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ABSTRACT OF THE DISSERTATION 

Factors that Contribute to de novo Protein Misfolding and Prion Formation in Saccharomyces 

cerevisiae 

by 

Kathryn Keefer 

Doctor of Philosophy in Biology and Biomedical Sciences 

Molecular Genetics and Genomics 

Washington University in St. Louis, 2017 

Professor Heather True, Chair 

Protein misfolding is a common phenomenon that can have severe consequences on 

cellular and organismal health. Despite this, the causes of protein misfolding remain poorly 

understood. Prions are a class of proteins that, when misfolded, can convert other molecules into 

a heritable, non-native conformation. The yeast Saccharomyces cerevisiae naturally harbors 

several diverse prion-forming proteins; thus, it is an ideal model with which to investigate the 

factors that influence misfolding and aggregation.  

This thesis utilizes the yeast prions [PSI+] and [RNQ+] to investigate two distinct steps of 

the protein misfolding pathway: interactions with chaperones and their cofactors, and heterologous 

templating by other misfolded proteins.  Chaperones are proteins that help other proteins fold 

correctly, yet we have found that chaperones can have non-intuitive effects upon cells that harbor 

the prion [PSI+]. An overabundance of the Hsp70 chaperone Ssa1 relative to the Hsp70 Ssb1 

exacerbates [PSI+]-related toxicity. This toxicity can be rescued by overexpressing a Hsp70 

nucleotide exchange factor, Sse1, that may improve Ssb1 functionality in the presence of excess 
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available Ssa1. Our results imply that the balance of molecular chaperones is finely tuned and is 

crucial to maintaining protein homeostasis.  

Interestingly, the [PSI+] prion cannot form without the presence of an inducing factor, 

which is most commonly the [RNQ+] prion. The nature of the interaction between [PSI+] and 

[RNQ+] was previously unknown. Here, we have demonstrated that the two proteins undergo 

cross-seeding reaction, wherein the prion-forming proteins bind to one another to template the 

formation of [PSI+]. Blocking or restoring a binding site can have significant impacts upon the 

frequency of prion formation. As cross-seeding has been implicated in several human pathologies, 

these results may inform key principles that can be utilized to research disease prevention.   
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Chapter 1: Introduction 
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1.1 Overview 

Proteins perform diverse roles within all cells and are essential for maintaining life. From 

unicellular bacteria to multi-systemed mammals, all living things depend on proteins to provide 

cellular structure, perform metabolic reactions, act in signaling cascades, and function in material 

transport. The proper function of these molecules is dependent upon proteins achieving their 

proper secondary and tertiary folds, or conformations. Errors in protein folding can have disastrous 

results on protein homeostasis, or proteostasis, and can lead to death at the cellular, tissue, or 

organismal level (1). In humans, misfolded proteins are implicated in pathologies such as 

Alzheimer’s Disease, muscular dystrophy, type II diabetes, and Huntington’s Disease (2). Despite 

the prevalence of these diseases and the knowledge of the proteins involved, there are major 

questions that have yet to be answered about the cause of such protein misfolding. This thesis 

seeks to address two questions that are broadly summarized as follows: What factors influence the 

initiation of aggregation, and how is misfolding propagated from molecule to molecule?  

1.2 Cellular responses to protein misfolding 

Protein misfolding is a phenomenon wherein a polypeptide adopts a conformation other 

than its functional native state. Misfolding can occur co-translationally, while still emerging from 

an active ribosome, or post-translationally, in the cytosol or other cellular compartment (3–6). The 

fates of misfolded proteins vary. They may be refolded through the actions of chaperone proteins, 

they may accumulate in aggregates, or they may be degraded by the ubiquitin-proteasome system 

or by the autophagy-lysosome pathway (5,6). These outcomes are not mutually exclusive; for 

example, a protein may aggregate prior to its eventual degradation.  

 One of the ways that cells respond to protein misfolding is by producing chaperones. 

Chaperones are proteins whose role is to assist other proteins in achieving a proper conformation. 
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Chaperones are present in all known organisms and some chaperone families are highly conserved 

across kingdoms (7). There is great diversity between chaperone classes. Some chaperones are 

ATPases that are thought to protect proteins from the crowded cytosolic environment in order to 

allow independent refolding (e.g. Hsp70s in humans and yeast, DnaK in E. coli). Other chaperones 

act as cofactors to larger complexes and are responsible for substrate identification and delivery 

(e.g. Hsp40s in yeast, J proteins in humans). Still others function as hexameric disaggregases (e.g. 

Hsp104 in yeast, ClpB in bacteria) that actively unfold client proteins. Interestingly, though 

metazoans do not have a chaperone homologous to this latter class of proteins, chaperone networks 

are ubiquitously robust. Yeast contain more than 60 distinct chaperones, and human cells contain 

an estimated 200 distinct chaperone types (8,9).  

 Chaperone activity is not always sufficient to allow a protein to fold correctly. In some 

cases, misfolded proteins will form quaternary aggregates that remain within the cell. Broadly, 

there are two types of aggregation that are relevant to this thesis: prion and non-prion. Prion 

aggregation is a unique type of protein misfolding that results in the formation of self-propagating, 

beta sheet-rich amyloids. The generation and structure of prions will be discussed in section 1.3.  

Non-prion aggregates are more common and are generally formed from highly-damaged 

proteins that will eventually be degraded. In yeast, these proteins may be localized to one of three 

cellular compartments: the juxtanuclear quality control compartment (JUNQ), the insoluble 

protein deposit (IPOD), or the intranuclear quality control compartment (INQ) (10,11). The 

proteins in the JUNQ are more immediate targets for degradation by the ubiquitin-proteasome 

system, while aggregates in the IPOD are stored in the cell for a longer period of time and may 

eventually be degraded via autophagy (10). In mammalian cells, aggregated proteins also form 

both juxtanuclear and IPOD-like inclusions. For example, an aggregate storage structure called the 
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aggresome is surrounded by cytoskeletal filaments and localizes adjacent to the nucleus (12).  

Overall, these structures serve as holding compartments until proteins can be processed by the 

cellular machinery.     

 Some of these misfolded proteins are ultimately degraded by one of two cellular pathways: 

the ubiquitin-proteasome system (UPS) or autophagy. Both are highly-conserved throughout 

Eukarya. In the UPS, terminally misfolded proteins are marked for destruction via the attachment 

of a small protein, ubiquitin, to a lysine within the target protein (13,14). This action is performed 

by E3 ubiquitin ligases, which also act to form the K48 polyubiquitin chains that are necessary for 

recognition by the proteasome. The proteasome recognizes the ubiquitin-marked species and 

subsequently degrades the proteins. The proteasome itself is a multimeric complex comprised of 

a 20S core and a 19S cap (15). The barrel-shaped core is where degradation takes place, and the 

cap serves a regulatory function by translocating misfolded proteins and hydrolyzing ATP (16). 

Due to its specific targeting of polyubiquitinated proteins, the UPS is considered a highly-specific 

pathway.  

In contrast, autophagy is a less-specific, though still regulated, process by which the 

lysosome degrades cellular components. Autophagy targets include organelles, large protein 

aggregates, and other bulk macromolecules (17,18).  Nutrient starvation is a common cause of 

autophagy, as are overcrowding, thermal stress, and cellular damage (17,19,20). In brief, the highly 

conserved process begins with the formation of the double-membraned autophagosome, in which 

a long membrane called a phagophore randomly envelops cellular components (18). Then, the 

autophagosome fuses with the lysosome or vacuole (in metazoans or plants/yeast, respectively) to 

begin degradation (18). Following digestion, amino acids are recycled back into the cytosol in a 
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process that is poorly understood (21,22). It is unknown whether autophagy is able to recycle 

carbohydrates and nucleic acids, or whether the process is protein-specific (18).     

1.3 Prion aggregation and strains 

Prions are a unique class of misfolded proteins that remain incompletely understood. 

Though every protein can theoretically misfold and aggregate, not every protein can form a prion. 

When prion-forming proteins aggregate, they form insoluble fibers called “amyloid.” Amyloid 

fibers can vary in width and length, but are characterized by a cross-beta pattern, in which beta 

strands extend perpendicularly with regards to the fiber axis but form sheets that run parallel to the 

fiber axis (23–25). Within these beta sheets, variation can exist in the orientation of beta-strands 

and in the alignment between amino acids within the beta sheets. Beta strands can run antiparallel 

or parallel to one another (Figure 1.1), and amino acids within parallel sheets can align in-register 

or be out of register (23). A rare amyloid conformation, β-solenoid, is a “sandwich” structure that 

can be categorized as containing either β-helices or β-rolls. Notably, the Alzheimer’s-related Aβ 

protein is thought to form a β-solenoid structure (23).  

In addition to Aβ, other non-prion-forming proteins can aggregate in amyloid structures. 

What, then, sets prions apart from other proteinaceous aggregates? Prions are unique in that their 

aggregates are self-propagating; that is, they can induce the misfolding of monomeric proteins to 

replicate structures that join the pre-existing template and form additional prion seeds (Figure 

1.2)(26). The basis of this transformation remains poorly understood, and is discussed in greater 

detail in Chapter 4. This self-propagating characteristic is what leads to the pathogenic nature of 

some prions; notably, the human prion protein.  
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Figure 1.1. Possible orientations of beta sheets within amyloid fibers. All diagrams are of a 

“side view” perspective of the fiber unless otherwise indicated. Red patches indicate corresponding 

amino acids from different monomer units. Adapted from Toyama and Weissman, 2011.  
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Figure 1.2. The prion life cycle. A native protein misfolds into a prion conformation, forming a 

prion “seed.” The seed can template other monomers to misfold and add onto the end of a growing 

amyloid fiber. The fragmentation of amyloid fibers, by chaperones or other factors, produce 

additional seeds that promote prion propagation.  

 

 

 

There is only one known prion-forming protein in mammals, PrP (for Prion Protein).  This 

protein is expressed in many tissue types, but is most highly-expressed in the central nervous 

system (CNS) (27–29). When in its native conformation, denoted PrPC, the protein is glycosyl-
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phosphatidylinositol (GPI) anchored to the cell surface and is non-pathogenic. The function of 

PrPC is unknown, though it has been suggested to play diverse roles in anti-apoptosis pathways, 

protection against oxidative stress, and transmembrane signaling (30). When PrP misfolds, it is 

called PrPSc and its aggregation causes severe, terminal disease that begins in the CNS (31). The 

cohort of resultant diseases, together called transmissible spongiform encephalopathies (TSEs), 

include bovine spongiform encephalopathy (BSE) or “mad cow” in cattle, chronic wasting disease 

(CWD) in deer and elk, and Creutzfeldt-Jakob disease (CJD) and kuru in humans (31–33). The 

TSEs lead to a steady decline in cognition, eventual loss of motor control, and death within a short 

timescale. Human proteinopathies, including prion diseases, are discussed in further detail in 

section 1.4.  

Interestingly, though all TSEs are caused by the same misfolding prion protein, there is 

variability between some disease features. The incubation period, rate of disease progression, and 

specific symptoms may differ between organisms of the same species (34). This is thought to be 

due to different amyloid conformations that are adopted by PrPSc when it misfolds (35). In other 

words, different prion “strains” may exist as a result of amyloid diversity. There is experimental 

evidence to support the concept of different prion strains in mammals (35,36). When treated with 

Proteinase K, PrPSc is digested into different fragment sizes between different aggregates (37). 

This suggests that the aggregates have adopted distinct conformations that are differentially 

available to the proteinase (38–40). Further, there are two mink prion strains – hyper (HY) and 

drowsy (DY) – that are both comprised of PrPSc but result in differing disease phenotypes (41,42).  

These two strains show differential susceptibility to protease digestion, differing patterns of 

sedimentation, and are both propagable over many generations (41,42). However, confounding 
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factors such as genetic background, the environment, and methodology can hamper discovery of 

prion aggregate characteristics.    

1.4 Human proteinopathies 

A variety of human diseases can arise from misfolded and aggregated proteins. These 

diseases may either be caused by the prion protein PrP or by non-prion aggregation, though the 

definition of “prion” is becoming blurred as new research suggests infectivity of non-PrP amyloid 

(43–45).  

1.4.1 Transmissible spongiform encephalopathies, a.k.a. prion diseases 

All mammalian prion diseases are caused by PrPC conversation into pathogenic PrPSc, and 

are collectively called “transmissible spongiform encephalopathies” (TSEs). In humans, these 

pathologies are called several different names, including Creutzfeldt-Jakob Disease (CJD), kuru, 

fatal familial insomnia (FFI), and Gerstmann-Sträussler-Scheinker syndrome (GSS). Patients 

suffering from these conditions experience progressive neurodegeneration, loss of motor control, 

dementia, and eventual death. These diseases also differ in their origins: while most cases of CJD 

are spontaneous (having no obvious genetic link), FFI is inherited from generation to generation 

(46,47). On the other hand, kuru is most prevalent in cannibalistic tribes in Papua New Guinea, 

who obtained the disease from eating the neural tissue of afflicted deceased (48). Though this type 

of inter-organismal infectivity is characteristic of TSEs, there is typically a barrier to inter-species 

transmission. However, this species barrier can in some cases be overcome, most notably during 

the “mad cow disease” (bovine spongiform encephalopathy) outbreak in the United Kingdom in 

the early 1990s (36,49,50). This zoonotic transmission of PrPSc from cows to humans, via tainted 

beef, led to variant CJD (vCJD) that was unique in its early age of onset and slow disease 

progression (50). Similarly, deer afflicted with the TSE known as Chronic Wasting Disease 
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(CWD) are endemic to parts of the United States and are considered a potential threat to human 

health if consumed (51). The reasons why some TSEs can overcome the species barrier have yet 

to be elucidated, though the conformation of the misfolded PrPSc is thought to be a contributing 

factor (52).  

1.4.2 Pathologies related to protein aggregation   

The non-prion proteinopathies of humans show greater diversity in appearance, 

inheritance, and pathology. Some of the well-known protein misfolding diseases include 

Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. 

These diseases are characterized by neurodegeneration, but the specific types of affected neurons 

differ from condition to condition. Other diseases that arise from protein aggregation include some 

forms of muscular dystrophy, several types of dementia, and type-2 diabetes. Further, while TSEs 

are all caused by the conversion of PrP, there are a diversity of non-prion proteins that contribute 

to the above pathologies. The detailed etiologies of each disease are diverse and outside the scope 

of this thesis, but cross-seeding between heterologous proteins have been implicated as factors in 

several of these pathologies.   

Two major types of aggregation occur in Alzheimer’s disease: the formation of 

intracellular amyloid-β (Aβ) peptides, and the accumulation of extracellular tangles of the 

microtubule-associated protein tau. Mouse studies indicate that Aβ initiates tangle formation, 

which leads to synaptic dysfunction (53,54). However, the relationship appears to be bidirectional, 

with the presence of tau being a requirement for Aβ accumulation (55). The conflicting evidence 

related to which aggregating species is upstream of the other has led to the suggestion of a feedback 

loop, in which external factors can lead to the misfolding of either Aβ or tau, which then continue 

to cross-seed each other’s aggregation (56). Though the aggregates of Aβ and tau do not localize 
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to the same region, it has been suggested that Aβ peptides may seed tau into more pathological 

forms prior to its prion-like spread (57). Interestingly, α-synuclein, the Parkinson’s disease-related 

protein, has also been shown to cross-seed tau aggregation (58). The resulting emergence of 

separate tau conformers (59) has prompted researchers to posit the existence of multiple α-

synuclein “strains,” as is seen with prion diseases (58).  

Type-2 diabetes (T2D) is a unique proteinopathy because it does not affect the nervous 

system, unlike many of its related amyloidoses. The aggregating species in T2D is islet amyloid 

polypeptide, IAPP, which accumulates in pancreatic β-cells and eventually leads to cell death (60). 

Recently, it was discovered that α-synuclein may be present in β-cells under certain conditions, 

and an epidemiological study found that T2D was associated with an increased risk for the 

development of Parkinson’s disease (61,62). A similar relationship has been described for T2D 

and Alzheimer’s disease (63). Further, IAPP was found to seed the polymerization of Aβ in vitro, 

suggesting a cross-seeding relationship (64). The connectivity between aggregation-prone proteins 

of common human diseases highlights the need for greater understanding of the molecular factors 

that influence cross-seeding, as is described in Chapter 4.  

1.5 Functional aggregation of bacteria, fungi, and metazoans 

Though amyloidogenic proteins are well-known for causing disease in mammalian systems, 

functional aggregation exists in bacteria, fungi, and even animals. Further, cross-seeding may play 

a role in initiating and propagating these functional amyloids.  

1.5.1 Curli aggregation of Enterobacteriaceae  

In bacteria, the “curli” amyloid is believed to assist in biofilm formation and host invasion. 

The proteins that comprise these aggregates are encoded by operons that have been identified 

within E. coli and Salmonella species. In E. coli, the csgBA and csgDEFG operons transcribe 6 
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proteins, two of which play major structural roles (65). These proteins, CsgA and CsgB, share 

some homology and contain β-strand-forming repeat peptides, as do the non-homologous prion-

forming proteins Sup35 and PrP (66,67). Interestingly, the aggregation of CsgA is dependent upon 

the presence of CsgB: without CsgB, CsgA remains monomeric and soluble (66), suggesting cross-

seeding. However, CsgA and CsgB need not be expressed within the same cell for aggregation to 

take place, as cells expressing CsgB can receive secreted CsgA from a “donor” cell. Once curli 

has assembled into amyloid fibers, bacterial patches can strongly adhere to smooth surfaces, 

including stainless steel (68). The role of curli amyloid in pathogenicity is incompletely 

understood, but curli has been shown to interact with several host proteins (69). In one example, 

curli binds simultaneously to an inactive protease and its activator, which converts the proenzyme 

to an active form that can degrade soft tissue (70). The functional role of curli – and its potential 

to provide an advantage to pathogenic bacteria – highlight the complex utility of amyloid in nature.  

1.5.2 [Het-s] prion of Podospora anserine 

Saccharomyces cerevisiae is not the only prion-harboring fungus, as the filamentous 

Podospora anserina contains a well-described prion called [Het-s](71). The HET-s protein plays 

a role in heterokaryon incompatibility; that is, the relationship between different multinucleate 

cells. The [Het-s] prion system differs from the S. cerevisiae prions, as there is a genetic component 

that helps to determine the prion state. This system involves two alleles that code for the HET-s 

protein, these alleles are named het-s, which allows formation of the prion [Het-s] or the non-prion 

state [Het-s*], and het-S, which does not allow for prion formation and whose phenotype is denoted 

[Het-S]. The phenotypic states arising from these two alleles are incompatible. Cell death occurs 

if a [Het-s] fungus fuses with a [Het-S] partner; however, a genetically identical [Het-s*] strain 

can successfully fuse with a [Het-S] cell (72). The proteins resulting from the het-s and het-S alleles 
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differ by just 13 amino acids, with two non-prion-forming domain residues (23 and 33) playing 

the largest functional role in heterokaryon incompatibility. Like Sup35 and PrP, HET-s has a prion-

forming domain that helps to transition the monomeric protein to a self-perpetuating amyloid, but 

the protein is far less Q/N-rich than the S. cerevisiae prions (73,74).  The specific nature of the 

toxic reaction between [Het-s] and [Het-S] cells is unknown, but dimerization between a prion 

seed and a non-prion HET-s molecule is thought to be an important molecular switch (72). Thus, 

the HET-s system is an example of not just functional prion formation, but functional cross-seeding 

as well.     

1.5.3 CPEB3 aggregation in metazoan memory formation  

The mouse cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is a 

conserved, amyloid-forming protein that displays prion-like characteristics. Its invertebrate 

orthologs, notably CPEB in the slug Aplysia and Orb2 in Drosophila, have been implicated in 

long-term memory storage via helping to direct synaptic connections (75,76). As with other 

amyloid-forming proteins, CPEB3 contains a Q-rich domain that has been described as a 

functional prion (77). Following synaptic activity, CPEB3 is upregulated and forms SDS-resistant 

aggregates in murine hippocampi. Cortical and hippocampal knockout of the CPEB3 gene led to 

mice that were impaired in long-term, but not short-term, memory formation in a variety of 

learning tests (78). Functionally, CPEB3 acts through the AMPA receptor pathway by binding to 

the mRNAs of receptor subunits GluA1 and GluA2 (79,80). This binding represses their 

translation. Following activation of neurons, CPEB3 is ubiquitinylated and translation of GluA1 

and GluA2 is activated, leading to a new synaptic spine (79). During this process, a steric inhibitor 

of CPEB3 is removed, allowing for its subsequent aggregation (81). It has been suggested that 

aggregation of CPEB3 serves as a mechanism for strengthening long-term memory by providing 
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a seed template for the rapid aggregation of new CPEB3 upon re-activation of the synapse (78). 

Though more experimentation will be necessary to clarify CPEB3’s role in memory (82), its 

aggregates have been demonstrated to have a lifespan that could support long-term memory 

storage (83).  

1.6 Saccharomyces cerevisiae as a model system to study prion characteristics 

There are limitations of mammalian organisms that prevent the elucidation of basic 

principles of prion generation. Questions such as how prions form de novo, how they are 

propagated between cells and organisms, and how misfolded proteins may interact with native 

proteins, are time-consuming and difficult to parse when working in a multicellular system. 

Techniques have been developed to biochemically assess mammalian prions via seeding protocols 

that attempt to detect conformational changes during aggregation (84,85); however, these provide 

limited mechanistic insights and are known to yield inconsistent results (84,86). Further, methods 

of inducing prion conversion in vivo often involve cerebral injections that do not recapitulate 

natural events or disease progression (87). Finally, the lack of understanding about the function of 

PrP and its interactions with other molecular agents make mammals an insufficient system by 

which to study prion generation and propagation.    

The baker’s yeast Saccharomyces cerevisiae is an important model system for the study of 

protein misfolding and prions.  Not only does this unicellular Eukaryote have a well-characterized 

genome and an array of available proteomic tools, but prions are naturally occurring epigenetic 

elements in yeast. There are approximately eleven identified prions in yeast, and many more 

phenotypes that exhibit prion-like features (88,89). The yeast prions are diverse in function and 

consequence, but all share certain characteristics with mammalian prions; namely, they form self-

propagating amyloid fibers, are transmitted cytoplasmically between cells, and can form different 
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strains (88). However, yeast prions are generally not cytotoxic, and can even have benefits to cells 

that harbor aggregates (90). Further, there are well-established in vivo and in vitro techniques that 

have been developed to facilitate the investigation of prions in yeast.  

1.6.1 Yeast prion overview 

Yeast prions, like mammalian prions, are the amyloid aggregates of misfolded proteins. 

The monomeric protein that constitutes a prion is referred to by its protein name, while its prion 

form is specified by an uppercase denotation within brackets, which indicates its epigenetic 

transmission. For example, the protein Sup35 aggregates to form the prion state called [PSI+]. The 

non-prion state of Sup35 is then denoted as [psi-]. Since misfolded proteins often lose their native 

functions, prion aggregation in yeast usually mimics the loss-of-function phenotype of its 

monomeric constituent. Thus, prion aggregation can serve a regulatory function by controlling the 

amount of functional protein that is available in the cell. Of the seven best-characterized yeast 

prions, four are transcriptional regulators, one is a translation termination factor, and one is 

involved in nitrogen regulation (88). The formation of these prions have diverse consequences 

upon the phenotype of their host cells without altering the underlying genotype.  

1.6.2 Sup35 and [PSI+] 

[PSI+] is the phenotype that results when Sup35 aggregates into its prion form. Sup35 is a 

translation termination factor (also called eRF3) that forms the Eukaryotic translation termination 

complex with Sup45 (also called eRF1).  Sup35 is comprised of three domains, denoted N 

(residues 1-123), M (residues 124-253), and C (residues 254-685) (91). Together, the N and M 

domains act as the prion-forming region of Sup35 and are designated “NM.” The N domain is Q/N 

rich, has a high proportion of uncharged amino acids and, like PrP, contains oligopeptide repeats 
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that may contribute to its aggregation (92,93). The M domain is a highly-charged and polar region 

that is thought to lend stability to the aggregated state and contain chaperone binding sites (94,95). 

The C-terminal domain is globular and, when Sup35 is soluble, acts as a GTPase that works with 

eRF1 (Sup45) to release nascent polypeptide chains from the ribosome (96). When Sup35 

aggregates to form [PSI+], its functionality is reduced and the translation termination complex 

does not form at wild type (WT) levels (97,98). Thus, stop codon readthrough, or nonsense 

suppression, occurs at a higher frequency than in the [psi-] WT, approximately 1-3% over baseline 

(99,100). Though high levels of nonsense suppression are toxic due to cofactor sequestration (101), 

most states of [PSI+] involve low levels of readthrough and are well-tolerated by cells (98). In 

fact, [PSI+] can even be advantageous to yeast in certain environments by allowing them to draw 

upon potentially beneficial genetic information contained within the 3’UTR of mRNA (90). This 

is discussed in further detail in section 1.4.5. 

The nonsense suppression phenomenon makes it possible to easily track the [PSI+] status 

of yeast via a colorimetric assay. Laboratory strains that have been developed for prion research 

contain a ade1-14, a variant allele of the ADE1 gene that contains a premature stop at codon 244 

(88,102).  When Sup35 is soluble and cells are [psi-], this aberrant stop codon is faithfully 

recognized by the translation termination machinery and a truncated protein is produced. 

