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Cell identity and function rely on intricately controlled programs of gene regulation, 

alterations of which underlie many diseases, including cancer. Epigenetic analyses of normal and 

diseased cells have started to elucidate different facets of epigenetic mechanisms for gene 

regulation. These include changes in nucleosome density, histone modifications, factor binding 

and chromosomal architecture. All of these aspects contribute to the activities of regulatory 

elements conferring promoter, enhancer and insulator functions and the cis-regulatory circuits 

formed by these elements. Despite this progress, an urgent need remains to profile these features 

and to study how they cooperatively function in normal and pathogenic settings. Here, using the 

mouse T cell receptor beta locus as a model, we first quantified 13 distinct features, including 

transcription, chromatin environment, spatial proximity, and predicted qualities of recombination 

signal sequences (RSS), to assess their relative contributions in shaping recombination 

frequencies of Vβ gene segments. We found that the most predictive parameters are chromatin 

modifications associated with transcription, but recombination efficiencies are largely 

independent of spatial proximity. These findings enabled us to build a novel computational 



x 
  

model predicting Vβ usage that uses a minimum set of five features. Expanding on these results, 

we applied chromatin profiling and computational algorithms to other mouse antigen receptor 

loci, to classify and identify novel regulatory elements. We defined 38 chromatin states that 

reflect distinct regulatory potentials. One of these states corresponded to known enhancers and 

also identified new enhancer candidates in immunoglobulin loci. Indeed, all four candidate 

elements exhibited enhancer activity in B cells when subjected to functional assays, validating 

that our chromatin profiling and computational analyses successfully identified enhancers in 

antigen receptor loci. Finally, we translated these approaches to human B cell lymphoma to 

predict pathogenic cis-regulatory circuits composed of dysregulated enhancers and target genes. 

We then selected and functionally dissected a pathogenic cis-regulatory circuit for the mitosis-

associated kinase, NEK6, which is overexpressed in human B cell lymphoma. We found that 

only a subset of predicted enhancers is required to maintain elevated NEK6 expression in 

transformed B cells. Surprisingly, a B cell-specific super-enhancer is completely dispensable to 

maintain NEK6 expression and chromatin architecture within its chromosomal neighborhood. 

Moreover, we showed that a cluster of binding sites for the CTCF architectural factor serves as a 

chromatin boundary, blocking the functional impact of a NEK6 regulatory hub on neighboring 

genes. These results emphasize the necessity to test predicted cis-regulatory circuits, especially 

the roles of enhancers and super-enhancers, when prioritizing elements as targets for epigenetic-

based therapies. Our findings collectively pave the way for future investigations into the roles of 

cis-regulatory and architectural elements in regulating gene expression programs during normal 

development or pathogenesis. 
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Chapter 1 : Introduction 
 

 

 

1.1 Mechanisms of Gene Regulation 

 Stringent regulation of gene expression is a pivotal process in biology, relying on the 

interplay among cis-regulatory elements with promoter, enhancer and insulator functions. Recent 

studies on gene regulatory mechanisms have started to reveal regulatory elements of different 

types by genome-wide chromatin profiling. In particular, tens of thousands of enhancers are 

predicted to be active in any human cell type (Hnisz et al., 2016a). However, the functional 

impact of most predicted enhancers on gene expression remains unclear. Researchers have begun 

to predict target genes of enhancers using computational approaches, which build cis-regulatory 

circuits composed of enhancers and associated gene promoters (Koues et al., 2015; Maurano et 

al., 2012). Correlative chromatin patterns at promoters and enhancers are frequently used to 

connect these regions in silico. In addition, chromatin structures formed by insulator elements 

are applied to circuitry generating methods, because genome architecture has emerged as a 

fundamental aspect to regulate promoter-enhancer interactions. Identification and functional 

dissection of cis-regulatory elements and circuits will improve our understanding of gene 

regulatory mechanisms in normal development, as well as in pathogenesis, because perturbations 

of enhancers and insulators contribute to dysregulated gene expression programs in many 

diseases (Koues et al., 2015; Maurano et al., 2012; Hnisz et al., 2016b; Lupiáñez et al., 2015).    
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Conventional enhancers 

 First discovered 30 years ago, enhancers are characterized as short DNA sequences 

that activate transcription in a location-, orientation-, and promoter-independent manner (Bulger 

and Groudine, 2011). Enhancers are located distal to gene promoters and can act over long 

distances within the same chromosome. For instance, the limb bud enhancer of sonic hedgehog 

(Shh) gene is located 1 Mb upstream of Shh transcription start site, and is required for Shh 

transcription in limb bud (Lettice et al., 2003; Sagai et al., 2005). A dominant model for 

enhancer function is that they interact with promoters via looping, which has been extensively 

supported in different systems. Empirically, enhancers are characterized as nucleosome-free 

regions bound by transcription factors (TFs), as well as the transcription coactivator EP300, and 

are marked by histone H3 lysine 27 acetylation (H3K27ac) (Bulger and Groudine, 2011). Proper 

enhancer function is crucial for all cellular processes, and dysregulation of enhancer activity 

leads to diseases, including different types of cancers (Sur and Taipale, 2016). Enhancer 

misregulation mainly arises from two sources: inherited or acquired sequence variants that alter 

enhancer activities in cis, and mutations in TFs or histone modifiers that affect enhancer 

activities in trans. Indeed, genetic variants that predispose to cancer are enriched at enhancers, as 

revealed by analyses of genome-wide association studies (GWAS). In addition, tumor-specific 

enhancers have been identified by epigenome comparisons of tumor cells and their normal 

counterparts (Akhtar-Zaidi et al., 2012; Koues et al., 2015; Maurano et al., 2012). Therefore, it 

remains an important goal to identify enhancers across the genome in different cell types, 

especially in diseased cells. This information will facilitate epigenetic-based therapeutic 

applications, in which key dysregulated enhancers are targeted to reverse the expression of 

associated pathogenic genes.  
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Super-enhancers 

 In addition to conventional enhancers, a special class of regulatory elements, coined 

super-enhancers (SEs), have recently been revealed from epigenome analyses (Whyte et al., 

2013). SEs encompass large hyperacetylated clusters of conventional enhancers (CEs), which 

bind lineage-restricted TFs. SEs co-localize with a limited set of genes that are most essential for 

controlling cell identity. SEs are hotspots of disease-associated variants, which are thought to 

destroy TF binding sites and abolish SE function, as well as the expression of associated genes 

(Hnisz et al., 2013; Koues et al., 2016). Furthermore, SEs are amplified or acquired de novo near 

oncogenes and contribute to several classes of cancer (Hnisz et al., 2013; Mansour et al., 2014). 

Therefore, therapeutic applications targeting SEs may effectively reverse expression of key 

pathogenic genes. For example, SEs and associated oncogenes may be preferentially inhibited in 

some solid tumor types by a BET-bromodomain inhibitor targeting the transcriptional 

coactivator, BRD4 (Chapuy et al., 2013; Lovén et al., 2013). Although SEs may be high priority 

therapeutic targets, very few of these regulatory regions, which are simply identified by 

computational algorithms, have been experimentally verified, and their roles in controlling gene 

expression are mainly based on correlations with nearest genes. Therefore, future research on 

super-enhancers requires more experimental validations of predicted SEs and better algorithms 

of assigning SEs to target genes.  

Protein factors regulating gene expression 

 Regulatory DNA elements control transcription by virtue of their association with 

different sets of regulatory factors, including RNAPII (RNA polymerase II), various TFs and 

global structural proteins. During gene activation, enhancers interact with their target promoters 
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and initiate transcription in a temporal fashion. First, sequence-specific enhancers recruit 

activator proteins and co-activators, including histone modifying enzymes and ATP-dependent 

chromatin remodeling complexes. The loaded enhancers interact with target promoters via the 

transcriptional Mediator complex, which associates with RNAPII and TFs to facilitate enhancer-

promoter looping and transcription (Allen and Taatjes, 2015). Finally, the promoter-enhancer 

complex recruits general transcription factors and RNAPII to activate transcription (Ong and 

Corces, 2011).  

In addition, recent findings have highlighted the roles of CCCTC-binding factor (CTCF) 

and cohesin in regulating gene function and constructing global chromatin architecture. CTCF is 

a highly conserved zinc finger protein with widespread regulatory functions, including 

transcription activation and repression, insulation and global organization (Ong and Corces, 

2014). Cohesins are protein complexes that function in sister chromatid cohesion, chromosome 

segregation, DNA repair, long-range looping and gene regulation, through forming a ring 

structure and encircling DNA (Dorsett, 2011). The fundamental roles of CTCF and cohesin in 

gene regulation and genome organization will be elaborated in the next section.  

Chromosomal architecture 

In addition to regulatory elements and protein factors, chromosomal architecture 

fundamentally contributes to diverse cellular processes, including transcription, recombination 

and DNA repair (Schoenfelder et al., 2010). Recent studies have shown that the mammalian 

genome is compartmentalized into topologically associated domains (TADs) (Dixon et al., 

2016). TADs serve as building blocks of the genome architecture, facilitating interactions among 

loci within the same TAD and prohibiting interactions across TADs. Consistent with this role, 



5 
 

TADs are highly conserved among different cell types and even species (Dixon et al., 2012). At 

a biochemical level, TADs are chromatin loops created through dimeric interactions between 

CTCF proteins, when bound at two boundary elements in a convergent orientation, and are 

stabilized by association with cohesin (Hnisz et al., 2016a). Each TAD is divided into sub-

structures called sub-TADs, insulated neighborhoods, or contact domains, which differ, at least 

partially, among cell types and developmental stages (Dixon et al., 2016; Hnisz et al., 2016a). On 

a fundamental level, these contact domains are composed of structural and regulatory loops. 

Structural loops are formed between two boundary elements by a CTCF-CTCF homodimer and 

the cohesion complex. These basic structures segregate active and inactive chromatin regions, 

restrict inappropriate interactions across regions, and promote enhancer associations with target 

genes between the two loop anchors. In contrast, regulatory loops are generated between 

promoters and enhancers by cohesin and the Mediator complex, activating transcription of 

associated promoters (Kagey et al., 2010). These chromosome structures are essential for gene 

expression in normal cells, and are frequently perturbed in pathogenesis. For example, CTCF 

binding sites are enriched for disease-associated variants, which abolish CTCF binding motifs 

and boundary functions, leading to abnormal associations between enhancers and alternative 

promoters in diseases (Hnisz et al., 2016b; Lupiáñez et al., 2015).  

With emerging knowledge regarding chromosomal architecture, several important 

questions need to be addressed: What are the chromatin interactome patterns in different cell 

types? Does chromosomal interaction between two loci indicate correlative or causal 

relationships? Are TADs, sub-TADs, contact domains and insulated neighborhoods 

fundamentally different or do they represent the same feature identified from different data 

sources and algorithms? How do structures of sub-TADs form and vary during development, 
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differentiation and transformation? Answers to these questions will shed light on underlying 

mechanisms of gene regulation, and provide insights into causes of many human diseases. 

1.2  Antigen Receptor Genes 

 Antigen receptor (AgR) genes are an excellent model to study gene regulatory 

mechanisms, regarding enhancers, transcription factors and chromosomal architecture. AgR 

genes exist in a non-functional germline configuration: the 5’ portion of the genes encoding 

antigen recognition domains are composed of arrays of variable (V), diversity (D, only in some 

loci) and joining (J) gene segments (Schatz and Ji, 2011). For example, the germline mouse Igh 

gene contains 150 variable (VH), 9 diversity (DH), and 4 joining (JH) gene segments (Figure 1.1). 

During early lymphocyte development, the V, D and J regions are randomly assembled into a 

functional antigen receptor gene, a process called V(D)J recombination (Schatz and Ji, 2011). By 

this means, lymphocytes generate a large repertoire of immunoglobulins and T cell receptors 

with different antigen specificities. V(D)J recombination is initiated by the Recombination 

activating gene 1 (RAG1) and RAG2 proteins, which form a recombinase complex that binds to 

and cleaves conserved recombination signal sequences (RSS) flanking all V, D, and J gene 

segments. Cleaved ends on genomic DNA are subsequently rejoined by non-homologous end 

 

Figure 1.1: V(D)J recombination of the immunoglobulin heavy chain (Igh) locus 
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joining (NHEJ) pathway. 

V(D)J recombination is a lineage-specific event and under tight developmental 

regulation, which provides a unique system to study gene regulation, development, and cellular 

differentiation. After the common lymphoid progenitor (CLP) differentiates into progenitor-B 

(pro-B) cells, pro-B cells undergo DH and JH segment rearrangement on both Igh alleles, and then 

perform VH to DJH recombination to generate one functional Igh gene (Figure 1.2). Functional 

IgH protein is produced and associates with a surrogate immunoglobulin light chain (IgL) 

protein and forms the precursor-B cell receptor (pre-BCR), which signals the cells to proliferate 

and differentiate into precursor-B (pre-B) cells. Next, immunoglobulin light chain genes, 

immunoglobulin kappa (Igk) and immunoglobulin lamda (Igl), undergo recombination 

sequentially until one functional light chain gene is generated. Finally, the pre-B cells 

differentiate into immature B cells, functional IgH and IgL proteins are expressed and assembled 

into effective immunoglobulin M (IgM isotype). The tight control of V(D)J recombination 

ensures that each mature B cell expresses only one functional antigen receptor, minimizes 

wasteful recombination events, and prevents chromosomal aberrations leading to lymphoid 

malignancies. In a similar sequential process, T cell receptor genes undergo V(D)J 

 

Figure 1.2:  immunoglobulin gene assembly during B cell development  
(Modified from Nagasawa 2006) 
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recombination in developing thymocytes. After the expression of precursor B or T cell receptor, 

the progenitor-B or T cells shut down further rearrangement at the other Igh or T cell receptor β 

(Tcrb) allele to ensure the monospecificity on mature lymphocytes (Thomas et al., 2009).  

V(D)J recombination is regulated by chromatin accessibility (Yancopoulos and Alt, 

1985), correlating with an open chromatin state characterized by active DNA and histone 

modifications, nuclease accessibility, and germline transcription (GLT) (Schatz and Ji, 2011; 

Thomas et al., 2009). GLT denotes transcription of unrearranged AgR genes before or during 

recombination. With regard to chromatin accessibility, multiple promoters, enhancers and 

protein factors play key roles in establishing open chromatin marks, recruiting RNA polymerase 

II (RNAPII) and maintaining GLT during locus activation (Chakraborty et al., 2009; 

Subrahmanyam and Sen, 2010).  

The nuclear position and architecture of AgR genes are also important for regulating 

V(D)J recombination. AgR loci undergo three forms of chromosomal movement during 

rearrangement. First, in early pro-B cells, both Igh alleles move from the repressive nuclear 

periphery to a more central location. Shortly after this movement, Igh undergoes locus 

contraction, in which VH gene segments are brought into spatial proximity to the DH-JH cluster 

and V(D)J recombination occurs. After the production of a functional Igh gene, the other non-

functional Igh allele de-contracts and relocates to pericentric heterochromatin to prevent further 

recombination (Jhunjhunwala et al., 2008; Roldán et al., 2005; Thomas et al., 2009). Similar 

processes occur in T cell receptor genes in developing thymocytes. Repositioning and 

contraction of AgR loci require orchestration among multiple cis-regulatory elements and 

transcription factors (Guo et al., 2011). In conclusion, V(D)J recombination is controlled by 
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multiple cis-regulatory DNA elements, chromatin accessibility, locus contraction and 

conformation, serving as an excellent model to study gene regulatory mechanisms. 

1.3  cis-Regulatory Circuitry in B Cell Lymphoma 

 In addition to their roles in governing normal development, gene regulatory mechanisms 

underlie pathogenic gene expression programs of diverse malignancies. It is crucial to translate 

findings of gene regulatory determinants in normal cells to primary human tumors. In this 

respect, one high-priority cancer type to focus on is Non-Hodgkin lymphoma (NHL), in which 

altered activities of cis-regulatory elements and TFs contribute to pathogenic gene expression 

programs. NHL is the most prevalent blood cancer and the fifth most common form of 

malignancy diagnosed in the US, striking >70,000 Americans annually. NHLs are characterized 

by deregulated expression of large gene cohorts that mediate unchecked cell growth, and are 

classified into distinct subtypes by gene expression profiles (Alizadeh et al., 2000). Follicular 

lymphoma (FL), the second most common NHL, is an incurable malignancy that exhibits an 

indolent clinical course, but often transforms to a more aggressive lymphoma type (Lenz and 

Staudt, 2010). The molecular basis of altered gene expression patterns in NHL has been revealed 

by recent studies. ~30% NHL harbors recurrent somatic mutations in chromatin modifier genes 

(EZH2, MLL2, CREBBP, EP300), alterations of which are thought to result in a globally 

repressed chromatin state and gene expression pattern (Morin et al., 2010). The pathogenic gene 

expression programs in FL are coordinated by the dysregulation of TFs and their targeted 

enhancers when comparing tumor B cells with their normal counterparts, termed centrocytes 

(CCs) (Koues et al., 2015). This evidence suggests that epigenetic dysregulation is a common 

mechanism for widespread gene expression changes in NHL. 
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 With emerging transcriptome and epigenome data in different cell types, the next step is 

to connect regulatory elements with target genes and construct the cis-regulatory circuitry. 

Different computational methods have been utilized to connect an enhancer to targets. These 

include, assigning an enhancer to: (1) the nearest gene, (2) genes within an arbitrary genomic 

distance, e.g. <1 Mb (Rödelsperger et al., 2011), (3) genes located in the same CTCF block 

designated by two adjacent CTCF binding sites (Heintzman et al., 2009), (4) promoters in the 

same chromosomal region defined by correlative chromatin marks (Shen et al., 2012), (5) 

promoters within 250 kb that have correlative DNase hypersensitivity signals with those at 

enhancers (Thurman et al., 2012), (6) genes that have conserved synteny with the enhancer 

among species (Rödelsperger et al., 2011), (7) genes located in the same topological domain 

(Dixon et al., 2012), (8) genes showing significant interaction frequencies with the enhancer in 

genome-wide interactome data (Mifsud et al., 2015; Sanyal et al., 2012), (9) genes with 

combinatorial patterns of features, including transcription, factor binding and chromatin marks, 

identified by machine learning algorithms (Whalen et al., 2016). These methods are starting to 

generate paradigms for building cis-regulatory circuits. Similar pathogenic cis-regulatory 

circuitries have been constructed in FL by integrative transcriptome and epigenome analyses and 

correlation-based methods, composed of predicted connections between altered enhancers and 

promoters of dysregulated genes (Koues et al., 2015). However, based on various assumptions, 

these circuit-building methods either simplify the complexity of regulatory networks or include 

many redundant and false connections between enhancers and genes. 

 Now large sets of transcriptome and epigenome data have accumulated from numerous 

cell types in scarce populations. Using these data, theoretical cis-regulatory circuits have been 

tentatively constructed, connecting potential enhancers and their putative target genes in normal 
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and diseased cell types. Specifically targeting pathogenic cis-regulatory circuits is a promising 

direction to achieve the goal of precision medicine. Indeed, sequence-specific epigenetic 

manipulations have successfully altered the expression levels of target genes using engineered 

TFs linked with Zinc finger, TALEN or Cas9 (Luo et al., 2017; Vora et al., 2016). The huge 

advantage of this approach lies in that tumor-specific dysregulated enhancers can be targeted and 

reversed, restoring normal expression of associated genes in malignant cells, while leaving 

normal cells intact. These therapeutic applications require selecting key regulatory elements with 

stringent experimental validations. However, most of current predictions regarding cis-regulatory 

circuits remain untested at a functional level. Thus, functional dissection of predicted circuits 

will enable us to test these predictions and begin to translate research findings into clinical 

applications. 

1.4  Scope of Thesis 

 In this dissertation, I focus on gene regulatory mechanisms in normal development, 

specifically for antigen receptor loci in developing lymphocytes, and in disease, focused on B 

cell lymphoma. In Chapter 2, I describe our studies on the contributions of different features in 

shaping Vβ usage in primary mouse Tcrb repertoires (Gopalakrishnan et al., 2013). We built a 

unifying computational model, finding that chromatin modifications and transcription, but not 

spatial proximity, determine recombination frequencies of Vβ gene segments. This strategy will 

help predict immune cell repertoires in normal and altered antigen receptor loci. In Chapter 3, I 

describe our efforts to classify and identify regulatory elements in other mouse antigen receptor 

loci using computational algorithms to analyze chromatin profiles (Predeus et al., 2014). We 

successfully classified known enhancers and identified novel enhancers in mouse 
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immunoglobulin loci, which were further validated by functional assays. These data will 

facilitate future studies in immune receptor regulation. In Chapter 4, I describe the functional 

dissection of a pathogenic cis-regulatory circuit in human FL, composed of over a dozen 

augmented enhancers and multiple dysregulated genes, including one encoding a mitosis-

associated kinase, NEK6. We found that only a minor subset of predicted enhancers, excluding a 

super-enhancer, is required to maintain NEK6 expression. We also discovered the boundary 

function of a CTCF cluster in segregating the NEK6 regulatory hub. This work emphasizes the 

need to rigorously validate predictions regarding enhancers, super-enhancers and cis-regulatory 

circuits assigned by computational algorithms. 
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2.1 Abstract 

The primary antigen receptor repertoire is sculpted by the process of V(D)J 

recombination, which must strike a balance between diversification and favoring gene segments 

with specialized functions. The precise determinants of how often gene segments are chosen to 
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complete variable region coding exons remain elusive. We have quantified Vβ usage in the pre-

selection Tcrb repertoire and report relative contributions of 13 distinct features that may shape 

their recombination efficiencies, including transcription, chromatin environment, spatial 

proximity to their DβJβ targets, and predicted quality of recombination signal sequences (RSSs). 

We show that, in contrast to functional Vβ gene segments, all pseudo-Vβ segments are 

sequestered in transcriptionally silent chromatin, which effectively suppresses wasteful 

recombination. Importantly, computational analyses provide a unifying model, revealing a 

minimum set of five parameters that are predictive of Vβ usage, dominated by chromatin 

modifications associated with transcription, but largely independent of precise spatial proximity 

to DβJβ clusters. This learned model-building strategy may be useful in predicting the relative 

contributions of epigenetic, spatial, and RSS features in shaping pre-selection V repertoires at 

other antigen receptor loci. Ultimately, such models may also predict how designed or naturally 

occurring alterations of these loci perturb the pre-selection usage of variable gene segments. 

2.2 Introduction 

Gene activity is regulated at multiple levels to coordinate expression during development. 

At a most basic level, the collection of cis-acting elements for a genetic locus recruits 

transcription factors that alter its chromatin environment to either induce or repress gene activity. 

Emerging studies indicate that the three-dimensional (3D) conformation of a locus also plays an 

important role in the regulation of its composite genes (Dekker, 2008). At most genes, many 

levels of control are integrated to achieve the requisite gene expression state. For example, 

transcriptional promoters interact with their cognate enhancers over considerable distances in the 
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linear genome to generate “hubs” where the two cis-elements are in spatial proximity (Dekker, 

2008; Shih et al., 2012). 

All of these regulatory strategies are employed to generate functional immunoglobulin 

(Ig) and T cell receptor (Tcr) genes during lymphocyte development (Bossen et al., 2012). Each 

antigen receptor (AgR) locus is composed of multiple variable (V), joining (J), and sometimes 

diversity (D) gene segments that are assembled by the process of V(D)J recombination, creating 

a potential variable region exon (Bassing et al., 2002). Recombination is mediated by the RAG-

1/2 enzymatic complex, which is expressed in all developing lymphocytes and recognizes semi-

conserved recombination signal sequences (RSSs) flanking all AgR gene segments (Schatz and 

Ji, 2011). Upon selection of two compatible gene segments by RAG-1/2, recombination proceeds 

via a DNA break/repair mechanism, ultimately fusing the two selected segments (Bassing et al., 

2002; Schatz and Ji, 2011). 

The assembly of AgR genes is strictly regulated despite a common collection of genomic 

RSS targets and expression of recombinase in all resting (G0/G1) lymphocyte precursors (Cobb 

et al., 2006). The most obvious level of regulation is lineage specificity. The RAG-1/2 complex 

assembles Tcr genes in precursor T cells, whereas Ig genes are targeted in precursor B cells. 

Even within an AgR locus, gene segment recombination is ordered, with D–J rearrangements 

preceding V–DJ. Numerous studies support a key role for chromatin accessibility in determining 

the recombination potential of gene segments (Feeney, 2009). The primary RAG-1/2 targets in a 

given cell type are transcriptionally active and DNAse hypersensitive, two hallmarks of 

accessible chromatin. Indeed, RAG-2 binds directly to a histone modification that accompanies 

transcription (tri-methylated histone H3 lysine 4, H3K4me3), providing a link between 

chromatin and recombinase targeting (Liu et al., 2007b; Matthews et al., 2007). At all AgR loci, 
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activation of (D)J clusters is dependent upon communication between at least one distal enhancer 

and a proximal promoter, which triggers transcription of the unrearranged (D)J segments 

(Oestreich et al., 2006). Recent studies indicate that the high transcriptional activity focuses 

RAG-1/2 binding at (D)J clusters, forming “recombination centers” into which V gene segments 

must be brought (Ji et al., 2010).  

Although chromatin accessibility explains most aspects of RAG-1/2 deposition at 

recombination centers, this feature is not sufficient to ensure rearrangement of the distant V 

segments. Insertion of a powerful Tcra enhancer (Ea) into Tcrb maintains chromatin accessibility 

at nearby Vβ gene segments but does not facilitate their recombination at a stage of thymocyte 

development in which only Tcra genes rearrange (Jackson et al., 2005). Subsequent studies have 

shown that long-range recombination of V segments requires changes in the 3D structure of an 

AgR locus, bringing the V cluster into spatial proximity with (D)J recombination centers located 

up to 3.2 Mb away (Guo et al., 2011a; Jhunjhunwala et al., 2008; Skok et al., 2007). Long-range 

interactions and locus conformations are determined in large part by CTCF and cohesin, factors 

that bind numerous sites throughout the mammalian genome forming loops containing the 

intervening DNA (Rubio et al., 2008). With regard to AgR loci, deletion of CTCF, its binding 

sites, or essential cohesin subunits disrupt spatial interactions at Igk, Igh and Tcra, respectively, 

and perturb V to (D)J recombination (Guo et al., 2011b; Ribeiro de Almeida et al., 2011; Seitan 

et al., 2011; Xiang et al., 2011).  

In addition to lineage-, stage-, and allele-specificity, it is also likely that the relative usage 

of gene segments is regulated to shape the primary repertoire of V(D)J rearrangements in 

precursor lymphocyte populations. During subsequent stages of lymphocyte development, V 

gene segment usage is an important component of positive/negative selection and, in some cases, 
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is a primary determinant of functional subsets within a lineage (e.g., TRVB13-2 for iNKT cells) 

(Godfrey et al., 2000). As such, each species may have evolved toward a unique frequency 

profile for V usage at each AgR locus, balancing requirements for receptor diversity, production 

of functional subsets, and efficacy of given V segments for antigens expressed by common 

pathogens. The mechanisms that sculpt pre-selection V repertoires likely incorporate a 

combination of the chromatin and spatial features described above. However, their relative 

contributions to the efficiency of long-range V to (D)J recombination at any AgR locus remain 

unknown.  

We now address this basic question in adaptive immunity, beginning with the molecular 

determinants that shape Vβ usage in pre-selection thymocytes. The Tcrb locus is an attractive 

starting point for building such models because it contains a manageable set of 35 Vβ segments 

for molecular analysis; the cis-elements controlling recombination also are well-defined (Fig. 

2.1A).  New experimental data for chromatin profiles, spatial proximity and transcription, as well 

as predictions of RSS quality were incorporated into a computational analysis that weights each 

of these features in determining Vβ recombination frequencies. Our new data and analyses 

indicate that Tcrb adopts a 3D structure in which the relative proximity of each Vβ gene segment 

to DβJβ clusters is not a significant determinant in its recombination frequency. Instead, each Vβ 

gene segment has sufficient spatial access to the DβJβ recombination center, and usage is fine-

tuned by local Vβ chromatin environments, with a particular emphasis on transcription-

dependent histone modifications. Indeed, these chromatin features are absent at non-functional 

Vβ gene segments regardless of their RSS quality or precise proximity to DβJβ clusters. This 

model-building approach should help unravel the primary determinants of pre-selection V usage 
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at other AgR loci and in predicting how natural alterations of large V clusters may impact 

immune receptor repertoires. 

2.3 Results 

Preselection Tcrb repertoire 

Recent deep sequencing studies of mRNA corresponding to VβDβJβ combinations 

expressed in peripheral CD4+ T lymphocytes have provided an approximation of the post-

selection Tcrb repertoire (Ndifon et al., 2012). However, our goal is to understand variables that 

impact the efficiency of long-range Vβ to DβJβ recombination, which shapes the pre-selection 

Tcrb repertoire. Accordingly, these analyses must be performed on primary thymocytes prior to 

their positive- or negative-selection, which may alter the Vβ repertoire. Preferably, a DNA-based 

assay should be used to quantify Vβ usage because mRNA expression of VbDbJb 

rearrangements may be influenced by promoter strength or message stability. We developed the 

requisite assay (see below), which was applied to genomic DNA (gDNA) from sorted DN3 cells 

(> 95% purity; CD4-, CD8-, CD25high, CD44low), a developmental stage in which Vβ to DβJβ 

recombination occurs at a high frequency, but the vast majority of cells have yet to undergo 

Tcrb-dependent selection (Cobb et al., 2006). We reasoned that the relative frequency of 

rearrangements in this cell population involving a particular Vb segment, regardless of whether 

the joins are productive or out-of-frame, accurately reflects its recombination potential.  

Initially, we deep-sequenced products of a multiplex PCR amplification that incorporates 

primers for each mouse Vβ and Jβ gene segment, analogous to an approach described previously 

for analysis of human Tcrb repertoires (Robins et al., 2009). However, when applied to our DN3 
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thymocyte samples, a small subset of the mouse Vβ primers exhibit amplification biases in the 

multiplexing platform, limiting their usefulness for establishing relative Vβ frequencies. In 

contrast, this approach yields a relative Jβ usage similar to that observed in prior studies 

suggesting no significant bias in the Jβ primers (Fig. S2.1A) (Ndifon et al., 2012). In keeping 

with this, we noticed that the collection of VβDβJβ rearrangements for each Jβ segment has a 

nearly identical Vβ distribution. For example, TRBV16 is used in 8.6% of all rearrangements 

involving Dβ1Jβ1.1. A nearly identical percentage of Dβ1Jβ1.2 rearrangements, or any other Dβ-

Jβ combination, use the TRBV16 gene segment (7.5-8.6%). The Jβ-independent frequency of Vβ 

usage held true for all Vβ gene segments (Figs. 2.1B, S2.1B). Moreover, recent studies have 

reported similar Vβ usage for rearrangements involving either Dβ1 or Dβ2 (Ndifon et al., 2012). 

Thus, an accurate depiction of Vβ usage can be established from a simplified approach in which 

levels of Vβ rearrangements to a single Jβ gene segment are measured quantitatively.  

Accordingly, we designed Taqman PCR assays to independently measure rearrangements 

between Jβ1.1 and each of the 35 Vβ gene segments that undergo V to DJ recombination (Fig. 

2.1A).  We also prepared control plasmids containing each of the Vβ-Jβ1.1 combinations to 

serve as templates for standard curves. Initial experiments verified that all Vβ-Jβ1.1 plasmids 

amplified with comparable efficiencies (+5%) using Vβ-specific primers with a Jβ1.1 

primer/probe combination. Control PCR assays revealed no significant cross-reactivity of Vβ-

specific primers with off-target Vβ segments. Standard curves were used to quantify levels of 

each Vβ-Dβ1Jβ1.1 recombination product in gDNA from sorted DN3 thymocytes. The relative 

frequencies of Vβ usage were consistent in three biological replicates and averaged values are 

shown in Fig. 2.1C. Similar Vβ frequencies were observed in assays measuring a subset of Vβ-

Dβ2Jβ2.1 rearrangements (Fig. 2.1D), confirming the Jβ-independence of Vβ usage. Consistent 
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with previous observations, analysis of gDNA from DN-depleted thymocytes revealed only a 

few modest differences in Vβ usage, indicating that the pre- and post-selection Vβ repertoires in 

mouse are largely comparable (Fig. S2.1C) (Wilson et al., 2001). In contrast, deep sequencing of 

5’-RACE library from two DN3 samples yielded a distribution that differed at a subset of Vβ 

segments when compared with our quantitative gDNA-based assay (Fig. 2.1E). These findings 

suggest that mRNA levels corresponding to rearrangements involving some Vβ gene segments 

may not accurately reflect their recombination frequency in pre-selection thymocytes. 

