessel Network 

Another major assumption is to model blood vessels as a set of cylinders with infinite length and 

arbitrary radiuses that are randomly distributed in the medium. The signal behavior in the 

presence of BOLD effect is then shown in ( )BOLDF TE  (11): 

                                                    ( ) exp[ ( )]BOLD sF TE f TE      .                                    (1.25)        

In practice, instead of the original function (11), we use a recently proposed expression (5), 

                                  
1

( ) 1 ( ) ( )
1 1

BOLD s sF TE f TE f TE


  
 

       
 

 ,                  (1.26)     

that better accounts for the presence of large vessels in the voxel than traditional exponential 

function (11).   is the deoxygenated cerebral-blood volume fraction (dCBV), and   is the 

characteristic frequency determined by the susceptibility difference between deoxygenated blood 

and surrounding tissue (11):   

                                                  0 0

4
(1 )

3
B Hct Y           .                               (1.27)    

In this equation, 0 0.27x ppm   (13) is the susceptibility difference between fully oxygenated 

and fully deoxygenated blood, Y is the blood oxygenation level (with Y=0 being fully 

deoxygenated), Hct is the blood hematocrit, and γ is the gyromagnetic ratio. Function sf  

describes the signal decay caused by the presence of the blood vessel network, which was 
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defined in (11). Herein we use a mathematical expression in terms of a generalized 

hypergeometric function 
1 2F  (17):  

                                      2

1 2

1 3 5 9
( ) ; , ; ( ) 1

2 4 4 16
sf TE F TE 

    
         

    
 .                   (1.28)     

This function has an interesting behavior. The function is nonlinear when 1TE    and linear 

when 1TE   , as is shown in Figure 1.3. 

 

 

 

 

 

 

 

Figure 1.3 The non-linearity of function ( )sf TE   versus TE  when 1TE   . The dots 

are values at the time of echos (t = TEn) assuming Y = 60%.  

 

Oxygen extraction fraction (OEF) is calculated as follows (18):  

                                                   

1

0 0

4
1

3
OEF Y B Hct   



 
        

 
.                     (1.29)                                  

The concentration of deoxyhemoglobin per unit tissue volume is calculated as follows (18): 
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0 0

3

4

Hb
deoxy

n
C

B

 

  

 
 

  
,                                  (1.30)                                  

where Hbn  is the total intracellular Hb concentration equal to 65.5 10 /mol mL  (18). Since Hct 

was not measured in GEPCI experiments, we will report only relative regional OEF ( relOEF ) 

values. 

                                                                   /rel meanOEF                                     (1.31) 

 

1.4  Summary 
In summary, my dissertation primarily uses the following two models: 

            
 *

0 1 1

*

0 1 1

( ) exp 2 ( ) 2 ( ( )

( ) exp 2 ( ) 2 ( ) ( ) ( )BOLD

S TE A R TE TE i f TE TE F TE

S TE A R t TE TE i f TE TE F TE F TE





          

             

,    (1.32)  

where TE is the gradient echo time, R2t*=1/T2t* is the tissue transverse relaxation rate constant 

(which describes GRE signal decay in the absence of the BOLD effect), Δf is the frequency shift 

(which depends on tissue structure and on the macroscopic magnetic field, which is created 

mostly by tissue/air interfaces), function ( )BOLDF TE  describes GRE signal decay due to the 

presence of a blood vessel network with deoxygenated blood (veins and the part of capillaries 

adjacent to veins), and function F(TE) describes the effects of macroscopic magnetic-field 

inhomogeneities. 
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By fitting the equation to the real and imaginary parts of the complex signal via a nonlinear 

regression algorithm, we are able to find the six parameters A0, R2*, R2t*, Δf,  , and   for 

each voxel in the brain. Based on the fitting results, we can calculate BOLD-related 

measurements, including OEF, dCBV, Cdeoxy, and 2R     . Examples of transverse MRI 

images are shown below in Figure [4]. 

Figure 1.4 Example of transverse GEPCI images computed from the models.  

 

The end of this chapter discusses these similar terms: R2*, R2, and R2t*. Note that, 

conventionally, in a gradient echo experiment, the total R2* relaxation rate constant is 

considered a sum of two components: the R2 relaxation rate constant, which represents the part 

of MR signal decay that cannot be reversed by a refocusing 180° RF pulse; and the 2R   
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relaxation rate constant, which represents the part of the signal decay that can be reversed by a 

refocusing 180° RF pulse: *2 2 2R R R   . Because GEPCI is based on a gradient echo 

sequence—although R2t* excludes the BOLD effect due to the blood vessel network—R2t* still 

includes the reversible component due to the magnetic susceptibility effects that result from the 

presence of different cellular components. This is the major difference between R2 and R2t*. 

Furthermore, R2 is usually used to represent the spin-spin interactions in a single compartment 

model where protons locate in a homogenous environment. However, due to the complicated 

biological environment, protons may locate in multiple compartments: e.g., protons in myelin 

layers, protons in axons, and protons in CSF. As a result, the interactions of protons with protons 

and protons with other biological molecules are not homogenous in the multiple compartment 

environment. In this circumstance, it is confusing to use R2 to represent all these spin-spin 

interactions, so this is considered the irreversible part of R2t*. All in all, although R2t* excludes 

the BOLD effect due to the blood vessel network, it still includes both an irreversible component 

due to spin-spin interactions (e.g., protons with protons and protons with other molecules) and a 

reversible component due to the susceptibility effects of biological components.  
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Chapter 2: Introduction to Normal Aging 

and Alzheimer’s Disease 
 

Alzheimer’s disease (AD) affected approximately 48 million people worldwide in 2015. Its 

devastating consequences have stimulated an intense search for AD prevention and treatment. 

Although normal aging and Alzheimer’s disease can cause similar cognitive deficits and clinical 

symptoms (e.g., memory loss), the underlying pathological changes are quite different. For 

decades, it has been commonly believed that normal aging causes significant neuron death in the 

neocortex and hippocampus. However, modern quantitative studies suggest that neuron number 

is preserved in normal aging, so neuron death is unlikely to account for the age-related 

impairment of neocortical and hippocampal functions. With significant brain atrophy and 

neocortical thinning, one can hypothesize that the neuronal density increases with increasing age, 

which is also supported by the literature. In contrast, there is considerable evidence for 

significant neuron loss in the hippocampal area in Alzheimer’s disease. Previous studies have 

also shown that neuronal damage is caused by neurotoxic pathological changes such as amyloid 

plaques and tau tangles. Therefore, it is necessary to review the qualitative and quantitative 

pathological changes of normal aging and Alzheimer’s disease with respect to neuron loss. 

Currently, radiotracers and positron emission tomography (PET) imaging are widely used to 

detect amyloid deposition and tau tangles in vivo. But there is also a potential for the GEPCI 

approach to the in vivo detection of these microstructural changes that avoids the disadvantages 

of PET imaging.  
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2.1 Normal Aging 

2.1.1  Non-significant Age-related Neuron Loss 

Although it is well known that normal aging can cause functional cognitive impairments, the 

neurobiological effects of normal aging (i.e., changes in the cellular content and organizations, 

including cerebral cortical thinning and atrophy) on functional and structural declines are still not 

well understood (19). A conventionally accepted idea dating back to the 1950s is that significant 

neuron death is found both in aged humans without AD and in nonhuman primates and rodents 

(20, 21). Although the percentage of neuron loss varies in these two studies, they both suggest 

that most neocortical regions and certain hippocampal subfields lose neurons by 25% to 50% 

with age. For example, Brody et al. (20) examined 20 brains of individuals between the ages of 

newborn to 95 years. They report that the cell number decreased with age in all cortical layers. 

The greatest decrease in cell number with increasing age occurred in the superior temporal gyrus 

followed by the precentral gyrus and then the area striata. However, the data may be confounded 

by species and strain differences, tissue processing, and sampling procedure. 

Application of stereological procedures to count the neurons of several species, including 

humans, yielded the surprising result that the number of neurons does not significantly change 

due to normal aging in the cortex and hippocampus (19). Consider a few studies that support this 

surprising result. Terry et al. (22) studied 51 brains from clinically and neuropathologically 

normal individuals ranging in age from 24 to 100 years. They report that the total neuron 

populations in the mid-frontal, superior temporal, and inferior parietal sections did not decline 

significantly with age. Furthermore, the total neuron counts in the young group did not differ 

significantly from those in the old group in the midfrontal cortex or the superior temporal cortex. 

Only in the inferior parietal area is the difference significant, but the p value is 0.05 at the cut-off 
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of significance level.  Haug and Eggers (23) examined 60 brains and report that the brain volume 

of frontal cortex significantly decreased but that loss of neurons cannot be found. As a result, the 

neuronal density increased in the frontal cortex. Furthermore, the size of neurons and the number 

of synapses decrease with age. Pakkenberg and Gundersen (24) examined 94 brains from a 

Danish population and report that the average numbers of neocortical neurons are 19 billion in 

female brains and 23 billion in male brains: a 16% gender difference. A rather small decline 

(approximately 10%) of neocortical neurons were found over the life span from 20 to 90 years in 

the human neocortex. However, they warn that, due to the experimental design, this small 

decline with age should not be considered strong evidence for biologically significant age-related 

neuron loss. Pakkenberg et al. examined the same 94 brain samples in 2003 (25) and report that 

the number of glial cells in six elderly individuals with a mean age of 89.2 years was not 

significantly different from that of six young individuals with a mean age of 26.2 years. 

Furthermore, the total myelinated fiber length varies from 150,000 to 180,000 km in young 

individuals and shows a large reduction with age. Freeman et al. (26) examined the cerebral 

cortex of 27 normal individuals ranging in age from 56 to 103 years. They found that the frontal 

and temporal neocortical regions exhibited clear evidence of cortical thinning with age but that 

total neuronal numbers in the frontal and temporal neocortical regions remained relatively 

constant over a 50-year age range. As a result, frontal and temporal cortical neuronal density 

showed a small but insignificant increase with increasing age. Freeman et al. also discuss what 

leads to cortical thinning. The data suggest that loss of neuronal and dendritic architecture, rather 

than loss of neurons, underlies neocortical volume loss and cortical thinning with increasing age 

in the absence of AD.  
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Based on the findings in literature, we can see neuron loss is not significant due to normal aging.  

In addition to neurons, the number of other CNS cells such as glial cells did not show significant 

differences between elderly individuals with a mean age of 89 years and young individuals with 

a mean age of 26 years (25). Furthermore, the glia/neuron ratio of 1.32 for females and 1.49 for 

males showed no statistically significant correlation with age over adult life (27). Thus, the 

published studies indicate that the total number of neurons and glial cells in the cortex remains 

relatively constant over normal adult life.  

2.1.2  Age-related Brain Atrophy and Cortical Thinning 

Cerebral volume loss and cortical thinning has been observed in various structural MRI studies 

associated with normal aging. A few studies are cited to support this observation. Scahill et al. 

(28) scanned 39 healthy control subjects ranging in age from 31 to 84 years. They find a 

significant decrease in cross-sectional whole brain, temporal lobe, and hippocampal volumes, 

and a significant increase in ventricular volume with age. Fotenos et al (29) also used structural 

MRI to scan 370 adults ranging in age of 18 to 97 years. 192 participants were non-demented, 

while the rest (98 participants) exhibited very mild to mild dementia of the Alzheimer type. They 

find that both cortical and white-matter volume decrease with age; gray matter volume declines 

in a linear fashion from early adulthood, whereas white matter volume loss appears to start later 

in life and does not follow a linear pattern. The onset of dementia is associated with an 

accelerated atrophy rate.  

Thinning of the cerebral cortex over age has also be found in many studies. A few studies are 

cited here to support this statement. Salat et al. (30) measured the cortical thickness in 106 non-

demented participants ranging in age from 18 to 93 years by using a T1-weighted MRI. They 

find that the global thickness significantly declines with increasing age. In regional measures, 
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significant thinning was found in the occipital lobe, the pre/post central gyrus, and the inferior 

lateral prefrontal cortex. Temporal lobe thinning is relatively less significant compared to that 

observed in other cortical areas. Similarly, our study (Chapter 3) (12) also shows that cortical 

thickness significantly decreases with age in most of the cortical regions segmented in 

FreeSurfer. The thinning rate varies across cortical regions of the brain. The 20 participants in 

this study were healthy controls ranging in age from 22 to 74 years.  

