
Washington University in St. Louis
Washington University Open Scholarship
Engineering and Applied Science Theses &
Dissertations McKelvey School of Engineering

Spring 5-20-2017

An Improved Algorithm for Learning to Perform
Exception-Tolerant Abduction
Mengxue Zhang
Washington University in St Louis

Follow this and additional works at: https://openscholarship.wustl.edu/eng_etds

Part of the Artificial Intelligence and Robotics Commons, Engineering Commons, and the
Theory and Algorithms Commons

This Thesis is brought to you for free and open access by the McKelvey School of Engineering at Washington University Open Scholarship. It has been
accepted for inclusion in Engineering and Applied Science Theses & Dissertations by an authorized administrator of Washington University Open
Scholarship. For more information, please contact digital@wumail.wustl.edu.

Recommended Citation
Zhang, Mengxue, "An Improved Algorithm for Learning to Perform Exception-Tolerant Abduction" (2017). Engineering and Applied
Science Theses & Dissertations. 235.
https://openscholarship.wustl.edu/eng_etds/235

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Feng_etds%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng?utm_source=openscholarship.wustl.edu%2Feng_etds%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds?utm_source=openscholarship.wustl.edu%2Feng_etds%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=openscholarship.wustl.edu%2Feng_etds%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=openscholarship.wustl.edu%2Feng_etds%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=openscholarship.wustl.edu%2Feng_etds%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/eng_etds/235?utm_source=openscholarship.wustl.edu%2Feng_etds%2F235&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

Washington University in St. Louis

School of Engineering and Applied Science

Department of Computer Science and Engineering

Thesis Examination Committee:
Brendan Juba

Roman Garnett
Benjamin Moseley

An Improved Algorithm for Learning to Perform Exception-Tolerant Abduction

by

Mengxue Zhang

A thesis presented to the School of Engineering and Applied Science
of Washington University in partial fulfillment of the

requirements for the degree of

Master of Science

May 2017
Saint Louis, Missouri

copyright by

Mengxue Zhang

2017

Contents

List of Tables . iv

List of Figures . v

Acknowledgments . vii

Abstract . viii

1 Introduction . 1
1.1 Abduction Reasoning . 1
1.2 Abduction Task . 2
1.3 Brief Summary for the Theory of Algorithm 3
1.4 Apply the Algorithm for Solving Anomaly Explanation Task 5

1.4.1 Problem Introduction . 5
1.4.2 Data-set . 6

2 The Partial Red-Blue Set Cover Problem 8
2.1 Statement of the Partial Set Cover Problem 8
2.2 An Algorithm for Partial Red-Blue Set Cover 9

3 Using Partial Red-Blue Set Cover Algorithms for Exception-Tolerant Ab-
duction . 16
3.1 Learning of Exception-Tolerant k-DNF Abduction 16
3.2 Analysis of Partial Red-Blue Set Cover Algorithms for Learning Abduction . 17
3.3 A Toy Example . 21

4 Evaluation for the Algorithm . 24
4.1 Empirical Evaluation . 24

4.1.1 Noisy Planted k-DNF . 25
4.1.2 Random Linear Threshold Rules . 26

5 Apply the Algorithm on Real World Application: Anomaly Explanation
Using Meta-data . 29
5.1 Algorithm Evaluation Procedure . 29
5.2 Results . 31

5.2.1 Semantic Explanations . 31

ii

5.2.2 Quantitative Comparison of Methods 35

6 Conclusion and Further Work . 39
6.1 For the Algorithm . 39
6.2 For the Anomaly Explanation Task . 40

Bibliography . 41

Vita . 44

iii

List of Tables

5.1 Precision error rates obtained by red-blue partial cover with 3% of elements
defined as anomalies . 35

iv

List of Figures

3.1 Red-Blue Set Cover instance for the condition ‘wet clothes’ in our example
data set. We draw an edge joining a set and an element if the set contains
that element. Every example has a blue element, and the examples where
‘wet clothes’ = no have a red element. 22

3.2 The Red-Blue Set Cover instance after the sets containing more than X = 2
red elements are discarded. Note that the red element #2 is contained in
2 > Y ≈ 1.3 sets, and will also be discarded. 22

4.1 Experiments with random linear threshold rules. We chose a random linear
threshold centered in the Boolean cube that selects approximately half of the
points, so an error rate of 50% is trivial. We plot the mean and standard
deviation of the error rate for tolerant elimination. Both the new low degree
partial cover algorithm and our naive greedy baseline obtain hypotheses with
significantly low error rates, whereas the original tolerant elimination algo-
rithm cannot obtain a nontrivial error rate. The new algorithm also obtains
slightly lower error rates (covering closer to the target fraction) than the naive
baseline. 27

5.1 Non-anomalous images for camera #269 . 31
5.2 Terms covering 0.3% of images (1/10 of the anomalies) with 1.5% test precision

error for camera #269, illustrated by example images. The terms contained
in all of the three cross-validation runs are in bold. 32

5.3 Non-anomalous images for camera #623 . 33
5.4 Terms covering 0.1% of images (1/30 of the anomalies) with 2.2% test precision

error for camera #623, illustrated by example images. The terms contained
in all of the three cross-validation runs are in bold. 34

5.5 Precision error vs. coverage for larger datasets (>80k training examples). Ob-
serve that we can obtain greater than 75% precision as long as we only fit a
fraction of the anomalies. 36

5.6 Precision error vs. coverage for smaller datasets (≤50k training examples).
Observe that no method obtains precision substantially greater than 60%. . . 36

5.7 Example images and terms covering 0.5% of images (1/6 of anomalies) with
5.8% test precision error for camera #269. Terms that appeared in all three
cross-validation runs appear in bold. (Continued in Figure 5.8.) 37

v

5.8 Example images and terms covering 0.5% of images (1/6 of anomalies) with
5.8% test precision error for camera #269, continued from Figure 5.7. Terms
that appeared in all three cross-validation runs appear in bold. 38

vi

Acknowledgments

B. Juba is supported by an AFOSR Young Investigator Award. I would like to thank Prof.

Juba for giving me the chance to do the research and advising me for the Master Thesis.

Mengxue Zhang

Washington University in Saint Louis

May 2017

vii

ABSTRACT OF THE THESIS

An Improved Algorithm for Learning to Perform Exception-Tolerant Abduction

by

Mengxue Zhang

Master of Science in Computer Science

Washington University in St. Louis, May 2017

Research Advisor: Professor Katherine Doe

Inference from an observed or hypothesized condition to a plausible cause or explanation

for this condition is known as abduction. For many tasks, the acquisition of the necessary

knowledge by machine learning has been widely found to be highly effective. However, the

semantics of learned knowledge are weaker than the usual classical semantics, and this ne-

cessitates new formulations of many tasks. We focus on a recently introduced formulation of

the abductive inference task that is thus adapted to the semantics of machine learning. A key

problem is that we cannot expect that our causes or explanations will be perfect, and they

must tolerate some error due to the world being more complicated than our formalization

allows. This is a version of the qualification problem, and in machine learning, this is known

as agnostic learning. In the work by Juba that introduced the task of learning to make ab-

ductive inferences, an algorithm is given for producing k-DNF explanations that tolerates

such exceptions: if the best possible k-DNF explanation fails to justify the condition with

probability ε, then the algorithm is promised to find a k-DNF explanation that fails to jus-

tify the condition with probability at most O(nkε), where n is the number of propositional

viii

attributes used to describe the domain. Here, we present an improved algorithm for this

task. When the best k-DNF fails with probability ε, our algorithm finds a k-DNF that fails

with probability at most Õ(
√
nkε) (i.e., suppressing logarithmic factors in n and 1/ε).We

examine the empirical advantage of this new algorithm over the previous algorithm in two

test domains, one of explaining conditions generated by a “noisy” k-DNF rule, and another

of explaining conditions that are actually generated by a linear threshold rule.

We also apply the algorithm on the real world application Anomaly explanation.In this

work,as opposed to anomaly detection, we are interested in finding possible descriptions of

what may be causing anomalies in visual data. We use PCA to perform anomaly detection.

The task is attaching semantics drawn from the image meta-data to a portion of the anoma-

lous images from some source such as web-came. Such a partial description of the anomalous

images in terms of the meta-data is useful both because it may help to explain what causes

the identified anomalies, and also because it may help to identify the truly unusual images

that defy such simple categorization. We find that it is a good match to apply our approxi-

mation algorithm on this task. Our algorithm successfully finds plausible explanations of the

anomalies. It yields low error rate when the data set is large(>80,000 examples) and also

works well when the data set is not very large(< 50,000 examples). It finds small 2-DNFs

that are easy to interpret and capture a non-negligible.

ix

Chapter 1

Introduction

1.1 Abduction Reasoning

Reasoning is the process of using existing knowledge to draw conclusions, make predictions,

or construct explanations. There are three types of reasoning common in use: deductive

reasoning, inductive reasoning and abductive reasoning. Deductive reasoning is the process

of reasoning from some statements to reach a logically certain conclusion. For example,

Wendy always sit on chair, if there is no chair in the room, we can deduce that Wendy is

standing in the room. Inductive reasoning is a logical process in which there are multiple

premises, all believed true or were been true at high probability, are combined to obtain a

specific conclusion.

Abductive reasoning, one of the most important terms in this thesis, is the process of inferring

a reasonable explanation for an observation or hypothetical situation.For example, suppose

a man walks into a hotel and his clothing is wet. We may naturally assume that it is raining

outside. This might not be true, and his clothing may have gotten wet some other way, but

it is the most reasonable explanation of the given facts. In other words, abductive reasoning

tends to represent at least a highly plausible explanation for the given facts. Abduction is

powerful—in enabling us to find hidden explanation of events, it furthermore enables us

to generate new theories. Abductive reasoning can be applied in diverse problems, such as

image understanding [10, 31], natural language understanding [14], plan recognition [9], and

so on.

