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Perception of sensory cues requires peripheral encoding followed by extraction of 

behaviorally relevant signal components by central neurons.  Some sensory systems can 

detect temporal information with submillisecond accuracy, despite these signals 

occurring faster than the approximately 1 ms timescale of neuronal firing.  In sound 

localization, the best studied example of this phenomenon, there are at least two distinct 

mechanisms for detecting submillisecond timing differences, indicating that multiple 

solutions to this fundamental problem exist.  I investigated mechanisms for processing 

submillisecond timing differences by studying electrosensory processing in a time coding 

expert, mormyrid weakly electric fish, which can detect submillisecond differences in the 

duration of electric signals.   

First, I measured responses of peripheral receptors to stimuli of different durations.  

I found that each unit responded preferentially to longer stimuli, but with response 

thresholds that varied among units within the behaviorally relevant range of durations.  
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This variability establishes a population code operating at near threshold intensities in 

which the number and identity of responding receptors represents duration.  At higher 

stimulus intensities all units respond independent of duration, rendering the population 

code obsolete.  Importantly, peripheral receptors respond either to the start or end of a 

signal.  Thus, stimulus duration is also represented by a temporal code, as a difference in 

spike times between receptors.   

Next, I investigated the central mechanism for detection of submillisecond spike 

time differences by recording from time comparator neurons (Small Cells) in the 

midbrain.  Recording from Small Cells is challenging because their somas are small and 

relatively inaccessible.  I therefore designed a novel method using retrograde labeling to 

directly visualize and record from Small Cells in vivo.  I showed that patterns of duration 

tuning vary among Small Cells due to a combination of blanking inhibition 

corresponding to one edge of a stimulus and variably delayed excitation corresponding to 

one or both edges of a stimulus.  Other circuits that detect submillisecond timing 

differences rely either on precisely-timed inhibition or delay-line coincidence detection.  I 

demonstrate a novel mechanism by which mormyrids combine delay-line coincidence 

detection with precisely-timed blanking inhibition to establish diverse patterns of 

duration tuning among a population of time comparators. 
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Chapter 1 

 

 

Introduction and thesis objectives 

 

 

 

 

 

It turns out that the messages from our sense organs are all made up of a common 

vocabulary of the simplest kind. 

-E.D. Adrian, 1928 
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SENSORY PROCESSING 

Sensory processing involves the encoding of a sensory event by peripheral 

receptors followed by the decoding and recoding of stimulus features by central neurons.  

Peripheral receptors are specific to the type of sensory information being encoded 

(Müller, 1840).  For example, hair cells encode auditory stimuli by responding to changes 

in air pressure caused by sound waves.  Similarly, photoreceptors are specific to visual 

information, mechanoreceptors are activated by touch, and electroreceptors respond to 

changes in electrical charge (Gardner and Martin, 2000).   Although each receptor type 

uses distinct mechanics to detect a sensory signal, information from all modalities is 

subsequently represented using a common vocabulary – a pattern of action potentials 

(Adrian, 1928).  Most commonly, neural circuits represent information either in the rate 

or timing of action potentials (Ainsworth et al., 2012).  To be maximally efficient, 

however, the same chains of neurons can encode different features using different codes 

(Panzeri et al., 2010).  Importantly, neural codes are not unique to sensory systems.  

Disruptions to both sensory and non-sensory circuits may share a common origin.  For 

example, autism patients exhibit a high prevalence of sensory processing disorders that 

can affect any of the five major senses in addition to the behavioral and learning deficits 

associated with the disease (Tomchek and Dunn, 2007).  Thus, a basic understanding of 

sensory coding is important for a general understanding of how nervous systems encode 

information (Ferster and Spruston, 1995).   
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Temporal coding, the representation of information within the specific timing 

patterns of neural activity (Theunissen and Miller, 1995), is particularly well adapted for 

encoding time parameters of a sensory signal such as start time, frequency or duration 

(Grothe and Klump, 2000).  Importantly, these temporal features are critical components 

of natural sound sources and can occur on a range of timescales (Figure 1) (Mauk and 

Buonomano, 2004; Singh and Theunissen, 2003).  Processing information on a 

submillisecond timescale represents an especially interesting computational challenge 

because such short intervals are below the resolution of a single action potential (Carr, 

1993).   
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FIG 1: Timescale of behaviorally relevant temporal features of sound, adapted from 
Mauk and Buonomano 2004.  Birds and mammals can detect interaural time differences 
on the order of 10-2 ms.  Duration tuned neurons have been demonstrated in 13 species 
with best durations ranging from 0.5 to 300 ms (red) (Sayegh et al., 2011).  In the same 
group of species, vocalization durations (blue) range from 0.5 to 1,600 ms (Sayegh et al., 
2011).  Humans can discriminate syllable and phenome differences in the 1-10 ms range 
(Kato et al., 2003; Kawai and Carrell, 2012) and can discriminate word length in the 10-
100 ms range (van Wieringen and Pols, 1994). 
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MECHANISMS FOR PROCESSING SMALL TIMING DIFFERENCES 

Mechanisms for processing submillisecond spike timing differences have been 

extensively studied in sound localization.  One sensory cue utilized for sound localization 

by many animals is the comparison of interaural time differences (ITD), which are the 

differences in the time sound arrives at each ear.  Jeffress (1948) proposed a now 

canonical model for how nervous systems can process submillisecond spike time 

differences (Figure 2).  In the Jeffress model, axon lengths vary resulting in different 

conduction times, or delay-lines, for each input.  Time comparator neurons detect 

coincident arrival of inputs by firing maximally when the two signals arrive 

simultaneously.  Simultaneous arrival only occurs if the axonal delay is equivalent to the 

difference in ITD (Ashida and Carr, 2011; Jeffress, 1948).  This mechanism results in a 

labeled-line code, in which the firing of each time comparator neuron corresponds to a 

particular ITD, which in turn represents a location in space.  Anatomical evidence for the 

Jeffress model has been demonstrated in barn owls (Carr and Konishi, 1990) and 

alligators (Carr et al., 2009).  However, evidence for this model in mammals is more 

controversial (McAlpine and Grothe, 2003).  Putative delay-lines were shown in cats 

(Smith et al., 1993), but have not been demonstrated in any other mammal.  Further, 

glycinergic inhibition in mammals has been shown to convert spike time differences into 

a rate code for azimuthal sound localization (Grothe et al., 2010).   

The mechanisms for encoding short durations in auditory stimuli are similar to 

those utilized in sound localization (Sayegh et al., 2011).  Duration tuned neurons have  

 



6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG 2: Jeffress model for sound localization, adapted from Grothe 2003.  The relative 
location of a sound source determines the time sound arrives at each ear.  The interaural 
time differences (ITD) are encoded in the spike timing differences of the primary 
afferents from each ear.  Signals travel through a systematic projection of increasing axon 
lengths which serve as delay lines.  The longer axons result in greater conduction times, 
compensating for ITD.  Time comparator neurons (circles) receive one input from each 
ear.  Each cell fires maximally only when the two inputs arrive simultaneously (ITD vs. 
response curves).  Thus, each cell selectively responds to a specific ITD. 
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been demonstrated in the auditory system of bats (Fuzessery and Hall, 1999), frogs 

(Gooler and Feng, 1992), guinea pigs (Wang et al., 2006), rats (Pérez-González et al., 

2006), mice (Brand et al., 2000), cats (He et al., 1997), and chinchillas (Chen, 1998).  

Three models have been proposed to explain the selectivity of these neurons (Aubie et al., 

2009).  The first model parallels the Jeffress model.  Time comparator neurons respond to 

stimuli of specific durations by detecting coincident arrival of excitatory inputs 

corresponding to the start and end of the signal.  The second model similarly relies on 

coincidence detection, but instead of a second excitatory input, time comparator neurons 

detect excitation that is coincident with rebound from sustained inhibition.  The third 

model is an anti-coincidence detection model in which an inhibitory post synaptic 

potential is prolonged for the duration of the stimulus.  Excitatory inputs to each cell are 

variably delayed.  A response is elicited only if the delay to that particular cell is greater 

than the stimulus duration, allowing the inhibition to end before the excitation arrives.  In 

the second and third models, the timing of both inputs corresponds to the start of the 

stimulus.  Notably, each of these three models shares some features with the Jeffress 

model.   

Duration tuned neurons have also been demonstrated in electrosensory processing 

in mormyrid weakly electric fish (Amagai, 1998).  Friedman and Hopkins proposed that 

duration tuning arises through delay-line anti-coincidence detection of submillisecond 

spike time differences (Friedman and Hopkins, 1998; Xu-Friedman and Hopkins, 1999).  

This mechanism serves as a critical link between sound localization and duration tuning 

because it employs both delay-line coincidence detection similar to mechanisms for 
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sound localization and start-inhibition with stop-excitation similar to mechanisms for 

duration tuning.  These shared features make electrosensory processing in mormyrids an 

interesting model for investigating how submillisecond spike timing differences are 

processed. 

 

WEAKLY ELECTRIC FISH AS A MODEL SYSTEM 

Weakly electric fish are an ideal model system for studying mechanisms of 

temporal coding in sensory processing (Fortune et al., 2006; Zakon, 2003).  Mormyrid 

weakly electric fish, specifically, can detect 2 μsec differences in stimulus duration, 

making them time coding experts (Paintner and Kramer, 2003).  In Africa, these fish live 

sympatrically with species that produce similar communication signals (Gallant et al., 

2011) varying slightly in duration between species (Hopkins, 1981) and sexes (Arnegard 

et al., 2006; Feulner et al., 2009).  Thus, just as temporal patterns are important in 

communication cues for birds and frogs (Chi and Margoliash, 2001; Edwards et al., 

2002); detection of submillisecond differences in stimulus duration is behaviorally 

relevant for these fish.   

The electric communication signal emitted by weakly electric fish is called an 

electric organ discharge (EOD) (Hopkins, 1974).  EODs are processed in a dedicated, 

isolated, relatively simple neural circuit (Figure 3) making experimental studies less 

technically demanding.  This circuit begins with peripheral receptors called 

knollenorgans.  The number of knollenorgans increases with increasing body size (Harder, 

1968).  For example, there are approximately 166 knollenorgans on a 6.5 cm B.  



