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 12 
Summary paragraph  13  14 The cognitive buffer hypothesis posits that environmental variability can be a major 15 driver of the evolution of cognition because an enhanced ability to produce flexible 16 behavioral responses facilitates coping with the unexpected. Although comparative 17 evidence supports different aspects of this hypothesis, a direct connection between 18 cognition and the ability to survive a variable and unpredictable environment has 19 yet to be demonstrated. Here, we use complementary demographic and 20 evolutionary analyses to show that among birds, the mechanistic premise of this 21 hypothesis is well supported but the implied direction of causality is not. 22 Specifically, we show that although population dynamics are more stable and less 23 affected by environmental variation in birds with larger relative brain sizes, the 24 evolution of larger brains often predated and facilitated the colonization of variable 25 habitats rather than the other way around. Our findings highlight the importance of 26 investigating the timeline of evolutionary events when interpreting patterns of 27 phylogenetic correlation.  28 
 29 
Introduction 30 
 31 Enhanced encephalization, that is, a greater than expected brain mass for a given 32 body size1, has evolved independently in numerous groups of animals despite its 33 stringent energetic demands and potential developmental costs2–4.  The cognitive 34 buffer hypothesis posits that the repeated evolution of relatively large brains was 35 driven primarily by the adaptive benefits of being able to mount quick, flexible 36 behavioral responses to frequent or unexpected environmental change5,6. In line 37 with this view, comparative studies have shown that more highly encephalized birds 38 have greater potential for behavioral innovation7,8, lower mortality rates9,10, and a 39 greater capacity to thrive in human-altered environments11,12. In addition, highly 40 encephalized birds have been shown to preferentially occupy environments with 41 more variable climates13–15, where biotic and abiotic conditions change considerably 42 within and across years.  43  44 Although these findings are consistent with the cognitive buffer hypothesis, 45 questions remain regarding its validity as a general explanation for the evolution of 46 



cognition. In particular, it is currently unclear whether the observed link between 47 survival and encephalization is specifically driven by an enhanced ability to cope 48 with environmental change or driven instead by other adaptive benefits. In addition, 49 a direction of causality in the relationship between encephalization and 50 environmental variation has not yet been established.  Specifically, the cognitive 51 buffer hypothesis predicts that relatively large brains evolved in situ as a result of 52 selection for coping with environmental variation5. However, large brains could 53 have also evolved elsewhere and may have subsequently facilitated the colonization 54 of variable habitats, as suggested by recent reports that anthropogenic 55 introductions of highly encephalized vertebrates to novel habitats tend to have 56 higher success rates16–18. Here, we leverage the power of modern evolutionary 57 analyses, broad scale comparative data sets, and citizen science to clarify these 58 fundamental issues regarding the role of ecological variation in the evolution of 59 cognition. We begin by applying current state-of-the-art demographic analyses to 60 test directly the mechanistic assumption that enhanced encephalization improves 61 survival in variable habitats. We then apply models of correlated trait evolution to 62 formally assess the direction of causality in the observed correlation between the 63 occupancy of variable habitats and high encephalization in birds.  64  65 
Results 66 
 67 
Estimating cognitive ability 68 In line with prior large scale comparative studies on the evolution of cognition, we 69 use relative brain size as a proxy for cognitive ability1. This metric acknowledges 70 that absolute brain size increases naturally in larger species, and estimates instead a 71 species' cognitive ability as the extent to which its brain is larger (or smaller) than 72 expected from its body size. The relative brain sizes used in our analyses were 73 computed as residuals from a phylogenetic generalized least squares regression of 74 ln brain on ln body size (slope = 0.59 ± 0.00; intercept = -2.48 ± 0.05; λ = 0.87 ± 75 0.01), including the 2,062 bird species for which brain size is currently available 76 (see methods and supplemental data 2). While such proxy for cognition is clearly 77 indirect, we note that there is a growing body of experimental and correlative 78 evidence linking relative brain size with cognitive ability19,20, and more specifically 79 with behavioral innovation21,22.  80  81 
Does greater cognition improve survival in more variable environments? 82 One way to directly evaluate whether enhanced cognition increases survival in more 83 variable environments is to explicitly test whether the interaction between 84 encephalization and environmental variability has a significant effect on population 85 dynamics. If behavioral flexibility facilitates coping with unexpected ecological 86 challenges, then we predict that population dynamics in highly encephalized species 87 should be buffered from environmental extremes and should therefore be less 88 affected by increased environmental variability as compared to those of small-89 brained species.  90  91 



We tested this prediction in a sample of North American land birds for which brain 92 size is known and time series data are sufficient to properly estimate year-to-year 93 variation in breeding population numbers23 (N = 126 species, Supplementary Data 94 1). Demographic data for this analysis were obtained from the North American 95 Breeding Bird Survey24, a yearly standardized assessment of breeding bird 96 abundances conducted since 1966 at thousands of locations across the continent. 97 Following the current community standards25, we used hierarchical Bayesian 98 models to estimate regional population dynamics for each species in each North 99 American bird conservation region, hereafter BCR (Fig. 1a). BCRs are ecologically 100 distinct regions26 and are widely regarded as suitable biogeographic units for the 101 quantification of population dynamics23. The hierarchical models implemented here 102 estimate yearly fluctuations in abundance while accounting for long-term 103 population trends, route-to-route variation in abundance, and imperfect detection 104 by observers (Fig. 1; see methods). By explicitly separating the sources of error in 105 reported bird counts, these models allow us to estimate the extent to which year-to-106 year fluctuations in true population size are a product of ecologically relevant 107 processes such as the mortality induced by environmental extremes (also known as 108 “process error” or σγ; Fig. 1). Species-specific abundance-weighted averages of the 109 process error, γ (see methods) were subsequently used to test the hypothesis that 110 population stability is less affected by environmental variability in larger-brained 111 species. To better align our metrics with the narrative of this hypothesis, the 112 dependent variable in these downstream analyses was the negative of γ, hereafter 113 ‘population stability’, such that higher stability scores reflect cases with less 114 pronounced year-to-year fluctuation in population size.  115  116 We used phylogenetic generalized least squares (PGLS) regression models 117 estimated across a sample of 1,000 tree topologies from Jetz et al.27 to investigate 118 the potential effects of environmental variability and encephalization on population 119 stability. Environmental predictors for these models included the mean, within-year 120 variance, and predictability of temperature, precipitation, and net primary 121 productivity (see methods). Predictability was estimated through Colwell’s P, an 122 index that captures variation among years in the onset, intensity, and duration of 123 periodic phenomena28. Given the strong spatial covariance that is typically observed 124 among environmental parameters29, all environmental variables were first 125 extracted globally at a spatial resolution of 0.5 by 0.5 degrees and subsequently 126 reduced to composite variables at the same resolution using principal components 127 analysis, PCA (Table 1, Supplementary Fig. 1a and b, and methods). Because 128 environmental correlations are often region specific30, the PCA for this regional 129 analysis included only map cells located within our North American study region. 130 The first principal component recovered from this analysis showed a clear 131 latitudinal trend, where lower scores occurred primarily in northern, more seasonal 132 climates with colder and less predictable temperatures and high scores occurred in 133 Southwestern sites with hotter temperatures and more variable, unpredictable 134 precipitation patterns (Supplementary Fig. 1a). The second component of the North 135 American environmental PCA captured differences in mean precipitation as well as 136 in mean, variance, and predictability of net primary productivity. In this case, higher 137 