1

Although most early work on abduction relied on explicit knowledge engineering to capture

the domains in which such inference was to be performed, much knowledge engineering

has been replaced by machine learning. The reasons can be explained roughly as follows:

the main lessons of the CYC project [21] were that (i) the scope of knowledge needed to

support ordinary human inferences is vast, and would take many decades to formalize in its

entirety and (ii) such a large knowledge engineering effort seems to inevitably suffer from

semantic drift and consequently, brittleness. Machine learning is a means to circumvent both

of these problems. The price of using learned knowledge is that its semantics are inevitably

weaker than those of classical knowledge. So, while these weaker semantics may grant us

some additional robustness (as has been argued, for example, by Valiant [35, 36]), they also

require us to reconsider the foundations of the various tasks we wish to perform. A surprising

benefit of this exercise is that it turns out that a combined learning and reasoning task may

be easier than either of its constituent parts: Khardon and Roth [18] demonstrated that

algorithms for such combined tasks may efficiently learn and reason with representations

that would be intractable to learn or reason about using standalone algorithms. Motivated

by these advantages, we will likewise consider a combined learning and abductive reasoning

task.

1.2 Abduction Task

In particular, we focus on a new formulation of abductive reasoning introduced by Juba [17]

based on PAC-learning [34]. In this model, learning is accomplished using examples that

consist of settings of each of the various Boolean attributes. For example, if our domain is

reasoning about people, then our attributes may include “female” (yes or no), “male” (yes

or no), “brown hair” (yes or no), “taller than 1.5m” (yes or no) and so on. Each example

corresponds to a person, and consists of a setting of all of these attributes. All of the examples

contain the same attributes, but they may be set differently. In the model, these examples

are drawn from an arbitrary distribution D over {0, 1}n (for our n attributes). The abduction

task is then, given a condition that we wish to explain, that is captured by a Boolean formula

c, to use these examples to find a hypothesis formula h that explains the condition in the

following sense. h should (approximately) entail c, that is, when h is true, c should almost

always also be true; and, h itself should be true as often as possible, i.e., we wish to find the

2

most likely such h. For example, the query might indicate whether or not the stated facts

of the story hold in a specific example, while h is some other (most likely) condition that

yields the given condition.

A key problem with such formalizations is that we cannot expect our explanations to be

perfect. Those explanations must tolerate some errors – situations where the explanation

should hold, but the condition in question fails to materialize – due to our failure to model

the real world in every last detail. This is essentially a variant of the qualification problem [23].

In the work by Juba that introduced this task, an algorithm is given for producing k-DNF

explanations that features some tolerance to such exceptions: if, under the best possible k-

DNF explanation, the condition fails to materialize with probability ε, then the algorithm

is promised to find a k-DNF explanation under which the condition only fails to materialize

with probability at most O(nkε) (where again, n is the number of propositional attributes).

Of course, this could be quite a bit larger than the best probability ε, and we would like to

reduce (if not eliminate) this dependence on n.

1.3 Brief Summary for the Theory of Algorithm

In this work, we introduce an improved algorithm for this task which finds a k-DNF ex-

planation that fails with probability at most Õ(
√
nkε)1. Our algorithm is an extension of

an earlier algorithm by Peleg [29] for the closely related “Red-Blue Set Cover” problem [7].

Roughly, in such a problem, we are given a collection of sets that we wish to use to cover all

of the “blue” elements while covering as few “red” elements as possible. The correspondence

then, is that we assign every example a blue element, while assigning examples in which the

desired condition fails to hold a “red” element, and take the possible terms of size k (for

a k-DNF) as our collection of sets. Now, our task is to choose terms of size k that “cover”

as many blue elements as possible while covering as few red elements as possible—the main

difference is that we no longer require covering all of the blue elements. More precisely, in

the variant that is relevant to us, we are given a target fraction µ of the blue elements to

cover (less than 1), and we seek to minimize the ratio of red-to-blue elements we cover in

meeting this objective. Thus our task is actually also distinct from the “positive-negative

1That is, ignoring logarithmic factors.

3

partial set cover” problem studied by Miettinen [25], in which one wishes to minimize the

sum of the number of negative (red) elements covered and the number of positive (blue)

elements uncovered.

At the heart of Peleg’s algorithm is an approximation algorithm for the weighted set cover

problem; in our extension, this standard weighted set cover problem is instead a partial set

cover problem. Slav́ık [33] had already shown that the greedy algorthm achieves the same

approximation ratio for such a variant of weighted set cover, so we are able to easily complete

the rest of the analysis after this modification. The resulting algorithm increases the error by

a O(
√
nk log n+log 1/δ

ε
) factor, where again ε is the error rate achieved by the best explanation

that is true with probability at least the target µ, and δ is the probability that we fail on

account of drawing an unrepresentative set of examples.

We also investigate the empirical advantage of this new algorithm over the previous, “Toler-

ant Elimination” algorithm considered by Juba. We consider two test domains. In the first

domain, there is a “planted” k-DNF rule that is used to define the condition, subject to some

independent random noise. Thus, in this case, we have a good sense of what the ideal error

rate should be. We find that both algorithms perform well at this simple task. In the second

domain, the condition is actually defined by a (random) linear threshold rule. We know that

in general, such linear threshold rules cannot be approximated well by a k-DNF, and so this

domain exercises the algorithms’ ability to tolerate errors that are due to the actual con-

dition being too complex for our formalism to capture. We find that Tolerant Elimination

completely fails at this task, never achieving an error rate lower than the trivial rule that is

always satisfied, whereas our new algorithm is able to identify rules that are satisfied with

controllable probabilities, that achieve substantially lower error rates.

4

1.4 Apply the Algorithm for Solving Anomaly Expla-

nation Task

1.4.1 Problem Introduction

An anomaly is an observation that does not conform to expected behavior. The usual version

of anomaly detection involves an algorithm to identify these anomalies, which are then

subject to further investigation, for example by a human analyst. This work offers an option

that, understanding what might have caused these anomalies. Once anomalies have been

detected, we propose a way to find structure within those anomalies to better understand

them. To reiterate, an anomaly is based on creating a model of expected variations in a scene

and then defining examples that don’t fit this model as anomalies.

For example, suppose you have a collection of traffic camera images, and you want to better

understand what comprises atypical traffic conditions. You could obtain a collection of meta-

data corresponding to these images. Similar as I mentioned before, there are some attributes

might include weather patterns, rush hour periods, holidays and so on. We propose to con-

sider the task of identifying what metadata conditions are associated with anomalous data.

For instance, the co-occurrence of rush hour and snowy weather be correlated in anomalous

images, as these conditions could result in traffic delays, low visibility, or accidents. There

may be other anomalies that you might be able to identify, but unable to easily explain from

a metadata collection, such as a power outage, or snow covering the camera lens. These,

you would perhaps take a separate look at to see if they are relevant. This is the type of

application we envision.

In sum, given a list of metadata attributes about dataset, differences in the metadata can be

used to infer an informative relationship. Our anomaly explanation seeks to attach semantics

drawn from the image metadata to a portion of the anomalous images by returning a list

of conditions on metadata that are associated with anomalies. Not all metadata attributes

necessarily have conditions, as not all are necessarily associated with anomalies. In this work,

we emphasized approximate validity in our descriptions of anomalies. We want the conditions

we obtain to reliably indicate that data satisfying those conditions will be anomalous. In this

sense, our description of an anomalous event would be informative: when these conditions

5

hold, the image should be an anomaly. Thus, we aim to find a set of anomalies that are

easily explainable. These explainable anomalies may the focus of study, or they may be more

common anomalies that keep occurring that a user wants to filter out in order to focus on

more interesting cases.

Our Partial Red-Blue cover greedy algorithm is a good fit to solving this task. With training

set containing more than 80k images: given such large training set, it was able to find

simple conditions that explain between 1/10 and 1/6 of the anomalies with precision greater

than 75% and 1/30 of the anomalies with precision greater than 97%. With training sets of

size closer to 50k, the algorithm works well but were not able to obtain greater than 60%

precision, and thus could only address this task weakly at best. We note that since our task

is inherently one of learning about events that occur by definition at most 3% of the time, it

is not surprising that they should require a large traning set(and indeed, also large test set).

1.4.2 Data-set

The data combines webcam image data with metadata collected from a variety of sources.

These metadata concern the semantic contents of the image (i.e., image labels obtained via

object recognition) and local conditions when the image was collected.

We use webcam data from four locations in the AMOS database [15], which takes a photo

from each webcam approximately every thirty minutes. We selected these locations based

on three criteria: first, they are very stable; second, they have a relatively large number of

images for the AMOS collection; and third, they are located in the USA, and so data on

the weather and holidays at these locations was readily available from common sources. For

each camera, there were between 73847 and 131873 images, and the metadata ranged from

195 to 335 dimensions. The locations are a pond (camera #269), Lake Mono (#4312), the

Moody Gardens theme park (#623), and a Toledo highway (#21656). The actual longitude

and latitude of the cameras have been estimated using prior work by Jacobs et al. [16].

To gather metadata, we use the Google Vision API [3], the SunCalc API [2], the Python

holidays library [32], and data from The Weather Channel [8] to generate a binary and

6

nonbinary metadata collection. The binary version is intended to provide a “summary” of

nonbinary variables for those methods that require all variables to be binary.