9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG 3: Mormyrid electrosensory circuit, adapted from Friedman and Hopkins 1998 and 
Xu-Friedman and Hopkins 1999.  Peripheral receptors called knollenorgans (KO) spike 
in response to positive changes in electrical charge.  These signals are relayed through the 
hindbrain nucleus of the electrosensory lateral line (nELL).  55% of nELL axons project 
contralaterally, 35% project ipsilaterally, and the remaining 10% project bilaterally.  
These axons project via the lateral lemniscus to the anterior portion of the exterolateral 
nucleus (ELa).  In ELa, nELL axons synapse on inhibitory interneurons (Large Cells).  
Notably, as nELL axons synapse on small, adendritic projection cells (Small Cells) they 
wind for 0-7 mm within ELa.  Small Cells project to the adjacent posterior portion of the 
exterolateral nucleus (ELp). 
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FIG 4: Knollenorgans respond selectively to positive changes in electrical charge, 
adapted from Lyons-Warren et al. 2012.  Knollenorgans (KO) spike when the outside of 
the skin is positive relative to the inside of the body (top, green).  For an externally 
generated, monophasic positive electrical stimulus, KOs on the same side of the body as 
the source (green) will spike at the beginning.  In contrast, KOs on the opposite side 
(blue) will perceive the opposite polarity and will spike at the end (Hopkins and Bass, 
1981).  5 representative traces from the same KO in response to a 2 nA, 3 ms square 
pulse (bottom) showing a time-locked spike to the upward edge of a monophasic positive 
(left) and negative (right) stimulus. 
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brachyistius (Carlson et al., 2011) and up to almost 1000 on a 12.2 cm G. petersii (Harder, 

1968).  Knollenorgans respond to positive, but not negative, changes in electrical charge 

by generating an action potential (Figure 4) (Bennett, 1965; Hopkins and Bass, 1981).  

Thus, different knollenorgans will respond to different components of a sensory signal 

depending upon their body location.  Spike timing differences between receptors in 

different receptive fields correspond to the duration of the signal.  Each knollenorgan 

primary afferent projects to the nucleus of the electrosensory lateral line (nELL) located 

in the hindbrain and creates 1-4 boutons on each soma that it contacts.  Further, each 

knollenorgan afferent synapses onto 3-11 different nELL somas.  In turn, each nELL 

soma will receive inputs from 1-4 knollenorgans (Bell and Grant, 1989).  Thus there is 

both convergence and divergence in the hindbrain.   

nELL cells send their axons to the exterolateral nucleus in the midbrain (EL).  

Interestingly, sensory information is usually represented contralaterally, as for touch 

sensation (Gardner and Martin, 2000), or divided evenly to both hemispheres as in vision 

(Wurtz and Kandel, 2000).  In contrast, electrosensory axons from nELL send twice as 

many fibers to the contralateral midbrain as to the ipsilateral midbrain (Szabo et al., 

1983).  In addition, 10% of fibers project bilaterally (Friedman and Hopkins, 1998; Szabo 

et al., 1983).  Upon entering ELa, nELL axons synapse almost immediately on large, 

GABAergic interneurons called Large Cells.  In contrast, nELL axons wind circuitously 

for 0-7 mm in ELa while synapsing on 33-72 small, adendritic cells called Small Cells 

(Friedman and Hopkins, 1998; Mugnaini and Maler, 1987).  Small Cells also receive 

GABAergic inhibitory input from Large Cells in the form of a calyceal synapse 
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(Friedman and Hopkins, 1998; Mugnaini and Maler, 1987).  Small Cells therefore receive 

delayed excitation which varies from cell to cell and inhibition corresponding to separate 

edges of a stimulus.  Friedman and Hopkins proposed that Small Cells act as time 

comparator neurons, similar to the role of MSO neurons in sound localization.  However, 

the Friedman-Hopkins model proposed delay-line anti-coincidence detection in which 

Small Cells only respond if excitatory and inhibitory inputs arrive separately (Figure 5) 

(Xu-Friedman and Hopkins, 1999).   

Small Cells represent the only output from ELa to the adjacent ELp.  In ELp, 

there are neurons that are both band-pass and long-pass tuned to stimulus duration 

(Amagai, 1998) as well as neurons that respond to other stimulus features such as inter-

pulse interval (Carlson, 2009; George et al., 2011).  Thus, it is clear that feature 

extraction occurs after Small Cells, but that Small Cells serve a critical computational 

function in processing electrosensory information.  Unfortunately, Small Cells are 

technically challenging to investigate.  Not only are they very small, but ELa is filled 

with myelin due to the large number of nELL axons.  Further, the inhibitory calyceal 

synapses from Large Cells engulf the Small Cell somas, making them even less 

accessible.  Despite almost a decade of effort, only 2 putative Small Cell recordings, each 

lasting only a few seconds, have been reported (Friedman and Hopkins, 1998)  

One of the interesting features of electrosensory processing in morymrids is the 

presence of an inhibitory calyceal synapse (Friedman and Hopkins, 1998; George et al., 

2011; Mugnaini and Maler, 1987).  Synapse morphology directly relates to synapse 

function (Atwood and Karunanithi, 2002; Xu-Friedman and Regehr, 2004).  The Calyx of  
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FIG 5: Friedman-Hopkins model for detecting submillisecond spike time differences, 
adapted from Friedman and Hopkins 1998.  Peripheral receptors spike in response to the 
start or end of a square pulse.  The resultant spike time differences encode stimulus 
duration.  Each Small Cell (pink) receives delayed excitation (green) corresponding to 
one stimulus edge and inhibition (blue) corresponding to the opposite edge.  At short 
durations, inhibition and excitation arrive at the Small Cell simultaneously, and no 
response occurs.  However, at long durations, inhibition arrives after excitation, and the 
Small Cell is able to spike.  The specific minimum duration at which a Small Cell first 
responds depends on the excitatory delay (∆t). 
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Held, the best studied calyceal synapse, is described as a large, morphologically complex 

terminal with hundreds of active zones (Spirou et al., 2008).  The unique structure of the 

calyx imparts a heterogeneous release probability resulting in nearly fail safe 

transmission with each pre-synaptic depolarization (Nicol and Walmsley, 2002).  

Calyceal synapses have also been described for cerebellar mossy fibers, visual 

thalamocortical cells, and retinogeniculate cells.  In all these cases they contribute to 

reliable, temporally precise transmission (Borst, 2010).  A possible inhibitory calyx was 

reported in the ventral cochlear nucleus of rats (Köpf-Maier, 1979).  However, the 

functional implications of an inhibitory calyx have not been reported. 

 

THESIS OBJECTIVES 

I was interested in understanding how an electrosensory circuit codes for stimulus 

duration as a model of general mechanisms for process submillisecond spike time 

differences.  Thus, the overall goal of this thesis is to identify mechanisms used by 

mormyrid weakly electric fish to process submillisecond differences in the duration of 

electric signals.  To address this question, I look at the encoding of stimulus duration by 

peripheral receptors called knollenorgans as well as population responses to stimulus 

duration in two midbrain nuclei, the anterior and posterior portions of the nucleus 

exterolateralis, ELa and ELp respectively.  Further, I directly measure the responses to 

changes in stimulus duration by individual time comparator neurons in ELa called Small 

Cells.  To acquire these measurements, I develop a novel method using retrograde dye 

transport to selectively label Small Cell axons.  Once visible, axons can be targeted with 
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a recording electrode and specific, single unit responses can be recorded.  I characterize 

how Small Cells respond to stimuli of varying duration under control conditions and then 

use complex stimuli and pharmacological approaches to separate the excitatory and 

inhibitory inputs underlying duration tuning.  In contrast to the model proposed by 

Friedman and Hopkins, my results suggest multiple excitatory inputs to Small Cells.  I 

therefore provide indirect evidence to show that multiple excitatory inputs to each Small 

Cell would be feasible.   
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Chapter 2 

 

 

Sensory receptor diversity establishes a peripheral population code for 

stimulus duration at low intensities 

 

 

 

But a stimulus will rarely excite only one end organ and the central nervous system will 

take account of the number of sensory fibers in action as well as of the discharge in each 

fibre. 

-E.D. Adrian, 1928 

 

 

 

 

This chapter contains a previously published manuscript:  

A.M. Lyons-Warren, M. Hollmann, and B.A. Carlson (2012). Sensory receptor diversity 

establishes a peripheral population code for stimulus duration at low intensities. J Exp. 

Biol. 215: 2586-2600. 

 

Author contributions for the above citation: 

A.L-W performed all experiments except those relating to figure 7C-E which were done 

by M.H.  A.L-W. analyzed all data with guidance from B.A.C.  Modeling was done by 

B.A.C.  All authors contributed to conceptualization and discussion of the experiments.  

The manuscript was written by A.L-W and B.A.C.



24 

ABSTRACT 

Peripheral filtering is a fundamental mechanism for establishing frequency tuning in 

sensory systems. By contrast, detection of temporal features, such as duration, is 

generally thought to result from temporal coding in the periphery, followed by an 

analysis of peripheral response times within the central nervous system.  We investigated 

how peripheral filtering properties affect the coding of stimulus duration in the 

electrosensory system of mormyrid fishes using behavioral and electrophysiological 

measures of duration tuning.  We recorded from individual knollenorgans, the 

electrosensory receptors that mediate communication, and found correlated variation in 

frequency tuning and duration tuning, as predicted by a simple circuit model.  In response 

to relatively high intensity stimuli, knollenorgans responded reliably with fixed latency 

spikes, consistent with a temporal code for stimulus duration.  At near threshold 

intensities, however, both the reliability and temporal precision of responses decreased.  

Evoked potential recordings from the midbrain, as well as behavioral responses to 

electrosensory stimulation, revealed changes in sensitivity across the range of durations 

associated with the greatest variability in receptor sensitivity.  Further, this range 

overlapped with the natural range of variation in species-specific communication signals, 

suggesting that peripheral duration tuning affects the coding of behaviorally-relevant 

stimuli.  We measured knollenorgan, midbrain and behavioral responses to natural 

communication signals and found that each of them were duration-dependent.  We 

conclude that at relatively low intensities for which temporal coding is ineffective, 

diversity among sensory receptors establishes a population code, in which duration is 

reflected in the population of responding knollenorgans. 
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INTRODUCTION 

Sensory processing involves the detection of multiple stimulus features in what 

can generally be considered a two-step process: peripheral filtering followed by central 

computation. For example, in auditory systems frequency tuning is first established by 

peripheral filtering, whereas tuning to temporal features of sounds such as interaural time 

differences (Köppl, 2009), duration (Aubie et al., 2009), and interval (Edwards et al., 

2007; Edwards et al., 2008) are thought to arise from central computations. Similarly, 

peripheral electroreceptors in weakly electric fish are frequency tuned (Hopkins, 1976; 

Hopkins, 1981), whereas tuning to temporal features is generally thought to arise within 

central electrosensory pathways (Fortune et al., 2006). However, these central 

computations are based on peripheral responses, which can vary in relation to frequency 

tuning as well as other variables. Good examples include the need to resolve phase 

ambiguity when trying to localize sounds using interaural time differences by integrating 

across frequency channels (Peña and Konishi, 2000), and the detection of ‘phantom’ 

phase differences due to amplitude-dependent latency shifts in weakly electric fishes 

(Carlson and Kawasaki, 2006; Carlson and Kawasaki, 2007). In the current study, we 

directly addressed how diversity among peripheral electrosensory receptors affects the 

coding of temporal information in the African mormyrid electric fish Brienomyrus 

brachyistius. 

