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Chapter 1

Preliminaries

1.1 Introduction and Motivation:

This thesis has two main chapters that are somewhat separate but follow a similar narrative.

The idea is to look at certain fundamental results in the field of convex polytopes and see

how they generalize to triangulated manifolds. In particular we will be dealing with two

well-known results:

Theorem 1.1. (Balinski [3]): The graph of a d-dimensional convex polytope is d-connected.

Theorem 1.2. (Bruggesser, Mani [7]): Convex polytopes are shellable.

In Chapter II we will provide a way to generalize Balinksi’s theorem to certain special

classes of triangulated manifolds. The result that the theorem generalizes to triangulated

manifolds is a well known theorem of Barnette([3]). More recently, stronger results were

proved for special kinds of triangulations like flag complexes (see [2]). We introduce a simple

approach rooted in algebraic topology that interpolates between the two results, and proves

tighter bounds for complexes with missing faces of certain dimensions.

While Balinski’s Theorem generalizes to manifolds, Theorem 1.2 fails for any manifolds

that are not spheres or balls. The second part of this thesis (Chapter III) is dedicated to

building a framework that can measure how badly manifolds fail to be shellable. It turns

out a good approach here is to look at shellability both combinatorially and algebraically.

We show that certain coarse S-partitions are good generalizations of shellability and explore
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how these S-partitions give desirable properties of the topological and algebraic structure of

the triangulated manifolds.

Why try to generalize to triangulated manifolds? There are many reasons: first of all,

generalization is a natural mathematical inclination that will hopefully shed new light on

the topic. Many of the most important questions in the field such as the g-conjecture are

known to hold for convex polytopes but are still open for simplicial spheres and manifolds.

Furthermore a lot of the proofs for convex polytopes rely on deep properties of convex geom-

etry. However, in many cases (such as the Lower Bound Theorem [19]), it has been shown

that the results extend to more complicated topological objects. Thus is seems worthwhile

to explore what kind of results can be obtained solely using combinatorial and topological

methods and seeing how this interplays with both geometric and algebraic techniques.

1.2 Simplicial Complexes

Throughout this thesis we will be dealing with simplicial complexes. A great resource for

more in depth background on simplicial complexes and current problems related to their

f-vectors is [19]. An (abstract) simplicial complex ∆ on a finite vertex set V (∆) is a

collection of subsets of V (∆) that is closed under inclusion: if F ∈ ∆ and G ⊆ F , then

G ∈ ∆. The elements F ∈ ∆ are called faces and the maximal faces of ∆ under inclusion

are called facets. The dimension of a face is dim(F ) = |F | − 1 and the dimension of ∆

= max{dim(F )|F ∈ ∆}. A simplicial complex is called pure if all facets have the same

dimension.

Let ∆ be a (d−1) - dimensional simplicial complex. We define the f-vector to be the inte-

ger vector that counts the number of faces of ∆ in each dimension: f(∆) = (f−1, f0, f1, ..., fd−1)

where fi = |{F ∈ ∆|dim(F ) = i}|. The entry f−1 is always 1 and corresponds to the empty

set, the entry f0 counts all the vertices in the complex, f1 counts all the edges in the complex
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and so on. We can also think of f as a polynomial instead of a vector: f(t,∆) =
∑

i fi−1t
i.

For various algebraic reasons discussed later it is more convenient to work with a certain

integer transformation of the f vector called the h-vector. The h-vector = {h0, h1, ..., hd}

is defined by the following polynomial relation:

d∑
j=0

hj(∆)td−j =
d∑
j=0

fj−1(∆)(t− 1)d−j

From the relation we can express the h-vector as:

hj(∆) =

j∑
i=0

(−1)j−i
(
d− i
d− j

)
fi−1(∆)

and the f-vector as:

fi−1(∆) =
i∑

j=0

(
d− j
d− i

)
hj(∆)

The join of two simplicial complexes ∆1 and ∆2 on disjoint vertex sets, is the complex

∆1 ?∆2 = {F ∪G|F ∈ ∆1, G ∈ ∆2}. It is easily seen that f(t,∆1 ∗∆2) = f(t,∆1) ∗ f(t,∆2).

If ∆ is a simplicial complex and F is a face of ∆ we define the link of F in ∆, lk(F ) to be

the following subcomplex: lk∆(F ) = {G ∈ ∆|G ∩ F = ∅ and G ∪ F ∈ ∆}. The star of a

face F is the subcomplex st∆(F ) = {G ∈ ∆|G ∪ F ∈ ∆}. Given a face F ∈ ∆ we define F

to be the simplicial complex that is the power set of F - that is F = 2F . Note that F is the

smallest simplicial complex containing F . Given a set of vertices W ∈ V (∆) we define the

induced subcomplex ∆W to be {F ∈ ∆|F ⊂ W}.

Let G := G(∆) be the graph of a simplicial complex i.e. the 1-dimensional simplicial

complex formed by the edges and vertices in the complex. The facet graph of a pure

complex ∆ is defined as the graph having as vertices the facets of ∆ with the facets F1, F2

connected by an edge if their intersection has codimension 1: |F1 ∩F2| = |F1| − 1 = |F2| − 1.

A clique F in G is a complete subgraph in G. Define the clique complex of G to be simplicial
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complex X(G) = {F |F is a clique in G}. A simplicial complex ∆ is called flag if is equal

to the clique complex of its 1-skeleton G(∆) i.e. if ∆ = X(G(∆)). There is an equivalent

formulation of flag complexes in terms of missing faces that will come in handy later. Define

F to be a missing face in ∆ if F 6∈ ∆ but F \ {j} ∈ ∆ for any j ∈ F . It is easy to prove

that ∆ is flag if and only if it has no missing faces of dimension higher than 1.

Let’s also introduce the notion of banner complexes ([8]) - these are lesser known

but they are a good way to interpolate between flag and general complexes. Let ∆ be a

(d − 1)-dimensional simplicial complex on the vertex set V (∆). A subset W of V (∆) is

called complete if every two vertices of W form an edge of ∆ (note that the notions of clique

and complete set are the same, we just use complete sets here to follow the approach in [1]).

A complete set W ⊂ V (∆) is critical if W \ {v} is a face of ∆ for some v ∈ W . We say that

∆ is banner if every critical complete set W of size at least d is a face of ∆. We define the

banner number of ∆ to be b(∆) = min{b|lkσ∆ is banner or the boundary of the 2-simplex

for all faces σ ∈ ∆ of cardinality b}. Note that a flag complex will always be banner so one

can think of banner complexes as generalizations of flag complexes.

Altough we will mostly be dealing with abstract simplicial complexes as defined above

it is important to note that any abstract simplicial complex can be realized geometrically.

A convex polytope is the convex hull of a finite set of points in Rd. A geometric k-

simplex ∆k is the convex hull of k + 1 affinely independent points {p1, ..., pk+1} in Rn for

some n > k We can show that any abstract simplicial complex can be realized geometrically

in Euclidean space: If n is the number of vertices of an abstract simplicial complex ∆, then

we can realize ∆ in Rn by taking the basis elements of Rn as the vertices and filling in all

the simplices corresponding to faces in ∆. We will denote this geometric realization by |∆|.