scores indicated wetter environments with higher, but more seasonal and 138 unpredictable productivity including those found along the pacific coast of the 139 northern US and Canada, boreal forests, and much of the eastern US. Low scores for 140 PC2 were found in southwestern deserts and in the far North (Supplementary Fig. 141 1b).   142  143 When characterizing the typical habitats of each species in our sample, we 144 considered both spatial distribution and geographic variation in abundance. We first 145 calculated mean environmental components for every North American BCR 146 ( 1  and 2 ). Then, we estimated species-specific habitat values, hereafter 147 H1 and H2, by computing the weighted averages of  1  and 2 , where 148 weights were proportional to the relative abundance of the species in each BCR. 149 Correlation between H1 and H2 was high (r = -0.56; Supplementary Fig. 1c), so we 150 excluded the latter from our list of predictors to prevent possible multicollinearity 151 and unnecessary variance inflation. The decision to keep H1 rather than H2 was 152 based on the fact that H1 most directly captures the measures of variability that are 153 relevant for testing the mechanism behind the cognitive buffer hypothesis. We note 154 that both high and low values of H1 reflect increasingly variable and unpredictable 155 conditions. Specifically, low H1 scores indicate variable temperatures, whereas high 156 scores indicate variable precipitation. Thus, to explore the general effects of 157 environmental variability on population dynamics, we included H1 as a quadratic 158 term (H12) in our models of population stability. Because H1 is centered at zero, this 159 quadratic term captures the potential effects of both variable temperatures and 160 variable precipitation, and is therefore labeled ‘environmental variability’ hereafter.  161  162 We also took into account the possibility that population stability is influenced by a 163 variety of life history and ecological traits. First, we accounted for potential 164 relationships between relative population variability and population size31 by 165 including log-transformed mean abundance as a covariate in our models. 166 Additionally, we considered that environmental variability could affect population 167 dynamics through interactions with traits other than brain size. For example, we 168 considered that lifespan could be a predictor of populations stability because longer 169 lived species tend to exhibit higher adult survival32, and we included an interaction 170 with environmental variability (H12) because highly unpredictable conditions may 171 prevent individuals from realizing their maximum lifespan potential. Similarly, we 172 considered the fact that species with higher annual reproductive output may 173 experience more intense year-to-year population oscillations33 and that this effect 174 could potentially be amplified in more variable habitats. Additionally, we explored 175 the possibility that variable conditions have weaker effects on the population 176 dynamics of large-bodied species because those species tend to be more resilient to 177 periods of resource scarcity34. The same may be true for cooperative breeders –178 which appear to be able to buffer the effects of harsh years through helping at the 179 nest35, for species with generalist habits –which are typically able to exploit a wider 180 variety of environmental conditions36, and for migrants –which typically avoid the 181 harshest conditions of their breeding grounds by temporarily leaving the area29. 182 Further details on how these traits were defined and quantified can be found in the 183 



methods. All of our data on population stability, brain size, ecology, and life history 184 are available in supplemental data 1. 185  186 Our demographic analysis revealed that a number of ecological traits are 187 significantly associated with population variability (adjusted R2 for PGLS model = 188 0.22; Table 2). We found that while populations of resident species are less stable in 189 increasingly variable environments, migratory species maintain relatively stable 190 populations across all types of environments ( ̅ << 0.001; Fig. 2a). Similarly, long-191 lived species were found to exhibit more stable dynamics than short-lived ones only 192 in the most mild, predictable environments ( ̅ << 0.001; Fig. 2b), indicating that the 193 potential benefits of long life spans may diminish when conditions are uncertain. 194 Consistent with the idea that cognitive ability improves survival in variable 195 environments, we found a significant interaction between encephalization and H12. 196 Specifically, while species with high encephalization were found to maintain 197 relatively stable populations in both stable and variable environments, those with 198 low encephalization showed a significant decline in population stability as 199 environmental variability increased ( ̅ << 0.001; Fig. 2c). Our findings are 200 qualitatively similar when phylogenetic relationships are estimated from a 201 consensus tree rather than across a sample of tree topologies (Supplementary Table 202 1). 203  204 Although these initial results support the basic mechanistic premise of the cognitive 205 buffer hypothesis, the hierarchical models described above do not account for the 206 fact that variation in population size can be driven not only by exogenous 207 (environmental) factors, but also by internal, or density dependent factors. In the 208 context of hierarchical modeling, density dependent processes can be investigated 209 by modeling an explicit demographic process that assumes that true population 210 sizes oscillate around a demographic equilibrium value that does not change over 211 time37 (e.g., the Gompertz function38). This assumption is nevertheless clearly 212 violated whenever populations undergo long-term changes in mean abundance, as 213 is the case in many North American land birds39 and nearly 80% of the species in 214 our dataset. Because models with density dependence are known to perform poorly 215 in such species40, we explored the effects of density dependence exclusively on the 216 subset of species that did not show any evidence of long-term changes in mean 217 abundance in our initial set of demographic analyses. Given the relatively small 218 number of species in this category (n = 27), these confirmatory analyses could not 219 meaningfully explore the entire set of initial predictors and were therefore focused 220 on evaluating only the potential effects of relative brain size, H12, and their 221 interaction. These more narrowly defined analyses indicate that accounting for 222 density dependence does not change our main finding. That is, the interaction 223 between relative brain size and environmental variability is significant in PGLS 224 models based on the consensus tree (relative brain size*H12: = 0.63,  = 0.04; 225 relative brain size:  = -0.05,  = 0.84; H12:  = -0.35,  = 0.01), and marginally 226 significant across the entire sample of 1,000 tree topologies (relative brain size*H12: 227 ̅ = 0.61, ̅  = 0.06, f = 0.41; relative brain size: ̅  = -0.04, ̅ = 0.88, f = 0; H12: ̅  = -228 0.32, ̅  = 0.02, f = 1.00). The marginal significance observed in the latter case 229 