The electrosensory systems of weakly electric fishes are excellent model systems 

for studying temporal processing by sensory systems (Fortune et al., 2006; Rose, 2004; 

Sawtell et al., 2005; Zakon, 2003).  Mormyrids emit a pulse-type electric organ discharge 
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(EOD) for use in communication (Carlson, 2006) and active electrolocation (von der 

Emde, 1999).  The EOD waveform is species-specific (Hopkins, 1981). Temporal 

features of the EOD, particularly duration, play an important role in species recognition 

and mate choice (Arnegard et al., 2006; Feulner et al., 2009; Hopkins and Bass, 1981; 

Machnik and Kramer, 2008).  In B. brachyistius, the EOD is composed of three phases: 

an initial, head-negative P0 of relatively small amplitude, followed by a head-positive P1, 

and finally a head-negative P2 (Carlson et al., 2000). 

Electric communication in mormyrids is mediated by a dedicated electrosensory 

pathway (Bell and Grant, 1989; Xu-Friedman and Hopkins, 1999).  Electroreceptors 

called knollenorgans (KO) respond to outside-positive changes in electrical potential with 

a fixed latency spike (Bennett, 1965; Hopkins and Bass, 1981).  Primary afferent fibers 

synapse in the hindbrain nucleus of the electrosensory lateral line lobe (nELL) (Bell and 

Grant, 1989).  From the nELL, bilateral projections are sent to a midbrain region, the 

anterior exterolateral nucleus (ELa), which projects ipsilaterally to the adjacent posterior 

exterolateral nucleus (ELp) (Carlson, 2009; Friedman and Hopkins, 1998; Szabo et al., 

1983). 

Hopkins and Bass (1981) proposed a temporal code for EOD duration, in which 

different KOs respond to either the start or end of an EOD, due to differences in stimulus 

polarity on opposite sides of the body.  Duration information would then be extracted by 

comparing spike latency differences within the central KO pathway, most likely within 

ELa (Mugnaini and Maler, 1987; Friedman and Hopkins, 1998).  However, KOs are not 

simply edge detectors.  They are broadly tuned to frequencies that roughly correspond to 
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the power spectrum of the species-specific EOD (Hopkins, 1981).  Notably, frequency 

tuning differs among KOs (Arnegard et al., 2006), revealing that the peripheral coding of 

electrosensory stimuli varies across the population of receptors.  In the current study, we 

asked how the diversity of KOs influences the peripheral coding of stimulus duration. 

 

MATERIALS AND METHODS 

Study Species 

We used individuals of both sexes of the weakly electric mormyrid fish 

Brienomyrus brachyistius (Gill, 1862).  Individuals ranged from 5.3-17.0 cm in standard 

length.  Fish were purchased from commercial distributors and housed in community 

aquariums at a temperature of 26-28 ºC and conductivity of 200-400 μS/cm, with a 12:12 

hour light:dark cycle.  Fish were fed live black worms four times per week. All 

procedures were in accordance with guidelines established by the National Institutes of 

Health (NIH) and were approved by the Animal Care and Use Committee at Washington 

University in St. Louis.   

 

Knollenorgan Recording 

We anesthetized fish in 300 mg/l tricaine methanesulfonate (MS-222) (Sigma-

Aldrich, St. Louis MO, USA).  We then immobilized and electrically silenced fish with 

20-100 µl of 0.3 mg/ml gallamine triethiodide (Sigma-Aldrich).  Once immobilized, the 

fish were submerged in a 12.5 x 20 x 45 cm chamber filled with freshwater, and placed 

on a platform with lateral supports.  Aerated freshwater was gravity fed to the fish 
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through a pipette tip placed into the mouth.  Fish generally recovered from anesthesia 

within 15 minutes of freshwater respiration.  We forged electrodes from borosilicate 

capillary glass (OD=1mm/ID=0.5mm; A-M Systems, Inc., Everett Washington, USA) 

using a Bunsen burner to bend the last 1 cm to a 30° angle and to polish the tip.  Tip inner 

diameter was 0.5 mm.  Mean and s.e.m. resistance for 5 representative electrodes was 0.4 

± 0.1 MΩ.  The electrode was filled with tank water, connected to the headstage of a DC 

amplifier (A-M Systems model 1600), and then placed over, but not touching, individual 

knollenorgans (KO).  Electrical activity was amplified 10x, digitized at 195.3 kHz 

(Tucker-Davis Model RP2.1, Tucker Davis Technologies, Alachua Florida, USA), and 

saved to disk using custom-made software (Matlab 7.4, Mathworks, Natick 

Massachusetts, USA).   

Constant-current stimuli were delivered by the amplifier through the electrode 

using bridge balance to minimize artifact (Arnegard et al., 2006). Stimuli were generated 

in Matlab.  Sinusoidal stimuli ranged from 0.1 to 30 kHz and consisted of 90 ms bursts 

with 5 ms cosine-squared on and off ramps.  Monophasic positive and negative square-

pulse stimuli ranged from 0.01 to 5 ms.  Natural and manipulated EOD waveforms were 

generated in Matlab using previously recorded waveforms. Stimuli were digital-to-analog 

converted (Tucker-Davis model RP2.1) and then attenuated (Tucker-Davis model PA5) 

prior to delivery.  Threshold intensity was defined as the minimum stimulus intensity 

required to elicit an increased response relative to an equal duration reference window.  

Reference and response windows were 90 ms for sine waves and 20 ms for square pulses 

and natural waveforms. Due to the difference in window duration, necessary to accurately 
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accommodate the different stimulus types, and the desire to quantify the time-locked 

edge response to square pulses, we used slightly different response criteria for the 

different types of stimuli.  For sine wave stimuli, a positive response constituted at least 1 

more spike per repetition in the response window relative to the reference window across 

15 repetitions.  For square pulse and natural waveform stimuli, spikes from 25 repetitions 

were binned into 200 ms bins and a response was positive if the highest bin in the 

response window was greater than the highest bin in the reference window. 

For frequency tuning curves, we determined the best frequency (BF, frequency 

with the lowest threshold) and the bandwidth, measured as the difference between upper 

and lower frequencies with thresholds 10 dB above the threshold at the BF (BW10), based 

on logarithmic extrapolation between adjacent data points. We fit duration tuning curves 

to the equation: 







 −

−

=
τ
dt

e

aI
1

     (1) 

where It is the threshold intensity, d is stimulus duration, and a and τ are the asymptote 

and time constant, respectively, of the exponential decrease in threshold as a function of 

duration.  Duration tuning curves using monophasic square pulses are equivalent to the 

strength-duration curves historically used to study neuronal excitability (Neumann and 

Nachmansohn, 1975). 

 To investigate the effect of stimulus intensity on KO response latency and 

frequency we tested 6 square pulse durations (0.01, 0.05, 0.1, 0.5, 1, and 3ms) across a 

range of intensities, from below threshold to above saturation.  This range was 
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approximately 20dB, but varied for each unit and duration.  We calculated relative 

probability of response by subtracting the number of spikes in a 3 ms reference window 

immediately before the stimulus from the number of spikes in the 3 ms response window 

starting with the stimulus, and dividing by the number of repetitions (100).  We 

calculated the first spike latency by identifying the time of the first spike within a 3 ms 

response window from the start of the stimulus for each repetition and then taking the 

mean of these times.  Repetitions with no spike in the 3 ms window were excluded from 

the first spike latency calculation.  From these first spike latencies, we calculated s.d. as a 

measure of variability in first spike latency (i.e. jitter). 

 

Modeling 

To investigate the relationship between frequency and duration tuning, we 

modeled KOs using a simple electrical circuit (Bennett, 1965; Bennett, 1971).  We started 

with a leaky integrate-and-fire neuron modeled as a resistance (Rm) and capacitance (Cm) 

in parallel (Gabbiani and Koch, 1998).  To this we added a series capacitance (Cs) to 

represent the contributions of the epithelial plug that covers the sensory cells, the layers 

of epithelial cells in the wall of the receptor canal, and the apical surface of the receptor 

cells (Szabo, 1965; Harder, 1968b; Zakon, 1986). We also added a parallel resistance to 

represent skin resistance (Rs), resulting in voltage drops across the skin (Vs) and across 

the receptor (Vm) (Fig. 3A, inset). 

In response to current, Cs will act as a high-pass filter of Vm whereas Cm will act as 

a low-pass filter of Vm.  The total current, I, will be divided equally between Rs and Cs.   
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Following Ohm’s law, the resulting voltage changes across Rs and Cs are described in 

equation 2: 

( )


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First, the term representing the current across Rs is moved using algebraic rearrangement.  

All current passing through Cs will then be divided across Rm and Cm.  Thus, that term in 

the equation can be further broken down, again following Ohm’s law as shown in 

equation 3: 
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Further algebraic rearrangement yields the following difference equations: 
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We varied Cs and Cm from 0.005 to 1 nF and Rs and Rm from 1 to 10 MΩ and measured 

the input current required for Vm to reach an arbitrary voltage threshold (1 mV) as a 

function of sine-wave frequency and square-pulse duration (same stimuli used for KO 

recordings).  The goal of this modeling was to assess the nature of the relationship 

between frequency tuning and duration tuning, and then determine whether a similar 

relationship was found for actual KOs. 
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Midbrain Evoked Potential Recording 

To measure evoked field potentials in ELa and ELp, we prepared fish for surgery 

by anesthetizing them in 300 mg/l MS-222 and then immobilizing them with 100-300 µl 

of a 3 mg/ml solution of gallamine triethiodide.  Fish were then moved to a recording 

chamber and submerged, except for a small region of the dorsal surface of the head. 0.4% 

lidocaine was used as a local anesthetic and general anesthesia was maintained 

throughout the surgery by respirating fish with 100 mg/l MS-222.  After removing the 

skin and securing a post to the skull, an area of bone was removed to expose ELa and 

ELp as described previously (Carlson, 2009). Once the surgery was complete, we 

switched respiration to aerated fresh water to bring the fish out of general anesthesia. We 

used a pair of electrodes placed next to the caudal peduncle to monitor the EOD 

command. This signal was amplified 1000x on a differential A-C amplifier (A-M 

Systems model 1700) and sent to a window discriminator (World Precision Instruments 

SYS-121, World Precision Instruments, Inc., Sarasota Florida, USA) to detect EOD 

command times. The EOD command triggers inhibition of the KO pathway in nELL 

(Bell and Grant, 1989).  Therefore, any repetition in which the fish emitted a command 2 

to 5 ms before the stimulus was ignored. 