2.1.3  Neuronal Density may Increase with Age 

The unchanged number of neurons and the decreasing cortical volume imply increasing neuronal 

density with increasing age in the cortex, which is also supported by the results of Haug and 

Eggers (23, 31). They performed morphometric analysis of neurons on human brains and 

measured five Brodmann cortical areas. These areas include, (i) area 6 in the frontal lobe, also 

designated the supplementary motor area; (ii) area 11 in the orbital part of the frontal lobe, which 

is linked to psychosocial functions; (iii) area 7 in the parietal lobe, which is related to sensory 

and speech analysis; (iv) area 17 or the visual cortex in the occipital lobe; and (v) area 20 at the 

basis of the temporal lobe. The measurements are based on at least 50 brains in each area, except 

for area 20, for which the measurements of only 20 brains are provided. They find that the 

neuron density increases significantly with age in areas 6 and 11 in the frontal lobe (p = 0.01) 

and in area 17 in the occipital lobe (p = 0.001), while area 7 in the parietal lobe and area 20 in the 

inferior temporal gyrus show non-significant but increasing tendencies. They also confirm that 

the total number of neurons in the human cerebral cortex does not change during normal aging. 

This result may not be representative of brain regions other than the cortex. 

As mentioned above, Freeman et al (26) also find that frontal and temporal cortical neuronal 

density shows a small increase with increasing age. Although few studies directly measure 
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neuronal density over age, the unchanged number of neurons and cortical thinning with age are 

widely supported by previous studies, which is a strong indications of increased neuronal 

density. 

2.1.4  Age-related Dendritic and Synaptic Loss 

But if loss of neurons is not significant in normal aging, what leads to cortical thinning and 

volume loss? A more recent point of view is that relatively subtle alterations in synaptic 

connectivity, dendritic spine density, and neural plasticity (32-35) are associated with age–

related cognitive dysfunctions.  A significant reduction in the  dendritic arbors of pyramidal 

neurons located in the prefrontal, superior temporal, and precentral cortices, and changes in 

dendritic spine size, shape, and density across the neocortex in humans and animals are discussed 

by Dickstein (33). Hof and Morrison (34) argue that, while neuron death predominates in 

Alzheimer’s disease, age-related cognitive impairment is probably mediated by changes in 

synaptic communication rather than by neuron death.  Fjell et al. (32) also argue that regions 

with a high degree of life-long plasticity are more affected by normal aging effects. Freeman et 

al. (26) argue that previous studies suggest an age-related decrease in neuronal size (13) and a 

loss of presynaptic terminals (28). A loss of complexity of dendritic arborizations has also been 

described in Golgi studies of “normal” aging. The reported observation of volume loss in the 

white matter also suggests that some of the decrease in cortical thickness could be attributed to 

loss of ascending projections in the cortex. Together, these data suggest that loss of neuropil (i.e., 

neuronal structural complexity) might contribute to the dramatic thinning that occurs with 

increasing age. 

In summary, much evidence shows that neuron loss is not significant over the normal aging 

process, while cerebral atrophy and thinning are significant. Thus, neuronal density should 
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significantly increase with age. However, most of the studies cited that are related to neuronal 

structure were conducted on non-human primates or other animals or on post-mortem human 

tissues. Hence, it is essential to study the age-related cellular and functional alterations 

quantitatively in vivo and to establish a baseline for distinguishing normal aging from 

pathological effects. 

 

2.2 Alzheimer’s Disease 

2.2.1  A Staging Model of Alzheimer’s Disease 

Over the past two to three decades, a staging model of Alzheimer’s disease (AD) has been 

developed. Both AD pathological processes and clinical decline progress gradually. Pathological 

changes begin to develop decades before the earliest clinical symptoms occur. Dementia occurs 

at the last stage of many years of accumulation of these pathological changes. At present, the 

clinical diagnosis of AD requires the presence of dementia. 

The clinical disease stages of AD have been divided into three stages (36). The first is referred to 

as a pre-clinical stage in which individuals are cognitively normal but have AD pathological 

changes. Notice that some of these individuals die without ever showing AD clinical symptoms. 

The hypothesis is that an asymptomatic individual with AD-related pathological changes would 

ultimately have become symptomatic if he or she lived long enough. The second is commonly 

referred to as mild cognitive impairment (MCI), in which the earliest cognitive symptoms 

(typically deficits in episodic memory) occur but do not meet the criteria for dementia. The 

severity of cognitive impairment in the MCI stage varies from the earliest appearance of memory 

loss to more widespread dysfunction in other cognitive domains. The final phase in the evolution 
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of AD is dementia, in which impairments in multiple domains are severe enough to produce 

cognitive deficits.  

Dementia is the clinically observable result of the cumulative burden of AD pathological 

changes in the brain. A clinical diagnosis of dementia indicates that the patient has a disorder 

that precludes independent living and is on an inevitable course toward complete loss of 

independence. Most elderly patients with dementia have multiple pathological changes 

underlying their dementia. AD is the most common pathological substrate, which is referred to as 

dementia of the Alzheimer type (DAT).  

To date, all disease-modifying experimental therapies for AD have failed to demonstrate a 

clinical benefit in individuals with symptomatic AD (37, 38), possibly because the drugs were 

administered too late in the course of the disease, which begins 15-20 years prior to the onset of 

clinical symptoms (36, 39-45). As a result, the preclinical stage is an important time window for 

therapeutic intervention. Hence, one of the important directions in AD therapy is to develop 

widely accessible neuroimaging techniques that can detect AD brain pathology in the preclinical 

stages. Many biomarkers have been developed to detect pathological changes in the preclinical 

stage and to identify individuals who are destined to develop AD in the early disease course. 

Herein, several hallmark AD pathological changes and widely used biomarkers are introduced 

briefly. 

2.2.2  Amyloid Deposition 

One of the prevailing hypotheses of AD is the amyloid cascade hypothesis (36, 39, 41, 42), 

which suggests that abnormal accumulation of (Aβ) in the neocortex is one of the earliest 

pathological markers of AD. Aβ deposition is actually the product of a larger transmembrane 



 

29 

protein: the amyloid precursor protein (APP) (46). The abnormal metabolism of APP leads to 

excess production or reduced clearance of Aβ in the cortex.   

Both CSF Aβ42 and radiotracers of amyloid PET imaging are biomarkers of Aβ deposition. Klunk 

et al. (47) report the first human study of a novel amyloid PET imaging tracer—Pittsburgh 

Compound-B (PiB)—in 16 patients with diagnosed mild AD and 9 controls. The retention of PiB 

measured by PET imaging (PiB PET) in vivo reveals a large amount of amyloid deposits in 

cerebral cortical areas of the AD brains, especially in the prefrontal cortex and precuneus (47, 

48). PiB retention was equivalent in both AD patients and controls in areas known to be 

relatively unaffected by amyloid deposition (such as subcortical white matter, pons, and 

cerebellum). Studies in three young (21 years) and six older healthy controls (69.5 ± 11 years) 

showed low PiB retention in cortical areas and no significant group differences between young 

and older controls. Later on, Ikonomovic et al. (49) examined patients who underwent PiB PET 

imaging before death and autopsy. They report a strong direct correlation between PiB retentions 

in vivo and region-matched quantitative measures of amyloid plaques of the AD subjects. They 

also find that PiB binds specifically to fibrillary Aβ and not to soluble Aβ or diffuse Aβ plaques. 

This study further supports the validity of PiB-PET imaging as a method for in vivo evaluation of 

Aβ plaque burden.  

Low concentrations of CSF Aβ42 correlate with both the clinical diagnosis of AD and with Aβ 

neuropathology at autopsy. An inverse relation has been reported between in vivo PiB amyloid 

imaging and CSF Aβ42 in AD patients who have undergone both tests (50). The evidence 

therefore strongly supports the hypothesis that both amyloid imaging and low CSF Aβ42 are valid 

biomarkers of brain Aβ-plaque load.  
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However, amyloid deposition has been shown to start while individuals are still cognitively 

normal. It is hypothesized that, after an early phase of fast accumulation, a plateau is reached by 

the time of cognitive decline (36). In the study by Villain et al. (51), 32 patients with AD, 49 

subjects with MCI, and 103 healthy controls underwent two PiB PET scans 18 months apart. 

They report no significant association between the PiB retention rate of change and the clinical 

status or disease progression. Amyloid accumulation seems to slow down at the latest stages of 

the process. 

2.2.3  Neurofibrillary Tau Tangles 

So amyloid deposition is not related to clinical symptoms as closely as another hallmark 

abnormal protein deposit: neurofibrillary tangles (NFTs) formed by hyperphosphorylated tau. 

Bennett et al. (52) examined 44 individuals with clinically diagnosed AD and 53 without 

dementia with a uniform structured clinical evaluation for AD and cognitive testing about 8 

months prior to death, and brain autopsy at death. They report that, when a term for tau tangles is 

added to the multiple regression model with amyloid, the association of amyloid load with 

clinical disease or global cognitive tests is reduced by more than 60% and is no longer 

significant, whereas the association of tangles with clinical disease is essentially unchanged. 

Giannakopoulos et al. (53) examined 22 elderly cases with clinical dementia assessment 

(MMSE), stereological assessment of NFT, unaffected neurons, and total amyloid volume in the 

CA1 field of the hippocampus, entorhinal cortex, and Brodmann area 9 (frontal area). 

Multivariate analyses show that total NFT counts in the entorhinal cortex and area 9 as well as 

neuron numbers in the CA1 field are the best predictors of the MMSE score. The amyloid 

volume has no additional predictive value, in terms of clinicopathologic correlations, beyond its 

interaction with NFT. 
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However, the prior lack of imaging agents has limited studies of tau to postmortem examinations 

or measures that lack topographic information such as measurement of tau in CSF. A recent 

study by Brier et al. (54) reports PET imaging of tau and Aβ in a cohort of cognitively normal 

older adults and older adults with mild AD. They also discuss the fact that tau deposition in the 

temporal lobe more closely tracks dementia status and is a better predictor of cognitive 

performance than Aβ deposition in any region of the brain.  

2.2.4  Neuron Loss in the Hippocampal Area 

However, an autopsy study has confirmed that gross cerebral atrophy (indicating the loss of 

synapses and neurons), and not Aβ or NFT burden, is the most proximate pathological substrate 

of cognitive impairment in AD. For example, Savva et al. (55) assessed 456 brains from people 

69 to 103 years of age at death. They report that the associations between dementia and 

pathological changes (amyloid deposition and tau tangles) attenuate with increasing age. In 

contrast, atrophy of the hippocampus and the neocortex is strongly associated with dementia at 

all ages.  

Based on the above discussions, Aβ abnormalities precede tau abnormalities and NFTs precede 

cerebral atrophy. Additionally, patterns of gray matter loss are associated with NFT pathology at 

Braak stages V and VI (56). 83 subjects with Braak stage III through VI underwent ante-mortem 

and post-mortem AD staging. The Braak stage V and VI groups showed a pattern of gray-matter 

loss affecting the medial temporal lobes (MTL), including the hippocampus, the entorhinal 

cortex, and the adjacent parahippocampal gyrus, which is vulnerable to NFTs. Subjects with a 

high tau burden showed a pattern of gray-matter loss affecting the hippocampus, 

parahippocampal gyrus, and lateral temporal lobes compared with subjects with a low tau 

burden.  
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Indeed, the medial temporal lobe is an essential area related to human memory and to AD.  

Reduction of volume and loss of cells in the entorhinal cortex and hippocampus have been 

extensively reported in participants with mild cognitive impairment (MCI) and AD (57-61). For 

example, Price et al. (59) examined the neuron number and volume in the entorhinal cortex and 

CA1 field of the hippocampus from 4 groups of participants, including 13 non-demented cases 

with healthy brains, 4 cases with preclinical AD, 8 cases with very mild symptomatic AD, and 4 

cases with severe AD. They report no significant decrease in neuron number or volume with age 

in the healthy non-demented group and little or none in the healthy and preclinical AD groups. 

They report substantial decreases in neuron number and volume in the very mild AD group. 

Greater damage was observed in CA1 in the severe AD group. The results indicate that 

symptomatic AD begins only when neuron loss occurs in the hippocampal area, which is 

consistent with the study by West et al (62). 

The posterior parahippocampal gyrus draws relatively less attention, but several studies have 

reported its atrophy due to aging (63) and AD (64). The presence of neurofibrillary tangles 

(NFTs) and neuronal loss in the parahippocampal gyrus—previously reported by Thangavel et al 

(65)—can also affect R2* measurements. However, their participants were assessed at death 

after nearly a decade of dementia. In addition, tissue damage in the parahippocampal gyrus was 

smaller than that in the hippocampus (66).  