Overall, we observe a >10-fold range in relative Vβ usage. Only TRBV13-2 (formerly 

Vβ8.2) and TRBV19 (formerly Vβ6) are significantly over-represented in the primary repertoire 

of Tcrb rearrangements. The preponderance of TRBV13-2 is consistent with analyses using a 

restricted set of Vβ-specific antibodies from T cell populations (Wilson et al., 2001). In contrast, 

rearrangements were undetectable for 11 of the 35 Vβ segments. Five of these 11 “inert” gene 

segments are predicted to have non-functional RSSs (asterisks, Fig. 2.1C and see below), 

crippling their recognition by the RAG-1/2 recombinase. Six of the remaining inert gene 

segments have functional RSSs, but are pseudo-gene segments due to disruptions in their coding 

potentials (y, Fig. 2.1C). A lack of VβDβJβ rearrangements involving these six pseudo-gene 

segments flanked by functional RSSs indicates that other factors influence their recombination 

efficiencies (see below). Only two functional Vβs, TRBV15 and TRBV30, were under-utilized 

compared with the remaining 22 functional segments, which displayed only a modest variability 

in their usage (~3-fold range). These repertoire data suggest that Tcrb has evolved to normalize 

usage of nearly all functional Vβ segments, perhaps by modulating the three determinants of 

long-range recombination efficiency – RSS quality, spatial proximity, and chromatin 

environment.  
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Spatial access of Vβ gene segments to the DβJβ recombination center  

Long-range recombination of V gene segments at all Ig and Tcr loci is facilitated by a 

contraction process, which places the V cluster into spatial proximity with distal (D)J targets 

located 0.1-3.2 Mb away in the linear genome (Bossen et al., 2012; Kosak et al., 2002). Deletion 

of transcription factors or cis-elements that disrupt locus contraction significantly impair V to 

(D)J recombination, supporting a functional link between these processes (Fuxa et al., 2004; Guo 

et al., 2011a; Liu et al., 2007a; Reynaud et al., 2008). Additional evidence indicates that V 

clusters fold into a compact rosette-like structure, which may permit extensive interactions 

between a recombination center and many or all of its upstream V segments (Jhunjhunwala et al., 

2008). Alternatively, the spatial architecture of V clusters may sculpt the repertoire by 

positioning a subset of V segments closer to their (D)J targets (efficient rearrangement), while 

spatially excluding others (inefficient rearrangement). Indeed, emerging studies at Igk suggest 

that Vк pseudo-gene segments may be spatially excluded from interactions with Jk substrates, 

perhaps minimizing their recombination potential (Lin et al., 2012). 

To test whether spatial proximity is a key determinant in shaping the pre-selection Tcrb 

repertoire, we measured interaction frequencies between restriction fragments spanning each Vβ 

segment and fragments spanning either of the two DβJβ clusters using chromosome 

conformation capture (3C) (Dekker, 2008). In the linear genome, the distance between these 

restriction fragments range from 250-700 kb (except for TRBV31, which is ~3 kb downstream of 

Eβ and rearranges by inversion). 3C assays were performed on cross-linked chromatin from 

RAG1-deficient thymocytes, a predominantly DN3 cell population in which Tcrb is in an active 

germline conformation. The use of RAG-deficient thymocytes circumvents complications in data 
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analysis that arise from active Tcrb rearrangement. Although we cannot rule out a role for RAG-

1 in defining the precise 3D conformation of Tcrb (Chaumeil et al., 2013), prior studies 

demonstrate that RAG proteins are dispensable for locus contraction (Skok et al., 2007). 

We measured the cross-linking efficiency of each Vβ-containing Hind III fragment to 

three downstream vantage points within the Tcrb recombination center. Specifically, we probed 

Vβ cross-linking to Hind III fragments containing either of its two substrates (Dβ1 or Dβ2), or 

the transcriptional enhancer Eβ, which generates active chromatin over the DβJβ clusters 

(Oestreich et al., 2006; Spicuglia et al., 2000). Regardless of the vantage point, nearly all Vβ 

gene segments interact more frequently with the DβJβ recombination center in DN thymocytes 

when compared to CD19+ pro-B cells purified from RAG-deficient bone marrow (Figs. 2.2A, 

S2.2A, S2.2B). These data verify and extend previous analyses showing that Tcrb adopts a T 

cell-specific conformation, juxtaposing the Vβ cluster with its DβJβ targets (Skok et al., 2007).  

Of particular note, interaction levels measured from a given vantage point (e.g., Dβ1) 

display significant differences across the collection of Vβ segments (Fig. 2.2A).  There were also 

differences in interactions between specific Vβ segments and two vantage points. For example, 

the fragments spanning TRBV1 or TRBV18/19 both interact with Dβ1 at a much higher 

frequency than with Dβ2 (Figs. 2.2A, S2.2A). Conversely, TRBV17 displays a greater 

interaction with Db2 (Figs. 2.2A, S2.2A). Despite these differences, the TRBV1 and TRBV19 

segments are utilized with indistinguishable frequencies in recombination products involving 

either Dβ1 or Dβ2 (Fig. 2.1D). In contrast to preliminary findings at Igk (Lin et al., 2012), a 

group of pseudo-gene segments spanning TRBV6-TRBV11 each interact with DβJβ clusters at a 

relatively high frequency, but these gene segments are absent from the pre-selection Tcrb 
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repertoire despite having functional RSSs. These findings suggest that relative Vβ usage in the 

pre-selection Tcrb repertoire cannot be fully explained by differences in their spatial proximity to 

the DβJβ regions.  

To more rigorously investigate the relationship between spatial proximity and long-range 

recombination, we performed Spearman ranking correlations for 3C and Vβ repertoire data. 

Because the absolute values of 3C data cannot be quantitatively compared between the three 

assays, we first ranked cross-linking efficiencies of the Vβ segments within each vantage point 

(Supplementary Table 2.1). No significant correlations between 3C ranking and TRBV 

rearrangement are observed for any of the three individual viewpoints within the DbJb 

recombination center. We also calculated the average ranking for each Vβ segment over the three 

assays (Dβ1, Dβ2 and Eβ) and compared these values with relative usage in VβDβJβ joins 

(Supplementary Table 2.1). As shown in Fig. 2.2B, there is an absence of significant correlation 

between Vβ usage and its average rank for interactions with the DβJβ recombination center. 

Consistent with this finding, we also observe no obvious correlation between the recombination 

frequency of a Vβ segment and its proximity to CTCF binding. We conclude that, although gross 

locus contraction is important to bring the entire Vβ cluster into spatial proximity with its Dβ 

substrates, the precise magnitude of each Vβ–Dβ interaction is not a primary determinant of 

recombination efficiency. Instead, our 3C and repertoire data indicate that once Tcrb is 

contracted in DN thymocytes, the large Vβ cluster adopts a conformation in which spatial access 

of Vβ segments to the recombination center is not limiting. 

Role of RSS quality in determining Vβ use 
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Despite general conservation of the heptamer-spacer-nonamer configuration, RAG-1/2 

substrates exhibit substantial variation compared with the consensus RSS sequence: 

(CACAGTG) – 12 or 23 bp spacer – (ACAAAAACC) (Hesse et al., 1989; Livak, 2003). In vivo 

replacement or natural variants of RSSs can alter the usage of gene segments, including those 

within the Tcrb recombination center (Nadel et al., 1998; Posnett et al., 1994; Wu et al., 2003). 

In vitro studies using plasmid substrates have defined the effects of positional substitutions 

within the consensus RSS on recombination efficiency (Feeney et al., 2000; Hesse et al., 1989; 

Jung et al., 2003). Thus, one component of non-random Vβ usage is likely the quality its 

flanking RSS.  

To examine this possibility, we took advantage of an algorithm 

(http://www.itb.cnr.it/rss/) that predicts the RSS quality of any given sequence (Cowell et al., 

2003). In brief, this algorithm calculates the theoretical recombination potential of an RSS using 

a statistical model that assigns a score based on the contribution of each nucleotide within the 

heptamer-spacer-nonamer sequence. The algorithm output is a “Recombination signal 

Information Content” (RIC) score, which predicts the quality of an input RSS with a reasonable 

degree of accuracy based on data from plasmid recombination substrates (Lee et al., 2003). For 

Tcrb, six of the 35 Vβ gene segments are flanked by non-functional RSSs with a RIC score of    

< -58.5, the threshold defined by Cowell et. al, (Cowell et al., 2003) (TRBV8, 12-3, 18, 21, 27, 

and 28). The remaining 29 Vβ segments have a substantial range in predicted RSS quality, with 

RIC scores between -29 (TRBV4) and -58.2 (TRBV11). Recombination is undetectable for five 

of the six Vβ segments flanked by RSSs that score below the functional threshold (Fig. 2.1C). 

The exception is TRBV21, which rearranges at a detectable level, but is predicted to have a 
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marginally non-functional RSS (RIC score -58.6) consisting of a consensus heptamer and a 22 

bp rather than 23 bp spacer.  

The correlation between RIC scores and Vβ usage is shown in Fig. 2.3. Although a 

positive correlation is apparent, the magnitude of Vβ usage diverges significantly from linearity 

when compared with predicted RSS quality. In general, Vβ RSSs with lower quality (RIC scores 

-45 to -58) are either inert or rearrange at a level below the average frequency. RSSs with RIC 

scores >-45 exhibit a broad range of Vβ recombination frequencies, as highlighted by the 

following examples: (1) TRBV13-2 is the most frequently used segment but shares a nearly 

identical RIC score with TRBV14, which rearranges at an average frequency (2) Six Vβ 

segments (TRBV7, 15, 16, 20, 24 and 26) have nearly indistinguishable RIC scores (-41 to -42), 

but one Vβ is recombinationally inert (TRBV7) and the remaining five display an eight-fold 

range in their utilization. We cannot rule out the possible contribution of coding sequences 

adjacent to each RSS in altering its quality as a RAG-1/2 substrate. Inspection of coding flanks 

revealed only a small subset with features predicted to attenuate RAG cleavage (e.g., AT or 

pyrimidine stretches for TRBV12-1, 12-2, 14, 17, and 29) (Cuomo et al., 1996; Gerstein and 

Lieber, 1993; Olaru et al., 2003; Yu and Lieber, 1999). However, as shown below, the 

recombination frequency of these gene segments correlate best with features of associated 

chromatin. Together, our data indicate that, although predicted RSS qualities contribute to the 

formation of a pre-selection Tcrb repertoire, other levels of control clearly impact Vβ usage.  

Role of chromatin environment in determining Vβ recombination potential 

Chromatin accessibility at gene segments has been studied extensively as a determinant 

of the tissue- and stage-specific mechanisms controlling V(D)J recombination (Cobb et al., 2006; 
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Feeney, 2009). Germline transcription of gene segments leads to the deposition of H3K4me3, a 

histone modification that is recognized by RAG2 and augments endonuclease function of the 

RAG complex (Liu et al., 2007b; Matthews et al., 2007; Shimazaki et al., 2009). As such, levels 

of chromatin accessibility and transcription at each Vβ segment may help determine its usage in 

the pre-selection Tcrb repertoire. 

The emerging approach of “chromatin profiling” uses combinatorial patterns of histone 

modifications, nucleosome density, and factor binding to assess the epigenetic status of genomic 

regions (Ernst et al., 2011). To compare epigenetic landscapes at the 35 Vβ segments, we 

generated new chromatin profiling data from RAG1-deficient thymocytes using chromatin 

immunoprecipation (ChIP) assays in combination with Tcrb microarrays (ChIP-chip) or deep 

sequencing. We also performed Formaldehyde-Assisted Isolation of Regulatory Elements 

(FAIRE), which identifies nucleosome-depleted regions in the genome (Giresi and Lieb, 2009).  

The new ChIP-chip (P300, H3K27ac, H3K4me2), ChIP-seq (H3ac, H3K4me3, and CTCF), and 

FAIRE-Chip data from RAG-deficient thymocytes were combined with epigenomic data 

available in public repositories (H3K4me1, RNA Pol II and H3K9me2) from RAG-deficient 

thymocytes (Pekowska et al., 2011). We employed a published methodology to integrate cross-

platform data derived from ChIP-chip and Chip-seq (Chen et al., 2011). In addition to 

nucleosome depletion (FAIRE), the analyzed features characterize active promoter regions 

(transcription, RNA Pol II, H3K4me3, and H3ac), active regulatory elements (H3K4me1, 

H3K27ac, and P300), poised chromatin (H3K4me2), insulators (CTCF), and silent chromatin 

(H3K9me2).  

Relative intensities for each feature at the 35 Vβ segments (+ 1 kb) are represented as a 

heat map in Fig. 2.4A. Examples of several features for selected gene segments in chromatin 
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environments ranging from highly active to silent are depicted in Fig. 2.4B. Overall, most of the 

Vβ segments that participate in Vβ to DβJβ recombination exhibit higher levels of active 

chromatin features than the inert Vβ elements (H3K4me, RNA Pol II/transcription, and histone 

acetylation). In contrast, the repressive H3K9me2 modification was enriched over many of the 

inert Vβ segments. One region within the Vβ cluster containing the TRBV12-2 and 13-2 gene 

segments is conspicuously active (Fig. 2.4B), with high levels of germline transcripts and other 

features associated with open chromatin, including one of the few discernible P300 peaks. As 

noted above, TRBV13-2 is also the most frequently rearranged gene segment in DN3 

thymocytes, suggesting a dominant correlation between open chromatin and long-range 

recombination efficiency. Consistent with this possibility, many of the pseudo-gene segments, 

even those containing functional RSSs, are expressed at a low level and are associated with 

chromatin that lacks activating histone marks (asterisks, Fig. 2.4A). In-silico analysis of Vβ 

upstream sequences (-1 kb to leader) for predicted transcription factor binding profiles 

(TRASFAC/JASPAR databases) revealed no distinguishable differences between functional and 

pseudo-Vβ gene segments. Promoter activity as measured by luciferase assays in a transfected 

pre-T cell line show that all tested upstream Vβ regions from recombinationally active gene 

segments (11/11) are functional promoters. In contrast, only some of the tested regions upstream 

of pseudo-gene segments (4/8) exhibit promoter activity (y, Fig. S2.3), indicating no clear 

correlation between Vβ utilization and promoter strength. Thus, it appears that the mouse Vβ 

cluster has evolved multiple strategies to silence chromatin at non-functional gene segments. 

A reasonable concordance was observed between chromatin environments and 

recombination efficiencies when comparing Vβ segments with equivalent RIC scores. For 

example, TRBV15 and TRBV16 are predicted to have RSSs of nearly identical qualities but 
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reside in distinct chromatin environments. The elevated levels of transcription and activating 

histone marks at TRBV16 correspond to an elevated level of recombination (Fig. 2.4C). In some 

cases, both the predicted RSS quality and chromatin environment apparently contribute to Vβ 

usage. For example, TRBV23 and TRBV24 are both transcriptionally active and have 

comparable chromatin features (see heatmap, Fig 2.4A); however, the lower predicted RSS 

quality for TRBV23 (-48.6) when compared to TRBV24 (-41.2) correlates with an attenuated 

level of recombination. We also noted that contributions of chromatin to rearrangement 

frequencies may derive from different combinations of features. TRBV20 and TRBV26 exhibit 

nearly identical usage (2.7 and 2.9%) and RIC scores (-41.5 and -41.1), but patterns of specific 

chromatin features at these gene segments differ significantly (see heat map, Fig. 2.4A). To 

further validate these comparisons, we performed semi-quantitative assays to measure the 

qualities of eight Vb-RSSs using plasmid-based substrates (including the six Vb-RSSs 

mentioned above). The relative qualities of these RSSs, tested in conjunction with a natural 

target (5’Db1-RSS), are in line with predictions from RIC scores (Fig. 2.4D and legend), further 

supporting our conclusions. Together, these profiling studies indicate a strong contribution of 

chromatin environment to Vβ recombination frequencies, but also suggest that individual 

parameters of chromatin accessibility may affect substrate usage in a weighted manner.  

Computational analysis of Vβ use determinants  

Our data indicate that predicted RSS qualities and chromatin landscapes likely contribute 

in a combinatorial manner to the efficiency of long-range Tcrb assembly. To examine these 

combinatorial relationships, we employed classification and regression analyses comparing 

chromatin features and predicted RSS quality with Vβ usage. These analyses were guided by 
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recent computational strategies devised to predict gene expression levels based on patterns of 

histone modifications (Dong et al., 2012; Karlic et al., 2010). We applied one validated approach 

(Dong et al., 2012) to study whether chromatin features, predicted RSS quality, and spatial 

proximity are predictive of the observed Vβ repertoire.  

The chosen computational approach takes into account: (i) the signal intensity of each 

chromatin feature, (ii) levels of germline transcription, (iii) RIC scores, and (iv) spatial proximity 

based on the average 3C rank-score. With regard to chromatin features, distinct positional 

profiles are observed for various histone marks. For example, H3K4me3 is enriched over active 

promoters and progressively wanes along gene bodies. Accordingly, we divided the regions 

spanning each Vβ segment into three bins – the Vβ segment itself (leader to RSS), its upstream 

promoter region (1 kb 5’ of leader), and its downstream region (1 kb 3’, including the RSS). For 

each feature, we computed Pearson correlation coefficients for the three bins versus Vβ 

recombination frequencies (Fig. 2.5). We find the best correlation for a majority of histone 

modifications in the upstream/promoter bin (H3K4me1, H3K4me2, H3K4me3, P300, H3ac, and 

H3K27ac). In contrast, repression by H3K9me2 was most correlative in the bin that contains Vβ 

segments. FAIRE and RNA Pol II signals have very similar predictive abilities over both the Vβ 

and its downstream bins. These findings are strikingly similar to correlations observed between 

chromatin features and gene expression (Dong et al., 2012; Karlic et al., 2010), further 

underscoring the relationship between transcriptional activity and Vβ recombination frequencies. 

A particularly satisfying outcome of this analysis is the correlation between FAIRE signals and 

the bins flanking RSSs, presumably reflecting a requirement for nucleosome depletion at RAG-

1/2 targets (Kwon et al., 2000; Osipovich et al., 2007). 
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Next, we identified features that are most predictive of whether a Vβ segment will 

rearrange at any frequency or will remain inert. For this and the remaining analyses, we used 

signal intensities only from bins exhibiting the highest correlation between each chromatin mark 

and Vβ usage (Fig. 2.5, asterisks). A computational approach called Random Forest was 

employed (Dong et al., 2012), which randomly tests combinations of binned features for their 

predictive abilities to classify gene segments as “active” or “inert” (Fig. 2.6A). This analysis 

revealed that three features – predicted RSS quality, FAIRE and RNA Pol II signals – are 

sufficient to classify the recombination potential of a given Vβ segment with a high level of 

confidence. The classifications are also evident from linear regression analysis on these three 

features relative to Vβ recombination frequencies (Fig. 2.6B, 30/35 segments predicted 

correctly). When we used the Random Forest algorithm, but focused only on values for RIC 

score, FAIRE and RNA Pol II signals, 32/35 Vβ segments classified correctly as active versus 

inert (see methods). The three exceptions common to both Random Forest- and linear regression-

based classifications are TRBV15, 21, and 22; segments predicted to be inert but exhibiting 

detectable levels of recombination. These outliers could reflect partial compensation by 

chromatin features other than the factors determined by our algorithms. Notwithstanding, the 

most important predictive features of recombinational competency are linked mechanistically to 

RAG substrate quality (RIC score), substrate accessibility (nucleosome depletion), and RNA Pol 

II association. 

We next moved beyond “black-and-white” classifications to analyze the relative 

importance of Vβ features in fine-tuning recombination frequencies of the 23 active gene 

segments. For this purpose, we performed linear regression on the selected bins for each feature 

versus frequency values.  As shown in Fig. 2.6C, the features that correlate most significantly 



35 
 

with Vβ usage are H3K4 methylation, H3Ac, and RNA Pol II occupancy, which normally 

associate with transcriptionally active regions. The repressive H3K9me2 mark correlates 

negatively with levels of Vβ recombination. In contrast to its dominant role as a determinant for 

recombinational competence, RIC scores for the 23 active Vβ gene segments correlate poorly 

with their relative levels of rearrangement. A similar discordance between recombination 

frequencies and RSS qualities for a limited set of mouse VH and Vк gene segments has been 

described previously (Aoki-Ota et al., 2012; Williams et al., 2001). These findings suggest that 

chromatin environment, rather than predicted RSS quality, is the dominant feature for fine-tuning 

Vβ usage in long-range recombination.  

We next investigated whether various combinations of the 13 features included in this 

study are predictive of Vβ recombination efficiencies. As a starting point, we examined the 

predictive capacity of all 13 features using linear regression (Fig. S2.4A). This analysis yielded a 

correlation coefficient for best fit of 0.78, which was statistically insignificant (P-value > 0.05).  

We next tested whether a subset of these 13 features correlate in a significant manner with 

observed frequencies of Vβ usage. For this purpose, we examined various subsets of features, 

ranging from a single feature to 12 of the 13 variables in all possible combinations. This 

combinatorial analysis yielded a set of five features that correlate significantly with Vβ usage 

(Fig. 2.6D, Pearson correlation coefficient = 0.69, P-value = 0.03). In descending order of 

contribution to the fitted model, the identified features were H3K4me3, H3K4me2, transcription, 

P300, and CTCF. The first four features largely determine the efficiency for most TCRBV 

segments, while the remaining feature, CTCF proximity, improves the fit for several outliers that 

are poorly predicted by H3K4me3, H3K4me2, transcription, and P300. When further analyzed 

by clustering, we found that the four chromatin features (H3K4me3, H3K4me2, P300, and 
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CTCF) in this set of five core parameters represent four classes of related marks that share a 

significant portion of epigenetic information (Fig. 2.6E). For example, H3K4me3 correlates 

strongly with H3ac and RNA Pol II occupancy, three features enriched near active promoters, in 

essence encapsulating the information content of the entire class. The relative contributions of 

the five core features to the accuracy of fit and the corresponding linear regression formula are 

provided in Fig. S2.4B.   

Together, the computational analyses derive a two-tiered model for predicting Vβ usage 

in the pre-selection Tcrb repertoire. First, RIC scores in combination with nucleosome and RNA 

Pol II densities discriminate active from inert substrates. The recombination frequency of the 

active Vβ set can be discerned from values for the five core parameters identified by statistical 

correlations. Moreover, this basal set of five parameters may be useful in future studies to predict 

the impact on pre-selection Vβ repertoires of naturally occurring or engineered perturbations at 

Tcrb. 

2.4 Discussion  

We took an integrative approach to define the molecular determinants of Vβ 

recombination frequencies, an important component of the pre-selection Tcrb repertoire. Prior 

studies have examined the independent effects of RSS quality, 3D architecture, transcription, or 

chromatin accessibility on recombination of specified gene segments. However, to our 

knowledge, this is the first unified analysis of how these features impact the efficiency of long-

range V to (D)J recombination at an endogenous AgR locus. Using several independent 

computational approaches, we find that: (i) RSS quality and nucleosome density are the major 

determinants of whether a given Vβ segment will participate in Tcrb gene assembly, (ii) the 
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relative usage of a Vβ segment is fine-tuned by its chromatin environment, (iii) the optimal 

epigenetic landscape for Vβ recombination is a blend of transcriptional activation marks, 

nucleosome depletion, and a lack of the repressive H3K9me2 mark, and (iv) the precise 

magnitude of spatial proximity between a Vβ segment and the DβJβ recombination center does 

not significantly influence its relative utilization. Collectively, we find that a minimum set of five 

features can be measured to predict the recombination frequency of a competent Vβ segment 

with a high degree of accuracy. 

A critical component of our study was a determination of the pre-selection Vβ repertoire. 

The relative usage of Vβ segments may have important consequences with regard to AgR-

mediated thymic selection, the production of functional T cell subsets that employ specific Vβ 

segments, or the baseline antigenic profile recognized by emerging T lymphocytes. We used a 

DNA-based approach to directly quantify rearrangement levels of the 35 Vβ segments in sorted 

DN3 thymocytes. This approach avoids two caveats of prior repertoire analyses – biases 

introduced by thymocyte selection or by mRNA expression differences, both of which were 

observed in our companion assays.  We find that only a few functional Vβ segments are either 

over- or under-utilized in the pre-selection Tcrb repertoire. One of the over-utilized Vβ 

segments, TRBV13-2 (formerly Vβ8.2), is enriched in iNKT cells, a subset of lymphocytes that 

respond to lipid antigens and produce a robust cytokine response. We postulate that the ideal 

chromatin environment encompassing TRBV13-2 has evolved to augment its rearrangement 

efficiency, ensuring a sufficient production of iNKT cells, which provide a rapid cellular 

immune response to numerous foreign antigens.  Notwithstanding, rearrangement levels for the 

vast majority of functional Vβ gene segments (18/22) fall within a three-fold range. The 
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relatively limited range of distribution likely reflects a requirement to maximize Tcrb diversity 

prior to its pairing with Tcra for subsequent selection by MHC-peptide complexes.  

As shown here, the “normalization” of Vβ usage results predominantly from the 

chromatin environment encompassing each gene segment, with perhaps a minor contribution 

from its RSS quality. The dominance of chromatin in fine-tuning Vβ usage was evident from 

several “outlier” gene segments. The TRBV15 and TRBV30 segments are under-utilized 

compared with all of the other functional Vβ elements, likely because they are poorly transcribed 

or lack most features of active chromatin. Likewise, nearly all of the pseudogene segments that 

are flanked by functional RSSs reside in a repressive chromatin environment. For the latter 

category, we provide evidence that some, but not all, germline promoters associated with 

pseudo-Vβ segments have been incapacitated, despite their retention of potential factor binding 

sites found in functional Vβ promoters. Another potential mechanism for pseudogene 

suppression could be their localization to the nuclear periphery or lamina (Reddy et al., 2008). 

However, the precise underlying mechanisms that sequester these pseudogene segments in 

repressive chromatin, preventing wasteful recombination, remain to be defined.  

With regard to the collection of rearranging Vβ segments, the dominant chromatin 

features in determining their relative usage are associated with active transcription. The strongest 

correlations exist between recombination efficiencies, histone acetylation (H3ac), H3K4 

methylation, nucleosome depletion, and RNA Pol II occupancy. Although a link between this 

transcriptional epigenetic state and recombination has long been appreciated, its dominant role in 

sculpting the primary repertoire of antigen receptors is a novel finding of our study. One likely 

mechanism for this relationship is the affinity of RAG complexes for chromatin bearing the 

H3K4me3 mark. Prior ChIP-seq studies demonstrate that RAG-1/2 is bound to the DβJβ 
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recombination center in DN thymocytes but is relatively absent from the Vβ cluster (Ji et al., 

2010). This reflects the extremely high levels of H3K4me3 on DβJβ chromatin compared with 

Vβ segments (~10-fold difference) (Ji et al., 2010). Based on our integrative model, we suggest 

that after Tcrb contracts, pre-bound RAG-1/2 complexes at the DβJβ recombination center may 

preferentially target Vβ segments that are most enriched for transcription-associated marks, 

including H3K4me3. Thus, the strength of each Vβ promoter within its native chromosomal 

context may be a dominant feature for shaping the pre-selection Tcrb repertoire.  

One important aspect of our study is that the precise magnitude of association between a 

Vβ segment and DβJβ clusters, as measured by 3C, does not contribute discernibly to its level of 

usage. Clearly, general locus contraction is an important mechanism for bringing V segments 

into spatial proximity with their distant (D)J substrates (Bossen et al., 2012). However, the 

spatial architecture adopted by the large Vβ cluster in DN thymocytes must provide sufficient 

access to all of its composite gene segments by RAG-1/2 bound at the DβJβ recombination 

center. Recent studies of Igk suggest that most V segments within this locus also may have 

similar spatial access to their target J segments (Lin et al., 2012). Given the 10-fold range in 

cross-linking efficiencies between various Vβ segments and the two DβJβ clusters, we conclude 

that spatial constraints on long-range Vβ to DβJβ recombination are binary rather than digital, 

requiring only that target gene segments cross a threshold of spatial proximity. Presumably, this 

spatial threshold is surpassed via a combination of locus contraction and folding of the Vβ 

cluster into a more compact structure.  

 In conclusion, a combination of epigenetic, spatial, transcriptional, and RSS features 

were used to identify the dominant determinants for sculpting the pre-selection Vβ repertoire. 

We concede that a model for Vβ usage may not completely apply to all other AgR loci. Indeed, 
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pseudo-Vк segments interact inefficiently with their target Jк cluster, perhaps suppressing their 

recombination (Lin et al., 2012). In contrast, pseudo- and functional Vβ segments interact 

indistinguishably with their DβJβ substrates. Recombination of pseudo-Vβ segments is, instead, 

suppressed by sequestration into inactive chromatin. This distinction may reflect a more 

dominant role for spatial constraints at the much larger Igk locus. Notwithstanding, much of the 

relevant epigenetic and RSS quality data necessary to build predictive models for other AgR loci 

are available publicly. In most cases, the lacking features are reliable DNA-based analysis of V 

usage and complete sets of 3C data covering V clusters.  We suspect that as multiplex PCR 

approaches improve, eliminating primer bias, comprehensive pre-selection repertoires for all 

AgR loci will emerge.  Current methods for quantifying spatial proximity on a global scale lack 

the resolution of focused 3C assays; however, technical improvements and increased sequencing 

depths may soon overcome these obstacles. The learned model-building strategy employed here 

should be a valuable guide for defining relative contributions of epigenetic, spatial, and RSS 

features in shaping pre-selection V repertoires. Ultimately, these models should also be valuable 

for predicting how designed or naturally occurring alterations of AgR loci perturb the pre-

selection V repertoire. These alterations could range from targeted RSS and promoter 

substitutions to natural variant AgR alleles that lack portions of the large V clusters, creating 

“holes” in the immune repertoire. Indeed, a striking parallel exists between the usage of several 

mouse and human Vb orthologues (Livak, 2003), underscoring the potential utility of our model 

to predict the effects of human TCRB polymorphisms on primary repertoire formation. 
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2.5 Materials and Methods 

Cell Purification and Antibodies. Thymocytes from C57BL/6 mice (4-6 weeks) were depleted 

of CD4+ and CD8+ cells using MACS (Miltenyi Biotec, CA). The remaining DN cells were 

stained and sorted for the CD25hi/CD44low DN3 population, yielding a >95% purity. CD19+ bone 

marrow cells from RAG-deficient mice were purified using MACS in conjunction with CD19 

microbeads (Miltenyi Biotec, CA), providing a >90% pure population of pro-B cells. CD4-FITC 

(561835), CD8-FITC (553031), CD4-biotin (553044), CD8a-biotin (553028), CD44-PE 

(553134), CD25-APC (557192) antibodies were purchased from BD Biosciences (CA) and used 

for cell staining and sorting. H3K4me2 (07-030, Millipore), H3K27ac (ab4729), and P300 (C-

20) (SC-585X) for H3ac (06-599, Millipore), H3K4me3 (39159, Active Motif) and CTCF (07-

729, Millipore) antibodies were purchased and used for ChIP experiments. 

High throughput sequencing of Tcrb rearrangement. gDNA from sorted DN3 cells was 

amplified by multiplex PCR for Vβ-Dβ-Jβ rearrangements and the amplicons were deep 

sequenced by Adaptive Biotechnologies (WA). The gene segment usage were analyzed using 

ImmunoSEQ TM Analyzer software.  

5’ RACE.  Total RNA (0.5 µg) from DN3 thymocytes was converted to cDNA and 5’ RACE 

was performed using a Cb primer (5’-AGCTCCACGTGGTCAGGGAAGAA-3’) following 

manufacturer’s protocol (Ambion, CA). The RACE product were blunted, concatemerized, and 

sonicated to an average size of 175 bp. The sheared fragments were ligated with Illumina 

adapters and sequenced using an Illumina HiSeq-2000 to provide paired-end reads extending 101 

bases. Raw reads were de-multiplexed and unique FASTA reads obtained using the FASTX tool 

kit (http://hannonlab.cshl.edu/fastx_toolkit). For quality control, a portion of the 5’ RACE 
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product was TOPO cloned and individual clones were sequenced. Sequences were analyzed 

using IMGT High-V quest (http://www.imgt.org) (Lefranc et al., 2009).  

Quantitative PCR for VβDβJβ Rearrangements. We designed a panel of Taqman PCR assays 

using probes and primers specific for either Jβ1.1 or Jβ2.1 gene segments in combination with a 

primer specific for each of the 35 Vβ segments. We also generated a collection of plasmids 

containing each Vβ cloned directly upstream of either Jβ1.1 or Jβ2.1 in an orientation that 

mimics the corresponding V-D-J rearrangement product. For this purpose, Jb1.1 or Jb2.1 

segments were amplified by PCR from mouse gDNA and cloned into the NotI/BamHI sites of 

pBS-KSII. Subsequently, Vb segments were amplified and cloned upstream of the Jb region. 

The specificity of Vβ primers was confirmed by BLAST searches and a panel of PCR assays 

showing that amplification of control plasmids containing other Vβ segments was detected at 

<1% compared with the bona fide target. Template plasmids were used to generate standard 

curves, allowing us to correct for minor differences in PCR efficiency between each of the 

assays. Total Vβ-DbJb1.1 or Vβ-DbJb2.1 rearrangement product (alleles) was quantified relative 

to amounts of an unrearranged region within the genome (b2-microglobulin) using the formula 

E-Ct(V-Jβ)/E-Ct(B2M), where E is the primer efficiency. The list of primers and probes used is given 

in Supplementary Table 2.2. 

Chromosome Conformation Capture. 3C assays were performed on 107 RAG1-deficient 

C57BL/6 DN thymocytes or CD19+ pro-B cells using Hind III as described in Hagège et. al. 

