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ABSTRACT OF THE DISSERTATION
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Research Advisor: Dr. Parag Parikh, M.D., B.S.E.

Radioembolization of yttrium-90 (90Y) microspheres is used to treat primary and secondary

cancers in the liver. Though this therapy has existed for decades, the treatment is not

well optimized from treatment planning to post-procedural assessment. Recently, there has

been a surge to utilize the small positron yield from the radioactive decay of 90Y for post-

radioembolization positron emission tomography (PET) imaging of the microsphere activity

distribution. These images provide promise for dosimetry assessment, identifying extra-

hepatic uptake and possible under-dosed lesions that may benefit from subsequent therapy.

However, due to the low positron statistics and high flux of Bremsstrahlung radiation, PET

imaging of 90Y presents with its own unique set of challenges. In this work, we optimized

the PET imaging acquisition and reconstruction parameters when imaging with a hybrid

PET/MRI scanner to offer the most accurate images for quantitative dosimetric applica-

tions. We then tested the variability of imaging 90Y with PET across multiple institutions

in a world-wide phantom study in preparation for a multi-institutional phase I/II clinical
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trial. Lastly, we determined the clinical utility of using 90Y PET-based dosimetry to predict

clinical outcomes and assess how well it correlates with pre-treatment imaging.
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Chapter 1

Introduction

1.1 Background

1.1.1 Cancer in the Liver

Primary liver cancers, such as hepatocellular carcinoma (HCC) and cholangiocarcinoma

(CAA), are the tenth most common form of cancer and the fifth and ninth most common

cause of cancer death of men and women, respectively [1]. Survival rates for those with

primary liver disease are low, with the 1-year survival rate being 43% and the 5-year survival

rate being 17%. Even with an early diagnosis, the 5-year survival rate is only 30%. For late

stages of liver cancer, survival rate decreases to as low as 3% [2].

More common than primary liver cancer are tumor metastases to the liver, with the most

common types of metastases being lung, breast, and colorectal cancer (mCRC) [3]. Both

the dual blood supply to the liver, i.e. the hepatic artery and portal vein, and the easy

penetration through the hepatic sinusoids, characteristic to the function of the liver, allow

for the high incidence rate of hepatic metastases [3].
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Colorectal carcinoma is the third most common malignancy and third most common cause of

cancer-related mortality in the United States. Over one-half of patients with mCRC develop

hepatic metastatic disease; and one-third have hepatic metastases present at diagnosis [4].

Prognosis is very dependent on the development of liver metastases.

There are several methods for treating cancer in the liver, including surgical removal of

the tumor or affected lobe, radiofrequency ablation, chemotherapy, and/or radiation [5].

Many patients are not diagnosed until the disease has developed significantly, making them

incompatible for surgical intervention [6]. For these patients, other modes of treatment such

as radiation therapy may be the best course of treatment.

There are two main types of radiation therapy: external beam, where a high energy beam of

photons, electrons, or protons is directed towards the regions of the tumors, and brachyther-

apy, where sealed radioactive sources are implanted in the patient near or in the tumors. In

the case of the liver, healthy liver tissue has a lower tolerance to radiation than the cancerous

tissue, and when too much healthy liver is exposed to radiation, there is a greater possibility

of radiation–induced liver disease (RILD), including liver dysfunction [7].

1.1.2 Yttrium-90 Radioembolization

A palliative form of therapy for primary and metastatic disease in the liver is brachyther-

apy using the beta-emitter yttrium-90 (90Y, 64.1 hr half-life; 0.93 MeV β-emission; tissue

penetration mean 2.5 mm, maximum 11 mm) as the radioactive source. Yttrium-90 radioem-

bolization, which involves intra-arterial delivery of radioactive microspheres to the tumors, is

often used for patients with cancer in the liver who are not candidates for surgery. Physicians

can utilize the angiogenesis of liver tumors as well as the physiology of the liver to selectively
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deliver 90Y microspheres to the tumors. Liver tumors receive most of their blood supply

from the hepatic artery [6, 7] while the liver itself receives about 75% of its blood supply

from the portal vein with the other 25% being from the hepatic artery [8]. The physician

injects the microspheres into the hepatic artery via catheterization, and, ideally, the spheres

will localize and deposit in the tumors. This allows the tumors to be exposed to radiation

while sparing the healthy liver.

Developed in the late 1990s, the use of radioembolization has been quickly increasing, with

over 15,000 administrations delivered last year. There have been many institutional reports

on effectiveness in both primary and metastatic liver cancer [9–11]. Large, prospective trials

on radioembolization are underway in HCC and mCRC. Recently, there was a phase III

randomized study comparing chemotherapy with or without radioembolization in patients

with liver-only mCRC [12]. In this study, there was an improvement in complete response

of liver metastases, as well as a median 7.9 month improvement in time to liver progression.

TheraSpheres and SIR-Spheres are the two brands of 90Y microspheres available on the

market today for hepatic radioembolization [6]. Specifications about these microspheres are

given in Table 1.1. TheraSpheres are typically used for treatment of HCC and pancreatic

neuroendocrine carcinoma metastases (mNET) while SIR-Spheres are used typically used

for metastases, such as mCRC and mNET.
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Name Manufacturer Material Diameter

(µm)

Specific Activity

(Bq/sphere)

Theraspheres Nordion

(Ottawa, Canada)

Glass 20-30 2500

SIR-Spheres Sirtex

(Sydney, Australia)

Resin 35 50

Table 1.1: 90Y microsphere specifications by brand

1.1.3 Lack of Radioembolization Dosimetry

There is an established planning and dosing method for radioembolization that is predi-

cated on patient safety (see Figure 1.1). First, patients have an angiogram of the hepatic

artery system. The angiogram is used to investigate variant vascular anatomy and to em-

bolize branches that would lead to non-target (such as gastrointestinal tract) embolization.

When the interventional radiologist feels confident that all non-target vascular flow has been

embolized, he/she will place the catheter in the planned location (often the right or left

hepatic artery) and inject Technetium-99m macroaggregated albumin (99mTc-MAA). The

patient will then go to nuclear medicine for a SPECT scan, and this scan will be evaluated

for 1) low shunt of particles to the lung and 2) no gastrointestinal tract uptake. If these

safety criteria are met, the patient becomes a candidate for transcatheter 90Y microsphere

treatment. The amount of 90Y activity ordered differs between the two microsphere manu-

facturers, based on their original safety data (see Figure 1). The patient is then scheduled

for treatment where the interventional radiologist attempts to place the catheter in the ex-

act same place as during the planning angiogram, and, assuming comparable vascular blood

4



flow and hemodynamics as on the day of treatment planning, delivers the 90Y microspheres.

Another assumption is that the 90Y microspheres are delivered uniformly throughout the

region or volume supplied by the selected vessel (lobar, segmental, or subsegmental). How-

ever, based on anecdotal observations and small case studies, variability of lesion response on

subsequent imaging exams implies an inhomogeneous microsphere distribution and variable

radiation dose to the treated lesion(s) [13].

Figure 1.1: Flow-chart for the planning and administration of 90Y microspheres for hepatic
radioembolization. The current workflow for radioembolization requires waiting 3-6 months
for follow-up imaging to assess treatment efficacy.

Activity delivered to patients typically ranges from 3–20 GBq per delivery for glass micro-

spheres and typically 2 GBq per delivery for resin microspheres [14]. Prescribed activity

for Theraspheres (glass), which are typically delivered to patients with HCC or mNET, is

determined by the following equation recommended by the manufacturer:

A(GBq) = [Ddesired(Gy)×Mtarget liver(kg)]/50 (1.1)
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Note that Eq. 1.1 is independent of tumor burden. Prescribed activity for SIR-Spheres

(resin), which are typically delivered to patients with metastatic lesions to the liver (e.g.

mCRC and mNET), is determined either via the body surface area method:

A(GBq) = BSA− 0.2 + (%tumor involvement/100) (1.2)

or by utilizing the percentage of tumor burden on the liver:

< 50%→ 3.0GBq (1.3)

25− 50%→ 2.5GBq (1.4)

< 25%→ 2.0GBq (1.5)

The above prescribed activities are reduced if the lung shunt fraction, determined from the

99mTc-MAA SPECT, is above 10-20%. A significant limitation in these equations is the

assumption that the delivered dose will distribute uniformly throughout the target region.

Ho et al. and Campbell et al. have proposed using the pre-treatment MAA SPECT to predict

the efficacy of radioembolization before the microspheres are delivered [15, 16]. However,

this method assumes that the MAA particles are delivered in the same manner as the 90Y

microspheres despite the difference in sizes of the particles (10–150 µm and 20–35 µm for

MAA and 90Y microspheres, respectively) and difference in days of delivery, which results in

different catheter placements [17,18].
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There is a growing interest in post-delivery imaging of these 90Y microspheres to make assess-

ments of possible extra-hepatic deposition and toxicity as well as assessing tumor coverage

in order to predict response as early as possible [18–23]. Currently, there is no standard for

post-delivery imaging of 90Y.

1.1.4 Benefits of Lesion Specific Dosimetry

The role of regional hepatic therapy to downstage a patient for surgery has been well de-

scribed. Patients who are downstaged to resection from regional liver therapy have signif-

icantly improved survival, with one study showing a 49% 5-year survival versus 3% 5-year

survival for those who could not receive surgery [24]. Early lesion specific outcome could move

patients from the non-surgery arm to one with surgery or to other local ablative therapies

such as radiofrequency ablation, microwave ablation, cryoablation, irreversible electropora-

tion or stereotactic radiation.

Unfortunately, the radiographic response by CT and MRI to radioembolization therapy is

difficult to interpret at 3 months, and often one has to wait 6 months for resolution of

treatment related liver changes. A recent study by Kennedy et al. [25] investigated the ra-

diographic response in 9 centers using pre-treatment imaging within 3 months of therapy and

follow-up therapy at 90 days. They found that the 3 month response rate underrepresented

maximal response by 5-10%, with over half the patients with confounding factors such as

peritumoral edema and necrosis. Findings such as these may delay subsequent therapies.

In conclusion, existing methods of evaluating dose in radioembolization suffer from poor

spatial resolution, inability to delineate the lesions of interest, unclear relationships between

planning and delivery, and low patient numbers in evaluations of dose relating to outcomes.
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1.2 Innovation

1.2.1 Post-Implant Dosimetry in Interventional Radiology

Post-implant dosimetry is a standard procedure with other forms of brachytherapy, such

as low-dose prostate brachytherapy. The clinical work-flow for low-dose prostate therapy

involves obtaining planning images of the prostate, then the operator implants radioactive

seeds with image guidance. This work-flow used to be considered sufficient, but further

research found that post-implant dosimetry, which involves identifying the seed location and

prostate boundary with a post-procedural CT, is crucial for tumor control [26]. Recently,

there were reports of toxicities and poor outcomes at a VA facility that didn’t use post-

implant dosimetry for their patients [27]. Due to these events, post-implant dosimetry is

now routine [28].

Unfortunately, there is little infrastructure available to the interventional radiologist or nu-

clear medicine physician, to perform this analysis in current clinical workflow. We propose

a new workflow, where the patient can have immediate post-treatment evaluation and then

have lesion specific measurements of response.

Post-radioembolization imaging has been proposed with Bremsstrahlung SPECT/CT from

the β- decay of 90Y [23, 29–31]. Bremsstrahlung SPECT, however, offers low-resolution

images that can often fail to identify uptake in small lesions, areas of tumor thrombus, and

extra-hepatic uptake [19].

90Y decays predominantly by β- decay to the ground state of 90Zr with a weak transition to

the 1.76 MeV 0+ (0.0115%) excited state. Gamma decay of this level is strictly forbidden

since the 90Zr ground state is also 0+ [21]. This level will decay by electron conversion
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with a small decay branching fraction by internal pair production (β+/β- emission) [21,

32]. The positrons emitted during this decay process, although few (∼32 ppm), allow for

imaging of 90Y activity via positron emission tomography (PET) [32]. The kinetic energy

spectra of the positrons can be described from energy-momentum analysis and is predicted

to have a maximum energy of 738 KeV and average energy of 369 KeV. These values are

commensurate to the positrons emitted from 18F and therefore similar loss of resolution from

the positron range is expected [33]. Furthermore, with simultaneous imaging of PET and an

anatomic imaging modality such as CT or MRI, one can more precisely measure where the

90Y microspheres are localizing, whether healthy liver, cancerous, or extrahepatic tissues.

Previous groups have reported using PET/CT for post-radioembolization 90Y imaging. [20,

32, 34–37], as these scanners are more common and readily available. However, CT exposes

the patient to additional, unnecessary ionizing radiation. MRI, on the other hand, does

not utilize ionizing radiation, plus, it offers excellent soft-tissue contrast [38] that CT is not

capable of, allowing us to more clearly see the boundaries of the liver lesions. Thus, we are

interested in determining how useful PET/MRI would be with assessing the distribution of

90Y microspheres following delivery. In the process, we are also interested in obtaining a

quantitative assessment of the microsphere delivery using PET/MRI.

1.2.2 Application of PET/MRI in Radioembolization Dosimetry

The PET/MR is uniquely positioned to solve the underlying problems with radiation dosime-

try. Compared to CT, MRI offers excellent soft-tissue contrast (see Figure 1.2), which is es-

sential for accurately delineating healthy liver tissue versus tumors during analysis [38]. Many
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have found that although contrast-enhanced MRI and contrast-enhanced CT have compa-

rable sensitivities with detecting large liver lesions, MRI has a much higher sensitivity with

detecting small liver lesions [39–41], which are common among patients with metastatic dis-

ease. Furthermore, contrast-enhanced imaging, especially CT, is contraindicated in patients

with poor renal function. When contrast-enhanced imaging is not an option, unenhanced

MRI is superior to unenhanced CT in the detection and characterization of lesions in the

liver [42]. Thus, there is a growing interest in using the newly developed hybrid PET/MRI

scanners where high quality anatomical information from the MRI and localization informa-

tion about the microspheres from PET together have potential for improving patient care by

predicting clinical outcomes for 90Y radioembolization immediately after delivery. Predict-

ing clinical outcomes immediately after radioembolization rather than waiting for follow-up

imaging, typically 3 months after the procedure, could guide additional therapy for patients

much sooner than what is currently done in the clinic today.