2.2.5  Clinical Dementia Rating (CDR) 

The above sections introduce hallmark AD pathological features. This section introduces a 

clinical evaluation for identifying cognitive impairment. This evaluation, referred to as clinical 

dementia rating (CDR), has been developed by Washington University. The CDR is a 5-point 

scale used to characterize six domains of cognitive and functional performance applicable to 
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Alzheimer disease and related dementias: memory, orientation, judgement & problem solving, 

community affairs, home & hobbies, and personal care. The necessary information to make each 

rating is obtained through a semi-structured interview of the patient and a reliable informant or 

collateral source (e.g., a family member). The score is useful for characterizing and tracking a 

patient’s level of impairment/dementia: 

0 = Normal 

0.5 = Very Mild Dementia 

1 = Mild Dementia 

2 = Moderate Dementia 

3 = Severe Dementia 

The scoring rule is to use all of the information available and to make the best judgement. Score 

each category (M, O, JPS, CA, HH, PC) as independently as possible. Mark in only one box for 

each category, rating impairment as a decline from the person’s usual level due to cognitive loss 

alone, not impairment due to other factors, such as physical handicap or depression. Occasionally 

the evidence is ambiguous and the clinician’s best judgment is that a category could be rated in 

either one of two adjacent boxes, such as mild (CDR=1) or moderate (CDR=2) impairment. In 

this situation, the standard procedure is to check the box of greater impairment. The derivation of 

the global CDR from the scores in each of the six categories is described in detail by Morris (67).  

2.3 MRI Application in Microstructural Changes 
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As mentioned above, PET imaging is widely used to measure the retentions of biomarkers of 

amyloid and tau deposition in AD studies. But MRI is widely available worldwide, is non-

invasive ,and does not require radiation exposure. For both normal aging and AD, a structural 

MRI can provide accurate volume measurements as post-mortem measurements. For example, 

Bobinski et al. (68) examined 11 AD cases and 4 healthy controls and measured the post-mortem 

volumes of the hippocampal subdivisions by using MRI and histological sections. They report 

strong correlations between these two measurements, which indicate that an accurate volumetric 

measurement of the hippocampus can be obtained via MRI. However, atrophy occurs at a later 

stage of the AD process, so structural MRI cannot effectively give an early diagnosis for the 

preclinical stage. Furthermore, the volumetric measurements lack biological information, so a 

quantitative MRI technique is needed to identify early AD pathological changes and to provide 

biological information at a microstructural level.  

This is possible because all of the AD pathological processes that contribute to the pathogenesis 

of Alzheimer’s disease at the cellular level lead to changes in the environment of local tissue 

water molecules – a major source of MRI signal. Hence, in addition to measuring brain atrophy 

by using volumetric MRI, a properly designed MRI technique can enable local water molecules 

to report on regional biological tissue properties at the cellular level.  

The GEPCI approach could be a potential candidate for this motivation. The GEPCI approach 

has been used to identify brain tissue damage in multiple sclerosis (2, 4, 69-72) and psychiatric 

diseases (73). R2* values have been found to be significantly lower in patients with multiple 

sclerosis (MS) than in healthy participants (2, 4, 69-72). Significant correlations between age-

adjusted R2* measurements and clinical scores of MS have also been reported for cortical 

regions (71). Significant group effects based on GEPCI measurements have been observed in the 
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superior temporal cortex and in the thalamus in participants with schizophrenia and bipolar 

disorder Because GEPCI metrics (R2* and R2t*) are sensitive to the tissue-water environment in 

the human brain, the measurements can be very hard to interpret. As a result, GEPCI is first 

applied to study healthy controls with normal aging, (i) to establish an age-related baseline, and 

(ii) to gain a better understanding of the biological interpretation of GEPCI metrics (12). GEPCI 

is then utilized to detect the pathological changes of the preclinical and the early Alzheimer 

disease in vivo (74).  
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Chapter 3: On the Relationship between 

Cellular and Hemodynamic Properties of  the 

Human Brain Cortex Throughout Adult 

Lifespan 
 

3.1 Introduction 
Establishing baseline MRI biomarkers for normal brain aging is significant and valuable for 

separating normal aging effects from neurological diseases. In this study, for the first time we 

have simultaneously measured a variety of tissue specific GEPCI metrics of healthy adults (ages 

22 to 74 years), such as T1-wegihted, R2*, R2t*, OEF, dCBV and Cdeoxy. GEPCI metrics are 

utilized to establish quantitative in vivo biomarkers characterizing the age-related evolution of 

tissue structural and functional properties of adults. Two main goals of this study are: (i) to 

investigate the age-related changes of GEPCI metrics so a baseline for normal aging can be 

established; (ii) based on GEPCI age-related results and what we know about the pathology of 

normal aging from the literature (reviewed in Chapter 2), find out a proper biological 

interpretation for GEPCI metrics, especially R2* and R2t*. Both the age-related baseline and the 

biological interpretation of GEPCI metrics are essential for us to investigate diseases in the 

future. 

The data (20 healthy subjects) show that in most cortical regions R2t* increases with age while 

tissue hemodynamic parameters, i.e., relative oxygen extraction fraction (OEFrel), deoxygenated 
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cerebral blood volume (dCBV) and tissue concentration of deoxyhemoglobin (Cdeoxy) remain 

practically constant. R2t* describes the part of the signal decay resulting from water molecule 

interactions with cellular and extracellular components of biological tissues.  By comparing our 

results with the literature data, we hypothesize that in the normal brain it can serve as a 

biomarker of the cortical “cellular packing density” – a parameter mostly proportional to the 

number of neurons and glia cells in the unit tissue volume – and can potentially identify tissue 

alterations (see further comments in the Discussion section). We also use this hypothesis to 

explain the relationships between R2t* and the functional data (e.g., OEF). Specifically, thicker 

cortical regions have lower R2t* and these regions have lower OEF. 

The baseline GEPCI-based biomarkers obtained herein could also serve to help distinguish age-

related changes in brain cellular and hemodynamic properties from changes which occur due to 

neurodegenerative diseases, e.g., (71). 

 

3.2 Methods 

3.2.1  Participants 

This study was approved by the Institutional Review Board of Washington University School of 

Medicine. Twenty participants aging from 22 to 74, including 7 male (ages: 22, 26, 29, 35, 37, 

42, 65) and 13 female (ages: 23, 28, 33, 42, 45, 46, 50, 52, 56, 57, 61, 61, 74), were recruited in 

this study. None of the participants had any history of neurological diseases. All participants 

provided informed consent.  
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3.2.2  Data Acquisition 

All subjects were scanned in a 3T Trio MRI scanner (Siemens, Erlangen, Germany). A 3D multi 

gradient echo sequence was used to obtain the data. Sequence parameters were: resolution 1×1×2 

mm3 (read, phase, slab), FOV 256 mm×192 mm, repetition time TR = 50ms, flip angle 30°, 10 

gradient echoes with first gradient echo time TE1 = 4 ms, echo spacing ∆TE = 4ms. Additional 

phase stabilization echo (the navigator data) was collected for each line in k-space to correct for 

image artifacts due to the physiological fluctuations (4). The total acquisition time of GEPCI is 

11 mins 30s. Field inhomogeneity effects were removed by using the voxel spread function 

(VSF) approach (3). Standard clinical Magnetization-Prepared Rapid Gradient Echo (MPRAGE) 

(75) images with TR/TI/TE = 2200/1100/3.37 ms and the resolution 0.9×0.9×1.5 mm3 were also 

collected for segmentation purposes. The total acquisition time of MPRAGE is 6 mins. After the 

data acquisition, the raw k-space data were read into MATLAB (The MathWorks, Inc.) for the 

post-processing.  

3.2.3  Data Analysis and Image Generation 

The image processing was finished in MATLAB (The MathWorks, Inc.) using models described 

in Chapter 1: 
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        (3.1)               

where TE is the gradient echo time, R2* is the global transverse relaxation rate constant, 

R2t*=1/T2t* is the tissue transverse relaxation rate constant in the absence of BOLD effect, Δf  

is the frequency shift (dependent on tissue structure and also macroscopic magnetic field created 

mostly by tissue/air interfaces), function ( )BOLDF TE  describes GRE signal decay due to the 

presence of blood vessel network with deoxygenated blood (veins and the part of capillaries 



 

39 

adjacent to veins), and function F(TE) describes the effects of macroscopic magnetic field 

inhomogeneities. 

As mentioned in Chapter 1, by fitting the equation to the real and imaginary parts of the complex 

signal using nonlinear regression algorithm, six parameters are computed: A0 (T1-weighted), 

R2*, R2t*, Δf,  and   for each voxel in the brain.  and   are computed from ( )BOLDF TE . 

Based on the fitting results, BOLD-related measurements are computed, including OEF, dCBV, 

and Cdeoxy. 

In this study, the relative regional OEF (OEFrel) is reported as: 

                                                                /rel meanOEF                                                    (3.2)                                                                                                        

where mean  is the mean across the cerebral cortex and  represents one single cortical region. 

3.2.4  Image Segmentation 

MPRAGE images were input into FreeSurfer (Laboratory for Computational Neuroimaging, 

Martinos Center for Biomedical Imaging) (76) to generate brain segmentations and calculate 

cortical thickness. 26 cortical regions of interest (ROI), covering frontal, temporal, parietal and 

occipital lobes, were chosen to characterize an individual participant’s cortex. The thalamus, 

caudate, putamen, pallidum, hippocampus and amygdala were chosen to study the subcortical 

regions.  

MPRAGE images were registered to GEPCI-T1-weighted images using FMRIB’s (Functional 

Magnetic Resonance Imaging of the Brain) Linear Image Registration Tool (77, 78) in FMRIB 

Software Library (FSL) and the transformation matrices of the registration were computed. 

Finally, these matrices were applied to the brain segmentations from FreeSurfer and transformed 
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them to the space of GEPCI-T1-weighted images. Since GEPCI –T1-weighted images are 

naturally co-registered with all GEPCI maps (R2*,R2t*, OEFrel, Cdeoxy, and dCBV), the 

segmentations were also naturally registered to all these maps.  

Even though the data were collected with rather high in-plane resolution – 1x1 mm2, they are 

still susceptible to the partial volume effect (edge values, outliers). To minimize it, a CSF mask 

generated from FSL is applied further removing CSF signals from FreeSurfer segmentations. 

Furthermore, in each of the FreeSurfer ROIs which usually contains thousands of voxels, the 

median of the corresponding measurement distribution was computed because it is less sensitive 

to outliers. This procedure also minimizes the errors in the model parameters estimates discussed 

in 3.2.6 Error analysis.    

3.2.5  Image Segmentation 

The correlations and linear regressions were established using the LinearModel class in 

MATLAB (The MathWorks, Inc.). As mentioned above, for each GEPCI parameter, the median 

value was calculated across thousands of voxels within each Freesurfer ROI. As a result, an 

individual participant has 7 parameters (R2*, R2t*, OEFrel, dCBV, Cdeoxy, cortical thickness (Th), 

and SR2t*=R2t*×Th) and 26 median values from the cortical ROIs for each parameter. So for 

each parameter and each ROI, the following equation is used to calculate a correlation and linear 

regression between the parameter and age across 20 participants: 

                                              ( 40)ROI ROI ROIparameter a k age                             (3.3)    

Age 40 years was selected arbitrarily as the adult reference age for the convenient interpretation 

of the intercept ROIa . Then ROIa  represents the characteristic value of a parameter within a ROI 
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taking into account all 20 participants. ROIa  corresponds to an averaged 40-year old adult. There 

are 26 ROIa  and ROIk  for each parameter across the cortical ROIs. To visualize the distribution of 

the parameters across 26 cortical ROIs, ROIa  can be mapped onto the Freesurfer brain surface. 

ROIa  is used to investigate the relationship between parameters across 26 cortical ROIs. If the 

parameter doesn’t have a significant linear relationship with age, the characteristic value of the 

parameter within a ROI is just the average across all the participants. The p-values were 

calculated to evaluate each correlation and conventionally p < 0.05 is considered as a significant 

correlation. Multiple comparison analysis was not applied here because we only reported 

individual correlations instead of comparing them across different ROIs.  

3.2.6  Error Analysis 

The simulated data were generated to test the accuracy of the theoretical model, Equation (3.1), 

used in this study. As the frequency ( f ) has minimal effects on the fitting process, only the 

amplitude of the signals were used in this simulation. First, the true values of the parameters 

were assigned based on our typical results: R2t* = 17, OEF = 40%, and dCBV = 3%. Then the 

parameters were substituted into Equation (3.1) to generate the “true” signals over 10 TEs from 

4ms to 40ms. Second, a set of “real” signals over 10 TEs was generated by adding the random 

noise to the true signals. A typical SNR in GEPCI experiments is between 300 and 500 (for 

Hanning filtered data). In the simulated data, the noise corresponding to SNR equal to 400 is 

used. The random noise values were drawn from the standard normal distribution generated by a 

built-in function in MATLAB. In total, 500,000 sets of the simulated signals were generated in 

this way. Third, the same fitting routine was applied to each set of the simulated signals to 
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calculate the output parameters. Finally, the medians, means and standard deviations of each 

parameter were calculated. 

