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In 1987 presolar grains were first isolated from meteorites, opening up a new line of data about 

the stars that produced them. Based on anomalies in isotopic ratios, identification and 

classification of presolar grains has borne great fruit in understanding nucleosynthesis, stellar 

evolution, and mass loss from the stellar objects in which these grains originated: primarily, but 

not exclusively, supernovae and asymptotic giant branch stars. 

Meteoritic nanodiamonds were the first type of presolar grain identified, but more than three 

decades later, their origins remain unclear. Anomalies in the ratios of Xe isotopes carried by the 

nanodiamonds suggest the nanodiamonds formed from supernova material, but, measured in 

bulk, the ratios of 
12

C/
13

C and 
14

N/
15

N are consistent with formation in the solar system. 

Nanodiamonds are ~3 nm in diameter and contain only a few thousand atoms each, such that it is 

impossible to measure the isotopic ratios of single grains with traditional techniques. 

A multi-part experimental approach has allowed me to investigate the origins of meteoritic 

nanodiamonds. I use statistical studies with nanoscale secondary ion mass spectrometry of 

thousands of small aggregates of nanodiamonds to put upper limits on the fraction of them that 
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can have non-solar ratios of the stable isotopes 
12

C and 
13

C and to detect isotopically anomalous 

statistical outliers. I also continue a collaborative work to measure the ratio of 
12

C/
13

C in 

individual nanodiamonds. This work adapts the experimental technique of atom-probe 

tomography from materials science to presolar grain research, and to that end my collaborators 

and I have worked extensively to mature the experimental procedures. I use focused ion beam 

sample preparation and correlated secondary and transmission electron microscopy to 

characterize samples before and after atom-probe isotopic analysis. 

These studies characterize the likelihood of various origins for individual and small clusters of 

nanodiamonds and accompanying disordered C, based on ratios of 
12

C/
13

C isotopes. The results 

are consistent with solar system formation for most nanodiamonds, although they do not 

necessarily rule out a large fraction of supernova grains with isotopic anomalies averaging close 

to the solar system value. The data suggest that a small subset of nanodiamonds have large 

isotopic enrichments in 
13

C relative to 
12

C. Supernovae are favored due to their production of the 

Xe isotopes, although J-star or novae could also produce this isotopic anomaly. 
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Chapter 1: Introduction 
This chapter outlines the scientific context for the subsequent chapters. Section 1.1 introduces 

presolar grain research, a subfield of space sciences, in the broader context of astrophysics and 

nucleosynthesis. Section 1.2 describes the current state of our knowledge of meteoritic 

nanodiamonds, one type of potential presolar grain, as well as its astrophysical and 

nucleosynthetic context. Particular attention is given to how the spatial resolution of mass-

sensitive experimental techniques limits studies. Section 1.3 outlines the contents of the 

remaining chapters. 

1.1 Presolar grains 
Nucleogenesis, the creation of the chemical elements, takes place in a number of nucleosynthetic 

processes. Big Bang nucleosynthesis describes the production of H, He, and a small amount of Li 

as cooling nucleons confined to a small universe bond through the strong force. This accounts for 

only a small fraction of the atomic mass in the observable region of the universe. The remaining 

atomic matter, including all elements of atomic number six and higher, was produced by the 

fusion of nuclei inside stars (Burbidge et al. 1957). Supernova explosions and stellar winds – 

especially outflows from late-type stars – inject this material back into the interstellar medium. 

While most of the matter is in a gaseous state, a small fraction condenses into grains of dust as it 

moves through cooling, expanding regions of outflows and nebulae. These grains are subject to 

various alteration processes. Implantation of material by supernova shock can damage crystal 

structures, amorphize or ablate material, and may implant heterogeneously and preferentially 

based on grain size. At length these “presolar grains” form part of the protosolar nebula. During 

the formation of the solar system and subsequent planetary (parent-body) processes, the vast 
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majority of the gas and dust in the nebular cloud is homogenized at the atomic level, erasing the 

isotopic signatures of potentially millions of stars and replacing them with average ratios of 

stable isotopes similar to what we measure today on the earth, in the sun, and in the rest of the 

solar system. Later radioactive decay of unstable nuclides, mass dependent fractionation during 

physical and chemical processing, and irradiation, can modify the composition and distribution 

of isotopes in the solar system by a few parts per thousand. However, a few grains escape 

homogenization and maintain their original isotopic signatures, varying from the mean solar 

system isotopic ratios by up to four orders of magnitude (Zinner 2014). These presolar grains are 

represented in primitive materials such as comets and asteroids. Some of this material is 

recovered by meteorite searches and finds, interplanetary dust particle (IDP) collection in the 

Earth’s stratosphere (Bradley et al. 1988), and extraterrestrial sample return missions such as 

NASA’s Stardust mission to comet Wild 2 (Brownlee 2014). Thus, we have the unparalleled 

opportunity to study dust grains from distant stars in a laboratory environment.  

The survival of presolar grains in material available on the Earth was first hypothesized as an 

explanation for the presence of isotopically anomalous trace elements, liberated from their 

meteoritic carrier phases during bulk stepped heating (Boato 1954). Isotopic anomalies were 

identified (e.g., Clayton 1963; Clayton et al. 1973) and traced through various subdivisions of 

meteoritic material using a complex regime of dissolution (crushing and freeze-thaw 

disaggregation) size, mass, and density separation by sieving, settling, ultracentrifugation, 

ultrasonication, and acid dissolution of all but the most refractory phases (Amari et al. 1994).  

Finally, a fraction composed of ~3 nm diamond crystals was separated as a colloid and identified 

by transmission electron microscopy (Lewis et al. 1987; Lewis et al. 1989). These meteoritic 
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nanodiamonds were the carrier of the isotopically anomalous component, Xe-HL, and were the 

first type of presolar grain identified. 

A number of other presolar grain types have been subsequently separated and identified (Table 

1.1). We briefly identify the major types here, although this is not an exhaustive list. For 

discussion and additional references see Zinner 2014. For compiled data on presolar grains see 

the presolar grain database (Hynes and Gyngard 2009, 

http://presolar.wustl.edu/Laboratory_for_Space_Sciences/Presolar_Grain_Database).
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Table 1.1 Presolar grain types and basic features.
a
 

 

Type Abundance
b
 Identifying anomalies

c
 Size

d
 Stellar sources 

Diamond 1400 ppm Xe(HL) 2–3 nm Supernovae? 

Silicon carbide 150 ppm Si, C, N, Al, O, Ne, Xe 0.1–20 µm AGB, supernovae, J-stars, novae, 

born-again AGB 

Graphite 1–2 ppm C, Ne 1–20 µm Supernovae, AGB, born-again 

AGB 

Silicates in IDPs > 1.5% O 0.2–1 µm Red giant, AGB, supernovae 

Silicates in 

meteorites 

> 220 ppm O 0.2–0.9 µm Red giant, AGB, supernovae 

Oxides > 80 ppm O 0.15–3 µm  Red giant, AGB, supernovae, 

novae 

Silicon nitride ~3 ppb Si, N, Al 0.3–1 µm Supernovae 

Ti, Fe, Zr, Mo 

carbide subgrains 

Very low Condensation sequence 10–200 nm AGB, supernovae 

Kamacite, iron 

subgrains 

Very low Condensation sequence ~10–20 nm Supernovae 

 

a
 Adapted from Zinner (2014). 

b
 Abundances vary by meteorite; the maximum observed value is given here. 

c
 A non-exhaustive list of elements and noble gas components with anomalies that commonly 

demonstrate these grains are presolar. Subgrains within other presolar grains are identified as 

presolar primarily but not exclusively based on the inferred condensation sequence. 

d
 The range of grain diameters commonly observed. There are some exceptional grains that lie 

outside of these ranges.
 

Presolar silicon carbide (SiC) is the best-studied type of presolar grain. These grains are 

separated from chondrites by acid dissolution or freeze-thaw disaggregation, or studied in situ in 

polished sections or by focused ion beam (FIB) liftout. Presolar SiC grains are the third most 
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abundant type of presolar grain, behind nanodiamonds and silicates. While they usually range in 

size from 0.1–20 µm (Zinner 2014 and references therein), they have been observed in sizes at 

least as small as meteoritic nanodiamonds (3 nm) (Lewis et al. 1989) and one grain, Bonanza, is 

roughly 30 µm across (Zinner et al. 2010). Presolar SiC grains are subdivided into a number of 

types, based on isotopic anomalies in Si, C, N, Al, and a host of trace element isotopes. Trace 

elements either co-condensed, were implanted later, or are hosted by a subgrain with a formation 

history of its own (Hynes et al. 2010). Different types of presolar SiC have been categorized 

based on their isotopic contents: Mainstream grains comprise the vast majority of SiC grains. 

They have 
12

C/
13

C ratios ranging from approximately 10–100, with a mean value near 
12

C/
13

C = 

50, and are attributed to asymptotic giant branch (AGB) stars. A and B grains comprise roughly 

5% of presolar SiC. With 
12

C/
13

C < 10, they have traditionally been attributed to J-stars or born-

again AGB stars, although it has more recently been suggested that they could have originated 

from supernovae (Liu et al. 2016; Nittler and Hoppe 2005). X grains comprise approximately 1% 

of the presolar SiC grains and are attributed to Type II supernovae due to various enrichments in 

isotopes such as N, Si, and Al. They have 
12

C/
13

C ratios that range roughly from 10–1000 (Amari 

et al. 1992; Besmehn and Hoppe 2003; Hoppe et al. 1996; Hoppe et al. 2000; Lin, Gyngard, and 

Zinner 2010; Nittler et al. 1996). Y grains (Amari et al. 2001a; Hoppe et al. 1994; Nittler and 

Alexander 2003) and Z grains (Hoppe et al. 1997; Nittler and Alexander 2003; O’D Alexander 

1993) are from AGB stars and carry different anomalies in N, C, and Si. Each comprises roughly 

1% of studied presolar SiC grains. N grains form a miniscule fraction of the presolar SiC 

inventory. With 
12

C/
13

C < 10, they have been attributed to novae, but this has recently been 

challenged, with supernova origins being given as an alternative (Liu et al. 2016; Nittler and 
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Hoppe 2005). C grains are 
13

C-depleted compared to the solar system and have a possible 

supernova origin. Only a few C grains have been identified. 

Presolar graphite grains are one of the least abundant types by mass, 1000 times less abundant 

than nanodiamonds and 10 times less abundant than SiC. They are more refractory, i.e., more 

resistant to melting or chemical dissolution, than most chondrite matrix materials, such that they 

can be isolated by acid dissolution of less refractory materials, and they are larger than many 

presolar grain types. As a result, they are the second best studied type of presolar grain in spite of 

their low concentration compared to, for example, silicates, which are both too fragile and too 

small for many isolation and characterization techniques. Presolar graphite is found in two 

varieties, low-density and high-density, as well as in two general structure types, “onion” 

structure and “cauliflower” structure. Both low- and high-density graphite grains have been 

observed with a broad range of C isotopic ratios, but low-density grains are more often observed 

with 
13

C enrichments relative to 
12

C, and probably have a supernova origin (Zinner et al. 2006), 

while high density grains are more often observed with 
13

C depletions relative to 
12

C, with 

probable origins in low-metallicity AGB stars (Amari 2003; Amari et al. 2005; Jadhav et al. 

2006, 2013). A small fraction of graphite grains may originate in novae (Amari et al. 2001b). 

~40% of the presolar graphite grains in the presolar grains database are low-density, which may 

be used as a rough estimate of the fraction of presolar graphite that was created in supernova 

explosions. 

Presolar silicates are the second most abundant presolar grain type, but they are smaller and more 

fragile than presolar graphite and SiC, and are hidden amongst an overwhelming majority of 

solar silicate material. As a result they were not discovered for almost two decades after the 

isolation of the first presolar grains in 1987; however, large numbers of silicates have been well-
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characterized in the past decade after significant technical advances, most notably the NanoSIMS 

50 nanoscale mass spectrometer. The ease of alteration of these grains means that, once presolar 

survivors are found, large amounts of information can be gained from studying the degree of 

alteration in their structural and compositional features. Presolar oxides are lower in 

concentration than the other types of presolar grain described thus far, but were discovered prior 

to the silicate grains. Presolar oxides (Nittler et al. 1997), and later silicates (Floss and 

Haenecour 2016), have been subdivided into the same four groups based primarily on O isotopic 

ratios. Three of the groups carry isotopic signatures from AGB or other red giant stars. The 

fourth carries evidence of supernova formation (Floss and Haenecour 2016; Nittler et al. 2008). 

Several other types of presolar grains have been detected in very small numbers. Among these 

are kamacite and iron grains. Titanium, vanadium, aluminum, iron, zirconium, and molybdenum 

carbides have been found, often as subgrains in graphite (Hynes and Gyngard 2009; Zinner 

2014) or SiC (Hynes et al. 2010) grains. 

1.2 Nanodiamonds 
Nanodiamonds are the primary type of presolar material studied in this dissertation, and therefore 

merit a more detailed discussion. Indeed, the lines of evidence for the grains’ origins are 

complex, the strength of various arguments is subjective, and the implications of the 

nanodiamonds’ origins could have a significant impact on our understanding of the early solar 

system, the interstellar medium, and/or supernovae explosions. It is the complex and potent 

nature of this question that motivated this research. 

Studies have established that nanodiamonds are present in meteorites at levels up to 1400 ppm 

by mass, making them the most abundant type of presolar grain discovered (Zinner 2014). 
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Nanodiamonds have a log-normal size distribution with a median size of ~3 nm in several 

carbonaceous chondrite meteorites (Daulton et al. 1996). Daulton et al. (1996) also noted a high 

frequency occurrence of twinning, suggestive of formation by chemical vapor deposition, 

consistent with low pressure formation in a stellar atmosphere (Lewis et al. 1989). Model fitting 

of EELS data from the nanodiamonds predicted that on the order of half the carbonaceous acid 

residue is disordered C (Bernatowicz et al. 1990). Aberration corrected scanning transmission 

electron microscopy studies confirmed the presence of a significant amount of disordered C, 

specifically sp
2
-bonded sheet fragments in which the nanodiamonds are embedded (Stroud et al. 

2011). It is unknown if the nanodiamonds were associated with the sheets in situ in the host 

meteorites, or if the sheets were originally organized in layers or spheres and damaged by the 

separation process. It is possible that the disordered C sheets observed in the laboratory are 

fullerene shells that have been altered and damaged by solar system, parent body, and laboratory 

processing. 

Nanodiamonds are the carrier of the Xe-H and Xe-L anomalous isotopic fractions, since dubbed 

Xe-HL (Figure 1.1). Xe-H is enriched in the heavy Xe isotopes 
134

Xe and 
136

Xe relative to solar 

system values. Xe-L, in turn, is enriched in the light Xe isotopes 
124

Xe and 
126

Xe. Xe-L is a 

predicted product of the p-process or proton capture nucleosynthetic process, while Xe-H is a 

product of the r-process or rapid neutron capture process. These processes both occur in 

supernovae, so it was believed that whatever meteoritic phase carried Xe-HL was presolar and 

had either condensed from, or been implanted by supernova material (Jorgensen 1988; Clayton 

1989; see Section 1.2.2: Type II supernovae, for further discussion of this candidate for 

nanodiamond origins). 
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Figure 1.1 Xe-HL isotopic anomalies in nanodiamonds (Huss and Lewis 1995) relative to solar system abundances 

(Pepin et al. 1995). Normalization is to 
130

Xe. Figure taken from Arnould and Goriely (2003) with permission.  

 

Because the nanodiamonds are mixed with disordered, sp
2
-bonded C in the acid residues, the 

interpretation of the Xe-HL component is complex. While Xe-HL might be evenly distributed 

throughout the carbonaceous residue, it might also be predominately or exclusively associated 

with the nanodiamonds or the disordered C. 

A further complication is that the major element isotopic composition of the bulk nanodiamonds 

is normal, adding complexity to interpreting the isotopic evidence for their origins. 

Since the isotopic anomalies encountered on Earth are usually very small fractional deviations 

from standard values, they are described as per mille or per mil (‰) deviations in the less 

abundant of the two stable isotopes in a ratio, called the deviation or “delta” value for a given 

isotope. Hence the deviation from the standard 
12

C/
13

C ratio is denoted as δ
13

C and is calculated 

as 
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  𝛿 𝐶13 = (

(
𝐶13

𝐶12 )
𝑠𝑎𝑚𝑝𝑙𝑒

(
𝐶13

𝐶12 )
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

− 1) ∗ 1000 (1.1) 

Positive delta values indicate a relative enrichment of the isotope in question and negative delta 

values represent a relative depletion. Note that the reference ratio must be known in order for this 

measure to be quantitatively useful. 

Swart et al. (1983) measured the δ
13

C of the carbonaceous Xe-HL carrier in Allende to be -32‰ 

to -38‰ from terrestrial. Verchovsky (1998) measured Efremovka (CV3) acid residues by 

stepped heating and detected delta values ranging from -26.0‰ to -36.8‰. 

Nitrogen is the most common substitutionary element, >1% by weight (Russell, Arden, and 

Pillinger 1991; Russell, Arden, and Pillinger 1996). δ
15

N has been measured to go as low as -

350.4±1.0‰ to -247.4±2.3‰ in nanodiamond-containing carbonaceous residue from primitive 

chondrites (Russell, Arden, and Pillinger 1996). This is a significant anomaly from terrestrial 

values; however, it is close to values measured for Jupiter (-374±82‰, (Owen et al. 2001)), and, 

more recently, the solar wind (δ
15

N = -407±7‰ from the Genesis spacecraft) and the bulk sun (-

383±8‰, derived from the Genesis measurement (Marty et al. 2011)), where the reference is N2 

from Earth’s atmosphere. 

Therefore, it is apparent that both the C and N isotopic compositions of the nanodiamonds are 

consistent with those that are found in solar system material. 

Isotopic anomalies in other trace elements in addition to Xe are present in the nanodiamond-

containing acid residues. High-sensitivity pyrolysis has detected significant isotopic anomalies in 

the r-process isotopes 
128

Te, 
130

Te (Maas et al. 2001; Richter et al. 1998), and 
110

Pd (Maas et al. 
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2001). Small enrichments have been reported in the r-process elements 
135

Ba and 
137

Ba, but low 

concentrations precluded measurement of the p-process elements 
130

Ba and 
132

Ba (Lewis et al. 

1991). However, the same study found no enrichment of the r-process isotope 
88

Sr, confounding 

the issue of whether all the trace elements were from an r-process source. 

The abundance of Xe-HL in the nanodiamond-containing acid residues is such that only one in a 

million nanodiamonds would be required to host an atom from the Xe-HL reservoir. If ion 

implantation, rather than co-condensation, is the mechanism for trace element inclusion in the 

nanodiamonds, it is likely that not every nanodiamond was implanted by an ion, certainly not by 

many ions, as even the inclusion of one Xe atom in the diamond-bonded C structure will 

significantly destabilize such a small grain. Thus one expects the ratio of presolar nanodiamonds 

to trace element atoms to be significantly greater than one and the fraction of presolar 

nanodiamonds to be significantly greater than one in a million. 

If all of the anomalous components are taken into account, the fraction of nanodiamonds 

required to be carriers rises to about one in ten (Huss and Lewis 1994a, 1994b, 1995; Huss et al. 

2008; see Huss (2005) for an overview of the topic). The strength of the evidence for presolar 

production of the isotopic signatures of these trace element anomalies varies, that for Xe being 

the strongest. 

Given the complexity of the nanodiamonds, and the lack of a single suggested origin that can 

explain all of their features, especially the isotopic signatures, researchers have put forward a 

number of origins, which are introduced in the following sections. 
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1.2.1 Stellar Evolution and the Nucleosynthesis of Carbon 

To understand the isotopic composition of the types of stars that have been hypothesized to 

produce meteoritic nanodiamonds, it is necessary to explain the composition of these stars at the 

time that they either formed nanodiamonds or lost material, via explosion (for supernovae) or 

stellar winds (for AGB stars). And to understand how the stars arrived at these compositions, it is 

helpful to review some key points of stellar evolution. 

Stars are formed by the gravitational collapse of a protostellar cloud, mostly composed of H. The 

collapse leads to thermodynamic conditions sufficient to fuse H nuclei into He. During H 

burning, a shell of unburned H surrounds a convective core, which contains circulating He along 

with additional H. When H burning is no longer able to support the mass of the star, the star 

compresses gravitationally until it begins to fuse He into C. 

The only stable pathway for He burning in stars is the triple-alpha process, in which three alpha 

particles (
4
He) combine in quick succession to form a 

12
C atom. The first two 

4
He atoms 

involved form 
8
Be, a highly unstable isotope (half-life of roughly 7×10

-17
 s). There is a small 

probability that the 
8
Be will combine with another 

4
He to form a 

12
C atom in an excited state. If 

this excited state of 
12

C did not exist, stellar nucleosynthesis of stable isotopes above mass 4 

would not occur. As He burns, a C core is formed at the center of the star. 

The triple-alpha process is the only fusion process that creates 
12

C in massive stars. 
13

C is 

produced, but only from extant 
12

C as one step in the CNO cycle. This occurs largely in the CN 

portion of the CNO bi-cycle, proceeding as 
12

C + p  
13

N + γ; 
13

N  
13

C + e
+
 + ν. 

13
C can be 

lost again via 
13

C + p  
14

N + γ, so there is a source and a sink for this isotope. Given the proton 

fluxes expected, the triple-alpha process will proceed much more quickly than proton capture on 

12
C once helium burning begins. However, for second or later generation stars, which contain 

12
C 



13 

 

prior to helium burning, 
13

C is created from the CNO cycle in the He shell prior to ignition of He 

burning. In this case a He/N zone rich in 
13

C will form. The He zone is therefore subdivided into 

an earlier-forming, outer He/N shell and a later-forming, inner He/C shell. 

Stars under 8 solar masses, cannot sustain the temperatures and pressures required to continue 

nuclear fusion beyond the CNO cycle. At this stage some of these become AGB stars. 

For stars with more than 8 solar masses, similar fusion processes repeat: Fusion burning of a 

lighter element in the core produces a heavier element.  A shell of the lighter element remains 

around the heavier element core. The core runs out of the lighter element fuel, fusion slows.  

Gravitational compression occurs.  Heavier element fusion burning commences in the core, 

creating a new, even heavier element. The result is a star with a number of concentric shells, 

lighter elements at larger radii, heavier elements at smaller radii. Stars at or above roughly 8 

solar masses continue this process until they produce 
56

Fe in their cores by 
28

Si burning (Figure 

1.2).
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Figure 1.2 Shells of an evolved massive star, prior to core-collapse (Type II) supernova explosion. Some 

nucleosynthetic processes are highlighted on the left. Carbon and oxygen abundance are compared on the right. 
26

Al 

is produced in the He/N zone. Fe is produced in the innermost region as well as Ni. Adapted with permission from 

Zinner (2014), who use data from Woosley and Weaver (1995). 

1.2.2 Type II Supernovae 

Type II supernovae are produced by the core collapse of stars massive enough to gravitationally 

compact their cores into neutron stars, at least ~8 solar masses. These stars must also be below 

~50 solar masses, or else they will collapse into black holes without producing a supernova 

explosion. Late in the lifetime of such a massive star, Si begins to burn out and the star 

compresses once more with 
56

Fe at the core. 
56

Fe has no pathway for nuclear fusion burning due 

to the high binding energies of the heavier elements, so gravitational compression dominates the 

core, proceeding at a precipitous rate. The beta-minus reaction (𝑝 + 𝑒− = 𝑛 + �̅�) transforms the 

core into a neutron- and neutrino-rich region supported by neutron degeneracy pressure as 

material at higher radius collapses inward as a supersonic shockwave. Through a yet-to-be-

determined mechanism, the extreme conditions where the infalling shockwave impacts the dense 
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neutron-and-neutrino core precipitate the expulsion of a large fraction of the outer radial mass of 

the star in a supernova shockwave. 

Various supernova models exist, which model the star layers and contents for given masses of 

supernovae. Depending on the model and parameters, mixing between the He/C and He/N shells 

leads to predictions of a wide variety of 
12

C/
13

C ratios. For example, mixing material from 

different layers of the He/C shell in a 15 solar mass Rauscher model produces 
12

C/
13

C ratios 

ranging from 20–800, and 
14

N/
15

N ratios ranging from 6–500 (Fedkin et al. 2010). Therefore, 

while some of the mixed material from supernovae should contain the C and N isotopic 

signatures we see in meteoritic nanodiamonds, there is a wide range of isotopic signatures 

believed to be present in supernovae that are not represented in the nanodiamonds. 

The presence of the Xe-HL anomalous component in the nanodiamonds is strong evidence of a 

supernova origin for some of material in the nanodiamond-containing acid residues. The 

nucleosynthetic p- and r-processes occur together only in supernovae, making these the only 

known synthesizers of Xe-HL. The p- or proton capture process occurs where thermally 

dissociated protons are abundant in the presence of heavy elements, near the neutron core. The r- 

or rapid neutron capture process takes place where heavy elements are surrounded by abundant 

neutrons, which is the case during supernova explosions. 

Theoretical calculations of the production of isotopes in Type II supernovae are the best fit for 

the Xe-HL observed in the nanodiamonds (Clayton 1989; Richter, Ott, and Begemann 1998). 

Different authors have suggested that nanodiamonds formed in different regions of Type II 

supernovae through various processes. Clayton (1989) suggest chemical vapor deposition (CVD) 

formation in the He/C shell, Nuth and Allen (1992) argue for annealing by radiation, and Clayton 
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et al. (1999) and Deneault et al. (2006) suggest nanodiamonds could form in the C < O hydrogen 

shell. Depending on the formation mechanism, nanodiamonds may be able to form in regions 

with a range of 
12

C/
13

C isotopic ratios, or may be limited to a ratio occurring only in one shell.  

A study of small enough aggregates of nanodiamonds should be able to distinguish between 

populations of nanodiamonds that formed from reservoirs of material with homogeneous or 

heterogeneous C isotopic signatures, by assessing whether the ratios of different aggregates vary 

more than expected based on the hypothesis of a single isotopic reservoir. 

 We do not understand supernovae well enough to know if they provide the exact conditions 

(radiation, pressure, temperature, C, N, H, and O concentrations and isotopes) required to grow 

the nanodiamonds we observe in meteorites, and not all predictions based on supernova 

formation are consistent with the data. 

Therefore, while it is possible that nanodiamonds formed in supernovae either through CVD or 

radiation annealing, formation mechanisms in other environments have been studied as 

alternative explanations.  

1.2.3 Other Presolar Source Candidates 

If nanodiamonds were produced in any environment other than supernovae, the observed Xe-HL 

must have been implanted later in the form of energetic ions, since only supernovae produce Xe-

HL. Several other sources have been considered in the literature. 

It has been proposed that meteoritic nanodiamonds formed in binary star systems. In this model, 

nanodiamonds form in a carbon star, red giants with C/O>1, and were implanted with Xe-HL 

when companion white dwarfs exploded, a Type Ia supernova (Jorgensen 1988). 
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Verchovsky et al. (2006) report nanodiamonds with an asymptotic giant branch origin; however, 

their identification of the grains as nanodiamonds is inconclusive – it is possible that the isolated 

grains are actually SiC. Their evidence indicates <1% of nanodiamonds could be produced in 

asymptotic giant branch stars. 

Supernova shock waves traveling through the interstellar medium have been suggested as a 

mechanism for the co-formation of nanodiamond and sp
2
-bonded sheets (Stroud et al. 2011). In 

this scenario, trace elements would be implanted with low efficiency, explaining the low 

concentration of isotopically anomalous trace elements in the residues. Observation of graphitic 

carbon sheets in the interstellar medium, as predicted by this model, is tentative. A 2175 Å 

extinction feature in the interstellar medium can be matched in the laboratory by nanodiamonds 

encased in graphitic fullerene shells (Yastrebov and Smith, 2009). 

1.2.4 Evidence for Solar System Formation of Nanodiamonds 

Given the bulk solar value of the C and N isotopic ratios in meteoritic nanodiamonds, a solar 

system origin for these grains has been suggested, and there are several lines of evidence for this 

origin candidate. The lack of nanodiamonds in non-cluster IDPs (Dai et al. 2002) suggests they 

may not have been present in the early solar system, implying they are not presolar. Infrared 

radiation that may be from hydrogenated nanodiamond surfaces has been observed in the 

circumstellar disks around some young stars (Van Kerckhoven, Tielens, and Waelkens 2002), 

but there are other interpretations of these signals (Pirali et al. 2007).  Elsewhere it has been 

proposed that nanodiamonds formed on the surfaces of iron grains, which could serve as 

substrates to catalyze formation (Meibom et al. 1999), or by shock transformation of sp
2
-bonded 

C “onion shell” fullerene structures colliding with early solar system materials (Marks et al. 

2012). A solar system origin is attractive due to its simplicity, but it cannot explain the formation 
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of all of the nanodiamonds without an explanation for the presence of Xe-HL and the other 

isotopically anomalous components carried by the nanodiamonds. 

1.2.5 Experimental Considerations 

The only signatures that conclusively distinguish presolar grains from all other material in the 

solar system (excepting some materials that can be synthesized by humans in small amounts in 

laboratory environments) are dramatic anomalies in stable isotopic ratios. Given the small size of 

nanodiamonds, the variety and complexity of their potential formation and alteration 

mechanisms, and because of the important implications of their potential origins, strong, direct 

evidence is required to establish those origins. In the three decades since their identification as 

the carrier of the Xe-HL anomaly by Lewis et al. (1987), only indirect evidence, requiring 

significant interpretation, has been acquired, through isotopic studies with stepped heating and 

mass spectrometry, which lack the spatial resolution to distinguish individual nanodiamonds, and 

techniques such as transmission electron microscopy, which do not possess the requisite mass 

sensitivity to distinguish isotopes of C. 

Because of the small number of atoms in a nanodiamond (approximately 2000 for a 3 nm grain) 

and the low concentration of trace elements, isotopic ratios from single grains are, unfortunately, 

uninformative, with the exception of 
12

C/
13

C, where, for the solar system ratio of 89/1, ~22 of 

2000 atoms should be 
13

C. Under ideal (i.e., unrealistic) measurement conditions this would give 

an isotopic ratio with 21% statistical uncertainty. Given this uncertainty, most grains that 

condensed from a reservoir with a 
12

C/
13

C ratio of 10/1 or 1000/1 would (under ideal 

measurement conditions) be easily detected. 

Nitrogen, the second most abundant element, is present with order ~1% to 0.1% concentration 

(Russell, Arden, and Pillinger 1996). At 1% concentration the average nanodiamond would 
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contain 20 N atoms. For the solar system 
14

N/
15

N isotopic ratio, one would expect there to be a 

single 
15

N atom in only one in ten nanodiamonds, and greater than 100% statistical uncertainty in 

the isotopic ratio. Thus, measurements of single nanodiamonds cannot, even with idealized 

instrumentation, yield statistically meaningful isotopic ratios of trace elements. 

1.3 Outline of the Following Chapters 
I studied the origins of nanodiamonds separated from the meteorite Allende (CV3) by measuring 

the 
12

C/
13

C ratios of individual and small aggregates of nanodiamonds, utilizing novel 

applications of two experimental techniques, atom-probe tomography and nanoscale secondary 

ion mass spectrometry (NanoSIMS). 

In Chapter 2 I give an overview of my methods, including materials, sample preparation, 

equipment, data collection, reduction, and analysis. 

In Chapter 3 I discuss the NanoSIMS studies of small-bulk measurements and statistical data for 

ensembles of small aggregates of nanodiamonds and the implications for the origins of the 

nanodiamonds. 

In Chapters 4–6 I discuss the results and implications of multiple experimental runs using atom-

probe tomography, as well as the correction of various instrumental artifacts. 

In Chapter 7 I discuss a final round of atom-probe results, complemented by data from 

transmission electron microscopy, and present final corrections of previous data sets, comparing 

these to the NanoSIMS data and discussing the overall implications for potential presolar and 

solar origins of the nanodiamonds. 
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Chapter 2: Experimental and Analysis 

Methods 
The scientific questions addressed by this thesis would be straightforward to answer, given the 

availability of a survey of the precise, accurate 
12

C/
13

C ratios of individual meteoritic 

nanodiamond grains and disordered C from meteoritic acid residue. To measure these values 

would require the ability to achieve order 100% atomic detection efficiency, with sufficient mass 

resolution to distinguish 12 and 13 amu, and nm-scale spatial resolution. It would also require 

the removal or correction of all sources of uncertainty. If the resolution were only 10-100 nm, it 

would still be possible to determine if the 
12

C/
13

C ratios of a large fraction of the nanodiamonds 

were significantly anomalous by analyzing distributions of multiple measured ratios for 

broadening compared to the expected distribution, as established by statistical modeling and 

comparison to standards with known isotopic ratio distributions. 

Moving away from this idyllic situation, counting statistics put a limit on how precisely it is 

physically possible to measure the isotopic ratio of a reservoir of two isotopes by sampling 

material from that reservoir. The quantification of this limit is the minimum uncertainty or error 

for any measurement and calculation. The only way to entirely remove this limit would be direct 

measurement of every atom in the reservoir. Given that we are discussing a reservoir in the 

remote past and far distant from us, our ability to measure a significant fraction of the material, 

or even to know what fraction we have measured, is severely limited. Instrumental biases and 

artifacts increase the uncertainty. If they are identified, the measurement may be corrected and 

the uncertainty quantified. Random errors may be assessed by studying the distribution of a 

number of experiments, but systematic errors can only be assessed by measuring standards with 
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known values. If a bias or artifact goes unassessed, our reported precision in the measurement 

will be erroneously high, because the calculated uncertainty will be erroneously small. 

In addition to these fundamental experimental concerns, our ability to achieve our experimental 

ideals is limited by the available instrumentation. Spatial resolution, mass resolving power, and 

isotope detection efficiency less than the ideals given above reduce the information that even an 

ideally conducted, corrected, and standardized experiment can give about the isotopic contents of 

the material. Various methods exist to assess and overcome some of these limitations, including 

selecting spatial regions of interest, modeling aggregates of material, and quantitatively 

separating overlapping mass peaks, but each of these comes at the cost of added statistical 

uncertainty. 

The possibility of errors in the theory used to pose the scientific questions and to suggest models 

introduces uncertainties that are difficult to quantify. Assessing our confidence in our models and 

quantifying how much other interpretations would change the results is relevant during choice of 

experimental approach, but is mostly the province of the introduction and discussion chapters 

and sections. 

Given these statistical and instrumental limitations, a great deal of the work necessary to assess 

the isotopic ratios of meteoritic nanodiamonds has been the proper design and conduct of sample 

preparation, characterization, and isotopic analysis, modeling of experimental biases, and proper 

standardization. 

The remainder of this chapter is organized as follows: I discuss the methods used to analyze 

nanodiamond-containing acid residue separated from the meteorite Allende, as well as terrestrial 

detonation nanodiamonds, carbon paint, and graphite standards (Section 2.1). For bulk 
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measurements, and to serve as a correction and standard for instrumental bias in the atom-probe, 

I utilized Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS), which is introduced in 

Section 2.2 and discussed in detail in Section 3.2. For isotopic measurements of individual 

grains, I implemented a novel application of atom-probe tomography (APT) (Section 2.3), taking 

advantage of recent advances in instrumentation and data analysis for that instrument and the 

focused ion beam (FIB) microscope. 

2.1 Materials 
Though rare and small, meteoritic nanodiamonds are the most abundant presolar grain type by 

mass, at ~1400 ppm (Zinner 2014). I have studied grains from the carbonaceous chondrite 

Allende CV3, which were separated from the meteoritic host matrix by Roy Lewis at the 

University of Chicago, using acid dissolution and size separation, following the method used for 

the nanodiamonds studied in Lewis et al. (1987); Lewis, Anders, and Draine (1989); and Daulton 

et al. (1996). For an outline of similar processing, for which 250 ppm of Allende was separated 

as nanodiamond-containing acid residue, see Huss and Lewis (1995). The result is nanodiamonds 

colloidally suspended in a few ounces of deionized water and then deposited onto a gold foil. 

The same process was followed for terrestrial nanodiamonds, which are produced synthetically 

by detonation (Greiner et al. 1988).  

For NanoSIMS measurements of nanodiamond acid residue aggregates, nanodiamond-containing 

acid residue deposits on gold foil were introduced to the spectrometer analysis chamber. 

For the NanoSIMS measurements I used three standard materials – detonation nanodiamonds 

prepared similarly to the Allende nanodiamonds, graphite, and carbon paint. 
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The graphite was in the form of a planchette from Ted Pella, Inc. Category No. 16711 “Standard 

Specimen Mount, Carbon.” This was observed to have significant surface morphology, so I 

polished it using the procedure wenollint free clothacetone (5 min 

ultrasonicating)methanol (5 min ultrasonicating)bake, which created large flat regions easy 

to target in the NanoSIMS. 

The carbon paint (DAG) was painted onto the graphite planchette, and exhibited morphological 

heterogeneity (surface roughness) visible under optical and secondary electron microscopy. 

For more information on the sample preparation and experimental procedure for the NanoSIMS 

experiments, see Section 3.2. 

2.2 NanoSIMS 
One of the two major sources of data in this thesis is from secondary ion mass spectrometry. I 

used the Cameca NanoSIMS 50 at Washington University. An 8 kV beam of Cs+ primary ions 

was focused orthogonally onto a ~50 nm spot on the sample of nanodiamond-containing acid 

residue deposit or carbonaceous standard. The Cs
+
 ions sputter away surface atoms and 

molecules, slowly milling down into the sample. On the order of 1% of the sputtered material is 

ionized and then extracted and delivered to a magnet by electron optics. Five detectors were 

arranged to collect ions with certain masses as selected by the magnet. Several statistical 

approaches were used to search thousands of measurements of small aggregates of 

nanodiamonds for isotopic anomalies. This methodology is only used in Chapter 3, so I leave the 

detailed discussion of the method to Section 3.2. 
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2.3 Atom-probe Tomography 

2.3.1 Multilayer Preparation 

To prepare samples for analysis by APT, I first prepared nanodiamonds in a multilayer substrate 

suitable for FIB liftout. Three multilayers have been prepared to date. The multilayers designated 

pND (presolar NanoDiamonds) and sND (synthetic NanoDiamonds) were prepared by Dieter 

Isheim and Frank Stadermann in 2010 at Northwestern University and were used for the 

meteoritic and terrestrial data sets, respectively, through data set R06 20172. Dieter Isheim and I 

created the multilayer designated pND3 in October 2013, also at Northwestern University. 

Similar procedures were followed for each deposition. Here I report the procedure for pND3. 

Beginning with a Ni stub cleaned for use in a vacuum system, I deposited a 130-170 nm layer of 

Pt using a Southbay Technologies IBSe Ion Beam Sputtering system. In order to deposit 

nanodiamonds onto this Pt substrate without significant agglomeration, I ultrasonicated both the 

destination Pt-Ni substrate and the origin Au-steel disk during the transfer. This was 

accomplished using ultrasonicating knives with customized heads that accept metal stubs (Figure 

2.1a and b). 
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 (a) Ultrasonicator with articulating clamp (left) and power supply (light gray box behind ultrasonicator). Figure 2.1

(b) Nanodiamond deposit on Au-foil, in ultrasonicating head. 

 

The steel disk became hot to the touch during ultrasonication. For multilayer pND3, a ~50 

microliter droplet of deionized water was pipetted onto the ultransonicating Au foil. For 

multilayers pND and sND, a smaller droplet was pipetted onto the Au foil. For pND3, it took 

several minutes for most of the liquid to evaporate, at which time I micropipetted 2 microliters of 

the remaining suspension to the Pt-substrate. For pND and sND, pipetting onto the Pt-substrate 

was done without such a long wait period, as it was not necessary to allow as much of the liquid 

to evaporate to ensure acid residue had become entrained in suspension. The remaining liquid 

evaporated in a few seconds, leaving behind a circular deposit. A second 150 nm layer of Pt was 

deposited on top of the deposit, beginning within a few minutes of depositing the acid residue. 

This was followed by a cap layer of Ni. 
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The resulting Ni-Pt-nanodiamond-Pt-Ni “sandwich” multilayer was the source of atom-probe 

samples via FIB liftout. The region where the nanodiamond residue deposit has pushed up the Ni 

layer is visible in SE imaging, which allowed us to select what density of agglomerates to target 

for FIB liftout (Figure 2.2). 

 

 SEM images of deposits in each multilayer, showing a Ni cover layer pushed up by nanodiamond-Figure 2.2

containing acid residue material. Liftouts target the outer edge of these circular deposits for atom-probe analysis. 

The right-hand side of image (a), sND, shows a liftout region surrounded by a rectangle of lighter-color material 

altered by the electron and ion beams. The left-hand side of (b), pND, also shows a liftout. The long feature at the 

upper-left of image (c), pND3, is a fiduciary scratch left by a tweezer for use at lower magnifications. 

 

2.3.2 Focused Ion Beam Liftout of Multilayers 

The following procedure is given in a step-by-step “recipe” format where each step is 

accompanied by the appropriate figure, as this should be the best presentation for the reader and 

the researcher. Figures are secondary electron images taken by scanning electron microscopy, 

unless stated otherwise. Tilted images were taken at a 52 degree angle to the surface. An 

illustration of the target geometry and steps to achieve it is given in Figure 2.3. 
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 Diagram of the liftout geometry. The surface of the multilayer is on the left-hand side. Dark gray is Ni, Figure 2.3

Light gray is Pt. The black dashed line is the nanodiamond-containing acid residue. The multilayer is oriented on its 

side so that the liftout is in the orientation it presents when attached to the top of a micropost. (a) The red arrows 

show the ion beam paths for the two undercuts. (b) This red triangle shows the material milled away by the face 

trim. (c) This red triangle shows the material milled away by the belly trim after 90 degree rotation. (d) The two 

dashed red lines mark the bounds of the mortise and tenon which runs through the interior of the slice and initially 

attach it to the micropost flat top, which will be at the bottom from this perspective. The shape of the slice prior to 

sharpening is outlined in black. 

 

An FEI Quanta dual beam FIB/SEM was used for liftout of sections of the multilayer. Secondary 

electron imaging was conducted at 2 kV using a 1 mm aperture and 4 nA beam current from a 

Schottky thermal emission source in analytical mode. I selected 25×5 µm areas for liftout (Figure 

2.4). 
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 The multilayer sND, showing a 25 µm long region with acid residue deposit pushing up the surface.  Figure 2.4

 

I selected regions where the points at which cluster sizes becoming vanishingly small form a line 

centered in the liftout (Figure 2.5). 

 

 The multilayer surface imaged at a tilted (52 degree beam incidence) angle, zoomed in on the deposit Figure 2.5

surface, showing a line where the deposit height becomes vanishingly small. 

 

I deposited 0.15 µm of Pt from a gas injection system (GIS) over the selected area using a 0.3 nA 

current of Ga ions to crack the Pt-organo-metallic precursor gas (Figure 2.6). The Ga beam 

energy was 30 kV (30 kV was used in following ion beam steps, unless stated otherwise). I often 

deposited over an area slightly larger than the dimensions of the liftout. This Pt cap served as a 

sacrificial layer against ion beam damage. 
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 The liftout region covered with GIS-deposited Pt sacrificial layer. Figure 2.6

 

I then made a wedge cut underneath each long side of the liftout, using a pattern of dimensions 

1.5 µm wide by 30 µm long by 7 µm deep (not corrected for projection) (Figures 2.3a and 2.7), 

using 7 nA of Ga ions at a 52 degree angle tilt from normal incidence to the multilayer surface. 

 

 (a) The first ion-beam wedge undercut.  (b) Tilted ion beam image of the second undercut. Figure 2.7

 

Still at 52 degree tilt incidence, I milled a 1.25×6.25 µm pattern from one end of the liftout 

(dimensions are not corrected for tilt), until that end of the liftout was free of the multilayer 

(Figure 2.8). 
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 The first side cut. Figure 2.8

 

Rotating the stage 180 degrees, I inserted the micromanipulator needle and attached it to the free 

end of the liftout with a roughly 1×1 µm Pt deposition patch using a 30–50 pA current Ga beam 

(Figure 2.9). 

 

 Ion beam image of the free end of the liftout with the tip of the micromanipulator needle (bottom and Figure 2.9

center) attached to the surface by a GIS-deposited Pt patch (dark, center). 

 

At this point only the opposite end of the liftout was still attached to the rest of the multilayer. 

Maintaining the 52 degree tilt from Ga ion beam normal incidence, I sliced the liftout free using 

another 1.25×6.25, 1 nA pattern. Redeposition of milling material beneath the liftout often 

occurred during this step. Tapping the instrument or changing the ion beam current while 

imaging in SE created vibrations through the micromanipulator and helped assess if the liftout 
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was free of the multilayer. As soon as the multilayer was free I raised the liftout on the 

micromanipulator (Figure 2.10). 

 

 A tilted ion beam image of the liftout (bottom) attached to the micromanipulator needle (bottom left Figure 2.10

corner) just after removal from the multilayer, leaving a hole behind. 

 

I aligned the free end of the liftout with the tip of the tungsten needle on an ARM (Axial 

Rotational Mechanism), attached them to each other with Pt deposition (Figure 2.11), and cut 

free the micromanipulator. 

 

 The liftout attached to the ARM needle by Pt-patching. Figure 2.11

 

Tilting to 0 degrees ion beam incidence (beam normal to the multilayer top surface), I milled 

away the acid-residue-free edge of the liftout with a 1 nA Ga beam, leaving approximately 2 
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microns from the edge to the first visible clusters of acid residue and exposing a cross section of 

the multilayer (Figures 2.3b and 2.12). 

 

 The liftout after a face trim reveals a cross section of the multilayer (the narrow strip of lighter-colored Figure 2.12

material is the Pt-nanodiamond-Pt sandwich. 

 

I then vented the system in order to access and actuate the ARM 90 degrees about the long axis 

of the liftout. Pumping the system again, this rotation allowed me to tilt the stage to bring the 

sample surface edge-on to the Ga IB. From this orientation I conducted a “belly” trim, thinning 

the bottom of the liftout using 1 nA of current (Figures 2.3c and 2.l3). 

 

 The finished liftout after rotation of the ARM and belly trim, which removed material from the bottom. Figure 2.13

 

At this point in the procedure in early samples I deposited protective Pt on the exposed cross 

section of the multilayer, but in later liftouts I bypassed this step. 
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2.3.3 Micropost Preparation on Prefabricated Arrays 

Atom-probe tomography using the LEAP series of instruments requires that samples be raised 

above surrounding material to prevent electrical discharge from nearby sharp surfaces. For 

samples on which correlated TEM (transmission electron microscopy) was not conducted, I used 

prefabricated Si micropost arrays to accomplish this geometry. These arrays hold 36 or 22 etched 

Si microposts with 2 µm flat tops. I sliced each liftout into a number of ~2 µm sections, attached 

to the microposts. A typical 25 µm liftout yielded 8 such sections. These slices were mounted 

onto all of the posts on the 22-post arrays and onto the outer two rows on each side of 36 post 

array (24 posts). The middle two rows of the 36 post arrays were left empty to avoid obstructing 

the line of sight of the thermal-pulsing laser in the atom-probe tomograph. 

After the trimming described in Section 2.2.2, the cross section of the liftout through the long 

axis is a trapezoid with one side truncated. The parallel sides are oriented vertically and the top 

side is truncated to reveal the multilayer (Figure 2.3, solid black outline). 

If the plane of the deposition layer is not entirely vertical, a slight stage tilt throughout the 

following steps can be used to align the microposts with it. 

To attach and slice free a section from a liftout I drove the free end of the liftout to just above a 

micropost and lowered it until the long bottom edge of the liftout made contact. I used a “mortise 

and tenon” method, in which a 30–50 pA, 1×1 µm Ga ion beam raster pattern mills through the 

top of the multilayer (Figure 2.3d). Redeposition typically attached the micropost to the liftout at 

this point, but regardless it was held stationary by the micromanipulator. Ion-beam activated GIS 

deposition with the same raster pattern as the mortise created a tenon joint by backfilling the 

mortised holes with Pt. Sometimes a raster pattern with a slightly reduced area was used for the 

tenon to discourage Pt from growing over the top of the mortised hole before it could backfill. 
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At this point the liftout was attached to the micropost and to the micromanipulator needle. It was 

important to quickly cut the micromanipulator free, or else drift would cause the whole system to 

rotate and bend about the Pt patches, eventually rupturing one of the patches, allowing the liftout 

to spring back to its original, unstrained orientation, which could cause it to break free entirely 

and be lost. 

To quickly cut free an attached section I  used a 3 nA, 0.75×6 µm raster pattern and drove the 

micromanipulator directly away from the newly separated section (in our configuration this is to 

the left). 

After I completed slicing and attaching each piece of the liftout, and the micromanipulator 

needle was retracted, I rotated the stage 180 degrees and conducted “back-welding,” depositing 

Pt into the gap between the micropost and the bottom of each slice. 

At this point the microtips were secure on the array and the samples could be removed from 

vacuum and stored at atmosphere as necessary. 

2.3.4 Micropost Preparation on Electropolished Cu Half-grids 

Microtips for correlated TEM/APT studies were prepared atop Cu TEM half-grids, allowing 

them to be safely introduced both into the TEM and the atom-probe. I used Ted Pella #460-205 

Omniprobe
®
 Lift-Out Grids, Cu with 5 posts. The cross sections of these posts are too large and 

rough for use in the atom-probe as-is. I used an electropolishing cell to reduce the posts to a 

more slender profile and smooth the rough edges. Half-grids HG01–HG04 were electropolished 

using an electropolishing cell maintained at Northwestern University in the center for atom-

probe tomography (NUCAPT). Half-grids HG05 and HG06 were electropolished at Washington 

University at a cell built by me and technician Tim Smolar in the Laboratory for Space Sciences. 
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The electropolishing cell at Washington University uses a <10 mA current from a power supply 

that is conducted through a room temperature electrolyte solution of approximately 2.5% 

phosphoric acid in distilled water. The posts were immersed into the cell for less than 30 

seconds, as sufficient for a polish, assessed by an optical microscope. Half-grids were dipped in 

acetone immediately following polish to remove residual phosphoric acid. Half-grids that might 

otherwise be sources of errant signal under APT analysis were further cleaned by ultrasonication 

in methanol and baking, and were stored in membrane holders until liftout slice attachment. Prior 

to introduction into the FIB and the atom-probe, I mounted the half-grids in Electron Microscopy 

Sciences 5956-01 FIB Sample Holders, also known as fortress holders. I machined off the 

protective rims of these holders prior to use to allow line-of-sight for the atom-probe laser. 

To further sharpen the posts prior to attaching slices of a multilayer liftout I used rectangular Ga 

ion beam pattern mills at 52 degrees to thin the width of the posts to roughly 6 µm (Figure 

2.14a–c). An additional mill smoothed the apex of the post (Figure 2.14c). Finally, I used an 

annular mill pattern at 0 degrees relative to the post in order to narrow the apex to a 3 µm cross 

section (Figure 2.14e–f). 

 

 Sequence of SEM images showing ion beam milling of electropolished Cu half-grid posts prior to Figure 2.14

attachment of multilayer samples. (a) Electropolished post, broad side Ga beam perspective, ion beam imaging. (b) 

Post during narrowing. (c) Post after narrowing. (d) Post during apex smoothing. (e) Narrow-side view, electron gun 

perspective and imaging, during 3 µm annular mill. (f) After 3 µm annular mill. 

2.3.5 Focused Ion Beam Sharpening of Microtips 

After attachment to a micropost, initial annular milling to sharpen a slice of a multilayer liftout 

into a microtip was conducted using 0.1 nA Ga ions with the beam parallel to the long axis of the 
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micropost, using an annular mill pattern of outer radius 3 µm, inner radius 2 µm. Additional 

patterns were used around the edges as necessary to remove any material outside the radius of 

the central pattern. 

It is important to limit annular milling to prevent overthinning of the Pt patch interface between 

the multilayer slice and the micropost below it, as this is a weak point in the microtip. At this 

point I used “pyramidal sharpening” to narrow the apex of the multilayer without thinning the Pt 

patch. I used 30 pA Ga ion rectangular mill patterns at 15 degrees off-axis (37 degrees tilt in the 

FEI Quanta) to mill each of four sides of the sample, leaving a roughly 0.5 µm
2
 square cross 

section at the apex of a tetrahedral microtip with exposed multilayer down two of the faces 

(Figure 2.15a). Then I conducted a series of mills using annular 16-bit stream file patterns 

provided by Cameca Instruments Inc., all at 30 pA Ga current. First I used pattern AMP3B-16bit 

at 50 k× magnification (Figure 2.15b), followed by AMP4B-16bit, a pattern with a smaller inner 

radius, also at 50 k× magnification (Figure 2.15c). At this point I used electrostatic beam shifting 

to move a 0.75 µm circular mill pattern across the sample, cleaning up any sharp features less 

than 2 µm below the apex. I then increased magnification to 60 k× and used AMP4B-16bit 

(Figure 2.15d). I continued this mill until the radius of a circle fit to the apex of the microtip is 

smaller than 30 nm. 
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 Microtip sharpening steps. Dark gray represents Ni, medium gray is the Si or Cu micropost, light gray is Figure 2.15

Pt, and the dashed black line is the deposition layer. Blue enclosed regions are GIS-deposited Pt used to attach the 

slice of a multilayer liftout to the micropost, using a mortise and tenon (left), and backfill (right) method. The red 

outlines in (a) enclose two of the regions milled away by pyramidal sharpening. (b)–(d) represent annular mill 

patterns that further sharpen the microtip after pyramidal steps. (e) represents the pattern used with 5 kV Ga to clean 

the microtip surface and target the microtip apex to a region of interest along the deposition layer. The solid black 

line shows the silhouette of the final microtip, ready for APT or TEM. 

 

The Ga beam amorphizes the surface layer of crystalline material it mills. It has been shown by 

atom-probe tomography that lowering the beam voltage dramatically lowers the depth of the 

amorphized region (Thompson et al. 2007). Therefore, before proceeding to sample analysis, I 

conducted at least 10 seconds of 48 pA Ga milling at 5 kV with a 3 µm circular pattern (Figure 
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2.15e). This mill can be continued until the apex has been milled down to within 100 nm of a 

visible cluster of acid residue, distinguished as darker material by SEM contrasted with 

surrounding lighter layers of Pt. 

I coated some of the microtips with Ni after sharpening. This increased overall stability during 

APT data collection, reduced the overall electric field required for field evaporation, served as a 

fiduciary marker of the beginning of the Pt multilayer, and made it easier to observe during APT 

data collection if microfractures were occurring, especially if one of the Pt layers was falling off, 

based on whether the Pt data being collected was ringed by Ni all the way around or only on one 

side. I used the Southbay Tech IBSe deposition system at Northwestern University, with a 9 kV, 

6–6.8 mA plasma, a vacuum pressure prior to deposition 2–3×10
-6

 Torr, and plasma pressure of 

4–6×10
-4

 Torr, while rotating the sample to aid in homogeneous deposition. I found these 

parameters on this instrument resulted in a consistent 35 million ions (primarily Ni) collected in 

a LEAP 4000X Si prior to milling into the Pt layer. 

2.3.6 Transmission Electron Microscopy 

Prior to Ni coating, some of the sharpened microtips are characterized by TEM, including 

scanning transmission electron microscopy (STEM), high angle annular dark field imaging 

(HAADF), and electron energy loss spectroscopy (EELS). These techniques revealed high 

resolution details about the microtip shape, the acid residue deposition layer, individual nm-scale 

particles, and even allowed me to carry out elemental and crystal matrix identification of carbon, 

graphite, and diamond in some microtips. Some of these microtips were later analyzed by APT. 

TEM measurements are reported and discussed only in Chapter 7, so I leave detailed discussion 

of these techniques and the analysis of the data to Section 7.2. 
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2.3.7 Atom-probe Data Collection 

Atom-probe tomography is an analysis technique that is undergoing a period of rapid 

technological and technical development as it approaches maturity (Gault et al. 2012; Kelly and 

Larson 2012; Larson et al. 2013; Seidman and Stiller 2009). It has, however, been in use by 

scientists since 1967 (Müller et al. 1968), and its predecessor, field ion microscopy, has been 

studied and utilized scientifically since 1951 (Müller 1951). For quantitative examples of 

instrumental capabilities, I will refer to the specifications of the instrument primarily used in this 

study, the Cameca LEAP 4000X Si. 

Samples are introduced to ultra-high vacuum (10
-10

 Torr or lower) through a load-lock and buffer 

chamber system, and aligned with the microtip apex near a local electrode. The introduction of a 

local electrode, rather than the remote electrode used in the 1990s, now allows multiple microtips 

to be prepared on the same sample coupon without concern for interference or collision, 

broadens the field of view, and lowers the required voltages for field evaporation, which allows 

broader microtips to be analyzed (Nishikawa and Kimoto 1994).
 

The best orientation for the half-grids is about 15 degrees away from normal to the laser. This 

enables the operator to distinguish the microtips in the analysis chamber camera view (Figure 

2.16a), an important capability for alignment, while still giving a nearly vertical orientation of 

the series of microtips from the perspective of the laser (Figure 2.16b). The magnification of the 

laser perspective camera view is often sufficient to note when a microtip has fractured or melted 

as a result of electrostatic discharge, as is the case for microtip D in Figure 2.16b. 
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 (a) Ni-coated Cu half-grid HG06 (center), clamped in Ni-coated stainless steel holder FH1 (left), aligned Figure 2.16

with a local electrode (right) in the atom-probe tomograph. Analysis chamber camera view.  (b) Micropost E is 

aligned with the local electrode. Laser perspective camera view. For scale, the half-grid is about 3 mm across. 

 

Under electric fields of order ten billion volts per meter, atoms of a variety of solid materials can 

be removed from a surface as ions. This process is called field evaporation. The electric field on 

a sphere of radius r at an electric potential V is given as V/r, so for spheres with radii on the order 

of 100 nm, a field of ten billion volts per meter can be achieved with voltages on the order of 1 

kV. The magnitude of the electric field E produced at the apex of a sharp conical object by 

voltage V may be estimated to be 

  𝐸 =
𝑉

𝑘𝑟
  (2.1) 

where k, the field factor, is a correction factor greater than one, found to be ~3 for many atom-

probe applications. The field factor corrects for the effects that the non-sphericity of the microtip 

has on the electric field for a given voltage and radius of curvature. A complete description of the 

physics of field evaporation (also called “field desorption”) has not emerged, so the evaporation 

fields required for various materials, and which factors affect those values, are estimated based 

on measurements and the predictions of incomplete models. The evaporation field for Pt has 

been fairly well-characterized as 45 V/nm (Tsong 1978). The field for carbon is estimated to be 
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103 V/nm but is much more poorly known, and is likely to vary between the different phases of 

carbon. 

The electric field on the surfaces of the microtip away from the apex is significantly lower, 

meaning that for a homogeneous sample, an electric field just high enough to field evaporate ions 

at the apex will not evaporate ions from elsewhere on the sample, unless there is a sharp 

secondary microtip close to the apex. 

The geometry and thus the electric field are complicated by the roughness of the sample at the 

atomic level. The electric field is strongest at the sharp edges of atomic planes in crystalline 

solids, removing atoms from these edges first. 

At the microtip apex, field lines will be close to radial, with a small correction due to the field 

factor. Thus field evaporated ions will accelerate radially away from the microtip, projecting 

onto the far field where the image may be considered to lie on a hemispherical section. 2D planar 

detectors are used due to their simple geometry. A detector placed some distance away will 

detect a magnified image; this geometry allows a field evaporation instrument to function as a 

point-projection microscope, where the sample itself is a dynamically-shaped lens. The 

magnification is calculated as 

  𝑀 =
𝐿

𝜉𝑅
  (2.2) 

where L is the flightpath length, 90 mm, R is the radius of the apex of the microtip, and ξ is 

image compression factor, typically about 1.5, which takes into account that the field lines are 

neither perfectly radial due to the non-spherical microtip, nor are they perfectly straight, due to 

the presence of the local electrode, which bends them towards the detector. This gives 

magnification on the order of 10
6
×, resulting in lateral spatial resolution that is less than a 



47 

 

nanometer. The spatial resolution along the cylindrical shaft of the sample can be as small as the 

spacing between atomic planes. Indeed, my experiments sometimes reproduced Pt crystal planes. 

For a known material, planar spacing can be used to precisely calibrate the scale along the shaft. 

Historically, voltage pulsing was used to demarcate time of flight windows. Pulsing the voltage 

up to the evaporation field of the sample material for a brief window of time causes a large 

increase in the probability of field evaporation. Ions are assumed to field evaporate during this 

narrow time interval, so the difference between the detection time and the voltage pulse peak is 

equal to the time of flight of a detected ion with a small uncertainty. Alternatively, as pioneered 

in laser atom-probe instruments (Tsong et al. 1982), a thermal pulse delivered to the specimen 

microtip via a laser greatly increases the probability of thermal activation of the field evaporation 

process. Advances in laser technology and commercial development made laser-pulsed atom-

probes viable tools for university researchers in the 2000s (Kelly and Larson 2012; Seidman and 

Stiller 2009).  

Heat affects the field evaporation process by exciting vibrational modes of atoms and molecules, 

increasing the likelihood that for a given static deformation of charge distributions and nuclear 

position (i.e., polarizing a surface atom), one or more electrons will quantum tunnel away from 

the ion. Most atom-probe experiments are run in conditions below 100 K through cryocooling, 

although for thermal pulsing the specimen microtip temperature at the time of field evaporation 

will briefly be significantly higher than the standing temperature. Ions may be ionized multiple 

times by field evaporation, arriving in charge state 2
+
 or higher. Higher charge state ions are 

more likely to form at lower temperatures, in which case more of the energy of ionization is 

delivered via electric potential. The effects of the interaction between electric potential and 

thermal energy, while actually complex, may be treated as additive, in which picture the laser 
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pulse replaces some fraction of the voltage necessary for field evaporation. The fraction of the 

energy for field evaporation provided by the laser pulse is called the pulse fraction. This is a 

useful analogy, not a physical principle – for example, a 100% pulse fraction does not lead to 

thermal ionization; field evaporation is accomplished by electric field; thermal effects are limited 

to activating the electric field affect. 