For more details on geometric realizations and convex polytopes we point the reader towards

the excellent book [24] by Ziegler.
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1.3 Shellability

Definition 1.3. Let ∆ be a pure simplicial complex. A shelling of ∆ is an ordering of its

facets: F1, F2, ..., Fk such that Fi ∩ (F1 ∪ ... ∪ Fi−1) is pure and (dimFi − 1)-dimensional. A

pure complex is called shellable if such a shelling exists.

Intuitively a shelling allows one to build a simplicial complex facet by facet, always gluing

a new facet in a well-behaved way. It can be shown that if F1, . . . , Fk is a shelling of ∆, then

for each i, there is some face Ri = r(Fi) of Fi such that Fi \
⋃i−1
j=1 Fj consists of all faces of Fi

containing Ri. We write [Ri, Fi] for the interval of all such faces, and call Ri the restriction

face of Fi - see [10] for more details. This construction partitions the simplicial complex

into Boolean intervals - one for each shelling step:

∆ = ∪ki=1[r(Fi), Fi]

Furthermore in the case of a shelling and corresponding partition the h-vector has a very

simple, combinatorial interpretation: hi = |{r(Fj)||r(Fj)| = i}|. In other words, hi just

counts the restriction faces of size i. Chapter 2 of the thesis will focus on trying to generalize

shellability and its consequences to manifolds that are not spheres or balls.

1.4 Simplicial Homology

Let’s define homology for a simplicial complex - a great book for more info on this is [16]. Let

k be a field. Let ∆ be a simplicial complex on vertex set {1, 2, ..., n}. For i ∈ Z let Fi(∆) be

the set of i-dimensional faces of ∆ and for each σ ∈ Fi(∆), let eσ denote the corresponding

basis vector in the k-vector space, kFi(∆). The (augmented) chain complex over k is the

complex:
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0 −→ kFn−1(∆) ∂n−1−−−→ kFn−2(∆)...
∂0−→ kF−1(∆) −→ 0

where, for all i = 0, 1, ..., n− 1, and σ ∈ Fi(∆):

∂i(eσ) =
∑
j∈σ

sign(j, σ)eσ−j

We take sign(j, σ) = (−1)i−1 if j is the i-th element of σ when the elements of σ are

listed in increasing order. The reader can make the routine check that ∂i ◦ ∂i+1 = 0.

For i ∈ Z, the i-th reduced homology of ∆ is the k-vector space:

H̄i(∆, k) = kernel(∂i)/image(∂i+1)

In particular, elements of ker(∂i) are called i-cycles and elements of Im(∂i+1) are called

i-boundaries. Also we will denote the dimension of the homology groups as βi(∆, k) =

dimHi(∆, k) and call (β0, ..., βd) the Betti vector of ∆ (with respect to some field k).

Let’s introduce some special cases of simplicial complexes that are all to some extent

discrete versions of the notion of a manifold: A d-dimensional simplicial complex ∆ is a

weak pseudomanifold if it is pure and every d− 1 face is contained in exactly two d faces.

If in addition the link of each face is connected we call ∆ a normal pseudomanifold. A

pseudomanifold is a weak pseudomanifold in which the facet graph is connected. It’s not

hard to show that every normal pseudomanifold is indeed a pseudomanifold.

Let’s state some basic results on pseudomanifolds - we will need these later and it serves

as a good warm-up for the main theorems in Chapter 2:

Lemma 1.4. [16] Let ∆ be a weak d-pseudomanifold. Then the following are equivalent:

a) ∆ is a pseudomanifold

b) Hd(∆,Z2) = Z2

6



Lemma 1.5. Let ∆ be a shellable weak d-pseudomanifold. Then |∆| is homeomprhic to a

d-ball or a d-sphere.

Proof. This is a slightly weaker form of Theorem 11.4 in [9] since shellability implies con-

structibility.

However pseudomanifolds in higher dimensions can be relatively badly behaved and have

singularities so stronger homological conditions need to be imposed to have better behaved

complexes. On route here is to define triangulated manifolds: A simplicial complex ∆ is a

triangulated manifold if |∆| is homeomorphic to a topological manifold. However in prac-

tice working with the geometric realization is not very convenient so relaxing the conditions

and making a definition in terms of simplicial homology is preferred: A k-homology sphere

is a simplicial complex ∆ such that H∗(lk(F ), k) = H∗(S
d−|F |−1, k) for all faces F ∈ ∆, in-

cluding ∅. Similarly a k-homology manifold is a complex ∆ such that for any non-empty

face F, the link of F in ∆, lk(F ) is k-homology (d− |F | − 1)-sphere. It is not hard to show

that indeed a triangulated manifold will be a k-homology manifold over any field (see [16]).

For a simplicial sphere, the h-vector satisfies a nice symmetry giving a complete set of

linear relations between the numbers of faces of different dimensions:

hi = hd−i, 0 ≤ i ≤ d

these are known as the Dehn–Sommerville equations [24].

1.5 The Face Ring

The Stanley-Reisner ring associated to a complex ∆ on vertex set {1, 2, ..., n} is defined

as the quotient ring

k[∆] = k[x1, ..., xn]/I∆
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where I∆ is the ideal generated by the square-free monomials corresponding to the non-

faces of ∆. An l.s.o.p is a collection of linear forms {θ1, ..., θd} in k[x1, ..., xn], such that

k[∆]/(θ1, ..., θd) is a finite dimensional k-vector space. We will denote k[∆]/(θ1, ..., θd) by

k(∆) and call it the reduced Stanley-Resiner ring of ∆ for the specific l.s.o.p we have

chosen. Note that I∆ is a homogeneous ideal, i.e. it is generated by homogeneous elements.

Therefore I∆ is also both N-graded and Nn-graded by degree - so we get an induced N and

Nn grading on the quotient k[∆]. Let R be an N k-algebra. We define the Hilbert series of

R by Hilb(R) =
∑

i(dimkRi)t
i. We will dive more into details on the face ring in Chapter 3

but let’s state two fundamental theorems that relate the face ring to homological properties

of ∆. Let’s also mention that a great reference on the Stanley-Reisner ring is [22].

Theorem 1.6. [22] Let ∆ be a k-homology manifold sphere or ball of dimension d− 1 and

let {θ1, ..., θd} be an l.s.o.p for k[∆] then:

dimkk(∆)j = hj(∆)

Note that one can state the theorem above more compactly as: Hilb(k(∆)) = h(∆, t).

Also note that this relates the graded dimensions of the reduced Stanley Reisner ring to

the h-vector which is a purely combinatorial invariant. One can extend the theorem above

to homology manifolds but since these are topologically more complicated (in terms of the

Betti vector) we need to take the homology into account. This was done by Schenzel [20] in

the following theorem:

Theorem 1.7. [20] Let ∆ be a k-homology manifold (with or without boundary) of dimension

d− 1 and let {θ1, ..., θd} be an l.s.o.p for k[∆] then:

dimkk(∆)j = hj(∆) +

(
d

j

) j−1∑
i=1

(−1)(j−i−1)βi−1(∆, k)

8



We are going to be using Theorem 1.7 quite extensively in Chapter III.

