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Abstract of the Dissertation 
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Human malaria is caused by five species of Plasmodium. Of these, P. falciparum is the deadliest 

and is the only species that causes cerebral malaria (CM).  CM is a disease of the vascular 

endothelium characterized by parasite sequestration, increased inflammatory cytokine 

production, vascular leakage and leukocyte infiltration. A distinguishing feature of P. falciparum 

infection is the parasite’s production and secretion of histidine-rich protein II (HRPII). HRPII 

accumulates to high concentrations (up to 100 µg/ml) in serum, which correlates with disease 

severity. Due to high serum levels of this protein, HRPII has classically been considered a 

biomarker for P. falciparum infection. Although many functions have been ascribed to HRPII, 

the function of this protein remains ambiguous. Our work provides a new framework for 

thinking of this protein from serum biomarker to parasite virulence factor.  Using a cellular 

model of the blood-brain barrier, we demonstrate that HRPII activates the innate immune system 

in human cerebral microvascular endothelial cells, resulting in redistribution of tight junction 

proteins and compromise of barrier integrity. This process is Myd88-dependent, NFĸB-mediated 

and requires inflammasome activation. Intravenous infusion of HRPII induced vascular leakage 



x 
 

in the cerebellum and cortex of mice and increased early mortality in a P. berghei ANKA 

experimental cerebral malaria model. Analogously, transgenic P. berghei expressing falciparum 

HRPII produced more severe disease than wild-type or control P. berghei. HRPII induced 

endothelial expression of adhesion receptors used by plasmodium parasites, suggesting that this 

protein also contributes to pathogenesis by enhancing parasite cytoadherence and thereby 

avoiding splenic destruction. This study establishes that HRPII is a Plasmodium falciparum 

virulence factor that triggers an innate immune inflammatory response in vascular endothelium 

and contributes to cerebral malaria by compromising the integrity of the blood-brain barrier. 
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Preface 

The work presented in this thesis is one of several projects I have worked on during graduate 

school; while this work progressed towards publication, most other projects did not. My favorite 

of the failed projects was aimed at understanding how the parasite has adapted to living in such a 

highly oxidative environment, and how it handles reactive oxygen species. Although the parasite 

produces some proteins to handle oxidative stress, I wondered whether the parasite recruited 

proteins from the host to complement the parasite arsenal. To try to understand this we initiated a 

large scale immune-precipitation approach with various host proteins to identify parasite proteins 

that may interact with them. Homologous parasite proteins complicated this approach so we next 

went to a stem cell approach where we would tag host proteins in the red blood cell (prior to 

differentiations, since RBCs eject their nucleus during development, this would not be possible 

with more conventional approaches). While we were able to successfully differentiate RBCs 

from human cord blood and modify with retroviruses, this was not a very large scale-able 

approach and therefore not applicable for immuno-precipitation and mass spectrometry.  

 

 The project presented here focusing on HRPII also developed along a rather circuitous 

path. Initial interest in HRPII was focused on its highly charged nature and its ability to bind to a 

variety of glycosaminoglycans (GAGs). Glycosaminoglycans are present along all endothelial 

cell surfaces and provide many functions including low affinity interactions between endothelial 

cells and chemokines/ cytokines until they can bind to their receptors. This interaction mediates 

directed migration of immune cells to areas of infection or damage. The rationale being if HRPII 

could disrupt effective GAG: chemokine interaction, it could slow down the formation of an 
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effective immune response. A delayed effective immune response to the parasite is characteristic 

of patients displaying severe symptoms. Immunofluorescence assays revealed endothelial cells 

whose cell membrane looked unhealthy in the presence of HRPII, and thereby a side 

investigation became a new front focus.  This new focus turned into a thesis project, and will be 

the main work presented herein
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Chapter 1: Introduction 
 

This chapter includes general background on malaria, the parasite and immunology that applies 

to all sections; more relevant background will be present in separate chapters as needed. 

1.1 Epidemiology and Pathophysiology 
 

Malaria is a mosquito transmitted parasite illness present in some of the most economically 

disadvantaged populations world-wide. According to recent WHO estimates roughly 3.3 billion 

people are at risk for infection. This results in roughly 600,000 deaths, 90% of which are in 

Africa- of these the majority are children under the age of five (World Health Organization, 

World Malria Report, 2014)(Bell et al., 2006). Disappointingly, this infection is both preventable 

and treatable. Although there has been a significant decline in transmission since 2000 due to 

insecticidal sprays, insecticide treated bed nets, rapid diagnostic tests as well as increased access 

to therapy and preventative therapy to pregnant women, there is also significant amount of work 

remaining with the increasing challenge of parasites resistant to current drugs and mosquitos 

resistant to insecticides. 

Malaria in humans is caused by five parasite species, Plasmodium falciparum, Plasmodium 

vivax, Plasmodium ovale, Plasmodium malariae and Plasmodium knowlsei.(Bell et al., 2006) 

This obligate intracellular parasite is transmitted by the bite of an anopheles sp. mosquito; a 

single successfully transmitted sporozoite can result in roughly 10,000 blood stage parasites, see 

schematic of parasite life cycle in Figure 1 below borrowed from a review (Lycett and Kafatos, 
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2002). 

 

Figure 1.1] Parasite life cycle borrowed from (Lycett and Kafatos, 2002) 

Progression of the parasite out of the liver stage, initiates the blood stage of infection which is 

associated with a majority of symptoms. The early symptoms are nonspecific and incudes 

“headache, lassitude, fatigue, abdominal discomfort, and muscle and joint aches, usually 

followed by fever, chills, perspiration, anorexia, vomiting and worsening malaise” (Reyburn, 

2010). Treatment of a patient at this stage results in full rapid recovery, thereby underscoring the 

importance of early detection and timely intervention. Treatment at a later stage, once organ 

dysfunction has ensued and parasite burden has increased, often results in rapid progression to 

severe malaria, particularly in the setting of a P. falciparum infection resulting in “coma 

(cerebral malaria), metabolic acidosis, severe anaemia, hypoglycaemia, acute renal failure or 
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acute pulmonary oedema” (Reyburn, 2010). Severe malaria is almost always fatal when left 

untreated, and about 20% fatal even with treatment.(Reyburn, 2010) 

Cerebral Malaria 

Cerebral malaria is the most severe manifestation of malaria infection and results in roughly 

300,000 deaths annually. About 25% of survivors have lasting neurological complications 

(Christensen and Eslick, 2015; Fernando et al., 2010). In a group of Ugandan children the 

sequelae of cerebral malaria included spastic motor weakness, loss of speech, hearing deficits, 

behavioral problems, epilepsy, blindness, and severe cognitive impairment (Idro et al., 2010).  

Extensive neurological damage has been evidenced in pathology from patients who died from 

cerebral malaria. Demyelination, damaged neurons, (Schluesener et al., 1998; Toro and Roman, 

1978) parasitized capillaries, petechial hemorrhages are among the many changes observed on 

autopsy specimens along with malarial retinopathy (hemorrhages, whitening and vascular 

changes) (Taylor et al., 2004). Due to the variability and complexity of disease presentation, 

pathologists have defined three predominant form of cerebral malaria defined by pathology 

“CM1—clinical cerebral malaria with sequestration of parasitized red blood cells (PRBCs) in the 

brain, no additional cerebral histopathological changes, and no other cause of death 

CM2—clinical cerebral malaria with sequestration of PRBCs in the brain and the presence of 

cerebral microthrombi, ring hemorrhages and extra-erythrocytic malaria pigment, and no other 

cause of death  
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CM3—fulfilling the traditional definition of clinical cerebral malaria in life, but with no 

sequestration of PRBCs in the brain and another cause of death identified” (Dorovini-Zis et al., 

2011; Milner et al., 2014; Taylor et al., 2004) 

There are many models rationalizing the complex pathology present in cerebral malaria; the two 

prevailing hypotheses are 1.) sequestration/ mechanical and 2.) immunopathology.  The 

mechanical notion suggests that multifocal lesions result from reduced blood flow from 

sequestered parasites. This then causes metabolic changes: acidosis, hypoglycemia, and 

hypoxemia which may conclude in a coma. However, this alone cannot account for the 

pathology since similar levels of sequestration have been seen in patients not suffering from 

cerebral malaria. The other dominant view suggests that an overactive immune response to the 

parasite results in endothelial damage and dysfunction which eventually results in a breakdown 

of the blood brain barrier and damage to the central nervous system as a byproduct of the 

immune system attempting to clear the parasite.  Cerebral malaria is a complex pathological 

process and most likely results from a culmination of many factors. 

 

1.2  Mouse Models for Cerebral Malaria 
 

Plasmodium berghei ANKA infection of C57BL/6 mice is the most widely used murine model 

for cerebral malaria infection (mCM). This model replicates many of the clinical and 

histopathological features present in patients with human cerebral malaria (hCM). For example, 

mCM displays tissue edema, hemorrhages, presence of an inflammatory infiltrate, activation of 

microglia and a robust pro-inflammatory cytokine response. However, there are limited infected 
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red blood cells sequestered along the vascular endothelium and an a more robust inflammatory 

infiltrate than that present with hCM.  

A very extensive debate on the validity of the model has been ensuing through articles and at 

conferences (Hunt et al., 2010; Renia et al., 2010; Riley et al., 2010; Stevenson et al., 2010; 

White et al., 2010). Amongst the most compelling arguments against using the murine cerebral 

malaria model is that 44 out of 48 therapies assessed in mCM model were successful in healing 

mice; however, of 17 assessed in human, only one has shown some efficacy. This underscores 

that the biology in these two distally related mammals may not be close enough to develop 

effective therapeutics. The main features differentiating murine cerebral malaria and hCM are 

highlighted below in a table borrowed from a recent review. (Medana et al., 2001) 

 

Table 1] Major differences between human cerebral malaria and the murine model, P. 
berghei ANKA 

Despite the controversy present around the berghei mouse model, there is some advantage to 

studies that use it.  At a first pass, it is important to remember that the berghei model is at the end 

of the day a model and therefore an approximation of what happens in the human cerebral 

malaria case and not a replicate. It provides a glance to how different factors will affect the 

infection in the presence of an immune system, other organs, a vasculature, and many other 

components. It is of particular ease of use when studying factors exclusive to P. falciparum and 
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not present in P. berghei. In this setting, the berghei model provides a background akin to a 

knock-out. As a consequence it is simple to compare infection in an isogenic background with 

one protein different. The studies we have performed using P. berghei ANKA added a protein 

present only in P. falciparum, HRPII. We were able to demonstrate that addition of HRPII into 

the berghei genome reduced mouse survival and was therefore important for the parasite outside 

of simple parasite growth as we suspected. 