 

3.3 Results 

3.3.1  Age-related Changes in the Cerebral Cortex 
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Figure 3.1 Examples of the scatter plots of (a) R2*, (b) R2t*, (c) OEFrel (local-to-global ratios, 

Eq. [2]), (d) dCBV, (e) Cdeoxy, (f) cortical thickness (Th) and (g) SR2t* versus age are shown in 4 

selected cortical ROIs. Each plot represents the data from a single cortical region and each point 

in the plot represents a single participant. Male subjects are represented by blue points and 

female subjects by red points. For R2*, R2t* and cortical thickness, the solid lines are the 

regression curves and the p values evaluate the significance of the linear model. SR2t*, OEFrel, 

dCBV and Cdeoxy show no significant change with age and are represented by a constant model 

(the solid lines). The dashed lines in all plots represent the 95% confidence intervals. Number of 

asterisks or “stars” show significance level: p < 0.01 (**), p < 0.05 (*). The results of regression 

analysis from all other regions are listed in Table 3.1 and Table 3.2. 

 

The data (Figures 3.1 and 3.2, Tables 3.1 and 3.2) show that in most cortical regions R2* and 

R2t* increase with age, OEFrel, dCBV and Cdeoxy remain constant while cortical thickness, Th, 

decreases. In addition to parameters listed above, we have also introduced a parameter SR2t* 

that represents an integrated characteristic of R2t* under a unit square of the cortex and is 

computed as a product of the median R2t* and Th for each FreeSurfer region: SR2t*=R2t*×Th. 

The detailed role of this parameter will be addressed in the Discussion section.  

Figure 3.1a shows that R2* statistically significantly increased (p < 0.05) with age in the 

example cortical ROIs. Furthermore, 21 out of 26 regions listed in Table 3.1 demonstrated that 

R2* significant increase over age with varying rates (slopes). Although a few regions showed 

non-significant results, all slopes were positive demonstrating an increasing trend of R2* over 

age.  

Figure 3.1b shows that R2t* also significantly increased (p < 0.05) with age in the example 

ROIs. Furthermore, 15 out of 26 regions listed in Table 1 showed significant increase over age 

with varying rates (slopes). In general, p values for R2t* regression are higher than those for R2* 

regressions. As a result, a few regions with significant increases in R2* showed non-significant 

increases in R2t*. For example, in the insula cortex, R2* significantly increased with age (p = 
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0.020) while R2t* did not (p = 0.14). Again, all slopes were positive. So although some regions 

didn’t have significant results, there was always an increasing trend of R2t* over age. 

Figure 3.1c shows that the relative OEF (OEFrel, a local-to-global ratio, Equation (3.2)), showed 

no significant trend with age – the p values of the linear model were not significant (p > 0.05) in 

all cortical regions except the rostral-middle frontal (p= 0.013) and the lateral occipital (p= 

0.026). To describe this data, a constant model is used in all cortical regions. The mean values of 

OEFrel are shown in Figure 3.1 as solid lines with the 95% confidence intervals shown as dashed 

lines. The mean values and standard deviation were listed in Table 3.2. The mean values of 

OEFrel ranged from 0.6 to 1.5 across the selected 26 ROIs. The regions in occipital lobe, such as 

cuneus, lingual and lateral occipital, have comparatively higher OEFrel (Table 3.2).  

Results for dCBV (Figure 3.1d and Table 3.2) and Cdeoxy (Figure 3.1e and Table 3.2) showed 

similar properties as OEFrel. They have no statistically significant linear trend over age. As a 

result, a constant model was used for them. The mean values and standard deviation were listed 

in Table 3.2. 

Figure 3.1f shows that cortical thickness significantly decreased (p<0.05) with age in the 

example regions except in superior frontal (p=0.11). Furthermore, 17 out of 26 regions listed in 

Table 3.1 showed significant cortical thinning over age with varying rates (slopes, mm/year). But 

all slopes are negative, which indicate age-related thinning varied in different regions of the 

brain.   

Results for the integrated parameter SR2t* were analyzed using the same procedure as OEFrel 

and showed no significant linear relationships with age. They were presented using a constant 

model demonstrating no significant changes over the studied human lifespans for each ROI 
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except caudal anterior cingulate (Figure 3.1g). The mean and standard deviation were listed in 

Table 3.2. 

 

Table 3.1 

ROI  R2* R2 

 name slope intercept pvalue slope intercept pvalue 

banksst 0.029 18.6 0.020 0.028 16.5 0.021 

caudal-anterior cingulate 0.031 15.6 0.011 0.052 13.5 0.004 

caudal-middle-frontal 0.034 17.6 0.006 0.021 15.8 0.120 

cuneus 0.040 19.7 0.005 0.043 17.8 0.007 

fusiform 0.034 18.9 0.007 0.023 16.4 0.093 

inferior parietal 0.034 18.2 0.002 0.029 16.3 0.012 

isthmus cingulate 0.038 18.3 0.003 0.044 17.2 0.001 

lateral occipital 0.041 20.6 0.015 0.040 18.1 0.032 

lingual 0.048 19.9 0.005 0.051 18.3 0.009 

middle temporal 0.037 18.5 0.002 0.030 14.8 0.060 

parahippocampal 0.031 17.2 0.055 0.004 15.0 0.841 

paracentral 0.043 19.0 0.001 0.039 17.6 0.027 

parsopercularis 0.042 17.0 0.001 0.042 14.8 0.005 

parsorbitalis 0.024 18.9 0.106 0.006 15.1 0.699 

parstriangularis 0.033 17.6 0.010 0.019 15.0 0.392 

postcentral 0.030 18.3 0.005 0.032 16.2 0.017 

posterior cingulate 0.029 16.6 0.003 0.028 15.2 0.015 

precentral 0.037 18.4 0.003 0.032 16.5 0.020 

precuneus 0.033 18.0 0.004 0.034 16.4 0.003 

rostral-anterior cingulate 0.014 15.6 0.227 0.006 11.9 0.762 

rostral-middle-frontal  0.020 17.1 0.074 0.011 14.8 0.417 

superior frontal 0.027 16.6 0.008 0.027 14.7 0.021 

superior parietal 0.023 18.3 0.072 0.021 16.1 0.197 

superior temporal 0.038 17.6 0.002 0.017 14.4 0.275 

supramarginal 0.033 17.6 0.001 0.028 15.5 0.020 

insula 0.022 15.5 0.036 0.020 12.5 0.143 

 

Table 3.1 continues on the next page 
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Table 3.1 (continue) 

ROI  Thickness 

name  slope intercept pvalue 

banksst -0.0095 2.51 0.001 

caudal-anterior cingulate -0.0018 2.52 0.617 

caudal-middle-frontal -0.0052 2.49 0.020 

cuneus -0.0035 1.78 0.112 

fusiform -0.0064 2.72 0.002 

inferior parietal -0.0060 2.39 0.007 

isthmus cingulate -0.0030 2.36 0.347 

lateral occipital -0.0038 2.18 0.023 

lingual -0.0043 2.00 0.022 

middle temporal -0.0082 2.86 0.007 

parahippocampal -0.0081 2.69 0.036 

paracentral -0.0050 2.36 0.072 

parsopercularis -0.0081 2.51 0.001 

parsorbitalis -0.0039 2.62 0.228 

parstriangularis -0.0053 2.36 0.028 

postcentral -0.0046 2.03 0.014 

posterior cingulate -0.0055 2.45 0.016 

precentral -0.0064 2.51 0.021 

precuneus -0.0060 2.31 0.009 

rostral-anterior cingulate -0.0040 2.76 0.212 

rostral-middle-frontal  -0.0031 2.23 0.168 

superior frontal -0.0047 2.63 0.115 

superior parietal -0.0040 2.12 0.094 

superior temporal -0.0074 2.77 0.008 

supramarginal -0.0073 2.53 0.001 

insula -0.0051 3.02 0.002 

 

Table 3.1: The parameters of Equation 3.3 and p-values for R2*, R2t*, and cortical thickness in 

26 selected FreeSurfer ROIs across 20 healthy subjects. 
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Table 3.2 

ROI OEFrel dCBV(%) Cdeoxy ( µM) SR2t*(mm/s) 

 name mean std mean std mean std mean std 

banksst 1.14 0.30 3.23 1.22 18.2 6.0 41.0 3.2 

caudal-anterior cingulate 0.87 0.54 2.79 1.99 15.2 10.2 34.3 3.4 

caudal-middle-frontal 1.02 0.20 2.65 0.53 15.5 3.9 39.1 2.7 

cuneus 1.10 0.31 2.70 1.69 14.4 8.5 31.9 3.4 

fusiform 1.29 0.21 3.36 1.08 21.0 5.2 44.4 2.8 

inferior parietal 1.07 0.22 3.03 0.68 16.5 4.0 38.7 2.5 

isthmus cingulate 1.02 0.35 1.18 0.90 6.7 4.5 40.7 3.8 

lateral occipital 1.29 0.14 4.25 1.10 23.4 5.4 39.6 2.9 

lingual 1.43 0.42 1.88 1.41 10.5 6.5 36.6 2.8 

middle temporal 1.05 0.29 6.45 1.59 37.8 9.0 42.1 3.0 

parahippocampal 0.99 0.46 1.86 1.41 12.3 8.5 39.8 4.8 

paracentral 1.52 0.52 1.12 0.99 8.1 6.6 41.5 4.3 

parsopercularis 0.98 0.39 3.09 1.29 17.7 6.1 37.1 2.7 

parsorbitalis 1.13 0.49 6.12 1.98 36.2 9.3 39.5 3.4 

parstriangularis 0.87 0.36 4.48 2.29 25.1 11.2 35.2 3.9 

postcentral 1.21 0.18 2.43 0.88 15.1 5.7 32.9 2.7 

posterior cingulate 0.75 0.30 1.88 0.99 10.1 5.5 37.1 2.3 

precentral 1.21 0.17 2.21 0.69 13.7 4.7 41.3 3.4 

precuneus 0.89 0.33 2.44 0.89 13.0 5.0 37.7 2.8 

rostral-anterior cingulate 0.60 0.17 6.25 2.36 34.3 11.1 32.9 5.0 

rostral-middle-frontal  0.63 0.20 4.16 1.36 20.9 4.9 33.0 2.7 

superior frontal 0.75 0.17 2.74 0.62 15.5 4.3 38.5 3.2 

superior parietal 1.25 0.28 2.80 0.74 16.9 5.6 34.2 3.7 

superior temporal 0.72 0.22 5.17 1.33 29.1 6.7 39.5 3.8 

supramarginal 0.89 0.20 3.23 0.94 17.6 5.1 39.0 2.7 

insula 0.60 0.22 3.46 1.04 20.7 6.0 37.8 2.7 

 

Table 3.2: The mean values and standard deviations of the OEF, dCBV, Cdeoxy, and SR2t* in 26 

selected FreeSurfer ROIs across 20 healthy subject. 
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3.3.2  The Distribution of Parameters on the Brain Surfaces 

 

Figure 3.2 The distributions of all GEPCI-derived parameters are presented on the lateral and 

medial cortical surfaces of the left hemisphere, including R2* (s-1), R2t* (s-1),  OEFrel,  

dCBV(%), Cdeoxy (µM),  cortical thickness (Th) (mm), SR2t* (mm/s), and the regression slope (

ROIk from Equation (3.3)) of R2t*  vs. age (s-1/year). Images for R2*, R2t*, and Th use the 

regional characteristic values ROIa  from Equation (3.3). Images for SR2t*, OEFrel, dCBV and 

Cdeoxy use the regional mean values averaged across all subjects (Table 3.1) because they don’t 

have a significant linear relationship with age. The surface of the cortex was generated by the 

FreeSurfer at the depth of 0.5 (the voxels in the center of gray matter were sampled). White 

matter, deep grey matter and ventricles were excluded.  
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The distributions of all the GEPCI-derived parameters is presented on the lateral and medial 

cortical surfaces of the left hemisphere in Figure 3.2. Images for R2*, R2t*, and Th use the 

regional characteristic values ROIa  from Equation 3.3. Images for SR2t*, OEFrel, dCBV and 

Cdeoxy use the regional mean values averaged across all subjects (Table 3.1) because they don’t 

have a significant linear relationship with age. The ventricles, white matter and deep gray matter 

are excluded. R2* and R2t* have a similar distributed network. Frontal lobe, inferior parietal, 

precuneus and posterior cingulate have relatively lower values than paracentral lobule, lateral 

occipital, cuneus and lingual. This distribution feature is consistent with the previously reported 

T2* mapping at 7 T resulting from the averaging of 14 subjects (79). 