Recording electrodes (OD=1.2mm/ID=0.68 mm; A-M Systems model 62700) 

were pulled on a Flaming/Brown micropipette puller (Sutter Instrument Company model 

P-97, Novato CA, USA), broken to a tip diameter of 10-15 µm and filled with 3M NaCl 

(resistance <100 kΩ).  Evoked potentials from ELa and ELp were amplified 1000x and 

band-pass-filtered from 0.1 Hz to 5 kHz with a differential AC Amplifier (A-M Systems 
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model 1700), digitized at 97.6 kHz (Tucker-Davis model RX8), averaged and saved to 

disk using a custom Matlab program.  Evoked field potentials were identified based on 

their characteristic shape and timing (Amagai, 1998; Carlson, 2009; Szabo et al., 1979).  

We delivered transverse electrosensory stimuli using electrodes located on the 

sides of the tank.  Square pulses were generated by an isolated square pulse generator (A-

M Systems model 2100) and attenuated before delivery (Hewlett Packard 350D, Hewlett 

Packard Company, Palo Alto, California, USA).  Natural and manipulated EOD 

waveforms were generated in Matlab, delivered by a signal processor (Tucker-Davis 

model RX8), attenuated (Tucker-Davis model PA5), and then isolated from ground (A-M 

Systems model 2200).  Stimulus intensities are reported in mV/cm as measured at the 

location where fish were placed, in the absence of a fish.  To measure evoked potential 

thresholds, we presented a single stimulus at a range of intensities and recorded the mean 

potential in response to 20 repetitions for natural/manipulated EODs or 40 repetitions for 

square pulses.  We scored trials as responses when the mean potential exceeded three s.d. 

above or below the baseline mean.  Three s.d. was chosen to encompass all of the 

variation observed during the 50 ms baseline pre-stimulus recording period.  We adjusted 

stimulus intensity in 1dB steps until we identified the least intense signal that yielded a 

response.  This stimulus intensity was considered threshold.  To measure the magnitude 

of responses to isointensity stimulation, we calculated the total area of the response.  The 

area of the response was calculated using the sum of all points in the evoked potential 

(after subtracting the baseline mean) rather than the peak potential to capture differences 

in both duration and amplitude in a single measure.  Importantly, this measure of total 
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response area is not affected by the stimulus artifact because the upward- and downward-

going edges give rise to symmetrical positive and negative areas, respectively, which 

cancel each other out.  Responses were then normalized to the largest response across all 

durations tested within that particular brain nucleus within a given fish to account for 

variation in the amplitude and duration of evoked potentials in ELa and ELp, as well as to 

control for differences in evoked potential responses due to fish size or electrode 

placement.  Normalizing the values in this way allowed us to directly compare 

differences in response magnitude with respect to variation in stimulus duration.   

 

Behavioral Playback 

Fish were isolated in a 20 l aquarium and confined to a PVC enclosure (20 x 3.5 x 

3.5 cm) using netted end-caps (see Carlson et al., 2011). Uniform electric stimuli were 

presented to the fish using two 7.6 cm chlorided silver wires running along the inside of 

the side walls of the enclosure, with recording electrodes on each end of the enclosure.  

Square pulse stimuli were generated by an isolated square pulse stimulator (A-M Systems 

model 2100) followed by attenuation (Hewlett Packard 350D).  We chose both 

monophasic and biphasic square pulses because behavioral responses to monophasic 

square pulses could be influenced by responses from ampullary receptors to the D.C. 

components of this signal (Bennett, 1965; Zakon, 1986).  Natural and manipulated EOD 

waveforms were generated using a custom Matlab program, delivered at 97.6 kHz 

(Tucker-Davis model RX8), attenuated (Tucker-Davis model PA5), and then isolated 

from ground (A-M Systems model 2200).  Stimulus intensities are reported in mV/cm as 
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measured from the center of the recording chamber in the absence of a fish.  Recorded 

signals were amplified 100x and band-pass-filtered from 0.1 Hz to 20 kHz with a 

differential AC amplifier (A-M Systems model 1700).  Recordings were digitized at 97.6 

kHz (Tucker-Davis model RX8) and custom Matlab software was used to mark EOD 

times of occurrence relative to stimulus times. 

EOD rates were estimated by convolving EOD times with a 300 ms Gaussian 

filter (Carlson and Hopkins, 2004; Szücs, 1998) and averaging responses to 20 repetitions 

of the stimulus (inter-stimulus intervals were 20 s). To minimize habituation, fish were 

allowed one minute of rest between each trial.  To determine behavioral thresholds, we 

calculated a baseline mean and s.d. during the 5 s preceding a stimulus.  We defined 

responses to stimuli as recordings in which the mean EOD rate exceeded two s.d. above 

the baseline mean within 500 ms after stimulus presentation.  We adjusted stimulus 

intensity in 1dB steps until we identified the least intense signal that yielded a response.  

This stimulus intensity was considered threshold.  The discharge rate of mormyrids can 

be highly variable (Carlson, 2002).  Therefore, to avoid false positive responses, trials 

were repeated if the trace exceeded 2 s.d. during the baseline period before the stimulus; 

to avoid false negative responses, trials were repeated if the s.d. was greater than 1.5 

EODs/s. 

To measure isointensity responses, 15 or 20 stimulus repetitions were presented at 

20 second intervals. For square pulses, each trial was repeated three times and then 

averaged.  From the average of all trials, we defined the duration of the response as the 

time from when the EOD rate first crossed 2 s.d. above the baseline mean until it recrossed 
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this line.  We then calculated the response as the area under this curve.  If the EOD rate did 

not recross the two s.d. line, the duration was calculated using the time of the minimum 

EOD rate between the start of the response and the end of the recording as the endpoint. 

 

RESULTS 

Knollenorgans are Diverse in their Frequency and Duration Tuning 

We recorded knollenorgan (KO) spiking responses to constant frequency sine 

waves (Fig. 1A,B).  Stimuli above threshold elicit an increased number of spikes relative 

to the prestimulus period (Fig. 1A) whereas stimuli below threshold do not (Fig. 1B).  

Consistent with previous reports (Arnegard et al., 2006; Hopkins, 1981), all KOs were 

band-pass tuned, with best frequencies (BF) ranging from 0.35 to 4 kHz and bandwidths 

at 10 dB above threshold (BW10) ranging from 0.30 to 9.69 kHz (Fig. 1C; Table 1).  The 

range of peak power frequencies for B. brachyistius EODs is 0.58 to 6.22 kHz (Fig. 1C; 

Carlson et al., 2000). 
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FIG 1: The frequency tuning of knollenorgan electroreceptors varies across units.  
(A) Spike time histogram (top) and three selected traces from 15 repetitions of a 
90 ms, 1 kHz, 0.63 nA stimulus with 5 ms on and off ramps showing increased 
spike rate during the stimulus.  (B) Spike time histogram (top) and three selected 
traces from 15 repetitions of a 90 ms, 1 kHz, 0.06 nA stimulus with 5 ms on and 
off ramps illustrating a subthreshold response from the same unit.  (C) Threshold 
frequency tuning curves from 32 different knollenorgans illustrating variability in 
frequency tuning across units.  Three example units, each from a different fish, 
are highlighted in red, blue and green, whereas all other units are shown in grey.  
The fast Fourier transforms of the three sample EODs illustrated in figure 2 are 
shown in black (sampling rate = 100 kHz).  The range of peak power frequencies 
(PPF) for B. brachyistius EODs are shown below the threshold tuning curves 
(Carlson et al., 2000).   
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Fish ID BF (Hz) BW10 (Hz) a (nA) τ (ms) 

BB0254 

1000 4275 -- -- 
1000 2609 0.3957 0.0885 
1500 2167 0.2707 0.2029 
2500 5842 0.7318 0.1111 

BB0292 1000 3522 0.2225 0.2039 
1750 4825 0.4291 0.0742 

BB0293 1500 7280 0.6803 0.0661 
-- -- 0.3687 0.1161 

BB0295 1000 539 -- -- 
4000 8826 0.9603 0.0917 

BB0296 
1000 4817 -- -- 
1000 632 0.1003 0.4876 
1000 9685 0.8469 0.6502 

BB0297 
500 946 0.0268 2.7843 
875 3310 0.0114 4.2978 
1000 6918 -- -- 

BB0298 
500 300 -- -- 
1000 1719 -- -- 
1500 3330 0.3654 0.1272 

BB0300 1000 1375 0.3014 0.1039 
-- -- 0.3297 0.0909 

BB0301 
500 710 0.0947 0.5968 
1500 2788 0.3993 0.1587 

-- -- 0.3209 0.1684 

BB0302 350 1041 -- -- 
1250 2677 0.2603 0.1284 

BB0303 1200 1630 0.2010 0.5622 

BB0304 350 445 0.1214 0.5215 
1000 972 0.1929 0.3230 

BB0308 750 494 0.4167 0.1263 

BB0376 

750 1845 0.0887 0.2056 
750 1027 0.1073 0.4198 
1375 7036 0.2568 0.1509 
2500 4657 0.1415 0.1554 
3500 6897 0.2271 0.0321 

-- -- 0.0331 2.0717 
 

Table 1: Summary table illustrating knollenorgan diversity across and within fish.  

Frequency tuning is indicated by best frequency (BF) and bandwidth (BW10).  Duration 

tuning is summarized by a and τ values as described in methods.  
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We also recorded KO spiking responses to monophasic square pulses.  Consistent 

with previous reports (Bennett, 1965; Hopkins and Bass, 1981), KOs generated a 

relatively fixed-latency spike in response to outside-positive-going edges of both positive 

and negative monophasic stimuli (Fig. 2A).  This response is only observed when 

stimulus intensities are above threshold (Fig. 2B).  All of the KOs were long-pass tuned 

for both stimulus polarities, with thresholds decreasing as duration increased (Fig. 2C).  

However, the shapes of these curves varied across units.  We used an exponential fit to 

quantify variation in duration tuning (see ‘Materials and Methods’).  Values for a, which 

describes the asymptote of the fit, ranged from 0.01 to 0.96 nA and values for τ, which 

describes the time constant of the fit,  ranged from 0.07 to 4.30 ms (Table 1).  Total EOD 

durations in B. brachyistius range from 0.39 to 2.37 ms (Fig. 2C; Carlson et al., 2000).  