highlights the greater effect of phylogenetic uncertainty and the generally low 230 statistical power of comparative tests that are based only on a small number of 231 species. 232  233 
Did larger brains evolve in more variable environments? 234 Our demographic analyses lend support to the underlying mechanistic premise of 235 the cognitive buffer hypothesis, which is that higher encephalization can improve 236 survival, specifically when environmental conditions are increasingly unstable. 237 However, in order to evaluate the extent to which this mechanism provides a 238 general explanation for the evolution of cognition in birds, it is critical to explore the 239 direction of causality in the correlation between an enhanced potential for cognition 240 and the occupancy of variable environments. A clear understanding of the sequence 241 of evolutionary events is particularly necessary in this context because the adaptive 242 benefits invoked by the cognitive buffer hypothesis may just as well promote the 243 evolution of cognition in variable habitats, or facilitate instead the secondary 244 colonization of variable habitats by already highly encephalized species41. 245  246 We evaluated the support for these two non-mutually exclusive evolutionary 247 scenarios by using reversible-jump MCMC to estimate models of correlated trait 248 evolution42 fitted to an exhaustive global sample of non-migratory birds for which 249 brain size is known (N = 1,288 species; Supplemental Data 2). These models allow 250 inference into potential evolutionary timelines by assessing the likelihood that rates 251 of evolutionary transitions between states of a binary trait (e.g. moderate to large 252 encephalization) are dependent on the state of a second binary trait (e.g. stable vs. 253 variable environmental habitats). In the context of the cognitive buffer hypothesis, 254 these models allow us to test whether the transition from small to large brains is 255 indeed more likely in variable than in stable environments (i.e., whether variable 256 environments tend to predate large brains). Similarly, these models allow us to 257 evaluate the likelihood of alternative, yet non-mutually exclusive timelines such as 258 the ‘colonization advantage’ scenario, which predicts that the transition from stable 259 to variable environments should be more likely in large- than in small-brained 260 species.  261  262 As in our demographic analysis, environmental variables were first extracted for the 263 relevant study region (here, the entire globe) and subsequently reduced to 264 composite variables through PCA (Supplementary Table 2). The first component of 265 this global PCA, hereafter ‘temperature variability’, captured a gradient of increasing 266 exposure to colder, more seasonally variable and less predictable temperatures 267 (Supplementary Fig. 1d). The second component, hereafter ‘xeric variability’, 268 captured a gradient of increasing exposure to drier and less productive 269 environments with more unpredictable precipitation (Supplementary Fig. 1e). 270 Species-specific habitats were characterized in this case by computing the mean 271 values of local temperature and xeric variability across entire breeding distributions 272 (see Methods).  273  274 



Because transition rate analyses require discrete trait states, we explored a 275 reasonable range of thresholds for classifying species as having either small or large 276 encephalization, and as being exposed to highly variable or fairly stable 277 environments (30th, 50th, 75th and 90th percentile, see methods). Encephalization 278 categorizations were based on whether a species’ relative brain size was above or 279 below the predefined threshold. Similarly, exposure to environmental variability 280 was considered high for a given species if either or both environmental principal 281 component scores belonged in a percentile above the predefined threshold. 282 Considering information from both principal components when characterizing 283 exposure to environmental variability allowed us to maintain consistency with our 284 demographic analyses (see Table 1), and to explore the general effects of 285 environmental variability rather than the specific effects of temperature or 286 precipitation variation.  287  288 Our models of correlated trait evolution do not support the main prediction of the 289 cognitive buffer hypothesis under any combination of thresholds. Specifically, the 290 evolution of larger relative brain sizes was generally found to be equally likely for 291 species occurring in stable environments and in harsher, more variable ones (i.e., 292 there was no support for a difference in transition rate from moderate to large 293 encephalization between environment types; Bayes Factor (BF) < 3; Fig. 3d and f; 294 Supplementary Table 3). Furthermore, under certain classification criteria, we even 295 find evidence that advanced encephalization could be more likely to evolve in stable 296 than in highly variable habitats (e.g., highly variable environments: >50th percentile; 297 large encephalization: >50th percentile; BF = 3.15; Fig. 3a and c; Supplementary 298 Table 3). Collectively, these results indicate that while environmental variability can 299 theoretically select for enhanced cognition, it is in fact unlikely to have driven many 300 of the major transitions towards large brains in birds.  301  302 In stark contrast, we found that the evidence of an improved colonization ability of 303 variable habitats in highly encephalized avian lineages is both general and strong 304 (Fig. 3 b, c, e, and f; Supplementary Table 3). Such colonization advantage appears to 305 be specifically linked to an improved ability to deal with environmental variability 306 because we did not find support for a difference in transition rate from variable to 307 stable habitats between species with small and large encephalization values 308 (Supplementary Table 3). Additionally, our results indicate that even moderate 309 enhancements in cognitive ability and/or moderate increases in environmental 310 variability can help accrue such advantages: when thresholds for classification are 311 too conservative (e.g., variable environments: >90th percentile; large 312 encephalization: >75th percentile), differences in transition rates from stable to 313 variable environments are no longer detectable between very-large and 314 moderately-large brained species. 315  316 
Discussion 317 
 318 Our demographic analysis broadly supports the notion that enhanced cognition can 319 lead to more stable population dynamics. Furthermore, the significant interaction 320 