We use the label detection feature in the Google Vision API to obtain a list of objects found

in images. Each label was a variable. If an image did not receive that label, then the variable

takes the value 0. If it received the label, the variable takes the value 1 in the binary dataset,

and the value of the score in the nonbinary dataset. The score is a value between 0 and 1

that represents the confidence that the label is relevant to the image. Google Vision failed

to run on a small number of the images. For these, we mark all Google Vision variables as 0

and for all images, we append an additional variable to signify whether or not Google Vision

successfully ran.

We use the SunCalc API to create a list of binary variables for each image based on whether

or not it was taken within a certain sunlight phase, for example, during sunrise. We use data

from The Weather Channel to generate binary and nonbinary variables based on weather

phenomena, including precipitation and cloud cover. Lastly, we include binary labels for

weekends and holidays.

7

Chapter 2

The Partial Red-Blue Set Cover

Problem

In this section, we introduce the Partial Red-Blue Set Cover Problem, a natural variant of

Red-Blue Set Cover. We will show how an algorithm by Peleg [29] for Red-Blue Set Cover

can be adapted to solve this new problem. In the following section, we will then explain how

this problem can be used to perform exception-tolerant abduction.

2.1 Statement of the Partial Set Cover Problem

Consider a finite universe U comprised of two disjoint sets, of red elements R and blue

elements B. We let β denote the number of blue elements. We suppose that we are given a

collection S of d sets S1, . . . Sd that are subsets of U .

For any sub-collection S ′ ⊆ S, let U(S ′) denote
⋃
Si∈S′ Si, B(S ′) denote U(S ′)∩B and R(S ′)

denote U(S ′) ∩ R. The goal is to choose a S ′ ⊆ S that covers at least µ fraction of all

the elements of B while minimizing |R(S ′)|/|B(S ′)|, i.e., the number of red elements in S ′

relative to the number of blue elements.

8

2.2 An Algorithm for Partial Red-Blue Set Cover

We begin by defining some more useful notation. Let deg(ri,S) denote the number of sets in

S that contain the red element ri. Let ∆(S) = max{deg(ri,S) : ri ∈ R}. Denote the result of

deleting elements of R′ from Si by φ(Si, R
′) = Si \R′ and let φ(S, R′) = {φ(Si, R

′) : Si ∈ S}.
For any set Si ∈ S let r(Si) = |R({Si})| and for every sub-collection S ′ ⊆ S, let r(S ′) =

|R(S ′)|. Let H(n) =
∑n

i=1
1
i

be the nth harmonic number.

Peleg’s original algorithm used the standard greedy algorithm for approximate weighted

set cover as a subroutine. Our main modification will be to replace this subroutine with

a (modified) algorithm for approximate weighted partial set cover; Slav́ık established that

a greedy algorithm for partial set cover achieves the same approximation ratio as for the

original problem. We modify his algorithm slightly to optimize the ratio of the costs to

number of elements covered (Algorithm 1). Precisely:

Algorithm 1 Partial Greedy Algorithm

Input: finite set T = {T1, ..., Td}, costs {c1, ..., cd}, µ ∈ (0, 1]
Output: µ partial cover solution set T̃
Procedure:

1: Set T̃ = ∅
2: If r = µβ −

∣∣⋃
t∈T̃ Tt

∣∣ ≤ 0, then STOP and output T̃
3: Choose the first Ti ∈ T \ T̃ that minimizes ct/|Tt|, for t ∈ T \ T̃ and Ti 6= ∅.
4: Add Ti to T̃ , set Tt = Tt \ Ti, and return to step 2.

Theorem 1 Let T be a collection of sets T1 . . . , Td on a universe V with corresponding

weights ω(T1), . . . , ω(Td). Suppose that there is a sub-collection T ∗ ⊆ T such that T ∗ =⋃
T∈T ∗ T contains at least µ|V | distinct elements and

∑
T∈T ∗ ω(T) = ω(T ∗). Then Algo-

rithm 1 finds a subcollection T̃ such that
⋃
T∈T̃ T also contains at least µ|V | elements and∑

Tt∈T̃
ω(Tt)

|⋃Tt∈T̃ Tt| ≤ 3H(dµ|V |e) · ω(T
∗)

|T ∗| .

We now give an overview of the proof of Theorem 1, the approximation guarantee achieved

by Algorithm 1. We stress that while our proof is an extension of Theorem 4 of Slav́ık [33],

our objective is different: we are seeking to minimize the ratio of the cost to the size of the

cover, among all covers that include a µ-fraction of the universe. Let A = {A1, . . . , A`} be a

9

cover that attains this minimum value and denote by cmin its cost,
∑

s ω(As). We thus have,

for our universe of size β,
∑`

s=1 |As| ≥ dµβe. Let cgreedy be the cost obtained by Algorithm 1,

and suppose that the cover returned includes k sets. Let r(i) be the number of elements

remaining to be covered after the ith iteration of the algorithm, and let A
(i)
s and T

(i)
j denote

the sets As and Tj after the ith iteration, i.e., after the elements from the sets T1, . . . , Ti

chosen by Algorithm 1 on all previous iterations have been removed from them.

Now, in iteration i + 1, the greedy algorithm chooses some set j for which cj/|T (i)
j | is mini-

mized. Therefore,

ω(T
(i)
i+1)

|T (i)
i+1|

≤ ω(As)

|A(i)
s |

for s = 1, . . . , `, for which A(i)
s 6= ∅.

More generally, for a given, arbitrary collection of sets S̃, we can define a greedy ordering of

the sets in S̃, analogous to our greedy algorithm. We denote sets in the initial collection by

S
(0)
i (letting i = 1, . . . , |S̃|), and put S1 equal to some first set minimizing the ratio ω(S)

|S| . Then,

given inductively that we have chosen the ordering up to j, we put each S
(j)
i = S

(j−1)
i \ Sj,

i.e., equal to the elements of S
(0)
i that are still uncovered by the partial collection up to j,

and take Sj+1 to be the first set minimizing the ratio
ω(Sj+1)

|S(j)
j+1|

.

We observe that the final ratio achieved by the collection S̃ is a weighted average of these

ratios: ∑
j ω(Sj)∣∣∣⋃j Sj

∣∣∣ =
∑
i

|S(i)
i+1|∣∣∣⋃j Sj

∣∣∣ ω(Si+1)

|S(i)
i+1|

where
∑

i

|S(i)
i+1|

|⋃j Sj| = 1. We also observe that for j < k, ω(Si)

|S(j)
i |

< ω(Si)

|S(k)
i |

.

Lemma 2 There is an optimal cover in which only the final set in any greedy ordering may

contain more than µβ elements, and the collection of all prior sets covers fewer than µβ

elements.

Proof: Consider the greedy ordering of the sets in any optimal cover. Since for j <

k, ω(Ai)
|A(j)
i |
≤ ω(Ai)

|A(k)
i |

, if a set is not chosen before the first set by which µβ elements have been

covered, then its ratio will always be at least as large as that of the set for the index at

10

which the given cover contains µβ elemtns, as well as all previous sets in the ordering. Since

the overall ratio achieved by the cover is an averaging of these ratios, eliminating sets that

appear in the ordering after this point can only improve the ratio achieved by the cover.

Now consider all fractions of the form ω(As)
ks

for s = 1, . . . , ` and ks = 1, . . . , |As|. Note that

there are at least dµβe = r(0) such fractions. Suppose we arrange these fractions into a

nonincreasing sequence e1 ≥ e2 ≥ · · · ≥ er(0) ≥ · · · . Closely following Slav́ık, we then obtain

the following inequalities.

Lemma 3 (c.f. Lemma 1 of Slav́ık [33]) For i = 0, . . . , k − 1, ω(Ti+1)

|T (i)
j |
≤ er(i).

Proof: After ith iteration of the greedy algorithm, i = 0, ..., k − 1, there are exactly r(i)

elements to be covered, i.e. there are at least r(i) elements in ∪ls=ta
(i)
s ≤ r(i).

The greedy condition implies that

ω(Ti+1)/u
(i)
i+1 ≤ ω(As)/a

(i)
s for all s=1,...,l for which a

(i)
s > 0. Therefore

ω(Ti+1)/u
(i)
i+1 ≤ ω(As)/ksforalls = 1, ..., l and all ks = 1, ..., a

(i)
s , i.e.

ω(Ti+1)/u
(i)
i+1 ≤ ej for at least r(i) indices j, but e1 ≥ ... ≥ er(0) hence

ω(Ti+1)/u
(i)
i+1 ≤ er(i) for any i = 0, ..., k − 1

Lemma 4 (c.f. Lemma 2 of Slav́ık [33]) cgreedy ≤
∑`−1

s=1 ω(As)H(|As|)+ω(A`)H(min{dµβe, |A`|})

Proof: ω(Ti+1)

u
(i)
i+1

≤ er(i) ≤ er(i)−1 ≤ ... ≤ er(i+1)+1. Since r(i) − r(i+1) = u
(i)
i+1, we have

ω(Tl+1) ≤ er(i) + er(i)−1 + ...+ er(i+1)+1.

Adding the above inequalities for i = 0...k − 1, we have

ω(T1) + ...+ ω(Tk) ≤ er(0) + ...+ el =
∑`−1

s=1 ω(As)H(|As|) + ω(A`)H(min{dµβe, |A`|})
We now handle the special case in which every optimal cover is dominated by a single, large

set:

Lemma 5 If every optimal cover contains more than 3dµβe elements and is more than

three times the size of the greedy algorithm’s cover, then the greedy algorithm achieves an

approximation ratio of 3.