Following this pioneer round of translation, the transcript is likely degraded by nonsense-mediated 

decay (NMD) due to the premature stop (103). As a consequence, cells cannot complete the 

adenine biosynthesis pathway that is reliant upon the full-length product of ADE1, called SAICAR 

synthase. Thus, these cells cannot grow on media lacking adenine. Further, the yeast experience a 

buildup of an upstream product, P-ribosylamino imidazole, which is nontoxic but confers a red 

pigmentation to the colonies. Conversely, the formation of [PSI+] causes misfolding and 
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aggregation of Sup35, leaving a reduced pool of functional protein to form the translation 

termination complex. In yeast containing ade1-14, the resulting nonsense suppression leads to the 

production of sufficient SAICAR synthase to allow cells to grow on media lacking adenine and 

maintain a white color on rich media. These two assays – growth on adenine dropout plates and 

coloration on rich media – allow for rapid identification of [psi-] vs [PSI+] yeast (Figure 1.3).  

[PSI+] can exist in two well-characterized strains – “strong” and “weak” – though the 

existence of other strains has been demonstrated (104–106). Strong [PSI+] and weak [PSI+] are 

differentiated by their amount of nonsense suppression, which relates to the total amount of 

functional Sup35 present in cells (107). Strong [PSI+] yeast experience higher levels of nonsense 

suppression than weak [PSI+] yeast because there is a lower ratio of aggregated to soluble Sup35 

in the weaker variant. This leads to an observably darker pink coloration of weak [PSI+] yeast 

relative to their strong [PSI+] counterparts (Figure 1.3). Similar strains can be formed from 

recombinant Sup35 in an in vitro setting by stimulating amyloid polymerization at varying 

temperatures. The protein conformations favored at 37ºC confer a weaker phenotype when  
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Figure 1.3. Strain variation of the yeast prion [PSI+]. In yeast containing the ade1-14 allele, 

[PSI+] or [psi-] status can be distinguished by colony coloration and growth on SD-Ade media. 

Yeast that are [psi-] experience buildup of a red pigment and cannot synthesize their own adenine. 

Strong [PSI+] yeast are white and grow robustly on SD-Ade, while weak [PSI+] cells exhibit an 

intermediate pink coloration and weaker growth on selective media.  

 

 

 

 

 

 

introduced in vivo than fibers formed at 4ºC (108). These new strains of [PSI+], respectively called 

Sc37 and Sc4, highlight the strength of the yeast model system in deciphering prion characteristics.  
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Studies of Sc4 and Sc37 have led to the discovery of differing properties between prion 

variants. In an effort to explain the differences in the amount of aggregated Sup35 in weak versus 

strong [PSI+], researchers investigated the physical characteristics of the amyloid aggregates. The 

stronger strain, Sc4, was demonstrated to be more frequently fragmented, leading to the generation 

of additional prion “seeds” that could nucleate new aggregates (109). Further biophysical analysis 

found that the stronger Sc4 strain had a shorter amyloid “core,”  or a smaller portion of the Sup35 

protein making a contribution to amyloid fibers (110).  

Though much has been discovered about the prion properties of Sup35, the initial 

formation of [PSI+] is dependent upon another prion factor: the enigmatic element called [RNQ+].  

1.6.3 Rnq1 and [RNQ+] 

The [RNQ+] prion is formed from the Rnq1 protein, which has no known function in its 

monomeric state (111). Rnq1 is divided into an N-terminal domain (residues 1-152) and a C-

terminal prion-forming domain (PFD, residues 153-405)(112). Within the PFD, four Q/N-rich 

regions (residues 185-198, 218-263, 279-319, and 337-405) are important to [RNQ+] propagation 

but remain poorly understood (113). Interestingly, [PSI+] rarely forms without the presence of 

[RNQ+] (114). Prior to the discovery of [RNQ+], the concept of a [PSI+] inducing factor, [PIN+] 

had been suggested as a requirement for Sup35 amyloid formation (115). Ultimately, the [RNQ+] 

prion was identified as the most potent [PIN+] element, and now the two terms are often used 

interchangeably (112,114).  Following formation of [PSI+], the two prions may be propagated or 

lost independently (116).  

There are two models for how [RNQ+] induces the formation of [PSI+] (114). The first 

model, the “inhibitor titration model,” suggests the presence of a molecular inhibitor of 
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aggregation that binds to Sup35 in the [psi-] state. Upon [RNQ+] formation, this inhibitor would 

be titrated away from Sup35 to the aggregated Rnq1, leaving Sup35 free to form amyloid fibers. 

Though work has been performed to identify the inhibitor, no molecule has been identified to date 

(114). The second model, the “cross-seeding model,” suggests a binding interaction between 

misfolded Rnq1 and native Sup35. In other words, the Rnq1 may cause the misfolding of Sup35 

by inducing conformational changes that may then be propagated independently by the [PSI+] 

state. This model is supported by co-localization microscopy and the weak in vitro polymerization 

of Sup35 in response to Rnq1, and is confirmed by experiments detailed in Chapter 4 (117,118).  

Like [PSI+], the [RNQ+] prion exists in multiple strains, or “variants.” These variants are 

differentiated by their abilities to induce [PSI+] and are accordingly named “low,” “medium,” 

“high,” and “very high.” The “high”-inducing [RNQ+] strain is further subdivided based upon its 

aggregate structure as visualized by fluorescent microscopy with Rnq1-GFP. The “multi-dot high” 

strain contains multiple Rnq1foci, while “single dot high” is characterized by one large punctum 

of fluorescence (119). Additional [RNQ+] variants have since been described, and it is 

hypothesized that the existence of a spectrum of conformations is beneficial to cells because it 

fine-tunes their ability to convert to the [PSI+] phenotypic state (120).  

 

1.6.4. Other yeast prions 

Beyond [PSI+] and [RNQ+], there are a multitude of other prion-forming proteins in 

Saccharomyces cerevisiae. The best-characterized of these include [URE3], [SWI+], [OCT+], 

[MOT3+], and [ISP+], which are respectively formed by the proteins Ure2, Swi1, Cyc8, Mot3, and 

Spf1 (88). All of these proteins have a regulatory function within the cell. Ure2 is a nitrogen uptake 
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regulator, and the formation of [URE3] allow host cells to take up alternative nitrogen sources, 

such as ureidosuccinate, in the presence of preferred nitrogen sources (121,122). The other yeast 

prion-forming proteins play a role in transcriptional regulation of various processes. The 

aggregation of Swi1 into [SWI+] affects the activity of the chromatin remodeling complex 

SWI/SNF (123); similarly, when Cyc8 converts to form [OCT+], it reduces the functionality of the 

highly-conserved Cyc8-Tup1 transcriptional repressor (124). Mot3 is a transcription factor that 

regulates genes related to metabolism and stress response (125). Its prion form, [MOT3+], displays 

a gain- and loss-of-function phenotype, via a mechanism that is not understood, that promotes 

filamentous growth of yeast in response to nutrient challenges (126). The aggregation of these 

prions mimics the loss-of-function of the monomer protein (88). Further, these prions are all cured 

by deletion of the chaperone Hsp104 (discussed in section 1.5.1). [ISP+] is unique among yeast 

prions, in that it is Hsp104-independent, localizes to the nucleus, and its aggregation confers a 

purely gain-of-function phenotype (127). 

Other yeast epigenetic elements have been described in the literature as exhibiting prion-

like characteristics, yet are incompletely characterized. One of these putative yeast prions, [GAR+], 

is transmitted cytoplasmically but has not been shown to form amyloid structures (128). This 

element allows S. cerevisiae to utilize diverse carbon sources even in the presence of glucose. 

Another potential prion, [MOD], is formed from the Mod5 tRNA isopentenyltransferase. Its 

amyloid aggregation protects yeast from antifungal compounds (129). Unlike the other prion 

proteins, it does not have a Q/N-rich prion-forming domain (129). Though much has yet to be 

learned about these non-canonical prions, their ability to reversibly modify yeast phenotypes, 

independently from genotypes, makes them an important facet of homeostatic regulation.      
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Interestingly, even beyond the [RNQ+]/[PSI+] relationship, prions influence the formation 

and activities of other prions. The [URE3] and [SWI+] prions can act as [PSI+]-inducers, albeit 

more weakly than [RNQ+] (114,130). Overproduction of soluble prion-forming proteins, such as 

Ure2, Swi1, Mod5, and Cyc8, has been shown to increase [PSI+] formation when Sup35 is also 

overexpressed (114,129). Furthermore, [PSI+] can reduce the frequency of [URE3] formation, and 

[URE3] and [PSI+] appear to have mutually destabilizing effects when both prions are present in 

cells (131,132). Additionally, some of these effects may be dependent on the prion strain, or 

variant, that is in play. The promotion and inhibition of a particular prion by other prions may 

impact which phenotypic effects are ultimately observed, and is especially significant in light of 

the fact that many yeast prions may be as-yet undiscovered (89).  

1.6.5. Beneficial yeast prions in the lab and in nature  

Given the regulatory function that is associated with many prion-forming proteins, yeast 

can sometimes benefit from the prion state. In the case of [PSI+], enhanced nonsense suppression 

leads to translation of typically silent genetic information in the 3’UTR or in normally silent 

pseudogenes. Whether these additional polypeptides relay an adaptive advantage to the yeast is 

dependent upon both the environment and the yeast genetic background (90). This is an example 

of how yeast prions can decouple genotype from phenotype, as isogenic populations of yeast may 

have different [PSI+] states and thus different levels of nonsense suppression.  Relative to genetic 

modification, yeast prions can be easily gained and cured within a few generations of yeast. 

Further, the rapidity of prion formation could allow yeast to adapt to quickly-changing 

environmental pressures.  
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In a laboratory setting, [PSI+] has been demonstrated to confer resistance and sensitivity 

to a variety of environmental conditions. A large-scale study examined the phenotypes of isogenic 

[PSI+] and [psi-] colonies from seven different yeast strain backgrounds (90). Neither the [PSI+] 

nor the [psi-] state had a consistent nor predictable effect on the robustness of yeast growth across 

strains. In some instances, [psi-] was generally more beneficial to cells: [psi-] yeast of the 5V-H19 

strain grew well on non-ammonium sulfate nitrogen sources, in contrast to their [PSI+] 

counterparts (90). However, [PSI+] 74D-694 yeast generally grew better on certain alternative 

nitrogen sources than isogenic [psi-] cells (90). In other cases, prion status could be of conflicting 

benefit even within the same class of environment: when grown on non-glucose carbon sources 

[PSI+] 33G-D373 thrived on 3% ethanol relative to [psi-] cells, but [psi-] yeast grew more robustly 

on 2% lactate (90). This seeming randomness to [PSI+] benefits makes sense because the 3’UTR 

and retained pseudogenes inactivated by a premature termination codon are not typically under 

selection.   

Other studies have examined the existence of prions in wild yeast. An examination of 690 

yeast strains from beer, wine, soil, fruit, plants, medical clinics, and other sources revealed the 

presence of amyloid Sup35 in 10 samples (89). These aggregates were cured in response to Hsp104 

inhibition, and the resulting [psi-] phenotypes were generally at a growth disadvantage relative to 

their isogenic [PSI+] isolates (89). In the same study, [RNQ+] aggregates were identified in 43 

wild strains, in line with previous reports of [RNQ+] in 11/70 wild strains (133) and identified in 

a multitude of variants in 22 different wild yeast (134). These variants, though differing in 

biochemical properties, were almost all strong inducers of [PSI+] (134). The relative frequency of 

[RNQ+] occurrence in the wild, coupled with its high [PSI+]-inducing capabilities in these isolates, 

suggest a robust bet-hedging mechanism in natural environments. In other words, [RNQ+] may 
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prime yeast to rapidly convert from the [psi-] to the [PSI+] state in response to changing 

environmental pressures (135).  

Though far less is known about the [MOT3+] prion relative to the [PSI+]/[RNQ+] system, 

the role of monomeric Mot3 as a transcriptional regulator means that [MOT3+] has the potential 

to promote broad changes in the gene expression profiles of its host cells. In a survey of 96 wild 

yeast strains, six contained Mot3 aggregates indicative of [MOT3+] (89). When cured, these strains 

exhibited reduced tolerance to extreme environmental conditions. Further, Mot3 aggregates to 

form [MOT3+] at a high conversion frequency relative to other fungal prion proteins, 10-4 as 

compared to less than 10-6 for [PSI+] (136–138). The ability of [MOT3+] to regulate filamentous 

growth and ethanol stress may make it a particularly beneficial epigenetic element for yeast that 

naturally occur in the wild and in alcoholic fermentation reactions.  

1.7 An introduction to molecular chaperones of Saccharomyces cerevisiae    

Yeast proteins, including prion-forming proteins, interact with molecular chaperones 

throughout their “life cycles” (9) Chaperones are proteins that assist other proteins in achieving 

the correct conformation. Yeast have an estimated 63 chaperone proteins and a multitude of 

cofactors that assist chaperones in performing their functions (9). Certain chaperone classes are 

conserved across several Eukaryotic systems, while others are specific to unicellular organisms 

and have no obvious homologs in metazoans. The balance of chaperones, their cofactors, and their 

substrates is essential in the maintenance of proteostasis.  

1.7.1 Hsp104 

Hsp104 is a hexameric AAA+-ATPase that is required for the propagation of most known 

yeast prions (139,140). The deletion of Hsp104 is non-lethal under standard growth conditions. 
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However, deletion or null mutations of the HSP104 gene leads to severe growth defects following 

heat shock and other forms of cellular stress (141). The denaturant guanidine hydrochloride 

(GdnHCl) inhibits Hsp104 by repressing its activity and reducing its interaction with chaperone 

cofactors (142,143). Manipulation of Hsp104 is an important tool for the investigation of prions 

in yeast, and is discussed in section 1.8.1.  

The assembled Hsp104 complex is comprised of six identical subunits.  Each subunit of 

Hsp104 contains an N-terminal domain and two ATPase domains, AAA1 and AAA2, separated 

by a linker (144,145). A regulatory domain (MD) appears as an extension in AAA1 and facilitates 

binding to other chaperones, communication between AAA1 and AAA2, and modulating the 

activity of the disaggregase (146,147).  The C-terminal domain is important for oligomerization 

of the complete hexamer (148). When the complex is assembled, six Hsp104 monomers join in a 

barrel conformation around a central pore. This allows the translocation of protein substrates 

through the Hsp104 refolding channel via a threading mechanism (145,149,150). Within this 

hollow center, middle domain pore loops form a spiral pattern to assist with substrate binding and 

translocation (151).  

Hsp104 is capable of dissolving amyloid aggregates under normal conditions, and 

potentiating mutations allow it to dissolve fibrils of human disease-associated proteins such as 

FUS, TDP-43, and α-synuclein (152). These mutations can reduce or eliminate Hsp104’s reliance 

on cofactors and prevent the complex from autoinhibitory interactions between monomers (152). 

This is in contrast to native Hsp104 activity, which is assisted in part by the actions of the Hsp70/40 

system. These chaperones are believed to bind to Hsp104 substrates and promote their delivery to 

the disaggregase (153).  
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1.7.2 Hsp70s and their nucleotide exchange factors 

The Hsp70 chaperones are highly conserved across kingdoms (154). Broadly, the Hsp70s 

are abundant ATPases that promote the refolding of aberrant proteins. In yeast, the two major 

families of Hsp70 are the Ssas and the Ssbs. There are four members of the Ssa family (Ssa1-4) 

and two Ssbs (Ssb1-2). The quadruple-deletion of the ssa1Δssa2Δssa3Δssa4Δ is lethal, though the 

presence of any one of the Ssa-encoding genes is sufficient for survival (155). Of these proteins, 

Ssa1 is both constitutive and stress-inducible, Ssb1 and Ssa2 are constitutive and non-inducible, 

and Ssa3-4 are only induced under stress conditions (155).  

In contrast, the double ssb1Δssb2Δ deletion is non-lethal, though it does confer a slow-

growth phenotype (155). Ssb1 and Ssb2 differ by only four amino acids (156). Interestingly, the 

three substrate binding domain polymorphisms have been shown to be under selective pressure to 

maintain their divergence across species, indicating a functional role for the differences between 

Ssb1 and Ssb2 (157). It has been shown that Ssb1 binds to calmodulin (158) and that its 

overproduction can rescue a mitochondrial defect (159), though the differing functions of Ssb1 

and Ssb2 have yet to be completely elucidated.  

Both families of Hsp70s contain a three-domain structure: a 40kDa N-terminal nucleotide 

binding domain (NBD), a 20kDa substrate binding domain (SBD), and a 10kDa C-terminal 

variable domain (VD) (160,161). In the ADP-bound state, client proteins are trapped within the 

SBD with a very low off-rate and are protected from cytoplasmic interactions (162,163). Upon 

binding of ATP, Hsp70s adopt a more open conformation that releases the substrate (164). Though 

ATP cycling is essential for Hsp70 function, the innate ATPase activity of Hsp70s is low (165). 

Thus, these proteins require assistance in order to cycle nucleotides. This assistance comes in the 
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form of Hsp40s (described in further detail in section 1.5.3) and nucleotide exchange factors 

(NEFs). Hsp40s bind to client proteins and “deliver” them to a partner Hsp70, while 

simultaneously stimulating the hydrolysis of ATP into ADP so that the client remains bound by 

the SBD (166). Then, a NEF partners with the Hsp70s  to catalyze ADP release. Upon binding of 

another molecule of ATP, the SBD returns to its open conformation and the substrate is released.  

Yeast contain four NEFs: Sse1, Sse2, Fes1, and Snl1 (167). Though required for optimal 

Hsp70 function, NEFs exist in substoichiometric ratios to their partner chaperones. Indeed, it is 

estimated that NEFs are present at 1/10 to 1/12 of the total molar concentration of Hsp70s 

(168,169). It is hypothesized that this balance is essential due to the NEFs’ affinity for ATP: an 

overabundance of NEFs could out-compete Hsp70s for ATP binding (170). Sse1, also called 

Hsp110, is the most abundant and presumably most active NEF, as it partners with both the Ssa 

and Ssb chaperone families (168,171,172). Deletion of both Sse proteins is lethal (173). 

Conversely, Fes1 is known to bind only to Ssa in vivo (174), though other studies have suggested 

a complex regulatory mechanism wherein it inhibits the Ssb ATPase in a ribosome-associated 

manner (175). Its deletion leads to a heat shock response regardless of environment, as well as a 

temperature sensitivity phenotype (176).  Snl1 is localized to the endoplasmic reticulum membrane 

via a transmembrane region and associates with both Ssa and Ssb in vitro (177,178). Its deletion 

confers no detectable phenotype and it is thought to be a highly-specialized, predominantly 

ribosome-associated NEF (177,178). In general, NEFs are thought to have a greater impact on 

Ssa’s nucleotide exchange, while Ssb is believed to act with some independence from NEFs (156). 

However, both the Ssa and Ssb families rely upon chaperone cofactors known as Hsp40s.  

1.7.3 Hsp40s 
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While nucleotide exchange factors facilitate the ADP release from the Hsp70 NBD, Hsp40s 

assist with hydrolysis of Hsp70-bound ATP to ADP. The yeast Hsp40s are homologs to the human 

J-proteins that help drive substrate recognition and client specificity for the larger Hsp70 proteins. 

This allows for one type of Hsp70 to serve a diversity of clients: humans have 11 Hsp70s that 

partner with 41 J-domain proteins (179). Yeast have 22 Hsp40s, including Sis1, Zuo1, Ydj1, and 

Jjj1, of which 13 are cytosolic (179,180).  There is variable necessity for the Hsp40s in yeast, as 

some are required (Sis1, Jjj1, Jjj3, Cwc23) while others are dispensable for survival (180,181). 

Unlike the Hsp70s, Hsp40s exhibit a high degree of inter-protein diversity, and the proteins are 

broadly sorted into classes I, II, or III based on their domains. This diversity enables the targeting 

of Hsp70s to a broad pool of substrates. However, all Hsp40s contain a ~70 amino acid J-domain 

that stimulates the ATPase activity of Hsp70s (182). Some Hsp40s preferentially interact with 

specific Hsp70s: Sis1 partners with Ssa1, while Zuo1 binds to Ssb1 as part of its ribosome-

associated role (183). 

In its canonical function, an Hsp40 will bind to a substrate with the purpose of preventing 

aggregation and delivering it to an Hsp70 for refolding (179). Upon binding to an Hsp70 partner, 

the substrate is transferred from the Hsp40 to the Hsp70 SBD; further, the Hsp40 stimulates ATP 

hydrolysis at the Hsp70 NBD. However, studies have demonstrated a more complex role for the 

myriad Hsp40s of yeast, including independent Hsp70 stimulation without first binding to a client 

protein (180). This function appears to rely solely on the J-domain and not on the other motifs 

within the Hsp40s. Conversely, other Hsp40 functions are J-domain-independent. For example, 

the protein Cwc23 is necessary for spliceosome disassembly, and deletion of its J-domain had no 

effect upon this role (184). Domain diversity, client specificity, and Hsp70 interactions all play a 
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part in directing the activity of the Hsp40s, which highlights the immense complexity in balancing 

the yeast molecular chaperone system.  

1.8 The role of chaperones in yeast prion formation and propagation 

Adding to the complexity of the chaperone system, yeast prions have unique and 

sometimes unpredictable relationships with Hsp104, Hsp70s, and Hsp40s. Intuitively, chaperones 

exist to restore proper protein folding and should thus ubiquitously inhibit prion formation. 

However, this is not the case. The overexpression, depletion, or deletion of chaperones can have 

non-obvious effects upon prion induction and propagation (88,153,179,185); further, these effects 

are often prion- or even prion strain-dependent.  

1.8.1 Yeast prions display varying dependence upon Hsp104 

 The Hsp104 disaggregase is required for the propagation of most yeast prions (88), with 

the notable exception of [ISP+] (88). This requirement appears to be due to the nature of the 

mother-to-daughter cell transmission of small prion aggregates (seeds). When Hsp104 is 

inactivated in a [PSI+] cell, the Sup35 aggregates increase in size, which presumably correlates to 

a decrease in the production of the smaller infectious oligomers that are propagated to budding 

cells (186,187). Further, there is a bias towards prion seeds remaining with the older “mother” cell 

during division (188,189). As fewer daughter cells receive Sup35 seeds, the prion is eventually 

titrated out of the population. This happens at a relatively rapid rate, within 10-14 generations 

(188). Though the Sup35-Hsp104 relationship remains the best-studied among yeast prions, the 

general principles of seed generation and propagation likely hold true for the other biochemically-

similar aggregates.  
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 However, Hsp104 overexpression has conflicting effects on yeast prions. Cells are cured 

of the [PSI+] state following Hsp104 overexpression, but other prions persist (190,191). It is 

unknown why [PSI+] is uniquely affected by Hsp104 overexpression, but it may be due to Hsp104 

binding sites within the middle domain of Sup35 (192).  There are competing theories about the 

mechanism of Sup35 solublization by Hsp104 overexpression. The first model suggests that 

abundant Hsp104 dissolves Sup35 aggregates to the point that they are no longer propagable prion 

seeds, either by trimming fiber ends or complete fiber fragmentation (187,190). Alternatively, 

Hsp104 may inhibit amyloid seed formation by binding to the fiber and preventing its 

fragmentation into oligomers (193). The final model is based upon asymmetric prion segregation 

between mother and daughter cell, similar to what is observed upon Hsp104 inactivation (194). 

This latter hypothesis has been disproven, and the dissolution/trimming model is the paradigm 

with the greatest experimental support to date (195).   

 Surprisingly, Hsp104 overexpression can promote the appearance of the [URE3] prion in 

the presence of the [RNQ+] prions (196). In this case, it is thought that Hsp104 remodels semi-

soluble Ure2 aggregates into an on-pathway (amyloid-forming) conformation that is templated by 

[RNQ+] (196). The prion-specific effects of Hsp104 may be influenced by the activities of its 

Hsp70 and Hsp40 cochaperones.  

1.8.2 Ssa and Ssb have opposing effects upon [PSI+] 

Perhaps the most interesting case of chaperone influence on yeast prions is the relationship 

between the Hsp70s and [PSI+]. The Ssa and Ssb chaperone families, despite their considerable 

domain and sequence homology, have opposing effects upon [PSI+] (185). When overexpressed, 

Ssa proteins promotes de novo [PSI+] formation in [psi-] cells, and protects [PSI+] from curing by 
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Hsp104 (185,197). A dominant-negative allele of SSA1, ssa1-21, reduces the propagation of 

[PSI+], and combining this mutant with ssa2Δ completely abrogates the prion (198).  

Conversely, Ssb overexpression both reduces de novo [PSI+] formation and enhances prion 

curing or loss (199,200). The double ssb1Δssb2Δ decreases Hsp104-mediated [PSI+] curing (199).  

The substrate binding domain has been implicated as an important region for these chaperones’ 

divergent effects  upon [PSI+], though substituting any Ssa1 domain for an Ssb1 domain is 

sufficient to reduce [PSI+] induction in Hsp70 chimera experiments (185). Notably, it is not the 

amount of Hsp70 but the stoichiometric balance between Ssa and Ssb that influences the [PSI+] 

state, as Ssb deletion mimics Ssa overproduction in its positive effects upon [PSI+] generation 

(199). Thus, any event that were to perturb, enhance, or otherwise affect any of the Hsp70s may 

have consequences for the prion state of the cell. Chapter 2 of this thesis investigates this concept 

in further detail.  

 

 

1.8.3 Hsp40s and NEFs can support or antagonize prions   

Titration of Hsp70 cofactors can also affect prions, independently or perhaps via their 

effects on Ssa and Ssb. Deletion of nucleotide exchange factor Sse1 inhibits [PSI+] formation and 

propagation, while overproduction of the NEF enhances de novo [PSI+] formation (201). A cohort 

of Sse1 mutants have been identified that impair [PSI+] propagation to varying degrees (202). It 

is possible that this is due to Sse1’s Hsp70 interactions, specifically with Ssa1. Ssa1 is believed to 

be more reliant on NEFs for its activities than are the Ssb proteins (156), and as such, 
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overexpressing Sse1 may enhance Ssa1’s [PSI+]-promoting activity to a greater extent than it 

enhances Ssb’s [PSI+]-curing role.  