For each KO, threshold range was calculated as the difference between the minimum and 

maximum thresholds over a given range of stimulus durations.  Across the natural range 

of total EOD durations, the thresholds of individual KOs showed little variation (mean 

range of thresholds ± s.d for stimulus durations between 0.39 and 2.37 ms = 0.14 ± 0.13 

nA).  However, the EODs of B. brachyistius consist of three distinct phases ranging in 

duration from 0.06 to 1.0 ms (Fig. 2C; Carlson et al., 2000).  These three phases are 

roughly similar to three monophasic square pulses in series.  Therefore, EOD phase 

durations represent the behaviorally-relevant range of stimulus durations when 

interpreting responses to monophasic square pulses.  Across this range of durations, 

individual KO thresholds had four times the range of thresholds observed for the range of 

total EOD durations and eight times as much variation in the s.d. across units 
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FIG 2: The duration tuning of knollenorgan electroreceptors varies across units.  (A) 
Spike time histograms (top) and 5 selected traces from 25 repetitions of a 2 nA, 3 ms 
square pulse showing a time-locked spike to the upward edge of both monophasic 
positive (left) and negative (right) stimuli from the same unit.  (B) Spike time histograms 
(top) and 5 selected traces from 25 repetitions of a 0.08 nA (left) and 0.8 nA (right), 3 ms 
square pulse illustrating the difference between a subthreshold (left) and suprathreshold 
(right) response from a second unit.  (C) Threshold tuning curves in response to normal 
(left) and reverse (right) polarity square pulses illustrate the diversity of duration tuning 
across units.  Tuning curves from three units, each from a different fish, are highlighted 
in red, blue and green, whereas all other units are shown in grey.  For each unit, the 
tuning curves in response to positive and negative polarity stimuli are shown in the same 
color.  Three sample EODs are included as insets (sampling rate = 100 kHz), and the 
three distinct phases (P0, P1, and P2) are illustrated in the topmost EOD.  The range of 
durations for each phase of the EOD (P0, P1 and P2) and the total EOD duration of B. 
brachyistius are shown below (Carlson et al., 2000). 
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 (mean range of thresholds ± s.d for stimulus durations between 0.06 and 1.0 ms = 0.61 ± 

1.10 nA).  This difference was statistically significant (Paired t-test, t34 = 2.49, p < 0.02).  

Importantly, the diversity in KO tuning was not simply due to diversity among fish, since 

different KOs from the same fish also varied in their tuning (Table 1; Fig. 3B). 

 

Simple Models Reveal a Link between Frequency and Duration Tuning  

To ask if variation in duration tuning relates to variation in frequency tuning, we 

generated a simple electrical circuit model of KOs (Fig. 3A, inset, see ‘Materials and 

Methods’).  We adjusted both the capacitance and resistance values in this circuit to ask 

how changes in passive filtering properties affect frequency and duration tuning.  First, 

with series resistance (Rs) and membrane resistance (Rm) held constant at 5 MΩ, 

increasing series capacitance (Cs) decreased the BF (Spearman rank R = -0.84, p < 1e-6) 

and the BW10 of frequency tuning curves (Spearman rank R = -0.78, p <1e-6) of model 

KOs (Fig. 3A).  Increasing Cs also increased τ of the duration tuning curve (Spearman 

rank R = 0.79, p < 1e-6) but did not have a significant effect on a (Spearman rank R = -

0.30, p = 0.09).  Increasing membrane capacitance (Cm) decreased both BF and BW10 of 

model KOs (Spearman rank R = -0.88, p < 1e-6, and R = -0.93, p < 1e-6, respectively) 

while increasing both a andτ (Spearman rank R = 0.49, p<0.005, and R = 0.96, p < 1e-6, 

respectively) of the duration tuning curve (Fig. 3A).  With Cs and Cm held constant at 0.5 

nF, increasing Rs non-significantly decreased BF and significantly decreased BW10 

(Spearman rank R = -0.433, p = 0.24, and R = -0.84, p < 0.005, respectively) of model  
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FIG 3: Modeling the knollenorgan receptor as a simple electrical circuit.  (A) Frequency 
(left) and duration (right) tuning curves generated from 3 model neurons with resistance 
values set to 5 MΩ and variable capacitance values. as indicated.  Inset shows the 
electrical circuit model of knollenorgan receptors, which consists of a skin resistance (Rs), 
membrane resistance (Rm), membrane capacitance (Cm), and series capacitance (Cs).  
Corresponding voltage drops (Vs) and (Vm) across the two capacitors are shown with 
arrows.  (B) Frequency (left) and duration (right) tuning curves from 3 different 
knollenorgans recorded from a single fish with measured values for best frequency (BF), 
bandwidth (BW10), duration tuning curve time constant (τ) and duration tuning curve 
asymptote (a). 
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KOs while decreasing a and increasing τ of the duration tuning curve (Spearman rank R 

= -0.84, p < 0.005, and R = 0.84, p < 0.005, respectively) (Fig. 3A).  Increasing Rm did 

not lead to any significant changes in BF, BW10, a or τ (Spearman rank R = -0.43, p = 

0.24, R = -0.47, p = 0.20, R = -0.47, p = 0.2, R = 0.47, p = 0.2, respectively). 

As a result of these effects, there was a strong negative correlation between BF 

and τ among our model KOs (Spearman rank R = -0.90, p < 1e-6), as well as between 

BW10 and τ (Spearman rank R = -0.99, p < 1e-10).  Neither BF nor BW10 were 

significantly correlated with a (Spearman rank R = -0.18, p > 0.3, and R = -0.22, p > 0.2, 

respectively). The three sample tuning curves shown in Fig. 3A illustrate the relationship 

between frequency and duration tuning of model KOs, but it is important to realize that 

these particular combinations of capacitance and resistance do not necessarily represent a 

unique solution for those particular tuning curves.  Similar correlations between 

frequency and duration tuning were observed among different KOs recorded from a 

single fish (Fig. 3B).  Indeed, across all KOs, BF was negatively correlated with τ 

(Spearman rank R = -0.67, p < 1e-3), and BW10 was likewise negatively correlated with τ 

(Spearman rank R = -0.46, p < 0.03). 

 

Stronger Signals Create Tighter Responses 

The accuracy of temporal coding depends on the precision of time-locked 

responses to stimuli. However, temporal precision in sensory systems is generally 

intensity-dependent. Therefore, we investigated how stimulus intensity affected the 

timing of KO responses.  Decreasing stimulus intensity led to a consistent increase in  
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FIG 4: Knollenorgan spike latency and variability is stimulus intensity-dependent. (A) 
Spike time histograms from a single knollenorgan in response to 100 repetitions of a 3 ms 
monophasic positive square pulse stimulus presented at intensities ranging from 0.158 nA 
to 1.259 nA.  Mean and s.d. of first spike latencies are shown as solid and dashed red 
lines, respectively.  Responses to six different durations tested twice each across 5 units 
for a total of 12 experiments are shown in B-D.  (B) Mean first spike latency decreases 
with increasing stimulus intensity (Spearman rank R = -1 to -0.85, p < 0.05).  (C) 
Standard deviation (s.d.) of first spike latency decreases with increasing stimulus 
intensity (Spearman rank R = -0.92 to -0.62, p < 0.05; *indicates that the correlation 
between the response measure and stimulus intensity was not significant.  (D) Relative 
probability of spike response, calculated as number of spikes per stimulus relative to pre-
stimulus baseline activity (see ‘Materials and Methods’), increases with increasing 
stimulus intensity (Spearman rank R = 0.6 to 0.97, p < 0.05). 
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response latency (i.e. amplitude-dependent latency shift), as well as an increase in the 

variability of response times (i.e. jitter; Fig. 4A).  This effect was consistent across 5 

units tested with a range of stimulus durations (Fig. 4B-D).  Mean first spike latency 

decreased significantly with increasing stimulus intensity in all cases (range of Spearman 

rank R = -1 to -0.85, p < 0.05) (Fig. 4B). First spike latency s.d. also decreased 

significantly with increasing stimulus intensity in 11 of the 12 cases (range of Spearman 

rank R = -0.92 to -0.62, p < 0.05) (Fig. 4C).  Finally, relative response probability 

increased significantly with increasing stimulus intensity in all cases (range of Spearman 

rank R = 0.60 to 0.97, p < 0.05) (Fig. 4D).  Therefore, the temporal precision needed for 

accurately coding stimulus duration into spike latency differences was greatest at 

relatively high intensities. 

 

Midbrain Responses Reflect the Peripheral Coding of Duration 

We next asked how the diversity of duration coding by KOs influenced 

electrosensory responses within the central KO pathway.  We recorded evoked field 

potentials in ELa and ELp in response to monophasic and biphasic square pulses 

presented at an intensity of 3.7 mV/cm and varying in total duration from 0.01 ms to 20 

ms.  Normalized responses, measured as the total area of the evoked potential, increased 

with increasing duration for both monophasic (Fig. 5A, top) and biphasic square pulses 

(Fig. 5B, top).  Using a repeated-measures ANOVA we found a significant increase in 

response with increasing duration for monophasic (F13, 143 = 51.8, p < 1e-6) and biphasic 

(F13,117 = 34.7, p < 1e-6) pulses.  In comparing isointensity tuning curves for ELa and ELp,  



46 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG 5: Duration tuning of evoked potentials in the exterolateral nucleus (EL) of the 
midbrain reveals changes in sensitivity across the range of natural EOD durations.  Mean 
isointensity tuning curves in response to monophasic (A, top) and biphasic (B, top) 
square pulses of varying durations in both the anterior (solid) and posterior (dashed) 
subdivisions of EL (ELa and ELp, respectively).  Example evoked potential responses 
from ELa (red) and ELp (blue) at two different stimulus durations (arrows) are shown.  
Each region has a unique, characteristic response shape.  Therefore, responses were 
normalized to the largest response across all durations tested for the same nucleus in the 
same fish.  Normalized responses increase with increasing stimulus duration for both 
monophasic (F13, 143 = 51.8, p < 1e-6) and biphasic (F13,117 = 34.7, p < 1e-6) pulses.  
Isointensity tuning curves were generated with a stimulus intensity of 3.7 mV/cm, and all 
response magnitudes were normalized to the largest response for each fish.  Threshold 
intensity tuning curves in response to monophasic (A, middle) and biphasic (B, middle) 
square pulses of varying durations in both brain regions decrease with increasing stimulus 
duration for both monophasic (F16,96 = 27.0, p < 1e-6) and biphasic (F11,99 = 37.6, p < 1e-6) 
pulses.  Threshold energy tuning curves in response to monophasic (A, bottom) and 
biphasic (B, bottom) square pulses of varying durations in both brain regions increase 
with increasing stimulus duration (for both monophasic (F16,96 = 23.3, p < 1e-6) and 
biphasic (F11,99 = 57.1, p < 1e-6) stimuli.  Values shown are the mean ± s.d. across fish. 
The range of durations for each phase of the EOD (P0, P1 and P2) and the total EOD 
duration of B. brachyistius are shown below (Carlson et al., 2000). 
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there was no significant interaction effect between recording location and stimulus 

duration for monophasic (F13,143= 0.6 p > 0.84) or biphasic (F13,117 = 1.2, p > 0.27) stimuli,  

indicating no difference in the isointensity duration tuning curves of evoked potential 

responses of the two midbrain regions. 