(Hagege et al., 2007). Primers and probes designed for Hind III fragments corresponding to each 

vantage point in the recombination center (Dβ1, Dβ2 and Eβ) were used in Taqman assays with 

primers specific for each Vβ gene containing fragment. Standard curves were generated for these 
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Taqman assays using Hind III-digested BACs spanning the entire Tcrb locus, which were then 

ligated to yield a library of all possible products. Interaction between nearest neighbor fragments 

in ERCC3 gene was set as 1. Cross-linking frequencies were calculated as described in Hagège 

et. al. (Hagege et al., 2007). List of primers, probe sequences and BAC clones are provided in 

Supplementary Table 2.3. 

Chromatin Immunoprecipitation and FAIRE. Chromatin immunoprecipitation (ChIP) 

experiments for H3K4me2, H3K27ac, and P300 were performed with chromatin from RAG-

deficient thymocytes (C57BL/6) as described previously (Degner et al., 2011). The ChIP DNA 

was purified using a Qiagen DNA purification kit and subjected to whole genome amplification 

(Sigma, MO), labeled, and hybridized to custom Nimblegen microarrays according to the 

manufacturer’s protocol by Mogene Inc, St. Louis. Total input DNA was used as the 

hybridization control. A subset of ChIP-Chip data were verified at various locations throughout 

Tcrb using qPCR (not shown). FAIRE was performed on cross-linked nuclei from RAG-

deficient DN thymocytes and purified pro-B cells using published methods (Giresi and Lieb, 

2009). Purified FAIRE-DNA was used for subsequent analyses by q-PCRs or array 

hybridization. DNA from non-crosslinked cells, processed in parallel, was used as reference 

samples. Model-based Analysis of 2-Color Arrays (MA2C, version 1.4.1) was used to normalize 

the microarray data, detect peaks and generate UCSC wiggle (WIG) files.  

 ChIP-seq experiments were performed as above using chromatin from RAG-deficient 

thymocytes (C57BL/6) for H3ac, H3K4me3 and CTCF. ChIP seq data for RNA Pol II, 

H3K4Me1 and ChIP-Chip data for H3K9me2 from RAG-deficient thymocytes were downloaded 

from http://www.comline.fr/ciml/ (Pekowska et al., 2011). The ChIP-Seq raw data were aligned 

to the mouse reference genome (mm9) using Bowtie 0.12.8. The resulting BAM files were used 
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to generate UCSC wiggle (WIG) files and peaks called using Model-based Analysis of ChIP-Seq 

software (MACS, version 1.4.2). The list of antibodies used in ChIP experiments is given in 

supplementary methods. 

RNA-seq. Total RNA from RAG-deficient DN thymocytes was extracted using an Ambion (CA) 

Ribopure kit. Ribosomal RNA was removed using Ribo-ZERO (EpiCentre, CA). mRNA was 

fragmented and reverse-transcribed to yield double-stranded cDNA, which was sequenced on an 

Illumina HiSeq-2000 using paired-end reads extending 101 bp. Raw data were de-multiplexed 

and aligned to the mouse reference genome (mm9) using TopHat 1.4.1. Transcript abundances 

were estimated from the alignment files using Cufflinks.  

Luciferase Assays. The Eb enhancer was amplified and cloned into the Bam HI site of pGL3 

(Promega, WI). Each tested upstream Vb region (300-500 bp) was amplified and cloned into the 

Xho I/Hind III sites of the Eb-containing vector. T3 cells (Ferrier et al., 1990) were transfected 

transiently with firefly (4µg) and Renilla (40ng) luciferase plasmids using electroporation. After 

24 hours, the transfected cells were assayed for firefly and Renilla activities. List of primers are 

provided in Supplementary Table 2.4. 

V(D)J Recombination Substrates. A Db1-Jb1.1 rearrangement that includes the 5′ Dβ1-RSS 

was amplified from thymus DNA and cloned into pCDNA3.1. Each recombination substrate 

includes the specified Vb-RSS together with its upstream and downstream flanking sequences 

(80 and 130 bp, respectively), which were cloned 5’ to the DbJb1.1 join (deletion substrates). An 

inert YFP coding sequence was inserted as a stuffer between the Vb and Db1-Jb1.1 elements. A 

list of Vb-specific primers is provided in Supplementary Table 2.5.  
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Recombination Substrate Assays. Human embryonic kidney 293T cells were transfected with 

an equimolar mixture of eight recombination substrates (TRBV1, 15, 16, 18, 20, 23, 24, 26), 

pEBB-RAG1, and pEBB-RAG2, using Trans-IT 293 (Mirus) (40). Plasmid substrates were 

recovered 48 hours post-transfection and digested with Not I to minimize unrearranged PCR 

products and Dpn I to cut untransfected substrates (40). The digested DNA mixture was 

amplified with primers that are common to all substrates -- one that recognizes plasmid sequence 

upstream of the Vbs and one specific for Jb1.1, (dsT7-CAAGCTGGCTAGCGTTTAAAC and 

J1.1TR-CTCGAATATGGACACGGAGGACATGC). PCR was performed for 30 cycles on 

serial 4-fold dilutions of recovered substrates. The products were separated on 1% agarose gels, 

transferred to Zetaprobe (BioRad), and probed with labeled Vb-specific oligonucleotides.  

Computational Analysis. Regression analysis was performed following a two-step procedure 

that is a simplified version of the protocol described previously (Dong et al., 2012). Step 1. For 

each of the chromatin features analyzed, the region spanning Vb segments was divided into three 

bins - j-th Vj segment itself, 1 kb immediately upstream (Uj), and 1 kb immediately downstream 

of the V segment (Dj). The signal intensity of each bin (3 bins x 35 Vbs, 105 total bins) was 

measured from the UCSC wig files containing either read counts (ChIP-Seq) or MA2C scores 

(ChIP-chip) using BEDtools. The signal intensities were then converted to the natural logarithm 

of their values. To eliminate any ln(0) values in the computational analyses, a pseudo-count of 

one was added to the read counts. Pearson’s correlation coefficients were then used to define 

which of the three bins (Vj, Uj, Dj) correlate best with V recombination frequencies. The bin for 

each feature with the highest correlation coefficient was used in further analyses. Recombination 

frequencies fj for Vj regions (expressed in % of overall usage) were transformed into their natural 

logarithm values (ln(fj+0.01), where 0.01 is an added pseudo-count). The Vb gene segments 
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were then classified as “rearranging” or “non-rearranging”, and Random Forest classification 

was used to determine which of the features distinguish best between rearranging and inert Vb 

gene segments (R package, RandomForest). Step 2. Linear regression analysis was performed 

for thirteen variables using data corresponding to only the subset of 23 rearranging Vb segments 

(non-zero recombination frequency) using R package (leaps) to identify the most important 

regressors for recombination levels. The analysis was further refined to determine a reduced set 

of variables that attains statistical significance.  
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2.6 Figures  

 

Figure 2.1: Preselection Tcrb V repertoire  
(A) Schematic representation of the murine Tcrb locus (top) and Taqman assay (bottom) used to quantify 
VβDβ1Jβ1.1 recombination products. Bold arrows near gene segments denote promoters (top). “N” stands for N-
regions (non-templated regions of diversification), locations of primers and probes for Taqman assays are shown 
(bottom). (B) Distribution of V(D)J rearrangements from high throughput sequencing involving select Vβ segments 
and each of the 11 functional Jβ segments. The distribution for a given Vβ-Jβ combination is calculated as the 
number of unique reads for that combination divided by the total number of unique reads for the corresponding Jβ 
element (Jβ1.1: 8.6% for TRBV1, 4.1% for TRBV12-2, 7.6% for V13-1 and 8.6% for TRBV16). Data are 
represented relative to the distribution of Vβ-Jβ1.1, where percent total Vβ-Jβ1.1 is set to a value of 1. (C) Pre-
selection Vb repertoire. Taqman real-time PCR quantification of VβDβ1Jβ1.1 rearrangements was performed on 
gDNA from DN3 thymocytes.  Signals from each assay were normalized to values obtained from an assay for the 
invariant β2M gene. Average levels from three independent DN3 preparations are shown (n = 3, + SEM). 
Recombination frequencies are shown as the percent contribution of a given Vβ segment to the total level of Jβ1.1 
rearrangement. Pseudo-genes are denoted by y and gene segments with non-functional RSSs are marked with an 
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Figure 1: Pre-selection Tcrb V repertoire (A) Schematic representation of the 
murine Tcrb locus (top) and Taqman assay (bottom) used to quantify VβDβ1Jβ1.1 
recombination products. Bold arrows near gene segments denote promoters (top). 
“N” stands for N-regions (non-templated regions of diversification), locations of 
primers and probes for Taqman assays are shown (bottom). (B) Distribution of 
V(D)J rearrangements from high throughput sequencing involving select Vβ 
segments and each of the 11 functional Jβ segments. The distribution for a given Vβ-
Jβ combination is calculated as the number of unique reads for that combination 
divided by the total number of unique reads for the corresponding Jβ element. Data 
are represented relative to the distribution of Vβ-Jβ1.1, where percent total Vβ-Jβ1.1 
is set to a value of 1. (C) Pre-selection V repertoire. Taqman real-time PCR 
quantification of VβDβ1Jβ1.1 rearrangements was performed on gDNA from DN3 
thymocytes.  Signals from each assay were normalized to values obtained from an 
assay for the invariant β2M gene. Average levels from three independent DN3 
preparations are shown (n = 3, + SEM). Recombination frequencies are shown as 
the percent contribution of a given Vβ segment to the total level of Jβ1.1 
rearrangement. Pseudo-genes are denoted by  and gene segments with non-
functional RSSs are marked with an asterisk. Solid black line represents the average 
utilization computed for all the Vβ segments that showed detectable usage and the 
dotted black lines represent the standard deviation (mean, S.D= 4.1+3.05%) (D) 
Taqman real-time PCR assays measuring VβDβ1Jβ1.1 versus VβDβ2Jβ2.1 
rearrangements in DN3 thymocytes were quantified as described in C. (E) 
Comparison of Vβ usage values in DN3 thymocytes using gDNA- versus an mRNA-
based method (5’-RACE). Average values from gDNA assay (n=3) and 
RNA-5’RACE seq (n = 2) are shown.
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asterisk. The average Vβ usage and standard deviation are denoted by dotted black lines.  (D) Taqman real-time PCR 
assays measuring VβDβ1Jβ1.1 versus VβDβ2Jβ2.1 rearrangements in DN3 thymocytes were quantified as described 
in C. (E) Comparison of Vβ usage values in DN3 thymocytes using gDNA- versus mRNA-based methods Average 
values from gDNA assay (n=3) and RNA-5’RACE seq (n = 2) are shown. 

 

Figure 2.2: Role of Vb spatial proximity in shaping the Tcrb repertoire  
(A) 3C analysis of RAG-deficient thymocytes showing relative cross-linking frequencies between a Dβ1 anchor and 
Hind III fragments spanning Vβ gene segments. Data are presented as mean ± SEM (n = 3). (B) Spearman 
correlation of Vβ usage and average ranked values for 3C cross-linking frequency from three viewpoints within the 
recombination center (Dβ1, Dβ2 and Eβ). The Spearman correlation coefficient shows no significance (rs = 0.035, P-
value =0.85). 

findings at Igk (29), a group of pseudogene segments spanning
TRBV6–TRBV11 each interact with DβJβ clusters at a relatively
high frequency, but these gene segments are absent from the
preselection Tcrb repertoire despite having functional RSSs.
These findings suggest that relative Vβ use in the preselection
Tcrb repertoire cannot be fully explained by differences in their
spatial proximity to the DβJβ regions.
To more rigorously investigate the relationship between spa-

tial proximity and long-range recombination, we performed
Spearman ranking correlations for 3C and Vβ repertoire data.
Because the absolute values of 3C data cannot be quantitatively
compared between the three assays, we first ranked cross-linking
efficiencies of the Vβ segments within each vantage point (Table
S1). No significant correlations between 3C ranking and TRBV
rearrangement are observed for any of the three individual
viewpoints within the DβJβ recombination center. We also cal-
culated the average ranking for each Vβ segment over the three
assays (Dβ1, Dβ2, and Eβ) and compared these values with rel-
ative use in VβDβJβ joins (Table S1). As shown in Fig. 2B, there
is an absence of significant correlation between Vβ use and its
average rank for interactions with the DβJβ recombination
center. Consistent with this finding, we also observe no obvious
correlation between the recombination frequency of a Vβ seg-
ment and its proximity to CTCF binding. We conclude that, al-
though gross locus contraction is important to bring the entire
Vβ cluster into spatial proximity with its Dβ substrates, the
precise magnitude of each Vβ–Dβ interaction is not a primary
determinant of recombination efficiency. Instead, our 3C and
repertoire data indicate that once Tcrb is contracted in DN
thymocytes, the large Vβ cluster adopts a conformation in which
spatial access of Vβ segments to the recombination center is
not limiting.

Role of RSS Quality in Determining Vβ Use. Despite general con-
servation of the heptamer-spacer-nonamer configuration, RAG-
1/2 substrates exhibit substantial variation compared with the
consensus RSS sequence: (CACAGTG)–12- or 23-bp spacer–
(ACAAAAACC) (32, 33). In vivo replacement or natural variants

of RSSs can alter the use of gene segments, including those within
the Tcrb recombination center (34–36). In vitro studies using
plasmid substrates have defined the effects of positional sub-
stitutions within the consensus RSS on recombination efficiency
(32, 37, 38). Thus, one component of nonrandom Vβ use is likely
the quality of its flanking RSS.
To examine this possibility, we took advantage of an algorithm

(www.itb.cnr.it/rss/) that predicts the RSS quality of any given
sequence (39). In brief, this algorithm calculates the theoretical
recombination potential of an RSS using a statistical model that
assigns a score based on the contribution of each nucleotide
within the heptamer-spacer-nonamer sequence. The algorithm
output is a recombination signal information content (RIC)
score, which predicts the quality of an input RSS with a reason-
able degree of accuracy based on data from plasmid re-
combination substrates (40). For Tcrb, 6 of the 35 Vβ gene
segments are flanked by nonfunctional RSSs with a RIC score of
<−58.5, the threshold defined by Cowell et al. (39), (TRBV8,
12-3, 18, 21, 27, and 28). The remaining 29 Vβ segments have
a substantial range in predicted RSS quality, with RIC scores
between −29 (TRBV4) and −58.2 (TRBV11). Recombination is
undetectable for five of the six Vβ segments flanked by RSSs that
score below the functional threshold (Fig. 1C). The exception is
TRBV21, which rearranges at a detectable level, but is predicted
to have a marginally nonfunctional RSS (RIC score, −58.6)
consisting of a consensus heptamer and a 22-bp rather than 23-
bp spacer.
The correlation between RIC scores and Vβ use is shown in

Fig. 3. Although a positive correlation is apparent, the magni-
tude of Vβ use diverges significantly from linearity compared
with predicted RSS quality. In general, Vβ RSSs with lower
quality (RIC scores, −45 to −58) are either inert or rearrange at
a level below the average frequency. RSSs with RIC scores >−45
exhibit a broad range of Vβ recombination frequencies, as
highlighted by the following examples: (i) TRBV13-2 is the most
frequently used segment but shares a nearly identical RIC score
with TRBV14, which rearranges at an average frequency; and
(ii) six Vβ segments (TRBV7, 15, 16, 20, 24, and 26) have nearly
indistinguishable RIC scores (−41 to −42), but one Vβ is recom-
binationally inert (TRBV7) and the remaining five display an
eightfold range in their utilization. We cannot rule out the
possible contribution of coding sequences adjacent to each RSS
in altering its quality as a RAG-1/2 substrate. Inspection of
coding flanks revealed only a small subset with features predicted
to attenuate RAG cleavage (e.g., AT or pyrimidine stretches for
TRBV12-1, 12–2, 14, 17, and 29) (41–44). However, as shown
below, the recombination frequency of these gene segments
correlate best with features of associated chromatin. Together,
our data indicate that, although predicted RSS qualities con-
tribute to the formation of a preselection Tcrb repertoire, other
levels of control clearly impact Vβ use.
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Fig. 2. Role of Vβ spatial proximity in shaping the Tcrb repertoire. (A) 3C
analysis of RAG-deficient thymocytes showing relative cross-linking fre-
quencies between a Dβ1 anchor and HindIII fragments spanning Vβ gene
segments. Data are presented as mean ± SEM (n = 3). (B) Spearman corre-
lation of Vβ use and average ranked values for 3C cross-linking frequency
from three viewpoints within the recombination center (Dβ1, Dβ2, and Eβ).
The Spearman correlation coefficient shows no significance (rs = 0.035,
P = 0.85).

Fig. 3. Correlation between Vβ utilization and predicted RSS quality. The
correlation between predicted Vβ RIC23 scores and observed Vβ recombination
frequencies (Fig. 1B), yielding a Spearman’s rank correlation coefficient
rs = 0.6456, P < 0.0001.

4 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1304048110 Gopalakrishnan et al.
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Figure 2.3: Correlation between Vb utilization and predicted RSS quality 
The correlation between predicted Vβ RIC23 scores and observed Vβ recombination frequencies (Fig. 2.1B), 
yielding a Spearman’s rank correlation coefficient rs =0.6456, P-value <0.0001. Figure 3: Correlation between V utilization and predicted RSS quality. The correlation between predicted 

Vβ RIC23 scores and observed Vβ recombination frequencies (Fig. 1B), yielding a Spearman’s rank 
correlation coefficient rs =0.6456, P-value <0.0001. 
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Figure 2.4: Role of chromatin landscape in Vβ usage  
(A) Relative intensities of various chromatin features (transcription, RNA Pol II, P300, histone modification signals 
and proximal CTCF sites) at the 35 Vβ segments are represented as a heatmap. The log2 values of ChIP-Seq or 
ChIP-Chip signal intensities at the Vβ segment (+ 1 kb) for each of the above features were quantified using 
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Figure 4: Role of chromatin landscape in Vβ usage. (A) Relative intensities of various chromatin features 
(transcription, RNA Pol II, P300, histone modification signals and proximal CTCF sites) at the 35 Vβ segments are 
represented as a heatmap. The log2 values of ChIP-Seq or ChIP-Chip signal intensities at the Vβ segment (+ 1 kb) 
for each of the above features were quantified using BEDtools and the relative intensity for each feature was plotted 
as a heatmap. CTCF intensities are represented as binary values of one or zero being assigned for presence or 
absence of CTCF within 1 kb of the Vβ segment. Asterisks denote pseudo V gene segments. (B) Profiles for 
transcription (RNA), nucleosome depletion (FAIRE), P300, and indicated histone modifications are shown at select Vβ 
segments. RNA seq data for transcription, ChIP-Seq data for H3ac and H3K4me3, ChIP-chip data (Signal = log2 ratio 
of ChIP DNA/input DNA) for H3K4me2, P300 and FAIRE are displayed. See text and methods for sources of 
epigenomic data. (C) Epigenetic profiles at V segments highlighting the influence of chromatin landscapes on gene 
segment usage. (D) An equimolar mixture of the eight indicated Vβ 23-RSS deletion substrates were assayed for 
rearrangement in conjunction with the 5!Dβ1 12-RSS following transfection into 293T cells with RAG-1/2 expression 
vectors (40). Rearrangements were detected by PCR using primers shared by all of the substrates (NR = not 
rearranged, R = V rearranged to D1). RIC scores for each TRBV-RSS are shown in parentheses. Rearrangements 
for each substrate were detected using probes specific to the given V segment (specificity controls not shown). A 
semi-quantitative measure of rearrangement efficiencies was obtained by comparing two-fold dilutions of V plasmid 
inserts (32-500 ng, left panels) with four-fold dilutions of the PCR product (right panels). Shown are data from one 
representative PCR amplification out of four independent transfections. Control DNA and PCR products for each V 
substrate are on the same blot. The TRBV15, 16, 20, 24, and 26 RSSs exhibit similar recombination efficiencies 
based on this semi-quantitative assay (RIC scores all approx. -42), whereas the TRBV18 and 23 RSSs exhibit 
minimal rearrangement (lower RIC scores) and TRVB1 rearranges most efficiently (best RIC score).
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BEDtools and the relative intensity for each feature was plotted as a heatmap. CTCF intensities are represented as 
binary values of one or zero being assigned for presence or absence of CTCF within 1 kb of the Vβ segment. 
Asterisks denote pseudo V gene segments. (B) Profiles for transcription (RNA), nucleosome depletion (FAIRE), 
P300, and indicated histone modifications are shown at select Vβ segments. RNA seq data for transcription, ChIP-
Seq data for H3ac and H3K4me3, ChIP-chip data (Signal = log2 ratio of ChIP DNA/input DNA) for H3K4me2, 
P300 and FAIRE are displayed. See text and methods for sources of epigenomic data. (C) Epigenetic profiles at Vb 
segments highlighting the influence of chromatin landscapes on gene segment usage. (D) An equimolar mixture of 
the eight indicated Vβ 23-RSS deletion substrates were assayed for rearrangement in conjunction with the 5′Dβ1 12-
RSS following transfection into 293T cells with RAG-1/2 expression vectors (40). Rearrangements were detected by 
PCR using primers shared by all of the substrates (NR = not rearranged, R = Vb rearranged to Db1). RIC scores for 
each TRBV-RSS are shown in parentheses. Rearrangements for each substrate were detected using probes specific 
to the given Vb segment (specificity controls not shown). A semi-quantitative measure of rearrangement efficiencies 
was obtained by comparing two-fold dilutions of Vb plasmid inserts (32-500 ng, left panels) with four-fold dilutions 
of the PCR product (right panels). Shown are data from one representative PCR amplification out of four 
independent transfections. Control DNA and PCR products for each Vb substrate are on the same blot. The 
TRBV15, 16, 20, 24, and 26 RSSs exhibit similar recombination efficiencies based on this semi-quantitative assay 
(RIC scores all approx. -42), whereas the TRBV18 and 23 RSSs exhibit minimal rearrangement (lower RIC scores) 
and TRVB1 rearranges most efficiently (best RIC score). 

 

 

Figure 2.5: Spatial distribution of chromatin features and predictive potential for Vβ usage 
The regions surrounding each Vb segment were divided into three bins (see schematic), U = upstream (1 kb), V = 
Vb gene body, and D = downstream (1 kb). Signal densities for each chromatin feature in the spatial bins were 
correlated with recombination frequencies, yielding a Pearsons’s correlation coefficient for each bin. The 
coefficients were used to determine the best bin, which are denoted by asterisks. 

 

Figure 5: Spatial distribution of chromatin features and predictive potential for V usage. The regions 
surrounding each V segment were divided into three bins (see schematic), U = upstream (1 kb), V = V gene 
body, and D = downstream (1 kb). Signal densities for each chromatin feature in the spatial bins were 
correlated with recombination frequencies, yielding a Pearsons’s correlation coefficient for each bin. The 
coefficients were used to determine the best bin, which are denoted by asterisks. 
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Figure 2.6: Computational analysis of Vb usage determinants 
(A) Features that distinguish rearranging from inert Vb segments (classifier step, see methods).  Random forest 
analysis was performed on the shown features to classify Vb segments. AUC = Area under the curve, which 
represents the relative contribution of each feature to the learned classification scheme. (B) Scatter plot representing 
the classifier step in the two-step model. Linear regression between observed and fitted frequencies using the three 
most discriminative features for recombining versus inert Vb gene segments (RIC scores, FAIRE signal and RNA 
Pol II occupancy). Each symbol represents a Vb gene segment. Data were generated from the natural logarithm 
values of recombination frequencies (observed and fitted). The dashed horizontal line represents the optimal 
threshold for classifying (OTC) rearranging from non-rearranging segments based on the linear combination of the 
three features. The dashed vertical line represents the detection limit (DL) of Taqman assays used for measuring 
recombination. Open circles correspond to Vb segments predicted accurately; black diamonds correspond to 
outliers. Two of these five exceptions were resolved when the Random Forest algorithm was applied using the three 
classification features (RIC score, FAIRE, RNA Pol II). (C) Pearson correlation to rank factors that fine-tune Vb 
usage in the two-step model (regressor step, see methods). (D) Scatter plot of overall correlation between natural log 
values of observed and fitted (predicted) frequencies using the five core parameters (H3K4me3, H3K4me2, 
transcription, P300 and CTCF). Each circle represents one rearranging Vb segment. The line indicates the best fit 
between measured and fitted rearrangement frequencies and reflects a strong correlation (Pearson correlation 
coefficient (0.69, P-value = 0.03). (E) Cluster analysis highlights similarities in epigenetic information provided by 
individual chromatin features. 
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2.8 Supplemental Figures and Tables 

 

Supplemental Figure 2.1: Vβ repertoire comparisons 
(A) Jβ usage profile from high throughput sequencing (mean (n=3),15,000-20,000 unique reads per sample). (B) 
Distribution of rearrangements from high throughput sequencing involving Vβ segments and each of the 11 
functional Jβ segments. Shown are distributions for rearrangements of Vβ segments yielding at least 1000 unique 
reads. Data are represented relative to the distribution of Vβ-Jβ1.1, where percent total Vβ-Jβ1.1 is set to a value of 

Supporting Information
Gopalakrishnan et al. 10.1073/pnas.1304048110
SI Materials and Methods
CD4-FITC (561835), CD8-FITC (553031), CD4-biotin (553044),
CD8a-biotin (553028),CD44-PE(553134), andCD25-APC(557192)
antibodies were purchased from BD Biosciences and used for cell

staining and sorting. H3K4me2 (07-030, Millipore), H3K27ac
(ab4729), and P300 (C-20) (SC-585×) for H3ac (06-599; Millipore),
H3K4me3 (39159; Active Motif), and CTCF (07-729; Millipore)
antibodies were purchased and used for ChIP experiments.
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Fig. S1. Variable (V)β repertoire comparisons. (A) Joining (J)β use profile from high-throughput sequencing [mean (n = 3),15,000–20,000 unique reads per
sample]. (B) Distribution of rearrangements from high-throughput sequencing involving Vβ segments and each of the 11 functional Jβ segments. Shown are
distributions for rearrangements of Vβ segments yielding at least 1,000 unique reads. Data are represented relative to the distribution of Vβ-Jβ1.1, where
percent total Vβ-Jβ1.1 is set to a value of 1 (Fig. 1). Each circle represents a data point for a given Jβ segment. (C) Comparison of Vβ use in preselection and
postselection thymocytes measured by the genomic DNA (gDNA) assay described in Fig. 1C (mean ± SEM, n = 3).
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1 (see Fig. 2.1 legend). Each circle represents a data point for a given Jβ segment. (C) Comparison of Vβ usage in 
pre-selection and post-selection thymocytes measured by the gDNA assay described in Fig. 2.1C (mean ± SEM, n = 
3) 

 
Supplemental Figure 2.2: Role of spatial proximity in shaping the Tcrb repertoire 
(A) 3C analysis of Rag-deficient DN thymocytes showing relative cross-linking frequencies between a Dβ2 anchor 
and Hind III fragments spanning Vβ gene segments. Data are presented as mean ± SEM (n = 3). (B) 3C analysis 
using an Eβ anchor. 
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Fig. S2. Role of spatial proximity in shaping the Tcrb repertoire. (A) Chromosome conformation capture (3C) analysis of Rag-deficient double negative (DN)
thymocytes showing relative cross-linking frequencies between a diversity (D)β2 anchor and HindIII fragments spanning Vβ gene segments. Data are
presented as mean ± SEM (n = 3). (B) 3C analysis using an Eβ anchor.
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Fig. S3. Luciferase assays. Promoter activity assay for upstream regions of Vβ regions. Relative promoter strengths for select upstream Vβ regions were as-
sessed using luciferase reporter constructs. pGL3 constructs containing the Eβ enhancer and the respective Vβ promoter regions were transfected into a pre–T-
cell line (T3). Promoter activities were assessed at 24 h posttransfection and normalized to Renilla (RLU). Data are represented as averages ± SEM (n = 3) relative
to the control PDβ1 promoter. ψ, pseudo-Vβ gene segments; CTRL, promoterless construct.
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Supplemental Figure 2.3: Luciferase assays 
Promoter activity assay for upstream regions of Vβ regions. Relative promoter strengths for select upstream Vβ 
regions were assessed using luciferase reporter constructs. pGL3 constructs containing the Eβ enhancer and the 
respective Vβ promoter regions were transfected into a pre-T cell line (T3). Promoter activities were assessed at 24 
hours post-transfection and normalized to Renilla (RLU). Data are represented as averages ± SEM (n=3) relative to 
the control PDβ1 promoter. y denotes pseudo Vb gene segments. CTRL denotes promoterless construct. 

 

 

Supplemental Figure 2.4: Computational analysis of Vb usage determinants 

(A) Scatter plot of overall correlation between natural log values of observed and fitted frequencies using the 
complete set of 13 features. Each circle represents one rearranging Vb segment. The line indicates the best fit 
between measured and fitted rearrangement frequencies reflect a strong correlation (Pearson correlation coefficient 
0.779 (P-value = 0.47). (B) Relative contribution of the minimal eight features to the accuracy of fit as computed by 
three different approaches (lmg, last, first) and the corresponding linear regression coefficients. The best fit formula 
is as follows:     
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Fig. S2. Role of spatial proximity in shaping the Tcrb repertoire. (A) Chromosome conformation capture (3C) analysis of Rag-deficient double negative (DN)
thymocytes showing relative cross-linking frequencies between a diversity (D)β2 anchor and HindIII fragments spanning Vβ gene segments. Data are
presented as mean ± SEM (n = 3). (B) 3C analysis using an Eβ anchor.
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Fig. S3. Luciferase assays. Promoter activity assay for upstream regions of Vβ regions. Relative promoter strengths for select upstream Vβ regions were as-
sessed using luciferase reporter constructs. pGL3 constructs containing the Eβ enhancer and the respective Vβ promoter regions were transfected into a pre–T-
cell line (T3). Promoter activities were assessed at 24 h posttransfection and normalized to Renilla (RLU). Data are represented as averages ± SEM (n = 3) relative
to the control PDβ1 promoter. ψ, pseudo-Vβ gene segments; CTRL, promoterless construct.
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Fig. S4. Computational analysis of Vβ use determinants. (A) Scatter plot of overall correlation between natural log values of observed and fitted frequencies
using the complete set of 13 features. Each circle represents one rearranging Vβ segment. The line indicates the best fit between measured and fitted re-
arrangement frequencies reflect a strong correlation (Pearson correlation coefficient, 0.779; P = 0.47). (B) Relative contribution of the minimal eight features to
the accuracy of fit as computed by three different approaches (lmg, last, first) and the corresponding linear regression coefficients. The best fit formula is as
follows:

X8

i= 1

Coefficienti × Featurei:

The raw values and coefficients corresponding to each feature are provided in Tables S5–S8).

Table S1. 3C ranks for and rearrangement frequencies

3C HindIII fragments Rank Eβ Rank Dβ1 Rank Dβ2 Average rank Percent recombination

V1 21 20 25 22 4.80392
V2 24 23 17 21.3 1.890142
V3 24 23 17 21.3 4.983436
V4 1 5 2 2.67 1.766591
V5 1 5 2 2.67 4.590954
V6 13 3 12 9.33 0
V7 18 8 22 16 0
V8 18 8 22 16 0
V9 5 7 10 7.33 0
V10 10 16 3 9.67 0
V11 9 12 6 9 0
V12-1 6 14 19 13 5.360448
V13-1 8 9 11 9.33 4.710525
V12-2 8 9 11 9.33 3.534854
V13-2 8 9 11 9.33 12.76473
V12-3 7 4 8 6.33 0
V13-3 2 19 16 12.3 6.387671
V14 3 1 4 2.67 2.558942
V15 17 10 14 13.7 1.14465
V16 11 11 21 14.3 5.066513
V17 12 6 1 6.33 2.652322
V18 4 2 23 9.67 0
V19 4 2 23 9.67 10.95472
V20 15 21 7 14.3 2.722579
V22 22 18 5 15 2.254725
V23 23 13 20 18.7 2.528768
V24 25 17 24 22 4.680041
V25 25 17 24 22 0
V26 19 24 18 20.3 2.878938
V27 20 22 9 17 0
V28 14 25 15 18 0
V29 16 15 13 14.7 2.927078

Vβs present in the same fragment are given identical ranks.

Gopalakrishnan et al. www.pnas.org/cgi/content/short/1304048110 3 of 8
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The raw values and coefficients corresponding to each feature are provided in Tables S2.5-S2.8). 