The role of the Hsp40 Sis1 in [PSI+] propagation has been well-studied relative to other 

Hsp40s. The maintenance of the “strong” versus “weak” strains of [PSI+] relies upon different 

subsets of Sis1 domains, with weak [PSI+] relying more on the C-terminal regions of the protein 

(203).  While both [PSI+] variants are supported by a Sis1 construct lacking the 

glycine/phenylalanine-rich “G/F” domain, the elimination of this region does not allow for the 

propagation of [RNQ+] (203). The five canonical strains of [RNQ+] also demonstrate differential 

requirements for Sis1 domains (204). Downregulation of Sis1 leads to [PSI+] and [RNQ+] curing, 

albeit at different rates (205).  It is thought that these effects of Sis1 are due to different binding 

patterns of the Hsp40 to amyloid, resulting in variable delivery of substrate to Hsp70s (206,207).  

1.8.4 Other prions have unpredictable chaperone requirements  

Chaperone requirements of other yeast prions are less well-characterized. All tested prions 

– [PSI+], [RNQ+], [SWI+], and [URE3] – require Sis1 for propagation (205,208). Of these, only 

[SWI+] also requires Ydj1, another Hsp40 J-protein (208). Overexpressing Ydj1 leads to [URE3] 

loss, as well as the curing of some [RNQ+] strains (132,191). While Ssa1 overexpression promotes 

[PSI+] formation, it appears to inhibit [URE3] (131). Conversely, Ssa2 mutation or deletion 

similarly inhibits the propagation of both [PSI+] and [URE3], highlighting that the directionality 

of chaperone effects is unpredictable even within the same protein family (209). Overexpression 

or depletion of the Sse1 NEF can inhibit [URE3] propagation, which is in contrast to its 

promotional effects on [PSI+] when overexpressed (201,210,211). Of great interest, the unique 

prion [ISP+] is not eliminated by Hsp104 deletion, but is still cured by the Hsp104-inactivating 
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GdnHcl (127). The mechanism for this has yet to be elucidated, but may involve a chaperone 

imbalance generated by the inactive Hsp104.  

The effects of chaperones on amyloid aggregates are inconsistent between different prions 

and between different prion strains. Further, chaperones even have distinct mechanisms for 

recognizing misfolded structures of the same protein (212). Further research into the chaperone 

systems that influence the aggregation of the full cohort of yeast prions will be necessary to gain 

a more nuanced understanding of the factors that maintain proteostasis.  

1.9 Cotranslational folding factors are incompletely characterized  

Chaperone-mediated refolding of proteins in the cytosol and within cellular compartments 

is only one component of protein homeostasis. The folding of a nascent polypeptide during its 

synthesis by the ribosome, called “cotranslational folding,” is essential to the generation of 

functional proteins but is a poorly-understood process. There are two protein families that are 

known to play a role in this folding in eukaryotes: the nascent-polypeptide associated complex 

(NAC) and the ribosome-associated complex (RAC) (213,214).    

1.9.1 The nascent-polypeptide associated complex  

The NAC is a highly-conserved heterodimeric complex that is ubiquitous in Eukaryotic 

organisms from yeast to humans. The NAC is cytosolic and binds to the ribosome near the exit 

tunnel; as such, it is the first protein complex to bind to emerging polypeptides (215). The purpose 

of this binding is poorly understood, though it is thought that the NAC helps to protect nascent 

chains from inappropriate intra- or inter-protein contacts prior to whole-domain folding (215).  

The NAC is comprised of two subunits called the α-NAC and the β-NAC (216). Yeast have 

an additional subunit, the β’-NAC, that can substitute for the β-NAC in some heterodimers, but 
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β’-NAC has a much lower expression level than the other subunits (217,218). These proteins in 

yeast are named Egd2, Egd1, and Btt1, respectively. Throughout this thesis, the terms “α-NAC” 

and “β-NAC” will refer to the Eukaryotic proteins in general, while the Egd2, Egd1, and Btt1 

nomenclature will be utilized in discussions of the yeast NAC in particular. All NAC subunits 

contain sequence homology within their 61-amino acid NAC domains, which are thought to assist 

in the dimerization of the proteins (219). The α-NAC contains a C-terminal ubiquitin-associated 

(UBA) domain, which may help to prevent newly-synthesized proteins from being targeted for 

degradation by competing for ubiquitin ligases (219,220). Ubiquitination of Egd1 and Egd2 by 

Not4 is required for stability of the NAC complex (221,222). Both the α- and β-NAC are 

independently capable of binding strongly to nascent chains, and both are able to prevent 

polypeptides from prematurely interacting with other cytosolic factors (215).  In yeast, the NAC 

is anchored to the ribosome via a short tract of Egd1, within the first 30 residues of the N-terminus 

(223–225). The location of binding is under debate, with the original evidence pointing to contact 

on ribosomal subunit Rpl25 (L23), but later research identified Rpl31 as the main site of interaction 

(223,224). In the absence of Egd1, Btt1 may assist in binding of the NAC heterodimer to the 

ribosome (218). Ribosomal binding to the whole NAC complex occurs in a 1:1 ratio, and the 

expression of NAC subunits is associated with ribosome biogenesis (226,227).  

The function of the NAC is controversial and poorly understood. It was initially suggested 

that NAC subunits played a role in protein targeting to the ER and mitochondria, but subsequent 

in vivo studies have disproven these theories (216–218,228–230). However, there is some support 

for the role of individual NAC subunits as transcription factors (231–233). The α-NAC binds to 

nucleic acids, though with a stronger affinity for RNA than for DNA (219,234). Early studies 

suggested that the transcription-related activities of the NAC are more significant than its role in 
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translation; however, further analysis in model organisms have demonstrated a crucial role for the 

NAC in proteostasis (213).  

 Deletion of the NAC is embryonic lethal in multicellular organisms, though its deletion in 

yeast is tolerable (218,235–237). The egd1Δbtt1Δ double-deletion may confer a slight growth 

defect at 37ºC; however, this effect was not reproducible in other strain backgrounds (218,238). 

Deletion of the yeast NAC and the Ssb proteins did confer a growth defect and caused aggregation 

of newly synthesized proteins (227). Re-introduction of Egd1 and Egd2 was sufficient to rescue 

the phenotype (239). Depletion of NAC subunits in adult organisms has implications for heat shock 

and stress response (240,241).  SiRNA-mediated knockdown of the C. elegans β-NAC (ICD-1) in 

adult nematodes leads to increased apoptosis and UPR induction; however, it increased worms’ 

resistance to heat stress (241). NAC subunits also localized to protein aggregates following heat 

shock, potentially to assist in their resolubilization, which concurrently reduces the translational 

capacity of ribosomes (240).  As such, it has been suggested that the NAC is a sensor of protein 

homeostasis and plays a role in linking translation to the chaperone network (240).  Chapter 2 

demonstrates the effects of NAC subunit deletion upon chaperone balance and prion-related 

toxicity in yeast.  

1.9.2 The ribosome-associated complex includes the Hsp70 Ssb 

The RAC is the second protein complex to bind to nascent chains, at approximately 58 

amino acids (242). In yeast, the RAC is composed of the atypical Hsp70 Ssz1 and a J-protein called 

Zuo1 (226,243,244). Ssz1 is a unique chaperone that lacks the C-terminal domain that is 

characteristic of Hsp70s (244). Further, its nucleotide binding domain is divergent from other 

ATPases and is not thought to hydrolyze ATP in vivo (245,246). The Hsp70 Ssb often associates 
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with these subunits, and thus this system is commonly referred to as “RAC-Ssb.”  Ssz1 relies upon 

Zuo1 for ribosomal anchorage, and the proteins bind to ribosomes in a 1:1 ratio (244). Yeast that 

have been deleted for either or both Ssz1 and Zuo1 display a slow growth phenotype but are viable, 

and overexpression of Zuo1 partly rescues the phenotype (244). Like the NAC, RAC has been 

shown to bind to the Rpl31 large ribosomal subunit (183). 

The RAC has demonstrated interactions with prion-forming proteins in yeast. Deletion or 

mutation of Zuo1 increases the frequency of [PSI+] formation, including spontaneous formation 

independent of [RNQ+] (247).  However, RAC deletion also destabilizes pre-existing Sup35 

aggregates, presumably be increasing the cytosolic availability of Ssb (248–250).  Because its 

amyloid remodeling functionality occurs through Ssb, the RAC complex is collectively viewed as 

a cochaperone that may exert a “holdase” function prior to passing nascent polypeptides to Ssb for 

processing (248,251). 

Relative to the NAC, less is known about RAC homologs in other systems. In humans, the 

RAC is formed by Hsp70L1 and MPP11, a Zuo1 homolog (252). However, no clear ribosome-

associated Ssb homolog has been identified, and it is theorized that other mammalian Hsp70s 

substitute for this role in metazoans (249). Ultimately, far less is understood about the folding 

capabilities of human cotranslational chaperones that may play a role in the genesis of protein 

misfolding disorders.  

1.10 Summary and significance   

Protein folding is a challenging process, and organisms have evolved myriad mechanisms 

to create properly-folded proteins (cotranslational folding), rehabilitate misfolded species 

(molecular chaperones), and degrade structures that are beyond repair (protein quality control). 

These mechanisms work in concert to maintain protein homeostasis and, more broadly, organismal 
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health. Pathogenic protein aggregation, prion-like or otherwise, works in opposition to these 

processes and can cause irreversible damage to hosts. However, little is known about the initial 

stages of protein misfolding and how misfolded conformations are propagated from one molecule 

to another. This thesis serves to address both questions by utilizing the yeast prions [PSI+] and 

[RNQ+] as models.  

Chapter 2 investigates the nascent-polypeptide associated complex and its role in 

modulating the chaperone network. The balance between Hsp70 chaperones is demonstrated to be 

an important factor that influences cellular tolerance of a toxic [PSI+] state, and this balance is 

directly affected by the presence or absence of the NAC subunits. Tipping the ratio of available 

Hsp70s can create a more favorable environment that appears to improve Sup35 folding. Chapter 

3 extends the concept of chaperone balance to the nucleotide exchange factor Sse1, and 

demonstrates how Hsp70 cofactors can act to restore cellular health in an imbalanced system. 

Finally, Chapter 4 addresses questions of templated prion formation by examining the relationship 

between Rnq1 and Sup35 en route to [PSI+] formation, and finds that intermolecular binding is a 

major contributing factor in the seeding of prion formation. Overall, this work illuminates 

important principles across several stages of the prion life cycle, and may inform future research 

that will help to modulate or prevent toxicity associated with protein aggregation.  
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2.1 Abstract 
            The nascent polypeptide-associated complex (NAC) is a highly conserved but poorly 

characterized triad of proteins that bind near the ribosome exit tunnel. The NAC is the first 

cotranslational factor to bind to polypeptides and assist with their proper folding. Surprisingly, we 

found that deletion of NAC subunits in Saccharomyces cerevisiae rescues toxicity associated with 

the strong [PSI+] prion. This counterintuitive finding can be explained by changes in chaperone 

balance and distribution whereby the folding of the prion protein is improved and the prion is 

rendered nontoxic. In particular, the ribosome-associated Hsp70 Ssb is redistributed away from 

Sup35 prion aggregates to the nascent chains, leading to an array of aggregation phenotypes that 

can mimic both overexpression and deletion of Ssb. This toxicity rescue demonstrates that 

chaperone modification can block key steps of the prion life cycle and has exciting implications 

for potential treatment of many human protein conformational disorders.  

 

2.2 Introduction 
Protein synthesis is an essential process undertaken by all organisms, but its necessity also presents 

cells with a myriad of challenges. An extensive network of molecular machines is active 

throughout translation, folding, and degradation in order to preserve protein homeostasis 

(proteostasis). Perturbations to that machinery can have ripple effects that impact many cellular 

systems. 

 Misfolded proteins are one such challenge to proteostasis. Improperly folded proteins are 

generally non-functional; thus, the correct folding and trafficking of polypeptides is essential to 

the maintenance of cellular viability (253). Protein misfolding can lead to the induction of cellular 

stress responses, apoptosis, and cell death. In humans, protein misfolding diseases include 

Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and prion diseases such as 
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Creutzfeldt-Jakob disease (31,253,254). The complexity of protein folding is mirrored by the 

complexity of these incurable diseases; thus, increased understanding of the molecular basis of 

folding and misfolding will be crucial to improved treatment of various pathologies. 

 Prions are a subset of misfolded proteins that are self-templating and stably propagated 

from cell to cell. In yeast, the intrinsically disordered domain of the translation termination factor 

Sup35 misfolds and aggregates to form the [PSI+] prion, which is cytoplasmically inherited via 

amyloid seeds (255–257).  [PSI+] is toxic under certain circumstances, including Sup35 

overexpression, due to severe disruption of proteostasis as a consequence of excessive aggregation 

of Sup35 (258,259).  

  Nascent polypeptides begin to fold cotranslationally before protein synthesis has been 

completed by the ribosome (260). Sup35, not unlike other proteins, faces folding challenges 

immediately upon emergence from the ribosome exit tunnel. Proteins are protected from early 

misfolding by ribosome-bound protein chaperone families (261). First, the nascent polypeptide-

associated complex (NAC) interacts with nascent chains (262), followed by the ribosome-

associated complex (RAC) and the Hsp70 Ssb  (263–266). Cotranslational chaperone factors are 

of keen interest in the area of protein aggregation, as they have a bias towards substrates that are 

intrinsically disordered and amyloidogenic (267). The NAC and Ssb-RAC systems are 

components of a larger molecular chaperone network within Saccharomyces cerevisiae (261,268). 

However, the interactions between cotranslational folding factors and other players in the 

chaperone network have yet to be fully elucidated.  

 Here, we describe a surprising mechanism for preventing aggregation-related cytotoxicity 

by manipulating cotranslational folding pathways. We utilized the [PSI+] prion as a model for 

protein misfolding and a reporter for the activities of the chaperone network. We screened for 
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factors that, when disrupted, rescued the prion-dependent toxicity and restored viability. 

Surprisingly, disruption of β-NAC, a subunit of the NAC chaperone complex, was identified as 

one of the rescuing mutants in our screen. This counterintuitive result suggests that depletion of 

chaperones can, in some cases, rescue defects associated with misfolded proteins.  

 Indeed, we found that deletion of NAC subunits has significant impact on the localization 

and activity of other cytosolic chaperones, the Hsp70 family in particular. We propose that altered 

localization and activity of chaperones can aid cells in the ability to maintain proteostasis when 

faced with severe folding challenges. As such, inhibition of the NAC presents a novel avenue for 

investigation into therapeutics to treat protein conformational disorders that may slow further 

aggregation of amyloidogenic proteins and suspend disease progression. 

 

2.3 Materials and Methods  

Yeast strains, plasmids, cultures, and transformations 

Yeast were cultured and transformed using standard techniques (269). All deletion strains were 

created from the same 74D-697 [RNQ+][PSI+] parent. Genetic deletions were made by replacing the 

coding regions of EGD1, EGD2, and BTT1 with KANMX4, loxP-HIS3MX6-loxP, and loxP-

URA3MX-loxP; knockouts were confirmed by auxotrophic markers and colony PCR. Strains and 

plasmids are available in the supplemental experimental procedures.   

Fluorescence microscopy 

Cells expressing pCUP1-SUP35NM-GFP were grown overnight in SD-Ura and Sup35NM-GFP 

expression was induced by the addition of CuSO4 to a final concentration of 50µM. After 2 hours 

of induction, cells were washed twice in 1X PBS, resuspended in 1X PBS, transferred to a 12-well 
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glass slide (Erie), and observed with an Olympus FV1200 laser scanning confocal microscope 

fitted with a 100x oil immersion objective.  

Prion manipulation 

SDD-AGE and colorimetric assays were performed as previously described (270). Antibodies 

utilized in this study are available in the supplemental experimental procedures. Cytoduction was 

performed similarly to previous studies (271) to transfer a medium strain of [RNQ+] into [rnq-

][psi-] strains (S2 Table). Putative cytoductants were selected on SGly-Ura and examined for 

accuracy by assessing auxotrophic markers. Prion transfer was confirmed by color on YPD and 

growth on SD-Ade plates. Haploid cytoductants retained the WT nucleus of the recipient strain 

and the strong [PSI+] prion aggregates of the donor strain.   

Ribosome profiling and quantification 

Ribosome fractions were collected as previously described (272). Protein precipitation of fractions 

was performed by TCA precipitation, followed by SDS-PAGE and Western blotting for the 

presence of Ssb and Rpl3. Quantification was performed with ImageJ, and background signal was 

subtracted from each measurement.  The detected protein in the polysome fractions was divided 

by the detected protein in the monosome fraction as a way of controlling for the total amount of 

detected Ssb bound to ribosomes. We performed this analysis for Ssb, and scaled the quantification 

by the same method for the ribosomal protein Rpl3. This controlled for the total amount of protein 

in the polysome versus the monosome and allowed us to quantify changes in Ssb relative to the 

total ribosomal protein. The fraction of polysome-associated Ssb was normalized to the amount of 

polysome-associated Rpl3 from the same blot for both WT and egd1Δegd2Δ in triplicate. Thus, 

the quantification metric was calculated in this manner:  
(

𝑆𝑠𝑏 𝑖𝑛 𝑝𝑜𝑙𝑦𝑠𝑜𝑚𝑒

𝑆𝑠𝑏 𝑖𝑛 𝑚𝑜𝑛𝑜𝑠𝑜𝑚𝑒
)

(
𝑅𝑝𝑙3 𝑖𝑛 𝑝𝑜𝑙𝑦𝑠𝑜𝑚𝑒

𝑅𝑝𝑙3 𝑖𝑛 𝑚𝑜𝑛𝑜𝑠𝑜𝑚𝑒
)
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Joining assay 

Yeast strains transformed with pCUP1-SUP35 were grown overnight in SD-Trp media. At t=0, 

CuSO4 was added to the media to a final concentration of 50µM. Aliquots were removed at 

indicated time points post-induction and cells were washed, pelleted, and frozen in liquid N2 prior 

to use. Cell lysis and protein extraction was adapted from the ball mill method (273). 

Co-Immunoprecipitation 

Yeast strains were grown overnight in 10ml YPD or SD media. Cells were lysed in buffer (50mM 

Tris pH 8, 150mM NaCl, 1mM EDTA, 0.2% Triton X-100, protease inhibitors) with acid-washed 

glass beads (Sigma) for 2x3 minutes in a multi-tube vortexer (Scientific Industries). Lysates were 

incubated with 1µl Sup35 antibody at 4ºC for 2 hours, and 40ul of a 50% slurry of Protein G 

sepharose beads (GE) and lysis buffer was added and tubes were incubated at 4ºC overnight. An 

unbound fraction was retained and beads were washed 3X in lysis buffer and resuspended in SDS-

PAGE sample buffer as the bound fraction. Fractions were boiled in sample buffer for 5 minutes 

before SDS-PAGE (10% polyacrylamide) and Western blotting with enhanced 

chemiluminescence (G-Biosciences) and film (GeneMate). Bands were quantified with ImageJ 

and normalized to immunoprecipitated Sup35.  

Sedimentation assay 

Yeast were cultured in rich media under homeostatic conditions. Cells were lysed in buffer 

(100mM Tris pH 7.5, 200mM NaCl, 1mM EDTA, 5% glycerol, protease inhibitors) with glass 

beads as described above. A “total” fraction was retained, and then lysates were centrifuged at 

250,000xg in a TLA100 rotor in an Optima TLX Ultracentrifuge (Beckman Coulter). The 

supernatant was retained as the “soluble” fraction, and then the pellets were washed in lysis buffer 

and centrifuged again. Supernatant was discarded and the pellets were resuspended in a 1:1 ratio 

of lysis buffer to RIPA buffer (50mM Tris pH 7, 200mM NaCl, 1% Triton X-100, 0.5% Na 
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deoxycholate, 0.1% SDS). Following SDS-PAGE, gels were stained with coomassie blue to 

visualize the total protein content of each fraction.  

2.4 Results 

2.4.1 Disruption of NAC subunits rescues toxicity associated with the [PSI+] 

prion 

 We set out to identify factors that modulate the toxic misfolding environment associated 

with the [PSI+] prion. Though [PSI+] is generally well-tolerated by cells, the overexpression of 

Sup35 in [PSI+] cells is cytotoxic (258). To identify factors that could rescue this toxicity, we 

overexpressed Sup35 from a copper-inducible promoter and screened for colonies that overcame 

the toxicity phenotype while retaining the “strong” variant of [PSI+] (Figure S.2.1A). Upon 

sequencing, two toxicity-suppressing candidate colonies contained single gene disruptions of 

EGD1. The EGD1 gene encodes Egd1, the β-NAC subunit (Figure 2.1A). The NAC is comprised 

of three subunits: Egd1 (β subunit), Egd2 (α subunit), and Btt1 (β’ subunit), which are together 

known to play an important role in cotranslational folding and protein homeostasis (proteostasis) 

(274). Our results indicate, for the first time, that deletion of NAC subunits may help to improve 

cellular health in the face of misfolding stress.  

 Intrigued by this result, we tested whether deletion of other NAC subunits also rescued the 

[PSI+]-dependent toxicity caused by Sup35 overexpression (258,259). We theorized that double- 

or triple-deletions, which would not be recovered by our screen, may exhibit stronger phenotypes. 

We created yeast strains containing combinatorial deletions of all NAC subunits, hereafter referred 

to as “NAC deletion strains,” and tested them for growth in the presence of toxic Sup35 aggregates. 

We found that two double deletions, egd1Δegd2Δ and egd1Δbtt1Δ, strongly rescued the toxicity  
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Figure 2.1. Disruption of NAC subunits rescues toxicity associated with the [PSI+] prion.  

(A) The nascent-polypeptide associated complex consists of the proteins Egd1 (β), Btt1 (β’), and 

Egd2 (α) that share homology within their NAC domains. (B) Sup35 under control of the copper-

inducible promoter CUP1 was induced in [psi-] WT, [PSI+] WT, and [PSI+] NAC deletion strains 

by growth on selective media containing 350µM CuSO4. The empty vector (EV) control contained 

the pCUP1 vector. Single horizontal white line separates non-contiguous spots from the same 

plates. Dashed black line separates spots from different plate of identical media. The “egd1Δt” 

designation indicates the strain isolated from the transposon screen.  
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Figure 2.2. Nonsense suppression and prion status are not changed as a result of NAC 

subunit deletion. 

 (A) [PSI+] NAC deletion strains were tested for growth on YPD and SD-Ade to monitor nonsense 

suppression of the ade1-14 allele. (B) Stop codon readthrough is not significantly altered in NAC 

deletion strains relative to the WT. Expression of PGK(stop)LacZ fusion proteins was monitored 

by a β-galactosidase assay (275).  Data are represented as mean ± SEM. (C) Ribosome profiling 

revealed no differences in ribosome or polysome formation between the NAC deletion strains. (D) 

SDD-AGE shows that Sup35 aggregates in the NAC deletion strains are not changed relative to 

the WT, and all strains retain the “strong” strain of the [PSI+] prion.  

 

caused by the overexpression of Sup35 in [PSI+] cells (Figure 2.1B). Interestingly, other deletion 

combinations and deletion of the whole NAC did not detectably overcome the toxicity, potentially 

due to individual subunit interactions that are not yet understood (Figure S.2.1B). 



47 

 

 

2.4.2 Nonsense suppression and prion status are not changed as a result of 

NAC subunit deletion. 

It has been previously shown that impaired translation termination is responsible for the toxicity 

phenotype in [PSI+] cells overexpressing Sup35 (258). Therefore, we hypothesized that a decrease 

in stop codon readthrough may be responsible for the toxicity rescue in the NAC deletion strains.  

 To test this, we utilized a well-characterized genetic assay: the ade1-14 allele, which 

contains a premature stop codon in the ADE1 open reading frame. Yeast carrying the ade1-14 

allele are unable to complete adenine biosynthesis, resulting in accumulation of a red pigment in 

cells grown on rich media that have faithful translation termination. The nonsense suppression that 

occurs in ade1-14 [PSI+] cells leads to completion of the adenine biosynthesis pathway, thus the 

colonies are white in color and are able to grow on media lacking adenine (SD-Ade) (276). We 

spotted [PSI+] NAC deletion strains onto rich media (YPD) and SD-Ade plates to assess their 

nonsense suppression phenotypes. All NAC deletion strains formed white colonies and grew 

strongly on SD-Ade (Figure 2.2A), indicating similar levels of nonsense suppression in all strains 

in the context of endogenous Sup35. 

 To assess nonsense suppression quantitatively, we measured stop codon readthrough via 

the expression of β-galactosidase from a set of reporter plasmids (277). Quantification indicated 

that there was no significant change in nonsense suppression in any of the NAC deletion strains 

relative to the WT [PSI+] control (Figure 2.2B). We concluded that a decrease in nonsense 

suppression was not the mechanism by which the NAC deletion strains rescued [PSI+]-associated 

toxicity.  

 We considered the possibility that a global change in translation was playing a role in 

toxicity rescue. The quintuple deletion of subunits in a nacΔssbΔ strain has been demonstrated to 
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cause a defect in ribosome biogenesis (278), and fewer translating ribosomes may allow cells to 

tolerate reduced Sup35 function and withstand toxicity by improving the ratio of translation 

termination factors. We analyzed ribosome profiles for all NAC deletion strains and found no 

differences in the peak heights or integrated peak areas (Figure 2.2C), nor did we observe the 

formation of ribosomal half-mers. Thus, translation is not globally perturbed in the NAC deletion 

strains relative to WT.   