We also measured threshold stimulus intensities for evoked field potentials in ELa 

and ELp in response to monophasic and biphasic square pulses with total durations 

ranging from 0.01 to 20 ms.  For both monophasic (Fig. 5A, middle) and biphasic (Fig. 

5B, middle) square pulses we found greater sensitivity to longer pulse durations in both 

ELa and ELp (repeated-measures ANOVA, monophasic F16,96 = 27.0, p < 1e-6, biphasic 

F11,99 = 37.6, p < 1e-6).  There was no significant interaction effect between recording 

location and stimulus duration for either monophasic (F16,96 = 0.5, p > 0.95) or biphasic 

(F11,99 = 0.7, p > 0.75) stimuli, indicating no difference in the threshold duration tuning 

curves of evoked potential responses of the two midbrain regions.  Importantly, the range 

of durations over which ELa and ELp showed the greatest change in both isointensity 

response and threshold intensity directly corresponded to the range of durations over 

which KOs exhibited the greatest variation in threshold (compare Fig. 5A,B with Fig. 2C).  

This suggests that the long-pass tuning observed in ELa and ELp was due to the 

progressive recruitment of additional KOs with increasing stimulus duration. 

To ensure that long-pass tuning was consistent across a range of intensities, we measured 

the magnitude of evoked potentials in response to intensities ranging from 0.11 to 35.4 

mV/cm.  In ELa, we observed long-pass tuning at all intensities ≥1.1 mV/cm, and these 

curves did not saturate even at the longest durations and intensities tested (Fig. S1A).  In  
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FIG S1: Knollenorgan population response measured in the exterolateral nucleus (EL) of 
the midbrain.  Isointensity tuning curves for monophasic square pulses presented at a 
range of intensities (0.11 to 35.4 mV/cm) in ELa (A) and ELp (B) all show long-pass 
tuning.  All response magnitudes were normalized to the largest response for each fish. 
Values shown are mean ± s.d. for the normalized values across fish.  
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ELp, we also observed long-pass tuning at all intensities ≥1.1 mV/cm, although the curve 

saturated at ~0.1 ms at the higher intensities tested (Fig. S1B). 

Increasing the duration of a square pulse increases the total energy of the stimulus.  

To determine whether the observed long-pass tuning was due solely to the effects of 

increasing stimulus energy, we determined the threshold energy (threshold intensity 

multiplied by duration) as a function of duration.  If changes in energy fully accounted 

for the observed long-pass tuning, then we would expect threshold energy to be the same 

for all durations; however, threshold energy increased with duration for both monophasic 

(F16,96 = 23.3, p < 1e-6) (Fig. 5A, bottom) and biphasic (F11,99 = 57.1, p < 1e-6) (Fig. 5B, 

bottom) stimuli. 

 

Behavioral Responses Reflect the Peripheral Coding of Duration 

Next, we asked how the diversity of duration coding by KOs impacted behavioral 

responses to electrosensory stimulation.  To assess this, we used the ‘novelty response’, 

which is an increase in the rate of EOD emission in response to presentation of a novel 

stimulus (Carlson et al., 2011; Post and von der Emde, 1999).  We presented monophasic 

and biphasic square pulses ranging in duration from 0.01 to 10 ms at an intensity of 145 

mV/cm.  We measured EOD frequency over time by convolving EOD times of 

occurrence with a 300 ms-wide Gaussian function (Carlson and Hopkins, 2004) and 

averaging across repetitions.  The magnitude of the novelty response was calculated as 

the area under the response curve (Fig. 6A, see ‘Materials and Methods’).  The 

magnitude of the fish’s response increased with stimulus duration for both monophasic  
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FIG 6: Duration tuning of behavioral novelty responses reveals changes in sensitivity 
across the range of natural EOD durations. (A) Example of increased EOD rate (novelty 
response) in response to a biphasic square pulse delivered at time = 0 s.  Isointensity 
responses were calculated using the area under the curve above the 2 s.d. line as shown in 
gray.  (B) Normalized response (F13,117 = 6.9, p < 1e-6; top), threshold intensity (F10,40 = 
4.8, p < 1e-3; middle) and threshold energy (F10,40 = 2.5, p < 0.021; bottom) tuning curves 
for novelty responses to monophasic square pulses of varying durations. (C) Isointensity 
tuning curves for monophasic square pulses presented at a range of intensities (14 to 725 
mV/cm) all show long-pass tuning.  (D) Normalized response (F13,104 = 3.2, p < 1e-3; top), 
threshold intensity (F10,50 =4.8, p < 1e-4; middle) and threshold energy (F10,50 =4.9, p < 1e-

4; bottom) tuning curves for novelty responses to biphasic square pulses of varying 
durations. Values shown are mean ± s.d.. The range of durations for each phase of the 
EOD (P0, P1 and P2) and the total EOD duration of B. brachyistius are shown below 
(Carlson et al., 2000). 
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(repeated-measures ANOVA, F13,117 = 6.9, p < 1e-6; Fig. 6B, top) and biphasic (F13,104 = 

3.2, p < 1e-3; Fig. 6D, top) stimuli.  The threshold intensity necessary to elicit a novelty 

response decreased with stimulus duration for both monophasic (F10,40 = 4.8, p < 1e-3; Fig. 

6B, middle) and biphasic (F10,50 =4.8, p < 1e-4; Fig. 6D, middle) stimuli.  Finally, we 

tested if stimulus energy was the sole source of long-pass tuning by plotting threshold 

energy against stimulus duration.  As with evoked potentials in ELa and ELp, threshold 

energy increased with increasing stimulus duration for both monophasic (F10,40 = 2.5, p < 

0.021; Fig. 6B, bottom) and biphasic (F10,50 =4.9, p < 1e-4; Fig. 6D, bottom) stimuli.  To 

determine whether stimulus intensity impacted the shape of the isointensity tuning curve, 

we measured the magnitude of the responses of one fish for 0.01 to 10 ms monophasic 

pulses presented at 7 intensities ranging from 14 to 725 mV/cm and observed long-pass 

tuning at each intensity (Fig. 6C).  

 

The Peripheral Coding of Duration Affects Detection of Natural Stimulus Waveforms 

Finally, we asked how the coding of duration by KOs affected the detection of 

behaviorally-relevant stimuli by measuring KO threshold intensities to natural EOD 

waveforms of 10 different mormyrid species.  We also measured thresholds to B. 

brachyistius EODs subjected to three different temporal manipulations: cutting the 

duration in half, doubling the duration, and time-reversing the EOD. 

KOs respond to the rising edge of a natural waveform with a fixed-latency spike 

(Fig. 7A), just as they do to square pulses (Fig. 2A,B).  KO threshold intensity varied in 

response to different species’ EODs (repeated-measures ANOVA, F11,88=10.5, p < 1e-6,  
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FIG 7: Sensitivity to natural and manipulated EOD waveforms is duration-dependent. 
(A) Spike time histogram (top) and 5 superimposed selected traces from 25 repetitions of 
a Paramormyops vadamans EOD presented at 0.63 nA showing a time-locked 
knollenorgan spike to the upward edge.  (B) Knollenorgan response thresholds to EOD 
waveforms from 10 different species vary significantly, (left) as well as manipulated 
versions of B. brachyistius EODs (right).  (C) Normalized ELp mean evoked potential 
responses to the same waveforms from (B).  Normalized behavioral (D) and threshold (E) 
responses to the same waveforms from (B).  Waveforms and genus and species names are 
shown below each column of data, which are arranged in order of decreasing peak power 
frequency.  3-letter cheironyms refer to undescribed species of Paramormyrops recently 
discovered in Gabon, Africa (Arnegard et al., 2005; Arnegard and Hopkins, 2003; 
Carlson et al., 2011; Sullivan et al., 2002).  Values shown are mean ± s.e.m.  
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Fig. 7B, left), but there was no difference in threshold between normal and reversed 

polarities (F1,8 = 2.2, p > 0.1).  The peak power frequencies (PPF) of EODs negatively 

correlate with duration (Hopkins, 1981).  We therefore used PPF to quantify species 

differences in EOD waveforms, and found that KO thresholds decreased significantly 

with decreasing PPF (Spearman rank R = 0.62, p < 0.05). We presented waveforms 

recorded from three different B. brachyistius individuals and found average thresholds of 

3.34 ± 0.84, 3.50 ± 0.70, and 3.10 ± 0.34 nA for normal polarity stimuli and 2.26 ± 0.48, 

2.87 ± 0.62, and 1.96 ± 0.39 nA for reverse polarity stimuli.  The thresholds for the three 

waveforms were not significantly different from each other (F2,20 = 1.8, p > 0.1), nor were 

the thresholds of normal vs. reversed polarity stimuli (F1,10 = 2.3, p > 0.1). 

Artificial manipulation of the duration of a B. brachyistius EOD caused a 

significant change in KO threshold (repeated-measures ANOVA, F2,22 = 22.0, p < 1e-5), 

with lower thresholds for elongated EODs and higher thresholds for shortened EODs.  

There was no difference between normal and reverse polarity stimuli (F1,11 = 0.63, p 

>0.4).  For the time-reversed EOD, neither the normal (t6 = 0.59, p > 0.5) nor reverse 

polarity (t4 = -0.02, p > 0.95) thresholds were significantly different from the natural 

EOD (Fig. 7B, right). 

The magnitude of evoked potentials in ELp also differed significantly in response 

to different species’ EODs (repeated-measures ANOVA, F11,66 = 11.3, p < 1e-6) (Fig. 7C, 

left). Evoked potentials increased significantly in magnitude with decreasing PPF 

(Spearman rank R = -0.61, p < 0.05).  Artificial manipulation of the duration of a B. 

brachyistius EOD significantly changed the magnitude of evoked potential responses 
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(F2,22=11.0, p < 1e-3), with larger responses to elongated EODs and weaker responses to 

shortened EODs.  Unlike at the periphery, the time-reversed waveform evoked a 

significantly smaller response (t12 = -2.3, p < 0.05) (Fig. 7C, right). 

Finally, behavioral measures of sensitivity also showed duration-dependence.  