1.6 Discrete Morse Theory And Collapsibility

Chapter III focuses on S-partitions and these are closely related to discrete Morse functions

so it is worthwhile to briefly sketch the main ideas behind Discrete Morse Theory. Great

resources for learning more about Morse Theory are [14] and [5] - most of the material here

is inspired from the aforementioned resources. Let ∆ be a simplicial complex. A discrete

Morse function on ∆ is a function which, roughly speaking, assigns higher numbers to higher

dimensional simplices, with at most one exception, locally, at each simplex. More precisely:

Definition 1.8. A map f : ∆ \ {∅} → R is a discrete Morse function if for each face

σ ∈ ∆:

(i) there is at most one boundary facet ρ of σ such that f(ρ) ≥ f(σ) and

(ii) there is at most one face τ having σ as boundary facet such that f(τ) ≤ f(σ).

Definition 1.9. A simplex σ is called critical if:

i) there is no boundary facet ρ of σ such that f(ρ) ≥ f(σ) and

ii) there is no face τ having σ as a boundary facet such that f(τ) ≤ f(σ)

A simplicial complex is collapsible if it admits a discrete Morse function with only

one critical cell. Roughly speaking, collapsible simplicial complexes can be progressively

retracted to a single vertex via some sequence of elementary combinatorial moves. Each

of these moves reduces the size of the complex by deleting exactly two faces. The only

requirements are that these two faces should be of consecutive dimension, and the larger

of the two should be the unique face properly containing the smaller one (which is usually

called a “free face”).

One of the main results of Discrete Morse Theory is the following: Suppose ∆ is a

simplicial complex with a discrete Morse function. Then ∆ is homotopy equivalent to a CW

9



complex with exactly one cell of dimension p for each critical simplex of dimension p. This

result implies the following Morse Inequalities:

Lemma 1.10. [14] Let f be a discrete Morse function on ∆ withmi critical faces of dimension

i. Then

mi ≥ βi(∆, k)

Definition 1.11. A discrete Morse function f on a (d − 1)-complex ∆ is called k-perfect

if mi = βi(∆, k) for 0 ≤ i ≤ d− 1.

10



Chapter 2

Connectivity of 1-skeletons of Pesudomanifolds

2.1 Preliminaries and History

Given a polytope or a triangulated manifold it is natural to try to understand the structure

of its 1-dimensional skeleton. This was first done by Steinitz in 1922 [23] where he solved the

problem in the 3-dimensional case: the graphs of 3-polytopes are exactly the 3-connected

planar graphs. Balinksi [3] extended these results to any dimension by proving that the

graphs of boundaries of d-polytopes - which are (d− 1)-spheres - are d-connected. This was

generalized further by Barnette [4] who showed that the graph of every (d− 1)-dimensional

triangulated manifold is d-connected.

More recently these results have been sharpened in cases where more is known about the

structure of the simplicial complex: Athanasiadis [2] proved better connectivity bounds for

flag pseudomanifolds and Bjorner and Vorwerk [8] and Adiprasito, Goodarzi and Verbaro [1]

extended the results for banner complexes.

Here we present a straightforward approach rooted in combinatorial topology that extends

and simplifies previous approaches. Here is the basic idea: Let ∆ be a triangulation of a

(pseudo)manifold from which we remove a subset of vertices W together with the induced

subcomplex ∆W . We will analyze how the number of connected components of the 1-skeleton

G(∆) on V \W vertices relates to Hd−1(∆W ). In some cases one completely determines the

other, in other cases the way Hd−1(∆W ) "sits" inside Hd−1(∆) matters. For pseudomanifolds

we obtain that if Hd−1(∆W ) is trivial removing W does not disconnect the graph and use

this to prove lower bounds on connectivity of different classes of complexes.
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Let’s introduce some new notions that will be used shortly: Let ∆ be a simplicial complex.

The underlying graph (or 1-skeleton) G(∆) of ∆ is the graph obtained by restricting ∆ to

faces of cardinality at most two. A graph G is k-connected if it has at least k-vertices and

removing any k−1 vertices does not disconnect G. The connectivity of a graph G denoted

by k(G) is the size of smallest set of vertices that, when removed, renders G disconnected.

All simplicial complexes we consider will be pure. We will work with homology over Z2.

2.2 Main Connectivity Bound

We will introduce the notion of strong connected components and use it to prove the main

theorem on the connectivity of manifolds. LetW be a subset of the vertex set of ∆. We define

the following relation on the facets of ∆ not contained in W : F1 ∼ Fn if there is a sequence

of facets F1, F2, ..., Fn such that Fi∩Fi+1 has co-dimension 1 in ∆ and is not contained inW .

It’s easy to see that this is an equivalence relation and we will call the equivalence classes

thus obtained strong components of ∆/W . We will denote the number of such classes by

S(∆/W ).

Theorem 2.1. Let ∆ be a d-pseudomanifold and W a subset of vertices. If Hd−1(∆W ) = 0

then removing W does not disconnect G(∆).

Proof. We will in fact prove the stronger statement:

dimH0(∆V−W ) ≤ S(∆/W ) ≤ dimHd−1(∆W ) + 1 (2.2.1)

Let K be a strong component in ∆/W and let V (K) = ∪Fi taken over all facets Fi

contained in K. Let v1, v2 be two vertices in V (K) with vi ∈ Fi for i = 1, 2 where F1, F2

are facets in K. We can then build an edge-path between v1, v2 in ∆V−W by following the

sequence of facets connecting F1 and F2 and at each step choosing a point in Fi∩Fi+1 which
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is not in W. This proves the first inequality.

For the second inequality let K1, K2, ..., Kn be the strong components of ∆/W . Given a

strong component Ki we can construct a corresponding chain in Cd(∆) as follows:

Ki =
∑
Fi∈Ki

Fi

.

The Ki’s are elements in Cd(∆) and ∂d(Ki) ∈ Cd−1(∆W ) since otherwise one could extend

the strong component Ki over a d− 2 face not in contained in W . Since ∂(∂(Ki) = 0)) the

cycles [∂(Ki)] will be elements in Hd−1(∆W ).

Now assume that the boundaries of a subset S ⊂ ∆/W of the strong components satisfy

a linear relation in Hd−1(∆W ):

∑
K∈S

∂(K) = ∂(σ), σ ∈ Cd(∆W )

This implies that:

∂(
∑
K∈S

K − σ) = 0

However since ∆ is a pseudomanifold, the top homology of ∆ must be supported on

the entire complex by Lemma 1.4 and this can only happen if all the Ki are in the sum.

Thus we get that any n− 1 strong components are linearly independent so S(∆/W ) = n ≤

dimHd−1(∆W ) + 1

2.3 Stronger Results for Normal Pseudomanifolds

One would expect better estimates on the connectivity of G(∆) if we restrict ourselves to

spaces without singularities, say triangulated manifolds. In fact a much more lax condition
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is necessary, namely requiring that the links be connected, to force the first inequality in

equation 2.2.1 to become an equality.

Lemma 2.2. If ∆ is a normal pseudomanifold then

dimH0(∆V−W ) = S(∆/W ) = dim(Hd(∆,∆W ))

Proof. For the first equality: Let v, w be in the same connected component of G(∆V−W ).