 We next questioned whether the toxicity rescue indicated a change in prion variant of the 

NAC deletion strains. To assess the Sup35 aggregates biochemically, we used semi-denaturing 

detergent agarose gel electrophoresis (SDD-AGE). We found that the overall distribution of SDS-

sensitive population of Sup35 aggregates did not change following growth in media without copper 

(Figure 2.2D), confirming that all NAC deletion strains retained the strong [PSI+] prion variant. 

Thus, the toxicity rescue phenotype exhibited by the NAC deletion strains was not due to loss or 

weakening of the [PSI+] prion.  

2.4.3 Prion aggregates are visibly altered due to NAC subunit deletion 

We were surprised that the NAC deletions rescued [PSI+]-related Sup35 overexpression toxicity 

without observable changes to the prion or to nonsense suppression. To further investigate the 

reduction of Sup35 toxicity, we examined the aggregation and solubility of the Sup35 prion 

aggregates in all NAC deletion strains. We sought to do so by a method that would allow 

observation of intact aggregates in cells, rather than simply the SDS-resistant aggregates detected 

by SDD-AGE (Figure 2.2D). We transformed a copper inducible, GFP-tagged Sup35 

(pRS314CUP1 Sup35GFP) into the WT and NAC deletion strains. We induced Sup35-GFP 

expression by the addition of small amounts (Vf=50µM) of CuSO4 to the culture media and 

monitored GFP localization by fluorescence microscopy. Sup35-GFP exhibited a diffuse pattern 
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of fluorescence in [psi-] cells (Figure 2.3A), consistent with non-aggregated Sup35. By contrast, 

Sup35-GFP was observed in a single fluorescent focus in the WT [PSI+] strain (Figure 2.3A). 

Most NAC deletion cells also contained one major fluorescent puncta. However, the egd1Δegd2Δ 

strain harbored multiple fluorescent puncta throughout the cytoplasm (Figure 2.3A, Figure 

S.2.2A). Interestingly, this phenotype was not apparent in the toxicity-rescuing egd1Δbtt1Δ 

deletion, suggesting that a similar change in aggregate distribution was not the rescuing effect. 

However, it is plausible that there is an altered aggregation pattern that is too subtle to be detected 

via fluorescence microscopy. Importantly, the WT and all NAC [PSI+] deletion strains exhibit 

insoluble Sup35 at steady-state levels of Sup35 expression (Figure 2.3B), as expected with the 

presence of the [PSI+] prion. 

 We then asked if the multiple aggregates in the egd1Δegd2Δ strain were due to altered 

joining of monomeric Sup35 to existing amyloid structures. To address this question, we induced 

the expression of Sup35-GFP and tracked its solubility over time. In lysates of WT [PSI+] strains, 

an abundance of Sup35-GFP appears in the pellet fraction at two hours post-induction of Sup35-

GFP expression due to formation of insoluble aggregates (Figure 2.3C, Figure S.2.2B). 

Remarkably, we did not detect Sup35-GFP in the pelleted fractions of egd1Δegd2Δ or egd1Δbtt1Δ 

strains up to four hours post-induction (Figure 2.3C), consistent with at least transiently enhanced 

solubility of Sup35. The amount of induced Sup35-GFP was consistent between all tested strains 

(Figure S.2.2C).  
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Figure 2.3. NAC deletion strains retain [PSI+] despite altered Sup35 solubility.  
(A) NAC deletion strains containing pCUP1-SUP35-GFP were grown in selective media in the 

presence of 50µM CuSO4. Two-dimensional images were taken with an Olympus FV1200 laser 

scanning microscope with a 100X oil immersion objective. The egd1Δegd2Δ strain showed a 

greater population of aggregates than the WT or other NAC deletion strains. (B) Solubility of 

Sup35 in [PSI+] lysates of indicated strains. Total (T), supernatant (S), and pellet (P) fractions 

were subjected to SDS-PAGE and Western blot. With endogenous levels of protein expression, all 

NAC deletion strains show insoluble Sup35. The egd1Δegd2Δ and egd1Δbtt1Δ strains exhibit more 

soluble Sup35 than the other NAC deletion strains. (C) NAC deletion strains were grown overnight 

in selective media; Sup35 overexpression was induced by the addition of CuSO4 to a final 

concentration of 50µM at time= 0.  Solubility assays were performed on cells collected at indicated 

timepoints following Sup35 induction. The egd1Δegd2Δ and egd1Δbtt1Δ strains exhibited a defect 

in joining of nascent Sup35 to existing aggregates.  

 

 

One interpretation of this result is that the joining of newly synthesized Sup35 to prion aggregates 

is delayed in the egd1Δegd2Δ or egd1Δbtt1Δ strains. We hypothesize that the structure of nascent 
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Sup35 in the NAC deletion strains renders Sup35 impaired in joining to pre-existing aggregates 

due to altered, and possibly improved, folding of nascent Sup35. This is supported by the decrease 

in de novo [PSI+] induction in the toxicity-rescuing NAC deletion strains (S2D Fig).  

2.4.4 Chaperone balance is altered in NAC deletion strains 

We next considered the possibility that the putative changes to Sup35 structure were brought about 

by altered interactions with chaperone proteins. Sup35 is a client of many cytosolic chaperones 

(279–281). We reasoned that NAC deletion may spur a compensatory response of other molecular 

chaperones such that the deletion strains may, in fact, be folding some proteins more efficiently 

than WT.  

 When the NAC is depleted, the first major chaperone to interact with nascent chains is the 

Hsp70 Ssb, in conjunction with the ribosome-associated complex (RAC) (267,278,282). Ssb has 

dual functions as a ribosome-bound and cytosolic chaperone. In addition, it has a cytosol-only 

Hsp70 homolog Ssa (280). Both chaperones have been shown to interact with Sup35(283–285). 

We hypothesized that NAC deletion would impact the abundance, presence, or activity of the 

Hsp70s. We assessed total levels of Ssa and Ssb in each [psi-] and [PSI+] NAC deletion strain and 

found no difference relative to the wild type (S3A Fig). 

 We theorized that NAC deletion may increase the role of Ssb-RAC in cotranslational 

folding, as this protein complex is next in line to receive nascent chains following the NAC. This 

increased folding pressure upon Ssb-RAC as a result of NAC deletion might also localize a larger 

fraction of Ssb to the ribosome and nascent chains while titrating Ssb away from the available 

cytosolic pool. The titration would reduce the overall availability of cytosolic Ssb relative to Ssa, 

thereby creating a chaperone imbalance.  
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 We began by assessing the general effects of imbalanced Hsp70s in strains with intact NAC 

subunits. We challenged proteostasis by overexpressing Sup35 in a WT [PSI+] strain with 

endogenous Ssa expression and found that the cells grew as expected, with a moderate toxicity 

phenotype and consistent Sup35 expression (S3B Fig, Figure 2.4A). However, recapitulating an 

imbalance by deleting Ssb1 from this strain resulted in enhanced toxicity (Figure 2.4A). This 

indicates that cells are sensitive to chaperone balance in the presence of folding-challenged 

substrates. We then sought to verify that the balance of Ssb1 relative to Ssa1 was specifically 

affecting toxicity. To do so, we exacerbated the Hsp70 imbalance by overexpressing Ssa1 in WT 

and ssb1Δ strains. We again challenged proteostasis with overexpression of Sup35, but at a lower 

level than in the previous experiment. Slightly imbalanced Hsp70s (WT strain with SsaOE) led to 

poor growth, and severely imbalanced Hsp70s (ssb1Δ with Ssa1OE) led to pronounced toxicity 

(Figure 2.4B). Reintroduction of Ssb1 rescued the phenotype (Figure 2.4B). We concluded that 

cells are sensitive to the balance between Ssa and Ssb, and that the severity of the toxicity 

phenotype correlates with the severity of the imbalance.   

 We then sought to extend our analysis to the NAC deletion strains. As above, we 

overexpressed Ssa1 from a constitutive promoter in the WT and all NAC deletion strains; we 

observed no change in either growth or prion phenotype in the absence of Sup35 overexpression 

(Figure S.2.4 and Figure 2.4C, YPD plates). However, when we subjected the same strains 

overexpressing Ssa to minor Sup35 overexpression, we observed a severe toxic phenotype in the 

egd1Δegd2Δ and egd1Δbtt1Δ strains (Figure 2.4C, selection plates) that mimicked the strong 

toxicity exhibited by ssb1Δ strains under the same conditions. Overexpression of Ssb1 did not  
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Figure 2.4. Chaperone balance is altered in NAC deletion strains.   
(A) WT and ssb1Δ strains were transformed with pCUP1-SUP35 and spotted on plates containing 

300µM copper to induce Sup35 overexpression. (B) WT and ssb1Δ strains were transformed 

sequentially with p314CUP-SUP35 and either p415GPD-SSA1 or p415GPD-SSB1; transformants 

were spotted onto SD-Leu-Trp plates containing 50µM CuSO4. The ssb1Δ strain showed increased 

sensitivity to Sup35 overexpression in conjunction with Ssa1 overexpression. All strains on 

selective media are overexpressing Sup35.  (C) WT and NAC deletion strains were first 

transformed with p314CUP-SUP35, then with either pRS415 (EV), p415GPD-SSA1, or p415GPD-

SSB1.  Transformants were spotted onto SD-Leu-Trp plates containing 50µM CuSO4 to induce 

non-toxic Sup35 overexpression. (D) WT and NAC deletion strains were spotted onto plates 

containing 120mg/L Hygromycin B.  All strains pictured in panels A-D contain [RNQ+] and the 

strong variant of [PSI+]. 

 

cause cytotoxicity (Figure 2.4C). Ssa1 overexpression in the WT and single deletion strains did 

not perturb growth as severely (Figure S.2.5), possibly because the chaperone imbalance remained 
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within a tolerable range. However, the toxicity in the egd1Δegd2Δ and egd1Δbtt1Δ strains indicates 

that Ssa1 overexpression pushes an already-imbalanced system into a highly detrimental state. 

This suggests that NAC deletion mimics Ssb deletion phenotypes despite the unchanged 

expression levels of all tested chaperones (Figure S.2.3), thereby supporting the concept of cellular 

localization changes and an imbalance of Ssb relative to Ssa. 

 We next questioned whether NAC deletion could phenocopy a chaperone imbalance in the 

absence of Sup35 overexpression. We tested the growth of [PSI+] NAC deletion strains under 

conditions that are disadvantageous to the ssb1Δ strain. We spotted the NAC deletion strains onto 

plates containing 120µg/L HygromycinB (HygB), as it is known that ssb1Δ yeast are sensitive to 

the fungicide (286). Though WT yeast grew on HygB plates, several of the NAC deletion strains, 

including egd1Δegd2Δ and egd1Δbtt1Δ, exhibited poor growth consistent with depleted Ssb 

(Figure 2.4D). The growth similarities between NAC and Ssb deletion strains support the 

possibility that the NAC-induced chaperone imbalance may be altering the functionality of Ssb in 

ways that mimic its deletion.       

 

2.4.5 NAC deletion relocalizes Ssb to nascent polypeptides and away from 

prion aggregates 

 Though some NAC deletion strains exhibited phenotypes related to Ssb depletion, all 

strains exhibited WT levels of all tested chaperones (Figure S.2.3). We hypothesized that NAC 

subunit deletion led to alterations in Ssb localization and availability due to an additional 

requirement for Ssb at the ribosome. We reasoned that the loss of NAC subunits would cause Ssb 

to assist in the folding activities that were typically controlled by the NAC. To test this, we returned 

to our ribosome profile analysis (Figure 2C) and assessed the proteins present in the peak fractions. 

We theorized that more Ssb would be present in the polysome fractions of the egd1Δegd2Δ strain 
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relative to the WT, because folding-challenged nascent chains would require more extensive 

cotranslational interactions with Ssb. We probed for the presence of Ssb in the polysome and 

monosome peaks and normalized to the amount of ribosomal protein Rpl3 detected in the same 

peaks (Figure 2.5A). The amount of Ssb in the polysome fractions was indeed increased in the 

egd1Δegd2Δ deletion strain relative to the WT, indicating a greater proportion of Ssb comigrating 

with polysomes. Thus, the localization of Ssb is altered in the NAC deletion strains relative to the 

WT, potentially modulating nascent Sup35 folding and related cytotoxicity.    

 To further probe the theory of Ssb relocalization, we sought to assess Ssb binding to 

aggregated Sup35. We hypothesized that an increase of Ssb binding to nascent chains would lead 

to a corresponding decrease in the pool of available (non-polysome bound) Ssb. This would cause 

decreased Ssb binding to Sup35 aggregates. We performed co-immunoprecipitation experiments 

in [PSI+] cells using a Sup35 antibody and probed for the presence of Ssb1/2. We found that the 

amountof Ssb1/2 that co-immunoprecipitated with Sup35 was reduced in several of the NAC 

deletions (Figure 2.5B), with the effect being most pronounced in egd1Δegd2Δ (50.0% reduction 

in co-immunoprecipiation, ±8.1%). The steady state levels of Ssb1/2 were not reduced in the NAC 

deletion strains (Figure S.2.3); thus, the decreased interactions with Sup35 represent a change in 

the binding between Ssb and its pool of post-translational substrates. This result, in combination 

with the enhanced presence of Ssb at translating ribosomes, indicates that Ssb localization shifts 

as a consequence of NAC subunit deletion.  
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Figure 2.5. NAC deletion relocalizes Ssb to nascent polypeptides and away from prion 

aggregates 

(A) Fractions from the monosome and polysome peaks of ribosome profile experiments were TCA 

precipitated prior to SDS-PAGE and Western blotting. More Ssb comigrated with polysomes in 

the egd1Δegd2Δ strain relative to the WT or to the whole-NAC deletion. Western blots are of the 

sucrose gradient fractions that contained the monosome and polysome peaks and are representative 

images from five independent experiments. Quantifications are from five independent 

experiments, and data are represented as mean ± SEM. See Materials and Methods for full 

computational details. (B) WT and NAC deletion strains were subjected to co-

immunoprecipitation with an anti-Sup35 antibody. Equal amounts of Sup35 were 

immunoprecipitated across all strains. “Total” and “unbound” fractions were collected and no 

differences in Ssb protein expression levels were apparent (Figure S.2.3) Western blots are 

representative images from three independent experiments. All strains utilized contained [RNQ+] 

and the strong [PSI+] variant. 

 

 

2.4.6 NAC deletion causes [PSI+] to resist curing by Hsp104 overexpression  

We hypothesized that the imbalanced Hsp70s may impact other molecular chaperones in the NAC 

deletion strains. Ssa and Ssb both interact with the disaggregase Hsp104, which is required for the 
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propagation of all but one of the known yeast prions (276,287). We found no observable difference 

in steady state levels of Hsp104 (Figure S.2.3). Hsp104 activity was also not different between the 

WT and NAC deletion strains by thermotolerance tests (Figure S.2.6). Therefore, the observed 

toxicity rescue was not due to a change in presence or functionality of Hsp104.  

  Inhibition of Hsp104 is thought to cure prions by preventing fiber fragmentation, which 

impairs inheritance of seeds (276). Overexpression of Hsp104 specifically cures [PSI+], and its 

curing ability is influenced by the Hsp70s. Ssb overexpression in conjunction with Hsp104 

overexpression promotes loss of [PSI+], while Ssa1 overexpression prevents Hsp104-mediated 

curing (280,288,289). Therefore, we predicted that Hsp104 curing efficiency may be altered in the 

NAC deletion strains due to the imbalance of Ssa and Ssb.   

 Hsp104 overexpression efficiently cures the [PSI+] prion, an effect that is inhibited by 

simultaneous Ssa overexpression. We wondered whether the Hsp70 imbalance in the NAC 

deletion strains would mimic this phenotype. We transformed each of the NAC deletion and WT 

strains with a plasmid that constitutively overexpresses Hsp104 and verified that Hsp104 levels 

were increased while not altering the growth of the cells or amount of Sup35 expressed (Figure 

S.2.7). We then phenotypically characterized the transformants by streaking them onto rich media. 

We again took advantage of the red/white colormetric assay that allowed us to track the presence 

of the yeast prion: white colonies harbor Sup35 aggregates while red colonies have been cured of 

[PSI+].  Surprisingly, all NAC deletion strains (with the exception of egd1Δ) were resistant to 

Hsp104-mediated curing of [PSI+], as a significant proportion of their colonies remained white on 

rich media on first pass (Figure 2.6A, 2.6B). This result was confirmed by performing an SDD-

AGE assay to visualize the SDS-resistant Sup35 aggregates. Following continued growth with 

Hsp104 overexpression, aggregated Sup35 was still present in the NAC deletion strains but not 
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the wild type (Figure 2.6C). This demonstrated that prion curing was less efficient in strains where 

NAC depletion was affecting chaperone balance and mimicked Ssa1 overexpression.  

 We then hypothesized that a heritable change in [PSI+] conformation or structure may have 

created Sup35 aggregates that were poor Hsp104 binding partners. These altered aggregates may 

thus be resistant to refolding by Hsp104 activity independent of a chaperone imbalance. We 

performed cytoduction experiments to test the curing of prions from NAC deletion strains in a WT 

genetic background (290). We transferred Sup35 aggregates from WT and NAC deletion strains 

into wild type [psi-] strains by cytoplasmic transfer so that the resulting yeast were genetically WT 

but contained [PSI+] from the cohort of NAC deletion strains. We then induced Hsp104 

overexpression and found that all of the cytoduced strains were cured as efficiently as WT (Figure 

2.6D, Figure S.2.8A). Thus, the heritable Sup35 aggregate structure was not the cause of 

differential Hsp104 curing; rather, the curing resistance exhibited by the deletion strains was a 

consequence of the genetic disruption of the NAC.  

 As the NAC deletion strains exhibited resistance to curing by Hsp104 overexpression, we 

wondered if they would also resist curing by Hsp104 inactivation. To test this, we passaged the 

NAC deletion strains on media containing 5mM guanidine hydrochloride (GdnHCl), a strong 

inhibitor of Hsp104 (291), which cures all known yeast prions. The WT and NAC deletion strains 

demonstrated equal curability on GdnHCl plates (Figure S.2.8B). Taken together, these results 

suggest that the differential effects of the NAC interactions between Hsp104 and Sup35 are related 

the activity of co-chaperones.   
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Figure 2.6. NAC deletion causes [PSI+] to resist curing by Hsp104 overexpression. 
WT and NAC deletion strains were transformed with p426GPD-HSP104 to overexpress Hsp104 

and then grown for 4 days at 30°C. (A) Representative images from transformation plates. Strains 

were originally strong [PSI+]; red color denotes curing of the [PSI+] prion.  (B) Six independent 

transformations of NAC strains with p426GPD- HSP104 were plated on selective media and 

[PSI+] status was quantified via phenotypic analysis of each colony. Data are represented as mean 

± SEM. (C) Five colonies per NAC deletion strain, plus WT controls, were picked from 

transformation plates and grown 16hrs in selective media. SDD-AGE analysis shows the stability 

of the [PSI+] prion in the NAC deletion strains, but not the WT, upon overexpression of Hsp104.  

(D) Following cytoduction of [PSI+] from NAC deletion strains into a WT background, 

cytoductants did not retain the ability to resist curing by Hsp104 overexpression.  
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2.4.7 NAC deletion strains are resistant to general protein misfolding   

Given the toxicity rescue phenotype resulting from loss of NAC subunits and altered chaperone 

activity, we considered that NAC deletion may bring about a broader modification to proteostasis 

and the cellular response to protein misfolding. First, we probed the ability of the NAC deletion 

strains to manage global protein misfolding. We challenged cells with canavanine, an arginine 

analog that induces misfolding (292), and found that most NAC deletion strains were able to 

survive high levels of the compound (Figure 2.7A), indicating that loss of NAC subunits allows 

cells to better tolerate the adverse effects of misfolding. 

 To determine how NAC deletion strains tolerate elevated protein misfolding, we asked 

whether misfolded proteins were differentially acted upon by protein quality control machinery in 

the NAC deletion strains. We questioned whether the NAC deletion strains resist canavanine-

induced misfolding due to increased activity of the ubiquitin-proteasome system (UPS). We 

assessed the presence of ubiquitinated species in the NAC deletion strains in the presence and 

absence of canavanine and found no differences between the WT and the most stabilized NAC 

deletion strains (Figure 2.7B). Additionally, challenging the ubiquitin-proteasome system with 

heat stress or the proteasome inhibitor MG132 showed no differences between the WT and the 

NAC deletion strains (Figure S.2.6, Figure S.2.9A). Thus, cellular viability in the presence of 

canavanine is not related to increased protein degradation as mediated by the UPS.  

 We considered the possibility that NAC deletion strains may package misfolded proteins 

into insoluble aggregates, rendering them nonfunctional but nontoxic. We performed solubility 

assays to visualize total protein aggregation in the NAC deletion strains, and observed no changes 

relative to the wild type (Figure 2.7C, Figure S.2.9C). Therefore, we concluded that there is no 

gross global difference in the way proteins are packaged or degraded in the NAC deletion strains 

relative to the WT, indicating that the toxicity rescue phenotype is not related to enhanced stress 
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response or turnover of misfolded proteins. Rather, like the prion-dependent effect, the chaperone 

imbalance renders cells generally resistant to misfolded proteins. 
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Figure 2.7. NAC deletion strains are able to resist protein misfolding without inducing stress 

response. 

(A) WT and NAC deletion strains were spotted on SD-Arg plates containing 550µM canavanine 

to induce global protein misfolding. (B) The total ubiquitinated proteins in WT, egd1Δegd2Δ, and 

egd1Δbtt1Δ are unchanged in both the presence and absence of canavanine. (C) Total aggregated 

protein was assessed via a solubility assay followed by SDS-PAGE and Coomassie staining.  
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2.5 Discussion 

Nascent polypeptides are functionally connected to cytosolic chaperones 

 Here, we show that the NAC affects the localization and activities of other molecular 

chaperones. Our model (Figure 2.8) suggests that deletion of the α- and β-NAC subunits cause 

relocalization of the Hsp70 Ssb away from the available pool of cytosolic chaperones and to 

translating ribosomes, creating an imbalance that mimics Ssb deletion phenotypes. This depletion 

of Ssb from Sup35 aggregates serves to change the interaction of the [PSI+] prion with other 

chaperones, including Hsp104, which is less able to efficiently cure [PSI+] in the NAC deletion 

backgrounds. The deletion of the NAC does not impact expression levels for any of the proteins 

examined in this study (Figure S.2.3); thus, the observed phenotypes are due to changes in 

localization and functionality. These chaperone modifications correspond to an alteration in the 

aggregation pattern of the [PSI+] prion and the reduced ability of newly synthesized protein to join 

pre-existing aggregates. This alteration can be beneficial when cells are challenged with a toxic 

prion, presumably due to more active engagement of chaperones with nascent polypeptide chains 

where there is a high risk for misfolding (267). We suggest a model of cotranslational folding that 

recruits cytosolic chaperones to nascent polypeptides in a manner that can rescue the toxicity 

associated with proteins prone to misfolding. Additional mechanistic studies will be necessary in 

order to determine the extent of Ssb activity on nascent chains in response to NAC deletion and 

how Ssb may differentially respond to the presence or absence of NAC subunits.  
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Figure 2.8. NAC subunits affect the yeast chaperone network by altering chaperone pools.  

In the presence of the NAC, RAC-Ssb receives nascent polypeptides from the NAC and assists 

with their folding. Both Ssa and Ssb bind to aggregated Sup35 and affect its ability to form and 

propagate the [PSI+] prion. When NAC subunits are deleted, Rac-Ssb becomes the first complete 

chaperone system to interact with nascent polypeptides. The unfolded state of these proteins 

requires more extensive interaction with RAC-Ssb, thereby sequestering cytosolic Ssb to the 

ribosome. Thus, less cytosolic Ssb is available to bind to monomeric or aggregated Sup35. This 

would lead to a relative increase in Ssa1 binding to Sup35 aggregates, which inhibits efficient 

monomer joining and reduces the ability of Hsp104 to cure the prion.  

 



65 

 

Deletion of NAC subunits increases pressure on other cotranslational 

chaperones 

 The toxicity rescue effect of NAC subunit deletion was a surprising result. Deletion of 

cotranslational folding factors would not be expected to rescue toxicity associated with a prion-

forming protein. We propose that deletion of NAC subunits creates an environment where the  

ribosome-associated complex and Ssb (RAC-Ssb) are the first fully-functional chaperones that 

interact with nascent polypeptides. Nascent polypeptides encountering the RAC-Ssb system in the 

NAC deletion strains are presumably less protected or folded than in WT cells. The RAC-Ssb 

system, compensating for loss of NAC subunits, might retain Ssb on nascent polypeptides, thereby 

reducing free Ssb elsewhere in the cell.  

NAC subunits may act independently upon partial deletion of the complex 

 Interestingly, deletion of the whole NAC did not recapitulate all of the phenotypes 

associated with the double deletions (summarized in Table S.2.1). In particular, whole-NAC 

deletion did not rescue [PSI+]-related Sup35 overexpression toxicity. Deletion of the entire NAC 

may exacerbate the chaperone imbalance in such a way that leads to a harmful depletion of the 

cytosolic pool of Ssb. However, in other cases, the triple NAC deletion did mimic phenotypes 

associated with the double deletions. For example, NAC deletion confers resistance to hygromycin 

B and increases resistance to Hsp104-mediated curing. This leads us to hypothesize that there is a 

function for each of the NAC subunits that can persist independent of the complex. For example, 

hygromycin B resistance is demonstrated by every strain that has a deletion of EGD1, indicating 

that this subunit may be particularly important in modulating the interaction between nascent 

chains and molecular chaperones. Further, in the NAC deletion strains, any subunits that remain 

in the cell might act independently on nascent chains or upon misfolded cytosolic proteins. The 
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precise function of all of the NAC subunits remains unclear and we look forward to future studies 

that will shed light on this dynamic complex.  