11

Proof: We observe that in the first case, by Lemma 2, the optimal ratio is at least 2
3
ω(A`)

|A(0)
` |

since the final set contributes at least 2/3 of the final ratio. Furthermore, since the greedy

algorithm’s cover contains at most 1/2 of A
(0)
` , we know that the ratios of the sets selected

by the greedy algorithm are all at most 2ω(A`)
|A(0)
` |

. Since, again, the greedy algorithm’s ratio is

a weighted average of these individual ratios, the final ratio is also at most 2ω(A`)
|A(0)
` |

, and hence

at most three times larger than the optmal ratio.

Finally, we can prove Theorem 1

Proof of Theorem 1: Fix a smallest optimal cover. Lemma 2 implies that |As| ≤ dµβe
for all s = 1, . . . , `− 1. This, and Lemma 4 establish that cgreedy ≤ H(dµβe)cmin. Now, if the

optimal cover contains fewer than 3dµβe elements, since the greedy algorithm must return

a cover with at least dµβe elements, a ratio of 3H(dµβe) is immediate in this case. More

generally, if the optimal cover contains at most three times as many elements as the cover

returned by the greedy algorithm the ratio is again 3H(dµβe). Finally, Lemma 5 guarantees

that if neither of these cases hold, we still obtain a ratio of 3 ≤ 3H(dµβe).

We sketch the proof of Theorem 1 as above. Now, we modify Peleg’s subroutine greedy RB

to use Algorithm 1 instead of the standard greedy algorithm, obtaining Algorithm 2.

12

Algorithm 2 Greedy partial RB

Input: finite set S = {S1, ..., Sd}, µ ∈ (0, 1]
Output: µ partial cover solution S̃
Procedure:

1: Modify S into an instance T of the weighted set cover problem as follows: (a) Take
T = φ(S, R) (b) Assign each set Ti = φ(Si, R) in T a weight ω(Ti) = r(Si)

2: Apply Algorithm 1 for weighted partial set cover to T and generate a cover T̃
3: Get the corresponding collections as a set of solutions S̃ = {Si : Ti ∈ T̃ }

Lemma 6 Algorithm Greedy partial RB yields an approximation ratio of ∆(S) · 3H(µβ)

Meanwhile, We will use the following lemma from Peleg:

Lemma 7 [29, Lemma 3.1] For any collection S ′ ⊆ S and the corresponding instance T ′ =
φ(S ′, R) of the weighted set cover problem r(S ′) ≤ ω(T ′) ≤ ∆(S) · r(S ′)

The proof is now very similar to that of the analogous lemma, Lemma 3.2 used by Peleg:

Proof of Lemma 6: Let any minimum-weight set cover T ′ of T be given. Consider

any optimal cover S∗ ⊆ S that covers µβ blue elements and put T ∗ = φ(S∗, R). Since, by

Theorem 1, Algorithm 1 yields a 3H(µβ) approximation ratio for the weighted partial set

cover problem, we then have that the solution returned by Algorithm 1 satisfies ω(T̃) ≤
3H(µβ) ·ω(T̃ ′). Lemma 7 then gives r(S̃) ≤ ω(T̃). And, since T̃ ′ is an optimal partial cover

of T , ω(T̃ ′) ≤ ω(T̃ ∗). In summary, so far we have

r(S̃) ≤ ω(T̃) ≤ 3H(µβ) · ω(T̃ ′) ≤ 3H(µβ) · ω(T̃ ∗).

Now, Lemma 7 gives

3H(µβ) · ω(T̃ ∗) ≤ 3H(µβ) ·∆(S) · r(S̃∗)

completing the proof.

We next modify the body of Peleg’s main algorithm, Low Deg in the natural way to obtain

our final algorithm, (1) replacing the use of Greedy RB with Algorithm 2, (2) checking

that the family may possibly admit a sufficiently large partial covering after computing SX ,

13

and (3) computing our notion of (relative) error rate rather than just the number of red

elements.

Algorithm 3 Low Deg Partial(X)

Input: finite set S = {S1, ..., Sd}, µ ∈ (0, 1], integer X
Output: µ partial cover solution S̃X and corresponding error rate ε̃
Procedure:

1: Discard sets in S that contain more thanX red elements, set SX ← {Si ∈ S : r(Si) ≤ X}.
2: If |B(SX)|

|B| < µ, then return FAIL . SX is not feasible

3: Set Y =
√

d
H(dµβe)

4: Identify the high degree red elements: RH ← {ri ∈ R : deg(ri,SX) > Y }
5: Discard elements of RH in SX : SX,Y ← φ(SX , RX)
6: Apply Algorithm 2 to SX,Y and obtain a solution S̃X,Y for it.
7: Add the dropped red elements back to obtain the corresponding result S̃X .
8: For the set of blue elements B̃ and red elements R̃ respectively covered by S̃X , calculate

the error rate ε̃ =
˜|R|
˜|B|

and return it and S̃X .

Algorithm 4 Low Deg Partial 2

Input: finite set S = {S1, ..., Sd}, µ ∈ (0, 1]
Output: optimal choice of µ partial cover solution and corresponding error rate ε̂
Procedure:

1: For X=1 to |R| do:
2: Low Deg Partial(X)
3: Take the solution that yields the lowest error rate

14

Theorem 8 Algorithm 4 solves the Partial Red-Blue Set Cover problem with an approxima-

tion ratio of 4
√
d ·H(µβ)

The proof of Theorem 8 is virtually identical to the proof of Theorem 3.5 of Peleg (and the

proof Peleg’s Lemma 3.4), with our Lemma 6 replacing Lemma 3.2, and 3H(µβ) replacing

the original log β approximation ratio.For convenience, we still show the proof below:

Proof: Each set Si ∈ SX has at mostX red elements, hence |RH |∗Y ≤
∑

rj∈RH
deg(rj, SX) ≤∑

rj∈R
deg(rj, SX) =

∑
Si∈SX r(Si)|SX |∗XdX so |RH | ≤ dX implying that RH ≤

√
dH(µβ)∗

X.

Next, we define X̂ as our optimal value. First, SX̂ is necessarily feasible. Hence the procedure

will always return a solution in step 2 in Algorithm 3. Let S∗ be some optimal solution for

the problem and let r∗H = |R(S∗)∩RH | and r∗L = |R(S∗)∩RL|. Since ∆(SX̂,Y) ≤ Y , Lemma

6 guarantees that the solution produced by algorithm 3 uses at most Y ∗ 3H(µβ) ∗ r∗L =

3
√
dH(µβ) ∗ r∗L red elements of R∗L and RH ≤

√
dH(µβ) ∗ X̂. Combined, the total number

of red elements used by the procedure satisfies r(˜SX̂) ≤ 3
√
dH(µβ)r∗L +

√
dH(µβ)∗ X̂. But

by the definition of X̂, necessarily r(S∗) ≥ X̂ and hence r(˜SX̂) ≤ 4
√
dH(µβ)r(S∗) yielding

the Theorem.

15

Chapter 3

Using Partial Red-Blue Set Cover

Algorithms for Exception-Tolerant

Abduction

We will now show that, given an appropriate number of examples, algorithms for the Partial

Red-Blue Set Cover problem can be used to perform exception-tolerant abduction. We first

recall the PAC-learning formulation of abduction proposed by Juba [17].

3.1 Learning of Exception-Tolerant k-DNF Abduction

The formulation of learning exception-tolerant abduction is as follows. Suppose there are

n propositional attributes x1, . . . , xn, and we are given a query to be explained, a Boolean

formula c that may use our n propositional attributes as variables. We fix an alphabet

A ⊆ {x1, . . . , xn} of attributes we wish to allow in our explanations. For example, A may

only contain the attributes that take values “before” the attributes used in the formula c

describing the event to be explained. We are also given as input m examples, x(1), . . . , x(m),

drawn independently from a common, unknown distribution D over Boolean values for all

of the n attributes. We are given a target plausibility threshold µ ∈ (0, 1), and an integer k

for the complexity of our solutions. Following Juba [17], we will only seek to use k-DNFs as

explanations; it seems that this is essentially the most expressive natural class of formulas

for which this task is tractable. Finally, we fix a tolerance γ ∈ (0, 1/3] indicating the amount

16

of loss relative to the optimal plausibility we are willing to accept. Let

ε∗ = min
k-DNF h on A:Pr[h(x)=1]≥µ

Pr[c(x) = 0|h(x) = 1]

be the optimal error rate achievable by a k-DNF using only attributes in A that is satisfied

at least a µ-fraction of the time on D.

Our task is now to return a k-DNF h that uses only attributes in A such that with probability

1− δ over the draw of x(1), . . . , x(m) from D,

1. Plausibility. Pr[h(x) = 1] ≥ (1− γ)µ and

2. Entailment. Pr[c(x) = 0|h(x) = 1] ≤ α(n, 1/ε∗, 1/δ)ε∗ where we say that α(n, 1/ε∗, 1/δ)

is the approximation ratio achieved by our algorithm.

Note that we are seeking to learn both the (approximate) entailment relation between the var-

ious hypotheses and the conclusion c and the degree of plausibility of the various hypotheses

from the examples.

Our task is formally equivalent to finding a prediction rule h for c that achieves a positive

classification rate of (1− γ)µ and precision 1− αε∗, given that some other unknown rule h∗

with a positive classification rate µ achieves precision 1− ε∗.2

3.2 Analysis of Partial Red-Blue Set Cover Algorithms

for Learning Abduction

We will now prove our main theorem, stating that Algorithm 4 can be used to perform

exception-tolerant abduction with an approximation ratio of O(
√
nk log µm), where m =

Θ(1
γ2µε∗

(nk + log 1
δ
)) (in particular the factor of µ in the approximation ratio cancels the

factor of 1/µ in m).

2Our algorithm can be easily extended to achieving recall (1 − γ)µ and precision 1 − αε∗ when a rule
achieving recall µ and precision 1−ε∗ exists—one simply only creates a blue element for the positive examples
instead of all examples.