The majority of the potential gradient is within a few nanometers of the microtip apex; therefore, 

most of the acceleration of an ion takes place in the first few nanometers of a 10 mm flight – that 

is, almost instantaneously. Velocities range from order 10
3
–10

5
 m/s for elements of interest, with 

flight times ranging from 10
3
–10

1
 ns. Estimating a constant ion velocity, one can conduct time of 

flight mass spectrometry based on the pulse time and detection time for each ion. Atom-probe 

tomography may therefore be described as a combination of point projection microscopy and 

time-of-flight mass spectrometry. 

Field evaporated ions are accelerated by the electric field through the local electrode and 

projected onto the 2D detector positioned approximately 10 mm away from the sample (Figure 

2.17).
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 Illustration of the basic features of the LEAP 4000X detector system. Ions are accelerated by the electric Figure 2.17

field and projected onto the microchannel plate (MCP). T2-T1, the delay between the processing of a pair of timing 

signals in one of several delay lines, gives a position estimate for where along the axis of orientation of a delay line 

the pulse passed through. Taken with permission from Gault et al. (2012, 46). 

 

The current generation of detectors uses delay lines, capable of 2 ns timing and distinguishing 

many multi-hit events. A microchannel plate with 57% open space (Larson et al. 2013; Sakurai 

and Hashizume 1986) is placed in front of the delay lines at a slight angle to the flightpath so an 

ion can enter a microchannel but then impacts on a side, producing an electron cascade to be 

detected. Thus the ideal atomic detection efficiency is 57% for the LEAP 4000X SI, as this is the 

fraction of the atoms that can be expected to enter the microchannels and produce an electron 

cascade rather than impacting on the face of the microchannel plate. This effect is not element 

dependent. 

Data collection is also limited by the field of view, which depends on the distance of the sample 

microtip from the local electrode and the detector, distances that vary sample to sample. The 

LEAP 4000X Si has a field of view as high as 200–250 nm (Kelly and Larson 2012; Larson et al. 

2013, 2). It is designed in a wide field of view configuration and has a shorter flight path than 
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reflectron instruments, so the field of view in samples collected with this instrument is close to 

optimal for current technology. 

The voltage is controlled by automated algorithms to maintain a low average ion detection rate, 

reported as the percent of detection windows in which an ion is detected. I used rates of 0.1–5%, 

that is, 1 ion detected per 1000–20 detection windows. Low detection rates greatly suppress the 

occurrence of multiple hits during a detection window. The electronics can record up to 16 hits 

during a single detection window, which is thus the maximum number of ions that can be 

detected from a single pulse-event on the microtip sample. Any higher number of ions creating 

electron cascades will not be recorded. This is the detector pileup effect. 

There are other sources of signal loss at the detector in addition to detector pileup. Multiple ions 

arriving close together in space and time are subject to several effects. Even if the individual 

pulses created on the delay lines are all distinct they may be detected close enough together to 

leave multiple solutions for where the two or more electron cascades passed through the delay 

lines. With three delay lines at different angles the capacity for this effect is several ions in a 

very short period of time, but the capacity varies based on where on the detector surface the ions 

arrive, and there is no published map of the detector sensitivity for the LEAP detectors. 

It is also possible for ions of similar mass to arrive so close together in space and time that they 

create overlapping pulses that cannot be resolved as two events by the electronics and are 

recorded as only one ion at that mass. This multihit effect depends not only on the counts per 

detection window but also on how energetically favorable it is for pairs of ions with the same 

mass-to-charge-state ratio to co-evaporate from adjacent atomic or molecular positions on the 

surface of the microtip sample, an effect called correlated evaporation. Carbon is particularly 
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prone to correlated evaporation (Rolander and Andrén 1988; Thuvander et al. 2011, 2013; Yao et 

al. 2010). Lower detection efficiency has been shown to lessen this effect by screening out some 

of the correlated ions (Thuvander et al. 2013), but the low number of 
13

C atoms in an individual 

nanodiamond would lead to prohibitively large uncertainties if I lowered the detection efficiency. 

The most common way for an atom-probe data collection session to end is in sample failure and 

loss. The high field stresses the microtip and can strain it to the point of fracture, most often at a 

weak interface such as the Pt patch that attaches the sample liftout slice onto the micropost, or at 

the deposition layer running along the long axis of the microtip. Often a fracture will facilitate 

electrostatic discharge between the micropost and the local electrode, delivering an electric arc 

through the micropost. These electrostatic discharges typically melt the Si or Cu micropost, 

leaving a deformed microtip with no clear evidence of where the fracture occurred. Sometimes a 

piece of the sample falls off in what is called a microfracture, but there is no electrostatic 

discharge and the run may continue, although with a discontinuity in the region of the sample 

analyzed and possible roughness on the sample. If a fracture or fracture-and-discharge occur, 

post-APT review by SEM and TEM are less informative than if the data collection is stopped by 

the user prior to microtip fracture. 

2.3.8 Atom-probe Data Reduction 

Improvements such as the implementation of automation, laser pulsing, faster laser pulse rates, 

smaller laser spot size, local electrodes, faster detector electronics, and improved hit detection 

algorithms have greatly increased the range of materials that can be analyzed by atom-probe 

tomography as well as the throughput, efficiency, and quality of the data collection (Gault et al. 

2012; Kelly and Larson 2012; Larson et al. 2013; Seidman and Stiller 2009). Such advantages 

have made the isotopic study of nanoscale, insulating particles possible for the first time. But 
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data reduction and interpretation are not straightforward, especially since the focus of our 

analysis, the measurement of isotopic ratios, is an uncommon application of the technique and 

has not been previously thoroughly developed. It has therefore been important to consider the 

various sample preparation problems and potential instrumental artifacts that may affect our data. 

Data reduction and analysis was largely carried out using IVAS, the Imago Visualization and 

Analysis System, a computer software package (Cameca Instruments Inc., (Kunicki et al. 2006)). 

I have introduced the field factor k, the image compression factor ξ, and the detection efficiency 

(call it η), three parameters that must be estimated to correct for biases in the atom-probe. These 

parameters are not easy to determine precisely, but incorrect values will result in deformation of 

the reconstructed volume (Figure 2.18), allowing the user to test for better values, especially if 

there is good documentation and characterization of the microtip shape and any subgrains at high 

magnification by SEM or TEM.



53 

 

 

 Illustration of the effects that choice of estimations for the field factor k, detection efficiency η, and Figure 2.18

image compression factor ξ has on a reconstruction. The center image has the known correct proportions, based on 

the volume and shape of the dark inclusions. The surrounding images are all poor reconstructions due to improper 

estimation of one of these three reconstruction parameters. Taken with permission from Gault et al. (2012, 181). 

 

Projecting ions from a hemispherical microtip onto a planar detector introduces variations in the 

time of flight for ions of the same mass-to-charge-state ratio depending on the location on the 

microtip from which they were ionized. Furthermore, the recorded times of flight for different 

ions of the same element or molecule vary due to ions being field evaporated at different 

voltages. The microtip is a rough hemisphere at the end of a post, not a sphere. I use algorithms 

in the IVAS software to iteratively fit models to these effects by varying the model parameters to 

minimize the width of the largest peak in the mass spectrum. These fits are called the bowl and 

voltage corrections. For my samples, the largest peak is almost always from the most abundant 

isotope of Pt, 
195

Pt, sometimes at charge state 1
+ 

(195 amu), sometimes at 2
+
 (97.5 amu), 

depending on the experimental conditions. The bowl correction FB fits a function for a 
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hemispherical projection onto a plane. The voltage correction fits the equation 𝐹𝑉 =

𝑎0/√𝑎1 + 𝑉𝐷𝐶 + 𝑎2𝑉𝐷𝐶
2 . The corrected time of flight is given as 

  𝑡𝑐𝑜𝑟 = 𝐹𝑉𝐹𝐵(𝑡𝑟𝑎𝑤 − 𝑡0) (2.3) 

(Larson et al. 2013, 113–114). 

At this point in the reconstruction process I had the corrected time of flight information for each 

ion detected, but wished to calculate the mass-to-charge-state ratio. Based on the transfer of the 

electric potential energy into kinetic energy of the accelerated ion, this ratio is approximated as 

𝑚/𝑛 = 2𝑒𝑉𝑡𝑐𝑜𝑟𝑟
2 /𝐿2 where m is the mass of the ion, n is the charge state, e is the charge of the 

electron, V is the applied voltage, tcor is the time of flight, and L is the length of the ion flight 

path from sample to detector.  This is only an approximation because not all the energy imparted 

to the ion is transformed into kinetic energy, and because the ion’s velocity is not precisely 

constant, since it does take a nonzero (if miniscule) fraction of its time of flight to accelerate to 

its maximum velocity. Instead of requiring precise estimates of these factors, the data 

reconstruction software takes user identifications of several peaks in the mass spectrum and uses 

them to fit the parameters c and t0 in the equation 

  
𝑚

𝑛
= c(tcorr − t0)2 (2.3) 

(Larson et al. 2013, 116). 

Al and Pt peaks are always present from the sputter deposited Pt, with several charge states 

and/or isotopes in distinct patterns, so it is easy to avoid misidentifying peaks during this 

process, even in the rare cases where this correction is more than a few 10ths of an amu for some 

peaks. 
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Among atom-probe tomograph users there are multiple accepted methods for selecting a peak 

“range,” that is, what upper and lower limits of the mass-to-charge-state spectrum should be used 

for a particular peak. For example, as recently as 2013 Larson et al. (2013, 118) write “There is 

currently no standard, universally accepted, method for determining peak ranges, so it is very 

important to indicate the procedures used and to be consistent in their application throughout 

multiple analyses.” Chapters 6 and 7 use atom-probe data from multiple experimental runs, 

which was presented in earlier chapters using different procedures for determining peak ranges. 

In each case the old data sets were re-analyzed with updated procedures, so that the older and 

newer data sets are comparable. 

Using the average FWHM peak width for the APT data sets in this work, the average mass 

resolution is calculated to be roughly 400 for 
12

C
++

 and 
13

C
++

, and roughly 600 for 
12

C
+
 and 

13
C

+
. 

This is comparable to the typical, approximate APT mass resolution of 500 (M/ΔM for FWHM) 

(Gault et al. 2012, 128). While this is sufficient to easily distinguish the main 
12

C and 
13

C peaks 

from each other, higher temperatures on the microtip can lead to large tails toward higher mass 

in the spectrum, such that 
13

C peaks at 6.5 amu (charge state 2
+
) and 13 amu (charge state 1

+
) 

must be checked for interference from the tails of the 
12

C peaks at 6 and 12 amu. The common 

isobar for 
13

C
+
, the 

12
CH

+
 hydride, cannot be separated with the MRP of current atom-probe 

tomograph designs. However, our ability to measure the ratio of 
12

C/
13

C from the peak counts at 

charge state 2
+
 as well as 1

+
 allows us to assess the level of hydride interference by comparing 

the two ratio measurements. The nearest commonly observed peaks from contaminant elements 

in the Pt matrix are Al (13.5 and 9 amu) and N (14 and 7 amu), neither of which pose any risk of 

peak interference. (
12

C
13

C)
++

 peaks are observed at 12.5 amu in a number of data sets, suggesting 
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the presence of some interference from 
12

C2
++ 

at 12 amu, which theoretically should contribute 

(
12

C/
13

C)
2
 more counts to the peak at 

12
C than to 

13
C2

++
 at 13 amu.  

Regions of interest in the reconstructed volume, as well as selection of peaks and widths, were 

completed using a variety of criteria to find a method that best assesses the signal from the acid 

residue in a reproducible, easy-to-implement fashion. Various methods are described in the 

methods sections of Chapters 4, 6, and 7 (Heck et al. 2014; Lewis et al. 2015). One concern in 

choosing a region of interest is that ions from the Pt matrix and acid residue often overlap in the 

reconstructed volume. This is partly due to preferential magnification of the nanodiamonds 

through trajectory aberration. Figure 2.19 illustrates this process. Diamond has a higher 

evaporation field than Pt (Tsong 1978), so it resists ion loss when it is exposed at the evaporating 

microtip apex. The field at a given point is inversely proportional to the radius formed by the 

rounded microtip (Equation 2.1). As a result, once a nub of higher-field material is exposed, 

forming a smaller, secondary radius, the local field increases dramatically until ions begin to 

field-evaporate with more divergent trajectories than the Pt ions field evaporating from the 

matrix. This causes the signal from the nanodiamond to be preferentially magnified. 

Furthermore, at such high fields, it is possible, even likely, that multi-atomic pieces of exposed 

carbonaceous material will field evaporate in chunks. This is most likely to proceed as entire 

nanodiamonds being removed from beds of disordered C. Contaminants and disordered C 

between the diamond surfaces and the Pt will not be as strongly bonded as the C atoms inside a 

nanodiamond are to each other. Analysis of both the hole left in the Pt matrix and the cluster of C 

ions detected can give a good estimation of the original particle size, which allows the estimation 

of the density. If one knows the density of the carbonaceous particle – be it diamond, graphite, or 

a disordered phase of C – one can estimate the detection efficiency for that particle. 
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 Preferential magnification and cluster loss. A material with a higher evaporation field (black) such as Figure 2.19

diamond embedded inside of a material with a lower evaporation field (orange) such as platinum will be 

preferentially magnified through trajectory aberrations. 

 

After peak selection and background assessment I corrected for instrumental artifacts related to 

multiple hits on the detector during the same time of flight window. Two methods for deadtime 

correction are described in detail in Chapters 5 and 6 (Lewis et al. 2015; Stephan et al. 2015). 

The deadtime correction algorithm that is described in Chapter 6 and used for deadtime corrected 

data reported in Chapters 6 and 7 is given in Appendix 1. 

Details of the analysis and correction processes varied for the results discussed in Chapters 4–7, 

and are reported in the methods sections of those chapters. Section 7.2 details the state of the art 

for our atom-probe methodology. 

2.4 References 
Daulton T. L., Eisenhour D. D., Bernatowicz T. J., Lewis R. S., and Buseck P. R. 1996. Genesis 

of presolar diamonds: Comparative high-resolution transmission electron microscopy 

study of meteoritic and terrestrial nano-diamonds. Geochimica et Cosmochimica Acta 

60:4853–4872. 

Gault B., Moody M. P., Cairney J. M., and Ringer S. P. 2012. Atom Probe Microscopy, New 

York: Springer. 

Greiner N. R., Phillips D. S., Johnson J. D., and Volk F. 1988. Diamonds in detonation soot. 

Nature 333:440–442. 



58 

 

Heck P. R. et al. 2014. Atom-probe analyses of nanodiamonds from Allende. Meteoritics & 

Planetary Science 49:453–467. 

Huss G. R., and Lewis R. S. 1995. Presolar diamond, SiC, and graphite in primitive chondrites: 

Abundances as a function of meteorite class and petrologic type. Geochimica et 

Cosmochimica Acta 59:115–160. 

Kelly T. F., and Larson D. J. 2012. The second revolution in atom probe tomography. MRS 

Bulletin 37:150–158. 

Kunicki T. C., Beerman D., Geiser B. G., Oltman E., O’Neill R. W., and Larson D. J. 2006. 

Atom probe data reconstruction, visualization and analysis with the Imago Visualization 

and Analysis System (IVAS). 19
th

 International Vacuum Nanoelectronics Conference & 

50
th

 International Field Emission Symposium. pp. 535–536. 

Larson D. J., Prosa T. J., Ulfig R. M., Geiser B. P., and Kelly T. F. 2013. Local electrode atom 

probe tomography - A user’s guide, 1
st
 ed. New York: Springer-Verlag. 

Lewis R. S., Ming T., Wacker J. F., Anders E., and Steel E. 1987. Interstellar diamonds in 

meteorites. Nature 326:160–162. 

Lewis R. S., Anders E., and Draine B. T. 1989. Properties, detectability and origin of interstellar 

diamonds in meteorites. Nature 339:117–121. 

Lewis J. B., Isheim D., Floss C., and Seidman D. N. 2015. 12C/13C-ratio determination in 

nanodiamonds by atom-probe tomography. Ultramicroscopy 159:248–254. 

Müller E. W. 1951. Das feldionenmikroskop. Zeitschrift für Physik 131:136–142. 

Müller E. W., Panitz J. A., and McLane S. B. 1968. The atom‐probe field ion microscope. 

Review of Scientific Instruments 39:83–86. 

Nishikawa O., and Kimoto M. 1994. Toward a scanning atom probe — computer simulation of 

electric field. Applied Surface Science 76:424–430. 

Rolander U., and Andrén H.-O. 1988. On atom-probe analysis of cubic MX-type carbides and 

carbonitrides. Le Journal de Physique Colloques 49:C6-299–C6-304. 

Sakurai T., and Hashizume T. 1986. Determination of the detection efficiency of a channelplate 

electron multiplier. Review of Scientific Instruments 57:236–239. 

Seidman D. N., and Stiller K. 2009. An atom-probe tomography primer. MRS Bulletin 34:717–

724. 

Stephan T., Heck P. R., Isheim D., and Lewis J. B. 2015. Correction of dead time effects in laser-

induced desorption time-of-flight mass spectrometry: Applications in atom probe 

tomography. International Journal of Mass Spectrometry 379:46–51. 



59 

 

Thompson K., Lawrence D., Larson D. J., Olson J. D., Kelly T. F., and Gorman B. 2007. In situ 

site-specific specimen preparation for atom probe tomography. Ultramicroscopy 

107:131–139. 

Thuvander M., Weidow J., Angseryd J., Falk L. K. L., Liu F., Sonestedt M., Stiller K., and 

Andrén H.-O. 2011. Quantitative atom probe analysis of carbides. Ultramicroscopy 

111:604–608. 

Thuvander M., Kvist A., Johnson L. J. S., Weidow J., and Andrén H.-O. 2013. Reduction of 

multiple hits in atom probe tomography. Ultramicroscopy 132:81–85. 

Tsong T. T. 1978. Field ion image formation. Surface Science 70:211–233. 

Tsong T. T., McLane S. B., and Kinkus T. J. 1982. Pulsed‐laser time‐of‐flight atom‐probe field 

ion microscope. Review of Scientific Instruments 53:1442–1448. 

Yao L., Gault B., Cairney J. M., and Ringer S. P. 2010. On the multiplicity of field evaporation 

events in atom probe: A new dimension to the analysis of mass spectra. Philosophical 

Magazine Letters 90:121–129. 

Zinner E. 2014. Presolar Grains. In Treatise on Geochemistry, 2
nd

 ed. Elsevier. pp. 181–213. 



60 

 

Chapter 3: Origin of Nanodiamonds from 

Allende Constrained by Statistical Analysis 

of C Isotopes from Small Clusters of Acid 

Residue by NanoSIMS  
This chapter has been submitted for publication to Geochimica et Cosmochimica Acta and is 

under review. It was submitted in collaboration with Christine Floss and Frank Gyngard (Lewis 

et al. 2017). This author’s personal contribution was to conduct experimental analyses, develop 

statistical methods and scripts for data reduction, all data analysis, the writing of the manuscript, 

and management of drafts and revisions in collaboration with the coauthors. In Section 3.3 I 

report the use of a script to read, process, and conduct statistical analyses on NanoSIMS .IM 

binary data files. That script is given in Appendix 2. 

3.1 Introduction 
Potentially presolar nanodiamonds were first observed in nature in 1987 (Lewis et al. 1987), 

identified by transmission electron microscopy (TEM) examination of the residual material after 

acid dissolution, and size and density separations of material from the primitive carbonaceous 

chondrite Allende. They are ubiquitous in carbonaceous chondrites, at levels up to 1400 ppm by 

mass (Zinner et al. 2014). They have a log-normal size distribution that varies from 2.6–3.0 nm 

in median diameter depending on meteorite and separation method (Lewis et al. 1989; Daulton et 

al. 1996). 

The isolation of these nanodiamonds and their designation as the first type of presolar grain was 

the result of tracing the anomalous Xe isotopic component, Xe-HL, through a series of chemical 
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and physical separation processes. The resulting acid residues contain a number of isotopic 

anomalies in gases that can be observed by stepped heating. Xe-H has an overabundance of the 

heavy, r-process isotopes 
134

Xe and 
136

Xe; Xe-L is enriched in the lighter, p-process isotopes 

124
Xe and 

126
Xe, relative to solar abundances. As these two nucleosynthetic processes are only 

known to occur together during supernova explosions, the isotopically anomalous Xe-HL is 

strong evidence of supernova material present in the acid residues. And, as expected if the 

nanodiamonds formed from supernova remnant material, there are other isotopically anomalous 

components present, including excess 
128

Te and 
130

Te (Richter et al. 1998), and 
110

Pa (Maas et al. 

2001). No competing mechanism has been proposed to produce Xe-HL other than supernovae. 

For the nanodiamonds themselves, carbon stars and their environs are obvious source candidates, 

because they have the required high C/O ratio necessary for C-rich minerals to condense. Lewis 

et al. (1987, 1989) first suggested that nanodiamonds formed in red giants or planetary nebulae 

by a mechanism akin to laboratory chemical vapor deposition (CVD), and were later implanted 

with Xe-HL traveling at 10
3
 km/s, presumably provided by the explosion of the host star as a 

Type II (core-collapse) supernova. Alternatively, it is possible that the nanodiamonds formed in 

expanding Type II supernova remnants, where chemical and isotopic heterogeneity is expected 

(Clayton 1989; Nuth and Allen 1992; Clayton et al. 1995), or in the envelopes of Carbon stars in 

binary systems, where the companion star later exploded as a Type I supernova, implanting the 

nanodiamonds with Xe-HL. Notable anomalies in the 
12

C/
13

C isotopic ratio of presolar 

nanodiamonds are expected in either of these scenarios. Finally, it has been suggested that 

nanodiamonds are formed by supernova shock in the interstellar medium (ISM) (Tielens 1990; 

Stroud et al. 2011). Nanodiamonds also carry He, Ne, Ar, and Kr whose isotopic ratios are 

distinct from solar and appear to be associated with the Xe-HL; as few as 1 in 10
6
 grains are 
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required to carry Xe-HL, but to account for these additional trace elements would require 

roughly 1 in 10 nanodiamonds (Huss and Lewis 1994a; Huss and Lewis 1994b; Huss and Lewis 

1995; Huss et al. 2008; see Huss (2005) for an overview). 

The isotopic ratio of 
12

C/
13

C (and, to a lesser degree, that of 
14

N/
15

N), is the only attribute of 

these grains that can conclusively establish where the presolar carriers of the Xe-HL formed, 

since the noble gases may not have co-originated with the grains. Swart et al. (1983) and Russell 

et al. (1991, 1996) conducted stepped heating measurements on aggregates of billions of 

nanodiamonds, but found carbon and nitrogen isotopic ratios consistent with solar composition. 

Small isotopic anomalies, or small fractions of nanodiamonds with larger anomalies, could easily 

be hidden in these bulk measurements. Thus, there remains debate as to where meteoritic 

nanodiamonds formed, and whether all the nanodiamonds, or even a majority of them, are 

presolar (Dai et al. 2002). 

The surfaces of the nanodiamonds appear to be damaged by the hydrofluoric and hydrochloric 

acid treatment, as the infrared spectrum of the acid residue shows absorption from -CH, -COOH, 

and C-O bonds (Lewis et al. 1989). It is possible, based on infrared spectral observations of the 

ISM, that the nanodiamonds were originally encased in sp
2
-bonded fullerene shells, which were 

damaged and transformed into the disordered C, possibly by the acid dissolution process 

(Yastrebov and Smith 2009). 

While the acid residue is generally identified as nanodiamond, a significant fraction of it is 

composed of sp
2
-bonded disordered C. Swart et al. (1983), Russell et al. (1991), and Verchovsky 

et al. (1998) each note a fraction of material in the residue that releases carbon at lower 

temperatures and with a ~10 per mil smaller δ
13

C than that observed for the sample as a whole. 
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Russell et al. (1991, 1996) conducted stepped heating analyses on nanodiamond residues from a 

suite of meteorites. The maximum anomalies detected in a single temperature fraction ranged 

from δ
13

C = -38.8±<0.1‰ in ALH 83100 (CM2) to δ
13

C = -32.5±0.1‰ in Inman (L3.4), relative 

to Pee Dee Belemnite (PDB, 
12

C/
13

C = 88.99). Our study used Allende (CV3), for which Russell 

et al. (1991 and 1996) obtained a maximum carbon isotopic anomaly of δ
13

C = -35.5±<0.1‰. In 

earlier work Swart et al. (1983) measured a maximum anomaly of δ
13

C = -38 for the as-yet 

unidentified nanodiamond separate in Allende. Including carbon released at lower temperatures, 

probably from non-diamond material in the residues, the Allende nanodiamond-containing acid 

residue has a δ
13

C value of -30.4‰ (Swart et al. 1983) or -32.7±0.1‰ compared to a range of -

28.0±4.4‰ to -36.1±0.1‰ for a variety of other meteorites (Russell et al. 1996). Different 

separation and analysis techniques are used by different researchers, potentially influencing the 

results. To summarize these studies, the most anomalous 
12

C/
13

C ratio measured in the acid 

residues is isotopically light, but the magnitude of the anomaly is small compared to the 

variations found in the solar system. 

Implantation is not a viable explanation for the presence of N, as it is for the trace noble gases, so 

it must have co-originated in the nanodiamonds (Russell et al. 1996). Nitrogen is present in the 

acid residues at levels ranging from 1800 to 13,000 ppm. The nitrogen is isotopically light 

compared to nitrogen in terrestrial air, with δ
15

N = -348±7‰ (Russell et al. 1996, and references 

therein), but it is close to the solar value of -383±8‰ determined from Genesis solar wind data 

(Marty et al. 2011). 

Modeling based on Electron Energy Loss Spectroscopy (EELS) data by Bernatowicz et al. 

(1990) indicates that roughly half the carbonaceous material is disordered. Scanning transmission 

electron microscopy (STEM) confirmed the presence of disordered carbon and minor elements 
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(Stroud et al. 2011, 2016). It is not clear whether the disordered carbon was a precursor for the 

nanodiamonds, co-originated with nanodiamonds in the ISM (Stroud et al. 2011), was created by 

acid dissolution damage of nanodiamonds, or has a different origin from the nanodiamonds and 

is aggregated from the meteoritic material during the dissolution process. With our methodology 

(Section 2.2), we cannot easily distinguish between disordered C and nanodiamonds. 

 In addition to the nanodiamonds and disordered C, the acid residue has been reported to contain 

~600 ppm SiC (Lewis et al. 1989), as well as TiC and metal nuggets (Stroud et al. 2016), 

residual Na and NaOH from laboratory contamination, and F and Cl from the acid treatment 

(Lewis et al. 2016). 

Other studies have revealed evidence of subpopulations within the nanodiamond acid residues. 

The carbon and nitrogen isotopic ratios are not identical within uncertainties when measured in 

nanodiamond residues from different meteorites. This is surprising, considering that the 

concentration of Xe-HL in the residues does not vary greatly between these meteorites, and the 

ratio of Xe-H to Xe-L is identical (Schelhaas et al. 1990). Russell et al. (1996) observed a 

carbonaceous component with carbon isotopes slightly depleted in 
13

C, δ
13

C = -25‰, that 

released at lower temperatures during stepped heating. They estimated that this component 

comprises ~20% of the carbonaceous material. Verchovsky et al. (2006) investigated 

subpopulations of nanodiamonds by differential centrifugation of acid residues, further isolating 

material that is coarser and less prone to forming colloids. They found isotopically heavy C, 

isotopically light N, and different noble gas isotopic signatures compared to the original 

separates. Although SiC could be responsible for these signatures, Verchovsky et al. (2006) 

argue that the signatures are from asymptotic giant branch (AGB) star-produced nanodiamonds. 

δ
15

N values range from 0 to <-350‰ in stepped heating from Allende (Russell et al. 1991), 
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although the initial, relatively 
15

N-rich signal could be fractionation caused by preferential loss of 

14
N-rich molecular N2 in the laboratory. In an ongoing study, nanodiamonds have been separated 

into subpopulations based on size, degree of chemical surface damage, and fraction of disordered 

C, using electrophoresis (Shatoff et al. 2015; Stroud et al. 2016; Pravdivtseva et al. 2016). 

With the exception of ongoing investigations using atom-probe tomography (Heck et al. 2014; 

Isheim et al. 2013; Lewis et al. 2015), no viable methods exist for measuring the 
12

C/
13

C ratio in 

individual nanodiamonds, due to limitations in size and atomic count. Thirty-four ng of 

nanodiamond acid residue, the smallest sample we have found reported (Swart et al. 1983, in a 

single stepped heating step), should contain roughly 10
15

 atoms, enough for 10
12

 nanodiamonds 

(given a diamond density of 3.51 g/cm
3
). 

To investigate these potential subpopulations, we measured thousands of clusters of as few 

nanodiamonds as possible, using nanoscale secondary ion mass spectrometry (NanoSIMS) with a 

minimized beam spot, collecting data from thousands of small regions across a deposit of 

nanodiamonds (Sections 3.2.1 and 3.2.2). The resulting data are sensitive to a variety of isotopic 

signatures that, if present, would indicate presolar origins, which may not be evident in larger 

bulk studies because of dilution and averaging of anomalies (Section 3.2.3). The data were 

analyzed to determine the overall 
12

C/
13

C ratio (Section 3.3.1), and to search for outlier ratios 

(Section 3.3.2) and significant broadening of the distribution of measured ratios (Section 3.3.3), 

which would indicate multiple isotopic sources. After discussing silicon observed in the acid 

residues (Section 3.3.4), we present detection limits and assess what isotopically anomalous 

populations are ruled out by our data (Section 3.3.5). In Section 3.4, we discuss the implications 

of the data for existing research and for the probable stellar origins of nanodiamonds, and 

summarize our conclusions in Section 3.5.2. 
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3.2 Methods 

3.2.1 Samples 

A droplet of nanodiamond-bearing Allende acid residue, designated DM (Lewis et al. 1989), 

suspended in deionized water was deposited onto gold foil by Roy Lewis (Figure 3.1a). 

For standards, we used 4–7 nm diameter nanodiamonds created by detonation (Greiner et al. 

1988) that were separated and prepared similarly to the Allende deposit (Figure 3.1b). Additional 

standards included DAG carbon paint, δ
13

C = (-29.3 to -24.6)±1.7‰ relative to PDB (Amari et 

al. 2014), and a polished graphite planchette (Figure 1c). We observed much lower count rates 

for the detonation nanodiamond standards than the Allende nanodiamonds. A possible 

explanation is that the detonation nanodiamond deposits onto gold foil are much sparser than the 

meteoritic nanodiamond deposits. 

The abbreviations for the samples are ADM (Allende DM nanodiamond-containing acid 

residue), DND (detonation nanodiamond acid residue standard), GRP (polished graphite 

planchette), and CPT (DAG carbon paint). 

 

 Grayscale mosaics of reflected light optical microscopy images of samples. (a) Stub with Allende DM Figure 3.1

nanodiamond residue on gold foil. (b) Stub with terrestrial detonation nanodiamonds on gold foil. (c) Stub made of 

polished graphite (darker). “DAG” carbon paint (lighter) was applied to the right-hand side. 
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3.2.2 Data Collection 

Our experimental goal was to conduct thousands of measurements of 
12

C and 
13

C, each of as few 

nanodiamonds as possible. We used the Cameca NanoSIMS 50 at Washington University in St. 

Louis. We chose this instrument for its high spatial resolution (down to 50 nm), mass resolving 

power sufficient to distinguish 
13

C from 
12

C
1
H, and multicollection that allowed us to 

simultaneously collect 
12

C and 
13

C for the major isotope ratio and 
28

Si to detect SiC or any other 

Si-bearing phase in the acid residue. Using the NanoSIMS, we bombarded the sample with a Cs
+
 

primary beam, implanting Cs ions and sputtering away material. The NanoSIMS achieves high 

spatial resolution through the use of co-axial primary and secondary ion beams, allowing the ion 

extraction optics to be placed much closer to the sample than in other SIMS instruments, and by 

using a primary beam that is perpendicular to the sample, minimizing the cross section of the 

sample struck by the beam. In order to measure as few nanodiamonds as possible in aggregate, 

we tuned the NanoSIMS to a small beam. While the beam size has numerous dependencies, the 

key changes we made were using a source demagnification lens to decrease the primary beam 

size and using the smallest field aperture diaphragm in the immersion lens. The secondary ion 

current is low, not only because of the smaller primary beam diameter, but also due to a drop in 

current density inherent to this configuration. 

To measure the primary beam diameter, we scanned the beam perpendicularly across a sharp 

boundary between carbon paint and a void (Figure 3.2a). For our small beam, the signal should 

fall off rapidly, based on the width of the material transition (close to a step function) convoluted 

with the size of the beam. We measured the signal on either side of the boundary and calculated 

how far the beam traverses as the signal intensity falls from 84% to 16%, resulting in an upper 

limit for the beam size. Over a number of measurements, the smallest this value fell to was 70 
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nm (Figure 3.2b). We emphasize that this is an upper limit; we expect our beam was closer to 50 

nm in size, but so as not to dramatically overestimate our sensitivity to isotopic anomalies, we 

take 70 nm as our beam diameter. Spot sizes as small as 30 nm in diameter have been reported 

for the NanoSIMS (e.g., Hoppe et al. 2015). Such measurements would reduce the number of 

nanodiamonds analyzed per beam spot by 80% (such a change would be an improvement but not 

an unqualified one, the accompanying drop in counts as a result of measuring less material would 

slow data collection). 

  

 Beam diameter minimization. We conducted a linescan across a near-step function in signal intensity (a), Figure 3.2

represented by the red line and diamond endpoints. The beam full width half max is given by fitting the linescan 

data (b), where boxes denote points used to fit the signal drop-off, and triangles and diamonds denote points used to 

fit the high and low signals, respectively. The width of the beam is taken to be the distance over which the beam 

falls from 84% to 16% intensity, and in this case is less than 70 nm. 

 

To serialize acquisition of spot measurements, we used imaging mode with an image size of 

1.2×1.2 μm
2
 and 16×16 pixels, where the distance between two pixels (75 nm) is larger than the 

beam full width half max, minimizing overlap in the material measured. We used multiple cycles 

with the maximum dwell time of 1 second. The time between each 1 second dwell on a spot is 
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256 seconds. It took several hours to acquire 256 pixel data sets with 26–150 cycles. Table 1 

gives the number of cycles, carbon count rates, and collection time for each data set. If the 

primary beam experienced extreme drift, on the order of 50 nm during the time between the first 

and last 1 second dwell on a pixel, it would as much as double the number of nanodiamonds 

sampled for that pixel, decreasing our sensitivity to anomalies in small areas. Unfortunately, the 

analysis software did not allow us to use longer dwell times in imaging mode, and to conduct 

thousands of measurements in spot mode would have been prohibitively time intensive. It would 

be ideal if the control software allowed for the automated collection of large numbers of depth 

profile measurements, as this would minimize drift time per pixel. However, drift correction 

algorithms in the L’Image image processing software suggest the drift is already smaller than 

one 75 nm diameter pixel.



70 

 

Table 3.1 Measurement conditions for each NanoSIMS data set. 

 

Data Set
a
 Cycles Mean C counts per pixel per cycle Analysis Time (minutes) 

ADM  26-1 60 1130 256 

ADM 26-3 130 279 555 

ADM 27-3 122 180 521 

DND 25-4 105 28 448 

DND 28-1 60 64 256 

DND 28-3 35 91 149 

GRP 29-2 26 3020 111 

GRP 29-4 150 3123 640 

CPT 28-1 91 2279 388 

 

a 
ADM: Allende DM nanodiamond-containing acid residue. 

DND: Terrestrial detonation nanodiamond-containing acid residue. 

CPT: Carbon paint. 

GRP: Graphite planchette. 

In order to assess our sensitivity to isotopic anomalies, it is important that we know how much 

material we have analyzed. Making such an estimate is non-trivial. One method for 

approximating the number of nanodiamonds sampled from (NC) is based on the number of 

carbon counts detected, nD: 

  𝑁𝐶 =
𝑛𝐷

4

3
𝜋𝑟3𝜌𝐷𝑈

 (3.1) 

where r is the radius of a spherical unit of Allende nanodiamond-containing acid residue, ρD is 

the number of carbon atoms per volume of diamond, 176 carbon atoms per nm
3
, and U is the 

useful yield. This method does not require knowledge of the size of the crater excavated, but also 
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does not take into account nanodiamonds that were only partially milled. Another method for 

approximating the number of nanodiamonds from which we sampled is based on the volume of 

material sputtered through: 

  𝑁𝑉 =
𝑅2𝑑
4

3
𝑟3

 (3.2) 

where R is the radius of the Cs
+
 primary beam, and d is the depth to which the sample was 

milled. 

For both estimates, it is important to define the radial unit size of the carbonaceous material 

analyzed, r. The unit size for the disordered carbon is unknown, while that of the nanodiamonds 

is a log-normal distribution (Lewis et al. 1987, Daulton et al. 1996) covering several orders of 

magnitude in volume, with a median value of 2.7 nm in diameter for Allende DM. The sp
2
-

bonded disordered carbon has undergone the same separation procedures, so we expect a single 

unit of this material to be similar to the nanodiamonds. Equation 3.1 includes the approximation 

that a unit of nanodiamond or disordered carbon will contain the same number of carbon atoms. 

Equation 3.2 uses the different approximation that a unit of nanodiamond or disordered carbon 

will take up the same volume. The difference between these approximations is the difference 

between the densities of C atoms in the two phases. The density of disordered carbon is ~1.5 

g/cm
3
, or ~75 carbon atoms/nm

3
; Shigemitsu et al. 1979) and that of diamond is 3.51 g/cm

3
, or 

176 carbon atoms per nm
3
. We take an intermediate value as the density of nanodiamond-

containing acid residue, ρA = ~2.5 g/cm
3
, that is, ~125 carbon atoms per nm

3
. The residue is 

composed of disordered sp
2
-bonded carbon and sp

3
-bonded diamond, possibly with layered 

shells of sp
2
-bonded C. It is unclear if there is any void space in between units of disordered 
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carbon and nanodiamonds. It is likely that there is variability in how compact the disordered 

material is packed and what fraction of the material is diamond. 

We define U, the useful yield, as the fraction of carbon atoms sputtered from the sample that are 

also detected by the NanoSIMS. Only a fraction of sputtered material is ionized, and only a 

fraction of that ionized material arrives at the detectors. The higher our estimate of U, the higher 

our estimate of sensitivity to isotopic anomalies. We routinely achieve ~1% useful yield on a Si 

wafer. Our materials may behave significantly differently from Si, so we use U = 0.5% in order 

to not overestimate our sensitivity. 

Given these values, the typical nanodiamond contains an average of ~2000 atoms, Nc = ~0.110 × 

nD, and we detect approximately 10 atoms per nanodiamond or unit of disordered carbon. We 

will use “cycle” to refer to the raw data from a 1 second NanoSIMS beam shot, and “data point” 

to refer to the counts summed over multiple consecutive cycles from the same pixel to add up as 

close as possible the target count of 2917 
12

C + 
13

C atoms. 2917 is the average number of 
12

C + 

13
C for a data point summed over all cycles for a pixel in the data set with the lowest count rates, 

DND 25-4. Data points for other data sets were similarly constructed by summing over a number 

of cycles until they contain as close as possible to an average 2917 
12

C + 
13

C counts. If each 

nanodiamond in the beam is average-sized and milled completely through, there are ~300 

nanodiamonds and units of acid residue in each data point. However, if we milled through less 

than 3 nm of material, it would be incorrect to assume we sampled from only Nc nanodiamonds. 

Instead, we would have sputtered partway through NV nanodiamonds, where d is 3 nm. 

Given the values of r, and the primary beam R, that we have estimated, the number of 

nanodiamond-sized units of volume sputtered through in a data point is NV = 373 × d. However, 
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this does not take into account packing or the different densities of the disordered carbon and the 

nanodiamonds, and it only makes sense geometrically for d=3 nm or greater. For every 3 nm 

layer, there is enough volume for roughly 1000 nanodiamonds. 

The counts and cross section approximations vary by more than a factor of two, estimating that 

there are 300 and 1000 nanodiamonds, respectively, per 3 nm layer in a 70 nm diameter spot 

size. In addition, positively charged 8kV Cs ions should penetrate significantly farther into a 

carbonaceous sample than the ~3 nm diameter of a typical nanodiamond (stopping and range of 

ions in matter simulations give 14 nm; Ziegler et al. 2010), creating some amount of 

amorphization and mixing. So even if we correctly estimate how much material is sputtered 

away, we cannot be positive none of the sputtered material was gardened up to the surface from a 

greater depth. For these reasons, there is uncertainty as to the depth milled, but both counts-based 

and volume-based methods agree that the 2917 average C count data points sample only from the 

top layer of nanodiamond-containing acid residue. 

To measure d, the depth sputtered through, we excavated a series of cross sections out of one of 

the 1.2×1.2 µm
2
 analysis areas using a Ga focused ion beam (FIB) microscope and performed 

secondary electron imaging. Figure 3.3 shows one of these cross sections. At the edge of the 

sputtered region what appears to be a presputter crater edge is visible, with a depth of 30–60 nm, 

but no further excavation is visible. A series of 10–20 nm deep craters should be resolvable, but 

craters less than 3 nm in depth would not be. We also estimated the mill depth using the equation 

 𝑑 =
𝑛𝐷

𝜋𝑅2𝜌𝐴𝑈
  (3.3) 

which gives the mill depth based on the carbon counts collected, and the estimations of the 

density and beam spot size, reducing to d = (4×10
-4

) × nD. Summed over all cycles for the 
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Allende data sets, counts per pixel range from 2–7×10
4
 counts, giving d on the order of 10 nm. 

This is large enough to be resolved by our cross sections. nD = 2917 carbon counts per data point 

gives an approximate mill depth of 1 nm.  

  

 Cross section of deposit after NanoSIMS analysis. Secondary electron image obtained with a FIB/SEM Figure 3.3

dual-beam microscope. (a) FIB-deposited Pt layer applied prior to sectioning. (b) Depth of NanoSIMS presputter 

(30–60 nm). (c) ADM deposit (~600 nm). (d) Gold foil beneath deposit. 

 

For measurements that sum counts across all cycles in a pixel, we use the counts-based approach 

to estimate the number of nanodiamonds we have milled through. 

3.3 Data Reduction 
We used custom scripts to read Cameca .im binary data files, and to reduce and analyze the data 

(Appendix 2). Images are not drift corrected, because drift corrections use pixel-size steps, while 

our beam spot is sub-pixel in size. Drift correction algorithms in the L’Image software suggested 

at most one-pixel shifts. Our instrument has a 36 nanosecond deadtime, which we do not correct, 

because corrections will be insignificant (less than 1 count for any pixel with fewer than 5270 

counts detected), which includes all the pixels in our data. See Table 3.1 for the average 
12

C + 

13
C counts per pixel per cycle for each data set. We did not correct for the quasi-simultaneous 

arrival (QSA) effect, because it will not be significant for our analyses. 
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All our analyses detect isotopic anomalies either by comparing or normalizing isotopic ratios. 

Ratio measurements made under the same experimental conditions on the same or a similar 

matrix will be equally affected by QSA. All our analyses are either on ratio measurements on the 

same matrix, or are Allende nanodiamond materials normalized to detonation nanodiamond 

material, which is a comparable matrix. Thus our results are not affected by the QSA effect. The 

uncertainty in a ratio calculation is based on counting statistics for the numbers of each isotope 

collected. Calculations with 0 counts for an isotope of carbon were discarded. To exclude 

calculations made with counts far lower than the target number, we discarded pixels with 2.5 

times less than the maximum 
12

C + 
13

C counts for a pixel of a data set. Pixels were checked for 

potential SiC or silica using the 
28

Si counts as well as the ratio of 
28

Si counts to summed C 

counts.  

3.3.1 Bulk Ratio Analysis 

We report the ratio as per mil deviation, using the bulk ratio from the 3 DND data sets as our 

standard: 

  𝛿13𝐶𝑏𝑢𝑙𝑘 = (
(

𝐶13

𝐶12 )
𝐴𝐷𝑀

(
𝐶13

𝐶12 )
𝐷𝑁𝐷

− 1) ∗ 1000‰ (3.4) 

The uncertainty in the bulk C isotopic anomaly, Err(δ
13

Cbulk) is the sum in quadrature of (1) the 

fractional standard deviation of the 
13

C/
12

C ratios for the data from each of the three grids, and 

(2) the fractional standard deviation calculated from three grids of terrestrial detonation 

nanodiamonds. In per mil this is given by: 
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 𝐸𝑟𝑟(𝛿 𝐶13
𝑏𝑢𝑙𝑘) = 1000

(
𝐶13

𝐶12 )
𝐴𝐷𝑀

(
𝐶13

𝐶12 )
𝐷𝑁𝐷

√(
𝜎𝐴𝐷𝑀

(
𝐶13

𝐶12 )
𝐴𝐷𝑀

)

2

+ (
𝜎𝐷𝑁𝐷

(
𝐶13

𝐶12 )
𝐷𝑁𝐷

)

2

 ‰ (3.5) 

The bulk 
13

C/
12

C ratio was calculated from 3×10
7
 carbon counts from 768 pixel spots located in 

three 1.2×1.2 μm
2
 grid areas, designated as data sets ADM 26-1, ADM 26-3, and ADM 27-3. We 

estimate these data represent approximately 8×10
9
 carbon atoms sputtered from the sample, 

taken from 4×10
6
 nanodiamonds (or 2×10

6
 nanodiamonds and accompanying disordered 

carbon). While results are reported and discussed in terms of 
12

C/
13

C, analyses were conducted 

using 
13

C/
12

C, to prevent low counts in the denominator from skewing the calculation of the 

standard deviation and . Bulk 
13

C/
12

C ratios, prior to standardization, are calculated as the sum of 

13
C counts from all pixel spots from the three Allende data sets i, divided by the sum of 

12
C 

counts: 

  
𝐶13

𝐶12 =  
∑ 𝐶13

𝑖𝑖

∑ 𝐶12
𝑖𝑖
 (3.6) 

where for this calculation, 
𝐶13

𝐶12 =  
𝐶13

𝐶12
𝐴𝐷𝑀

or 
𝐶13

𝐶12
𝐷𝑁𝐷

. We sum all counts from an isotope prior to 

dividing, since averaging over a number of calculated ratios, even with proper weighting, 

introduces a positive bias in the ratio (Ogliore et al. 2011).   

For this calculation and others in the manuscript, the weighted standard deviation σ of an isotopic 

ratio or a number i of data points or data sets is defined as 

  𝜎13𝐶

12𝐶

= √ 𝛴𝑖𝑤𝑖

(𝛴𝑖𝑤𝑖)2−𝛴𝑖𝑤𝑖
2 ∑ 𝑤𝑖 (

𝐶13
𝑖

𝐶12
𝑖

−
𝐶13

𝐶12

̅̅ ̅̅
)

2

𝑖 . (3.7) 
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𝐶13

𝐶12

̅̅ ̅̅
 is the bulk mean ratio for which the standard deviation is being calculated. For σADM and 

σDND, i is the index for the data from one data set of Allende, or detonation nanodiamonds, 

respectively, but elsewhere in the manuscript i represents data from pixels rather than data sets. 

The weights are defined as 

  w𝑖 = (
1

𝐸𝑟𝑟( 𝐶13
𝑖/ 𝐶12

𝑖)
)

2

 (3.8) 

These are the weights for each data point or data set i, based on the uncertainty in the 
13

C/
12

C 

ratio of the summed isotope counts for each data set. This takes into account the width of the 

error bars on each data point in terms of 
13

C/
12

C ratio. For the same 
12

C+
13

C counts in a given 

data point, 
13

C-enriched data points have larger ratios and thus larger absolute uncertainties, in 

spite of having lower fractional uncertainties. 

Using the methods described above, the terrestrial standard nanodiamonds have a raw, that is, 

un-normalized 
12

C/
13

C ratio of 98−4
+3 over three data sets, designated DND 25-4, DND 28-1, and 

DND 28-3. While per mil precision isotopic studies of the detonation nanodiamond separates we 

used are not available, the real value for these nanodiamonds should be close to the known 

terrestrial value (~89, Coplen et al. 2002); the difference indicates that matrix effects, 

topography, and potential systematic errors do significantly affect our small-beam measurements 

on acid residue deposits, and that proper standardization is essential.  

3.3.2 Broadening Analysis 

We searched for indications of isotopic anomalies by examining the shape of distributions of 

13
C/

12
C ratios for Gaussian broadening compared to the shape expected from statistics and 

standards. Given sufficiently low variance in the denominator, the quotient of two Gaussian 
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distributions may be modeled as a Gaussian (Hayya et al. 1975). If there is isotopically 

anomalous material in the acid residues, distributions of ratio measurements will be the 

combination of multiple distributions. All the data points with counts from isotopically 

anomalous nanodiamonds may be well within uncertainty of the mean, and the distribution need 

not be double-peaked, but the distribution will be broader overall if the material is drawn from 

more than one isotopic reservoir. Systematics can produce Gaussian and non-Gaussian 

broadening, so we corrected our data using standards. 

(1) To calculate the amount of systematic broadening (that is, non-Gaussian broadening), we 

used the term 

  𝐵𝑆 =  
𝜎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑−𝜎𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

𝜎𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 (3.9) 

𝜎expected is the standard deviation (Equation 3.7) of the carbon isotopic ratio derived from the 

assumption that the data fit a Gaussian distribution.  

We fit 𝜎observed in our standards using a reduced chi-squared model. The reduced chi-squared for 

a distribution of 
13

C/
12

C ratio data points is given by: 

  𝜒𝑟𝑒𝑑
2 = ∑ (

𝐶13
𝑖/ 𝐶12

𝑖− 𝐶13 / 𝐶12̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝜎
)

2

𝑖 /𝑑𝑜𝑓 (3.10) 

where the mean ratio is the ratio of the summed counts over all data points i, dof is the number of 

degrees of freedom, that is, the number of data points, N, minus 1, and σ is the fitted parameter. 

We used 𝜎expected (Equation 3.7) as the initial value of σ. If the residual χ
2

red–1≠0, indicating a 

non-optimal fit, we adjusted σ by a fraction of the residual and recalculated χ
2

red. This process 

was repeated until χ
2

red converged to a value of one. The final value of σ is 𝜎observed. 
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Given these definitions for 𝜎observed and 𝜎expected we calculated Bs. We used all the data points 

from a given data set in a single distribution, which minimizes the uncertainty. On the order of 

10
6
 nanodiamonds are present in each of the three Allende distributions. 

(2) To calculate Gaussian broadening we compared directly to the standards. We subtracted the 

mean fractional deviation of our standard data sets from the fractional standard deviation, σ, for 

the data set for which we are calculating the Gaussian broadening, 

  𝐵𝐺 = σ − 𝜎𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠 (3.11) 

where 𝜎𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑠 is the average fractional σ for the DND, GRP, and CPT data sets. Err(BG), the 

uncertainty in BG, is the sum in quadrature of Err(σ) and Err(𝜎standards). The uncertainty in the 

standard deviation is given by, 

  𝐸𝑟𝑟(𝜎) =
𝜎

√2(𝑁−1)
 (3.12) 

(Taylor 1997, 294–298), where, for σAllende, N is the number of data points in the data set being 

evaluated for Gaussian broadening, and for σstandards, N is the number of data sets averaged over 

(in which case N=6). 

Given that we corrected for BS, the systematic broadening, if BG exceeds the uncertainty, there 

are two explanations: Either a statistical difference in the data set is simulating the presence of 

multiple distributions, or the Allende data set contains isotopically anomalous material. 

If the counts per data point vary in a distribution of data points, the effect on the standard 

deviation will be similar to drawing from different distributions. We calculated the standard 

deviation of the 
12

C counts for all the data points in a data set and tested if the Gaussian 
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broadening depends on this value. Data points that do not fall along a linear correlation fit cannot 

be attributed to this effect. 

3.3.3 Outlier Analysis 

We continued our search for isotopic anomalies by creating distributions of 
13

C/
12

C isotope ratio 

data points to search for outliers. We divided the Allende data into a total of 72,103 data points, 

each from a single spot summed over cycles to include as close as possible to 2917 carbon 

counts, which is the mean number of carbon counts-per-pixel (summed over all cycles) for DND 

25-4, the data set with the lowest count rates. It is serendipitous that 2917 counts corresponds to 

roughly 1 nm mill depth, sampling from one, but only one, layer of approximately 1000 

nanodiamonds, as this allows us to measure the isotopic ratio from a minimum number of 

nanodiamonds and still have data points that sample from a similar number of nanodiamonds for 

each data set and material, in spite of the low counts from the detonation nanodiamond 

standards. 

We used a rolling sum, so each cycle of raw data from a pixel is included in n data points, where 

n is the number of cycles summed over to achieve the target counts (this is a simplification as n 

is not always the same for every data point in a sample). For example, given consecutive cycles 

1, 2, 3, 4, and 5, and n=3, the first data point will sum cycles 1, 2, and 3 before reaching the 

target counts; the second data point will start at cycle 2 and sum cycles 2, 3, and 4. Data point 

three will sum cycles 3, 4, and 5. Data point four starts at cycle four. So cycle 3 is included in n 

(three) data points. If instead of a rolling sum, we skipped over previously summed cycles we 

would have up to an (n-1)/n chance to overlook any outlier. In the worst-case scenario, an 

isotopic anomaly persists over exactly n cycles. For example, suppose the counts from cycles 2–

4 in our example are anomalous enough to constitute an outlier. A rolling sum with n=3 will 
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detect an outlier in the second data point, which sums cycles 2–4. But an exclusive sum starting 

at cycle 1 or cycle 3 will dilute the signal with non-anomalous cycles 1 or 5 and not detect the 

outlier. Thus, 2/3 of the time, or (n-1)/n of starting points, this outlier would be missed. 

Each data point represents approximately 8×10
5
 carbon atoms sputtered from the sample, or as 

many as 1000 nanodiamonds (or fewer nanodiamonds and accompanying disordered carbon). By 

using data points that have close to the same counts on average, we created statistically similar 

distributions from data sets taken from different sample areas and materials. For the calculation 

of the standard deviation, each data point was weighted based on the uncertainty due to counting 

statistics for each of the isotopes. The typical weights, which in this case we will call 𝑤′ were 

normalized as w, such that Σiwi = N, the number of measured ratios, using  

  𝑤𝑖 = 𝑁
𝑤𝑖

′

𝛴𝑖𝑤𝑖
′ (3.13) 

where 

  𝑤𝑖
′ = (

1

𝐸𝑟𝑟( 𝐶13
𝑖/ 𝐶12

𝑖)
)

2

. (3.14) 

Using normalized weights allowed us to use the simple, unweighted expression for the fractional 

uncertainty in the standard deviation (Equation 3.12). 

The mean ratio is calculated as the sum of 
13

C counts divided by the sum of the 
12

C counts, to 

avoid the bias that would be introduced by averaging over a number of ratios (Ogliore et al. 

2011). The uncertainty in the mean ratio is given by the standard error of the mean, SEOM, 

  𝑆𝐸𝑂𝑀 =
𝜎

√𝑁
. (3.15) 
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For readability, ratios are plotted in terms of 
12

C/
13

C, but the distributions are displayed linearly 

with respect to 
13

C/
12

C, to avoid the appearance of tails at high 
12

C/
13

C ratios, due to low counts 

in the denominator of 
12

C/
13

C ratio data points. 

We further investigated outliers greater than 4σ from normal with more than half the data set 

average relative significance in Allende and our standards by analysis of depth profiles for each 

signal (
12

C, 
13

C, 
16

O, 
28

Si, and secondary electrons), as well as for 
13

C/
12

C. These profiles allow 

us to see if isotopic outliers persist over several cycles and if signals from the other ions and 

secondary electrons remain stable during the same cycles, both of which are indicative of 

isotopic anomalies, but not experimental artifacts. Because of lower count rates in ADM 

compared to CPT and GRP standards, each data point in the ADM data is summed over more 

cycles to create roughly comparable counting statistics; therefore, an outlier in Allende 

represents a more significant result than an outlier in the CPT and GRP standards. After the first 

rolling sum in a pixel sums to the last cycle of the data set, we do not consider data points 

starting at subsequent cycles, as these will all sum to the end of the data set without reaching the 

target 2917 C counts, and therefore do not represent any new data. 

3.3.4 Detection Limit Calculation 

In order to assess which anomalous components our experiment rules out by non-detection, we 

posited a model of the isotopic composition of the nanodiamonds. We take a simple, two-

component model, a normal component with isotopic ratio Rn equal to the solar system value, 

and an anomalous component, with a ratio, Ra, comprising a fraction, fa, of a sample.  We 

derived an expression for the detection limit as a function of Ra that includes RO, the ratio we 

would observe, and Rn, the terrestrial ratio: 



83 

 

  𝑓𝑎(𝑅𝑎) =
(𝑅𝑎+1)(𝑅𝑜−𝑅𝑛)

(𝑅𝑎−𝑅𝑛)(𝑅𝑜+1)
 (3.16) 

This expression is for ratios in terms of 
12

C/
13

C. For the sensitivity of the bulk ratio technique 

described in Section 3.3.1, we used the measured bulk C isotopic ratio that would constitute a 2σ 

outlier as RO. To assess the sensitivity of the outlier ratio technique described in Section 3.2.2 to 

individual aggregates that are isotopically anomalous, we calculated the ratio that would 

constitute a 5σ outlier for a data point in our Allende data, and use that ratio as RO. 

3.4 Results 

3.4.1 Bulk 
12

C/
13

C Ratio 

The “bulk” isotopic composition of the Allende nanodiamonds we measured is δ
13

C = 8±35‰, 

normalized to the detonation nanodiamonds (Figure 3.4). The uncertainty includes counting 

uncertainty, matrix effects, topography, and differences between sample and standard as well as 

tuning on different data collection runs. We estimate this measurement sputtered through 8×10
9 

atoms of Allende acid residue, and represents approximately 4×10
6

 nanodiamonds. Our results 

are consistent with solar system values. There is a small enrichment in 
13

C in our samples 

compared to previous studies, at the 1σ level. 
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 Bulk measurement of δ
13

C compared to previous studies. Data points from previous studies are the Figure 3.4

average δ
13

C detected over the course of stepped heating of less than 100 μg of nanodiamond-containing acid 

residue per sample (Russell et al. 1996), and 34–68 ng per step (Swart et al. 1983). The minimum δ
13

C (most 

extreme anomaly) is a few per mil farther from terrestrial in each case. The error bars for the data point from 

Allende, this study, are ±1σ. Swart et al. (1983) do not report errors. Errors for Allende by Russell et al. (1996) are 

smaller than the size of the symbol. Errors are 0.1 to a few per mil for the range of 10 chondrites by Russell et al. 

(1996). 

3.4.2 Outlier Ratios 

Distributions of 
12

C/
13

C isotopic ratio measurements for each data set are plotted in Figure 3.5. 

Since the measurements on Allende were from three different 1.2×1.2 μm
2
 areas on the sample, 

we plotted three different distributions. Figure 3.5 also includes the distributions from the 

terrestrial detonation nanodiamonds, graphite, and carbon paint standards. ADM 27-3 is distinct 

from the other two Allende data sets in that it does not have tails of the same length, nor is the 

peak as smooth of a curve. It also has the highest mean 
12

C/
13

C ratio and standard deviation. 

Table 3.2 describes the mean, standard deviation, and uncertainties for these isotopic ratio 

distributions, using 
13

C/
12

C since the standard deviation, uncertainty in the standard deviation, 

and uncertainty in the mean are all asymmetric in 
12

C/
13

C. The standard deviation should be 

similar for each data set, because the counts per data point are similar values as a result of 

summing over multiple cycles to a target count. Even though different data sets contain 
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dramatically different numbers of data points, each data point has similar uncertainty, and, 

therefore, contributes to a similar distribution, so long as systematic errors are minimal, and each 

distribution is drawn from only one mean ratio.
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 Histogram of measurements for data sets. The mean and 4σ deviations in each direction are marked. The Figure 3.5

abscissa is not linearly scaled, rather it is in terms of 
13

C/
12

C. Histograms and deviations are calculated using 
13

C/
12

C, because small errors in 
13

C create large tails at high 
12

C/
13

C that do not represent statistically significant 

outliers. Labels are in 
12

C/
13

C for ease of reading. The data sets have roughly the same average C counts per data 

point. The center of the distribution for each data set is at a slightly higher 
12

C/
13

C ratio than the mean because ratios 

with higher 
12

C/
13

C ratios have slightly lower counts on average, a statistical feature inherent to distributions of 

ratios (Ogliore et al. 2011).  
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Table 3.2 Statistical data for distributions of isotopic ratio measurements. 