 

Supplemental Table 2.1: 3C ranks and rearrangement frequencies 

3C HindIII fragments Rank Eβ Rank Dβ1 Rank Dβ2 Average Rank % Recombination 
V1 21 20 25 22 4.80392 
V2 24 23 17 21.3 1.890142 
V3 24 23 17 21.3 4.983436 
V4 1 5 2 2.67 1.766591 
V5 1 5 2 2.67 4.590954 
V6 13 3 12 9.33 0 
V7 18 8 22 16 0 
V8 18 8 22 16 0 
V9 5 7 10 7.33 0 

V10 10 16 3 9.67 0 
V11 9 12 6 9 0 

V12-1 6 14 19 13 5.360448 
V13-1 8 9 11 9.33 4.710525 
V12-2 8 9 11 9.33 3.534854 
V13-2 8 9 11 9.33 12.76473 
V12-3 7 4 8 6.33 0 
V13-3 2 19 16 12.3 6.387671 
V14 3 1 4 2.67 2.558942 
V15 17 10 14 13.7 1.14465 
V16 11 11 21 14.3 5.066513 
V17 12 6 1 6.33 2.652322 
V18 4 2 23 9.67 0 
V19 4 2 23 9.67 10.95472 
V20 15 21 7 14.3 2.722579 
V22 22 18 5 15 2.254725 
V23 23 13 20 18.7 2.528768 
V24 25 17 24 22 4.680041 
V25 25 17 24 22 0 
V26 19 24 18 20.3 2.878938 
V27 20 22 9 17 0 
V28 14 25 15 18 0 
V29 16 15 13 14.7 2.927078 

 

Supplemental Table 2.2: Primers and probes for Vb utilization assay 

Taqman Probes (5’FAM and 3’ TAMRA from Sigma Life Sciences)       



57 
 

Jb 1.1 Probe  5'FAM-TGTGAGTCTGGTTCCTTTACCAA-3'TAMRA 

Jb 2.1 Probe    5'HEX-TAGGACGGTGAGTCGTGTCC-3'TAMRA 

 

Primers for Cloning VbJb Template Plasmids 

Jb 1.1 F 5'-GACAGACGGATCCTGGCACTGTGCAAACACAGAAGTC-3' 

Jb 1.1 R 5'-TACATCGCGGCCGCACTCGAATATGGACACGGAGGACA-3' 

Jb 2.1 F 5'GACAGACGGATCCGTAACTATGCTGAGCAGTTCTTCGGACC-3' 

Jb 2.1 R 5'-TACATCGCGGCCGCAGTCCTGGAAATGCTGGCACAAAC-3' 

V1-F 5'-TATCTCGAGCTGGAGCAAAACCCAAGGTGG-3' 

V1-R 5'-CGAGAAGCTTTGCAGTACAAGGTTCTGCCCT-3' 

V2-F 5'-TATCTCGAGCGAAAATTATCCAGAAACCAA-3' 

V2-R 5'-CGAGAAGCTTGCACAGAAGTATGTGGCCGAG-3' 

V3-F 5'-TATCTCGAGCAGATGGTGACCCTCAATTGT-3' 

V3-R 5'-TAGCGAAGCTTTAAGCTGCTGGCACAGAAG-3' 

V4-F 5'-TATCTCGAGGACGGCTGTTTTCCAGACTC-3' 

V4-R 5'-CGAGAAGCTTTGGCACAGAGATACACAGCAG-3' 

V5-F 5'-TATCTCGAGGATATCTAATCCTGGGAAGAGC-3' 

V5-R 5'-CGAGAAGCTTCTGCCGTGGATCCAGAAGACT-3' 

V6-F 5'-TATCTCGAGGTTACAGACATGGGACAGAATGTCA-3' 

V6-R 5'-CGAGAAGCTTAGCTGCTGGCATACATAGTGGAGT-3' 

V7-F 5'-TATCTCGAGAGCAGGCTCTGTCTTCTGACTTGT-3' 

V7-R 5'-CGAGAAGCTTAGAACAGTGCAGAGTCCTTTGGCT-3' 

V8-F 5'-TAGCCTCGAGCATTCAGACTCCCAAATCAT-3' 

V8-R 5'-TAGCGAAGCTTTCTGTGCATGATCTGGAGAC-3' 

V9-F 5'-TATCTCGAGGTGACACAATTTCTGGTCCTACTGG-3' 

V9-R 5'-CGAGAAGCTTCTTCTGGCACAGAGATAGATGCCT-3' 



58 
 

V10-F 5'-TATCTCGAGGGTGGAATCACCCAGACACCTAGATA-3' 

V10-R 5'-CGAGAAGCTTAGTACATGGAGGTCTGGTTGGAACTG-3' 

V11-F 5'-TATCTCGAGAGGCACTTCTGATATGTGGCCTCT-3' 

V11-R 5'-CGAGAAGCTTAGTTAGAAACCATGGCTCTTGCCC-3' 

V12-1-F 5'-TATCTCGAGCTGACGTGTATTCCCATCTCT-3' 

V12-1-R 5'-TAGCGAAGCTTTCCAGTTCCAAGGCACTCATG-3' 

V13-1-F 5'-TATCTCGAGTGGTTAGCCCAAGTGTGCTTCTCT-3' 

V13-1-R 5'-CGAGAAGCTTAAGCCAATTCCAGCAGGAGGAAGA-3' 

V12-2-F 5'-TATCTCGAGCATTGCTGCTGCTGCTGCTGC-3' 

V12-2-R 5'-TAGCGAAGCTTACACGGCAGAGTCCTCTAG-3' 

V13-2-F 5'-TATCTCGAGTCCTGTGTTCAAGTGAGTGCTGGT-3' 

V13-2-R 5'-CGAGAAGCTTTTGGTCTGGAGGCCTTGTATCCAT-3' 

V12-3-F 5'-TAGCCTCGAGCCTTCTCCCCAGGTTCAGC-3' 

V12-3-R 5'-TAGCGAAGCTTCACAGTAAAGTCCTCTAGGTCC-3' 

V13-3-F 5'-TATCTCGAGGACGATATGATCAGGCTTTG-3' 

V13-3-R 5'-TAGCGAAGCTTAGAAATATACAGCTGTCTGAG-3' 

V14-F 5'-TATCTCGAGTATGCAGTCCTACAGGAAGGGCAA-3' 

V14-R 5'-CGAGAAGCTTAAACTGCTGGCACAGAGATAGGTG-3' 

V15-F 5'-TATCTCGAGCAGACACCCAGACATGAGGT-3' 

V15-R 5'-CGAGAAGCTTACAGCTGAGTCCTTGGGTTCTG-3' 

V16-F 5'-TATCTCGAGCACCTAGGCACAAGGTGACA-3' 

V16-R 5'-TAGCGAAGCTTCAGGACTCAGCGGTGTATCT-3' 

V17-F 5'-TATCTCGAGGGATACTACGGTTAAGCAGAAC-3' 

V17-R 5'-TAGCGAAGCTTAGCACAGAGGTACATGGCAG-3' 

V18-F 5'-TAGCCTCGAGGCTGGTGTCACCACGAACCT-3' 

V18-R 5'-TAGCGAAGCTTCTCTGCATCTTCCAGATCTGC-3' 

V19-F 5'-TATCTCGAGCTCAGACACCCAAATTCCTGA-3' 
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V19-R 5'-CGAGAAGCTTGCTATACTGCTGGCACAGAGA-3' 

V20-F 5'-TATCTCGAGCGTCTATCAATATCCCAGAAG-3' 

V20-R 5'-CGAGAAGCTTAGCACCACAGAGATATAAGCC-3' 

V21-F 5'-TAGCCTCGAGGTTGTCCAGAATCCTAGACAT-3' 

V21-R 5'-TAGCGAAGCTTGTACACAGCTGAATCTGTTAG-3' 

V22-F 5'-TATCTCGAGCCAAGTTATCCAGACTCCAT-3' 

V22-R 5'-TAGCGAAGCTTATAACACTGAGTCTCCAGCCTC-3' 

V23-F 5'-TATCTCGAGGAAAGGCCAGGAAGCAGAGAT-3' 

V23-R 5'-CGAGAAGCTTGCTGGAGCACAAGTACAGTGC-3' 

V24-F 5'-TATCTCGAGGAGTAACCCAGACTCCACGAT-3' 

V24-R 5'-CGAGAAGCTTGACTGCTGGCACAGAGCTACA-3' 

V25-F 5'-TAGCCTCGAGCTAGCTTCAAGGCTCTTCTA-3' 

V25-R 5'-TAGCGAAGCTTATGTAGAATCTCCTGCTTCT-3' 

V26-F 5'-TATCTCGAGCAGACTCCAAGATATCTGGTG-3' 

V26-R 5'-CGAGAAGCTTCTGCTGGCACAGAGGTACAGT-3' 

V27-F 5'-TAGCCTCGAGCTCCAAAGTACTCTATTATG-3' 

V27-R 5'-TAGCGAAGCTTGAGGTAGGATTCATTCTCTG-3' 

V28-F 5'-TAGCCTCGAGCATCCAAATCGCAAGACACC-3' 

V28-R 5'-TAGCGAAGCTTAGGTGCACACATGCCTGGTCG-3' 

V29-F 5'-TATCTCGAGCTGATCAAAAGAATGGGAGAG-3' 

V29-R 5'-CGAGAAGCTTCTAGCACAGAAGTACACAGATG-3' 

V30-F 5'-TATCTCGAGTGCTTGCCTCATGGATCTCTGTCT-3' 

V30-R 5'-CGAGAAGCTTGAACTACAGAAATAGATACTGC-3' 

V31-F 5'-TAGCCTCGAGCTGAGACTGATTACATGTAA-3' 

V31-R 5'-TAGCGAAGCTTAGAAGCCAGAGTGGCTGAGA-3' 

 

qPCR Primers for Taqman assay 
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qV1F 5'-GCCACACGGGTCACTGATAC-3' 

qV2F 5'-GTTCAAAGAAAAACCATTTAG-3' 

qV3F 5'-GATGGTTCATATTTCACTCT-3' 

qV4F 5'-CAGATAAAGCTCATTTGAAT-3' 

qV5F 5'-GCCCAGACAGCTCCAAGCTAC-3' 

qV6F 5'-CAGAGATGCCTGATGGATTGTT-3' 

qV7F 5'-CAGCACACCAATTTGGTGACT-3' 

qV8F 5'-GAGGTCTCTAAGGGGTAC-3' 

qV9F 5'-CTTCTCCATGTTGAAGAGCCAA-3' 

qV10F 5'-AGAAATGAGATACAGAGCTTTCC-3' 

qV11F 5'-AGTTAGAAACCATGGCTCTTGC-3' 

qV12-1F 5'-'TAGCAATGTGGTCTGGTACCAG-3' 

qV13-1F 5'-GGTACAAGGCCACCAGAACA-3' 

qV12-2F 5'-TCTCTCTGTGGCCTGGTATCAA-3' 

qV13-2F 5'-GCTGGCAGCACTGAGAAAGGA-3' 

qV12-3F 5'-CCTGAGTGCCTTGGACCT-3' 

qV13-3F 5'-TTCCCTTTCTCAGACAGCTGTA-3' 

qV14F 5'-TATCAGCAGCCCAGAGACCAG-3' 

qV15F 5'-CACTCTGAAGATTCAACCT-3' 

qV16F 5'-CTCAGCTCAGATGCCCAAT-3' 

qV17F 5'-CAATCCAGTCGGCCTAACA-3' 

qV18F 5'-CCACGAACCTAAGATACAT-3' 

qV19F 5'-CTCGAGAGAAGAAGTCATCT-3' 

qV20F 5'-CAGTCATCCCAACTTATCCT-3' 

qV21F 5'-GCTAAGAAACCATGTACCAT-3' 

qV22F 5'-CAGTTCCTCTGAGGCTGGA-3' 

qV23F 5'-CTGTGTGCCCCTCCAGCTCA-3' 
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qV24F 5'-CTCAGCTAAGTGTTCCTCGA-3' 

qV25F 5'-CTATGTGGCATATTACTGGT-3' 

qV26F 5'-CCTTCAAACTCACCTTGCAGC-3' 

qV27F 5'-CATTGTTCATATGGCATT-3' 

qV28F 5'-CTCTGATAGATATATCAT-3' 

qV29F 5'-CTGATTCTGGATTCTGCTA-3' 

qV30F 5'-CAATGCAAGGCCTGGAGACA-3' 

qV31F 5'-AAATCAAGCCCTAACCTCTAC-3' 

qJb1.1R 5'-CTCGAATATGGACACGGAGGACATGC-3' 

qJb2.1R 5'-CCTGATACAGGGCCTTGGATAGTTA-3' 

 

Supplemental Table 2.3: Primers and probes for 3C assay 

3C Anchor Primers and Taqman Probes (5’FAM and 3’ TAMRA from Sigma Life Sciences)       

Db_1 Hind III probe 5’-AAGGCATTGTTGCATGATCCT-3’ 

Db_2 Hind III probe 5’-AAATGCTGGGCCTCTGTAGA-3’ 

Eb_ Hind III probe 5’-CATAAGCATTGTCATGTTTGTGACA-3’ 

ERCC3 Hind III probe 5’-AAAGCTTGCACCCTGCTTTAGTGGCC-3’ 

Db_1 Hind III primer 5’-TGAAATTTTTCTGCCGAAAGGAC-3’ 

Db_2 Hind III primer 5’-GCGGGATCCAAGAGAACTCA-3’ 

Eb_ Hind III primer 5’-GAAAATTGGCATCGGTTTGC-3’ 

 

Hind III Primers 

V1 5’-TATCTCTGTGGGGCATGCAG-3’ 

V2 5’-TTTCATTCACAGCCGACCAG-3’ 

V3 5’-TTTCATTCACAGCCGACCAG-3’ 
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V4 5’-AGCTCGACACAGAAAGCAAGTT-3’ 

V5 5’-AGCTCGACACAGAAAGCAAGTT-3’ 

V6 5’-GGTTCCCTTCACTTCCCACA-3’ 

V7 5’-GTCCGCTAGCAGCCAGAGTT-3’ 

V8 5’-GTCCGCTAGCAGCCAGAGTT-3’ 

V9 5’-ACCAGAGGGCAGCTGAAAAT-3’ 

V10 5’-GTGCCTGTACCATGCTGTGG-3’ 

V11 5’-TTCAGCAAGTAGGTGCGAAGA-3’ 

V12-1 5’-TGGTGGGATCCTGACAGCTTATA-3’ 

V13-1 5’-CCATCTGCATGAACACCTTCTT-3’ 

V12-2 5’-CCATCTGCATGAACACCTTCTT-3’ 

V13-2 5’-CCATCTGCATGAACACCTTCTT-3’ 

V12-3 5’-GGATCTTGGTCTCGGGAGGT-3’ 

V13-3 5’-CTCAGCTGCACCCTCACAAC-3’ 

V14 5’-CAGGCTTTTGAGTGGCATGT-3’ 

V15 5’-AGGCAGGAGGTGAGTCTTGG-3’ 

V16 5’-TATCATGCCCAGCTGCATTC-3’ 

V17  5’-GTTAGGCCGACTGGATTGGA-3’ 

V18 5’-GGCAGTGTTACAGAACCCAGTG-3’ 

V19 5’-GGCAGTGTTACAGAACCCAGTG-3’ 

V20 5’-TGTGATGGGTTGTCATCTGGA-3’ 

V22 5’-CCAAGGGATGATGTCACAGG-3’ 

V23 5’-TACACCGGCCAGGAGAGACT-3’ 

V24 5’-ACTAGGCCAGCAGAGGATGC-3’ 

V25 5’-ACTAGGCCAGCAGAGGATGC-3’ 

V26 5’-AGCATAGGATTGGGCCTCAG-3’ 

V27 5’-CATCACTGCGCCTAGCAATC-3’ 
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V28 5’-GCGTGTGCCACGTTTTTGTA-3’ 

V29 5’-CTCTAGCAATCCCCCTGTGC-3’ 

V31 5’-AAGGAGAGAGCAGGCCACAG-3’ 

Db_1 5’-AAGGCATTGTTGCATGATCC-3’ 

Db_2 5’-TGGGGCCCTCACTTTTCTTA-3’ 

Eb  5’-TCCTAAGGAGAGGCAGAGTGG-3’ 

ERCC3 5’-GACTTCTCACCTGGGCCTACA-3’ 

 

Supplemental Table 2.4: Luciferase cloning primers 

Eb-F 5’-ATTGGATCCGTTAACCAGGCACAGTAGGACC-3’ 

Eb-R 5’-ATTGGATCCCCATGGTGCATACTGAAGGCTTC-3’ 

Pro-V1F 5’-TAGCCTCGAGGAGTGACTAGTTACTTCTGC-3’ 

Pro-V1R 5’-TAGCGAAGCTTCTCTGAGACCTCAGGTTCTC-3’ 

Pro-V3-F 5’-TATCTCGAGGGGACTCAGTTCAGTAGTC-3’ 

Pro-V3-R 5’-CGAGAAGCTTAGTAGGGTCACGGCAGGAA-3’ 

Pro-V4F 5’-TAGCCTCGAGTGTGCTAAGGGCACCAATGAAT-3’ 

Pro-V4R 5’-TAGCGAAGCTTGTTGGGTCAAGGCAGGGCAAAT-3’ 

Pro V5-FX 5’-TAGCCTCGAGTATCCATTGTATGCTCTGTTTG-3’ 

Pro V5-RH 5’-TAGCGAAGCTTGGTGGAATCAGGCTCCAGACG-3’ 

Pro V6-FX 5’-TAGCCTCGAGCTACAAGCTCCCAAGAGAGAG-3’ 

Pro V6-RH 5’-TAGCGAAGCTTCTCTGGAGAAGACAGAGGAC-3’ 

Pro-V7F 5’-TAGCCTCGAGGCTGCTGAATAGCAAGTTTCCAG-3’ 

Pro-V7R 5’-TAGCGAAGCTTTTGGAGGTTTGGATCTGTAGTCT-3’ 

Pro V9-FX 5’-TAGCCTCGAGGGAACTTTCATGTGAGGAGA-3’ 

Pro V9-RH 5’-TAGCGAAGCTTCTGCAAAAATATAAGTTGTGAACAG-3’ 

Pro V10-FX 5’-TAGCCTCGAGGGGATATCTCTATGCTTTAATG-3’ 
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Pro V10-RH 5’-TAGCGAAGCTTCTGGAGAAGGAGGCATAAGGA-3’ 

Pro-V11F 5’-TAGCCTCGAGTTCCCTACAGTGTCAAGGGCTG-3’ 

Pro-V11R 5’-TAGCGAAGCTTTGTACCCACAGGGTTGTTCTCA-3’ 

Pro-V12-2-F 5’-TAGCCTCGAGCAACTGACTCAGAGAAAAAC-3’ 

Pro-V12-2-F 5'-TAGCGAAGCTTTCCTCTCAGGATACTGGTCTCT-3' 

Pro-V14F 5’-TACATCGCTAGCCATTTATGTGTACCATAATAAT-3’ 

Pro-V14R 5’-TAGCCTCGAGGGCAGATTGAGGGCAGAGGAG-3’ 

Pro-V16F 5’-TAGCCTCGAGTTGCAATCTACCTCTGCTGCTC-3’ 

Pro-V16R 5’-TAGCGAAGCTTTTGTGATGACACCACTGTCTCCG-3’ 

Pro V17-FX 5’-TAGCCTCGAGGCAGGTGTGACCTACGATAAC-3’ 

Pro V17-RH 5’-TAGCGAAGCTTGGATGGTCCAGAACAGGAAA-3’ 

Pro-V19-F 5’-TATCTCGAGCATTTGAGAAAGACAACAA-3’ 

Pro-V19-R 5’-CGAGAAGCTTAGTTTGGAGGGACTTTCTT-3’ 

Pro-V20F 5’-TAGCCTCGAGGATAAGGTAACTGAAGCGGGA-3’ 

Pro-V20R 5’-TAGCGAAGCTTCTTCAGTGTTGACTTCACACC-3’ 

Pro-V22F 5’-TAGCCTCGAGGATGAAATATGGTAACAAGG-3’ 

Pro-V22R 5’-TAGCGAAGCTTAGGAGATAAAGGGCTACATA-3’ 

Pro-V24F 5’-TACATCGCTAGCCCAATGATATGTGCAGAGATGA-3’ 

Pro-V24R 5’-TAGCCTCGAGGATCACACTAGGCCAGCAGAG-3’ 

Pro-V25F 5’-TAGCCTCGAGCAATTGGGCCATCTTCTGCCAC-3’ 

Pro-V25R 5’-TAGCGAAGCTTCAGGTGGATACTTCATTCC-3’ 

Pro-V28F 5’-TAGCCTCGAGAGTTGTCTTGTGGGCAACTCTG-3’ 

Pro-V28R 5’-TAGCGAGATCTGCTAGATAGCCTCAAGGCTGCAAA-3’ 

 

Supplemental Table 2.5: Recombination substrate oligos 

Primer name  Sequences  
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RS V1F  TAGCCTCGAGATACGGAGCTGAGGCTGCAAG  

RS V1R  TACATCGCGGCCGCAGTCACCTTATAACTCATGCA  

RS V15F  TAGCCTCGAGCCTTCTCCACTCTGAAGATTC  

RS V15R  TACATCGCGGCCGCTTCCACCCAAGATTTCTTAA  

RS V16F  TAGCCTCGAGACTCAACTCTGAAGATCCAGA  

RS V16R  TACATCGCGGCCGCTAATGTAATACTCGTTACCAT  

RS V18F  TAGCCTCGAGCCCAACATCCTAAAGTGGG  

RS V18R  TACATCGCGGCCGCTTCCTCCGTAAGCATGGTG  

RS V20F  TAGCCTCGAGCAGTCATCCCAACTTATCCT  

RS V20R  TACATCGCGGCCGCCTCCTGGGTACCCTCCCATTTC  

RS V23F  TAGCCTCGAGCACTCTGCAGCCTGGGAATC  

RS V23R  TACATCGCGGCCGCTGACTTGGTCTGGGTGTGCTG  

RS V24F  TAGCCTCGAGAGTGCATCCTGGAAATCCTAT  

RS V24R  TACATCGCGGCCGCAGACCTGGCCTGTTTCTCATG  

RS V26F  TAGCCTCGAGCAAGAAGTTCTTCAGCAAATA  

RS V26R  TACATCGCGGCCGCGATACAGGTTTCAGTTAGTT  

 

Supplemental Table 2.6: Computational analysis coefficients for determinants of Vβ frequencies (all Tcrb V 
gene segments): Classifer step, three features  
 Estimate Std Err t Pr(>|t|) 

(Intercept) 1.09059 1.52205 0.717 0.47903 

RIC score 0.08803 0.02619 3.362 0.00207 

FAIRE 0.03185 0.01639 1.944 0.06105 

RNA Pol II 0.65913 0.26654 2.473 0.01909 

 

Supplemental Table 2.7: Computational analysis coefficients for determinants of Vβ frequencies (all Tcrb V 
gene segments): Combinatorial analysis of 13 features and their correlation to recombination frequency  

Number of Features Pearson Correlation Coefficient P-value 
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13 0.77954 0.4707 

8 0.74191 0.1015 

7 0.72604 0.07434 

6 0.71277 0.04925 

5 0.68818 0.03779 

4 0.66405 0.0265 

3 0.64982 0.01359 

2 0.60304 0.01089 

1 0.53998 0.00782 

 

Supplemental Table 2.8: Coefficients for determinants of Vβ frequencies (rearranging Vβ segments)  

All Tcrb V gene segments (Regressor step, 13 features) 

 Estimate Std Err t Pr(>|t|) 

(Intercept) 0.08707 5.81E+00 0.015 0.9882 

RIC score 0.08817 3.72E-02 2.373 0.0273 

3C crosslinking -2.17745 3.14E+00 -0.693 0.4961 

Transcription -0.1299 1.56E-01 -0.83 0.4156 

CTCF 0.9394 1.24E+00 0.756 0.4579 

FAIRE 0.01538 2.46E-02 0.625 0.5384 

H3ac -0.31847 5.05E-01 -0.63 0.5353 

H3K27ac 0.03124 3.86E-02 0.81 0.4271 

H3K4me1 0.16488 6.88E-01 0.24 0.813 

H3K4me2 0.0194 1.67E-02 1.159 0.2595 

H3K4me3 -0.08483 3.68E-01 -0.231 0.8197 

H3K9me2 0.74873 1.27E+00 0.59 0.5618 

P300 -0.03168 3.03E-02 -1.047 0.3069 
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RNA Pol II 1.10351 5.21E-01 2.119 0.0462 

 

All Tcrb V gene segments (Regressor step, 5 features) 

 Estimate Std Err t Pr(>|t|) 

(Intercept) 0.62866 0.35047 1.794 0.0907 

Transcription -0.0613 0.0467 -1.313 0.2066 

CTCF 0.31418 0.25634 1.226 0.2371 

H3K4me2 0.00779 0.00365 2.137 0.0475 

H3K4me3 0.16139 0.0666 2.423 0.0268 

P300 -0.0066 0.00646 -1.027 0.319 
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3.1 Abstract 

The assembly and expression of mouse antigen receptor genes is controlled by a 

collection of cis-acting regulatory elements, including transcriptional promoters and enhancers. 

Although many powerful enhancers have been identified for immunoglobulin (Ig) and T cell 

receptor (Tcr) loci, it remained unclear whether additional regulatory elements remain 

undiscovered. Here, we use chromatin profiling of pro-B cells to define 38 epigenetic states in 

mouse antigen receptor loci, each of which reflects a distinct regulatory potential.  One of these 
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chromatin states corresponds to known transcriptional enhancers and identifies a new set of 

candidate elements in all three Ig loci. Four of the candidates were subjected to functional assays 

and all four exhibit enhancer activity in B but not in T lineage cells. The new regulatory elements 

identified by focused chromatin profiling likely have important functions in the creation, 

refinement, and expression of Ig repertoires. 

3.2 Introduction 

Many of the strategies employed by developing lymphocytes to regulate gene expression 

share features with mechanisms that control the stepwise assembly of antigen receptor (AgR) 

loci (Osipovich and Oltz, 2010). Both processes require highly orchestrated interfacing between 

cis-regulatory elements, transcription factors, covalent modification of histones, changes in 

chromatin accessibility, and recruitment of machinery that drives transcription or recombination. 

In AgR loci, enhancer and promoter elements play crucial roles in modulating chromatin 

associated with variable (V), diversity (D), and joining (J) segments to control their 

recombination potential at each stage of lymphocyte development (Degner-Leisso and Feeney, 

2010). Accordingly, most of the cis-elements associated with AgR loci are lineage- and stage-

specific. 

In addition to classical enhancers, recent studies identified a novel class of elements, 

termed “super-enhancers”, which are thought to regulate the expression of genes that serve as 

primary determinants of cell identity (Loven et al., 2013; Whyte et al., 2013). Super-enhancers 

are focal points for lineage-specifying transcription factors and for the ubiquitous mediator 

complex, which is required for activator-dependent gene expression. Moreover, super-enhancers 

are centered within unusually large stretches of activating histone modifications, such as 
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acetylation of histone H3 at the lysine 27 position (H3K27Ac). Three regions harboring super-

enhancers have been identified within the Igh locus, including the classical enhancers, termed 

Eµ, and the 3’ regulatory region (3’RR) (Whyte et al., 2013). However, the collection of cis-

elements, known as the cistrome, which govern AgR gene assembly and expression during the 

early stages of lymphocyte development remains incomplete. Here, we identify novel enhancers 

within all three Ig loci, which exhibit activity specific for precursor B-lymphocytes, using 

focused computational analyses of publically available and new chromatin data. 

3.3 Results 

Epigenetic landscapes of AgR loci 

Genome-wide patterns of histone modifications have been characterized for numerous 

cell types using chromatin immunoprecipitation (ChIP), followed by high-throughput sequencing 

(ChIP-Seq) (Barski et al., 2007). Bioinformatic integration of these data has emerged as a 

powerful method for the functional assignment of genomic regions, including the identification 

of promoters, enhancers, and microRNA sites (Abeel et al., 2009; Yip et al., 2012; Zhang et al., 

2011). However, histone modifications can play additional, specialized roles at genetic loci. For 

example, the H3K4me3 modification is a hallmark of active promoters but, at AgR loci, this 

epigenetic mark also enhances binding to RAG-2, an essential component of the V(D)J 

recombination machinery (Matthews et al., 2007). The specialized roles of histone modifications 

at certain loci may produce unique epigenetic patterns that are impossible to unravel with 

supervised segmentation methods. To decipher such novel patterns, unsupervised algorithms 

have been used (Ernst and Kellis, 2012; Hoffman et al., 2012). For example, the epigenome of 

CD4+ T lymphocytes was segmented into 53 functional states, including active and repressed 
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promoters, enhancers, and gene bodies (Ernst and Kellis, 2010). These approaches rely on 

statistical enrichment of specific combinations of chromatin marks throughout the genome to 

identify reproducible patterns. However, because genes represent the major organizational unit 

of the genome, the most robust patterns identified with current approaches correspond to 

promoter/gene bodies. 

The unique segmented organization of AgR loci, coupled with genome-scale statistical 

analyses, could potentially mask AgR-specific patterns that are rare or non-existent in the 

remaining epigenome. To circumvent these potential complications in our search for new 

regulatory elements, we restricted combinatorial analysis of chromatin features to data covering 

only the seven AgR loci (Igh, Igk, Igl, Tcra/d, Tcrb, and Trcg). All data sets were obtained from 

purified pro-B cells harboring germline AgR loci (RAG-deficient), with the exceptions of Med1 

and PU.1 association, which correspond to ChIP-Seq data from a transformed pro-B cell line 

(Whyte et al., 2013). 

We first calculated the coverage of individual features at the seven AgR loci (histone 

modifications, factor binding, transcription) compared with the entire genome. As shown in Fig. 

3.1, the epigenetic landscape of AgR loci is distinguished from the rest of the genome in several 

important respects. First, Ig and Tcr loci display a much lower density of the repressive 

H3K27me3 modification in pro-B cells relative to the entire genome. The dearth of this 

epigenetic mark suggests that Polycomb-mediated repression is less pronounced at AgR loci, 

even when a locus is silent for transcription/recombination. Second, the density of H3K36me3, a 

modification associated with transcriptional elongation, as well as transcripts themselves (RNA-

Seq), are substantially decreased in AgR loci relative to the whole genome. This finding likely 

reflects the predominance of gene segments, rather than conventionally expressed genes in AgR 
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loci, as well as the limited amounts of transcription arising from the four Tcr loci in pro-B cells. 

Third, despite lower overall transcription, signals for the mediator component, Med1, and the 

transcription factors PU.1 and E2A are increased several-fold relative to the entire epigenome, 

suggesting a higher density of regulatory sites, potentially corresponding to enhancers. Finally, 

transcription factors c-Myc and EBF, which have important functions in pro-B cells, show 

substantially lower peak densities compared to the whole genome. This implies that the binding 

sites for these factors are mostly located outside of AgR loci. Overall, these initial analyses 

indicate that the distribution of important chromatin features in AgR loci differs substantially 

from the remainder of the genome. Therefore, identification of novel regulatory regions within 

AgR loci will benefit from a more focused computational analysis of chromatin states tailored to 

these regions. 

Chromatin profiling of AgR loci in pro-B cells 

The complex structure of Ig and Tcr loci requires advanced computational analysis to 

identify major AgR-specific chromatin patterns. For this purpose, we applied the ChromHMM 

algorithm (Ernst and Kellis, 2012), focusing on only the seven AgR loci. The resulting chromatin 

states may then be used to identify active and poised regulatory elements in an unbiased manner. 

Briefly, ChromHMM utilizes a hidden Markov model that captures two types of information -- 

the co-occurrence frequency of individual features at either the same location (emission 

probabilities) or at adjacent locations (transition probabilities) -- yielding patterns of chromatin 

features defined as characteristic states. 

In total, we considered 19 distinct chromatin features in pro-B cells for this analysis (Fig. 

3.2A), derived from published or new data sets, including histone modifications, key 
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transcription factors, nucleosome density, and transcription (Supplemental Table S3.1). Using 

ChromHMM, we compared individual emission probabilities for models in which the 

combinatorial number of states was varied from 20 to 40 and found that 38 states optimally 

described the epigenetic landscape of AgR loci. A higher model dimensionality produced 

redundancies, whereas distinct states, corresponding to active or poised regulatory elements, 

were merged when fewer than 38 were considered. Each state in the model corresponds to either 

a single feature or combinations of features, yielding an unbiased description of the AgR 

epigenetic landscape. A full list of states in the optimized model can be found in Supplemental 

Table S3.3.  The probabilistic relationship between chromatin features and an individual state is 

important to note. For example, state 13 is defined by simultaneous presence of H3K36me3, 

H3Ac, DNAse, E2A, Med1 and some other marks, all with probabilities of nearly 1 (dark blue, 

Fig. 3.2A), indicating that all state 13 regions have these chromatin features. However, the 

probability of observing p300 in state 13 is intermediate (0.4, light blue), reflecting the fact that 

only some state 13 regions associate with p300 (e.g. Eµ), whereas others do not. 

For the 38-state model (Fig. 3.2A), AgR chromatin can be divided broadly into 3 non-

redundant categories. The first category includes twelve chromatin states that are defined by the 

presence of a single feature, such as H3K4me1, H3K27me3 or Pax5, suggesting a limited 

regulatory potential for these regions in pro-B cells (states 15, 29, and 34, respectively). A 

second category corresponds to states associated with only two or three chromatin features, 

which may reflect a partially active, or poised, configuration (e.g., states 1, 2, 20, and 26). 

Finally, six of the 38 chromatin states show strong enrichment for multiple histone modifications 

or other features of active chromatin (states 3, 4, 5, 7, 8, and 13). Regions assigned to these 

chromatin states likely harbor active regulatory elements since they are also nucleosome poor 
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(DHS peaks) and have other modifications that characterize promoters or enhancers (H3K4me3, 

H3ac etc). Notably, state 4 is characterized by its robust enrichment for 10 chromatin features 

(hereafter, enrichment indicates that the probability for a feature is >0.5), including association 

with the transcription factors p300, PU.1, and Med1.  Given these characteristics, regions within 

AgR loci categorized as state 4 likely encompass cis elements with a high regulatory potential. 