3.3.3  Correlations between Structural and Hemodynamic Cortical Tissue 

Properties 

 

 

 

 

 

 

 

Figure 3.3 The correlation and linear regression of (a) R2t* versus cortical thickness; (b) R2t* 

versus OEFrel; Each point represents the characteristic value of each FreeSurfer ROIs. The 

regional characteristic values of R2t* and thickness correspond to ROIa  from Equation (3.3). 

Since OEFrel remains constant with age in the cortical regions, the characteristic values of OEFrel 

are just the mean values across the subjects in the corresponding regions. All the coefficients 

from the linear regressions are listed in Table 3.3 
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Table 3.3: The regression coefficients, p values and Pearson correlation coefficients for R2t* vs. 

Thickness and R2t* (s-1) vs. OEFrel. Data represent averages from 20 healthy subjects across 26 

selected FreeSurfer ROIs displayed in Figure 3.3. 

 

The regional characteristic values of R2t* and thickness correspond to ROIa  from Equation (3.3). 

Since OEFrel remains constant with age in the cortical regions, the characteristic values of OEFrel 

are just the mean values across the subjects in the corresponding regions. R2t* correlates 

negatively with the cortical thickness across 26 cortical ROIs (p < 0.05 and r = 0.71, Figure 

3.3a). This correlation indicates that the thinner cortex has a relatively higher R2t*. Furthermore, 

R2t* positively correlates with OEFrel across 26 cortical ROIs (p < 0.05 and r = 0.8, Figure 3.3b). 

The regions extracting more oxygen also have higher R2t*. Implications of all these correlations 

will be discussed in detail in the Discussion section. 

3.3.4  Age-related Changes of R2* in Subcortical Regions 

 

 

 

 

 

Table 3.4: The regression coefficients and p values of R2* vs. age in 6 subcortical ROIs.  Data 

represent results from 20 healthy subjects displayed in Figure 3.4. 

 

Table 3.3 

  slope  intercept p value r 

R2t* (s-1)  vs. Thickness (mm) -3.96 25.3 4.34E-05 0.71 

R2t* (s-1)  vs. OEF 5.09 10.5 6.94E-07 0.8 

Table 3.4 

ROI R2* (s-1) 

name slope  intercept p value 

caudate 0.094 21.4 0.0003 

putamen 0.209 24.0 0.0003 

pallidum 0.178 34.8 0.0004 

thalamus 0.013 21.0 0.1635 

hippocampus 0.024 16.9 0.0816 

amygdala 0.035 15.4 0.0341 
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Figure 3.4 The scatter plots and linear regressions of R2* versus age in subcortical ROIs. Each 

plot represents the data from a single subcortical region and each point in the plot represents the 

median value in the region from a single subject. Male subjects are represented by blue points 

and female subjects by red points. The solid lines are the regression curves and the dashed lines 

are the 95% confidence intervals. All the coefficients from the linear regressions are listed in 

Table 4. p < 0.001 ***, p < 0.01 **, p < 0.05 *.    

 

R2* significantly increases with age in basal ganglia (caudate, putamen and pallidum), and 

amygdala. Thalamus and hippocampus show less significant age-related changes. Notice that 

R2* in the basal ganglia is substantially larger than R2* in the cortex. This is because basal 

ganglia is rich of iron deposition, which is paramagnetic and cause R2* to increase significantly. 
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3.2.5  Error Analysis 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 The histograms of the simulated data for R2t*, OEF, dCBV and Cdeoxy are shown 

with true values (black) and median values (red). The black and red lines overlap in the 

histogram of OEF. Note that the peak in OEF histogram at the lower boundary is due to the 

restriction set in the fitting routine (OEF > 10%). 

 

 

Table 3.5: The true values, medians, means and standard deviations of all the parameters in the 

simulations are listed here. The medians more accurately represent true values than the means for 

all the parameters. 

       Table 3.5    

 

      A0 R2t* (s-1)     OEF (%) dCBV (%)  Cdeoxy ( µM) 

true values 100.00 17.00 40.00 3.00 22.44 

median 99.94 16.91 40.01 3.43 24.63 

mean 99.85 16.44 40.80 4.12 27.04 

standard deviation 0.75 2.06 17.32 2.60 10.73 
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The results are listed in Table 3.5. The histograms of the output parameters, and the 

corresponding true and median values are shown in Figure 3.5. The results show that the median 

values of R2t*, OEF, dCBV and Cdeoxy better represent the true values than the means because 

the histograms are skewed and the median is less biased by the outliers.  

 

Figure 3.6 The contour covariance maps of the simulated data. The results show the peak values 

of R2t* around 17, OEF around 40% and dCBV around 3%, well estimating the true values.  The 

covariance between OEF and dCBV is consistent with the actual covariance map between the 

OEF and dCBV presented in Fig. 6 in the previous publication by Ulrich and Yablonskiy (5). 

 

The 2D contour covariance maps of the relationships between R2t*, OEF and dCBV are shown 

in Figure 3.6. It demonstrates the peak value of R2t* around 17, OEF around 40% and dCBV 

around 3%, well estimating the true values. The negative correlation between R2t* and OEF (r = 

-0.88, p < 0.001) strengthens that the observed positive correlation between R2t* and OEFrel in 

our experimental data (Figure 3.3) reflects the physiological relationship instead of errors.  
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Figure 3.7 Typical example of the distribution of F(TE10) and the joint covariance contour of 

R2t* and F(TE10) are shown for a single subject. The range of F(TE10) is from 0 to 1 and most of 

values are between 0.9 to 1. The number of voxels with F(TE10) lower than 0.8 is quite small and 

they are not visible on the contour map. No covariance is found between R2t* and F(TE10) 

suggesting no bias in R2t* estimate due to the field inhomogeneities.  

 

The detailed analysis of the correction for field inhomogeneity artifacts was provided in 

Yablonskiy lab’s previous paper where voxel spread function method (3) was introduced. Here 

we further demonstrate that VSF procedure does not create bias in parameters estimates in our 

data. The signal decay due to the macroscopic field inhomogeneities is characterized by the F 

function at the last echo, F(TE10), where the strongest signal decay is observed.  Example of the 

distribution of F function at the last echo, F(TE10), and the contour map of the joint covariance 

between R2t* and F(TE10), for the whole gray matter from an individual subject is  shown in 

Figure 3.7. No correlation is found between R2t* and F(TE10). The peak value of F(TE10) is 

around 0.99 and most of values are located between 0.9 and 1 due to a good shimming procedure 

and rather small voxel size. The number of voxels with values lower than 0.8 is so small that 

they are not visible on the contour map. These voxels with lower F(TE10) are mostly affected by 
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the magnetic inhomogeneity due to the air/water interface around the sinuses and represent a 

very small fraction of the brain.   

One additional bias in the parameter estimates may be related to the estimation of OEF. Because 

the BOLD model is developed under the assumption that the orientations of blood vessels are 

statistically random in each voxel, the actual variations of the blood vessel orientations may 

cause deviations in estimating OEF on a voxel by voxel basis. For example, if the blood vessels 

in some voxels have the predominant orientation parallel to the static magnetic field B0, the 

BOLD effect is so minimal that the fitting routine will substantially underestimate OEF; 

conversely, OEF will be underestimated for the voxels with the predominant orientations of 

blood vessels perpendicular to B0. However, as demonstrated in (8), the estimates of R2t* and 

dCBV are not affected by this limitation. Besides, the use of median values for representing our 

results for very large regions, also minimizes these biases.  

In conclusion, although substantial deviations from the true values of all parameters can be found 

in individual voxels and there are several restrictions on this model, the medians values of the 

parameters are very close to the true values. All in all, the simulations support that the 

methodology used in this study can generate the valid regional medians of R2t* and 

hemodynamic parameters for large cortical regions. In my dissertation, the results in cortical 

regions usually contain thousands of voxels. 

 

3.4 Discussion 
The result section shows the relationship between GEPCI derived parameters and age across 

cortical ROIs, which achieve the first goal of this study. The second goal is to interpret these 
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results and find out the biological meaning of GEPCI derived parameters, especially for R2* and 

R2t*. The key questions are: why R2t* increases with age in the cortex and what features of the 

brain cellular structure cause this increase and variability between different brain structures? 

Main contributions to R2t* signal decay in different brain structures come from the water 

molecules interactions with cell structural proteins, lipids and iron (80-82).  In the subcortical 

GM, i.e., the caudate, putamen and pallidum, a significant increase in R2* with age that we 

observed (Fig. 4), is consistent with previous studies (82-87) and is usually attributed to the 

known iron deposition in those regions with the increasing age. However, iron is unlikely a 

contributor to the age-related increase of the cortical R2t* because, according to Hallgren and 

Sourander (88), the iron content in the cortex remains nearly constant after the age of 30. The 

major contributions to the increased cortical R2t* and its variability are likely to be attributed to 

the water molecule interactions with other cellular structural components such as lipids and 

proteins.  

Another source of the variation in R2* potentially could be an anisotropic effect reported by 

Rudko et al (89). However, even at 9.4T field strength, R2* showed only 0.94 ± 0.32 s-1 

variation in GM of mice, which is a much smaller effect than the variation across different brain 

regions that we found in a human brain at 3T.  

The hypothesis that the changes of MR signal relaxation properties are related to the changes in 

the concentration of lipids and proteins has been useful in studying Central Nervous System 

(CNS) diseases, such as Multiple Sclerosis (e.g., (69, 90)) where cellular damage is mostly 

attributed to the loss of myelin. However, this hypothesis might not be adequate to describe 

normal aging effects of a healthy tissue where MR signal relaxation properties are related not 

only to the concentration of the cellular structural components but also to their cellular structural 
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arrangements (91). For example, lipids distributed as multiple small droplets would have much 

bigger water-accessible surface, hence cause substantially stronger relaxation effects than a 

single large lipid droplet with the same total amount of lipids. 

Herein by comparing our results with the literature data about normal aging (reviewed in Chapter 

2) we provide support for a hypothesis that in a healthy adult brain the tissue-specific R2t* can 

serve as a biomarker of the cortical “cellular packing density”, which is mostly proportional to 

the number of neurons and glial cells in the unit tissue volume.  We also use this hypothesis to 

explain the relationships between R2t* and the functional data, such as OEF and aerobic 

glycolysis.  

3.4.1  Cortical Cellular Packing Density is related to R2t* 

Our hypothesis is supported by the available literature data on the cellular changes in the aging 

brain. As reviewed in Chapter 2, it was a common impression that the neuron loss (20, 21) is an 

inevitable process of aging that leads to the cortical thinning and cognitive dysfunction. 

However, many studies have reported that the number of neurons in the human cortex remains 

the same over adult life (19, 22-26, 35, 92) and that normal aging is accompanied by changes in 

the dendritic structures, spine density and synapse density. Even the total number of glial cells in 

the cortex remains relatively constant over normal adult life (25, 27). The unchanged number of 

cells and the decreasing cortical volume imply the increasing cell density with age in the cortex, 

which is also supported by previous studies (23, 26, 31).  

This increasing age-related cortical cellular packing density in the cortex is consistent with our 

interpretation of age-related increased R2t* reported herein as a biomarker of cellular packing 

density. In this context, the product of R2t* and cortical thickness, SR2t*, represents the cellular 

packing content underneath a unit surface (e.g., 1 square millimeter surface) of the cortex. Our 
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finding that this product remains constant with age for all cortical regions (Figure 3.1g, Table 

3.1), is in agreement with the preservation of cortical cellular content in healthy adults over age.  

If both the number of neurons and the relative fraction of glial cells to neurons stay the same 

over age, the density of both neurons and glial cells would go up proportionally. Since axons and 

dendrites contain considerably larger concentration of macromolecules (e.g., lipids and proteins), 

their contribution to the R2t* relaxation is expected to be prevailing compared to glial cells even 

though concentration of glia cells in the cortex is higher. Hence, we hypothesize that the increase 

of R2t* is mainly due to the increased neuronal density.  

3.4.2  Neuronal Density of Non-human Primates is related to R2t* 

Our data is also compared with the neuronal density of non-human primates measured by Collins 

et al. (93). Collins et al. reported the highest neuronal density in primary visual cortex, the 

second highest in association visual areas and relatively higher density in primary somatosensory 

areas (S1) among all of the examined primates. Lowest neuronal densities were found in 

prefrontal cortex, premotor cortex or cortex ventral to S1 and motor cortex (M1) in different 

primates. Those distributions of neuronal density are in a good association with the distributions 

of R2t*. Indeed, the highest R2t* were found in the visual cortex (cuneus, lateral occipital and 

lingual) and the lowest were found in the frontal areas (Figure 3.2 and Table 3.1). Relatively 

higher R2t* were also shown in S1 and M1 (paracentral, precentral and postcentral) and R2t* 

values in these two regions were similar. Relatively lower R2t* were found in regions close to 

S1 and M1. All in all, these data further support our hypothesis that R2t* is related to neuronal or 

cellular packing density.  