1.3  HRPII 
 

Histidine rich protein II (HRPII) is a protein produced exclusively by Plasmodium falciparum 

and exported out of the parasitophorous vacuole into the red blood cell. Upon RBC lysis HRPII 

is released into the blood stream where it is found at concentrations > 1000ng/mL (Dondorp et 

al., 2005) and can be detected at least 1 month post clearance of parasites. HRPII is a curious 

protein not only due to its biochemical properties, but because it is only present in the P. 

falciparum genome. HRPII is highly basic, composed 37% by histidines; two repeats (His- His-

Ala-His-His-Ala-Ala-Asp-Ala and His-His-Ala-Ala-Asp) cover 85% of its sequence. The 

sequence shown below highlights the histidine rich nature of the sequence. Since its discovery in 

1986 (Wellems and Howard, 1986), many functions have been ascribed to it including hemozoin 

crystallization, actin formation, T cell suppression, glycosaminoglycan binding and 

procoagulation (Benedetti et al., 2003; Choi et al., 1999; Das et al., 2006; Mashima et al., 2002; 

Ndonwi et al., 2011; Sullivan et al., 1996).  It has been shown to interact selectively with 

heparin, heparan sulfate and dermatan sulfate with high affinity (Ndonwi et al., 2011). This 

particular interaction led to the discovery of its procoagulant property, and may explain the pro-

coagulant state seen during P. falciparum infection. Heparin at low concentrations is known to 
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bind to the serpin antithrombin III and increase heparin’s inhibition of Factor Xa or thrombin 

2000-4000 fold. HRPII has been shown by our lab to neutralize this enhancement of 

antithrombin activity and thereby promote a pro-coagulative environment. (Ndonwi et al., 2011) 

 

Figure 1.2] Amino Acid sequence of HRPII from P. falciparum 

HRPII is produced by almost all natural isolates of Plasmodium falciparum. Due to its presence 

at high concentrations in infected individuals it has been used as a biomarker for infected 

individuals and forms the basis of the dipstick test (Chiodini et al., 2007; Dondorp et al., 2005; 

Moody, 2002; Parra et al., 1991). The asexual stages of infection by all other species occur 

exclusively in the blood stream and therefore blood parasitemia is a decent indicator of parasite 

burden. In contrast, P falciparum parasites in the trophozoite and schizont stages are sequestered 
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along endothelial walls and can rarely be seen in the blood stream; therefore blood parasitemia is 

a poor indicator of parasite burden. Since HRPII is released into the blood stream as schizonts 

rupture, and is cleared from the blood stream slowly; HRPII serves as a good measure of recent 

P. falciparum infection.  

HRPII has been used as a biomarker for P. falciparum infection and forms the basis of current 

rapid diagnostic tests (Chiodini et al., 2007; Dondorp et al., 2005; Moody, 2002; Parra et al., 

1991). On post-mortem analyses, HRPII has been observed to line the endothelial walls of blood 

vessels (Aikawa et al., 1990). Several correlative studies have shown an association between 

HRPII levels in acute serum and disease severity or development of CM (Dondorp et al., 2005; 

Fox et al., 2013; Hendriksen et al., 2012; Hendriksen et al., 2013; Kariuki et al., 2014; Seydel et 

al., 2012). Natural populations of HRPII-deficient Plasmodium falciparum parasites exist 

(Gamboa et al., 2010; Koita et al., 2012; Kumar et al., 2013), though these tend to be in areas of 

low CM incidence. We questioned whether HRPII might contribute to disease pathogenesis 

1.4  Blood Brain Barrier and Vascular endothelium 
 

The BBB regulates access of peripheral circulatory compounds and cells to the central nervous 

system. The BBB is formed by a complex network of intercellular junctional proteins. It is 

supported by many components a basement membranes, a complex extracellular matrix and 

various cells including astrocytes and microglia (Kawai and Akira, 2010).  “Astrocytes, pericytes 

and extracellular matrix (ECM) components provide both structural and functional support to the 

BBB. The term ‘neurovascular unit’ (NVU) additionally refers to neurons, microglial cells and, 

optionally, peripheral immune cells that also contribute to this cellular interplay” (Obermeier et 

al., 2013). A schematic from a recent review is shown below   Disruption of this network results 
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in BBB compromise and has been linked to a various disease states. 

 

Fig 1.3 ] Neurovascular unit of the blood brain barrier. Figure borrowed from (Obermeier 
et al., 2013) 
 

The endothelial cells that line the vasculature in the brain are distinct from those in other organs 

in part due to the stringency and selectivity guiding which compounds can permeate past this 

endothelial lining. This selective barrier between the peripheral circulatory components of the 

blood and the brain, the blood brain barrier proper “lies in the presence of tight junctions 

between the cerebral endothelial cells of the vasculature of the brain both within the parenchyma 
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and over the surface in the pia-arachnoid” (Stolp et al., 2013). Tight junctions prevent the 

paracellular transport of molecules into the parenchyma of the brain. 

We used an in vitro model blood brain barrier to study how different components affect it. An 

illustration is shown below in figure 1.4. We culture a human brain cerebrovascular 

immortalized endothelial cell line hCMEC/D3 cells on collagen coated trasnwell inserts.  The 

cells are allowed to grow to complete confluence and during this time they form appropriate tight 

junctions as previously described (Daniels et al., 2013; Weksler et al., 2005). We can measure 

the electrical resistance across this endothelial monolayer, high resistance values are indicative 

of an intact barrier while decreasing resistance values indicate a compromised model blood brain 

barrier. 

  

Figure 1.4] Model BBB 
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1.5  Inflammasome 
 

The innate and adaptive immune system work together to alert the host of danger signals both 

foreign and inappropriate host responses. The innate system is activated first and responds to a 

wide range of pathogenic or host patterns that have evolutionarily been deemed dangerous, and 

activates the adaptive immune response which is able to mount a specific response via B and T 

cells. (Basset et al., 2003). The innate immune system operates through PRRs (pathogen 

recognition receptors) which recognize PAMPs (pathogen associated molecular patterns). The 

innate immune system can also be activated by components released by injured cells termed 

danger associated molecular patterns (DAMPs) such as mammalian double stranded DNA and 

uric acid crystals (Ishii et al., 2001; Martinon et al., 2006). So the innate immune system 

recognizes common patterns from invading bacteria viruses and fungi as well as damage 

resulting from the invasion to the host. PRRs can be cytoplasmic, membrane bound or even 

secreted and are present in specialized immune cells such as macrophages, monocytes, dendritic 

cells (DCs), neutrophils, in addition to normal mononuclear endothelial and epithelial cells. Toll-

like receptors (TLRs) are one set of  well-established PRRs (O'Neill and Bowie, 2007). More 

recently discovered PRRs are RIG-like helicases (RLH) and NOD- like receptors (NLRs) which 

are soluble cytoplasmic receptors unlike TLRs which are membrane bound (Martinon and 

Tschopp, 2005; Yoneyama et al., 2004). NLRs are a common class of sensor molecules for 

inflammasomes. 

Inflammasomes are large molecular weight complexes that recognize pathogenic or sterile 

danger molecules and activate the pro inflammatory cytokines IL-1β (interleukin 1 beta) and IL-

18 (interleukin 18) (Latz et al., 2013). The complex is formed from the association of a sensor 
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molecule, the adaptor protein ASC which recruits caspase-1 and caspase-1. The adaptor protein 

ASC has two death- fold domains: a pyrin domain and a caspase activation and recruitment 

domain (CARD) (Vajjhala et al., 2012). The pyrin domain allows for association with the 

upstream sensor molecule and the CARD domain brings pro caspase-1 molecules in close 

proximity allowing cleavage and self-activation. Active caspase-1 molecules are able to cleave 

pro- IL-1β and pro IL-18 into their respective active forms IL- 1β and IL-18. Many sensor 

molecules have been identified such as NLRP1, NLRP3, NLRP12, NAIP1, NAIP2, NAIP5, or 

AIM2 and are collectively able to detect a diverse array of host and pathogenic danger signals. 

Activation of the inflammasome eventually results in a form of programmed inflammatory cell 

death known as pyroptosis. Although activation of the inflammasome is often thought of in the 

context of a bacterial infection or host danger molecules, it can also be activated from an 

intracellular protozoan parasite infection (Zamboni and Lima-Junior, 2015). 
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Fig 1.5 Inflammsome highlighting the many points of activation borrowed from (Latz et al., 

2013) 

The work that follows was pursued to understand the function of HRPII, a parasite protein that is 

biochemically very unique, produced at high levels and whose serum levels correlate with 

disease severity and cerebral malaria. We reasoned that a function should exist since the protein 

is produced to such high levels. In addition, early work had shown that parasites were viable in 

the presence of a genetic deletion of HRPII, in fact, natural HRPII null parasites exist. Therefore, 

we hypothesized that a function for HRPII, if existed, would be not be in parasite growth, but 

perhaps something important during the life cycle in the host. In consideration of the correlation 

between HRPII levels and cerebral malaria, we began studying HRPII on human brain 
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endothelial cells.  Interesting findings led to the work described in chapter 2.



[15] 
 

References 

Aikawa, M., Iseki, M., Barnwell, J.W., Taylor, D., Oo, M.M., and Howard, R.J. (1990). The 
pathology of human cerebral malaria. The American journal of tropical medicine and hygiene 
43, 30-37. 
Basset, C., Holton, J., O'Mahony, R., and Roitt, I. (2003). Innate immunity and pathogen-host 
interaction. Vaccine 21 Suppl 2, S12-23. 
Bell, D., Wongsrichanalai, C., and Barnwell, J.W. (2006). Ensuring quality and access for 
malaria diagnosis: how can it be achieved? Nature reviews Microbiology 4, S7-20. 
Benedetti, C.E., Kobarg, J., Pertinhez, T.A., Gatti, R.M., de Souza, O.N., Spisni, A., and 
Meneghini, R. (2003). Plasmodium falciparum histidine-rich protein II binds to actin, 
phosphatidylinositol 4,5-bisphosphate and erythrocyte ghosts in a pH-dependent manner and 
undergoes coil-to-helix transitions in anionic micelles. Molecular and biochemical parasitology 
128, 157-166. 
Chiodini, P.L., Bowers, K., Jorgensen, P., Barnwell, J.W., Grady, K.K., Luchavez, J., Moody, 
A.H., Cenizal, A., and Bell, D. (2007). The heat stability of Plasmodium lactate dehydrogenase-
based and histidine-rich protein 2-based malaria rapid diagnostic tests. Transactions of the Royal 
Society of Tropical Medicine and Hygiene 101, 331-337. 
Choi, C.Y., Cerda, J.F., Chu, H.A., Babcock, G.T., and Marletta, M.A. (1999). Spectroscopic 
characterization of the heme-binding sites in Plasmodium falciparum histidine-rich protein 2. 
Biochemistry 38, 16916-16924. 
Christensen, S.S., and Eslick, G.D. (2015). Cerebral malaria as a risk factor for the development 
of epilepsy and other long-term neurological conditions: a meta-analysis. Transactions of the 
Royal Society of Tropical Medicine and Hygiene 109, 233-238. 
Daniels, B.P., Cruz-Orengo, L., Pasieka, T.J., Couraud, P.O., Romero, I.A., Weksler, B., Cooper, 
J.A., Doering, T.L., and Klein, R.S. (2013). Immortalized human cerebral microvascular 
endothelial cells maintain the properties of primary cells in an in vitro model of immune 
migration across the blood brain barrier. Journal of neuroscience methods 212, 173-179. 
Das, P., Grewal, J.S., and Chauhan, V.S. (2006). Interaction of Plasmodium falciparum histidine-
rich protein II with human lymphocytes leads to suppression of proliferation, IFN-gamma 
release, and CD69 expression. Parasitology research 100, 39-50. 
Dondorp, A.M., Desakorn, V., Pongtavornpinyo, W., Sahassananda, D., Silamut, K., 
Chotivanich, K., Newton, P.N., Pitisuttithum, P., Smithyman, A.M., White, N.J., et al. (2005). 
Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS 
medicine 2, e204. 
Dorovini-Zis, K., Schmidt, K., Huynh, H., Fu, W., Whitten, R.O., Milner, D., Kamiza, S., 
Molyneux, M., and Taylor, T.E. (2011). The neuropathology of fatal cerebral malaria in 
malawian children. The American journal of pathology 178, 2146-2158. 
Fernando, S.D., Rodrigo, C., and Rajapakse, S. (2010). The 'hidden' burden of malaria: cognitive 
impairment following infection. Malaria journal 9, 366. 
Fox, L.L., Taylor, T.E., Pensulo, P., Liomba, A., Mpakiza, A., Varela, A., Glover, S.J., Reeves, 
M.J., and Seydel, K.B. (2013). Histidine-rich protein 2 plasma levels predict progression to 
cerebral malaria in Malawian children with Plasmodium falciparum infection. The Journal of 
infectious diseases 208, 500-503. 