We now need to show that any two facets F and G with the first containing v and the second

w are in the same strong component of S(∆/W ). The way we will build the facet sequence

is by following the path between v and w and taking advantage of the facet connectivity

of the links. Say vi, vi+1 are two consecutive vertices in the path from v to w and Fi, Fi+1

facets with vi ∈ Fi and vi+1 ∈ Fi+1 Now the link of vi is easily checked to also be a normal

pseudomanifold and thus facet connected. Let Fi,i+1 be a face in the link of {vi, vi+1}. We

can find a sequence of facets in ∆ going from Fi to Fi,1+1 using the facet connectivity of lkvi.

Furthermore any two such facets have vi in common so this is a strong sequence in S(∆/W ).

Analogously we can find a sequence from Fi,1+1 to Fi so Fi and Fi+1 are in the same strong

component of S(∆/W ). Following the path between v and w and applying the procedure

above one gets that F and G are in the same strong component of S(∆/W ).

For the second equality: Let K1, ..., Kn be the strong components of ∆/W . We can think

of these as nonzero chains in Cd(∆,∆W ). Furthermore ∂d(Ki) ⊂ Cd−1(∆W ) since otherwise

one could extend the strong component so K1, ..., Kn are elements in (Hd(∆,∆W )). Since

every facet not contained inW is in exactly one strong component, K1, ..., Kn will be linearly

independent. So all we now need to prove is that the K ′is span (Hd(∆,∆W )).

Let σ be a relative cycle in ker∂d, F be a facet of ∆ contained in σ and KF the corre-

sponding strong component. Assume there is a facet F ′ in KF that is not in σ. There will
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thus exist Fi, Fi+1 in the facet sequence connecting F and F ′ in such that Fi∩Fi+1 = G 6⊂ W

with Fi ∈ σ and Fi+1 6∈ σ. But since G is contained in exactly two facets we get that G is

in ∂d(σ) ⊂ W - a contradiction. So every relative cycle is a sum of the strong components.

It follows that the strong components of ∆/W are a basis for the kernel and the result

follows.

Remark 2.3. The normality condition is required for the first equality in Lemma 2.3.1.

Take for example any triangulation of the pinched torus like T1 below in Figure 2.1. and

look at a cycle K that transverses the complex. In this case removing C gives us a connected

complex that has 2 strong connected components even though H1(C) = Z2.

Remark 2.4. One might also be interested whether one can generalize connectivity results

to weak-pseudomanifolds. The result here is negative. Take T2 to be the doubly pinched

torus on the right in Figure 2.1. T2 is not a pseudomanifold since dim(H2(∆)) = 2 and one

can see that removing the two "pinch" points disconnects the graph. One can generalize this

construction to get weak-pseudomanifolds of any dimension whose graphs have connectivity

2 - simply glue along two d-spheres at 2 vertices.

Figure 2.1: A Pinched Torus T1 and A Doubly Pinched Torus T2

The next theorem gives a more precise result in terms of not only a connectivity bound

but how many connected components remain once some vertices are removed:
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Theorem 2.5. Let ∆ be a normal pseudomanifold and let i be the inclusion map i :

Hd−1(∆W )→ Hd−1(∆). Then dimH0(∆V−W ) = dim (ker i)+1.

Proof. We will be using the fact that Hd(∆,∆W ) fits into the long exact sequence:

0 −→ Hd(∆) −→ Hd(∆,∆W ) −→ Hd−1(∆W ) −→ Hd−1(∆) −→ ... (2.3.1)

By using the exact sequence above we get S(∆/W ) = dim(Hd(∆,∆W ) =dim(ker i)+1

and combined with Lemma 2.2 the result follows.

Remark 2.6. For normal pseudomanifolds we get that H0(∆V−W ) ∼= Hd(∆,∆W ) which can

be interpreted as a weak form of Poincare-Lefschetz Duality for normal pseudomanifolds.

Figure 2.2: A Torus ∆T with two different cycles

Example 2.7. Theorem 2.5 tells us that the top homology of ∆W does not completely

determine the connectivity of G(∆V−W ). In fact, we also need to know how the homology

group Hd−1(∆W ) is embedded into Hd(∆). As an illustrative example let’s look at some

triangulation of a torus ∆T as in Figure 2.2. Let K2 be a cycle cutting trough the torus

vertically and K1 be a cycle as in Figure 2.2. K1 and K2 both have isomorphic homology

groups however removing K1 disconnects the graph G(∆T ) while removing K2 does not.

Theorem 2.5 tells us why: in H1(∆T ), K2 is a nontrivial cycle while K1 is trivial.
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Corollary 2.8. If ∆ is a normal d-pseudomanifold withHd−1(∆) = 0 then dim(H0(∆V−W )) =

dimHd−1(∆W ) + 1 and k(G(∆)) =min{|W | : Hd−1(∆W ) 6= 0}

Proof. If Hd−1(∆) = 0 the inclusion map i : Hd−1(∆W ) → Hd−1(∆) is the zero map. So by

Theorem 3.2 we get dim(H0(∆V−W )) = dimHd−1(∆W ) + 1.

Note that the last corollary implies that H̃0(∆V−W ) ≈ H̃d−1(∆W ) which is a weaker

but more general form of the Alexander duality found in Stanley’s Green Book [22]. The

corollary tells us that normality and zero codimension one homology are enough to guarantee

sphere-like homological behavior at the 1-skeleton level. It also tells us that in this case the

connectivity of the 1-skeleton is completely determined by the d− 1 homology of all induced

sub-complexes.

2.4 Applications

We will now use Theorem 2.1 to to prove results on a class of complexes that interpolate

between general simplicial complexes and flag complexes. Let C(i, d) the class of simplicial

complexes withHd(∆) 6= 0 and no missing faces of dimension greater than i. These complexes

were introduced in [17] by Nevo. For given i, d there exist unique integers 0 ≤ q and 1 ≤ r ≤ i

such that d+ 1 = qi+ r. Define

S(i, d) = ∂σi ? ... ? ∂σi ? ∂σr

where ∂σi, the boundary of the i-simplex, appears q-times in the join. Nevo proved the

following lower bounds on the number of vertices for complexes in C(i, d).

Lemma 2.9. (Nevo [17]) If ∆ is in C(i, d) then f0(∆) ≥ f0(S(i, d))= q(i+1)+(r+1) = d +1

+ q + 1
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Theorem 2.10. Let ∆ be a d - pseudomanifold with no missing faces of dimension higher

than i then G(∆) is d+ q + 1 - connected.

Proof. Assume removing the subset of vertices W disconnects G(∆). By Theorem 1 we get

that Hd−1(∆W ) 6= 0 and since the complex ∆W is induced it cannot have any missing faces

of dimension higher than i. It follows that ∆W ∈ C(i, d − 1) so f0(∆W ) ≥ f0(S(i, d − 1) ≥

d+ q + 1.

Note that the two previous results of Barnette [4](in the simplicial case) and Athanasiadis[2]

follow from Theorem 2.10:

Corollary 2.11. Let ∆ be a pseudomanifold then G(∆) is d+ 1 connected. Furthermore if

∆ is a flag complex then G(∆) is 2d connected.

Example 2.12. To make matters more concrete let’s look at the case of 3-spheres. In this

case we have three classes: C(1, 3), C(2, 3), C(3, 3). Using theorem 2.10 we get the connec-

tivity bounds in the table below. Further the theorem’s proof gives us a good intuition as

to why the bounds have these specific values - it has to do with the minimum number of

vertices for polyhedra in the class S(i, 2) - see Figure 2.3 to visualize these polyhedra.