between H12 and encephalization is consistent with the idea that these benefits can 321 be generally accrued under different types of environmental variability and 322 unpredictability (see Table 1). We therefore conclude that there is general support 323 for the proposed mechanism underlying the cognitive buffer hypothesis, which is 324 that bigger than expected brains improve survival when environmental change is 325 frequent and unexpected.  326  327 Despite this finding, our transition rate analyses strongly indicate that the general 328 timeline of evolutionary events suggested by the cognitive buffer hypothesis is not 329 broadly supported across the avian phylogeny. Specifically, our results 330 unambiguously indicate that evolutionary transitions towards occupancy of more 331 variable habitats did not generally precede the evolution of enhanced 332 encephalization in birds. Ancestral state reconstructions facilitate the visualization 333 of this result (Fig. 4): several of the most highly encephalized clades in the bird 334 phylogeny (e.g., parrots, bowerbirds, and hornbills) evolved big brains without any 335 apparent exposure to particularly harsh or variable habitats throughout their 336 evolutionary history (Fig. 4 b, c, and e). Furthermore, even in clades that currently 337 occupy variable habitats (e.g., corvids or woodpeckers), it is unclear that exposure 338 to relatively high ecological variability preceded the evolution of larger brains (Fig. 339 4 d and f). Why then do we see today a correlation between variable habitats and 340 encephalization? Our analyses suggest that this correlation results from either the 341 preferential colonization of variable and unpredictable habitats by highly 342 encephalized species, or the preferential persistence of these highly encephalized 343 species in habitats that underwent major environmental change and became more 344 variable. One possible reason for this pattern is that highly encephalized birds have 345 lower risk of extirpation during the early stages of colonization (i.e., when 346 abundances are low43), because of their enhanced ability to withstand 347 environmental change. Similar links between cognition and range expansion have 348 been made in studies documenting the success of highly encephalized species in 349 colonizing novel habitats16,17,41 and are the basis of our current understanding of the 350 process of human expansion out of Africa8,44. 351  352 Overall, our results suggest that even though environmental variability can be a 353 viable agent of selection in the evolution of cognition (as also concluded by 14,45), 354 this particular mechanism is unlikely to have driven many of the most striking cases 355 of encephalization among birds. It is nevertheless possible that other types of 356 ecological variability not included in this study can explain such transitions. For 357 example, although many parrots and hornbills tend to occupy habitats with fairly 358 stable climates, these species must typically cope with high levels of variation in the 359 location and timing of fruiting trees (a similar situation is likely to occur in other 360 species with complex feeding ecologies45). While we acknowledge that a broad 361 interpretation of “variability” can increase the scope and generality of the cognitive 362 buffer hypothesis5, we note that overgeneralization may lead to the inadvertent 363 mischaracterization of very different types of selection (e.g., problem solving, long-364 term memory, or spatial awareness), as different but equivalent forms of a single 365 process. A perhaps more fruitful approach would therefore be to explore the 366 



possibility that there is no single primary driver in the evolution of relatively large 367 brains, and that this process is instead driven by the combined effects of both the 368 constraints2–4 and the various potential adaptive benefits of increased processing 369 capacity, including the ability to respond more quickly to novel challenges46,47, 370 navigate more complex social interactions48,49, process more intricate sensory 371 information50, and cope with greater spatial and/or temporal variability15,22. As data 372 on these different processes become more readily available, we are confident that 373 future comparative studies will be able to disentangle the relative extent to which 374 these different forces have shaped the evolution of cognition at different taxonomic 375 scales. In the mean time, we hope that the realization that variation brain size was 376 more likely to shape the distribution of bird species across the globe rather than the 377 other way around can help inform more immediate research agendas.   378 



Methods 379 
 380 
Quantification of relative brain size 381 Our estimates of relative brain size were based on body size data from Myhrvold et 382 al. 201551 and brain size data either from published accounts (N = 1,949 species; 383 cited in Supplementary Data 2) or measured directly by ANI (N = 113 species). Our 384 total brain data set includes several species that are not used in either our 385 demographic or correlated trait evolution analyses. Specifically, pelagic species 386 (orders Sphenisciformes, Suliformes, Procellariiformes, and Phaethontiformes; 387 families Pelecanidae, Laridae, Stercorariidae, and Alcidae) were initially included 388 when computing encephalization values but were subsequently excluded from 389 downstream analyses because land surface temperature and precipitation values 390 are unlikely to be indicative of the actual conditions experienced by species that 391 spend most of their time at sea. All brain size measurements collected by ANI were 392 obtained following the procedures outlined in Iwaniuk and Nelson (2002, 393 2003)3,52.  Briefly, the foraminae of the cranial nerves are sealed with masking tape 394 and lead shot is poured into the foramen magnum.  To prevent the formation of 395 lacunae, the skull is lightly tapped throughout this procedure.  Once the shot has 396 risen to the foramen magnum, the contents are decanted into modified syringes or 397 graduated cylinders to determine volume.  This method is highly repeatable and 398 provides an accurate estimate of brain size in birds52,53. Brain sizes that were 399 originally reported as volumes in the literature were converted to mass by 400 multiplying mL by the average density of fresh brain tissue (1.036g/mL)52.  401  402 To account for phylogenetic uncertainty, the log-log regression of brain size on body 403 size was independently run on 1,000 randomly selected tree topologies with the 404 Hackett backbone in Jetz et al.27 (www.birdtree.org; downloaded July 14th, 2016). 405 The encephalization values used in all of our downstream analyses were computed 406 as the median residuals for each species across these 1,000 models. 407  408 
Characterization of environmental variability 409 The environmental variables we consider here include the mean, within-year 410 variance, and predictability of temperature, precipitation, and net primary 411 productivity.  Monthly raster maps of temperature and precipitation values were 412 obtained for years 1900 to 2005 from ecoClimate.org (provided at 1° resolution, 413 resampled to 0.5° resolution; downloaded July 25th, 2016)54. Monthly net primary 414 productivity data for years 2000 to 2016 were obtained from the MODIS dataset 415 downloaded from NASA Earth Observations (provided at 0.5° resolution; 416 http://neo.sci.gsfc.nasa.gov, accessed March 18, 2016). Predictability was measured 417 as Colwell’s P28, an information-theory-based index that captures variation in the 418 onset, intensity, and duration of periodic phenomena and ranges from 0 (completely 419 unpredictable) to 1 (completely predictable).  420  421 Because environmental variables tend to be strongly correlated29, we reduced the 422 original set of environmental predictors (transformed when required55, centered, 423 and scaled) through principal component analysis, PCA. Separate analyses were 424 