Elston et al. (94) found that cells in the prefrontal cortex of humans are more branched and more 

spinous than those in the temporal and occipital lobes. Comparing these results with the 
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measurements of neuronal density by Collins et al. (93) we can conclude that regions with 

relatively lower neuronal density have more complex dendritic arbors, larger somas and dendritic 

field sizes and more spines than regions with higher neuronal density. This is in agreement with 

the line of consideration by Glasser and Van Essen (95) who utilized T1- and T2-weighted MRI 

to evaluate a distribution of the myelin content in the cortex. Hence, comparing the R2t* maps 

with these literature data (93, 94), we can further suggest that the areas with lower R2t* represent 

regions with complex dendritic arbors, larger somas and dendritic field sizes and more spines 

than regions with higher R2t*. 

3.4.3  Brain Tissue Hemodynamic Properties 

Besides R2t*, the relative OEF, dCBV and Cdeoxy are also derived from GEPCI data and they are 

in agreement with previous literature results. The distribution of the relative OEF in Figure 3.1 

shows the uniformity across frontal area and precuneus but higher values in the visual cortex 

(cuneus and lingual) which is consistent with the findings of default mode network (96). The 

relative OEF shows no significant change with age (Figure 3.2c), which is consistent with 

previous studies.  Leenders et al. reported that oxygen extraction fraction (OER) didn’t change or 

showed a slight increase with age in the selected regions (97). Pantano et al. showed that OEF 

had no statistically significant changes with age, although a small upward trend was present (98). 

Yamaguchi et al. also demonstrated that OEF didn’t show any correlation with age (99). GEPCI 

dCBV shows no significant change with age which is consistent with previous findings of no 

significant changes in the cerebral blood volume (which is a measure of both, dCBV and arterial 

blood volume) with age (97, 99).  

The R2t* map outlines practically the same pattern as the map of aerobic glycolysis (100) with 

areas of low R2t* corresponding to areas of high aerobic glycolysis and areas of high R2t* 
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corresponding to areas of low aerobic glycolysis. This fits well with our biophysical hypothesis 

of R2t* reflecting cellular packing density. Indeed, the areas of complex dendritic and synaptic 

structures characterized by lower R2t* are likely to require high aerobic glycolysis needed to 

support high synaptic activities (101). Moreover, since the correlation in brain regions between 

aerobic glycolysis and CBF is stronger than that between aerobic glycolysis and CMRO2 (101), 

areas of high aerobic glycolytic activity may show relatively lower OEF. Hence, it explains the 

strong correlation between R2* and OEF (p < 0.001, r = 0.71 in Figure 3.2b). It is also important 

to note that the regions with lower R2t* are mostly located within the default mode network (96). 

Although OEF and R2t* are derived from the same data and model, their correlation is robust. 

Computer Monte-Carlo simulations (15) demonstrated that bias in the estimation of R2t* due to 

using static dephasing regime model (11) does not exceed 0.3 s-1 and biases in OEF and dCBV 

are smaller than 10%. Furthermore, Figure 3.6 shows that the correlation between R2t* and 

OEFrel is negative due to the noise of the data and fitting routine. Hence, the observed positive 

correlation is due to the biological environment in the human brain. Besides, the results are 

consistent with the above listed literature data.  

 

3.4 Summary 
Distinguishing the cognitive changes of normal aging from the initial stages of 

neurodegenerative disorders, such as Alzheimer’s disease, can be difficult. Hence, establishing 

baseline MRI biomarkers for normal aging is significant and valuable. In this study, we used an 

advanced GEPCI approach (3-5) allowing the quantitation of various tissue specific structural 

and functional metrics.   
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Comparison between GEPCI data and the available literature information suggests that the age-

related increase in the cortical R2t* mostly reflect the age-related increase in the cellular packing 

density.  GEPCI data also show that tissue hemodynamic parameters, i. e. relative OEF, dCBV 

and Cdeoxy have no linear correlations with age and remain practically constant in most cortical 

regions. We found important correlations characterizing relationships between brain structural 

and hemodynamic properties in different brain regions. Specifically, thicker cortical regions have 

lower R2t*, reflecting less cellular packing density, and these regions extract less oxygen from 

the blood. 

All our findings can be understood if we put forward the following hypotheses: 

1. Regions in a brain characterized by a higher R2t* contain higher concentration of neurons 

with less developed cellular processes and are characterized by lower glycolytic activity. 

Accordingly, they require less blood flow to maintain their structure. These areas have higher 

OEF.  

2. Regions in a brain characterized by a lower R2t* represent regions with lower concentration of 

neurons but more developed cellular processes (dendrites, spines, etc.). They display higher 

glycolytic activity, hence require higher blood flow to maintain and develop new structural 

elements responsible for “information storage”. These areas have lower OEF.   
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Chapter 4: In vivo Detection of 

Microstructural Correlates of Brain 

Pathology in Preclinical and Early 

Alzheimer’s Disease with MRI 
 

4.1 Introduction 
Based on the biological interpretations of GEPCI metrics in Chapter 3, we now apply GEPCI 

metrics to Alzheimer’s disease (AD). As reviewed in Chapter 2, Alzheimer’s disease (AD) is a 

neurodegenerative disorder that is characterized by intraneuronal aggregates of tau called 

neurofibrillary tangles and extracellular aggregates of amyloid-beta (Aβ) protein called plaques. 

Clinically, AD is characterized by memory deficits and progressive cognitive impairment, 

leading to dementia. The preclinical stage of AD provides a large window for therapeutic 

intervention (102). Hence, one of the important directions is developing widely accessible 

neuroimaging techniques that can detect AD brain pathology in the preclinical stages (103, 104).  

One of the prevailing hypotheses of AD is the amyloid cascade hypothesis (36, 39, 41, 42) that 

suggests that abnormal accumulation of (Aβ) in the neocortex is one of the earliest pathological 

markers of AD. Paradoxically, it is also known that the medial temporal lobe (MTL), a region 

that mediates short-term memory, is affected early in the disease but is not the most affected 

region by Aβ deposition compared with neocortical regions (e.g., prefrontal cortex and precuneus 

(47-49)). At the same time, histological studies show that the MTL is particularly vulnerable to 

neurofibrillary pathology in the early stages of aging and AD (65, 66, 105-108). The reduction of 

volume and the loss of cells in the entorhinal cortex and hippocampus have been extensively 

reported in participants with mild cognitive impairment (MCI) and AD (57-61). Importantly, 
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neuropathology studies have established that symptomatic AD begins only when cell loss occurs 

in the hippocampal area (59).  

MRI is a potentially powerful tool to identify changes in the Alzheimer brain. Most MRI studies 

so far have focused on AD-related volumetric measurements of brain atrophy   (109). A few 

studies attempted to identify plaques via MRI in postmortem specimens or mice models (110-

115), though the latter methods require long imaging time and have not been translated to human 

studies.  

The goal of this study was to establish the relationship between GEPCI metrics and AD-related 

tissue damage at preclinical and very early symptomatic stages of AD. To this end, participants 

were enrolled from the Washington University Knight Alzheimer’s Disease Research Center 

(Knight ADRC) with well-characterized clinical status ranging from cognitively normal to very 

mild and mild AD, and with a battery of psychometric, CSF and neuroimaging data. We 

demonstrated a significant correlation between GEPCI metrics of brain tissue cellular damage in 

the hippocampus and cognitive performance. Importantly, this correlation is stronger than the 

correlation between cognitive performance and hippocampal atrophy, thus suggesting that the 

integrity of the remaining tissue is a more important parameter for brain functioning than the loss 

of tissue volume alone. We also uncovered a remarkable correlation between GEPCI metrics and 

beta-amyloid load measured by positron emission tomography (PET) (the current in vivo gold 

standard), thus supporting GEPCI as a potential surrogate marker for Aβ imaging in preclinical 

and early Alzheimer disease. 

The results demonstrate that GEPCI is sensitive to early AD-related pathological changes in 

brain tissue. Since the GEPCI approach is based on MRI that is widely available worldwide, is 

non-invasive, and does not require radiation exposure, it can open opportunities to obtain new 
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information on the pathogenesis of AD. The new method can also open the door for screening 

cohorts for clinical drug trials (stratification) that are enrolling individuals with preclinical or 

early symptomatic AD. 

 

4.2 Methods 

4.2.1  Participants 

This study was approved by the Institutional Review Board of Washington University School of 

Medicine (WUSM). 34 participants were selected from the studies of aging and dementia at the 

Knight Alzheimer’s Disease Research Center (ADRC) at WUSM. All participants provided 

informed consent. All participants in this study underwent a collection of cognitive performance 

tests (116), including Free and Cued Selective Reminding Test (Srtfree), Animal Naming 

(ANIMALS), and Trail making Test Part A (Tma) . Cognitive status was operationalized with 

the Clinical Dementia Rating (CDR) (67), as determined by Knight ADRC clinicians according 

to standard protocols; diagnoses were in accordance with standard criteria (38). The participants 

were assessed to be cognitively normal (CDR = 0) or to have mild (CDR = 0.5 or 1) AD 

dementia. 19 participants underwent PiB PET imaging to estimate amyloid deposition in the gray 

matter and white matter of their brains. The measurements of CSF biomarker Aβ42 (INNOTEST, 

Fujirebio, Gent, Belgium) were available for 31 participants. For participants that underwent PiB 

PET imaging, amyloid positivity was defined by a cutoff of mean cortical binding potential 

(MCBP)=0.18 (117) which corresponds to a mean cortical standardized uptake value ratio (MC-

SUVR) of 1.3 referenced to cerebellar grey matter. MC-SUVR for Aβ imaging is calculated as 

the averaged SUVR of regions within the prefrontal cortex, gyrus rectus, lateral temporal, and 

precuneus regions. For participants that did not have PET Aβ measurements, Aβ positivity was 
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determined by the status of their CSF biomarker Aβ42 (103). According to the Aβ status, 

cognitively normal participants (CDR = 0) were further divided into normal (CDR = 0; Aβ 

negative) and preclinical (CDR = 0; Aβ positive) groups. Notice that one participant with CDR = 

0.5 and one with CDR = 1 had negative Aβ status. Demographic information for all groups is 

presented in Table 4.1. 

 

 

 

 

 

 

 

Table 4.1 Distribution of participants between groups and their demographic information. Note 

that nine participants in Mild AD group were Aβ positive and two were Aβ negative. 

 

4.2.2  MRI Data Acquisition 

All participants were scanned in a 3T PET-MR scanner (Siemens, Erlangen, Germany). A 3D 

multi gradient echo sequence was used to obtain the data. Sequence parameters were: resolution 

1×1×2 mm3 (read, phase, slab), FOV 256 mm×192 mm, repetition time TR = 50ms, flip angle 

30°, 10 gradient echoes with first gradient echo time TE1 = 4 ms, echo spacing ∆TE = 4ms. 

Additional phase stabilization echo (the navigator data) was collected for each line in k-space to 

correct for image artifacts due to the physiological fluctuations (4). The total acquisition time of 

GEPCI was 11 mins 30s. Macroscopic field inhomogeneity effects (background gradients) were 

accounted for by using the voxel spread function (VSF) approach (3). Standard clinical 

Magnetization-Prepared Rapid Gradient Echo (MPRAGE) (75) images with TR/TI/TE = 

Table 4.1 

 Normal Preclinical AD Mild AD 

 CDR=0 

Aβ negative 

CDR=0 

Aβ positive 

CDR=0.5 

or 1 

N 13 10 11 (7/4) 

Age 69.6±8.7 72.3±8.4 76.0±8.4 

Female/Male 7/6 4/6 3/8 
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2200/1100/3.37 ms and the resolution 1×1×1 mm3 were also collected for segmentation 

purposes. The total acquisition time of MPRAGE is 6 mins. 

4.2.3  Data Analysis and GEPCI Images Generation 

This part was the same as Chapter 3, which was described in details in Chapter 1. Herein, I 

briefly introduce the model and fitting parameters: 

            
 *

0 1 1

*

0 1 1

( ) exp 2 ( ) 2 ( ( )

( ) exp 2 ( ) 2 ( ) ( ) ( )BOLD

S TE A R TE TE i f TE TE F TE

S TE A R t TE TE i f TE TE F TE F TE





          

             

       (4.1)     

where TE is the gradient echo time, R2*=1/T2* is the global transverse relaxation rate constant, 

R2t*=1/T2t* is the tissue transverse relaxation rate constant in the absence of BOLD effect, Δf is 

the frequency shift (dependent on tissue structure and also macroscopic magnetic field created 

mostly by tissue/air interfaces), function ( )BOLDF TE  describes GRE signal decay due to the 

presence of blood vessel network with deoxygenated blood, and function F(TE) describes the 

effects of macroscopic magnetic field inhomogeneities. 