Indeed, the chromatin states most highly enriched for activation features (states 3, 4, 5, and 13) 

are predominantly localized to Ig loci, particularly to Igh, which are more active (or poised) in 

pro-B cells compared with Tcr (Fig. 3.2B). Together, focused epigenetic analysis of AgR loci 

defines a unique set of chromatin states, some of which likely reflect functionality in the context 

of gene regulation and recombination. 

Chromatin state functions 

To garner functional insights, we first assessed whether classes of known AgR elements 

segregate into different chromatin states. As shown in Fig. 3.2C, we parsed the AgR loci into 

seven functional categories corresponding to the following annotated regions (+ 500 bp): (i) Igh 

V segments (including upstream promoters), (ii) Igk V segments plus promoters, (iii) all D 

segments (Ig and Tcr), (iv) all J segments, (v) all constant regions, (vi) all known enhancers, and 

(vii) Pax5-activated intergenic repeat (PAIR) elements, a set of promoters that direct anti-sense 

transcription within specific regions of the Igh V cluster (Ebert et al., 2011; Verma-Gaur et al., 

2012). Strikingly, most of the annotated AgR regions segregate from one another into a small 

number of individual chromatin states, likely reflecting the relationships between epigenetic 

features and their functionality. For example, Igh V regions, whose associated promoters exhibit 

varying degrees of activity in pro-B cells (Choi et al., 2013), belong to five different chromatin 
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states. Conversely, Igk V regions belong to only two states (21 and 22), distinct from those of Igh 

Vs, which display a highly restricted set of chromatin features, presumably reflecting their 

poised status in pro-B cells (H3K4me2 and PU.1). Moreover, most of the PAIR anti-sense 

promoters belong to chromatin state 3, which recapitulates known features of these regulatory 

elements, including their simultaneous association with Pax5, CTCF, and Rad21 (Figs. 2A and 

2C). Most notably, eight of the twelve known AgR enhancers belong to chromatin state 4, which 

is most enriched for activating features (Fig. 3.3 and see below). One exception, Eµ, belongs to 

state 13 (Fig. 3.3A), likely because of its dual function as a strong promoter. A second exception, 

Eg4, should be excluded from consideration since its epigenetic profile is masked by a proximal 

gene (Stard3nl) that is highly expressed in pro-B cells (Fig. 3.3F).  

Notwithstanding, the vast majority of known AgR enhancers, whether active (3’RR, Fig. 

3.5A) or inactive in pro-B cells (Eb, Eα, Eγ2, 3'Eκ, Eλ31, Eλ24, Figs. 3 and 4), were assigned to 

state 4 using this unbiased analysis. Based on the aforementioned characteristics, chromatin state 

4 provides a focused set of candidates for novel regulatory elements in the AgR cistrome. 

Overall, state 4 is limited to 41 segments, spanning 42 kb of the 9.2 Mb that encompasses all 

AgR loci (~0.4%). The priority status of state 4 as an identifier of enhancers is further supported 

by its enrichment for the p300 histone acetyltransferase, which is considered to be a general 

feature of enhancers, as well as its enrichment in three key transcription factors for pro-B cell 

gene expression programs (PU.1, E2A, and Pax5). Accordingly, most of the putative cis-

elements belonging to state 4 are situated in active (46% in Igh) or poised loci (36% in Igk and 

Igl), while only 17% of such regions are located in the four Tcr loci (Fig 2B). Additionally, most 

of the state 4 regions are well-conserved at the level of DNA sequence (average conservation 

score is 0.682 for 4, see Methods and Supporting Tables S3.3 and S3.4).  We conclude that 
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chromatin state four, which encompasses the most of the known AgR enhancers whether active, 

poised, or inactive in pro-B cells, will provide a rich source of candidate elements for functional 

analyses. 

 

Characterization of novel enhancers in Ig L chain loci 

Leveraging the predictive power of our AgR chromatin analyses, we selected three state 4 

regions from Igk or Igl for functional assays. These light chain loci exhibit only modest 

transcriptional activity in primary pro-B cells and mostly likely reside in a “poised” chromatin 

configuration (Mercer et al., 2011). We first tested a state 4 element, situated in the large cluster 

of Vk gene segments, for potential enhancer function (Fig. 3.4A, kRE1). Expression of 

luciferase reporters harboring the SV40 promoter was robustly augmented (7-fold) in a pro-B 

cell line (63-12) upon inclusion of kRE1 (Fig. 3.4C).  In contrast, this region was devoid of 

enhancer activity when tested in pro-T or plasma cell lines (P5424 and J558L, respectively). 

Thus, the new Igk cis-element is a stage- and cell type-specific enhancer, suggesting a role in 

controlling the recombination potential of some mouse Vk gene segments.  

The mouse Igl locus has two highly conserved enhancers, termed El13 and El24, 

located distal to each of the VlJl cassettes (Hagman et al., 1990). In addition, we identified two 

state 4 regions lying even more distal to the VlJl cassettes (Fig. 3.4B, lRE1 and lRE3), which 

are highly conserved (1.054 and 0.706, respectively). These regions may represent “shadow” 

enhancers, which are suspected to serve as booster or redundancy elements for the regulation of 

many genes (Hobert, 2010). Indeed, in conjunction with the Vl1 promoter, each of these regions 
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augment reporter gene expression in pro-B and plasma cells, but not in a mouse pro-T cell line 

(Fig. 3.4D). In the J558L plasmacytoma, lRE1 also boosts the function of its nearby enhancer, 

El31, in an additive manner. As a control, the lRE2 region (Fig. 3.4B), which associates with 

PU.1 but identifies with chromatin states 20 and 21, fails to augment reporter gene expression in 

either pro-B or plasma cells (Fig. 3.4D). Taken together, assignment as chromatin state 4 

accurately predicts the location of novel enhancers in Ig L chain loci. 

Characterization of a super-enhancer in Igh 

Transcription, V(D)J recombination, and Igh class switching are controlled by a set of 

enhancers and promoters, most of which have presumably been uncovered (Medvedovic et al., 

2013). Our chromatin analysis assigned the two classical Igh enhancers as states 4 (3'RR) and 13 

(Eµ) (Fig. 3.5A). These enhancers have distinct, but important functions in the B cell lineage, 

including transcription and recombination of adjacent DHJH gene segments (Eµ) and control of 

class-switch recombination (Eµ and 3’RR) (Perlot and Alt, 2008). A third stretch of Igh, 

embedded between Cg1 and Cg2b, was recently described as a super-enhancer (Whyte et al., 

2013). Young and colleagues define super-enhancers using several parameters, including an 

exaggerated intensity of Med1 and PU.1 binding relative to other ChIP-Seq peaks, implicating 

these regions as key regulatory elements controlling cell identity genes (Whyte et al., 2013). To 

identify super-enhancers, the authors find regions of overlap for “master” transcription factors, 

such as PAX5 and PU.1 in pro-B cells, which also co-localize with the most intense and broadest 

peaks for the general transcription factor, Med1. Accordingly, we performed an unbiased 

analysis of Med1 distributions using SICER (Zang et al., 2009), which allows accurate peak-

calling for broad chromatin features (see Materials and Methods). We discovered that the 3'RR, 
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Eµ, and the new super-enhancer, heretofore called Igh-SE, all appear as outliers in both width 

and read density for Med1, when compared with the entire epigenome (Fig. 3.5B).  

Importantly, our focused AgR chromatin analysis splits the Igh-SE into two active 

regions that belong to states 4 and 5 (Fig. 3.5A, hRE1 and hRE2, respectively). As shown in Fig. 

3.5C, only the hRE1 region functions as an enhancer in pro-B cells when monitored by luciferase 

reporters, but is devoid of enhancer activity in pro-T or plasma cell lines. The other region, 

hRE2, belongs to state 5 and likely corresponds to the Cg2b germline promoter, which is active 

in pro-B cells based on its enrichment for H3K4me3 and the presence of sterile Ig2b transcripts 

(Fig. 3.5A). The new hRE1 enhancer region is highly conserved (0.723) and interacts physically 

with other Igh regulatory elements (Medvedovic et al., 2013), strongly suggesting an important, 

but unknown function during the early stages of B cell development. 

3.4 Discussion 

We have used tailored computational approaches to assign chromatin states throughout 

all seven AgR loci in pro-B cells. Although the functional significance of many chromatin states 

remains to be defined, state 4 was found to accurately predict sites corresponding to AgR 

regulatory regions, both known and novel. The set of potential regulatory regions identified by 

state 4 also includes AgR enhancers that are inactive or only poised in pro-B cells (e.g., Eb and 

El24, respectively), broadening the scope of this chromatin-guided approach for enhancer 

discovery. Indeed, all state 4 regions tested in this study (4/4), which were derived from each of 

the three Ig loci, have enhancer activity in pro-B cells.  
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Strikingly, the only tested region that was found to be inactive, hRE2, was assigned to a 

separate chromatin state that is enriched for Igh V region promoters (state 5). This region likely 

corresponds to the germline Cg2b promoter located near the hRE1 enhancer. We suspect that 

hRE1 plays a role in stabilizing the active conformation of Igh required for V(D)J recombination 

(Medvedovic et al., 2013) or in class-switch recombination (CSR), a process that occurs in both 

precursor and mature B cells (Han et al., 2007). The primary enhancer region directing CSR in 

activated B cells is thought to be the 3’RR. However, deletion of 3’RR abrogates recombination 

to all Igh isotypes except Cg1, the constant region lying most proximal to the hRE1 enhancer 

(Vincent-Fabert et al., 2010). As such, our chromatin state analysis of pro-B cells provides at 

least four new enhancer elements, including hRE1, which can now be studied in vivo for their 

roles in Ig gene assembly, expression, isotype switching, and somatic hypermutation.  

In summary, we have developed an unbiased epigenome-based approach to define the 

regulomes of AgR and other complex loci, such as those encoding NK cell receptors or MHC 

molecules (Shiina et al., 2004). While our functional validation of new enhancers focused on 

regions belonging to chromatin state 4, other states may also harbor important regulatory 

elements. These include state 5, which was enriched for promoters, and state 13, which spans Eµ 

and a flanking portion of the 3’RR. Future validations, including targeted disruption of these 

elements, will produce a more complete picture of AgR regulomes in the context of lymphocyte 

development and activation. 

3.5 Materials and Methods 

Data collection and processing. We considered 16 different epigenetic modifications that can 

be classified into four groups: 1) histone modifications (H3K4me1, H3K4me2, H3K4me3, 
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H3K27ac, H3K27me3, H3K36me3, H3K9ac/K14ac), 2) key transcription factors (p300, PU.1, 

Med1, c-Myc, Rad21, CTCF, EBF, E2A, Pax5), 3) nucleosome-poor, transcribed regions 

(DNase I hypersensitivity (DHS) and RNA Pol II occupancy), and 4) mature transcriptional 

signal from RNA-Seq experiments. Fourteen genome-wide experiments were available in public 

databases. For RNA Pol II and H3K27ac, new chromatin immunoprecipitation (ChIP) analyses 

were performed on a custom-made microarray covering all AgR loci (ChIP-Chip, see below). 

Supplemental Table S3.1 summarizes the sources of all experimental data.  

All ChIP-Seq and DHS experiments were processed starting from SRA files. The binary 

SRA archives were converted into FASTQ files using the SRA toolkit, then aligned with Bowtie 

(Langmead et al., 2009) (version 0.12.7) using "-m 1 -v3 --best --strata" options. The resulting 

alignment SAM file was converted into read BED files using BEDTools. RNA-Seq data were 

aligned with TopHat (Trapnell et al., 2009) (version 1.4.1.1) using "--prefilter-multihits --max-

multihits 15 --segment-length 20" options, and GenBank annotated mRNAs as an alignment 

reference (--GTF option).  

Peak calling. We applied the SICER (Zang et al., 2009) (v1.1) algorithm to reads BED files and 

call peaks for all ChIP-Seq and DHS experiments. We used settings for narrow peaks (200 bp 

window size, 200 bp gap size, and FDR of 0.01) in all cases except for H3K27me3 and 

H3K36me3, which have broad signal distributions (200 bp window size, 600 bp gap size, and 

0.01 FDR). Peak identification for RNA-Seq was performed by transcriptome assembly with 

Cufflinks (Trapnell et al., 2012) using no reference transcriptome, and exons of assembled 

transcripts with FPKM >2 were considered as peaks. For ChIP-Chip experiments, peak calling 

was performed with MA2C (Song et al., 2007) using a p-value of 0.01. 



87 
 

Genome segmentations. BED files obtained after peak calling were binarized using BEDTools 

(Quinlan and Hall, 2010). Genome-wide files were prepared with 200 bp windows and the 

overlaps of peak BED files and window files were calculated. If overlap constituted more than 

50%, the bin was assigned 1. The exact regions of mouse genome (mm9 assembly) that were 

used for the analysis of AgR loci: chr6: 40838000 - 40845000, chr6: 40986000 - 41250000, 

chr6: 41476000 - 41555000 (Tcrb), chr13 : 19245000 - 19449000 (Tcrg), chr14 : 52962000 - 

54855000 (Tcra/d), chr12 : 114435000 - 117280000 (Igh), chr6 : 67490000 - 70715000 (Igk), 

chr16 : 18971000 - 19285000 (Igl). Values for the genome outside of AgR boundaries were 

automatically set to 0, thus excluding all conventional genes from the segmentation. The 

resulting binarized input was then used in ChromHMM segmentation software (v1.10) (Ernst 

and Kellis, 2012) to generate hidden Markov models with the number of states ranging from 20 

to 40, generating emission and transition probabilities, as well as segmentation BED files and 

HTML output. Corresponding BED files are available online at 

https://artyomovlab.wustl.edu/publications/supp_materials/AgR_2013/ . 

Conservation analysis. Individual states were overlapped with phyloP30WayPlacental track 

from UCSC table browser (downloadable as a WIG file; a complete description of how the 

conservation score was generated is provided at http://hgdownload-

test.cse.ucsc.edu/goldenPath/mm9/multiz30way/ multiz30way.html), and maximum 

conservation score for each interval was obtained using an in-house script by picking the highest 

value within each genomic interval. After this, the average maximum conservation score was 

calculated for each state by summing individual scores and dividing them by the number of 

intervals in the state. 
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ChIP-Chip experiments. Pro-B cells from RAG-deficient mice (C57BL/6, 4-6 weeks) were 

purified using MACS in conjunction with CD19 microbeads (Miltenyi Biotec, CA). ChIP 

experiments for H3K27ac and RNA Pol II were performed as described (Gopalakrishnan et al., 

2013) using the following antibodies: H3K27ac (Abcam, ab4729) and Pol II (Abcam, ab5131). 

ChIP-DNA was purified using a Qiagen kit and subjected to whole genome amplification 

(Sigma, MO), labeled, and hybridized to custom Nimblegen microarrays according to the 

manufacturer's protocol by Mogene Inc., St. Louis. Total input DNA was used as the 

hybridization control. 

Luciferase assays. The following cell lines were used: P5424 (RAG-1-/-, p53-/- pro-T cell line), 

63-12 (RAG-2-/- A-MuLV transformed pro-B cell line), and J558L (B myeloma cell line). All 

cell lines were cultured at 37°C with 5% CO2 in RPMI 1640 supplemented with 10% FCS, 2mM 

L-Glutamine, 1% Penicillin/Streptomycin and 50uM b-mercaptoethanol. For transient 

transfection, cells were centrifuged at 100g for 5 minutes at room temperature, resuspended in 

serum-free RPMI 1640 at 107/ml. After this, 3x106 cells were mixed with 3ug respective Firefly 

plasmid and 30ng Renilla control plasmid pRL-CMV (Promega), electroporated at 250V/960uF, 

transferred into 5ml pre-incubated media and cultured for 24 hours. Then Firefly and Renilla 

activities were measured using a dual assay kit, and the fold changes were calculated following 

the technical manual (Promega E2920).  

Candidate regulatory elements were amplified using PCR. A full list of cloning primers is 

provided in Supplemental Table S3.2. The Igl enhancers Eλ24 and Eλ31 were amplified and 

cloned into the Bam HI site of pGL3 (Promega, WI). The regions of interest upstream of 

canonical enhancers, denoted λRE1, λRE2, and λRE3, were cloned individually in the Sal I site 

of pGL3. The Vl1 promoter was cloned into the Xho I/Hind III sites of the Igl enhancer-
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containing luciferase constructs. The hRE1, hRE2, and κRE1 regions were amplified and blunt-

end cloned into the Bam HI site of pGL3-Promoter, which contains an SV40 promoter. Cells 

were co-transfected with a Renilla expression plasmid for normalization and analyzed as 

described previously (Gopalakrishnan et al., 2013). 

3.6 Figures 

 

Figure 3.1: Unique epigenetic characteristics of mouse antigen receptor (AgR) loci 
The y-axis represents the ratio of DNA space covered by a feature within AgR loci relative to the entire genome. A 
value of 1.0 corresponds to an equal distribution of that chromatin feature in AgR loci and the entire genome. 
Seventeen genome-wide ChIP-Seq, RNA-Seq, and DHS experiments were incorporated into the computational 
analyses. 

utilizes a hidden Markov model that captures two types of infor-
mation—the co-occurrence frequency of individual features at ei-
ther the same location (emission probabilities) or adjacent locations
(transition probabilities)—yielding patterns of chromatin features
defined as characteristic states.
In total, we considered 19 distinct chromatin features in pro–

B cells for this analysis (Fig. 2A), derived from published or new
data sets, including histone modifications, key transcription fac-
tors, nucleosome density, and transcription (Supplemental Table
I). Using ChromHMM, we compared individual emission proba-
bilities for models in which the combinatorial number of states
was varied from 20 to 40 and found that 38 states optimally de-
scribed the epigenetic landscape of AgR loci. A higher model
dimensionality produced redundancies, whereas distinct states, cor-
responding to active or poised regulatory elements, were merged
when ,38 were considered. Each state in the model corresponds
to either a single feature or combinations of features, yielding an

unbiased description of the AgR epigenetic landscape. A full list
of states in the optimized model can be found in Supplemental
Table III. The probabilistic relationship between chromatin fea-
tures and an individual state is important to note. For example,
state 13 is defined by simultaneous presence of H3K36me3, H3Ac,
DNAse, E2A, Med1, and some other marks, all with probabilities
of nearly 1 (dark blue, Fig. 2A), indicating that all state 13 regions
have these chromatin features. However, the probability of ob-
serving p300 in state 13 is intermediate (0.4, light blue), reflecting
the fact that only some state 13 regions associate with p300 (e.g.,
Em), whereas others do not.
For the 38-state model (Fig. 2A), AgR chromatin can be divided

broadly into three nonredundant categories. The first category
includes 12 chromatin states that are defined by the presence of
a single feature, such as H3K4me1, H3K27me3, or Pax5, sug-
gesting a limited regulatory potential for these regions in pro–
B cells (states 15, 29, and 34, respectively). A second category

FIGURE 1. Unique epigenetic characteristics of mouse
AgR loci. The y-axis represents the ratio of DNA space
covered by a feature within AgR loci relative to the entire
genome. A value of 1.0 corresponds to an equal distribution
of that chromatin feature in AgR loci and the entire ge-
nome. Seventeen genome-wide ChIP-Seq, RNA-Seq, and
DHS experiments were incorporated into the computational
analyses.

FIGURE 2. Unbiased characterization of the AgR epi-
genetic landscape. (A) The 38-state model of chromatin
for AgR loci in pro–B cells. The hidden Markov model
was based on the distribution of 19 chromatin features
over all 7 AgR loci: 17 genome-wide features shown on
Fig. 1 were narrowed to AgR and two features, Pol II and
H3K27Ac, profiled by ChIP-Chip of AgR loci. The shades
of blue represent numerically determined emission prob-
abilities that range from 0.0 to 1.0 and describe the precise
composition of each state, or the probability to find a cer-
tain chromatin mark or transcription factor in the region
defined as a particular state. A mark is considered enriched
in a particular state if its emission probability in the model
is .0.50. (B) Distribution across AgR loci for states with
the highest regulatory potentials. Pie charts are scaled to
the total numbers of regions corresponding to each state.
Significant enrichment of these chromatin states is ob-
served for Ig loci, suggesting lineage-specific activities for
these regulatory states. (C) Enrichment of individual states
for specific AgR elements. Each chromatin state was
evaluated for its composition with respect to the indicated
elements (6500 bp from their annotated borders). Shades
of blue correspond to hypergeometric probability of en-
richment compared with random distribution across the
entire collection of elements.
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Figure 3.2: Unbiased characterization of the AgR epigenetic landscape 
(A) The 38-state model of chromatin for AgR loci in pro-B cells. The hidden Markov model was based on the 
distribution of 19 chromatin features over all seven AgR loci: 17 genome-wide features shown on Fig. 3.1 were 
narrowed to AgR and two features, Pol II and H3K27Ac, profiled by ChIP-Chip of AgR loci. The shades of blue 
represent numerically determined emission probabilities that range from 0.0 to 1.0 and describe the precise 
"composition" of each state, or the probability to find a certain chromatin mark or transcription factor in the region 
defined as a particular state. A mark is considered "enriched" in a particular state if its emission probability in the 
model is >0.50. (B) Distribution across AgR loci for states with the highest regulatory potentials. Pie charts are 
scaled to the total numbers of regions corresponding to each state. Significant enrichment of these chromatin states 
is observed for Ig loci, suggesting lineage-specific activities for these regulatory states. (C) Enrichment of individual 
states for specific AgR elements. Each chromatin state was evaluated for its composition with respect to the 
indicated elements (+ 500 bp from their annotated borders). Shades of blue correspond to hypergeometric 
probability of enrichment compared to random distribution across the entire collection of elements. 

 

utilizes a hidden Markov model that captures two types of infor-
mation—the co-occurrence frequency of individual features at ei-
ther the same location (emission probabilities) or adjacent locations
(transition probabilities)—yielding patterns of chromatin features
defined as characteristic states.
In total, we considered 19 distinct chromatin features in pro–

B cells for this analysis (Fig. 2A), derived from published or new
data sets, including histone modifications, key transcription fac-
tors, nucleosome density, and transcription (Supplemental Table
I). Using ChromHMM, we compared individual emission proba-
bilities for models in which the combinatorial number of states
was varied from 20 to 40 and found that 38 states optimally de-
scribed the epigenetic landscape of AgR loci. A higher model
dimensionality produced redundancies, whereas distinct states, cor-
responding to active or poised regulatory elements, were merged
when ,38 were considered. Each state in the model corresponds
to either a single feature or combinations of features, yielding an

unbiased description of the AgR epigenetic landscape. A full list
of states in the optimized model can be found in Supplemental
Table III. The probabilistic relationship between chromatin fea-
tures and an individual state is important to note. For example,
state 13 is defined by simultaneous presence of H3K36me3, H3Ac,
DNAse, E2A, Med1, and some other marks, all with probabilities
of nearly 1 (dark blue, Fig. 2A), indicating that all state 13 regions
have these chromatin features. However, the probability of ob-
serving p300 in state 13 is intermediate (0.4, light blue), reflecting
the fact that only some state 13 regions associate with p300 (e.g.,
Em), whereas others do not.
For the 38-state model (Fig. 2A), AgR chromatin can be divided

broadly into three nonredundant categories. The first category
includes 12 chromatin states that are defined by the presence of
a single feature, such as H3K4me1, H3K27me3, or Pax5, sug-
gesting a limited regulatory potential for these regions in pro–
B cells (states 15, 29, and 34, respectively). A second category

FIGURE 1. Unique epigenetic characteristics of mouse
AgR loci. The y-axis represents the ratio of DNA space
covered by a feature within AgR loci relative to the entire
genome. A value of 1.0 corresponds to an equal distribution
of that chromatin feature in AgR loci and the entire ge-
nome. Seventeen genome-wide ChIP-Seq, RNA-Seq, and
DHS experiments were incorporated into the computational
analyses.

FIGURE 2. Unbiased characterization of the AgR epi-
genetic landscape. (A) The 38-state model of chromatin
for AgR loci in pro–B cells. The hidden Markov model
was based on the distribution of 19 chromatin features
over all 7 AgR loci: 17 genome-wide features shown on
Fig. 1 were narrowed to AgR and two features, Pol II and
H3K27Ac, profiled by ChIP-Chip of AgR loci. The shades
of blue represent numerically determined emission prob-
abilities that range from 0.0 to 1.0 and describe the precise
composition of each state, or the probability to find a cer-
tain chromatin mark or transcription factor in the region
defined as a particular state. A mark is considered enriched
in a particular state if its emission probability in the model
is .0.50. (B) Distribution across AgR loci for states with
the highest regulatory potentials. Pie charts are scaled to
the total numbers of regions corresponding to each state.
Significant enrichment of these chromatin states is ob-
served for Ig loci, suggesting lineage-specific activities for
these regulatory states. (C) Enrichment of individual states
for specific AgR elements. Each chromatin state was
evaluated for its composition with respect to the indicated
elements (6500 bp from their annotated borders). Shades
of blue correspond to hypergeometric probability of en-
richment compared with random distribution across the
entire collection of elements.
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Figure 3.3: Chromatin states for selected regions of Ig and Tcr loci  
Tracks for the indicated epigenetic features (ChIP-Seq) or transcription (RNA-Seq) as visualized in the IGV 
browser. Annotations for known elements and their corresponding chromatin states are shown in the bottom two 
tracks. Genomic coordinates are shown above the tracks (build mm9). State 13 is characteristic of actively 
transcribed elements (highlighted in light green) and harbors two enhancers, Eµ (A) and Eg4 (F). State 4, which is 
characterized by a lack of transcription, the presence of activating chromatin marks, and binding by E2A, Pax5, 
PU.1, p300, and Med1, coincides with most known AgR enhancers, including 3'Ek (B), Eb (C), Ea (D), and Eg2 
(E). Regions identified as chromatin state 4 are highlighted in gray. 
 

corresponds to states associated with only two or three chromatin
features, which may reflect a partially active, or poised, configu-
ration (e.g., states 1, 2, 20, and 26). Finally, 6 of the 38 chromatin
states show strong enrichment for multiple histone modifications
or other features of active chromatin (states 3, 4, 5, 7, 8, and 13).
Regions assigned to these chromatin states most likely harbor
active regulatory elements because they are also nucleosome poor
(DHS peaks) and have other modifications that characterize pro-
moters or enhancers (H3K4me3, H3ac, etc.). Notably, state 4 is
characterized by its robust enrichment for 10 chromatin features
(hereafter, enrichment indicates that the probability for a feature is
.0.5), including association with the transcription factors p300,
PU.1, and Med1. Given these characteristics, regions within AgR
loci categorized as state 4 most likely encompass cis elements
with a high regulatory potential. Indeed, the chromatin states most
highly enriched for activation features (states 3, 4, 5, and 13) are
predominantly localized to Ig loci, particularly to Igh, which are
more active (or poised) in pro–B cells compared with Tcr (Fig.
2B). Together, focused epigenetic analysis of AgR loci defines
a unique set of chromatin states, some of which most likely reflect
functionality in the context of gene regulation and recombination.

Chromatin state functions

To garner functional insights, we first assessed whether classes of
known AgR elements segregate into different chromatin states. As
shown in Fig. 2C, we parsed the AgR loci into seven functional
categories corresponding to the following annotated regions
(6500 bp): 1) Igh V segments (including upstream promoters); 2)
Igk V segments plus promoters; 3) all D segments (Ig and Tcr); 4)

all J segments; 5) all C regions; 6) all known enhancers; and 7)
Pax5-activated intergenic repeat elements, a set of promoters
that direct antisense transcription within specific regions of the
Igh V cluster (20, 21). Strikingly, most of the annotated AgR
regions segregate from one another into a small number of indi-
vidual chromatin states, most likely reflecting the relationships
between epigenetic features and their functionality. For example,
Igh V regions, whose associated promoters exhibit varying degrees
of activity in pro–B cells (22), belong to five different chromatin
states. Conversely, Igk V regions belong to only two states (21, 22),
distinct from those of Igh Vs, which display a highly restricted set
of chromatin features, presumably reflecting their poised status in
pro–B cells (H3K4me2 and PU.1). Moreover, most of the Pax5-
activated intergenic repeat antisense promoters belong to chromatin
state 3, which recapitulates known features of these regulatory
elements, including their simultaneous association with Pax5,
CTCF, and Rad21 (Fig. 2A, 2C). Most notably, 8 of the 12 known
AgR enhancers belong to chromatin state 4, which is most enriched
for activating features (Fig. 3 and see below). One exception, Em,
belongs to state 13 (Fig. 3A), most likely because of its dual
function as a strong promoter. A second exception, Eg4, should
be excluded from consideration because its epigenetic profile is
masked by a proximal gene (Stard3nl) that is highly expressed
in pro–B cells (Fig. 3F).
Notwithstanding, the vast majority of known AgR enhancers,

whether active (39RR; see below) or inactive in pro–B cells (Eb,
Ea, Eg2, 39Ek, El31, El24; Figs. 3, 4), were assigned to state 4
using this unbiased analysis. Based on the aforementioned char-
acteristics, chromatin state 4 provides a focused set of candidates

FIGURE 3. Chromatin states for selected regions of Ig and Tcr loci. Tracks for the indicated epigenetic features (ChIP-Seq) or transcription (RNA-Seq)
as visualized in the IGV browser. Annotations for known elements and their corresponding chromatin states are shown in the bottom two tracks. Genomic
coordinates are shown above the tracks (build mm9). State 13 is characteristic of actively transcribed elements (highlighted in light green) and harbors two
enhancers, Em (A) and Eg4 (F). State 4, which is characterized by a lack of transcription, the presence of activating chromatin marks, and binding by E2A,
Pax5, PU.1, p300, and Med1, coincides with most known AgR enhancers, including 39Ek (B), Eb (C), Ea (D), and Eg2 (E). Regions identified as chromatin
state 4 are highlighted in gray.
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Figure 3.4: Identification and functional validation of novel Ig L chain enhancers  
(A, B) Tracks for the indicated chromatin features as visualized in the IGV browser (see Fig. 3.2). Regions identified 
as chromatin state 4 are highlighted in gray. Locations of candidate enhancer elements κRE1 in Igk (A), lRE1, 
lRE2 and lRE3 (B) are shown as red blocks. The known El enhancer elements are indicated as green boxes. (C) 
Luciferase data for κRE1 enhancer activity in lymphocytes. Reporter plasmids containing combinations of the SV40 
promoter (pSV40), SV40 enhancer (ESV40), kRE1, or lacking control elements (P-E-) were tested in the following 
cell lines: 63-12 pro-B cells (red bars), J558L plasmacytoma (blue bars), and P5424 pro-T cells (gray bars). All data 
are normalized for transfection efficiency and presented relative to pSV40 activity, which is set to 1. Representative 
data from at least two biological replicates are shown for all luciferase data. (D) Luciferase data for the indicated 
combinations of regulatory elements as described in (C). 
 

for novel regulatory elements in the AgR cistrome. Overall, state 4
is limited to 41 segments, spanning 42 kb of the 9.2 Mb that
encompasses all AgR loci (∼0.4%). The priority status of state 4 as
an identifier of enhancers is further supported by its enrichment
for the p300 histone acetyltransferase, which is considered to be
a general feature of enhancers, as well as its enrichment in three
key transcription factors for pro–B cell gene expression programs
(PU.1, E2A, and Pax5). Accordingly, most of the putative cis ele-
ments belonging to state 4 are situated in active (46% in Igh) or
poised loci (36% in Igk and Igl), whereas only 17% of such regions
are located in the four Tcr loci (Fig. 2B). Additionally, most of the
state 4 regions are well conserved at the level of DNA sequence
(average conservation score is 0.682 for 4; see Materials and
Methods and Supplemental Tables III, IV). We conclude that
chromatin state 4, which encompasses most of the known AgR
enhancers whether active, poised, or inactive in pro–B cells, will
provide a rich source of candidate elements for functional analyses.

Characterization of novel enhancers in Ig L chain loci

Leveraging the predictive power of our AgR chromatin analyses,
we selected three state 4 regions from Igk or Igl for functional
assays. These L chain loci exhibit only modest transcriptional
activity in primary pro–B cells and most likely reside in a poised
chromatin configuration (23). We first tested a state 4 element,
situated in the large cluster of Vk gene segments, for potential

enhancer function (Fig. 4A; kRE1). Expression of luciferase re-
porters harboring the SV40 promoter was robustly augmented
(7-fold) in a pro–B cell line (63-12) upon inclusion of kRE1 (Fig.
4C). In contrast, this region was devoid of enhancer activity when
tested in pro–T or plasma cell lines (P5424 and J558L, respec-
tively). Thus, the new Igk cis element is a stage- and cell type-
specific enhancer, suggesting a role in controlling the recombi-
nation potential of some mouse Vk gene segments.
The mouse Igl locus has two highly conserved enhancers,

termed El13 and El24, located distal to each of the VlJl cas-
settes (24). In addition, we identified two state 4 regions lying
even more distal to the VlJl cassettes (Fig. 4B; lRE1 and lRE3),
which are highly conserved (1.054 and 0.706, respectively). These
regions may represent shadow enhancers, which are suspected to
serve as booster or redundancy elements for the regulation of
many genes (25). Indeed, in conjunction with the Vl1 promoter,
each of these regions augments reporter gene expression in pro–B
and plasma cells, but not in a mouse pro–T cell line (Fig. 4D). In
the J558L plasmacytoma, lRE1 also boosts the function of its
nearby enhancer, El31, in an additive manner. As a control, the
lRE2 region (Fig. 4B), which associates with PU.1 but identifies
with chromatin states 20 and 21, fails to augment reporter gene
expression in either pro–B or plasma cells (Fig. 4D). Taken to-
gether, assignment as chromatin state 4 accurately predicts the
location of novel enhancers in Ig L chain loci.