conducted to reduce the dimensionality of environmental data in the demographic 425 and correlated trait evolution sections to account for the fact that environmental 426 correlations are often region-specific30. In the demographic analyses, the 427 environmental PCA was based only on North American data, including all cell values 428 north of the US-Mexico border (i.e., only the geographic region where breeding bird 429 survey data is available). In the correlated trait evolution analyses, the 430 environmental PCA included all global terrestrial habitats, excluding Antarctica. 431 Both environmental PCAs recovered similar components (see main text, Table 1, 432 and Supplementary Table 2 for details). In the demographic analysis, the average 433 score for each principal component was initially computed for every bird 434 conservation region and these regional averages were subsequently used to 435 characterize species-typical habitats. Specifically, variables H1 and H2 were 436 computed as weighted averages of the corresponding environmental components 437 (PC1 and PC2), where weights were determined by the species’ relative abundance 438 in each conservation region. Species-typical environmental values for the global 439 analysis of correlated trait evolution were estimated directly by averaging all local 440 (0.5° by 0.5° cell) PCA scores across the species' entire breeding distribution.  441  442 
Bird population data 443 Abundance data for our population dynamics analyses was collected between 1966 444 and 2014 by the North American Breeding Bird Survey (BBS; available through 445 www.pwrc.usgs.gov/bbs/, downloaded August 28th, 2015)24. The BBS is 446 coordinated by the US Geological Survey (USGS) and the Canadian Wildlife Service 447 and conducted annually by trained volunteers during the height of the breeding 448 season. Participants travel along 24.5-mile roadside routes, conducting 3-minute 449 point count surveys at 0.5-mile intervals – recording every bird seen or heard 450 within a 0.25-mile radius. Each BBS survey route was assigned to a single Bird 451 Conservation Region (BCR) based on route starting coordinates23. BCR maps were 452 provided by the USGS Patuxent Wildlife Research Center (www.pwcr.usgs.gov, 453 downloaded September 15, 2015). Only surveys fulfilling BBS quality criteria (i.e. 454 runtype = 1) were included in our analyses. 455  456 
Quantification of population dynamics 457 We characterized the temporal dynamics of bird populations within BCRs across 458 North America using hierarchical Bayesian models following Smith et. al, 201425. 459 The log of abundance, xj,i,t, for a given species at survey route j within BCR i in year t 460 is modeled as: 461 

log(x) = Si + βi*t + γi,t + ωi,j + ηI(j,t) + εi,j,t, 462  463 where Si is the average abundance within BCR i, βi is the temporal trend in 464 abundance within BCR i, and η is the first-year observer effect where I(j,t) is 1 if the 465 
survey at year t is an observer's first record at route j and 0 otherwise. Year effects, γi,t,, 466 and route-observer effects, ωi,j, are modeled as BCR specific random effects, whereas 467 
εi,j,t, was modeled as a general random effect of count overdispersion. Given the 468 potential for differences in observer ability, a separate value of ω is given to each 469 



unique route-observer combination. To account for imperfect detection during 470 surveys, the observed count on route j within BCR i during year t is assumed to have 471 a Poisson distribution with mean xj,i,t. Abundances are allowed to vary among survey 472 routes within a BCR, but all routes are assumed to follow the same relative temporal 473 trend (βi) and to undergo the same yearly fluctuations around this trend (γi,t). The 474 variance of route-observer effects within a BCR, σ2 ωi is drawn from a global 475 hyperdistribution. To conform with the assumption of normality of residuals in 476 general linear models, we use the negative of the standard deviation in annual 477 fluctuations (-1*sqrt(σ2γi)) as our dependent variable in subsequent analyses of 478 population stability. The sign inversion is simply done to facilitate interpretation of 479 our results, such that higher values reflect more stable populations. 480  481 Because hierarchical models tend to underestimate the magnitude of annual 482 fluctuations when the number of missing survey years is high56,  we estimated 483 trends for a period when survey data is relatively consistent, namely from 1985 484 onwards. In addition, we improved data quality by including only route-observer 485 combinations with 10 or more years of survey data and estimating only parameters 486 for BCRs with at least 20 years of survey data and a minimum of 14 survey routes39. 487 Model parameters were estimated with MCMC analysis using package ‘rjags’57. Four 488 independent chains were run for each model, each of which included a burnin of 489 25,000 steps, an additional chain length of 25,000 steps and a thinning interval of 490 10. Priors for Si, βi, and η were normal distributions with mean of 0 and variance of 491 106. Prior distributions for variances were inverse gamma distributions with scale 492 and shape equal to 0.001. Our assessment of chain convergence was done through 493 the ‘coda’ package in R58 and included both a visual inspection of the traces of 494 posterior estimates and an estimation of potential scale reduction factors (PSRF) via 495 Gelman and Rubin’s convergence diagnostic59. Only estimates obtained from BCRs 496 in which PSRF values were under 1.1 for all parameters (i.e., chains with proper 497 convergence) were included in our subsequent analyses of population stability. We 498 considered positive support for temporal trends when the 95% credible interval of 499 
βi did not include zero.  500  501 Hierarchical models with density dependence were also fitted to all species that did 502 not exhibit evidence of linear trends in our initial analysis (n = 27). Specifically, we 503 re-estimated population stability for these species using a discrete time, stochastic 504 Gompertz model following Dennis et. al, 200638. These models estimate density 505 dependent population change at the route level while allowing random 506 environmentally driven fluctuations and accounting for observer error in reported 507 abundances. The log of abundance at time t, log(xt), is modeled here as a function of 508 log(xt-1): 509  510 log(xt) = a + b*log(xt-1) + Et, 511  512 where a is the intrinsic rate of increase and b is the strength of density dependence. 513 Values of b were allowed to range from -1 (strong) to 1 (no density dependence)37. 514 