∆ in Connectivity S(i, 2)
C(3, 3) 4-connected ∂ (tetrahedron)
C(2, 3) 5-connected ∂(triangular bypiramid)
C(1, 3) 6-connected ∂(octahedron)

Table 2.1: The connectivity bounds for 3-manifolds

Remark 2.13. : Results similar to Theorem 2.10 have been published in [1] using methods

from algebraic topology similar to ours but also commutative algebra. The results there are
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Figure 2.3: The polyhedra giving the lower connectivity bounds for C(i, 3)

for a class of complexes called banner complexes which are a generalization of flag complexes.

We will show however that the connectivity bounds we get are arbitrarily tighter for an

infinite set of complexes. We will also show however that for certain complexes the bound

obtained in [1] is better.

To construct our examples we will introduce a special complex as follows: let Tn =

(C3)n−1 ? C4, where Cn is the empty cycle on n edges. Tn is homeomorphic to a 2n − 1-

sphere. Let’s summarize the properties of Tn we are interested in the following lemma:

Lemma 2.14. : Let Tn as defined above. Then: a) Tn ∈ C(2, 2n− 1)

b) b(Tn) = 2(n− 1)

c) K(G(Tn)) = 3n− 1

Proof. a) Tn is not flag since it contains empty triangles. We now need to show that it

contains no empty simplices of dimension greater than 1. Assume S = {x1, ..., xn} ⊂ V (Tn)

such that ∂(2S) ∈ Tn. Then S will be partitioned among the cycles in the join in Tn and no

one part will have any empty faces since all n − 1 subsets of S are contained in Tn. This

implies that S ∈ Tn so Tn ∈ C(2, 2n− 1).

b) It is easily seen that if ∆ is not a banner complex then the suspension of ∆ and

∆ ? {x1, x2} - the join with an edge, will not a banner complex either - simply join the

critical face in the ∆ with a vertex or the new edge respectively to get a critical face in the

new complex. For any k < 2(n − 1) we can find a set F in V (Tn) such that lkTn(F ) is the
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join of one 3-cycle, edges, and isolated vertices. Removing any vertex in the unique 3-cycle

in the link gives us a critical face that is not contained in the link and this implies that

lkTn(F ) is not banner. In the case where k = 2(n-1) the links of all faces of cardinality k will

be either 3 or 4 cycles and this implies b(Tn) = 2(n− 1).

c) By the join construction one has to remove all the three cycles C3 in Tn to disconnect

the graph G(Tn). This leaves the 4-cycle C4 which can be disconnected by removing any

two vertices. The total number of vertices removed is 3(n− 1) + 2 = 3n− 1 and the result

follows.

Now we can use the above lemma to compare the connectivity bounds: Using theorem

2.10 above together with Lemma 2.4.3 part b) we get that G(Tn) is 3n− 1 connected which

as we have seen is in fact the best bound since it equals k(G(Tn)). However using Theorem

12 in [1] the bound is 2(dim(Tn) + 1)− b(Tn)− 2 = 2n which is a weaker bound that follows

directly from Balinski’s Theorem.

Conversely there are instances where Theorem 12 in [1] gives better bounds then the

Theorem 2.10 above. This is in the case of triangulated spheres that are banner but not

flag. Such an examples appears in [8] - see Example 3.5. In that case Bjorner and Vorwerk

construct a banner 3-sphere, let’s call it Θ, that has a unique empty triangle. By the banner

condition Theorem 12 in [1] we get the connectivity bound to be 6, better than 5, which is

the best one could get using Theorem 2.10.

2.5 Manifolds with Boundary and f-vector approaches:

So far all of our results have been limited to manifolds without boundary. It seems natural

to see if we can obtain similar results on the connectivity of the 1-skeleta of manifolds with

boundary. Here the result is as follows:

Lemma 2.15. Let ∆ be a d-pseudomanifold with boundary. Then G(∆) is d-connected.
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Proof. We will take advantage of the fact that ∆ is strongly connected i.e. that the facet

graph of ∆ is connected. Assume ∆ has original vertex set V and that we remove d−1 vertices

W. We want to show G(∆V−W ) remains connected. Let v1, v2 be vertices in V \W . We

know that the facet graph of ∆ is connected. Pick two facets F, F ′ with v1 ∈ F and v2 ∈ F ′.

There will exist a sequence of facets connecting the facets F and F ′: F = F1, F2, ..., Fk = F ′.

such that |Fi ∪ Fi+1| = d. Now since we only removed d − 1 vertices we can always find a

vertex in every intersection to build a path from v1 to v2. This show that the graph remains

connected when removing any d− 1 collection of vertices so we are done.

Remark 2.16. We actually haven’t used the boundary properties in the proof above - the

only requirement is that the facet graph of ∆ is strongly connected. In particular this the

lemma above also holds for manifolds with boundary but we obtained stronger results using

Lemma 2.11

Remark 2.17. Let’s show that the connectivity bound in Lemma 2.15 is tight. For a 2-

dimensional example look at the complex with facets {123, 234}. The graph of this complex

is clearly 2-connected but not 3-connected. More generally one can glue two d-manifolds

with boundary along a boundary d-1 face of both - let’s call this face F. This gives a new

complex whose graph is d-connected and that can be disconnected by removing the vertices

in the facet F which has d-vertices.

Remark 2.18. For manifolds with boundary we cannot obtain tighter results for flag com-

plexes. In particular the complex with facets {123, 234} is a flag 2-ball but still has connec-

tivity 2.

Now we will tackle a slightly different problem - an Upper Bound Theorem. While the

following lemma does not use graph connectivity directly it fits very well in the overall

theme of trying to generalize results from spheres to manifolds. One of the most well known
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problems in the theory of face vector enumeration is the upper bound theorem. This states

that the f -vector for a simplicial sphere is bounded above by the f -vector of a simplicial

polytope called the cyclic polytope. The cyclic d-polytope on n-vertices Cd
n is defined as

the convex hull of n-points on the moment curve (t, t2, ..., td). Cyclic polytopes play a very

important role in the theory of upper bound theorems because as we shall see in the next

Lemma they maximize the number of faces for simplicial spheres. Before stating the lemma

we also need to introduce the concept of neighborliness: a k-neighborly polytope is a

convex polytope in which every set of k or fewer vertices forms a face. Not that we can also

define neighborlyness for simplicial complexes: ∆ is k-neighborly if every set of k vertices

forms a face in ∆. It can be shown (see [24]) that Cd
n is bd/2c neighborly which is, in fact,

the maximal level of neighborliness possible for simplicial polytopes if we exclude simplices.

Definition 2.19. A d−1 simplicial complex ∆ on n vertices satisfies the f-UBC if fi(∆) ≤

fi(C
d
n)

The following well-known result by Stanley states that the f-UBC holds for simplicial

spheres:

Lemma 2.20. [22] Let ∆ be a d − 1 k-homology simplicial sphere. Then ∆ satisfies the

f-UBC.

Here we present a lemma that allows one to extent the f-UBC by looking at the links of

vertices:

Lemma 2.21. Let ∆ be a d− 1 dimensional simplicial complex, with d− 1 odd, such that

the f-UBC holds for all the links of vertices. Then the f-UBC holds for ∆.

Proof. Let n be the number of vertices and let Cd
n be the cyclic d-polytope on n vertices.