[16] 
 

Gamboa, D., Ho, M.F., Bendezu, J., Torres, K., Chiodini, P.L., Barnwell, J.W., Incardona, S., 
Perkins, M., Bell, D., McCarthy, J., et al. (2010). A large proportion of P. falciparum isolates in 
the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic 
tests. PloS one 5, e8091. 
Hendriksen, I.C., Mwanga-Amumpaire, J., von Seidlein, L., Mtove, G., White, L.J., 
Olaosebikan, R., Lee, S.J., Tshefu, A.K., Woodrow, C., Amos, B., et al. (2012). Diagnosing 
severe falciparum malaria in parasitaemic African children: a prospective evaluation of plasma 
PfHRP2 measurement. PLoS medicine 9, e1001297. 
Hendriksen, I.C., White, L.J., Veenemans, J., Mtove, G., Woodrow, C., Amos, B., Saiwaew, S., 
Gesase, S., Nadjm, B., Silamut, K., et al. (2013). Defining falciparum-malaria-attributable severe 
febrile illness in moderate-to-high transmission settings on the basis of plasma PfHRP2 
concentration. The Journal of infectious diseases 207, 351-361. 
Hunt, N.H., Grau, G.E., Engwerda, C., Barnum, S.R., van der Heyde, H., Hansen, D.S., 
Schofield, L., and Golenser, J. (2010). Murine cerebral malaria: the whole story. Trends in 
parasitology 26, 272-274. 
Idro, R., Kakooza-Mwesige, A., Balyejjussa, S., Mirembe, G., Mugasha, C., Tugumisirize, J., 
and Byarugaba, J. (2010). Severe neurological sequelae and behaviour problems after cerebral 
malaria in Ugandan children. BMC research notes 3, 104. 
Ishii, K.J., Suzuki, K., Coban, C., Takeshita, F., Itoh, Y., Matoba, H., Kohn, L.D., and Klinman, 
D.M. (2001). Genomic DNA released by dying cells induces the maturation of APCs. Journal of 
immunology 167, 2602-2607. 
Kariuki, S.M., Gitau, E., Gwer, S., Karanja, H.K., Chengo, E., Kazungu, M., Urban, B.C., and 
Newton, C.R. (2014). Value of Plasmodium falciparum histidine-rich protein 2 level and malaria 
retinopathy in distinguishing cerebral malaria from other acute encephalopathies in Kenyan 
children. The Journal of infectious diseases 209, 600-609. 
Kawai, T., and Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: 
update on Toll-like receptors. Nature immunology 11, 373-384. 
Koita, O.A., Doumbo, O.K., Ouattara, A., Tall, L.K., Konare, A., Diakite, M., Diallo, M., 
Sagara, I., Masinde, G.L., Doumbo, S.N., et al. (2012). False-negative rapid diagnostic tests for 
malaria and deletion of the histidine-rich repeat region of the hrp2 gene. The American journal of 
tropical medicine and hygiene 86, 194-198. 
Kumar, N., Pande, V., Bhatt, R.M., Shah, N.K., Mishra, N., Srivastava, B., Valecha, N., and 
Anvikar, A.R. (2013). Genetic deletion of HRP2 and HRP3 in Indian Plasmodium falciparum 
population and false negative malaria rapid diagnostic test. Acta tropica 125, 119-121. 
Latz, E., Xiao, T.S., and Stutz, A. (2013). Activation and regulation of the inflammasomes. 
Nature reviews Immunology 13, 397-411. 
Lycett, G.J., and Kafatos, F.C. (2002). Anti-malarial mosquitoes? Nature 417, 387-388. 
Martinon, F., Petrilli, V., Mayor, A., Tardivel, A., and Tschopp, J. (2006). Gout-associated uric 
acid crystals activate the NALP3 inflammasome. Nature 440, 237-241. 
Martinon, F., and Tschopp, J. (2005). NLRs join TLRs as innate sensors of pathogens. Trends in 
immunology 26, 447-454. 
Mashima, R., Tilley, L., Siomos, M.A., Papalexis, V., Raftery, M.J., and Stocker, R. (2002). 
Plasmodium falciparum histidine-rich protein-2 (PfHRP2) modulates the redox activity of ferri-
protoporphyrin IX (FePPIX): peroxidase-like activity of the PfHRP2-FePPIX complex. The 
Journal of biological chemistry 277, 14514-14520. 



[17] 
 

Medana, I.M., Chaudhri, G., Chan-Ling, T., and Hunt, N.H. (2001). Central nervous system in 
cerebral malaria: 'Innocent bystander' or active participant in the induction of immunopathology? 
Immunology and cell biology 79, 101-120. 
Milner, D.A., Jr., Whitten, R.O., Kamiza, S., Carr, R., Liomba, G., Dzamalala, C., Seydel, K.B., 
Molyneux, M.E., and Taylor, T.E. (2014). The systemic pathology of cerebral malaria in African 
children. Frontiers in cellular and infection microbiology 4, 104. 
Moody, A. (2002). Rapid diagnostic tests for malaria parasites. Clinical microbiology reviews 
15, 66-78. 
Ndonwi, M., Burlingame, O.O., Miller, A.S., Tollefsen, D.M., Broze, G.J., Jr., and Goldberg, 
D.E. (2011). Inhibition of antithrombin by Plasmodium falciparum histidine-rich protein II. 
Blood 117, 6347-6354. 
O'Neill, L.A., and Bowie, A.G. (2007). The family of five: TIR-domain-containing adaptors in 
Toll-like receptor signalling. Nature reviews Immunology 7, 353-364. 
Obermeier, B., Daneman, R., and Ransohoff, R.M. (2013). Development, maintenance and 
disruption of the blood-brain barrier. Nature medicine 19, 1584-1596. 
Parra, M.E., Evans, C.B., and Taylor, D.W. (1991). Identification of Plasmodium falciparum 
histidine-rich protein 2 in the plasma of humans with malaria. Journal of clinical microbiology 
29, 1629-1634. 
Renia, L., Gruner, A.C., and Snounou, G. (2010). Cerebral malaria: in praise of epistemes. 
Trends in parasitology 26, 275-277. 
Reyburn, H. (2010). New WHO guidelines for the treatment of malaria. Bmj 340, c2637. 
Riley, E.M., Couper, K.N., Helmby, H., Hafalla, J.C., de Souza, J.B., Langhorne, J., Jarra, W.B., 
and Zavala, F. (2010). Neuropathogenesis of human and murine malaria. Trends in parasitology 
26, 277-278. 
Schluesener, H.J., Kremsner, P.G., and Meyermann, R. (1998). Widespread expression of MRP8 
and MRP14 in human cerebral malaria by microglial cells. Acta neuropathologica 96, 575-580. 
Seydel, K.B., Fox, L.L., Glover, S.J., Reeves, M.J., Pensulo, P., Muiruri, A., Mpakiza, A., 
Molyneux, M.E., and Taylor, T.E. (2012). Plasma concentrations of parasite histidine-rich 
protein 2 distinguish between retinopathy-positive and retinopathy-negative cerebral malaria in 
Malawian children. The Journal of infectious diseases 206, 309-318. 
Stevenson, M.M., Gros, P., Olivier, M., Fortin, A., and Serghides, L. (2010). Cerebral malaria: 
human versus mouse studies. Trends in parasitology 26, 274-275. 
Stolp, H.B., Liddelow, S.A., Sa-Pereira, I., Dziegielewska, K.M., and Saunders, N.R. (2013). 
Immune responses at brain barriers and implications for brain development and neurological 
function in later life. Frontiers in integrative neuroscience 7, 61. 
Sullivan, D.J., Jr., Gluzman, I.Y., and Goldberg, D.E. (1996). Plasmodium hemozoin formation 
mediated by histidine-rich proteins. Science 271, 219-222. 
Taylor, T.E., Fu, W.J., Carr, R.A., Whitten, R.O., Mueller, J.S., Fosiko, N.G., Lewallen, S., 
Liomba, N.G., and Molyneux, M.E. (2004). Differentiating the pathologies of cerebral malaria 
by postmortem parasite counts. Nature medicine 10, 143-145. 
Toro, G., and Roman, G. (1978). Cerebral malaria. A disseminated vasculomyelinopathy. 
Archives of neurology 35, 271-275. 
Vajjhala, P.R., Mirams, R.E., and Hill, J.M. (2012). Multiple binding sites on the pyrin domain 
of ASC protein allow self-association and interaction with NLRP3 protein. The Journal of 
biological chemistry 287, 41732-41743. 



[18] 
 

Weksler, B.B., Subileau, E.A., Perriere, N., Charneau, P., Holloway, K., Leveque, M., Tricoire-
Leignel, H., Nicotra, A., Bourdoulous, S., Turowski, P., et al. (2005). Blood-brain barrier-
specific properties of a human adult brain endothelial cell line. FASEB journal : official 
publication of the Federation of American Societies for Experimental Biology 19, 1872-1874. 
Wellems, T.E., and Howard, R.J. (1986). Homologous genes encode two distinct histidine-rich 
proteins in a cloned isolate of Plasmodium falciparum. Proceedings of the National Academy of 
Sciences of the United States of America 83, 6065-6069. 
White, N.J., Turner, G.D., Medana, I.M., Dondorp, A.M., and Day, N.P. (2010). The murine 
cerebral malaria phenomenon. Trends in parasitology 26, 11-15. 
Yoneyama, M., Kikuchi, M., Natsukawa, T., Shinobu, N., Imaizumi, T., Miyagishi, M., Taira, 
K., Akira, S., and Fujita, T. (2004). The RNA helicase RIG-I has an essential function in double-
stranded RNA-induced innate antiviral responses. Nature immunology 5, 730-737. 
Zamboni, D.S., and Lima-Junior, D.S. (2015). Inflammasomes in host response to protozoan 
parasites. Immunological reviews 265, 156-171. 