17

Theorem 9 Suppose we are given m = Θ(1
γ2µε∗

(nk + log 1
δ
)) examples. Then Algorithm 4

can be used to solve the exception-tolerant abduction task in time polynomial in m and nk

with approximation ratio O(
√
nk log µm) = O(

√
nk log n+log 1/δ

γε∗
).

To prove this theorem, we will need to argue that the “empirical” problem posed by a fixed

training set provides a good approximation to the quality of a k-DNF explanation on the

actual distribution of examples.

Lemma 10 For any c : {0, 1}n → {0, 1}, δ ∈ (0, 1), and γ ∈ (0, 1/3], let x(1), . . . , x(m) be

independently drawn from a common distribution D over {0, 1}n for

m ≥ 3(1 + γ)

γ2(1− γ)µε∗
(ln 2

(
2n

k

)
+ ln

4

δ
)

where ε∗ is the minimum (nonzero) Pr[c(x) = 0|h(x) = 1] over k-DNFs h with Pr[h(x) =

1] ≥ µ for a given target µ.

Then with probability 1 − δ over the draw of x(1), . . . , x(m), if a k-DNF h is true on a µ̂

fraction of x(1), . . . , x(m) for µ̂ ≥ (1− γ)µ, we have

(1 + γ) Pr[h(x) = 1] ≥ µ̂ ≥ (1− γ) Pr[h(x) = 1].

If, furthermore Pr[c(x) = 0|h(x) = 1] ≥ ε∗ and c(x(j)) = 0 for a ε̂ fraction of {x(j) : h(x(j)) =

1}, we have

(1− 2γ) Pr[c(x) = 0|h(x) = 1] ≤ ε̂

≤ (1 + 3γ) Pr[c(x) = 0|h(x) = 1].

So in short, for every k-DNF h, one of three cases hold: either h is satisfied on too few

examples to be considered (fewer than (1 − γ)µ), or h has error better than our target

optimum ε∗ (over those h′ satisfied with probability at least µ), or else we have good estimates

of the error made by h at justifying c.

This lemma is a straightforward consequence of the (multiplicative) Chernoff bound:

18

Theorem 11 (Multiplicative Chernoff bound) Let X1, . . . , Xm be independent random

variables taking values in [0, 1], such that E[1
m

∑
iXi] = p. Then for γ ∈ [0, 1],

Pr

[
1

m

∑
i

Xi > (1 + γ)p

]
≤ e−mpγ

2/3

and Pr

[
1

m

∑
i

Xi < (1− γ)p

]
≤ e−mpγ

2/2

Proof of Lemma 10: Let any c and k-DNF h be given. We will use the Chernoff bound

to bound the probability that the sample substantially misrepresents either the probability

that h is satisfied or the probability of h failing to entail c.

First, we observe that h(x(1)), . . . , h(x(m)) indeed take values in [0, 1]. We will let p(h) denote

E[h(x(j))] = Pr[h(x) = 1]. A first application of the Chernoff bound guarantees that for this

h,

Pr[µ̂ > (1 + γ)p(h)] ≤ e−mp(h)γ
2/3 and

Pr[µ̂ < (1− γ)p(h)] ≤ e−mp(h)γ
2/2.

We also note that there are 2(2n
k) k-DNFs. Thus we find by a union bound over all of the

k-DNF that the probability of these bounds failing is 2 · 2(2n
k) · e−mp(h)γ2/3. So in particular,

with probability 1 − δ/2, any h with p(h) < 1−γ
1+γ

µ has µ̂ < (1 − γ)µ, and otherwise, µ̂ is a

suitable estimate of p(h).

Likewise, the indicator functions I[h(x(j)) = 1 ∧ c(x(j)) = 0] also take values in [0, 1] and we

will let ε(h) denote

E[I[h(x(j)) = 1 ∧ c(x(j)) = 0]] = Pr[h(x) = 1 ∧ c(x) = 0].

We also note that ε̂ = 1
µ̂

∑m
j=1 I[h(x(j)) = 1 ∧ c(x(j)) = 0]. So, a second application of the

Chernoff bound guarantees that h also satisfies

Pr[µ̂ε̂ > (1 + γ)ε(h)] ≤ e−mε(h)γ
2/3 and

Pr[µ̂ε̂ < (1− γ)ε(h)] ≤ e−mε(h)γ
2/2.

19

Now, we note that for h with p(h) > 1−γ
1+γ

µ, either Pr[c(x) = 0|h(x) = 1] ≤ ε∗ or else

ε(h) ≥ 1−γ
1+γ

µε∗ Thus, by another union bound over these two inequalities and all suitable

k-DNFs, the probability of any of these bounds failing is at most 2 · 2(2n
k) · e−m

1−γ
1+γ

µε∗γ2/3.

Thus, now, for the claimed m, with probability 1−δ all of these bounds simultaneously hold,

and we additionally get
1− γ
1 + γ

ε(h)

p(h)
≤ ε̂ ≤ 1 + γ

1− γ
ε(h)

p(h)
.

Of course, ε(h)/p(h) = Prx∈D[c(x) = 0|h(x) = 1] and 1+γ
1−γ ≤ 1 + 3γ since γ < 1/3.

We are now ready to prove our main theorem.

Proof of Theorem 9: We produce the following instance of Partial Red-Blue Set Cover: we

create a blue element for each example x(1), . . . , x(m), create a red element for each example

x(j) such that c(x(j)) = 0, and create a set for each term of size k using attributes in A

containing each blue element such that the corresponding x(j) satisfies that term. Let ε̂∗ be

the smallest fraction of red elements covered by any family of these sets that covers at least

(1− γ/2)µm blue elements (i.e., examples). Note that there are m blue elements and
(
2|A|
k

)
sets.

Theorem 8 then establishes that Algorithm 4 run on this instance with parameter (1−γ/2)µ

returns a set S of terms of size k using attributes in A such that:

1. µ̂m ≥ (1− γ/2)µm elements are satisfied by some term in S.

2. The number of x(j) such that c(x(j)) = 0 that are satisfied by any term in S is at most

4
√(

2|A|
k

)
H(µm)ε̂∗µ̂m.

Consider any k-DNF h∗ with Pr[h∗(x) = 1] ≥ µ that achieves Pr[c(x) = 0|h∗(x) = 0] = ε∗.

Lemma 10 now guarantees that if we use γ/2 as our tolerance parameter, h∗ is satisfied

on at least (1 − γ/2)µ examples, and at most (1 + 3γ/2)ε∗ examples that satisfy h∗ also

have c(x(j)) = 0. Therefore, ε̂∗ ≤ (1 + 3γ/2)ε∗, and Algorithm 4 must find a family of sets

corresponding to a k-DNF h such that at most a 4(1 + 3γ/2)
√(

2|A|
k

)
H(µm)ε∗ fraction of

examples satisfy h but not c.

Now, since Algorithm 4 must return a k-DNF h that satisfies at least (1−γ/2)µm examples,

Lemma 10 also guarantees that actually with probability 1−δ, Pr[h(x) = 1] ≥ (1−γ/2)2µ ≥

20

(1 − γ)µ and, using the fact that γ ≤ 1/3 and the standard bounds H(x) ≤ 1 + lnx and(
n
k

)
≤
(
ne
k

)k
, where e is the base of the natural logarithm,

Pr[c(x) = 0|h(x) = 1] ≤ (2 + 3γ)2

√(
2|A|
k

)
H(µm)ε∗

≤ 9

√(
2en

k

)k
(1 + lnµm)ε∗.

We can further bound this expression by using that m = Θ
(

1
γ2µε∗

(
(
2n
k

)
+ log 1

δ
)
)

. We thus

find that it is O(
√
nk log n+log 1/δ

γε∗
ε∗) as claimed. We find furthermore by inspection that the

algorithm indeed runs in time polynomial in m and nk since all of the parameters – the

number of red and blue elements, the number of sets, and the degree of each element – can

be bounded by such polynomials.

3.3 A Toy Example

To better understand the algorithm, we now consider an example. Suppose that we have the

following set of examples:

Event # Wet Clothes Raining Sleep Well Inside

1 yes yes no no

2 no no yes no

3 yes yes yes no

4 no yes yes yes

5 no yes yes yes

6 yes yes no no

7 no no yes yes

Suppose that we want to propose a reason that clothes become wet. We can translate this

small data set into a Partial Red-Blue Set Cover problem as shown in Figure 3.1.

In particular, suppose that we are in Algorithm 4, with error tolerance X = 2 and µ = 6/7.

Then in Algorithm 3, first in Step 3.1, we will discard sets in S that contains more than X = 2

21

Figure 3.1: Red-Blue Set Cover instance for the condition ‘wet clothes’ in our example data
set. We draw an edge joining a set and an element if the set contains that element. Every
example has a blue element, and the examples where ‘wet clothes’ = no have a red element.

Figure 3.2: The Red-Blue Set Cover instance after the sets containing more than X = 2 red
elements are discarded. Note that the red element #2 is contained in 2 > Y ≈ 1.3 sets, and
will also be discarded.

red elements. Thus we obtain SX = {‘raining’, ‘not raining’, ‘not sleep well’, ‘not inside’}, as

illustrated in Figure 3.2. Notice that this removes the connection between red elements

and discarded collections. Next, in Step 3.2, we check if the whole set SX contains enough

blue elements for our objective value µ. This SX indeed contain enough blue elements. The

“degree bound” Y calculated in Step 3.3 is Y ≈ 1.3. For Step 3.4, we will identify the “high

degree” red elements and create another set SX,Y that does’t have these high degree red

elements. For this example, red element #2 is considered to be a high degree red element.