FIGURE 4. Identification and functional validation of novel Ig L chain enhancers. (A and B) Tracks for the indicated chromatin features as visualized in
the IGV browser (see Fig. 2). Candidate enhancer regions identified as chromatin state 4 are highlighted in gray. Locations of tested fragments, kRE1 in Igk
(A), lRE1, lRE2, and lRE3 (B), are shown as red blocks. The known El enhancer elements are indicated as green boxes. (C) Luciferase data for kRE1
enhancer activity in lymphocytes. Reporter plasmids containing combinations of the SV40 promoter (pSV40), SV40 enhancer (ESV40), kRE1, or lacking
control elements (P-E-) were tested in the following cell lines: 63-12 pro–B cells (red bars), J558L plasmacytoma (blue bars), and P5424 pro–T cells (gray
bars). All data are normalized for transfection efficiency and presented relative to pSV40 activity, which is set to 1. Representative data from at least two
biological replicates are shown for all luciferase data. (D) Luciferase data for the indicated combinations of regulatory elements, as described in (C).
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Figure 3.5: Functional definition of a novel Igh super-enhancer 
(A) Tracks for the indicated chromatin features as visualized in the IGV browser (see Fig. 3.2). Chromatin states 3 
(black), 4 (blue), 5 (green), and 13 (lavender) are shown in the bottom four tracks. The location of candidate 
enhancer elements hRE1 and hRE2 are highlighted as red boxes. (B) The distribution of Med1 peaks (identified 
using SICER) in pro-B cells by width (left panel) and read count-to-width ratio (right panel). Arrows indicate 
positions of Med1 peaks overlapping the three super-enhancer regions within Igh, highlighting their extreme breadth 
(left panel) and read densities (right panel). (C) Luciferase data for hRE1 and hRE2 as described in Fig. 3.3C. 
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3.8 Supplemental Tables 

Supplemental Table 3.1: All datasets used in the analysis  
All samples were processed de-novo from SRA files as described in Methods section.  
 

Characterization of a superenhancer in Igh

Transcription, V(D)J recombination, and Igh class switching are
controlled by a set of enhancers and promoters, most of which
have presumably been uncovered (26). Our chromatin analysis
assigned the two classical Igh enhancers as state 13 (Em and hs4)
(Fig. 5A). Several independent enhancers and a CTCF-rich region,
together termed as 39RR, have distinct but important functions in
the B cell lineage, including transcription and recombination of
adjacent DHJH gene segments (Em) and control of class-switch
recombination (Em and 39RR) (27). Notably, 39RR-proximal re-
gion identified as state 4 is also enriched in CTCF (Fig. 5A),
consistent with its role as insulator, yet indicating possibly more
complex role played by this region. A third stretch within Igh,
embedded between Cg1 and Cg2b, was recently described as a
superenhancer (3). Young and colleagues (3) define superenhancers
using several parameters, including an exaggerated intensity of
Med1 and PU.1 binding relative to other ChIP-Seq peaks, impli-
cating these regions as key regulatory elements controlling cell
identity genes. To identify superenhancers, the authors find regions
of overlap for master transcription factors, such as PAX5 and PU.1
in pro–B cells, which also colocalize with the most intense and
broadest peaks for the general transcription factor, Med1. Accord-
ingly, we performed an unbiased analysis of Med1 distributions
using SICER (7), which allows accurate peak calling for broad
chromatin features (see Materials and Methods). We discovered
that the 39RR, Em, and the new superenhancer, heretofore called
Igh-SE, all appear as outliers in both width and read density for
Med1, when compared with the entire epigenome (Fig. 5B).

Importantly, our focused AgR chromatin analysis splits the Igh-
SE into two active regions that belong to states 4 and 5 (Fig. 5A;
hRE1 and hRE2, respectively). As shown in Fig. 5C, only the
hRE1 region functions as an enhancer in pro–B cells when moni-
tored by luciferase reporters, but is devoid of enhancer activity in
pro–T or plasma cell lines. The other region, hRE2, belongs to
state 5 and most likely corresponds to the Cg2b germline pro-
moter, which is active in pro–B cells based on its enrichment for
H3K4me3 and the presence of sterile Ig2b transcripts (Fig. 5A).
The new hRE1 enhancer region is highly conserved (0.723) and
interacts physically with other Igh regulatory elements (26), strongly
suggesting an important but unknown function during the early
stages of B cell development.

Discussion
We have used tailored computational approaches to assign chro-
matin states throughout all seven AgR loci in pro–B cells. Although
the functional significance of many chromatin states remains to
be defined, state 4 was found to accurately predict sites corre-
sponding to AgR regulatory regions, both known and novel. The
set of potential regulatory regions identified by state 4 also includes
AgR enhancers that are inactive or only poised in pro–B cells (e.g.,
Eb and El24, respectively), broadening the scope of this chromatin-
guided approach for enhancer discovery. Indeed, all state 4 regions
tested in this study (4 of 4), which were derived from each of the
three Ig loci, have enhancer activity in pro–B cells.
Strikingly, the only tested region that was found to be inactive,

hRE2, was assigned to a separate chromatin state that is enriched

FIGURE 5. Functional definition of a novel Igh superenhancer. (A) Tracks for the indicated chromatin features as visualized in the IGV browser (see Fig.
2). Chromatin states 3 (black), 4 (blue), 5 (green), and 13 (lavender) are shown in the bottom four tracks. The location of candidate enhancer elements hRE1
and hRE2 is highlighted as red boxes. (B) The distribution of Med1 peaks (identified using SICER) in pro–B cells by width (left panel) and read count-to-
width ratio (right panel). Arrows indicate positions of Med1 peaks overlapping the three superenhancer regions within Igh, highlighting their extreme
breadth (left panel) and read densities (right panel). (C) Luciferase data for hRE1 and hRE2, as described in Fig. 3C.
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Supplemental Table 3.2: List of all primers used for cloning 
Note that all primers include a restriction site. Coordinates are based on mm9 assembly of mouse genome. Bases 
selected in bold are added for technical purposes; the rest correspond to genomic regions of interest.  

Supplementary Table S1. All datasets used in the analysis. All samples were processed de-novo from SRA files as described in Methods section.  

Feature PI Exp. type Cell source Series (GSE) 
Accession number 

(GSM) 
Additional notes 

H3K4me2 C. Murre ChIP-seq Rag1(-/-) C57BL/6 mouse GSE40173 GSM987804 
 H3K36me3 C. Murre ChIP-seq Rag1(-/-) C57BL/6 mouse GSE40173 GSM987807 
 p300 C. Murre ChIP-seq Rag1(-/-) C57BL/6 mouse GSE40173 GSM987808 
 c-Myc C. Murre ChIP-seq Rag1(-/-) C57BL/6 mouse GSE40173 GSM987810 
 CTCF C. Murre ChIP-seq Rag1(-/-) C57BL/6 mouse GSE40173 GSM987805 
 Rad21 C. Murre ChIP-seq Rag1(-/-) C57BL/6 mouse GSE40173 GSM987806 
 

Input C. Murre ChIP-seq Rag1(-/-) C57BL/6 mouse GSE40173 GSM987812 
This input was used for all experiments in GSE40173 
superset 

E2A C. Murre ChIP-seq Rag1(-/-) C57BL/6 mouse GSE21978 GSM546523 
 EBF C. Murre ChIP-seq Rag1(-/-) C57BL/6 mouse GSE21978 GSM546524 
 Input2 C. Murre ChIP-seq Rag1(-/-) C57BL/6 mouse GSE21978 GSM546540 This input was used for E2A and EBF experiments 

H3K27ac E. Oltz ChIP-chip Rag1(-/-) C57BL/6 mouse Chip-chip Available online 
http://artyomovlab.wustl.edu/publications/supp_materials/AgR_201
3/ 

Pol II  E. Oltz ChIP-chip Rag1(-/-) C57BL/6 mouse Chip-chip Available online 
http://artyomovlab.wustl.edu/publications/supp_materials/AgR_201
3/ 

H3K4me1 M. Busslinger ChIP-seq Rag2(-/-) C57BL/6 mouse GSE38046 GSM932934 exp. 8666 
H3K4me3 M. Busslinger ChIP-seq Rag2(-/-) C57BL/6 mouse GSE38046 GSM932939 - 42 exp. 8110, 8115 
H3K27me3 M. Busslinger ChIP-seq Rag2(-/-) C57BL/6 mouse GSE38046 GSM932947 - 51 exp. 8111, 8116 
H3K9ac/K14ac M. Busslinger ChIP-seq Rag2(-/-) C57BL/6 mouse GSE38046 GSM932943 - 46 exp. 8108, 8113 
DNase I 

hypersensitivity M. Busslinger ChIP-seq Rag2(-/-) C57BL/6 mouse GSE38046 GSM932968 - 69 exp. 8439 
RNA-Seq  M. Busslinger RNA-seq Rag2(-/-) C57BL/6 mouse GSE38046 GSM932910 - 13 exp. 8275 

Input  M. Busslinger ChIP-seq Rag2(-/-) C57BL/6 mouse GSE35857 GSM876635 -42 
exp. 8091.5, 8091.6, 8112.1, 8112.6, 8123.2, 8123.3, 
8149.8.30222AAXX, 8149.8.301DTAAXX 

Pax5 M. Busslinger 
Bio-ChIP-
seq Rag2(-/-) C57BL/6 mouse GSE35857 GSM932921 - 23 exp. 8093 

Bio-Chip-Seq 

Input M. Busslinger 
Bio-ChIP-
seq Rag2(-/-) C57BL/6 mouse GSE35857 GSM932932 - 33 exp. 8095 

Med1 R. Young ChIP-seq 
38B9 pro-B cell line,  
C57BL/6-129 mouse GSE44288 GSM1038263 

 
Med1 Input R. Young ChIP-seq 

38B9 pro-B cell line,  
C57BL/6-129 mouse GSE44288 GSM1038264 

 
PU.1 R. Young ChIP-seq 

38B9 pro-B cell line,  
C57BL/6-129 mouse GSE21614 GSM539538 

 
PU.1 Input R. Young ChIP-seq 

38B9 pro-B cell line, 
C57BL/6-129 mouse GSE44288 GSM1038265 
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Primers Sequences (5’-3’) Ch
r 

Stran
d 

Begin End 

pVλ1 F GACACTCGAGGAGCTCTGTTCTTAGTAACA 16 - 19085581 19085749 

pVλ1 R GATAAGCTTAATATTGGTCAGCAGCAGGC 16 - 19085581 19085749 

Eλ24 F TAAGGATCCTCTCCTGAGATATTGCATAGGCCTGCC
C 

16 - 19179217 19179887 

Eλ24 R CTTGGATCCACTCCTTTGTGCTCTGATAGCA 16 - 19179217 19179887 

Eλ31 F TAAGGATCCTCTCCTGAGATGTTACATAGGCCTGCC
A 

16 - 19152593 19154022 

Eλ31 R GACGGATCCACTCCTTTGTGCTCTGATAACC 16 - 19152593 19154022 

λRE1 F TAAGTCGACGACCTGGATTCAATTCACAGTACCT 16 - 19007160 19008717 

λRE1 R GATGTCGACCTATTATAATCACCTAGGACACTGC 16 - 19007160 19008717 

λRE2 F TAAGTCGACCCAATGGAGGCCAGAATGGGATAAC 16 - 19010593 19011993 

λRE2 R GACGTCGACTAATGGTGACAGTGACATCCAAACT 16 - 19010593 19011993 

λRE3 F GCTGTCGACCAATTCACACTATCCACGTAATAAG 16 - 19152593 19154022 

λRE3 R TAAGTCGACGATGTCGGATTCAGGCCTGGTAA 16 - 19152593 19154022 

hRE2 F CTAGGTCGACCTCTCCACCTGATTTGCTGCAC 12 - 11455282
7 

11455339
8 

hRE2 
R 

TAGCGGATCCTTCTCAGCTGACCACACTCACA 12 - 11455282
7 

11455339
8 

hRE1 F CTAGGTCGACTATGCTATACAGGATAAACTC 12 - 11455915
4 

11455975
0 

hRE1 
R 

TAGCGGATCCCATGGAAGATAAAAACTGTACA 12 - 11455915
4 

11455975
0 

κRE1 F TAGCAGATCTTATTTAACTAGGTATGATTAT 6 + 68834022 68834718 

κRE1 
R 

CTAGGTCGACAACTATAAAGTCAGTGGATTTC 6 + 68834022 68834718 
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Supplemental Table 3.3: List of all states 
Generated in 38-state model with 19 features, classified by number of marks that have emission probability of 0.5 
and higher. States that are enriched in 5 or more marks are highlighted. States that are also enriched in Med1 and key 
transcription factors are shown in bold. 

St
ate 

No. of 
intervals 

Covera
ge, bp 

Average 
conservation 
score 

No. of 
enriched 
marks Marks 

10 182 112000 0.56202 1 H3K4me1 

12 45 20000 0.40003 1 DNASE 

15 52 120800 0.49497 1 H3K36me3 

19 172 135600 0.37406 1 PU1 

23 72 44400 0.48466 1 H3K4me2 

25 256 212600 0.26356 1 Med1 

29 76 284200 0.88749 1 H3K27me3 

31 155 189200 0.32503 1 Pol2 

33 93 108400 0.43606 1 H3K27ac 

34 88 39600 0.21294 1 Pax5 

37 15 8000 0.54671 1 E2A 

38 10 13000 0.397 1 p300 

1 95 62600 0.52599 2 Med1, H3K4me1 

9 72 37000 0.64537 2 H3K4me2, H3K4me1 

11 79 47200 0.76623 2 DNASE, H3K4me1 

16 41 51200 0.60315 2 H3K36me3, H3K4me1 

17 42 30400 0.53316 2 H3ac, H3K4me1 

18 38 18400 0.47392 2 PU.1, H3K4me1 

20 162 160800 0.29633 2 PU.1, Med1 

22 28 21600 0.66138 2 PU.1, H3K4me2 

24 31 21600 0.40012 2 H3K4me2, Med1 

26 66 32800 0.56474 2 PU.1, Med1 
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Supplemental Table 3.4: All regions identified as states 4, 5, and 13 
The conservation score for each interval was calculated as described in Methods section. Regions that were tested in 
luciferase assays and found to be active enhancers are highlighted in green. The region that represent known 
enhancers are highlighted in red. 

 

30 7 11400 1.05072 2 H3K27me3, Pol2 

32 24 29200 0.3418 2 Pol2, H3K27ac 

2 128 91000 0.43376 3 H3K4me1, PU.1, Med1 

6 58 31600 0.6256 3 H3ac, H3K4me2, H3K4me1 

14 16 22400 0.73986 3 H3K36me3, H3K4me3, H3K4me2 

21 34 25400 0.48801 3 H3K4me2, PU.1, Med1 

3 61 38800 0.60471 5+ DNASE, E2A, H3K4me1, PU.1, Med1 

4 41 42400 0.68189 5+ 
DNASE, H3K4me3,H3K4me2, H3K4me1, 
H3ac, PU.1, Med1, E2A, Pax5, p300 

5 79 71400 0.66883 5+ DNASE, H3K4me2, H3K4me1, PU.1, Med1 

7 30 29800 0.82031 5+ DNASE, H3K4me3, H3K4me2, H3K4me1, H3ac 

8 33 22000 0.74818 5+ DNASE, H3K4me2, H3K4me1,H3ac, Pax5 

13 9 22800 1.21196 5+ 
DNASE, H3K36me3, H3K4me3,H3K4me2, 
H3K4me1, H3ac, E2A, Med1 

27 103 56800 0.54211 0 
Not quite empty state, CTCF emission is just 
under 0.5  

28 29 
2.646E
+09 1.8151 0 

Global empty state neighbored by other empty 
state  

35 114 128600 0.34177 0 Empty state that follows states 15,17 and 22  

36 926 
638040
0 0.54239 0 Empty state that follows states 10,12,23,27 and 34  

Chr Begin End State  Locus Cons. Score Annotation 

chr12 114460200 114463400 4 Igh 0.605 hs7, hs6, hs5 

chr12 114558600 114559800 4 Igh 0.723 hRE1 
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chr12 115420600 115422800 4 Igh 0.96 - 

chr12 115511600 115512400 4 Igh 0 - 

chr12 115578000 115578800 4 Igh 0 - 

chr12 115732000 115732400 4 Igh 0 - 

chr12 115783600 115784000 4 Igh 0 - 

chr12 115847000 115849200 4 Igh 0.524 - 

chr12 115853400 115854400 4 Igh 0.262 Igh-V-J558.9.99 

chr12 116219800 116220800 4 Igh 0 - 

chr12 116235400 116235800 4 Igh 0.678 - 

chr12 116261600 116263600 4 Igh 0.831 Igh-V-3609.2pg.138 

chr12 116403400 116404200 4 Igh 0.262 Igh-V-3609.5.147 

chr12 116461000 116461600 4 Igh 0.262 - 

chr12 116495800 116496600 4 Igh 0.597 Igh-V-3609.6pg.161 

chr12 116500400 116501600 4 Igh 0.678 - 

chr12 116642000 116642800 4 Igh 0.765803 Igh-V8-8-1*01 

chr12 116645400 116645800 4 Igh 0.262 - 

chr12 116757200 116757600 4 Igh 0.674 Igh-V-3609.10pg.167 

chr13 19273800 19275200 4 Tcrg 1.227 - 

chr13 19311200 19312400 4 Tcrg 1.153 Eγ2 

chr14 53070400 53071400 4 Tcra/d 2.001 Olfr1909 

chr14 54846200 54848200 4 Tcra/d 1.809 Eα 

chr14 54852600 54853600 4 Tcra/d 1.68 - 

chr16 19003000 19003600 4 Igl 0.516063 - 

chr16 19007400 19008200 4 Igl 1.054 λRE1 

chr16 19025800 19026000 4 Igl 0 - 

chr16 19027000 19027800 4 Igl 0 Eλ31 

chr16 19052800 19053400 4 Igl 0 - 
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chr16 19152600 19153000 4 Igl 0.706 λRE3 

chr16 19178800 19180600 4 Igl 0.588 Eλ24 

chr6 41503800 41505200 4 Tcrb 1.708 Eβ 

chr6 41508400 41508800 4 Tcrb 1.81477 Trb-V31 promoter 

chr6 68387200 68388200 4 Igk 1.097 Igk-V15-103 

chr6 68431000 68432000 4 Igk 0.944 Igk-V15-101 

chr6 68548000 68548600 4 Igk 0 - 

chr6 68700000 68701200 4 Igk 0 - 

chr6 68833400 68835200 4 Igk 0.597 κRE1 

chr6 69990400 69991400 4 Igk 0.606 - 

chr6 70659600 70660200 4 Igk 0.579 - 

chr6 70685000 70686000 4 Igk 1.794 3'Eκ 

chr12 114551600 114553600 5 Igh 0.7 hRE2 

chr12 114557800 114558600 5 Igh 0.262 - 

chr12 114559800 114561200 5 Igh 0.582 - 

chr12 115232000 115233400 5 Igh 0.955 Igh-V-SM7.2.49 

chr12 115297800 115298600 5 Igh 0.808 Igh-V-SM7.3.54 

chr12 115331800 115332400 5 Igh 0.732 Igh-V-GAM3.8-1-57 

chr12 115414600 115415400 5 Igh 0.582 Igh-V-SM7.4.63 

chr12 115419000 115420600 5 Igh 0.831 - 

chr12 115422800 115423200 5 Igh 0 - 

chr12 115511400 115511600 5 Igh 0 - 

chr12 115512400 115512600 5 Igh 0 - 

chr12 115578800 115579400 5 Igh 1.012 - 

chr12 115699600 115701000 5 Igh 0.597 Igh-V-3609.1.84 

chr12 115732400 115733200 5 Igh 0 - 

chr12 115784000 115785200 5 Igh 0 Igh-V10-4*01 promoter 
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chr12 115802400 115803200 5 Igh 0.835 Igh-V15.1.95 

chr12 115835800 115836600 5 Igh 0.674 Igh-V-J558.7pg.97 

chr12 115849200 115851000 5 Igh 0.554803 Igh-V-J558.8.98 

chr12 115853200 115853400 5 Igh 0 - 

chr12 115854400 115855000 5 Igh 0.606 proximal to Igh-V-J558.9.99 

chr12 116235800 116236400 5 Igh 0.262 - 

chr12 116241000 116242400 5 Igh 0.606 Igh-V-3609.2pg.138 

chr12 116263600 116265200 5 Igh 0.262 proximal to Igh-V-3609.3.139 

chr12 116402800 116403400 5 Igh 0 - 

chr12 116404200 116404800 5 Igh 0.262 Igh-V-3609.5.147 

chr12 116410400 116410800 5 Igh 0.249992 - 

chr12 116431400 116432600 5 Igh 0.584 Igh-V-J558.54.148 

chr12 116461600 116462400 5 Igh 0.262 - 

chr12 116495200 116495800 5 Igh 0.262 proximal to Igh-V-3609.6pg.161 

chr12 116499800 116500400 5 Igh 0.248268 - 

chr12 116550000 116550800 5 Igh 0.734 Igh-V-J558.58.154 

chr12 116642800 116644000 5 Igh 0.867 Igh-V8-8-1*01 

chr12 116645000 116645400 5 Igh 0.262 - 

chr12 116712800 116713000 5 Igh 0.262 - 

chr12 116756800 116757200 5 Igh 0 - 

chr12 116757600 116758000 5 Igh 0.674 Igh-V-3609.10pg.167 

chr12 116765200 116766400 5 Igh 0 - 

chr12 116805200 116805800 5 Igh 0.734 Igh-V-3609.11.169 

chr12 116885400 116887000 5 Igh 1.232 Igh-V-3609.12.174 

chr12 116930200 116930400 5 Igh 0.579 Igh-V-J558.73pg.175 

chr12 117003600 117004000 5 Igh 0.867 Igh-V-3609.13pg.178 

chr12 117008800 117010200 5 Igh 0.262 - 
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chr12 117028600 117029400 5 Igh 0.832 Igh-V-J558.76pg.179 

chr12 117046200 117047200 5 Igh 0.868 Igh-V-3609.14pg.181 

chr12 117100000 117100800 5 Igh 1.152 Igh-V-J558.80.186 

chr12 117126400 117126600 5 Igh 1.037 Igh-V-J558.82.188 

chr13 19273200 19273800 5 Tcrg 0.848465 - 

chr13 19276400 19277600 5 Tcrg 1.625 Trg-V4 

chr13 19281800 19282800 5 Tcrg 1.395 Trg-V6 

chr13 19300200 19305200 5 Tcrg 1.618 Trg-J1 

chr13 19310000 19311200 5 Tcrg 0.262 proximal to Eγ2 

chr13 19312400 19314400 5 Tcrg 0.816622 proximal to Eγ2 

chr13 19363600 19365400 5 Tcrg 1.051 - 

chr13 19392600 19393400 5 Tcrg 0.951 - 

chr14 53070200 53070400 5 Tcra/d 2.001 Olfr1909 

chr14 53108600 53109000 5 Tcra/d 0.720724 - 

chr14 54845600 54846200 5 Tcra/d 1.663 - 

chr14 54850000 54852600 5 Tcra/d 1.422 - 

chr16 19003600 19004000 5 Igl 0.795 - 

chr16 19006800 19007400 5 Igl 1.054 - 

chr16 19008200 19008400 5 Igl 0 - 

chr16 19024000 19025800 5 Igl 0 - 

chr16 19026000 19027000 5 Igl 0 - 

chr16 19027800 19028800 5 Igl 0.641 proximal to Eλ31 

chr16 19052000 19052800 5 Igl 0 - 

chr16 19152200 19152600 5 Igl 0 - 

chr16 19172200 19173000 5 Igl 0 - 

chr6 40840400 40842200 5 Tcrb 1.717 Trb-V1 

chr6 41502800 41503800 5 Tcrb 1.442 proximal to Eβ 
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chr6 41505200 41506000 5 Tcrb 1.708 proximal to Eβ 

chr6 41507400 41507800 5 Tcrb 1.63294 Trb-V31 

chr6 41508200 41508400 5 Tcrb 1.77354 Trb-V31 

chr6 68547800 68548000 5 Igk 0.262 - 

chr6 68630200 68630800 5 Igk 0.882 Igk-V10-95 

chr6 68686400 68687400 5 Igk 0.79 Igk-V19-93 

chr6 68836400 68837000 5 Igk 0 - 

chr6 69989800 69990400 5 Igk 0.606 - 

chr6 69991400 69992600 5 Igk 0.582 - 

chr6 70684800 70685000 5 Igk 1.487 proximal to 3'Eκ 

chr12 114464000 114467800 13 Igh 0.664 hs4 

chr12 114655000 114668200 13 Igh 1.809 Eµ + Cµ 

chr12 116497000 116497800 13 Igh 0.582 proximal to Igh-V-3609.6pg.161 

chr12 117106800 117107400 13 Igh 0.808 Igh-V-J558.81.187 

chr13 19447800 19449000 13 Tcrg 2.058 artifact - Stard3nl gene overflow 

chr14 54179200 54180200 13 Tcra/d 1.418 Tra-V15-1/Trd-V6-1 

chr14 54181400 54182000 13 Tcra/d 0.262 - 

chr6 40996800 40997600 13 Tcrb 1.51262 Trb-V2 promoter 

chr6 41554200 41555000 13 Tcrb 1.794 artifact - Ephb6 gene overflow 
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4.1 Abstract 

Alterations in distal regulatory elements that control gene expression underlie many 

diseases, including cancer. Epigenomic analyses of normal and diseased cells have produced 

correlative predictions for connections between dysregulated enhancers and target genes 

involved in pathogenesis. However, with few exceptions, these predicted cis-regulatory circuits 
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remain untested. Here, we dissect cis-regulatory circuits that lead to overexpression of NEK6, a 

mitosis-associated kinase, in human B cell lymphoma. We find that only a minor subset of 

predicted enhancers is required for NEK6 expression. Indeed, an annotated super-enhancer is 

dispensable for NEK6 overexpression and for maintaining the architecture of a B cell-specific 

regulatory hub. A CTCF cluster serves as a chromatin and architectural boundary to block 

communication of the NEK6 regulatory hub with neighboring genes. Our findings emphasize 

that validation of predicted cis-regulatory circuits and super-enhancers is needed to prioritize 

transcriptional control elements as therapeutic targets. 

4.2 Introduction 

Cell identity and function rely on stringently controlled programs of gene expression, 

perturbations of which underlie diseases, including autoimmunity and cancer. Genome-wide 

association studies have revealed that most pathogenic changes in gene expression are linked to 

variants in regulatory elements rather than coding sequences (Maurano et al., 2012). A dissection 

of cis-regulatory circuits controlling transcriptomes in normal and diseased cells remains an 

important objective. Most cis-regulatory circuits are composed of gene-proximal promoters and 

distal enhancers, which serve as conduits for transcription factors (TFs) and communicate with 

each other via physical contact, forming a series of loops in nuclear chromatin (Bulger and 

Groudine, 2011). 

Conventional enhancers (CEs), both active and poised, can be identified in the genome as 

nucleosome-free regions. The activity level of each CE is revealed by the density of certain 

histone modifications, prototypically histone H3 acetylated at lysine 27 (H3K27ac) (Bulger and 

Groudine, 2011). Recent epigenome analyses have revealed a new class of regulatory regions, 
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coined super-enhancers (SEs) (Whyte et al., 2013), which are characterized by broad stretches of 

H3K27ac. Most SEs are dense clusters of highly active CEs, which bind lineage-restricted TFs. 

Indeed, SEs normally co-localize with a limited set of genes that are most essential for cell 

identity and function. The acquisition or amplification of SEs near oncogenes contributes to 

several classes of cancer (Hnisz et al., 2013; Mansour et al., 2014). SEs are also enriched for 

disease-associated sequence variants, some of which presumably disrupt TF binding sites to alter 

SE function and expression of its associated gene(s) (Hnisz et al., 2013; Koues et al., 2016). 

However, contributions of SEs to gene expression programs have been mostly assumed from 

correlative chromatin profiling, rather than by direct testing (Proudhon et al., 2016). 

Furthermore, it remains controversial whether SEs represent a new paradigm in transcriptional 

regulation, or merely clusters of CEs that additively promote transcription (Dukler et al., 2016; 

Hay et al., 2016).  

In addition to cis-regulatory elements, gene expression programs are significantly 

influenced by chromosome architecture, which facilitates or impairs promoter-enhancer contacts. 

The architecture of mammalian genomes is compartmentalized into topologically associated 

domains (TADs), which are highly conserved among cell types and species (Dixon et al., 2012). 

Loci within each TAD interact with one another, but are largely cordoned off from neighboring 

TADs. Each of these architectural building blocks is subdivided into structures called sub-TADs 

or contact domains, which are composed of loops between CTCF binding elements (structural 

loops) or between promoters and enhancers (regulatory loops). At a biochemical level, structural 

loops form via dimeric interactions between CTCF proteins bound in a convergent orientation at 

two distinct sites and are stabilized by association with the ring-like cohesin complex (Ghirlando 

and Felsenfeld, 2016; Rao et al., 2014). The bases of many structural loops serve as boundary 
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elements that partition active and inactive chromatin domains within TADs and limit 

inappropriate interactions of regulatory elements with neighboring genes (Hnisz et al., 2016a; 

Ong and Corces, 2014). In keeping with their structural determinants, contact domains, unlike 

TADs, may vary significantly between cell types, developmental stages, or activation status 

(Dixon et al., 2016). Indeed, key questions remain about how intra-TAD architectures form and 

change during cellular differentiation and transformation. Answers to these fundamental 

questions will not only impact our understanding of basic gene regulatory mechanisms, but also 

the etiology of many diseases. A substantial subset of disease-associated SNPs and genomic 

alterations disrupt CTCF sites, breaking architectural borders, allowing inappropriate 

communication between enhancers and alternative genes (Lupiáñez et al., 2015; Hnisz et al., 

2016). 

Similarly, a deeper understanding of the regulatory determinants that underlie oncogenic 

gene expression programs remains a basic mission of cancer research (Sur and Taipale, 2016). 

Pathogenic expression programs have been characterized for many cancers, including various 

types of B cell lymphoma (BCL) (Jiang et al., 2016; Morin et al., 2010). A common class of 

BCL, termed follicular lymphoma (FL), is incurable. Most FLs exhibit an indolent clinical 

course, but often transform to a more aggressive cancer, termed diffuse large BCL (DLBCL) 

(Lenz and Staudt, 2010). Recently, we showed that pathogenic gene expression programs in FL 

are coordinated by a common set of TFs that, in turn, augment or attenuate activities of their 

target enhancers when compared with normal B cell counterparts, termed centrocytes (CCs) 

(Koues et al., 2015). Integrative transcriptome and epigenome analyses revealed a blueprint of 

pathogenic cis-regulatory circuits associated with FL, which predicted connections between 

distal enhancers and promoters of dysregulated genes. Similar correlation-based circuitries 
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governing gene expression have been constructed for many normal and transformed cell types 

(Thurman et al., 2012), revealing a new collection of potential targets for epigenetic therapeutics. 

However, the validity of predicted circuits remains largely untested at the functional level. This 

gap is particularly important given that a majority of predicted cis-regulatory circuits consist of 

multiple enhancers connected to a single gene or, conversely, multiple genes connected to a 

single enhancer (Thurman et al., 2012). 

Here, we functionally dissect a predicted cis-regulatory circuit for the mitosis-associated 

kinase, NEK6, which is commonly overexpressed in BCL (Mareschal et al., 2015). We find that 

only a subset of CEs, predicted by correlative algorithms to regulate NEK6 in BCL, is required to 

maintain its elevated expression. Strikingly, a B cell-specific super-enhancer is completely 

dispensable for NEK6 expression and maintenance of a regulatory hub that co-localizes its 

promoter with many distal CEs. A cluster of CTCF sites at one border of the NEK6 contact 

domain serves as a chromatin and architectural boundary to minimize the functional impact of its 

regulatory hub with neighboring genes. Our study not only provides insights into how NEK6 

expression is regulated in normal and pathogenic B cells, but also emphasizes the need to 

rigorously test predictions, based solely on chromatin landscapes, regarding cis-regulatory 

circuits and super-enhancer function. 

4.3 Results 

The NEK6 Cis-Regulatory Circuit Distinguishes FL Subsets  

Very few correlation-based predictions for cis-regulatory circuits in normal or 

transformed cells have been validated functionally by targeted engineering of control elements 
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within their native chromosomal context (Sur and Taipale, 2016). To rigorously test a 

manageable set of predictions, we prioritized pathogenic cis-regulatory circuits associated with 

CC transformation into FL (Koues et al., 2015). Prioritization of differentially expressed genes 

and their corresponding regulomes was tiered for recurrence of pathogenic enhancers in FL 

samples, altered levels of gene expression, relevant TF binding, and gene function (Fig. S4.1A, 

Materials and Methods, online Table S1). The scheme yielded seven regulatory clusters and 

accompanying genes, which we considered to be of high priority for functional dissection (online 

Table S2). Each of the seven regions consists of multiple enhancers and potential target genes, 

which renders comprehensive analysis of all prioritized circuits unwieldy. From the seven, we 

selected a region spanning NEK6 and several neighboring genes for in depth functional studies, 

based on multiple criteria. We first tested enhancer activities using luciferase reporters for a 

series of regulatory elements from the seven surviving regions, each of which displays 

augmented H3K27ac in FL compared with CC. A regulatory element in the NEK6 region (CE1) 

displays the most robust enhancer activity in both an EBV-transformed B cell line (GM12878) 

and a human BCL line (Farage, Fig. S4.1B). Moreover, NEK6, a central gene in the identified 

circuit, encodes a serine/threonine kinase that mediates mitotic progression, is overexpressed in 

many cancers, and is essential for sustained growth of tumors derived from numerous tissues 

(Fry et al., 2012).  