 

Data Set N
a
 CPM

b
 

13
C/

12
C ± SEOM

c
 σ ± Err(σ) Gaussian 

broadening (%)
d
 

12
C counts 

variation
e
 

ADM 26-1 14852 3009 0.01053± 0.00002 0.00191± 0.00001 0.6 342 

ADM 26-3 30879 3447 0.01032± 0.00001 0.00193± 0.00001 1.2 84 

ADM 27-3 26372 2918 0.01015± 0.00001 0.00193± 0.00001 1.5 49 

DND 25-4 1062 2917 0.00983± 0.00005 0.00160± 0.00003 -1.21 12 

DND 28-1 2572 2918 0.01039± 0.00003 0.00170± 0.00002 -1.11 20 

DND 28-3 706 2919 0.01029± 0.00007 0.00175± 0.00005 -0.54 24 

GRP 29-2 6448 3118 0.01090± 0.00002 0.00191± 0.00002 0.04 233 

GRP 29-4 38400 3123 0.01089± 0.00001 0.00192± 0.00001 0.16 277 

CPT 28-1 23159 2430 0.01070± 0.00001 0.00216± 0.00001 2.67 418 

 

a
 N is the number of measurements (data points) for the data set. 

b
 Similar mean C counts per measurement (CPM) are achieved by summing multiple cycles for 

the same pixel into a single measurement. 

c
 Ratios are not normalized. SEOM stands for the standard error of the mean, which is the 

uncertainty in the mean ratio. 

d
 Gaussian broadening, BG, is the difference between σ for that data set as a fraction of the mean, 

and the mean value of the fractional standard deviation for all the standard data sets. 

e
 The standard deviation of CPM, the counts per measurement, for this data set.  

The Allende data contain 5 data points that are over 4σ away from the mean ratio for their 

respective data sets (Table 3.3, Figure 3.6), 3 from ADM 26-1 and 2 from ADM 26-3. The two 

outlier data points in ADM 26-3 are from consecutive sets of summed cycles in the same pixel 

(located at row 13, column 4), and therefore share most of the same raw data cycles. The three 
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outlier data points in ADM 26-1 are not from physically adjacent pixels in the analysis. None of 

the Allende outliers included the first cycle. All are 
13

C-rich; after normalizing to the detonation 

nanodiamond standards, they have δ
13

C on the order of 800‰, near 
12

C/
13

C = 50. Across these 

three data sets, we predict we would see 4 or 5 outliers > 4σ given a Gaussian distribution and 

the same significance for every data point (Table 3.4). The detonation nanodiamond standards 

are not instructive in comparison since the expected and observed frequency of 4σ outliers are 

both less than one. In the graphite data we expect 3 or 2 > 4σ outliers and observed 3, the most 

extreme of which was 4.7σ away from normal. In the carbon paint we expect 1 or 2 outliers > 4σ 

and observed 4, although one was in the first cycle, which is prone to artifacts. The outliers in 

our standards demonstrate that systematics in our analytical approach can produce outliers larger 

than those observed in our measurements of Allende, and at similar frequency per data point, 

possibly due to background spikes or electronics artifacts. However, a key difference between 

the standard and Allende data is that depth profiles show that the anomalous data points in 

Allende are consistent over several cycles, whereas all 7 outliers from the standards are the result 

of increased counts in only a single cycle (Figure 3.7). In each case, the outlier is a peak in a 

curve composed of 2–5 
13

C-rich data points, each of which is summed over multiple raw data 

cycles, collected minutes or hours apart, and thus not attributable to background or artifacts. 3 

data points represent ~3 nm in depth milled based on our approximations – that is, the diameter 

of the average Allende nanodiamond. For the standards GRP and CPT, outliers are only one data 

point deep, and in each case the data point is only composed of data from one cycle. Therefore, 
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the Allende outliers are much more significant than those in the standard materials.

 

 Vertically stretched view of 
12

C/
13

C isotopic ratio distributions, highlighting the > 4σ outliers in ADM Figure 3.6

26-1, ADM 26-3, GRP 29-4, and CPT 28-1. Left to right, the three vertical lines in each image are -4σ, mean, and 

+4σ in 
12

C/
13

C. All outliers are to the 
13

C-enriched side. 
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Table 3.3 Outlier data points
a 

 

Sample 
Depth-row-

column 

Outlier magnitude 

(×σ) 

12
C/

13
C 

(normalized)
 

12
C 

13
C 

28
Si 

16
O 

ADM 26-1 10 8 3 4.065 
50 

+9 2406 44 3 207 

-7 

27 11 10 4.265 
49 

+9 2464 46 6 199 

-6 

30 12 11 4.183 
49 

+8 2971 55 4 171 

-6 

ADM 26-3 

 

62 13 4 4.020 
50 

+9 2764 50 2 233 

-6 

63 13 4 4.349 
49 

+8 2777 52 3 243 

-6 

CPT 28-1 0 2 4 4.095 
47 

+9 2303 45 0 122 

-6 

31 11 5 4.388 
45 

+9 2082 42 0 102 

-6 

34 7 13 4.282 
46 

+9 2106 42 0 115 

-6 

51 0 3 4.182 
46 

+9 2129 42 0 82 

-6 

GRP 29-4 131 14 9 4.006 
49 

+8 2903 54 1 77 

-6 

142 14 8 4.675 
46 

+7 2866 57 0 75 

-6 

144 0 13 4.115 
48 

+8 2605 49 0 65 

-6 

 

a
 Each outlier samples from approximately 1000 nanodiamonds. 
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Table 3.4 Observed vs. predicted numbers of outliers 

 

Sample Measurements >4σ outliers observed >4σ outliers expected 

ADM 67312 5 4.3 

DND 4340 0 0.3 

GRP 44848 3 2.8 

CPT 23159 4 1.5 
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 Depth profiles for 4σ and greater outliers in each Allende and standard material data set. Each profile is Figure 3.7

labeled depth-row-column. Row and column indicate the pixel position in a 16×16 image. For Allende data, 
13

C/
12

C 

by raw cycle, 
12

C counts, 
13

C counts, and 
28

Si counts are presented. Data points used in the outlier searches and 

histograms (Figures. 5 and 6) are constructed from the counts of several of the consecutive cycles plotted here as 

depth. But for each of the depth profiles for standards, each data point was only over 1 cycle, so the counts for a 

single step in depth here represent the same counts that were used in outlier searches and histograms (Figures 5 and 

6). Ratios are given in 
13

C/
12

C to avoid low counts in the denominator that would skew the appearance of the 

profiles. ADM 26-3 row 13 pixel 4 is unique in that data points 62-13-4 and 63-13-4 are consecutive > 4σ outliers. 

Each plot is scaled to fit all the cycle data for that plot. 

3.4.3 Broadening of Ratio Distributions 

If a number of isotopically anomalous grains are scattered throughout our measurements, this 

will lead to some measurements that are shifted towards the anomalous value, relative to a 

Gaussian distribution. Any individual measurement may be well within uncertainty of the mean, 

and the distribution need not be double-peaked. However, the distribution will be broader 
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overall. We quantified how far each of the observed 
12

C/
13

C mean isotope ratios for a distribution 

varies from a Gaussian curve due to systematics, BS, and then calculated how much Gaussian 

broadening the Allende mean ratios exhibit compared to the standards, BG. 

We used all the data points from a given data set in a single distribution, which minimizes 

Err(σ). On the order of 10
6
 nanodiamonds are in each of the three Allende distributions. BS varies 

from 0.2 to -1.4% of the experimental standard deviation across our different standards, and from 

-0.1 to -1.9% across the three meteoritic data sets. That is to say, each of our data sets is a good 

fit to a Gaussian curve, and the Allende material has the same or less systematic error than our 

standard materials. 

However, the standard deviations of the Allende data sets are greater than those of the standards 

as a fraction of the mean ratio, in every case except for the carbon paint (Table 3.2, Figure 3.8).  

The variation of total C counts per data point is different for each data set, as a result of summing 

over cycles with different count rates per pixel (Table 3.2, 
12

C counts variation). For data sets 

with lower count rates (e.g., DND), cycles with small numbers of counts may be summed very 

close to the target of 2917 counts per data point, but for data sets with very high counts per pixel 

(e.g., CPT), where each pixel adds several thousand counts to the sum, the variation is much 

greater. 

The standard data sets show a linear correlation between the variation in the 
12

C counts and the 

Gaussian broadening, albeit a poor one (R
2
 = 0.85 from a regressive linear fit) (Figure 3.8). 

Counts variation is therefore a good explanation for why the DND data sets have the lowest 

broadening, the GRP intermediate, and CPT the highest. However, the ADM data sets do not 

follow this trend. Adding them to the linear fit gives R
2
 = 0.37. ADM 26-1 plots close to the line 
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suggested by the standard data sets, albeit not on it – the trend of Gaussian broadening with 

variation in counts predicts a higher Gaussian broadening for ADM 26-1. ADM 26-3 and 27-3 

are much broader than predicted by their counts variations.  Taken by themselves, the 3 ADM 

data sets suggest the opposite of the expected trend: as variation in counts increases sharply, 

Gaussian broadening decreases. Therefore, the broadening of the ADM data sets, especially 

ADM 26-3 and ADM 27-3, is not solely attributable to statistical causes; the best explanation is 

that multiple isotopic reservoirs contribute to these distributions. 

 

 Variation in 
12

C counts per data point for each data set plotted versus 
12

C/
13

C standard deviations as a Figure 3.8

percentage of the respective mean values. The various standards show a trend towards broader distributions of 
12

C/
13

C ratios for higher variation in 
12

C counts per data point. The diagonal line is a linear fit to all the data sets 

except the three from ADM. One meteoritic data set has a ratio distribution slightly narrower than predicted by the 

linear fit to the standards. The other two meteoritic data sets have 
12

C/
13

C ratio distributions several percent broader 

than can be explained by statistics. The best explanation for the breadth of these data sets is that they are composed 

of material drawn from multiple isotopic reservoirs. 

3.4.4 Silicon-containing Materials in the Allende Residue  

The maximum ratio of 
28

Si counts to 
12

C + 
13

C counts in any data point was 6%. In most cases 

the silicon signal was less than 1%. Lewis et al. (1989) noted 600 ppm SiC (0.06%) so we do not 

expect to be sensitive to individual SiC grains with close-to-solar isotopic ratios. 
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3.4.5 Detection Limits 

While direct measurement of isotopically anomalous material is most compelling, it is also 

informative to consider the isotopic anomalies that were not detected, but would have been, if 

present. It is possible that many different isotopically anomalous populations make up the 

nanodiamonds. Even limiting our discussion to one solar component and one presolar, 

isotopically anomalous, component, there remain two variables: the fraction of the measured 

material that is anomalous, and the magnitude of the anomaly.  

For the analyses presented in Section 3.4.1, the observed bulk ratio would be anomalous if it 

differed from the solar system ratio by more than 2σ, that is, is less than 
12

C/
13

C = 82.1 or more 

than 97.2. Figure 3.9 illustrates the anomalous fractions that would result in such an observation.  

Each point on the plot describes a hypothetical aggregate of nanodiamonds made of two 

components: one “normal” with a solar isotopic ratio, the other anomalous, with a 
12

C/
13

C ratio 

Ra, which is plotted on the x-axis, from 
12

C/
13

C = 0 to 150. The anomalous component comprises 

a fraction fa of the aggregate, which is plotted on the y-axis from 0 to 100%. 

For our bulk ratio measurement presented in Section 3.1, we use Equation 3.16 with Ro set to 

82.1 (Figure 3.9, the solid green line at the left, lower ratio) and 97.2 (the solid green line on the 

right, higher ratio. The technique in Section 3.1 is sensitive to any anomalous components lying 

on or above the curves, in the regions marked I and II(a and b). All anomalous components lying 

in these regions are counterindicated by our results in Section 3.3.1 for aggregates of 4×10
6
 

nanodiamonds. 

For analyses presented in Section 3.3.2, a 5σ outlier for data set ADM 26-1, similar to the other 

ADM data sets, would have a ratio of 
12

C/
13

C = 45.5, if isotopically heavy, or 
12

C/
13

C = 2044.1, 

if isotopically light. If the composition of the material in the measurement were two-part, one 
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having a solar system C-isotope ratio, the other composition would have to make up a minimum 

1% of the estimated 8×10
5
 carbon atoms sputtered by the beam in order to produce a detectable 

outlier. Therefore, we can rule out the presence of pure 
13

C clusters larger than 10
4
 atoms, and 

rule out clusters larger than 8×10
5
 carbon atoms with a ratio of 45. Figure 3.9 presents the 

detection limit for this method, with the curve described using Equation 3.16 and, setting the 

observed ratio Ro to 45.5, our limit for a 5σ detection. Similar to the bulk ratio, any combination 

of anomalous ratio and fraction lying above the dashed line in region I is ruled out by non-

detection, in this case for an aggregate of 1000 nanodiamonds partially sampled, 8×10
5
 atoms of 

carbonaceous material sputtered through, or 2917 detected carbon atoms. We do not plot the 

curve for 
12

C/
13

C = 2044.1 as it is at very high 
12

C/
13

C ratio.
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 Detection limits for isotopic anomalies in C for small beam (~70 nm) NanoSIMS measurements of Figure 3.9

meteoritic nanodiamonds for two sample sizes. Presolar inclusions with anomalous ratios ranging from 0 to 150 are 

considered, comprising 0 to 100% of the sample size. Inclusions outside of the vertically lined region (III) are ruled 

out by our measurements, for aggregates of 4×10
6
 nanodiamonds or 8×10

9
 atoms of carbonaceous material sputtered 

through. Presolar inclusions falling in Regions I and II(a and b) would be detected as an anomalous bulk 
12

C/
13

C 

ratio with a greater anomaly than the experimental uncertainty reported in Section 3.3.1. Inclusions in the 

horizontally-lined regions (IIa and IIb) are ruled out by our measurements for aggregates of approximately 1000 

nanodiamonds, or 8×10
5
 atoms of carbonaceous material sputtered through. Presolar inclusions falling in region I 

would be observed as 5σ or greater outliers using our experimental methodology. A curve for outlier sensitivity to 
13

C-light material, which would lie above 
12

C/
13

C = 150, is not shown. 

3.5 Discussion 

3.5.1 12
C/

13
C Ratio of the Nanodiamond Residues 

Our bulk measurement in Section 3.3.1 confirms that the nanodiamond carbon is terrestrial in 

composition down to 8×10
9
 carbon atoms of material, compared to a minimum of 10

15
 carbon 

atoms in stepped heating measurements. The isotopic composition of the roughly 4×10
6
 

nanodiamonds represented by this number of carbon atoms is δ
13

C = 8±35‰. Our measurement 

of the Allende DM ratio is about 40‰ heavier in 
13

C (but with an uncertainty of more than 30‰) 
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than previous measurements by stepped heating (Figure 3.4), where bulk Allende acid residue 

has a δ
13

C of -32.7±0.1‰ (Russell et al. 1991) and -30.4‰ (Swart et al. 1983). 

As represented by the high uncertainty, the precision of our measurement is necessarily low 

compared to stepped heating experiments, since we are integrating less material and are affected 

by sample topography and uncertainty in the per mil isotopic ratio of our standard. There may 

also be sensitivity differences between the terrestrial nanodiamond standard material and the 

meteoritic acid residue, which could account for the disparity between our measurements and 

previous studies. On the other hand, the isotopically heavier value we measured could be due to 

intrinsic isotopic anomalies, as our small sample size allows us much greater sensitivity to 

isotopic inhomogeneity in small fractions of the sample than earlier measurements. 

3.5.2 Implications of Gaussian Broadening 

We see significant Gaussian broadening of the Allende distributions compared to that predicted 

by statistics and comparison to our standards. All our data sets are a good fit to a Gaussian 

distribution, so this broadening in the Allende data sets is attributable to the distribution being 

drawn from multiple isotopic ratios. This result does not conflict with bulk studies, in that the 

mean ratios are still close to solar composition, but it does suggest that a fraction of the 

nanodiamonds have a non-solar carbon isotopic composition. On the other hand, our detection 

limits plotted in Figure 3.9 for the bulk ratio measurement confirm that the nanodiamonds are not 

composed primarily of material with a mean carbon isotopic anomaly. In an aggregate of only 

4×10
6
 nanodiamonds, <20% of the nanodiamonds can have 

12
C/

13
C below 70 or above 100, 

<10% can have 
12

C/
13

C below 50 or greater than 110, and <5% can have 
12

C/
13

C below 40 or 

above 140.  
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Given a variety of solar masses, supernova models predict a broad range of carbon isotopic 

ratios, including both 
13

C-enriched and -depleted material (e.g., Rauscher et al. 2002). Supernova 

nanodiamonds are therefore good candidates to produce a small Gaussian broadening, because 

even the presence of a large number of such grains would not require a detectable shift to the 

mean ratio. The possible fraction and magnitude of the anomaly is further constrained by our 

bulk ratio and outlier detection limits (see Section 3.3.5 and Figure 3.9). However, we note that it 

is unlikely that we would have detected any 
13

C-depleted material, which is expected to be 

present if supernovae created a number of the nanodiamonds, since our sensitivity to depletions 

in 
13

C is limited in low-count scenarios. 

3.5.3 Source of 
12

C/
13

C Outliers 

For the data from Section 3.3.2, each data point samples on average approximately 2900 carbon 

atoms from aggregates of 4×10
6
 atoms

 
of carbonaceous material sputtered from the Allende 

residue, sampling material from approximately 1000 nanodiamonds in a single layer. The lowest 

ratio measured was 
12

C/
13

C = 49±~7 (detected three times), about 800‰ isotopically heavier 

than the mean ratio. The largest anomaly reported in the residues to date is roughly 10‰ 

isotopically heavier than the bulk acid residue, detected in stepped heating (Swart et al. 1983; 

Russell et al. 1991; Verchovsky et al. 1998), and has been attributed to a small fraction of non-

diamond material, presumed to be disordered C. As noted earlier, the Allende outlier data points 

are distinct from those in the standards in that each is surrounded by additional data points 

enriched in 
13

C compared to the average (Figure 3.7). If the Allende outliers are not statistical 

anomalies, there are several possible explanations.  

(1) Presolar silicon carbide grains are expected to be present in the nanodiamonds (Lewis et al. 

1989) and could be the source of the 
13

C-rich outliers we observe. Since they undergo the same 
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size separation procedures as the nanodiamonds, these SiC grains should be on the order of a few 

nanometers to 10 nm in size. However, we see no evidence for silicon carbide grains in the 

outliers. Si counts rise for some cycles in some of the outlier depth profiles, but there is no 

consistent increase in Si counts correlating with the increase in 
13

C signal. Moreover, the Si 

concentration is very low, 2–6 counts in each of the outliers. For the purposes of a simple 

approximation, we assume the useful yield of Si is roughly the same as that for C, 0.5%. Thus 6 

silicon atoms, the maximum detected for an outlier, would imply the presence of at most 1200 

silicon atoms in the volume sputtered, implying 1200 carbon atoms from the same SiC grain. 

This is not an unreasonable grain size. If all 1200 hypothesized carbon atoms were 
13

C – an 

extreme case – we estimate only 6 would be detected, shifting a solar 
12

C/
13

C ratio data point to a 

ratio of about 75, which would not register as an outlier in our Allende data sets. Therefore SiC 

cannot explain the outliers. In addition, the reported SiC concentration in the Allende residue is 

estimated at 600 ppm (Lewis et al. 1989). If the outliers are due to SiC contamination, their 

isotopic compositions would have to be highly 
13

C-enriched, similar to SiC AB grains. These 

grains comprise up to 5% of the presolar SiC population (Hynes and Gyngard 2009; Zinner 

2014). Therefore, the detection of 5 SiC AB grains would suggest that there are 100 total 

presolar SiC grains scattered throughout our meteoritic data sets, a concentration of 

approximately 25 ppm, given our estimation of 4×10
6
 nanodiamonds. If the outliers are caused 

by SiC AB grains, it is difficult to explain why we do not see an order of magnitude more of 

them, enough to create a notable peak in the tail of each of our distributions. The fact that we do 

not see such a secondary peak calls into doubt whether our samples contain 600 ppm SiC, and 

further confirms that the outliers are not the result of SiC AB grains. 
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(2) An isotopically anomalous subpopulation of nanodiamonds and/or clumps of disordered sp
2
-

bonded carbon could be present in the acid residues. For a single anomalous grain to produce an 

outlier of the magnitude observed, it would be required to be highly enriched in 
13

C and fill a 

significant percentage of the analysis area. Nanodiamonds as large as 10 nm in diameter have 

been reported (Daulton et al. 1996), and their maximum cross sections would fill about 2% of a 

70 nm diameter beam spot. If our spot is actually only 50 nm in diameter, the effect doubles to 

4%. Assuming the rest of the material has a 
12

C/
13

C ratio of 89, a 10 nm presolar grain would be 

required to have a 
12

C/
13

C ratio of about 1 for the 2% case, or 4 for the 4% case, in order to 

produce the isotopic outliers detected with a 
12

C/
13

C ratio of about 50. This scenario would favor 

grains from stars with cool bottom processing, including J-stars or novae (Zinner 2014), but does 

not rule out other sources, such as born-again AGB stars (Zinner 2014) and supernovae (Liu et 

al. 2016; Nittler and Hoppe 2005). Xe-HL could be implanted into J-star or nova nanodiamond 

grains in the interstellar medium by a passing supernova shock. However, the presence of a few 

large presolar nanodiamonds does not explain all of the Xe-HL in the residues, which, in the 

meteorite Efremovka, is detected in all size fractions (Gilmour et al. 2005). 

(3) If more than one presolar grain is present in an outlier data point, smaller anomalies in these 

grains could produce the outliers observed. In this case we hypothesize presolar nanodiamond 

material with an average 
12

C/
13

C ratio of 45. However, the higher the number of presolar grains 

that are needed to account for an outlier, the more data points must, according to binomial 

statistics, contain a significant number of these grains. While many data points would contain too 

few presolar nanodiamonds to register as outliers, the cumulative effect would broaden the 

distribution and shift the mean ratio. The mean ratio could be balanced by isotopically light 

material, but broadening of the distribution could not. For a mean presolar nanodiamond 
12

C/
13

C 
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ratio of 45, as much as 80% of the material in each outlier would need to be composed of 

presolar nanodiamonds to produce an observed outlier of 
12

C/
13

C = 50.Then, in order for 3 out of 

the 14,852 ( 0.02%) of the data points to be outliers for ADM 26-1, and 2 out of 30,879 

(0.0065%) for ADM 26-3, the mean percentage of presolar nanodiamonds per data point must be 

over 15% for ADM 26-1, and over 10% for ADM 26-3. This could be balanced if the remaining 

material had a mean ratio of 109, for ADM 26-1, and 101, for ADM 26-3. The resulting standard 

deviation would then be derived from that of the two isotopic sources, which would produce the 

Gaussian broadening in ratio distributions that we detected. These proportions are similar to the 

proportions of isotopically light and heavy grains observed in SiC X grains of supernova origin 

(Zinner 2014). However, the likelihood of such an ad hoc distribution is not very high. 

3.6 Summary 
(1) We have demonstrated that the nanodiamonds and disordered carbon in the Allende DM 

residues have 
12

C/
13

C ratios consistent with solar system values and previous measurements, 

down to aggregates as small as 10
6
 carbon atoms, or 10

3
 nanodiamonds. 

(2) While our sensitivity rules out large populations of highly anomalous material, a smaller but 

still significant fraction of the nanodiamonds could carry major isotopic anomalies. 

(3) The distributions of the Allende ratios have larger standard deviations than comparable 

standard data sets, but are still Gaussian in shape. This suggests that multiple isotopic ratios may 

be represented in the residue, averaging to solar abundances. Presolar nanodiamonds from 

supernova material, with a range of 
13

C-enriched and -depleted material, are a good candidate for 

such a non-solar component, although a fraction of AGB material could also be present together 

with isotopically light supernovae material. 
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(4) In addition to broadening over the whole data set, 
13

C-rich material is observed in several 

individual aggregates of 10
6
 carbon atoms in size, suggesting the presence of a small fraction of 

13
C-rich nanodiamonds. For SiC, past studies have indicated J-type carbon stars or born-again 

AGB stars as sources for such grains (Zinner 2014), but more recent work suggests that they 

could also come from supernovae (Nittler and Hoppe 2005, Liu et al. 2016). 

(5) The results, taken together, support the conclusion suggested by the presence of Xe-HL, that 

some of the nanodiamonds are presolar. The broadening of the distributions of ratios in the 

Allende data compared to standards, as well as data points with 
13

C-rich ratios, suggest the 

presence of supernova nanodiamonds. Nanodiamonds from AGB stars or other sources could 

also be present and could account for both the outliers and the distribution broadening, but only 

in conjunction with supernova material to balance out the close-to-solar average 
12

C/
13

C ratio 

and to serve as carriers of the Xe-HL. 

(6) Additional experimental and statistical work on smaller aggregates is necessary to confirm 

and expand on these results. Ideally, this would be carried out with a stable, <50 nm-diameter 

NanoSIMS beam and control software modified to allow for serialized long measurements, or 

with atom-probe tomography, which can analyze nanodiamonds individually. 
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Chapter 4: Atom-Probe Analyses of 

Nanodiamonds from Allende 
This chapter has been published in the journal, Meteoritics and Planetary Science in 

collaboration with Philipp R. Heck, Frank J. Stadermann, Dieter Isheim, Orlando Auciello, 

Tyrone L. Daulton, Andrew M. Davis, Jeffrey W. Elam, Christine Floss, Jon Hiller, David J. 

Larson, Anil Mane, Michael J. Pellin, Michael R. Savina, David N. Seidman, and Thomas 

Stephan (Heck et al. 2014). The author’s personal contributions include the majority of sample 

preparation, experimental analysis, and all of the data reduction for the St. Louis group, one of 

the two groups involved in the research, as well as writing the St. Louis methods (Section 4.4.2), 

and collaborating on paper design, drafting, and revision. 

4.1 Introduction 
The origin of meteoritic nanodiamonds is still a mystery 26 yr after their discovery. Systematic 

bulk analyses of different separates from carbonaceous chondrites have shown that 

nanodiamond-bearing acid residues contain the carrier of the highly anomalous xenon isotope 

component Xe-HL (Lewis et al. 1987). Xe-HL is enriched in the two lightest xenon isotopes, 

124
Xe and 

126
Xe, both produced in the p-process, and also in the two heaviest isotopes, 

134
Xe and 

136
Xe, produced in the r-process. Additionally, the same nanodiamond-rich separates contain 

small anomalies in the r-process nuclides 
110

Pd, 
128

Te, and 
130

Te (Maas et al. 2001; Richter et al. 

1998) and in the r,s-process nuclide 
137

Ba (Lewis et al. 1991). These p- and r- process anomalies 

can only be explained by nucleosynthetic processes that are thought to occur in supernovae. The 

abundance of these trapped nuclides is relatively low, and only a small fraction of the 

nanodiamond population can carry these anomalies. For instance, on average, only one of a 
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million meteoritic diamonds contains a single trapped xenon atom (for a review, see Daulton 

(2006)); however, more diamonds contain anomalous neon and helium (Huss and Lewis 1994). 

As a solar system origin of these anomalies can be clearly excluded, meteoritic nanodiamonds 

have been classified as presolar. 

A recent scanning transmission electron microscopy study showed that meteoritic nanodiamond-

bearing acid residues also contain an sp
2
 carbon phase resembling glassy carbon (Stroud et al. 

2011). This two-phase mixture has been explained by the transformation of organic carbon to 

nanodiamonds and glassy carbon by supernova shockwaves in the interstellar medium (ISM). It 

is, moreover, consistent with the astronomically observed 2175 Å extinction feature in the ISM 

(Stroud et al. 2011). The presolar isotopic anomalies could be carried by the nanodiamonds, by 

the glassy carbon, or by both. Earlier high-resolution (HR)-TEM studies have, however, 

demonstrated that the growth and defect atomic microstructures of the majority of meteoritic 

nanodiamonds from Allende and Murchison are inconsistent with shock-transformation 

processes and instead are consistent with vapor condensation occurring in the gaseous outflows 

of supernova and asymptotic giant branch stars (Daulton et al. 1996); vapor condensation in the 

evolving solar nebula is also a possibility. These apparently conflicting results reflect one aspect 

of the uncertainty of the origin of the meteoritic nanodiamonds. 

Furthermore, in contrast to the data for trace elements, the isotopic ratios of the major element 

carbon and the minor element nitrogen in bulk analyses are similar to solar system ratios (Figure 

4). Swart et al. (1983) and Russell et al. (1996) determined δ
13

C ranges from -32 to -38‰, while 

δ
15

N values were -330‰ for bulk Allende nanodiamonds (Lewis et al. 1983) and -348±7‰ for 

bulk nanodiamonds extracted from 11 different primitive chondrites (Russell et al. 1996). δ-

values are deviations from standard reference materials in parts per thousand deviations: 
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𝛿 𝐶13 = [( 𝐶/13 𝐶12 )𝑠𝑎𝑚𝑝𝑙𝑒/( 𝐶/13 𝐶12 )𝑃𝐷𝐵  −  1]  ×  103 and 𝛿 𝑁15 = [( 𝑁15 / 𝑁14 )𝑠𝑎𝑚𝑝𝑙𝑒/

( 𝑁15 / 𝑁14 )𝑎𝑖𝑟  −  1]  ×  103 where Vienna-Pee Dee Belemnite and N2 in air are references for 

carbon and nitrogen, respectively. Within analytical uncertainty, these δ
15

N values are similar to 

those of the atmosphere of Jupiter (δ
15

N = -374±82‰; (Owen et al. 2001) and are close to the 

values determined for the bulk sun or protosolar nebula and the solar wind (δ
15

N = -383±8‰ and 

-407±7‰, respectively; (Marty et al. 2011)). The nanodiamonds’ bulk solar system carbon and 

nitrogen isotopic compositions, and their absence in certain primitive interplanetary dust 

particles (Dai et al. 2002) have led to the hypothesis that a fraction of the nanodiamonds could 

have formed in the early solar system. However, it is important to recognize that the bulk 

measured δ
13

C and δ
15

N values from these residues may not be representative of the 

nanodiamond phase. As noted above, the nanodiamond residues contain a significant component 

of carbonaceous nondiamond material (Stroud et al. 2011). Furthermore, there may be different 

populations of meteoritic nanodiamonds with protosolar nebula and/or presolar origins. Thus, the 

bulk measured isotopic compositions could be an average over many sources.
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 Range of carbon and nitrogen isotopic compositions in bulk analyses of nanodiamond-containing acid Figure 4.1

residues (blue rectangle; data from Russell et al. 1996) compared with solar wind—SW; (Marty et al. 2011), Jupiter 

(Atreya et al. 2003; Owen et al. 2001), and individual presolar silicon carbide and graphite grains (red dots; data 

from Presolar Grain Database; (Hynes and Gyngard 2009)). Dashed lines are the terrestrial carbon standard (Vienna-

PDB) and terrestrial air nitrogen isotope ratios (Coplen et al. 2002). Error bars are shown if larger than the symbol 

size. 

 

Isotopic data from individual presolar grains such as presolar silicon carbide, graphite, silicates, 

and oxides show large variations, which most likely reflect origins in different stellar sources and 

via different types of processes (see reviews by Clayton and Nittler (2004); Davis (2011); Zinner 

(2007)). For example, the 
12

C/
13

C ratios of different presolar silicon carbide (SiC) grains span 

four orders of magnitude (Figure 4.1), and the average ratios of the different types of SiC are 

different from both the terrestrial and solar ratios. Because of the small sizes (average diameter 

approximately 3 nm; (Daulton et al. 1996)) of individual diamond grains, isotopic analyses have 

not been possible due to limitations in spatial resolution and sensitivity, and all isotopic data so 

far have been obtained from bulk measurements. To shed light on the origin of nanodiamonds, 

single-grain isotopic analyses are desirable. The distribution of 
12

C/
13

C ratios among meteoritic 

nanodiamonds can help evaluate whether multiple nanodiamond populations are present in the 
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residues and determine their origin (e.g., solar or presolar). Determining 
12

C/
13

C ratios of 

individual nanodiamonds also has the potential to distinguish among different presolar stellar 

sources. 

Atom-probe tomography (APT) is currently the only technique with the spatial resolution and 

detection sensitivity to analyze isotope ratios of individual particles in the size range of 

meteoritic nanodiamonds (Seidman and Stiller 2009). The objectives of this study are to develop 

sample preparation techniques that will allow for atom-probe tomographic analyses of individual 

meteoritic nanodiamonds, to address the questions of their origins as noted above. The idea of 

using APT to analyze individual meteoritic nanodiamonds was developed independently and 

contemporaneously in both Chicago and St. Louis. Rather than competing, the two groups 

decided to collaborate, exchange information, and report their first achievements in a joint 

publication. In this article, we summarize development of the different sample preparation 

techniques and analytical protocols, and present our first results of nanodiamond analyses with 

the atom-probe tomograph at sub-nm spatial resolution. Preliminary results have been presented 

in conference abstracts (Heck et al. 2010, 2011a, 2011b, 2011c, 2012; Lewis et al. 2012; 

Stadermann et al. 2010, 2011). 

4.2 Analytical method: Atom-probe Tomography 
Atom-probe tomography is based on the coupling of a field-ion microscope, a lensless point-

projection instrument that resolves individual atoms on the surface of a sharply pointed (<50 nm) 

tip at magnifications of greater than 10
6
 with sub-nm resolution, with a time-of-flight mass 

spectrometer (Müller et al. 1968). Atoms on the surface of a specimen at a positive potential with 

respect to ground are ionized in the presence of a strong electric field (the so-called “field 

evaporation” effect) and are then repelled from it toward a multichannel plate detector. The 
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pulsed electric field removes surface atoms from a sample on an atom-by-atom and atomic layer-

by-layer basis. These field-evaporated ions are detected by a position-sensitive time-of-flight 

detector on the basis of their mass-to-charge-state ratio (m/q). The detector consists of a 

microchannel plate with single-ion sensitivity, plus a delay line detector, which sits directly 

behind it. Because a specimen’s surface is being field-evaporated atomic layer by layer, it is 

possible to visualize the three-dimensional structure of the sample at an atomic level. In a local-

electrode atom-probe (LEAP) tomograph, a cone-shaped local-electrode is placed between a 

specimen’s microtip and the position-sensitive detector (Figure 4.2), effectively confining the 

electric field to the space between the microtip and the local electrode, which has an orifice 

diameter of about 30 µm. Samples are introduced into the ultrahigh vacuum analysis chamber 

and cooled to 20–120 K, before applying a DC voltage to the microtip. The steady DC voltage is 

maintained just below the threshold of the evaporation field. The threshold for field evaporation 

is highly dependent on the sample material (i.e., the constituent elements and their bonding) and 

depends, in particular, on the sublimation and ionization energies and the local work function. To 

obtain highly controlled pulsed field evaporation and to provide a precise start time for the time-

of-flight detector, the microtip is then illuminated with picosecond pulses from a highly focused 

ultraviolet laser (λ = 355 nm), resulting in heating of the apex of the microtip, and field 

ionization and evaporation of the surface atoms. When using a picosecond ultraviolet laser to 

dissect a microtip, the pulse repetition rate can be up to 1000 kHz. More in-depth descriptions of 

this technique and its physics can be found in (Kelly and Larson 2012; Kelly and Miller 2007; 

Seidman 2007; Seidman and Stiller 2009). 
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 Schematic of a local-electrode atom-probe tomograph (not to scale). The specimen is maintained at a Figure 4.2

high positive potential with respect to earth potential, and picosecond laser pulses, impinging on the specimen’s 

microtip approximately perpendicular to the long axis of the microtip, trigger field evaporation of surface atoms. 

The field-evaporated ions are accelerated along the diverging electric field lines to project a highly magnified image 

of the microtip’s surface onto the position-sensitive time-of-flight detector. The time-of-flight of the ions is used to 

identify their mass-to-charge-state ratio and hence their chemical identities. 

For our study, we used two LEAP tomographs developed and manufactured by Cameca 

Instruments Inc. Most of the analyses were performed with a Cameca LEAP 4000X Si APT with 

a straight time-of-flight path of 90 mm at the Northwestern University Center for APT 

(NUCAPT). In one session, we used a Cameca LEAP 4000X HR APT in the Applications 

Laboratory of Cameca Instruments Inc. This latest-generation instrument (denoted as a LEAP 

HR tomograph) is equipped with a reflectron-type time-of-flight mass spectrometer resulting in a 

flight path of 382 mm and a higher mass resolving power compared with the LEAP 4000X Si 

(Scheinfein and Seidman 1993). 

The LEAP 4000X Si (hereafter simply denoted as a LEAP tomograph) at NUCAPT has received 

several upgrades over the course of this study and since its original installation in December 

2004. The beam conditioning unit and focusing optics received a major upgrade, with the 

following performance enhancements: 
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(1) the diameter of the laser focus on the microtip was reduced, increasing the energy density of 

the beam by a factor of four, which permits a shortened heat pulse; (2) a continuous laser pulse 

energy range spanning 30 fJ– 1.5 nJ, equivalent to a 5×10
5
 dynamic range, was added, allowing 

optimum evaporation conditions for a wide variety of materials; (3) the plane of laser 

polarization can now be rotated in 15° steps from 0 to 90° to vary the precise energy absorption 

geometry of the laser pulse by the tip; (4) a “ringing” effect that produced spurious peaks in the 

mass spectrum of some materials was largely eliminated; (5) new motorized in-vacuum optics 

were added, providing much smoother and better stability with the laser beam alignment; and (6) 

an active piezoelectric damping system was installed, which efficiently damps all vibrations of 

the LEAP tomograph. In addition, an upgrade for the LEAP tomograph hardware control PC 

tripled the maximum data acquisition speed to about 35,000 atoms per second, increasing 

significantly the throughput of the LEAP tomograph. These enhancements led to significant 

improvements in data quality over the course of this study. 

The laser pulse repetition rate in LEAP tomography has a maximum of 1000 kHz, which makes 

it possible to measure relatively large volumes of material atom by atom employing reasonable 

analysis times. The detection efficiency of the microchannel plate detector of the straight-flight 

path LEAP tomograph ranges from 50 to 60% and is the same for all elements of the periodic 

table. The efficiency for the LEAP HR tomograph is reduced to 37% due to the field-defining 

mesh necessary for operation of the reflectron. Its higher signal-to-noise ratio counteracts, 

however, the sensitivity reduction caused by the lower transmission. Using specialized software 

(Imago Visualization and Analysis System— IVAS, Cameca Instruments Inc., Kunicki et al. 

2006), the data collected can be visualized as three-dimensional distributions of all detected 
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atoms in the analysis volume, at any angle of observation. Time-of-flight mass spectra can be 

obtained for the entire reconstruction and from selected subvolumes of interest. 

4.3 Samples 
For our study, we selected nanodiamonds from the acid dissolution residue Allende DM, a well-

studied nanodiamond isolate (Lewis et al. 1989). The Allende DM isolate consists of a mixture 

of nanodiamonds and glassy carbon as well as trace minerals (including SiC, graphitic carbon, 

and metal grains). We used both synthetic detonation nanodiamonds (DNDs) and 

ultrananocrystalline diamonds (UNCDs) as standards. DNDs are produced in a contained 

explosion by shock-transformation of organic matter (Greiner et al. 1988) and were obtained 

from Lawrence Livermore National Laboratory. UNCD films are grown by microwave-plasma 

deposition at Argonne National Laboratory (Auciello and Sumant 2010) directly onto silicon 

microtips. 

4.4 Sample Preparation Methods 
To be suitable for APT analyses, samples must be shaped into a sharp microtip with an apex 

radius of about 50 nm and must be able to withstand the high mechanical stresses present during 

the analyses. We used several procedures to prepare samples that satisfy these requirements. 

Material imperfections and weakly bonded interfaces can lead to catastrophic microtip failure 

and arcing. In the following, we describe briefly the methods developed independently by the 

Chicago and St. Louis groups. 

4.4.1 Chicago Methods 

For preparation of the atom-probe tomographic samples of meteoritic or synthetic DNDs, the 

grains were suspended in an ultrasonicated mixture of isopropanol (Fisher Optima) and water 

(Millipore Milli-Q). A 2–4 µL drop of the suspension was deposited onto a clean silicon 
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substrate and evaporated with a heat lamp. To fill open pore space and stabilize the samples, 

atomic layer deposition (ALD; Elam et al. 2006) was performed at Argonne National Laboratory 

to deposit Al2O3 (approximately 3.6 nm thickness) and tungsten (approximately 1.3 nm 

thickness) onto the tips. We also prepared control samples that consisted only of deposited 

Al2O3. 

Method 1: 

In our first approach, the nanodiamond suspension was deposited on a flat silicon wafer. After 

ALD, the wafer was coated with 60–500 nm of sputter-deposited cobalt to protect the 

nanodiamonds from the Ga
+
 focused ion-beam (FIB) during subsequent milling in the FIB 

microscope. A wedge-shaped prism was milled with dual-beam FIB microscopes at Argonne 

National Laboratory (Zeiss 1540XB and Zeiss NVision) or at Northwestern University (FEI 

Helios), lifted out, and welded onto a flat-top silicon micropost (Thompson et al. 2005) with 

carbon and platinum (Figure 4.3). To enhance stability, carbon- and platinum-cold-welds were 

applied on at least two sides. Subsequently, the welded wedge was FIB-milled (Ga
+
 ions) with an 

annular mask into a sharp microtip (Larson et al. 1999). The cobalt cap-layer served as a marker 

and Ga
+
 ion-beam milling was stopped before the last bit of cobalt disappeared.
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 Focused ion-beam/scanning electron microscopy–based (1) lift-out, (2) “welding,” and (3) milling of a Figure 4.3

nanodiamond sample deposited on a silicon wafer. After milling, the sample is ready for atom-probe tomography. 

 

Method 2: 

In this approach, a drop of the same suspension was placed onto an array of presharpened silicon 

microtips (Cameca) to cover the whole microtip array, which was then suspended upside down 

and exposed to a heat lamp for evaporation. Following that, ALD was performed; no additional 

sample preparation was required for this method. This method has the advantage that there is no 

possible Ga
+
 ion-beam damage to the diamonds from the dual-beam FIB microscope. 

As the final step before analysis, microtips prepared by both methods were imaged by scanning 

electron microscopy to verify that they were sufficiently sharp for field evaporation in the atom 

probe. To minimize oxidation, the samples were loaded into the ultrahigh vacuum chamber of 

the APT within a few hours to a day after sample preparation. 

4.4.2 St. Louis Method 

Meteoritic (or synthetic) nanodiamonds were suspended in a mixture of alcohol and water for 

deposition onto a high-purity nickel substrate. A thin (170 nm) layer of platinum was deposited 

onto the nickel substrate by ion-beam sputter deposition, followed by deposition of the 

nanodiamonds from the suspension onto the platinum-covered nickel substrate (Isheim et al. 

2013). To prevent the nanodiamonds from clustering, the suspension was ultrasonicated until 
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immediately before deposition. The sample was also ultrasonicated during evaporation of the 

suspension drop to prevent nanodiamonds from agglomerating along the rim of the drop during 

drying and to obtain more uniform deposition layers on the substrate. To protect the 

nanodiamonds from surface contamination and to provide a solid-host material for the grains, the 

sample was then coated with an additional layer of platinum, followed by a final 500 nm layer of 

nickel to serve as a cover during subsequent FIB milling, thereby creating a Ni-Pt-diamond-Pt-Ni 

sandwich structure. Sections of this deposition layer were lifted out utilizing the FEI Helios dual-

beam FIB microscope at Northwestern University or the FEI Quanta dual-beam FIB at 

Washington University in St. Louis. Approximately 3 µm long sections of these lift-outs were 

attached to prefabricated silicon microposts and milled into sharp microtips with a Ga
+
 ion-beam. 

This method resulted in microtips that contained nanodiamonds in a horizontal layer in close 

proximity to the pointed end of the column. These early microtips often suffered from 

mechanical failures along the horizontal nanodiamond layer and led us to modify the sample 

preparation procedure by rotating the FIB-microscope–extracted section, so that the 

nanodiamond layer is parallel (cross section mode; Lawrence et al. 2008), rather than 

perpendicular, to the long axis of the microtip (Figure 4.4). This improves the mechanical 

stability of the microtip and allows sequential field evaporation of individual or small clusters of 

nanodiamonds over a larger deposition layer. 



121 

 

 

 Left: schematic illustrating the focused ion-beam (FIB)-microscope extraction and rotation of a Figure 4.4

nanodiamond sandwich for ion milling and atom-probe tomography analysis. Right: secondary electron image of a 

nanodiamond sandwich microtip showing Allende nanodiamonds embedded in a platinum matrix. 

4.5 Data Processing 
Cameca’s data processing software, IVAS, was used to create tomographic reconstructions. 

IVAS can produce and export mass spectra from the integrated data set of an entire microtip or 

of selected regions of interest (ROIs) within a tip. In IVAS, ROIs can be defined in several 

different ways: (1) by using a gridded isoconcentration surface calculation that applies a 

threshold function to envelop volumes of defined density ranges or elemental concentration 

ranges; (2) by using a cluster algorithm (Marquis and Hyde 2010); and (3) by manually defining 

a geometric shape (e.g., spheroid) and centering it on a concentration hotspot. We used both the 

manual method and the threshold isoconcentration surface function to define ROIs for most of 

the samples. 

4.5.1 Uncertainties on Carbon Isotope Peak Ratios 

Spectral data of integrated microtips and ROIs were exported from IVAS to integrate the area 

under peaks, calculate peak ratios, and to create mass spectra. Uncertainties in the peak ratios of 

isotopes can result from the background correction, hydride interferences, and potential 

instrumental biases. 
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A background correction is not necessary if the signal-to-noise ratio is high, but can constitute a 

major uncertainty if the peak intensities are only slightly above background. Background 

corrections were made in two ways: (1) automatic background correction by IVAS consists of 

the subtraction of a fitted function that describes the time-independent background throughout 

the time-of-flight mass spectrum; and (2) a manual background correction can be made by 

subtraction of the integrated linear interpolation of the background baseline from the integrated 

peak. The data from the Chicago group were background-corrected using the first method, 

whereas data from the St. Louis group were corrected using the second method. Comparison on 

several spectra indicates that both methods produce similar results. 

Another uncertainty is the potential contribution of the 
12

CH
+
 hydride interference to the 

13
C

+
 

peak (separated by approximately 0.0045 U). Neither of the LEAP tomograph systems used has a 

mass resolving power sufficient to resolve this interference. Previous ion-probe microanalyses 

have detected a high concentration of hydrogen in nanodiamond isolates (Virag et al. 1989), and 

Fourier-transform infrared spectroscopy has shown the presence of carboxyl (-COOH) surface 

groups (Lewis et al. 1989) in Allende DM isolates. As half of the carbon atoms in an average-

sized meteoritic nanodiamond are within one unit cell of the surface, surface-absorbed species 

are an important source of hydrogen. In addition, hydride formation can result from the presence 

of residual hydrogen in the LEAP tomograph. The partial pressure of hydrogen in the analysis 

chamber is measured with a residual gas analyzer and can be highly variable. Therefore, a 

constant correction factor cannot be used, and, in fact, to the best of our knowledge, no 

correction method for hydride formation during field evaporation based on hydrogen partial 

pressure is known. The probability of forming doubly charged hydrides is expected to be much 

lower than for singly charged hydrides, so we do not anticipate significant hydride interferences 
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for 
13

C
++

. We therefore optimized the analytical conditions to decrease the C
+
/ C

++
 charge-state-

ratio and increase the signal at 
13

C
++

. This is done by decreasing the temperature at which field 

evaporation occurs (decreasing the laser pulse energy), which results in the requirement of a 

higher voltage for field evaporation (Kingham 1982). The charge-state-ratio cannot, however, be 

decreased indefinitely; higher voltages and lower laser pulse energy decrease sample stability 

due to the higher mechanical Maxwell stresses induced at higher electric fields, which result in 

more frequent tip fractures. In this study, we were able to achieve minimum C
+
/C

++
 ratios of 

approximately 2–3 (Tables 4.1 and 4.2). For better readability throughout the manuscript, we 

label peaks with only the major ion species thought to be responsible for the peak in the mass 

spectrum, although there can be contributions from isobarically interfering hydrides or other 

species.
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Table 4.1 Carbon isotope peak ratios for integrated microtips from the Chicago group. 



Sample 
12

C
+
/
12

C
++

 
12

C
+
/
13

C
+
 

12
C

++
/
13

C
++

 T (K) E (pJ) Comments 

Synthetic nanodiamonds 

DND 15874 L11 PSM04 2.3±0.6 41±26 45±45 80 300 -- 

UNCD 113207 PSM03 6.1±0.9 77±12 (198±120) 80 200 Low 
13

C
++

 counts make 
12

C
++

/
13

C
++

 

peak ratio doubtful. Upgraded laser 

optics: smaller spot size.
 

UNCD 113215 PSM04 1.6±0.1 10±1 63±19 80 50 Upgraded laser optics: smaller spot 

size. 

UNCD 113225 PSM08 2.8±0.2 40±4 67±16 80 100 -- 

UNCD 113233 PSM10 2.7±0.3 89±14 68±24 80 150 -- 

Mean 2.3±0.2 36±3 65±11 -- -- -- 

Allende Nanodiamonds 

ADM 14973 L08 M14 4.6±0.4 49±4 39±7 110 300 Sandwich method 

ADM 15122 L08 M01 4.2±0.3 32±3 87±47 110 300 -- 

ADM 15961 L09 M29 12±1 71±7 28±6   Low 
13

C
++

 counts make 
12

C
++

/
13

C
++

 

peak ratio doubtful. 

ADM 15963 L09 M17 9.5±0.6 36±2 51±15 110 300 -- 

ADM 15964 L09 M16 12±1 31±3 (6±1) 110 300 Low 
13

C
++

 counts make 
12

C
++

/
13

C
++

 

peak ratio doubtful. 
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Sample 
12

C
+
/
12

C
++

 
12

C
+
/
13

C
+
 

12
C

++
/
13

C
++

 T (K) E (pJ) Comments 

ADM 15971 L09 M30 -- 78±9 -- 110 300 No significant C
++

 counts. 

ADM 17134 L17 PSM25 (5.0±0.4) (3.9±0.3) 41±97 80 20 Upgraded laser optics: smaller spot 

size. Large peak at mass-to-charge-

state ratio of 13, possible large hydride 

interference makes 
12

C
+
/
13

C
+
 ratio 

doubtful. 

ADM 17137 L17 PSM15 3.2±0.6 20±3 17±10 80 20 Upgraded laser optics: smaller spot 

size. 

Mean 7.9±0.2 43±1 47±10 -- -- -- 

 

Errors are 2σ and are based on counting statistics. Means are ratios of integrated counts for each ion species and do not include 

unreliable data, which are given in parentheses and italics. The nominal set temperatures (T) of the microtips and the nominal laser 

pulse energies (E) are also given. A LEAP 4000X HR was used for UNCDs; a LEAP 4000X Si was used for all other samples. 
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Table 4.2 Carbon isotope peak ratios for integrated microtips from the St. Louis group. 



Sample 
12

C
+
/
12

C
++

 
12

C
+
/
13

C
+
 

12
C

++
/
13

C
++

 T (K) E (pJ) Comments 

Synthetic nanodiamonds 

DND R06 17619 A61 M35 2.2±1.1 38±16 -- 80 40 No significant C
++

 counts. 

Upgraded laser optics: smaller spot 

size. 

DND R06 17620 A61 M35 1.9±0.5 60±10 61±16 80 40 Upgraded laser optics: smaller spot 

size.
 

DND R06 17621 A61 M34 15.2±2.5 31±10 -- 80 40 No significant C
++

 counts. 

Upgraded laser optics: smaller spot 

size. 

DND R06 17626 A62 M4 3.1±0.4 76±12 64±20 55 80–100 Upgraded laser optics: smaller spot 

size. 

DND R06 17629 A61 M31 10.7±1.2 10±2 -- 55 70–90 No significant C
++

 counts. 

Upgraded laser optics: smaller spot 

size. 

DND R06 16013 A46 M1 3.8±0.5 57±22 -- 103 150 No significant C
++

 counts. 

DND R06 17967 A62 M35 1.5±0.2 30±14 (122±306) 54 40 Low 
13

C
++

 counts make 
12

C
++

/
13

C
++ 

doubtful. Upgraded laser optics: 

smaller spot size. 

DND R06 17969 A62 M28 1.8±0.1 53±10 57±16 54 40 Upgraded laser optics: smaller spot 

size. 

DND R06 17978 A62 M34 4.2±1.3 30±12 -- 95 40 No significant C
++

 counts. 

Upgraded laser optics: smaller spot 
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Sample 
12

C
+
/
12

C
++

 
12

C
+
/
13

C
+
 

12
C

++
/
13

C
++

 T (K) E (pJ) Comments 

size. 

DND R06 18428 A64aM34 2.2±0.4 72±24 71±44 95 40–80 Upgraded laser optics: smaller spot 

size. 

Mean 3.0±0.1 46±2 64±7 -- -- -- 

Allende Nanodiamonds 

ADM R06 15004 A36 M1 1.6±0.4 61±18 54±20 95 150 -- 

ADM R06 15005 A36 M1 1.1±0.2 45±16 83±48 95 150 -- 

ADM R06 16096 A47 M10 1.7±0.4 96±30 72±26 103 150 -- 

ADM R06 16097 A47 M11 1.7±0.6 87±42 87±58 102 150 -- 

ADM R06 16098 A47 M12 1.9±0.5 74±28 73±44 103 150 -- 

ADM R06 16119 A47 M12 2.2±0.6 69±28 (189±350) 103 150 Low 
13

C
++

 counts make 
12

C
++

/
13

C
++ 

doubtful. 

ADM R06 16120 A47 M13 1.8±0.4 77±16 87±30 102 250 -- 

ADM R06 18430v01 A65a M06 2.0±0.3 36±6 105±70 95 40–100 Upgraded laser optics: smaller spot 

size. 

ADM R06 18436v01 A65a M05 1.8±0.6 92±44 72±40 95 40 Upgraded laser optics: smaller spot 

size. 

ADM R06 18437 A65a M04 1.8±0.4 57±8 47±10 95 40–80 Upgraded laser optics: smaller spot 

size. 

Mean 2.0±0.1 69±4 65±5 -- -- -- 
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Errors are 2σ and are based on counting statistics. Means are ratios of integrated counts for each ion species and do not include 

unreliable data, which are given in parentheses and italics. The nominal set temperatures (T) of the microtips and the nominal laser 

pulse energies (E) are also given.
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4.6 Results and Discussion 

4.6.1 Mass Spectra and Tomographic Reconstructions 

We define a successful APT measurement as one that results in the detection of major peaks of 

12
C and 

13
C with a high signal-to-noise ratio in the mass spectrum and the visualization of 

carbon-rich regions in the 3D tomographic reconstructions of a microtip. While some of our 

microtips failed, all sample preparation methods produced specimens that were successfully 

analyzed. Representative mass spectra of meteoritic and synthetic nanodiamonds and of a blank 

are displayed in Figure 4.5. As a result of progressive instrument upgrades and improved sample 

preparation techniques, data quality increased over the 3 years of this study and resulted, in 

general, in narrower peaks, lower background noise (i.e., improved signal-to-noise ratios), and 

longer runs due to improved sample stability. 
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 Representative mass spectra; the mass-to-charge-state ratio range was selected to display carbon isotope Figure 4.5

peaks. Top: Meteoritic nanodiamonds (direct deposition method) analyzed with the local-electrode atom-probe 

(LEAP) 4000X Si before the ultraviolet laser optics upgrade. Middle: Synthetic nanodiamonds (UNCD) analyzed 

with the upgraded LEAP 4000X HR using a 355 nm wavelength laser. Bottom: No significant carbon peaks are 

visible in the “blank” measurement of a silicon microtip atomic layer deposition-coated with alumina analyzed with 

the upgraded LEAP 4000X Si. Note the narrower peaks in the middle and bottom spectra that are the result of 

heating a smaller volume due to the smaller spot size obtained using a 355 nm laser. 

 

The tomographic 3D reconstructions show different sample geometries resulting from the 

different preparation techniques utilized (Figures 4.6 and 4.7132). Figure 4.6 shows 3D 

reconstructions from the ALD and direct deposition methods used by the Chicago group. A 

densely packed nanodiamond layer is useful to obtain integrated data for a large number of 
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nanodiamonds, comparable to a bulk analysis (Figure 4.6, left), whereas the direct deposition 

method results in nanodiamonds that coat the surface of the silicon microtip with a much higher 

dispersion (Figure 4.6, right). The degree of dispersion depends on the colloidal diamond 

concentration at the time of deposition. Direct deposition is, therefore, the preferred method to 

obtain data from individual nanodiamonds. 132Figure 4.7 shows the reconstruction of a 

meteoritic nanodiamond analysis using the Ni-Pt-diamond-Pt-Ni sandwich method of the St. 

Louis group. Rotation of the FIB microscope lift-out, such that the nanodiamond layer is parallel 

to the long axis of the microtip, results in dispersion of the nanodiamonds and, like the Chicago 

direct deposition method, permits the analysis of individual or small clusters of nanodiamonds. 
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 3D-tomographic atom-probe tomography reconstructions of nanodiamonds: Each dot represents a single Figure 4.6

detected atom. Atoms are color coded (carbon gray, oxygen red, cobalt blue, silicon green, gallium yellow). (a) 

Allende DM sample sandwiched between a flat-top silicon microtip and a cobalt cap. (b) Same as left but without 

gallium and oxygen atoms to better display carbon. (c) Allende DM sample coating a presharpened silicon microtip. 

Carbon isoconcentration surfaces are shaded gray and exhibit carbon-rich regions representing nanodiamonds, 

clusters of nanodiamonds, and associated disordered carbon on the surface of the microtip. The aspect ratio and 

scale are approximate in all reconstructions. 

 

 3D-tomographic reconstruction of meteoritic nanodiamonds from the Allende DM residue embedded in a Figure 4.7

platinum matrix. Each dot represents a single atom of platinum (orange) or carbon (black). Note that for clarity, only 

a fraction of the total platinum atoms are displayed (other atoms present within the analysis are also not shown). 
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4.6.2 Carbon Isotope Peak Ratios 

Carbon isotope peak ratios, based on the background-corrected counts of 
12

C and 
13

C integrated 

over entire microtips, of meteoritic and synthetic nanodiamonds are displayed in Figure 4.8 and 

are listed in Tables 4.1 and 4.2 for the Chicago and St. Louis groups, respectively. It is important 

to note that it is not possible to distinguish between nanodiamonds and disordered carbon phases 

in our 3D tomographic reconstructions, and therefore, our results represent averages of those two 

phases. In both data sets, 
12

C
++

/
13

C
++

 ratios could not be determined for some microtips, due to 

the small number of 
13

C
++

 counts, and only 
12

C
+
/
13

C
+
 ratios are reported. In most cases where 

statistically significant ratios could be reported for both doubly and singly charged carbon, the 

two ratios are in fairly good agreement. In six data sets, where the two ratios do not agree, 

however, the singly charged ion ratio is lower than the doubly charged ion ratio. This difference 

can be understood in terms of the 
12

CH
+
 hydride contribution to 

13
C

+
 noted above, which will 

lead to lower ratios. This is shown more clearly in a plot of 
12

C
+
/
13

C
+
 versus 

12
C

++
/
13

C
++

 peak 

ratios (Figure 4.9), where most of the data lie on a 45° line showing agreement between ratios of 

singly and doubly charged ions. The data points that plot below the correlation line have lower 

12
C

+
/
13

C
+
 ratios than 

12
C

++
/
13

C
++

 ratios, an indication that the 
13

C
+
 peaks contain a contribution 

from hydride 
12

CH
+
. The lack of data points significantly to the left of the line indicates that 

hydride (or other) contributions to the 
13

C 
++

 peaks are insignificant compared with those at 
13

C
+
. 
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 Carbon isotope peak ratios of synthetic (DND and UNCD) and meteoritic Allende nanodiamonds Figure 4.8

measured by atom-probe tomography. Data are the integrated carbon ions detected in entire microtips. Run numbers 

correspond to those listed in Tables 4.1 and 4.2. The horizontal line corresponds to the terrestrial 
12

C/ 
13

C ratio of 89 

(Coplen et al. 2002). Error bars are 2σ and are based on counting statistics. Large error bars reflect low total ion 

counts for 
13

C
+
 and especially 

13
C

++
. 
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 Plot of 
12

C
++

/
13

C
++

 versus 
12

C 
+
/
13

C
+
 peak ratios for meteoritic and synthetic tips from the Chicago and St. Figure 4.9

Louis data sets. The dashed lines correspond to the terrestrial 
12

C/
13

C ratio of 89 (Coplen et al. 2002). The diagonal 

line indicates agreement between ratios for singly and doubly charged ions. 

 

Comparing the data for all synthetic and meteoritic nanodiamonds (Tables 4.1 and 4. 2) shows 

that almost all ratios are lower than the terrestrial 
12

C/
13

C ratio of 89 (Figure 4.8 and Figure 4.9). 

While the meteoritic nanodiamonds could, in principle, exhibit large natural deviations from the 

terrestrial value, the same is not true of the synthetic nanodiamonds. This indicates that, in 

addition to the statistical uncertainties, there is a currently unidentified uncertainty present, an 

instrumental bias, which is responsible for the deviation of the measured isotope peak ratios from 

the expected value. One possible source for this uncertainty may be variations in sample type 

and, particularly, in analytical conditions. As noted earlier, the LEAP instrument underwent 

significant upgrades throughout the 3 yr period of study, potentially affecting the reproducibility 

of results. More important may be that both the Chicago and the St. Louis groups experimented 

with varying analytical parameters during the measurements, particularly in the early stages of 

this study, to determine the optimum conditions for field evaporation of these complex samples. 
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Future work on nanodiamond samples, prepared in the same way and analyzed under similar 

conditions, should minimize such variations. 