Figure 1.2: (a) MRI versus (b) CT of patient with primary liver cancer. The lesions, indicated
by the red arrows, and their boundaries are much clearer on the MRI compared to the CT.

The PET/MR being used in the study also has the advantage of simultaneous acquisition of

PET and MR images. This allows better fusion of images versus those acquired at disparate

times, as well as the opportunity to allow for motion correction of the PET images. Given
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the low counts when measuring 90Y with PET, this has the potential for improvement of

lesion quantification [43].

The aims of this work are three-fold:

Aim 1: We will maximize the signal to noise ratio of yttrium-90 PET by op-

timizing acquisition and reconstruction parameters for yttrium-90 PET/MR,

performed on a commercially available, fully-integrated PET/MRI unit.

Aim 2: We will test the reproducibility of imaging yttrium-90 on PET/MRI to

establish the reliability of yttrium-90 PET dosimetry.

Aim 3: We will use dose calculated from post-radioembolization PET/MRI to

determine a dosimetric quantity that can be used for predicting individual lesion

response.
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Chapter 2

Optimal PET reconstruction

parameters for imaging 90Y on

PET/MRI †

2.1 Introduction

Significant differences between the PET cameras on PET/CT and the Siemens Biograph

mMR PET/MRI evoke the need for determining optimal PET reconstruction parameters

when imaging 90Y on the mMR. These differences include the use of avalanche photodiode

(APD) detectors instead of photomultiplier tubes (PMT); the smaller detector block size;

more crystals; the longer axial field of view (FOV); reduced crystal ring diameter; and the

longer coincidence timing window as compared to the counterpart PET/CT scanners

†This chapter has been previously published in [44]. https://doi.org/10.1088/2057-1976/2/1/015009 ©
IOP Publishing. Reproduced with permission. All rights reserved
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In this study, we aim to find optimal 90Y-PET reconstruction parameters for a hybrid

PET/MRI scanner. We investigate the effects of using various combinations of reconstruc-

tion parameters, including with and without PSF, and different scatter correction methods.

We also investigate the effects of scan time duration. To our knowledge, although there

have been many investigations involving 90Y PET/CT, no other validation work has been

published for 90Y-PET in PET/MRI cameras.

2.2 Materials and Methods

2.2.1 Phantom Preparation

Nearly 8 GBq of 90Y chloride solution was used for filling the standard ACR phantom.

Although microspheres are used for patient treatment, we used solution to avoid the issue

of settling. Solution used for filling of the hot cylinders was measured and diluted such

that there would be an initial activity concentration of 13.1 MBq/mL in the hot cylinders

and a 10:1 activity concentration ratio between hot cylinders and the warm background.

A similar ratio of 8:1 was used in the large-scale 90Y PET/CT QUEST study [37]. The

activity concentration ratio between tumor and the treated side of the liver in patients is

typically 2:1 while the ratio between tumor and background (paraspinal region) is typically

85:1. Cylinders of 8, 12, 16, and 25 mm diameters were filled with the hot activity. One of

the other three 25 mm diameter cylinders was filled with cold water (no activity), one was

left empty with air, and the third was a solid plastic cylinder (see Figure 2.1).
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Figure 2.1: CT (top) and fused PET and CT images (bottom) of ACR phantom filled with
90Y.

2.2.2 Data Acquisition

In this study, we used the Siemens Biograph mMR scanner at two separate institutions

(Washington University in St. Louis, MO and Icahn School of Medicine at Mount Sinai,

New York, NY). The PET portion of the scanner consists of 8 rings of 56 detector blocks

each composed of an array of 8x8 of 4x4x20 mm LSO scintillation crystals with 9 avalanche

photodiodes (APD) per block and a 5.86 ns coincidence window timing window.

MR-based attenuation correction on the mMR is typically done using segmentation methods

on a 2-point Dixon sequence. The acquired in-phase and out-of-phase water and fat images

are processed to create a segmented attenuation map that is separated into four tissue classes:

background, lungs, fat, and soft tissue [45]. Although water in the ACR phantom can be

seen well in MR images, the plastic casing and MR hardware (e.g. RF coils) cannot. Both

the plastic and hardware provide significant attenuation and need to be included for accurate
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PET measurements [46]. PET/MR attenuation correction of the phantom was provided by

a CT scan scaled to the PET attenuation coefficient [47]. CT images of the body phased

array MR coil were similarly processed and registered to the MR-Dixon water image using

fiducial markers and then added to the phantom attenuation maps. The couch attenuation

map is included as fixed hardware attenuation map in the image reconstruction process.

The phantom was imaged in listmode for 30 minutes per scan. The phantom was placed

at the center of the FOV, aligned along the long axis of the scanner using the positioning

laser. Scans were obtained at six total activity levels between 7.43 GBq and 1 GBq where

the phantom was left to decay to the six different activity time points (see Table 2.1).

Table 2.1: Total activity in phantom at time of acquisition for each of the six scans at each
institution.

Washington University

in St. Louis

(GBq)

Icahn School of Medicine

at Mount Sinai

(GBq)

Scan 1 7.42 7.43

Scan 2 6.22 6.48

Scan 3 5.75 5.58

Scan 4 4.42 4.55

Scan 5 2.20 1.97

Scan 6 1.00 1.06
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2.2.3 Count Rates

We investigated the possible loss of counts at high activity by recording Singles, True coinci-

dences and delayed coincidences (Randoms) during exposure for all scans. Count rates were

extracted both from the console and the sinogram headers.

2.2.4 Image Reconstructions and Analysis

All images were generated using the e7tools suite of image reconstruction software, an off-

line reconstruction tool provided by Siemens that allows more flexibility, more debugging

information, and easier handling of large reconstruction queues than the mMR scanner con-

sole (Siemens, Knoxville, TN). The implementation of the reconstruction algorithms is the

same in both e7tool suite and mMR console, since both execute calls to the same low level

reconstruction routines. Listmode data were sorted as 3-dimensional (3D) sinograms with

separate Prompts and Randoms with Random smoothing in the image reconstruction pro-

cess. PET images were reconstructed with the 3D ordinary Poisson ordered subset expecta-

tion maximization (OP-OSEM) algorithm using combinations of the following reconstruction

parameters: 1 to 5 iterations; 21 subsets (default on mMR); 5 mm and 10 mm Gaussian post-

reconstruction filter; with and without point spread function (PSF, no PSF); and absolute

and relative scatter scaling correction.

Two scatter correction methods are available on the Siemens PET/CT or PET/MR cameras:

the absolute scatter correction, which is based solely on the amount of activity in the FOV

and the attenuation map, and the relative scatter correction, which scales the absolute

scatter correction to the tail of the counts measured outside the phantom. The single scatter

simulation (Watson 2000) provides an estimate of the scatter distribution in the presence
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of activity within a defined attenuation map. The scatter distribution can be calculated in

an absolute amount if the activity concentration in the object is known and the attenuation

map is accurately measured based on the well-known Klein-Nishina equation and electron

density in the media. The limitation of this approach is that if activity is located outside

the axial FOV, the scatter distribution will be underestimated. Thus a relative scatter

correction is available from which the scatter distribution is scaled in order to match the

sinogram tails outside the patient or the object being imaged (Watson 2000). This method

is particularly useful for whole-body scans where some of the activity might be outside the

axial FOV. Because the 90Y PET data is noisy, we tested both scatter correction approaches

to determine which method provides minimum bias of measured activity.

A second set of reconstructions was performed using the first 15 minutes of listmode data to

compare the effects of reduced scan time

All analyses were performed on either MIMVista (MIM Software, Cleveland, OH) or in

MATLAB (Mathworks, Natick, MA). Regions of interest (ROIs) were drawn for each cylinder

as delineated on the CT images of the phantom, in both height and diameter (see Figure

2.1). Each PET scan was then registered to the CT image, and the ROIs statistics were

extracted from each PET scan. The ROIs included one for each of the differently sized hot

cylinders, one for the entire phantom, and one exclusively for a portion (151.5 mL) of the

warm uniform background, as shown in Figure 2.1.

The coefficient of variation (COV) in the warm background, was calculated for each scan

using
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COV =
σbackground
µbackground

(2.1)

where σbackground and µbackground are the standard deviation and average activity of a ROI

within the warm background region of the phantom, respectively (see Figure 2.1).

Recovery coefficients (RCs) were calculated as

RCi =
Ameasured

i

Atrue
i

(2.2)

where RCi is the recovery coefficient for a specific ROI i, Ameasured
i is the measured total

activity in ROI i, and Atrue
i is the expected total activity in ROI i. A value of 1 indicates

that the measured amount of activity equals the true amount of activity.

We evaluated the relative change in RC from the PSF reconstructions relative to the no PSF

reconstruction at two iterations using the formula:

∆RC(%) =
RCPSF

i −RCnoPSF
2

RCnoPSF
2

× 100 (2.3)

and the relative change in coefficient of variation using:
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∆COV (%) =
COV PSF

i − COV noPSF
2

COV noPSF
2

× 100 (2.4)

where RCnoPSF
2 and COV noPSF

2 are the recovery coefficients and coefficient of variation of

the warm background, respectively, for reconstructions with 2 iterations and no use of PSF,

and RCPSF
i and COV PSF

i are the recovery coefficients and coefficient of variation of the

warm background, respectively, for reconstructions with i iterations and use of PSF.

2.3 Results

2.3.1 Count Rates

The recorded Singles, Randoms, and Trues rates from the emission sinogram are presented

in Figure 2.2. Plots are Singles rate per block, total Randoms rate in the scanner and total

Trues rate in the scanner as a function of activity. Both the Singles and Trues rates are

linear with increasing activity (R2 = 0.9981 and 0.9919, respectively), while the Randoms

rates are quadratic with activity (R2 = 0.9993).
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Figure 2.2: Singles, Randoms, and Trues count rates measured from the sinogram headers
for the mMR when imaging 90Y. Fitted curves to data points are shown as dashed lines.

Measured activity in the entire phantom for several reconstructions is compared to the ex-

pected activity in Figure 2.3 along with the identity line (dashed). We observed a linear

relationship with increasing activity. Reconstructions with relative scatter correction exhib-

ited a positive bias while reconstructions utilizing absolute scatter correction exhibited a

negative bias.
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Figure 2.3: (a) Measured activity versus expected activity in entire phantom from recon-
structed PET images with 1, 3, or 5 iterations, a 5 mm Gaussian post-reconstruction filter,
and either absolute or relative scatter scaling correction. (b) Difference between measured
versus true activity in the entire phantom for two different scatter scaling methods, rela-
tive (red) and absolute (blue) (3 iterations, 21 subsets, 5 mm Gaussian, PSF). Error bars
represent the range of values between the institutions.

2.3.2 Scatter Correction Method

Figure 2.3b compares the results from using either relative or absolute scatter scaling dur-

ing image reconstruction. Relative scatter scaling reconstructions slightly overestimated the

activity in the phantom while absolute scatter scaling reconstructions tended to underes-

timate the activity in the phantom at high activities. Absolute scatter scaling offered the

least amount of variability from the true total activity amount (within 10%), even though it

consistently slightly underestimated the activity.
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2.3.3 Optimal Reconstruction Parameters without PSF

Figure 2.4 shows the RC plotted against noise for all non-PSF reconstructions for each of

the four hot cylinders for all six total activity levels. Reconstructions with the 10 mm

Gaussian post-reconstruction filter had much lower RCs than all reconstructions with the 5

mm Gaussian filter, with the exception of the 1 iteration, 5 mm Gaussian reconstruction.
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Figure 2.4: Recovery coefficients (RC) versus coefficient of variation of warm background
(COV) for each of the four hot cylinders at a range of total activities (1.00-7.43 GBq). Each
point represents the RC versus COV measurement for a single non-PSF reconstruction.

Minor improvement in RCs is seen beyond 2 iterations. However, as the number of iterations

increases, the noise increases dramatically, especially for the 5 mm Gaussian reconstructions.
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Optimal activity recovery is thus observed with low number of iterations with moderate noise

level. Without PSF compensation, recovery coefficients do not increase markedly beyond

2 iterations on average across all activities and cylinder sizes with a 5 mm Gaussian post-

reconstruction filter.

2.3.4 Optimal Reconstruction Parameters with PSF

Figure 2.5 presents the comparison between the optimal reconstruction parameters for non-

PSF reconstructions to reconstructions with PSF. Relative change in recovery coefficients

and COV of the warm background region were calculated using Eq. 2.4 and 2.3, respectively.

Figure 2.5: Average percent change in recovery coefficients (RC) (blue) and coefficient of
variation of warm background (noise) (red) across all hot cylinders and scans from reconstruc-
tions with 2 iterations, 5 mm Gaussian without PSF to reconstructions with 2-10 iterations,
5 mm Gaussian with PSF. Error bars represent the standard deviation of percent change
across all hot cylinder sizes at both institutions.
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On average across all scans and cylinder sizes, there was an increase in the RC with the use

of PSF with increasing iteration number. COV was, on average, reduced with the use of PSF

for the reconstructions with two iterations. Higher iterations with PSF resulted in higher

noise compared to the reconstructions with two iterations without PSF. However, beyond

3 iterations, noise increased at least an additional 20% while the gain in recovery was only

an additional 5% more than what it was with 3 iterations. 3 iterations, 21 subsets, 5 mm

Gaussian post-reconstruction filter with PSF compensation provided satisfactory images in

regards to recovery and noise; although, the recovery was suboptimal (RC<1).

Figure 2.6: Recovery coefficient versus diameter of hot cylinder for several activity con-
centrations at each institution. Recovery coefficients were measured from PET images re-
constructed with the optimal parameter: 3 iterations, 21 subsets, 5 mm Gaussian post-
reconstruction filter, and PSF compensation. Error bars represent the range of recovery
coefficients measured between institutions.
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The difference between the measured total recorded activity in the phantom and true total

activity was between -2.05% and -9.26% for this choice of reconstruction parameters. Recov-

ery coefficients measured using this choice of reconstruction parameters for various activity

concentrations and cylinder sizes are shown in Figure 2.6.

2.3.5 Effect of Scan Time Duration

The percent change in RCs and noise from 15 minutes to 30 minutes of listmode data are

shown in Figure 2.7. The difference in RCs between scan time durations (averaged across the

four hot cylinders) tended to be within 10% of each other. Noise however, decreased signif-

icantly as scan time increased, especially for the lowest activity scan where noise decreased

by as much as 29%.