With regard to B cell oncogenesis, NEK6 expression distinguishes the two known 

subtypes of DLBCL, exhibiting elevated expression in germinal center (GC-) compared with the 

activated B cell (ABC-) subtype (Mareschal et al., 2015). Epigenome analyses revealed that FL 

also segregates into two analogous classes (Koues et al., 2015), called subtype 1 (GC-like) and 2 

(ABC-like). Strikingly, NEK6 expression is significantly elevated in subtype 1 FL, further 
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highlighting its similarity to GC-DLBCL (Fig. 4.1A). One final criterion in selecting the NEK6 

region for further study is its rich regulatory landscape, which seemingly consists of multiple 

enhancers augmented in BCL and a series of potential architectural elements (see below). Thus, 

we suspected that analysis of NEK6 cis-regulatory circuits would provide insights into enhancer 

and architectural elements important for cell type-, lymphoma-, or FL subtype-specific 

expression of this mitosis-associated kinase. 

The NEK6 Regulatory Landscape  

To identify the collection of distal architectural and regulatory elements that contribute to 

elevated NEK6 expression in BCL, we leveraged data from public databases (ENCODE Project 

Consortium, 2012; Koues et al., 2015). Nucleosome-depleted regions demarcate more than a 

dozen active or poised elements spread over a 500 kb region encompassing NEK6 and its 

neighboring genes (Fig. 4.1B, FAIRE/DNase-seq). Several of these regions are bound by 

architectural factors, CTCF and RAD21, in GM12878, suggesting they may serve as structural or 

boundary elements (CTCF sites, CS1-7). NEK6 has two annotated transcription start sites 

(TSSs), which are both active in human B cells and GM12878 (Fig. S4.1C). H3K27ac peaks 

coincide with 14 nucleosome-depleted regions in FL samples, indicating positions of active 

conventional enhancers (CE1-14). Importantly, many of these enhancers exhibit a higher density 

of H3K27ac in FL compared with normal CC counterparts, suggesting they are hyperactive in 

transformed B cells. A subset of active enhancers (CE3-9) is clustered in a region -63 to -40 kb 

upstream of NEK6, which is designated as a super-enhancer (SE1) in both FL and CC samples 

using the ROSE algorithm (Lovén et al., 2013; Whyte et al., 2013) to analyze H3K27ac ChIP-

seq data (Fig. 4.1C). When compared with other cell types, the activities of CE1, CE10, and SE1 
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are primarily restricted to B cells (Fig. S4.1D). Another conventional enhancer region, CE13-14, 

is also active in a subset of other cell types that express NEK6. These epigenome analyses 

suggest that CE1, CE10, SE1 and, perhaps, CE13-14 are critical enhancers for driving high 

levels of NEK6 expression in activated or transformed B cells.  

Extensive genetic manipulations are required to dissect the NEK6 regulome; however, 

this approach is currently infeasible using primary human B cells. As such, we identified a 

tractable cell model that mirrors the NEK6 chromatin landscape in primary FL. As shown in Fig. 

4.1B, the transformed human B cell line, GM12878, meets this criterion, while the human T 

lymphocyte cell line, Jurkat, exhibits a chromatin landscape largely devoid of active regulatory 

elements near NEK6, thus providing a negative control. In addition to recapitulating patterns of 

active enhancers in primary B and FL cells, the CE3-9 region is classified as an SE in GM12878 

(Fig. 4.1C). NEK6 expression in GM12878 is comparable to levels observed in tonsillar B cells, 

the majority of which are activated, whereas NEK6 transcripts are nearly undetectable in Jurkat 

(Fig. 4.1D). 

In addition to NEK6, two neighboring genes, LHX2 and PSMB7, are predicted to connect 

with many of the B cell-restricted enhancers in FL using a gene circuitry algorithm (Koues et al., 

2015). LHX2 is a TF involved in the differentiation of developing lymphoid and neural cell 

precursors and is a putative oncogene for pancreatic tumors (Zhou et al., 2014). PSMB7 is a 

proteasome subunit that was identified as a biomarker for breast and colon cancers (Munkácsy et 

al., 2010). As shown in Fig. 4.1E, expression of these two genes, but not the more distal 

DENND1A, are modestly elevated in FL and/or tonsillar B cells compared with human CCs. All 

of these genes are expressed at varying levels in GM12878 (Fig. S4.1E). As such, functional 
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dissection of the NEK6 cis-regulatory circuit can be achieved using GM12878, which 

recapitulates prominent features of the FL regulome.   

Spatial Convergence of NEK6 Distal Regulatory Elements 

Proper control of gene expression requires direct contact of distal regulatory elements 

with their target promoters. Many cell type-specific contacts between enhancers and promoters 

are confined within TADs and further restricted by boundary elements to minimize inappropriate 

enhancer-promoter communication. To elucidate the NEK6 interactome within its chromosomal 

neighborhood, we analyzed publicly available Hi-C data for a ~2 Mb region in GM12878 (Fig. 

4.2A) (Rao et al., 2014). Based on interactomes conserved among cell types, the TAD containing 

NEK6 spans ~1 Mb encompassing DENND1A, LHX2, NEK6 and PSMB7. In GM12878, this 

region also contains several sub-TADs, one of which includes NEK6, spanning from the 

DENND1A promoter to PSMB7 (~500 kb). Within the sub-TAD, there is a robust contact domain 

spanning from the cluster of upstream CTCF sites (CS2-4) to the downstream NEK6 promoters 

(TSS1-2). More focal contacts are observed between both NEK6 promoters and pockets of 

upstream regulatory elements, especially with CE1 and SE1. Hi-C data revealed associations of 

the NEK6 locus with PSMB7 and, to a lesser extent, with LHX2, suggesting a potential 

mechanism for their elevated expression in FL. Finally, NEK6 is flanked by two sets of CTCF 

sites pointing in convergent orientations, a trio located approximately 130 kb upstream of TSS1 

(CS2-4) and a pair located in a NEK6 intron (CS5) and near the PSMB7 promoter (CS6). The 

convergent orientation favors loop formation between CTCF regions (Ghirlando and Felsenfeld, 

2016; Rao et al., 2014), perhaps spatially sequestering the NEK6 regulome.  
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To determine whether this regulatory architecture is cell type-specific, we performed 3C 

assays in GM12878 (NEK6+) and Jurkat (NEK6–), which directly probes interactions between a 

given viewpoint and selected regions of the NEK6 chromosomal neighborhood. As shown in Fig. 

4.2B, a viewpoint spanning TSS1 interacts with upstream regulatory regions and with TSS2 at 

significantly higher frequencies in GM12878 compared with Jurkat. Peak TSS1 associations are 

with the CTCF cluster (CS2-4), CE1, CE2, and sites within SE1. To further validate the NEK6 

interactome, we assayed a number of complementary viewpoints. Interactions with the distal 

CE1 element are significantly higher throughout the NEK6 sub-TAD in GM12878 compared 

with Jurkat. The enhanced CE1-PSMB7 contacts were confirmed using a PSMB7 promoter 

viewpoint (Fig. S4.2A). Coupled with 3C assays using viewpoints in SE1 (Fig. S4.2B, C), TSS2 

(Fig. S4.2D), and the CTCF cluster (Fig. S4.2E), we conclude that the upstream region of NEK6 

folds into a cell type-specific regulatory conformation, forming a hub for enhancers, promoters, 

and CTCF sites, which likely drives higher levels of NEK6 expression in activated B cells. 

Conventional Enhancers Augment NEK6 Expression in Transformed B Cells 

Our ultimate goal is to test predictions for key components of the cis-regulatory circuit 

associated with elevated NEK6 expression in transformed B cells. Chromatin profiling and 

interactome analyses revealed over a dozen enhancer elements that could potentially augment 

NEK6 expression in FL. To prioritize functional analyses, we first measured enhancer activities 

for each candidate regulatory element in GM12878 and Jurkat (Fig. 4.3A, Fig. S4.3A). In 

addition to the robust, GM12878-specific enhancer activity of CE1, four other elements augment 

luciferase expression from SV40 promoter-driven reporters. These include two regions in SE1 

(CE5 and 9), the CE10 region upstream of TSS1 and the CE13 region upstream of TSS2. Despite 
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its significant levels of interaction with NEK6 promoters (Fig. 4.2B), CE2 lacks enhancer activity 

in GM12878, which is consistent with minimal deposition of H3K27ac over this region (Fig. 

4.1B). The activity status of CEs was bolstered by ChIP-seq data from GM12878 (ENCODE 

Project Consortium, 2012), which reveals significant peaks for EP300 and TFs important in B 

cell biology, including EBF1, OCT2, PU.1, PAX5, RELA and TCF3 (Fig. S4.3B). In contrast, 

CE2 lacks significant binding by any of these factors. These functional data led us to first focus 

on the role of three CEs located outside of SE1, which had the most robust activities in 

GM12878 (CE1, CE10 and CE13).  

To test the contributions of selected CEs to NEK6 expression, we individually deleted 

each enhancer from its endogenous site in GM12878 using CRISPR/Cas9 technology (online 

Table S3). Deletion of CE13, which is proximal to TSS2, produces a modest, but significant 

decrease in NEK6 expression when compared with subclones retaining the enhancer on both 

alleles (Fig. 4.3B). Ablation of CE10 has no significant impact on NEK6 expression, despite its 

enhancer activity in luciferase assays. Importantly, NEK6 expression is attenuated substantially 

in subclones lacking the most distal enhancer, CE1, located 120 kb from TSS1. Consistently, 

NEK6 protein levels are dramatically reduced in CE1–/– subclones as measured by western 

blotting (Fig. S4.3C). The effects of each enhancer deletion are indistinguishable for transcripts 

derived from either TSS1 or TSS2 (Fig. S4.3D). Moreover, neither the CE1 nor the CE13 

enhancer deletion affects expression of neighboring LHX2 and PSMB7 genes (Fig. S4.3E). These 

data suggest that CE1 and CE13 both contribute to augmented NEK6 expression in transformed 

B cells. Indeed, compound deletion of both elements further diminishes NEK6 mRNA and 

protein expression (Fig. 4.3C, Fig. S4.3C). We conclude that two conventional enhancers, 
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positioned outside of the large super-enhancer, additively potentiate NEK6 expression in 

GM12878.  

To probe the effects of enhancer deletions on NEK6 chromatin and interaction 

landscapes, we analyzed subclones using ChIP and 3C, respectively. Deletion of CE13 reduces 

H3K27ac to near background levels at an adjacent region, verifying removal of the core 

enhancer (Fig. 4.3D). H3K27ac levels in CE13–/– mutants are unaffected at all other NEK6 

enhancers tested. In sharp contrast, deletion of CE1 leads to significant reductions in H3K27ac 

not only at an adjacent region, but also at many locations within SE1 and other enhancers that 

associate with CE1. These data suggest that CE1 is a dominant element in sculpting the active 

epigenetic landscape near NEK6, perhaps through spatial interactions that form its regulatory 

hub. However, the TSS1 interactome is unaffected by deletion of either CE13 or CE1 (Fig. 

4.3E). Likewise, CE1 deletion does not alter long-range interactions between this region and 

downstream regulatory elements, including the TSSs (Fig. S4.3F). However, deletion of CE13 

slightly boosts associations of CE1 with downstream enhancers, as well as NEK6 TSSs (Fig. 

S4.3G). This finding suggests that CE13 may partially compete with CE1 for association with 

TSSs and other elements of the regulatory hub. When CE13 is deleted, there may be a 

compensatory increase in CE1 interactions.    

To further test whether the dominant CE1 element is dispensable for maintaining the 

NEK6 interactome, we performed 4C-seq on GM12878, as well as three independent CE1–/– and 

two wild-type subclones. Genome-wide interactome data probed from CE1 and TSS1 viewpoints 

show that CE1 deletion subclones have no significant differences for interactions with regions 

between CS2 and downstream of TSS2 (Fig. 4.3F and Fig. S4.3H), validating our 3C findings. 

These data indicate that maintenance of the NEK6 regulatory hub, which includes the distal 
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CTCF cluster, CE1, SE1, CE13, and TSSs, is independent of the dominant conventional 

enhancer, CE1. However, this element contributes significantly to the maintenance of active 

chromatin marks at other CEs in the regulatory hub, boosting NEK6 expression in GM12878. 

The NEK6 Super-Enhancer Is a Bystander 

Super-enhancers are thought to be dominant regulatory elements for genes controlling 

cell identity, major cellular functions and, in some cases, oncogenesis (Hnisz et al., 2013). Our 

chromatin analysis identified SE1, a 23 kb region located between CE1 and the TSSs, as a B 

cell-specific NEK6 super-enhancer. Although two conventional enhancers (CE1 and CE13) 

contribute to NEK6 expression, a substantial level of transcripts remains following their deletion, 

further implicating SE1 as an important regulatory element. To test this directly, we deleted the 

entire SE1 region from both alleles of GM12878 using CRISPR/Cas9. Surprisingly, multiple 

independent clones lacking SE1 consistently express NEK6 mRNA at modestly higher levels 

when compared with subclones retaining an SE1+/+ configuration (Fig. 4.4A). Removal of SE1 

also enhances or has minimal impact on NEK6 protein expression (Fig. S4.3C). ChIP analysis 

revealed a depletion of H3K27ac neighboring the deleted SE1, confirming removal of the super-

enhancer (Fig. 4.4B). However, SE1 deletion does not impact H3K27ac levels at other tested 

CEs. Moreover, compound deletion of SE1 on one allele of CE1–/– clones has no significant 

impact on NEK6 expression (Fig. 4.4A). 

One potential explanation for enhanced NEK6 expression following SE1 removal is that 

CE1 resides 23 kb closer to its promoters. However, this would imply that SE1 itself does not 

contribute fundamentally to NEK6 expression. To explore the impact of SE1 on the NEK6 

regulatory hub, we performed 3C. As shown in Fig. 4.4C, SE1 deletion potentiates interactions 
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between TSS1 and more distal elements (CE1 and CE2). The SE1–/– clones also show enhanced 

associations between TSS1 and more proximal regulatory regions (CE10 and TSS2), whose 

linear distances are unaffected by SE1 deletion. These data suggest that SE1 has a modest 

inhibitory impact on the frequency of enhancer associations in the NEK6 regulatory hub, as well 

as overall expression of this gene in GM12878. 

An alternative explanation for the lack of SE1 regulatory function is that removal of 

critical enhancer elements drop NEK6 levels below a threshold required for GM12878 

proliferation or survival. To test this possibility, we depleted NEK6 using several independent 

shRNAs. Reduced levels of NEK6 protein (20-30% normal, Fig. S4.4A, B) have no detectable 

impact on either proliferation or survival of GM12878 (Fig. S4.4C, D). The lack of a biological 

phenotype may also stem from expression of NEK7 in these cells, a closely related kinase with 

significant functional overlap (Fry et al., 2012). These data indicate that selective pressure from 

reduced NEK6 levels cannot reasonably explain the lack of a significant expression phenotype in 

SE1-deficient cells. 

Although SE1 is dispensable for NEK6 expression in GM12878, it remains possible that 

this broad regulatory region may target another gene in its chromosomal neighborhood. Focused 

RT-qPCR analysis of SE1–/– clones revealed no significant change in PSMB7 expression (Fig. 

4.4D). Similar to its effect on NEK6, SE1 deletion modestly enhances levels of LHX2 transcripts. 

To explore potential SE1 roles on a more global level, we analyzed three independent GM12878 

subclones with SE1+/+ or SE1–/– genotypes using RNA-seq. SE1 deletion does not significantly 

change steady-state expression of any gene located within 5 Mb (Fig. 4.4E). On the 

transcriptome level, six genes are significantly increased or decreased in SE1–/– clones compared 

with their wild-type counterparts (Fig. S4.4E). The six genes are located on five different 
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chromosomes; however, published promoter-capture Hi-C data reveal no significant inter-

chromosomal interactions between any of the gene promoters and SE1 in GM12878 (Mifsud et 

al., 2015). We conclude that SE1, although clearly assigned as a super-enhancer using current 

algorithms, has no identifiable regulatory impact for maintaining expression of its nearest 

neighbors or any gene in a large chromosomal swath centered on NEK6. 

A CTCF Cluster Establishes the NEK6 Contact Domain but Not the Regulatory 

Hub  

Our functional data clearly demonstrate that two conventional enhancers, CE1 and CE13, 

additively increase NEK6 expression in transformed B cells. The more distal of these two 

elements, CE1, requires long-range looping (>120 kb) to communicate with NEK6 promoters. 

Architectural elements, largely consisting of CTCF sites, are common mediators of long-range 

looping that facilitate enhancer contact with gene promoters. Moreover, some CTCF sites serve 

as boundary elements to compartmentalize chromatin domains and inhibit inappropriate 

communication between enhancers and other neighboring genes (Ghirlando and Felsenfeld, 

2016). CE1 is flanked by a cluster of CTCF sites positioned at one border of a robust contact 

domain containing NEK6. All three sites in this cluster are oriented convergently with a pair of 

downstream CTCF sites, located in a NEK6 intron (CS5) and near the PSMB7 promoter (CS6). 

The convergent orientation favors intermolecular CTCF interactions, which could form loops to 

cordon off NEK6-associated enhancers from other genes in the TAD. To explore architectural 

logic in the NEK6 cis-regulatory circuit, we deleted a region spanning all three sites in the 

upstream CTCF cluster (CS2-4). Minimal CTCF binding is detected at sites flanking CS2-4 

following its deletion, compared with wild-type loci (Fig. 4.5A), whereas CTCF ChIP signals are 
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unaffected at CS5 and CS6. NEK6 expression is reduced ~20% in subclones harboring the CS2-4 

deletion on both alleles (Fig. 4.5B). In contrast, LHX2 expression is enhanced ~60% in knock-

out subclones, while expression of the two other genes in this TAD, DENND1A and PSMB7, 

remains unchanged.  

These data suggest that CS2-4 serves as a boundary element to prevent the spread of 

active chromatin from NEK6 to LHX2, or to minimize long-range interactions between NEK6 

enhancers and LHX2, or both (Ghirlando and Felsenfeld, 2016; Ong and Corces, 2014). To test 

the first possibility, we measured H3K27ac densities at sites in the NEK6 contact domain and 

adjacent LHX2 regions (Fig. 4.5C). Consistent with a role for CS2-4 as a chromatin boundary, its 

deletion permits H3K27ac spreading upstream of CE1 into the LHX2 locus. The CS2-4 deletion 

had an opposite effect on H3K27ac densities within the NEK6 contact domain, which are 

significantly reduced, and accompanied by an increase in the H3K27me3 modification (Fig. 

S4.5A). Thus, perturbed patterns of chromatin modifications correlate well with altered gene 

expression upon deletion of the 5’ CTCF cluster, supporting its functional assignment as a 

boundary element.  

To determine whether CS2-4 also serves as a spatial boundary, precluding 

communication between NEK6 enhancers and other promoters, we performed 3C on subclones 

with wild-type and CS2-4–/– genotypes. As expected, mutant subclones generate no 3C signal for 

interactions between TSS1 and the deleted CS3 region (Fig. 4.5D). All other interactions 

between TSS1 and NEK6 regulatory elements are unaffected by the CS2-4 deletion. In contrast, 

TSS1 interactions with the LHX2 and DENND1A promoters, located further upstream in the sub-

TAD, are significantly increased in mutant subclones. A similar enhancement of upstream 

interactions is observed for the CE1 element with LHX2 but not DENND1A, which correlates 
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with the differential impacts of CS2-4 deletion on expression levels. Conversely, CE1 

associations are decreased with downstream regions, including CS5 and the PSMB7 promoter. 

The enhanced interactions with LHX2 were confirmed using a complementary viewpoint 

corresponding to its promoter (Fig. 4.5E).  

To support these findings, we performed 4C-seq on GM12878, as well as independent 

CS2-4–/– and wild-type subclones (Fig. 4.5F, Fig. S4.5B and C). Genome-wide interactome data 

probed from TSS1 and CE1 viewpoints reveal that, in general, CS2-4–/– subclones have more 

robust associations with upstream regions in the sub-TAD, reaching to the DENND1A promoter, 

as reflected in percent total normalized reads (Fig. 4.5F) (Guo et al., 2015). In contrast, 

interactions within the NEK6 contact domain itself are slightly attenuated following CS2-4 

deletion (diminished percent normalized reads in Fig. 4.5F, Fig. S4.5B). In addition, 4C-seq data 

identify several interactions that differ significantly between CS2-4–/– and control clones. 

Deletion of the CTCF cluster significantly augments interactions between CE1 and several 

regions upstream (Fig. 4.5F, green asterisks), as well as with the LHX2 promoter, although the 

latter does not attain statistical significance in 4C data. Conversely, multiple interactions of CE1 

with downstream regions in the NEK6 gene body and PSMB7 promoter region are significantly 

diminished following CS2-4 removal (Fig. 4.5F, red asterisks), consistent with our 3C data (Fig. 

4.5D). Similarly, upon CS2-4 deletion, TSS1 has significantly elevated associations with the 

DENND1A and LHX2 promoters (Fig. 4.5F).  

A potential explanation for the latter finding is that new contact loops may be formed 

between NEK6-proximal CTCF sites (e.g., CS5) and the properly oriented CTCF site upstream 

of the deleted CS2-4 region. A CTCF site located between the DENND1A promoter and LHX2, 

designated as CS0, has the same orientation as those deleted from the CS2-4 cluster (Fig. 4.5F). 



123 
 

Indeed, 3C analyses indicate that the CS2-4 deletion enhances CS0-CS5 interactions, whereas 

CS0-CS6 crosslinking remains unaffected (Fig. 4.5G). The architectural remodeling of CTCF 

interactions, which may place the NEK6 gene in closer proximity to LHX2 and DENND1A, was 

confirmed using the complementary CS5 viewpoint (Fig. 4.5G). Together, these data indicate 

that CS2-4 contributes modestly to establishing the regulatory hub between NEK6 promoters and 

enhancers. Instead, this CTCF cluster predominantly functions as a chromatin and architectural 

boundary, minimizing the impact of the NEK6 regulatory hub on neighboring genes in its TAD. 

4.4 Discussion 

Developmental and cell type-specific regulation of genes is orchestrated by changes in 

TF expression, enhancer activation, and alterations in chromatin landscapes, including 

architecture. Deciphering the contributions of each process to gene regulation is especially 

important given that a vast majority of disease-associated changes in the genome affect 

expression levels rather than coding potentials (Maurano et al., 2012). A prerequisite for 

understanding cis-regulatory circuits that govern normal or pathogenic gene expression is the 

profiling of enhancers and their contacts in distinct cell types. This milestone has largely been 

achieved in several hematologic malignancies and normal cellular counterparts (Chapuy et al., 

2013; Koues et al., 2015). Based on chromatin and architectural profiles, pattern-based 

algorithms have been used to predict key regulatory connections between enhancers and their 

target genes. However, there is a critical need to test predicted circuits using reductionist, genetic 

approaches. 

In this study, we dissected cis-regulatory circuits within a chromosomal neighborhood 

spanning at least three genes overexpressed in human BCL. Importantly, many predictions from 
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pattern-based algorithms for NEK6 were not substantiated when tested directly. The predicted 

circuitry for pathogenic NEK6 expression involved at least a dozen enhancers with augmented 

H3K27ac loads in FL versus normal B cells. All of the CEs, including those comprising a super-

enhancer, directly contact the NEK6 promoter in transformed B cells, further strengthening their 

predicted contributions to its elevated expression in BCL. Instead, we find that the NEK6 

regulome is dominated by two conventional enhancers – one located near the TSSs (CE13), and 

a second, more powerful enhancer (CE1), located ~100 kb upstream. Although some of the 

predicted enhancers for NEK6 bind an overlapping set of factors, CE1 exhibits higher loads of 

TF binding than other enhancers (Fig. S4.3B), potentially explaining its dominant regulatory 

function. CE13 has lower levels of bound TFs and enhancer activity in luciferase assays, yet its 

proximity to TSSs may elevate its role in NEK6 regulation. The remaining CEs and, surprisingly, 

the super-enhancer, are all dispensable for NEK6 expression in transformed B cells, despite 

correlative changes in epigenetic and architectural landscapes. Thus, our study underscores the 

pressing need to hone predicted circuitry through rigorous testing. Although tedious, the 

emergence of high throughput methods for genetic dissection of TFs, enhancers, and 

chromosome architecture will speed achievement of this goal. 

We suspect several potential reasons for disconnects between predictive algorithms and 

direct validation of cis-regulatory circuits. First, as shown here for NEK6, a dominant enhancer 

can affect the chromatin profile of other regulatory elements in its interactome. Deletion of CE1 

attenuated H3K27ac loads on other CEs spread throughout the NEK6 region. Thus, increased 

CE1 activity in BCL likely augments H3K27ac on other elements in the regulatory hub, even if 

they do not contribute substantially to enhanced gene expression. Second, we cannot rule out that 

some CEs function as “back-up” elements to partially sustain NEK6 expression if CE1 activity is 
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destroyed. This may be true for CE13, which contributes modestly to NEK6 expression in the 

absence of CE1. However, SE1 does not appear to have such a back-up role since deletion of the 

entire region or its composite CEs have no significant effect on NEK6 expression, whether CE1 

is present or not. 

The most surprising and significant finding from our study is that a clearly established SE 

has no discernable impact on the expression of NEK6 or any other gene on its chromosome. This 

finding is especially notable given the building dogma that SEs are a collection of key elements 

controlling high-level expression of genes critical for cell identity and function, as well as 

oncogenesis (Lovén et al., 2013). Not only does this finding underscore the need for functional 

evaluation of SEs in many cell types, but it also brings to light a third potential explanation for 

discrepancies between predicted and validated cis-regulatory circuits. Although the SE and a 

subset of other CEs are dispensable for NEK6 expression, these elements may be required earlier 

in B cell development or transformation to initially activate or augment transcription of this 

kinase gene. After these key activation events, SE1 or other CEs may become dispensable, with 

CE1 primarily maintaining elevated levels of NEK6 expression. These issues are currently 

intractable in primary human B cells, but may be approached in future studies by deletion of 

analogous regulatory regions for mouse NEK6. Notwithstanding, our findings indicate that at 

least a subset of SEs associated with oncogenesis would not be priority targets for current 

epigenetic-based therapeutic strategies to squelch expression of associated genes (Lovén et al., 

2013). 

A second surprise to emerge from our studies concerned determinants for regulatory 

architecture of the NEK6 chromosomal neighborhood. We found that most enhancers in this 

region converge spatially to form a regulatory hub with NEK6 promoters and flanking CTCF 
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clusters. Although CE1 is the dominant NEK6 enhancer, its deletion does not significantly affect 

maintenance of the regulatory hub. Likewise, deletion of CS2-4 has only a modest impact on 

spatial interactions within this hub. These findings suggest several intriguing possibilities for 

architectural determinants of regulatory hubs, which await future dissection, including: (1) direct 

CE1-promoter interactions are redundant, structurally, with CS2-4 looping to downstream CTCF 

sites, (2) another element, excluding SE1 and CE1, is the key determinant for initiating 

regulatory hub formation, or (3) once the NEK6 sub-TAD is decorated with active histone 

modifications, homotypic chromatin interactions drive close association of the promoter with 

regional enhancers (Lieberman-Aiden et al., 2009). Nevertheless, our study identifies important 

dual roles for CS2-4 as a chromatin and architectural boundary, impairing the spread of active 

chromatin and enhancer interactions upstream of NEK6 into LHX2. Thus, many CTCF sites or 

clusters predicted to be important for formation of architectural loops may be more critical in 

establishing or maintaining borders of regulatory domains. 

Our findings will also inform future studies to determine how NEK6 contributes to B 

lymphomagenesis. Despite consistent overexpression of the mitosis-associated kinase in BCL, 

NEK6 depletion had no detectable impact on viability or proliferation of transformed human B 

cells, including complete NEK6 knockout in two BCL lines (data not shown). In contrast, NEK6 

knockdown in other cancer models significantly attenuated cell growth (Fry et al., 2012). We 

suspect that, in BCL, partial functional overlap with the closely related kinase, NEK7, may 

explain the lack of cellular phenotype. Indeed, NEK7 is overexpressed in primary cells derived 

from BCL biopsies compared with their normal counterparts (Koues et al., 2015). Human NEK6 

and NEK7 loci appear to be partial duplicates of one another since both are flanked upstream by 

additional LHX and DENND genes. However, unlike NEK6, the NEK7 locus is devoid of 
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chromatin hallmarks for active distal enhancers in B lymphocytes, FL, or other cell types 

(ENCODE Project Consortium, 2012; Koues et al., 2015). These correlative data suggest that 

NEK family kinases are essential components of the program for lymphomagenesis, requiring 

transformed B cells to augment NEK6 as a complement, or a back-up, to NEK7 overexpression, 

or vice versa. Thus, our dissection of the NEK6 regulome will be an important starting point to 

test such requirements in the germinal center program and oncogenic conversion to BCL. 

4.5 Materials and Methods 

Patient Samples. All human samples were obtained under IRB-approved protocols as previ- 

ously described (Koues et al., 2015).  

Prioritization Scheme for cis-Regulatory Circuits in FL. We prioritized FL circuits as 

follows. First, we selected circuits with at least one gene-enhancer pair that was recurrently 

augmented in more than 6/15 FL samples (Koues et al., 2015): gene expression FL/average 

CC>1 (quantified by microarray analysis), enhancer histone marks FL/average CC>1.5 

(quantified by H3ac, H3K27ac or FAIRE-seq). Second, predicted target gene(s) and relevant 

enhancers were required to exhibit robust levels of RNA expression (normalized microarray 

signal > 120) and histone marks (H3K27ac, H3ac and H3K4me1 ChIP-seq RPM > 100) in FL. 

Third, the surviving list of enhancer-gene combinations was intersected with a manually curated 

list of ~7000 genes that have been implicated in general oncogenesis, immune modulation, or 

chromatin modification (online Table S1). Finally, the remaining genetic loci were examined for 

binding of TFs known to be important for B cell function (EBF1, PU.1, IRF4, IKZF1, POU2F2, 

PAX5, MEF2A, MEF2C, RUNX3, RELA, TCF3, TCF12, YY1, MAX, STAT1, STAT3, 

STAT5A, SP1), or the enhancer-associated acetyltransferase, EP300, using public ChIP-seq data 
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for the transformed B cell line, GM12878, in UCSC Genome Browser (ENCODE Project 

Consortium, 2012). The remaining list of ~2000 gene-enhancer pairs were ranked based on 

levels of RNA expression and histone marks, recurrence in FL samples, as well as concordance 

between expression and histone modifications at putative enhancers. Manual inspection of the 

top ~200 highest ranked enhancer-promoter pairs yielded seven genetic loci that we considered 

to be of highest priority. See also Figure S4.1A. 

RT-PCR and RNA-Seq. For RT-PCR, total RNA was extracted using TRIzol (Invitrogen), 

reverse-transcribed (M-MuLV reverse transcriptase, New England Biolabs). SYBR qPCR was 

carried out using primers in online Table S4. Statistical analysis was performed using Prism. For 

RNA-seq, total RNA was extracted (RNeasy, Qiagen). Poly (A) mRNA was purified (Dynabeads 

mRNA Direct, Thermo Fisher Scientific), reverse-transcribed, and used for preparation of 

indexed libraries. All six libraries were pooled in one lane for 50 bp single-end deep sequencing 

(Illumina HiSeq2500). RNA-seq reads were aligned to the reference human genome (Ensembl 

76) with STAR 2.0.4b (Dobin et al., 2013).  Gene counts were derived by Subread:featureCounts 

1.4.5 (Liao et al., 2014).  Statistical analysis was performed using edgeR 3.14.0 (Robinson et al., 

2010). 

Luciferase Assay. Candidate enhancers (~800bp) were PCR amplified (online Table S4) and 

cloned into SV40 promoter-driven pGL3 plasmid (Promega). Reporters were transfected into 

GM12878 and Farage (Roche 06366236001), or electroporated into Jurkat.  

SE Calling. H3K27ac ChIP-seq data for primary B cells (Koues et al., 2015) and GM12878 

(ENCODE Project Consortium, 2012) were aligned to the reference human genome (hg19) with 
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Bowtie2 (Langmead et al. 2012). Peaks were called using MACS, and SEs were called using 

ROSE under default settings (Lovén et al., 2013; Whyte et al., 2013). 