Normalized behavioral responses did not differ significantly in response to different 

species’ EODs, although there was a clear trend (repeated-measures ANOVA, F11,55 = 1.8, 

p < 0.1), and behavioral thresholds did differ significantly in response to different 

species’ EODs (F11,66 = 7.4, p < 1e-6).  Further, normalized behavioral responses 

increased significantly with decreasing PPF (Spearman rank R = -0.88, p < 0.05) (Fig. 7D, 

left), and behavioral thresholds decreased significantly with decreasing PPF (Spearman 

rank R = 0.94, p < 0.05) (Fig. 7E, left).  Neither behavioral threshold (F2,12 = 0.3, p > 0.7) 

nor normalized behavioral responses (F2,12 = 0.2, p > 0.8) differed significantly in 

response to artificial manipulation of EOD duration.  Similarly, the time reversed 

waveform was not significantly different from the original waveform for either 

normalized behavioral responses (t6 = 1.4, p>0.2) or behavioral thresholds (t6 = 0.3, 

p>0.7) (Fig. 7D,E, right).   

 

DISCUSSION 

We asked how variation among peripheral sensory receptors impacts the coding 

of stimulus duration.  We found that knollenorgan (KO) electroreceptors exhibit long-

pass duration tuning that varies among units (Fig. 2C).  The diversity in duration tuning 

correlates with variation in frequency tuning, as predicted by a simple circuit model of 
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KOs (Fig. 3).  Population responses in two midbrain nuclei that process electrosensory 

communication signals are also long-pass tuned to duration (Fig. 5), as are behavioral 

novelty responses (Fig. 6).  Importantly, both midbrain and behavioral thresholds varied 

most dramatically across the same range of durations for which KO receptors exhibited 

the greatest diversity in tuning.  This window of stimulus durations corresponds to the 

range of durations observed for different phases of conspecific EODs (Carlson et al., 

2000).  In relating natural EODs to monophasic square pulses, we propose that the range 

of EOD phase durations, not the range of total EOD durations, represents the 

behaviorally-relevant range of stimulus durations.  The triphasic EOD of B. brachyistius 

is roughly similar to three monophasic square pulses in series.  KO receptors respond to 

either rising or falling edges, which occur at the start or end of each phase of a natural 

EOD and at the start or end of a monophasic square pulse.  Indeed, responses to natural 

waveforms from a variety of species that vary widely in EOD duration demonstrate 

duration-dependent differences in sensitivity, confirming the relevance of peripheral 

duration tuning to the detection and discrimination of natural signals (Fig. 7). 

 

Peripheral Diversity Creates a Population Code for Duration 

Multiple observations on the response properties of KOs (Bennett, 1965; Bell, 1990; 

Zakon, 1986) led Hopkins and Bass (1981) to propose a temporal coding model for 

species recognition, in which EOD duration is coded by spike timing differences between 

KOs on opposite sides of the body (Fig. 8).  Several lines of evidence suggest that these 

spike timing differences are compared within the anterior exterolateral nucleus (ELa) to 



56 

establish single-neuron tuning to stimulus duration (Amagai, 1998; Amagai et al., 1998; 

Friedman and Hopkins, 1998; Carr and Friedman, 1999; Mugnaini and Maler, 1987; Xu-

Friedman and Hopkins, 1999).  However, as stimulus intensity decreased, we found 

significant decreases in KO response probability and significant increases in response 

latency and jitter (Fig. 4), revealing that the temporal coding of stimulus duration is less 

effective at near-threshold intensities.  Sound intensity similarly affects the accuracy of 

temporal coding for sound localization (Nishino et al., 2008).  Population averaging of 

peripheral responses through anatomical convergence is one mechanism for reducing 

temporal jitter in auditory and electrosensory systems (Carr and Friedman, 1999).  Our 

data suggest another solution to this problem: a population code allows fish to obtain 

information about stimulus duration at intensities too low for a temporal code to reliably 

signal duration.  Using our particular behavioral measure (the novelty response), 

threshold detection levels for natural EOD waveforms ranged from 0.06 to 0.74 mV/cm 

(Fig. 7E).  Work in other mormyrid species based on more sensitive measures of signal 

detection have revealed a minimum threshold for detection of communication signals as 

low as 1-10 μV/cm (Moller and Bauer, 1973; Moller et al., 1989).  Paintner and Kramer 

(2003) demonstrated that the minimum intensity for trained mormyrids to discriminate a 

2 μs difference in waveform ranged from 4.9 μV/cm to 123 μV/cm.  Using evoked 

potential responses in ELa and ELp as a readout of the KO population response, we 

found that threshold intensities to monophasic square pulses ranged from 140 μV/cm to 

2.54 mV/cm (Fig. 5A). Therefore, stimulus intensities greater than 2.5 mV/cm are 

necessary for all KOs to respond reliably and this value is well above the minimum  
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FIG 8: Conceptual model of duration tuning utilizing a temporal code at high intensities 
and a population code at low intensities. Duration tuning curves (top) from four model 
knollenorgans with shading to indicate response properties.  The colors (unit A= red, unit 
B = pink, unit C = blue, unit D = green) indicate the duration and intensity combinations 
that will elicit a suprathreshold response from that unit.  Spiking patterns (bottom) of the 
same four model knollenorgans at four intensities (arrows) and five durations (arrow 
heads) with shading to indicate the relative contribution of the temporal code and the 
population code.  Filled circles indicate a response, open circles indicate a lack of 
response.  At high intensities and long durations, spike timing differences between units 
responding to the start of the square pulse (A, B) and units  responding to the end of the 
pulse (C,D) provide a precise temporal code for duration.  In contrast, shorter and weaker 
stimuli are characterized by a population code in which duration is represented by the 
pattern of responses across all knollenorgans (filled circles).  



58 

 
intensity for accurate signal discrimination.  Even restricting the range of durations to the 

behaviorally-relevant phase durations of 0.06 to 1 ms, we found that threshold intensities 

ranged from 176 μV/cm to 508 μV/cm (Fig. 5A).  Therefore, mormyrids can discriminate 

species-specific EODs at intensities that are too weak for the temporal code to work 

effectively. 

Each KO studied exhibited long-pass tuning (Fig. 2C), as expected due to 

membrane capacitance, which acts as a low-pass filter of input current for all neurons.  

Interestingly, however, long-pass tuning characteristics differed among KOs, both 

between and within fish, over the range of behaviorally-relevant durations corresponding 

to the range of EOD phase durations (Figs. 2C, 3B; Table 1).  Therefore, at near-

threshold intensities, increasing stimulus duration across the behaviorally-relevant range 

leads to the recruitment of an increasing number of KOs (Fig. 8).  As increases in both 

stimulus intensity and duration will lead to the recruitment of more KOs (Fig. 8), there is 

some ambiguity to a simple population code based solely on the number of responding 

receptors.  Importantly, we found that the shape of each KO’s tuning curve differs (Figs. 

2C, 3B; table 1), meaning that different combinations of stimulus duration and intensity 

will result in unique patterns of population-level responses (Fig. 8). 

 

Two Codes for Stimulus Duration, One Circuit 

Together, these observations suggest two distinct mechanisms for the peripheral 

coding of stimulus duration (Fig. 8).  At relatively high stimulus intensities (i.e. >1 nA; 

see Fig. 2C), all KOs are above threshold across the behaviorally-relevant range of 
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durations, so a temporal code based on spike latency differences would allow for reliable 

coding of stimulus duration.  However, at near-threshold intensities (i.e. 0.1-1 nA; see Fig. 

2C) for which a temporal code is less effective, increasing stimulus duration leads to the 

recruitment of an increasing number of KOs, suggesting a population code for stimulus 

duration.  Although it is unclear how a given amount of current injected directly into a 

receptor organ corresponds to the amount of current that would result from a natural 

electric field, the two will scale linearly.  Thus, our results make it clear that there is a 10-

fold range of stimulus intensities just above threshold over which stimulus duration is 

represented by both the number and identity of responding KOs (Fig. 2C). 

 Based on anatomical evidence, Friedman and Hopkins (1998) proposed a delay-

line anti-coincidence detection model for the recoding of peripheral spike latency 

differences. According to this model, small cells in ELa receive delayed excitation from 

one receptive field, and inhibition from local interneurons (Mugnaini and Maler, 1987; 

George et al., 2011) corresponding to a different receptive field.  As a result, small cells 

only respond when a stimulus is long enough such that onset-triggered delayed excitation 

arrives before offset-triggered inhibition, resulting in long-pass tuning to stimulus 

duration. Differences in excitatory delay would establish variation in the minimum 

stimulus duration needed to elicit a response across the population of small cells. As a 

result, increases in stimulus duration would increase small cell recruitment, thereby 

recoding the peripheral temporal code into a population code for duration (Xu-Friedman 

and Hopkins, 1999). 
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By identifying a potential mechanism for converting a temporal code into a 

population code, the Friedman-Hopkins model reveals how the peripheral code for 

stimulus duration at high stimulus intensities can be converted into the same type of code 

we found to operate at low intensities, potentially establishing a single common 

population code among small cells for all intensities.  Evoked potentials in both ELa and 

ELp scale with stimulus duration across a wide range of intensities (Fig. S1), consistent 

with a small cell population code for stimulus duration.  However, multiple different 

intensity/duration combinations elicit the same evoked potential response (Fig. S1).  As 

evoked potentials reflect the summed activity of populations of neurons, this overlap 

indicates that a population code based simply on the number of active small cells would 

not unambiguously code for stimulus duration.  As with the population coding of 

stimulus duration by KO receptors, we propose that stimulus duration may be represented 

by unique spatial patterns of responsive small cells.  This type of population-coding 

scheme could also allow for the coding of other behaviorally-relevant attributes of EODs, 

such as intensity, orientation, and polarity.  Neurons in ELp exhibit tuning to all of these 

stimulus attributes (Amagai, 1998), as well as to the interpulse intervals between EODs 

(Carlson, 2009), so this information is clearly encoded in the output of small cells.   

If a population code can be used to obtain information about stimulus duration, 

then why would there also be a temporal code, which is associated with anatomical 

features that are presumably energetically expensive such as large cells, thick axons, and 

heavy myelination (Carr and Friedman, 1999)?  It is likely that a “start-stop” peripheral 

code provides for greater temporal precision, whereas a peripheral population code would 
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still provide some information about duration at low intensities that do not allow for this 

level of precision.  Further, a key aspect of a temporal code for stimulus duration is that it 

greatly extends the dynamic range of the system.  A population code for duration is 

intensity-dependent: above a certain intensity, the system will saturate (all receptors will 

respond to all durations) and information about stimulus duration cannot be encoded into 

changes in the population of responding receptors.  By contrast, a “start-stop” temporal 

code never saturates (Bennett, 1965; Hopkins and Bass, 1981). 