Figure 2.7: Change in RCs and noise from 15 minutes of scan time to 30 minutes of scan time
data, averaged across the four hot cylinders at both institutions. (3 iterations reconstruction,
21 subsets, 5 mm Gaussian post-reconstruction filter, with PSF). Error bars represent the
standard deviation of percent change across all hot cylinder sizes at both institutions.
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2.4 Discussion

The simultaneous detection of a Bremsstrahlung photon and an annihilation photon within

the same detector may cause a non-linearity in the Trues event detection as a function of

activity. In addition, the high Bremsstrahlung photon flux may create an afterglow (or

subsiding scintillation after exposure to high radiation field), which may result in spurious

counts after removal of the source of activity. The excellent linearity of Singles and Trues

with activity as well as the measured versus expected activity in the entire phantom is an

indication of absence of detector saturation over the entire range of activity measured, which

includes an extreme case of injected activity at nearly 8 GBq.

The differences in absolute count rates between PET/CT (Siemens’s Biograph 40) as de-

scribed by Attarwala et al. [48] and PET/MRI as shown in Figure 2.2 can be attributed to

variations in the designs of the different scanners, in particular the detector block size, num-

ber of blocks, arrangement of the blocks around the scanner tunnel, the longer axial FOV

for the mMR, as well as the coincidence time window. Compared to the Biograph 40, the

mMR has more crystals and has a smaller diameter and longer axial coverage, all of which

increase the sensitivity of the system. Delso et al. reported a sensitivity of 15.0 kcps/MBq

along the center of the mMR [49] and Jakoby et al. reported a sensitivity of 8.1 kcps/MBq

along the center of the 4-ring Biograph 40 system [50]. A larger coincidence window (5.86

ns for mMR, 4.5 ns for Biograph 40), together with larger coverage, increases the Randoms

count rate on the mMR. The singles rate per block are lower in the mMR, mainly because of

the smaller block size (8x8 crystals compared to 13x13 crystals, of the same 4x4x20mm size).

All of these differences, especially the relative amount of random events, between PET/CT

and PET/MRI along with the low β+ count rates of 90Y are reasons to investigate the PET

components of the two scanners differently and obtain a separate set of PET reconstruction
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parameters for 90Y PET/MRI since the noise components are not expected to be same. Due

to the high Randoms count rates with respect to the Trues count rates (see Figure 2.2), it

is unclear if the convergence properties of the OSEM algorithm will be the same as it is

for PET/CT with or without TOF capabilities. At a similar level of counts, theoretically,

the reconstruction parameters should be nearly identical for all Siemens Biograph scanners

(PET/MRI and PET/CT), since they use the same reconstruction software. Previous stud-

ies on a Siemens Biograph mCT PET/CT with TOF and PSF compensation have reported

2 iterations, 24 subsets, and an all-pass filter are optimal when imaging 90Y [37]. With

iterative reconstruction methods, convergence tends to speed up with the use of TOF [51],

and tends to slow down with PSF compensation [52]. Since the mMR does not have TOF

capabilities, a formal phantom study, such as this, was required to find where convergence

could be met when imaging 90Y.

The 90Y PET reconstructions with near-maximized recovery coefficients and reduced noise

were achieved with 3 iterations, 21 subsets, 5 mm FWHM Gaussian post-reconstruction

filter, absolute scatter correction, PSF compensation, and a 30 minute scan time. These

results apply for total activity values typically used in patient therapy (17.4 GBq), and a 10:1

activity concentration ratio between hot ROIs and warm background. The difference between

measured and true total activity in the phantom using these reconstruction parameters is

consistent with the measurements obtained by Willowson et al. on a TOF PET/CT [37]. PSF

compensation provided images with higher recovery coefficients than images reconstructed

with 2 iterations without PSF compensation. While increasing the iteration number and

decreasing the post-reconstruction Gaussian filter size resulted in increased RCs, performing

these two operations also significantly increased noise. An increase in noise with the increased

number of iterations is characteristic of iterative reconstruction methods [53–55]. In our data,

we found that RCs began to reach convergence on average around 2 iterations without the use
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of PSF compensation and around 3 iterations with the use of PSF compensation. Although

the noise increases when going up to 3 iterations with PSF, the benefits of improved accuracy

of measurements in terms of RCs is worth the slight cost in increased noise. The highest

priority for 90Y PET imaging is to create the most accurate images possible, as defined

by the recovery coefficients, which, in turn, will result in the most accurate PET-based

dosimetry possible. If maximal activity recovery is achieved, then the second priority is

reducing the noise to allow for improved image quality when visualizing the data. Although

the noise was slightly lower in the 10 mm Gaussian reconstructions, the benefits in accuracy

of measurements from the higher RCs of the 5 mm Gaussian reconstructions was determined

to be more valuable. Rigorous ROC analysis with multiple observers is required for an exact

choice of optimal reconstructions parameters. We leave this for future work.

Using optimized reconstruction parameters for RC and COV, the 25 mm diameter cylinder’s

RCs ranged from approximately 0.52–0.60 for activity concentrations of 1.75–13.0 MBq/mL.

No apparent positive biases were observed on all measured recovery coefficients, which is

likely a consequence of treating the sinograms as separate Prompts and Randoms in the re-

construction. Similar phantom studies have been performed on TOF and non-TOF PET/CT

scanners. RCs were reported to be 0.8 for a 37 mm diameter sphere with an activity con-

centration of 3.9 MBq/mL [32]. Carlier et al. reported RCs to be between 0.6–0.7 for 17–28

mm diameter spheres with an activity concentration of 2 GBq/mL [35]. More recently with

the QUEST study, Willowson et al. 2015 reported RCs ranging from approximately 0.1–0.75

from their non-TOF Siemens’s Biograph scanners and from 0.2–0.8 with the mCT PET/CT

with TOF for spheres ranging from 10–27 mm in diameter. The range of RCs varied depend-

ing on the choice of reconstruction parameters. These measurements are consistent with our

measurements. The higher reported values on PET/CT could be attributed to larger sphere

diameters, higher activity concentrations, and possibly the use of TOF, although further
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investigation is required. The higher sensitivity of the PET camera on the mMR, as dis-

cussed earlier, may produce results comparable to those from TOF PET/CT if an identical

phantom is used between studies. Further investigation is required. Still, RCs were lower

than what Willowson et al. reported on the same PET/CT scanner with the high-yielding

positron emitter 18F (0.5–1.0 for 10–25 mm diameter sphere) [37]. The reduced recovery co-

efficient of 90Y relative to 18F may be related to the sparsity of the projection data and high

random fractions and point to areas of further investigation on the limitations of 3D-OSEM

algorithm for accurate quantitative imaging in those situations [37]. Further investigation is

required for optimizing reconstruction algorithms, which may include utilizing the MR for

partial volume correction. In any case, such studies could benefit from results presented in

our study where base-line reconstruction parameters are first optimized with the standard

reconstruction method on the scanner before attempting to improve it further using the MR

data.

The absolute scaling scatter correction method is expected to perform better than relative

scaling scatter correction when all of the activity is contained within the FOV as long as the

activity can be accurately estimated. We observed that absolute scatter scaling performed

better than relative scatter scaling for our phantom study and should also perform better

than relative scaling with 90Y hepatic radioembolization patients since all of the activity is

contained within the FOV. Moreover, given the extremely low counts in the sinogram tails,

the fitting and scaling procedure for relative scatter scaling may be more prone to errors

and instability. Carlier et al. found similar unreliable results for correcting 90Y PET images

when using scatter correction on a Siemens Biograph TruePoint non-TOF PET/CT where

relative scatter scaling is the default method [36]. Further investigation is required for the

best scatter correction method when imaging patients where parts of the body that still

contribute to scatter may extend outside the FOV, such as the arms. Current methods,

30



such as maximum likelihood reconstruction of attenuation and activity (MLAA), rely on

true counts in the sinogram bins where the activity and attenuation are estimated [56]. In

the case of 90Y PET imaging, there is no activity uptake in the arms, which means that

we cannot estimate attenuation in those bins. One limitation of this study is that we were

not able to test the accuracy of MLAA because all of the activity was confined to the FOV.

Currently in patient studies, however, we work around the potential inaccuracies of MLAA

with 90Y post-radioembolization PET by imaging patients with arms up.

The duration of 90Y PET scans is an important consideration in regards to the practical

aspects of the clinical application. Typically, the patients who undergo 90Y radioembolization

are ill and have a low tolerance for long-duration scans. Thus, it is desirable to limit the

duration of the post-radioembolization imaging as much as possible while still obtaining

useful and accurate PET images. Previous PET/CT studies were imaged with either a single

bed position with a 15 minute acquisition [20] or with two bed positions, 15–20 minutes each,

due to the shorter axial coverage on PET/CT compared to the mMR [37]. The longer axial

FOV on the mMR encompasses the entire liver, which allows for a single bed position for our

application. As shown earlier in Figure 2.7, the RCs tend to be rather comparable between

reconstructions using 15 minutes of listmode data versus those using 30 minutes of data,

with slightly higher values for the longer duration scans. However, the noise was much lower

in the reconstructions using a full 30 minutes of data, especially for the low 1.00 GBq scan.

While many patients receive doses that are at least 1 GBq in activity, many receive doses as

low as 0.3 GBq. Scans acquired with these low activities could prove to have unacceptable

noise levels if only 15 minutes of listmode data is acquired. Thus, unless a patient received

a high amount of activity during treatment, we recommend at least a 30 minute-listmode

acquisition on the mMR.
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There are several limitations to consider in this analysis. First, there were frequent issues

with registration between the MR attenuation maps and the CT attenuation maps, which

led to slight registration errors between the PET images and the regions of interest, mostly

with the 8 mm cylinder. The 8 mm cylinder often provided the largest discrepancies in

measurements not only due to registration errors, but also possibly due to the fact that it

is less than twice the FWHM of the PSF of the scanner and only twice the size of the PET

crystals. Especially with the high activity scans, partial volume effects were evident with the

8 mm cylinder, more so than the other, larger cylinders. This made registration between the

CT images with the ROIs and the PET images from the mMR particularly difficult. The 8

mm cylinder was also difficult to register for the low 1.00 GBq scan, where the activity was

so low that it was difficult to find in the PET images.

Another limitation for this study is the lack of simulating challenges inherent to patient

attenuation correction with MRI. Since this was a phantom study, and plastic cannot be

imaged with MRI, attenuation correction was provided by CT. However, in patient studies,

attenuation correction with PET/MRI is provided by the segmentation-based attenuation

map obtained from a 2-point Dixon sequence [49]. One of the challenges with this method

is accurately classifying lung and bone [46], which both have low proton signal in MRI. Mis-

classification of tissue in the attenuation map could lead to improper attenuation correction

and inaccurate count rate measurements, scatter, and random events estimates. Due to the

location of the liver in the lower thorax, there is potential concern for accurate attenuation

correction and, subsequently, accurate PET quantification of liver lesion uptake and possible

lung uptake when imaging 90Y microspheres with PET/MRI. However, Kim et al., Izquierdo-

Garcia et al., and Eiber et al. found that differences between PET standardized uptake values

(SUV) measured on segmentation-based MR attenuation corrected PET and CT attenuation

corrected PET were within 10% [57–59]. Furthermore, Lau et al. investigated the effects of
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lung density in the context of cardiac PET/MR imaging, where lung attenuation correction

may be more relevant. Across 30 patients, they found that there was no significant difference

between standardized uptake values (SUVs) measured on PET/CT and PET/MRI [60].

Further work is still required for improving the accuracy of MR-based attenuation correction

in PET/MRI, especially when imaging regions containing lung and/or bone [46].

The discrepancy of measurements between our two institutions points to the accuracy of

PET imaging for accurate quantitative reproducibility in test/retest study. Errors can be

attributed in differences in filling the phantom, differences in total activity of the phantom

for corresponding scans, and exact positioning of the regions of interest on the images in

particular. In order to ascertain the quantitative accuracy and reproducibility on imaging

with 90Y, a multicenter study with a standardized phantom and protocol is needed for 90Y

PET/MRI as was done for 18F-FDG imaging [61] and for 90Y PET/CT imaging [37]. One

institution in the multicenter 90Y PET/CT study performed three consecutive scans of an

ACR phantom filled with 90Y solution to test reproducibility of measurements when the

scanner and phantom are identical. They measured standard deviations of 4–8% for sphere

diameters ranging from 22–37 mm. Our measurements, performed on two separate mMR

scanners with separate phantoms and across six different total activity levels had standard

deviations for each of the four hot cylinders (8–25 mm diameter) ranging from 3.4–5.8%

We also noticed at both sites that as the activity was allowed to decay over 10 days, activity

began collecting on the center insert of the phantom and towards the edges of the cylinders.

This phenomenon is likely due to the chloride solution reacting with the acrylic inside the

phantom. Mixing a solvent with the solution may have helped prevent this reaction.
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A final limitation of this study is that these results are specific to the Siemens Biograph

mMR scanner. Further investigation is required to determine if these optimal reconstruc-

tion parameters carry over to other PET scanners without TOF capabilities and with PSF

compensation.

2.5 Conclusion

Using a phantom filled with 90Y chloride solution, we were able to determine the optimal

reconstruction parameters when imaging 90Y with PET on a PET/MRI scanner. If no PSF

option is available, reconstructing 90Y PET images from PET/MRI with 2 iterations, 21

subsets, and a 5 mm Gaussian post-reconstruction filter provides an optimized compromise

between high RCs and moderate noise for all activity levels and ROI sizes. However, if

the PSF option is available, using it can improve the accuracy of measurements at the cost

of only a slight increase in noise. With the OSEM–PSF reconstructions, 90Y PET/MRI

images should be reconstructed with 3 iterations, 21 subsets, and a 5 mm Gaussian post-

reconstruction filter. Furthermore, longer scan times result in higher quality images with

significantly reduced noise. Even with these reconstruction parameters, however, there was

not perfect recovery of counts in regions of interest <25 mm diameter. This is likely due

to current limitations with OSEM software in the context of low positron count statistics

and a high random fraction. More work is needed for partial volume correction and image

reconstruction methods to further improve quantification accuracy.
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Chapter 3

Multi-Institutional Phantom Study

for Imaging 90Y with PET/MRI for

Post-Radioembolization Dosimetry

3.1 Introduction

Multi-center clinical studies with quantitative end points, typically involve imaging a stan-

dard phantom to test quantitative accuracy and inter-center variability. Such a study

was performed by Fahey et al. for a multi-center study involving fluorine-18 (18F) on

PET/CT [61]. Another similar study was performed by Willowson et al. in the multi-center

QUEST Phantom Study for measuring inter-center variability of 90Y on PET/CT [37].