 

 



29 
 

 

 

 

 

 

 

 

Chapter 2: A role for HRPII in cerebral 

malaria pathogenesis 

 

 

 

 

 

 

 



30 
 

2.1 Abstract 

Human malaria is caused by five species of Plasmodium. Of these, P. falciparum is the deadliest 

and is the only species that causes cerebral malaria (CM).  CM is a disease of the vascular 

endothelium characterized by parasite sequestration, increased inflammatory cytokine 

production, vascular leakage and leukocyte infiltration. A distinguishing feature of P. falciparum 

infection is the parasite’s production and secretion of histidine-rich protein II (HRPII). HRPII 

accumulates to high concentrations (up to 100 g/ml) in serum, which correlates with disease 

severity. Using a cellular model of the blood-brain barrier, we demonstrate that HRPII activates 

the innate immune system in human cerebral microvascular endothelial cells, resulting in 

redistribution of tight junction proteins and compromise of barrier integrity. This process is  

Myd88-dependent, NF B-mediated and requires inflammasome activation. Intravenous infusion 

of HRPII induced vascular leakage in the cerebellum and cortex of mice and increased early 

mortality in a P. berghei ANKA experimental cerebral malaria model. Analogously, transgenic P. 

berghei expressing falciparum HRPII produced more severe disease than wild-type or control P. 

berghei. HRPII induced endothelial expression of adhesion receptors used by plasmodium 

parasites, suggesting that this protein also contributes to pathogenesis by enhancing parasite 

cytoadherence and thereby avoiding splenic destruction. This study establishes that HRPII is a 

Plasmodium falciparum virulence factor that triggers an innate immune inflammatory response 

in vascular endothelium and contributes to cerebral malaria by compromising the integrity of the 

blood-brain barrier.  
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2.2 Introduction 

Malaria infections cause an estimated 627,000 deaths per year, with 90% occurring in 

Sub-Saharan Africa, primarily in children under five (WHO World Malaria Report 2013). Of the 

five species of Plasmodium capable of infecting humans, P. falciparum causes the most 

morbidity and mortality (MacPherson et al., 1985). The clinical presentation of malaria ranges 

from a simple febrile illness (uncomplicated malaria) to various syndromes alone or in 

combination, including severe anemia, respiratory distress multi-organ failure, and cerebral 

malaria (CM) (Miller et al., 2002). CM is a deadly manifestation that is caused almost 

exclusively by P. falciparum. Patients present with decreased sensorium progressing to coma. 

This neurological syndrome is characterized by sequestration of infected RBCs in 

cerebrovascular beds, vascular occlusion, leukocyte infiltration, pro-inflammatory cytokines, 

perivascular edema, brain swelling and a diffuse encephalopathy (Engwerda et al., 2005; 

Menezes et al., 2012; Pongponratn et al., 2003; Seydel et al., 2015). CM results in about 300,000 

deaths annually, has a 20-30% case fatality rate despite treatment (Brewster et al., 1990; Idro et 

al., 2005), and 25% of survivors have lasting neurological sequelae (Fernando et al., 2010), 

including cognitive impairment (Idro et al., 2010). Infection of mice with the rodent malaria 

parasite strain P. berghei ANKA serves as a model for cerebral malaria. The pathology present in 

experimental cerebral malaria (eCM) is similar to that in human cerebral malaria (CM) with 

notable exceptions of limited sequestration of infected RBCs, a more robust infiltration of 

leukocytes and a different quality of the immune response (Medana et al., 2001; White et al., 

2010). The biological basis of these differences is poorly defined but the topic of spirited debate 
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and an active area of research (Craig et al., 2012; de Souza et al., 2010; de Souza and Riley, 

2002; Riley et al., 2010). 

Histidine-rich protein II (HRPII) is a unique protein produced exclusively by P. 

falciparum. It is highly basic: 37% of its amino acid sequence is histidine and repeats of histidine 

plus alanine cover 85% of its sequence. HRPII is exported by the parasite into the RBC cytosol 

(Howard et al., 1986). Upon maturation of the parasite and rupture out of the host cell, the 

contents of the RBC cytosol including HRPII are released into the bloodstream (Parra et al., 

1991). In serum, it can be detected at high concentrations (~1-100 g/mL) and can be detected at 

least 1 month post clearance of parasites (Dondorp et al., 2005). Since its discovery in 1986 

(Wellems and Howard, 1986), many functions have been ascribed to it including hemozoin 

crystallization, actin formation, T cell suppression, glycosaminoglycan binding and 

procoagulation (Benedetti et al., 2003; Choi et al., 1999; Das et al., 2006; Mashima et al., 2002; 

Ndonwi et al., 2011; Sullivan et al., 1996). 

HRPII has been used as a biomarker for P. falciparum infection and forms the basis of 

current rapid diagnostic tests (Chiodini et al., 2007; Dondorp et al., 2005; Moody, 2002; Parra et 

al., 1991). On post-mortem analyses, HRPII has been observed to line the endothelial walls of 

blood vessels. Several correlative studies have shown an association between HRPII levels in 

acute serum and disease severity or development of CM (Dondorp et al., 2005; Fox et al., 2013; 

Hendriksen et al., 2012; Hendriksen et al., 2013; Seydel et al., 2012). Natural populations of 

HRPII-deficient Plasmodium falciparum parasites exist (Gamboa et al., 2010; Koita et al., 2012; 

Kumar et al., 2013), though these tend to be in areas of low CM incidence.  

We questioned whether HRPII might contribute to disease pathogenesis. Herein, we 

provide evidence that HRPII is a P. falciparum virulence factor that triggers the inflammasome 
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in vascular endothelial cells.  HRPII binding to brain endothelial cells results in rearrangement of 

tight junction proteins and a compromised blood-brain barrier (BBB). We propose that HRPII 

contributes to the pathogenesis of cerebral malaria. 

 

2.3 Results 

HRPII is both necessary and sufficient to compromise endothelial barrier integrity 

Prior work has shown that addition of cultured P. falciparum parasites to brain endothelial cells 

compromises barrier integrity (Tripathi et al., 2007), and that soluble factors released during 

infection are adequate to mediate this phenotype. Due to the established correlation between 

HRPII and disease severity (Dondorp et al., 2005; Fox et al., 2013) we assessed the consequence 

of HRPII exposure using an in vitro BBB model of human cerebral microvascular endothelial 

cells (hCMEC/D3) grown on trans-well porous inserts (Daniels et al., 2013) The upper chamber 

of this cellular model represents the luminal face of a blood vessel; P. falciparum clone 3D7 

parasitized erythrocytes were added to the upper chamber and trans-endothelial electrical 

resistance (TEER) was measured across the endothelial barrier. These parasites induced a time-

dependent decrease in resistance (Fig 2.1A). In contrast, clone Dd2, which contains a deletion of 

the HRPII gene, caused minimal change in barrier integrity. Wild-type Dd2 parasites were 

transfected to generate transgenic parasites that ectopically express HRPII. Integration of the 

gene for HRPII was confirmed by PCR and isolated clones demonstrated an ability to produce 

HRPII by western blot (Fig 2.2). Two clones expressing HRPII from independent transfections 

compromised barrier integrity (Fig 2.1B).  
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Figure2.1] HRPII is both necessary and sufficient to compromise the integrity of an in vitro 
BBB. Trans-endothelial electrical resistance (TEER) was measured across an hCMEC/d3 
monolayer over time, and components for assessment were added to the upper chamber. (A) 
Addition of 10^8 uninfected RBCs, Plasmodium falciparum strain Dd2 (which does not produce 
HRPII) and strain 3D7 (which produces HRPII) were added to the BBB model. All values are 
relative to resistance measurements at time 0. Data are mean values +/- SEM for 2 replicates. 
Curves are significantly different from 3D7 chambers by one-way ANOVA. (B) Addition of 
10^8 Dd2 parasites, parasites engineered to produce HRPII (Dd2/ gHRPII-1 and Dd2/gHRPII-2), 
Dd2 parasites with 10 µg of added recombinant HRPII (Dd2/ rHRPII ),  or in the presence of 
specific antibody (Dd2/ gHRPII/ αHRPII). Data are mean values +/- SEM for 6 replicates spread 
over 3 independent experiments. Difference from untreated *p < 0.0001 and ** p < 0.009 by 
one-way ANOVA. (C) Addition of recombinant purified HRPII (rHRPII), HRPII purified from 
3D7 parasites (native HRPII) or in combination with monoclonal anti- HRPII antibody (αHRPII) 
or isotype control (Iso).  Data are mean values +/- SEM from a 24 hour time point for 4-8 
replicates spread over 5 independent experiments. Difference from untreated p < 0.0001, by one-
way ANOVA. 
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Figure 2.2] Dd2 transgenic parasites clones have been successfully transfected with the 
gene encoding HRPII-GFP and produce protein. (A) PCR of the HRPII gene from wild-type 
Dd2 (lane1,4) parasites as well as the transgenic clones C5 (lanes 2,5) and D3 (lanes 3, 6) 
amplifying for HRPII (lanes 1-3) and HRPII-GFP (lanes 4-6). (B) Western blots of parasite 
extracts from wild-type Dd2 (lane1), 3D7 (lane 2), clone C5 (lane 3), clone D3 (lane 4). WB 
using anti-HRPII (clone 2G12, 1:10,000). The yellow box highlights the band for HRPII-GFP, 
and the white box highlights native untagged HRPII. Both transgenic clones gave similar results 
in the TEER assay. 
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Addition of a neutralizing anti-HRPII monoclonal antibody to the upper chamber confirmed the 

specific effect of HRPII as it abolished the barrier compromise observed using the transfected 

parasites. Addition of recombinant HRPII to wells containing wild-type Dd2 parasites also 

resulted in barrier compromise. These experiments demonstrate that HRPII is required for 

parasites to disrupt endothelial barrier integrity. Subsequent studies revealed that purified HRPII 

alone (recombinant or isolated from P. falciparum 3D7 parasites) similarly disturbed barrier 

integrity (Fig 2.1C). This activity was specific, as antibody blockade of HRPII abolished the 

effect. These experiments establish that HRPII is both necessary and sufficient to compromise 

endothelial barrier integrity.  

HRPII results in redistribution of tight junction and adherens junction proteins.  

The BBB regulates access of peripheral circulatory compounds and cells to the central 

nervous system. The BBB is formed by a complex network of intercellular junctional proteins, 

basement membranes, and various cells including astrocytes and endothelial cells (Kawai and 

Akira, 2010).  Disruption of this network results in BBB compromise and has been linked to a 

various disease states. 

We queried whether HRPII caused altered localization of junctional proteins contributing 

to compromised barrier integrity. Immunohistochemical detection within hCMEC/d3 cells for 

several junctional proteins and their intracellular adaptors, revealed redistribution of the tight 

junction protein claudin-5 (Cld-5) and the adherens junction protein VE-cadherin (Fig 2.3A). 

Zona-occludens-1 (ZO-1), the intracellular adaptor for claudin-5, stained poorly in the 

hCMEC/D3 cell line. Therefore, we stained for ZO-1 on Caco-2 cells and observed clear 
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alteration of its distribution from cell borders to a diffuse cytoplasmic staining in the presence of 

HRPII (Fig 2.3B), similar to what was observed with LPS. 