Intuitively, we drop these high degree elements because we consider it likely that we will end

up including these points sooner or later, so we don’t want to penalize sets for containing

them. We only want to “charge” a set for the “unusual” (low degree) red elements it contains.

22

Finally we run the greedy algorithm on SX,Y to obtain a solution S̃X,Y . We then add back

the dropped red elements. The result, S̃X might be {‘not inside’, ‘raining’}, corresponding to

the 1-DNF ‘not inside’ ∨ ‘raining’. It covers blue elements {1, 2, 3, 4, 5, 6}, i.e., it is satisfied

on the corresponding examples, and its error rate is 0.5.

23

Chapter 4

Evaluation for the Algorithm

4.1 Empirical Evaluation

So far, we have proposed a new algorithm for exception-tolerant abduction and proved

a better worst-case approximation guarantee for this algorithm than was known for the

Tolerant Elimination algorithm proposed for this task by Juba [17]. Although such worst-

case guarantees are desirable, they do not rule out the possibility that Tolerant Elimination

might still obtain results as good as or better than our new algorithm on various actual

distributions. So, we have investigated the performance of the two algorithms on a couple

simple synthetic domains.

The first domain is an example of an “ideal” situation for our algorithms: here, the target

condition c is generated by a hidden k-DNF that has been corrupted by some independent

random noise. Ideally, the algorithms should obtain a hypothesis that is satisfied with ap-

proximately the same probability (less the noise) that the hidden rule would be satisfied, and

with an error rate that is approximately the noise rate. The second domain is an example of

the challenging situation that we hope our algorithms can cope with. The target condition

c is generated by a random linear threshold function, i.e., a random (centered) half-space of

the Boolean cube. k-DNF formulas cannot approximate such rules well,3 so we can only hope

to obtain a low error rate by choosing a hypothesis that is satisfied relatively rarely. That

is, this is a domain in which the “errors” are highly regular, but the rule we wish to explain

3This is not obvious, but O’Donnell and Wimmer obtain such a result for the simple majority function [27],
where our threshold functions are a random rotation, which have similar “influences” and are similarly hard
for k-DNFs to approximate. See O’Donnell [26, Chapters 4–5] for more.

24

is simply too complex for the representations we use. It therefore tests the capacity for our

algorithms to propose a reasonable hypothesis under relatively unfavorable circumstances.

In the second domain, we also tested a simpler greedy covering algorithm that orders the

terms by their empirical error rates, and simply adds terms to the k-DNF until it has covered

the desired empirical fraction of the data. This method is intended as a baseline. It does not

feature the same theoretical guarantees as our new algorithm.

4.1.1 Noisy Planted k-DNF

Here, we first choose a k-DNF of a fixed size s(k) by selecting s(k) terms uniformly at random

(with replacement) from the terms of size k. s(k) was selected to be relatively large while

keeping the probability of the k-DNF being satisfied around 99%, so that we can sample both

satisfying and falsifying assignments relatively easily: here, we take s(1) = 6 and s(2) = 16.

Once this “planted” k-DNF ϕ is fixed, we take the distribution D to generate a uniform

satisfying assignment of ϕ with probability .15, and a uniform falsifying assignment of ϕ with

probability .85. We can sample from D using simple rejection sampling: we draw a uniform

random example, and if it satisfies ϕ, we independently restart (rejecting the example) with

probability α(ϕ) so that we obtain the desired ratio of satisfying and falsifying examples.

In our experiments, we used 100 attributes and generated 10 formulas for each k. We then

generated 50,000 examples for each formula, a typical size training set.

For each example x, we independently chose whether to put c(x) = ϕ(x) with 95% proba-

bility, or to put c(x) 6= ϕ(x) with 5% probability. That is, there is a noise rate of 5%. So, we

know that the hidden ϕ agrees with c except on a random ≈ 5% of examples. Therefore ϕ

itself, at least, is a k-DNF that (1) explains approximately a 0.95 · 0.15 fraction of examples

drawn from this distribution and (2) c only fails to hold on 5% of the examples drawn from

this distribution on which ϕ is satisfied. We supplied these labeled examples to each of the

algorithms, and to estimate the error of the hypothesis the algorithms produced, drew an-

other data set using the same planted ϕ and computed the error on this new data set. We

repeated this process 10 times each with independently sampled ϕ, to get an estimate of the

distribution of error rates for these algorithms. We supplied Tolerant Elimination the actual

noise parameter of 5% and we supplied the Low-Degree algorithm with the actual fraction,

25

14.25%, of the data that we expect the planted k-DNF to explain. The results (empirical

mean and standard deviation) were as shown below:

1-DNF error 2-DNF error

Tol. Elim. 5.985%± 0.341% 5.915%± 0.304%

Low Deg. 5.996%± 0.353% 5.847%± 0.371%

We see that both algorithms succeeded at this simple task, matching the error rate of the

planted k-DNF.

4.1.2 Random Linear Threshold Rules

For this experiment, we first choose a random linear threshold rule as follows: we first generate

a weight vector θ in which each coordinate is drawn independently from a centered binomial

distribution with parameters (100, 1/2). (We take this as an approximation of a scaling of a

multivariate Gaussian distribution with mean 0.) We take n = 100 attributes except for our

3-DNF experiments, where we take n = 20 attributes (on account of the exploding number

of terms of size 3). For each example x in {0, 1}n, we convert x ∈ {0, 1} to y ∈ {−1, 1} (e.g.,

using yi = 2xi − 1); we then put c(x) equal to [〈θ, y〉 ≥ 0], i.e., 1 if the inequality holds

and 0 otherwise. We generated 10 different linear threshold rules from this distribution, and

generated 10,000 examples uniformly at random for 1-DNF and 2-DNF, and 6,000 examples

for 3-DNF.

We ran the algorithms on these training sets, giving the low-degree and naive greedy (base-

line) algorithms µ = 10%, 30%, 50%, 70%, 90% and 100%, and giving tolerant elimination a

variety of different target error rates; only ε = 16% for 2-DNF had any nontrivial effect. We

then generated 7,500 additional uniform random examples for 1-DNF and 2-DNF to serve

as a test set, and 4,500 examples for 3-DNF. We evaluated the quality of the hypothesis

produced for each training set on these test sets; the results of this evaluation appear in

Figure 4.1.

We make three observations about the results of this experiment. First, the results illuminate

a striking weakness of the Tolerant Elimination algorithm. The algorithm is forced to pick a

threshold error rate that it uses to select whether or not to include a term in its hypothesis.

26

Figure 4.1: Experiments with random linear threshold rules. We chose a random linear thresh-
old centered in the Boolean cube that selects approximately half of the points, so an error
rate of 50% is trivial. We plot the mean and standard deviation of the error rate for tolerant
elimination. Both the new low degree partial cover algorithm and our naive greedy baseline
obtain hypotheses with significantly low error rates, whereas the original tolerant elimina-
tion algorithm cannot obtain a nontrivial error rate. The new algorithm also obtains slightly
lower error rates (covering closer to the target fraction) than the naive baseline.

While this works relatively well in the noisy k-DNF setting where the terms with lower error

rates are terms of the hidden k-DNF, it fails badly here, forcing the k-DNF to pick many

or few terms. For example, the best we can do for 1-DNF is essentially to use the literal

corresponding to the largest weight component of the linear threshold rule. (This is what

both the low-degree and naive greedy algorithms produce to explain 50% of the data.) But,

there are many literals with essentially similar weights, and each additional literal that is

selected, the hypothesis picks up half of the remaining possible examples. It is very difficult

to discover an “ideal” setting for the tolerance, and in our experiments the algorithm always

selected a hypothesis that was not substantially better than the trivial hypothesis that is

always satisfied—both achieved error rates of ≈ 50%.

The second observation is that by contrast, both our low-degree partial cover algorithm and

the naive greedy baseline algorithm obtained significantly lower error rates. That is, both

algorithms were reliably able to successfully infer nontrivial rules in this challenging domain.

In general, we obtained (as one would expect) a trade-off between the probability that the

generated hypothesis was satisfied and its error rate. Also, from k = 1 to k = 2, the error

rate we obtain for the same fraction decreases (but note that the data we used for 3-DNF

27

had far fewer attributes, and hence is inherently easier to approximate and is not comparable

to k = 1, 2).

Third and finally, the low-degree partial covering algorithm generally had a consistent, small

advantage over the naive greedy baseline. Naturally, they performed essentially identically

at the lowest and highest coverage rates as one would expect—at the lowest target coverage,

both generally chose the best single term, and there is only one error rate for covering 100%

of the data. Outside these extremes, recall that both algorithms were given the same target

fractions: for the points at each threshold for the low-degree algorithm, the points for the

corresponding thresholds for the baseline algorithm generally covered a larger fraction than

necessary (shifted to the right) and suffered slightly greater error rates (shifted up). This

matches our intuition that the low-degree algorithm works by discounting the points that

are shared by many terms (that are likely to be chosen). Again, we stress that the baseline

method also does not feature the same approximation guarantee as the low-degree algorithm.

28

Chapter 5

Apply the Algorithm on Real World

Application: Anomaly Explanation

Using Meta-data

We already introuced the anomaly explanation problem and it’s data set in section 1.4. In

this section, I am going to present the rustles for our real world data.

5.1 Algorithm Evaluation Procedure

We evaluated the aglorithm of producing conditions referring solely to the metadata that

predict the image will be an anomaly.