Relative annual fluctuations, Et, have a normal distribution with mean zero and 515 variance σ2E. Similarly, the log of observed counts in year t is assumed to have a 516 distribution with mean of log(xt) and a variance of τ2. To conform with the 517 assumption of normality of residuals in general linear models, we used the negative 518 log of the estimated year-to-year variance (i.e., -1*log(σ2E)), as our dependent 519 variable in subsequent analyses of population stability. As above, the sign inversion 520 here is simply done to facilitate interpretation of our results, such that higher values 521 reflect more stable populations. Data quality checks for hierarchical models with 522 density dependence, included estimating only models for routes with at least 20 523 years of survey data from 1985 onwards and no more than three consecutive years 524 of missing data. Parameters were estimated using MCMC analysis with four 525 independent chains, each ran with a burnin period of 100,000 steps, an additional 526 chain length of 50,000 steps and a thinning interval of 10 steps. Priors for  were 527 drawn from a non-informative uniform distribution from 0 to 106, for b from a 528 uniform distribution from -1 to 1, and for σ2E and τ2 from an inverse gamma 529 distribution with scale and shape equal to 0.001. As with our linear trend models, 530 chain convergence diagnostics were performed through visual inspection and the 531 Gelman and Rubin convergence diagnostic59. Data for downstream analyses of 532 population stability only included estimates for routes that reached proper 533 convergence. 534  535 For both linear trend and density dependence hierarchical models, we excluded 536 species that typically pose clear challenges to detection, such as aquatic (families 537 Gaviidae, Podicipedidae, Pelecanidae, Phalacrocoracidae, Anhingidae, Anatidae, 538 Rallidae, Ardeidae, Threskiornithidae, and Ciconiidae), nocturnal (families 539 Tytonidae, Strigidae, and Caprimulgidae), and primarily aerial species (families 540 Apodidae and Hirundinidae). For all other species, we summarized regional 541 measures of population stability into a single species-specific value by computing 542 density-weighted averages across BCRs (linear trend models) or routes (density 543 dependence models). Thus, our measures of population variability account for 544 differences in population dynamics across a species’ range60, but place greater 545 importance on the population dynamics that occur in regions or sites where the 546 species is better represented. 547  548 
Estimating correlates of population stability 549 Data on longevity and annual reproductive output were obtained from Myhrvold et 550 al. 201551 (the latter was calculated as the product of clutch size and clutches per 551 year). Social systems were classified as either cooperative or non-cooperative 552 breeding based on Jetz and Rubenstein, 201161. Habitat generalism was measured 553 as the number of different BCRs in which a species was reported throughout the 554 BBS dataset. Migratory status was determined from range maps by BirdLife 555 International (birdlife.org, downloaded March 18th, 2016). Specifically, a species 556 was considered resident if there was complete overlap between winter and 557 breeding portions of its range and considered migratory otherwise.  558  559 



To test the effects of putative predictor variables on population stability scores we 560 used phylogenetic generalized least squares regression models estimated with the 561 ‘geiger’62 and ‘nlme’ 63packages in R64. All regression models (including the one used 562 to estimate relative brain sizes) were computed using Pagel’s λ transformation. To 563 account for uncertainty in phylogenetic relationships, every regression model 564 reported here was independently ran with 1,000 different tree topologies from Jetz 565 et al.27. Model fit was assessed through adjusted R-squared65. In the main text we 566 report the average estimated coefficient for each parameter and the proportion of 567 trees in which such estimates were significant (i.e., the f statistic). Body size, 568 longevity, annual reproductive output, and estimated mean abundance were log-569 transformed prior to analysis. Our fully parameterized models included all main 570 effects as well as interactions between longevity, annual reproductive output, 571 habitat generalism, body size, relative brain size, sociality, and migration with H12. 572 Models were subsequently reduced by iteratively removing, one at a time, terms 573 with the highest p-value (removing interactions prior to main effects) and assessing 574 whether removal led to a significant improvement of AIC values (i.e., ∆ > 2). We 575 also computed variance inflation factors for all of our reduced models to confirm 576 low potential for multicollinearity (all VIF values were < 2.).  577  578 
Estimating evolutionary rates of transition between character states 579 We investigated the potential timeline of evolution of encephalization and climactic 580 niche in birds using models of correlated trait evolution42, implemented through the 581 discrete function of BayesTraits v2 on a global sample of species (Supplemental 582 Data 2). Pelagic and migratory species were excluded from these analyses, resulting 583 in a total sample of 1,288 resident terrestrial species. BayesTraits estimates the 584 eight possible transition rates between potential character states (see Fig. 3c or f), 585 assuming that simultaneous transitions in both brain size and environment are so 586 unlikely that they can be ignored42. Because both brain size and environmental 587 variability are continuous variables, we explored a number of different cutoff values 588 to convert them into binary traits suitable for this kind of analysis. Specifically, we 589 classified species as having large encephalization values when they occurred above 590 the 30th, 50th, 75th and 90th percentile of brain size distribution. While a 30th 591 percentile cutoff for encephalization may seem too permissive at first glance, we 592 note that this was the minimum possible threshold at which all “large-brained” 593 species had a positive brain residual (i.e., bigger brain than expected from body 594 size) and the number of observed transitions between different states was sufficient 595 for the proper estimation of transition rates66. We note that the skewed distribution 596 towards more highly encephalized species in our sample is due to the effects of 597 phylogenetic correction in the estimation of relative brain size, as well as to the 598 subsampling of species from our much larger global brain data set. Exposure to 599 environmental variability was classified as high for species above the 50th, 75th, and 600 90th percentiles in either ‘temperature variability' or ‘xeric variability'. Because 601 models of correlated trait evolution have the potential to identify spurious 602 correlations when the number of transitions between states is low66, we began by 603 confirming that all of our thresholds yielded a reasonable number of transitions 604 between states using ancestral character state estimation via the R package 605 