 

 

Figure 2.3] HRPII exposure to human cerebral microvascular endothelial cells results in 
redistribution of junctional proteins. (A) hCMEC/d3 monolayer cultures were incubated 24 
hours with 25 µg of BSA or HRPII, or 3 µg of LPS, staining for tight junction protein claudin-5 
and the adherens junction protein VE-cadherin. (B) Caco-2 cultures were treated as in (A) and 
stained for Zona occludens-1 (ZO-1), the intracellular adaptor for claudin-5 and nuclei (DAPI).  
Representative images of 4 replicates from 2 independent experiments. All images taken using 
the same settings. Arrows highlight areas of incomplete staining. 

 

HRPII activates an innate immune responses in endothelial cells 

The disruption of BBB integrity by HRPII indicated that endothelial cells respond to the 

protein. We next questioned whether this was an immunological response. Quantitative RT-PCR 

analysis of chemokine and cytokine transcripts in hCMEC/D3 cells showed that several were up-
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regulated within 8 hours post exposure to recombinant HRPII (Fig 2.4A), and the response was 

kinetically different from that observed with LPS (Fig 2.5). As transcription of chemokines and 

cytokines can be induced by NFĸB activation (Lawrence, 2009), we tested whether the HRPII 

effects were mediated via NFĸB signaling.  

 

Figure 2.4] HRPII activates an inflammatory pathway in human cerebral microvascular 
endothelial cells. (A)  qRT-PCR of chemokine/ cytokine mRNA levels of hCMEC/d3 cells 
treated with 25 µg HRPII or BSA for 8 hours. *p = 0.0079, by two tailed t- test. (B) TEER 
measurements for in vitro BBB barriers transfected with shRNAs for NFĸB (N1 and N3) or a 
scrambled control (Sc) for 36 hours or incubated with inhibitors for NFĸB, Celastrol (Ce) and 
Triplotide (Tr) for 2 hours prior to addition of HRPII (H, 10 ug). Data are mean values +/- SEM 
for 6-8 replicates spread over 3 independent experiments. All curves are significantly different 
from scrambled, HRPII-treated control chambers p < 0.0001, by one-way ANOVA. (C) TEER 
measurements for in vitro barriers transfected with shRNAs to MyD88 (M1, M3 and M5) or a 
scrambled control (Sc) for 36 hours prior to addition of recombinant purified HRPII (10 µg). 
Data are mean +/- SEM from 6-8 replicates over 3 independent experiments. All treatment 
groups are different from scrambled, HRPII-treated control chambers p<0.0001, by one-way 
ANOVA. Assessment of knockdown levels shown in figure 2.6.  (D) TEER measurements for in 
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vitro BBB barriers transfected with shRNAs for caspase 1 (C1 and C2) or a scrambled control 
(Sc) for 36 hours or with IL1Ra (500 ng), αIL-1β (25 ng) or the caspase-1 inhibitor YVAD-CMK 
(80 µM) (C1 Inh) for one hour prior to treatment with recombinant purified HRPII (10 µg, H). 
Data are mean values +/- SEM for 6-8 replicates spread over 4 independent experiments. All bars 
are significantly different from HRPII treated, p < 0.05 by one-way ANOVA. 

 

Two different chemical inhibitors of NFĸB (targeting subunit p65), Triplotide (Zeng et al., 2011; 

Zhu et al., 2009) and Celastrol (Ni et al., 2014; Yang et al., 2006), ablated the TEER changes 

induced by recombinant HRPII and resulted in normalized barrier integrity (Fig 2.4B). To 

confirm independently the role of NFĸB in HRPII-mediated effects on barrier integrity, we 

silenced the p105 subunit of NFкB (Fig 2.6). Again, a decrease in TEER was prevented (Fig 

2.4B). These experiments suggest that the HRPII-mediated drop in TEER requires an NFĸB-

dependent signal. 

 

 Figure 2.5] HRPII and LPS induce chemokines and cytokines with distinct kinetic profiles. 
Up-regulation of chemokine and cytokine mRNA levels seen in response to 25 µg HRPII or LPS 
at 8, and 24 hours post exposure. Fold mRNA induction relative to untreated cells. 
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Many cellular pathways can activate NFĸB signaling. To begin to define the HRPII-

dependent pathway we silenced the most common intracellular adaptor, MyD88 (Fig 2.6). 

Knocking down MyD88, significantly reduced the drop in TEER present from HRPII by three 

different shRNAs (Fig 2.4C). These data highlight that HRPII-mediated inflammation is NFĸB 

and MyD88- dependent. 

 

Figure 2.6] Knockdown levels of the various shRNAs used.  shRNAs to TLR2 (2-1 and 2-2), 
TLR5 ( 5-3, 5-4), TLR9 (9-3, 9-4), NFkB (N1 and N3), to Myd88 (M1, M3 and M5), to caspase 
1 (C1 and C2). hCMEC/D3 cells were incubated with shRNAs as in Figure 3. mRNA levels were 
quantified by qRTPCR. Shown are data from triplicate determinations. Values are normalized for 
percent of cells transfected, as determined from visualization of GFP-expressing shRNA.  

 

HRPII activates the inflammasome 

MyD88 is an intracellular adaptor for a number of innate immune receptors, and several 

of these proteins use MyD88 as an exclusive intracellular adaptor: TLR1/2, TLR2/6, TLR5, 

TLR7, TLR9, IL-1R and IL-18R (Kawai and Akira, 2005, 2010). Silencing of TLR2, 5, and 9 

(Fig 2.6) did not impact HRPII-mediated endothelial cell barrier disruption (Fig 2.7).  
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Figure 2.7] HRPII-mediated BBB compromise does not require TLR 2, 5 or 9. TEER 
measurements for in vitro BBB models transfected with scrambled control (Scrb) or shRNAs to 
TLR2 (2-1, 2-2), TLR5 (5-3, 5-4), and TLR9 (9-3, 9-4).   

 

However, using a neutralizing polyclonal antibody against IL-1β or using IL1Ra, a natural 

antagonist of IL-1R, we demonstrated that HRPII-mediated change in TEER requires IL-1β 

activation and signaling (Fig 2.4D). These data point to involvement of the inflammasome. A 

requirement for caspase-1 was confirmed using two distinct shRNAs for caspase-1 as well as the 

caspase-1 specific inhibitor YVAD-CMK. Endothelial barriers treated with these reagents did 

not display a change in TEER in the presence of HRPII (Fig 2.4D). These data indicate that 

activation of the inflammasome is required for HRPII-mediated BBB disruption. 

HRPII-induced cell death and loss of barrier integrity are independent and kinetically 

distinct phenotypes 

Activation of the inflammasome can cause cell death. To determine whether endothelial 

cells lose viability in response to HRPII exposure, we monitored cell death at various time 
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points. Cells undergoing programmed cell death display nicked DNA which can be visualized 

with a TUNEL stain. HRPII-treated cells showed no TUNEL staining at 6 hours (when barrier 

disruption is evident) although nicking of cellular DNA was evident at 24 hours post exposure 

(Fig 2.8A).  
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Figure 2.8] HRPII mediated BBB compromise is independent of cell death. (A) HRPII 
results in cell death, evidenced by nicked DNA in this TUNEL stain at 24 hours post exposure to 
protein, but not at 6 hours. Cyclohexamide (CHX) is a positive control for cell death (B) TEER 
measurements for in vitro BBB models  untreated, treated with IFN-y (10 ng), or HRPII, or 
cyclohexamide (CHX, 10 ng/mL) in the absence (blue) or presence (red) of an apoptosis 
inhibitor (Z-VAD-FMK, 10 µg/mL). 

 

To rule out the possibility that HRPII-mediated loss of barrier integrity was a consequence of 

cell death, we reassessed TEER changes in the presence of an apoptosis inhibitor, Z-VAD-FMK. 

In this experiment, cycloheximide (CHX) serves as a positive control for endothelial cell 

disruption via apoptosis. In the presence of the Z-VAD-FMK, cell death and barrier leakage by 

CHX was prevented. IFN-γ serves as a second control for TEER changes via a mechanism 

(rearrangement of junctional proteins) that is distinct from cell death. IFN-γ compromised barrier 

integrity even in the presence of the apoptosis inhibitor. Similar to the IFN-γ control, HRPII-

mediated TEER changes were sustained when cells were treated with Z-VAD-FMK (Fig 2.8B). 

These data indicate that the loss of barrier integrity induced by HRPII is not a byproduct of cell 

death. 

HRPII promotes BBB permeability in vivo 

To determine whether the HRPII could induce a compromise in barrier integrity of brain 

endothelial cell monolayers in vivo, four week-old female C57BL/6 mice were administered two 

200 µg doses of HRPII 24 hours apart by intravenous injection. Forty-eight hours after the first 

dose, mice were injected via an intraperitoneal route with sodium fluorescein. 45 minutes later, 

animals were perfused and levels of fluorescein were measured in the brain parenchyma. We 

observed an increase in vascular leakage of fluorescein into the cortex and cerebellum of mice 

infused with HRPII compared to control animals (Fig 2.9A, B). Peak serum HRPII levels at 1 

hour post infusion were found to be around 300-400 ng/mL. At the time of harvest, HRPII levels 
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were 150-200 ng/mL, substantially lower than levels observed in patients with cerebral malaria, 

where 1 to 100 µg/mL has been reported (Dondorp et al., 2005). Presumably much of the HRPII 

redistributes to the vascular wall, where it can be seen lining the endothelial surface in mice (Fig 

2.9C) as it is in humans. 

 

 

Figure 2.9] HRPII causes IL-1β mediated vascular leakage in vivo.  HRPII (200 µg) was 
injected into 4 week old female mice. After 48 hours, fluorescein was injected and levels 
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measured in the cortex (A) and cerebellum (B). HRPII treatment was significantly different from 
control. Fluorescein levels in the cortex (A) and cerebellum (B) of mice infused with HRPII 
along with an iso-type antibody control (Iso), or a αIL-1β antibody, compared to just αIL-1β 
treated or untreated mice. HRPII-iso is significantly different from HRPII/ αIL-1β, p= 0.004 
(cerebellum) and p= 0.06 (cortex), by one way ANOVA. (C) 4 week old female mice infused 
with 50ug HRPII. Representative immunohistochemistry sections showing persistent vascular 
staining with HRPII over five days. (D) 4 week old female mice infused once with 50 µg of BSA 
or HRPII prior to infection with P. berghei ANKA (10^5 parasites). Data are mean +/- SEM for 
24-27 mice over 4 independent experiments. Curves are sig different, p = 0.03, by Log-Rank 
(Mantel-Cox test) (E) 4 week old female mice infected with P. berghei ANKA wild-type 
parasites or a transgenic line created to express HRPII (10^5 parasites). Data are mean +/- SEM 
for 35-41 mice over 4 independent experiments. Curves are sig different, p < 0.0001, by Log-
Rank (Mantel-Cox test). 