To detect anomalies, we used principal component analysis(PCA). Following prior work [28],

we defined anomaly scores by the reconstruction error using three principal components, and

defined the top 3% scoring images as anomalies. We confirmed that there was no significant

improvement to using five, ten, or twenty component nor lower percentage. For time intervals

where the camera changed resolutions or moved, we obtained independent PCA deconstruc-

tion errors that would have detracted from the goal of finding a diverse set of metadata

explanations. We evaluated our partial greedy set cover algorithm for this task. Meanwhile,

we also evaluated three other algorithms for the task as baselines: the Patient Rule Induction

Method (PRIM) [1], random forests [22], and tolerant elimination algorithm, which is a new

algorithms from the artificial intelligence community that prioritize precision over recall, and

29

thus was good candidates for this task. PRIM [12] is a classic statistical method to find a

region of the input associated with high-valued values of a dependent output variable. We

ran PRIM once with the real-valued metadata and PCA reconstruction errors and another

time with real-valued metadata and binary representations of anomalies. PRIM has a peeling

step to remove non-anomalous data and an optional pasting step to correct for over-peeling.

Because PRIM failed to run within 24 hours in three attempts to include pasting, we omitted

this step.

Random forests is a well-known, simple but effective classification method. Pevny and

Kopp [30] use random forests to produce per-example explanations of anomalies, in contrast

to our explanations that describe conditions that capture the variety of anomalies observed

on a given camera. We simply used the standard random forest classifier as our baseline,

which we anticipate to be more accurate but surely less interpretable than the actual method

used by Pevny and Kopp. For this method we used binary representation of both metadata

and anomalies.

Tolerant elimination algorithm, was introduced by Juba [17]. The algorithm seeks to find

a k-DNF explanation for some fixed k, i.e., an AND of ORs of k “literals”—our Boolean

attributes or their negations. It forms a working hypothesis that initially includes all pos-

sible terms of size k. It then tries to narrow this k-DNF down to the best definition by

iteratively eliminating terms that have more false-positives than a bound calculated based

on a user defined tolerance parameter and the predicted probability of hitting an outlier.

The algorithm iteratively reduces the target coverage bound until it either finds a formula

that approximately achieves the target coverage, or determines that the bound is too small

for statistical validity. These tight bounds restrict the algorithm, leading it to report a very

high error rate in comparison to the other algorithms used for evaluation on most datasets

because it was not able to eliminate enough terms.

To recall that, our Red-blue partial cover algorithm finds k-DNF with high precision by

ignoring terms that exceed a given false-positive threshold, ignoring examples that are false-

positives for too many terms(using a corresponding threshold), and using a greedy selection

of terms to classify a specified fraction of the points as positive. By ignoring the terms and

points that may ”share too much,” the errors due to each term can be treated roughly as

fixed costs for greedy procedure: by carefully choosing these thresholds, our new method

30

has quadratically smaller error than tolerant elimination in the worst case. Moreover, we

found that this algorithm substantially outperformed tolerant elimination on a synthetic

benchmark.

5.2 Results

We then evaluated the four methods described in the previous section on the four data sets

using a three-fold cross-validation. Thus, we only used 2/3 of the data sets for training, using

the remaining 1/3 as a test set, and averaged the three results.

5.2.1 Semantic Explanations

We draw some examples of explanations from the pond location (camera #269). Here are

two non-anomalous images from this camera.

Figure 5.1: Non-anomalous images for camera #269

We first examine the terms generated as explanations of anomalies by our Red-blue par-

tial set cover algorithm run using 2-DNF with 0.3% coverage; it obtained a precision error

of 1.5% (i.e., out of the points satisfying the condition returned by the algorithm, only 1.5%

were not anomalies). Since the data set only contains 3% anomalies, this condition captures

essentially 1/10 of the anomalies. The four terms describing the condition, together with

examples of images satisfying those individual terms, appear in Figure 5.2.

31

(a) ”panorama” ∧ ”winter” (b) ”community” ∧ ”frost”

(c) ”rain and snow” ∧ ”holiday” (d) ”branch” ∧ ”dry”

Figure 5.2: Terms covering 0.3% of images (1/10 of the anomalies) with 1.5% test precision
error for camera #269, illustrated by example images. The terms contained in all of the three
cross-validation runs are in bold.

With 0.2% coverage (1/15 of the anomalies), the test error rate was approximately 0%. This

was obtained by the single term illustrated by the image in Figure 5.2a.

The 36 terms generated by our algorithm for 0.5% coverage contain the terms that appeared

in 0.3% coverage, in Figure 5.2, together with the terms displayed in Figures 5.7 and 5.8. In

this scenario, most of the scenes detected as anomalous were winter scenes or image encoding

errors. As previously mentioned, the quality of explanations was negatively affected by image

label quality. For example, for this camera, we see labels such as “farmhouse” and “ice boat,”

and in the Toledo highway location, a truck was mistakenly identified as a “jet aircraft.”

We also examine the terms obtained for camera #623, the Moody Gardens theme park. A

couple of ordinary images for this camera are shown below.

32

Figure 5.3: Non-anomalous images for camera #623

33

The 2-DNF explaining 0.1% of the anomalies for camera #623 is shown in Figure 5.4.

Although we were able to obtain a similarly high rate of precision for covering 0.1% of the

images (2.2% test error), as a consequence of the quality of the image labels, the anomalies

are harder to interpret for this camera. The formulas covering 0.3%–0.5% of the images

contained 84 and 98 terms, respectively, and are not included here.

(a) ”text” ∧ ”image” (b) ”bird’s eye view” ∧ ”peninsula”

(c) ”gadget” ∧ ”weekend” (d) ”horizon” ∧ ”bird’s eye view”

Figure 5.4: Terms covering 0.1% of images (1/30 of the anomalies) with 2.2% test precision
error for camera #623, illustrated by example images. The terms contained in all of the

three cross-validation runs are in bold.

34

5.2.2 Quantitative Comparison of Methods

The performance of the methods on the four data sets are shown in Figure 5.5 and Figure 5.6.

The performance of Juba’s [17] tolerant elimination algorithm is not included in these graphs.

It had an error rate ranging from 92% to 98% for all cameras and anomaly percentages, which

was significantly worse than the other three methods.

Camera Precision error with 1% coverage Precision error with 3% coverage

#623 0.3930 0.7713
#269 0.1366 0.4082
#4312 0.7603 0.8521
#21656 0.8579 0.9110

Table 5.1: Precision error rates obtained by red-blue partial cover with 3% of elements defined
as anomalies

Generally, for this task it appears that having a larger data set is extremely important

for generating a set of explanations with low error rates. For instance, cameras #623 and

#269 have 131873 and 123886 images respectively (Figure 5.5), whereas cameras #4312 and

#21656 have 75453 and 73847 images respectively (Figure 5.6), and the latter have higher

error rates as shown in the table below for our red-blue cover algorithm and in the precision

error vs. coverage graphs. In any case we observe that for the larger data sets, it was possible

to obtain sufficiently high precision to obtain high confidence that the rules we found really

do indicate that an image will be an anomaly, as long as we aim to explain a moderately

small fraction of the possible anomalies.

It also shows that random forest does much better when we are trying to fit a larger fraction of

data set than our partial set cover algorithm. This is not surprising, since 2-DNF gives limited

information. For our new algorithm, there are still some advantages over random forest. First,

our new algorithm is competitive with random forest at smallish percentages. For example

as camera 269, when the coverage percentage is very low, out algorithm yields a better

result. The other interesting thing is that our algorithm has much easier interpretability than

random forest. The chosen terms for our algorithm are easy to understand and interpret.

35

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Camera #623: Error vs. Coverage

3% Anomalies
Coverage

Er
ro

r R
at

e

Greedy Cover
Prim
Random Forest

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Camera #269: Error vs. Coverage

3% Anomalies
Coverage

Er
ro

r R
at

e

Greedy Cover
Prim
Random Forest

Figure 5.5: Precision error vs. coverage for larger datasets (>80k training examples). Observe
that we can obtain greater than 75% precision as long as we only fit a fraction of the
anomalies.

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Camera #4312: Error vs. Coverage

3% Anomalies
Coverage

Er
ro

r R
at

e

Greedy Cover
Random Forest

0.00 0.01 0.02 0.03 0.04 0.05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Camera #21656: Error vs. Coverage

3% Anomalies
Coverage

Er
ro

r R
at

e

Greedy Cover
Prim
Random Forest

Figure 5.6: Precision error vs. coverage for smaller datasets (≤50k training examples). Ob-
serve that no method obtains precision substantially greater than 60%.

36

(a) ”phenomenon” ∧
”texture”

(b) ”winter” ∧
”woodland”

(c) ”ice boat” ∧
”frost”

(d) ”pasture” ∧
”snow”

(e) ”shape” ∧
”area”

(f) ”community” ∧
”winter storm”

(g) ”sky” ∧ ”winter
storm”

(h) ”ice rink” ∧ ”es-
tate”

(i) ”lavender” ∧ ”pur-
ple”

(j) ”prairie” ∧ ”bliz-
zard”

(k) ”white” ∧ ”no pre-
cip”

(l) ”piste” ∧ ”no
precip”

(m) ”community” ∧
”ice boat”

(n) ”farmhouse” ∧
”winter”

(o) ”event” ∧ ”fog”
(p) ”weather” ∧
”macro photography”

Figure 5.7: Example images and terms covering 0.5% of images (1/6 of anomalies) with 5.8%
test precision error for camera #269. Terms that appeared in all three cross-validation runs
appear in bold. (Continued in Figure 5.8.)