Instrumental bias can also occur in the case of a multiple event, when multiple ions impact the 

detector during the same pulse cycle. If these ions impact close enough together in time or 

location, deadtime or deadspace events can occur due to the (3 ns) signal resolution time. The 

pile-up effect occurs if enough ions trigger pulses on the delay-lines before the signals from the 

first ion are processed (Gault et al. 2012). At higher evaporation rates, these effects increase as 

the probability of multiple events increases and will result in an underestimation of the affected 

ion species. During our analyses, we usually experienced low evaporation rates. When 

encountering interfaces between materials with different field evaporation thresholds, however, 

bursts of ions can be generated simultaneously from a small volume and result in uncounted 

impacts (De Geuser et al. 2007). Moreover, it is well known that carbon is an element that is 

prone to evaporation as multiple events (Andrén et al. 1980). This effect would result in 

preferential undercounting of the dominant isotope (
12

C in this case), leading to 
12

C/
13

C ratios 

that are systematically too low, as observed in most of our data sets (Figure 4.8 and Figure 4.9). 

For selected meteoritic and synthetic nanodiamond tips, we were able to determine carbon 

isotope peak ratios for carbon-rich ROIs with sizes similar to those of individual nanodiamonds 

(Figure 4.10). Determination of the appropriate size for the region of interest is not entirely 

straightforward. In APT, the evaporation field for carbon is significantly higher than that of any 

viable substrate material (Southworth and Ralph 1969; Tsong 1978). Because of this difference, 

the nanodiamond inclusions will resist field evaporation until the surrounding matrix has been 

removed, exposing a smaller radius nub on the larger tip, leading to a local magnification effect 

(e.g., Miller and Hetherington 1991) of the carbon inclusions in the x- and y-directions. We 
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therefore selected ROIs centered on the carbon-rich areas that were larger in the x- and y-

directions to account for this effect. An individual nanodiamond contains approximately 2000 

atoms; with a 50% detection efficiency, we expect to be able to count approximately 1000 of 

these. The ROIs defined here contain approximately 800–1000 atoms, substantiating this 

approach to taking the local magnification effect into account. The carbon isotope peak ratios 

determined from these ROIs have values consistent with those of the larger microtips from which 

they originate. Within the admittedly rather large uncertainties, we do not see any significant 

differences between the ratios from the meteoritic and synthetic nanodiamonds (Figure 4.10). 

 

 Carbon isotope peak ratios of regions of interest defined from selected synthetic (DND and UNCD) and Figure 4.10

meteoritic Allende nanodiamond tips. The horizontal line corresponds to the terrestrial 
12

C/
13

C ratio of 89 (Coplen et 

al. 2002). Error bars are 2σ and are based on counting statistics. 

 

4.6.3 Silicon Isotope Peak Ratios 

Finally, we also obtained silicon isotope peak ratios from the silicon microtips used in the 

Chicago group experiments, as the silicon surface is exposed after the nanodiamond-bearing 

cover has evaporated. As for carbon in the synthetic nanodiamond samples, we expect the Si 

isotope ratios for both singly and doubly charged ions to be consistent with the terrestrial values. 
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Figure 4.11 shows, however, that both 
29

Si/
28

Si and 
30

Si/
28

Si ratios show deviations from normal. 

The shift toward higher 
29

Si
+
/
28

Si
+
 ratios compared with 

29
Si

++
/
28

Si
++

 (Figure 4.11, left panel) can 

be best explained by an isobaric interference of (
28

Si
1
H)

+
 on 

29
Si

+
. The considerable variability in 

the 
29

Si
+
/
28

Si
+
 ratios probably reflects variability in hydride formation. Isobaric interferences due 

to hydrides should affect 
29

Si more than 
30

Si, because 
29

Si has a much lower abundance than 
28

Si. 

The higher 
30

Si
++

/
28

Si
++

 ratios compared with 
30

Si
+
/
28

Si
+
 ratios (Figure 4.11, right panel) are more 

difficult to understand, but may be due to a variable isobaric interference of CH3
+
 with 

30
Si

++
, 

inflating the 
30

Si
++

 peak. 

 

 Background-corrected silicon isotope peak ratios from silicon microtips analyzed with the LEAP Figure 4.11

tomography within the same session (intertip) and in different sessions (intersession). 2σ error bars are based on 

counting statistics and are smaller than the symbol sizes. The dashed lines represent terrestrial (normal) isotope 

ratios from (Coplen et al. 2002). 

 

4.7 Conclusions and Outlook 
We have developed sample preparation methods and optimized analytical conditions for stable 

APT analyses of nanodiamonds, such that carbon isotopic peak ratios can be determined on a 

routine basis. Additional work is, however, required to understand completely the analytical 

biases affecting these measurements. We are currently preparing nanodiamond standards with 
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different isotopic compositions, which will allow us to compare the ion-peak ratios with the 

expected isotope ratios for different compositions. In addition to allowing us to confirm (or not) 

a linear relationship between the measured and true ratios, analyzing standards with different 

isotopic compositions can provide information on the relative importance of various artifacts or 

biases present in our data. For example, the analysis of a nanodiamond standard consisting only 

of 
12

C can provide constraints on the importance of the hydride contribution at mass 13. 

Understanding the variations that we observe in our data sets for synthetic nanodiamond samples 

is an important prerequisite to understanding and interpreting data for meteoritic nanodiamonds. 

Two additional intrinsic problems with analyzing individual nanodiamonds are as follows: (1) 

the limited number of atoms available, leading to relatively large uncertainties; and (2) the 

presence of a second carbon allotrope (disordered carbon) in the diamond-bearing residues. 

Despite these challenges, we anticipate that APT will prove to be a powerful technique for 

analyzing the elemental and isotopic compositions of extraterrestrial nanoparticles, and that 

useful cosmochemical data for meteoritic nanodiamonds can be obtained. 
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Chapter 5: Correction of Dead Time Effects 

in Laser-induced Desorption Time-of-flight 

Mass Spectrometry: Applications in Atom-

probe Tomography 
This chapter was published in the International Journal of Mass Spectrometry in collaboration 

with Thomas Stephan, Philipp R. Heck, and Dieter Isheim (Stephan et al. 2015). The author’s 

personal contribution to this work was sample preparation, experimental analyses, and initial 

data reduction of three of five nanodiamond-containing data sets used in the paper: DND 17620, 

DND 17626, and DND 17969, as well as collaborating on the editing of the drafts and revisions 

of the paper. 

5.1 Introduction 
Any detector is able to reliably distinguish between different events only if they are separated 

from each other sufficiently either in time or in space. The duration a detector needs to recover 

after a counting event in order to be able to detect a second event following shortly afterwards is 

described as the dead time of the detector. It should be clarified that detector in this context 

describes the entire detection system typically consisting of several components such as the 

actual detector, typically a photomultiplier or microchannel plate, a discriminator that accepts 

signals as counting events or rejects them as electronic noise, and a time digitizer, which 

converts time intervals into digital representations. 

In favorable cases, statistical approaches can be used to correct for dead time effects in order to 

calculate the signal intensities that an ideal detector with no dead time would have delivered. 
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Dead time correction in time-of-flight mass spectrometry (TOF-MS) is complicated by the fact 

that signal intensities vary on very short time scales. However, such highly fluctuating signals 

can often be corrected for dead time effects as described in the literature (Stephan et al. 1994). 

Correction is possible since each measurement usually averages over a large number of 

ionization events that, except for statistical fluctuations, are uniform in ionization yield. This is 

typically fulfilled, e.g., in time-of-flight secondary ion mass spectrometry (TOF-SIMS) as long 

as the measurement is restricted to a homogeneous sample or sample region and neither sample 

properties nor primary ion beam intensity vary significantly during the analysis. Here, dead time 

correction works well and is now standard protocol during quantitative data evaluation 

(Holzlechner et al. 2013; Keenan et al. 2008; Stephan 2001). An interlaboratory study involving 

21 TOF-SIMS instruments has shown that this dead time correction is generally applicable and 

robust (Lee et al. 2012). 

However, for some TOF-MS techniques, ionization yield is not constant and the dead time 

correction described by Stephan et al. (1994) could not be applied. This is especially the case in 

techniques where laser-induced desorption is used, e.g., in laser desorption resonance ionization 

mass spectrometry (RIMS). As described by Savina et al. (2003), the desorption process is 

nonlinear in laser pulse energy, and moderate fluctuations lead to large variations in the desorbed 

particle flux. Desorption lasers are therefore often operated in a very low power regime, where 

particles are desorbed only occasionally, in order to avoid relatively powerful laser pulses that 

would release many particles in a single shot (Savina et al. 2003). Very low count rates are the 

consequence, and measurement times have to be increased drastically to achieve sufficient 

counting statistics, if high precision is required. 
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This is also the case in atom-probe tomography (APT), which combines field evaporation 

triggered by pulsing from a focused ultraviolet laser in a constant electric field with TOF-MS 

(Heck et al. 2014; Kelly and Larson 2012). Using APT in order to measure isotope ratios in 

nanoparticles would be highly desirable in particular for cosmochemical applications, e.g., to 

study the origin of meteoritic nanodiamonds (Heck et al. 2014). However, such data so far suffer 

from instrumental biases (Heck et al. 2014) among which dead time effects seem to play a major 

role. Therefore, most APT applications until now focused on the elemental composition of 

samples, where high accuracy is less crucial, as it was previously impossible to get useful isotope 

ratios. 

However, the importance of multi-hit events causing dead time effects, also referred to as pile-up 

or detector saturation, for interpretation of mass spectra in APT has been recognized in the field. 

It has been identified already in 1978 that atom-probe data do not directly give the true 

composition of a sample and that Poisson statistics could be applied for correction (Tsong et al. 

1978). In 1984, Cerezo et al. (1984) developed a statistical correction without making any prior 

assumptions as to the distribution of ions per pulse. In 1988, Menand et al. (1988) made a similar 

approach but made use of double counting events. More recently, methods such as a contingency 

table approach have been employed to study correlations in field evaporation and to improve 

quantification of measured compositions (Saxey 2011). 

Here, we present a dead time correction of APT isotope data using Poisson statistics but avoiding 

some of the deficiencies from previous studies and apply this correction to carbon and silicon 

data (Heck et al. 2014). By using correlated counting events from isotopes of the same element, 

the method presented here allows correction of APT data from ion species that vary significantly 
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in their evaporation behavior with some elements being more prone to evaporation in multiples 

than others. 

5.2 Counting Statistics 

In the following, we will focus on the simple case, where for one laser pulse, only one ion per 

species can be detected, and different species are separated by a sufficient time gap so that they 

do not interfere with each other. From Equation (8) in Stephan et al. (1994), 

  𝐸𝑎 = −𝑁 ∙ ln (1 −
𝑎

𝑁
) and 𝐸𝑏 = −𝑁 ∙ ln (1 −

𝑏

𝑁
). (5.1) 

 Here, 
a
E and 

b
E describe the corrected peak integrals or true intensities for two isotopes of an 

element E, whereas a and b represent the measured intensities for these isotopes, and N is the 

number of ionization events. It should be clarified here that, in general, the number of ionization 

events is smaller than the number of pulses from the desorption laser, if we assume that many 

laser pulses do not have the potential to cause ionization of the element of interest. This is 

different from TOF-SIMS, where each primary ion pulse is considered an ionization event, and N 

is a known quantity. For laser-induced desorption, N is unknown and may depend on the ion 

species. N is not the number of pulses in which ionization occurs; rather, it can be best described 

as the number of laser pulses where the conditions for formation of a given ion species are met. 

However, we can assume that N is identical for different isotopes of the same element and that 

isotope effects on desorption yields can be neglected. 

5.2.1 The Number of Ionization Events 

If we now assume that detection of both isotope species is independent, the probability of 

detecting a correlated event, where both isotopes are detected in a single ionization event, is 

  
𝑐

𝑁
=

𝑎

𝑁
∙

𝑏

𝑁
. (5.2) 
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Here, c is the number of laser pulses for which both isotopes are detected. N can therefore be 

calculated as 

  𝑁 =
𝑎∙𝑏

𝑐
. (5.3)  

For the statistical error ΔN, one has to take into account that a and b are not independent from c. 

We therefore introduce 

  𝑎′ = 𝑎 − 𝑐 and 𝑏′ = 𝑏 − 𝑐 (5.4) 

as independent variables, since they are the number of counting events for both isotopes not 

including the number of correlated events given by c. Equation 5.3 now becomes 

  𝑁 =
(𝑎′+𝑐)(𝑏′+𝑐)

𝑐
. (5.5) 

The statistical error ΔN now follows from the error propagation theorem as 

 Δ𝑁 = √(
𝑏′+𝑐

𝑐
Δ𝑎′)

2

+ (
𝑎′+𝑐

𝑐
Δ𝑏′)

2

+ ((1 −
𝑎′ ∙𝑏′

𝑐2 ) Δ𝑐)

2

. (5.6) 

Using the original variables a and b, this can also be written as 

  Δ𝑁 = √(
𝑏

𝑐
Δ𝑎′)

2

+ (
𝑎

𝑐
Δ𝑏′)

2

+ (
𝑎+𝑏−𝑁

𝑐
Δ𝑐)

2

. (5.7) 

5.2.2 Peak Integrals 

Using Equation 5.3, the peak integral 
a
E from Equation 5.1 can be calculated as 

  𝐸𝑎 = −
𝑎∙𝑏

𝑐
∙ ln (1 −

𝑐

𝑏
). (5.8) 

For calculation of the statistical errors, independent variables are needed 

  𝐸𝑎 = −
(𝑎′+𝑐)(𝑏′+𝑐)

𝑐
∙ ln (

𝑏′

𝑏′+𝑐
). (5.9)  

Then, the statistical error becomes 
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 Δ 𝐸𝑎 =

√[(
𝑏′+𝑐

𝑐
∙ ln (

𝑏′

𝑏′+𝑐
)) Δ𝑎′]

2

+ [(
𝑎′+𝑐

𝑏′
+

𝑎′+𝑐

𝑐
ln (

𝑏′

𝑏′+𝑐
)) Δ𝑏′]

2

+ [(
𝑎′+𝑐

𝑏
+ (

𝑎′∙𝑏′

𝑐2
− 1) ln (

𝑏′

𝑏′+𝑐
)) Δ𝑐]

2

.  

    (5.10) 

Using the original variables a and b, this can also be written as 

 Δ 𝐸𝑎 =

√[(
𝑏

𝑐
∙ ln (1 −

𝑐

𝑏
)) Δ𝑎′]

2

+ [(
𝑎

𝑏−𝑐
+

𝑎

𝑐
ln (1 −

𝑐

𝑏
)) Δ𝑏′]

2

+ [(
𝑎

𝑐
+ (

𝑎∙𝑏

𝑐2 −
𝑎+𝑏

𝑐
) ln (1 −

𝑐

𝑏
)) Δ𝑐]

2

 

    (5.11) 

which can be further simplified to 

Δ 𝐸𝑎 = √[
𝐸𝑎

𝑎
Δ𝑎′]

2

+ [(
𝑎

𝑏−𝑐
−

𝐸𝑎

𝑏
) Δ𝑏′]

2

+ [(
𝑎

𝑐
+

𝐸𝑎

𝑎
+

𝐸𝑎

𝑏
−

𝐸𝑎

𝑐
) Δ𝑐]

2

. (5.12) 

5.2.3 Isotope Ratios 

In practical cases, we want to calculate isotope ratios from the measured peak integrals 

  
𝐸𝑎

𝐸𝑏 =
ln(1−

𝑐

𝑏
)

ln(1−
𝑐

𝑎
)

=
ln(

𝑏′

𝑏′+𝑐
)

ln(
𝑎′

𝑎′+𝑐
)
. (5.13) 

The statistical error can be expressed as

Δ (
𝐸𝑎

𝐸𝑏 ) = √[
𝑐∙ln(

𝑏′

𝑏′+𝑐
)

𝑎′(𝑎′+𝑐)(ln (
𝑎′

𝑎′+𝑐
))

2 Δ𝑎′]

2

+ [
𝑐

𝑏′(𝑏′+𝑐)(ln (
𝑎′

𝑎′+𝑐
))

Δ𝑏′]

2

+ [

ln(
𝑏′

𝑏′+𝑐
)

𝑎′+𝑐
−

ln(
𝑎′

𝑎′+𝑐
)

𝑏′+𝑐

(ln (
𝑎′

𝑎′+𝑐
))

2 Δc]

2

. (5.14) 

Using the original variables a and b, this can also be written as 

Δ (
𝐸𝑎

𝐸𝑏 ) = √[
𝑐∙ln(1−

𝑐

𝑏
)

𝑎(𝑎−𝑐)(ln (1−
𝑐

𝑎
))

2 Δ𝑎′]

2

+ [
𝑐

𝑏(𝑏−𝑐)∙ln (1−
𝑐

𝑎
)

Δ𝑏′]

2

+ [

ln(1−
𝑐
𝑏

)

𝑎
−

ln(1−
𝑐
𝑎

)

𝑏

(ln (1−
𝑐

𝑎
))

2 Δc]

2

, (5.15) 
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which can be further simplified to 

Δ (
𝐸𝑎

𝐸𝑏 ) = √[
𝐸𝑎 ∙𝑏

𝐸𝑏 2
∙

Δ𝑎′

𝑎′
]

2

+ [
𝑎

𝐸𝑏 ∙
Δ𝑏′

𝑏′
]

2

+ [
𝐸𝑎 ∙𝑏−𝑎∙ 𝐸𝑏

𝐸𝑏 2
∙

Δc

𝑐
]

2

. (5.16) 

5.3 Experimental Results and Discussion 
In order to evaluate the feasibility of the dead time correction according to Equations 5.13 and 

5.16 for APT data, we applied the correction to carbon data obtained from synthetic 

nanodiamonds and to silicon data from silicon microtips (Heck et al. 2014). In that study, 
12

C/
13

C 

ratios as well as 
28

Si/
29

Si and 
28

Si/
30

Si ratios that are apparently lower than expected were 

measured (Heck et al. 2014). This was in part attributed to dead time effects, which leads to an 

undercount of the major isotopes 
12

C and 
28

Si compared to the less abundant isotopes 
13

C, 
29

Si, 

and 
30

Si (Heck et al. 2014). In addition to undercounting major isotopes, unresolved interference 

from hydride ions 
12

CH
+
, 

28
SiH

+
, and 

29
SiH

+
 could lead to overestimated 

13
C

+
, 

29
Si

+
, and 

30
Si

+
 

signals. However, besides singly charged ions, carbon and silicon both also form doubly charged 

ions in APT. Since hydrides are not expected to form doubly charged ions and no major 

interferences are expected at the respective mass-to-charge-state ratios, using doubly charged 

ions can be advantageous for measuring carbon and silicon isotope ratios. 

As mentioned above, we assumed for our dead time correction the simple case, where for one 

laser pulse, only one ion per species can be detected, and different species are separated by a 

sufficient time gap so that they do not interfere with each other. Modern APT instruments, 

however, allow for the detection of more than one ion with a given mass-to-charge-state ratio 

generated in a single laser pulse, though with a decreased detection efficiency for consecutive 

ions of the same species. In other words, the detector is not dead after being hit by an ion but has 

a decreased sensitivity for a certain amount of time. Since this reduced sensitivity is difficult to 



151 

 

account for quantitatively, we counted multiple detections of one ion species only as single 

events. This required evaluation of single shot data and not just of spectra accumulated from a 

large number of laser pulses. Although disregarding ion detections might look like throwing 

away useful data, for the calculation of isotope ratios, we currently cannot make use of any 

additional information they might carry. Their detection can, however, still deliver valuable 

information about the three-dimensional distribution of the isotopes, since APT not only 

provides mass-to-charge ratios but also spatial information (Kelly and Larson 2012). 

In some cases, data evaluation suffers from long tails of the respective mass peaks that even 

affects peaks at the following nominal mass. Sample preparation, material properties such as 

thermal conductivity, analytical conditions (laser energy and focus, pulse rate, and specimen 

temperature) can be optimized to minimize the formation of peak tails. For proper dead time 

correction, it is important to have a mass resolution sufficient to completely separate neighboring 

mass-to-charge-state ratios. While it is often sufficient to separate mass peaks by fitting them to 

some idealized shape, such peak deconvolution cannot be executed here since it could not be 

applied to single shot data. In cases where hydride interference cannot be excluded, the 

formation of doubly charged ions becomes very important for isotope measurements. Instrument 

parameters such as laser pulse energy and electric fields can be optimized in order to facilitate 

the formation of doubly charged ions (Heck et al. 2014; Kingham 1982). 

5.3.1 Carbon 

Synthetic detonation nanodiamonds (DNDs) and ultrananocrystalline diamonds (UNCDs) have 

been used as standards in an APT study of nanodiamonds from the Allende meteorite (Heck et 

al. 2014). These synthetic standards are expected to have a 
12

C/
13

C ratio close to the terrestrial 

value of 89 and should be suited to evaluate the dead time correction described above. 
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From the previous study (Heck et al. 2014), five measurements showed sufficient mass 

resolution, short peak tails, as well as sufficient counts of doubly charged ions to allow for dead 

time correction of both singly and doubly charged carbon ion counts. Dead time corrected and 

uncorrected carbon isotope ratios for these measurements are shown in Figure 5.1. In addition, 

Table 5.1 shows the number of laser pulses as well as the number of ionization events calculated 

from the data. As expected, the number of ionization events is smaller than the number of laser 

pulses: fewer than 0.35% of the laser pulses were above the ionization threshold for singly 

charged carbon ions, and fewer than 0.015% of the pulses were above the ionization threshold 

for doubly charged carbon ions. This is certainly in part due to the fact that the nanodiamonds 

were dispersed heterogeneously in the samples, but also reflects the high evaporation field 

requirements for carbon and instabilities of the field evaporation process that is thermally 

activated with the laser heating the sample surface to near the evaporation threshold (Bunton et 

al. 2007; Vurpillot et al. 2009). 
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 Carbon isotope ratios calculated from measurements of singly and doubly charged carbon ions from Figure 5.1

synthetic nanodiamonds. Open symbols represent data from accumulated spectra not corrected for dead time effects. 

Data shown as solid symbols are dead time corrected. Error bars are 1σ statistical errors. Solid lines represent the 

expected 
12

C/
13

C ratio of 89. 

 

Table 5.1 Carbon isotopes measured by APT in synthetic nanodiamonds as singly and doubly charged 

ions.
a 



Sample UNCD 113215 DND 17620 DND 17626 DND 17969 UNCD 20026 

Number of laser pulses 2.44×10
8 

4.93×10
8 

3.65×10
9 

8.71×10
8 

1.25×10
9 

N(
12

C
+
/
13

C
+
) (9.0±0.8)×10

4
 (1.7±3.8)×10

6
 (8.8±4.1)×10

5
 (1.1±0.5)×10

5
 (1.9±0.4)×10

6
 

12
C

+
/
13

C
+
 (raw data) 10.3±0.4 33±3 53±4 34±3 81±5 

12
C

+
/
13

C
+
 (corrected) 10.8±0.4 33±3 54±4 35±4 84±5 

N(
12

C
++

/
13

C
++

) (1.4±0.2)×10
4
 (1.7±0.2)×10

4
 (2.8±0.5)×10

4
 (1.4±0.2)×10

4
 (1.8±0.1)×10

5
 

12
C

++
/
13

C
++

 (raw data) 71±8 67±8 66±8 61±9 57±4 

12
C

++
/
13

C
++

 (corrected) 92±12 83±11 77±11 75±11 75±7 

 

a 
The number of ionization events N calculated according to Equations 5.3 and 5.7 is given for 

singly and doubly charged ions. The number of laser pulses is included for comparison. Ion 

ratios are calculated from raw data with no deadtime correction and after deadtime correction. 

Errors are 1σ statistical errors. 
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Uncorrected peak ratios given in Table 5.1 in some cases differ significantly from values given 

by Heck et al. (2014). This is due to reevaluation of the data using tighter peak interval 

definitions than in the previous study, trying to exclude some of the long peak tails that would 

make dead time correction impossible. However, variations in such interval definitions could not 

bring uncorrected peak ratios into agreement with expected isotope ratios. 

After dead time correction, however, isotope ratios calculated from doubly charged ions are all 

within 2σ of the expected terrestrial ratio, whereas singly charged carbon ions yield 
12

C/
13

C 

ratios that are too low. This is probably due to interference from 
12

C
1
H

+
, which cannot be 

resolved from 
13

C
+
. Hydride abundances seem to show huge variations between measurements 

leading to highly variable ratios of peaks measured at 12 and 13 u. 

5.3.2 Silicon 

Since some of the experiments described above were performed on nanodiamonds applied on 

silicon microtips (SMTs), we used data from these experiments to calculate silicon isotope ratios 

(Heck et al. 2014). As for carbon, we expected isotope ratios for both singly and doubly charged 

silicon ions to be consistent with terrestrial values (
28

Si/
29

Si = 19.7, 
28

Si/
30

Si = 29.9, and 
29

Si/
30

Si 

= 1.52). 

As for carbon, the measurements of silicon isotopes could suffer from unresolvable mass 

interferences. For 
29

Si
+
 and 

30
Si

+
, we expect interferences from 

28
Si

1
H

+
 and 

29
Si

1
H

+
, respectively. 

Since doubly charged ions appear at half nominal mass, one has to consider interferences for 

silicon isotopes with even mass numbers. Possible interferences for 
28

Si
++

 at mass 14 u are 

12
C

1
H2

+
 and 

14
N

+
, while 

12
C

1
H3

+
 and 

14
N

1
H

+
 could interfere with 

30
Si

++
 at mass 15 u. However, 

since measurements were performed on silicon microtips, trace abundances of hydrocarbons and 
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nitrogen should be less crucial, and we only expect major interferences from hydrides that should 

only affect singly charged silicon ions. 

Figure 5.2 shows the deviation of the uncorrected and dead time corrected doubly charged 

silicon ion ratios 
29

Si
++

/
28

Si
++

 and 
30

Si
++

/
28

Si
++

 from reference isotope ratios in per mill using the 

δ notation: 

  𝛿 (
𝐸𝑎

𝐸𝑏 ) = (

(
𝐸𝑎

𝐸𝑏 )

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

(
𝐸𝑎

𝐸𝑏 )

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

− 1) ∙ 1000‰. (5.17) 

 

 Silicon isotope ratios calculated from measurements of doubly charged silicon ions from silicon microtips Figure 5.2

given in δ notation relative to expected terrestrial isotope ratios (solid lines). Open symbols represent data from 

accumulated spectra not corrected for dead time effects. Data shown as solid symbols are dead time corrected. Error 

bars are 1σ statistical errors. 

 

Table 5.2 shows the number of laser pulses as well as the number of ionization events calculated 

from the data. As expected and similar to carbon, the number of ionization events is smaller than 

the number of laser pulses, demonstrating that in this case, fewer than 40% of the laser pulses 

could generate singly charged silicon ions, and fewer than 3% of the pulses were above the 
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ionization threshold for doubly charged silicon ions. However, these numbers vary a lot among 

different runs as they depend on the sample properties and analytical conditions. In some cases, 

formation of doubly charged ions is even favored compared to formation of singly charged ions.
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Table 5.2 Silicon isotopes measured by APT in microtips as singly and doubly charged ions.
a 



Sample SMT 113215 SMT 17134 SMT 17149 SMT 17153 

Number of laser pulses 2.44×10
8 

7.13×10
8 

3.34×10
8 

1.74×10
8 

N(
28

Si
+
/
29

Si
+
) (1.2±0.2)×10

7
 (1.4±0.2)×10

7
 (1.3±0.2)×10

8
 (1.9±1.1)×10

6
 

28
Si

+
/
29

Si
+
 (raw data) 16.3±0.3 4.78±0.06 19.0±0.1 4.6±0.2 

28
Si

+
/
29

Si
+
 (corrected) 16.3±0.3 4.79±0.06 19.0±0.1 4.6±0.2 

N(
28

Si
+
/
30

Si
+
) (1.0±0.2)×10

7
 (1.6±1.2)×10

7
 (1.03±0.09)×10

8
 (1.0±1.1)×10

6
 

28
Si

+
/
30

Si
+
 (raw data) 27.8±0.5 22.9±0.5 30.1±0.2 19.2±1.3 

28
Si

+
/
30

Si
+
 (corrected) 27.9±0.6 23.0±0.5 30.2±0.2 19.3±1.3 

N(
29

Si
+
/
30

Si
+
) (7±6)×10

6
 -- (1.2±0.5)×10

8
 -- 

29
Si

+
/
30

Si
+
 (raw data) 1.71±0.04 4.8±0.1 1.59±0.01 4.2±0.3 

29
Si

+
/
30

Si
+
 (corrected) 1.71±0.04 -- 1.59±0.01 -- 

N(
28

Si
++

/
29

Si
++

) (3.3±0.1)×10
6
 (1.40±0.03)×10

7
 (6.8±0.4)×10

6
 (2.40±0.05)×10

6
 

28
Si

++
/
29

Si
++

 (raw data) 19.0±0.2 18.68±0.08 19.1±0.2 18.2±0.1 

28
Si

++
/
29

Si
++

 (corrected) 19.8±0.2 19.91 ± 0.09 19.4±0.2 19.7±0.2 

N(
28

Si
++

/
30

Si
++

) (3.5±0.1)×10
6
 (1.60±0.06)×10

7
 (8.6±0.7)×10

6
 (3.06±0.09)×10

6
 

28
Si

++
/
30

Si
++

 (raw data) 28.7±0.3 28.5±0.1 29.8±0.4 29.0±0.3 

28
Si

++
/
30

Si
++

 (corrected) 29.8±0.3 30.1±0.2 30.1±0.4 30.8±0.3 

N(
29

Si
++

/
30

Si
++

 ) (3.6±0.6)×10
6
 (1.16±0.09)×10

7
 (5±1)×10

6
 (1.7±0.1)×10

6
 

29
Si

++
/
30

Si
++

 (raw data) 1.51±0.02 1.523±0.009 1.56±0.03 1.59±0.02 

29
Si

++
/
30

Si
++

 (corrected) 1.51±0.02 1.53±0.01 1.56±0.03 1.60±0.02 

 

a
 The number of ionization events N calculated according to Equations 5.3 and 5.7 is given for 

singly and doubly charged ion pairs (
28

Si/
29

Si, 
28

Si/
30

Si, and 
29

Si/
30

Si). The number of laser 

pulses is included for comparison. Ion ratios are calculated from raw data with no dead time 

correction and after dead time correction. Errors are 1σ statistical errors. Expected values for 

corrected isotope ratios are terrestrial values (
28

Si/
29

Si = 19.7, 
28

Si/
30

Si = 29.9, and 
29

Si/
30

Si = 

1.52). 
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With three stable isotopes, silicon, in principle, enables evaluating three different isotope pairs. 

However, isotopic abundances of 
29

Si and 
30

Si are both below 5%, and correlated counting 

events for these isotopes are quite rare. In two cases (SMT 17134 and SMT 17153), there were 

no correlated counting events measured for 
29

Si
+
 and 

30
Si

+
 at all. In such cases, dead time 

correction cannot be applied. However, numbers of ionization events N for singly charged ion 

pairs N(
28

Si
+
/
29

Si
+
), N(

28
Si

+
/
30

Si
+
), and also for N(

29
Si

+
/
30

Si
+
), when it could be determined, agree 

reasonably well within statistical errors. The same is true for doubly charged ion pairs 

N(
28

Si
++

/
29

Si
++

), N(
28

Si
++

/
30

Si
++

), and N(
29

Si
++

/
30

Si
++

). However, some discrepancies were 

observed, which might be due to some mass interferences that could have different evaporation 

thresholds in APT. In general, these discrepancies seem to be larger for singly charged ion pairs 

than for doubly charged ion pairs. 

Corrected isotope ratios for the singly charged silicon ions (Table 5.2) clearly indicate that dead 

time effects are not the major reason for deviations of the isotope ratios from expected values. As 

in the case of carbon, we attribute this mainly to interferences from hydrides, which again show 

high variability. Doubly charged silicon ions after dead time correction, however, yield isotope 

ratios that are all within 2σ of the expected terrestrial ratios, except for one outlier, which is still 

within 3σ. 

5.4 Conclusions 
Correction of dead time effects in laser-induced desorption TOF-MS like, e.g., in APT is 

complicated by the nonlinearity of the desorption process, which leads to large variations of 

ionization yields during a typical measurement. Dead time correction following the general 

concept according to (Stephan et al. 1994), but using single shot data and taking into account 

correlated counting events from isotopes of the same element, can be used to mitigate these 
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effects. However, this dead time correction only works if the respective mass peaks do not suffer 

from unresolved interferences. Due to the limited mass resolving power of current APT 

instruments and the possibility of unresolved interfering hydride peaks, using doubly charged ion 

signals can be advantageous to obtain accurate isotope ratios. Performing such measurements at 

laser pulse energies and field evaporation voltages that facilitate the formation of doubly charged 

ions can therefore be desirable. The correction presented here unlocks the full potential of APT 

regarding isotope analysis in small volumes or nanoparticles. This work has tremendous 

potential for isotope studies at a previously unreachable spatial dimension—the atomic scale. 

Future investigations will show if the dead time correction laid out in this study could also be 

applied to other laser-induced desorption TOF-MS techniques like, e.g., laser desorption RIMS. 
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Chapter 6: 
12

C/
13

C-ratio Determination in 

Nanodiamonds by Atom-probe Tomography 
This chapter was published in Ultramicroscopy in collaboration with coauthors Dieter Isheim, 

Christine Floss, and David N. Seidman (Lewis et al. 2015). The author’s personal contribution to 

this work included all sample preparation, experimental analysis, development of data correction 

methods and scripts, data reduction, writing the manuscript, and managing revisions in 

cooperation with the coauthors. 

6.1 Introduction 
Grains are identified as presolar based on significant deviations from the terrestrial ratios of 

stable isotopes such as 
12

C/
13

C (e.g., Figure 6.1). These isotopic anomalies are large enough that 

they can only be explained by extrasolar nucleosynthetic processes. Therefore it is believed that, 

unlike the vast majority of solar system material, presolar grains survived isotopic 

homogenization in the early solar nebula. The sources of presolar grains are identified by 

comparing these anomalies to those predicted by models and observed by astronomers. These 

grains are used to probe various stellar processes in stars and the interstellar medium (ISM) 

(Zinner 2014). 
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 From (Zinner 2014), the unique distributions of 
12

C/
13

C isotopic ratios (logarithmic) for various presolar Figure 6.1

grain types, measured by SIMS, and for Carbon stars, from astronomical observations. Isotopic ratios can be used to 

identify and investigate the presolar sources of the grains. 

 

The first presolar grain type was discovered in 1987, when an abundant phase of nanodiamond 

separated from meteorites (Lewis et al. 1987) was identified as the carrier of trace-element 

isotopic anomalies associated with nucleosynthetic processes that occur in supernovae. Of all 

known presolar grain types, nanodiamonds are the most abundant (~1400 ppm (Zinner 2014)) 

but also the smallest (~3 nm diameter (Daulton et al. 1996)), posing unique analytical challenges. 

Secondary ion mass spectrometry (SIMS) is used extensively in presolar grain research, as it 

offers high mass resolving power and high spatial resolution (e.g., down to 50 nm for the 

Cameca NanoSIMS 50 employed at Washington University in St. Louis) – excellent for analysis 



164 

 

of multiple isotopes in µm-scale grains, but inadequate for analysis of individual nm-scale 

grains. 

In light of this limitation, we have been analyzing meteoritic nanodiamonds and terrestrial 

nanodiamond standards using atom-probe tomography (APT) (Heck et al. 2014; Lewis et al. 

2014a; Stadermann et al. 2011). Our scientific goal is to determine the origins of the 

nanodiamonds by determining what, if any, anomalies exist in the C isotopes of the 

nanodiamonds. In bulk (millions of nanodiamonds) the isotopic ratios of the primary element C 

(Russell et al. 1996) and the secondary element N (Marty et al. 2011) both average to solar 

system values. 

While supernovae were the first source to be suggested for meteoritic nanodiamonds (Lewis et 

al. 1987) and remain a viable explanation for the origins of a subset of the nanodiamonds, other 

details have been interpreted to indicate some nanodiamonds formed in the ISM from passing 

supernova shockwaves (Stroud et al. 2011), in the early Solar System (Dai et al. 2002), and even 

in asymptotic giant branch stars (Verchovsky et al. 2006). 

It is possible that there are subpopulations of nanodiamonds with a variety of anomalies that 

average to the solar system value or are hidden by a majority of solar system-formed 

nanodiamonds. Our experimental goal is to measure the 
12

C/
13

C isotopic ratios of individual or 

small clusters (<100) of nanodiamonds. 

This work provides a step towards the development of standard practices for future isotopic 

measurements, necessary for meteoritical (Lewis et al. 2014) and geological (Valley et al. 2014) 

lines of research. 
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6.2 Methods 

6.2.1  Meteoritic Nanodiamonds 

Meteoritic nanodiamonds are separated from their host meteorites by acid dissolution and size 

sorting. The nanodiamonds are damaged by acid treatment, with molecules such as H, COOH, 

CH, and N bonding to free sites (Lewis et al. 1989); 25–50% of the atoms in an average 

nanodiamond are within one atomic layer of the surface. 

Chemical vapor deposition (CVD) and shock formation have both been proposed for the 

nanodiamonds based on TEM studies. Twinning is detected in the nanodiamonds (Daulton et al. 

1996), and some fraction of the residue is amorphous C sheets rather than nanodiamonds (Stroud 

et al. 2011). 

We study nanodiamonds from the meteorite Allende CV3 provided by R.S. Lewis (separation 

DM) (Lewis et al. 1989). The hypothetical “average” nanodiamond from Allende is assumed to 

be spherical, 3 nm in diameter, and contains ~2500 atoms. The low number of atoms will lead to 

large uncertainties in measured isotopic ratios. However, anomalies in C isotopic ratios in other 

presolar grain types, such as graphite and SiC, are known to range from ~10 to ~10,000. In 

addition, many microtips prepared by our method contain several to 10s of nanodiamonds, 

improving the counting statistics (but potentially diluting anomalies in individual grains). 

For standards we use terrestrial nanodiamonds produced by detonation. These nanodiamonds 

undergo acid treatment similar to the meteoritic nanodiamonds (Greiner et al. 1988). 

6.2.2 Sample Preparation 

We fabricate Ni–Pt-nanodiamond–Pt–Ni multilayers for APT analysis. We deposit 130–170 nm 

of Pt onto a cleaned Ni disk using a Southbay Technology IBSe ion beam sputtering system. A 

file:///C:/Users/jblewis/Dropbox/bin/Dissertation/Converting%20papers/Final.docx%23page7
file:///C:/Users/jblewis/Dropbox/bin/Dissertation/Converting%20papers/Final.docx%23page7
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steel disk covered in Au foil containing the nanodiamond residue is placed on one of the two 

ultrasonicating heads; the Pt-covered Ni disk is placed on the other. While ultrasonicating, we 

pipet ~50 µL of deionized water onto the nanodiamond-residue on the Au foil. After waiting 

several minutes, during which a significant portion of the liquid evaporates, we micropipette a 2 

µL aliquot of the water onto the Ni disk. We return the Ni–Pt-nanodiamond multilayer to the 

IBSe and begin another ~130 nm Pt deposition followed by a top layer of Ni. 

A roughly circular residue is left behind by the evaporating droplets. Large clusters of 

nanodiamonds are visible in secondary electron (SE) images. In some regions, cluster size and 

density falls off gradually to vanishing at the inner and outer edges of the deposit, and it is in 

these regions where we create focused ion beam (FIB) liftouts (e.g., Figure 6.2) using an FEI 

Quanta dual-beam FIB. We cover the surface of a 30×6 μm
2 

− area liftout region with 150 nm of 

protective Pt, deposited using the Ga ion beam to crack a precursor gas delivered to the sample 

by a gas injection system. Ion beam mills are used to undercut the liftout, which is subsequently 

attached to a micromanipulator and trimmed. The vacuum chamber is then vented to allow us to 

actuate our custom sample holder 90° to bring the deposition layer from horizontal to vertical 

relative to the stage. Under high vacuum again, after more trimming, slices of the liftout are 

mounted onto prefabricated Si micropost arrays using a “mortise and tenon” method. One liftout 

typically produces 8 slices. We conduct ion beam mills 10–15° off vertical, rotating the sample 

90° about its long axis between each mill. This creates a tetrahedral or pyramidal shape at the 

microtip. The deposition layer runs through this pyramidal microtip. Finally, a series of annular 

mills are conducted to create a ~15–30 nm radius microtip, ready for introduction into the atom-

probe tomograph. 
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 Atom-probe tomograph microtip preparation procedure. (a) Nanodiamonds are deposited from a droplet Figure 6.2

and covered with layers of Pt and Ni. Large clusters of nanodiamonds are visible around the rim of the deposition, 

pushing up the surface of the multilayer. (b) A ~25 μm region of the deposit rim is lifted out with FIB milling. (c) 

Slices of the trimmed, rotated liftout are attached to Si microposts with Pt deposition. (d) After Pt welding, initial 

sharpening creates a conical shape. (e) Pyramidal sharpening reveals the Pt deposition layer (white), which contains 

large clusters of nanodiamonds (black). (f) After high- and low-kV annular sharpening, nanodiamond clusters large 

enough to be resolved are located within a few hundred nm of the ~20 nm radius microtip. 

6.2.3 Atom-probe Tomography 

We use the Cameca LEAP 4000X Si Atom Probe Tomograph at Northwestern University. Atom-

probe tomography (Seidman 2007; Seidman and Stiller 2009a; Seidman and Stiller 2009b; Kelly 

and Miller 2007, and references therein) yields the 3D positions and mass-to-charge-state ratios 

of ions from a ~100 nm3 region with sub-nm spatial resolution and atomic ppm concentration 

sensitivity. For run parameters see Table 6.1. To reconstruct data from our APT runs we use 

Cameca's IVAS 3.6.6 software (David J. Larson et al. 2013, Chapters 5 and 6). We estimate the 

evaporation field to be 39 V/nm. For this estimation we use the final radius, calculated using SE 

images of microtips that survived APT, and the final voltage for those microtips. For each 

microtip we can then calculate the initial radius using this field estimate and the starting voltage. 

We reconstruct the microtip profile by fitting to a SE image of the sample prior to APT. 
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The evaporation field for diamond is not well known, but is certainly much higher than Pt 

(Tsong 1978). To minimize the uncertainty generated by field inhomogeneity, we used slow 

evaporation rates (0.1–1%) and control of the mass-to-charge-state ratio of Pt, which is a good 

indicator of evaporation conditions. Time-constant background can become a significant obstacle 

to resolving 
13

C peaks, so the lowest possible evaporation rate is not always optimal. 

The difference in the evaporation field between nanodiamond and amorphous C is unknown. To 

date, we have not been able to distinguish these two phases. For simplicity, we call all high 

density C regions in our microtips nanodiamonds. 

A region of interest (ROI) is selected to exclude the vast majority of the Pt matrix and include 

the region with the nanodiamonds (e.g., Figure 6.3). We use this as the bulk data. 

 

 Cross sections of 3D reconstructions of six microtips, displaying C (black) and Pt (orange) ions. Scale Figure 6.3

bars are 20 nm. Only a fraction of the Pt ions are displayed. Run number and cross section depth are noted beneath 

each reconstruction. See Table 6.1 for the isotopic data corresponding to each run number. (For interpretation of the 

references to color in this figure caption, the reader is referred to the web version of this paper.) 

We use custom-defined range files to select peaks at 6, 6.5, 12, and 13 amu (Figure 6.4). It is 

clear from both anecdotal and informal statistical evidence that the subjective nature of range 

selection introduces significant variations into measurements of composition (Hudson et al. 

2011). We therefore consistently used the following criteria to define mass-to-charge-state 
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ranges: Using a bin width of 0.01 amu, we define a peak to range from the bin where the peak is 

twice the preceding noise to the bin where the peak first drops below twice the preceding noise 

or where the tail encounters another peak. Statistical error is propagated as we calculate the noise 

contribution to each peak, subtract it, and then take the ratio of 
12

C/
13

C for singly charged and 

doubly charged ions. Lewis et al. (2015) compare this fitting method to one utilizing FWHM, 

and demonstrates that the two methods preserve similar instrumental artifacts. 

 

 Logarithmic mass spectrum from dataset R06 19567 from 5 to 15 amu (bin size 0.01 amu). C peaks are in Figure 6.4

black. Noise measurement ranges are in light gray. Other visible peaks include N
+
 and N

++
 at 14 and 7 amu, Al

++
 and 

Al
+++

 at 13.5 and 9 amu, and 
12

C
13

C
++

 at 12.5 amu. 

 

APT does not have the mass resolving power to distinguish the 
12

CH
+
 hydride from 

13
C

+
. The 

potential of H present on the surfaces of the nanodiamonds, the tendency of H to migrate to grain 

boundaries (Nishikawa et al. 1999), and its presence in the high vacuum means that there is the 

possibility of hydride formation during field evaporation. We assume that the formation of 

12
CH

++
 is much less probable, so the 

12
C

++
/
13

C
++

 ratio may be used as a correction. The C charge-

state ratio 
12

C
+
/
12

C
++

 typically falls between one and three. We use a higher laser pulse fraction 

to bring this ratio closer to one to improve counting statistics on 
13

C
++

, which is typically the 

smallest of the four peaks. We are limited, however, by thermal instability in the tip. 

12
C2

++
 will interfere with 

12
C

+
 at 12 amu. We do observe small peaks at 

12
C2

+
 and 

12
C

13
C

++
 (24 

and 12.5 amu) in most of our data sets, so this interference may be significant. 
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We also observe 
12

C3
++

 (18 amu), 
12

C3
+

 (36 amu), and the various PtOC isotopologues. 

Calculations of isotopic ratios from peaks of molecular ions are difficult since the peaks 

represent all combinations of the isotopes in the molecule, sub-dividing the signal (e.g., C2
+
 will 

populate three peaks, at 
12

C2
+
, 

12
C

13
C

+
, and 

13
C2

+
). 

6.2.4 Multi-hit Analysis 

The atom-probe tomograph detector is position sensitive and multipart, giving rise to potential 

deadtime, deadspace, and pileup signal loss in the event that multiple ions field evaporate and are 

incident on the detector during the same detection window between two laser pulses. Some 

authors do not explicitly differentiate these effects (e.g., Saxey 2011) while others describe them 

as independent phenomena (Da Costa et al. 2005). The deadtime effect occurs when electron 

cascades from two different ions arrive at the delay lines at essentially the same place and close 

enough together in time that the signals generated on the delay lines cannot be resolved as two 

separate signals. The deadspace effect occurs when two ions arrive at the microchannel plate at 

different times and positions, but the electron cascade from the later-arriving ion induces a signal 

on a delay line that overlaps with one of the signals produced by the electron cascade from the 

earlier ion, causing the instrumentation to detect only one electrical signal at that end of the delay 

line, while the other end of the delay line may detect two separate signals. With multiple delay-

lines the capacity exists to deconvolve these otherwise “partial” hits, so long as there are not too 

many ions involved in the multi-hit. 

Detector pileup occurs during any multi-hit event where two or more pulse pairs are generated 

on a delay-line close enough together in time that there is more than one solution for the impact 

times and positions of the ions. The detector pileup capacity is increased by adding more delay 

lines oriented along different axes. To make an analogy to solving linear equations, this is the 



171 

 

physical equivalent of adding independent equations in a number of unknown variables to 

resolve degeneracies due to the high number of unknowns. If the detector pileup capacity is 

exceeded, none of the ions that form the pileup event can be assigned a conclusive time-of-flight. 

The detector pileup capacity for our instrument is 15 ions in a 2 μs window. The maximum 

number of ions detected in a 2 μs window in any of our data sets is 14, therefore it is unnecessary 

to correct for detector pileup. 

We use iterative proportional fitting to correct for the deadtime effect upon pairs of ions of the 

same mass-to-charge-state ratio. By recording the number of multi-hit ion pairs detected at the 

intersection of the C mass-to-charge-state ratio ranges at 6, 6.5, 12, and 13 amu, we build a 

correlation table with populations of detected pairs pij after Saxey (2011). We use all 

combinations of ions in the multi-hit as pairs, not just the first two. Originally the entries above 

the diagonal x=y will be empty, since the order of the pair is based on arrival order. For the 

correlation table, we shift half the pairs detected in pij to populate pji. Thus, the matrix is ensured 

to be symmetric across the diagonal. Then the probability of a pair of C ions containing an ion of 

species k as the first/second ion is 

𝑃(𝑘) =
∑ (𝑝𝑘𝑗)𝑗

∑ (𝑝𝑖𝑗)𝑖𝑗
=

∑ (𝑝𝑖𝑘)𝑖

∑ (𝑝𝑖𝑗)𝑖𝑗
=

𝑛𝑘

𝑁
 

where nk is the number of pairs that contain an ion of species k as the first/second ion, depending 

on whether summation is over column/row (for our symmetrized matrix the two values will 

always be equal). N is the sum of the matrix, which is the number of pairs detected. 

The expectation values for the number of pairs of each combination is then 
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𝑒𝑖𝑗 = 𝑃(𝑖, 𝑗)𝑁 = 𝑃(𝑖)𝑃(𝑗)𝑁 =
𝑛𝑖𝑛𝑗

𝑁
 

where i/j are summed over row/column. 

We correct the diagonal elements, pii, iteratively, calculating expectation values based on all the 

elements, adjusting expectation values of the diagonals, and repeating the process until the 

expectation values on subsequent iterations change by less than some small value. This is the 

iterative proportional fitting method introduced by Deming and Stephan (1940) and taken from 

Everitt (1992), here applied to the correction of APT data for the first time. This method 

converges quickly for most data sets, given that the sets have enough multi-hit detections. 

2D mass-to-charge-state ratio histograms of ion pairs are useful for visualization of instrumental 

signal loss. They can also indicate where the field evaporation of an ion of a particular species is 

correlated; that is, where the evaporation of an ion of one species during a detection window 

significantly changes the probability of an ion of the same or a different species field evaporating 

during the same detection window (Figure 6.5).
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 2D mass spectrum of multi-hit pairs from R06 19565 from 5 to 14 amu (bin size 0.05×0.05 amu). Figure 6.5

Hotspots indicate correlated evaporation of two ion species. Detection on the line of equal mass-to-charge-state 

(diagonal) is suppressed by detector deadtime. Detection above the line of equal mass-to-charge-state is unlikely 

since the lighter mass in a pair should almost always arrive at the detector first. Horizontal and vertical distributions 

of multi-hits indicate where one ion in the pair field evaporates at roughly the peak of the thermal pulse and the 

other ion field evaporates later. Diagonal distributions of multi-hits represent pairs that evaporated together but after 

the laser pulse. 

6.3 Results and Discussion 
We calculated 

12
C/

13
C ratios and uncertainties for 16 detonation nanodiamond (DND) standard 

and 18 Allende nanodiamond (ADM) data sets. Table 6.1 summarizes these data. Of these, 9 

DND and 3 ADM datasets were originally reported in Heck et al. (2014) and are presented here 

with new ROI selections and deadtime corrections. We exclude data collected prior to the most 

recent major hardware upgrade to the atom-probe tomograph, which is described in Heck et al. 

(2014). Figure 6.6 plots the 
12

C
+
/
13

C
+
 vs. 

12
C

++
/
13

C
++

, where we include only those data sets that 

have statistically meaningful 
12

C
+
/
13

C
+
 and 

12
C

++
/
13

C
++

 ratios. We integrated counts to calculate 

the mean ratios, and also calculated the weighted standard error of the mean and weighted 

standard deviation for our data (Table 6.2).  
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Table 6.1 Experimental data. Uncertainties are 2σ. Similar 
12

C
+
/
12

C
++

 values indicate similar field 

evaporation conditions. A## M## indicates the microtip analyzed. 



Sample 
12

C
+
/
12

C
++

 
12

C
+
/
13

C
+
 

12
C

++
/
13

C
++

 T (K) E (pJ) Comments 

 

Synthetic nanodiamonds 

DND R06 17619 A61 M35 2.2±70.2 38±15 (1772±31,044) 80 40 a,b 

DND R06 17620 A61 M35 1.43±0.06 72±19 42±10 80 40 b 

DND R06 17621 A61 M34 7.3±1.1 33±13 (83±265) 80 40 a,b,c 

DND R06 17626 A62 M04 2.9±0.1 76±17 41±11 55 80–100 b 

DND R06 17629 A61 M31 1.9±0.3 20±11 (49±65) 55 70–90 a,b 

DND R06 17967 A62 M35 1.3±0.1 54±34 (476±2483) 54 40 a,b,c 

DND R06 17969 A53 M28 1.4±0.1 55±11 55±13 54 40 b 

DND R06 17978 A62 M34 4.2±0.5 44±21 (96±143) 95 40 a,b,c 

DND R06 18428 A64a M34 2.2±0.2 107±54 50±28 95 40–80 b 

DND R06 19586 A69 M12 3.9±0.3 45±11 (120±90) 95 80 a 

DND R06 19587 A69 M11 1.80±0.07 46±17 70±44 95 80  

DND R06 19589 A69 M12 4.7±0.3 43±9 55±33 95 80  

DND R06 21153 A77 M33 5.2±0.4 65±16 72±43 95 80  

DND R06 21155v02 A77 M35 2.0±0.2 42±22 36±24 95 80  

DND R06 21155v03 A77 M35 3.54±0.06 81±7 54±7 95 80  

DND R06 21157 A77 M30 3.2±0.1 80±15 72±29 95 80  

 

Allende nanodiamonds 

ADM R06 18430 A65a M06 1.73±0.06 61±12 84±26 95 40–100 b 

ADM R06 18436 A65a M05 1.07±0.06 137±66 69±25 95 40 b 

ADM R06 18437 A65a M04 1.52±0.04 60±9 55±11 95 40–80 b 

ADM R06 19314 A62 M07 1.67±0.1 84±38 93±59 95 60  
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Sample 
12

C
+
/
12

C
++

 
12

C
+
/
13

C
+
 

12
C

++
/
13

C
++

 T (K) E (pJ) Comments 

ADM R06 19315 A62 M08 1.25±0.07 84±34 74±32 95 80  

ADM R06 19354 A62 M10 1.5±0.2 19±9 23±16 95 60  

ADM R06 19557 A70 M25 1.54±0.04 84±14 59±10 95 60  

ADM R06 19559 A70 M25 1.63±0.03 72±8 52±6 95 60–80  

ADM R06 19565 A70 M07 2.12±0.07 66±11 57±14 60 80  

ADM R06 19566 A70 M33 1.17±0.05 69±20 52±14 60 80  

ADM R06 19567 A70 M33 2.19±0.04 88±10 70±11 60 80  

ADM R06 19568 A70 M34 1.63±0.05 99±22 52±11 60 60  

ADM R06 19572 A70 M35 1.83±0.07 80±16 59±15 95 80  

ADM R06 20159 A78 M05 5.0±0.3 71±18 40±17 95 80  

ADM R06 20163 A78 M12 5.6±0.3 44±8 128±105 95 80  

ADM R06 21164 A78 M25 7.4±0.2 59±5 65±16 95 80  

ADM R06 21179 A78 M30 3.7±0.1 69±10 67±23 95 80  

ADM R06 21180 A78 M29 3.4±0.3 78±33 (159±192) 95 80 a,c 

 

a
 No significant 

13
C

++
 counts. 

b
 Datasets previously included in Heck et al. (2014), here presented with updated ROIs and 

deadtime corrections. 

c
 Too few multi-hits to deadtime correct. 
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 Graphical summary of 
12

C/
13

C isotopic ratios determined by APT. Each data point represents the ratios of Figure 6.6

counts from an individual microtip. Errors are twice the uncertainty for each data point, based on counting statistics. 

Dashed lines mark the terrestrial 
12

C/
13

C ratio of ~89 (Coplen et al. 2002). The solid diagonal line indicates where 

equal ratios for singly and doubly charged C ions lie. Large open ellipses denote 2σ about the mean, small closed 

ellipses denote 2σx ̅about the mean. 

 

Table 6.2 Mean data for detonation nanodiamonds and Allende nanodiamonds, including standard error 

of the mean σ̅X̅, representative of the precision of our measurement of the mean value, and standard 

deviation σ, which represents the scatter in the data about that mean. 



Data Subset 
(

𝐶12 +

𝐶13 +
) ± (2𝜎�̅�) 

(2𝜎) ± (2𝛿𝜎) 
(

𝐶12 ++

𝐶13 ++
) ± (2𝜎�̅�) 

(2𝜎) ± (2𝛿𝜎) 

DND 67±4 49±8 53±5 20±6 

ADM 69±3 40±3 59±3 24±4 

 

6.3.1 Unidentified Experimental Biases 

The standards in Figure 6.6 demonstrate a significant experimental bias with two effects: 

(1) the measured 
12

C/
13

C ratio is lower than the known terrestrial 
12

C/
13

C ratio of ~89 (Coplen et 

al. 2002), and 
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(2) the 
12

C
+
/
13

C
+
 ratio is larger than the 

12
C

++
/
13

C
++

 ratio. 

Effect (1) can only be produced by a bias in at least two peaks – one singly charged-C-ion peak 

and one doubly charged-C-ion peak. Effect (2) could result from a bias in just one of the four C 

peaks used for isotope calculations. 

While we anticipate bias from hydride interference at 
13

C
+
, this would result in the calculation of 

a 
12

C
+
/
13

C
+
 ratio lower than the calculated 

12
C

++
/
13

C
++

 ratio – the opposite of the observed effect. 

Therefore we assess that hydride interference is minor compared to this unidentified instrumental 

bias. 

Another bias capable of fractionating the measured isotopes is the detector deadtime effect. If 

our corrections, made with a small number of counts, underestimated the deadtime effect, the 

result will be the apparent depletion of the most abundant isotope, 
12

C, compared to the less 

abundant isotope, 
13

C, resulting in too low a measurement of both C isotopic ratios – observed 

effect (1) – but also a 
12

C
+
/
13

C
+
 ratio lower than the 

12
C

++
/
13

C
++

 ratio – as with hydride 

interference, the opposite of effect (2). On the other hand, the deadtime effect will be greater for 

C
++

 ions compared to C
+
 ions because the C

++
 ions have a smaller time of flight, and therefore 

smaller scatter in time of flight for multiple ions with the same mass-to-charge-state ratio. 

Therefore it is unclear whether or not effect (2) can be caused by the detector deadtime effect, 

but effect (1) could be if we are losing a large fraction of the C signal. To restore our standard 

measurements to the expected terrestrial values require a minimum unanticipated signal loss of 

20% for 
12

C
+
 and 40% for 

12
C

++
. Multi-hit analysis reveals that C evaporates in a highly 

correlated manner. While an average of 10% of all DND ions and 13% of all ADM ions are 

detected as part of a multi-hit, 38% of C DND ions and 40% of C ADM ions arrive as part of a 
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multi-hit. Therefore, while we have implemented deadtime corrections, it is possible that we are 

underestimating the C signal loss. 

Indeed, the observed atomic density of nanodiamonds is lower than expected by as much as a 

factor of 10. For comparison, the measured density of the Pt matrix is typically within a few 

percent of the known value after correction for the known 57% maximum detection efficiency of 

the atom-probe tomograph. There are, however, at least three other factors that may contribute to 

the low measured density of C. One is that we may be measuring amorphous C associated with 

the nanodiamonds, which is less dense than diamond; however, the difference should only be a 

few percent. Another factor is that the high evaporation field of diamond can lead to preferential 

evaporation and trajectory aberrations (Miller and Hetherington 1991), resulting in a local 

magnification effect, an overestimation of the volume of the nanodiamonds, and thus an 

underestimation of their density: The evaporation field of carbon is not well known, but may be 

estimated to be 103 V/nm (Tsong 1978), 2.6 times our estimation of the overall field. Trajectory 

aberration could therefore cause a 2.6× overestimation of the x and y dimensions of a 

nanodiamond, yielding a ~7× overestimation of volume and underestimation of density. Finally, 

it is possible that entire clusters of C atoms field evaporate at once and are lost. 

Quantum tunneling at low (<140 K) temperatures has been experimentally shown to produce a 

lower ratio of 
10

B
++

/
11

B
++

 compared to 
10

B
+
/
11

B
+
 (Menand and Kingham 1985). While this is 

similar to effect (2), our experiments employ thermal pulsing, which raises the temperature 

several hundred K (Vurpillot et al. 2006), well above 140 K. In addition, the magnitude of the 

bias reported for quantum tunneling is only large enough to account for roughly one-third of the 

observed bias in our data. 
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C2
++

 contribution at 12 amu could, under certain circumstances, result in a higher 
12

C
+
/
13

C
+
 ratio 

compared to 
12

C
++

/
13

C
++

, explaining effect (2): the ratio of diatomic C ions 
12

C
12

C
++

 /
13

C
13

C
++

 

will be much greater than 
12

C
+
/
13

C
+
 because of combination statistics. If these diatomic C ions 

contribute to the peaks at 12 amu they will weight the measured 
12

C
+
/
13

C
+
 ratio towards a higher 

value. We observe small 
12

C
13

C
++

 peaks in most of our data sets, but we do not observe 
12

C
13

C
4+

 

at 6.25 amu (or any C2
4+

 in data sets without C1
++

 peaks, where the isotopologues would be free 

of interferences). 

The systematic error that lowers our measured standard ratios from the terrestrial value, effect 

(1), is also present in microtips produced by Heck et al. (2014), but effect (2) is not consistently 

reproduced. Heck et al. (2014) use two additional sample preparation techniques, one with 

nanodiamonds in a horizontal layer through the microtip on top of Si, covered in cobalt, the other 

with nanodiamonds on the exterior of a presharpened Si micropost. We surmise that the 

instrumental bias producing effect (1) is not a result of the C–Pt interaction or the effect of a 

vertical deposition layer, but effect (2) could be. 

6.3.2 Isotopic Anomalies 

What these two biases do not obscure is that the meteoritic mean ratio is similar to but possibly 

slightly higher than the standard mean ratio. See Table 6.2 and Figure 6.6 for mean data. In all 

previous SIMS bulk studies the meteoritic nanodiamonds have had the same 
12

C/
13

C ratio as 

terrestrial material. However, for the small numbers of nanodiamonds we are studying, it is 

possible that we will uncover isotopic anomalies whose signals would be diluted in bulk studies. 