We have the following string of polynomial equalities and inequalities. Note that all the

inequalities are coefficient-wise:
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f ′(∆, t) =
∑

v∈V (∆)

f(lk∆v, t)

Which follows from counting vertex face incidences in 2 different ways.

∑
v

f(lk∆v, t) ≤ nf(Cd−1
n−1, t)

This follows since the link of a vertex will have at most n− 1 vertices.

nf(Cd−1
n−1, t) =

∑
v∈Cd

n

f(Cd−1
n−1, t) =

∑
v

f(lkCd
n
v, t)

.

Here we are using the fact that f(Cd−1
n−1, t) = f(lkCd

n
v, t) for d − 1-odd. This equality is

true since both Cd−1
n−1 and Cd

n are b(d− 1)/2c neighborly and the Dehn-Sommerville ([24])

relations determine the other half of the f -polynomial.

∑
v

f(lkCd
n
v, t) = f ′(Cd

n, t)

and the last equality is proved again by double counting. Thus we get that f ′(∆, t) ≤

f ′(Cd
n, t) - element-vise so f(∆, t) ≤ f(Cd

n, t) and the assertion is proved.

Remark 2.22. The argument breaks down for even dimensional complexes (d-odd) since

the link in the cyclic d polytope will not be as neighborly as the d− 1 cyclic polytope.

Remark 2.23. It would be interesting to see if we get something similar for the h-vector.

Setting

f(t) = (1 + t)dh(
t

1 + t
)

23



in f ′(∆, t) =
∑
v

f(lk∆v, t), we get, after some computations, that:

dh(∆, t) + (1− t)h′(∆, t) =
∑
v

h(lk∆v, t)

but it seems like assuming the links satisfy h-UBC won’t get us anywhere.

Lemma 2.21 above allows us to easily generalize Upper Bounds on the f-vectors from

spheres to manifolds in odd-dimensions. Note the f-UBC for odd-dimensional manifolds was

first proved by Novik in [18] using commutative algebra techniques.

Lemma 2.24. [18] The f-UBC holds for odd-dimensional manifolds

Proof. This follows directly from lemma 2.21 and lemma 2.20 since the links of vertices in

homology manifolds are homology spheres.
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Chapter 3

S-Shellings for Triangulated Manifolds

3.1 Preliminaries and History

Shellability is a fundamental concept in combinatorial topology and polytope theory. A big

breakthrough in the theory of shellability came when Brugesser and Mani proved that convex

polytopes are shellable [7]. The more general question of whether all triangulated spheres

are shellable was answered in the negative for dimensions larger than 3 by Lickorish [15].

His and subsequent results rely on certain knot constructions. Furthermore shellability puts

heavy topological restrictions on ∆:

Lemma 3.1. Let ∆ be homology manifold with Betti vector (β0, ..., βd−1) over some field k.

If βi 6= 0 for any i in {1, ..., d− 2} then ∆ is not shellable.

In particular this implies that any non-sphere manifold like a torus will not be shellable.

So how can one try to extend the notion of shellability to more complicated objects like

triangulated tori? One approach is to instead look not at the definition of shellability but

rather at its implications, both at the poset level and algebraic level. Let’s recall two well-

known results that exhibit the usefulness of shellings. The first result can be found in the

preliminaries, restated here for emphasis:

Lemma 3.2. [10] Any F1, ..., Fk shelling for ∆ partitions the simplicial complex into posets

- one for each shelling step:

∆ = ∪ki=1[r(Fi), Fi]
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Lemma 3.3. (Klee-Kleinschimdt) [22] Let F1, ..., Fk be a shelling for ∆ and θ be an l.s.o.p

for k[∆]. Then {xr(Fi)} - the set of restrictions of the facets is a k-basis for k(∆) = k[∆]/(θ)

A generalization of shellability should have similar implications as the two previous lem-

mas. A good place to start is the theory of S-partitions developed by Chari [11]. S-partitions

allow one to build any simplicial complex sequentially by adding intervals one at a time:

Definition 3.4. Let ∆ be a d−1 dimensional simplicial complex. We define an S-partition

to be an ordered list of (not necessarily maximal) faces of ∆: F1, F2, ..., Fk such that the

following three conditions hold:

(i) Fi ∩ (F1 ∪ ... ∪ Fi−1) is pure and (dimFi − 1)-dimensional

(ii) all the facets of ∆ are included in the ordering

(iii) F1 is d− 1 dimensional

If all the faces in the ordering are facets we recover the Bjorner-Wachs [10] definition for a

non-pure shelling. Note that the definition above is slightly different than the one introduced

by Chari in [11]. The only difference is point (iii) - we want to start every S-partition with

a face of dimension d-1. This will ensure some of the algebraic proofs we do later flow more

nicely.

Similar to a shelling, an S - partition gives a partition of (the poset) ∆ into intervals

[Gi, Fi] such that ∪ki=1[Gi, Fi] is a simplicial complex for any k. We will call the singleton

intervals of the form [F, F ] critical faces. We will call the intervals [Gi, Fi] parts. Also let’s

denote by ∆j := ∪ji=1[r(Fi), Fi] - the simplicial complex at step j of the S-partition.

Lemma 3.5. (Chari [12]) Given an S-partition for ∆ one can construct discrete Morse

functions on ∆ whose critical faces are exactly the critical faces in the S-partition.

Note that any simplicial complex admits many S-partitions. In particular we have the

trivial S-partition into singleton intervals (note that this is an S-partition in Chari’s definition
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only since it breaks condition (iii) above but one could also start with a facet and add only

singleton intervals after). Clearly this is not a very useful S-partition. So in order to extend

the definition of shellability to manifolds we need something more restrictive than just an S-

partition. It turns out that the "coarser" the S-partition is the more information it will gives

us about our simplicial complex ∆ both at an algebraic and homological level. So we could

try to minimize the number of faces in an S-partition - however finding a minimum number

given a simplicial complex is not easy. It turns out that one way to enforce minimality is to

look at the Stanley-Reisner ring of ∆ modulo an l.s.o.p. In order to make this more precise

we will first need to develop some algebraic machinery and then we can finally define the

new extended version of shellability to bascially be an S-partitions that satisfy Lemma 3.3.

3.2 Algebraic Machinery

Let’s start with defining some combinatorial invariants of S-partitions. Let’s also define the

hS triangle as follows: Let hSs,i to be the number of intervals in S of the form [r(F ), F ] such

that |F | = s and |r(F )| = i. Notice that

hi = hi,i + hi+1,i + ...+ hd,i

and ci := hi,i is the number of critical i-cells in S as well as in the corresponding Morse

function fS . Denote by cS(t) =
∑
cit

i.