The purpose of this study is to measure both the inter- and intra-center variability of quan-

titatively measuring 90Y on PET/MR in preparation for a multi-center phase I/II clinical

trial. This study mirrors the work that was performed by Willowson et al. in the QUEST

study, but focuses instead on PET/MRI scanners.
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3.2 Materials and Methods

A total of 7 institutions across 4 countries participated in this phantom study. All sites

followed a strict protocol for both filling and imaging the phantom. Three NEMA 2007/IEC

2008 Body phantoms (Data Spectrum, NC) were shared between the seven institutions.

3.2.1 Phantom Preparation

Before filling the phantom with activity, the volume of the background compartment was

measured by weighing it with and without water. The phantom was then emptied.

3.6 GBq in 1.4 mL of 90Y chloride solution (PerkinElmer, Waltham, MA) was shipped to each

institution from the same batch of 90Y for each round of imaging. The supplier’s calibrated

activity listed on the shipping document was used as the ground truth for the activity

within the vial. Each site recorded the amount of activity reported by their department’s

dose calibrator for comparison against the reported amount on the shipping label.

The entire contents of the vial were completely emptied into 1300 mL of water with 100

mg of either DTPA or EDTA added to prevent binding of 90Y chloride to the walls of the

phantom. Activity was drawn from this solution to fill the 6 spheres (diameters 37, 28, 22,

17, 13, and 10 mm). Once all spheres were filled, the remaining solution was emptied into

the background compartment of the phantom, and the remaining volume was filled with

water. This resulted in an approximately 8:1 sphere-to-background activity concentration

ratio. The center lung insert for the phantom came pre-filled with foam material. The total

recorded activity in the phantom was the total activity listed on the shipping document

minus any residual activity in the vial and syringe.
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3.2.2 Image Acquisition and Reconstruction

The phantom was imaged at 5 time points (Day 0, Day 3, Day 5, Day 7, and Day 10)

at each institution on Siemens Biograph mMR PET/MRI scanner, representing a range of

total activities from 0.3 GBq–3.0 GBq. These values correspond to the full range of activities

administered to patients treated with resin microspheres. The phantom was positioned in

a foam cradle with an accompanying positioning device to allow for reproducible placement

of the phantom between scans and institutions. The phantom was imaged for 30 minutes

in listmode in a single station. The longer field-of-view (FOV) offered by the Biograph

mMR allows for encompassing the entire liver in a single station in clinical studies, whereas

in PET/CT, 2 stations are typically required. At one of the sites, 3 back-to-back PET

acquisitions were performed to evaluate intra-center variability. Another site repeated the

phantom filling with 54.4 MBq 18F and imaged at a single time point (15 minutes listmode)

for comparison.

All raw PET data were sent via a secure data server (ABX-CRO Advanced Pharmaceutical

Services, Dresden, Germany) to a central site in St. Louis, MO for reconstruction and

analysis by a single investigator (N.M.). All PET reconstructions were performed using

e7tools, the offline reconstruction software provided by Siemens, with a vendor-provided

attenuation map of the NEMA 2007/IEC 2008 Body phantom for attenuation correction.

The attenuation map was manually inspected and registered for each PET data set. Images

were reconstructed with 3D ordinary Poisson ordered subset maximization (OP-OSEM),

with the following parameters determined from a previous phantom study: 3 iterations, 21

subsets, 5 mm full-width-half-maximum Gaussian post-reconstruction filter, and absolute

scatter scaling correction [44].
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3.2.3 Image Post-Processing and Analysis

All image post-processing, including drawing volumes of interest (VOIs) and extracting

statistics from those VOIs, was performed in MIM v6.6.7 (MIM Software, Cleveland, OH).

VOIs were drawn on the attenuation map of the phantom (see Figure 3.1). The VOIs with

their corresponding purpose for quantitative assessment, according to NEMA NU 2-2007

guidelines, are summarized in Table 3.1. Each PET image was fused to the corresponding

attenuation map for transfer of VOIs.

Figure 3.1: Attenuation map of NEMA 2007/IEC 2008 Body phantom with VOIs drawn
around each of the 6 fillable spheres, 72 VOIs drawn in the background compartment, and
a 28 mm diameter VOI drawn in the cold insert (center, yellow).
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Table 3.1: VOI analysis

VOI and size Measured Quantity Purpose

Field of View (FOV) Total activity (Gbq) Accuracy in total injected activity

measurement

Fillable spheres:

37-, 28-, 22-, 17-, 13-, 10-mm

Recovery coefficient of mean activity

concentration (MBq/mL)

Accuracy in VOI measurements from

partial volume effects

Background spheres:

12 each of 37-, 28-, 22-, 17-, 13-, 10-mm

Recovery coefficient of mean activity

concentration (MBq/mL)

Accuracy in warm background VOI

measurements

Background spheres:

12 each of 37-, 28-, 22-, 17-, 13-, 10-mm

Standard deviation of mean activity

concentration (MBq/mL)

Variability in warm background VOI

measurements (noise)

Insert: 28 mm diameter, 160 mm length Mean activity concentration

(MBq/mL)

Misplaced counts

The recovery coefficients (RC) for each of the fillable spheres and respective background

VOIs was calculated to assess accuracy of measurements, especially in regards to partial

volume effects (PVE):

RC(%) =
Am

At

× 100 (3.1)

where Am is the measured mean activity concentration and At is the true activity concentra-

tion. The coefficient of variation (COV) of RCs for each hot sphere VOI and day of imaging

was used to quantify both inter- and intra-center variability:
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COVi,n(%) =
σi,n
µi,n

× 100 (3.2)

Background variability for each sphere size s (BVs) for Day 0 (12 measurements/site × 7

sites = 84 total VOIs) was calculated using

BVs(%) =
σs
µs

× 100 (3.3)

where σs is the standard deviation of the 84 background concentration measurements for a

given sphere size s, and µs is the average of the 84 background concentration measurements

for a given sphere size s.

Activity in the cold insert from background and scatter counts (Ci) were quantified using

Ci(%) =
Am,i

At,b

× 100 (3.4)

where Am,i is the measured activity concentration in the cold insert, and At,b is the true

background activity concentration.
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3.3 Results

Activities reported by each site’s dose calibrator were on average 4.01% lower than that

reported on the shipping label (median -5.13%, range -6.31%–0.61%). Figure 3.2 shows

PET images from the first day of imaging for each site.

Figure 3.2: PET images from Day 0 for each of the 7 sites.
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Figure 3.3: (a) Total measured activity within the FOV compared to the true activity. The
dashed line represents the identity (i.e. where measured equals true). (b) Error in measured
activity within the FOV. Each point represents the mean measured activity. Error bars
represent one standard deviation. The shaded region represents +/- 10% error.

Figure 3.3 shows the measured activity versus true activity within the whole FOV. Total

activity measured within the FOV had a median error of -2.53% across 35 PET imaging

volumes (mean 3.06%, range -23.9%–65%). Most average measurements were within 10%

of true activity for activities ≥0.5 GBq. Day 10 overestimated the total activity within the

FOV on average by 23.0% (range -20.8%–65.0%).
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Figure 3.4: (a) Mean activity concentration within the warm background compartment of
the phantom compared to the true activity. The dashed line represents the identity (i.e.
where measured equals true). (b) Error in measured activity concentration within the warm
background. Each point represents the mean measured activity. Error bars represent one
standard deviation. The shaded region represents +/- 10% error.

Figure 3.4 shows the mean measured versus true activity concentration in the warm back-

ground compartment of the phantom. Mean measured activity concentration had a median

error of -9.12% across 2520 warm background VOIs. (mean -2.39%, range -88.9%–311.8%).

Day 10 measurements provided the widest range in warm background measurements (range

-88.9%–304%).
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Figure 3.5: (a) Variability in measurements between 12×7 background VOIs for each sphere
size. (b) Misplaced counts in cold lung insert reported as percent of true background activity
concentration. Each point represents the mean. Error bars represent one standard deviation.

Figure 3.5 illustrates the noise in the PET imaging volumes, quantified by both the back-

ground variability (Eq. 3.3) and the scatter/background counts in the cold lung insert (Eq.

3.4). The median background variability across all sphere sizes (total of 504 warm back-

ground VOIs) was 16.5% (mean 16.7%, range 6.48%–32.2%), with the least variability for

the largest spheres and the highest variability for the smallest spheres. The median Ci for

misplaced counts across 35 PET imaging volumes was 42.4% of the true warm background

activity concentration (mean 49.0%, range 23.9%–104%).
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Figure 3.6: Recovery coefficients as a function of hot sphere size from 5 different total
phantom activity levels across all sites. Each point represents the mean RC and error bars
represent one standard deviation. The COV for each sphere size and total phantom activity
level are shown in the included table. COV values <25% are highlighted in the red box.
Measurements from one site’s 18F measurements (54.4 MBq) are shown in black.
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Figure 3.6 illustrates the inter-center variability of imaging 90Y on PET/MRI. The median

RC across all 210 hot sphere measurements was 45.7% (mean 46.3%, range 2.63%–118%).

The highest mean RC for any given total phantom activity and sphere size was 76.8%,

measured from the 37 mm sphere on Day 0. In contrast, the lowest mean RC for any given

total phantom activity and sphere size was 12.8%, measured from the 10 mm sphere on

Day 10. Agreement with 18F measurements was best on Day 0 and for the largest sphere

(37 mm). Variability in measurements increased with decreasing sphere size and decreasing

activity.
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Figure 3.7: Recovery coefficients as a function of hot sphere size from 3 consecutive scans
at a single site. Each point represents the mean RC and error bars represent one standard
deviation. The COV for each sphere size and total phantom activity level are shown in the
included table.
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Figure 3.7 illustrates the intra-center variability obtained from one site who acquired three

consecutive scans for each imaging day. The median RC across all 90 hot sphere measure-

ments was 50.1% (mean 47.2%, range 4.42%–79.6%). On Day 0, variability between scans

for all hot spheres was <13% (mean 6.24%, median 5.77%, range 1.42%–12.4%). All spheres

≥17 mm from scans ≥0.9 GBq in total activity had <20% variability in their RCs. The 37

mm sphere had a variability in measurements ≤20% for all activity levels. Again, variability

increased with decreasing sphere size and decreasing activity. Table 3.2 lists the COV for

these scans for total activity, background, and cold lung insert. Variability tended to increase

with decreasing activity for these VOIs as well.

Table 3.2: Intra-center variability between 3 consecutive scans on each imaging day

COV(%)

VOI 3.0 GBq 1.5 GBq 0.9 GBq 0.5 GBq 0.3 GBq

Total Activity 1.39 0.294 0.275 1.45 1.34

Background 16.8 27.0 27.9 34.6 50.5

Lung Insert 4.67 6.41 2.37 5.44 10.7

3.4 Discussion

Despite the low positron yield from 90Y, PET imaging of this isotope has proven both feasible

and useful in previous literature [20,32,34,44,62–64] and is further demonstrated in this work.

The results from this study and that reported by Willowson et al. in the PET/CT QUEST

study [37] also demonstrate the feasibility of performing multi-institutional clinical studies

focused on 90Y PET-based dosimetry.

48



Even though this multi-institutional phantom study with 90Y PET imaging has been per-

formed previously on PET/CT [37], there are several keys differences between Siemens Bio-

graph PET/CT scanners and Siemens Biograph mMR (PET/MRI) scanners that motivate

the need for replicating this study on PET/MRI. First, the Biograph mMR lacks time-of-

flight (TOF) capabilities, due to the nature of the avalanche photodiode (APD) detectors,

which were utilized for their compatibility with a strong magnetic field. Compared to the

Biograph PET/CT scanners, the mMR exhibits increased sensitivity: 15.0 kcps/MBq [49]

versus 8.1 kcps/MBq on the Biograph 40 PET/CT [50] due to the geometrical arrangement

of the detectors. As discussed previously, the difference in sensitivities is likely due to a

longer axial FOV and shorter ring diameter on the Biograph mMR [44]. The tight geometry

in mMR results in higher random rates, but the smaller block size results in lower singles rate

on mMR [44]. All of these factors, combined with low positron statistics and high Randoms

rates (from Bremsstrahlung radiation), make the convergence properties of OSEM unclear

between Biograph PET/CT and Biograph PET/MRI scanners. This was demonstrated in

our previous phantom study, where we found that the optimal reconstruction parameters,

using the same number of subsets, post-reconstruction filter size, and resolution recovery,

were at 3 iterations on the mMR instead of 2 iterations for Biograph PET/CT scanners,

as suggested by Willowson et al. [37]. Therefore, it is still necessary to demonstrate the

quantitative accuracy and test the variability between scanners on mMR, especially since,

to our knowledge, this has not been done previously for any isotope on the Biograph mMR.

For Siemens Biograph PET cameras, two modes for listmode acquisitions are available:

NETTRUES and PROMPTS+RANDOMS and NETTRUES. NETTRUES involves direct

event-by-event subtraction of the delayed coincidences, whereas PROMPTS+RANDOMS

involves acquiring separate Prompts and Randoms sinograms, where the Randoms sinogram

is obtained via a delayed coincidence window and then smoothed before subtracting from
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the Prompts sinogram [37]. In the case of 90Y, which characteristically has high Randoms

rates (due to a high flux of Bremsstrahlung radiation) and low Trues statistics (due to a

low positron yield), careful handling of the Randoms in the reconstruction proves essential

in iterative reconstruction algorithms. In previous generations of OSEM, the non-negativity

constraint was often employed [65] and resulted in significant bias in the case of 90Y PET

imaging [66, 67]. When using OP-OSEM with PROMPTS+RANDOMS data acquisition

[65,68], there is no subtraction of scatter or Randoms estimates, and therefore, the algorithm

always treats positive counts. Thus, there is no need for the non-negativity constraint.