NAC deletion changes chaperone localization, but not functionality  

 The ability of NAC deletion strains to mimic Ssb deletion phenotypes led us to question 

Ssb functionality in a NAC-depleted background. However, we have demonstrated that Ssb 

deletion is toxic in the presence of Sup35 overexpression, indicating that chaperone function is 

necessary. Further, perturbations that prevent Ssb association with the ribosome have been shown 

to enhance yeast sensitivity to Sup35 overexpression (293). We suggest that the toxicity rescue 

observed in the NAC deletion strains is due to a shift in Ssb activity to nascent proteins. This 

change in localization and/or activity leads to a decrease in available Ssb relative to available Ssa.  

 Though we suggest an increase in Ssb localization to nascent polypeptides as a result of 

NAC deletion, we did not observe the distribution of Ssa to be affected. Ssa does not have an 

established role in cotranslational folding and is not ribosome-associated. Thus, in NAC deletion 

backgrounds in which Ssb becomes relocalized, the shift in the amount of available cytosolic Ssb 

relative to Ssa creates local imbalances between the Hsp70s at the ribosome, in the unbound 

cytosolic pool, and at prion aggregates. Thus, these strains can simultaneously exhibit phenotypes 

mimicking Ssa depletion (reduced de novo [PSI+] formation, Figure S.2.2), Ssa overexpression 

(resistance to Hsp104-mediated curing, Figure 2.6), Ssb deletion (sensitivity to HygB, Figure 2.4), 

and Ssb overexpression (prion toxicity rescue, Figure 2.1). This spectrum of effects suggests that 

neither Ssa nor Ssb has inhibited activity in the NAC deletion strains.  

 We were surprised that Ssa1 overexpression resulted in a toxicity phenotype in conjunction 

with slight Sup35 overexpression in [PSI+] NAC deletion strains. We hypothesize that Ssa 

overexpression sequesters an essential cofactor or substrate from Ssb; for example, an Hsp40 or a 
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nucleotide exchange factor, which would in turn reduce Ssb’s folding capabilities. In the NAC 

deletion strains, the enhanced requirement of Ssb to fold nascent polypeptides would cause any 

perturbation of Ssb to be harmful to proteostasis and cellular health. Future studies will examine 

the competition between Hsp70s for multiple cofactors, a relationship that is not fully understood 

(294,295). 

Ssb relocalization prevents new monomer from joining and rescues [PSI+]-

associated toxicity  

 Titrating Ssb away from the free pool of molecular chaperones has several effects on the 

cell and on the [PSI+] prion. Increasing the contact between Ssb and nascent polypeptides may 

cause Ssb to interact earlier with unfolded or misfolding Sup35. This would in turn inhibit the 

ability of nascent Sup35 to efficiently join aggregates, as Ssb overexpression is known to promote 

loss of [PSI+] (280). In the most extreme case, the egd1Δegd2Δ strain, this joining defect manifests 

as fractured Sup35-GFP aggregates as viewed microscopically. This reorganization of aggregates 

may either release or reduce interaction with cofactors that are toxically sequestered during normal 

amyloid formation (258), leading to the rescue phenotype exhibited most strongly by the 

egd1Δegd2Δ strain.  

 It is likely that other NAC deletion strains undergo similar chaperone reorganization, but 

to a lesser extent depending on which NAC subunits remain to act upon nascent chains. This slight 

chaperone imbalance would lead to weaker phenotypes that evade detection. For example, the 

egd1Δbtt1Δ strain does not show altered Sup35-GFP aggregation, yet exhibits a joining defect via 

solubility assays. This strain also rescues prion-related toxicity, albeit to a weaker extent than the 

egd1Δegd2Δ strain.  
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Chaperone inhibition is a promising anti-disease mechanism for mammalian 

systems 

 The stable propagation of [PSI+] by nontoxic Sup35 aggregates indicates that NAC 

deletion, and the subsequent chaperone imbalance, slows the toxic addition of Sup35 monomer to 

existing aggregates. Retention of aggregates without toxicity has implications for mammalian 

protein misfolding disorders that are spread via oligomeric species (296). By reducing monomer 

joining onto existing amyloid, NAC deletion is blocking a key step in the prion life cycle. The 

resistance to global protein misfolding induced by canavanine in the NAC deletion strains (Figure 

2.7A) indicates that depletion of the NAC, and subsequent functional substitution by other 

chaperones, can protect cells against non-prion misfolding.  Future studies are needed to determine 

the effects of NAC deletion on the propagation and stability of additional fungal prions and other 

amyloidogenic proteins. In the context of human disease, amyloid plaque formation may be slowed 

or stopped if a similar mechanism can be unveiled.  

 The fact that chaperone deletion can be beneficial to cells, even in the face of protein 

misfolding stress, is a counterintuitive result. However, there is a growing body of evidence to 

support chaperone inactivation as a mechanism via which disease progression may be slowed. 

Many of these studies have focused on cancer (297), but recent research has found that Hsp70 

imbalance leads to increased aggregation of the Alzheimer’s-related protein tau (298) and that 

Hsp70 inhibition can promote tau clearance (299). Taken together, these studies highlight the 

importance of chaperone balance on maintaining cellular health, and implicate genetic and 

pharmacologic inhibition of chaperones, Hsp70s in particular, as a promising therapeutic avenue.  

 Our work builds upon the recent discoveries that the NAC can delay protein aggregation 

and provide feedback to translation machinery (300), assist with general protein folding and 

ribosome biogenesis (278), and that individual subunits have distinct functionalities related to 
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protein folding and rescue of aggregation (301). Together with our findings regarding the role of 

NAC subunits in regulating chaperone balance, this research points to the NAC as a major 

component in the protein homeostasis network. The NAC’s known significance in yeast and its 

ubiquity in Eukarya should motivate further investigation this multifunctional and essential 

complex. 
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Table S.2.1. Summary of the phenotypes displayed by the NAC deletion strains.  

The egd1Δegd2Δ and egd1Δbtt1Δ strains were able to rescue prion–associated toxicity and had the 

most severe phenotypes in the remaining assays. Strains that showed variable phenotypes (e.g. 

egd2Δ could resist canavanine but not HygB) may harbor a slight chaperone imbalance that could 

not produce a detectable readout in our assays. 

 
 

Strain             

all [PSI+] 

Robust 

toxicity 

rescue 

Resists 

canavanine 

Ssb binding 

to Sup35  

relative to 

WT 

Sensitive 

to HygB 

Sensitive 

to SsaOE 

Resistant 

to Hsp104 

curing 

Altered 

Sup35 

aggregates 

Joining 

defect 

WT no no X no no no no no 

egd1Δ no no unchanged YES no moderate no no 

egd2Δ no YES n.s no no YES no no 

egd1Δegd2Δ YES YES reduced YES YES YES YES YES 

btt1Δ no YES increased no no YES no no 

egd1Δbtt1Δ YES YES reduced YES YES YES no YES 

egd2Δbtt1Δ no YES unchanged no YES YES no no 

NACΔ no YES n.s YES YES YES no no 

Table S.2.2. Strains used in this study. 

Strain Description Reference 
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SL2598 
74D-694; Strong [PSI+], MATa, ade1-14(UGA), trp1-289(UAG), 

his3 -200, ura3-52, leu2-3,112   
(302) 

1271 
74D-694; Strong [PSI+], MATa, ade1-14 his 3 -200 trp 1-289 ura3-52 

leu2-3,112 egd1D::KanMX4 
This study 

1147 
74D-694; Strong [PSI+], MATα, ade1-14 his 3 -200 trp 1-289 ura3-52 

leu2-3,112 egd2 ::loxP 
This study 

1148 
74D-694; Strong [PSI+], MATa, ade1-14 his 3 -200 trp 1-289 ura3-52 

leu2-3,112 egd1 ::KanMX4 egd2 ::loxP – clone #1 
This study 

962 
74D-694; Strong [PSI+], MATa, ade1-14 his 3 -200 trp 1-289 ura3-52 

leu2-3,112 btt1 ::HIS5 
This study 

966 
74D-694; Strong [PSI+], MATa, ade1-14 his 3 -200 trp 1-289 ura3-52 

leu2-3,112 egd1 ::KanMX4 btt1 ::HIS5 
This study 

1150 
74D-694; Strong [PSI+], MATa, ade1-14 his 3 -200 trp 1-289 ura3-52 

leu2-3,112 btt1 ::loxP egd2 ::loxP 
This study 

1152 
74D-694; Strong [PSI+], MATa, ade1-14 his 3 -200 trp 1-289 ura3-52 

leu2-3,112 egd1 ::KanMX4 btt1 ::loxP egd2 ::loxP 
This study 

2352 
74D-694; [psi-],mediuim [RNQ+], MATα, ade1-14, trp1-289(UAG), 

his3 -200, leu2-3,112, kar1-  
(271) 

2090 
74D-694; [psi-],medium [RNQ+] MATa, ade1-14, trp1-289(UAG), 

his3 -200, leu2-3,112, kar1-  
(271) 

SL3014 
74D-694; [psi-], MATα, ade1-14, his 3 -200 trp 1-289 ura3-52 leu2-

3,112 
(302) 

1142 
74D-694; Strong [PSI+], MATα, ade1-14, his 3 -200 trp 1-289 ura3-

52, leu2-3,112, ssb1Δ::loxP 
This study 

1149 
74D-694; Strong [PSI+], MATa, ade1-14 his 3 -200 trp 1-289 ura3-52 

leu2-3,112 egd1 ::KanMX4 egd2 ::loxP – clone #2 
This study 
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Table S.2.3. Plasmids used in this study. 

Plasmid Description and use Reference 

5162 pCUP-Sup35-GFP. Copper-inducible expression of Sup35-GFP. This study 

6244 pEMBL-Sup35. Overexpression of Sup35.  (303) 

SL6435 pUKC815. Control for nonsense suppression assay. PGK1-LacZ fusion.  (277) 

SL6436 pUKC817. Nonsense suppression assay. PGK1(TAA)LacZ fusion. (277) 

SL6437 pUKC818. Nonsense suppression assay. PGK1(TAG)LacZ fusion. (277) 

SL6438 pUKC819. Nonsense suppression assay. PGK1(TGA)LacZ fusion. (277) 

SL7280 p426GPD-Hsp104. Used for the overexpression of Hsp104.  (304) 

6221 
pCUP-Sup35NM-GFP. Copper-inducible expression of Sup35NM-

GFP. 
(302) 

6765 p424GPD-Hsp104. Used for the overexpression of Hsp104. This study 

6391 p415GPD-Ssa1. Overexpression of Ssa1. This study  

6750 p415GPD-Ssb1. Overexpression of Ssb1. This study 

6751 P415GPD-Ssb2. Overexpression of Ssb2. This study 

EC1219 pRS316K-SSB1. Wild type Ssb1, “BBB.” (286) 

EC1327 pRS316K-SSA1. Wild type Ssa1, “AAA.” (286) 

EC1659 pRS316K-ABB. Chimera of Ssa1 and Ssb1.  (286) 

EC1662 pRS316K-BAA. Chimera of Ssa1 and Ssb1. (286) 

EC1695 pRS316K-AAB. Chimera of Ssa1 and Ssb1. (286) 

EC1696 pRS316K-ABA. Chimera of Ssa1 and Ssb1. (286) 

EC1697 pRS316K-BAB. Chimera of Ssa1 and Ssb1. (286) 

EC1698 pRS316K-BBA. Chimera of Ssa1 and Ssb1. (286) 
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Table S.2.4. Antibodies used in this study. 
Antigen Production notes Type Dilution Source 

Sup35 Peptide, a.a.s 137-151 Rabbit polyclonal 1:1,500 True lab 

Rnq1 Full-length Rnq1 Rabbit polyclonal 1:1,000 True lab 

Ssb1/2 C-terminal 80 a.a.s Rabbit polyclonal 1:2,000 Craig lab (305) 

Rpl3 IgG2b, ascites Mouse monoclonal 1:2,500 Warner lab (306) 

Hsp104 Carboxy terminus  Rabbit polyclonal 1:3,000 Glover lab (307) 

Sis1 Peptide, a.a.s 339-352 Rabbit polyclonal 1:5,000 Cosmo Bio p89 

GFP N-terminal peptide Mouse monoclonal 1:1,000 Thermo MA5-15256 

Ssa C-terminal 56 a.a.s  Rabbit polyclonal 1:2,000 Craig lab (305) 

Ubiquitin Full-length bovine Ub Mouse monoclonal 1:500 Santa Cruz 8017 

Rabbit Rabbit IgG Goat polyclonal 1:10,000 unless specified Sigma A0545 

Mouse Mouse IgG Rabbit polyclonal  1:10,000 unless specified Sigma A9044 
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Figure S.2.1. Screen for factors that reduced prion-related toxicity.  

(A) We performed a transposon screen with a mini-transposon (3XHA/lacZ URA3 (mTn3))  

mutagenized library (308). The library was linearized with NotI and transformed into 74-D694 

[PSI+] yeast containing pRS315CUP SUP35 for the copper-inducible expression of Sup35. This 

strain harbors the strong [PSI+] prion variant. Prion variants (also called prion strains) result from 

particular amyloid structures propagated by the prion-forming protein (309). Transformants were 

plated onto selective media containing 350µM CuSO4 and 1,243 putative suppressors were 

recovered. Candidates were picked with inoculating loops and respotted on the same media and 

319 true suppressors were confirmed. Remaining candidates were mated to WT 74D-694 strains 

and sporulated to identify tetrads. Haploid candidates were confirmed by mating type testing. Eight 

candidates were recovered with phenotypes genetically linked to the transposon insertion.  (B) 

Additional NAC deletion strains do not rescue [PSI+]-associated toxicity when Sup35 is 

overexpressed. The egd2Δbtt1Δ and btt1Δ strains show poor growth on selective media containing 

350µM CuSO4. 
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Figure S.2.2. The [PSI+] prion is altered in NAC deletion strains.  

(A) A second disruption of the EGD1 and EGD2 genes (“clone 2”) displays a similar pattern of 

Sup35 aggregation as is shown in Figure 3A. (B) The 1 hour timepoint for the joining assay 

performed in Figure 3C.  (C) The amount of Sup35-GFP induced by addition of CuSO4 to the 

culture medium was consistent between strains. Note the proportion of Sup35-GFP present in the  

“uninduced” lane, consistent with leaky expression from the CUP1 promoter (310). (D) WT and 

NAC deletion strains were cured of all prions by three passages on media containing 5mM 

GdnHCl. Strains were cytoduced with the “medium” variant of [RNQ+] (271) and transformed 

with pEMBL-SUP35. Induction of [PSI+] was performed as previously described (311). At least 

three independent experiments were performed and a minimum of 600 colonies were counted. 

Data are represented as mean ± SEM. *=  p<0.07; **= p<0.05.    (E) Covering the egd1Δ deletion 

with a plasmid expressing Egd1 gene rescues [PSI+] induction to WT levels. Data are represented 

as mean ± SEM. 
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Figure S.2.3. Deletion of NAC subunits does not globally alter protein expression levels.  

(A) Wild type and NAC deletion strains were grown overnight in YPD before lysis, SDS-PAGE, 

and Western blotting for the specified proteins. Expression levels of chaperone (Sis1, Ssb1/2, 

Hsp104) and prion-forming (Sup35, Rnq1) proteins is not changed as a result of NAC deletion. 

The vertical white bar in the Hsp104 blot indicates non-contiguous lanes of the same blot.  (B) 

Sup35 expression was analyzed by Western blot of lysates of the WT and ssb1Δ strains from Figure 

4A. The vertical white bar indicates non-contiguous lanes of the same blot.   
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Figure S.2.4. Ssa1 is not toxic at steady-state levels of Sup35 expression 

WT and NAC deletion strains were transformed with p415GPD-SSA1 for the overexpression of 

Ssa1. Overexpression of Ssa1 is not toxic without the concurrent overexpression of Sup35. All 

strains contain [RNQ+] and the strong [PSI+] variant; none of the strains are overexpressing Sup35.  
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Figure S.2.5. Ssa1 overexpression can be toxic in conjunction with Sup35 overexpression 

Spottings performed (as in Figure 4C) demonstrate that the effects of Ssa1 overexpression, in 

conjunction with Sup35 overexpression, are less toxic in the single NAC deletion strains than in 

the double deletions. All strains contain [RNQ+] and the strong [PSI+] variant, and the strains on 

selective media are overexpressing Sup35.   

 



78 

 

 
Figure S.2.6. The thermotolerance of NAC deletion strains is unchanged.  

Strains (all [RNQ+] and strong [PSI+]) were grown in YPD at 30C and separated into 500µl 

fractions in glass culture tubes. Culture tubes were “pretreated” for 30 minutes at 37ºC prior to 

heatshock to promote the induction of heat-responsive elements. A non-pretreated control (-P) was 

incubated at 30ºC. Cultures were heat shocked at 50 degrees for the indicated number of minutes. 

NS = no shock. No differences were observed between the WT and deletion strains.  
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Figure S.2.7. Hsp104 overexpression does not alter Sup35 expression or strain growth 

The WT and NAC deletion strains were transformed with a plasmid to overexpress Hsp104, as 

described in Figure 6. (A) The amount of Hsp104 overexpression was consistent between the 

transformed strains, and substantially greater than the empty vector control grown in identical 

media. (B) The levels of expressed Sup35 was unchanged in the Hsp104-overexpressing strains. 

The empty vector (EV) control does not overexpress Hsp104. (C) Strains overexpressing Hsp104 

were grown in selective media in a plate reader to monitor their growth over time. There were no 

differences between the WT and NAC deletion strains; thus, growth rate does not account for the 

changes in [PSI+] curing efficiency. Results are the averaged values of three experiments.  
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Figure S.2.8. NAC deletion strains are only resistant to [PSI+] curing by Hsp104 

overexpression.  

(A) As in Figure 6D, a WT strain was cytoduced with prion aggregates from WT or NAC deletion 

strains, and then transformed with a plasmid that overexpresses Hsp104. (B) [PSI+] WT and NAC 

deletion strains were spotted onto plates containing variable levels of GdnHCl (5mM plates are 

shown), which inactivates Hsp104. All strains demonstrated equal curability, as demonstrated by 

their red coloration. 
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Figure S.2.9. NAC deletion strains do not demonstrate elevated stress responses.  

(A) WT and NAC deletion strains (all [RNQ+] and strong [PSI+]) were spotted onto plates 

containing the proteasome inhibitor MG132. The strains were not differentially affected by the 

stressor. (B) The induction of the unfolded protein response (UPR) was measured at baseline 

(uninduced) and upon addition of tunicamycin to culture medium (activated UPR). The NAC 

deletion strains did not show a differential ability to induce the UPR in response to misfolding 

stress. (C) The solubility assay from Figure 7C was repeated with concentrated lysates in order to 

visualize the insoluble (pellet) fraction. No differences were observed between the WT and NAC 

deletion strains, indicating that none of these strains show an increased or decreased accumulation 

of aggregated material.   
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Chapter 3: A toxic imbalance of Hsp70s in 

Saccharomyces cerevisiae is caused by 

competition for cofactors 
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3.1 Abstract 

Molecular chaperones are responsible for managing protein folding from translation through 

degradation. These crucial machines ensure that protein homeostasis is optimally maintained for 

cell health. However, “too much of a good thing” can be deadly, and the excess of chaperones can 

be toxic under certain cellular conditions. For example, overexpression of Ssa1, a yeast Hsp70, is 

toxic to cells in folding-challenged states such as [PSI+]. We discovered that overexpression of 

the nucleotide exchange factor Sse1 can partially alleviate this toxicity. We further argue that the 

basis of the toxicity is related to the availability of Hsp70 cofactors, such as Hsp40 J-proteins and 

nucleotide exchange factors. Ultimately, our work informs future studies about functional 

chaperone balance and cautions against therapeutic chaperone modifications without a thorough 

examination of cofactor relationships.  

3.2 Introduction 

Correct protein folding is achieved through a network of chaperones, co-chaperones, and 

nucleotide exchange factors that collaborate to configure a protein into an ordered state (8). When 

left unchecked, improper protein folding can lead to disrupted protein homeostasis and cell death, 

and, in mammalian systems, it can cause diseases such as Alzheimer’s disease and ALS (1). Thus, 

extensive networks of molecular chaperones have evolved to protect organisms from these adverse 

events.   

Saccharomyces cerevisiae have more than 60 molecular chaperones that act on misfolded 

proteins, and hundreds of cofactors that assist these activities (9). Hsp70s are one class of 

chaperones that rely upon other proteins in order to facilitate ATP cycling and binding to clients 

(154,179). Hsp70s work in concert with other cochaperones to change the conformation of 
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misfolded proteins to promote proper folding. Hsp40 J-proteins are responsible for both delivering 

substrates and stimulating the ATPase domain of Hsp70s (312,313). Nucleotide exchange factors 

remove ADP and allow Hsp70s to return to a “ready” state (314). The repeated binding and release 

of clients with exposed hydrophobic patches allows the misfolded proteins to regain their correct 

conformations (154).  

Prion aggregation is one consequence of protein misfolding in yeast. Many prions exist in 

yeast, and they regulate diverse cellular functions including transcription, translation termination, 

and nitrogen metabolism (88). Prion propagation occurs via specific misfolding of prion proteins 

into beta sheet-rich structures that promote additional monomers to convert and join the prion 

template. Yeast prions act as epigenetic mechanisms of inheritance as they are transmitted from 

mother to daughter cell (88). One well-characterized yeast prion, [PSI+], is caused by the 

misfolding and aggregation of the translation termination factor Sup35 (187). Many chaperones 

act upon Sup35 aggregates, including members of the Hsp70 and Hsp40 families (88). The 

activities of these chaperones can either prevent or promote de novo prion formation, depending 

on expression level (211).  

Given the thermodynamic and cytosolic pressures that can oppose proper protein folding, 

one may hypothesize that “more is better” when it comes to intracellular chaperones. It stands to 

reason that higher levels of chaperone expression could benefit cells by providing more 

opportunities for misfolded proteins to be captured and refolded. Interestingly, this is not always 

the case.  

We reported previously that the levels of Hsp70s, namely Ssa1 and Ssb1, are at a fine 

balance in the yeast Saccharomyces cerevisiae (315). When more Ssa1 is available relative to 

Ssb1, [PSI+] yeast experience exacerbated toxicity when Sup35 is concurrently overproduced. 
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This phenomenon did not occur with overexpression of other chaperones, such as Ssb1. We thus 

wondered what characteristics of Ssa1 influenced its toxic phenotypes. Here, we demonstrate that 

Hsp70 cofactor availability plays a role in Ssa1-related toxicity, especially when those cofactors 

are shared between Ssa1 and Ssb1.  

3.3 Methods 

Yeast cultures and transformation 

Yeast were cultured using standard techniques (269) Plasmid transformations were performed by 

the PEG/LiOAC method (269). All yeast are WT 74D-694 and are strong [PSI+] (302).   A 

complete list of plasmids is available in Table S.3.1.  

Yeast spotting 

Yeast cultures were grown overnight in selective media. Cultures were pelleted, washed, and 

resuspended in water to an optical density of 1.0. The normalized yeast solutions were pipetted 

into a 96-well plate, and serial dilutions (1:5) were made using a multichannel pipette. Yeast were 

spotted onto plates using an ethanol-sterilized 48-pin replicator that was placed in the appropriate 

wells and then onto an agar plate. Throughout the paper, YPD plates are used as controls to show 

the total number of cells plated, as even the slight amount of copper in synthetic media is enough 

to induce toxicity in yeast that contain p314CUP1-Sup35. For all experiments, the amount of 

CuSO4 in media was titrated to compare growth within each experiment. CuSO4 levels were altered 

to reveal relative effects of protein overexpression.  

3.4 Results 

3.4.1 Ssa1 overexpression is toxic to yeast containing aggregated Sup35 

Yeast containing the [PSI+] prion show toxicity when Sup35, the constituent of [PSI+], is 

overexpressed (101) (Figure 3.1A). When these yeast are subject to a concurrent overexpression  
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of the chaperone Ssa1, the toxicity phenotype is exacerbated (Figure 3.1B, top row). We previously 

reported this phenomenon in the context of chaperone balance, and concluded that the relative 

availability of the Hsp70s is a factor that influences toxicity (315). However, we further 

demonstrated that imbalances can occur without changes in chaperone expression level. Other 

factors, such as localization or cofactor availability, can create these functional imbalances. 

Indeed, Ssa1 overexpression toxicity is not rescued by simultaneous overexpression of Ssb1 from 

the same promotor (Figure 3.1C). This suggested that chaperone imbalance-related toxicity is 

related to chaperone cofactors, and not the chaperones exclusively.  We hypothesized that Ssa1-

dependent toxicity may be due to a change of activity of its cofactors. 

We therefore examined the role of Sse1 on Ssa1 activity. Sse1 is a nucleotide exchange 

factor (NEF) that is specific to the Hsp70 family of chaperones (171,316). We chose Sse1 because 

it interacts with both the Ssa and Ssb protein families, perhaps exclusively (317).  It is known that 

Hsp70 cofactors, including NEFs, are typically present in sub-stoichiometric amounts in healthy 

cells (179). Thus, we hypothesized that Ssa1-related toxicity could be due to insufficient NEF 

activity relative to Ssa1 activity or abundance.  

To test this, we overexpressed Ssa1 and Sse1 concurrently in [PSI+] cells overexpressing Sup35. 