37

(a) ”season ∧ ”atmo-
sphere of earth””

(b) ”cottage” ∧
”winter”

(c) ”yellow” ∧ ”not
cloudy”

(d) ”ice boat” ∧
”sunset-night”

(e) ”ice boat” ∧
”freezing”

(f) ”phenomenon” ∧
”watercolor paint”

(g) ”yellow” ∧ ”light” (h) ”font” ∧ ”hot”

(i) ”sky” ∧ ”flock” (j) ”blizzard” ∧ ”barn”
(k) ”prairie”
∧ ”solarNoon-
goldenHour”

(l) ”texture” ∧ ”fog”

(m) ”purple” ∧ ”atmo-
spheric phenomenon”

(n) ”ice” ∧ ”natural
environment”

(o) ”horizon” ∧
”panoroma”

(p) ”horizon”
∧ ”solarNoon-
goldenHour”

Figure 5.8: Example images and terms covering 0.5% of images (1/6 of anomalies) with 5.8%
test precision error for camera #269, continued from Figure 5.7. Terms that appeared in all
three cross-validation runs appear in bold.

38

Chapter 6

Conclusion and Further Work

6.1 For the Algorithm

We have exhibited an algorithm for the exception-tolerant variant of the learning abductive

reasoning task introduced by Juba [17]. Our new algorithm: Red-Blue Partial Set Cover

algorithm both achieves a substantially better error guarantee and performs substantially

better on some challenging synthetic data tasks. It also performs well on some real world

data set for Anomaly explanation of images. A natural question is how much scope remains

to improve algorithms for this task. This question is wide open.

As a point of comparison, consider the standard agnostic supervised learning task in which

our objective is merely to minimize classification errors. The best known algorithm for agnos-

tic learning of k-DNF, due to Awasthi, Blum, and Sheffet [4] can achieve an approximation

ratio of nk/3+o(1). By contrast, we only know that agnostic learning of k-DNF with additive

error is intractable (an approximation ratio of ≈ 1). Even for agnostic learning of the much

richer class of halfspaces, we only know that the task is intractable up to a ratio of 2log1−λ n

for λ > 0, which is still sub-polynomial, that is, less than any n1/r [11].

Now, if we restrict the form of the hypothesis to a k-DNF, it is likely that we can say much

more; by contrast, the above results hold for the improper variant of the problem in which

we do not restrict the form of the returned hypothesis. Again, taking agnostic supervised

learning of k-DNFs as a point of comparison, Feldman [13] was able to show that finding

a 1-DNF that obtains a 2
√
logn approximation ratio is intractable. Even so, again, a gap

remains between these sub-polynomial approximation ratios for which we believe that the

39

problem is intractable, and for the polynomial approximation ratios for which we possess

algorithms.

6.2 For the Anomaly Explanation Task

Our main contribution is that we propose a new task, anomaly explanation using metadata.

The key feature of this task is that it is cross-modal: we are seeking an explanation of

anomalies in one type of data, in this case anomalies in image data, using conditions derived

from other types of data. This allows us to connect data with a strong, well-understood

semantics such as weather data, the date and time, or image labels, to a pixel-level model

of anomalies.

Our second contribution is that we demonstrate that this task can be solved for a standard

notion of anomalies in webcam data [28] by using algorithms that prioritize precision over

recall, as long as the data set is relatively large, for example, using a training set containing

more than 80k images: given such a large training set, it was able to find simple conditions

that explain between 1/10 and 1/6 of the anomalies with precision greater than 75%, and

1/30 of the anomalies with precision greater than 97%. Using smaller training sets of size

closer to 50k, none of the methods we considered were able to obtain greater than 60%

precision, and thus could only address this task weakly at best. We note that since our task

is inherently one of learning about events that occur by definition at most 3% of the time, it

is not surprising that they should require a large training set (and indeed, also a large test

set).

There are also several things we can improve for obtain a better result for the anomaly

explanation task. First, the data set we are using is still too small; We only have four

cameras with size from 70kto140k. Second, we want to get more reasonable attributes for

images and filter out the weird attributes. For example, as figure 5.4 (c) shows a image with

label ”gadget”. We find ”gadget” isn’t relative that image. We believe, if we can carefully

filter out those weird attributes, our results would make much more sense.

40

Bibliography

[1] R package PRIMsrc: Bump Hunting by Patient Rule Induction Method for Survival,
Regression and Classification, 2015.

[2] Vladimir Agafonkin. Suncalc api, 2015.

[3] Alphabet. Google vision api, 2016.

[4] Pranjal Awasthi, Avrim Blum, and Or Sheffet. Improved guarantees for agnostic learn-
ing of disjunctions. In Proc. 23rd COLT, pages 359–367, 2010.

[5] Sakshi Babbar. Detecting and describing non-trivial outliers using bayesian networks.
In Proc. Cognitive Computing and Information Processing (CCIP).

[6] Václav Bahut. Outlier detection and explanation. Bachelor’s thesis, Faculty of Infor-
matics, Masaryk University, 2015.

[7] Robert D. Carr, Srinivas Doddi, Goran Konjevod, and Madhav V. Marathe. On the
red-blue set cover problem. In Proc. 11th SODA, pages 345–353, 2000.

[8] The Weather Channel.

[9] Eugene Charniak and Drew McDermott. Introduction to Artificial Intelligence. Addison-
Wesley, Reading, MA, 1985.

[10] P. Cox and T. Pietrzykowski. Causes for events: their computation and applications.
In Proc. 8th Int’l Conf. Automated Deduction, pages 608–621, 1986.

[11] Amit Daniely. Complexity theoretic limitations on learning halfspaces. In Proc. 48th
STOC, pages 105–117, 2016.

[12] J-E. Dazard and J.S. Rao. Local sparse bump hunting. J. Comp Graph. Statistics,
19(4):900–929, 2010.

[13] Vitaly Feldman. Optimal hardness results for maximizing agreements with monomials.
In Proc. 21st CCC, pages 226–236, 2006.

[14] J. Hobbs, M. Stickel, D. Appelt, and P. Martin. Interpretation as abduction. Technical
Report 499, SRI, Menlo Park, CA, 1990.

41

[15] Nathan Jacobs, Nathaniel Roman, and Robert Pless. Consistent temporal variations in
many outdoor scenes. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1–6, 2007.

[16] Nathan Jacobs, Scott Satkin, Nathaniel Roman, Richard Speyer, and Robert Pless.
Geolocating static cameras. In Proc. International Conference on Computer Vision
(ICCV), pages 1–6, 2007.

[17] Brendan Juba. Learning abductive reasoning using random examples. In Proc. 30th
AAAI, pages 999–1007, 2016.

[18] Roni Khardon and Dan Roth. Learning to reason. J. ACM, 44(5):697–725, 1997.

[19] Edwin M. Knorr and Raymond T. Ng. Finding intensional knowledge of distance-based
outliers. In Proc. Very Large Data Bases Conference (VLDB), pages 211–222, 1999.

[20] Chia-Tung Kuo and Ian Davidson. A framework for outlier description using constraint
programming. In Proc. AAAI Conference on Artificial Intelligence, pages 1237–1243,
2016.

[21] Douglas B. Lenat. CYC: a large-scale investment in knowledge infrastructure. CACM,
38(11):33–38, 1995.

[22] Andy Liaw and Matthew Wiener. Classification and regression by randomforest. R
news, 2(3):18–22, 2002.

[23] John McCarthy. Circumscription – a form of non-monotonic reason-
ing. Artificial Intelligence, 13(1–2):27–39, 1980. Available at http://www-
formal.stanford.edu/jmc/circumscription.html.

[24] Barbora Micenková, Xuan-Hong Dang, Ira Assent, and Raymond T. Ng. Explaning
outliers by subspace separability. In Proc. International Conference on Data Mining,
2013.

[25] Pauli Miettinen. On the positive-negative partial set cover problem. Information Pro-
cessing Letters, 108(4):219–221, 2008.

[26] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, New
York, NY, 2014.

[27] Ryan O’Donnell and Karl Wimmer. Approximation by DNF: Examples and coun-
terexamples. In Automata, Languages, and Programming: 34th ICALP, volume 4596 of
LNCS, pages 195–206. Springer, Berlin, 2007.

42

[28] Joseph O’Sullivan, Abby Stylianou, and Robert Pless. Democratizing the visualization of
500 million webcam images. In Applied Imagery Pattern Recognition Workshop (AIPR),
2014.

[29] David Peleg. Approximation algorithms for the label-covermax and red-blue set cover
problems. J. Discrete Algorithms, 5:55–64, 2007.

[30] Tomáš Pevny and Martin Kopp. Explaining anomalies with sapling random forests.
Information Technologies - Applications and Theory Workshops, Posters, and Tutorials,
2014.

[31] David Poole. A methodology for using a default and abductive reasoning system. Int’l
J. Intelligent Sys., 5:521–548, 1990.

[32] ryanss. Holidays library.

[33] Petr Slav́ık. Improved performance of the greedy cover algorithm for partial cover.
Information Processing Letters, 64(5):251–254, 1997.

[34] Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 18(11):1134–
1142, 1984.

[35] Leslie G. Valiant. A neuroidal architecture for cognitive computation. J. ACM,
47(5):854–882, 2000.

[36] Leslie G. Valiant. Robust logics. Artificial Intelligence, 117:231–253, 2000.

43

Vita

Mengxue Zhang

Degrees B.S. Virginia Tech, Computer Science, May 2015

M.S. Washington University St.Louis, Computer Science, May 2017

Publications Mengxue Zhang, Tushar Mathew, Brendan Juba. ”An Improved Al-

gorithm for Learning to Perform Exception-Tolerant Abduction” AAAI

(2017)

May 2017

44

	Washington University in St. Louis
	Washington University Open Scholarship
	Spring 5-20-2017

	An Improved Algorithm for Learning to Perform Exception-Tolerant Abduction
	Mengxue Zhang
	Recommended Citation

	tmp.1493858983.pdf.q015O