3C and 4C-seq. 3C and 4C-seq assays were performed as described previously (Hagège et al., 

2007; Majumder et al., 2015; Splinter et al., 2012) using strategies detailed below. Primers and 

probes are shown in online Table S4. 4C-seq statistics are shown in Table S4.1. 3C. In brief, 107 

cells were crosslinked with 1% formaldehyde, quenched with glycine, lysed, digested with 

HindIII, religated, and purified with phenol-chloroform followed by Qiagen PCR purification 

columns. Interactions were measured using a Taqman qPCR assay for ligation products between 

each anchor HindIII fragment and each target HindIII fragment. Interaction frequencies were 

normalized for signals obtained from nearest neighbor fragments in the EEF1G gene. Standard 

curves were generated using HindIII digested and religated bacterial artificial chromosomes 

(RP11-1123P20, RP11-15B9, RP11-902D21 and RP11-259I15 for NEK6, RP11-993C15 for 

EEF1G). Amplicons with extreme Ct values in standard curves were either discarded or analyzed 

using delta Ct values. Statistical analysis was performed using Prism. 4C-Seq. In brief, 3C 

DNAs were digested with a second restriction enzyme, DpnII, religated, and purified using 

Qiagen PCR purification columns. The circularized DNA was amplified using inverse PCR and 

nested inverse PCR reactions with primers in the anchor HindIII-DpnII fragment. PCR products 

were used to prepare indexed sequencing libraries. All twelve libraries were pooled in one lane 

for 50 bp single-end deep sequencing (Illumina HiSeq2500). Reads were aligned to the reference 

human genome (build hg19) with Bowtie2 2.2.9 (Langmead and Salzberg, 2012). Reads for each 

HindIII fragment were calculated using r3Cseq 1.18.0 (Thongjuea et al., 2013) and normalized 

using DESeq2 1.14.1 (Love et al., 2014). Statistical analysis for differential interactions between 
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genotypes were performed using DESeq2. Spearman correlation of each genotype was 

performed using R. 

Chromatin Immunoprecipitation. ChIP assays were performed as described previously (Koues 

et al., 2015) using the following antibodies: 1 µg anti-H3K27ac (ab4729), 1 µg anti-H3K27me3 

(ab6002), 8 µl anti-CTCF (Cell Signaling 2899) and anti-rabbit IgG (sc2027). ChIP DNA was 

analyzed with SYBR qPCR assays using primers listed in online Table S4. Statistical analysis 

was performed using Prism. 

CRISPR-Mediated Deletion. 107 GM12878 cells or engineered subclones were electroporated 

with hCas9 plasmid (Addgene 41815), expression plasmids for two gRNAs targeting sequences 

that flank the region to be deleted, and a plasmid encoding hCD4. hCD4+ cells were purified 24 

h post-transfection using magnetic beads (StemCell Technologies 18052), passaged for ~7 days, 

subcloned by limiting dilution, and screened for deletions using multiple independent primer 

pairs outside and inside of the gRNA target sites. gRNA sequences are shown in online Table S3. 

Most gRNAs were cloned into the Addgene vector 41824, while gRNAs for CE13 were cloned 

into pKLV-U6gRNA(BbsI)-PGKpuro2ABFP (Addgene 50946). PCR primers for screening 

deletions are provided in online Table S3. PCR products spanning deletion sites were purified 

and Sanger sequenced (online Table S3). All molecular analyses were performed on sibling 

subclones corresponding to parental and mutant genotypes in the same experiment to avoid 

complications that might arise from drifts in bulk GM12878 cultures and experimental 

variations. 

Western Blotting. Western blotting was performed using standard protocols with the following 

antibodies: NEK6 (ab133494), GAPDH (sc365062). 
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NEK6 Knockdown. GM12878 cells were transduced with retroviral vectors containing shRNAs 

specific for either GFP (target sequence: AGCACAAGCTGGAGTACAACTA) or NEK6 (target 

sequences 1, 2, and 3: CGGCCAGAGTGTCACAGGCAAA, 

AGGAGAGGACAGTATGGAAGTA, AGCAGATGATCAAGTACTTTAA) and an hCD2 

marker as previously described (Bednarski et al., 2012). Transduced cells were subjected to the 

following assays. Cell death was quantified by Annexin V (BD Biosciences 556422) and hCD2 

(BD Biosciences 560642) double staining 72 h post-transduction. Cell proliferation was 

measured by CFSE dilution (Life technologies C34554), staining cells with CFSE 48 h post-

transduction, then with anti-hCD2 at 72, 96 and 120 h post-transduction. Knockdown 

efficiencies were assessed for hCD2+ cells purified 72 h post transfection using magnetic beads 

(Miltenyi Biotec 130-091-114) by western blotting. 

Accession Numbers. The accession number for raw reads and processed files for RNA-seq and 

4C-seq datasets is GEO: GSE87323. 
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4.6 Figures 

 

Figure 4.1: The NEK6 regulatory landscape in normal and transformed cells 

A

B

C

E

D

(legend on next page)

2920 Cell Reports 18, 2918–2931, March 21, 2017
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(A) Expression levels of NEK6 in primary human cells. Each dot represents normalized microarray signals for a 
purified B cell sample from independent healthy volunteers or FL biopsies (CC: tonsillar centrocytes, TsB: 
unfractionated tonsillar B cells). Statistical tests were performed for subtype 1 or 2 FL versus other cell types. Only 
significant differences are shown for clarity (unpaired t-test with Welch's correction): ***p<0.005, and ****p<0.001. 
(B) Scheme depicting genes and regulatory elements in the NEK6 neighborhood. Red circles represent CEs that are 
FAIRE- and H3K27ac-positive in at least two FL samples from previously published data (Koues et al. 2015). 
Orange arrowheads depict CSs, as well as their orientations, as identified by chromatin profiling. UCSC Genome 
Browser views are shown for FAIRE- and H3K27ac ChIP-seq data from FL and CC samples (Koues et al. 2015), as 
well as DNase-seq, H3K27ac, CTCF and RAD21 ChIP-seq data in GM12878 (GM) and Jurkat cell lines 
(ENCODE). All sequencing data are presented as reads per million mapped reads. (C) Rank order of increasing 
H3K27ac enrichment at enhancers in the indicated cell types. SEs were called using ROSE, with the NEK6-
associated SE highlighted. (D) NEK6 transcripts in the indicated cell types measured by RT-qPCR. Results represent 
the mean ± SEM of three independent experiments. Statistical significance (unpaired t-test with Welch's correction): 
*p<0.05, ***p<0.005, and ****p<0.001. (E) Expression levels of NEK6 neighboring genes in primary B cell 
samples, as measured by microarray. Each dot represents an independent sample. Statistical significance (unpaired t-
test with Welch's correction): *p<0.05, and ***p<0.005. 
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Figure 4.2: The NEK6 regulatory hub 
(A) Hi-C data for the NEK6 region in GM12878, as visualized in Juicebox (Rao et al. 2014). The intensity of each 
pixel represents relative normalized numbers of contact between corresponding regions, for which red and blue 
represent enriched or depleted interaction frequencies, respectively. Knight and Ruiz normalization (balanced) is 
applied to remove locus-specific biases. The observed over expected (O/E) signal is displayed to account for a 
higher number of interactions with closer regions due to one-dimensional proximity (Rao et al. 2014). Several 
chromatin structures and contact points are highlighted with black boxes. In the left panel, genes within the NEK6-
TAD are colored red and remaining genes are colored blue. (B) Interaction frequencies, as measured by 3C-qPCR, 
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for NEK6 TSS1 (top) and CE1 (bottom) viewpoints in GM12878 (NEK6 expressed) and Jurkat (NEK6 silent). 
Results represent the mean ± SEM of three independent experiments. Statistical significance (unpaired t-test with 
Welch's correction): *p<0.05. 

  

 

Figure 4.3: CEs potentiate NEK6 in transformed B cells 
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(A) Luciferase reporter assays for 14 putative CEs near NEK6. Enhancer activities were measured transiently in 
GM12878 or Jurkat cells and calculated relative to an SV40 promoter-only reporter construct. Human IGH enhancer 
was included as a positive control. Results show the mean ± SEM of at least four independent experiments in 
GM12878, and at least two in Jurkat. (B and C) NEK6 transcripts, as measured by RT-qPCR, in different GM12878-
derived CRISPR deletion subclones with the indicated genotypes or Jurkat cells, as a negative control. Each dot 
represents the Jurkat cell line or a unique subclone of GM12878, reported as the average of two independent RNA 
preparations, reverse transcription, and qPCR assays, the latter performed in triplicate. Statistical significance 
(unpaired t-test with Welch's correction): *p<0.05, **p<0.01, and ***p<0.005. (D) H3K27ac ChIP assays in 
GM12878-derived subclones harboring deletions of CE13 (left) or CE1 (right). ChIP-DNA was analyzed by qPCR 
with primers in or adjacent to indicated CEs. ChIP assays with a non-specific IgG antibody are shown as controls. 
For panels D and E, each bar represents the mean ± SEM of two subclones, each of which includes two independent 
experiments. Statistical significance (unpaired t-test with Welch's correction): *p<0.05. (E) Interaction frequencies, 
as measured by 3C-qPCR, in deletion subclones of CE13 (left) and CE1 (right) for the NEK6 TSS1 viewpoint. (F) 
UCSC Genome Browser views of interaction profiles, as measured by 4C-seq, for CE1 wild-type and deletion 
subclones using CE1 and NEK6-TSS1 as anchors. For each viewpoint, the average counts per HindIII fragment 
normalized by DESeq2 are shown for three wild-type (red), and three CS2-4 deletion lines (green). A plot for 
differential signal between deletion and wild-type samples (Del-WT) is displayed below. None of the differences are 
statistically significant (DESeq2). The deleted CE1 region is shown as a yellow rectangle. 
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Figure 4.4: SE1 is a dispensable element in the NEK6 regulome 
(A) NEK6 transcripts measured by RT-qPCR of SE1 deletion subclones. Each dot represents a unique subclone, 
which is reported as the average of two independent experiments. See Fig. 4.3B and C for details. For panels A-D, 
statistical significance (unpaired t-test with Welch's correction): *p<0.05. (B) H3K27ac ChIP assays in SE1 deletion 
subclones. See Fig. 4.3D for details. For panels B and C, each bar represents the mean ± SEM of two subclones, 
each of which includes two independent experiments. (C) Interaction frequencies, as measured by 3C-qPCR, in SE1 
deletion subclones for NEK6 TSS1 (left) and CE1 (right) viewpoints. (D) LHX2 and PSMB7 transcripts measured by 
RT-qPCR in SE1 deletion subclones. Each dot represents a unique subclone, which is reported as the average of two 
independent experiments. (E) Expression profile for all genes located within 5 Mb of SE1, as measured by RNA-seq, 
in SE1 wild-type and deletion subclones of GM12878. Average logCPM indicates the average expression level of 
each gene among three wild-type and three deletion subclones, reported as log2 read counts per million mapped 
reads. Log(SE1 Del/WT) represents the log2 fold-change of each gene between the average CPM of deletion versus 
wild-type subclones. Blue lines denote two-fold differences.   
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Figure 4.5: CS2-4 serves as a chromatin and architectural boundary for the NEK6 regulatory hub 
(A) CTCF ChIP assays in CS2-4 deletion subclones. ChIP-DNA was analyzed by qPCR using primers within or 
adjacent to indicated CSs. Each bar represents the mean ± SEM of two subclones, each of which includes two 
independent experiments. ChIP assays with a non-specific IgG antibody were performed as specificity controls. For 
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panels A-E and G, statistical significance (unpaired t-test with Welch's correction): *p<0.05, and **p<0.01. (B) 
Transcript abundance of genes in the NEK6-TAD, as measured by RT-qPCR, for CS2-4 deletion subclones. Each 
dot represents a unique subclone, which is reported as an average of two independent experiments. See Fig. 4.3B 
and C for details. (C) H3K27ac ChIP assays in C2-4 deletion subclones. See Fig. 4.3D for details. Each bar 
represents the mean ± SEM of two subclones, each of which includes two independent experiments. (D and E) 
Interaction frequencies, as measured by 3C-qPCR, in CS2-4 deletion subclones for CE1, NEK6 TSS1 (D), and the 
LHX2 promoter (E) viewpoints. Each dot in (D) or bar in (E) represents the mean ± SEM of two subclones, each of 
which includes two independent experiments. (F) UCSC Genome Browser views of interaction profiles, as 
measured by 4C-seq, for CS2-4 wild-type and deletion subclones using CE1 and NEK6-TSS1 as anchors. For each 
viewpoint, the average reads per HindIII fragment normalized by DESeq2 are shown for three wild-type (red), and 
three CS2-4 deletion lines (green). Reads located within the deleted CS2-4 region (yellow rectangle) are removed 
from all samples. Percentages of total normalized reads are displayed above each sample for regions upstream and 
downstream of CS2-4 deletion, as marked by double-headed arrow lines. For each viewpoint, a plot for differential 
signal between deletion and wild-type samples in natural log scale, ln (Del-WT), is displayed below. Statistical 
significance (generalized linear model adjusted by Benjamini-Hochberg procedure): p<0.05, are denoted by green or 
red asterisks for interactions that are increased or decreased in CS2-4 mutants, respectively. (G) Interaction 
frequencies, as measured by 3C-qPCR, in CS2-4 deletion subclones for CS0 (left), CS5 (middle), and CS6 (right) 
viewpoints. Each bar represents the mean ± SEM of two subclones, each of which includes two independent 
experiments. 
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4.8 Supplemental Figures and Tables 

 
Supplemental Figure 4.1: Prioritization scheme, luciferase assays of putative enhancers, and regulatory 
landscape of NEK6 in distinct cell types 
(A) A flowchart showing how seven regulatory circuits were selected from genome-wide predicted gene-enhancer 
pairs. See Supplemental Experimental Procedures for details. (B) Luciferase reporter assays for DREs connected to 
seven high priority genes with elevated expression in FL. Enhancer activities were measured transiently in 
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GM12878 and Farage B cell lines and are reported relative to a control reporter construct containing only the SV40 
promoter. The potent B cell enhancer associated with the human IGH locus is included as a positive control. Results 
represent the mean ± SEM of at least two independent experiments. ND: Not done. (C) UCSC Genome Browser 
views of annotated NEK6 transcript isoforms and RNA-seq data from GM12878 (ENCODE) or in vitro activated B 
cells (Koues et al. 2015). The two active TSSs for NEK6 in B cells are indicated. RNA data are presented as the 
number of aligned, in silico extended reads per 10 bp. (D) UCSC Genome Browser views of H3K27ac ChIP-seq 
data from FL, CC and other distinct ENCODE cell types. (E) Transcript abundance of NEK6 neighboring genes 
measured by RT-qPCR in GM12878 and Jurkat cells. Results represent the mean ± SEM of three independent 
experiments. Statistical significance (unpaired t-test with Welch's correction): *p<0.05, and ****p<0.001. 
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Supplemental Figure 4.2: Interaction frequencies of five additional viewpoints within the NEK6 sub-TAD 
(A-E) Interaction frequencies measured by 3C-qPCR in GM12878 (NEK6 expressing) and Jurkat (NEK6 silent) for 
the indicated viewpoints: PSMB7 promoter (A), SE1 (CE4-6) (B), SE1 (CE9) (C), NEK6 TSS2 (D), and CS3 (E). 
Results represent the mean ± SEM of two independent experiments. Statistical significance (unpaired t-test with 
Welch's correction): *p<0.05. 
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Supplemental Figure 4.3: Luciferase assays, TF binding, expression and interaction analyses of CEs 
(A) Luciferase reporter assays for control constructs. Enhancer activities were measured transiently in GM12878 or 
Jurkat cells and calculated relative to an SV40 promoter-only reporter construct. The human IGH enhancer and 
mouse Tcrb enhancer were included as positive controls. Results show the mean ± SEM of two independent 
experiments. (B) Approximate relative TF binding intensities for six NEK6 CEs, derived from ChIP-seq data for TFs 
important in B cell biology in GM12878 (ENCODE). (C) Immunoblots probed with antibodies specific for NEK6 or 
GAPDH, in different GM12878-derived CRISPR deletion subclones with the indicated genotypes, including 
parental wild-type cells (WT) and NEK6 knockout subclones (NEK6–/–). Normalized NEK6 protein levels relative to 
WT, as measured by ImageJ, are indicated at the bottom. (D) NEK6 transcripts derived from the two TSSs, as 
measured by RT-qPCR, in deletion subclones of CE13 (top), CE10 (middle) and CE1 (bottom). For panels D and E, 
each dot represents an independent subclone, which is reported as the average of two independent experiments. See 
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Fig. 4.3B and C for details. Statistical significance (unpaired t-test with Welch's correction): **p<0.01, and 
***p<0.005, ****p<0.001. (E) LHX2 and PSMB7 transcripts measured by RT-qPCR in CE13 (top) and CE1 
(bottom) deletion subclones. (F and G) Interaction frequencies, as measured by 3C-qPCR, in deletion subclones of 
CE1 (F) and CE13 (G) for CE1 viewpoint. Each bar represents the mean ± SEM of two independent subclones, each 
of which includes two independent experiments. Statistical significance (unpaired t-test with Welch's correction): 
*p<0.05. (H) Interaction profiles, as measured by 4C-seq, for CE1 wild-type and deletion samples using CE1 and 
NEK6-TSS1 as anchors. For each viewpoint, reads per HindIII fragment normalized by DESeq2 are shown for three 
wild-type (blue), and three CE1 deletion lines (orange). The deleted CE1 region is shown as a yellow rectangle. 
Spearman’s rank correlation coefficients, as shown on the right of sample names, are calculated for each pair of 
samples of the same genotype, and are all significant (asymptotic t approximation, p<2.2 x 10-16). 
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Supplemental Figure 4.4: NEK6 knockdowns in GM12878 and global transcription profiles in SE1 deletion 
subclones 
(A) Immunoblots probed with antibodies specific for NEK6 or GAPDH, in GM12878 cells transduced with shRNAs 
targeting GFP (control) or different regions of NEK6 transcripts and purified at 72h. Normalized NEK6 protein 
levels relative to shGFP are indicated at the bottom. (B) NEK6 transcripts, as measured by RT-qPCR, in GM12878 
cells transduced with either GFP- or NEK6-specific shRNAs and purified at 72h. Statistical significance (unpaired t-
test with Welch's correction): **p<0.01. (C) Proliferation rates, as measured by CSFE dilution (flow cytometry), in 
GM12878 cells transduced with either GFP- or NEK6-specific shRNAs and analyzed from 72h, which is labeled as 
d0. Median fluorescence intensities of CFSE are shown on the Y-axis. (D) Cell death, as measured by Annexin V 
staining (flow cytometry), in GM12878 cells transduced with either GFP- or NEK6-specific shRNAs and analyzed 
at 72h. Statistical significance (unpaired t-test with Welch's correction): p<0.05. (E) Global transcription profiles, as 
measured by RNA-seq, in SE1 wild-type and deletion subclones. Average logCPM indicates the average expression 
level of each gene among three wild-type and three deletion subclones, reported as log2 read counts per million 
mapped reads. Log(SE1 Del/WT) represents the log2 fold change of each gene between the average CPM of 
deletion subclones versus wild-type subclones. Statistical significance is generated using generalized linear model 
with p-values adjusted by Benjamini-Hochberg procedure. Six genes with p<0.05 are labeled with red color. Blue 
lines denote two-fold differences. 
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Supplemental Figure 4.5: H3K27me3 ChIP assays and interaction profiles in C2-4 deletion subclones 
(A) ChIP-DNAs were analyzed by qPCR using primers near the indicated CEs. Each bar represents the mean ± SEM 
of two independent subclones, each of which includes two independent experiments. Statistical significance 
(unpaired t-test with Welch's correction): *p<0.05. ChIP assays with a non-specific IgG antibody are shown as 
controls. (B) Zoomed-in UCSC Genome Browser views of interaction profiles, as measured by 4C-seq, for CS2-4 
wild-type and deletion subclones using CE1 and NEK6-TSS1 as anchors. For each viewpoint, the average reads per 
HindIII fragment normalized by DESeq2 are shown for three wild-type (red), and three CS2-4 deletion lines (green). 
Reads located within the deleted CS2-4 region are removed from all samples. Also shown is a plot for differential 
signal between deletion and wild-type samples in natural log scale, ln (Del-WT). Statistical significance (generalized 
linear model adjusted by Benjamini-Hochberg procedure): p<0.05, are denoted by green or red asterisks for 
interactions that are increased or decreased in CS2-4 mutants, respectively. (C) Interaction profiles, as measured by 
4C-seq, for CS2-4 wild-type and deletion samples using CE1 and NEK6-TSS1 as anchors. For each viewpoint, reads 
per HindIII fragment normalized by DESeq2 are shown for three wild-type (blue), and three CE1 deletion lines 
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(orange). The deleted CS2-4 region is shown as a yellow rectangle. Spearman’s rank correlation coefficients, as 
shown on the right of sample names, are calculated for each pair of samples of the same genotype, and are all 
significant (asymptotic t approximation, p<2.2 x 10-16). 

 

Supplemental Table 4.1: 4C-seq statistics 

 

 

 

  

 
 
Table S5 (related to Experimental Procedures). 4C-seq statistics 
 
  

Sample name

# of total mapped reads 
(reads located within two 
restriction fragments of 

the viewpoint are 
removed)

Fraction of total 
mapped reads 

located in the cis 
chromosome 

(chr9)

Fraction of total mapped 
reads located in the 

NEK6 sub-TAD 
(chr9:126,130,000-

127,200,000)
CE1viewpoint_GM12878 3,299,896 61% 41%

CE1viewpoint_CE1_WT_clone1 4,712,155 58% 38%
CE1viewpoint_CE1_WT_clone2 4,708,887 57% 39%
CE1viewpoint_CE1_Del_clone1 3,923,007 52% 31%
CE1viewpoint_CE1_Del_clone2 4,000,761 57% 37%
CE1viewpoint_CE1_Del_clone3 4,121,564 64% 44%

CE1viewpoint_GM12878 3,235,282 60% 40%
CE1viewpoint_CS2-4_WT_clone1 3,228,695 61% 44%
CE1viewpoint_CS2-4_WT_clone2 5,606,882 59% 35%
CE1viewpoint_CS2-4_Del_clone1 4,088,825 64% 47%
CE1viewpoint_CS2-4_Del_clone2 5,208,257 63% 45%
CE1viewpoint_CS2-4_Del_clone3 5,819,853 67% 48%

TSS1viewpoint_GM12878 3,650,318 61% 40%
TSS1viewpoint_CE1_WT_clone1 5,801,414 60% 39%
TSS1viewpoint_CE1_WT_clone2 6,220,468 61% 45%
TSS1viewpoint_CE1_Del_clone1 5,300,021 55% 37%
TSS1viewpoint_CE1_Del_clone2 5,587,267 63% 43%
TSS1viewpoint_CE1_Del_clone3 5,307,205 71% 55%

TSS1viewpoint_GM12878 3,824,313 63% 43%
TSS1viewpoint_CS2-4_WT_clone1 2,733,325 64% 39%
TSS1viewpoint_CS2-4_WT_clone2 4,785,052 60% 38%
TSS1viewpoint_CS2-4_Del_clone1 3,281,914 68% 52%
TSS1viewpoint_CS2-4_Del_clone2 2,793,105 66% 49%
TSS1viewpoint_CS2-4_Del_clone3 4,328,501 74% 57%
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Chapter 5 : Conclusions and Future 
Directions  
 

Gene regulation is controlled fundamentally by epigenetic mechanisms, including cis-

regulatory elements, chromatin states and chromosomal architecture. However, it remains a 

challenging issue to understand how these features collectively work in normal and pathogenic 

cellular processes. To start addressing these questions, we studied gene regulation in normal 

development using antigen receptor loci as model systems, and in disease by focusing on human 

B cell lymphoma, using chromatin profiling and computational algorithms. In Chapter 2, using 

the mouse T cell receptor beta locus as a model, we quantified features using chromatin profiling 

and other assays, and utilized a subset of these features to computationally predict recombination 

frequencies of Vβ gene segments. In Chapter 3, we applied chromatin profiling data of other 

mouse antigen receptor loci to bioinformatically classify and identify novel regulatory elements. 

In Chapter 4, we dissected a pathogenic cis-regulatory circuit composed of dysregulated 

enhancers and target genes in lymphoma, which was predicted in silico from chromatin profiling 

data, in order to validate and provide insights into prediction methods.  

Multivariate model to predict pre-selection Vβ repertoires 

In Chapter 2, we quantified pre-selection Vβ repertoires for the mouse Tcrb locus and 

reported 13 distinct genetic and epigenetic features, including chromatin states and chromosomal 

architecture, to evaluate their relative contributions in sculpting the pre-selection Vβ repertoire. 

We constructed a computational model to predict Vβ usage and discovered dominating 

predictors, including chromatin modifications and transcription. Our findings reinforce the 
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importance of chromatin states in regulating Tcrb recombination. Next, comprehensive 

mechanisms establishing chromatin states at Vβs remain to be identified. For example, we found 

that most pseudogene V segments flanked by functional RSSs are located in a repressive 

chromatin state. The suppression of pseudogenes can be partially explained by dysfunctional 

germline promoters and localization to lamina in the nuclear periphery (Reddy et al., 2008). 

These possibilities can be evaluated using genetic studies and imaging technologies. In addition, 

our study provides a framework to predict pre-selection repertoires for all AgR loci. For 

example, improvement of multiplex PCR approaches quantifying pre-selection repertoires will 

accelerate generating predictive models of other AgR genes. Ultimately, these models will be 

valuable to predict the effects of designed or natural variations of AgR loci on pre-selection V 

repertoires in mouse and human, since paralleled mechanisms exist between the usage of human 

Vβ orthologs and those of mouse (Livák, 2003). 

Targeted analyses to identify regulatory elements in antigen receptor loci 

In Chapter 3, we classified and defined regulatory elements in mouse antigen receptor 

loci using focused computational analysis of chromatin profiles. 38 distinct epigenetic states 

were identified, one of which corresponds to known enhancers and defines novel enhancer 

candidates in immunoglobulin loci. Several selected elements were verified in functional assays, 

validating our computational approach. In the future, these validated enhancers should be studied 

in vivo for their functions in Ig gene expression, assembly, class switching, and somatic 

hypermutation. This is especially true for hRE1, a super-enhancer, which potentially contributes 

to class switching and V(D)J recombination (Han et al., 2007; Medvedovic et al., 2013; Vincent-

Fabert et al., 2010). In addition, other regulatory elements can be pursued with functional 
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validations, including state 4 corresponding to enhancers and state 5 representing promoters. 

Furthermore, our success indicates that functional assignment and novel element identification in 

complex loci benefit from focused analysis of chromatin profiles tailored to these regions. In 

future, our unbiased computational approach can be utilized to define the regulomes of T cell 

receptor and other complex loci, including NK cell receptors and MHC loci (Shiina et al., 2004). 

Finally, this study demonstrates that we can use chromatin profiling and computational analyses 

to identify enhancers in our hands. Therefore, we pursued and translated these approaches to 

human B cell lymphoma in Chapter 4 to identify pathogenic enhancers and their associated 

genes. 

Functional dissection of predicted cis-regulatory circuits in B cell lymphoma 

In Chapter 4, we selected and systematically dissected a cis-regulatory circuit in B cell 

lymphoma that was predicted by computational methods. This circuit is composed of many 

augmented enhancers and multiple overexpressed genes, including NEK6, a mitotic kinase gene. 

We find that only a subset of predicted enhancers, excluding a super-enhancer, is required to 

maintain elevated NEK6 expression. A CTCF cluster serves as a boundary element for cordoning 

off the NEK6 regulatory hub from neighboring genes. Our work provides the framework for 

dissecting predictions of cis-regulatory circuits. In addition, our findings highlight the 

importance to rigorously test predictions regarding enhancers, super-enhancers and circuits 

generated by current computational algorithms, because a large portion of these predictions were 

not substantiated in our study.  

  Two novel features revealed from our work should be considered in order to improve 

the predictive power of algorithms defining cis-regulatory circuits, beyond the standard 
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correlative chromatin and expression patterns, coupled with low-resolution Hi-C data. Future 

studies should consider to measure enhancer activities in parallel using high-throughput assays 

(Kwasnieski et al., 2012; Melnikov et al., 2012). Using this approach, thousands of enhancer 

candidates or enhancer variants, as well as unique sequence tags, are precisely synthesized by 

microarray, cloned into reporter constructs, and transfected into cells. Expression levels of tags 

are subsequently measured by high-throughput sequencing, corresponding to the functionality 

and activities of tested enhancers. This information will not only screen out false positive 

enhancer candidates, improving the accuracy of circuit-predicting methods, but also will aid 

prioritization of circuits based on the robustness of associated enhancer activities. Besides a 

deeper understanding of enhancer activities, a better knowledge of chromatin structure will help 

in correctly connecting enhancers and target genes. Currently, chromatin domains are defined to 

be of different sizes, depending on the resolution of input data and the computational method 

applied (Hnisz et al., 2016). Because chromatin domains are considered to limit enhancer-gene 

interactions, wrongly assigned chromatin domains may lead to enhancers linked with false 

targets. In addition, low-resolution and noisy Hi-C data make it difficult to robustly identify 

chromatin loops with high-confidence. Because direct promoter-enhancer looping suggests 

functional interaction, errors in predicting chromatin loops will cause mistakes in connecting 

promoters and enhancers. These problems need to be addressed with upcoming higher-resolution 

chromatin interaction data and novel prediction algorithms (Whalen et al., 2016).  

The most surprising and significant finding in our study is that a super-enhancer, SE1, is 

not required for expression of genes within its chromosomal neighborhood or within 5 Mb of its 

genomic space. This result challenges the current dogma that SEs are clusters of key regulatory 

elements required for high-level expression of genes essential for cell identity, cell function, and 
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oncogenesis. Our finding for SE1 highlights the necessity to functionally evaluate SEs predicted 

solely by computational algorithms. Although SE1 and a subset of other CEs are not required for 

expression of NEK6 and neighboring genes, these regulatory elements may be required for 

expression earlier in B cell development or in initial stages of transformation. This possibility is 

currently intractable in primary human B cells, but can be evaluated by exploring whether 

chromatin pattern at SE1 correlates with gene expression in earlier human B cell stages.  

A second surprise emerging from our studies concerns structural determinants of the 

NEK6 regulatory hub. Deletion of either CE1, the dominant enhancer, or CS2-4, a CTCF cluster, 

does not affect chromosomal interactions within the NEK6 locus. This suggests several 

possibilities regarding architectural determinants. First, CE1-promoter interaction is redundant 

structurally with CS2-4 looping to downstream CTCF sites, which can be tested by deleting both 

CE1 and CS2-4. Second, another element is the key determinant awaiting to be identified. Third, 

once the NEK6 region is loaded with active chromatin, homotypic chromatin interactions drive 

NEK6 promoters and enhancers in spatial proximity (Lieberman-Aiden et al., 2009). The third 

possibility can potentially be studied by reverting active chromatin states at NEK6 using 

chemicals or engineered sequence-specific TFs.  

In this work, we focused on a pathogenic cis-regulatory circuit in lymphoma predicted in 

silico. In this circuit, we identified a potential oncogene, NEK6, overexpressed in human B cell 

lymphoma, and several regulatory elements that maintain the NEK6 regulatory hub and 

expression. So how is NEK6 upregulated and does this upregulation directly contribute to 

lymphomagenesis? To answer this question, the biological relevance of NEK6 to B 

lymphomagenesis needs to be established. Our preliminary data suggest that depletion of NEK6 

does not affect proliferation or survival in GM12878 and two B lymphoma cell lines. In contrast, 



157 
 

knocking down NEK6 in other cancer models attenuates cell growth (Fry et al., 2012). This lack 

of phenotype in B cells may stem from the compensatory role of its homolog, NEK7, which is 

also overexpressed in FL. Therefore, depletion of NEK7 may sensitize NEK6-deficient cells and 

reveal novel mechanisms for B cell transformation. In addition, mechanisms to augment NEK6 

enhancer activities remain to be defined. Our preliminary finding suggests that several TFs 

overexpressed in FL may contribute to higher enhancer activities, including MAX, MYC and 

STAT family members, which directly bind to NEK6 enhancers in GM12878 cells (ENCODE 

Project Consortium, 2012).  

The overarching theme of my dissertation is to identify new regulatory elements and 

assess their impacts on regulating expression of target genes using chromatin profiling coupled 

with computational algorithms. We predicted Vβ repertoires in mouse using a multivariate 

computational model, including features of chromatin states and chromosomal interactions. Then 

we classified and identified distinct regulatory potentials of new cis-elements in other mouse 

antigen receptor loci using tailored chromatin profiling analyses. Finally, we systematically 

dissected a pathogenic cis-regulatory circuit for NEK6 in human B cell lymphoma, predicted by 

correlative chromatin states and chromosomal interactions. My dissertation presents a framework 

to predict and validate gene regulatory mechanisms, which could be extrapolated to nearly any 

locus or cell type. This work provides useful metrics to improve the power of computational 

algorithms predicting gene regulatory networks. Discrepancies between predicted and validated 

circuits underscore the need to functionally validate predictions as well as to generate features 

with higher-resolution and higher-throughput. Our findings provide biological insights into the 

functions of elements with different regulatory potentials, and yield a list of important candidate 

elements for in vivo studies. These discoveries in developing lymphocytes and transformed B 
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cells can be translated into studies on gene regulation in human B cell lymphoma, as well as 

many other malignancies. In conclusion, my dissertation paves the way for future investigations 

on the roles of cis-regulatory elements and chromatin architecture in normal development and 

disease. 
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