 

Our in vitro BBB model indicated that HRPII-mediated permeability was inflammasome 

dependent. To assess this effect in vivo, we infused HRPII-treated mice with a neutralizing 

antibody to IL-1β or an isotype control (Fig 2.9A, B). IL-1β specific antibody blocked HRPII-

induced sodium fluorescein leakage. These data confirm the in vivo relevance of IL-1β-mediated 

signaling for the actions of HRPII on BBB permeability.  
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HRPII reduces survival in an experimental cerebral malaria model 

 

Figure 2.10] Parasitemia of mice dying from cerebral malaria-like symptoms is low, and 
the parasitemia of mice infused with HRPII or control protein is similar. Representative 
parasitemia from one full experiment. Mice displaying cerebral malaria-like symptoms died at 
low parasitemia by day 10, and parasitemia between both groups were closely matched on each 
day. Representative data from one experiment, 10 mice per group. Experiment was repeated 
three times. 

 

We next determined whether the compromise in vascular integrity observed with purified HRPII 

had functional consequences during a malaria infection. We infused 6 week old female 

C57BL/6J mice with 50 µg of BSA or HRPII prior to infection with 2 x105 P. berghei ANKA. 

The experimental cerebral malaria model has variable penetrance, with a 40 to 100% lethality 

rate from cerebral malaria reported (de Oca et al., 2013; de Souza and Riley, 2002), defined as 

neurological symptoms and death at or below 10% parasitemia, by day 10 post infection. Mice 

infused with HRPII had a statistically significant increased incidence of neurological symptoms 

and early lethality compared to control mice (Fig 2.9D). The parasitemia of mice that died from 
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cerebral malaria-like symptoms was low, as expected (Fig 2.10), and importantly no differences 

were observed between mice infused with HRPII or control protein.  

As a further test of the role of HRPII in the cerebral malaria model, we generated 

transgenic P. berghei ANKA parasites that express HRPII. Insertion of the gene was confirmed 

by PCR, and sequence confirmed by TOPO-TA cloning and sequencing of the insert (Fig 2.11). 

Expression of HRPII was confirmed by quantitative ELISA. Levels of HRPII in the serum of 

mice at day 8 after infection were 100 to 200ng/mL (data not shown). Mice infected with 

transgenic parasites also had a more rapid time to death compared to those infected with the 

parental line (Fig 2.9E). 

 

Figure 2.11] Transgenic P. berghei ANKA parasites carry the gene for HRPII (A) PCR of 
HRPII from genomic DNA purified from whole blood of mice infected with wild -type P. 
berghei ANKA parasites (lane 1) or those engineered to produce HRPII (lane 2) using primers at 
the 5’ and 3‘ ends of the HRPII-GFP. (B) PCR to illustrate integration of HRPII from genomic 
DNA purified from whole blood of mice infected with wild -type P. berghei ANKA parasites 
(lane 1, 3) or those engineered to produce HRPII (lane 2, 4) using primers resting upstream of 
the 5’ 230p integration site (forward) and the end of GFP (reverse), lanes 1 and 2. Lanes 3 and 4 
use primers resting at the start of HRPII (forward) and post the 3’ integration site of 230p (rev). 
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HRPII treatment upregulates cytoadherence molecules on endothelial cells 

Cerebral malaria is accompanied by upregulation of cytoadherence molecules on the 

vascular endothelium (Hawkes et al., 2013; Madkhali et al., 2014; Storm and Craig, 2014). We 

assessed the surface expression of several relevant adhesion receptors on brain microvascular 

endothelial cells after treatment with HRPII. The expression of ICAM-1 and VCAM-1 was 

increased upon HRPII treatment (Fig 2.12). In contrast, E-selectin was not increased. ICAM-1 

expression levels and binding by parasites is known to be associated with severity of disease 

(Madkhali et al., 2014). 

 

 

Figure 2.12] Human brain microvascular endothelial cells exposed to HRPII display an 
increase in surface adhesion receptors.  Human brain endothelial cells were exposed to BSA 
or HRPII (10 µg) for 24 hours. Surface expression of cell surface adhesion receptor is measured 
by flow cytometry. Using a two tailed t-test, p< 0.03 for ICAM-1 and VCAM-1 expression, E-
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Selectin expression is not significantly different between BSA and HRPII treatment. 
Representative flow plots shown below each bar graph. 

 

2.4 Discussion 

BBB leakage during Plasmodium falciparum infection is a hallmark of CM. The 

pathophysiology underlying this effect, however, is poorly understood. Our study has identified 

HRPII as a parasite virulence factor that is recognized by the host innate immune system, 

activates the inflammasome and promotes redistribution of endothelial junctional proteins, which 

results in increased BBB permeability.   

P. falciparum parasites produce two highly homologous histidine-rich proteins: HRPII 

and HRPIII. Of the two, HRPII is produced abundantly whereas HRPIII is minor (Rock et al., 

1987). These proteins are exported by the parasite into the host erythrocyte and then gain access 

to the host bloodstream, largely after parasite rupture (Desakorn et al., 2005; Howard et al., 

1986; Rock et al., 1987). The Dd2 P. falciparum parasite strain produces only HRPIII and has a 

deletion in HRPII. Using this background strain, we generated transgenic parasites that express 

HRPII, and isolated two clones from independent transfections. Whereas parental Dd2 parasites 

caused minimal change in TEER in an in vitro human BBB model, the HRPII-expressing clones 

caused a substantial decrease in TEER, similar to that seen with the 3D7 P. falciparum isolate 

that endogenously expresses HRPII. Evidently, the small amount of HRPIII expressed in Dd2 is 

not sufficient to effect barrier disruption. HRPII, the major histidine-rich protein, appears to be 

responsible for this action on the endothelium.  

Several lines of experimental evidence suggest that a direct effect of HRPII is responsible 

for BBB leakage: (1)  P. falciparum strains that naturally carry the HRPII gene or have been 
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genetically modified to carry it can compromise the integrity of an in vitro BBB model; (2) 

purified native and recombinant HRPII can mediate decreased TEER directly; (3) a monoclonal 

antibody to HRPII neutralizes both the infected RBC-mediated and the isolated protein-mediated 

effects on TEER; (4) HRPII infusion at clinically relevant levels causes leakage of sodium 

fluorescein into the brain parenchyma of mice. This last statement is complicated by the 

pharmacokinetics of HRPII in mice and humans. While HRPII in humans can be detected 

roughly one month post clearance of parasites, in mice the half-life is roughly 24 hours. Despite 

this, vascular leakage was observed with infusion of HRPII that gave peak concentrations lower 

than those in human cerebral malaria.  

Assessment of transcriptional responses to HRPII suggested activation of the NF B 

pathway. Gene silencing and antagonist experiments confirmed a role for MyD88 and NF B in 

mediating the HRPII effect. Triplotide has been show to decrease expression of NFкB/p65 and 

increase expression of the cytosolic inhibitor IкB-α (Zeng et al., 2011; Zhu et al., 2009) Celastrol 

has been shown to decrease expression and translocation of NFкB/p65 to the nucleus as well as 

to diminish cleavage and activation of IкB-α (Ni et al., 2014; Yang et al., 2006). In the presence 

of these inhibitors we observed a significantly decreased drop in TEER from HRPII. However, 

we did not identify an upstream pathogen recognition receptor. Rather, additional studies 

suggested involvement of the IL-1 receptor, as we could block HRPII-mediated barrier 

disruption with IL-1Ra, a natural antagonist, or with antibody to IL-1β. IL-1β is a cytokine that is 

activated from its pro-form by caspase-1. Caspase-1 is auto-catalytically processed when 

molecules are brought in proximity by the inflammasome. Consistent with a key role for the 

inflammasome the HRPII effect on TEER also was abolished by silencing of caspase-1 or 

treatment of brain microvascular endothelial cells with a caspase-1 inhibitor.  



52 
 

Inflammasome activation has been implicated in malaria infections previously. 

Opsonization of parasitized red blood cells as well as pooled patient sera from P. falciparum 

infections was shown to activate the inflammasome in macrophages (Zhou et al., 2012). IL-1β 

has also been seen in histopathological sections from patients who died from cerebral malaria 

(Armah et al., 2005; Udomsangpetch et al., 1997). 

The data suggest a model for HRPII action on endothelial cells (Fig 2.13). HRPII 

accumulates in the bloodstream and binds to vascular endothelium via an unknown receptor. 

Downstream signaling allows for recruitment of inflammasome components, which activate 

caspase-1 resulting in cleavage of substrates including pro-IL-1β, yielding mature IL-1β. Active 

IL-1β is secreted, where it can bind to cell surface receptor IL-1R. IL-1R ligation transmits a 

MyD88-dependent signal that activates the transcription factor NF B. NFĸB translocates to the 

nucleus and induces transcription of many genes including cytoskeletal components, which can 

redistribute tight and adherens junction proteins (Al-Sadi et al., 2009; Al-Sadi et al., 2012; Al-

Sadi et al., 2010; Al-Sadi and Ma, 2007; Baumgartner et al., 2003; de Rivero Vaccari et al., 

2014; Kimura et al., 2009; Sollberger et al., 2014). Although there have been reports of tight 

junction rearrangement via an NFĸB-independent pathway (Zhu et al., 2012), we believe HRPII 

does not trigger this route as shRNA-mediated knockdown of NFĸB significantly inhibited 

HRPII-mediated barrier compromise. 
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Figure 2.13] Model for HRPII recognition by human brain endothelial cells and the 
intracellular pathway that leads to BBB leakage. (1) HRPII binds to a yet unidentified 
receptor (1) and is internalized (2). Inflammasome adaptor proteins associate with this endosome 
(3) and recruit procaspase-1, which is auto-catalytically activated (4). Active caspase-1 can 
cleave pro-IL-1 and pro-IL-18 into their mature forms (5). Mature IL-1β is secreted (6), such that 
it can now bind to the IL-1 receptor, IL-1R (7). Signaling through MyD88, the IL-1R activates 
NFĸB (8) as does downstream signaling from the inflammasome (9). NFĸB mediates 
transcription of inflammatory genes (10), including those effecting redistribution of tight and 
adherens junction proteins (11), resulting in a compromised blood brain barrier. 

 

HRPII was active in vivo, resulting in BBB leakage as well as an exacerbation of 

experimental CM when the protein was infused prior to infection or produced by transgenic 

rodent malaria parasites. Aspects of HRPII action help explain some differences between the 

pathophysiology seen in human CM and the experimental CM model. For example, tight 

junction protein redistribution is not observed in eCM, suggesting that vascular leakage in the 

rodent model occurs via an alternate mechanism than that observed in human pathology 
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(Mukhopadhyay and Gordon, 2004; Nacer et al., 2014). HRPII-mediated barrier compromise 

depends on caspase-1 activation of IL-1β, and IL-1β levels in the cerebrospinal fluid of patients 

correlates with disease severity (John et al., 2008) while it has been shown to be dispensable for 

the experimental CM model (Kordes et al., 2011). We propose that HRPII makes the P. berghei 

system more falciparum-like; our data suggests that this protein may be a significant contributor 

to human cerebral malaria.  Directly targeting HRPII may prove to be therapeutic. Attempts in 

the 1980s to use HRPII in Aotus monkey vaccination trials were encouraging, but follow up 

studies were equivocal (Enders et al., 1992; Knapp et al., 1992; Knapp et al., 1988; Kocken et 

al., 1998). Perhaps new studies informed by the proposed role in cerebral malaria could lead to 

development of a vaccine that prevents CM. It may also be practical to prevent the outcomes of 

HRPII by targeting upstream components of the pathway. Drugs targeting caspase-1 and IL-1 β 

are already in clinical use, and may be efficacious in cerebral malaria.  