We found that the expression of Sse1 strikingly rescued the toxicity associated with Ssa1 

overexpression (Figure 3.1B). We tested Sse1 overexpression alone and in conjunction with Ssb1  
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Figure 3.1. Overexpression of Sse1 rescues toxicity associated with excess Ssa1 

(A) Sup35 overexpression is toxic to [PSI+] yeast. The empty vector (EV) control contains a 

TRP1-marked vector with no open reading frame (pRS314). (B) Ssa1 overexpression is toxic in 

[PSI+] yeast at low levels of Sup35 overexpression. toxicity is rescued by the overexpression of 

nucleotide exchange factor Sse1. (C) Sse1 overexpression does not cause enhanced growth of cells 

relative to empty vector controls. Top panel: the “EV” strain contains LEU2-, TRP1-, and URA3-

marked empty vectors (Table S.3.1). Middle panel: the Sse1 OE strain contains LEU2- and TRP1-

marked empty vectors.  

 

 

 

 

 

overexpression (Figure 3.1D), and observed no change in growth relative to empty vector controls. 

This indicated that Sse1 overexpression does not globally enhance growth of yeast.  
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3.4.2 Ssa1 overexpression could trap clients or titrate cofactors 

Sse1 is known to interact with both Ssa1 and Ssb1 (171). Thus, we generated two theories 

about why Sse1 overexpression rescued the toxicity associated with Ssa1 overexpression (Figure 

3.2). The first model suggests that the Ssa1 toxicity is due to a “trapping” of substrates caused by 

an insufficient amount of nucleotide exchange. In other words, overexpression of Ssa1 may 

overload the cell’s nucleotide exchange factors and create a stoichiometric mismatch. After a client 

protein binds to the substrate-binding domain (SBD), the SBD closes and traps the client until the 

ADP dissociates and a new ATP binds to open the Hsp70 (317). With too few NEFs available to 

remove bound ADPs, clients would be sequestered, potentially impacting cell viability. 

Overexpressing Sse1 would partially relieve the imbalance and allow client proteins to be folded 

efficiently.  

The second model proposes that overexpressing Ssa1 titrates certain nucleotide exchange 

factors away from other Hsp70s, such as Ssb1. Sse1 is a cofactor for both Ssa1 and Ssb1. An 

increase in Ssa1 activity could reduce the amount of contact between Sse1 and Ssb1. 

Overexpressing Sse1 would allow both classes of Hsp70s to resume normal function. The major 

distinction between the Ssa1 overexpression models lies in which Hsp70 remains trapped in the 

ADP-bound state: in the “trapping” model, Ssa1 retains substrates, while the “titration” model 

suggests that Ssa1 cycles substrates while Ssb1 remains ADP-bound.   

To distinguish between these models, we first decided to examine the Hsp70 domains. Wild type 

Hsp70s contain three domains: a 40kDa N-terminal nucleotide binding domain, a 20kDa substrate 

binding domain, and a 10kDa variable domain (Figure 3.3A) (179,313). We utilized  
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Figure 3.2. Model for cause of Ssa1 toxicity 

(A) The “trapping” model suggests that overexpressing Ssa1 is toxic because crucial proteins are 

not made available to the cell. Ssa1 overexpression leads to a relative lack of available nucleotide 

exchange factors, so bound substrates are not efficiently cycled through the folding process. 

Overexpressing Sse1 partially relieves the mismatch between available Ssa1 and available NEFs. 

(B) The “titration” model suggests that Ssa1 overexpression causes cofactors to interact less 

frequently with Ssb1 due to stoichiometric imbalances. Titrating cofactors, such as the Sse1, could 

lead to decreased Ssb1 activity, causing reduced growth. Overexpressing Sse1 would restore the 

activity of both chaperones by increasing cofactor availability.  

 

 

 

chimeric Hsp70 proteins in order to probe the effects of each domain of Ssa1 and Ssb1 (318). In 

total, we employed six chimeras representing all combinatorial groupings of these domains (Figure 

3.3B), along with the wild type proteins in identical vectors. Each construct is referred to by its N-  
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to C-terminal identity. For example, “ABA” refers to the chimera that contains the Ssa1 nucleotide 

binding domain, the Ssb1 substrate binding domain, and the Ssa1 variable domain.  

We expressed these fusion proteins in conjunction with Sup35 overexpression and 

observed that the nucleotide binding domain of Ssa1 was responsible for the most toxic phenotypes 

(Figure 3.3C). Conversely, all chimeras containing the Ssb1 nucleotide binding domain grew 

strongly when challenged with Sup35 overexpression. Surprisingly, one of the most toxic 

combinations was ABB, indicating that the Ssa1 nucleotide binding domain alone can be harmful 

to cell growth. The ABA chimera was also potently toxic, exhibiting almost no growth on selective 

media. Yeast containing AAB experienced toxicity similar to WT Ssa1. We considered the 

possibility that a mismatch between nucleotide binding domains and substrate binding domains 

may be innately toxic; however, the BAB and BAA chimeras both grew robustly.  

This result supported the “titration” model; that is, the NBD of Ssa1 draws nucleotide 

exchange factors away from Ssb1. We arrived at this interpretation by examination of the AAB 

and ABA chimeras. If excess Ssa1 was retaining key substrates (the “trapping” model), then the 

AAB chimera would exhibit similar toxicity to Ssa1, but ABB would grow strongly because of its 

lack of Ssa1 substrate binding domain. However, ABB was even more toxic than Ssa1. We 

hypothesized that the extreme toxicity of the ABB and ABA chimeras were due to two factors. 

First, the presence of the Ssa1 nucleotide binding domain titrated NEFs away from Ssb1. Second, 

the presence of the Ssb1 substrate binding domain attracted client proteins away from the likely 

more-functional endogenous Ssb1, further harming cellular viability.  
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Figure 3.3. The nucleotide binding domain of Ssa1 is responsible for toxicity 

(A) The Saccharomyces cerevisiae Hsp70s have a common domain architecture consisting of an 

N-terminal nucleotide binding domain, an intermediate substrate-binding domain, and a C-

terminal variable domain. (B) We utilized chimeric proteins to investigate the effect of each 

domain of Ssa1 and Ssb1. All combinatorial possibilities were tested. Chimeras are named by their 

domains, e.g. “ABB” contains the Ssa1 nucleotide binding domain, the Ssb1 substrate binding 

domain, and the Ssb1 variable domain. (C) Expressing the Hsp70 chimeras demonstrates that the 

ABB and ABA proteins are highly toxic. 
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3.4.3 Sse1 overexpression confirms the importance of the Ssa1 nucleotide 

binding domain 

To confirm the role of the Ssa1 nucleotide binding domain in toxicity, we again analyzed 

the effect of Sse1 overexpression. We co-expressed Sse1, Sup35, and each Hsp70 chimera and 

assessed yeast viability. Again, we found that Sse1 overexpression partially rescued the toxicity 

associated with ABB, as well as other chimeras containing the Ssa1 nucleotide binding domain. 

In contrast to the toxicity induced by minimal overexpression of Sup35 without Sse1 

overexpression (Figure 3.3C), yeast could withstand higher levels of Sup35 overexpression 

(induced by 50µM CuSO4) with the co-expression of Sse1 (Figure 3.4, middle panel).  

3.4.4 A functional chaperone and cofactor balance is essential to survival 

To further validate the titration model, we challenged the Ssa1 nucleotide exchange cycle. 

We hypothesized that a more active Ssa1 ATPase domain would exacerbate the toxicity associated 

with Ssa1 overexpression, as more NEFs would be titrated from Ssb1 in order to exchange ADP. 

Therefore, we examined the effect of Ydj1 on Ssa1-related toxicity. Ydj1 is an Hsp40 J-protein 

that stimulates Ssa1 ATPase activity, though not Ssb1 ATPase activity, and delivers client proteins 

to Ssa1 (319,320). We hypothesized that increased levels of Ydj1 could speed the overall 

nucleotide cycle via enhancing ATPase activity or delivering more substrates to Ssa1 (likely a 

combination of the two), which would increase the need for NEFs. Indeed, we observed that Ydj1 

overexpression was highly toxic, even more than Ssa1 overexpression alone (Figure 3.5, compare 

to Figure 3.1A). Ydj1 overexpression alone was not detrimental to growth.  
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Figure 3.4. Sse1 overexpression rescues Hsp70 chimera toxicity 

Introducing excess Sse1 into yeast containing Hsp70 chimeras rescued the toxicity associated with 

the Ssa1 nucleotide binding domain, even at high levels of Sup35 overexpression (middle panel, 

induced with 50µM CuSO4). Horizontal white bars separate spottings from the same plate. The 

original image was rearranged to allow easier comparison with Figures 3B and 3C.  
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Figure 3.5. Functional chaperone balance is not restored by overexpressing Ydj1 or Ssb1 

(A)  Ydj1 is an Hsp40 J-protein that enhances Ssa1 ATPase activity. Overexpressing Ydj1 with 

Sup35 and Ssa1 is more toxic than Sup35 and Ssa1 overexpression alone. Ydj1 overexpression 

alone is not toxic (upper panel). The EV strain contains LEU2- and TRP1-marked empty vectors. 

(B) Overexpressing Ssb1 does not ameliorate the toxicity of Ssa1 overexpression. Though excess 

Ssb1 is generally beneficial to cells, the overabundance of Ssa1 continues to compete with Ssb1 

for cofactors. The EV strain contains a TRP1-marked empty vector (pRS314).  
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3.5 Discussion 
 Here, we have shown that chaperone-related toxicity is caused in part by stoichiometric 

imbalances of cofactors. In particular, we demonstrated that the prion-dependent toxicity of Ssa1 

overexpression is influenced by changes to the relative availability of the nucleotide exchange 

factor Sse1. We have provided evidence to support a “titration model,” in which Ssa1 

overexpression titrates cofactors away from Ssb1, reducing its functionality and its ability to cycle 

through substrates.    

 Though we limited this investigation to Ssa1, Ssb1, and Sse1, there are undoubtedly other 

consequences of chaperone imbalance that are not described herein. Changes in chaperone levels 

or folding ability can lead to enhanced genetic variation, prion modification, and changes in 

cytoskeletal organization (321–323).  These effects are not limited to yeast, as Hsp70 

overproduction in Drosophila can be deleterious to growth (324). Future investigation into the 

downstream effects of chaperone imbalance will shed light on the mechanisms by which they 

contribute to cells monitoring and reacting to protein folding challenges.  

 In our lab strains, Ssa1 overexpression was not toxic in [PSI+] cells without the concurrent 

overproduction of the prion-forming protein Sup35 (315). We theorize that this is due to the greater 

folding burden that is assumed by cells when Sup35 is overexpressed in a [PSI+] phenotypic state. 

Ssa1 overproduction, and subsequent Ssb1 under-function, may be tolerable under endogenous 

conditions, but becomes toxic when widespread protein misfolding challenges the chaperone 

network. This is in line with the hypothesis that cells contain excess free chaperones in order to 

protect against unforeseen folding needs (325).  It is reasonable to believe that other methods of 

inducing protein misfolding could also lead to Ssa1-related toxicity.  
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 In our previous study, we investigated a system that mimicked Ssa1 overexpression, via 

increased availability of Ssa1 relative to Ssb1, without any change in expression of either Hsp70 

(315). Practically, this means that different genetic backgrounds or cellular stressors could make 

an organism more susceptible to chaperone-related toxicity. Cofactors are typically present in sub-

stoichiometric amounts relative to their Hsp70s, a fine balance that is perturbed by either over- or 

under-expression of J-proteins and NEFs (179). Similar conclusions have been reached for Hsp90s 

and their cofactors (326). These studies indicate that chaperone networks are finely-tuned and that 

there are perils associated with altering Hsp availability relative to their cofactors.  

To that end, modification of chaperones has been suggested in the treatment of various 

human diseases, ranging from neurodegenerative conditions to cancer (327–330). Our work 

informs important considerations for these future research avenues; namely, each chaperone must 

be considered as part of an interconnected network. Modulating the activity of one chaperone can 

have unforeseen consequences upon other chaperones, in a manner that may be unpredictable 

under conditions of cellular stress.  
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3.7 Supplementary Information 
 

Table S.3.1. Plasmids used in this study.  

 

Plasmid Description Use Reference 

-- pRS314 Empty vector control, TRP1-marked (331) 

-- pRS315 Empty vector control, LEU2-marked (331) 

-- pRS316 Empty vector control, URA3-marked (331) 

6391 p415GPD-SSA1 Overexpress Ssa1 from GPD promotor (315) 

6750 p415GPD-SSB1 Overexpress Ssb1 from GPD promotor (315) 

5162 
p314CUP1-

SUP35 

Express Sup35 from a copper-inducible 

promotor 
(315) 

EC1219 p316-SSB1 Express WT Ssb1 (318) 

EC1327 p316-SSA1 Express WT Ssa1 (318) 

EC1659 p316-ABB Express Ssa1/Ssb1 chimera (318) 

EC1662 p316-BAA Express Ssa1/Ssb1 chimera (318) 

EC1695 p316-AAB Express Ssa1/Ssb1 chimera (318) 

EC1696 p316-ABA Express Ssa1/Ssb1 chimera (318) 

EC1697 p316-BAB Express Ssa1/Ssb1 chimera (318) 

EC1698 p316-BBA Express Ssa1/Ssb1 chimera (318) 

5708 p316-SSE1 Overexpress Sse1 as second copy This study 

5435 p316-YDJ1 Overexpress Ydj1 as second copy This study 

6761 p416GPD-Ssb1 Overexpress Ssb1 from Ura-marked plasmid This study 

6532 p415TEF-Sse1 Overexpress Sse1 from Leu-marked plasmid This study 
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Chapter 4:  Heterologous prion-forming 
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4.1 Abstract 

The early stages of protein misfolding remain incompletely understood, as most mammalian 

proteinopathies are only detected after irreversible protein aggregates have formed. Cross-seeding, 

where one aggregated protein templates the misfolding of a heterologous protein, is one 

mechanism proposed to stimulate protein aggregation and facilitate disease pathogenesis. Here, 

we demonstrate the existence of cross-seeding as a crucial step in the formation of the yeast prion 

[PSI+], formed by the translation termination factor Sup35. We provide evidence for the genetic 

and physical interaction of the prion protein Rnq1 with Sup35 as a predominant mechanism 

leading to self-propagating Sup35 aggregation. We identify interacting sites within Rnq1 and 

Sup35 and probe the effects of breaking and restoring a crucial interaction. Altogether, our results 

demonstrate that single-residue disruption can drastically reduce the effects of cross-seeding, a 

finding that has important implications for human protein misfolding disorders.    

4.2 Introduction 

 The aggregation of heterologous proteins is implicated in many human neurodegenerative 

diseases, including Parkinson’s Disease, Alzheimer’s Disease, and amyotrophic lateral sclerosis 

(ALS). These fatal conditions are characterized by progressive neuronal damage and functional 

decline resulting from the co-aggregation of diverse disease-related proteins. Though the 

catastrophic effects of protein aggregation have been well-described, less is known about the 

factors that contribute to the spontaneous formation of heterologous protein inclusions. Recent 

findings suggest that a cross-seeding  mechanism, whereby one protein templates the misfolding 

of another, may induce the aggregation of heterologous proteins and have a profound impact on 

disease onset and progression(58,64,332,333). However, while implicated, any instance of direct 

mechanistic evidence of cross-seeding has yet to be explicated.   
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 Yeast prions, like pathogenic mammalian amyloids, are beta sheet-rich structures that can 

be transmitted from cell to cell. They are a robust model for studying the aggregation of human 

proteins, as yeast prions can also form varying structures or “strains” that impart differing cellular 

phenotypes, in a manner analogous to the distinct structures and pathologies formed by 

amyloidogenic proteins in humans(120,132,207). Indeed, the study of yeast prions has resulted in 

significant contributions to elucidating fundamental mechanisms of protein misfolding(116,130). 

The yeast protein Sup35 is a unique model for probing the nature of heterologous cross-seeding. 

Sup35 is a translation factor of Saccharomyces cerevisiae that aggregates to form the prion known 

as [PSI+]. Interestingly, [PSI+] formation is dependent upon the presence in the cell of another 

yeast prion, [RNQ+](116). Yet, like the co-aggregation of mammalian proteins, the nature of the 

relationship between Sup35 and Rnq1 remains unclear.  

There are two predominant models for the dependence of Sup35 on [RNQ+] to form [PSI+] 

(Figure 4.1)(114,334,335). The inhibitor titration model posits the existence of an inhibitor 

molecule that binds to Sup35 and prevents its aggregation in [rnq-] cells (Figure 4.1A). Upon 

formation of [RNQ+], this inhibitor is sequestered by the amyloid and titrated away from Sup35, 

leaving Sup35 free to aggregate to form [PSI+]. An extensive screen and other previous work was 

done to identify the putative inhibitor(114), which has been suggested to be a chaperone or an 

element of the ubiquitin-proteasome machinery(336), but no candidate molecules have been 

identified.  

In contrast to the titration model, the seeding, or cross-priming, model suggests that Sup35 

and Rnq1 physically interact during [PSI+] formation (Figure 4.1B). In this manner, the misfolded 

and aggregated Rnq1 in the [RNQ+] state induces Sup35 to misfold via bending the monomer out 

of its native conformation or templating a spontaneously misfolded monomer into a state 
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conducive for prion propagation. There is some evidence for the seeding model. Fluorescence 

microscopy demonstrated that newly-forming Sup35-YFP aggregates co-localized with existing 

Rnq1-CFP aggregates(118). Promoting the interaction between Rnq1 and Sup35 via a Sup35-Rnq1 

fusion protein also enhanced [PSI+] formation, whereas fusion of Sup35 to other aggregation-

prone molecules did not(337). In addition, preformed aggregates of the Rnq1 prion-forming 

domain (PFD) have been shown to slightly increase the rate of Sup35 polymerization(117), though 

only at very high concentrations of Rnq1 seed relative to Sup35.  

 To gain greater insight into the aggregation of heterologous proteins, we set out to 

investigate the nature of the Sup35-Rnq1 interaction. Using a variety of techniques in vivo and in 

vitro, we have demonstrated a binding interaction that supports the veracity of the seeding model. 

We probed the functional consequences of disrupting this binding, and for the first time in any 

system, identified potential sites of interaction between two heterologous amyloidogenic proteins.  
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Figure 4.1. Models for the [RNQ+]-dependent formation of the [PSI+] prion 

(A) The inhibitor titration model suggests that an inhibitor molecule (red squares) binds to Sup35 

in its soluble state (blue circles). The presence of [RNQ+] (green ring) sequesters the inhibitor 

away from Sup35, thereby allowing the protein to aggregate and form [PSI+]. (B)  The seeding 

model suggests that there is a physical interaction between Sup35 and aggregated Rnq1 during the 

formation of [PSI+]. After the interaction, the [RNQ+] and [PSI+] prions are propagated 

independently.  
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4.3 Methods 

Yeast strains, plasmids, cultures, and transformations 

Yeast strains were cultured using standard techniques(269). Yeast transformation with plasmid 

DNA was performed by the PEG/LiOAC method(269). Complete lists of strains and plasmids are 

available in Tables S.4.1 and S.4.2, respectively.  

Protein purification 

Sup35 and Rnq1 were both tagged with a C-terminal polyhistidine tail and purified on nickel 

affinity resin. Briefly, BL21 (DE3) bacteria were transformed with the plasmid of interest and 

grown at 37ºC in LB+Amp media. At OD600=0.6, protein expression was induced with 1mM IPTG 

and cultures were grown at 25ºC for 6 hours. Cells were pelleted, washed, and frozen at -80ºC until 

use. Cells were thawed at 4ºC for 2hr, shaken in lysis buffer (Sup35: 20mM Tris, 0.5M NaCl, 

5mM imidazole, 2M urea, 0.1% IGEPAL; Rnq1: 20mM Tris, 8M Urea, pH 8) at 4ºC for 30 

minutes, and then sonicated 5x10 seconds at high power. Lysates were cleared by centrifugation 

at 20,000xg for 30 minutes, and the supernatant was incubated with a nickel resin for 30 minutes 

at 4ºC. Resin columns and bound proteins were washed with washing buffer (Sup35: 20mM Tris-

HCl, 0.5M NaCl, 20mM imidazole, 2M urea; Rnq1: 20mM Tris, 8M Urea, pH 6.3-5.9) and eluted 

with wash buffer + 400mM imidazole for Sup35 or wash buffer at pH 4.5 for Rnq1. Elution 

fractions were pooled, concentrated, and methanol-precipitated prior to use. Rnq1 purification 

protocol adapted from(338). 

Rnq1-Trap 

His-tagged Sup35 was expressed in BL21 (DE3) cells and partially purified as described above, 

stopping after binding to the nickel resin but before protein elution. Yeast cultures were grown to 
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mid-log phase and mechanically lysed with acid-washed glass beads (Sigma) in Sup35 binding 

buffer + protease inhibitors (20mM Tris, 0.5M NaCl, 5mM imidazole, 2M urea, 0.1% IGEPAL, 

50mM NEM, 3mM PMSF, 1 tablet Roche Protease Inhibitor Cocktail #4693159001). Cleared 

lysates were incubated for 30 minutes with the Sup35-bound nickel resin prior to washing with 

150mL washing buffer (20mM Tris-HCl, 0.5M NaCl, 20mM imidazole, 2M urea) and elution with 

100mL elution buffer (20mM Tris-HCl, 0.5M NaCl, 400mM imidazole, 2M urea). Fraction 

collection was followed by standard SDS-PAGE (10% polyacrylamide) and western blotting.  

Thioflavin T kinetics 

Purified Sup35 and Rnq1 were resuspended to 300µM in 7M guanidine hydrochloride. Fiber 

formation and kinetics assays were performed as previously described(339), with minor alterations 

to buffers (Sup35: 5mM KPO4, 150mM NaCl, pH 7.4; Rnq1: 50mM KPO4, 2M Urea, 150mM 

NaCl, pH 6).   

Boiled gels 

Yeast strains of interest were cultured overnight in selective media. Cells were lysed in buffer 

(25mM Tris-HCl pH 7.5, 50mM KCl, 10mM MgCl2, 1mM EDTA, 10% glycerol, protease 

inhibitors) by mechanical disruption with acid-washed glass beads (Sigma). Lysates were 

normalized to total protein and mixed with SDS-PAGE sample buffer (200mM Tris-HCl pH 6.8, 

4% SDS, 0.4% bromophenol blue, 40% glycerol). Unboiled samples were loaded into the wells of 

a 12% polyacrylamide gel and run under 140V of current until the dye front migrated halfway 

through the resolving gel. The current was stopped and the gel and glass plates were sealed in 

plastic sheets prior to boiling upright for 15 minutes in a 95ºC water bath. The gels were removed 

from the plastic and reinserted into the PAGE apparatus, where voltage was re-applied (140V) 
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until the dye front migrated to the bottom of the gel. This procedure was followed by standard 

western blotting with Sup35 and Rnq1 antibodies (Table S.4.3).  

Prion manipulation and protein biochemistry 

[PSI+] induction and SDD-AGE experiments were performed as previously described (120,340). 

Cytoduction was performed as previously described(134,315). 

Screen for Sup35 mutations 

The screen for suppressor mutations was performed using SP5, a chimeric Sup35 protein that 

contains 5 repeat domains from the prion protein PrP in place of the endogenous repeat domains 

of Sup35(341,342). As SUP35 is an essential gene, SP5 was utilized in the screen because it 

allowed us to monitor prion formation in the absence of the potentially confounding effects of WT 

Sup35 expression in conjunction with mutant Sup35 overexpression. To introduce mutations, six 

error-prone PCR reactions were performed in the presence of 25uM MnCl2 using Taq polymerase 

and 35 cycles to amplify the NM domains of SP5. PCR reactions were combined to create three 

separate libraries, followed by SpeI/BclI digestion and ligation into p415TEF-SP5. Yeast cells 

propagating m.d. high [RNQ+] and harboring episomal copies of SUP35 and rnq1-Q298R were 

transformed with each library, with selection on SD-His-Leu. Transformation plates were replica 

plated onto SD-His-Leu + 5-FOA to select for cells having replacement of the URA3-marked 

SUP35 plasmid. These colonies were replica plated onto YPD and YPD+3mM GdnHCl to identify 

white [PSI+] colonies that were also curable. More than ~3000 colonies were assessed, of which 

193 were pink (putative [PSI+]) and 38 were curable (validating the prion). After plasmid recovery 

and sequencing, we identified 13 mutant SP5 alleles.  
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Crosslinking 

PCR was performed on pAED4-SCNM-his7 to introduce the G7C mutation, using forward primer 

5’GCGCATATGATGTCGGATTCAAACCAATGTAACAATCAGCAAAAC (mutated bases 

underlined) and reverse primer 5’CATCGATGAATTCTTAATGGTGG. The PCR product and 

pAED4 vector were digested with NdeI and EcoRI restriction enzymes, ligated, and transformed 

into BL21 (DE3) cells for protein expression and purification as described above.  Following 

methanol precipitation, Sup35NM-G7C and Rnq1 were dissolved to 0.1mM in conjugation buffer 

(PBS, 2mM EDTA, pH 7.4). Rnq1 was attached to the heterobifunctional crosslinker SMPB 

(Thermo #22416) by incubating 1.3mg protein with a final SMPB concentration of 1mM for 30 

minutes at room temperature. Disulfide bonds in Sup35NM-G7C were reduced with TCEP 

(Sigma). Excess SMPB and TCEP were removed by passing proteins through Zeba desalting 

columns (Thermo #89890). Equimolar amounts of Sup35-G7C and Rnq1-SMPB were combined 

and incubated at room temperature for 30 minutes, followed by SDD-AGE and western blotting.  