12
C

++
/
13

C
++

 shows a high probability of small depletions in 
13

C for Allende nanodiamonds on the 

mean. The depletion is not statistically significant in 
12

C
+
/
13

C
+
 however, so further investigation 

is warranted to increase the precision of the calculated mean values. 
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For the meteoritic nanodiamonds the mean value could be the mean of sampling multiple 

populations of nanodiamonds, each with its own isotopic distribution. Therefore the standard 

deviation, σ, as a measure of the scatter of the datasets, is of great interest. If the scatter of the 

meteoritic nanodiamonds is significantly greater than that of the standards it would be evidence 

of nanodiamond sub-populations containing isotopic anomalies. 

In the present data set, the calculated standard deviation of the ADMs is close to that of the 

DNDs. The uncertainty in the standard deviation (δσ) is high enough that, even ignoring 

systematic errors, there is a significant probability (>5%) that the unequal measurements do not 

reflect a difference between the real distributions from which we are taking our samples. If large 

isotopic anomalies are contained in a single microtip, the corresponding data point may be 

detected as an outlier many standard deviations from the mean. The only data point with greater 

than 2σ deviation in both 
12

C
+
/
13

C
+
 and 

12
C

++
/
13

C
++

 is ADM R06 19354, which is highly enriched 

in 
13

C. However, the 
12

C/
13

C ratio of the terrestrial C contaminating the sputter-deposited Pt 

matrix in this microtip has a similarly low 
12

C/
13

C ratio. While this prevents us from drawing 

conclusions about the origins of the nanodiamonds in this microtip, we can conclude that the 

instrumental biases at work are not exclusively affecting C in nanodiamond form. It also 

demonstrates the necessity of microtip-by-microtip normalization. Simply averaging a number of 

standard data sets cannot provide a sufficient normalization for our samples. 

6.4 Conclusions 
We have measured a statistically significant set of small (<100) clusters of nanodiamonds with 

the atom-probe tomograph. Data from standards reveal two instrumental artifacts affecting our 

isotopic measurements of nanodiamonds and C dispersed throughout the Pt matrix. Carbon 

experiences highly correlated field evaporation, leading to deadtime effects that can bias ratios 
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and abundances. We implement iterative proportional fitting, but due to a small number of 

counts we may be underestimating the deadtime effect. Interference from diatomic C ions may 

also contribute to ratio bias. Data from meteoritic nanodiamonds does not reveal significant 

isotopic anomalies relative to standards. 
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Chapter 7: Origins of Meteoritic 

Nanodiamonds through Isotopic and 

Complementary TEM Studies 

7.1 Introduction 
Prior chapters have detailed our work to assess the origins of meteoritic nanodiamonds based on 

their 
12

C/
13

C isotopic ratios: 

The presence of a small fraction of isotopically anomalous material is suggested by the statistical 

study of thousands of ratio measurements from small aggregates of nanodiamonds (Lewis et al. 

2017, Chapter 3). That chapter reported the adaptation of NanoSIMS imaging for use as a 

serialized cluster analysis technique. The presence of a small fraction of highly 
13

C-enriched 

grains are indicated, and these grains are consistent with formation from Type II supernova 

material, which is also suggested by Xe-HL observed in the nanodiamonds by gas mass 

spectrometry of trace components released by stepped-heating of aggregates of billions of 

nanodiamonds. Asymptotic giant branch (AGB) stars can produce 
13

C-enriched grains, but the 

degree of enrichment required to explain the observed outliers makes AGB stars a poor 

candidate. J-stars and novae are also candidates to produce highly 
13

C-enriched grains, but the 

concentration of J-star and novae grains amongst other presolar phases such as SiC is very low, 

so it is difficult to understand why these sources would produce nanodiamonds given that we do 

not observe evidence to support many more supernovae and AGB-produced nanodiamonds. The 

bulk 
12

C/
13

C
 
isotopic ratio in Chapter 3 is within 2σ of solar, but is 

13
C-enriched at the 1σ level 

compared to previous bulk measurements, which show consistent 
13

C depletion on the order of 

20–30‰ (Russell et al. 1991, 1996; Swart et al. 1983). A number of 
13

C-depleted grains, 
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probably from supernovae, or possibly from AGB stars, could explain this shift. Finally, Chapter 

3 reported the detection of broadening in the distribution of isotopic ratios from Allende 

compared to all of the measured standards, implying that the isotopic ratio is not drawn from a 

single reservoir. 

Measurements of C isotopic ratios from individual nanodiamonds and clusters containing 1–10 

nanodiamonds have revealed reproducible results, but also unidentified experimental artifacts. 

The technique for these studies of individual nanodiamonds, atom-probe tomography (APT), has 

been adapted from materials physics and industry, and collaborative efforts have refined the 

sample preparation technique, leading to better sample stability under analysis conditions in the 

atom-probe (Heck et al. 2014, Chapter 4). But the measured 
12

C/
13

C isotopic ratio of detonation 

nanodiamond standards of roughly 60/1 is systematically lower than the known solar system 

value of 89/1 (Coplen et al. 2002). A few data sets have isotopic ratios with large 
13

C enrichment 

compared to the mean ratio, but without careful normalization and statistical analysis the 

significance of these data sets has been unclear. 

Attempts to quantify various sources of error, including multihit signal loss, deadtime and 

deadspace effects, detector pileup, and 
12

CH hydride interference with 
13

C, have explained only a 

small fraction of this systematic effect. Improved procedures have been introduced for data 

reduction, differentiation between acid residue and the Pt matrix, and quantification of isotopes 

from mass spectra. Additional data sets processed using these procedures confirm the presence of 

an unidentified systematic artifact that leads to an estimate of the 
12

C/
13

C that is too low (Lewis 

et al. 2016; Stephan et al. 2015; Chapters 5 and 6). 
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To continue this work, I have conducted and herein describe and discuss additional APT 

measurements, correlated with transmission electron microscopy (TEM) and SEM data, which 

give me a large enough number of atom-probe data sets to carry out statistical analyses 

analogous to those presented in Lewis et al. (2017) (Chapter 3), in this case with aggregate sizes 

down to one nanodiamond in a data set. Because atom-probe collects time-of-flight mass spectra 

I am also able to conduct studies of various molecular forms of C, and other species associated 

with the nanodiamond-containing acid residue. These studies allow me to qualitatively 

distinguish atom-probe data sets that are dominated by disordered C from those that are 

dominated by nanodiamonds, and assess these two phases for differences in C isotopic contents. 

7.2 Methods 
Additional samples of meteoritic nanodiamonds in acid residues have been analyzed by APT. 

This brings the number of meteoritic nanodiamond data sets collected by atom probe (36 data 

sets with good isotopic data from the Allende acid residues) high enough for statistical analyses. 

This chapter details these analyses. When applicable, the statistical analyses are conducted and 

presented using similar procedures to those employed collecting the NanoSIMS data used in 

Lewis et al. (2017) (Chapter 3). An essential step in this process is the normalization of isotopic 

ratios from the meteoritic nanodiamonds using the ratios collected from terrestrial standards. 

This effectively corrects for the portion of the still unknown instrumental artifact in the atom-

probe that affects all microtips to the same degree. We take this step only after intense study of 

the problem, and using a procedure analogous to what has become standard for other isotopic 

measurement techniques. For example, hotspots in isotopic ratio in NanoSIMS isotopic images 

are normalized to the mean ratio of the remaining pixels in the image, without identification and 
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quantification of all of the artifacts present that cause that background ratio measurement to 

initially be incorrect. 

In addition to normalization of the meteoritic isotopic ratios, we carry out additional analysis 

work, including studies of the effects of different sample preparation and reconstruction 

parameters, assessment of different methods for selecting the portion of the data set that contains 

information about the acid residue, and better techniques for peak selection and noise, tail, and 

multihit corrections. Finally, techniques introduced in Lewis et al. (2017) (Chapter 3) are also 

used to assess the sensitivity of our method to isotopic anomalies in individual nanodiamonds. 

Another focus of this chapter is to distinguish between the disordered C and nanodiamonds. Both 

the NanosSIMS and APT approaches have, to date, not distinguished between different types of 

carbonaceous material in the acid residue. This is problematic, as a significant fraction of the 

residue is composed of sp
2
-bonded disordered C, probably about half (Bernatowicz et al. 1990; 

Stroud et al. 2011). It is unknown whether these residues have the same origin as the 

nanodiamonds, so it is desirable to study the phases separately. 

Previous atom-probe studies of nanodiamonds have used only SEM for characterization of 

nanodiamond-containing microtips prior to their introduction to the atom-probe for analysis. To 

further assist in distinguishing between the two phases of carbon in the acid residues, we 

collected TEM data from microtips prepared for APT with embedded acid residue. Some of 

these microtips were subsequently analyzed by APT, yielding not just complementary, but also 

correlated data.  

The methodology used in this chapter builds on that described in Chapter 2 and the methods 

sections of Heck et al. (2014) and Lewis et al. (2015 and 2017) (Chapters 3, 4, and 6). Here we 
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include additional material. This includes sections on the isotopic ratios of the terrestrial 

detonation nanodiamonds used to normalize the material (7.2.1), focused ion beam microscopy 

(7.2.2), transmission electron microscopy (7.2.3), atom-probe tomography (7.2.4), and details of 

atom-probe data reduction (7.2.5) and analysis methods (7.2.6) used in this chapter. 

7.2.1 Samples and Sample Preparation 

Nanodiamond-containing acid residue is separated from the Allende meteorite by a series of 

dissolution, disaggregation, and sorting processes, and deposited onto a gold-covered steel disk 

for transport (see Section 2.1). 

Multilayers with acid residue deposited between two layers of IBS-deposited Pt were then 

prepared for FIB liftout (see Section 2.3.1). 

Liftouts from multilayer pND3 contain more Na contamination and fewer isolated ~3 nm spheres 

of C (presumably nanodiamonds) in the deposition layer, compared to the previous multilayer, 

pND. The droplet used to suspend acid residue for transfer from Au foil to a Pt substrate for 

multilayer pND3 was larger than the droplet used for pND. The larger droplet contained a greater 

total amount of acid residue, such that when the liquid evaporated there was a larger density of 

acid residue material deposited, which presumably trapped more of the nanodiamonds in large 

chunks of disordered C. Furthermore this droplet took longer to evaporate, meaning the deposit 

was exposed to atmosphere longer before a top layer of sputter-deposited Pt could cover it. This 

could lead to higher N and O contamination from the atmosphere, and may have given more time 

for Na to aggregate into clusters compared to multilayer pND. 

Terrestrial detonation nanodiamond standards were prepared using the same procedure as for the 

Allende nanodiamonds. Greiner et al. (1988) report that these nanodiamonds are 4 nm in 
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diameter in one preparation and 7 nm in a different preparation. These nanodiamonds are created 

from controlled combustion of RDX and TNT explosives. In a study of 100 samples of RDX 

from 12 factories, δ
13

C ranges from -49.5‰ to -16.6‰ relative to VPDB (Howa et al. 2014). For 

at least one sample of TNT, the δ
13

C = -28.2±0.1‰ normalized to PDB (Coffin et al. 2001). 

Anisichkin (2007) report the natural ratio of one of the two combustion materials, RDX, as 

13
C/

12
C = 0.011, but it seems likely they reported a low-precision value from the literature, rather 

than reporting a measurement they conducted. Regardless, they do not report uncertainty, so we 

must assume the range is at least from 
13

C/
12

C = 0.0105–0.0114, which corresponds to a range of 

12
C/

13
C values from 95.2 to 87.7 and δ

13
C from -66 to +14‰. Anisichkin (2007) does not report 

the natural isotopic ratio of the other combustion material, TNT, likely because it was 
13

C-

labelled prior to use, making the natural ratio irrelevant to that study. Furthermore, it is unclear if 

any fractionation occurs during combustion formation of the nanodiamonds. 

26 atom-probe microtips containing detonation nanodiamonds were prepared by the same 

methodology as the microtips containing Allende nanodiamonds, and used as standards. 

7.2.2 Focused Ion Beam Microscopy 

An FEI Quanta 3D FIB microscope with SE imaging, an Omniprobe micromanipulator, and a Pt 

GIS was used to conduct cross-sectional liftouts of the deposition layer, trim and attach slices of 

the liftouts to polished Si microposts (for APT only) or Cu microposts (for correlated 

TEM/APT), and sharpen the slices into microtips of ~20 nm in diameter, with acid residue in the 

deposition layer aligned at the apex (see Sections 2.3.2–2.3.5). These microtips are suitably thin 

for transmission of 200 kV electrons in TEM and for field-evaporation of ions from the apex in 

APT. We used 30 kV Ga
+
 ions to mill material in the FIB, and 5 kV Ga

+
 ions for final passes on 

microtips to minimize the depth to which Ga is implanted in the final sample. 
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7.2.3 Transmission Electron Microscopy 

We conducted transmission electron microscopy using the 200 kV JEOL 2100F TEM / HAADF 

STEM at Washington University in the Institute for Materials Science and Engineering. Tyrone 

Daulton operated the instrument while I observed and identified regions of interest. The vacuum 

in the TEM column near the specimen was on the order of 0.8×10
-5 

Pa (6×10
-8

 Torr). 

For energy dispersive x-ray spectrometry (EDXS) the TEM is equipped with a Bruker Quantax 

200 STEM EDXS system, which has a 60 mm
2
 active area detector with an energy resolution of 

133 eV for the full width half max of Mn Kα. 

For electron energy loss spectrometry (EELS) the TEM is equipped with a Gatan Model 863 

Tridiem electron energy-imaging filter (GIF). The GIF has a 2048×2048 pixel, 16-bit CCD 

camera. Spectra were corrected for dark current and channel-to-channel gain variation of the GIF 

CCD detector array and collected in the diffraction mode of the TEM. To collect an EELS 

spectrum we first collected a core-loss spectrum (~175 eV–790 eV) at each pixel inside the 

region of interest. The spatial resolution of the spectral image is defined by the nominal probe 

diameter of 0.2 nm. Power-law background was calculated and subtracted from each edge by 

fitting to the region just below the edge. C and O edge signals were integrated over an energy 

window 45 eV wide, so that effects of thickness variations in the specimen (i.e., plural scattering 

effects) would be the same for each of the measured elements. Ratios of integrated EELS core-

loss signal between C and O were converted into their corresponding atomic ratios using partial 

cross sections that were calculated from theoretical Hartree-Slater models. Using these relative 

elemental compositions allows us to avoid artifacts due to variations in specimen thickness and 

electron diffraction. 
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One half-grid, HG04, was prepared so that the deposition layer could be imaged edge-on (Figure 

7.1a). This orientation makes it easier to identify material in the deposition layer by imaging and 

elementally-sensitive techniques such as EELS and EDXS, at the expense of losing information 

about the number and arrangement of nanodiamonds in the deposition layer. Most samples were 

analyzed with the electron beam perpendicular to the plane of the deposition layer (Figure 7.1b). 

In this orientation we were best able to map out the contents of the deposition layer for later 

correlation to atom-probe data. 

 

 Schematic of a section of a microtip in two different imaging orientations: (a) shows the perspective for Figure 7.1

the TEM with the electron beam parallel to the deposition layer, edge-on. (b) shows the perspective of the TEM with 

the electron beam perpendicular, face-on to the deposition layer. 

 

Prior to analysis, the half-grids on which the samples were mounted were electron irradiated for 

one-half to one hour, a “beam shower,” designed to crack and immobilize hydrocarbons on the 

half-grid so that when we focused the electron beam on our microtips, hydrocarbon would not 

migrate to that area and accumulate.  

Electrons were able to penetrate the microtips sufficiently for imaging up to a microtip radius of 

about 50 nm. 

We used three primary types of imaging, traditional TEM, STEM HAADF (scanning 

transmission electron microscopy high angle annular dark field), and STEM BF (bright field). 

Each is sensitive to different attributes of the sample, and are variously affected by artifacts and 
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features which may, taken in isolation, be misinterpreted. The image contrast of STEM HAADF 

depends primarily on Z-contrast. Since our samples are composed of carbonaceous acid residue 

(z = 6 for C) embedded inside Pt (z = 78 for Pt), regions of the microtip containing 

nanodiamonds, disordered C, or voids will be visible as darker regions in STEM HAADF. Such 

features may also produce brighter contrast in STEM BF, but STEM BF is also dependent on 

diffraction effects, so interpretation of these images is more nuanced. 

We examined the images for void-like features a few nanometers in size. These are tentatively 

identified as nanodiamonds. In a few samples, imaging at various tilts helped rule out artifacts. 

Fast Fourier transforms (FFTs) of conventional TEM images were used to identify potential 

diamond diffraction signals, which were followed up by collecting diffraction images. 

Diffraction patterns were analyzed using software written by Tyrone Daulton (Daulton et al. 

2010).  

7.2.4 Atom-probe Tomography 

I used the LEAP 4000X Si local electrode atom-probe tomograph at Northwestern University in 

Evanston, Illinois, to collect data for isotopic analyses, and, in the case of microtips HG01-B and 

–C, for correlated APT/TEM. This instrument is rated to 57% ionic detection efficiency, that is, 

position and time-of-flight data are recorded for 57% of the ions originally located inside the 

field of view in the microtip. The first several ADM data sets presented were collected prior to a 

laser upgrade to the instrument (described in detail in Section 4.2). The laser spot size was larger 

for these data sets, and higher laser energies were used, because the energy density of the laser 

was roughly ¼ that of later experiments. 
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The LEAP 5000X Si atom-probe tomograph at Cameca’s application lab in Madison, Wisconsin, 

was used to analyze the correlated TEM/APT microtips from half grids HG05 and HG06, but of 

these, only two samples (HG05-E and HG06-C) survived long enough to collect Pt from the 

microtips, and only about 1 million Pt ions were collected from each sample. The LEAP 5000X 

Si is rated for a detection efficiency of about 80%. Compared to the LEAP 4000X Si it has 

improved multihit discrimination capabilities, a larger field of view, and improved laser control 

algorithms. 

7.2.5 Atom-probe Data Correction and Normalization 

After the initial reconstruction of a data set collected during APT (Section 2.3.8), I identified 

peaks in the mass-to-charge state spectrum and selected the sequence of bins whose contents will 

be summed over for the counts at that peak. This sequence of bins is known as a range, peak, or 

mass window. Lewis et al. (2015) (Chapter 6) define a peak in the mass-to-charge-state spectrum 

of an APT data set by using a 0.01 amu bin size, selecting the first bin to rise above twice the 

average value of the local noise as the start of the sequence, and selecting the first bin to drop 

back below twice the average of the local noise as the end of the sequence (Figure 7.2). In the 

current chapter I used a different criterion. First, the background was calculated based on a fit to 

the whole mass spectrum, and subtracted. For a given element and charge state I selected the 

major isotope and adjusted the bin size until the full width at half max (FWHM) lay inside of 

exactly five bins. The software utilized offers a limited number of options for bin size. If the 

selectable bin sizes skipped over the size that would capture the FWHM inside of exactly five 

bins, I used a bin size that captures the FWHM in 6 or 4 bins, in that order of preference. I used 

the same width to range all other isotopes of the same element and charge state (e.g., I used the 

same width for the peak at 13 amu as for that at 12 amu, but for 6.5 amu I used the width for 6 
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amu). In this way I used the peak with higher counts to give information on the peak width, 

assuming that neighboring isotopes have similar widths as a result of similar evaporation 

conditions. As with other methods of range fitting, this is only an approximation to the peak 

shape, and does not take into account the small difference between mass-to-charge state width 

expected between the 
12

C and 
13

C peaks as a result of converting from time-of-flight to mass-to-

charge-state ratio. Still, to first order this method preserves similarity between different isotopes, 

which is the primary concern. 
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 Mass spectra from a 20 nm wide rectangular solid region of interest that encapsulates the deposition layer Figure 7.2

in data set ADM 18430. Two sections of the spectrum are shown, one with 
12

C
++

 and 
13

C
++

 at 6 and 6.5 amu, 

respectively, the other with 
12

C
+
 and 

13
C

+
 at 12 and 13 amu. For each section two versions are shown: one using the 

twice-noise peak selection method from Chapters 4 and 6, with 0.01 amu per bin. The calculated fit to the 

background of the whole spectrum is displayed (red line). The other version uses a bin width that allows for the 

FWHM of the major isotope (
12

C) to be ranged with five bins, and uses the same width for the minor isotope (
13

C). 

In these images the background has been subtracted. 
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After ranging peaks I selected a region of interest (ROI) that is a sub-section of the reconstructed 

volume defined by one of three criteria. Isoconcentration (I.C.) surfaces divide regions with 

concentration below a certain fraction from regions with concentration above that fraction. 

Concentration is the counts of a certain species detected in a volume, typically C, C2, C3, and 

PtOC ions, divided by the sum total of all identified ions detected in that volume. Isodensity 

(I.D.) surfaces divide the volumes with more or less than a certain density of C atoms detected 

per nm
3
 of the reconstructed volume. Finally, the region of interest can also be a rectangular 

solid fit to the approximate bounds of the deposition layer (D.L.). 

For each region of interest I re-ranged the peaks of interest in the mass spectrum, since 

differences in local field evaporation conditions may lead to different peak shapes. 

Up to this step most of the data reduction and analysis was done using IVAS, the Imago 

Visualization and Analysis System (Cameca Instruments Inc., (Kunicki et al. 2006)). To compile 

counts and background estimates from multiple reconstructions, I used Python scripting 

(Appendix 3). 

For 
12

C/
13

C, corrected but not yet normalized, 
12

C and 
13

C were each calculated as 

  𝐶𝑖 = 𝐶𝑖
𝑟𝑎𝑤 − 𝐶𝑖

𝑛𝑜𝑖𝑠𝑒 − 𝐶𝑖
𝑡𝑎𝑖𝑙 + 𝐶𝑖

𝑚𝑢𝑙𝑡𝑖 (7.1) 

Craw is the uncorrected counts that fall inside of the selected peak width. Cnoise is given by fitting 

the background of the entire time of flight spectrum by the IVAS software. Ctail contributions are 

additional background that is produced by the overlap of a tail in a peak from slightly lower 

mass-to-charge state ratio (e.g., the mass window for 
13

C
++

 may contain some counts from the 

tail of the 
12

C
++

 peak). Corrections were calculated by sampling the height of the tail above the 

background estimate at a mass-to-charge-state just lower than that of the peak (averaging this 
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with another window immediately after the peak is also useful, so long as the peak’s own tail 

does not contribute significantly). The IVAS software can save multihit data from 

reconstructions, but for ROIs it can only save position and mass data, not multihit data. So in 

order to find Cmulti corrections for a region of interest we first filtered the multi-hit data for the 

region of interest out of the data set for the entire experimental run, which usually includes a 

large volume of Pt matrix. To do this we compared the mass and position data for the region of 

interest with that recorded for the entire data set, atom-by-atom, and saved the multihit data for 

the atoms contained in the region of interest. The script for this procedure is recorded in 

Appendix 4. Multi-hit corrections are based on theory described in Lewis et al. (2015) (Chapter 

6), using the script recorded in Appendix 1. 

The counts from reconstructed and fitted APT data set ROIs, used for ratio calculations and 

normalization, are reported in Appendix 5, along with the temperature and laser energy used for 

the collection of each data set.  

The uncertainty in each of the four components of C is given by the square root of the counts in 

that component, and the uncertainty in the corrected counts is the sum in quadrature of those 

uncertainties, which simplifies to  

 𝐸𝑟𝑟( 𝐶𝑖 ) =  √ 𝐶𝑖
𝑟𝑎𝑤 + 𝐶𝑖

𝑛𝑜𝑖𝑠𝑒 + 𝐶𝑖
𝑡𝑎𝑖𝑙 + 𝐶𝑖

𝑚𝑢𝑙𝑡𝑖  (7.2) 

Any ratio of C isotope and charge state may now be calculated as R = 
i
C

j
/
k
C

l
, along with the 

absolute uncertainty, given by 

  𝐸𝑟𝑟(𝑅) =  
C𝑖 𝑗

C𝑘 𝑙 × √(
𝐸𝑟𝑟( 𝐶𝑖 𝑗)

𝐶𝑖 𝑗
)

2

+ (
𝐸𝑟𝑟( 𝐶𝑘 𝑙)

𝐶𝑘 𝑙
)

2

  (7.3) 
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I used a direct method to calculate the bulk ratio, not a mean: 

  𝑅 =
∑ 𝐶𝑖

13
𝑖

∑ 𝐶𝑖
12

𝑖
  (7.4) 

This is to avoid statistical artifacts introduced by even a weighted mean of ratios (Ogliore et al. 

2011). 

The weighted standard deviation was calculated as 

  𝜎 = √
∑ 𝑤𝑖𝑖

(∑ 𝑤𝑖𝑖 )2−∑ 𝑤𝑖
2

𝑖
× ∑ 𝑤𝑖(𝑅𝑖 − 𝑅)2

𝑖   (7.5) 

where weights are defined as (1/Err(Ri))
2
. The standard error of the mean (SEOM) is 

  𝜎𝑅 =
𝜎

√𝑛
 (7.6) 

where σ and 𝜎𝑅 are the statistical attributes of the Gaussian distribution that best describes the 

normalized data points, but use the direct bulk ratio rather than the weighted mean of the data 

points. σ represents a good prediction of the deviation from the mean one would observe from 

additional individual measurements, and 𝜎𝑅 is a good predication of how much one’s calculation 

of the mean would vary if the experiment were perfectly reproduced. What they do not represent 

is the uncertainty derived from the counting statistics on the C counts for each DND and ADM 

data set using the calculus of partial derivatives; those values are given as Err(R) and Err(R̅). 

I normalized the ratios based on the ratios of the standards. The normalized δ
13

C for a given 

13
C/

12
C ratio, R is 

  𝛿 𝐶13 = (
𝑅

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) × 1000 (7.7) 
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I used the weighted direct bulk ratio from all 26 of the synthetic detonation nanodiamond data 

sets as Rstandard. The normalized per mil value can be converted into normalized 
12

C/
13

C or 

13
C/

12
C using the known solar system isotopic ratio in place of Rstandard: 

  𝛿 𝐶13 = (
𝑅𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

𝑅𝑠𝑜𝑙𝑎𝑟 𝑠𝑦𝑠𝑡𝑒𝑚
− 1) × 1000  (7.8) 

Substituting Equation 7.8 into Equation 7.7, the expression reduces into the simple expression to 

directly calculate the normalized ratio: 

  𝑅𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = (
𝑅𝑠𝑜𝑙𝑎𝑟 𝑠𝑦𝑠𝑡𝑒𝑚

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
) × 𝑅  (7.9) 

The uncertainty in the normalized ratio is 

 𝐸𝑟𝑟(𝑅𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑) = R𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 × √(
𝐸𝑟𝑟(𝑅)

𝑅
)

2

+ (
𝜎𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
)

2

  (7.10) 

This is the expression for normalization of a ratio from a single data set, where 𝜎𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑, the 

weighted standard deviation of the standard ratio measurements, correctly represents how much 

a single new measurement is expected to vary from the mean. The bulk normalized ratio uses the 

counts-based Err(Rstandard) in place of 𝜎𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑. The standard error of the mean 𝜎𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 is 

the technically correct value for the uncertainty in the mean of a distribution, but I use a direct 

bulk method, not a mean, for R. I used 
13

C/
12

C = 0.01124 (
12

C/
13

C = 89) as the terrestrial ratio 

Rsolar system. It is to be expected that the synthetic detonation nanodiamonds will differ from this 

value by several per mil, however, in the absence of a thorough study of the topic, and the 

presence of large uncertainties in our data, this uncorrected systematic error is a second-order 

concern. Indeed, terrestrial materials have a range of about (-80–0)‰ from 
12

C/
13

C = 89 (Coplen 

et al. 2002). 
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The mean normalized ratio, normalized standard deviation of the ratio, and SEOM were 

calculated using the same processes that were used for the un-normalized values. 

The above is the first of two approaches I used to normalize isotopic ratios calculated from APT 

data sets. To summarize, separate samples were measured with similar material (nanodiamond 

acid residue) and the same microtip preparation, data collection, and data reduction methods. 

There are two limitations to this method. It is impossible to perfectly reproduce the sample 

preparation and data collection procedures. It is also impossible to know for certain that the same 

procedures produce similar samples and data collection conditions. SEM and TEM pre- and post-

analysis imaging, atom-probe parameter settings, and measurements of experimental conditions 

can give a significant amount of information about sample preparation and data analysis, but the 

spatial resolution of SEM, limitations in identification of C phases in the TEM, and inability to 

perfectly measure the nm-scale local field and temperature conditions for atom-probe data 

collection still limit the completeness of information that can be collated about a data set. Thus 

one cannot be sure of one-to-one correspondence between a sample and the standard used to 

normalize an isotopic ratio measurement. 

For data sets that had C isotopic ratios at least 4σ from the mean of the distribution, I used an 

additional step. I used the isotopic ratio of the C in the Pt matrix surrounding the nanodiamond-

containing acid residue to self-standardize data set by data set by directly comparing the two 

ratios. This removed any doubt that a sample and its standard underwent the same preparation 

steps, since they are in fact the same sample. However, measuring C isotopic ratios from two 

different materials, even in the same microtip, introduces potentially significant differences in 

experimental artifacts, count rates, local electric field and temperature, and may be affected by 

imperfect reconstructions that mis-assign detected C ions to standard or sample (e.g., due to the 
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higher evaporation field for carbonaceous materials compared to Pt, trajectory aberrations may 

cause ions originating in the acid residue to be projected onto areas of the detector where the Pt 

matrix is detected). 

7.2.6 Criteria to Assess Disordered C vs. Diamond in APT Reconstructions 

I use the ratio of (PtOC+Na+NaO)/(C1+2×C2+3×C3) as a qualitative assessment of the fraction 

of the acid residue that is composed of disordered C vs. the fraction that is composed of 

diamond. 

The disordered C is composed of loosely packed fragments of curved sheets; it is primarily sp
2
-

bonded, lacks long range order, and is less dense than diamond (Stroud et al. 2011). These 

features, along with its survival of harsh chemical treatments, lead Stroud et al. (2011) to identify 

this particular phase of disordered C as glassy C, not to be confused with amorphous C (Harris 

2004). It likely has a very high surface to volume ratio compared to nanodiamond, due to the 

exposed surfaces of the many loosely packed sheet fragments. This is in spite of the high 

surface/volume ratio for the nanodiamonds (about half of the C atoms are within one or two unit 

cells of the surface). 

Na and NaO are probably from laboratory contamination, and possibly from minerals that were 

dissolved during acid processing of the meteorite. In APT reconstructions they are almost always 

spatially correlated with PtOC rather than C molecules, and they are often present in clusters. 

Concentrated PtOC indicates regions where exposed surfaces in the acid residue deposit 

experienced Pt deposition. On the other hand, C is more likely to form C1, C2, and C3 clusters if 

it is isolated from species other than C, such as embedded inside of a diamond lattice. Thus, 

higher (PtOC+Na+NaO)/(C1+2×C2+3×C3) ratios suggest the presence of more porous material, 

and thus infer a higher fraction of disordered C compared to diamond. I used ionic counts rather 
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than atomic counts in my calculations – (e.g., PtOC counts as one (ion), not three (atoms)), 

although we do not see differences in the trends regardless of which was used. 

The N/O ratios of the microtips were used as another criterion to distinguish nanodiamonds from 

disordered C. TEM observations by Stroud et al. (2011) show that N in the acid residues is 

typically fixed in or on the nanodiamonds, while O tends to be more mobile, moving through the 

disordered C. 

Thus two independent sets of measurable quantities are available to give qualitative insights on 

the disordered C and diamond contents of the acid residue: (PtOC+Na+NaO) vs. 

(C1+2×C2+3×C3) and O vs N. 

7.3 Results 

7.3.1 Atom-probe Results 

The overall bulk 
12

C/
13

C ratio from the carbon in the 36 APT data sets is 98±26‰ for the ratio of 

C
+
 isotopes and -192‰±47‰ for C

++
 (Table 7.1). This is after normalization to the bulk ratio of 

the carbon isotopes in the 26 DND standard data sets. Figure 7.3 gives a graphical representation 

of the bulk values, compared to the results of other studies. σ and SEOM are calculated based on 

the statistical distribution of the data set ratios about that mean value, whereas the uncertainty in 

the ratio, Err(Rnormalized), is calculated purely based on error propagation calculus using the 

uncertainty on each 
12

C and 
13

C count for a data set. These two bulk measurements, both with 

large anomalies, bracket the terrestrial value. The bulk 1
+
 ratio is closer to the recent NanoSIMS 

measurements of small clusters of millions of nanodiamonds by Lewis et al. (2017) (Chapter 3, 

see Figure 7.3), while the bulk 2
+
 ratio is closer to the results of stepped heating measurements of 

billions of nanodiamonds (Russell et al. 1991, 1996; Swart et al. 1983). Both measurements of 
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the isotopic ratio are within 2σ of the terrestrial value using the standard deviation, but the bulk 

values do not agree with each other within 2×SEOM or the statistically calculated 

2×Err(Rnormalized). 

Table 7.1 Atom-probe normalized mean data. 

C
+
 Rnormalized Err(Rnormalized)

a
 σ

b
 SEOM

c
 

δ
13

C 98‰ ± 26‰ 305‰ 8‰ 

13
C/

12
C 0.0123 ± 0.0003 0.0034 0.0001 

12
C/

13
C

d
 81 

+2 +31 +1 

-2 -18 -1 

C
++

 Rnormalized Err(Rnormalized) σ SEOM 

δ
13

C
 

-192‰ ± 47‰ 168‰ 6‰ 

13
C/

12
C

 
0.0091 ± 0.0005 0.0019 0.0001 

12
C/

13
C

d 
110 

+7 +29 +1 

-6 -19 -1 

 

a
 Calculated based on counting statistics, Err(Rnormalized) is the lower bound for our uncertainty in 

the bulk ratio, and does not include any systematic errors. 

b
 σ is the approximation of the width of the distribution of isotopic ratios that would be 

constructed from infinite data sets. A good estimation for our uncertainty in the ratio for any 

additional data set measured, σ takes into account all uncertainties, known and unknown, that 

affected these measurements, assuming a good fit to a Gaussian.  

c
 SEOM, the standard error of the mean, is based on σ and the number of data sets measured. It is 

the uncertainty in what mean value we would measure if we repeated our experiment with the 

same number of data sets. 

d
 The uncertainties are asymmetric in 

12
C/

13
C because of the asymmetric effects low counts in 

the denominator has on a distribution of ratios. 
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 The isotopic ratio for all ADM data sets (Table 7.1) reported for ions taken from each charge-state, along Figure 7.3

with the weighted standard deviation of the distribution of atom-probe measurements (longer, thin bars) and counts-

based statistical uncertainty in the bulk ratio (shorter, thick bars) calculated using the ratio and uncertainty from each 

data set. For comparison, the plot includes the results of studies of the isotopic ratio from Allende nanodiamonds by 

NanoSIMS with 1σ error bars (Lewis et al. 2017) and by stepped heating studies with uncertainties smaller than the 

symbol sizes (Russell et al. 1996; Swart et al. 1983) as well as the ratios from 11 different chondrites (Russell et al. 

1991). The NanoSIMS error bars are calculated using the uncertainties in the fractional standard deviations of the 

distribution of the ADM data sets and that of the DND data sets.  

 

Without normalization, the mean ADM 
12

C
+
/
13

C
+
 ratio is slightly lower than the mean ADM 

12
C

++/13
C

++
 ratio, not significantly higher, as it is after normalization. The mean C

++
 ratio for the 

DND standards is lower than that of the C
+
 DND standards, leading to a different normalization 

factor. 

Surprisingly, the scatter in the C
++

 ratios is significantly less than that for the C
+
 ratios, in spite of 

generally lower count rates and resultant higher counting statistics uncertainties (Figure 7.3). 

This suggests that there is an instrumental artifact that affects the C
+
 ratios more than it affects 

the C
++

 ratios. 

7.3.2 Isotopic Outliers 

The isotopic ratios and uncertainties of the individual data sets are presented in Table 7.2, along 

with the charge state ratio (
12

C
+
/
12

C
++

) and the total C counts (summed from all ions detected, 
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including C1, C2, C3, PtOC, and CO2). Given 50% detection efficiency, the actual amount of C in 

the volume is expected to be 2× greater than the reported counts. Assuming no additional sources 

of signal loss, this value can be used to approximate the amount of carbonaceous material 

measured, although the counts also include unknown, but probably small, amounts of C, 

primarily from the IBS-deposited Pt. The normalized ratios are presented graphically in Figure 

7.4, which plots the C isotopic ratio at each charge state, as well as the data set name and the 

mean and terrestrial ratio values. Several data sets have large 
13

C-enrichments in the C
+
 ratio, but 

also high uncertainty (e.g., data sets ADM R06 15005, 19354, 23612, and 23617). Figure 7.5 

plots isotopic ratios at charge states 1
+
 and 2

+
 against each other, highlighting their degree of 

agreement or disagreement not just with the terrestrial isotopic ratio but with each other. The 

ratios are generally within uncertainties of each other. A number of data points plot off the 

expected line of equal 1
+
 and 2

+
 ratios, with 

12
C

++
/
13

C
++

 ratios higher than the corresponding 

12
C

+
/
13

C
+
. This could be the result of over or under-detection of one or more of the peaks in the 

ADM or DND ratios. Measurement of too low of a DND 
12

C
++

/
13

C
++

 ratio would cause this 

observed shift. There are also a few ADM 
12

C
+
/
13

C
+
 ratios that are anomalously low, and these 

scatter about the solar system value for 
12

C
++

/
13

C
++

. 
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Table 7.2 Experimental data. 

Sample
a
 ROI

b
 

12
C

+
/
13

C
+c

 
12

C
++

/
13

C
++c

 
12

C
+
/
12

C
++d

 Counts
e
 

ADM R06 15004 A36 M01
f
 I.D. 1 C/nm

3
 60 + 27 -14 118 + 57 -29 1.76 ±0.07 4596 

ADM R06 15005 A36 M01
f
 I.D. 1 C/nm

3
 40 + 23 -11 89 + 42 -22 0.68 ±0.04 2575 

ADM R06 16096 A47 M10
f
 I.D. 0.5 C/nm

3
 56 + 25 -13 127 + 56 -30 1.47 ±0.05 1438 

ADM R06 16097v03 A47 M11
f,g

 I.D. 1 C/nm
3
 74 + 54 -22 82 + 49 -22 1.43 ±0.09 5903 

ADM R06 16098 A47 M12
f
 I.D. 1 C/nm

3
 105 + 77 -31 (179 + 177 -59) 1.60 ±0.09 4825 

ADM R06 16119 A47 M12
f
 I.D. 0.5 C/nm

3
 109 + 90 -34 (152 + 260 -59) 2.3 ±0.1 2265 

ADM R06 16120 A47 M13
f
 I.D. 0.5 C/nm

3
 70 + 29 -16 150 + 62 -34 2.03 ±0.06 11995 

ADM R06 18430 A65a M06
f
 D.L. 20 nm 61 + 25 -14 112 + 40 -23 1.70 ±0.04 5721 

ADM R06 18436 A65a M05
f
 I.C. 2.5% C C2 PtOC 79 + 44 -21 85 + 35 -19 1.27 ±0.06 7926 

ADM R06 18437 A65a M04
f
 D.L. 20 nm 75 + 29 -16 117 + 33 -21 1.92 ±0.04 2318 

ADM R06 19314 A62 M07
h
 D.L. 10 nm 85 + 53 -24 (100 + 78 -31) 2.2 ±0.1 25417 

ADM R06 19315 A62 M08
h
 D.L. 10 nm 75 + 47 -21 (263 + 772 -112) 1.37 ±0.06 26342 

ADM R06 19354 A62 M10
h
 D.L. 15 nm 17 + 14 -5 59 + 617 -28 0.81 ±0.06 4111 

ADM R06 19557 A70 M25
h
 D.L. 15 nm 104 + 41 -23 120 + 34 -22 1.77 ±0.03 19956 

ADM R06 19559 A70 M25
h
 D.L. 20 nm 88 + 32 -19 138 + 34 -23 1.86 ±0.02 24774 

ADM R06 19565 A70 M32
h
 I.C. C2 PtOC 1% 81 + 32 -18 95 + 30 -18 2.40 ±0.06 7637 

ADM R06 19566 A70 M33
h
 I.C. C 5% 84 + 41 -21 110 + 42 -24 1.44 ±0.05 10986 

ADM R06 19567 A70 M33
h
 D.L. 15 nm 105 + 38 -22 117 + 28 -19 2.70 ±0.03 48118 
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Sample
a
 ROI

b
 

12
C

+
/
13

C
+c

 
12

C
++

/
13

C
++c

 
12

C
+
/
12

C
++d

 Counts
e
 

ADM R06 19568 A70 M34
h
 I.C. 5% C C2 PtOC 138 + 60 -32 92 + 26 -17 2.01 ±0.05 3522 

ADM R06 19572 A70 M35
h
 I.C. 5% C C2 PtOC 99 + 41 -22 112 + 34 -21 1.97 ±0.05 5331 

ADM R06 20159 A78 M05
h
 I.C. 10% C C2 PtOC 78 + 34 -18 65 + 38 -18 7.6 ±0.4 19570 

ADM R06 20163 A78 M12
h
 I.C. 1% C PtOC 85 + 37 -20 103 + 87 -32 5.8 ±0.2 2245 

ADM R06 21164 A78 M25
h
 I.C. 2.5% C C2 PtOC  78 + 28 -16 134 + 41 -25 6.9 ±0.1 8191 

ADM R06 21179 A78 M30
h
 I.C. 2.5% C C2 PtOC  92 + 36 -20 101 + 35 -21 4.2 ±0.1 20094 

ADM R06 21180 A78 M29
g,h

 I.C. 2.5% C C2 PtOC 109 + 67 -30 (143 + 202 -53) 4.1 ±0.3 23705 

ADM R06 21886 A84 M10
i
 I.C. 10% C 84 + 32 -18 87 + 26 -16 3.47 ±0.08 12054 

ADM R06 21903 A84 M04
i
 D.L.15 nm 48 + 18 -10 69 + 21 -13 3.37 ±0.08 14664 

ADM R06 22577 A94 M04
i
 I.D. 0.5 C/nm

3
 54 + 30 -14 (-305 + 758 191) 12.7 ±1.7 3876 

ADM R06 22582 A94 M18
i
 I.D. 1 C/nm

3
 92 + 34 -20 97 + 32 -19 7.2 ±0.2 2747 

ADM R06 22595 A94 M18
i
 I.D. 1 C/nm

3
 66 + 32 -16 (147 + 881 -68) 7.7 ±0.6 2164 

ADM R06 22596 A94 M18
i
 I.D. 0.5 C/nm

3
 87 + 32 -19 172 + 128 -51 12.3 ±0.4 8490 

ADM R06 22597 A94 M13
i
 I.D. 0.5 C/nm

3
 60 + 23 -13 (153 + 112 -45) 8.5 ±0.3 2651 

ADM R06 22598 A94 M13
i
 I.D. 0.5 C/nm

3
 72 + 45 -20 (68 + 128 -27) 6.8 ±0.7 2986 

ADM R06 23612 A98 M21
i
 D.L. 10 nm 36 + 32 -11 (97 - 260 -59) 3.8 ±0.4 6457 

ADM R06 23617 A94 M19
i
 D.L. edge 25 + 19 -8 (112 - 2194 -58) 1.5 ±0.1 51793 

ADM R06 23619 A94 M20
i
 D.L. 0.25 C 99 + 45 -24 88 + 39 -21 3.7 ±0.1 62314 
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a
 A## M## indicates the microtip analyzed.

 

b
 Method used to select the volume of interest within an atom-probe reconstruction: Deposition Layer (D. L.), IsoConcentration (I. C.), 

or IsoDensity (I. D.) (see Section 7.2.5 for details). 

c
 Isotopic ratios, corrected for background, tail interferences, multihit anomalies, and normalized to detonation nanodiamonds. 1σ + 

and – errors are asymmetric due to the asymmetric effect that + and – uncertainties in low 
13

C counts have on the 
12

C/
13

C ratios. 

Ratios italicized and in parenthesis are from data sets with fewer than 10 
13

C
++

 counts, for which the 2
+
 ratio is not used in the 

mean, standard deviation, or uncertainties of the bulk data set. In some cases corrections gave 0 
13

C counts, and in other cases 1σ 

passes 0 in the ratio, in each case causing the uncertainties to be undefined. 

d
 Ratio of 

12
C ions detected in the 1

+
 charge state over those detected in the 2

+
 charge state. These values are corrected for background, 

tails, and multihits, but are not normalized. A higher ratio indicates thermal effects played a greater role in activating field 

evaporation. 

e
 Sum of C atoms detected in the mass spectrum at all identified peaks, including not only C1 but also in the form of the molecular ions 

C2, C3, PtOC, and CO2. These counts were only corrected for background, not tail interferences or deadtime correction. 

f
 Data sets was first published in Heck et al. (2014), here presented with updated ROIs and deadtime corrections. 

g
 Too few multi-hits to deadtime correct. 

h
 Data set was first published in Lewis et al. (2015), here presented with updated ROIs and deadtime corrections. 

i
 Sample from multilayer pND3. All other Allende samples are from multilayer pND.
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Figure 7.4 C isotopic ratios from atom-probe measurement regions of interest. Two ratios are reported for each data set, one using the ratio of 
13

C
+
 and 

12
C

+
 

counts (red), the other using the ratio of 
13

C
++

 and 
12

C
++

 counts (blue). The graph is logarithmic in 
13

C/
12

C ratio (right axis), and the 
12

C/
13

C ratio is reported on 

the left axis. Data sets are ordered chronologically by measurement date. Error bars are 1σ. The mean ratio measured at each charge state is plotted as the dashed 

lines.
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 Two differently scaled images of the corrected, normalized C isotopic ratios in Allende acid residue-Figure 7.4

containing atom-probe microtip regions of interest. The y and x axes record the ratios measured at charge state 1
+
 

and charge state 2
+
, respectively. The top image (a) is scaled linearly to 

13
C /

12
C. The left and bottom axes record 

increasing 
12

C/
13

C ratio; the right and top record decreasing 
13

C/
12

C ratio. In the bottom plot (b), axes are scaled to 

the log of the 
13

C/
12

C ratio with tighter ranges and 1σ error bars. 
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The charge state ratio is a good qualitative proxy-value that represents a number of conditions in 

the APT instrument. Most importantly, it can be used to gain an understanding of how great an 

effect thermal activation is having on field evaporation. The greater the ratio of charge-state 1
+
 to 

2
+
 ions of a species, the more thermal effects are active, at least for the region of the sample from 

which that species is being evaporated. Since we use the C charge state ratio, we are assessing 

the field evaporation conditions primarily for the acid residue and nanodiamonds (although there 

is a low level of C contamination in the Pt from the sputter target and chamber contamination). 

In Figure 7.6 we plot the isotopic ratio vs the charge state ratio, which is indicative of field 

evaporation conditions, with a higher value indicating that heat is contributing more to activating 

field evaporation. The distribution of isotopic ratios is the same for a broad range of charge state 

ratios, but all five data sets with 
12

C
+
/
13

C
+
 ratio below 67/1 (ADM R06 15005, 19354, 21903, 

23612, and 23617) have a charge state ratio of 
12

C
+
/
12

C
++

 < 2/1. They have a range of 

uncertainties (i.e., counts), and their 
12

C
++

/
13

C
++

 ratios are significantly higher than the 
12

C
+
/
13

C
+
 

ratios in each case, except for ADM 21903.
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 C isotopic ratio vs. the charge state ratio 
12

C
+
/
12

C
++

. Ratios are plotted on a logarithmic 
13

C/
12

C scale Figure 7.5

(right axis), with logarithmic 
12

C/
13

C given on the left axis. Error bars for isotopic ratios are 1σ. Symbols for the 

charge state ratio for 
12

C
+
/
13

C
+
 data points are shifted 0.05 lower than their actual values, and the charge state 

symbols for 
12

C
++

/
13

C
++

 are shifted 0.05 higher, so that data points for the same data set do not overlap. 

 

Detection of outliers from the ADM data set does not necessarily require normalization. For data 

sets with similar measurement protocols, the question is not if they are far from the terrestrial 

isotopic ratio, but if they are outliers from the distribution of ratio values, whatever the mean 

value measured for that distribution. Therefore, since normalization introduces additional 

uncertainty which is not meaningful to this question, I plot the un-normalized ratios in 

comparison to the DND ratio distributions (Figure 7.7). This figure uses a style similar to that 

used to present the much more numerous NanoSIMS measurements in Lewis et al. (2017) 

(Chapter 3). Insets in this figure have x-axes with the width as used in the analogous Figure 3.5 

to give a comparison of the scatter. The bin size used here is ten times larger (0.001 steps in 

13
C/

12
C ratio, rather than 0.0001), to account for the much lower number of data points in this 

study. The 4σ error bars are much narrower for the distributions in this study compared to 

Chapter 3, because there are higher counts in each data set (on the other hand, the SEOM, the 
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uncertainty in the mean, is larger because of the lower number of data sets). The APT DND data 

sets have slightly larger scatter than the APT ADM data sets, presumably because of lower 

counts. Clearly this methodology is not as sensitive to Gaussian broadening as that used by 

Lewis et al. (2017) (Chapter 3). The distributions are not well-approximated by a Gaussian 

curve; all of them have tails of 
13

C-enriched data points. A single outlier here represents only 1–

10 nanodiamonds, compared to order 1000 in previous work, at least two orders of magnitude 

higher sensitivity to individual isotopically anomalous grains.
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 Distributions of ratio measurements prior to normalization. Mean (solid lines) and 4σ uncertainty-Figure 7.6

weighted deviations (dotted lines) are plotted over the distributions for the DND and ADM, charge state 1
+
 (red) and 

2
+
 (blue) data sets. Insets are zoomed in on regions with the same width in 

13
C/

12
C scale as used in the histograms in 

Lewis et al. (2017) (Chapter 3). Bin size is 0.001 in 
13

C/
12

C scale. The 4σ error bar right of the mean for the DND 

(1
+
) data set is negative in 

13
C/

12
C ratio – outside the logical and graphically represented limits of the plot. 

 

All four distributions have mean values that are significantly 
13

C-enriched compared to the solar 

value of 
12

C/
13

C = 89 (Coplen et al. 2002), evidence for an instrumental artifact. The C isotopic 

ratios measured at charge state 2
+ 

in the DNDs have the most 
13

C-enriched ratio of any of the 4 

data sets. It is to this mean value that the ADM 2
+
 data points are normalized, leading to their 

being reported as 
13

C-depleted (Figure 7.3). If the DND 2
+
 data points were more affected by the 
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unidentified instrumental artifact than the others, then this feature of our results is representative 

only of an instrumental artifact. 

There are data sets with >4σ deviation from the mean for both of the DND and both of the ADM 

distributions, greater in number and isotopic anomaly for the (1
+
) ratios than the (2

+
) ratios. They 

are all in the 
13

C-enriched direction (for the DND (1
+
) distribution, 4σ outliers in the 

13
C-

depleted direction are impossible, since they would have to have 
13

C/
12

C ratios less than 0, a 

meaningless isotopic ratio). Unless there are features of the ADM outlier data points that 

distinguish them from the DND outlier data points, we must attribute these outliers to 

instrumental artifacts or other uncorrected errors. 

7.3.3 Distinguishing Phases in the Acid Residue Using APT 

Using (C1+2×C2+3×C3) vs. (PtOC+Na+NaO) to distinguish between nanodiamonds and 

disordered C is based on APT observations of two spatially distinct phases: isolated regions of 

carbonaceous material a few nm in size are typically dominated by C, while lower density, 

larger, and less ordered regions of acid residue material are dominated by PtOC and laboratory 

contaminants such as Na and NaO (Figure 7.8), and also acid dissolution products Cl and F. 

Based on the higher porosity of the disordered C, we associate it with the latter, while 

nanodiamonds are associated with the C-dominated regions because of their size and their 

inability to easily incorporate contaminants. Stroud et al. (2011) showed that in the acid residues 

O is more often associated with the disordered C, N with the nanodiamonds, so N/O should 

provide an independent measure of the fraction of the two carbonaceous phases. There are 

several tests of these two approaches based on the APT data.  
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 20 nm thick cross section of reconstructed APT data set ADM R06 18430, with C atoms in black, PtOC Figure 7.7

in brown, and Na, NaO in red. Scale bars are in nm. 

 

First we mutual test the two approaches against each other. I plot (C1+2×C2+3×C3) and 

(PtOC+Na+NaO) vs. N/O in Figure 7.9. This is a qualitative rather than quantitative approach, 

because there is likely a mixture of disordered C and diamond in each data set, and because there 

are variable amounts of O and N in both phases. We therefore are looking for trends, rather than 

a good fit to a line. Figure 7.9 shows a very loose trend: The highest concentrations of 

(C1+2×C2+3×C3)/residuals (residuals is the summed counts of all the atoms associated with the 

acid residue (C, Na, Cl, F, N, O)), correspond to the highest N/O ratios, and for (C1+2×C2+3×C3) 

concentrations over 0.6 the minimum N/O ratio increases steadily from <0.01 to 0.05. 1/7 

(~14%) of data sets with (C1+2×C2+3×C3)/residuals < 0.4 have N/O ratio > 0.05, but 9/29 

(~31%) with (C1+2×C2+3×C3)/residuals > 0.4 have N/O ratio > 0.05. There is a similarly loose 
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trend of lower N/O for higher (PtOC+Na+NaO) concentration: 1/8 (~13%) of data sets with 

(PtOC+Na+NaO)/residuals > 0.45 has N/O > 0.05, and 9/28 (~32%) with 

(PtOC+Na+NaO)/residuals < 0.45 has N/O > 0.05. These trends suggests that these two ratios 

record information about a mixture of two phases, such that data sets with extreme values in one 

of these ratios contain acid residue composed primarily either of disordered C, for O and 

PtOC+Na+NaO, or of diamond, for N and (C1+2×C2+3×C3). Some of the correlation for 

PtOC+Na+NO with N/O is no doubt due to the fact that O is present in PtOC and NaO, both of 

which are also included in the residuals count, but the lack of N and higher O for lower 

(C1+(2×C2)+(3×C3))/residuals is consistent with our use of this value as a qualitative proxy for 

the fraction of the acid residue that is nanodiamond. This trend is not easily discernable when 

instead of N/O other tracers such as N, N/residuals, or O are used, that is to say, N and O are 

anticorrelated in the acid residues, as expected. 

 

 Plots of N/O vs. the concentrations of two different sets of molecules in APT reconstructed acid residues. Figure 7.8

The denominator on the x axis, residuals, is the sum of the C atoms from C1, C2, C3, and PtOC, as well as the Na, 

NaO, Cl, and F ions. 

 

If the ratios (C1+(2×C2)+(3×C3))/residuals, (PtOC+Na+NaO)/residuals, and N/O do trend with 

disordered C vs. diamond, we would expect data sets with extreme values of these ratios to field 
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evaporate with different charge-state ratios, since they are different materials with different 

evaporation fields. So, as a further test of the validity of this approach, we plot both N/O and 

(C1+(2×C2)+(3×C3))/(PtOC+Na+NaO) vs. 
12

C
+
/
12

C
++ 

(Figure 7.10). There is a loose 

anticorrelation for (C1+(2×C2)+(3×C3))/(PtOC+Na+NaO) vs. 
12

C
+
/
12

C
++

, but not for N/O. Since 

N/O does not yield a clear trend, this suggests (C1+(2×C2)+(3×C3))/(PtOC+Na+NaO) may be a 

better criterion to distinguish the two phases. If (C1+(2×C2)+(3×C3)) and (PtOC+Na+NaO) are 

associated with 2 distinct phases, the C-rich, Pt-and-Na-poor phase tends to field evaporate under 

lower charge-state ratio conditions, and thus, by proxy, to field evaporate at higher voltages or 

lower laser energies.
 

 

 Plots of two ratios used to assess what fraction of the acid residue is disordered C and what fraction is Figure 7.9

diamond, vs the charge state ratio of 
12

C.  

 

Given the interpretation that spatial correlation, and trends in Figures 7.9 and 7.10 indicate 

(C1+(2×C2)+(3×C3))/(PtOC+Na+NaO) is a qualitative indicator of the fraction of disordered C  

diamond, anticorrelation of this ratio with 
12

C
+
/
12

C
++

 suggests that diamond has a higher 

evaporation field than disordered C, evaporating at higher voltages for a set laser energy, such 

that the ratio of laser energy to voltage, and of 1
+
 to 2

+
 ions, are both lower. This is consistent 
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with the number of C-C bonds for these materials: A C atom on the surface of a nanodiamond 

has up to 3 C-C bonds, whereas an exposed sp
2
-bonded C atom has at most 2 C-C bonds. 

Therefore, a higher field is required to polarize and ionize a C atom from a diamond surface than 

at the edge of a graphene sheet. Another interpretation is that one of the phases includes more Pt 

matrix, and that the difference in evaporation field is due to differences in matrix vs. acid 

residue, not diamond vs. disordered C. 

The most interesting question we can ask using these criteria is whether the C isotopic ratio 

correlates with the fraction of acid residue that is nanodiamond, since this would suggest that the 

disordered C and nanodiamonds in the acid residue have different isotopic ratios, and thus 

different origins. We plot N/O and (C1+2×C2+3×C3)/(PtOC+Na+NaO) vs. 
12

C/
13

C (Figure 7.11). 

There is no clear correlation between these two parameters and the C isotopic ratios, although at 

higher 
12

C/
13

C ratio the minimum N/O rises slightly, and for lower 
12

C/
13

C ratio, only in 2
+
, the 

minimum (C1+2×C2+3×C3)/(PtOC+Na+NaO) rises slightly.  

 

 N/O ratio and (C1+2×C2+3×C3)/(PtOC+Na+NaO) ratios plotted vs. the normalized isotopic ratios. Figure 7.10
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To further investigate the relationship of the C isotopic ratios to these quantities, we plot the 

12
C/

13
C ratios at each charge state, in order of increasing ratio, alongside several quantities, 

including N, O, PtOC+Na+NaO, and C1+2×C2+3×C3, each of which has been divided by the 

sum of the ions associated with the acid residue (Figure 7.12). The linear fits are poor for all 

quantities. For the 2
+
 ratios, all of the adjusted R

2
 values for the four fits are less than 0.1, and the 

slopes have greater than 100% error, except for O, which has a negative R
2
 value. For the 1

+
 

ratios, the adjusted R
2
 is negative for N and 0.04 for (PtOC+Na+NaO)/residuals. However, C 

does increase for the 1
+
 ratios, with a slope of 0.004±0.001 in units of 

((C1+2×C2+3×C3)/residuals)/(
12

C/
13

C), albeit with an adjusted R
2
 of only 0.18. O decreases 

slightly with 
12

C
+
/
13

C
+
 ratios, with a slope of -0.004±0.001 in units of (O/residuals)/(

12
C/

13
C), 

with an adjusted R
2
 of 0.30. This suggests that there may be a higher C isotopic ratio for 

diamond than sp
2
-bonded material. However, this could also be a statistical anomaly, as no such 

correlations exist for the 2
+
 ratios, and the link between O and disordered C is not as well 

indicated by the APT data as that between (C1+2×C2+3×C3) and the nanodiamonds. The lack of 

similar correlations in the 2
+
 ratios suggests that rather than inherent isotopic anomalies, these 

trends could be due to an instrumental artifact that affects 1
+
 ratios more than 2

+
, and that 

predominantly affects either disordered C or nanodiamond. If this effect is hydrocarbon 

interference at 
13

C, then it must affect disordered C more than diamond, because the effect 

always lowers the 
12

C/
13

C ratio, and Figure 7.11 indicates lower ratios for the disordered C. 
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 Four different quantities used for tracing the fraction of the acid residue that is disordered C and the Figure 7.11

fraction that is nanodiamond, plotted vs. the corrected, standardized 
12

C/
13

C 1
+
 and 2

+
 isotopic ratios of meteoritic 

nanodiamonds. N, O, PtOC+Na+NaO, and C1+(2×C2)+(3×C3) are each divided by the sum of the ions associated 

with the acid residue and then normalized to lie between 0 and 1 (see legend). Linear fits are shown for those 

quantities where a loose trend is detected. Note that the fractions displayed in the two plots are the same, even 

though some 2
+
 ratios are not plotted due to low 

13
C counts. 

 



222 

 

An alternative interpretation of the trends in Figures 7.10 and 7.12 is that they reflect increasing 

amounts of O contamination and dilution of the C signal as the amount of contamination from 

the Pt matrix increases. To test this interpretation, we plot the quantities from Figure 7.12 vs. the 

number of Pt ions detected in each data set (Figure 7.13). The O fraction trends upward with 

higher Pt counts, with a slope of (2.8±0.9)×10
6
 and an adjusted R

2
 of 0.19 for a linear fit, 

whereas the C fraction decreases slightly, but with an adjusted R
2
 of less than zero from a linear 

fit. Therefore, this is a viable interpretation for the trend in O, which is already questionable due 

to the lack of correlation of N/O with the C charge state ratio in Figure 7.10, but it is not valid for 

the trend in the C fraction. 