Since causing CM is not likely to benefit the parasite, the question of why P. falciparum has 

evolved and maintained the HRPII gene is germane. One possible advantage for the parasite is 

that triggering an inflammatory pathway leads to upregulation of cytoadherence molecules on the 

endothelial surface. Cytoadherence allows the parasite to avoid clearance in the spleen and reside 

in a low-oxygen, high carbon dioxide environment. Parasite sequestration in the cerebral 

vasculature is hallmark feature of human CM and one that is largely absent in the murine 

experimental CM model. Other cytokines that are elevated in malaria such as TNF-  also 

upregulate surface adhesion molecules that are receptors for malaria (Tchinda et al., 2007; 

Turner et al., 1998). 

Several new questions arise from this work: What does HRPII bind to initiate the inflammatory 

process? Is HRPII synergistic with other P. falciparum virulence factors such as 
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glycosylphosphatidylinositol (Schofield et al., 2002). Does HRPII affect endothelium in other 

vascular beds in a similar manner? While our data strongly suggest that HRPII contributes to 

malaria pathogenesis by modulating the BBB, further mechanistic insight is needed to develop 

novel HRPII-dependent pharmacological strategies for disease control.  
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2.5 Materials and Methods 

 

Reagents 

Bovine serum albumin (BSA), reagent grade was purchased from Sigma. Lipopolysaccharide 

(LPS) from Escherichia coli O111:B4 was purchased from List Biologicals (catalog #201).  

Antibodies 

For confocal microscopy the following antibodies were used. Mouse αHRPII (2G12), a generous 

gift from Diane Taylor, was used at 1:100 dilution. Rabbit α-zona-occludin-1 from Invitrogen 

(40-2200) was used at 1:500 dilution. Goat anti-claudin-5 from Santa Cruz (sc-17667) was used 

at 1:100. VE-cadherin (Santa Cruz, sc-52751) was used at 1:100. 5 µg of anti-HRPII for 

neutralization for the TEER assays was purchased from Thermo Scientific (MA1-27094) while 

the isotype control was generated as described (Pal et al., 2013). Rabbit anti-IL-1β for 

neutralization in the TEER assay was from Rockland Immunochemical (209-401-301). Rabbit 

anti-caspase-1 for western blotting (Novus, NBP1-45433) was used at a 1:333 dilution. Rabbit 

anti-GAPDH (Abcam, ab37168) was used at 1:1000. Mouse anti-ICAM-1, -VCAM-1 and -E-

selectin (BD Biosciences, 555510, 555645, and 555648) were used at 1:500, 1:100 and 1:500 

dilutions, respectively. Armenian hamster anti-IL-1β for neutralization in vivo was purchased 

from Leinco and used at 300 µg/mouse one day before infusion of protein. 

Inhibitors  

Triplotide from Invivogen was resuspended at 10 mM in DMSO and used at a final 

concentration of 100 nM. Celastrol from Invivogen was resuspended at 4.4 mM in DMSO and 
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used at a final concentration of 8.8 µM. IL1Ra from Sigma was resuspended in water and used at 

a final concentration of 500 ng/mL. Caspase-1 inhibitor from Sigma (SML0429) was used at a 

final concentration of 80 µM.  

HRPII Purification 

The coding sequence for the mature form of HRPII (Chang et al., 2008) was PCR amplified from 

P. falciparum reverse-transcribed cellular RNA. The gene was cloned into a pET-15b vector 

(Novagen) without a tag. The vector was transformed into BL21(DE3) cells and HRPII 

production was induced using 0.4 mM IPTG at 16°C when the OD600 was between 0.6 and 0.8. 

HRPII was purified from E. coli lysate using batch nickel bead (Pierce, 88222) purification with 

a 250 mM imidazole wash and 1M imidazole elution in 20mM Tris, 500mM NaCl, pH 8.0. 

Following this, HRPII was exchanged into nickel column loading buffer (20 mM Tris, 500 mM 

NaCl and 50 mM imidazole) and loaded on a 5 ml nickel FPLC column (GE Healthcare, 17-

5248-02). Column-bound HRPII was then washed with 60 column volumes of Triton X-114 

wash buffer (20 mM Tris, 10 mM NaCl and 0.1% Triton X-114) to remove any residual LPS. 

Protein was washed subsequently on the column with 20 column volumes of loading buffer and 

then eluted with 1M imidazole buffer. All preparations of HRPII were tested for residual LPS 

levels using the commercially available LAL endotoxin test (Charles Rivers, R1708K); levels 

administered to mice were always less than 5EU/kg. Clean, fully active preparations of the 

protein were used for in vitro and in vivo experiments. Activity was measured using the Factor 

Xa assay developed previously (Ndonwi et al., 2011). Protein concentration was determined by 

BCA assay (Fisher, P123227). 

P. falciparum culture and transfection 
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HRPII was PCR amplified from genomic DNA from 3D7 parasites and cloned into the TOPO 

vector (Life Technologies). HRPII was inserted upstream of GFP in the tEOE vector under 

control of the Hsp86 promoter. This vector is a modified form of the tyEOE vector with the 

selectable marker human dihydrofolate reductase replacing the yeast dihydroorotate 

dehydrogenase selection cassette (Beck et al., 2014). For transfection, 160 μl of a 50% 

hematocrit RBC stock was electroporated with 100 μg of purified vector DNA and 50 µg of the 

transposon vector MRA912 and then infected with 3D7 schizonts (Balu et al., 2005). After 72–

90 h, 10 nM WR99210 was added to the medium for drug selection and plasmid maintainence. 

Parasites were grown under selective pressure for four weeks and then cloned out in a 96 well 

plate at 0.5 parasites/ well. Clones were screened by PCR. 

In vitro BBB Cultures and TEER recordings 

In vitro BBB cultures were prepared as previously described (Daniels et al., 2013). Briefly, 105 

hCMEC/D3 cells (Weksler et al., 2005) were cultured on the apical side of a 0.9 cm2 fibronectin-

coated polyethylene terephthalate filter insert with 3.0 μm porosity (BD Falcon) for 4 to 6 days 

in supplemented endothelial basal medium with 1 ml in the upper chamber and 1.5 ml in the 

lower chamber. Components for assessment (protein, chemical inhibitors, and parasitized 

erythrocytes) were added to the apical chamber immediately after determining baseline values 

for each well. Resistance recordings were measured via chopstick electrode with an EVOM 

voltmeter (World Precision Instruments). Resistance values are reported as Ω/cm2 (recorded 

values minus values for cell-free inserts).  

shRNA knockdown and TEER 
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105 hCMEC/D3 cells were cultured on the apical side of a 0.9 cm2 fibronectin-coated 

polyethylene terephthalate filter insert with 3.0 μm porosity (BD Falcon). Twenty-four hours 

later cells were transfected with 500 ng of shRNA with Lipofectamine 3000 at a 1.5:1 ratio of 

Lipofectamine to DNA. Cells were then incubated for 36 hours. At that time, fresh warm 

medium was added and then allowed to equilibrate for 30 minutes prior to taking baseline TEER 

measurements. HRPII was then added and TEER measurements recorded over 24 hours. 

shRNAs for each gene were purchased from Origene : Myd88 (TG311320), NFкB (TR318700), 

Caspase-1 (TG305640), TLR9 (TR301076), TLR5 (TR308792), TLR2 (TR320553); of the four 

shRNAs received from the vendor, 2-3 were used based on silencing efficiency in pilot studies. 

One additional shRNA was used for MyD88 from Invivogen (ksirna42-hmyd88). All gene 

silencing was performed using Lipofectamine 3000 at a ratio of 1.5: 1. Silencing efficiency for 

all assays was determined by qRT-PCR. 

Quantitative RT-PCR 

Total RNA was isolated from treated or untreated cultured hCMEC/d3 cells by using the RNeasy 

kit according to the manufacturer's instructions (Qiagen, http://www.qiagen.com/). During the 

isolation, to remove any contaminating DNA, samples were treated with RNAse-free DNAse 

(Qiagen). mRNA was quantified from total RNA by qRT-PCR as previously described (Samuel 

and Diamond, 2005). PrimeTime qPCR primers and probes were purchased from IDT and used 

to amplify human IL-1β, IL-6, CCL5, IFNα, IFN-β, Myd88, TLR-2, TLR-5, TLR-9, NFĸB, and 

caspase-1 mRNA using the following assay IDs: IL-1β, Hs.PT.58.1518186; IL-6, 

Hs.PT.58.39866843.g; CCL5, Hs.PT.58.1724551; IFN-β, Hs.PT.58.39481063.g; IFN-α, 

Hs.PT.58.46311748.g; GAPDH, Hs.PT.39a.22214836; Myd88, Hs.PT.58.40601199.gs; TLR-2, 

Hs.PT.58.21312907; TLR-5, Hs.PT.58.38446229; TLR-9, Hs.PT.58.40576968; NFĸB, 
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Hs.PT.58.892624; caspase-1, Hs.PT.56a.39122258.g. To analyze the relative fold induction of 

amplified mRNA, GAPDH mRNA expression levels also were determined and normalization 

was performed using the Ct method as described previously (Samuel and Diamond, 2005). 

 

Mouse Model for Cerebral Malaria 

Four week-old female mice C57BL6 were purchased from Taconic. Animals were housed under 

pathogen-free conditions. All experiments were approved by and performed in compliance with 

Animal Studies guidelines at Washington University in St Louis. Mice were given intravenous 

retro-orbital injections of 50 µg of HRPII or BSA, in 100 µl of PBS approximately 12 hours 

prior to infection while under anesthesia. The mice were then anesthetized again for intravenous 

inoculation of P. berghei ANKA parasites (105 parasites in 100 µl) via retro-orbital injection   

Parasitemia of stock mice for making the infection cocktail was determined by blood smear by 

manually counting at least 2,000 cells; stock mice were used with parasitemias below 3%. 

Transgenic P. berghei 

Passage 2 P. berghei ANKA parasites were purified from 5 mice at close to 1% parasitemia by 

collecting blood via intracardiac puncture. In vitro schizonts were generated by incubating in a 

shaking (65 x rpm) gassed chamber at 5% CO2, 5% O2 and 90% N2 at 37⁰C in RPMI, 20% FCS 

with gentamicin. Next day maturation of schizonts was confirmed by blood smear and schizonts 

were purified across four 50 mL tubes filled with 35 mL of culture. This was done by placing a 

10 mL 55% Histodenz column under each and spinning tubes at 200 g with no brake for 25 

minutes; the schizont layers were pooled. 5 x107 purified schizonts were transfected with 10 µg 

of pL1694 (Annoura et al., 2014) + HRPII-GFP linearized with Bcl1 and Sap1 in 100 µl of 
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Nucleofector solution using an Amaxa Nucleofector on program U-033. Transfected parasites 

were injected immediately via tail vein injection into 6-8 week old female Swiss Webster mice. 