However, in situations of very low counts, such with 90Y imaging, the convergence properties

of the algorithm may be such that more iterations are needed at the expense of increased

noise. In our phantom evaluation [44], we limited the noise in the images by stopping after

3 OSEM iterations (with 21 subsets resulting in 63 updates) and applying a 5 mm Gaussian

post-reconstruction filter. Images reconstructed with more iterations and a sharper filter

resulted in unacceptably noisy images. This issue has been discussed in the case of 90Y

PET imaging, and is likely the cause of lower count recovery compared to standard 18F PET

imaging, but has yet to be resolved [36,37,44].

Recovery of the total activity within the whole FOV was consistent among sites, with most

measurements within +/- 10% of the true values, especially above 0.5 GBq. These values

are consistent with those reported by Willowson et al. in the PET/CT QUEST study for

19 Siemens Biograph TOF PET/CT scanners [37], though our reported standard deviation

on the Biograph mMR at 0.5 GBq was slightly higher, possibly due to a smaller number

of sites. Our total activity results were closer in agreement with the expected activity than

those reported for Siemens Biograph non-TOF PET/CT scanners in the same QUEST study,

where mean error in the FOV at 0.5 GBq was approximately +20% and standard deviation

in this error was approximately +/-60% [37]. Our study was performed an extra scan at a
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lower activity level (0.3 GBq) that was not performed in the PET/CT QUEST study. The

extra scan at a lower activity level represents the subset of patients who are administered

the lowest activity available for resin microsphere treatment. Total activity measurements

in this range were, on average, overestimated by >20%, with a standard deviation reaching

beyond +/-20%. This trend in overestimation of total activity with decreasing activity has

been reported in previous studies using both TOF and non-TOF Siemens Biograph PET/CT

scanners [32, 37]. A possible explanation could be extremely low count statistics resulting

in higher noise, or artificial peaks in the data, or possibly from non-negativity constraint

bias resulting in measured activity higher than the true activity. This effect may be less

evident in TOF reconstructions, since it is known that TOF reduces noise not only in better

discriminating between True and Random events but also even further by preventing noise

propagation in both forward- and back-projections at each iteration [69].

Activity measurements in the warm background compartment of the phantom were excellent,

with the mean error consistently <10%. These values are consistent with those reported in

the QUEST study for both the Siemens Biograph TOF (>1 iteration, no post-reconstruction

filter reconstructions only) and non-TOF PET/CT (PROMPTS+RANDOMS reconstruc-

tions only) scanners [37]. However, the standard deviations in our warm background mea-

surements were much higher than those reported in the QUEST PET/CT study. This may

be due to our measurements including VOIs of many different spheres sizes (10 mm–37

mm), where the 10 mm VOIs are more susceptible to noise peaks. It was unclear whether

the QUEST PET/CT study used only the 37 mm sphere warm background VOIs or all VOI

sizes when quantifying the recovered activity in the warm background.

Noise in the PET imaging volumes was quantified by both the background variability on

Day 0 (Eq. 3.3) and the scatter/background counts in the cold (no activity) lung insert of
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the phantom for each day of imaging (Eq. 3.4). Background variability on the Biograph

mMR was significantly lower than that reported for both the TOF and non-TOF Biograph

PET/CT scanners in the QUEST study (16.7% mean versus ≈30%, 50%, and 38% means

for TOF and Gaussian post-reconstruction filter, TOF and no post-reconstruction filter,

and non-TOF reconstructions, respectively) [37]. However, scatter counts in the lung insert

from the mMR (49.0% mean) were higher than those from Biograph TOF PET/CT scanners

(∼30% mean) and non-TOF PET/CT scanners using PROMPTS+RANDOMS mode (∼35%

mean). They were, however, lower than those from Biograph non-TOF PET/CT scanners in

NETTRUES mode (∼60% mean) [37]. A possible reason for the higher rate of scatter counts

in the cold lung insert compared to those reported by Willowson et al. could likely be the

difference in lung inserts. The lung inserts in this study were filled with small polyurethane

foam balls whereas those in the QUEST study were made of solid plastic. Furthermore, the

attenuation maps from this study were vendor-provided since attenuation maps of phantoms

cannot be directly measured with MRI. Depending on the type of lung insert used in the

vendor provided maps (filled or solid), this could affect the attenuation properties and scatter

estimates used in the reconstruction.

Count recovery in the higher activity concentrated (hot) spheres was good, with mean RCs

ranging from approximately 30%–80% on Day 0. These values are consistent with those

from a previous ACR phantom study at 2 of the institutions included in this study [44].

They are also consistent with those reported for the same total activity level in the QUEST

study for the Siemens Biograph TOF PET/CT scanners (2 iterations, 5 mm Gaussian post-

reconstruction filter) and better than those for the non-TOF PET/CT scanners (all recon-

structions) [37]. RCs from 90Y PET imaging were also lower than those from 18F PET

imaging, with the exception of the largest sphere size on Day 0. We report lower 18F RCs

than Willowson et al., who reported RCs approaching near 100% for the largest sphere [37].
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Discrepancy in these measurements is likely due to a difference in the method for drawing

VOIs: they used a region-growing approach, where VOIs were drawn at 50% of the maxi-

mum value, whereas we used the known sphere diameter to draw VOIs. Using an attenuation

map-based method for drawing VOIs, as opposed to a region-growing approach, is known

to decrease RCs in PET images [32]. Our method is more susceptible to partial volume

effects, but is more representative of what is performed for individual lesion dosimetry. As

is characteristic of PET imaging studies, whether using 90Y or a standard isotope like 18F,

RCs degraded with decreasing VOI size [32, 37, 44, 48]. RCs of any given hot sphere size

also slightly decreased with decreasing activity concentration, similar to previous phantom

studies [37,44]. Contributing factors to sub-optimal recovery, especially below 18F, could in-

clude partial volume effects, low positron statistics, and high Randoms rates. Low positron

statistics, and thus low Trues rates, especially combined with high Randoms rates, are lim-

iting factors of OSEM reconstruction algorithms, as previously discussed. Handling these

combined factors in iterative reconstruction algorithms is an active area of research, not just

in 90Y PET imaging [36], but also in gated-cardiac PET imaging where statistics are often

low [45].

Inter-center variability, as quantified by the COV for each sphere size and total activity

level, was acceptable (<25%) for sphere diameters ≥22 mm and total activity levels ≥0.9

GBq. For Day 0, inter-center variability was <12% for sphere diameters ≥22 mm. In the

multi-institutional phantom study by Fahey et al., 9 sites tested the variability of imaging

18F on PET/CT using an ACR phantom in preparation for a multi-institutional clinical

trial. They reported COVs in RCs of 5.9-, 21.2-, and 17.0% for VOI diameters 25-, 16-, and

12-mm, respectively [61]. Though these values are slightly lower than what we measured for

our comparable 22 mm sphere VOI, considering the noisy nature of 90Y PET images, our
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results offer promise for the ability to reliably perform multi-institutional clinical studies of

90Y PET-based dosimetry with the Siemens Biograph mMR.

Intra-center variability was also acceptable, <7% for sphere diameters ≥22 mm, which was

lower than that reported by the QUEST study for the Biograph TOF PET/CT (5-, 4- and

8% for sphere diameters 37-, 28-, and 22 mm, respectively) on Day 0 [37]. This further em-

phasizes the reliability of imaging 90Y, even at a single-institution level, since measurements

are rather reproducible for VOI sizes ≥37 mm or at activities >0.5 GBq.

Several limitations exist with this study. As mentioned previously, we used a vendor-provided

attenuation map since direct attenuation map acquisition of phantoms is not possible on

PET/MRI scanners. Attenuation maps had to be manually registered to the PET volumes in

order to incorporate into offline reconstruction. Manual registration of the attenuation map

may have introduced error during the reconstruction procedure. We attempted to mitigate

this effect with a phantom cradle and positioning device to replicate phantom placement in

the scanner between sites. Furthermore, since we were unable to image the phantom directly

with MRI, we could not see if the spheres were filled completely; thus, the “true” activities

may have actually been overestimates of what was actually filled in the spheres. Since our

RCs agreed well with those reported in the QUEST study by Willowson et al. for Siemens

Biograph TOF PET/CT scanners, we consider this effect to be negligible.

PET/MRI scanners from other vendors, such as GE, were not included in this study due to

a lack of other vendor sites at the time of conducting this study. Future work will test the

performance of GE PET/MRI scanners.
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3.5 Conclusion

90Y PET measurements from Siemens Biograph mMR (PET/MRI) scanners are acceptable

and reproducible at the multi-institutional level. This study may provide insight into the

minimum activity level (≥0.9 GBq) and VOI size (≥22 mm diameter) for accurate and

reproducible measurements across institutions. Performance is comparable to that of its

TOF PET/CT counterpart, and may suggest that multi-institutional clinical studies of 90Y

PET-based dosimetry using Siemens hybrid PET scanners can include both PET/MRI and

TOF PET/CT scanners, although MRI may offer additional advantages, such as superior

soft-tissue contrast for easy delineation of liver lesions.
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Chapter 4

PET/MRI of hepatic 90Y

radioembolization microsphere

deposition predicts treatment

response in individual tumors †

4.1 Introduction

The purpose of our study was to assess the feasibility of PET/MRI to evaluate the 90Y

microsphere deposition and the resultant dose delivered in individual lesions. The second

purpose was to assess whether the measured dose was related to local tumor response. To our

knowledge, this is the first series of 90Y PET/MRI patients published with clinical follow-up.

†This chapter has been previously published in [70]. htpps://doi.org/10.1007/s00270-015-1285-y © The
Author(s) 2015
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4.2 Materials and Methods

4.2.1 Patient Sample

Between October 1, 2012 and April 17, 2014, patients undergoing radioembolization for any

indication were recruited and consented on an IRB-approved protocol (NCT01744054) for

PET/MR imaging on a Siemens Biograph mMR (Siemens Healthcare, Erlangen, Germany).

26 of these patients had imaging follow-up as defined as contrast-enhanced imaging at 3

months or later. Two patients were excluded from analysis due to inability to confidently

draw contours around their initial lesion or lesion on follow-up imaging, leaving 24 patients

for this analysis. Patient demographics, treatment details and tumor characteristics are listed

in Table 4.1. All patients underwent 90Y microsphere delivery pre-treatment evaluation and

delivery according to standard procedures. Two patients received whole liver treatment as

opposed to standard lobar treatment to prevent further delay of chemotherapy.

Current methods for prescribing radioembolization dose, as recommended by the manufac-

turer (see Equations 1.1–1.2), differ in part by the particle type (resin versus glass). The

average activity delivered to patients was 1.65 GBq (range: 0.4–4.96 GBq), which correlates

to a dose of 120–130 Gy in the treated lobe of the liver. An inherent limitation of the cur-

rent strategies for estimating dose is the assumption of uniform delivery within the segment,

section, or lobe to which radioactivity is delivered.
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Table 4.1: Patient demographics and treatment information

Tumor
Type

Age,
Gender

# Tumors Total Tumor
Volume
(cc)

Delivery Site
(microsphere type)

Delivered
Activity
(GBq)

PET/MRI
Contrast
Agent

HCC

83, F 1 61.78 Left lobe (resin) 0.7 Eovist

83, F 1 5.0 Right lobe (resin) 1.03 Eovist

75, F 1 1514.3 Left lobe (glass) 2.99 Eovist

61, M 1 157.78 Whole liver (glass) 3.94 Eovist

77, M 1 185.0 Left lobe (glass) 2.21 Eovist

62, M 1 549.0 Left lobe (glass) 1.09 Eovist

74, M 3 376.7 Right lobe (glass) 4.96 Multihance

73, F 1 27.7 Left lobe (glass) 0.82 Multihance

NET

52, M 9 623.6 Right lobe (glass) 2.2 Eovist

40, M 6 21.0 Right lobe (glass) 0.4 Eovist

75, M 2 494.6 Left lobe (resin) 0.9 Multihance

48, F 8 27.7 Right lobe (resin) 0.7 Multihance

mCRC

52, M 1 257.8 Right lobe (resin) 1.6 Eovist

59, M 2 2393.3 Right lobe (resin) 1.4 Eovist

57, M 3 212.1 Right lobe (resin) 0.9 Eovist

82, F 2 73.0 Right lobe (resin) 1.0 Eovist

68, M 4 100.2 Whole liver (resin) 3.2 Eovist

60, F 10 223.2 Right lobe (resin) 1.0 Multihance

53, M 3 40.9 Right lobe (resin) 1.6 Multihance

48, M 12 1681.2 Right lobe (resin) 1.5 Multihance

54, M 5 356.7 Right lobe (resin) 2.0 Multihance

Esophageal

63, M 3 326.4 Right lobe (resin) 1.6 Multihance

Breast

57, F 3 39.1 Right lobe (resin) 1.0 Multihance

Thymic
Carcinoid

49, M 4 529.1 Left lobe (resin) 0.9 Multihance
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4.2.2 Post-treatment 90Y PET/MRI Acquisition Parameters

Post-procedural PET/MRI consisted of routine liver sequences (detailed below) and simul-

taneous PET data acquisition. The PET component consists of 8 rings of 56 detector blocks,

each with a 4x4x20 mm LSO (lutetium oxyorthosilicate) crystals with scintillation light read-

out using avalanche photodiodes. The coincidence window time resolution is 5.86 ns. The

spatial resolution is 4.3 mm (reconstructed resolution closer to 6 mm) at FWHM. Imaging

was done within 66 hours (range 0.75–66 hours) of 90Y radioembolization based on patient

and scanner convenience.

Patients were positioned with arms raised, and 20–40 min of PET data were acquired in a sin-

gle station to cover the liver and lower thorax. The MR sequences used were a 2-point DIXON

for attenuation correction, T2 Turbo spin-echo (TSE) fat-suppressed axial respiratory nav-

igated, in/opposed-phase dual-echo gradient recall T1- weighted, pre–contrast volumetric

interpolated breath hold examination (VIBE), dynamic post-contrast VIBE, coronal post-

contrast VIBE, diffusion-weighted images (b values 50, 400, 800), axial non-fat-suppressed

T2-weighted, radial free-breathing VIBE, and a 20-min delayed VIBE in the axial and coronal

planes (for gadoxetic acid enhanced MRI only). Intravenous contrast consisted of gadoxetic

acid (Bayer Pharmaceuticals; dose of 0.05 mmol/kg) administered at 1 ml/second or gadobe-

nate dimeglumine (Multihance, Bracco Diagnostics; dose of 0.1 mmol/kg) administered at 2

ml/second.