 

 Pt atoms detected in a data set vs. values used to distinguish disordered C from diamond. Both O and Figure 7.12

C1+2×C2+3×C3 are divided by the sum of the counts of all the ions associated with the deposition layer. A linear fit 

to the O data is also shown. 
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7.3.4 Detailed Discussion of Anomalous APT Data Sets 

A case by case study of the anomalous data sets is required to understand whether measured 

isotopic anomalies are artifacts or inherent isotopic differences between samples of the acid 

residue. In this section, notable data sets from Figures 7.4–7.6 are studied individually (Table 

7.3). All the ADM data sets considered in this section except for the 
13

C-depleted ADM R06 

19568 (1
+
) have smaller-than-average weights. The weight indicates what fraction of an average 

data set they represent in terms of statistical significance. If they have a weight less than 1, they 

have less significance than one outlier of average weight. Similarly, all the DND outliers have 

weights less than one (DND 21905 (1
+
), which has a weight of 10.9, is not an outlier). σ-values 

in Table 7.3 are the weighted standard deviation for the data set ROIs from the respective 

material (ADM or DND) and charge state (1
+
 or 2

+
), after corrections but prior to normalization.
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Table 7.3 APT subvolume ratios, corrected but not normalized. 

Sample subvolume
a 12

C
+
/
13

C
+b

 W (1
+
)
c
 #σ (1

+
)
d
 

12
C

++
/
13

C
++b

 W (2
+
)
c 

#σ (2
+
)
d 12

C
+
/
12

C
++

 Counts
e
 

ADM R06 

19354 D.L. 15 nm 14 + 9 -4 0.004 17.3 34 + 299 -16 0.003 2.3 0.8 2245 

19354 I.D. 0.5 C/nm
3
 8 + 2 -1 0.005 36.1 21 (- 133) -11 0.0007 5.4 2.4 4955 

19354 <D.L. 15 nm 8 + 2 -1 0.006 35.1 --    -- -- 7.1 3191 

20159 I.C. 10% (C) 62 + 11 -8 0.5 0.2 38 + 19 -9 0.03 1.8 7.6 4111 

20159 <I.C. 2% (C) 37 + 5 -4 0.3 3.8 34 + 19 -9 0.02 2.3 3.8 28445 

15005 I.D. 1 C/nm
3
 51 + 11 -7 0.1 1.4 33 + 20 -11 0.04 2.4 1.5 2318 

15005 <D.L. 15 nm 7 + 2 -1 0.002 42.1 --    -- -- 1.4 1212 

23612 D.L. 10 nm 30 + 19 -8 0.02 5.6 55 (- 153) -34 0.003 0.4 4.0 3876 

23612 <D.L. 15 nm 7 + 10 -3 0.0004 38.3 --    -- -- -- 1156 

23617 D.L. edge 21 + 11 -5 0.01 9.8 65 (- 1667) -33 0.009 -0.05 1.5 5331 

23617 <D.L. edge 9 + 5 -2 0.001 31.6 23 (- 65) -14 0.001 4.8 1.2 3378 

18430 D.L. 20 nm 52 + 7 -6 0.5 1.4 65 + 16 -11 0.2 -0.05 1.7 24774 

18430 <D.L. 20 nm 8 + 1 -1 0.01 36.1 19 (- 7502) -9 0.0008 6.4 7.8 4222 

19568v01 I.C. 5% C 110 + 18 -14 2 -1.9 53 + 9 -7 0.3 0.5 2.0 11995 

19568v01 <I.C. 5% C 69 + 35 -17 0.1 -0.05 66 + 91 -24 0.03 -0.09 2.2 7915 

DND R06 
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Sample subvolume
a 12

C
+
/
13

C
+b

 W (1
+
)
c
 #σ (1

+
)
d
 

12
C

++
/
13

C
++b

 W (2
+
)
c 

#σ (2
+
)
d 12

C
+
/
12

C
++

 Counts
e
 

21905 I.D. 10 C/nm
3 

97 + 5 -0.4 10.9 -0.9 38 + 2 -2 0.2 1.9 26.3 58574 

21905 <I.D. 5 C/nm
3
 91 + 12 -10 1.6 -0.7 122 (- 994) -65 0.1 -3.4 11.5 11008 

17621 D.L. 10 nm 19 + 3 -2 0.03 11.7 --    -- -- 7.1 6282 

17621 <D.L. 15 nm 12 + 2 -2 0.01 21.2 6 + 24 -3 0.0005 44.1 4.9 10676 

17629 D.L. edge 14 + 4 -2 0.004 16.6 62 (- 111) -43 0.007 -1.0 1.3 9740 

17629 <D.L. edge 10 + 1 -1 0.03 25.4 21 (- 26) -18 0.0002 8.1 36.4 17036 

 
a
 Process used to select subvolume. ‘I.D.’: Isodensity surfaces. ‘D.L.’: Deposition layer (“edge” indicates that rather than a specific 

width, the region of interest extends all the way to one bound of the reconstructed volume, because the deposition layer is on the 

edge of the reconstruction). ‘I.C.’: Isoconcentration. ‘<’ indicates that the lower gradient side of the isosurface or the outside of the 

deposition layer were used for this reconstruction (that is, this subvolume contains matrix, not acid residue). Horizontal rules divide 

subvolumes from different microtip data sets. The first subvolume presented for each data set is the region of interest used for 

analysis of the acid residue (Table 7.2). 

b
 C isotopic ratio with uncertainties in the plus and minus directions. 

c
 Weights, 1/Err(R)

2
. 

d
 Deviation from the bulk isotopic ratio for the given data set and charge state, as a multiple of the standard deviation σ for that charge 

state. 

e
 Total C atoms detected in the sample, including the atomic counts of carbon from C1, C2, C3, PtOC, and CO2, corrected only for 

background. 
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ADM R06 18430 

This microtip is not anomalous; a detailed analysis is included here for comparison. The 

reconstruction of this microtip has multiple clusters of C ions, often surrounded by smaller 

clusters of PtOC (Figure 7.8). The carbonaceous features all lie in a flat plane that bisects the 

reconstruction (Figure 7.14). The Pt on either side of this plane has different concentrations of Al 

contamination, for unknown reasons (Figure 7.15). This plane is the intersection of the two IBS-

deposited Pt layers, with carbonaceous acid residue captured in the middle. Detection of a flat 

deposition layer is common in APT reconstructions of these samples, and correlates well with 

observations by SEM and TEM. In some reconstructions poles from two different orientations of 

the Pt crystal are observed on the two sides of the deposition layer, and observation of only a 

single crystallographic region consistently correlates with only one side of the Pt multilayer 

being present in the microtip, as confirmed by SEM, post-APT. In some data sets the acid 

residue deposit is thicker or clumpier, with one flatter side, and one more bulbous side, the latter 

of which was originally the top of the acid residue deposit. Cross-sectioning reveals voids in the 

Pt where the clusters of C are located (7.16). A significant fraction of the ions in the C clusters 

were detected outside of the associated voids in the Pt, suggesting trajectory aberrations due to 

the higher evaporation field of C compared to Pt. The number of C atoms detected in each cluster 

in ADM 18430, and in general for all our APT data sets, is significantly smaller than the number 

of atoms required to account for a carbonaceous cluster the size of the associated void in the Pt 

and the density of diamond or disordered C, even after correction for ~50% ionic detection 

efficiency. Multi-hit corrections to the counts are small compared to this discrepancy. The 

predicted density of the material from the clusters is as much as a factor of 10 lower than that of 

diamond. Experimental systematics may have caused uncorrected signal loss, via uncorrected 
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correlated evaporation, or loss of whole chunks of carbonaceous material at once. Indeed, 

observations during data collection support the idea that chunks of material are lost: As the 

microtip is milled from the apex down, voids in the Pt often appear, are subsequently sparsely 

filled with iterative bursts of C, and then suddenly are filled in by more Pt, typically after an 

unusually large burst of C detections followed by a higher-than-usual rate of Pt detection filling 

in the area (e.g., Figure 7.16) – this has been observed in numerous microtips and indicates the 

exposure of a particle with an evaporation field much higher than that of Pt, the beginning of 

unstable bursts of field evaporation of C from the particle due to higher local fields, and finally 

the removal of the remainder of the particle as one or more large chunks, precluding the 

detection of much or most of the material from that particle, and finally rapid evaporation of the 

now exposed sharp edges of the hole in the Pt (see further discussion in Section 2.3.8, Figure 

2.19  and Section 7.3.6). 
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 Reconstruction of C (black), Pt (orange), Al (green), and O (blue) ions in microtip ADM R06 18430. Figure 7.13

Well over 90% of detected ions were Pt, but only a fraction of the Pt ions are displayed here, to improve viewing of 

the minority ions, all of which are displayed The C reconstruction shows 5% C isoconcentration surfaces (black 

solids) superimposed on top of the ions. Scale bars are in nm. 
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 The deposition layer of ADM R06 18430, with nanodiamonds (black C atoms) between two layers of Figure 7.14

sputter-deposited Pt, one of which has higher aluminum content (green) than the other. This is an example of the 

deposition layer (D.L.) method of selecting a subvolume that contains the acid residue. In this case the deposition 

layer is 20 nm thick. Scale bars are in nm. 
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 5 nm deep cross section of the plane in which the acid residue was deposited in data set ADM R06 Figure 7.15

18430. All Pt ions (orange) are displayed, along with C ions (black). There are holes in the Pt corresponding with, 

but not densely filled by, the C. Scale bars are in nm. 

 

ADM R06 19354 

Reconstructions of microtip 19354 show three C-rich volumes, each roughly spherical and three 

nm in diameter (Figure 7.17). They lack accompanying low-density material, and are consistent 

with nanodiamonds that are free of disordered C and laboratory contamination. The mass 

spectrum from the acid residue ROI for this microtip (selected using a 15 nm wide deposition 

layer) is notably double-peaked in C (Figure 7.18).  
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 15 nm deep cross section of R06 19354, with C1 ions, showing 3 clusters identified as nanodiamonds A, Figure 7.16

B, and C. Scale bars are in nm. 
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 Mass spectra in units of amu, for R06 19354, 15 nm deposition layer, for 1
+
, and 2

+
 C. Figure 7.17

 

After background corrections the three nanodiamonds together contain fewer than 1000 detected 

C atoms, and fewer than 100 atoms in any 
12

C
+
 or 

12
C

++
 peak from a single nanodiamond. Based 

on their size, each of these nanodiamonds should contain roughly 2000 C atoms. This indicates a 

significant loss of C signal, either from correlated evaporation or diamonds falling out of the 

microtip during field evaporation.    

Nanodiamond 19354-A contains 21 
12

C ions (1
+
 and 2

+
 summed) and 0 

13
C atoms after 

background subtraction. Nanodiamond 19354-B has isotopic ratios of 88/2 = ~50 (2
+
) and 89/0.5 

= ~190 (1
+
), after background correction. Nanodiamond 19354-C has isotopic ratios of 41/2 = 

~21 (2
+
) and 53/2 = ~27 (1

+
) after background correction. The spectrum for nanodiamond 19354-

C contains stronger secondary peaks than –A or –B, suggesting it is the source of the double-

peaked features in the overall acid residue ROI (Figure 7.18). The laser energy remained 

constant during data collection, so this indicates the local electric field changed significantly 
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during field evaporation of the C in this region. While the field for the microtip might be 

changing for unrelated causes simultaneous to the field evaporation of this nanodiamond, it is 

more likely that this is evidence that the C ions are from a particle with a significantly different 

evaporation field from that of Pt (i.e., diamond or disordered C). 

If the 
13

C-enriched regions are the result of artifacts that affected this data set more than most of 

the others, the isotopic ratio of the C in the Pt matrix may also be anomalous. The isotopic ratios 

for the deposition layer and matrix, after removal of all atoms from regions with greater than 0.5 

C atoms/nm
3
 are 8−1

+2 (1
+
) and 21−11

𝑈𝑁𝐷 (2
+
) (background and tail corrected), where the positive 

uncertainty for 2
+
 is UND (undefined) due to an error bar in 

13
C/

12
C that goes below zero 

(infinite 
12

C/
13

C). If the 15 nm thick deposition layer is also removed, leaving only the Pt matrix, 

the C isotopic ratios are 8−1
+2 (1

+
), and undefined (2

+
), after background corrections. The low 

concentration of C contamination to measure in the IBS-deposited Pt leads to a low signal-to-

background, such that the 2
+
 ratio does not have any 

13
C counts after correction. Note that the 1

+
 

ratio of 8 is more anomalous than the measurements in the nanodiamonds and deposition layer. 

The carbon isotopic contents of the overall matrix and deposition layer in 19354 – extremely 

enriched in 
13

C for 1
+
 vs. extremely depleted for 2

+ 
– suggest that 

12
CH

+
 hydride interference on 

13
C

+
 is contributing to or entirely responsible for the apparent 

13
C enrichment. The carbon-

hydrogen molecule, methylidyne, is a radical with an odd number of unpaired electrons – one, 

when in its ground state – such that formation of the singly ionized form, CH
+
 is electronically 

favored over doubly ionized CH
++ 

(Brooks and Schaefer III 1977). This could explain the 

apparently 
13

C-enriched outliers in the DND and ADM data sets, for 1
+
 but not necessarily for 

2
+
. This interpretation requires that some microtips are affected more by hydride interference 
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than others. Finally it must be remembered that the C contamination in the IBS-deposited Pt is 

not entirely comparable to that in the acid residues, as it has different bonds and different 

evaporation conditions. 

ADM R06 20159 

The deposition layer in this reconstructed microtip takes up a large fraction of the volume and is 

not limited to a narrow layer (Figure 7.19). It is composed not only of C but also Na. PtOC is 

actually higher in concentration outside of this clear deposition layer than inside of it. The 

pancake-shaped C depositions and streaks of Na suggest this microtip did not run stably. The C 

in these regions may be from nanodiamonds or nanodiamonds embedded in disordered C. There 

is no clear demarcation of the deposition layer, so we are not able to assess the isotopic ratio of 

the matrix as well as we are for data sets such as ADM 19354. The deposition ratios are 62−8
+11 

(1
+
) and 38−9

+19 (2
+
). The matrix ratios of 37−4

+5 (1
+
) and 34−9

+19 (2
+
) are in good agreement with 

each other and are more 
13

C-enriched than the deposition layer ratios, indicating the anomalous 

ratios in this data set are probably the result of instrumental artifacts. 
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 Reconstruction of ADM R06 20159. C1 ions (black) are oriented in a splotchy deposition layer edge-on Figure 7.18

to the point of view, surrounded by streaks of Na ions (red) on one side, and PtOC ions (brown) on the other.  

 

ADM R06 15005 

This microtip reconstruction is a statistical outlier with un-normalized ratios of 55−22
+11 (1

+
), and 

33−11
+20 (2

+
). After normalization, the 2

+
 acid residue ratio is no longer anomalous, but the 1

+
 ratio 

still is. The isotopic ratios of the Pt matrix outside of the 15 nm deposition layer subvolume from 

this microtip reconstruction are 7−1
+2 (1

+
), and undefined (2

+
) due to vanishingly low 

13
C signal-
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to-noise, similar to the pattern observed in 19354, again suggesting hydride interference at 
13

C
+
, 

which also explains the anomalous 1
+
 isotopic ratio inside the deposition layer. There is no 

significant evidence of disordered C in the deposition layer; the acid residue in this data set 

appears to be composed primarily of diamond. 

ADM R06 23612 

This data set contains a mixture of C-rich and PtOC-rich clusters, with larger C clusters (Figure 

7.20). Inside the 10 nm wide deposition layer, the isotopic ratios are 30−8
+19 (1

+
) and 55−34

𝑈𝑁𝐷. No 

12
C

++
 was detected outside the deposition layer for this data set. It is therefore impossible to tell 

if the ratios at the two charge states differ, only that the matrix ratio of C
+
 ions (7−3

+10) is even 

more enriched in 
13

C than both deposition layer ratios – self-standardization shows the acid 

residue in this microtip shows no evidence for isotopic heterogeneity. 
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 Reconstructions of ADM R06 23612. C (black), PtOC (brown), and Na and NaO (red) ions are Figure 7.19

displayed. Scale bars are in nm. 

  

ADM R06 23617 

The deposition layer in this microtip reconstruction lies along the edge of the field of view. 

Again the 1
+
 ratio (21−5

+11) is more enriched in 
13

C than the 2
+
 ratio (65−33

𝑈𝑁𝐷), suggesting that 

hydride interference is at work. The matrix has lower 
12

C/
13

C ratios than the deposition layer, 

9−2
+5 (1

+
) and 23−14

𝑈𝑁𝐷(2
+
). Clearly, self-standardization demonstrates that the acid residue in this 

microtip is not evidence for isotopic heterogeneity. 
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ADM R06 19568 

This data set from Allende is not a >4σ outlier, but it is discussed here because it has the highest 

12
C/

13
C ratio of all the ADM data sets. The acid residue ROI selected by a 5% atomic C 

isoconcentration surface has C isotopic ratios of 110−14
+18 (1

+
) and 53−7

+9 (2
+
), while the region 

outside of the 5% C isoconcentration surface, including the Pt matrix and the edge of the 

deposition layer, has C isotopic ratios of 69−17
+35 (1

+
) and 66−24

+91 (2
+
). These matrix ratios are the 

closest to the total bulk C isotopic ratios of the Allende data sets of any of the ROIs discussed in 

this section (see Table 7.3), with deviations of only -0.05σ (1
+
) and -0.09σ (2

+
). The 1

+
 ratio in 

the acid residue is enriched compared to the 1
+
 ratio in the matrix, and the 2

+
 ratio is slightly 

depleted, but the uncertainties on the ratios are large enough that these anomalies are not 

significant if based solely on self-standardization. 

DND R06 21905 

This detonation nanodiamond standard microtip is marked by unusual levels of contaminants, 

including clusters rich in Ni, Ga, and PtOC (Figure 7.21), with some F but no significant Na or 

Cl. C is spread throughout the reconstructed volume and does not resemble a deposition layer. 

These lines of evidence lead us to believe this region of the microtip is either composed of a 

large chunk of acid residue and laboratory contamination with a significantly different pedigree 

from most of our samples, or else the sample fractured in the atom-probe and the region we are 

observing is not from the deposition layer at all. The C isotopic ratios in the acid residue ROI are 

97−0.4
+5  (1

+
) and 37−2

+2 (2
+
). In the ADM outliers there is generally more 

13
C-enrichment in 1

+
 than 

in 2
+
; the inverse is true here. The acid residue ROI was selected using a 10 C 

atom/nm
3
 isodensity surface. The matrix subvolume was selected using a 5 C atom/nm

3
 

isodensity surface, and has C isotopic ratios of 91−10
+12 (1

+
) and 122−65

𝑈𝑁𝐷 (2
+
). The 1

+
 ratios from 

the matrix and acid residue are in good agreement with each other; the 2
+
 ratios are not in 
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agreement within 1σ, in spite of high uncertainties for the ratio measured in the Pt matrix. The 

presence of a highly 
13

C-depleted 2
+
 isotopic ratio in the acid residue of one of the DND 

standards, even under self-standardization, means that even if the same were the case for an 

ADM data set further evidence would be required to demonstrate that Allende data set carried 

inherent isotopic anomalies. 
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 Reconstructions of data set DND R06 21905 with C (black), PtOC (brown), Ga (green), and Ni (blue) ions. Scale bars are in nm. Figure 7.20
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DND R06 17621 

The deposition layer runs along the edge of the field of view in this microtip reconstruction. The 

background level fluctuates at different masses, such that the fit to the background is not a good 

estimate, especially for C
++

. Therefore we used the local background window method instead of 

the whole-spectrum fit to estimate the background for the peaks used in the ratios for this 

microtip. After corrections, there were not enough counts of 
13

C
++

 from the acid residue to assess 

the 
12

C
++

/
13

C
++

 ratio. The 1
+
 acid residue ratio (192

+3) is less 
13

C-enriched than the ratios 

measured at both charge states in the Pt matrix (12−2
+2 (1+

) and 6−3
+24 (2

+
)). This indicates that the 

13
C enrichment in the deposition layer is probably an instrumental artifact. The 2

+
 ratio from the 

Pt matrix is lower than the 1
+
 ratio, opposite what is expected if hydride interference is the major 

instrumental artifact at work, but large uncertainties make this part of the result unclear. 

DND R06 17629 

Only the top of this microtip reconstruction contained the deposition layer, so the top region is 

used as the region of interest for the nanodiamond isotopic ratio. The matrix ratio is calculated 

from the remainder of the data set farther down the shank. This microtip was also background 

corrected using noise windows due to a poor estimate from the background fit to the whole mass 

spectrum. The acid residue ratios are 62−43
𝑈𝑁𝐷 (2

+
) and 14−2

+2 (1
+
) and the matrix ratios are 21−18

𝑈𝑁𝐷  

(2
+
) and 10−1

+1 (1
+
). The 1

+
 ratio from the matrix is even more 

13
C-enriched than the 1

+
 ratio from 

the acid residue, indicating this outlier is the result of an instrumental anomaly. The 2
+
 matrix 

and acid residue ratios are both 
13

C-enriched, but not as much as the 1
+
 ratios, but the counting 

statistics are too low for us to assess finite uncertainties on either value. 

7.3.5 TEM 

TEM and STEM imaging, EELS, and TEM diffraction pattern analysis show evidence for 

nanodiamonds and graphitic C in several of the microtips (Table 7.4).
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Table 7.4 Yes/No matrix of TEM and associated observations made on microtips.
a 

 

 

Sample
b
 Acid 

residue near 

apex: SEM 

Diamond: 

TEM image
c
 

Diamond: 

FFT
d
 

Diamond: 

Diffraction 

C: 

EELS
e
 

low-density 

features: 

STEM
f
 

HG01-B (first 

region) 

N -- -- N -- N 

HG01-B 

(resharpened) 

Y -- -- ? N Y 

HG01-C Y -- -- -- -- Y 

HG04-C N Y, and graphite -- -- N N 

HG06-A ? One faint 

cluster 

N N -- -- N 

HG06-B Y N N -- -- Y 

HG06-C Y N ? -- -- Y 

HG06-D Y N Y ? -- Y 

HG06-E ? N N ? -- ? 

HG05-A Y Y Y Y Y Y 

HG05-B N N N -- -- N 

HG05-C N Y Y -- -- Y, few 

HG05-D -- N N -- -- Y 

HG05-E -- N N -- N Y, few 

 

a
 ‘--’ represents no data for the given category and sample. ‘?’ represents possible but 

inconclusive observation for the given category and sample. All samples are from Allende 

acid residue multilayer pND3. 

b
 Samples are arranged in the order of TEM analysis, first to last. 

c
 ‘Y’ in this column means that TEM images of this microtip have atomic planes with spacings 

within uncertainty of the 2.06 nm of diamond (111) planes. An ‘N’ means the TEM image 

does not have diamond (111) planes. 

d
 ‘Y’ in this column means that FFTs of TEM images have spots for diamond (111) spacing, and 
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no un-indexed spots, which would suggest the presence of Moiré fringes and call into question 

the identification of diamond spots. 

e
 ‘Y’ in this column means the C k-edge was resolved from an EELS map of an image feature. 

f
 ‘Y’ in this column means that STEM imaging shows chains or a few isolated ~1 nm-sized 

circular regions of lower Z-contrast than the surroundings. 

While EDXS maps were collected, low count rates and instrument drift prohibited us from 

obtaining enough counts to distinguish C hot spots from the background. Probably for this 

reason, there were no clear regions of C enrichment in any of the microtips under EDXS 

analysis. 

Low-density features are present in TEM and STEM HAADF and BF imaging for each microtip 

in which SEM observation suggests the presence of acid residue in the top 50 nm of the microtip. 

These features are often evenly spaced with little clumping. Some even appear to be laid out in a 

linear or curved chain of non-touching particles. For half grid HG01, the data presented, with 

low-density features and the presence of diamond and graphite spacing, is taken from microtips 

that are resharpened. Prior to resharpening, SEM and TEM showed no resolvable acid residue at 

the apex, and no low-density features, respectively. 

In traditional TEM, atomic planes with spacings corresponding to Pt(111) and (200) are 

frequently present (e.g., Figure 7.22; Table 7.5 gives common planar spacings for Pt, diamond, 

and graphite). Moiré fringes, resulting from overlapping crystals, are also visible in many 

samples. 
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 TEM and FFT checks for microtip contents from a region of HG05-A. (a) shows the TEM image with a Figure 7.21

target FFT region denoted with a square. The microtip apex is in the down-left direction. (b) shows the FFT, with 

several spot pairs. (c) shows lines connecting 3 pairs, each with different spacings. From largest to smallest 

diameter, the pairs correspond to Pt(220), Pt(200), and diamond(111). 
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Table 7.5 Interplanar spacings (d-spacings). 

 

3C Diamond 

a=3.566 Å 

Fd3m (227) 

Pt metal 

a=3.923 Å 

F m-3m (225) 

2H Graphite 

a=2.470 Å  c=6.724 Å
a
 

P63/mmc (194) 

3R Graphite 

a=2.456 Å  c=10.044 Å
a
 

R3 (146) 

  (001)   6.72 Å
a
  

(111)   2.06 Å (111)   2.24 Å (002)   3.36 Å
a
 (003)   3.35 Å

a
 

 (200)   1.94 Å (003)   2.24 Å
a
 (101)   2.08 Å

a
 

(220)   1.26 Å (220)   1.37 Å (100)   2.14 Å (012)   1.96 Å
a
 

(311)   1.08 Å (311)   1.17 Å (101)   2.04 Å
a
 (006)   1.67 Å

a
 

 (222)   1.12 Å (102)   1.80 Å
a
 (104)   1.62 Å

a
 

(400)    0.892 Å (400)   0.970 Å (004)   1.68 Å
a
 (015)   1.46 Å

a
 

(331)    0.818 Å (331)   0.890 Å (103)   1.55 Å
a
 (110)   1.23 Å 

 (420)   0.867 Å (005)   1.34 Å
a
 (107)   1.19 Å

a
 

 

Graphene planar hexagonal sheets 

(100)   2.13 Å 

(110)   1.23 Å 

(200)   1.07 Å 

(120)   0.805 Å 

 

a
 The c-axis intersheet distance is variable For examples see Kellett and Richards (1971) and 

Zhou et al. (2014). 

Even in the beam-normal orientation (Figure 7.1b), TEM often corroborates SE imaging of the 

deposition layer placement, showing that the two layers of Pt in the multilayer were milled 

unevenly during sharpening, leading to one thin layer at the apex of the microtip, and a sudden 

broadening of the microtip and increase in diffraction complexity and Moiré fringes slightly 
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farther down. Likewise, STEM-HAADF imaging often shows Z-contrast changes consistent with 

one Pt layer extending to the apex of the microtip (e.g., Figure 7.23a), a layer of acid residue 

material exposed on the surface slightly farther from the microtip (e.g., the higher-Z layer that 

begins in Figure 7.23b, along with low-Z spheres), and an added layer of Pt farther down (e.g. 

Figure 7.23c). 

 

 STEM HAADF image of the apex region of microtip HG05-A, excluding the last few nm of the apex. Figure 7.22

The regions denoted (a), (b), and (c) are dominated by progressively higher Z-contrast features, suggesting the 

addition of layers of material. 

7.3.6 Detailed Discussion of TEM Data from Individual Microtips 

HG01-B 

This microtip is unique among our data in that it was characterized by TEM before and after FIB 

resharpening, that is, two different regions of the same sample have been studied. Secondary 

electron imaging of the first region does show an acid residue deposit in the deposition layer. 

TEM and STEM-HAADF and -BF images are free of features the size and density of 

nanodiamonds. The second region, brought to the apex of the microtip by FIB milling, does have 

a thick acid residue deposition layer, visible in SEM, TEM, STEM-HAADF, and STEM-BF 

images as 1 nm-diameter low-density features. 
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Electron diffraction images were captured from both of these regions. Spacings consistent with 

Pt are identified and used to calibrate the spacings in each image. For the deposition-free first 

region, there are no isolated spots at the innermost diamond spacing (diamond(111), Table 7.5) 

(Figure 7.24a,b), and the first two peaks of Pt are resolved from each other (Figure 7.24c), but 

for the deposition-rich second region there are clear diamond(111) spots (Figure 7.25a,b), and a 

shoulder between the two innermost Pt peaks, at the spacing for diamond (111) (Figure 7.25c). 

As demonstrated in the case of this microtip, we find it is a general rule that if we observe large 

chunks of acid residue in the deposition layer by SEM, we will also observe 1 nm low-density 

features in STEM-HAADF, and some sign of diamond material based on electron diffraction. 

The second, acid-residue containing region in this microtip was also studied by APT (see Section 

7.3.7). 
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 Electron diffraction pattern taken of microtip HG01-B (first region, prior to resharpening). (a) is the Figure 7.23

original diffraction image, where the red arc was excluded from the data used to calculate the integrated radial 

signal. (b) is the digitally unwrapped diffraction image, where green hashed areas are the arc of the circle that was 

not included in calculating the radial signal, and (c) is the integrated signal from smaller to larger radius in q-space, 

with the x-axis converted to d-spacing for ease of reading. The image was calibrated using Pt peaks (orange). The 

diamond peaks (blue) were then projected onto the patterns. 
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 Electron diffraction pattern taken of microtip HG01-B (second region, after resharpening). (a) is the Figure 7.24

original diffraction image, (b) is the digitally unwrapped diffraction image, and (c) is the integrated signal from 

smaller to larger radius. 
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HG05-A 

An EELS C-edge is present in a 3 nm diameter low-density feature observed in HG05-A. This is 

probably a nanodiamond, in which case it is the largest nanodiamond visible in the microtip, and 

one of the largest observed in any microtip. The TEM electron beam was not scanned over this 

microtip extensively prior to collection of the EELS map, and an EELS search over the rest of 

the apex of the microtip did not record any other C; therefore, hydrocarbon growth on the 

microtip surface is not a viable explanation for the C signal. The EELS map has a clear dip in O 

signal and increase in C signal from the large feature and a small adjacent feature that 

corresponds to a 1 nm low-density feature observed in STEM imaging (Figure 7.26). 
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 The nanodiamond-containing Pt multilayer microtip HG05-A (left) with EELS maps of C k-edge (blue) Figure 7.25

and O (green) overlayed (right). One axis of the EELS map lies along the axis of rotation of the microtip; it is 33 

pixels long. The perpendicular axis is 63 pixels long, with a step size of 2 Å. The map spans roughly 13 nm across 

and 7 nm along the microtip axis of rotation in STEM HAADF Z-contrast imaging. 

 

However, we returned to this sample a day later and re-found the large, low-density feature, but 

this time we could find no EELS C signal. This is not consistent with an internal nanodiamond, 

which could not have moved. It is also not consistent with a nanodiamond adhered to and 
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protruding from the surface, because this would have produced slightly higher contrast due to the 

increased thickness (and HAADF signal) from the surface diamond plus the column of microtip 

material as opposed to just the column of microtip material. It is consistent, however, with a 

nanodiamond partially embedded in the Pt and partially exposed at the surface. A disordered 

carbon layer surrounding the diamond would have left it loosely secured in the Pt. The electron 

beam may have dislodged the diamond, leaving a crater void which would continue to produce a 

dark feature in STEM HAADF imaging, while the C-K edge EELS signal disappeared (Figure 

7.27). 

 

 Various ways nanodiamonds can be incorporated in a Pt microtip. Small nanodiamonds give EELS Figure 7.26

signals too weak to detect over the background signal from the Pt matrix. Nanodiamonds adhering to the surface do 

not decrease the column of Pt that the imaging electrons must pass through, and thus do not create observable dips in 

Z-contrast in STEM. A large grain, partially exposed at the surface, but recessed, should be detected as a void-like 

feature with an EELS C signal. Weak bonds to the disordered sp
2
-bonded

 
C with which the nanodiamond is 

surrounded allow it to be removed from the sample, causing a drop in the EELS signal while the void continues to 

be observed in STEM. 

 

Furthermore, electron diffraction images captured from HG05-A in the TEM show spacings 

consistent with diamond, graphite, and Pt (Table 7.5, Figure 7.28). Diamond spots are clearly 

visible at the two innermost diamond peak radii in (Figure 7.28a and b), consistent with several 

nanodiamonds. A diamond peak is visible in (Figure 7.26c) at the diamond 111 line, over the 
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background from the two bracketing Pt peaks. We also observed strong diamond (111), Pt (111), 

Pt (200), and Pt (222), in FFTs of more than one region of HG05-A (e.g., Figure 7.22). 

 

 Electron diffraction pattern taken of microtip HG05-A. (a) is the original diffraction image, (b) is the Figure 7.27

digitally unwrapped diffraction image, and (c) is the integrated signal from smaller to larger radius. 

 

HG04-C 

Half-grid HG04 was oriented such that the electron beam was parallel to the plane of the 

deposition layer (Figure 7.1a), rather than normal. SEM and TEM imaging do not give evidence 

of acid residue at the apex of the microtip. But more than 300 nm down from the apex there is an 

electron transparent layer, containing atomic spacing for diamond in a 3 nm roughly circular 

region, covered by several layers with variable spacing consistent with graphene sheets (Figure 
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7.29). On both sides of the layer there are atomic planes with Pt spacing. This is fully consistent 

with acid residue-containing nanodiamonds embedded in graphene sheets. An EELS spot 

analysis of this region did not detect a clear C signal. The samples on HG04 were damaged in 

handling before APT could be conducted. 

 

 TEM image along the deposition layer of microtip HG04-C. White arrow indicates the direction to the Figure 7.28

microtip apex. Region (a), in red, is dominated by Pt 111 spacings. Region (b), in blue, is roughly the size of an 

average nanodiamond, and has 10–15 planes with diamond 111 spacing. Region (c), in green, has at least 6 planes 

with spacings consistent with graphene sheets, which wrap around the left-hand side of the diamond region. 
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HG06-D 

This microtip appears to contain some nanodiamonds, but the interpretation is a borderline case, 

with some indicator, including diffraction patterns (Figure 7.30), not showing clear evidence of 

acid residue contents. The best interpretation is that this microtip contains only small amounts of 

carbonaceous acid residue material. As such, the indicators that do detect signs of acid residue 

are probably the most sensitive – they include SEM imaging of acid residue in the vicinity of the 

microtip apex and STEM HAADF imaging of ~1 nm-diameter low Z-density features. 

 

 Electron diffraction pattern taken of microtip HG06-D. (a) is the original diffraction image, (b) is the Figure 7.29

digitally unwrapped diffraction image, and (c) is the integrated signal from smaller to larger radius. 
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HG06-E 

Diamond spacing is observed in FFTS, but not all spots in the FFTs from this could be 

successfully identified as corresponding to planes of expected material, and thus Moiré fringes 

may be present. In addition, a 1.8 Å spot is observed, which is consistent with a (002) plane, but 

(002) is a forbidden spot for diamond, suggesting we are detecting some other material, or else 

are simply observing Moiré fringes. 

In two spots, however, we were able to locate the source of the diamond signal in TEM imaging 

and measure the fringe spacing to be 2.07±1 nm, in agreement with the known value of 2.06 nm 

for diamond (Table 7.5). 

All the regions of this sample where these features were evident in FFT contained ~2 nm void-

like features in the middle of chains of low-z features possibly corresponding to nanodiamonds 

embedded in disordered sp
2
-bonded carbon. Taken together with the low-density features, there 

is good evidence that there are nanodiamonds in this microtip. 

7.3.7 Correlated TEM/APT 

HG01-B and HG01-C 

These two microtips were analyzed by TEM followed by APT. HG01-C is an exception to our 

practice of conducting a beam shower on the half-grid to fix hydrocarbons prior to analysis, and 

exhibits a significant hydrocarbon cap in both TEM and APT data sets. TEM and STEM imaging 

shows ~1 nm low-density features consistent with nanodiamonds (Figure 7.31). These are not 

randomly spaced, or else some features would have closer neighbors than others. Instead, they 

are roughly the same distance apart. Atom-probe reconstructions of these microtips do not 

reproduce evenly-spaced carbonaceous features, or ~1 nm features. Rather, in each of the 

microtips there is a deposition layer composed of C contaminated with Na. The C is low in 



257 

 

density compared to deposition layers observed in many other samples, and forms a shell-like 

structure of lower density on the inside of the layer (the outside of the layer is outside the field of 

view, and was possibly even milled away from the microtip by FIB sharpening. Taken together, 

these features suggest that these two samples of acid residue contain nanodiamonds associated 

with loosely-packed carbonaceous material. When deposited on a Pt substrate in suspension, the 

nanodiamonds were spread evenly across the surface by the retreating edge of the evaporating 

liquid droplet, along with small amounts of disordered, presumably sp
2
-bonded C. The 

nanodiamonds are detected by STEM HAADF imaging as low-density features. They are 

surrounded by disordered, porous material, resulting in poor bonding, which results in them 

being plucked from the acid residue whole under field evaporation conditions in the atom-probe 

and lost, while some of the disordered C is detected, giving the observed low-density, hollow 

deposition layer. 
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 Correlated SE/APT/TEM of two microtips containing carbonaceous acid residue, HG01-B (left) and Figure 7.30

HG01-C (right). For each, SE and APT data show that a layer of acid residue is present in the microtips off-center. 

TEM and dark field STEM images are oriented such that the beam passes through the deposition layer at a normal 

angle, such that the contents lie in the plane of the image, showing a number of low-Z contrast features. 
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HG06-C 

In microtip HG06-C, signals from overlapping lattices make the spacing measurements 

uncertain, but the FFTs appear to contain spots for diamond (111), graphite (111), Pt (111), Pt 

(002), and no unidentified spots. Atom-probe tomography of this microtip (atom-probe data set 

R5079 168357, collected on the LEAP 5000X Si) collected under a million Pt ions before 

fracturing. This represents the top few nanometers of the microtip. There is no evidence of a 

deposition layer, acid residue, or nanodiamonds, but these features could all have been farther 

down the microtip in regions from which no APT data was collected. The Pt multilayer contains 

only a few hundred C atoms, which are homogeneously distributed, probably contamination 

from the IBS-deposited Ni coating layer. 

HG05-E 

The LEAP 5000X Si atom-probe data set from this sample, R5079 168252, contains only ~2 

million Pt ions. There is no evidence of a deposition layer, acid residue, or nanodiamonds. The Pt 

multilayer contains only a few hundred C atoms, which are homogeneously distributed 

contamination from the IBS-deposited Ni-capping layer, as well as laboratory contamination. C 

does not rise above 5% concentration anywhere in the sputter deposited Pt, or above a density of 

~3 C atoms/nm
3
. This is consistent with the non-observation of a deposition layer or diamond 

spacings in TEM and FFT, and the observation of only a few low-density features, but we did 

not collect data from far enough down the microtip to confirm the TEM non-detection of acid 

residue. 
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7.4 Discussion 

7.4.1 Implications of Bulk Isotopic Ratios of Nanodiamonds and Disordered 

C 

The bulk C isotopic ratios for our nanodiamond data sets are within 2σ of the terrestrial ratios, 

albeit with low precision. Potential experimental artifacts affect the normalization of the ADM 2
+
 

data sets. The counting statistics uncertainty on the bulk ratios is significantly smaller than σ, the 

standard deviation of the data points, suggesting large uncorrected or undercorrected 

instrumental artifacts. 

Although self-standardization shows similar or more extreme 
13

C-enrichment in the Pt matrix of 

each data set with a large 
13

C-enrichment in the acid residue, it is possible to interpret the 

anomalies in the ADM data sets as due to intrinsic isotopic anomalies. In principle, the 
13

C-

enriched material observed in the matrices of the ADM outlier data sets could also be from 

isotopically heavy nanodiamonds, with C signal being projected into the Pt matrix volume due to 

trajectory aberrations (see Section 2.3.8). However, we do not see the expected gradient in 
13

C-

concentration with increasing radial distance from the nanodiamonds in the reconstructions. 

Alternatively, a combination of statistical fluctuations, hydride interference, and potentially 

unidentified experimental artifacts may be invoked to explain the >4σ 
12

C/
13

C isotopic ratio 

anomalies in the direction of 
13

C enrichment. Indeed, such effects must be invoked to explain 

similar anomalies in the terrestrial detonation nanodiamond data sets. The large anomalies 

observed in the Pt matrices of the outlier data sets are good evidence that field evaporation 

conditions and/or levels of hydride contamination are unusual for these data sets. Thus, we 

conclude that there is not compelling evidence of isotopic outliers in the APT data, and the ratios 
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measured therein are consistent with solar system values. Of course, given our sensitivity, our 

results are also consistent with small isotopic anomalies. 

7.4.2 Disordered C in the Acid Residue 

For the first time, nanodiamonds on the order of 1 nm in diameter are observed embedded in 

between the Pt multilayers of microtips, identified in STEM HAADF imaging and diffraction 

patterns. Low-density C was detected by atom-probe tomography in two of the microtips for 

which tentative TEM evidence exists for the presence of nanodiamonds. The best explanation is 

that what we detect in APT reconstructions are ions from disordered sp
2
-bonded C surrounding 

the nanodiamonds in the acid residue that could not be detected by TEM, but that some or all of 

each nanodiamond fell out after being exposed at the microtip edge or apex. This is consistent 

with many other cases in which the measured density of C detected by APT is too low to be 

explained by other known APT effects. Indeed, we observed an instance of a 5 nm carbonaceous 

grain embedded in the surface, presumably a nanodiamond, disappearing, leaving a hole behind, 

after it was identified by EELS and STEM HAADF Z-contrast imaging. The above interpretation 

is that more signal is lost from nanodiamonds than from disordered C. A carbon atom on the 

surface of a roughly spherical nanodiamond is bonded with three C–C bonds when it is first 

exposed on the surface. If, on the other hand, a C atom is exposed on the edge of a graphene 

sheet, it only has two C–C bonds. Prediction of field-evaporation behavior based on this 

difference is nuanced: If chunks of disordered C are bonded to the Pt matrix or to other chunks of 

disordered C, it will be easier to tear these chunks from their bonds than to remove a chunk from 

a nanodiamond. On the other hand, individual disordered C atoms should field evaporate more 

readily than nanodiamond atoms, so it is less likely the local field will increase enough to 

remove entire chunks of disordered C; rather, C ions will field evaporate as they are exposed, 
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“unraveling” the sheets of sp
2
-bonded material. The nanodiamond atoms, or sp

2
-bonded closed 

volumes (such as C60 buckyballs or concentric graphene shells, potentially present around the 

nanodiamonds) will not field evaporate as easily. This implies that the degree of damage done to 

the different phases in the acid residue is important to understanding how they will field 

evaporate. Compared to nanodiamonds surrounded by disordered sp
2
-bonded C, isolated 

nanodiamonds may have more bonds to the sputter deposited Pt, strong enough to prevent loss of 

the diamond for some time, creating holes in the reconstruction (e.g., cross sections of APT data 

sets R06 18430 (Figure 7.16) and R06 19354 (Figure 7.17)). But nanodiamonds embedded in 

disordered C, laid down together in solution, are much more likely to be removed quickly from 

the sample by the electric field and laser pulsing due to weak bonds to the surrounding low-

density material (e.g., HG01-B, HG01-C, and likely many others). 

Comparing these competing factors, the higher field required for the field evaporation of 

diamond compared to disordered C probably dominates cluster loss behavior, making it more 

likely to lose signal from nanodiamonds than from disordered C. 

In many cases, even without correlated TEM data, we have distinguished between the two phases 

of acid residue material, one consistent with disordered C, the other with nanodiamonds. Many 

data sets contain fractions of each phase, with the disordered phase often located around the 

periphery of the nanodiamonds (e.g., Figures 7.8 and 7.20). This appears to vary based on 

variations in how the acid residue deposit for the multilayer is made, and what regions of the 

multilayer are selected for FIB liftout. 
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Analysis of the isotopic ratios of data sets dominated by one phase or the other does not indicate 

a large difference in the isotopic ratios of the two phases; however, our sensitivity to anomalies 

in 
13

C content is on the order of 10s of %, not single % or ‰. 

7.4.3 Isotopic Assessment of Data Sets with 1–10 Nanodiamonds 

Normalization to the bulk isotopic ratio of the terrestrial detonation nanodiamond standards 

eliminated much but not all of the effects of instrumental artifacts (Sections 7.3.1 and 7.3.2). The 

remaining effects were detected by data-set by data-set self-standardization of the acid residue 

using the low-level terrestrial C contamination in the IBS-deposited Pt matrix (Section 7.3.4). 

None of the 36 APT data sets, each containing 1–10 nanodiamonds and unknown amounts of 

disordered C, showed signs of major (100s of ‰) 
13

C enrichment, or extreme (1000s of ‰.) 
13

C 

depletion. Smaller isotopic anomalies could have been present below the sensitivity of the 

technique. 

In light of the results from each of these two methods for standardization against instrumental 

artifacts in APT isotope ratio measurements, one cannot be entirely discarded in favor of the 

other; rather, it remains useful, even necessary, to take advantage of the benefits of each to help 

correct for the weaknesses of the other. The first method leverages larger numbers of counts and 

data sets for better statistics and comparisons of various samples, while the second method 

minimizes the effects of sample preparation and different analysis conditions on the 

standardization process. 

7.4.4 Isotopic Ratios of Nanodiamonds vs. Disordered C 

SEM, TEM, and APT evidence allow for qualitative distinctions to be made between APT 

reconstructions that are dominated by disordered C or nanodiamond. Trends, albeit weak ones, 
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exist between decreasing O/residuals and increasing 
12

C
+
/
13

C
+
 ratio, and between increasing 

C1+(2×C2)+(3×C3)/residuals and increasing 
12

C
+
/
13

C
+
 ratio. Several interpretations are available: 

(1) 
12

CH
+
 hydride formation goes up with increasing O and decreasing fraction of C, causing 

lower measured C
+
 ratios but not lower C

++
 ions. 

(2) Higher O counts and lower C counts relative to total acid residue counts are not a sign of a 

larger fraction of disordered C, but of a higher fraction of Pt matrix contamination. This is a 

doubtful interpretation because Figure 7.13 indicates no trend for the C counts with increasing Pt 

counts, and only a small trend towards higher O counts with increasing Pt counts, with a poor 

linear fit. But if this interpretation is correct, increased Pt matrix contamination in a data set 

corresponds to more isotopically heavy C
+
 ions (Figure 7.12), suggesting that either the acid 

residue has higher isotopic ratios than the matrix, or else different field evaporation conditions or 

experimental artifacts such as hydride interference are resulting in different ratio measurements. 

This could imply the presence of a few data sets with isotopically light C
+
 in the acid residue, but 

does not explain why we do not measure similar trends for C
++

. 

(3) It is possible the observed trends are produced by the random scatter of the ratio data and do 

not have any implications for the sample or experimental artifacts. The fits to a trend line do not 

have high enough R
2
 values to rule out this possibility with a high degree of confidence. 

(4) Decreasing O and increasing C counts correlate with decreasing disordered C and increasing 

nanodiamond content in a data set. In this interpretation, our results indicate that the 

nanodiamonds have higher isotopic ratios than the disordered C, and that these two phases form 

from two different reservoirs of carbonaceous material. However, it must be remembered that the 

trends were only apparent for the 1
+
 ratios. 
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Interpretations (1) and (2) call for further work to understand and control factors for sample 

preparation, and to correct for various instrumental artifacts. Interpretation (3) calls for the 

collection of more data points with higher atomic detection efficiency to improve statistics, and 

is consistent with any scenario in which the disordered C and nanodiamonds have similar mean 

isotopic ratios for aggregates on the order of thousands of C atoms. This includes most 

explanations for the formation of the disordered C and nanodiamonds: That one phase formed 

from the other; that they originated from the same stars; that they formed together in the ISM; or 

that both formed from an isotopically homogenized reservoir such as the early solar system. 

Interpretation (4), that the nanodiamonds have slightly higher 
12

C/
13

C ratios than the disordered 

C in the acid residue, has the most implications for the origins of presolar nanodiamonds, which 

are discussed in Section 7.4.6.  

7.4.5 Summary of Experimental Findings on Nanodiamonds 

(1) APT findings are consistent with bulk studies by stepped heating and small-bulk studies by 

NanoSIMS. Aggregates of various numbers of nanodiamonds (1–10 by APT, ~1000 and ~10
6
 by 

NanoSIMS (Lewis et al. 2017) show mostly insignificant deviation from solar system isotopic 

ratios. 

(2) 
13

C-enriched outlier data sets observed by APT are best explained as the result of 

instrumental artifacts such as 
12

CH
+
 hydride interference affecting some data sets more than 

others. This non-detection of strong isotopic anomalies in a data set of about 100 nanodiamonds 

is consistent with the four to five probable 
13

C-enriched aggregates out of 72,103 NanoSIMS 

measurements of ~1000 nanodiamonds at a time (less than one anomaly per ten thousand 

measurements), in that strongly 
13

C-enriched material appears to be present in the acid residue, 

but only in concentrations less than 1/1000. 
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(3) There is inconclusive evidence that the disordered C has isotopic compositions that are 
13

C-

enriched relative to the nanodiamonds. 

(4) The sensitivity of APT measurements and the amount of material analyzed to date is 

insufficient to provide additional insight into the evidence from broadening of distributions of C 

isotopic ratio measurements by NanoSIMS that the acid residues are composed of material from 

at least two reservoirs with different ratios of 
12

C/
13

C. 

7.4.6 Implications for Nanodiamond Origins 

Supposing, based on these findings, that a small minority of nanodiamonds are extremely 

enriched in 
13

C, that some potentially larger fraction have varied (but not extremely anomalous) 

isotopic ratios, and that different fractions of the nanodiamonds could be from different presolar 

and solar sources, additional discussion is warranted concerning the locations and processes 

where and by which meteoritic nanodiamonds may have formed. 

Supernova: Type II, He/C Shell 

Nanodiamond formation by chemical vapor deposition (CVD) requires free C, and under 

equilibrium conditions a ratio of carbon to oxygen > 1 is required for the presence of C not 

trapped in CO. The He/C shell in Type II supernovae provides C >> O, as well as abundant 
12

C 

through the triple-alpha process (Figure 1.2). Mixing of material from the adjacent 
13

C-rich He/N
 

zone during and after the explosion can provide a broad range of C isotopic ratios. No estimate 

exists for the mean
12

C/
13

C ratio one might expect from He/C shell nanodiamonds from a variety 

of supernovae. Quantitative modeling has so far not been sufficient to conclude confidently what 

the average 
12

C/
13

C ratio would be in the He/C shell with mixed-in He/N shell material of a 

supernova of a given mass. And if nanodiamonds form in the He/C shells of many supernovae of 

different masses, a better understanding of the distribution of masses in Type II supernovae is 
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also required before such an estimation could be made. However, Type II supernovae produce a 

minority of the total carbon in the interstellar medium (Meyer 1997), so it is unlikely that the 

average supernova 
12

C/
13

C ratio is the same as the solar system ratio. This implies that only a 

minority of meteoritic nanodiamonds could come from Type II supernovae, unless some 

mechanism is found that allows for nanodiamond formation only within a narrow range of 

12
C/

13
C ratios in a mix between the He/C and He/N zones, and that, by chance, that narrow range 

of ratios happens to be close to the solar system C isotopic ratio. 

One significant difficulty in reconciling supernova formation with data on presolar grains is that 

only nanodiamonds have been found to carry Xe-HL, but a significant fraction of presolar 

graphite grains and a small fraction of presolar SiC grains have been identified as coming from 

supernovae. If the nanodiamonds and Xe-HL come from supernovae, these other supernova 

grains should also contain a Xe-HL component. However, nanodiamonds are the most abundant 

type of presolar grain by mass. If a large fraction of the nanodiamonds are from supernovae, it 

implies that only a very small fraction of supernova grains are implanted with Xe-HL (fewer 

than 1 in a million nanodiamonds are required to carry an atom drawn from a reservoir of Xe-HL 

isotopes). The mass concentrations of supernova SiC and graphite in carbonaceous chondrites 

are factors of roughly 1000 times smaller than that of nanodiamond, so if most of the 

nanodiamonds are from supernovae, we would expect the concentration of Xe-HL that is from 

supernova SiC and graphite to be 1000 times smaller (Zinner 2014), possibly below the 

sensitivity of the stepped heating and gas mass spectrometry originally used to trace and isolate 

the carrier of Xe-HL. 
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But again, if a large fraction of nanodiamonds formed in the He shell, a mechanism is needed to 

explain why they have, on average, solar system C and N isotopic ratios and no dramatic C 

isotopic heterogeneity; to date, none exists. 

If, on the other hand, only a small fraction of nanodiamonds are from supernovae, the C and N 

isotopes are no longer an issue, but a mechanism must be found to explain the absence of Xe-HL 

in supernova SiC and graphite. If, for example, only 1 in 10,000 nanodiamonds are from 

supernovae, and about 1 in 10
6
 nanodiamonds carries an atom of Xe from the Xe-HL reservoir, 

then about 1 in 1000 supernova nanodiamonds is required to carry the Xe-HL, and one would 

expect the same amount of Xe-HL to be carried by SiC and graphite by mass in carbonaceous 

chondrites, but this is clearly counterindicated by experiments. The conclusion is that either a 

large fraction of meteoritic nanodiamonds formed in the He shell with solar C and N isotopic 

ratios, or else the Xe-HL is not carried by He-shell nanodiamonds. 

Another difficulty with nanodiamond formation in the He shell is the lack of evidence for 
26

Al 

incorporation into the nanodiamonds, as 
26

Al is known to have been produced in this shell 

(Woosley and Weaver 1995; Zinner 2014). But measurements of nanodiamond-containing 

meteoritic acid residues from Murchison and Allende did not find such evidence (Besmehn, 

Hoppe, and Ott 2011). 

Supernova: Type II, H Shell 

There may be transient free C in C/O < 1 regions of supernovae for the first few years after the 

explosion due to ultraviolet radiation from short-lived radionuclide 
56

Ni dissociating CO. 

Simulations of C grain formation competing with CO suggests that free C may be able to 

nucleate carbonaceous grains in spite of a C/O ratio less than 1 (Clayton et al. 1999; Deneault et 

al. 2006). However, there are several lines of evidence that SiC and graphite grains did not form 
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in regions where C/O < 1 (Zinner 2014, and references therein), meaning there is no evidence 

that carbonaceous grains are forming there. Under most circumstances, graphite is 

thermodynamically favored to form over diamond, so it would not seem likely that 

nanodiamonds formed in these regions if graphite could not. However, in laboratory 

environments, CVD of diamond occurs much more readily in the presence of hydrogen (Angus 

and Hayman 1988; Frenklach and Spear 1988), which makes the H-rich shell attractive for 

nanodiamond formation, if O does not bind up all the free C. Lower C/O ratios increase the 

probability of diamond vs. graphite products from CVD processes (assuming formation of 

carbonaceous grains proceeds at all). There are two mechanisms that may contribute to this. 

First, O introduced into laboratory CVD environments has been shown to destroy graphite by 

oxidation, leaving only the nanodiamonds behind. Second, O may serve a similar role as H in 

catalyzing diamond formation preferentially to graphite (Michael Frenklach, personal 

communication). Most studies of CVD have laboratory conditions in mind; even in that context 

modeling of the exact kinetic and chemical processes is complex (e.g., Frenklach and Wang 

1991), so there remains considerable uncertainty as to exactly what conditions would foster 

nanodiamond growth in supernovae environments. 

Instead of forming by CVD, small carbonaceous grains may be annealed into nanodiamonds by 

absorption of ultraviolet photons from radioactive decay of 
56

Ni (Nuth and Allen 1992). Again, 

this requires either the appropriate concentration of H, or the appropriately low C/O ratio to 

prevent the grains from forming graphite instead of nanodiamond. One argument against this, 

and any formation condition other than CVD, is that the frequency of occurrence of twin 

boundaries in meteoritic nanodiamonds is consistent with that expected from CVD nanodiamond 

formation (Daulton et al. 1996). 
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For nanodiamonds to form in the H shell, mixing in of material from the next two lower shells: 

He/N (
13

C-rich) and He/C (
12

C-rich) is required to provide C, and, indeed, significant mixing 

during and after the explosion is expected (e.g., Fedkin et al. 2010). This would create a wide 

range of 
12

C, 
13

C, and H concentrations. It is possible that a mixture of 
13

C- and 
12

C-rich zones 

could correlate with the appropriate concentrations of C and H for CVD growth of 

nanodiamonds to be favored over graphite formation. 

Such specific formation requirements for CVD nanodiamond growth, including not only the 

presence of H and some form of C, but also low C/O ratio and a source of UV photons, offer 

explanatory power to explain why nanodiamonds have trace element signatures that are only 

consistent with supernovae, not AGB stars, whereas most other presolar grain types have large 

populations that originated from AGB stars. That is, diamond may not form around AGB stars 

because it is a metastable state of C while graphite is a stable state, but might form in Type II 

supernova H shells because of precise formation conditions being met. This also separates the 

nanodiamond formation conditions from those of supernova graphite and SiC, both in location 

and possibly in time, leaving open the possibility of a scenario in which the Xe-HL implants into 

just the nanodiamonds. This would resolve several issues, allowing a small fraction of the 

nanodiamonds to be from supernovae and carriers of Xe-HL, some with the observed non-solar 

isotopic ratios, while not requiring non-existent Xe-HL in presolar SiC and graphite. 

Supernova: Type Ia 

Binary star systems that undergo Type Ia supernova explosions have been suggested as a 

formation location for the meteoritic nanodiamonds (Jorgensen 1988). Particularly, a red giant 

with C/O>1, that is, a C star, could produce the nanodiamonds, and a companion white dwarf 

experiencing a Type Ia supernova could implant Xe-HL. Similar difficulties with reconciling the 
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data are present for this formation environment as for Type II supernovae, but it offers the same 

explanatory advantages by forming the nanodiamonds in conditions hostile to SiC and graphite 

formation. 

If one takes the position that nanodiamonds are formed in C/O < 1 material through 
56

Ni-driven 

UV photodissociation of CO, red dwarfs other than carbon stars (i.e., oxygen stars with C/O < 1) 

could create the C for the nanodiamonds instead of C stars, but only after the supernova 

explosion. As in Type II supernovae, the explanatory advantage of this aspect of the model is 

that it explains why we do not find significant numbers of nanodiamonds from AGB stars – it is 

because CVD processes typically form either graphite or nanodiamonds, and it is only in 

supernovae that the proper conditions are met for nanodiamond formation on a large scale. 

Interstellar Medium 

Supernova shock waves traveling through the interstellar medium might convert carbonaceous 

organics into nanodiamonds and disordered carbon (Stroud et al. 2011) with the low 

concentration of Xe-HL and other supernova trace element phases, as observed in meteorites. 

This scenario predicts the same carbon isotopic ratios for the two carbonaceous phases, so more 

conclusive atom-probe measurements of the isotopic ratios of the two phases, or a different 

experimental approach to separating and measuring the isotopes in the two phases, would be 

helpful in testing this explanation for the nanodiamond origin. 

The solar system C isotopic ratio in the bulk nanodiamonds may be consistent with this 

formation mechanism, assuming the carbonaceous material is similar to that of the well-mixed 

protosolar nebula. If the nanodiamonds formed in the protostellar nebula, the question is raised 

as to why other, orders-of-magnitude larger presolar grains were not also implanted with Xe-HL. 
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If they were, one must argue that the lower concentration of these grains and the presence of 

other components have so far prevented the Xe-HL components from being detected in those 

grains. 

Condensation of a handful of grains in supernovae would account for 
13

C-enriched grains in this 

scenario. 

Solar System: Evidence 

Nanodiamonds are strongly depleted in non-cluster IDPs (Dai et al. 2002), a puzzling 

observation if the nanodiamonds are presolar and thus were present in the early solar system 

when the IDPs formed. In order to explain the absence of nanodiamonds one must either posit a 

heterogeneous presolar grain distribution, with lower grain abundances in the outer solar system, 

or else a different formation location for non-cluster IDPs than currently believed – outer solar 

system material such as IDPs could be material that was processed by the sun, reducing dust 

content, and then circulated into the outer solar system (Dai et al. 2002). Either scenario would 

be a striking revision to our understanding of early solar system processes. IDP parent-bodies are 

theorized to form in the same regions as comets, for which some presolar grain data exists due to 

the Stardust mission’s return of material from the comet Wild II (Brownlee 2014). Very few 

presolar grains have been detected from this comet, none of them nanodiamonds. However, 

comparison to test shots using well-characterized meteoritic material showed that most of the 

apparent depletion was the result of sorting, alteration, and destruction of grains during 

collection (Floss et al. 2013). 

Signals from nanodiamonds may have been observed in the circumstellar disks of young stars, 

suggesting that the conditions for their formation can and do exist in protostellar environments, 

and therefore may have existed in our own young solar system. Infrared emission lines from C-H 



273 

 

bulk-terminated stretch modes have been observed in the circumstellar disks around some young 

stars. These signatures could be from hydrogenated nanodiamond surfaces (Van Kerckhoven, 

Tielens, and Waelkens 2002). However, they could also be from diamondoids, carbonaceous 

structures smaller than 1 nm (Pirali et al. 2007). 

Bulk-termination bonding occurs on diamond-bonded structures, but not sp
2
-bonded structures, 

indicating that if these signals are from nanodiamonds, the grains are not covered in sp
2
-bonded 

shells. Bulk-termination bonding is thermodynamically favored above 800 K, but excluded 

above 1300 K, as dehydrogenation and conversion of nanodiamond surfaces to a graphite shell 

begins above this temperature. This establishes a temperature range for the formation of these 

potential nanodiamonds. 

The vast majority of spectroscopically observed protostellar disks do not, however, bear the 

distinctive signature of these diamonds. Perhaps in many environments nanodiamonds form but 

are surrounded by sp
2
-bonded carbon shells. Or perhaps there are as-yet-undetermined 

requirements for their formation that are not met by most protostellar environments. 

Solar System: Formation Mechanisms 

Whether or not nanodiamonds form in protostellar or young solar environments has yet to be 

conclusively demonstrated. Given the presence of free atomic C in a low-pressure environment, 

graphite formation is typically favored over C. Hydrogen overabundance can, however, make the 

formation of diamond favorable over graphite (Angus and Hayman 1988; Frenklach and Spear 

1988), and the presence of O may serve a similar role; however, for C/O < 1, CO formation 

dominates easily over graphite or diamond. Fischer-Tropsch reactions on a substrate such as Fe 

can catalyze CO dissociation, and iron grains are believed to be present in the early solar system 

(Meibom et al. 1999). Alternatively, diamond might have been formed indirectly, by 
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transformation of presolar graphitic, sp
2
-bonded C to sp3-bonded diamond. Shock transformation 

of sp
2
-bonded C “onion shell” fullerene structures is an example of a potentially viable process 

(Marks et al. 2012) that could have taken place through collisions with early solar system solids. 