‘phytools’68 and averaging the detected number of  transitions across 1,000 tree 606 topologies. At the 30th percentile threshold we detected an average of 29 transitions 607 from small to large encephalization and 65 transitions from large to small 608 encephalization. At the 50th percentile threshold we detected an average of 102 609 transitions from small to large encephalization, 112 transitions from large to small 610 encephalization, 253 transitions from stable to variable environments, and 414 611 transitions from variable to stable environments. At the 75th percentile threshold we 612 detected an average of 64 transitions from small to large encephalization, 36 613 transitions from large to small encephalization, 265 transitions from stable to 614 variable environments, and 195 transitions from variable to stable environments. 615 Finally, at the 90th percentile threshold we detected an average of 46 transitions 616 from small to large encephalization, 15 transitions from large to small 617 encephalization, 237 transitions from stable to variable environments, and 127 618 transitions from variable to stable environments. The 90th percentile threshold was 619 therefore ultimately dropped as a criteria for dichotomizing encephalization 620 because the low number of transitions it yielded would preclude any meaningful 621 estimates of transition rates67.  622  623 Rates of evolutionary transition were estimated using reversible-jump Markov 624 Chain Monte Carlo analyses (rjMCMC). Parameter values were first estimated using 625 maximum likelihood analysis in order to inform our choice of priors. For all six 626 combinations of cutoffs, we calculated mean values of transition rates across our 627 sample of 1,000 trees.  Maximum likelihood estimates of each parameter value were 628 of a similar magnitude regardless of cutoffs and ranged from 0.00002 to 0.34. Next, 629 rjMCMC analyses were performed for 200,000,000 iterations with a burnin of 630 5,000,000, a thinning interval of 1,000 iterations, and an exponential prior whose 631 mean is seeded from a uniform hyperprior ranging between 0 and 0.5. Reversible-632 jump helps avoid model over-parameterization by exploring alternative models that 633 can differ in parameter number69. Because reversible-jump analyses estimate the 634 posterior probability of all possible model configurations along with individual 635 parameter values, this algorithm offers the additional advantage of enabling tests of 636 very specific hypothesis. Specifically, the posterior distribution of model types 637 obtained through rjMCMC can be used to assess the strength of evidence that two 638 particular transitions are different or not by comparing the relative sampling 639 frequency of models in which the two transition types were constrained to be the 640 same with that of models in which these two rates were allowed to vary 641 independently of each other70. Statistically, these comparisons are made via Bayes 642 factors, which are calculated as: 643  644 
BFij = P(Mi|D)/P(Mj|D) x P(Mj)/P(Mi), 645  646 where i is the model set where rates are allowed to vary independently, j is a 647 reduced model set in which the two rates are constrained to be the same, P(Mn|D) is 648 the posterior probability of model set n (computed as the proportion of steps in 649 which the chain visited model n), and P(Mn) is the prior probability of model set 650 

n69,70. For example, when testing the cognitive buffer hypothesis, P(Mi|D) is the 651 



frequency of all model configurations within the posterior distribution in which the 652 transition rate from moderate to large encephalization varied between stable and 653 variable environments, whereas j includes all model configurations in the posterior 654 distribution where these rates were constrained to be equal in both environments. 655 Similarly, when testing the colonization advantage scenario, P(Mi|D) is the 656 frequency of all model configurations in which the transition rate from stable to 657 variable environments varied between moderate and large encephalization, while j 658 includes all configurations where these rates were constrained to be equal in both 659 brain size classes. P(Mn) values for this formula are computed by exploring all 660 possible model combinations via expanded Stirling numbers70: P(Mj) = 0.9592 and 661 
P(Mi) = 0.0408. Overall, resulting Bayes factor values from 3 to 12 suggest positive 662 support for model set i and values above 12 suggest that model set i is strongly 663 supported when compared to model set j69. We also report the proportion of steps 664 in our model chains (P) in which the difference between two rates of interest was 665 equal to zero (i.e., the transition rate for the character of interest was independent 666 of the state of the second trait). In this case, values of P < 0.014 indicate positive 667 support for a difference between rates (i.e., BF > 3)70. Because hypothesis testing 668 directly assesses the proportion of steps in the posterior distribution where 669 transition rates of interest are constrained to be equal, we visualize these results by 670 plotting the distribution of ‘rate differences’ calculated across the posterior 671 distribution. These rate differences were calculated at each step of the chain as 672 either the difference in estimated transition rate from moderate to large brain sizes 673 in variable versus stable environments (when testing the cognitive buffer 674 hypothesis), or the difference in estimated transition rates from stable to variable 675 environments in species with large versus moderate brain sizes (when testing the 676 colonization advantage hypothesis). Plotting the distributions of rate differences 677 (figure 3) allows us to assess both the support for a particular hypothesis (the 678 proportion of steps where rate difference = 0) and the directionality of these 679 potential differences. Besides explicitly testing the cognitive buffer and colonization 680 advantage scenarios as indicated above, we also tested for differences in the rates of 681 colonization of stable environments between brain size classes as well as for 682 differences in the rate of evolution of small to moderate brain sizes in stable versus 683 variable habitats. 684  685 We ran each rjMCMC analysis three times to insure chain convergence and assess 686 the consistency of our results. These checks were performed with the ‘coda’ package 687 in R59 and included visually inspecting the traces of all of our posterior estimates, 688 assuring effective sample sizes were greater than 1000, and estimating potential 689 scale reduction factors (PSRF) using Gelman and Rubin’s convergence diagnostic60. 690 PSRF values were below 1.1 for all parameter estimates indicating proper chain 691 convergence properties. Effective sample sizes over 1000 were obtained for all runs, 692 except for analyses using the combination of 50th percentile encephalization 693 threshold and 75th percentile environment threshold. To ensure consistent results 694 for this cutoff, we performed three additional runs for 619,000,000 iterations (the 695 upper limit of our current computational resources). While 4 rate parameters in 696 these models still failed to reach target effective sample sizes of 1,000 during the 697 



extended runs, their effective sample sizes were nevertheless fairly high (range: 698 371-997). Furthermore, the plots of running values across iterations for Bayes 699 Factors testing the cognitive buffer and colonization advantage hypotheses in these 700 models, indicate that these results are also highly stable (Supplementary Fig. 2).  701 Posterior distributions of parameter estimates from the different chains produced 702 for each threshold were subsequently pooled to calculate both the mean values and 703 standard deviations for each transition rate (Supplementary Fig. 3).  704  705 
Ancestral trait reconstruction 706 The ancestral states reported in Fig. 4 were reconstructed for visualization purposes 707 only, and estimated with the ‘phytools’68 package in R. Reconstructions of 708 continuous trait data were based on maximum likelihood and a randomly chosen 709 tree within our candidate set. Color-coding in figure 4b-g is based on results from 710 separate ancestral trait reconstructions for the different environmental variables. 711  712 
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 934 
Tables 935  936 
Table 1. Summary of principle component analysis of environmental variables 937 across North American.  938  939 