Tomographic images were generated by iterative reconstruction (3D-Ordered Subset Ex-

pectation Maximization (OSEM)) using the following parameters for the Siemens Biograph

mMR: 3 iterations, 21 subsets, 172x172 matrix, post-processing Gaussian filter of 5 mm in

full width at half maximum, and with point spread function compensation, resulting in a
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voxel size of 4.17x4.17x2.02 mm. The parameters for reconstruction were based upon phan-

tom studies conducted at our institution to determine the optimal recovery coefficient with

a moderate noise level over a wide range of activity levels [44]. Attenuation correction was

derived from the 2-point DIXON MR VIBE sequence (TR = 3.6 ms, TE1 = 2.46 ms and

TE2 = 1.23 ms, flip angle of 10deg). Scatter correction was applied using a single scatter

simulation technique as provided by the manufacturer. The attenuation of the PET caused

by the bed and fixed MRI coils was automatically integrated into the attenuation maps.

The scanner was calibrated for absolute activity concentration using a 20 cm diameter 68Ge

cylinder containing a known activity concentration and cross-calibrated to the laboratory

dose calibrator with a similarly configured 18F-filled cylinder. Since 90Y was not a listed

nuclide for PET acquisition on the Siemens Biograph mMR scanner, we used the settings

of 86Y for data acquisition and image reconstruction. The scanner calibration factor (ECF)

used a ratio of the positron fractions between the selected isotope for scanning (86Y) and

68Ge, and then we manually corrected for 90Y by scaling the reconstructed image intensity

by the relative β+ decay branching ratios and decay constants of 86Y and 90Y. Our previ-

ous phantom study with 90Y chloride solution showed that the calibration from 68Ge was

accurate [44].

4.2.3 Image Evaluation and Post-Processing

PET and MRI data were reviewed on MimVista (MIM Software, Cleveland, OH) by a board-

certified, fellowship-trained MRI radiologist (10 years of experience in abdominal imaging),

using rigid registration to align and fuse the liver boundaries. MR sequences were co-

registered, and tumor contours, lobar, and whole liver contours were drawn primarily on

the Gadoxetic hepatobiliary phase images (20 min delay) or on arterial or portal venous
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images for patients who received an alternate contrast agent. Images were assessed qualita-

tively for expected distribution of dose based on injection site and extrahepatic deposition.

Regions of interest were drawn over the paraspinal muscles to derive a background value.

Dose maps were calculated by convolution of the activity concentration images from 90Y

PET images and a voxelized radiation dose kernel [71]. In short, images were re-sampled on

3-mm cubic voxels, convolved with MIRD-17 3D 3 mm voxel dose-point kernel, and finally

re-sampled on the original voxel size, similar to Lea et al. [72]. Image processing was per-

formed using an application written in MATLAB R2012a (Mathworks, Natick, MA). Voxel

residence times were calculated using immediate uptake and physical decay only. Based

upon the PET-generated dose maps, dose volume histograms (DVH), which plot the min-

imum dose (Gy) to a given volume (%) of a specified region of interest, were generated

for each lesion measuring >1 cm diameter for RECIST criteria and >1 cc for vRECIST

criteria. Smaller lesions were not analyzed due to inability to confidently draw contours

and identify the lesions on follow-up imaging. To determine treatment response, follow-up

imaging was acquired on all patients according to standard-of-care intervals. Contours were

drawn around the same lesions as contoured on the initial imaging time point (with initial

and follow-up imaging assessed in the same session to allow accurate matching). Standard

RECIST criteria were used for differentiating responders (≥ 30% decrease in the longest

tumor diameter), non-responders (≥20% increase in the longest tumor diameter), and stable

lesions (else) [73]. A separate analysis using volumetric RECIST (vRECIST) was also used

to differentiate responders (≥65% decrease in tumor volume) from non-responders (<65%

decrease in tumor volume or progression).
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4.2.4 Statistical Analysis

Summary metrics, including the individual lesion volumes, minimum dose to 20% of the

lesion (D20), minimum dose to 70% of the lesion (D70), and average dose (Davg), between

responders and non-responders were assessed using a two-sample t test and logistic regression.

Results were considered statistically significant at p<0.05. Dose thresholds for assessing

response were obtained using receiver operating characteristic (ROC) analysis to determine

sensitivity and specificity for response.

4.3 Results

All patients tolerated the imaging procedure without adverse event, and the total time from

beginning to end of the PET/MR examination ranged from 42 to 60 min. The fusion of

PET and MRI data was accomplished with adequate registration in all cases using rigid

registration. The distribution of 90Y microspheres was concordant to injection site in all

patients (treated lobe:background SUVmean ratios were significantly greater than 1 for all

patients, p<0.001). A single case of extrahepatic deposition was identified due to a patent

falciform artery. The patient developed no adverse event related to the deposition. No

patients had significant toxicity following 90Y radioembolization treatment.

4.3.1 Response Analysis Based on RECIST

Using standard RECIST criteria, there were 38 responding lesions, 46 stable lesions, and 8

non-responding lesions across the 24 patients. The relationship of DVH and response is shown
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in Figure 4.1. Davg and D70 were statistically significant in predicting response between

responders and non-responders (p<0.05, see Table 4.2). Davg was statistically significant in

predicting response between responders and stable lesions (p<0.05, see Table 4.2); however,

D70 was not statistically significant for this response pair (p>0.05, see Table 4.2). No

statistical significance was achieved for predicting response between non-responders and

stable lesions (p>0.05, see Table 4.2). In an effort to control for any confounding effects,

there was no correlation between response and tumor size (p>0.05). Within individual

patients, there was heterogeneous response of lesions to treatment (see Figure 4.2a).

Figure 4.1: Dose volume histograms of all lesions color-coded by response as defined by RE-
CIST (Gy=Gray). Davg and D70 are significant for predicting response between responding
(green) and non-responding (red) lesions (p = 0.0092 and 0.0063, respectively)
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Table 4.2: Factors associated with RECIST response on univariate analysis

RECIST p values from
logistic regression
analysis

All lesions mCRC lesions Hypervascular Lesions

Davg D70 Davg D70 Davg D70

Response/progression 0.0092* 0.0063* 0.0452* >0.05 >0.05 >0.05

Response/stable 0.0291* >0.05 >0.05 >0.05 >0.05 >0.05

Progression/stable >0.05 >0.05 >0.05 >0.05 >0.05 >0.05

Figure 4.2: Patient with metastatic colorectal carcinoma (mCRC) metastases to the liver
showing heterogeneous lesion response following lobar treatment. The DVH shows a mix of
responders and stable disease, according to RECIST (A), and responders and non-responders,
according to vRECIST (B). The PET/MR fused image (C) demonstrates the contours of
different lesions at baseline as well as the overlay of the 90Y microsphere deposition within
the treated lobe. Follow-up imaging (D) shows the change in lesion size
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Figure 4.3 shows the relationship of DVH and response for mCRC patients (n = 9 patients, 43

lesions). Davg between responders and non-responders was the only quantity that achieved

statistical significance for predicting response for the mCRC lesions (p<0.05, see Table 4.2).

Figure 4.3: Dose volume histograms of colorectal metastases (mCRC) color-coded by re-
sponse as defined by RECIST. Davg is significant for predicting response between responding
(green) and non-responding (red) lesions (p = 0.0452)
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Figure 4.4: Dose volume histograms of hypervascular lesions (HCC, NET, thymic carcinoid)
color-coded by response as defined by RECIST. There were no summary statistics that were
significant enough to predict response between any of the response categories (p<0.05, see
Table 4.2)

Figure 4.4 shows the relationship of DVH and response for hypervascular lesions (HCC, NET,

and thymic carcinoid; n = 13 patients; 42 lesions). There was no significant relationship

between DVH values and response due to the low number (n = 3) of non-responding lesions.

A single HCC lesion represents one of a few outliers in the data and is shown in Figure 4.5

along with the DVH for the lesion. Despite relatively high delivered dose, the lesion did

not demonstrate decrease in size and remained primarily enhancing at follow-up imaging

acquired 87 days following treatment.
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Figure 4.5: Hepatocellular carcinoma (HCC) lesion representing one of the three outliers
among the hypervascular lesions (see Figure 4.4). Despite a relatively high delivered dose (A),
this lesion did not respond to therapy. PET/ MRI (B) shows expected deposition. Baseline
MRI (C) and follow-up MRI (D) show stable/no response as defined by RECIST/vRECIST

4.3.2 Response Analysis Based on vRECIST

Using vRECIST, there were 64 responding lesions and 23 non-responding lesions across the

24 patients. The relationship of DVH and response is shown in Figure 4.6. Both Davg and

D70 achieved statistical significance in predicting response (p<0.05, see Table 4.3). Within

individual patients, there was heterogeneous response of lesions to treatment (see Figure

4.2b).
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Table 4.3: Factors associated with vRECIST response on univariate analysis

vRECIST p values from
logistic regression
analysis

All lesions mCRC lesions Hypervascular Lesions

Davg D70 Davg D70 Davg D70

Response/progression 0.0341* 0.0194* 0.0004* 0.0004* >0.05 >0.05

Figure 4.6: Dose volume histograms of all lesions color-coded by response as defined by
vRECIST. Davg and D70 are significant for predicting response between responding (green)
and non-responding (red) lesions (p = 0.0341 and 0.0194, respectively)

Figure 4.7 shows the relationship between DVH and response for mCRC lesions using vRE-

CIST criteria. Across the 9 patients, there were 25 responding lesions and 17 non-responding

lesions. Both Davg and D70 achieved statistical significance for predicting response, with

equal p values (p<0.05, see Table 4.3). For mCRC lesions, a Davg of 29.8 Gy provided
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76.9% sensitivity and 75.9% specificity for predicting response; D70 of 42.3 Gy provided

61.5% sensitivity and 96.6% specificity for predicting response.

Figure 4.7: Dose volume histograms of metastatic colorectal metastases (mCRC) color-coded
by response as defined by vRECIST. Davg and D70 are significant for predicting response
between responding (green) and non-responding (red) lesions (p = 0.0004)

Figure 4.8 shows the relationship between DVH and response for hypervascular lesions using

vRECIST criteria. Similar to standard RECIST, these lesions did not achieve statistical

significance in predicting response (p>0.05, see Table 4.3).
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Figure 4.8: Dose volume histograms of hypervascular lesions (HCC, NET, thymic carcinoid)
color-coded by response as defined by vRECIST. There were no summary statistics that
were significant enough to predict response between any of the response categories (p>0.05,
see Table 4.3)

4.4 Discussion

There is growing interest in imaging the delivered activity following 90Y radioembolization

both for confirmation of delivery site and quantification of dose [19, 20, 74]. PET imaging

appears to be the most reliable and best option, providing higher spatial resolution and

more accurate depiction of uptake than 90Y Bremsstrahlung SPECT imaging [19,62]. In our

study, PET/MR imaging of 90Y microsphere distribution demonstrated similar quantitative

and qualitative results as previously published with PET/ CT, including the ability to discern

extrahepatic deposition [19,34,75].

70



In our study, the DVH was generated to measure dose distribution within tumors. This

method has previously been shown to correlate with tumor response [20]; however, the

exact metric Davg or D70 remains controversial [22]. When using vRECIST, our results for

mCRC patients were significant for Davg and D70 metrics; however, statistical significance

was not achieved for D70 when using standard RECIST. Using ROC analysis, we were also

able to demonstrate a threshold for vRECIST response in mCRC patients at Davg = 29.8

Gy (sensitivity 76.9%; specificity 75.9%) and D70 = 42.3 Gy (sensitivity 61.5%; specificity

96.6%).

Although RECIST is the standard method for assessing lesion response, Tacher et al. re-

cently found that vRECIST was a more accurate predictor of patient survival following

transcatheter arterial chemoembolization (TACE) [76]. In our study, we correlated dosi-

metric quantities with response using both response criteria. Both RECIST and vRECIST

resulted in statistically significant results for predicting response across all lesions and for

mCRC lesions. There was a greater significance achieved using vRECIST as opposed to

RECIST for mCRC lesions. While vRECIST results were stronger, the average dose was

still statistically significant in predicting response between responding and non-responding

lesions when using RECIST. Stable disease or disease control, while not the primary goal of

therapy, may be a reasonable outcome and was considered as a separate category. Neither

vRECIST nor RECIST measurements demonstrated statistical significance in differentiating

this category from responders and nonresponders.

The inherent value of DVH analysis is that it captures the heterogeneous nature of 90Y

microsphere deposition. Prior studies have shown wide variations in measured tumor and

parenchymal 90Y microsphere deposition following lobar administrations [72, 77]. In a re-

cent study, Padia et al. showed heterogeneous 90Y microsphere deposition within tumor and

71



portal vein tumor thrombus that appeared to correlate with regions of necrosis on follow-up

imaging [77]. Srinivas et al. demonstrated wide variability in dose delivered to 98 HCC

lesions [78]. The concept of heterogeneous delivery to the parenchyma and tumors may

explain heterogeneous response of different lesions within patients who have large tumor

burden, as was seen in our study (Figure 4.2-mCRC patient). It is possible that distribution

of 90Y microspheres within the target area is highly dependent on locoregional flow factors,

injection rate, proximity and complexity of daughter vessel branching, particle load, and

cardiovascular dynamics, in addition to inherent tumor vascularity and necrosis. Most cur-

rent dosing models assume uniform delivery of activity to the treated region/tumor, which is

likely a false assumption. Our study confirms the variable dose distribution and is the first

to show significant relationship between the DVH in mCRC metastases and response of the

lesions on follow-up imaging.

The results of our study represent the first dose-response database generated by PET/MR

DVH data for mCRC patients undergoing radioembolization treatment. Future adaptive

trials may implicate the findings of post-treatment PET/MRI to achieve adequate tumor

coverage. Chang et al. published preliminary data suggesting that quantitative PET/CT

following 90Y radioembolization treatment in HCC could achieve more optimized dose cov-

erage (increase in 40 Gy absorbed dose to tumor) and ultimately a complete response [79].