Whether the precise conditions for condensation of nanodiamond are commonly, or ever, 

provided by circumstellar disk environments remains unknown. It is therefore difficult to assess 

the likelihood that such conditions existed in our solar system. However, most of the 

nanodiamonds have solar system 
12

C/
13

C isotopic ratios, down to small clusters, evidence that 

such conditions can and did exist. 

Conclusions 

In conclusion the presence of Xe-HL and a small (<1/1000) fraction of greatly 
13

C-enriched 

nanodiamonds, along with evidence that the nanodiamonds are composed of a mixture of C 

isotopic material, strongly implies the presence of supernova material in the nanodiamonds. 

But unless one can produce a mechanism to put Xe-HL in a large fraction of supernova 

nanodiamonds while not putting it into supernova SiC and graphite, one must assume a large 

fraction of nanodiamonds are from supernovae, in order to posit that the fraction of supernova 

grains with Xe-HL implantation is low, and this leads to irreconcilable problems with the C and 

N ratios in the nanodiamonds. 

Condensation of nanodiamonds in the H shells of Type II supernovae, where supernova SiC and 

graphite do not form, is not a complete explanation for this phenomenon, but would be a step in 

the right direction, as this mechanism separates the formation conditions and environment for 

supernova nanodiamonds from other types of presolar grains. 



275 

 

Co-formation of nanodiamonds and disordered C by supernova shock in the interstellar medium, 

given plenteous carbonaceous precursor material and effective transformation, implies the same 

isotopic contents in the two phases of C and a low level of Xe-HL in other presolar grains, both 

of which implications are likely to be experimentally testable in the near future. 

7.4.7 Outlook of Investigations into the Origins of Meteoritic Nanodiamonds 

(1) APT remains the only viable technique for isotopic studies of individual nanodiamonds. 

(2) Quantitative assessment of C isotopes from nanodiamond-containing acid residue still poses 

significant analytical challenges. Carbonaceous materials are prone to correlated evaporation in 

the atom-probe and are difficult to match to a matrix with a similar evaporation field. The acid 

residue has two phases, making it impossible to avoid aberrations in data collection due to 

mismatched field evaporation behavior. Given the high field required for acid residue field 

evaporation, the bonding between IBS-deposited Pt and the acid residue is likely insufficient to 

prevent particles from falling out when they are subjected to high fields and thermal pulsing 

while exposed on the microtip surface. Advances in field evaporation theory regarding correlated 

evaporation and estimation of evaporation fields of various materials may offer insights useful in 

overcoming these challenges. 

(3) Careful control and characterization of acid-residue deposits in multilayers is important for 

future projects. For acid residue deposits in multilayers, a study of deposits using different 

concentrations of acid residue in suspension, different substrate temperatures, and different 

ultrasonication parameters may identify a technique that reproducibly creates deposits favorable 

for FIB liftout of targeted acid residue regions and TEM and APT analysis. Preparation steps 

should be carried out identically for nanodiamond samples and DND standards to minimize the 

differences between the samples. Methods to subdivide the acid residue based on some 
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distinguishing feature (Gilmour et al. 2005; Pravdivtseva et al. 2016; Shatoff et al. 2015; Stroud 

et al. 2016; Verchovsky et al. 1998) are invaluable, because even qualitatively distinguishing the 

phases in APT reconstructions is difficult.  
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Appendix 1 
Python Script to Process Atom-Probe Data, Including Iterative Proportional Fitting of All 

C Peaks 

 
#%% 
 
# -*- coding: utf-8 -*- 
""" 
Created on Mon Aug 19 14:41:13 2013 
 
@author: jblewis 
""" 
""" 
From working directory reads in all .EPOS, .RRNG or .RNG files and ignores all others. 
.EPOS files are generated by the Cameca IVAS software. 
Searches for matches between .EPOS file names and .RRNG file names and uses ranges with that 
EPOS file. 
Writes to list 'a' the multiple data for the n(n-1)/2 multiple hit pairs in each multiple 
event. 
-Prepares and saves a .csv and .txt summary of the dataset with multiple hit data. 
-Saves 2d histograms of various mass-to-charge regions of interest: uncomment figures you 
want. 
Memory errors are common. This will vary by dataset but takes up more than 1Gb RAM 
 
New to version '*ExhaustiveC': 
-reads in .rng or .rrng file and parses each range as one to deadtime correct and report on. 
Deadtime correction deviations are relative 
to the other ions in the matrix, so only include essential, independent ions (e.g., all C 
ions) in the range file. 
-deadtime correction can accept any square (n*n) matrix and deadtime correct. 
 
NOTE on deadtime correction: Uses Iterative proportional fitting as in Saxey 2011. The 
algorithm is prevented from subtracting counts from the original value detected, 
even at the expense of proper correlation. 
 
NOTE on plots: 2d histogram bins where mass1 > mass2 should be empty to first order because 
mass ~ time-of-flight ~ arrival order... 
...heavier mass/charge should always arrive later. you could just reflect the data across the 
axis, p_{ij}= p_{ji} (e.g. Saxey), but why plot data that isn't there? 
Still, if we plot every p_{ij} except i = j we're including many ions multiple times -- ion 
count information is not contained in the historgram, only PAIR count information. 
NOTE2 on plots: 1d histogram plots all the ions from the matrix a, which repeats ions, so it 
is not an accurate mass spectrum -- just for quick comparison 
 
NOTE: written for python 3.3 compatibility. input() replaces raw_input(). pre-python3 
interprets input() differently 
Also, 3.3 requires print() rather than print 
 
Based on v18 of IO-for-EPOS-files 
 
""" 
import math 
import struct 
import numpy as np 
import matplotlib.pyplot as plt 
from matplotlib.colors import LogNorm 
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import gc 
import os 
from matplotlib.ticker import LogFormatter 
from matplotlib.ticker import LogLocator 
import sys 
import pandas as pd 
import datetime 
 
#Choose parameters for 2dhistogram (consider making this interactive where these are 
defaults). 
bpd = 20 #TODO was 20bins per daulton. Must be an integer. bins 5000 or higher in 
np.histogram2d may result in a MemoryError 
dpb = 0.05 #daultons per bin. Using different variables to avoid division problems 
if bpd != 1/dpb: 
    sys.exit("bpd != 1/dpb! Please revise parameters to make sense") 
dpi=480 #default 80 in matplotlibrc 
sizex = 16 
sizey = 12 # (8,6) default in matplotlibrc 
xlabel = 'Ion 2 mass-to-charge-state ratio\n(amu)' 
ylabel = 'Ion 1 mass-to-charge-state ratio\n(amu)' 
 
#The leftmost and rightmost edges of the bins along each dimension (if not specified 
explicitly in the bins parameters): [[xmin, xmax], [ymin, ymax]]. 
#...All values outside of this range will be considered outliers and not tallied in the 
histogram. 
#extent using edges is different from extent defined here. 
#imshow(aspect = 'equal') plots bins, not masses 
#imshow(asepect = 'auto') plots bins, not masses 
rangeov = [[0,250],[0,250]] 
rangec12 = [[5,14],[5,14]] 
rangept200 = [[185,200],[185,200]] 
rangelowmass = [[0,50],[0,50]] 
rangech = [[0,14],[5,14]] 
rangeh = [[0,2],[5,14]] 
#range = [[,],[,]]#range = [[xmin, xmax],[ymin,ymax]] 
 
rangeSi =  [[11, 27], [11, 27]] 
 
binsov = (rangeov[0][1] - rangeov[0][0])*bpd 
binsc12 = (rangec12[0][1] - rangec12[0][0])*bpd 
binspt200 = (rangept200[0][1] - rangept200[0][0])*bpd 
binslowmass = (rangelowmass[0][1] - rangelowmass[0][0])*bpd 
binsch = [np.arange(rangech[0][0] + dpb, rangech[0][1] + dpb/2,dpb/2), 
np.arange(rangech[1][0]+dpb,rangech[1][1] + dpb/2,dpb/2)] 
binsh = [np.arange(rangeh[0][0] + dpb, rangeh[0][1] + dpb/2,dpb/2), 
np.arange(rangeh[1][0]+dpb,rangeh[1][1] + dpb/2,dpb/2)] 
#bins = [np.arange(range[0][0] + dpb, range[0][1] + dpb,dpb), 
np.arange(range[1][0]+dpb,range[1][1] + dpb,dpb)] 
 
binsSi = (rangeSi[0][1] - rangeSi[0][0])*2*bpd 
 
sizeov = (sizex, sizey) 
sizeov1d = (16,12) 
sizec12 = (sizex/2, sizey/2) 
sizept200 = (sizex/2, sizey/2) 
sizelowmass = (sizex, sizey) 
sizeh = (sizex, sizey/3) 
sizech = (sizex, sizey) 
 
sizeSi = (sizex, sizey) 
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#%% 
def ion_ops( m, ran, ion ): #Run these operations identically for every ion in the EPOS data 
set 
    for r in range(len(ran)): 
        if(m>ran[r][0] and m<ran[r][1]): 
            ion[r] += 1 
    return ion; 
 
#%% 
def deadtime_correction( c0 ): 
     
    dslist = []#list to hold deviation sums. Length of this list will be the number of 
iterations.      
     
    #cp0 will hold original matrix values for comparison. 
    cp = c0.copy() 
    ctest = c0.copy() 
 
    ds = 1.0 #sum d's 
    ds0=1000.0 #previous iteration d's sum 
    ds_test = 1.0#decrease in d's sum this iteration compared to last, set loop end condition 
to some small value. 
 
    dim = c0.shape[0] #NOTE previously d, but that is 1) what is used for matrix of deviations 
2) is a debugger command    
    #we know we'll have a square matrix. Dimension is unknown prior to method call. 
    #symmetrize 
    for i in range(dim): 
        for j in range(dim): 
            if i != j: 
                cp[i,j] = (c0[i,j] + c0 [j,i])/2 
            #if i = j do nothing 
 
    #expectation values. Initializing matrices for 4*4 case. Other isotope systems will 
require different matrix sizes. 
    e = np.ones([dim,dim]) 
     
    #Carbon Pairs Sum. Sum ion pairs in matrix   
    cps = cp.sum() 
    #Carbon Pairs Column Sums. Equal to sums of rows. 
    cpcs = np.zeros(dim)#NOTE np.zeros([1,d]) = array([[0., 0., 0., 0.,]]) which will cause 
problems because of nesting. This is not an issue with np.array([entry a, entry b, entry c]) 
obviously 
    for i in range(dim): 
        cpcs[i] = cp[i].sum() 
         
    #probabilities for each column.  
    pr = cpcs/cps 
    #update e's here 
    for i in range(dim): 
        for j in range(dim): 
            e[i,j] = pr[i]*pr[j]*cps 
             
    dinit = (cp-e)/np.sqrt(e) 
    dsinit = abs(dinit).sum() 
    dslist.append(0)#fill entry 0 -- will not plot on a log axis. 0 so it won't mess up 
average, sum of list     
    dslist.append(dsinit)#fill entry 1 -- the first that will plot on a log axis. Notice the 
extra entry will change n, dsinit if not properly handled 
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    while (ds_test > 0.0000000000000000001): 
         
        #print("Iteration: "); 
                 
        for k in range(dim): 
            #Only needs to be run on one dimension because the matrix is diagonally symmetric. 
            e[k,k] = e[k,k]*(cpcs[k])/(e[k].sum()) 
             
        for k in range(dim): 
            #Prevent diagonal counts from dropping below counts (off-diagonal counts are 
fixed). 
            if e[k,k] > c0[k,k]: 
                cp[k,k] = e[k,k] 
                ctest[k,k] = e[k,k] 
         
        cps = cp.sum() 
        #cp column sums 
        cpcs = np.zeros(dim) 
        for k in range(dim): 
            cpcs[k] = cp[k].sum() 
     
        #probabilities for each column 
        pr = cpcs/cps 
         
        #calculate eijs for next round 
        for i in range(e.shape[0]): 
            for j in range(e.shape[0]): 
                e[i,j] = pr[i]*pr[j]*cps 
 
        d = (cp-e)/np.sqrt(e) 
        ds = abs(d).sum() 
 
        ds_test = ds0 - ds 
        dslist.append(ds) 
        ds0 = ds 
 
    cres = c0.copy()#get back original off-diagonal values 
    for i in range(dim):   
        cres[i,i] = cp[i,i] 
 
    return cres, dslist, d 
       
#%%       
#make date string to attach to output filenames and prevent over-writing  
now = datetime.datetime.now() 
date = now.strftime("%y-%m-%d") 
 
results_path = '..' + os.sep + 'Results' + os.sep + date + os.sep 
""" 
set path string that will be appended to the front of filenames 
#(if empty '' you will create files in the working directory. 
Trying to run the script again in the same working directory 
will cause errors since the data structure of the new files is not IVAS csv output 
""" 
dirname = os.path.dirname(results_path) 
if not os.path.exists(dirname): 
    os.makedirs(results_path) 
 
table = pd.DataFrame() 
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cwd = os.getcwd() 
files = os.listdir(cwd) #get list of files in working directory. 
epos = [] 
rrng = [] 
filepairs = [] 
 
for file in files: 
    if file.lower()[-5:] == '.epos': 
        epos.append(file) 
    elif file.lower()[-5:] == '.rrng': 
        rrng.append(file) 
    else: 
        print(file + ' is not an .epos or .rrng file. Skipping') 
        #files.remove(file) 
 
for i in range(len(epos)): 
    for j in range(len(rrng)): 
        if rrng[j].lower().startswith(epos[i].lower()[:-5]): #see if there's a range file for 
this EPOS file 
            filepairs.append([epos[i],rrng[j]]) 
    else: 
        print(epos[i] + ' does not have a .rrng file of the same name included in the working 
directory. Skipping') 
         
#%%         
for i in range(len(filepairs)): 
     
    # 
    #Read in Ranges 
    # 
     
    rrng = filepairs[i][1] 
    inrrng = open(rrng, 'r') 
    line =  inrrng.readline() 
    while(line != '[Ranges]\n'): 
        line = inrrng.readline() 
    n = int(inrrng.readline().rpartition('=')[2])#the line after [Ranges] must be Number=###, 
so we take everything after the '='. rpartition splits into stuff before and after '=', with 
indices [0] = before [1] = during ('=') and after [2] 
    ranges = []         
         
    for j in range(n): 
        line = inrrng.readline() 
        stuff = (line.partition('=')[2]).split(' ' )#list of strings of everything after the 
range number, separated by spaces 
        ranges.append([float(stuff[0]), float(stuff[1])])#first two stuff are range start and 
stop. Molecule name is in there but not so useful -- just print out the actual ranges 
      
    # 
    #Initialize variables 
    # 
      
    maxmass = 0 
    cntmax = 0 
    ion_count = 0 
    ions = np.zeros(n) 
    mult = 0 
    c = 0 
    cpairs = np.zeros((n,n)) 
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    c13 = 0 
    cmult = 0 
    c12Hmult = 0 
    c6Hmult = 0 
    rangedmultions = 0 
     
    si = 0 
    si14 = 0 
    si28 = 0 
    simult = 0 
    simultions = 0 
             
    # Initialize nested 2d lists with [[mass1], [mass2]] format. Dynamically expanded using 
list.append(). 
    a = [[],[]]     
     
    epos = filepairs[i][0] 
    fname = rrng[:-5]#use range file to distinguish, not epos, since you can run multiple rrng 
files at a time on one epos. 
 
    fnameov = fname+ '_' + str(binsov) + 'bins' 
    fnamec12 =  fname + '_C_singly_charged_' + str(binsc12) + 'bins' 
    fnamept200 = fname + '_Pt_singly_charged_' + str(binspt200) + 'bins' 
    fnamelowmass = fname + '_lowmass' + '_' + str(binslowmass) + 'bins' 
    #fnamech = fname + '_C&H_' + str((rangech[0][1] - rangech[0][0])*bpd*2)+ 'by' + 
str((rangech[1][1] - rangech[1][0])*bpd*2) + 'bins' 
    fnameh = fname + '_Hydrogen_' + str((rangeh[0][1] - rangeh[0][0])*bpd*2)+ 'by' + 
str((rangeh[1][1] - rangeh[1][0])*bpd*2) + 'bins' 
    #fname = fname + '_NAME_' + str((range[0][1] - range[0][0])*bpd)+ 'by' + str((range[1][0] 
- range[1][1])*bpd) + 'bins' 
    fnamedev = fname + '_' + 'Deviation_Reduction' 
     
    fnameSi = fname + '_SiC_' + str(binsSi) + 'bins'     
     
    print("The EPOS file you chose is " + fname) 
 
    # 
    #Reading EPOS file 
    # 
     
    # open .EPOS file as a binary file 
    infile = open(epos,"rb") 
     
    path = results_path + os.sep + fnameov 
    if not os.path.exists(path): #If the code has been run before for this fname, avoid an 
error 
        os.mkdir(path) 
 
    outfilepath =  path + os.sep + fname + "_multiples.txt"         
    outfile = open(outfilepath, "w") 
    outfile.write('Created by ' + os.path.basename(__file__) + '\n') 
    outfile.write('The EPOS file you chose is: ' + '\n' + fname + '\n\n') 
     
    # read the first 44 bytes (x, y, z, mass-to-charge ratio, 
    # time-of-flight, standing voltage, pulsed voltage, 
    # detector-impact-x, detector-impact-y, pulses-since-last-ion, 
    # hit multiplicity) 
    atom = infile.read(44) 
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    while len(atom) == 44: 
        # '>f' signifies that the format of the data is  
        # big-endian float. Each float is 4 bytes long. 
        # "The first 9 values are in floating-point format, 
        # whereas the last two values are in unsigned-integer 
        # format" Atom probe Microscopy. Gault et al 2012) 
        (x,y,z,mass, tof, vdc, vp, xdet, ydet, deltap, nm) = 
struct.unpack('>fffffffffII',atom) 
        cnt = nm 
        ion_count = ion_count + cnt 
        """ 
        if count is one, this takes care of adding one for this ion. If cnt > 1, 
        we're going to skip the next cnt ions including this one, so the operation is correct 
for both. 
        """ 
        ions = ion_ops(mass, ranges, ions) 
         
        if cnt > 1: #this is the first in a set of multiple hits nm long 
            mult = mult + cnt 
            if cnt > cntmax:#check for a new highest # counts in a single pulse 
                cntmax = cnt 
            if mass > maxmass:#check for a new highest mass in a multiple 
                maxmass = mass 
            masses = [] #list of masses in this multiple 
            masses.append(mass) 
            for i in range(0, cnt-1): 
                atom = infile.read(44) 
                (x,y,z,mass, tof, vdc, vp, xdet, ydet, deltap, nm) = 
struct.unpack('>fffffffffII',atom) 
                 
                if mass > maxmass: #check for maxmass. We've already checked for cntmax for 
this entire multiple event. 
                    maxmass = mass 
                masses.append(mass) 
                ions = ion_ops(mass, ranges, ions) 
             
            addcmult=False        
            for m in masses: 
                for bound in ranges: 
                    if (m > bound[0] and m < bound[1]):#huge savings in code by looping 
through a list of ranges, rather than writing them out individually 
                        rangedmultions += 1 
                        addcmult = True 
                
            if addcmult: 
                cmult+=1 
                 
            #n(n-1)/2 unique p_{ij} combinations of n multiples added to data set 
            for i in range(0, cnt-1): 
                for j in range(i+1, cnt-1): 
                    a[0].append(masses[i]) 
                    a[1].append(masses[j]) 
                    for r in range(len(ranges)): 
                        for s in range(len(ranges)): 
                            if ((masses[i] > ranges[r][0] and masses[i] < ranges[r][1]) and 
(masses[j] > ranges[s][0] and masses[j] < ranges[s][1])): 
                                cpairs[r,s] += 1 
 
        atom = infile.read(44) 
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    infile.close() 
 
    ccorrected, dslist, d_final = deadtime_correction(cpairs) 
 
    diff = ccorrected - cpairs 
    sumdiff = diff.sum() 
     
    dsinit = dslist[1]#initial deviation absolute sum (1 not 0 because first entry arbitrarily 
filled with a 0) 
    it = len(dslist) - 1#number of iterations (-1 because first entry was arbitrarily filled 
with a 0, see NOTE above) 
    dsfinal = dslist[it]#final deviation absolute sum (len - 1 because of index starting at 0) 
     
    ion_count = ion_count + sumdiff 
    mult = mult + sumdiff 
    c = c + sumdiff  
    rangedmultions = rangedmultions + sumdiff 
 
    index = [] 
    for i in range(len(ranges)): 
        index.append(str(ranges[i])) 
     
    d_df = pd.DataFrame(data = d_final, index = index, columns = index) 
    d_df.sort_index(axis=0, inplace=True) 
    d_df.sort_index(axis=1, inplace=True) 
    d_df.to_csv(path + os.sep + fname + '_devations_final.csv') 
 
    p_df = pd.DataFrame(data = ccorrected, index = index, columns = index)     
    p_df.sort_index(axis=0, inplace=True) 
    p_df.sort_index(axis=1, inplace=True) 
    p_df.to_csv(path + os.sep + fname + '_corrected_counts.csv') 
                    
    output = {} 
 
    outfile.write('C counts correction' + str(sumdiff) + '\n\n') 
    output['C counts correction'] = sumdiff 
     
    print('maximum counts detected in one multiple event:') 
    outfile.write('maximum counts detected in one multiple event: ' + '\n') 
    print(cntmax) 
    outfile.write(str(cntmax) + '\n\n') 
    output['cntmax'] = cntmax 
     
    print('maximum mass detected in a multiple event:') 
    outfile.write('maximum mass detected in a multiple event: ' + '\n') 
    print(maxmass) 
    outfile.write(str(maxmass) + '\n\n') 
    output['Max Mass'] = maxmass 
     
    print('total ions in dataset:') 
    outfile.write('total ions in dataset: ' + '\n') 
    print( ions) 
    outfile.write(str(ion_count) + '\n\n') 
    output['Total Ions'] = ion_count 
     
    print( 'ions that were part of a multiple event:') 
    outfile.write('ions that were part of a multiple event: ' + '\n') 
    print( mult) 
    outfile.write(str(mult) + '\n\n') 
    output['Mult. Ions'] = mult 
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    print( '% total ions detected that were part of a multiple event detection:') 
    outfile.write('% total ions detected that were part of a multiple event detection: ' + 
'\n') 
    print( float(mult)/float(ion_count)*100) 
    outfile.write(str(float(mult)/float(ion_count)*100) + '\n\n') 
    output['Mult. %'] = float(mult)/float(ion_count)*100 
     
    for i in range(0,n) :  
        for j in range(i,n) : 
            print(ccorrected[i,j]) 
            outfile.write('(' + str(ranges[i][0]) + '-' + str(ranges[i][1]) + ',' + 
str(ranges[j][0]) + '-' + str(ranges[j][1]) + ')' + '(' + str(i) + ',' + str(j) + ') corrected 
pairs ' + str(ccorrected[i,j]) + '\n\n') 
            output['(' + str(ranges[i][0]) + '-' + str(ranges[i][1]) + ',' + str(ranges[j][0]) 
+ '-' + str(ranges[j][1]) + ')' + ' deadtime_corrected pairs '] = ccorrected[i,j]     
             
            print(diff[i,j]) 
            outfile.write('(' + str(ranges[i][0]) + '-' + str(ranges[i][1]) + ',' + 
str(ranges[j][0]) + '-' + str(ranges[j][1]) + ') correction' + str(diff[i,j]) + '\n\n') 
            output['(' + str(ranges[i][0]) + '-' + str(ranges[i][1]) + ',' + str(ranges[j][0]) 
+ '-' + str(ranges[j][1]) + ') correction'] = diff[i,j]     
             
    #print(str(diff[0,0] + diff[2,2])) 
    #outfile.write('12C counts correction' + str(diff[0,0] + diff[2,2]) + '\n\n') 
    #output['12C counts correction'] = diff[0,0] + diff[2,2] 
     
    #print(str(diff[1,1] + diff[3,3])) 
    #outfile.write('13C counts correction' + str(diff[1,1] + diff[3,3]) + '\n\n') 
    #output['13C counts correction'] = diff[1,1] + diff[3,3] 
 
 
    for r in range(len(ranges)): 
        print( 'Number of ions that are between ' + str(ranges[r][0]) + ' and ' + 
str(ranges[r][1]) + ':') 
        outfile.write('Number of ions that are between ' + str(ranges[r][0]) + ' and ' + 
str(ranges[r][1]) + ':' + '\n') 
        print(ions[r]) 
        outfile.write(str(ions[r]) + '\n\n') 
        output['Ion Count ' + str(ranges[r][0]) + '-' + str(ranges[r][1]) + ' amu'] = 
int(ions[r]) 
         
    print( '% total Si ions detected that were part of a multiple event detection:') 
    outfile.write('% total Si ions detected that were part of a multiple event detection: ' + 
'\n') 
    if(si14 + si28 > 0 ): 
        print( float(simultions)/float(si14 + si28)*100) 
        outfile.write(str(float(simultions)/float(si14+si28)*100) + '\n\n') 
        output['Si Mult. %'] = float(simultions)/float(si14+si28)*100     
    else: 
        print('No silicon') 
        outfile.write('no silicon' + '\n\n') 
        output['Si Mult. %'] = 'NA' 
        #    print( 'Number of ions that are in a multiple event and are between ' + 
str(c6Includes[0]) + ' and ' + str(c6pt5Includes[1]) + ' or between ' + str(c12Includes[0]) + 
' and ' + str(c13Includes[1]) + ' Da (better to use IVAS values from careful IVAS ranging):') 
        #    outfile.write('Number of ions that are in a multiple event and are between ' + 
str(c6Includes[0]) + ' and ' + str(c6pt5Includes[1]) + ' or between ' + str(c12Includes[0]) + 
' and ' + str(c13Includes[1]) + ' Da (better to use IVAS values from careful IVAS ranging):' + 
'\n') 
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        #    print( cmultions) 
        #    outfile.write(str(cmultions) + '\n\n') 
        #    output['C-mult-ions-DC'] = cmultions     
     
    print( '% total C ions detected that were part of a multiple event detection:') 
    outfile.write('% total C ions detected that were part of a multiple event detection: ' + 
'\n')     
    if c > sumdiff: 
        print( float(rangedmultions)/float(c)*100) 
        outfile.write(str(float(rangedmultions)/float(c)*100) + '\n\n') 
        output['C Mult. % DC'] = float(rangedmultions)/float(c)*100 
    else: 
        print('No C') 
        outfile.write('No C' + '\n\n') 
        output['C Mult. % DC'] = 'NA' 
     
    #    print( 'pairs of ions in a multiple (e.g. a triple event counts as three pairs) that 
are between ' + str(c6Includes[0]) + ' and ' + str(c6pt5Includes[1]) + ' or between ' + 
str(c12Includes[0]) + ' and ' + str(c13Includes[1]) + ' Da:') 
    #    outfile.write('pairs of ions in a multiple (e.g. a triple event counts as three 
pairs) that are between ' + str(c6Includes[0]) + ' and ' + str(c6pt5Includes[1]) + ' or 
between ' + str(c12Includes[0]) + ' and ' + str(c13Includes[1]) + ' Da:' + '\n') 
    #    print(cmult) 
    #    outfile.write(str(cmult) + '\n\n') 
    #    output['C multiple events'] = cmult 
    #     
     
    #    print( 'Number of H pairs between ' + str(c12Includes[0]) + ' and ' + 
str(c13Includes[1]) + ' Da in a multiple event:') 
    #    outfile.write('Number of H pairs between ' + str(c12Includes[0]) + ' and ' + 
str(c13Includes[1]) + ' Da in a multiple event:' + '\n') 
    #    print( c12Hmult) 
    #    outfile.write(str(c12Hmult) + '\n\n') 
    #    output['(12C+, H+) pairs'] = c12Hmult 
     
    print( 'Ratio (12C+, H+) events to total C events, deadtime corrected:') 
    outfile.write('Ratio (12C+, H+) events to total C events, deadtime corrected:' + '\n') 
    if c > 0: 
        print( float(c12Hmult)/float(c)) 
        outfile.write(str(float(c12Hmult)/float(c)) + '\n\n') 
        output['(12C+, H+)/C_tot_DC'] = float(c12Hmult)/float(c) 
    else: 
        print( 'no c' ) 
        outfile.write('no c' + '\n\n') 
        output['(12C+, H+)/C_tot_DC'] = 'NA' 
         
     
    print( 'Ratio (12C+, H+) events to 13C+ events') 
    outfile.write('Ratio (12C+, H+) events to 13C+ events' + '\n') 
    if c13 > 0: 
        print( float(c12Hmult)/float(c13)) 
        outfile.write(str(float(c12Hmult)/float(c13)) + '\n\n') 
        output['(12C+, H+)/(13C)+'] = float(c12Hmult)/float(c13) 
    else: 
        print('no c13') 
        outfile.write('no c13' + '\n\n') 
        output['(12C+, H+)/(13C)+'] = 'NA' 
        #    print('Divergent?') 
        #    outfile.write('Divergent?' + '\n') 
        #    print(divergent) 
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        #    outfile.write(str(divergent) + '\n\n') 
        #    output['divergent'] = str(divergent) 
     
    print('Iterations to Deadtime correct') 
    outfile.write('Iterations to Deadtime correct' + '\n') 
    print(it) 
    outfile.write(str(it) + '\n\n') 
    output['PF Iterations'] = str(it) 
 
    print('Initial correlation sum') 
    outfile.write('Initial correlation sum' + '\n') 
    print(dsinit) 
    outfile.write(str(dsinit) + '\n\n') 
    output['d sum init'] = str(dsinit) 
 
    print('Final Correlation sum') 
    outfile.write('Final Correlation sum' + '\n') 
    print(dsfinal) 
    outfile.write(str(dsfinal) + '\n\n') 
    output['d sum final'] = str(dsfinal) 
     
    out = pd.Series(output) 
    out.name = fname 
    out.to_csv(path + os.sep + fnameov + "_multiples.csv") 
     
    column = pd.Series(out.values.flatten(), index=out.index) 
    column.name = fname 
    table = table.join(column, how='outer')                 
     
    l_f = LogFormatter(labelOnlyBase=False) 
    l_l = LogLocator(subs=np.arange(1,9,1)) 
    l_l2 = LogLocator(subs=np.arange(1,9,2)) 
 
    """ 
    #Here are various figures. Uncomment the ones you want. They take the majority of the run-
time. 
     
    """ 
    #FIGURE 1: OVERVIEW 
    plt.figure(num=1, figsize=sizeov) 
     
    H, xedges, yedges = np.histogram2d(a[0], a[1], bins=binsov, range=rangeov) 
    extentov = [xedges[0], xedges[-1], yedges[0], yedges[-1]] 
     
    plt.imshow(H, origin='lower', extent=extentov, interpolation='nearest', norm=LogNorm()) 
#interpolation! Remember the image isn't pixel-for-pixel your data. Do any analysis using a or 
H, not the image. 
    plt.xticks(np.arange(xedges[0], xedges[-1], 10)) 
    plt.yticks(np.arange(yedges[0], yedges[-1], 10)) 
    plt.tick_params(axis='both',which='both', direction='out', labelsize='small') 
    plt.xlabel(xlabel, fontsize ='small', multialignment='center') 
    plt.ylabel(ylabel, fontsize ='small', multialignment='center') 
    plt.colorbar(ticks = l_l, format=l_f) 
    plt.title('Overview of ' + fname + ' ' + str(binsov) + 'bins', y=1.01, fontsize = 'small') 
    plt.grid(alpha=0.25, linewidth=0.5) 
     
    plt.savefig(path + os.sep + fnameov, dpi=dpi) 
     
    del H 
    gc.collect() 
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    plt.close()#free up memory 
    """ 
    #FIGURE 5: 1D HISTOGRAM FOR COMPARISON 
    plt.hist(a, bins = binsov, range=(rangeov[0][0],rangeov[0][1]), log=True) 
    plt.xticks(np.arange(xedges[0], xedges[-1], 20)) 
    plt.tick_params(axis = 'both', which ='both', direction='out', width=1, length=6, 
labelsize='small') 
    plt.ylim(ymin = 1) 
    plt.ylabel('number', fontsize='small') 
    plt.xlabel('mass-to-charge-state ratio\n(Da)', fontsize = 'small', 
multialignment='center') 
    plt.title(fnameov + '_1D', y=1.03, fontsize = 'small') 
    plt.grid(alpha=0.25, linewidth=0.5, axis='y') 
     
    plt.savefig(path + os.sep + fnameov + '_1D', dpi=dpi) 
     
    gc.collect() 
    plt.close()#free up memory 
     
    """ 
    # FIGURE 2: ZOOM IN ON SINGLY-CHARGED C 
    plt.figure(num=2, figsize=sizec12) 
     
    Hc12, xedgesc12, yedgesc12 = np.histogram2d(a[0], a[1], bins = binsc12, range=rangec12) 
    extentc12 = [xedgesc12[0], xedgesc12[-1], yedgesc12[0], yedgesc12[-1]] 
     
    plt.imshow(Hc12, origin='lower', extent=extentc12, interpolation = 'nearest', 
norm=LogNorm()) 
    plt.colorbar(ticks = l_l, format=l_f) 
    #plt.xlabel(xlabel, fontsize ='small', multialignment='center') 
    #plt.ylabel(ylabel, fontsize ='small', multialignment='center') 
    plt.xlabel(xlabel, fontsize ='medium', multialignment='center') 
    plt.ylabel(ylabel, fontsize ='medium', multialignment='center') 
    plt.tick_params(axis = 'both', which ='both', direction='in', width=1, length=8, 
labelsize='small') 
    plt.xticks(np.arange(xedgesc12[0], xedgesc12[-1], 1)) 
    plt.yticks(np.arange(yedgesc12[0], yedgesc12[-1], 1)) 
    #plt.title(', y=1, fontsize = 'small') 
    #plt.title(fnamec12, y=1, fontsize = 'small') 
    plt.grid(alpha=0.25, linewidth=0.5) 
     
    plt.savefig(path + os.sep + fnamec12, dpi=dpi) 
     
    plt.close() #free up memory 
    del Hc12 
    gc.collect() 
    """  
    # FIGURE 9: ZOOM IN ON Si++ through Si+ 
    plt.figure(num=9, figsize=sizeSi) 
     
    HSi, xedgesSi, yedgesSi = np.histogram2d(a[0], a[1], bins = binsSi, range=rangeSi) 
    extentSi = [xedgesSi[0], xedgesSi[-1], yedgesSi[0], yedgesSi[-1]] 
     
    plt.imshow(HSi, origin='lower', extent=extentSi, interpolation = 'nearest', 
norm=LogNorm()) 
    plt.colorbar(ticks = l_l, format=l_f) 
    plt.xlabel(xlabel, fontsize ='medium', multialignment='center') 
    plt.ylabel(ylabel, fontsize ='medium', multialignment='center') 
    plt.tick_params(axis = 'both', which ='both', direction='in', width=1, length=8, 
labelsize='small') 
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    plt.xticks(np.arange(xedgesSi[0], xedgesSi[-1], 1)) 
    plt.yticks(np.arange(yedgesSi[0], yedgesSi[-1], 1)) 
    plt.title(fnameSi, y=1, fontsize = 'small') 
    plt.grid(alpha=0.25, linewidth=0.5) 
     
    plt.savefig(path + os.sep + fnameSi, dpi=dpi) 
     
    plt.close() #free up memory 
    del HSi 
    gc.collect() 
 
    #FIGURE 7: ZOOM IN ON C and H 
    plt.figure(num=7, figsize=sizech) 
     
    Hch, xedgesch, yedgesch = np.histogram2d(a[0], a[1], bins = binsch, range = rangech) 
    extentch = [yedgesch[0], yedgesch[-1], xedgesch[0], xedgesch[-1]] 
     
    plt.imshow(Hch, origin='lower', extent=extentch, interpolation = 'nearest', 
norm=LogNorm()) 
    cb = plt.colorbar(ticks = l_l2, format=l_f) 
    plt.xlabel(xlabel, fontsize ='medium', multialignment='center') 
    plt.ylabel(ylabel, fontsize ='medium', multialignment='center') 
    plt.tick_params(axis='both',which='both', direction='in', width =1, length=8, 
labelsize='medium') 
    plt.xticks(np.arange(yedgesch[0], yedgesch[-1], 1)) 
    plt.yticks(np.arange(xedgesch[0], xedgesch[-1], 1)) 
    plt.title(fnamech, y=1, fontsize='medium') 
    plt.grid(alpha=0.25, linewidth=0.5) 
     
    plt.savefig(path + os.sep + fnamech, dpi=dpi) 
     
    plt.close() #free up memory 
    del Hch 
    gc.collect() 
     
    #FIGURE 8: ZOOM IN ON HYDROGEN 
    plt.figure(num=8, figsize=sizeh) 
     
    Hh, xedgesh, yedgesh = np.histogram2d(a[0], a[1], bins = binsh, range = rangeh) 
    extenth = [yedgesh[0], yedgesh[-1], xedgesh[0], xedgesh[-1]] 
     
    plt.imshow(Hh, origin='lower', extent=extenth, interpolation = 'nearest', norm=LogNorm()) 
    plt.colorbar(ticks = l_l2, format=l_f, shrink = 1) 
    plt.xlabel(xlabel, fontsize ='small', multialignment='center') 
    plt.ylabel(ylabel, fontsize ='small', multialignment='center') 
    plt.tick_params(axis='both',which='both', direction='in', width=1, length=6, 
labelsize='medium') 
    plt.xticks(np.arange(yedgesh[0]-dpb, yedgesh[-1]-dpb, 1)) 
    plt.yticks(np.arange(xedgesh[0]-dpb, xedgesh[-1]-dpb, 1)) 
    plt.title(fnameh, y = 1.1, fontsize='small') 
    plt.grid(alpha=0.25, linewidth=0.5) 
     
    plt.savefig(path + os.sep + fnameh, dpi=dpi) 
     
    plt.close() #free up memory 
    del Hh 
    gc.collect() 
     
     
    #end figures removed just for sending short out to Thomas 
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    """ 
    """ 
    #FIGURE 8: ZOOM IN ON HYDROGEN 
    ##################################################### 
    ### Scaling and labels for 2014 LPSC Abstract ### 
    ##################################################### 
     
    plt.figure(num=8, figsize=sizeh) 
     
    Hh, xedgesh, yedgesh = np.histogram2d(a[0], a[1], bins = binsh, range = rangeh) 
    print( Hh.shape, xedgesh.shape, yedgesh.shape) 
    extenth = [yedgesh[0], yedgesh[-1], xedgesh[0], xedgesh[-1]] 
     
    plt.imshow(Hh, origin='lower', extent=extenth, interpolation = 'nearest', norm=LogNorm()) 
    plt.colorbar(ticks = l_l2, format=l_f, shrink = 1)#was shrink = 0.75 
    plt.xlabel('Ion 2 mass-to-charge-state ratio\n(Da)', fontsize ='large', 
multialignment='center') 
    plt.ylabel('Ion 1 mass-to-charge-state ratio\n(Da)', fontsize ='large', 
multialignment='center') 
    plt.tick_params(axis='both',which='both', direction='in', width=1, length=8, 
labelsize='large')#was labelsize='small' 
    plt.xticks(np.arange(yedgesh[0]-dpb, yedgesh[-1]-dpb, 1))# was 
plt.xticks(np.arange(yedgesh[0], yedgesh[-1], 1)) 
    plt.yticks(np.arange(xedgesh[0]-dpb, xedgesh[-1]-dpb, 1)) 
    plt.title(fnamec12, y=1, fontsize = 'small')#plt.title('Allende Microtip R06 18430v01, 
50X225 bins', y = 1.1)plt.title(fnameh, y = 1.1) 
    plt.grid(alpha=0.25, linewidth=0.5) 
     
    plt.savefig(path + os.sep + fnameh, dpi=dpi) 
     
    plt.close() #free up memory 
    del Hh 
    gc.collect() 
    """ 
     
    """ 
    #FIGURE 6: 1D C12 HISTOGRAM FOR COMPARISON 
    plt.hist(a, bins = binsc12, range=(rangec12[0][0],rangec12[0][1]), log=True) 
    plt.xticks(np.arange(xedgesc12[0], xedgesc12[-1], 1)) 
    plt.tick_params(axis='both',which='both', direction='out', width=1, length=6, 
labelsize='small') 
    plt.ylim(ymin = 1) 
    plt.ylabel('number', fontsize='small') 
    plt.xlabel('mass-to-charge-state ratio\n(Da)', fontsize = 'small', 
multialignment='center') 
    plt.title(fnamec12 + '1D', y = 1.03, fontsize='small') 
     
    plt.grid(alpha=0.25, linewidth=0.5, axis='y') 
     
    plt.savefig(path + os.sep + fnamec12 + '_1D', dpi=dpi) 
     
    gc.collect() 
    plt.close()#free up memory 
    """ 
     
    """ 
    #FIGURE 3: ZOOM IN ON SINGLY-CHARGED PT NEAR 200 
    plt.figure(num=3, figsize=sizept200) 
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    Hpt200, xedgespt200, yedgespt200= np.histogram2d(a[0], a[1], bins = binspt200, 
range=rangept200) 
    extentpt200 = [xedgespt200[0], xedgespt200[-1], yedgespt200[0], yedgespt200[-1]] 
     
    plt.imshow(Hpt200, origin='lower', extent=extentpt200, interpolation = 'nearest', 
norm=LogNorm()) 
    plt.colorbar() 
    plt.xlabel(xlabel, fontsize ='medium', multialignment='center') 
    plt.ylabel(ylabel, fontsize ='medium', multialignment='center') 
    plt.xticks(np.arange(xedgespt200[0], xedgespt200[-1], 1)) 
    plt.yticks(np.arange(yedgespt200[0], yedgespt200[-1], 1)) 
    plt.tick_params(axis='both',which='both', direction='in', width=1, length=8, 
labelsize='medium') 
    plt.title(fnamept200, y=1.1, fontsize='medium') 
     
    plt.savefig(path + os.sep + fnamept200, dpi=dpi) 
     
    plt.close() #free up memory 
    del Hpt200 
    gc.collect() 
    """ 
     
    #ZOOM IN ON LOW M/C RATIOS 
    plt.figure(num=4, figsize=sizelowmass) 
     
    Hlowmass, xedgeslowmass, yedgeslowmass= np.histogram2d(a[0], a[1], bins = binslowmass, 
range=rangelowmass) 
    extentlowmass = [xedgeslowmass[0], xedgeslowmass[-1], yedgeslowmass[0], yedgeslowmass[-1]] 
     
    plt.imshow(Hlowmass, origin='lower', extent=extentlowmass, interpolation = 'nearest', 
norm=LogNorm()) 
    plt.colorbar(ticks = l_l, format=l_f) 
    plt.xlabel(xlabel, fontsize ='small', multialignment='center') 
    plt.ylabel(ylabel, fontsize ='small', multialignment='center') 
    plt.xticks(np.arange(xedgeslowmass[0], xedgeslowmass[-1], 5)) 
    plt.yticks(np.arange(yedgeslowmass[0], yedgeslowmass[-1], 5)) 
    plt.tick_params(axis='both',which='both', direction='in', width=1, length=6, 
labelsize='small') 
    plt.title(fnamelowmass, y=1, fontsize='small') 
    plt.grid(alpha=0.25, linewidth=0.5) 
     
    plt.savefig(path + os.sep + fnamelowmass, dpi=dpi) 
     
    del Hlowmass 
    plt.close() #free up memory 
    gc.collect() 
     
    #FIGURE 6: 1D LOWMASS HISTOGRAM FOR COMPARISON 
    plt.hist(a, bins = binslowmass, range=(rangelowmass[0][0],rangelowmass[0][1]), log=True) 
    plt.xticks(np.arange(xedgeslowmass[0], xedgeslowmass[-1], 5)) 
    plt.tick_params(axis='both',which='both', direction='out', width=1, length=6, 
labelsize='small') 
    plt.ylim(ymin = 1) 
    plt.ylabel('number', fontsize='small') 
    plt.xlabel('mass-to-charge-state ratio\n(Da)', fontsize = 'small', 
multialignment='center') 
    plt.title(fnamelowmass + '_1D', y=1.03, fontsize='small') 
    plt.grid(alpha=0.25, linewidth=0.5, axis='y') 
     
    plt.savefig(path + os.sep + fnamelowmass + '_1D', dpi=dpi) 
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    plt.close()#free up memory 
    gc.collect() 
     
         
     
    #FIGURE 10: DEVIATION REDUCTION DURING IPF 
    if math.isnan(dslist[len(dslist)-1]): 
        print("nan as last entry in dslist, not plotting") 
    else: 
        plt.loglog(dslist) 
        plt.ylabel('ds') 
        plt.xlabel('Iteration') 
        plt.title(fnamedev) 
     
        plt.savefig(path + os.sep + fnamedev) 
     
        plt.close()#free up memory 
    gc.collect() 
     
    outfile.write('\n' + 'end of file') 
    outfile.close() 
 
outcsv = results_path + date + '.csv' 
 
#mode = 'a' appends new column as new rows. Need to read in as a new dataframe and add table 
by column 
if os.path.exists(outcsv): #don't write over old csv file, append to it 
    data = pd.read_csv(outcsv) 
    output = pd.concat([data, table], axis = 1, join = 'outer') 
    output.to_csv(outcsv, mode='w') 
     
else: 
    table.to_csv(outcsv, mode='w') 
 
bla = input("You've reached the end!") 
 
 
""" 
following from Elizaveta Plotnikov at NUCAPT 
#! /usr/bin/env python 
 
# Converts input.pos to input-rotated.pos 
# Rotates .pos file on xy, xz, and yz planes 
 
import struct 
import math 
 
pos = raw_input('What POS file? ') 
theta1 = input('Rotation on X-Y plane (degrees): ') 
theta2 = input('Rotation on X-Z plane (degrees): ') 
theta3 = input('Rotation on Y-Z plane (degrees): ') 
 
fname = pos 
print "The pos file you chose is " + fname 
 
# open .pos file as a binary file 
infile = open(fname,"rb") 
 
# this will create a new file 
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outfile = open(fname[:-4] + "-rotated.pos","wb") 
 
# read the first 16 bytes (x, y, z, mass-to-charge ratio) 
atom = infile.read(16) 
 
thetarad1 = math.radians(theta1) 
thetarad2 = math.radians(theta2) 
thetarad3 = math.radians(theta3) 
 
while len(atom) == 16: 
    # '>f' signifies that the format of the data is  
    # big-endian float. Each float is 4 bytes long. 
    (x,y,z,mass) = struct.unpack('>ffff',atom) 
     
    # X-Y plane rotation 
    if thetarad1 != 0: 
        x1 = math.sqrt(x*x+y*y)*math.cos(math.atan2(y,x)+thetarad1) 
        y1 = math.sqrt(x*x+y*y)*math.sin(math.atan2(y,x)+thetarad1) 
    else: 
        x1 = x 
        y1 = y 
     
    # X-Z plane rotation 
    if thetarad2 != 0: 
        x2 = math.sqrt(x1*x1+z*z)*math.cos(math.atan2(z,x1)+thetarad2) 
        z1 = math.sqrt(x1*x1+z*z)*math.sin(math.atan2(z,x1)+thetarad2) 
    else: 
        x2 = x1 
        z1 = z 
     
    # Y-Z plane rotation 
    if thetarad3 != 0: 
        y2 = math.sqrt(y1*y1+z1*z1)*math.cos(math.atan2(z1,y1)+thetarad3) 
        z2 = math.sqrt(y1*y1+z1*z1)*math.sin(math.atan2(z1,y1)+thetarad3) 
    else: 
        y2 = y1 
        z2 = z1 
     
    outfile.write(struct.pack('>ffff',x2,y2,z2,mass)) 
    atom = infile.read(16) 
     
infile.close() 
outfile.close() 
bla = input("You've reached the end!") 
"""
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Appendix 2 
Python Script to Convert Binary NanoSIMS .IM Files into Text and Spreadsheets, and to 

Conduct Basic and Smallbeam Analyses 

 
#%% 
 
# -*- coding: utf-8 -*- 
""" 
Created on Mon Aug 19 14:41:13 2013 
 
@author: jblewis 
""" 
""" 
 
Specifications(NOT YET FULFILLED): 
From working directory reads in an *.IM file. 
*.IM files are generated by CAMECA NanoSIMS 50 image analyses. 
-User friendly command line interface: 
ISSUE: ipython and stdin don't play nice? 
-Extracts data and metadata. 
-Prints a text version of the *.IM file sans data (for size concerns) 
TODO: not all data correctly parsed. Compare to the text files generated by Cameca for 
improvement 
-Prints images of the summed counts for each element to the file format of your choice. 
-Prints an xlsx of the image data itself, and of the summed data. This file can be easily read 
in via Pandas or another spreadsheet library. 
 
NOTE: endianess may be tricky. Written on Windows 10 and tested against data from WashU 
NanoSIMS 50 Nano 101 
 
NOTE: written for python3.3 compatibility. input() replaces python2 raw_input(). pre-python3 
interprets input() differently 
Also, 3.3 requires print() rather than print 
 
TODO ISSUE running without defaults, and target_cnts set to 1000 isn't hitting the expected 
loops? 
 
""" 
import struct 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.mlab as mlab 
import gc 
import os 
import pandas as pd 
import datetime 
import scipy.stats as sts 
import traceback 
import sys 
 
# 
####Parameters#### 
#%% 
 
default = ''#change to 'y' and this script can be run as an executable 
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txt = '' 
el_xlsx = '' 
sum_xlsx = '' 
images = '' 
sb = '' 
sb_images = '' 
target_cts=None 
im_format=None 
sigma_devs_level = 4 #Any 12C/13C ratio this many sigmas or more from the average will be 
reported in smallbeam analysis 
siC_level = 0.5 #Any Si/C ratio above this value will be reported in smallbeam analysis 
min_c_counts = 1 #Any C counts below this value will be excluded from calculations 
bpu = 1 #bins per unit, how many bins there will be per step (1 unit of 12C/13C) in the 
histogram). 
#%% 
 
DEFAULT = True 
TXT = True 
EL_XLSX = True 
SUM_XLSX = True 
IMAGES = True 
IM_FORMAT = 'png' 
SB = True 
TARGET_CTS=10000 
SB_IMAGES = False 
 
#%% 
 
while default != 'y' and default!= 'n': 
    default = input('Use default settings? (no means you have to make more choices) y/n') 
    if default == 'y': 
        DEFAULT = True 
    if default == 'n': 
        DEFAULT = False 
 
if DEFAULT: 
    pass 
else:         
    while txt != 'y' and txt != 'n' : 
        txt = input('Create text file of experiment metadata? y/n') 
        if txt == 'y' : 
            TXT = True 
        if txt == 'n' : 
            TXT = False 
             
    while el_xlsx != 'y' and el_xlsx != 'n' : 
        el_xlsx = input('Create XLSX spreadsheet file for each element/SE containing image 
data for each layer? y/n' ) 
        if el_xlsx == 'y' : 
            EL_XLSX = True 
        if el_xlsx == 'n' : 
            EL_XLSX = False 
     
    while sum_xlsx != 'y' and sum_xlsx != 'n' : 
        sum_xlsx = input('Create XLSX spreadsheet file for with a sheet of summed pixels for 
each of the elements/SE? y/n') 
        if sum_xlsx == 'y' : 
            SUM_XLSX = True 
        if sum_xlsx == 'n' : 
            SUM_XLSX = False 
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    while sb != 'y' and sb != 'n' : 
        sb = input('Run Smallbeam data analysis module? y/n') 
        if sb == 'y' : 
            SB = True 
            while target_cts == None: 
                try: 
                    target_cts = float(input('specify integer average C counts per pixel to 
target with plane summation. 0 to sum all planes. If you dont know what this means enter 0')) 
                    if abs(target_cts) != target_cts: 
                        print('youve entered a negative number. Please enter a positive 
number') 
                        target_cts = None 
                    if target_cts%1 != 0: 
                        print('Youve entered a non-integer. Please enter an integer.') 
                        target_cts = None 
                except TypeError: 
                    print('Python TypeError. Please enter an integer.') 
                    target_cts = None 
            TARGET_CTS = int(target_cts) 
            while sb_images != 'y' and sb_images != 'n' : 
                sb_images = input('Save high-res images from the small beam analysis? (may use 
lots of hard drive space) y/n') 
                if sb_images == 'y': 
                    SB_IMAGES = True 
                if sb_images == 'n' : 
                    SB_IMAGES = False 
        if sb == 'n' : 
            SB = False 
     
    while images != 'y' and images != 'n' : 
        images = input('Create an image file of summed counts for each element? y/n') 
        if images == 'y' : 
            IMAGES = True 
            while im_format == None:         
                im_format = input('OK. What image format do you want to save to? e.g., jpg png 
bmp pdf eps gif tiff') 
                IM_FORMAT = im_format 
             
        if images == 'n' : 
            IMAGES = False     
 
# 
####endParameters ####      
# 
 
# 
####Functions#### 
# 
 
#%% 
def clean_string( s ): 
    """Cleans a string after reading in.""" 
    #This partition operation removes the 00 bytes padding found at the end of strings in the 
.im files. 
    s = s.partition(b'\x00')[0] 
    #.decode('ascii') gets rid of pesky b in front of a string by translating into an ascii 
string. 
    s = s.decode('ascii') 
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    #string.strip() gets rid of the empty space in front (or after the characters) but does 
not get rid of any remaining padding bytes. 
    s = s.strip() 
     
    return s; 
 
def summed_pixel_by_pixel( planes ): 
    """ 
    Sums the counts at a pixel over multiple planes to most closely match 
    the cts/px of the input target. Repeats the process until it's out of 
    planes. 
    Returns a numpy array of cycles or none (if caught exception) 
    old function summed_over_planes summed until the average counts/pix for an entire 256 
pixel image hit the mean -- this one is going to sum at each pixel. 
    The result will be the same number of pixels as in the data set originally, each one now 
summed over following pixels. 
    For this reason only outliers are meaningful here, and a little harder to definte.     
    """ 
 
    if TARGET_CTS == 0:      
        summed_pixels = np.zeros(planes.shape) 
        for j in range(len(planes[0,:,0,0])): 
            for k in range(len(planes[0,0,:,0])): 
                for l in range(len(planes[0,0,0,:])): 
                    summed_pixels[0,j,k,l] = planes[:,j,k,l].sum() 
    else: 
        summed_pixels = planes.copy()#Copy rather than zeros in case the first cycle is 
already the closest to the target. 
        skip_list = np.zeros(summed_pixels[0,0].shape, dtype='bool') 
        delete_from=-1#skip list may take care of the delete_from functionality. 
        for i in range(len(summed_pixels[:,0,0,0])):#cycle 
            empty=True 
            for j in range(len(summed_pixels[0,0,:,0])):#row 
                for k in range(len(summed_pixels[0,0,0,:])):#column 
                    if skip_list[j,k]==True:#'Weve summed to the end of this profile before, 
do nothing' 
                        print('pixel ' + str(j) + ',' + str(k) + 'ran out of cycles when it 
started summing from cycle ' + str(i) + ', skipping') 
                    else: 
                        planes_summed = 0#keep track of how many planes were summed into this 
pixel 
                        net_c_cnt = 0 
                        prev_c_cnt = 0 
                        for l in range(len(summed_pixels)-i): 
                            net_c_cnt = prev_c_cnt + planes[i+l,0,j,k] + planes[i+l,1,j,k] 
                            if net_c_cnt >= TARGET_CTS: 
                                if abs(net_c_cnt-TARGET_CTS) > abs(prev_c_cnt-TARGET_CTS): 
                                    #done, stop sum with previous, save, and move to next 
pixel 
                                    summed_pixels[i,:,j,k] = planes[i:i+l,:,j,k].sum(axis=0) 
                                    empty=False 
                                    break 
                                else: 
                                    #done, go ahead and sum this cycle, save, and move to next 
pixel 
                                    summed_pixels[i,:,j,k] = planes[i:i+l+1,:,j,k].sum(axis=0) 
                                    planes_summed += 1 
                                    prev_c_cnt = net_c_cnt 
                                    empty = False 
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                                    if i+l+1 == len(summed_pixels):#last index, next sum won't 
make it and will just oversample. 
                                        skip_list[j,k] = True#and do what? all the rest of the 
values are in there... They'll fail the 1/2.5 of the max, though.                                 
                                    break 
                            else: 
                                planes_summed += 1 
                                prev_c_cnt = net_c_cnt 
                            if i+l+1 == len(summed_pixels):#last index and we didn't get a 
sum. No point summing over this again. 
                                skip_list[j,k]=True # and do what? All the values are still in 
there. Could zero them ... 
            if empty: 
                delete_from=i 
                print('set #' + str(i) + ' this whole cycle was empty, done summing for this 
data set and moving on without checking further cycles') 
                break 
                 
                         
                 
                             
            if delete_from !=-1: 
                summed_pixels=summed_pixels[:delete_from] 
             
    return summed_pixels 
     
def bootstrap( data, num_samples, statistic, alpha ): 
    """ 
    Sample with replacement to estimate and return as a tuple the 100.0*(1-alpha) confidence 
interval for statistic. Adapted from http://people.duke.edu/~ccc14/pcfb/analysis.html 
retrieved March 30, 2016 
    num_samples of 10,000,000 has been known to crash a 16 GB RAM Windows 10 system 
    num_samples of 1,000,000 has been observed to use over 5 GB RAM Windows 10 system 
    """ 
    n = len(data) 
    try: 
        idx = np.random.randint(0, n, (num_samples, n)) 
    except ValueError as ve: 
        print('ValueError') 
        print(ve) 
    samples = data[idx] 
    stat = np.sort(statistic(samples, 1)) 
    return ( stat[int((alpha/2.0)*num_samples)] , stat[int((1-alpha/2.0)*num_samples)] ) 
 
 
def ratio_ops( elements, p, num = 1, den = 0 , min_count = 1, siC_level = 0.5, images=False, 
bs=False ): 
    """ 
    Execute ratio operations pertaining to small beam analysis: 
    take a ratio, save the ratio image, save the ratio excel file, and, 
    most importantly, calculate mean, standard deviation, uncertainty in 
    standard deviation (and median, mode, anything else we can think of) 
    and output these to a text file. 
    Returns a lot of things. Read the return statement. 
    Currently accepts only shape (elements, row, column) but probably should shift to 
accepting (cycle or summed layer, elements, row, column) 
    I use this surrounded by a try except Index_Error in case none of the pixels have enough 
counts to avoid being zeroed, in which case mode will throw an Index_Error 
    Set up for 13C/12C (num = 1, den = 0) 
    """ 
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    try: 
        crit_relsig = 0.5#have to have half the average significance to get in 
         
        lyrs = len(elements) 
        rows = len(elements[0,0,:]) 
        cols = len(elements[0,0,0,:]) 
             
        numstring = '13C' 
        denstring = '12C'  
        nums = [] 
        dens = [] 
         
        siC_high = [] 
        rat_image = elements[:,num]/elements[:,den]#for image only; allows divide by zero for 
den counts=0, but will replace the inf with 0 later 
        ccounts = elements[:,num] + elements[:,den] 
        numcounts = elements[:,num].sum() 
        dencounts = elements[:,den].sum() 
        #TODO remove hardwiring of Si isotope index 
        siC_image = elements[:,4]/(ccounts)#for image, not flattened 
        siC = siC_image#previously had this flattened -- not seeing the utility in that move 
anymore 
        e1 = elements[:,num] 
        e2 = elements[:,den] 
        nums_im = np.zeros(e1.shape, dtype='float') 
        dens_im = np.zeros(e2.shape, dtype='float')                 
        mean_ccounts = ccounts[:-1].mean()#Removed last slice before running 
        if len(ccounts[:-1]) == 0 : 
            max_ccount = ccounts.max()#unfortunately this lets all the individual slices pass. 
        else: 
            max_ccount = ccounts[:-1].max() 
             
        if issubclass(elements[:,num].dtype.type, np.integer) or 
issubclass(elements[:,den].dtype.type, np.integer): 
            print('counts are stored as integers, ratios are going to have rounding errors!', 
flush=True) 
     
        siC_check = False         
        if siC.max() > siC_level : 
            siC_check = True 
             
        for i in range(lyrs): 
            for j in range(rows): 
                for k in range(cols): 
                    if siC_check and siC[i,j,k] > siC_level: 
                        siC_high.append(siC[i,j,k])#for processing                 
     
                    if e1[i,j,k] >= min_count and e2[i,j,k] >= min_count and e1[i,j,k] + 
e2[i,j,k] > max_ccount/2.5: 
                        nums.append(e1[i,j,k]) 
                        dens.append(e2[i,j,k])                 
                        nums_im[i,j,k] = e1[i,j,k] 
                        dens_im[i,j,k] = e2[i,j,k] 
                    else: 
                        nums_im[i,j,k] = 0 
                        dens_im[i,j,k] = 0#Ratios for image zero out bad counts pixels -- TODO 
need to remove these from calculations as well? No -- already does with nums, dens.append 
                     
        nums = np.array(nums, dtype='float64')#dtype just to be careful 
        dens = np.array(dens, dtype='float64') 
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        rats = nums/dens#ratios for pixels with above-minimum counts for both num and den. 
Good for math. 
        rat_image = nums_im/dens_im 
        for n in np.nditer(rat_image, op_flags=['readwrite']): 
            if np.isnan(n) or np.isinf(n): 
                n[...]=0 
        pix = rats.size 
        if pix == 0: 
            print('no ratios survived min_count; skipping this layer') 
            return pix, mean_ccounts, numcounts, dencounts, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 
         
        # 
        #Basic math 
        # 
        raterrs = np.sqrt( 1/nums + 1/dens )#fractional 
        raterrs_im = np.sqrt(  1/nums_im + 1/dens_im )#fractional 
        for n in np.nditer(raterrs_im, op_flags=['readwrite']): 
            if np.isnan(n) or np.isinf(n): 
                n[...]=0 
        #weights_raw = 1/np.power(raterrs, 2) 
        #weights_raw_im = 1/np.power(raterrs_im, 2) 
        raterrs_abs = rats*raterrs 
        raterrs_abs_im = rat_image*raterrs_im 
        weights_raw = 1/np.power((raterrs_abs), 2)#modified to be based on absolute rather 
than fractional error 
        weights_raw_im = 1/np.power((raterrs_abs_im*raterrs_im), 2)#modified to be based on 
absolute rather than fractional error 
        for n in np.nditer(weights_raw_im, op_flags=['readwrite']): 
            if np.isnan(n) or np.isinf(n): 
                n[...]=0 
        sum_weights = weights_raw.sum() 
        sum_weights_im = weights_raw_im.sum() 
        weights = weights_raw*pix/sum_weights 
        weights_im = weights_raw_im*pix/sum_weights_im#using pix here because we want to 
explude the pixels that were zeroed out -- they don't count in our weighting normalization 
        wmean = weights.mean() 
        comparison_mean = (weights*rats).sum()/(weights.sum())#considerable skew in ratio due 
to lots of low counts ratios 
        mean = numcounts/dencounts 
        #median = np.median(rats) 
        #mode = sts.mode(rats, axis=None)[0][0] 
        w = weights.sum()/( np.power(weights.sum(), 2) - (np.power(weights, 2)).sum() )  
        ns = weights/wmean#relative significance of this data point. could also use the number 
of counts, not the weights. hmmm. 
        ns_im = weights_im/wmean 
        stddev = np.sqrt(w*(weights*np.power(rats - mean, 2)).sum())     
        seom = stddev/np.sqrt(pix) 
        #old_errstddev = ((2*w)/(stddev))*np.sqrt((np.power(rats,2)).sum() + 
np.power(rats.sum(),2)) 
         
        try: 
            errstddev = np.sqrt(1/(2*(pix-1)))#fractional! 
        except ZeroDivisionError as zde: 
               print(zde) 
               #trace = traceback.format_exc(sys.exc_info()) 
               #print(trace) 
               errstddev = 0#Obviously you can't do a real distribution with one pixel 
             
        devfrac_im = abs(rat_image-mean)/stddev 
        devfrac_flat = abs(rats - mean)/stddev 
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        outliers = [] 
        prof_size=(4.6,2.3)#w, h for figsize attribute 
        for i in range(lyrs): 
            for j in range(rows): 
                for k in range(cols): 
                    if devfrac_im[i,j,k] >= sigma_devs_level and rat_image[i,j,k] != 
0:#checking for zeros -- this means this is a bad data point and should not be included 
                        outliers.append((i,j,k, devfrac_im[i,j,k], ns_im[i,j,k], 
rat_image[i,j,k], e1[i,j,k], e2[i,j,k], elements[i,2,j,k], elements[i,3,j,k], 
elements[i,4,j,k], elements[i,5,j,k]))#Quick and dirty storage using tuples with format: 
CYCLE, ROW, COLUMN, SIGMAS DEVIATION, REL-SIGNIFICANCE, RATIO, 12C COUNTS, 13C COUNTS, 16O, 
12C14N, 28SI, SE. 
                         