 

 

4.4 Results 

4.4.1 Sup35 stably binds to ex vivo Rnq1  

We began by assessing the interaction between Rnq1 and Sup35 ex vivo. Since the 

previously demonstrated in vitro cross-seeding was weak(117), we hypothesized that the 

conformation of Rnq1 in [RNQ+] lysates differed from that readily obtained in the in vitro amyloid 

formation reaction. Therefore, we sought to test the binding of Sup35 to biologically relevant 

aggregates of Rnq1 isolated from [RNQ+] yeast cell lysates. To do so, we bound recombinant, 

tagged Sup35 prion-forming domain (Sup35NM-7xHis) to nickel affinity resin. We then prepared 
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cell lysates from [RNQ+][psi-] yeast and incubated the lysate with the nickel resin to allow for 

binding between Rnq1 aggregates and immobilized Sup35. We hypothesized that the bound Sup35 

would “trap” untagged Rnq1 that would ordinarily flow through the column. We washed the 

column with increasing amounts of imidazole to displace the bound proteins, and collected 

unbound, wash, and elution (bound) fractions (Figure 4.2A). We found that there was a strong 

interaction between Rnq1 and Sup35 when the Sup35NM-7xHis protein was used as bait, as a 

large proportion of Rnq1 appeared in the bound fractions. Rnq1 was still present in the unbound 

fraction, yet not all Rnq1 is expected to be aggregated or Sup35-binding-competent in [RNQ+] 

cells. Importantly, when no Sup35NM-7xHis was present on the beads, all Rnq1 protein was 

present in the unbound fraction, indicating the lack of non-specific binding of Rnq1 to the column.  

To control for non-specific interactions between Rnq1 and Sup35, we repeated the 

experiment with a Sup35 C-terminal domain fragment (Sup35C-7xHis) that lacks the crucial 

prion-forming region that is believed to interact with Rnq1. In this instance, most of the Rnq1 

protein was present in the unbound fraction, with none detected in the elution fractions. Some 

Rnq1 appeared during an intermediate wash fraction, indicating weak or non-specific binding to 

the Sup35 C-terminal domain. Thus, the strong binding between ex vivo Rnq1 to the Sup35 prion-

forming domain appears to be specific and stable.   

Interestingly, incubating lysates from [rnq-][psi-] cells also showed binding between Rnq1 

and Sup35 (not shown). This suggests that there is a Sup35-Rnq1 interaction in [rnq-] cells, but 

that the intermolecular binding is not prion-forming. Rather, the [PSI+]-inducing properties of 

Rnq1 in [RNQ+] strains may be due to the specific conformation of Rnq1, as previously suggested, 

and not simply the interaction itself(120,132). 
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Figure 4.2. Rnq1 and Sup35 physically interact   

(A) ThT kinetic experiments monitor the polymerization of amyloid via enhanced fluorescent 

emission. Unseeded Sup35 (blue line) polymerizes and aggregates after approximately 17 hours, 

as does Sup35 incubated with Rnq1 monomer alone (green line). The addition of Rnq1 fibers 

(orange line) reduces the lag time for Sup35 polymerization to approximately 12.5 hours. Curves 

represent data from three experiments. (B) Sup35 was immobilized on resin and utilized as bait 

for a [RNQ+] trap assay. Cell lysates were incubated with the resin, washed with buffer, and eluted. 

The presence of trapped, untagged Rnq1 was detected via western blot with anti-Rnq1 antibody. 

Lanes shown are the unbound (UB) fraction, the final wash fraction and the first two elution 

fractions. “Wash*” indicates an intermediate wash fraction. Blots are representative images from 

three independent experiments. 
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4.4.2 Rnq1 aggregates seed the polymerization of Sup35  

To understand whether the physical interaction between Rnq1 conformers and Sup35NM 

might facilitate the aggregation of Sup35, we assessed the kinetics of in vitro aggregation using 

Thioflavin T (ThT)(343). ThT binds specifically to amyloid fibers and an increase in the 

fluorescent emission signal indicates formation of amyloid. When incubated with agitation at room 

temperature, Sup35 will form amyloid after a reproducible lag phase(338,342). This lag phase can 

be reduced or eliminated if Sup35 aggregation is “seeded” by preformed Sup35 fibers that provide 

a template for amyloid formation. We hypothesized that including preformed Rnq1 fibers in Sup35 

polymerization reactions would also decrease the lag phase of Sup35 aggregation, albeit to a lesser 

extent, as observed in vivo: cross-seeding ([PSI+] induction in [RNQ+] cells) is not as efficient as 

self-seeding ([PSI+] propagation in [PSI+] cells). Though previous work has demonstrated that 

very high molar concentrations of the Rnq1 prion-forming domain (PFD) can slightly increase 

Sup35 polymerization(117), we now know that regions outside of the PFD are important for 

[RNQ+] prion status(344–346). Thus, we utilized full-length Rnq1 at a lower molar ratio. We 

further hypothesized that cross-seeding would be dependent on the conformation of the Rnq1 

aggregates formed in vitro, as [RNQ+] variants, also called prion strains, have a significant effect 

on [PSI+] induction levels in vivo(132). Thus, we aimed to create a mixed population of seeds that 

could mimic the aggregation states that may be present in vivo.  

In light of these considerations, we purified recombinant Sup35 and Rnq1, and formed 

Rnq1 fibers in vitro to serve as “seeds” for the polymerization reaction. As temperature can affect 

the conformation of Rnq1 aggregates(339), we formed Rnq1 fibers at a range of temperatures and 

combined them to create a broad pool of potential seed structures. We then performed ThT 

aggregation assays with monomeric Sup35NM in both unseeded and seeded conditions (Figure 

4.2B). We found that the presence of pooled Rnq1 seeds at a 12µM final concentration reduced 
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the lag phase of Sup35 aggregation as predicted (Figure 4.2B, orange curve). The addition of 

equimolar levels of monomeric Rnq1 did not have this effect relative to the Sup35-only control 

(Figure 2B, green and blue curves). Thus, the initiation of Sup35 aggregation in vitro is enhanced 

by the presence of Rnq1 amyloid. As this experiment used pure, recombinant protein, no inhibitor 

cofactors (Figure 4.1A) are necessary to enhance Sup35 polymerization. Therefore, the facilitation 

of Sup35 aggregation relies on direct binding of Rnq1 and Sup35.  

4.4.3 The rnq1-Q298R mutation causes a [PSI+] induction defect 

Upon demonstrating the physical interaction between Sup35 and Rnq1, we sought to 

identify the specific residues in each protein that were important to binding. To do so, we utilized 

a mutation in Rnq1, Q298R, that had been previously identified by our lab and demonstrated to 

impart a [PSI+] induction defect (Figure 4.3A)(347). This mutant was previously shown to be 

capable of propagating [RNQ+], and our additional tests of thermal stability (Figure 4.3B, Figure 

S.2.1A) and mitotic stability (Figure 4.3C) showed that the Q298R mutant maintains Rnq1 

aggregates that are biochemically indistinguishable from WT Rnq1(347). However, cells 

harboring rnq1-Q298R have a [PSI+] induction defect, in that they become [PSI+] at a much lower 

frequency than RNQ1 cells(347). 

We first verified this defect with [PSI+] induction experiments. [PSI+] induction utilizes a 

colorimetric assay to visualize the frequency of Sup35 aggregation in vivo. The colorimetric 

readout relies upon a well-described phenotypic [PSI+] reporter, ade1-14, which impacts adenine 

production depending on nonsense suppression. The ade1-14 allele contains a premature stop 

codon in the ade1 gene (348). Yeast containing ade1-14 cannot make adenine and colonies grown  
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Figure 4.3. Rnq1-Q298R causes a [PSI+] induction defect 

(A) The Rnq1 protein contains an N-terminal domain (NTD) and a glutamine/asparagine-rich 

prion-forming domain (PFD). The PFD contains four glutamine-dense regions, Q1-4 (113). The 

Q298R mutation occurs in region Q3 of the PFD. (B) Rnq1 aggregates were treated at a gradient 

of temperatures in SDS to determine the melting point of the Rnq1-Q298R aggregates versus the 

WT. There were no significant differences in the thermostable properties of either protein 

aggregate. Western blot signal from multiple experiments was quantified using ImageJ, 

normalized by the 95C band, and plotted using Origin 9.0. Error bars represent standard error of 

the mean (s.e.m). (C) There are no detectable differences in mitotic stability of Rnq1-Q298R 

aggregates as compared to WT Rnq1 aggregates. [RNQ+] strains containing the [RNQ+] Reporter 

Protein (RRP), a phenotypic readout for the [RNQ+] prion(347), were transformed with plasmids 

harboring either WT RNQ1 or rnq1-Q298R. We assessed the mitotic stability, or spontaneous prion 

loss, of resulting strains and found that [RNQ+] formed from WT or Rnq1-Q298R was similarly 

maintained.  (D) The rnq1-Q298R mutant shows a strong defect in [PSI+] induction relative to 

WT cells of the m.d. high variant of [RNQ+]. [PSI+] was induced by overexpression of Sup35 in 

[psi-][RNQ+] cells of either a RNQ1 or rnq1-Q298R genetic background. Colonies were assessed 

by color, with white or pink colonies or sectored colonies scored as [PSI+]. Error bars represent 

mean ± s.e.m. The “*” symbol represents a significant difference between [PSI+] induction in 

RNQ1 versus rnq1-Q298R backgrounds, p<0.001.  (E) Results from [PSI+] induction following 

cytoplasmic transfer of either WT Rnq1 or Rnq1-Q298R protein aggregates into a [rnq-] RNQ1 

strain. The propagated [RNQ+] would be templated from the WT or mutant aggregate, but be 

comprised of only WT protein. Error bars represent mean ± s.e.m. 
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on media containing adenine appear red due to the buildup of a pigmented metabolic byproduct. 

Since Sup35 is a translation termination factor, its aggregation to form [PSI+] increases nonsense 

suppression. Thus, [PSI+] allows cells to read through the ade1-14 premature stop codon and 

synthesize adenine. As such, [PSI+] cells can grow on synthetic media lacking adenine (SD-Ade) 

and appear white or pink on rich media plates (YPD).  

Utilizing this colorimetric test to monitor [PSI+] induction, we overexpressed Sup35 in 

[RNQ+][psi-] yeast expressing either Rnq1 or Rnq1-Q298R. Cells were spread on rich media 

plates to allow for development of red or white colonies. The presence of productive Rnq1-Sup35 

interactions would induce the formation of [PSI+]. In agreement with our previous results, strains 

with WT Rnq1 aggregates induced [PSI+] at a high level, whereas yeast with Rnq1-Q298R 

aggregates exhibited a significant decrease in [PSI+] formation (Figure 4.3D). This suggests that 

Q298 is an important site of interaction between Rnq1 and Sup35, and that mutating the glutamine 

residue leads to decreased or non-productive interactions with Sup35.  

We then sought additional confirmation that the [PSI+] induction defect of rnq1-Q298R 

was indeed related to the genetic mutation and not a heritable change in the [RNQ+] prion 

conformation. We utilized cytoduction to transfer aggregates from a [RNQ+]Q298R donor cell to a 

[rnq-]WT recipient cell expressing RNQ1. Thus, the recipient yeast would become [RNQ+] and 

propagate the prion conformation from the donor strain, but with WT Rnq1 protein. Following 

cytoduction from either [RNQ+]WT or [RNQ+]Q298R donors, we monitored [PSI+] induction and 

found that the RNQ1 [rnq-] recipient strains receiving WT Rnq1 and Rnq1-Q298R aggregates both 

induced [PSI+] to equivalent levels (Figure 3E). Thus, the rnq1-Q298R [PSI+] induction defect is 

a consequence of the genetic mutation as opposed to a templating defect that is transmitted to WT 

Rnq1.  
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4.4.4 Suppressor mutations rescue the [PSI+]-induction defect 

After confirming the role of rnq1-Q298R in [PSI+] induction, we sought to identify 

putative binding sites in Sup35. We performed a second site suppressor screen to identify 

mutations within the Sup35 prion forming domain that could restore the interaction with Rnq1-

Q298R and rescue the [PSI+] induction defect. Briefly, we transformed strains containing rnq1-

Q298R with a pool of mutagenized SP5, a chimeric SUP35 construct that allowed us to assess 

screen candidates without confounding effects of mutating endogenous SUP35. We then assessed 

the ability of yeast cells to form [PSI+] (see Methods for screen details). Our secondary tests 

verified that bona fide [PSI+] was formed by showing that the nonsense suppresion phenotypes 

were reversible on plates containing 3mM GdnHCl, which cures yeast prions (not shown). To 

assess [PSI+] formation, we spotted the screen candidates onto SD-Ade to test their growth (Figure 

4.4A, Figure S.4.2). The most promising mutants were those that grew strongly on SD-Ade relative 

to WT SP5 in a rnq1-Q298R genetic background. In all, we isolated 12 sup35 mutants containing 

a total of sixteen mutations within the “NM” prion-forming domain (Figure 4.4B). 

4.4.5 Sup35-N5Y robustly rescues the [PSI+]-induction defect 

After cloning the candidate mutations into Sup35, we then tested the ability of these Sup35 

mutants to suppress the [PSI+] induction defect of rnq1-Q298R. We again utilized [PSI+] 

induction experiments to evaluate the individual sup35 screen candidates (Figure 4.5A). We 

overexpressed either WT or mutant Sup35 in [RNQ+] cells expressing either Rnq1 or Rnq1-

Q298R. Importantly, [PSI+] formation was never observed in the [rnq-] control strains, and a high 

degree of induction occurred in WT [RNQ+] cells. Moreover, the [PSI+] induction defect was 

evident in [RNQ+] rnq1-Q298R SUP35 cells. However, three Sup35 mutants rescued the defect 

and induced [PSI+] to near-WT levels: N5Y, Q6R, and G116V (Figure 4.5A). Interestingly,  
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Figure 4.4. Sup35 mutations can restore interaction with Rnq1-Q298R  

(A) Candidates from a suppressor screen to identify Sup35 mutants that can rescue the [PSI+] 

induction defect associated with rnq1-Q298R. These mutants enhanced [PSI+] formation in the 

rnq1-Q298R genetic background relative to WT SP5. Horizontal white bars separate non-adjacent 

spottings from the same plate. Complete spottings of screen candidates appear in Supplementary 

Figure S.4.2. (B) The indicated mutations were cloned into SUP35 for further testing.  

 

 

 

despite M domain mutations also being identified and tested, the three rescuing mutations all fall 

within the N-terminal region of Sup35, which is thought to be the most crucial domain for prion 

formation(92,335). 
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The sup35-N5Y candidate was isolated as a single mutant during our screen, whereas many 

other sup35 alleles emerged as double- or triple-mutants. We decided to individually examine this 

mutant’s potential binding to Rnq1-Q298R. To assess this, we examined Sup35 aggregation 

biochemically via “boiled gel” assays. In these experiments, room temperature cell lysates are 

loaded on SDS-PAGE gels. Native (non-denatured) aggregated material is too large to enter the 

resolving gel and becomes trapped in the wells and the stacking gel. Upon boiling the gel midway 

through electrophoresis, aggregated material breaks down and enters the resolving gel. Following 

western blots, two bands are visible per lane: a lower band of soluble material, and a higher band 

of insoluble material that was delayed in entering the gel (see Methods). We performed boiled gel 

experiments with cell lysates from [RNQ+] strains containing WT or rnq1-Q298R and WT or 

sup35-N5Y (Figure 4.5B). We also examined a [rnq-] control with WT RNQ1 and SUP35. As 

expected, the [rnq-] control showed no Sup35 aggregation, since [PSI+] rarely forms without  

[RNQ+] present. In WT cells, nearly all of the Sup35 was visualized in the aggregated band, 

indicating prolific [PSI+] formation. Conversely, the rnq1-Q298R in conjunction with WT SUP35 

exhibited the [PSI+] induction defect, and little aggregated Sup35 was detected. Finally, in rnq1-

Q298R cells harboring the sup35-N5Y screen candidate, abundant Sup35 aggregation was restored. 

The lack of complete restoration of Sup35 aggregation may be due to the shorter yeast culture 

period for this protocol (16 hours) versus [PSI+] induction experiments (4 days), potentially 

indicating that Rnq1-Q298R is a sufficient, yet non-optimal template for seeding [PSI+] formation  
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Figure 4.5. Sup35-N5Y strongly rescues the [PSI+] induction defect 

(A) [PSI+] induction experiments demonstrate that three Sup35 mutants restore [PSI+] formation 

to nearly WT levels in rnq1-Q298R cells. These mutations do not increase [PSI+] formation in a 

RNQ1 genetic background. Horizontal axis labels denote SUP35 genetic status. The [rnq-] control 

cells express RNQ1 and SUP35.  More than 13,000 colonies were assessed over five biological 

replicates. Error bars represent mean ± s.e.m. The “*” symbols represent a significant difference 

between [PSI+] induction with WT Sup35 in rnq1-Q298R versus induction with the indicated 

sup35 mutants, p<0.005.  (B) Boiled gel assays allow separate migration of monomeric and 

aggregated materials, confirming that Sup35 aggregation is reduced in the SUP35 rnq1-Q298R 

background relative to SUP35 RNQ1 cells. Sup35 aggregation is restored in sup35-N5Y rnq1-

Q298R cells. We attribute the slightly aberrant monomer bands as an artifact of the experimental 

procedure, as samples were unboiled (and likely non-denatured) as per the protocol, and Sup35 

may shed unevenly from aggregates in addition to the soluble pool. Western blot is a representative 

image from three independent experiments. 

 

 

relative to WT Rnq1. These results demonstrate that the Sup35 N5Y mutation affects Sup35 

aggregation and [PSI+] formation in the presence of Rnq1-Q298R.  
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4.4.6 The Sup35 N-terminus binds to Rnq1 in vitro 

After demonstrating that Sup35 and Rnq1 physically interact and that Rnq1-Q298 and 

Sup35-N5 may be an important site of contact, we sought to verify the interaction by crosslinking 

in vitro. We decided to use a sulfhydryl-reactive crosslinker to take advantage of the lack of 

cysteine residues in Sup35. We chose to introduce a cysteine mutation close to the putative binding 

site so as not to disturb the residue identified as being important in the interaction. We mutated the 

Sup35 G7 residue to cysteine to direct crosslinking to the N-terminal region of the protein. The 

G7C mutation of Sup35 has previously been shown to form and propagate the [PSI+] state in a 

manner identical to WT Sup35(110). After treating recombinant Rnq1 with a heterobifunctional 

crosslinker, SMPB, the two proteins were combined and analyzed via semi-denaturing detergent 

agarose gel electrophoresis (SDD-AGE), a protocol that allows for the visualization of large SDS-

resistant aggregated species (Figure 4.6).  

In all crosslinked reactions, a very high molecular-weight product was visible in the wells 

of the gel. This product reacted with both Sup35 and Rnq1 antibodies (Figure 4.6 and Figure S.4.3), 

and was not present in control lanes containing Rnq1 alone, Sup35NM-G7C alone, or the two 

proteins combined without SMPB. Based on the spacer arm length of SMPB (11.5Å), this indicates 

that Rnq1 and Sup35 physically bind within the first 15 amino acids of Sup35, and agrees with the 

genetic interaction found in our second site suppressor screen.  
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Figure 4.6. The N terminal region of Sup35 crosslinks to Rnq1 
Site-directed crosslinking of Sup35-G7C to Rnq1 created high-molecular weight aggregates as 

visualized by SDD-AGE. Rnq1 alone, Sup35-G7C alone, and both proteins together without 

SMPB did not create large aggregates. The “+*” notation in the fifth lane indicates Sup35 monomer 

following treatment with TCEP. Western blot is a representative image from three independent 

experiments. In the lower blot, Rnq1 loading was confirmed by SDS-PAGE. Vertical white bars 

separate non-adjacent lanes of the same blot. The dashed line separates adjacent lanes of the same 

blot under differing film exposures for image clarity (full blots in Supplementary Figure S.4.3). 

There is excess Rnq1 in lanes 1 and 3, samples prepared without crosslinker, to adjust for protein 

that is lost during sample desalting following attachment of the crosslinker (see Methods).  Three 

trials of crosslinking were included in each experiment and the crosslinking experiment was 

repeated with different batches of purified proteins three times.   
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4.5 Discussion 

Rnq1 seeds [PSI+] formation by Sup35 

To our knowledge we have demonstrated, for the first time in any system, the physical 

interaction of heterologous prion-forming proteins in vitro and in vivo. We demonstrated the 

functional outcomes of this interaction via ThT kinetic assays and [PSI+] induction. We utilized 

genetic techniques and crosslinking to identify specific amino acids that are important to binding 

between Sup35 and Rnq1; namely, the N5 residue of Sup35 and the Q298 residue of Rnq1.  

Importantly, though our work strongly supports the “seeding” model of Rnq1-Sup35 

interaction, it does not disprove the inhibitor titration model (Figure 4.1). It may be that a 

combination of both models contribute to [PSI+] formation in vivo. It is possible that an inhibitor 

molecule is titrated away from Sup35 but a physical interaction between Sup35 andRnq1 is still 

necessary for [PSI+] to form. The inhibitor itself, having affinity for both Sup35 and Rnq1, may 

even facilitate the binding. Previous work, by our lab and others, has demonstrated that several 

classes of chaperones can have opposing effects upon prion formation and propagation, sometimes 

in a conformation-dependent manner(204,280,349). It is even possible that the Rnq1 monomer 

itself may have an inhibitory effect upon Sup35 aggregation, a concept that is supported by the 

binding between Sup35 and Rnq1 from [rnq-] cell lysate. Future research may implicate one or 

more of these proteins as an inhibitor of [PSI+] formation. However, the seeding model is 

sufficient for Sup35 polymerization in vitro and is clearly a factor in [PSI+] formation in vivo.    

Many points of contact may exist between Rnq1 and Sup35 

Our research demonstrates that the Sup35 N-terminal region, specifically N5, is important 

in the Rnq1-Sup35 interaction. However, we uncovered several other mutations that could partially 

rescue the [PSI+] induction defect associated with Rnq1-Q298R (Figure 4.4). This suggests that 
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there are multiple residues where Sup35 and Rnq1 may interact en route to Sup35 aggregation. 

Though each Sup35 mutation was alone sufficient to restore interaction with Rnq1-Q298R, there 

may be multiple points of contact necessary before Sup35 assumes its prion conformation. The 

total number of necessary interactions and their order of occurrence (if any) remain avenues of 

further research.   

Sup35-Rnq1 interactions may vary by prion strain  

Different prion strains, or variants, adopt different tertiary protein conformations(109). 

These differences may be related to both the adoption of beta sheets within the protein conformer 

and the size of the amyloid core(109,350). As the beta sheet locations within Sup35 and Rnq1 may 

differ between variants, so might their intermolecular contacts. Indeed, our work with the “multi-

dot high” variant of [RNQ+] identified Q298 as an important site of interaction with Sup35, but 

Q298R had no apparent effect on Sup35-Rnq1 binding in the “very high” prion strain (not shown). 

There may be a cohort of interacting sites that remain consistent between prions strains, or each 

variant of [PSI+] and [RNQ+] may have entirely distinct residues of importance.  

Further, it is known that certain strains of [RNQ+] are more likely to stimulate the 

formation of certain strains of [PSI+](351).This phenomenon may be explained by the existence 

of different interaction sites between the two prion-forming proteins. In our experiments, we 

observed our Sup35 mutants forming both the strong and weak strains of [PSI+] under both WT 

and rnq1-Q298R genetic backgrounds (not shown). Thus, this suggests that the Sup35-N5 and 

Rnq1-Q298 residues are a key binding site that supports general [PSI+] formation with multi-dot 

high [RNQ+]. Other sites of interaction may be strain-specific. 
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Interactions between aggregating proteins can impact human health 

Many human pathologies involve the aggregation of misfolded, beta sheet-rich proteins(2). 

These diseases include Alzheimer’s Disease, Parkinson’s Disease, and amyotrophic lateral 

sclerosis (ALS). Though these incurable diseases have profound effects upon patients, and a multi-

billion dollar impact on the healthcare system, little is known about the factors that cause the de 

novo protein misfolding. It is possible that a seeding or templating mechanism is responsible for 

the misfolding and subsequent aggregation of human proteins. In support of this concept, 

polymerization of amyloid-beta (Aβ) was recently shown to be promoted by the presence of 

misfolded islet amyloid polypeptide (IAPP), which aggregates in the islet cells of patients with 

type 2 diabetes(64). Our work demonstrates that multiple binding sites may be involved in cross-

seeding (Figure 4.4), but that blocking one crucial site may be sufficient to alter the outcomes of 

the interaction. Further work in yeast will help to inform additional translatable principles of 

protein misfolding. 
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4.7 Supplementary Information 
 

Table S.4.1. Strains used in this study.  

Strain Description Reference 

2261 74D-694; [psi-], high [RNQ+], MATα, ade1-14 his3 -200 trp1-289 ura3-52 

leu2-3,112, sup35 ::HygBMX4, RNQ1 
(346) 

2160 74D-694; [psi-], high [RNQ+], MATα, ade1-14 his3 -200 trp1-289 ura3-52 

leu2-3,112, sup35 ::HygBMX4, RNQ1-Q298R 
This study 

1890 74D-694; [psi-], [rnq-], MATA, ade1-14 his3 -200 trp1-289 ura3-52 leu2-

3,112, sup35 ::HygBMX4, RNQ1 
(346) 

1951 74D-694; [psi-], [rnq-], MATA, ade1-14 his3 -200 trp1-289 ura3-52 leu2-

3,112, sup35 ::HygBMX4, RNQ1-Q298R 
This study 

2040 74D-694; [psi-], [rnq-], MATα, ade1-14 his3 -200 trp1-289 ura3-52 leu2-

3,112, sup35 ::HygBMX4, kar1- 15, ρ0 
This study 

2047 74D-694; [psi-], high [RRP+], MATA, ade1-14 his3 -200 trp1-289 ura3-52 

leu2-3,112, sup35 ::RMC, rnq1 ::KANMX4 
(346) 

1282 74D-694; [psi-], high [RNQ+], MATA, ade1-14 his3 -200 trp1-289 ura3-52 

leu2-3,112, sup35 ::KANMX4, rnq1 ::KANMX4 
This study 
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Table S.4.2. Plasmids used in this study.  