Our study failed to show a similar significant DVH:response relationship in hypervascular

lesions (HCC and NET primarily). In the series published by Srinivas et al., the authors

likewise failed to show significant correlation between the mean tumor dose and response

in 48 evaluable lesions (21 responders, 27 non-responders) [78]. While their results did

not reach significance, there was a trend toward greater response and higher dose. Other
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authors have demonstrated positive correlation. Kao et al. reported retrospective dose-

response information using PET/CT post-treatment DVH analysis, suggesting that complete

response could be achieved in HCC patients with a D70>100 Gy and that this dose level

was achieved more easily in smaller tumors (<80 cm3) [20]. The lack of significance in our

population may be explained by the outlier HCC case and also the small population size.

Further research is needed to confirm the positive results shown by others.

There are several limitations of our study. The dose-response data generated represent that

acquired on a lesion-by-lesion basis, which are of great value; however, ultimately patient

outcomes and overall survival are better metrics of treatment efficacy. It is our hope that

our preliminary results may inform future larger prospective trials with overall survival as

the final outcome measure. Another limitation is imperfect registration. While PET/MRI

is acquired in a simultaneous manner, improved registration through motion correction al-

gorithms are needed to advance the technological aspects of the study. We were able to

achieve satisfactory registration in all cases using MimVista non-deformable registration.

Furthermore, in our phantom study and in other phantom studies on PET/CT, recovery for

regions 8-37 mm in diameter is only about 50% for 90Y compared to what is recovered when

measuring with 18F [37, 49]. Even though point spread function (PSF) compensation was

included in the reconstruction process, which has been shown to improve contrast recovery

and mitigate partial volume effects in PET images [80], counts were still not completely re-

covered in the reconstructed 90Y PET images from ours and others phantom studies [44,78].

Further work with partial volume correction is needed for improving quantitative accuracy,

especially for smaller lesions.

Although the results of PET/MR occur after radioembolization, this does not reduce the clin-

ical utility. Immediate predictions (i.e., not waiting for the follow-up imaging study, which
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usually does not occur for 3 months following therapy) of tumor response could stratify pa-

tient therapy based on lesion prognosis. We would hope that this prediction of response could

guide further liver directed or systemic therapies, such as cryoablation, microwave ablation,

stereotactic radiation, or changes in chemotherapy. Our results provide preliminary data

suggesting that PET/ MRI and volumetric tumor measurements (vRECIST) may provide a

useful metric for predicting response in mCRC patients.

4.5 Conclusion

In conclusion, simultaneous PET/MR imaging is a feasible way of determining 90Y micro-

sphere distribution in the liver. Additional work to improve the quantitative nature of this

imaging modality is needed. Future clinical and research applications may yield improve-

ments in radioembolization delivery, dosing, and response assessment. This work is now

being used as the basis of a clinical trial: Local Ablative Strategies after Endovascular Ra-

dioembolization (LASER) (NCT02611661). Patients undergo a PET/MRI scan within 36

hours of radioembolization. Dosimetry analysis is performed where the dosimetric cut-off

values determined in this work are used to identify potentially under-dosed lesions. Depend-

ing on the number of under-dosed lesions and where they are located in the liver, patients

will undergo either radiofrequency/cryo-ablation, stereotactic body radiotherapy (SBRT), or

systemic chemotherapy; or, if none are identified to be under-dosed, patients are observed

for progression of disease. We continue to accrue patients for this trial.
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Chapter 5

Correlation between Pre-Treatment

99mTc-MAA SPECT and

Post-Treatment 90Y PET and Their

Role in Predicting Lesion-Specific

Response in Hepatic

Radioembolization

5.1 Introduction

Pre-treatment planning and imaging is performed with angiography and 99mTc-MAA SPECT

to predict possible extra-hepatic uptake and lung shunting. 99mTc-MAA SPECT/CT has
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proven invaluable for identifying shunts that may lead to extrahepatic non-target emboliza-

tion. A study by Ahmadzadehfar et al. [81] retrospectively looked at 90 pre-treatment

imaging plans across 76 patients and used laboratory testing and physical examination as

a reference standard to identify extrahepatic shunting. They reported that 99mTc-MAA

SPECT/CT provided 100% sensitivity and 93% specificity for identifying extrahepatic shunt-

ing. This would have resulted in change to treatment plans in 29% of patients.

Despite the success of 99mTc-MAA SPECT/CT imaging for predicting extrahepatic uptake,

there remains controversy as to whether it can predict microsphere localization within tumors

and liver parenchyma. While some studies have shown a possible correlation between pre-

treatment imaging with 99mTc-MAA SPECT/CT and clinical outcomes [15, 82–84], only

a few have investigated the correlation between quantitative measures of dose on the pre-

treatment imaging to dose on direct post-treatment imaging of the microsphere activity

distribution [20,85].

Recent studies have shown 90Y activity distribution imaged with PET, either PET/CT

or PET/MRI, is possible due to the small positron yield originating from internal pair

production of 90Y decay, which allows accurate depiction of dose delivery [19–22, 34, 63, 64,

70, 85, 86] and higher spatial resolution and therefore higher count recovery as compared to

SPECT [19]. However, this imaging takes place after the dose is delivered. If 99mTc-MAA

SPECT data could predict similar dosimetric information, it would be a valuable step in

treatment planning.

In this work, we aim to investigate the possible correlation between the 90Y radiation dose

extrapolated from the pre-treatment 99mTc-MAA SPECT and dose measured on the post-

treatment 90Y PET. In particular, we aim to compare the predictive abilities of each for

tumor response.
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5.2 Materials and Methods

A total of 12 patients who underwent standard-of-care 90Y hepatic radioembolization with

a standard pre-treatment 99mTc-MAA SPECT/CT and post-procedural PET/MRI and 36

month follow-up imaging (CT or MRI) at our institution were enrolled in this prospective

study. The study was approved by the institutional review board, and all subjects signed

an informed consent form (NCT01744054). Patients were treated with resin microspheres

(SIR-Spheres, Sirtex Medical, Sydney, Australia), with delivered activity determined by the

body surface area (BSA) model, as described on the package insert (see Eq. 1.2). 1 patient

received segmental radioembolization, while the rest received lobar radioembolization. An-

other patient received two treatments, first to the left lobe of the liver, then to the right

lobe of the liver 41 days later. A board-certified interventional radiologist retrospectively

reviewed the angiograms acquired at the time of 99mTc-MAA SPECT and 90Y administra-

tion to assess the accuracy of the catheter placement. Patients who were classified as having

different catheter placement were excluded from the analysis.

5.2.1 Image Acquisition

99mTc-MAA SPECT/CT pre-treatment imaging was performed following hepatic arterial

lobar injection on a Siemens Symbia T6 (Siemens Healthineers, Erlangen, Germany). Images

were reconstructed using 2D ordered subset maximization (OP-OSEM) with 8 iterations, 4

subsets, and 8.4 mm full-width-half-maximum (FWHM) Gaussian post-reconstruction filter

for a 128 x 128 x 78 image volume with 4.80 x 4.80 x 4.80 mm3 voxel size. A low dose

CT acquired in the same imaging study was used for attenuation correction of the SPECT

images.
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Patients underwent simultaneous PET and MRI within 66 hours of radioembolization on

a Siemens Biograph mMR (Siemens Healthineers, Erlangen, Germany) with arms raised

and in a single station to encompass the liver and lower thorax. MRI acquisition included

pre-contrast volumetric interpolated breath hold examination (VIBE), standard dynamic

post-contrast VIBE in the late arterial phase, portal venous phase, and delayed phases

along with a hepatobiliary phase at 20-minutes (for gadoxetic acid enhanced MRI only).

Additionally, diffusion weighted imaging (b values 50, 400, 800), axial non-fat-suppressed

T2-weighted, T2-weighted fat-suppressed respiratory navigated, T1-weighted in/opposed-

phase dual-echo, and a 2-point DIXON sequence for attenuation correction of the PET

images (TR = 3.6 ms, TE1 = 2.46 ms and TE2 = 1.23 ms, flip angle of 10deg). PET

acquisition was 20-40 minutes of list mode data, reconstructed using ordinary Poisson 3D

ordinary Poisson-OSEM (OP-OSEM) with 3 iterations, 21 subsets, 5 mm FWHM Gaussian

post-reconstruction filter, absolute scatter scaling correction, and resolution recovery for a

172 x 172 x 127 image volume with 4.17 x 4.17 x 2.02 mm3 voxel size. Image reconstruction

parameters were optimized in a phantom study [44].

5.2.2 Image Post-Processing

Image post-processing was performed using MIM 6 v6.7 (MIM Software, Cleveland, OH).

Individual volumes of interest (VOI) were drawn on the contrast-enhanced MR images from

PET/MRI around each lesion and around the entire treated lobe of the liver (NM and KF).

Lesions <1cc were excluded from the analysis due to lack of confidence of delineation. CT

from 99mTc-MAA SPECT/CT was manually, rigidly registered and fused to the delayed

contrast-enhanced MRI from PET/MRI (see Figure 5.1). Registration was optimized to

yield best alignment of the treated lobe of the liver and its lesions to maximize the overlap
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for these VOIs between both PET and SPECT image sets. Corresponding VOIs were drawn

around each lesion on the 3-6 month follow-up imaging studies, which were either contrast-

enhanced CT or MRI. Volumetric RECIST (vRECIST) criteria, which has recently been

shown to be an indicator of survival, was used to assess response of individual lesions [76].

Lesions that decreased in volume by at least 65% were considered responders, while those

that did not were considered non-responders.

Figure 5.1: Fusion and rigid registration between MRI from 90Y PET/MRI and CT from
99mTc-MAA SPECT/CT. Registration was aligned toward the treated lobe of the liver and
its tumor to allow for adequate registration between these structures.

Three-dimensional (3D) dose maps from 90Y PET and 99mTc-MAA SPECT were calculated

using a dose point kernel (DPK) [71] and local deposition method (LDM) [20,22,82], respec-

tively, using in-house code in MATLAB (MathWorks, Natick, MA). A detailed description

of generating 3D dose maps from 90Y PET images is described in our previous study [70].

Due to the inherent lower resolution of 99mTc-MAA SPECT compared to 90Y PET, we opted

to use LDM for calculating extrapolated 90Y dose on the 99mTc-MAA SPECT images. This

method directly scales the voxel values of the SPECT images using an S factor, as opposed

to the dose point kernel, which convolves the voxel values with a kernel, thus further blur-

ring the image. We took the S factor to be the sum of all kernel voxels for 90Y with 3 mm
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cubic voxels, as tabulated in MIRD Pamphlet 17 [71]. 90Y dose extrapolated from 99mTc-

MAA SPECT (D′
MAA) was normalized and scaled according to the 99mTc-MAA counts in

the treated lobe of the liver (ATc99m) and the administered 90Y activity (AY 90, excluding

residual) to achieve the extrapolated dose from radioembolization (DMAA) [82]:

DTc99m = D′
Tc99m × AY 90/ATc99m (5.1)

The dose calculation assumes immediate uptake of the tracer and assumes a residence time

determined by the half-life of 90Y (2.67 days) for both methods. Lung shunt fraction de-

termined from the 99mTc-MAA SPECT scan was not taken into account in the voxel dose

calculations since 10/12 patients had a LSF<5% (mean 3.98%, range 1.4% 10.5%). Dose

volume histograms (DVH) were extracted from these 3D dose maps within each VOI (le-

sions and treated lobes). For the remainder of this manuscript, 90Y dose extrapolated from

99mTc-MAA SPECT images will be referred to as 99mTc-MAA SPECT dose.

5.2.3 Statistical Analysis

The minimum dose to 70% of the VOI (D70) and average dose (Davg), which have been

shown to be predictive of response [20, 70], were compared between 99mTc-MAA and 90Y

doses using Spearman’s Correlation test. We also performed Logistic Regression analysis of

these metrics to assess the ability of 99mTc-MAA SPECT and 90Y PET to predict response.
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5.3 Results

1 patient with esophageal cancer was classified as having a different catheter placement where

the catheter tip was inserted slightly further during 90Y radioembolization compared to the

pre-treatment 99mTc-MAA SPECT. The lesions from this patient were excluded from further

analysis. Including the remaining 11 patients, 53 lesions were identified on both PET/MRI

and follow-up imaging. These 53 lesions consisted of 37 mCRC (7 patients) and 16 other

lesion types (consisting of 2 HCC, 10 neuroendocrine tumor, and 4 thymic carcinoid) (4

patients). A detailed break-down of lesion type and lesion response is in Table 5.1.

Table 5.1: Summary of lesion type and response

mCRC Other

Number of lesions 37 16

Responders 10 6

Non-responders 27 10

Tumor volume (cc) median 22.65 4.05

(range) (1.11–947.16) (1.16–444.02)

90Y administered activity (GBq) median 1.34 0.74

(range) (0.42–1.03) (0.9–2.03)
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5.3.1 Correlation Between Dose on 99mTc-MAA SPECT and 90Y

PET

Figure 5.2: Tumor average dose (Davg) and D70 correlation between pre-treatment 99mTc-
MAA SPECT and post-treatment 90Y PET for (a-b) mCRC lesions and (c-d) other lesion
types.