Note that the hS triangle determines the f vector by the following relation:

f(t) =
∑
i,j

hi,jt
j(1 + t)i−j

We can also express the h-vector in terms of the hS triangle as follows. Using the definition
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of the f polynomial in terms of the h-polynomial we have

(1 + t)dh(
t

1 + t
) =

∑
i,j

hi,jt
j(1 + t)i−j

and by doing a change of variable λ = t
1+t

we get

h(λ) =
∑
i,j

hi,jλ
j(1− λ)d−i

Let’s quickly introduce some algebraic notation - a good reference is [19]. Recall that

the Stanley-Reisner ring associated to a complex ∆ on vertex set {1, 2, ..., n} is defined

as the quotient ring

k[∆] = k[x1, ..., xn]/I∆

where I∆ is the ideal generated by the square-free monomials corresponding to the non-

faces of ∆. An l.s.o.p is a collection of linear forms {θ1, ..., θd} in k[x1, ..., xn], such that

k[∆]/(θ1, ..., θd) is a finite dimensional k-vector space. We will denote k[∆]/(θ1, ..., θd) by

k(∆) and call it the reduced Stanley-Reisner ring of ∆ for the specific l.s.o.p we have

chosen. Given a face F ∈ ∆ we will also define xF to be the monomial in k[∆] whose support

is F : xF =
∏

i∈F xi.

We will also need the following technical definitions and result due to Stanley that char-

acterizes l.s.o.p’s in terms of a choice function. We are following the presentation in [10],

section 12. For a set of linear forms {θ1, θ2, ..., θd} in k[∆] letM = (mi,j) be the d×n matrix

defined by θi =
n∑
j=1

mi,jxj. Let F1, ..., Ft be the facets of ∆ and call a function C : [t]→ 2[d] a

nonsingular choice function if |C(j)| = |Fj| and the square submatrix with rows in C(j)

and columns in Fj is nonsingular, for all facets Fj.

Lemma 3.6. (Stanley in [21], page 150) Let {θ1, θ2, ..., θd} be a set of linear forms in k[∆].

Then {θ1, θ2, ..., θd} is an l.s.o.p if and only if there exists a non-singular choice function.
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By Chari’s results in [12] one can use the fundamental theorem of discrete Morse theory

to show that the critical faces in an S-partitions determine a spanning set for the homology

H∗(∆). We will show next that a similar results holds true at the algebraic level in k(∆) in

the following Lemma. One can interpret as a weak version of the Klee-Kleinschmidt Lemma

for shellable complexes.

Lemma 3.7. Let S be an S-partition for ∆ with ∆ = ∪ni=0[r(Fi), Fi]. The monomials

{xr(F ) : |r(F )| = i} span k(∆)i.

Proof. We will prove this by induction on the number of faces in S. If the partition has one

element, the restriction will be the empty set and k(∆) = k as a k-vector space so the lemma

is true in this case.

Now assume we have added faces F1, ..., Fk−1 and now we are adding the interval [r(Fk), Fk].

Since r(Fk) is the unique minimal non-face added we get that

k[∆k]/(x
r(Fk)) = k[∆k−1]

as rings.

Now let θ be an l.s.o.p or ∆k. By Lemma 3.6 above this will also be an l.s.o.p for ∆k−1

so we get that:

k(∆k)/(x
r(Fk)) = k(∆k−1)

.

Now by the induction hypothesis we have that {xr(F1), ..., xr(Fk−1)} span k(∆) so it suffices

to show that xr(Fk)xi = 0 in k(∆) for any xi.

If i 6∈ Fk then {i} ∪ r(Fk) is not a face of ∆k so xr(Fk)xi = 0 in k[∆] and thus in k(∆) as

well.

Now let’s assume i ∈ Fk and Fk has cardinality l ≤ d. By Lemma 3.6 there exists a
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nonsingular choice function C. Now let’s select the C(k) rows in the matrix M = (mi,j)

defined as above by θi =
n∑
j=1

mi,jxj. This gives us a l × n matrix. Since the l × l restriction

associated with the facet Fk is non-singular we can now use Gaussian elimination to express

xi in terms of the θ’s and monomials not in Fk:

xi =
l∑

j=1

αjθC(j) +
∑
j 6∈Fk

βjxj

with the α’s and β’s in k. When we multiply by xr(Fk) we get both sums on the right to be

zero in k(∆). Thus xixr(Fk) = 0 in k(∆) and we are done.

Based on the previous lemma and Chari’s result on Morse functions we get the following:

Corollary 3.8.

cS(t) ≥ Hilb(H∗(∆), k)(t)

hS(t) ≥ Hilb(k(∆), k)(t)

Where Hilb(H∗(∆), k)(t) is the Betti polynomial for ∆ over k counting homology ranks

and Hilb(k(∆), k)(t) is the Z-graded Hilbert series for the reduced Stanley Reisner ring.

These inequalities lead naturally to the following important definitions:

3.3 S-Shellings

Let ∆ be a simplicial complex - we are now ready to define what an S-shelling is.

Definition 3.9. Let k be a field and θ be an l.s.o.p for ∆ - a simplicial complex. Furthermore

let S be an S-partition for ∆ with ∆ = ∪ni=0[r(Fi), Fi]. We call S an (S, θ) - shelling if the

restriction monomials {xr(Fi)} are a basis for k(∆) = k[∆]/(θ).
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Remark 3.10. Note that an S-shelling depends on both the field k and the l.s.o.p θ so the

complete notation would be (S, θ, k) shelling. Whenever we use the notation S-shelling we

mean that for a fixed k and fixed l.s.o.p θ. Furthermore we will prove that for triangulated

manifolds the choice of l.s.o.p is irrelevant - see Theorem 3.16.

Definition 3.11. An S-partition is k-perfect if cS(t) = Hilb(H∗(∆), k)(t). This is equiva-

lent to saying that the Morse function associated to the S-partition is k-perfect.

Definition 3.12. An S-partition is minimal if it contains the smallest number of intervals

possible.

Now that we gave a working definition of a working notion of S-shellability we will try to

see how we can make it more intuitive. First let’s show that S-shellings are indeed minimal:

Lemma 3.13. An S-shelling is a minimal S-partition.

Proof. This follows since any S-partition will give a spanning set of k(∆) by Lemma 3.7.

The original motivation for the introduction of S-shellings was to generalize shellings -

let’s check that that is indeed the case:

Lemma 3.14. Let ∆ be a simplicial complex. Any (regular) shelling is an S-shelling for

any k and any l.s.o.p θ.

Proof. This follows directly from Lemma 3.3 which implies that the restriction monomials

will always be a basis for k(∆).

Lemma 3.15. An S-partition is an (S, θ)-shelling if and only if the following equality holds:

hS(t) = Hilb(k(∆), k)(t)

31



Proof. let S be an S-partition for ∆ with ∆ = ∪ni=0[r(Fi), Fi]. If the equality holds then the

restriction monomials {xr(Fi)} are a spanning set that has the same dimension as k(∆) so S

is an S-shelling. Conversely the result follows since the degree of the restriction monomials

equals to the size of the corresponding face.

As it stands the definition of an S-shelling, is dependent on the system of parameters we

choose and defined algebraically. These are not very desirable features - we’d like a more

combinatorial interpretation of when an S-partition is an S-shelling. It turns out that one

can get such a characterization for all triangulated manifolds. This is because Schenzel’s

formula gives the graded dimensions of k(∆) in terms of the h vector and homology of ∆.

This allows us a clean characterization of an S-shelling without having to use the l.s.o.p

directly:

Theorem 3.16. Let ∆ be a triangulated d − 1 manifold (with or without boundary) and S

an S-partition for ∆. Then S is an S- shelling if and only if it has length

fd−1 +
d−1∑
i=1

βi−1(∆)

(
d− 1

i

)
(3.3.1)

Proof. By Schenzel’s Formula [19](Theorem 29) we can compute the graded dimensions of

k(∆) as follows:

dimk(k(∆)j) = hj(∆) +

(
d

j

) j−1∑
i=1

(−1)j−1−iβi−1(∆, k)

.