 

Plasmid Description Use Reference 

5049 pYK810 Cover SUP35 deletion with SUP35 (93) 

5281 p416TEF-SP5 Template for screen This study 

5787 p415TEF-SP5 Backbone for screen candidate 

expression 

This study 

6244 pEMBL-SUP35 [PSI+] induction – WT (346) 

6257 pRS315-sup35-N5Y Cover SUP35 deletion with sup35-N5Y This study 

6342 pEMBL-sup35-N5Y [PSI+] induction – N5Y This study 

6473 pRS315-sup35-Q6R Cover SUP35 deletion with sup35-

Q6R 

This study 

6483 pEMBL- sup35-Q6R [PSI+] induction – Q6R This study 

6474 pRS315-sup35-G116V Cover SUP35 deletion with sup35-

G116V 

This study 

6484 pEMBL- sup35-G116V [PSI+] induction – G116V This study 

5074 pPROEX-Htb-RNQ1 WT Rnq1 purification This study 

SL7111 pAED4-SCNM-his7 WT Sup35 bait for Rnq1-trap on resin  (335) 

6771 pAED4-SCNM-G7C-

his7 
Purification for crosslinking reagent 

This study 

6772 pAED4-SCTD-his7 Control bait for Rnq1-trap on resin This study 

5719 pRS313-rnq1-Q298R Mitotic stability testing of Rnq1-

Q298R 

This study 

6312 pRS313-RNQ1 Mitotic stability testing of WT Rnq1 (346) 
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Table S.4.3. Antibodies used in this study.  

Antigen Production notes Type Dilution Source 

Sup35 
Peptide, a.a.s 137-

151 
Rabbit polyclonal 1:1,500 Lindquist lab 

Rnq1 Full-length Rnq1 Rabbit polyclonal 1:1,000 True lab 

Rnq1 Full-length Rnq1 Rat polyclonal 1:2,000 True lab 

Rabbit Rabbit IgG Goat polyclonal 1:10,000   Sigma A0545 

Rat Rat IgG Rabbit polyclonal  1:10,000   Sigma A5795 
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Figure S.4.1. Rnq1-Q298R aggregates have similar properties to WT Rnq1 aggregates 

Representative western blots from thermal stability experiments quantified in Figure 3B. Cell 

lysates were subjected to a temperature gradient before SDS-PAGE and western blotting. Insoluble 

material, such as prion aggregates, requires treatment at high temperatures in order to enter the 

resolving gel. There were no observable differences between WT and Rnq1-Q298R aggregates.  
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Figure S.4.2. Mutants isolated from SP5 suppressor screen  

(A) Full spottings of screen candidates from Figure 4A. (B) SDD-AGE analysis demonstrates that 

the rescuing mutants Sup35-N5Y, Sup35-Q6R, and Sup35-G116V can all propagate [PSI+]. 
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Figure S.4.3. Full crosslinking blots  

(A) SDD-AGE from Figure 6, probed with rat anti-Rnq1 primary and rabbit anti-rat secondary 

antibodies. (B) Complete SDS-PAGE blot from Figure 6. Two exposures are shown to allow for 

clear viewing of the recombinant Rnq1 in lanes 1 and 3. 
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Chapter 5:  Conclusions and Future 

Directions 
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This thesis has laid groundwork for future studies of chaperone balance and interactions between 

heterologous aggregation-prone proteins. This chapter describes the experiments that could 

continue to advance these two concepts.  

5.1 Effect of chaperone balance on other prions and misfolded proteins 

In Chapters 2 and 3, it was demonstrated that shifting the balance of available Hsp70s was 

sufficient to alter [PSI+]-associated toxicity in a manner that was beneficial to cells. The beneficial 

effects of this balance were sufficient to improve folding outcomes related to more general 

proteotoxic stress, such as the induction of global protein misfolding with canavanine. This 

suggests that perturbing the chaperone balance might be broadly advantageous in certain 

environments, which is an intriguing concept in the context of human disease. Examining the 

breadth of the chaperone imbalance effect would help inform studies that aim to utilize the 

principles of chaperone balance to prevent or treat human proteinopathies. 

In the context of translational research, it would be ideal to assess the changes in toxicity 

of human disease proteins, such as TDP-43 and Huntington’s-associated polyQ, in response to a 

shift in chaperone balance. However, the effects of these aggregates in yeast are difficult to 

reproduce and rely upon the presence of other aggregated species. This may be due, at least in part, 

to the chaperone machinery – yeast chaperones might not be adapted to recognize or act on these 

human proteins. It has been demonstrated that yeast and human chaperones have differential 

interactions with aggregates (204), and TDP-43 aggregates do not require Hsp104 to propagate in 

yeast (352).  Thus, in order to assess the breadth of the effects of chaperone imbalance, other yeast 

prions could be investigated as models for the diversity of misfolding that can occur in other 

systems.    
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Chaperones can have different effects on different yeast prions. For example, 

overexpression of the Hsp70 Ssa1 promotes [PSI+] formation, but inhibits the generation of 

[URE3] (131,185). Further, prions display different requirements for Hsp40s (191,208).  

Chaperone imbalance might have a similarly inconsistent effect upon yeast prions. Deletion of the 

highly-conserved NAC subunits creates an imbalance of Hsp70s. Thus, to assess how NAC 

deletion affects the folding of other prion or prion-like proteins, we must first understand how the 

Hsp70s affect other yeast prion proteins. Overexpression and deletion of the Ssa and Ssb prions in 

[PRION+] and [prion-] cells would provide this information. The “pro-[PSI+]” Ssa1 and “anti-

[PSI+]” Ssb1 (185,199) may similarly promote and repress the formation of other prions, they may 

have opposing effects, or they may not differentially act on these prions. This can be assessed by 

overexpressing each Hsp70 and monitoring yeast for increased or decreased levels of prion curing 

and formation. In particular, the [SWI+] and [MOT3+] prions would be my chosen models for 

investigating the ubiquity of chaperone imbalance.  

Both [SWI+] and [MOT3+] have a regulatory role within S. cerevisiae and both have 

phenotypic readouts (126,353). Further, they are better characterized than other prions in yeast and 

preliminary research about their interactions with other chaperones has already been performed. 

Previous data indicate that Ssa1 targets Hsp104 to Mot3 fibrils and suggests that this affect is 

generalizable to all prions (193). [SWI+] propagation is dependent upon canonical Ssa1 cofactors, 

such as Sis1 and Sse1 (208). Thus, it is possible that Ssa1 overexpression will have similar affects 

upon [SWI+] and [MOT3+] as it does on [PSI+]; namely, it will promote prion propagation and 

reduce curing. Due to the opposing roles of Ssa and Ssb on [PSI+], I would further hypothesize 

that Ssb overexpression will enhance the curing of [SWI+] and [MOT3+]. However, the relatively 
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high prevalence of [MOT3+] in nature may indicate that this prion is generally cured at a low 

baseline frequency; thus, the Ssb effect may be less potent than with [PSI+].  

There are several phenotypic readouts that could be utilized to assess both [MOT3+] and 

[SWI+] formation and loss, as both prions have affects upon yeast multicellularity (126,353).  For 

[MOT3+], altered multicellularity is a readout of prion formation: upon [MOT3+] formation, cells 

exhibit an invasive growth phenotype, altered colony morphology, increased biofilm formation, 

and reduced flocculation (126). If Ssa overexpression does promote the formation and propagation 

of [MOT3+], then [mot3-] cells overexpressing Ssa1 should become [MOT3+] at a higher 

frequency relative to an empty vector control. This could be monitored phenotypically by assessing 

invasive growth on plates containing proline. A higher number of invasive colonies would be 

present in Ssa1-overexpressing strains if Ssa is “pro-[MOT3+].” Conversely, if Ssb1 

overexpression promotes curing of [MOT3+], then liquid cultures of Ssb1-overexpressing strains 

would become increasingly flocculent over time. These experiments would be performed in a 

Mot3-reporter strain (126) that is more flocculation-prone than most lab strains. Any phenotypes 

resulting from chaperone perturbation in [MOT3+] cells should be verified as specifically prion-

related by testing in isogenic [mot3-] cells. For example, if reduced flocculation was observed in 

[MOT3+] cells when SSB1 is deleted, a [mot3-] ssb1Δ strain should be assessed for its growth to 

determine the prion dependence of the phenotype.   

The [SWI+] prion reduces yeast flocculation (similar to [MOT3+]), but it also eliminates 

the invasive growth phenotype (in opposition to [MOT3+]) (353). This decoupling of multicellular 

phenotypes is advantageous, as it would demonstrate that any chaperone overexpression effects 

are a result of prion formation and not simply chaperone activity on other factors that might alter 



132 

 

multicellularity. A table of predicted experimental outcomes for Hsp70 overexpression in regards 

to [MOT3+] and [SWI+] is available in Table 5.1.  

Interestingly, I have found that deletion of Btt1 changes the invasive growth characteristics 

of the 74-D694 laboratory yeast strain (Figure 5.1). Deletion of NAC components alters the Hsp70 

balance and decreases the availability of Ssb. Thus, the btt1Δ strain may be mimicking an Ssa 

overexpression phenotype and promoting the formation of other prions. Testing these strains for 

[MOT3+] would support this hypothesis, though I predict that the yeast are [swi-] due to their 

invasive growth.  Thus, I hypothesize that the change in the ability of this strain to adhere to agar 

plates is related to a prion-associated characteristic that is perturbed by altered chaperone balance 

brought about by Btt1 deletion.  

Though I predict that the Hsp70s will have similar affects upon all yeast prions, I do not 

assume that the Hsp40s would follow this pattern. Hsp40 interactions are known to vary between 

prions (208), and thus I would elect to investigate the Hsp70 balance directly (as opposed to 

perturbing Hsp40s). If the Hsp70s are demonstrated to have similar directional affects upon 

different types of yeast prions, then I would extend my analysis to disease-related proteins and 

their associated human chaperones. This concept is further discussed in section 5.3.1. 
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Table 5.1. Predicted phenotypes for overexpression of the Hsp70s Ssa and Ssb in [MOT3+] and 

[SWI+] reporter strains, with the hypothesis that Ssa is generally “pro-[PRION+]” and Ssb is 

generally “anti-[PRION+].” N/A = phenotype not described in literature. The predicted phenotypes 

are relative to isogenic controls that are not overexpressing an Hsp70.  

 

 [MOT3+] reporter [SWI+] reporter 

Phenotype Ssa OE Ssb OE Ssa OE Ssb OE 

Invasive growth Increased Decreased Decreased Increased 

Flocculation Decreased Increased Decreased Increased 

Biofilm formation Increased Decreased  N/A N/A 

Alt. morphology Increased Decreased N/A N/A 

Growth on gal, raf N/A N/A Decreased Increased 
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Figure 5.1. Invasive growth of yeast in response to NAC subunit deletion and prion curing. 
(A) [PSI+][RNQ+] strains were patched onto synthetic media plates + 0.5%proline, grown for 5 

days at 30ºC, and then washed vigorously with flowing water. The btt1Δ and egd1Δbtt1Δ strains 

exhibited less adherence than the WT strain (middle patch) or the whole-NAC deletion (not 

shown). (B)  Curing the WT strain of prions via growth on 5µM GdHCl reduced the invasive 

growth phenotype, suggesting an epigenetic component of adhesion in these strains.  
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5.2 Further investigation of Sup35-Rnq1 interactions 

5.2.1 Are there regions of Rnq1 that are always required for [PSI+] formation? 

In Chapter 4, the binding interaction between Sup35 and Rnq1 was demonstrated to be 

important for the formation of [PSI+]. Two residues in particular, Q298 of Rnq1 and N5 of Sup35, 

were identified as important sites of interaction. It is known that interactions with Rnq1 aggregates 

are crucial to the misfolding of Sup35 (114,117,337). Further, the phenotype of the resulting 

[PSI+] variant depends upon the misfolded conformation of Sup35 (109,350). Thus, it seems 

plausible that certain polymorphisms of Rnq1 and/or Sup35 could bias the interaction so that only 

certain prion variants result.  

Preliminary evidence supports this concept, as [RNQ+] isolated from wild yeast strains 

predominantly induce strong strains of [PSI+] (134). The canonical [RNQ+] variants in lab strains 

– low, medium, single-dot high, multi-dot high, and very high – induce a spectrum of [PSI+] 

variants. When Rnq1 aggregates from wild strains were cytoduced into lab strains to be propagated 

in an isogenic background, the high frequency of strong [PSI+] induction persisted (134), 

suggesting that as-yet undescribed conformational differences are responsible for the bias towards 

stronger strains of [PSI+].   

We know that [RNQ+] variants are dependent upon different amyloidogenic regions within 

the protein, and that perturbing these regions can affect Sup35 by increasing or decreasing the 

frequency of [PSI+] formation (346). However, the impact of these Rnq1 amyloidogenic regions 

on [PSI+] strains is unknown. It may be that interactions with a subset of these Rnq1 regions make 

[PSI+] more or less likely to form a stronger prion strain. As discussed in Chapter 1, the strength 

of the [PSI+] phenotype is at least partly dependent upon the size of the amyloid core: a smaller 

core is associated with a stronger phenotype, and vice versa (110). It is possible that  interactions 

of Sup35 with adjacent amyloid-forming regions of Rnq1 are sufficient to induce small-core 
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misfolding, while interactions with non-adjacent disordered regions creates a larger core and a 

weaker [PSI+] phenotype. Further, these putative interactions may be Rnq1 region-specific, or the 

proximity of the regions may be more important than the regions themselves.   

To test this, I could utilize a set of previously generated Rnq1 alanine mutants (346). These 

mutant constructs replace each of 11 putative amyloidogenic regions of Rnq1 with a polyalanine 

tract. However, in contrast to previous work, I would mutate multiple Rnq1 regions at a time, 

verify that the resultant proteins could propagate [RNQ+], and then assess the [PSI+] prion variants 

that were induced by these proteins. Specifically, I would create Rnq1 constructs without adjacent 

amyloidogenic regions, as well as constructs with pairs or triplets of adjacent amyloidogenic 

regions. I hypothesize that the Rnq1 without adjacent disordered domains will form weaker [PSI+] 

variants, because the intermolecular contacts between Rnq1 and Sup35 would be spread over a 

longer distance in the Sup35 molecule.  

An important caveat to this hypothesis is the lack of information about Rnq1 tertiary 

structure. As Rnq1 adopts a prion fold, non-adjacent amyloidogenic regions may be brought into 

closer proximity, thus generating a strong [PSI+] strain from far-spaced regions of Rnq1. To 

address this, the Rnq1-Sup35 complex could be crosslinked, trypsinated, and analyzed via mass 

spectrometry to identify the specific interacting regions.  

It is possible that the Rnq1 amyloidogenic regions have amino acid-specific effects on 

[PSI+] formation. Certain residues may be more important in converting Sup35 into weak or strong 

strains. To investigate this, I would examine the A1 (a.a. 45-53), A3 (a.a. 92-102), and A11 (a.a. 

386-394) regions of Rnq1, which exhibit hindered propagation of all five characterized [RNQ+] 

variants, though to differing extents (346). Within these regions, I would systematically mutate 

each residue to alanine and assess the propagation of [RNQ+] and the formation of [PSI+]. One 
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interesting potential result would be the identification of an alanine mutant that does not detectably 

impact the strain of [RNQ+], but that changes the strength of the resulting [PSI+] strains without 

necessarily impacting the levels of [PSI+] induction. This would indicate that conformational 

changes in a small region of an inducing protein are sufficient to modulate the phenotype of a 

heterologous aggregate.  

5.2.2 Could Rnq1 also be an inhibitor of [PSI+] formation?  

 Chapter 4 investigated two paradigms for Sup35-Rnq1 interaction, the cross-seeding model 

and the inhibitor titration model.  The cross-seeding model was supported, but this does not 

preclude the existence of an inhibitor molecule that prevents Sup35 aggregation until [RNQ+] has 

formed. As discussed, it is possible that the same molecule could both inhibit Sup35 aggregation 

when alone, but also facilitate Sup35-Rnq1 binding due to affinity for both proteins.  Alternatively, 

soluble Rnq1 may itself be an inhibitor molecule, binding to Sup35 and blocking [PSI+] formation 

in [rnq-] cells.  

 Preliminary data demonstrates that Rnq1 from [rnq-] cell lysates binds to Sup35 stably in 

vitro (not shown). The in vivo consequences of this binding have yet to be determined. If the Rnq1 

monomer is an inhibitor of [PSI+] formation, then [PSI+] would theoretically form at a higher 

frequency in rnq1Δ cells relative to [rnq-] RNQ1 cells. However, rnq1Δ cells cannot form [RNQ+] 

and thus cannot template Sup35 misfolding; therefore, the spontaneous formation of [PSI+] would 

be extremely low. Further, [rnq-] strains can spontaneously convert to [RNQ+], which would 

increase templated [PSI+] induction and confound the experimental results.  

 One way to overcome this challenge would be to assess [PSI+] formation in the context of 

a Rnq1 mutant that can bind to Sup35 but not propagate the [RNQ+] prion. Though no such mutant 

has yet been verified, previous work done by our lab (347) has identified rnq1 mutants that 
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destabilize the [RNQ+] prion. Further, some His-tagged Rnq1 constructs may not propagate 

[RNQ+], yet they can still bind to Sup35 in vitro (238). Consequently, it is possible that a non-

prion-forming Rnq1 mutant could be generated by combining destabilizing mutants and tags. For 

the purpose of experimental description, this theoretical allele shall be called rnq1-NP for “non-

prion.” 

 To assess [PSI+] formation, Sup35 could be overexpressed in both rnq1Δ and rnq1-NP 

genetic backgrounds in conjunction with another [PIN+] element, such as [URE3]. However, the 

binding of any [PIN+] element to Sup35 may be inhibitory, so it would be less confounding to 

assess the spontaneous (untemplated) formation of [PSI+], however rare. The ade1-14 colorimetric 

assay that is commonly used in [PSI+] studies would be too low-throughput to efficiently identify 

a statistically significant change in spontaneous [PSI+] formation frequency. Thus, any experiment 

to assess Sup35 aggregation should be able to rapidly detect interaction between homologous 

proteins.  

Coupling Forsters resonance energy transfer (FRET) with fluorescence activated cell 

sorting (FACS) could address these points. Such a scheme has previously been utilized to study 

protein-protein interactions (354). FRET involves tagging different proteins with different 

fluorophores and then exciting the “donor” with a laser. The “receptor” signal is generated when 

two tagged proteins are in close proximity and energy is transferred from the donor to the receptor 

fluorophore. Though often applied to heterologous proteins, FRET has been utilized to study the 

intermolecular aggregation of homologous amyloid-forming proteins (355). For yeast prion 

experiments, two tagged copies of Sup35 could be expressed in a rnq1Δ or a rnq1-NP  strain: 

Sup35-CFP (donor) and Sup35-YFP (receptor). Expressing two copies of Sup35 is advantageous, 

as Sup35 overexpression enhances the spontaneous formation of [PSI+]. After growing large 
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cultures of cells, yeast could be sorted via FACS. If Sup35 has aggregated to form [PSI+], 

excitation of the cells with a 405nm laser should result in a YFP signal as energy is transferred 

from the CFP donor within Sup35 aggregates. The [psi-] cells would emit only CFP signal, as 

Sup35 would remain soluble. Retaining the putative [PSI+] cells for validation of the phenotype 

would be important to control for false positives. If the Rnq1 monomer is a bona fide inhibitor of 

[PSI+] formation, then the rnq1Δ strain should exhibit higher levels of spontaneous [PSI+] 

formation than the RNQ1 strain.  

 The conclusions from this research would inform studies related to the prevention of 

disease-related protein aggregation in humans. A phenotypically-silent protein converting from an 

aggregation inhibitor to an aggregation promoter is a concept that has yet to be explored in 

mammalian systems. Demonstrating that aggregation can be prevented by modifying this dual 

inhibitor/promoter could have significant effects on pathologies where cross-seeding is thought to 

be a contributing factor.  

5.3 Develop yeast as a model for human pathologies 

 The translatable relevance of protein misfolding has been discussed throughout this work. 

Human proteinopathies involve heterologous aggregating proteins, and animal models are not 

sufficient for the study of complex interactions. S. cerevisiae is a valuable system by which to 

elucidate basic mechanisms of such aggregation. However, more can be done to develop yeast into 

a powerful model for the further investigation of human disease. This could be achieved by 

recapitulating a mock human chaperone system in yeast or by utilizing yeast biochemical assays 

to assess the interaction and cross-seeding between human proteins.  

5.3.1 Develop a human chaperone model in yeast 
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 Yeast have been utilized to study disease-related human proteins such as the glutamine-

expanded Huntingtin protein (polyQ). However, the toxicity of polyQ in yeast is dependent upon 

the presence of [RNQ+] (356). One potential reason for this [RNQ+]-dependent effect is the 

differential interaction of yeast chaperones with different amyloids. For instance, deletion of 

Hsp104 renders polyQ non-toxic in yeast, and deletions or loss-of-function mutants of Ssa1, Ssa2, 

Sis1, and Ydj1 all have varying affects upon the aggregation and toxicity of polyQ (356). Studying 

this type of aggregation in a yeast system makes it difficult to predict which human chaperones 

may play a role in promoting or ameliorating disease-related toxicity. Thus, I propose to model a 

human system by systematically replacing yeast chaperones with their nearest human homologs. 

As humans do not contain a hexameric disaggregase akin to Hsp104, this model strain should be 

hsp104Δ. It is already known that the essential yeast chaperone Sis1 can be replaced by human 

Hdj1 (357), and other human Hsp70s, J-proteins, and nucleotide exchange factors can be tested 

for their ability to support yeast viability. To validate this strain’s utility as a model for human 

protein aggregation, its sensitivity to polyQ aggregation should be tested. If the depletion and 

replacement of yeast chaperones does provide a better mimic to a human system, then the 

aggregation of expanded polyQ-103 should be toxic in [rnq-] cells.  

5.3.2 Investigate heterologous cross-seeding of human proteins 

 As demonstrated in chapter 4, cross-seeding is an important mechanism by which 

aggregation is templated between heterologous proteins. Studies of cross-seeding of mammalian 

proteins have identified potential interactors, but not specific binding sites. Again, there is an 

opportunity for the development of a yeast system for assessing human disease-related proteins. 

Previous yeast models of human disease have focused on single proteins, such as TDP-43 (358), 

polyA (359), and α-synuclein (360). However, emerging evidence shows that heterologous 
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amyloidogenic proteins may interact en route to disease onset (58,60). By examining these cross-

seeded proteins in yeast, it may be possible to identify and block interacting sites to reduce the 

disease-associated aggregation.  

 The relationship between type-2 diabetes (T2D) and various neurological diseases could 

be probed with the yeast system. Islet amyloid polypeptide (IAPP) has been shown to promote the 

aggregation of the Aβ peptide in vitro (64), may interact with α-synuclein (61), and can seed Tau 

(58). Further, T2D is a risk factor for Alzheimer’s and Parkinson’s Diseases (62,63), in a way that 

may be analogous to [RNQ+] serving as a “risk factor” for [PSI+] formation. By identifying how 

and where IAPP cross-seeds other proteins, it may be possible to develop techniques to prevent 

the spread of amyloid to the nervous system.  

 Performing this research in a yeast system would involve utilizing well-described methods 

of genetics and protein biochemistry. First, each candidate amyloid should be shown to be 

propagable in yeast. Then, the ability of one protein to cross-seed another would be verified by 

evaluating de novo aggregate formation with and without the presence of other amyloids. Finally, 

mutagenesis could identify residues of importance for the interaction, and protein biochemistry 

could evaluate the degree to which disrupting these residues destabilizes the resulting amyloid. If 

combined with the human chaperone model as suggested above, the interactions between 

heterologous amyloids and molecular chaperones could also be investigated. Ultimately, 

performing these experiments in yeast allows for rapid and tractable in vivo results while avoiding 

the confounding effects of other (potentially unknown) mammalian chaperones and protein 

interactors.  

Previously, studies with yeast models have led to the discovery of novel Parkinson’s 

disease-related phenotypes (361), and other work has suggested the utility of yeast in screening 
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for drug compounds to treat neurodegenerative disorders (362). A “humanized” yeast model would 

lend even more translational power to this system.   

5.4 Conclusion 

 This work has examined multiple facets of protein misfolding and aggregation, including 

factors that contribute to templated prion formation, chaperone interactions with prions, and 

chaperone balance itself. Together, these chapters demonstrate that the biology of protein 

aggregation is complex. Each prion protein is acted upon – directly or indirectly – by a network of 

molecular chaperones (Chapter 2), cofactors (Chapter 3), and heterologous amyloids (Chapter 4) 

in a system that strives to maintain protein homeostasis. Perturbing the balance of that system can 

have unpredictable and sometimes non-intuitive consequences for cells. For example, the deletion 

of cotranslational chaperones can improve cell viability in the face of prion-associated toxicity, a 

result that would not make sense without considering the broad web of proteins involved in 

homeostasis. Further research in the field of protein aggregation, in yeast or in mammalian 

systems, should continue to consider the implications of system-wide changes on experimental 

results.  
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