Correlations between Davg measured from 99mTc-MAA SPECT and 90Y PET for individual

lesions are shown in Figure 5.2 and summarized in Table 5.2. We observed a weak but

statistically significant correlation for Davg and D70 to mCRC lesions between 99mTc-MAA

SPECT and 90Y PET (r = 0.46 and 0.46, p < 0.01). For other lesions, the correlations

between 99mTc-MAA SPECT and 90Y for both average dose and D70 were weaker than
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Table 5.2: R- and p-values reporting strength and significance of correlation between dose
measured on pre-treatment 99mTc-MAA SPECT and post-treatment 90Y PET for individual
lesions and treated lobe of the liver. *Correlation is significant (p<0.05).

mCRC Other Treated Lobe

90Y PET 90Y PET 90Y PET

Davg D70 Davg D70 Davg D70

r-value r-value r-value r-value r-value r-value

(p-val) (p-val) (p-val) (p-val) (p-val) (p-val)

99mTc-
MAA
SPECT

Davg 0.46*
(<0.01)

0.48*
(<0.01)

0.30
(>0.10)

0.32
(>0.10)

0.71*
(0.01)

0.73*
(<0.01)

D70 0.43*
(<0.01)

0.46*
(<0.01)

0.28
(>0.10)

0.31
(>0.10)

0.32
(>0.10)

0.53
(0.08)

mCRC and non-significant (r = 0.30 and r = 0.31, p > 0.05), likely due to a single outlier

shown in Figure 5.2b and 5.2c and Figure 5.3. This patient showed high 99mTc-MAA uptake

in the outlier lesion (Tumor 1, magenta) on SPECT but not on 90Y PET (99mTc-MAA Davg

= 165.5 Gy, 90Y Davg = 4.46 Gy). This lesion did not respond to treatment. We repeated

the statistical analysis, removing this point to test its impact on the results. Removing this

point improved the correlation and its significance, but did not make the correlation strong

(Davg r = 0.50, p = 0.06 and D70 r = 0.51, p = 0.05).
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Figure 5.3: 48-yr old female with metastatic pancreatic cancer treated with hepatic radioem-
bolization of 90Y resin microspheres to the right lobe. (a-b) Pre-treatment 99mTc-MAA
SPECT/CT and (c) associated dose volume histogram. (d-e) Post-treatment 90Y PET/MRI
and (f) associated dose volume histogram. Percentages in legend indicate the change in
lesion volume from radioembolization to follow-up imaging (94 days). Tumor 1 showed a
much higher uptake of 99mTc-MAA than 90Y, whereas Tumors 2 and 3 showed much higher
uptakes of 90Y than 99mTc-MAA.

The correlation for Davg and D70 between pre-treatment 99mTc-MAA SPECT and post-

radioembolization 90Y PET in the treated lobe of the liver is summarized in Table 2 and

shown in Figure 5.4. There was a much stronger correlation for Davg in the treated lobe of

the liver compared to individual lesions (r = 0.71, p = 0.01). For D70, the correlation in the

treated lobe was weaker than Davg and non-significant (r = 0.53, p = 0.08). An example case

is shown in Figure 5.3 by the DVH for the treated lobe of the liver. The shape of the DVH

was similar between that from 99mTc-MAA SPECT and 90Y PET, although 99mTc-MAA

dose was consistently lower (99mTc-MAA Davg = 29.5 Gy and D70 = 16.8 Gy, 90Y Davg =

45.5 Gy and D70 = 25.9 Gy).
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Figure 5.4: Correlation between average dose measured on pre-treatment 99mTc-MAA
SPECT and post-treatment 90Y PET for the treated lobe of liver.

5.3.2 99mTc-MAA SPECT and 90Y PET as Predictors for Re-

sponse

The table of p-values for the ability of initial lesion volume, 99mTc-MAA SPECT (Davg and

D70), and 90Y PET (Davg and D70) to predict individual lesion response is shown in Table

5.3. 90Y PET Davg and D70 were both statistically significant for predicting response for

mCRC lesions, while 90Y PET Davg and D70 in other lesions trended for predicting response

but did not reach statistical significance. Neither Davg nor D70 from 99mTc-MAA SPECT

were statistically significant for predicting response for any lesion type (p>0.05). Lesion

volume was also not significant for predicting response (p>0.05).
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Table 5.3: p-values from univariate logistic regression for 99mTc-MAA and 90Y PET to
predict individual lesion response categorized by lesion type (mCRC vs. other). *Values
with p<0.05 were considered significant.

mCRC Hypervascular

Variable p-value p-value

Lesion volume 0.52 0.39

99mTc-MAA SPECT
Davg 0.92 0.40

D70 0.69 0.27

90Y PET
Davg 0.02 0.07

D70 0.02 0.06

5.4 Discussion

Our study reported a small but statistically significant correlation between tumor radia-

tion dose measured on pre-treatment 99mTc-MAA SPECT and post-treatment 90Y PET for

mCRC lesions. The correlation was smaller and non-significant for other lesion types, al-

though this was likely due to a single outlier lesion that did not show 90Y uptake on PET

when it was predicted to on 99mTc-MAA SPECT. This illustrates the importance of per-

forming post-procedural imaging and dosimetry since the 90Y microsphere distribution may

be different than was is expected based on pre-treatment 99mTc-MAA SPECT. However, for

the treated lobe of the liver, the correlation for Davg measured on 99mTc-MAA SPECT com-

pared to 90Y PET was stronger and statistically significant. We also found that 99mTc-MAA

SPECT does not predict individual lesion response for either mCRC or other lesions, while

90Y PET does for mCRC lesions.
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More recent literature has proposed the direct measurement of the microspheres after they

have been delivered using post-treatment 90Y PET and using this to predict clinical out-

comes. Many authors have shown significant predictive ability of 90Y PET as it relates to

response and overall survival [21, 63, 64, 70]. While this post-treatment information is im-

portant for assessing next steps [86], ideally, a better pre-therapy metric could be used to

optimize therapy.

99mTc-MAA SPECT would be optimally situated as a pre-treatment metric to predict clinical

outcomes before the 90Y microspheres are delivered to allow for optimization of treatment.

A thorough summary of the literature regarding this topic was recently published by Garin

et al. [87] reflects important caveats to this approach. First, much of 99mTc-MAA SPECT

dosimetry is derived from the partition model (MIRD macrodosimetry), which calculates

dosimetry based on overall counts within defined compartments (e.g. tumor, target liver,

non-target liver) and assumes a uniform distribution [88]. Therefore, unlike voxel-based

dosimetry (i.e., as with PET imaging), it does not allow for characterizing the heterogeneity

of 90Y microsphere distribution.

In HCC patients, Ho et al. used the partition model to derive tumor and non-tumor com-

partment doses from 99mTc-MAA SPECT in 71 patients with unresectable disease treated

with resin 90Y microspheres and found that 12/32 patients with a tumor dose >225 Gy

achieved partial response (using volumetric WHO criteria), whereas only 4/39 patients with

a tumor dose ≤225 Gy achieved partial response [15]. However, some of these patients

received multiple treatments depending on residual or recurrent disease, which may have

affected the dose-response relationship. Garin et al. also used the partition model on 99mTc-

MAA SPECT for assessing a dose-response relationship in 58 HCC lesions (36 patients)

treated with glass 90Y microspheres. They reported that a planned tumor dose of 205 Gy
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extrapolated from 99mTc-MAA SPECT predicted response with 100% sensitivity and 75%

specificity [83]. However, upon multivariate analysis, only the corrected dose (correcting for

residual 90Y activity at the time of administration) was significant for predicting response.

This suggests that accounting for the corrected dose (with residual activity) is essential for

using 99mTc-MAA SPECT to predicting response. Garin et al. also showed a relationship

of dose measured on pre-treatment 99mTc-MAA SPECT with progression-free survival and

overall survival in 41 HCC patients with portal vein thrombosis treated with glass micro-

spheres [89]. However, it is important to note that lesions reported in the studies by Garin et

al. were large (average diameter > 7.1 cm), possibly making them more likely to take up 90Y

activity if they took up 99mTc-MAA activity. In our study, we only had 2 HCC lesions (61.75

cc and 4.99 cc) across 1 patient (grouped in the other category), limiting our HCC analysis,

but these data hint at the complexity of interpreting the effects of pre-treatment SPECT on

lesion dosimetry and tumor response, which fueled our interest in using alternative imaging

methods.

For metastatic colorectal cancer (mCRC), the results are equally controversial. In patients

treated with resin microspheres, Flamen et al. found that absorbed dose of 66 Gy as mea-

sured by 99mTc-MAA SPECT and calculated using LDM predicted metabolic response of

the lesions [82]. In another study by Lam et al., 99mTc-sulfur colloid was used simultane-

ously with 99mTc-MAA SPECT for partitioning the liver into functional and non-functional

compartments to define tumor VOIs. Dose was calculated using MIRD formalism. They

reported that mean tumor absorbed dose >55 Gy resulted in 100% 1-year survival, while

<55 Gy resulted in 24% 1-year survival [84]. However, many others have not found such a

dose-response relationship for mCRC lesions [90–94].

88



Similar to previous studies evaluating 99mTc-MAA SPECT dosimetry for mCRC lesions, we

did not find that 99mTc-MAA could predict response for these lesions, while 90YY PET-based

dosimetry could. However, 99mTc-MAA SPECT may provide some predictive information

about general 90Y delivery distribution, as evidenced by the weaker (but significant) corre-

lation for mCRC lesions between 99mTc-MAA SPECT and 90Y PET.

In our study, neither 99mTc-MAA SPECT nor 90Y PET could predict response for other

lesions, including HCC, NET, and thymic carcinoid, though our study may have been un-

derpowered. These three lesion types were grouped together during statistical analysis due to

the small numbers of each type. Our results are similar to those previously reported by Song

et al. comparing dosimetry from pre-treatment 99mTc-MAA SPECT and post-treatment

90Y PET in 22 patients—16 HCC, 3 cholangiocarcinoma, 4 metastatic disease—using the

partition model instead of voxel-based dosimetry. They found that although doses to tumor

measured from both methods were significantly correlated (r = 0.64, p<0.01), 99mTc-MAA

SPECT was unable to predict progression-free survival while 90Y PET could [85]. An earlier

study by Kao et al. found that 99mTc-MAA SPECT-based dosimetry, using the partition

model, was predictive of 90Y PET-voxel-based dosimetry [20]. Their analysis, however, in-

cluded only 7 HCC lesions, and was very selective, only including lesions that had a tumor

to normal ratio >2.

In our study we did find a stronger and statistically significant correlation for treated lobe

dose suggesting that 99mTc-MAA SPECT can be used for predicting total liver dose, allowing

clinicians to increase or decrease the planned dose if there are concerns of under-dosing the

lesions or of radiation-induced liver toxicity, respectively. Similar results were reported in the

study by Song et al. where the correlation was strong and highly significant (0.71, p<0.001).

Criteria for well-tolerated maximal dose to the liver was introduced by Garin et al. when the
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dosimetry cut-off value of 205 Gy was used to boost the injected activity if the tumor dose

was predicted to be <205 Gy as determined from 99mTc-MAA SPECT [95]. They found

that among 71 patients with HCC, a combination of healthy infused liver dose >120 Gy and

hepatic reserve <30% were statistically significant associated with grade III or higher liver

toxicity [95]. Further work is needed for investigating the correlation between 99mTc-MAA

SPECT and toxicity events in patients with other types of cancer.

Our report indicates that the pre-treatment MAA distribution differs substantially from the

treatment of 90Y microsphere distribution despite all efforts made to replicate the exact

positioning of the catheter tip in the hepatic arterial system. Possible explanations for

mixed results regarding correlation between doses measured from the pre-treatment 99mTc-

MAA SPECT and 90Y PET as well as response may be due to the difference in particle sizes

between MAA and 90Y microspheres, injection rates, and changes in flow dynamics. While it

is not possible to correct for difference in particle size, we did attempt to correlate catheter

location between MAA and 90Y to eliminate this potential source of variability. Beyond

these practical issues of delivery, there are also challenges with the technical acquisition of

the 99mTc-MAA SPECT, where different methods of correction for scatter, attenuation, and

collimator response can affect the quantitative accuracy of this technique [96].

Our study has some limitations including its small size and retrospective nature. 99mTc-MAA

SPECT analysis was performed on standard SPECT imaging without extra reconstruction

correction factors, and registration errors may have introduced bias in VOI propagation

between the PET and SPECT images. Furthermore, although not necessarily a limitation,

we used voxel-based dosimetry (DPK and LDM), which allows for characterization of the

heterogeneous activity distribution, whereas many other groups used an overall absorbed dose

method (MIRD or partition model). We also performed lesion-by-lesion analysis as opposed
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to overall tumor volume analysis, thus allowing for characterizing individual lesions that may

have shown high uptake on 99mTc-MAA SPECT but not on 90Y PET, as demonstrated in

Figure 5.3, or vice-a-versa.

5.5 Conclusion

99mTc-MAA SPECT-based dosimetry was well correlated with 90Y PET-based dosimetry

for the treated lobe of the liver. Whether this can be used to guide decisions for increasing

or decreasing the planned amount of 90Y administered activity should be an area of future

research. The 99mTc-MAA SPECT imaging was not a strong predictor of response in either

mCRC or other lesion types in our study.
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[38] B. Pichler, A. Kolb, T. Nägele, and H. Schlemmer, “PET/MRI: Paving the way for the
next genereation of clinical multimodality imaging applications,” J Nucl Med, vol. 51,
no. 3, pp. 333–336, 2010.

[39] T. Frankel, R. Do, and W. Jamagin, “Preoperative imaging for hepatic resection of
colorectal cancer metastasis,” Journal of Gastrointestinal Oncology, vol. 3, no. 1, pp. 11–
18, 2012.

[40] H. Seo, M. Kim, J. Lee, W. Chung, and Y. Kim, “Gadoxetate disodium-enhanced
magnetic resonance imaging versus contrast-enhanced 18F-f luorodeoxyglucose positron
emission tomography/computed tomography for the detection of colorectal liver metas-
tases,” Invest Radiol, vol. 46, pp. 548–55, 2011.

[41] A. Muhi, T. Ichikawa, U. Motosugi, H. Sou, H. Nakajima, K. Sano, M. Sano, S. Kato,
T. Kitamura, Z. Fatima, K. Fukushima, H. Iino, Y. Mori, H. Fujii, and T. Araki,
“Diagnosis of colorectal hepatic metastases: comparison of contrast-enhanced CT,

95



contrast-enhanced US, superparamagnetic iron oxide-enhanced MRI, and gadoxetic
acid-enhanced MRI,” J Magn Reson Imaging, vol. 34, no. 2, pp. 326–35, 2011.

[42] D. Sahani and S. Kalva, “Imaging the liver,” The Oncologist, vol. 9, no. 4, pp. 385–397,
2004.

[43] K. Beiderwellen, L. Geraldo, V. Ruhlmann, P. Heusch, B. Gomez, F. Nensa, L. Umutlu,
and T. Lauenstein, “Accuracy of [18F]FDG PET/MRI for the detection of liver metas-
tases,” PLoS ONE, vol. 10, no. 9, p. e0137285, 2015.

[44] N. Maughan, M. E. M. Conti, K. Knesaurek, D. Faul, P. Parikh, Z. Fayad, and R. Lafor-
est, “Phantom study to determine optimal PET reconstruction parameters for PET/MR
imaging of 90Y microspheres following radioembolization,” Biomed Phys Eng Express,
vol. 2, p. 015009, 2016.
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