By fitting the equation to the real and imaginary parts of the complex signal using nonlinear 

regression algorithm, six parameters are computed: A0 (T1-weighted), R2*, R2t*, Δf,  and   

for each voxel in the brain. In this study, we focus on total R2* and tissue specific R2t* 

measurements for quantifying tissue microstructural properties and GEPCI T1W images (the 

square root of parameter A0) for brain structure delineation and segmentation.  

Notice that ( )BOLDF TE  in Equation 4.1 was originally designed to describe the signal decay due 

to the presence of different types of magnetic susceptibility inclusions, such as  blood vessel 

network (BOLD effect), trabecular bone and iron oxide nanoparticles, etc. (11). It has different 

formulas for different inclusions and the one we used in this study is modeled for the blood 
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vessel network. But in the context of AD, ( )BOLDF TE  may also include the mesoscopic 

inhomogeneity effects created by amyloid plaques that are known to create R2* signal decay 

(115). As a result, R2* is more related to the amyloid deposition while R2t* is more related to 

the tissue structure. 

4.2.4  Image Segmentation 

The segmentation part is also the same as Chapter 3. FreeSurfer software  (Laboratory for 

Computational Neuroimaging, Martinos Center for Biomedical Imaging) (76) was used to 

generate brain segmentations, cortical thicknesse and volume based on MPRAGE images. Then, 

MPRAGE images are registered to GEPCI-T1-weighted (T1W) images using FMRIB’s Linear 

Image Registration Tool (77, 78) in FSL and the transformation matrices of the registration are 

generated. Finally, these matrices were applied to the brain segmentations from FreeSurfer and 

transformed to the space of GEPCI-T1W images. One of the important advantages of GEPCI is 

that all GEPCI images are generated from a single MRI scan and are naturally co-registered. 

Hence, segmentations of GEPCI T1W images were naturally co-registered with all other GEPCI 

maps.  

A CSF mask from FSL is further applied removing voxels in CSF on FreeSurfer segmentations. 

To maximize accuracy of measurements, statistical results instead of voxel-wise analysis are 

reported: for each FreeSurfer region containing thousands of voxels, a single parameter – mean 

value of GEPCI parameter, is generated. 

 

4.3 Results and Discussions 
In the context of AD, we hypothesize that the increased beta-amyloid deposition should lead to 

an increase in GEPCI R2* that is sensitive to mesoscopic field inhomogeneities (8, 11). The 
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mesoscopic field inhomogeneities may be  present around amyloid deposits and can be enhanced 

due to the presence of iron in amyloid plaques (111). On the other hand, cellular loss 

characteristic of AD can lead to decreased GEPCI metrics, especially R2t* that is sensitive to 

cellular structure (12). The interplay between these two opposing processes can define important 

features of the GEPCI signal in AD. 

4.3.1  Correlation between R2* and PiB-PET Aβ Measurement 

 

Figure 4.1 Correlation between PiB PET Aβ SUVR (dimensionless) and R2* (s-1) relaxation rate 

constant obtained in 19 participants. Plots show examples of correlation in several brain regions. 

Each point represents a single participant. Shaded areas represent 95% confidence intervals of 

the linear fits (solid lines). Pearson correlation coefficients (r) and p values (corrected for 

multiple comparison using false discovery rate over all cortical regions) are shown in the left 

upper corners. The surface maps on the right represent r values in all cortical areas. The image 

segmentation is based on the FreeSurfer software (76). The data show significant correlations not 

only in the areas of high Aβ accumulation (e.g., precuneus) but also in the areas of MTL, such as 

the parahippocampal cortex and the fusiform cortex. Particularly, the strongest and most 

significant correlation exists in the parahippocampal cortex. 

 

The correlation analysis between R2* and PiB PET Aβ measurements (using standardized uptake 

value ratio [SUVR]) revealed positive correlations in most cortical brain regions. The data 
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showed significant correlations not only in the areas of high Aβ accumulation (e.g., precuneus) 

but also in the areas of MTL, such as the parahippocampal cortex and the fusiform cortex. But 

not all correlations were statistically significant after correction for multiple comparison using 

false discovery rate (FDR) (118), most likely due to the small sample size (PiB PET data were 

available only for 19 participants). Examples of the correlations with significant p values are 

shown in Figure 4.1.  

The strongest correlation between R2* and Aβ SUVR that we found in the parahippocampal 

cortex shows the high sensitivity of GEPCI R2* to Aβ accumulation in this area. Interestingly, 

although the range of SUVR in parahippocampal cortex is smaller than in precuneus, the 

correlation in parahippocampal cortex is much stronger than that in precuneus. It indicates that 

even though MTL is not the area of the highest burden of Aβ in the AD brain, it represents a very 

important area of pathological changes in early AD particularly as it relates to the formation of 

Aβ plaques in the cerebral cortex, where the changes can be detected by GEPCI R2*. This 

feature likely can be attributed to distinct cellular properties of the gray matter in the MTL that 

play important roles in functionally connecting the neocortex and hippocampus (119). 

Structurally, the parahippocampal gyrus is a transitional zone, where the entorhinal cortex 

(referred as perialocortex) contains the lamina dissecans while the perirhinal and 

parahippocampal cortexes (referred as proisocortex) have their cellular structure different from 

the major three-layered and six-layered cortex areas (120). As different cellular components and 

arrangements contribute to R2*, it is possible that the strong correlations between R2* and Aβ 

SUVR in the parahippocampal cortex is due to its unique laminar organizations. Since the medial 

portion of the fusiform gyrus is also considered to be part of the parahippocampal cortex, it is 
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reasonable to observe the significant correlation between R2* and Aβ SUVR in the fusiform as 

well.  

How can we interpret the correlation? As we discussed in Methods, ( )BOLDF TE  may also include 

the mesoscopic inhomogeneity effects created by amyloid plaques that are known to create R2* 

signal decay (115). Since no correlation exists between amyloid accumulation and BOLD effect 

(100), the correlation between amyloid accumulation and R2* is mostly related to magnetic 

susceptibility effects created by amyloid plaques. A hypothesized iron deposition in amyloid 

plaques (111, 121) could lead to additional sensitivity of GEPCI R2* to Aβ accumulation. 

The presence of neurofibrillary tangles (NFTs) and neuronal loss in the parahippocampal gyrus 

previously reported by Thangavel et al (65) can also affect R2*. However, their participants were 

assessed at death after nearly a decade of dementia, while the cohort in this study represents 

mostly normal, pre-symptomatic, very mild (CDR = 0.5) or mild (CDR=1) AD. In addition, as 

tissue damage in the parahippocampal gyrus was smaller than that in the hippocampus (66), in 

our cohort the loss of neurons in the parahippocampal gyrus may not be severe enough to affect 

R2* measurements.  

Even though the significance of the correlations between R2* and Aβ SUVR vary for different 

brain regions, R2* in the parahippocampal cortex can still be used for evaluation of Aβ burden in 

all regions. Indeed, the data show very strong correlations between Aβ SUVR in most cortical 

regions and R2* values in the parahippocampal cortex. These correlations can be described as 

follows:  

                                                    
* *( 2 2 )ROI ROI ROI PH PHSUVR a k R R                                 (4.2)                                                                          
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and can be used for evaluation of Aβ SUVR for a given participant in any cortical region. In 

Equation (4.2), 
*2PHR  is 

*2R  in the parahippocampal cortex for a given participant, and 
*2PHR  = 

16.55 sec-1, is the mean value of R2* in the parahippocampal cortex of the normal control group 

(9 participants with negative PiB Aβ and CDR = 0). The coefficients ROIa  and ROIk in Equation 

(4.2), specific for each cortical ROI, are provided in Table 4.2 along with the results of the 

correlations. 
*2PHR  is introduced in Equation (4.2) to make the coefficients ROIa  of the regression 

more meaningful – they represent region-specific averaged SUVR for healthy control group. The 

slopes of the regression (parameter ROIk ) are also shown in Figure 4.2, upper row. The spatial 

pattern in Figure 4.2 is similar to previously established correlation pattern between regional and 

mean values of PiB SUVR (122). Hence, the data demonstrate that R2* in the MTL (especially 

the parahippocampal cortex) not only correlate with PiB PET SUVR in this area but also 

strongly correlate with PiB PET SUVR throughout the entire cortex.  
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Table 4.2 

Cortical area Intercept (a) Slope (k, sec) p value r 

bankssts 1.35 0.24 2.47E-04 0.75 

caudal-anteriorcingulate 1.23 0.27 2.45E-04 0.75 

caudal-middlefrontal 1.16 0.24 1.76E-04 0.76 

cuneus 1.22 0.12 2.79E-02 0.50 

entorhinal 1.10 0.08 1.33E-04 0.77 

frontalpole 1.07 0.30 5.31E-04 0.72 

fusiform 1.21 0.15 2.02E-04 0.75 

inferiorparietal 1.21 0.23 4.08E-04 0.73 

inferiortemporal 1.15 0.20 4.63E-04 0.72 

insula 1.23 0.18 2.90E-04 0.74 

isthmuscingulate 1.34 0.25 5.46E-04 0.72 

lateraloccipital 1.15 0.12 1.22E-03 0.68 

lateralorbitofrontal 1.26 0.25 4.45E-04 0.72 

lingual 1.19 0.12 6.46E-03 0.60 

medialorbitofrontal 1.23 0.32 2.98E-04 0.74 

middletemporal 1.13 0.21 1.73E-04 0.76 

paracentral 1.21 0.23 1.00E-03 0.69 

parahippocampal 1.11 0.15 6.09E-06 0.84 

parsopercularis 1.19 0.23 4.66E-04 0.72 

parsorbitalis 1.13 0.26 4.97E-04 0.72 

parstriangularis 1.20 0.24 3.90E-04 0.73 

pericalcarine 1.27 0.14 2.56E-02 0.51 

postcentral 1.07 0.15 2.02E-03 0.66 

posteriorcingulate 1.29 0.32 4.58E-04 0.72 

precentral 1.14 0.14 9.57E-04 0.70 

precuneus 1.30 0.32 5.93E-04 0.71 

rostralanteriorcingulate 1.23 0.31 2.28E-04 0.75 

rostralmiddlefrontal 1.16 0.30 4.34E-04 0.73 

superiorfrontal 1.14 0.28 3.25E-04 0.74 

superiorparietal 1.15 0.21 6.31E-04 0.71 

superiortemporal 1.15 0.18 2.45E-04 0.75 

supramarginal 1.16 0.21 6.68E-04 0.71 

temporalpole 1.11 0.10 9.94E-04 0.69 

transversetemporal 1.21 0.18 4.48E-04 0.72 

Table 4.2. The results of linear regression analysis of the relationship between regional amyloid 

SUVR in different cortical regions and the parahippocampal R2*. Cortical regions are selected 

based on the FreeSurfer segmentation (76). The data show coefficients of linear regression  in 

Equation (4.2) and the correlation coefficients (r). The mean value of R2* in the 

parahippocampal region for the control group in Equation 4.2 is 16.55 sec-1. 
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Figure 4.2 Upper row represents the surface maps of the slopes (units of sec) of linear regression 

(coefficient ROIk  in Equation (4.2)) between regional PET-measured Aβ SUVR and 

parahippocampal R2* across 19 participants. All regional slopes are positive. The coefficients of 

the linear regressions are listed in Table 4.2. The second and the last rows represent the averaged 

cortical mean values of R2* and Aβ SUVR across the same 19 participants. White matter, deep 

gray matter and ventricles were excluded. The image segmentation is based on the FreeSurfer 

software (76). 

 

While the data show rather significant positive correlations between R2* and amyloid burden 

across the participants in different brain regions (Figure 4.1), there also exists an inverse 

association across the brain regions between averaged R2* and amyloid distributions. Figure 4.2 

shows regional R2* and Aβ SUVR averaged across 19 participants mapped onto the brain 

surface. Lower R2* are found in the frontal cortex, posterior cingulate, precuneus, 

parahippocampal cortex, entorhinal cortex and superior temporal cortex. Higher R2* are found in 

the occipital cortex, paracentral cortex, fusiform, middle and inferior temporal cortex. This R2* 
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distribution is consistent with the previous studies (12). In contrast to the R2*, the PiB retention 

was prominently higher in the frontal cortex, posterior cingulate, precuneus and inferior parietal 

cortex, which is also consistent with the previous reports (44, 47). Generally speaking, PiB Aβ 

binding tends to increase in the regions with lower R2*, which may indicate that the regions with 

lower R2* are more vulnerable to the amyloid accumulation. This relationship is more obvious 

in the frontal cortex, posterior cingulate, precuneus, inferior parietal cortex characterized with 

higher SUVR but lower R2*, and occipital cortex with lower SUVR but higher R2*. 