Now adding all the graded parts we get that k(∆) has dimension:

d∑
j=0

hj(∆) +
d∑
j=0

(
d

j

) j−1∑
i=1

(−1)j−1−iβi−1(∆, k)
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The first sum adds to fd−1 and the second sum is equal to

d−1∑
i=1

βi−1(∆)
d∑

j=i+1

(
d

j

)
(−1)j−i−1 =

d−1∑
i=1

βi−1(∆)

(
d− 1

i

)

and the result follows.

To show the usefulness of S-shellings let’s use the previous lemma to prove something

about how small S-partitions can be for manifolds. To obtain such a bound we could use

Discrete Morse Theory to obtain the following bound:

|S| ≥ fd−1 +
d−1∑
i=1

βi−1(∆) (3.3.2)

This follows since given an S-partition once can construct a Morse function with the same

critical faces - thus the inequality above follows from the Morse inequalities. However this

bound is relatively weak - in fact we can get much better bounds using S-partitions:

Lemma 3.17. Let ∆ be a d − 1 triangulated manifold and S an S-partition for ∆. Then

the size of S has the following lower bound:

|S| ≥ fd−1 +
d−1∑
i=1

βi−1(∆)

(
d− 1

i

)
(3.3.3)

Proof. Let S be an S-partition for ∆ with ∆ = ∪ni=0[r(Fi), Fi]. By Lemma 3.7 we get that

the monomials {xr(Fi)} span k(∆). But by Schenzels’ formula and the computation in the

previous lemma we know that the dimension of k(∆) is exactly fd−1 +
∑d−1

i=1 βi−1(∆)
(
d−1
i

)
.

Since a spanning set must have higher cardinality than a basis in a vector space the result

follows.

Remark 3.18. For a 2-manifold Lemma 3.16 tells us that an S-partition is an S-shelling if

and only if it has exactly f2 +β1(∆, k) parts. This means that our S-shelling will correspond
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to adding the facets just as in a shelling plus critical edges, one for each basis cycle in

H1(∆, k).

Question 3.19. A natural question to ask at this point is the following: What is the

relationship between a k-perfect S-partition, minimal S-partition, and an S-shelling?

Lemma 3.20. Let ∆ be a 2-manifold. Then an S-shelling is both minimal and k-perfect.

Proof. An S-shelling will have exactly f2 + β1(∆, k) parts by the previous remark and will

be minimal by lemma 3.3.1 so the result follows since every critical edge will index a basis

cycle in H1(∆, k).

Note that since the restriction monomials span k(∆), an S-shelling will always be min-

imal. However a k-perfect S-partition need not be minimal. Any collapse of a collapsible

complex will give a perfect S-partition but this will usually not be minimal since it con-

tains only intervals of size two. One could try at this point to "consolidate" the 2-partitions

to create a coarser S-partitions. However as we shall see there are complexes that admit

k-perfect S-partitions but are not S-shellable.

Lemma 3.21. There exist triangulated manifolds that admit k-perfect S-partitions but do

not admit S-shellings.

Proof. Notice that if we restrict ourselves to spheres an S-partition will be an S-shelling if

and only if it is a pure shelling. This follows since a triangulated sphere only has non-trivial

homology in the top dimension. Also ∆ will admit a perfect S-partition if and only if it

admits a perfect Morse function. This follows from Chari’s result.

So now in order to prove our lemma we have to come up with a triangulated sphere

that is perfect but not shellable. Coming up with such examples is not very easy, however

in [6][Section 5.5] Benedetti and Lutz give an example of a triangulated 3-sphere with a

knotted trefoil knot on 3-edges that admits a minimal Morse vector of (1, 0, 0, 1). However

such a sphere cannot be shellable because of the presence of the knot.
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Question 3.22. : Will a S-shelling always be k-perfect for every k? The answer is yes for

2-manifolds.

3.4 Examples

Figure 3.1: A Nonshellable 2-complex

Example 3.23. Let ∆ be the complex pictured in Figure 3.1 with facets {1, 2, 3}, {2, 4, 5}

and {3, 5, 6}. Note that I∆ = (x1x5, x2x6, x3x4, x1x4, x4x6, x6x1, x2x3x5)

An S-partition of ∆ is

S = [∅, 123], [5, 35], [6, 356], [25, 25], [4, 245]

S is a minimal S-partition as can be seen by brute-force trying all the possible facet orderings.

By Lemma 3.7 we get that the elements in {1, x5, x6, x2x5, x4} span k(∆) however we

shall see that they are not always linearly independent over k.

Let k = Q. It’s easy to check that θ = (x1 + x5, x2 + x6, x3 + x4) is an l.s.o.p for k[∆].
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We then get the following relations in k(∆) :

x2
4 = x2

5 = x2
6 = x4x5 = x4x6 = x6x5 = 0

so x2x5 = x6x5 = 0 and {1, x5, x6, x4} is a k-basis for k[∆]/(θ). We get that Hilb(k(∆)) =

1 + 3t 6= hS(t) for any S-partition S. What this implies is that this complex does not have

an S - shelling over Q given the current l.s.o.p θ, since any S-partition will have at least 5

parts.

In terms of simplicial homology the S-partition does give a basis for the homology in

terms of the critical faces: When adding the interval [25, 25], 5 − 2 is a trivial cycle in ∆3

since it is the boundary of, say, 23+35. Thus σ25 = 23 + 35 − 52 is a basis for H1(∆). In

other words this S-partition is Z2-perfect.

Example 3.24. Minimal triangulation of RP 2:

Figure 3.2: A minimal triangulation of RP 2

Let ∆ be the complex pictured in Figure 3.2 - note the gluing along the boundaries. ∆

is a well known minimal triangulation of RP 2. We have the following minimal S-partition

S:
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[∅, 124], [3, 143], [5, 345], [6, 456], [26, 264]

[36, 36], [23, 263], [16, 163], [15, 165], [25, 265], [235, 235]

with

hS(t) = 1 + 3t+ 6t2 + t3

and spanning set

Q = {1, x3, x5, x6, x2x6, x3x6, x2x3, x1x6, x1, x5, x2x5, x2x3x5}

The regular h-vector of ∆ is (1,3,6,0) so Schenzel’s formula gives us:

Hilb(k(∆)) = 1 + 3t+ 6t2 + β1t
3

So we see that Hilb(k(∆)(t) = hS(t) iff β1(∆, k) = 1 iff k = Z2. So the S-partition above

is an S-shelling only for k = Z2. Thus the restriction set Q is in fact a k-basis for k(∆) for

any l.s.o.p when k = Z2 and the theory of S-shellings allowed us to find it combinatorially.

In terms of future work related to S-shellings it would be interesting to see if there

are any canonical ways of constructing S-shellings similar to line-shellings for polytopes

[7]. The difficulty here is that there is no convex structure associated to an (abstract)

simplicial triangulation. However even brute-force methods for finding S-shellings could be

worthwhile exploring since these give k-bases for the reduced Stanley Reisner ring and would

allow for problems in combinatorial commutative algebra to be approached from a purely

combinatorial perspective.
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