Loadings* 
PC1 PC2 Uniqueness 

Temperature predictability 0.84 0.17 0.27 
Temperature variance -0.82 -0.26 0.26 
log (precipitation variance) 0.79 0.40 0.21 
Mean temperature 0.75 0.51 0.18 
Precipitation predictability -0.71 0.41 0.33 
sqrt NPP variance -0.05 0.94 0.11 
log (mean NPP) 0.28 0.93 0.06 
NPP predictability -0.56 -0.76 0.11 
log (mean precipitation) 0.57 0.65 0.25 

Cumulative variance 0.42 0.80 * Loadings for main contributors to each component are in bold.   940 



Table 2. Summary results of our phylogenetic generalized least squares regression 941 models of population stability across a sample of 1,000 potential tree topologies for 942 the avian phylogeny*.  943 
Predictor ̅ f † 

(Intercept) -0.17 0.07 -2.32 0.02 1.00 

H12‡ 0.06 0.04 1.67 0.10 0 

Relative brain size -0.01 0.05 -0.22 0.82 0.00 

Migration -0.03 0.03 -1.31 0.19 0.00 

log(Longevity) 0.03 0.02 1.30 0.20 0.00 

Migration:H12  0.05 0.01 3.60 < 0.001 1.00 

log(Longevity):H12 -0.06 0.01 -3.90 < 0.001 1.00 

Relative brain size:H12 0.08 0.02 4.91 < 0.001 1.00 

df = 118       ƛ = 0.60 * Only terms present in the final reduced model are presented here (see text for 944 details). Coefficient estimates (ß), standard errors (SE), t-scores, and significance 945 levels reported are averages for 1,000 model runs with randomly selected 946 phylogenetic trees based on the Hackett backbone in Jetz et al.27.  947 † f is the frequency of trees for which p-values were < 0.05.  948 
‡ H12 is the quadratic term of composite measure, H1, which captures various 949 aspects of environmental variability. Low values of H1 represent cold seasonal 950 habitats with unpredictable temperatures; high values represent warm habitats 951 characterized by variable and unpredictable patterns of precipitation. 952 
  953 



Figures 954  955 Figure 1: Graphical representation of our method for estimating and 956 
comparing population dynamics of North American birds. Population dynamics 957 were first estimated independently for every species, here the Northern bobwhite 958 (Colinus virginianus), in every North American conservation region (outlined in 959 purple), and subsequently reduced to individual weighted averages per species. a, 960 Data come from counts (shown as inset plots) reported at routes (depicted as dots 961 on the map) within conservation regions (outlined in purple). b, Models estimate 962 the log of abundances that follow a general long-term trend (dark red line) and 963 yearly fluctuations around the trend (light red line) that that are drawn from a 964 normal distribution with mean of 0 and standard deviation of σγ. 965   966 



Figure 2: Significant two-way interactions between species traits and 967 
environmental variability on population stability. a-c, Partial residual plots from 968 phylogenetic generalized linear model with fitted lines indicating the effect of 969 environmental variability on population stability for different migratory strategies 970 (a) and at different values of longevity (b), and relative brain size (c) in a sample of 971 126 species of North American birds. Environmental variability is measured H1, 972 with low values indicating cold, seasonal habitats with unpredictable temperatures, 973 and high values indicating hot habitats with variable and unpredictable 974 precipitation patterns (see text and Table 1). Traits in b-c were analyzed as 975 continuous variables but, for visualization purposes, the fitted lines depicted here 976 predict population stability trends for species at the 5th, 25th, 50th, 75th, and 95th 977 percentiles of each focal trait while holding all other predictors at their mean value 978 and setting migratory status as resident.  979   980 



Figure 3: Testing the sequence of evolutionary events predicted by the 981 
cognitive buffer and colonization advantage hypotheses. The cognitive buffer 982 hypothesis predicts that larger brains should preferentially evolve in variable 983 environments, whereas the colonization advantage hypothesis predicts that, once 984 evolved, they should subsequently aid in colonizing variable habitats. a and d, 985 Posterior distributions of the difference in transition rate from moderate to large 986 encephalization in stable vs variable climates (depicted by blue arrows in c and f). b 987 
and e, Posterior distribution of the difference in transition rate from stable to 988 variable environments in moderate vs large brained species (depicted by green 989 arrows in c and f) estimated from a sample of 1,288 resident terrestrial bird species 990 from around the globe. Distributions in a, b, d, and e are derived from the posterior 991 distributions of reversible-jump MCMC analyses (see Supplementary Fig. 3). 992 Positive values indicate support for a particular hypothesis (see methods). 993 Horizontal red lines in these panels mark the maximum proportion of steps in which 994 the rjMCMC chain can visit a rate difference of 0 while still supporting a scenario in 995 which the two rates of interest differ (i.e., Bayes Factor = 3). Thus, we see positive 996 support for difference in transition rates in a, b, and e but not in d. c and f depict the 997 full transition matrices summarizing estimated rates of transition between stable 998 (gray) and variable (black outlined) environments or between moderate (purple) 999 and big (pink) relative brain size. Arrow widths are proportional to estimated rates, 1000 single asterisks indicate positive support for a difference between rates (BF > 3), 1001 and double asterisks indicate strong support for a difference between rates (BF > 1002 12).  1003   1004 



Figure 4. Ancestral trait reconstruction of relative brain size and 1005 
environmental niche. a, phylogeny of the 1,288 species in our global sample 1006 depicting the reconstructed ancestral states of avian encephalization. b-g, 1007 reconstruction details for 6 highly encephalized clades: encephalization (left panels; 1008 pink = upper 25th percentile; grey = lower 75th percentile) and variable 1009 environmental niches (right panels; blue = upper 25th percentile of ‘temperature 1010 variability’; yellow = upper 25th percentile of ‘xeric variability’; black = upper 25th 1011 percentile for both measures; grey = bottom 75th percentile for both measures). 1012 Subtrees in panels b-g are details of reconstructions performed on continuous trait 1013 data with branches re-colored based on the 75th percentile threshold used in 1014 analyses of correlated trait evolution (see methods). 1015 
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