Mice were treated with pyrimethamine in their drinking water at 7 mg/mL starting the next day 

for 1 week to select for integrants. Blood was collected from mice via cardiac puncture and 

frozen. Single clones of transfected parasites were generated by infection of 20 mice at 1 

parasite/mouse, and mice were screened by PCR for correct genetic manipulation. 

TOPT-TA Cloning and sequence confirmation of transgenic P. berghei clone 

Genomic DNA was purified from whole blood from an infected Swiss Webster Mouse at ~5% 

parasitemia using the Quiagen Genomic DNA kits (51106) as described. The fragment between 

230p 1455 and 5527 was PCR amplified using the Pfu Polymerase (Agilent Tech, 600380) as 

described in the manufacturer’s instructions. The PCR-amplified product was TA cloned into the 

TOPO vector as described in the manufacturer’s instructions (Life Technologies, 450030) and 

the sequence verified. 

In vivo assessment of BBB permeability 

Two intravenous injections of HRPII (200 µg in 100 ul) were given 24 hours apart by retro 

orbital injection to 4 week old female C57BL/6J mice from Jackson Labs. 48 hours post initial 

injection, the mice were injected IP with 100 ul of 100 mg/ml of sodium fluorescein salt (Sigma-

Aldrich) in sterile PBS. After 45 minutes, mice underwent extensive cardiac perfusion with PBS, 

followed by collection of blood and harvesting of CNS tissues. Tissue homogenates and serum 

were incubated overnight at 4°C at 1:1 dilution in 2% trichloroacetic acid (Sigma-Aldrich) to 

precipitate protein, which was pelleted by 10 minute centrifugation at 16,100 x g at 4°C. 

Supernatants were diluted in equal volumes of borate buffer, pH 11 (Sigma-Aldrich). 
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Fluorescence emission at 538 nm was determined via a microplate reader using Synergy™ H1 

and Gen5™ software (BioTek Instruments, Inc.). Tissue fluorescence values were standardized 

against plasma values for individual mice. In some mice, anti-IL-1β antibody or isotype control 

(300 ug each) were administered on day one before HRPII infusion. 

Immunocytochemical and immunohistochemical analysis 

Immunocytochemical analysis on hCMEC/d3 or Caco-2 cells was performed after 10 minute 

fixation in ice-cold methanol, followed by blocking for 1 hour in 3% BSA in PBS at RT. Cells 

were then incubated with primary antibodies to ZO-1, claudin-5, and VE-cadherin in blocking 

buffer for 1 hour at RT, washed 3x in PBS, then incubated for one hour in secondary 

AlexaFluor antibodies in blocking buffer at RT. Slides were washed extensively, followed by 

staining with TOPRO at 1:500. Sections were sealed with ProLong Gold antifade and then 

images acquired by confocal microscopy (Carl Zeiss USA).  

TUNEL staining  

Terminal deoxynucleotidyl transferase–mediated BrdUTP nick end labeling using TUNEL assay 

kit (Roche, 12156792910) was performed on paraformaldehyde-fixed hCMEC/d3 cells that had 

been treated with 25 μg HRPII, control protein or 3 μg LPS for 24 hours, as indicated in the 

manufacturer’s instructions. 

HRPII ELISA for quantification  

HRPII was quantified in mouse sera using an ELISA as previously described (Gitau et al., 2013).  
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Cerebral malaria (CM) is a disease of the vascular endothelium caused by Plasmodium 

falciparum. It is characterized by parasite sequestration, inflammatory cytokine production and 

vascular leakage. A distinguishing feature of P. falciparum infection is parasite production and 

secretion of histidine-rich protein II (HRPII). Plasma HRPII is a diagnostic and prognostic 

marker for falciparum malaria. Using a human cerebral microvascular endothelial blood-brain 

barrier model, we demonstrate that HRPII activates the inflammasome, resulting in redistribution 

of tight junction proteins and compromise of barrier integrity. Intravenous administration of 

HRPII induces vascular leakage in the brains of mice and increased early mortality in P. berghei 

experimental cerebral malaria. Transgenic P. berghei expressing falciparum HRPII display 

enhanced disease severity. HRPII induces endothelial expression of adhesion receptors, 

suggesting that this protein also contributes to pathogenesis by enhancing parasite 

cytoadherence. We propose that HRPII is a virulence factor that contributes to cerebral malaria 

by compromising blood-brain barrier integrity and promoting parasite sequestration in the brain 

microvasculature. 

Toxic mediators have been known to be released during a P. falciparum infection (Clark and 

Cowden, 2003; Schofield et al., 2002). Furthermore, addition of cultured P. falciparum parasites 

to brain endothelial cells compromises barrier integrity, with parasites as well as with soluble 

released components (Tripathi et al., 2007). Although many factors have been suspected as a 

toxic mediator in P. falciparum infection, none have been convincingly shown. The studies 

compromising this thesis provide a new framework for thinking about HRPII, a protein formerly 

considered simply a diagnostic marker for Plasmodium sp. infection, to a toxic virulence factor. 

We have worked backwards up the pathway and found that HRPII activates an inflammatory 
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response in brain endothelial cells that is mediated by NFĸB and dependent on MyD88. The 

pathway activates the inflammasome as it produces IL-1β and is caspase-1 dependent.  

Having identified HRPII as a protein of interest there is a considerable amount of work to be 

done if we want to target it therapeutically in the context of a malarial infection. First, it would 

be enlightening to use the transgenic P. berghei ANKA lines to pursue further pathophysiological 

studies in mice. Do the parasites that produce HRPII also cause a rearrangement of tight junction 

proteins in the mouse brain, similar to that observed in human pathology or the human brain 

endothelial cell in vitro studies? Do we see increased blood brain barrier leakage using 

fluorescein as a vascular tracer when mice are infected with the transgenic parasites compared to 

wild- type parasites? Will we observe an altered immune response with the transgenic parasites, 

both in terms of the kind of cells activated as well as the kinetics of the response? Our in vitro 

studies showed that there was an up-regulation of surface adhesion markers such as ICAM-1 and 

VCAM-1 on the brain endothelial cells by flow cytometry. Does this increase in surface display 

have functional relevance in terms of parasite adhesion to endothelial cell monolayers? This can 

be tested by lateral flow of P. falciparum parasites on an HRPII activated endothelial cell 

monolayers. Furthermore, does HRPII also cause increased surface display of ICAM-1 and 

VCAM-1 on murine cerebral vasculatures? If so, do we see an increase in sequestered parasites 

in the infected mouse vasculature?  

In preliminary studies, we visualized small vesicles in the human brain endothelial cells staining 

for HRPII, indicating that HRPII is internalized into the cell from the cell surface. How is the 

protein internalized? Is internalization receptor-mediated? A schematic of where the receptor 

would fit in our model is shown below in figure 3.1. If so, does this receptor also serve as the 

molecular sensor for inflammasome activation? The molecular sensor that HRPII binds to 
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allowing association with the inflammasome is also not identified.  Identification of the receptor 

or the molecular sensor could be initiated with immunoprecipitation (IP). An IP done with the 

correct conditions could identify such a protein. This interaction could be corroborated with 

reciprocal IPs as well as knockdowns of the protein to see if functional consequence of HRPII 

could be abrogated. If HRPII activity could be halted in the absence or reduction (from 

knockdown) of the sensor/ receptor then a point of intervention could be identified. Early 

evidence, via co-immunofluorescence, lead us to suspect that the thrombin receptor PAR-1 may 

be this mystery receptor. In addition, knocking down the PAR-1 receptor with shRNAs also 

reduced the drop in electrical resistance seen from HRPII. However, qPCRs of various pro-

inflammatory cytokines and chemokines in the presence of a synthetic inhibitor of the PAR-

1receptor showed that suppression of the receptor is actually anti-inflammatory. Since our work 

has identified that NFĸB is activated in the presence of HRPII, a nonspecific anti-inflammatory 

event such as an inhibitor of PAR-1or knocking down PAR-1 mRNA by shRNA could 

inadvertently prevent the blood brain barrier compromise we observe from HRPII, rather than 

the effect being mediated by a specific event. However, further follow-up studies are needed to 

make a conclusive call. If the PAR-1 receptor is not the receptor or molecular sensor, we will 

continue to pursue optimizing conditions for immunoprecipitation to identify the molecule in 

question.  
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Figure 3.1] Model for HRPII recognition by human brain endothelial cells and the 
intracellular pathway that leads to BBB leakage. (1) HRPII binds to a yet unconfirmed 
receptor that may be the thrombin receptor PAR-1 (1) and is internalized (2). Inflammasome 
adaptor proteins associate with this endosome (3) and recruit procaspase-1, which is auto-
catalytically activated (4). Active caspase-1 can cleave pro-IL-1 and pro-IL-18 into their mature 
forms (5). Mature IL-1β is secreted (6), such that it can now bind to the IL-1 receptor, IL-1R (7). 
Signaling through MyD88, the IL-1R activates NFĸB (8) as does downstream signaling from the 
inflammasome (9). NFĸB mediates transcription of inflammatory genes (10), including those 
effecting redistribution of tight and adherens junction proteins (11), resulting in a compromised 
blood brain barrier. 

 

It is of evolutionary intrigue to consider why a parasite would carry a protein that is toxic to its 

host. Amongst the parasites that infect humans, HRPII is only present in P. falciparum, with no 

homologous proteins in the other four parasite species. Is this because it was never in the genome 

of other species, or was it lost because it was a disadvantageous to the parasite? Does HRPII 

make P. falciparum the most virulent of the species? Some insight into these questions may be 
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provided by studying the homologous histidine rich proteins in Plasmodium species that infect 

primates: P. reichenowi and P.  gaboni. It would be fascinating to explore if these evolutionary 

ancestors are functionally similar to the P. falciparum protein, particularly considering that these 

are the only known homologs in any organism. To study this we have cloned these genes, and 

have transfected them into a P. falciparum parasite line that does not have HRPII. Preliminary 

TEER experiments with recombinant protein showed a small compromise in barrier integrity; 

however these preparations were not clean from LPS. Protein preparations clean from LPS may 

reveal limited compromise in barrier integrity considering that the impure batches shown small 

differences. It will also be exciting to see what similar experiments with the parasite lines 

containing primate HRPII will reveal. In addition we will perform growth curves with these are 

the parasite lines producing HRPII in isogenic backgrounds to determine whether HRPII protein 

production by the parasite shows any change in growth- either an advantage or disadvantage.  

Pursuing these studies is sure to yield more burning questions. It will be exciting to see if the 

future holds a place for therapeutics targeted at HRPII either the protein directly or a step in the 

pathway of its activity. Directly targeting HRPII may prove to be therapeutic as it would reduce 

many of the consequences of infection BBB leakage and parasite sequestration or eliminate them 

if HRPII is the only protein that causes these effects. Attempts in the 1980s to use HRPII in 

Aotus monkey vaccination trials were encouraging, but follow up studies were equivocal (Enders 

et al., 1992; Knapp et al., 1992; Knapp et al., 1988; Kocken et al., 1998). Perhaps new studies 

informed by the proposed role in cerebral malaria could lead to development of a vaccine that 

prevents CM. It may also be practical to prevent the outcomes of HRPII by targeting upstream 

components of the pathway. Drugs targeting caspase-1 and IL-1 β are already in clinical use, and 

may be efficacious in cerebral malaria.  
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