Interestingly, the former regions mostly overlap the default mode network (96) and tend to be 

both structurally and functionally vulnerable in normal aging and Alzheimer’s disease, which 

was suggested to be due to a high degree of life-long plasticity (32). The R2*- Aβ association 

points to an important relationship between brain microstructural properties reflected in tissue 

specific R2* measurements and the relationships between default activity, amyloid, and memory 

previously reported by Buckner et al (123). It is also in agreement with our previous 

consideration (12) that the cortical areas with lower R2t* (e.g., prefrontal cortex) may have more 

complex dendritic and synaptic structure, which may also be related to the neuroplasticity and 

AD vulnerability. From this perspective, the parahippocampal and entorhinal cortices, which are 

primary memory-related areas and are vulnerable to early Alzheimer, are also characterized by a 

lower baseline R2*. However, PiB retention and Aβ accumulation in these areas are not 

prominent. Nevertheless, the correlation between GEPCI R2* metrics and PiB retention in these 

areas is exceptionally strong, especially in the parahippocampal gyrus.  
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4.3.2  R2* Differentiates Normal and Preclinical AD Participants 

 

 

 

 

 

 

 

Figure 4.3 Group comparison based on R2* in the parahippocampal cortex. The bar graph on the 

left shows significant differences between participants with the negative (n = 15, R2* = 16.79 ± 

1.40 s-1) and the positive (n = 19, R2* = 18.20 ± 1.08 s-1) Aβ status. The bar graph on the right 

shows significant differences between the normal group (CDR = 0, Aβ negative, n=13, R2* = 

16.77 ± 1.51 s-1) and the preclinical group (CDR = 0, Aβ positive, n = 10, R2* = 18.41 ± 0.84 s-

1). 

  

Based on the strong correlation between Aβ SUVR and R2* in the parahippocampal cortex, R2* 

can potentially be used to distinguish the healthy stage from the preclinical AD as early AD is 

associated with Aβ accumulation (36, 39, 41, 42). Indeed, the bar graph on the left in Figure 4.3 

shows a significant difference in the parahippocampal R2* between all participants with negative 

(n = 15) and positive (n = 19) Aβ status (independent of CDR, see definition in Methods). The 

bar graph on the right shows significant differences between normal group (CDR = 0, amyloid 

negative, n=13) and preclinical group (CDR = 0, Aβ positive, n = 10).  

4.3.3  Correlation between R2t* and Cognitive Performance Tests 

In Chapter 3, we compared GEPCI-derived tissue specific structural and functional metrics with 

existing literature and hypothesized that the parameter R2t* is related to the tissue neuronal 

density (12). As presented in the scatter plots in Figure 4.4, R2t* in the hippocampus was 
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associated with the free recall condition of the Free and Cued Selective Reminding Test (Srtfree; 

r = 0.53, p = 0.002), with the total correct score from the Animal Naming test (ANIMALS; r = 

0.50, p = 0.0025), and with the Trailmaking Test Part A completion time (Tma; r = -0.47, p > 

0.017). The decrease of R2t* is related to the neuronal damage in the hippocampus and so 

corresponds to a bad cognitive performance. But R2t* in the cortex doesn’t significantly 

correlate with these three cognitive tests. This may be because the participants were 

characterized either as cognitively normal or having mild cognitive impairment (MCI), the 

neuronal damage (decreased R2t*) occurs first in the hippocampal area but may not spread to the 

cortical areas yet. 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Correlation between cognitive tests performance and hippocampal R2t*. Cognitive 

measures included Free and Cued Selective Reminding Test (Srtfree), Animal Naming 

(ANIMALS), and Trail making Test Part A completion time (Tma). Note that higher scores on 

Tma indicate worse performance. Correlations with hippocampal volume are also presented for 

comparison. Each point represents a single participant (n = 34). Shaded areas represent 95% 
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confidence intervals of linear fits (solid lines). Pearson correlation coefficients (r) and p values 

are shown in the left upper corners.  

 

Note that considerably weaker correlations were found between hippocampal volume and 

cognitive performance (Figure 4.4, second column), suggesting that the integrity of the 

remaining hippocampal tissue (characterized by R2t*) is a more important parameter of 

hippocampal pathology than hippocampal volume.  

No significant correlation was found between cognitive performance and R2* or CSF Aβ42. This 

result is in agreement with the dissociation between PiB defined Aβ plaques and cognitive 

performance (124-128).  At least 30% of people with significant Aβ burden are cognitively 

normal (124).  

4.3.4 R2t* Distinguishes Cognitively Normal Group from Mild AD Group 

Figure 4.5 shows examples of three participants’ GEPCI images from healthy control, preclinical 

and mild AD groups. Thin contours outline the hippocampus determined by FreeSurfer. In all 

cases, MPRAGE and GEPCI T1w images show small atrophy progressing from healthy to AD 

group. Gradually decreased R2t* suggest altered tissue integrity even in the preserved 

hippocampal area. One should keep in mind that GEPCI metrics (R2* and R2t*) are quantitative 

and provide information on tissue integrity based on comparison with healthy control 

measurements, thus uncovering tissue damage that might not be simply visible on images. 

Though tissue damage in the hippocampus can be clearly seen as hypointense signal on R2t* 

maps. 
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Figure 4.5 Examples of three participants’ images – 69 year old female from the control group 

(upper row), 72 year old male from the preclinical AD group (second row) and 69 year old male 

from the mild AD (CDR = 0.5) group. Thin contours outline the hippocampus determined by 

FreeSurfer. In all cases, MPRAGE and GEPCI T1w images show small atrophy progressing 

from healthy to AD group. Gradually decreased GEPCI R2t* suggest altered tissue integrity even 

in the preserved hippocampal area. 

 

The bar graphs in Figure 4.6 show group comparisons based on R2t* in the hippocampus. Three 

groups are shown - normal participants (CDR = 0, Aβ negative), preclinical group (CDR = 0, Aβ 

positive) and mild AD (CDR = 0.5 or 1). The first box shows results for tissue R2t* and the 

second block shows results for hippocampal volume. The significantly decreased hippocampal 

volume in mild AD group is in agreement with known brain atrophy characteristic for AD (109).  

While changes in R2t* likely reflect changes in the neuronal and synaptic density, it may also 

reflect changes in other tissue components. Hypothetically, the slight but not significant increase 

in tissue R2t* seen in preclinical group as compared to normal participants in Figure 4.6 and 
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Table 4.3 may be attributed to accumulation of tau protein as in early Braak stages (105) of AD. 

Interestingly, Figure 4.6 and Table 4.3 also show that the hippocampal volume in the preclinical 

group was also slightly but not significantly higher than that in the normal group.  

 

Figure 4.6 Bar graphs show the data obtained in the hippocampus of 34 participants. Bars 

represent mean values and error bars are standard deviations. Data are separated into three 

groups: Normal, preclinical AD, and mild AD (CDR 0.5 or 1). GEPCI R2t*, and volumes are 

shown. Also shown is the parameter TCI (tissue content index, Equation (4.3)). While R2t* can 

serve as a surrogate marker of neuronal density/integrity, the TCI can serve as a surrogate marker 

characterizing a change in the total neuronal content. The results are summarized in Table 4.3. 

 

 

 

 

 

 

 

Table 4.3. The mean and standard deviations of R2t*, volume and TCI in hippocampus over 

three groups presented in Figure 4.6. 

 

 

Table 4.3 

 R2t*(s-1) Volume(mm3) TCI 

Normal 11.71 ± 1.45 3512 ± 327 0.00 ± 0.16 

Preclinical 12.20 ± 1.50 3720 ± 452 0.11 ± 0.22 

Mild AD 9.94 ± 1.38 2849 ± 552 -0.31 ± 0.16 
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If R2t* is related to neuronal density/integrity, the product of R2t* and the hippocampal volume 

(V) could characterize the total neuronal content in the hippocampus. Hence, to characterize the 

global tissue change in the hippocampus, it is convenient to introduce the Tissue Content Index 

(TCI): 

                                                    
* *

*

( 2 ) ( 2 )

( 2 )

control

control

V R t V R t
TCI

V R t

  



                                      (4.3)       

where 
*( 2 )controlV R t  = 41201 mm3·sec-1 is a mean value of tissue content in the group of 

normal participants. The changes in the TCI between Normal, Preclinical and AD groups are 

shown in the third box of Figure 4.6. 

The results in Figure 4.6 show that not only does the hippocampal tissue volume reduce in mild 

AD participants, but R2t* also reduces. As a result, the TCI reduce even more significantly. 

These results are in a full agreement with the histopathological studies  of Price, Morris and co-

workers (59) who found that 46% of neurons were lost in the hippocampus of people with CDR 

= 0.5 as compared to cognitively normal participants, while the hippocampal volume loss was 

only 29%. Comparison of our findings with direct neuronal measurements in (59) further 

confirms our hypothesized relationship between  R2t* and  neuronal density. The decreased R2t* 

and TCI is consistent with decreased tissue neuronal density and the tissue neuronal content in 

the hippocampus. Furthermore, no significant differences in hippocampal R2t*, volume and TCI 

between the normal and preclinical AD groups, is also consistent with Price, Morris and co-

workers’ finding of no significant difference in hippocampal neuron number and volume 

between the normal and preclinical AD groups (59).  
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4.4 Summary 
In this study, we have demonstrated that the GEPCI technique provides a new approach to the in 

vivo evaluation of pathology in the preclinical and early symptomatic stages of AD. It is based 

on a multi-gradient-echo MRI sequence that is available from most MRI manufacturers. GEPCI 

data are quantitative, reproducible and MRI scanner independent, thus allowing multi-center 

applications. The results show that GEPCI metrics are good correlates of Aβ accumulation and 

neurodegeneration. They are sensitive enough to distinguish between normal individuals and 

those with preclinical (asymptomatic) and early symptomatic AD.  

One of the significant conclusions of this study is that the tissue cellular integrity of the 

preserved part of the hippocampus is a more important parameter affecting cognitive 

performance than the hippocampal atrophy. This points out to the presence of significant 

cognitive reserve in the hippocampal structure. Another important finding is that the AD 

symptoms do not start until there has been significant cellular loss in the hippocampus identified 

by GEPCI metrics, consistent with Price, Morris and colleagues (59).   

Since MRI is a much more available modality than PET (current imaging “gold standard” for in 

vivo quantifying AD (Aβ) brain pathology), and poses fewer risks, GEPCI metrics (R2* and 

R2t*) have a potential for improving the quality of AD diagnostic measures, and the evaluation 

of new disease-modifying therapies.  

The results of this study are based on data obtained from 34 participants. Larger and independent 

samples certainly should be used to further validate our findings. 
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Chapter 5: Future Plan 
 

Last but not least, the GEPCI approach has been used to study many cognitive disease. For 

example, GEPCI has been used to identify brain tissue damage in multiple sclerosis (2, 4, 69-72) 

and psychiatric diseases (73). R2* has been found to be significantly lower in patients with 

multiple sclerosis (MS) than in healthy participants (2, 4, 69-72). Significant correlations 

between age-adjusted R2* and clinical scores of MS have been reported for cortical regions (71). 

Significant group effects based on GEPCI metrics have been observed in the superior temporal 

cortex and in the thalamus of the participants with schizophrenia and bipolar disorder (73). In 

this dissertation, the GEPCI approach has been applied to normal aging and Alzheimer’s disease. 

Thus, there is a potential for the GEPCI approach to provide insightful information about 

cognitive disease. Certainly, more experimental data should be investigated to validate this 

approach. The following ideas may be considered as future directions: 

1. More participants with various amounts of amyloid deposition should be recruited to 

further validate the correlation between the PET biomarker retention of amyloid 

deposition and GEPCI R2*. 

2. More participants with CDR = 0, 0.5, and 1 should be recruited to further validate the 

correlation between the cognitive performance tests and the GEPCI hippocampal R2t*, 

and to further validate the ability of R2t* to distinguish cognitively normal and mild AD 

groups. 

3. A recent study reports the detection of tau deposition in vivo using PET imaging (54). 

Similar correlations between PET biomarker retentions of tau and GEPCI metrics (e.g., 

R2* and R2t*) should be investigated.  
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4. Examine the autopsy of participants who underwent GEPCI MRI prior to expiration. 

Also investigate the histological results and GEPCI results. For example, investigate the 

relationship between neuronal density and GEPCI R2t*.  

5. Interestingly, supervised machine-learning classification and cross-validation algorithms 

may be applied to quantitative GEPCI measurements to classify volunteers’ condition 

with respect to Alzheimer’s disease if a large dataset is available. Because deep learning 

has been widely used in image processing, it is interesting to apply deep-learning 

algorithms directly to MRI images for classification.  
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