        #Using imdata structure of pixels that haven't been summed to a target, plot depth 
profiles of outliers above crit_relsig relative significance (usually set to 1). 
        labels = ['12C counts', '13C counts', '16O counts','12C14N counts', '28Si counts', 'SE 
counts'] 
        to_plot = [] 
        for i in range(len(outliers)):#select only outliers of at or above critical relative 
significance to plot depth profiles for 
            if(outliers[i][4] >= crit_relsig): 
                to_plot.append(outliers[i])         
        #This block plots depth profiles for each ion and SE. 
         
        frames = np.empty(len(to_plot), len(labels)+1) 
        for i in range(len(labels)): 
            #plt.figure(i) 
            for j in range(len(to_plot)): 
                plt.figure(figsize=prof_size) 
                #plt.subplot(len(to_plot),1,j+1) 
                frames[j,i] = imdata[:,i,to_plot[j][1], to_plot[j][2]]                 
                plt.plot(frames[j,i]) 
                prof_title = str(to_plot[j][0]) + '-' + str(to_plot[j][1]) + '-' + 
str(to_plot[j][2]) 
                plt.title(prof_title) 
                plt.savefig(str(p) + str(labels[i]) + '_'+ prof_title + '.' + IM_FORMAT, 
format = IM_FORMAT, bbox_inches='tight') 
                plt.close() 
             
            #plt.xlabel('cycle') 
            #plt.ylabel('profile trace ' + labels[i]) 
            #prof_title = filename + 'outlier_profiles_for' + labels[i]             
         
                """ 
                 
                pd.DataFrame(data=(imdata[:,i, to_plot[j][1], to_plot[j][2]]), 
columns=(prof_title)) 
                frames[i,j].to_excel(writer, prof_title)                 
                 
                      outfile_ratio_flat_xlsx = p + 'ratios_flat.xlsx' 
        output = np.array([rats, nums, dens, devfrac_flat]) 
        writer = pd.ExcelWriter(outfile_ratio_flat_xlsx) 
        df = pd.DataFrame(output).transpose() 
        df.columns = [numstring + '/' + denstring + ' ratio', numstring + ' counts', denstring 
+ ' counts', 'deviation (sigmas)'] 
        df.to_excel(writer) 
        writer.close()""" 
             
        #This block plots 13C/12C 
        #plt.figure(len(labels)) 
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        for i in range(len(to_plot)): 
            #plt.subplot(len(to_plot),1,i+1) 
            plt.figure(figsize=prof_size) 
            plt.plot(imdata[:,num,to_plot[i][1], to_plot[i][2]] / imdata[:,den,to_plot[i][1], 
to_plot[i][2]]) 
            prof_title = str(to_plot[i][0]) + '-' + str(to_plot[i][1]) + '-' + 
str(to_plot[i][2]) 
            plt.title(prof_title) 
            plt.savefig(str(p) + str(to_plot[i][0]) + '_' + prof_title + '.' + IM_FORMAT, 
format = IM_FORMAT, bbox_inches='tight') 
            plt.close() 
        #plt.xlabel('cycle') 
        #plt.ylabel('13C/12C ratio') 
        #prof_title = filename + '13Cto12C_ratio_depth_profile' 
        #plt.title(prof_title) 
 
         
        #This time using summed pixels, plot depth profiles of outliers above crit_relsig 
relative significance (usually set to 1). 
        labels = ['12C counts', '13C counts', '16O counts','12C14N counts', '28Si counts', 'SE 
counts'] 
        to_plot = [] 
        for i in range(len(outliers)):#select only outliers of at or above critical relative 
significance to plot depth profiles for 
            if(outliers[i][4] >= crit_relsig): 
                to_plot.append(outliers[i])         
        #Using summed pixels, this block plots depth profiles for each ion and SE. 
        for i in range(len(labels)): 
            #plt.figure(i) 
            for j in range(len(to_plot)):                 
                #plt.subplot(len(plot),1,j+1) 
                plt.figure(figsize=prof_size) 
                plt.plot(elements[:,i,to_plot[j][1], to_plot[j][2]]) 
                #plt.xlabel('cycle') 
                #plt.ylabel('profile trace summed pixels ' + labels[i]) 
                prof_title = str(to_plot[j][0]) + '-' + str(to_plot[j][1]) + '-' + 
str(to_plot[j][2]) 
                plt.title(prof_title) 
                plt.savefig(str(p) + str(labels[i]) + '_' + prof_title + '_sum.' + IM_FORMAT, 
format = IM_FORMAT, bbox_inches='tight') 
                plt.close() 
        #Using summed pixels, this block plots 13C/12C 
        plt.figure(len(labels)) 
        for i in range(len(to_plot)): 
            plt.figure(figsize=prof_size) 
            #plt.subplot(len(to_plot),1,i+1) 
            plt.plot(rat_image[:,to_plot[i][1], to_plot[i][2]]) 
            #plt.xlabel('cycle') 
            #plt.ylabel('13C/12C ratio (pixels are summed to a target)') 
            prof_title = str(to_plot[i][0]) + '-' + str(to_plot[i][1]) + '-' + 
str(to_plot[i][2]) 
            plt.title(prof_title) 
            plt.savefig(str(p) + str(to_plot[i][0]) + '_' + prof_title + '_sum.' + IM_FORMAT, 
format = IM_FORMAT, bbox_inches='tight') 
            plt.close() 
         
        """ 
        #This was a chunk of code I was working on to save off the actual data for the 
profiles so I could mess with the images later. It is unfinished and untested, use at your own 
risk. 
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        writer = pd.ExcelWriter(p+'profiles_to_plot.xlsx') 
        for j in range(len(to_plot)): 
            df = pd.DataFrame(data=(frames[:,j]), columns=(labels.extend(['12C/13C', labels, 
'12C/13C summed']))) 
            df.to_excel(writer, str(to_plot[j][0]) + '-' + str(to_plot[j][1]) + '-' + 
str(to_plot[j][2])) 
        """ 
    
    
    
        if bs:#flattened images pile a lot of pixels into bootstrap at once, overwhelming 16 
GB RAM on my system. This option allows one to bypass running bootstrap functions   
            # 
            #Bootstrap 
            #     
            stddev_interval= bootstrap(rats, 1000000, np.std, 0.317)#10,000,000 crashes 16 GB 
RAM windows 10, 1,000,000 uses 5GB briefly. Changes stddev less than a % going from 100,000 to 
1,000,000 
            mean_interval = bootstrap(rats, 1000000, np.mean, 0.317)#Using 1 sigma exclusion. 
Half of the returned interval is the standard deviation of the returned statistic) 
            err_bsstddev = (stddev_interval[1]-stddev_interval[0])/2 
            err_bsmean = (mean_interval[1]-mean_interval[0])/2 
            bsstddev = (stddev_interval[0] + stddev_interval[1])/2 
            bsmean = (mean_interval[0] + mean_interval[1])/2 
        else: 
            stddev_interval=0 
            mean_interval=0 
            bsstddev=0 
            bsmean=0 
            err_bsstddev = 0 
            err_bsmean = 0 
     
        # 
        #Xi-squared fitting 
        # 
        dof =  pix - 1#number of pixels - 1(mean value) - (additional fitted parameters) 
        observed = rats #observed = 1/flat 
        expected = mean #expected = 1/mean 
        err_counts = observed*raterrs#12C/13C uncertainty based on counts, absolute units, 
just for graph 
        xi_squared = sum(pow((observed - expected)/stddev,2))     
        reduced_xi = xi_squared/dof#In standards, we know the uncertainties that 
        #prevent this from being xi-squared = 1 are all the result of 
        #systematic error. Therefore, we increase a Err_syst term that adds onto 
        #the errors until reduced_xi_squared converges to 1. 
        #print(reduced_xi) 
        stddev_syst = 0 
        residual = reduced_xi - 1 
         
        cnt = 0 
        while abs(residual) > 0.00000001 and cnt < 10000 :#n is a safety valve against 
infinite loops 
            stddev_syst = stddev_syst + residual*0.1*stddev#stddev_syst is the error added to 
the standard deviation to make the xi-squared equal to 1. 
            stddev_fit = stddev + stddev_syst#could do adding, or multiplying of the error. 
Assuming the errors are in some form dependent. This results in the calculation of a smaller 
systematic error. Note also this is absolute, not fractional 
            xi_squared = sum(pow((observed - expected)/stddev_fit,2)) 
            reduced_xi = xi_squared/dof 
            residual = reduced_xi - 1 
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            cnt = cnt+1 
            if cnt==10000: 
                print('WARNING: HIT SAFETY VALVE ON XI-SQUARED FIT, CHECK GOODNESS OF FIT') 
        #print(reduced_xi) 
        broadening = stddev_syst/stddev 
     
        # 
        #Xi-squared fitting bootstrap 
        # 
        dof =  pix - 1#number of pixels - 1(mean value) - (additional fitted parameters) 
        observed = rats #observed = 1/flat 
        expected = bsmean #expected = 1/mean 
        #err_counts = observed*raterrs#12C/13C uncertainty based on counts, absolute units 
        xi_squared = sum(pow((observed - expected)/bsstddev,2)) 
        bsreduced_xi = xi_squared/dof#In standards, we know the uncertainties that 
        #prevent this from being xi-squared = 1 are all the result of 
        #systematic error. Therefore, we increase a Err_syst term that adds onto 
        #the errors until reduced_xi_squared converges to 1. 
        #print(reduced_xi)n 
        bsstddev_syst = 0 
        residual = bsreduced_xi - 1     
         
        cnt = 0 
        while abs(residual) > 0.00000001 and cnt < 10000 :#n is a safety valve against 
infinite loops 
            bsstddev_syst = bsstddev_syst + residual*0.1*bsstddev#err_syst is the error added 
to each error bar to make the xi-squared equal to 1. 
            bsstddev_fit = bsstddev + bsstddev_syst#could do adding, or multiplying of the 
error. Assuming the errors are in some form dependent. This results in the calculation of a 
smaller systematic error. Note also this is absolute, not fractional 
            xi_squared = sum(pow((observed - expected)/bsstddev_fit,2)) 
            bsreduced_xi = xi_squared/dof 
            residual = bsreduced_xi - 1 
            cnt = cnt+1 
            if cnt==10000: 
                print('WARNING: HIT SAFETY VALVE ON XI-SQUARED FIT, CHECK GOODNESS OF FIT') 
        #print(reduced_xi) 
        if bsstddev != 0: 
            bs_broadening = bsstddev_syst/bsstddev 
        else: 
            print('setting bs_broadening to 0 because bsstddev = 0 and would cause a divide by 
zero error') 
            bs_broadening = 0 
     
     
        outfile_ratio_flat_xlsx = p + 'ratios_flat.xlsx' 
        output = np.array([rats, nums, dens, devfrac_flat]) 
        writer = pd.ExcelWriter(outfile_ratio_flat_xlsx) 
        df = pd.DataFrame(output).transpose() 
        df.columns = [numstring + '/' + denstring + ' ratio', numstring + ' counts', denstring 
+ ' counts', 'deviation (sigmas)'] 
        df.to_excel(writer) 
        writer.close() 
         
        outfile_ratio_xlsx = p + 'ratio_im_format.xlsx' 
        writer = pd.ExcelWriter(outfile_ratio_xlsx) 
        num_sheet = pd.DataFrame(elements[:,num].reshape(-1,16)) 
        num_sheet.to_excel(writer, 'numerator (' + numstring + ')') 
        den_sheet = pd.DataFrame(elements[:,den].reshape(-1,16)) 
        den_sheet.to_excel(writer, 'denominator (' + denstring + ')') 
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        ratios_sheet = pd.DataFrame(rat_image.reshape(-1,16)) 
        ratios_sheet.to_excel(writer, 'ratios') 
        deviations_sheet = pd.DataFrame(devfrac_im.reshape(-1,16)) 
        deviations_sheet.to_excel(writer, 'standard deviations') 
        writer.close() 
         
        outlier_xlsx = p + 'outliers.xlsx' 
        writer = pd.ExcelWriter(outlier_xlsx) 
        df = pd.DataFrame(outliers) 
        if df.empty == False: 
            df.columns = ['cycle', 'row', 'column', 'deviation (sigmas)', 'rel. sig. d.p.', 
numstring + '/' + denstring + ' ratio', numstring + ' counts', denstring + ' counts', '16O 
counts', '12C14N counts', '28Si counts', 'SE counts' ] 
            df.to_excel(writer) 
        writer.close() 
         
        outfile_ratio_txt =  str(p) + 'info'+ '.rat_txt' 
        outfile = open(outfile_ratio_txt, "w") 
        outfile.write('Created by ' + os.path.basename(__file__) + '\n') 
        outfile.write('The IM file you chose is: ' + '\n' + fname + '\n\n')     
        outfile.write('Number of pixels: ' + str(pix) + '\n\n') 
        outfile.write('Mean C counts per pixel: ' + str(mean_ccounts) +'\n\n') 
     
        outfile.write('Mean ratio (statistical): ' + str(mean) + '\n\n') 
        outfile.write('For comparison: mean using weighted average of ratios (statistical): ' 
+ str(comparison_mean) + '\n\n') 
        outfile.write('SEOM (statistical): ' + str(seom) + '\n\n') 
        outfile.write('Standard deviation of ratio (statistical): ' + str(stddev) + '\n\n') 
        outfile.write('Fractional error in standard deviation of ratio: ' + str(errstddev) + 
'\n\n')     
        outfile.write('Xi-squared estimate of systematic error, fraction of sigma: ' + 
str(broadening) + '\n\n') 
        outfile.write('reduced_xi: ' + str(reduced_xi) + '\n\n') 
     
        outfile.write('Mean ratio (bootstrap): ' + str(bsmean) + '\n\n')     
        outfile.write('Err in mean (bootstrap): ' + str(err_bsmean) + '\n\n') 
        outfile.write('Standard deviation of ratio (bootstrap): ' + str(bsstddev) + '\n\n') 
        outfile.write('Fractional error in standard deviation of ratio (bootstrap): ' + 
str(err_bsstddev) + '\n\n')         
        outfile.write('Xi-squared estimate of average bootstrap systematic error, fraction of 
sigma: ' + str(bs_broadening) + '\n\n') 
        outfile.write('reduced_xi bs: ' + str(bsreduced_xi) + '\n\n') 
     
        outfile.write('# pixels with Si/C > ' + str(siC_level) + ' : ' + str(len(siC_high)) + 
'\n\n') 
        outfile.write('max Si/C ratio: ' + str(siC.max()) + '\n\n') 
        outfile.write(numstring + ' counts total: ' + str(numcounts) +'\n\n') 
        outfile.write(denstring + ' counts total: ' + str(dencounts) +'\n\n') 
        for o in outliers: 
            outfile.write(str(o[3]) + ' sigma outlier at cycle=' + str(o[0]) 
                + ', row=' + str(o[1]) + ', column=' + str(o[2]) + ' significance of datapoint 
=  ' + str(o[4]) 
                + ' ratio=' + str(o[5]) + ' ' + numstring + ' counts=' + str(o[6]) 
                + ' ' + denstring + ' counts=' + str(o[7]) + ' 16O counts=' + str(o[8]) 
                + ' 12C14N counts=' + str(o[9]) + ' 28Si counts=' + str(o[10]) + ' SE counts' 
+ str(o[11]) + '\n\n') 
            #outfile.write('outlier with sigmas:  ' + str(d)) 
        outfile.write('\n' + 'end of file') 
        outfile.close() 
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        if images: 
             
            plt.imshow(siC, interpolation='none') 
            plt.colorbar() 
            plt.tick_params(axis='both', 
            which='both', 
            top='off', 
            bottom='off', 
            left='off', 
            right='off', 
            labelbottom='off', 
            labeltop='off', 
            labelleft='off', 
            labelright='off') 
            plt.title('SiC ratio') 
            plt.savefig(str(p) + 'SiC_ratio.' + IM_FORMAT, format=IM_FORMAT) 
            plt.close() 
     
            plt.errorbar(range(0,len(observed),1), observed, yerr=err, fmt='.', color='m', 
ecolor='g', elinewidth = '0.5') 
            plt.ylabel(numstring +'/'+ denstring + ' ratio') 
            plt.xlabel('pixel') 
            plt.tick_params( 
            axis='x',          # changes apply to the x-axis 
            which='both',      # both major and minor ticks are affected 
            bottom='off',      # ticks along the bottom edge are off 
            top='off',         # ticks along the top edge are off 
            labelbottom='off', 
            labeltop='off') 
            plt.title('pixel ratios with errors adjusted to achieve a reduced xi-squared of 
1') 
            plt.savefig(str(p) + numstring + denstring + '_fit.jpg', 
format='jpg',dpi=1800)#for quick looks 
            plt.savefig(str(p) + numstring + denstring + '_fit.' + IM_FORMAT, 
format=IM_FORMAT, dpi=1800)#for publication 
            plt.close() 
             
            n, b, patches = plt.hist(rats, bins=(int(rats.max()-rats.min()+1))*bpu, 
color=None, normed=True) 
            y = mlab.normpdf(b, mean, stddev) 
            z = mlab.normpdf(b, bsmean, bsstddev) 
            plt.plot(b, y, 'k--', linewidth=1.5) 
            plt.plot(b, z, 'r--', linewidth=1.5) 
            ax = plt.axes() 
            plt.axvline(x=(mean + 2*stddev), color='b', linestyle='--') 
            plt.axvline(x=(mean - 2*stddev), color='b', linestyle='--') 
            plt.xlabel(numstring +'/'+ denstring + ' ratio') 
            plt.ylabel('Arbitrary units') 
            #plt.grid(False) 
            plt.text(0.2,0.9, 'C counts/pixel = ' + str(int(mean_ccounts)), 
horizontalalignment='center', verticalalignment ='center', transform=ax.transAxes) 
            plt.savefig(str(p) + 'ratio_histogram.' + IM_FORMAT, format=IM_FORMAT)#for 
publication 
            plt.savefig(str(p) + 'ratio_histogram.jpg', format='jpg', dpi=1200)#for quick 
looks 
            plt.close() 
             
            n, b, patches = plt.hist(rats, bins = (int(rats.max()-rats.min()+1))*bpu, 
color=None, normed=True, weights=weights) 
            y = mlab.normpdf(b, mean, stddev) 
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            z = mlab.normpdf(b, bsmean, bsstddev) 
            plt.plot(b, y, 'k--', linewidth=1.5) 
            plt.plot(b, z, 'r--', linewidth=1.5) 
            ax = plt.axes() 
            plt.axvline(x=(mean + 2*stddev), color='b', linestyle='--') 
            plt.axvline(x=(mean - 2*stddev), color='b', linestyle='--') 
            plt.xlabel(numstring +'/'+ denstring + ' ratio (weighted pixels)') 
            plt.ylabel('Arbitrary units') 
            #plt.grid(False) 
            plt.text(0.2,0.9, 'C counts/pixel = ' + str(int(mean_ccounts)), 
horizontalalignment='center', verticalalignment ='center', transform=ax.transAxes) 
            plt.savefig(str(p) + 'ratio_histogram_weighted.' + IM_FORMAT, format= IM_FORMAT, 
dpi=1200)#for publication 
            plt.savefig(str(p) + 'ratio_histogram_weighted.jpg', format='jpg', dpi=1200)#for 
quick looks 
            plt.close() 
             
            outfile_ratio_im = str(p) + str(int(mean_ccounts)) + '-counts_ratios-image.' + 
IM_FORMAT 
            plt.imshow(rat_image, interpolation='none') 
            plt.colorbar() 
            plt.tick_params(axis='both', which='both', top='off', bottom='off', left = 'off', 
right='off', labelbottom='off', labeltop='off', labelleft='off', labelright='off') 
            plt.title(numstring +'/'+ denstring + ' Ratio')     
            plt.savefig(outfile_ratio_im, format=IM_FORMAT, dpi=1200) 
            plt.close() 
             
            outfile_devs_im= str(p) + 'deviation_image.' + IM_FORMAT 
            plt.imshow(devfrac_im, interpolation="none") 
            plt.colorbar() 
            #plt.xlabel('12C/13C ratio') 
            #plt.ylabel('Arbitrary units') 
            plt.tick_params(axis='both', which='both', top='off', bottom='off', left = 'off', 
right='off', labelbottom='off', labeltop='off', labelleft='off', labelright='off')     
            plt.title('Absolutized number of standard deviations from mean') 
            plt.savefig(outfile_devs_im, format=IM_FORMAT, dpi=1200) 
            plt.close() 
    except IndexError as ie: 
        print(ie) 
        trace = traceback.format_exc(sys.exc_info()) 
        print(trace) 
    return pix, mean_ccounts, numcounts, dencounts, mean, seom, stddev, errstddev, broadening, 
bsmean, err_bsmean, bsstddev, err_bsstddev, bs_broadening 
     
# 
#_END_FUNCTIONS_# 
# 
     
#%%           
#make date string to attach to output filenames and prevent over-writing  
# 
now = datetime.datetime.now() 
now_string = now.strftime("%y-%m-%d") 
 
cwd = os.getcwd() 
files = os.listdir(cwd) #get list of files in working directory. 
 
im = [] #list of image files read in from working directory 
 
for file in files: 
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    if file.lower()[-3:] == '.im': 
        im.append(file) 
        print('Added ' + file + ' to the list of .im files for processing.', flush=True) 
    else: 
        print(file + ' is not an .im file. Skipping', flush=True) 
         
#%% 
for i in range(len(im)):   
 
    print('Processing ' + im[i] + ' ...', flush=True) 
     
    # 
    #Read in Header 
    # 
      
    infilename = im[i] 
    infile = open(infilename, 'rb') 
     
    fname = infilename[:-3] 
     
    path = fname + '_ANAL_'  + now_string + os.sep 
    """ 
    Set path string that will be appended to the front of filenames 
    #(if empty '' you will create files in the working directory. 
    """ 
     
    if not os.path.exists(path): #If the code has been run before for this fname, avoid an 
error. 
        os.mkdir(path) 
     
    # '<' signifies that the format of the data is little-endian. 
    # 'I' is an unsigned integer, 4 bytes long. 
    # 'H' is an unsigned short, 2 bytes long. 
    # 's' is a character (string) # bytes long. 
    # 'x' is padding bytes, # bytes long and not assigned to a variable in the struct tuple. 
     
    #Unpack the def_analysis structure, known to be 124 bytes:x 
    def_analysis = infile.read(124) 
    (release, analysis_type, hdr_usr, sample_type, data_present, sple_pos_x, sple_pos_y, 
analysis_name, username, unused, date, hour) = 
struct.unpack('<IIIIIII32s16s16s16s16s',def_analysis) 
    if data_present == 0: 
        print('No data present. Will continue analyis but will probably just produce a text 
summary of the file header') 
 
    mask_im = infile.read(528) 
    (filename, anal_duration, cycle_number, scantype, magnification, sizetype, size_detector, 
no_used, beam_blanking, pulverisation, pulve_duration, auto_cal_in_anal, sig_reference, 
nb_mass) = struct.unpack('<16sIIIHHHHIIII72xI156xI240x', mask_im) 
    filename = clean_string(filename) 
     
    #set up variables for the mass tables, of which there will be nb_mass 
    #TODO Not sure these are the right variables or if these are all the variables in the 
nb_mass structure 
    mass_index = [None]*nb_mass 
    n1 = [None]*nb_mass 
    n2 = [None]*nb_mass 
    n3 = [None]*nb_mass 
    n4 = [None]*nb_mass 
    n5 = [None]*nb_mass 
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    num_elements = [None]*nb_mass 
    element_name = [None]*nb_mass 
     
    for j in range(nb_mass) : 
         
        tab_mass = infile.read(192) 
        (mass_index[j], n1[j], n2[j], n3[j], n4[j], n5[j], num_elements[j], element_name[j]) = 
struct.unpack('<I4xHHHH22xH16xI5x8s119x', tab_mass) 
        element_name[j] = clean_string(element_name[j]) 
        #saves SE without an element name. This statement will incorrectly label any unlabeled 
ions as SE, but should correctly label Secondary electrons. 
        if element_name[j] == '': 
            element_name[j] = 'SE' 
         
    len_cal_cond = 96 * nb_mass 
    cal_cond = infile.read(len_cal_cond) 
     
    poly_list = infile.read(24)#read poly_list 
    (structname, nb_poly) = struct.unpack('<16sI4x', poly_list)#unpack poly_list 
    structname = clean_string(structname) 
     
    polyatomique = infile.read(144*nb_poly) 
     
    mask_nano = infile.read(1552)#read mask_nano 
    (m_nNbBField) = struct.unpack('<96xI1452x', mask_nano)#unpack mask_nano 
    len_tab_Bfield_nano = 2840*m_nNbBField[0] 
    tab_Bfield_nano = infile.read(len_tab_Bfield_nano)#read past Tab_Bfield_nano 
     
    anal_param_nano = infile.read(1840)#read past anal_param_nano 
     
    def_analysis_bis = infile.read(2048)#read past def_analysis_bis 
     
    anal_param_nano_bis = infile.read(15264)#read past anal_param_nano_bis 
     
    filler = infile.read(792)#read past unused fill 
     
    header_image = infile.read(84)#read header_image 
    (size_self, imtype, width, height, px_size, n_images, n_planes, raster, nickname) = 
struct.unpack('<IHHHHHHI64s', header_image)#unpack header_image 
    nickname = clean_string(nickname) 
     
    #set up variables for the images, of which there will be n_images 
    imdata = [None]*n_images 
    imsum = [None]*n_images 
     
    imdata = np.fromfile(infile, dtype='<I4', count = width * height * n_planes *n_images) 
    if imdata.size == 0: 
        print('Length of imdata is 0. No, or corrupt data in ' + infilename + ' Skipping 
analysis.', flush=True) 
        continue#skips the rest of the analysis for this .im file 
 
    #try: 
    imdata = imdata.reshape((n_planes, n_images, height, width), order = 'C') 
   
    for j in range(n_images) : 
         
        planes = [None]*n_planes 
         
        if EL_XLSX : 
            outfile_el_xlsx = path + element_name[j] + '_px.xlsx' 
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            writer = pd.ExcelWriter(outfile_el_xlsx) 
            for k in range(n_planes) : 
                planes[k] = pd.DataFrame(imdata[k,j,:,:]) 
                planes[k].to_excel(writer, 'plane # ' + str(k)) 
            writer.close() 
        del planes 
        # 
        #summed planes 
        #         
        imsum[j] = np.empty((width, height)) 
         
        for k in range(height): 
            for l in range(width): 
                imsum[j][k,l] = imdata[:,j,k,l].sum() 
         
        #correct for NanoSIMS software indexing issues         
        #TODO not sure if this is fixing the problem, if the problem always occurs, or why it 
occurs 
        oldsum = imsum[j].copy() 
        imsum[j][:,0] = oldsum[:,height-1] 
        imsum[j][:,1:] = oldsum[:,:height-1] 
             
        oldsum = imsum[j].copy() 
        imsum[j][0,:] = oldsum[height-1,:] 
        imsum[j][1:,:] = oldsum[:height-1,:] 
 
        profile = np.zeros((imdata[:,:,0,0].shape)) 
        for k in range(len(imdata[:,0,0,0])) :                 
            for l in range(len(imdata[0,:,0,0])) : 
                profile[k,l] = imdata[k,l,:,:].sum()/len(imdata[0,0])*len(imdata[0,0,0]) 
 
        #save summed data image #electron image comes out un-named 
        if IMAGES : 
 
            outfile_depth_profile = path + 'depth_profile.' + IM_FORMAT 
            x = range(len(profile[:,0])) 
            for k in range(len(profile[0,:])) : 
                plt.plot(x, profile[:,k]) 
            plt.xlabel('cycle') 
            plt.ylabel('mean counts/pixel') 
            plt.title('Depth profile') 
            plt.savefig(outfile_depth_profile, format=IM_FORMAT) 
            plt.close() 
             
            outfile_el_im = path + element_name[j] + '_sum_image.' + IM_FORMAT 
            plt.imshow(imsum[j], interpolation='none') 
            plt.colorbar() 
            plt.tick_params(axis='both', which='both', top='off', bottom='off', left = 'off', 
right='off', labelbottom='off', labeltop='off', labelleft='off', labelright='off') 
            plt.title(element_name[j] + ' counts') 
            plt.savefig(outfile_el_im, format=IM_FORMAT) 
            plt.close() 
         
    #save summed pixel counts to xlsx 
    if SUM_XLSX : 
        sum_el_px = [None]*n_images 
        outfile_sum_xlsx = path + 'sum_el_px.xlsx' 
        writer = pd.ExcelWriter(outfile_sum_xlsx) 
        for k in range(len(sum_el_px)) :  
            sum_el_px[k]= pd.DataFrame(imsum[k]) 
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            sum_el_px[k].to_excel(writer, element_name[k] + ' summed planes') 
        writer.close() 
         
        outfile_depth_prof_xlsx = path + 'depth_prof.xlsx' 
        writer = pd.ExcelWriter(outfile_depth_prof_xlsx) 
        depth_prof = [None]*n_images             
        for k in range(len(profile[0,:])) : 
            depth_prof[k] = pd.DataFrame(profile[:,k]) 
            depth_prof[k].to_excel(writer, element_name[k] + ' mean counts per pixel') 
        writer.close() 
    try: 
        if SB :#TODO are ALL uses of range(len()) going to index n+1 and throwing index errors 
I'm not noticing? 
            ratio_path = path + str(int(TARGET_CTS)) + '-counts_ratios' + os.sep 
            if not os.path.exists(ratio_path): #If the code has been run before for this 
folder, avoid an error 
                    os.mkdir(ratio_path) 
            writer1 = pd.ExcelWriter(ratio_path + 'pixel_ratios.xlsx') 
            writer2 = pd.ExcelWriter(ratio_path + 'experiment_statistics.xlsx') 
            num = 1#running 13C/12C 
            den = 0#running 13C/12C                 
             
            data_sets = summed_pixel_by_pixel(imdata) 
            pix_ratio_path = ratio_path + 'all_pix' + os.sep 
            if not os.path.exists(pix_ratio_path):#If the code has been run before for this 
folder, avoid an error 
                os.mkdir(pix_ratio_path) 
            try: 
                all_pix_ops = ratio_ops(data_sets, pix_ratio_path, num, den, min_c_counts, 
siC_level, images=False, bs=False)#store results as a tuple 
            except IndexError: 
                print('ratio operations failed due to an IndexError. Are all pixels below 
minimum counts (usually 10)? In ' + infilename + ' skipping', flush=True) 
                 
            stats = np.zeros((len(data_sets),), 
                             dtype=[('pixels', 'f4'), 
                                    ('counts', 'f4'), 
                                    ('13C counts', 'f4'), 
                                    ('12C counts', 'f4'), 
                                    ('mean', 'f4'), 
                                    ('seom', 'f4'), 
                                    ('stddev', 'f4'), 
                                    ('errstddev', 'f4'), 
                                    ('exp_xi2_broadening', 'f4'), 
                                    ('bsmean', 'f4'), ('err_bsmean', 'f4'), 
                                    ('bsstddev', 'f4'), 
                                    ('err_bsstddev', 'f4'), 
                                    ('bs_xi2_broadening', 'f4')]) 
            for k in range(len(data_sets)): 
                cts_ratio_path = ratio_path + 'number' + str(k) + os.sep                    
                if not os.path.exists(cts_ratio_path): #If the code has been run before for 
this folder, avoid an error 
                    os.mkdir(cts_ratio_path) 
                try: 
                    layer = np.empty((1, len(data_sets[k]), len(data_sets[k,0]), 
len(data_sets[k,0,0]))) 
                    layer[0] = data_sets[k] 
                    stats[k] = ratio_ops(layer, cts_ratio_path, num, den, min_c_counts, 
siC_level, images=SB_IMAGES, bs=True )#store results as a tuple 
                except IndexError: 
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                    print('ratio operations on segment ' + str(k) + ' failed due to an 
IndexError. Are all pixels below minimum counts (usually 10)? In ' + infilename + 'skipping 
that segment', flush=True) 
             
            stats_frame = pd.DataFrame(stats[0:-1])#drops the last entry as it will have 
imperfectly summed cycles 
            N = len(stats_frame.index) 
 
            stats_frame['stddev/mean'] = stats_frame['stddev']/stats_frame['mean'] 
             
            stats_frame['bsstddev/bsmean'] = stats_frame['bsstddev']/stats_frame['bsmean'] 
             
            stats_frame['ratio_error_stat'] = stats_frame['mean']*np.sqrt( 1/stats_frame['12C 
counts'] + 1/stats_frame['13C counts'] )#TODO better to have this fractional, since it really 
applies best to the ratio of the sums, not the mean or bsmean. 
             
            mean_pix = stats_frame['pixels'].mean() 
            mean_counts = (stats_frame['12C counts']+stats_frame['13C counts']).mean() 
            mean_mean = stats_frame['mean'].mean() 
            mean_seom = stats_frame['seom'].mean() 
            mean_bsmean = stats_frame['bsmean'].mean() 
            mean_stddev = stats_frame['stddev'].mean() 
            mean_errstddev = stats_frame['errstddev'].mean() 
            mean_bsstddev = stats_frame['bsstddev'].mean() 
             
            stds = [] 
            for k in range(len(stats_frame.columns)): 
                stds.append(stats_frame.ix[:,k].std()) 
                 
            #stats_frame.loc[len(stats_frame.index)+1] = (stds) 
            stats_frame.loc['standard deviations'] = (stds) 
            
#[mean_pix,mean_counts,mean_mean,mean_seom,mean_bsmean,mean_stddev,mean_errstddev,mean_errsyst
] 
            stats_frame.to_excel(writer2)#(pdb) ?? 
            writer2.close() 
                 
    except IndexError as ie: 
        print('no or corrupt image data in ' + infilename + 'skipping Smallbeam analyses', 
flush=True) 
        print(ie) 
        
    if TXT : 
        outfile_im_txt =  path + fname + ".im_txt" 
        outfile = open(outfile_im_txt, "w") 
        outfile.write('Created by ' + os.path.basename(__file__) + '\n') 
        outfile.write('The IM file you chose is: ' + '\n' + fname + '\n\n')     
             
        outfile.write('data_present: ' + str(data_present) + '\n\n') 
        outfile.write('nickname: ' + str(nickname) + '\n\n') 
     
        outfile.write('anal_duration: ' + str(anal_duration) + '\n\n') 
        outfile.write('analysis_type: ' + str(analysis_type) + '\n\n') 
        outfile.write('auto_cal_in_anal: ' + str(auto_cal_in_anal) + '\n\n') 
        outfile.write('beam_blanking: ' + str(beam_blanking) + '\n\n') 
     
        outfile.write('release: ' + str(release) + '\n\n') 
        outfile.write('sample_type: ' + str(sample_type) + '\n\n') 
        for j in range(len(element_name)) : 
            outfile.write('element: ' + str(element_name[j]) + '\n\n') 
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        for j in range(len(num_elements)) : 
            outfile.write('num_element: ' + str(num_elements[j]) + '\n\n')     
     
        outfile.write('scantype: ' + str(scantype) + '\n\n') 
        outfile.write('sig_reference: ' + str(sig_reference) + '\n\n') 
        outfile.write('size_detector: ' + str(size_detector) + '\n\n') 
        outfile.write('sizetype: ' + str(sizetype) + '\n\n') 
         
        outfile.write('sple_pos_x: ' + str(sple_pos_x) + '\n\n') 
        outfile.write('sple_pos_y: ' + str(sple_pos_y) + '\n\n') 
     
        outfile.write('height: ' + str(height) + '\n\n') 
        outfile.write('width: ' + str(width) + '\n\n') 
        outfile.write('n_cycles: ' + str(n_planes) + '\n\n') 
     
        outfile.write('px_size: ' + str(px_size) + '\n\n')     
        outfile.write('raster: ' + str(raster) + '\n\n')     
     
        outfile.write('cycle_number: ' + str(cycle_number) + '\n\n') 
         
        outfile.write('hdr_usr: ' + str(hdr_usr) + '\n\n') 
        outfile.write('len_cal_cond: ' + str(len_cal_cond) + '\n\n') 
        outfile.write('len_tab_Bfield_nano: ' + str(len_tab_Bfield_nano) + '\n\n') 
        outfile.write('m_nNbBField: ' + str(m_nNbBField) + '\n\n') 
        outfile.write('nb_mass: ' + str(nb_mass) + '\n\n') 
        outfile.write('nb_poly: ' + str(nb_poly) + '\n\n') 
         
        outfile.write('pulve_duration: ' + str(pulve_duration) + '\n\n')     
        outfile.write('pulverisation: ' + str(pulverisation) + '\n\n')     
     
        outfile.write('\n' + 'end of file') 
        outfile.close() 
     
    #del sum_el_px 
    gc.collect()     
 
print('script completed')
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Appendix 3 
Python Script to Compile a Counts Report from Multiple Atom-probe Data Sets 

 
# -*- coding: utf-8 -*- 
""" 
Created on Wed Sep 11 12:09:25 2013 
 
@author: jblewis 
 
Imports all files from the working directory and combines various slices of those files. 
Intended for use on IVAS bulk counts output data for large numbers of atom-probe runs. 
 
Takes each column and joins it with the same column from each data file, outputting as a .csv 
with ion type as index and dataset as column 
 
This script must be run w a working directory full of .csv files formatted as IVAS data 
outputs and nothing else -- it cannot parse out other folders or file types. Attempts to save 
output files to the path  
results_path 
 
DO NOT put other files or folders in the directory from which you plan to run. 
 
2014-01-16 updated with os.sep so it's platform independent and added () to print so it runs 
in python 3 
""" 
 
import pandas as pd 
import os 
import datetime 
 
#Set which operations you want saved to csv files 
print_ion_fraction_corrected = True 
print_counts_corrected = True 
print_counts_decomposed_corrected = True 
print_counts = True 
print_ion_fraction = True 
print_counts_decomposed = True 
 
#make date string to attach to output filesnames and prevent over-writing  
now = datetime.datetime.now() 
date = now.strftime("%y-%m-%d") 
 
results_path = '..' + os.sep + 'Results' + os.sep + date + os.sep #set path string that will 
be appended to the front of filenames (if empty '' you will create files in the working 
directory. Trying to run the script again in the same working directory will cause errors 
since the data structure of the new files is not IVAS csv output 
d = os.path.dirname(results_path) 
if not os.path.exists(d): 
    os.makedirs(results_path) 
corrected_str = ' Corrected' #string to append to row/column that has corrected counts 
 
#get list of files in working directory. 
cwd = os.getcwd() 
files = os.listdir(cwd) 
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outtables = {}# initialize a dictionary to hold our growing and key-unknown list of output 
files 
intables = {} 
 
#read_csv each file in files, trim, label, and put in intables 
for i in range(len(files)): 
    d = pd.read_csv(files[i]) 
    d.columns = d.ix[0:0].values.flatten() 
    d = d.ix[1:]#remove empty first row 
    d.index = d['Ion Type'].values.flatten() 
    intables[files[i]] = d 
 
#Initialize DataFrame object using first file in list 
 
d = intables[files[0]] 
#d = list(intables.values())[0] is a random number generator #edited 12/10/2014 for Python 3 
dict.values() returns a view now, rather than a list. 
for j in range(len(d.columns.values)-1): 
    #Select column of interest and initilize DataFrame to store these columns 
    c = d.ix[:,j+1:j+2] 
    name = c.columns.values[0] 
 
    #Way of renaming the column with the file name -- there's some issue with renaming the 
column in a 1-column DataFrame? 
    c = pd.Series(c.values.flatten(), index=c.index) 
    c.name = files[0] 
 
    if name in outtables: #edited 12/10/2014 to not use has_key, not used in Python 3. 
        outtables[name + corrected_str] = pd.DataFrame(c) 
    else: 
        outtables[name] = pd.DataFrame(c); 
 
#loop through remaining files in list and add column of interest from each as column of joined 
DataFrame 
for k in range(len(intables)-1):#skipping first file as it has already been handled so need to 
go one fewer than length 
    d = intables[files[k+1]]#d = list(intables.values())[k+1] is a random number generator 
    corrected = False 
    for l in range(len(d.columns.values)-1): 
         
        c = d.ix[:,l+1:l+2]##select column 
 
        name = c.columns.values[0]         
        print(name) 
        print(corrected) 
        c = pd.Series(c.values.flatten(), index=c.index) 
        c.name = files[k+1] 
        print(c.name) 
        if corrected: 
            outtables[name + corrected_str] = outtables[name + corrected_str].join(c, 
how='outer')             
        else: 
            outtables[name] = outtables[name].join(c, how='outer')             
             
        if name == 'Background Count':#Way of seeing if we're about to start repeating row 
names. Might be better if you change those the first time through? 
            corrected = True 
 
#do operations on joined DataFrames here: 
#sample operation: add a row of Pt/C for each dataset 
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#Working correctly, math agrees with calculator out to ~10 decimal places 
""" 
countsc = outtables['Ion Count' + corrected_str] #This is a deep copy, not a pointer, so the 
append at the end must reference outtables[key] explicitly. 
icc_pt = countsc.loc['Pt']#get row by index 
icc_c = countsc.loc['C'] 
icc_pt = pd.Series(icc_pt, dtype='float')#as series w dtype cast to avoid puzzling string 
operation exceptions 
icc_c = pd.Series(icc_c, dtype='float') 
icc_cdivpt = icc_pt.div(icc_c) #operate 
icc_cdivpt.name = 'Pt/C Ratio' #name new row 
outtables['Ion Count' + corrected_str] = outtables['Ion Count' + 
corrected_str].append(icc_cdivpt)#append returns a copy so the assignment is necessary. Plus, 
countsc is a copy of the dictionary entry in outtables, so explicit reference to the outtables 
dictionary is required 
""" 
#write all csv files 
for key, table in outtables.items(): 
    table.to_csv(results_path + str(key) + date + '.csv') 
 
print('finished')
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Appendix 4 
Python Script to Find the Union of Detected Ions in a .POS File of a Subvolume and an 

.EPOS File of the Whole Data Set, and Save as an .EPOS of the Subvolume 

 
# -*- coding: utf-8 -*- 
""" 
Created on Mon Jan 13 16:21:50 2014 
 
@author: jblewis 
 
Command line utility to convert .POS file of a region of interest into an .EPOS by filtering 
the .EPOS for the whole data set for just the .POS-included ions 
Reads in an .EPOS file generated by the Cameca IVAS software, filename to be input from 
command line. 
Reads in a .POS file that is a subvolume of the same set from the .EPOS file (from the same 
.ROOT file!) 
 
Writes .POS to list b and converts to a set of tuples, one tuple per atom 
Compares .EPOS atom by atom to set, writes out full .EPOS data to a file of the same title as 
.POS file but with .EPOS extension 
 
Using list or another non-hashable data structure would yield prohibitive computing time due 
to ~1e6 searches through ~1e6 element list. 
 
Memory errors are common on python 32-bit. Use 64 bit python. This will vary by dataset but 
takes up more than 1Gb RAM 
A 15 Matom dataset, 18430-v01_20nm_dep-layer, takes roughly 2.5 gb ram to run in linux mint. 
Garbage collection is important. rois that are most of the dataset will crash! 
 
Ran 19572-v01-roi_C_C2_PtOC_5%Iso_Outside overnight on linux mint virtual w 5 gib RAM and 8 
GiB swap. Used all RAM, 2.3 Gib swap and completed. 
 
using input -- Python 3 replacement for Python 2's raw_input 
""" 
 
import struct 
import os 
import gc 
 
b = [] 
ions_in_pos = 0 
ions_not_in_pos = 0 
 
epos = input('What EPOS file? ') 
fname = epos 
#if fname[-5:] != '.epos' 
   # sys.exit('not an epos file') 
pos = input('What POS file for ROI ?') 
fname2 = pos 
 
print("The EPOS file you chose is " + fname) 
print("The POS file you chose for roi selection is " + fname2) 
 
# open .epos file as a binary file 
infile = open(fname,"rb") 
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infile2 = open(fname2,"rb") 
 
path = os.getcwd() + os.sep + 'Converted_Files' + os.sep 
if not os.path.exists(path): #If the code has been run before for this fname, avoid an error 
    os.mkdir(path) 
     
outfile = open(path + os.sep + fname2[:-4] + '.epos', "wb") #create a file to write out the 
.pos "filtered" epos file with the same title at the pos but .epos typ (could really do this 
as a seperate converter utility code) 
#"wb" is necessary for python 3. "w" worked for Python 2 but not Python 3. "wb" has not been 
tested for python 2! 
 
def in_pos( x, y, z, mass ): 
    "see if .epos position and mass is included in supplied .pos data" 
 
    mylist = [x,y, z, mass] 
 
    if tuple(mylist) in s: 
        return True 
    else: 
        return False 
 
# read the first 16 bytes (x, y, z, mass-to-charge ratio) 
atom = infile2.read(16) 
 
while len(atom) == 16: 
    # '>f' signifies that the format of the data is  
    # big-endian float. Each float is 4 bytes long. 
 
    (x,y,z,mass) = struct.unpack('>ffff',atom) 
    b.append([x, y, z, mass]) 
    atom = infile2.read(16) 
     
infile2.close() 
print('to tuple') 
s=set(tuple(map(tuple,b)))#Set should have O(1) lookup instead of List's O(n), obviously a big 
deal with n~1e6. Memory errors using this in 32 bit python 
del b 
gc.collect() 
 
# read the first 44 bytes (x, y, z, mass-to-charge ratio, 
# time-of-flight, standing voltage, pulsed voltage, 
# detector-impact-x, detector-impact-y, pulses-since-last-ion, 
# hit multiplicity) 
atom = infile.read(44) 
cnt = 0 
print('break') 
 
while len(atom) == 44: 
    # '>f' signifies that the format of the data is 
  
    # big-endian float. Each float is 4 bytes long. 
    # "The first 9 values are in floating-point format, 
    # whereas the last two values are in unsigned-integer 
    # format" Atom probe Microscopy. Gault et al 2012) 
 
    (x,y,z,mass, tof, vdc, vp, xdet, ydet, deltap, nm) = struct.unpack('>fffffffffII',atom) 
 
    if in_pos(x, y, z, mass): 
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        outfile.write(struct.pack('>fffffffffII',x,y,z,mass, tof, vdc, vp, xdet, ydet, deltap, 
nm)) 
        ions_in_pos += 1 
    else: 
        ions_not_in_pos += 1 
    cnt += 1                   
    atom = infile.read(44) 
 
print(str(ions_not_in_pos) + ' ions in original .epos not found in .pos') 
print(str(ions_in_pos) + ' ions in original .epos were found in .pos and written to file') 
infile.close() 
outfile.close() 
print('wrote intersection of ions to ' + outfile.name) 
bla = input("You've reached the end!")
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Appendix 5 
Table of Uncorrected Atom-Probe Data 

 

Table A5.1 Counts from APT ROIs. 

Sample
a
 

12
C

+
raw noise tail multi 

13
C

+
raw noise tail multi 

12
C

++
raw noise tail multi 

13
C

++
raw noise tail multi T 

(K) 

E 

(pJ) 

Synthetic nanodiamonds 

DND R06 17619 

A61 M35
b,c,d 

644 3 0 -- 19 3 0 -- 349 3 0 -- 2 3 0 -- 80 40 

DND R06 17620 

A61 M35
d 

4959 3 0 63 107 3 0 0 3053 2 0 15 62 3 0 0 80 40 

DND R06 17621 

A61 M34
c,d 

1243 46 0 -- 109 45 0 -- 188 21 0 -- 27 19 13 -- 80 40 

DND R06 17626 

A62 M4
d
 

4758 1 0 0 75 1 0 0 1053 1 0 17 27 1 0 0 55 80–

100 

DND R06 17629 

A61 M3
c,d 

452 45 0 -- 77 43 5 -- 338 53 0 -- 56 46 5 -- 55 70–

90 

DND R06 17967 

A62 M35
c,d 

1058 72 0 -- 102 69 6 -- 807 34 0 -- 34 33 0 -- 54 40 

DND R06 17969 

A62 M28
d 

2709 2 0 3 61 2 0 0 2382 3 0 100 59 3 0 0 54 40 

DND R06 17978 904 26 0 -- 58 26 0 -- 178 9 0 -- 12 8 0 -- 95 40 
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Sample
a
 

12
C

+
raw noise tail multi 

13
C

+
raw noise tail multi 

12
C

++
raw noise tail multi 

13
C

++
raw noise tail multi T 

(K) 

E 

(pJ) 

A62 M34
c,d 

DND R06 18428 

A64a M34
b,c,d 

1273 1 0 -- 16 1 0 -- 418 1 0 -- 5 1 0 -- 95 40–

80 

DND R06 19586 

A69 M12
b,c,e 

2318 1 0 -- 33 1 0 -- 410 2 0 -- 9 2 0 -- 95 80 

DND R06 19587 

A69 M11
b,c,e 

979 1 0 -- 25 1 0 -- 270 0 0 -- 8 0 0 -- 95 80 

DND R06 19589 

A69 M12
c,e 

2643 4 0 -- 41 4 0 -- 580 25 0 -- 47 24 0 -- 95 80 

DND R06 21153 

A77 M33
c,e 

3763 1 0 -- 65 1 5 -- 589 1 0 -- 11 1 0 -- 95 80 

DND R06 

21155v02 A77 

M35
b,c,e 

460 1 0 -- 13 1 0 -- 234 1 0 -- 5 1 0 -- 95 80 

DND R06 

21155v03 A77 

M35
c,e 

40754 11 0 55 529 11 25 0 7807 8 0 416 155 7 5 0 95 80 

DND R06 21157 

A77 M30
c,e

 

6544 2 0 -- 85 2 0 -- 1367 2 0 -- 19 2 0 -- 95 80 

DND R06 21888 

A83 M29 

13028 3 0 6 187 3 6 0 1747 3 0 210 31 3 0 0 95 80 

DND R06 21889 20721 2 0 6 255 2 24 0 6174 2 0 351 151 2 8 0 60 80 
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Sample
a
 

12
C

+
raw noise tail multi 

13
C

+
raw noise tail multi 

12
C

++
raw noise tail multi 

13
C

++
raw noise tail multi T 

(K) 

E 

(pJ) 

A83 M30 

DND R06 21893 

A83 M35
b
 

627 1 0 0 11 1 0 0 243 1 0 0 10 1 0 0 60 40 

DND R06 21895 

A83 M32 

10131 5 0 17 169 5 3 0 2788 4 0 66 57 4 0 0 60 40 

DND R06 21899 

A83 M36 

2111 1 0 3 27 1 0 0 893 1 0 3 23 1 0 0 60 80 

DND R06 21905 

A83 M06 

51120 6 0 32 595 5 75 0 1947 6 0 61 133 6 75 0 60 80 

DND R06 21896 

A83 M32 

5920 5 0 4 108 5 0 0 3160 5 0 394 69 7 0 0 60 80 

DND R06 21906 

A83 M05 

10829 1 0 10 126 1 2 0 2403 1 0 365 52 1 2 0 60 80 

DND R06 21907 

A83 M04 

1538 1 0 2 34 1 0 0 1176 1 0 2 23 1 0 0 60 80 

DND R06 21909 

A83 M01 

620 0 0 1 13 0 0 0 957 1 0 6 19 0 0 1 60 80 

Allende nanodiamonds 

ADM R06 

15004 A36 

M01
d
 

1711 1 0 3 35 1 0 0 972 1 0 3 15 1 0 0 95 150 
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Sample
a
 

12
C

+
raw noise tail multi 

13
C

+
raw noise tail multi 

12
C

++
raw noise tail multi 

13
C

++
raw noise tail multi T 

(K) 

E 

(pJ) 

ADM R06 

15005 A36 

M01
d
 

574 1 0 1 18 1 0 0 834 2 0 13 18 2 0 0 95 150 

ADM R06 

16096 A47 

M10
d
 

1854 1 0 3 40 1 0 0 1261 1 0 3 18 1 0 0 103 150 

ADM R06 

16097v03 A47 

M11
c,d

 

655 1 0 -- 11 1 0 -- 459 0 0 -- 10 0 0 -- 102 150 

ADM R06 

16098 A47 

M12
b,d

 

905 1 0 2 11 1 0 0 565 1 0 2 6 1 0 0 103 150 

ADM R06 

16119 A47 

M12
b,d 

825 1 0 1 10 1 0 0 355 1 0 1 5 1 0 0 103 150 

ADM R06 

16120 A47 

M13
b,d 

3382 1 0 4 58 1 0 0 1668 1 0 4 20 1 0 0 102 250 

ADM R06 

18430 A65a 

M06
d 

5198 21 0 5 121 21 0 0 3000 22 0 76 68 21 0 0 95 40–

100 

ADM R06 

18436 A65a 

M05
c,d 

1164 1 0 -- 18 1 0 -- 914 1 0 -- 19 1 0 -- 95 40 
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Sample
a
 

12
C

+
raw noise tail multi 

13
C

+
raw noise tail multi 

12
C

++
raw noise tail multi 

13
C

++
raw noise tail multi T 

(K) 

E 

(pJ) 

ADM R06 

18437 A65a 

M04
d 

8747 13 0 15 155 13 4 0 4487 12 0 93 82 12 3 0 95 40–

80 

ADM R06 

19314 A62 

M07
b,c,e

 

1022 1 0 -- 15 1 0 -- 461 1 0 -- 9 1 1 -- 95 60 

ADM R06 

19315 A62 

M08
c,e 

1286 4 0 -- 27 4 3 -- 942 6 0 -- 13 6 1 -- 95 80 

ADM R06 

19354 A62 

M010
c,e

 

479 50 0  -- 80 50 0  -- 625 94 0  -- 106 90 0  -- 95 60 

ADM R06 

19557 A70 M25
e 

8595 10 0 10 113 10 5 0 4791 11 0 88 83 10 3 0 95 60 

ADM R06 

19559 A70 M25
e
 

18625 14 0 10 271 13 8 0 9622 13 0 386 147 12 10 0 95 60–

80 

ADM R06 

19565 A70 M32
e 

6045 4 0 4 94 3 3 0 2376 5 0 152 53 5 3 0 60 80 

ADM R06 

19566 A70 M33
e 

2064 1 0 2 31 1 1 0 1418 1 0 18 23 1 0 0 60 80 

ADM R06 

19567 A70 M33
e
 

24915 25 0 10 312 24 6 0 8689 24 0 558 161 23 3 0 60 80 

ADM R06 

19568 A70 

5810 2 0 -- 55 2 3 -- 2891 2 0 -- 56 2 0 -- 60 60 
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Sample
a
 

12
C

+
raw noise tail multi 

13
C

+
raw noise tail multi 

12
C

++
raw noise tail multi 

13
C

++
raw noise tail multi T 

(K) 

E 

(pJ) 

M34
c,e 

ADM R06 

19572 A70 M35
e
 

4892 1 0 0 61 1 2 0 2377 1 0 109 39 1 0 0 95 80 

ADM R06 

20159 A78 

M05
c,e

 

3001 1 0 -- 49 1 3 -- 393 1 0 -- 11 1 0 -- 95 80 

ADM R06 

20163 A78 

M12
c,e 

4130 4 0 -- 67 3 6 -- 719 7 0 -- 19 7 0 -- 95 80 

ADM R06 

21164 A78 M25
e
 

26154 5 0 5 426 5 25 0 2887 6 0 889 55 6 1 0 95 80 

ADM R06 

21179 A78 

M30
c,e 

8774 3 0 -- 120 3 5 -- 2072 4 0 -- 40 4 1 -- 95 80 

ADM R06 

21180 A78 

M29
b,c,e

 

1255 0 0 -- 14 0 0 --- 307 0 0 -- 4 0 0 -- 95 80 

ADM R06 

21886 A84 M10 

7363 1 0 210 108 1 0 0 2172 2 0 9 45 2 0 0 95 80 

ADM R06 

21903 A84 M04 

8571 9 0 39 277 12 50 0 2487 12 0 75 85 22 0 0 60 80 

ADM R06 

22577 A94 

815 0 0 0 18 0 0 0 64 0 0 0 0 0 0 0 60 80–

120
f
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Sample
a
 

12
C

+
raw noise tail multi 

13
C

+
raw noise tail multi 

12
C

++
raw noise tail multi 

13
C

++
raw noise tail multi T 

(K) 

E 

(pJ) 

M04
b
 

ADM R06 

22582 A94 M18 

14420 4 0 1 194 4 5 0 2017 3 0 2 39 3 0 0 60 120 

ADM R06 

22595 A94 

M18
b
 

1510 1 0 -- 28 1 0 -- 197 1 0 -- 3 1 0 -- 60 120–

80
f
 

ADM R06 

22596 A94 M18 

12972 3 0 6 180 3 0 0 1055 4 0 8 14 3 0 0 60 105 

ADM R06 

22597 A94 

M13
b
 

5667 1 0 0 112 1 0 0 636 0 0 31 8 0 0 0 60 120 

ADM R06 

22598 A94 

M13
b
 

769 0 0 -- 13 0 0 -- 113 0 -- 0 3 0 0 -- 60 120 

ADM R06 

23612 A98 

M21
b
 

451 9 0 1 23 8 0 0 115 4 0 1 6 4  0 0 60 80 

ADM R06 

23617 A94 

M19
b
 

314 5 0 1 19 5 0 0 209 4 0 1 7 4 0 0 64 80 

ADM R06 

23619 A94 M20 

2964 1 0 4 36 1 0 0 788 0 0 5 16 0 0 0 60 80 
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a
 ADM stands for Allende nanodiamonds. DND stands for detonation nanodiamonds. R06 indicates a data set was collected using the 

LEAP 4000X Si instrument at Northwestern University. A## M## indicates the microtip analyzed. 

b
 Insignificant 

13
C

++
 counts (<10). 

12
C

++
 and 

13
C

++
 counts are reported in italics and not used in calculating the mean ratio or the 

weighted standard deviation, nor are these ratios recorded on the figures in this chapter. 

c
 Too few multi-hits to deadtime correct. 

d
 Data set was first published in (Heck et al. 2014), here presented with updated ROIs and deadtime corrections. 

e
 Data set was first published in (Lewis et al. 2015), here presented with updated ROIs and deadtime corrections. 

f
 Laser energy was adjusted up in 5–10 pJ steps during the run to observe its effect on charge-state ratio, which corresponds to field 

evaporation conditions. 
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