 

Differences in Passive and Active Membrane Properties May Explain Peripheral 

Variation 

Previous studies have shown that KOs are band-pass tuned to frequencies close to 

the peak power frequencies of conspecific EODs (Arnegard et al., 2006; Bass and 

Hopkins, 1984; Hopkins, 1981).  We confirmed this (Fig. 1C), finding variation in the 

range of best frequencies and bandwidths both between and within fish (Fig. 3B; Table 1).  

Variability in frequency tuning among the population of receptors is indicative of 

physiological differences that should also affect duration tuning.  Indeed, we found that 

the duration- and frequency-tuning characteristics of KOs were correlated in the same 

way as simple models in which we systematically varied membrane and series 

capacitances and resistances (Fig. 3). Thus, differences in capacitance or resistance 

between units could account for the observed covariation in frequency- and duration-

tuning.  Ampullary receptors could potentially contribute to behavioral responses because 

they respond to the D.C. components of monophasic square pulses (Bennett, 1965; Zakon, 
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1986).  However, biphasic pulses do not have a D.C. component, and behavioral 

responses to monophasic and biphasic square pulses were similar (Fig. 6).  Further, ELa 

and ELp do not receive input from the ampullary system (Bell and Szabo, 1986), and the 

responses of these nuclei were consistent with the behavioral results (Figs. 5, 6). 

Variation in capacitive or resistive properties could result from differences in 

electroreceptor organ morphology (Zakon, 1986).  KOs are tuberous electroreceptors 

composed of a canal leading to a sensory chamber typically containing 1-10 sensory cells, 

each 40-50 μm in diameter (Bennett, 1965; Szabo, 1965; Harder, 1968b; Zakon, 1986).  

The canal is lined by a wall composed of numerous layers of flattened epithelial cells and 

it is filled with a plug of loosely packed epithelial cells (Szabo, 1965).  The epithelial 

plug, which is not present in low-frequency ampullary electroreceptors, establishes a 

series capacitance (Fig. 3A, inset) that acts as a high-pass filter of current through the 

organ (Zakon, 1986).  Differences in the number of cells within the epithelial plug or in 

their morphology could establish variation in series capacitance.  The canal walls of 

tuberous electroreceptors may also contribute to the series capacitance of receptors 

(Zakon, 1986).  Tuberous receptors in gymnotiforms have more layers of flattened 

epithelial cells in the canal wall than ampullary receptors, suggesting that differences in 

tuning between the two receptor types relates to differences in the capacitive contribution 

of the canal wall (Bennett, 1971).  Indeed, the maximum number of layers within the 

capsular wall of tuberous organs varies from 10 to 60 across 9 different species of 

gymnotiform fishes, and this variation correlates with receptor frequency tuning 

(Lissmann and Mullinger, 1968; Zakon, 1986).  There is even extensive variation in 
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tuberous organ morphology within species: among tuberous receptors of the gymnotiform 

Hypopomus, the number of layers of flattened epithelial cells varies from 10 to 50, 

causing the wall thickness to vary from 2 to 5 μm (Szamier and Wachtel, 1970).  In 

mormyrids, Harder (1968b) reported that the thickness of the electroreceptor epidermis 

varies throughout the body.  The sensory cells themselves could also serve as a source of 

variation in capacitance.  The apical surface of the receptor cells is thought to contribute 

to series capacitance whereas the basal surface is thought to affect membrane excitability 

as a ‘typical’ parallel capacitance (Bennett, 1965; Bennett, 1971).  The diameter of 

individual sensory cells within a KO only varies from 40 to 50 μm, but these cells are 

covered with branching microvilli that increase the surface area of each cell 

approximately 40-fold (Derbin and Szabo, 1968).  Similarly, variation in the number of 

sensory cells per KO could also impact the capacitive properties of the receptor organ.  

The number of sensory cells per KO does indeed vary among the KOs within a single fish 

(Harder, 1968a).  Like capacitance, resistance will be impacted by morphological features 

such as skin thickness, pore diameter and epithelial wall thickness.   

Finally, studies of the axon initial segment have demonstrated that properties of 

voltage-gated ion channels such as location, distribution, and inactivation kinetics play a 

pivotal role in the shape and timing of a spiking response, which contributes to electrical 

frequency tuning (Clark et al., 2009).  This basic mechanism can also play a role in 

peripheral sensory tuning.  For example, the amplitude of the current through 

mechanotransducer channels and the speed of adaptation covary with the best frequency 

of hair cells in the turtle cochlea, suggesting a role for variation in ion channel properties 
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in generating frequency tuning (Ricci et al., 2003).  Thus, there are multiple 

morphological and physiological features that could establish differences in sensory 

filtering across KOs, and thereby explain the observed covariation in frequency and 

duration tuning. 

 

Implications for Behavior 

Pulse-type mormyrid electric fish use EODs for species recognition and mate 

choice (Arnegard et al., 2006; Feulner et al., 2009; Hopkins and Bass, 1981; Machnik and 

Kramer, 2008).  In B. brachyistius, males have longer EODs than females, and EOD 

duration correlates with relative dominance status among males (Carlson et al., 2000).  

Thus, long-pass filtering in the KO electrosensory system establishes a basic mechanism 

for distinguishing behaviorally-relevant variation in conspecific EOD duration.  However, 

there is extensive overlap in EOD duration among sympatric species (Arnegard et al., 

2010; Carlson et al., 2011; Hopkins, 1981), suggesting the need to precisely distinguish 

small differences in duration.  Further, EODs are individually-distinctive (Friedman and 

Hopkins, 1996), and there is evidence that some species of mormyrids can use this 

information to discriminate between individuals (Graff and Kramer, 1992).  Behavioral 

positioning during aggressive interactions maximizes the signal intensity experienced by 

receivers (Arnegard et al., 2006), possibly to maximize the discrimination of small 

temporal differences between waveforms.  Precise temporal coding provides a robust 

mechanism for distinguishing slight variation in stimulus duration during overt 
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behavioral interactions, whereas population coding provides a rough measure of stimulus 

duration at low intensities, when signaling fish are at a distance. 

We tested natural EOD waveforms from 10 species as well as conspecific EOD 

waveforms subjected to temporal manipulations, and determined that the long-pass 

tuning we observed had clear effects on the detection of these behaviorally-relevant 

stimuli (Fig. 7).  Interestingly, for all measures tested, fish were more sensitive to 

heterospecific EODs of longer duration than conspecific EODs.  This does not imply that 

the fish prefer heterospecific EODs that are longer in duration than conspecific EODs, 

only that they are more detectable at a given intensity.  Our behavioral experiments 

provided a measure of signal detection, not preference, such as would be important in 

mate choice or intraspecific competition.  Indeed, previous work has revealed clear 

behavioral preferences for conspecific EODs in several species (Arnegard et al., 2006; 

Feulner et al., 2009; Hopkins and Bass, 1981; Machnik and Kramer, 2008).  Further, the 

early stages in the sensory pathway that we recorded from likely have less selectivity for 

specific waveforms compared to higher sensory regions.  Thus, increases in either EOD 

amplitude or duration can increase the effective range of electric communication, but not 

necessarily increase signal preference in specific behavioral contexts.  Further, we found 

that threshold energy increased with increasing stimulus duration, likely due to the AC-

coupling of KOs.  This suggests that greater energy is required to produce an equally 

detectable pulse of longer duration, which may place a limit on evolutionary increases in 

EOD duration.  Thus, it will be interesting to determine how species diversity in EOD 

duration relates to diversity in EOD amplitude and energy, which will require carefully 
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calibrated measurements in the field.  It is possible that the evolution of increased EOD 

duration is compensated for by decreasing EOD amplitude.  Alternatively, variation in 

EOD duration may relate to diversity in the rates of EOD production, or to species 

differences in population density that place different selective pressures on signal range.  

It will also be interesting to relate variation in EOD duration, amplitude, and energy to 

differences in KO physiology across species.  The frequency tuning of KOs varies across 

species (Bass & Hopkins, 1984; Hopkins, 1981), suggesting that duration tuning will 

likely vary as well. 

 

Relevance to Other Sensory Systems 

  The use of multiple coding strategies is common in sensory systems (Lawhern et 

al., 2011).  However, these distinct computations are often implemented in parallel 

sensory pathways that are specialized to extract information about different stimulus 

features (Carlson and Kawasaki, 2006; Nishino and Ohmori, 2009; Livingstone and 

Hubel, 1988; Sullivan and Konishi, 1984; Young, 1998).  We demonstrate two distinct 

coding mechanisms in the sensory periphery operating at different ranges of intensities.  

Our findings are novel in revealing that both codes operate within the same circuit to 

extract information about the same stimulus feature, but work most effectively at 

different ranges of intensity.  A combination of distinct coding schemes operating at 

different intensities may be used in other sensory systems as well. 

We further demonstrate significant variability in peripheral tuning.  Neural 

heterogeneity can increase the amount of information encoded in the activity of a 
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population of central sensory neurons (Chelaru and Dragoi, 2008; Marsat and Maler, 

2010).  On the other hand, redundancy, which exists at multiple stages of neural 

processing, can increase prediction accuracy and decrease ambiguity (Barlow, 1972; 

Barlow, 2001).  Our results reveal that heterogeneity among peripheral sensory receptors 

allows for information processing through population coding.  Heterogeneity in the 

frequency tuning of peripheral receptors may also be important for other temporal codes, 

such as the detection of interaural time differences (ITD) in sound localization (Carr and 

Friedman, 1999).  Indeed, monoaural inputs to ITD detector neurons in barn owls vary in 

their spectrotemporal filtering properties, and this filtering has strong effects on ITD 

tuning (Fischer et al., 2011).  Thus, the effects of spectrotemporal filtering at the 

periphery should be considered for a wide range of temporal codes.  

Finally, our results reveal a basic mechanism by which sensory systems can 

determine stimulus duration even at low intensities, when the temporal precision of 

peripheral responses is severely degraded.  Duration tuning in auditory systems is 

important for functions as varied as echolocation, acoustic communication, conspecific 

recognition, and appreciation of music (Covey and Casseday, 1999).  Duration tuned 

neurons have been identified in the central auditory systems of echolocating bats as well 

as nonecholocating animals including frogs, rats, mice, guinea pigs, chinchillas, and cats 

(Sayegh et al., 2011).  In mouse auditory midbrain, duration tuning is strongly dependent 

on other stimulus features, including intensity (Brand et al., 2000).  We have 

demonstrated an intensity-dependent change in the peripheral code for duration.  When 
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analyzing central mechanisms for temporal processing, the diversity of peripheral 

responses and the importance of stimulus intensity should therefore be considered.
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Chapter 3 

 

 

Retrograde fluorescent labeling allows for targeted extracellular 

single-unit recording from identified neurons in vivo 

 

 

 

A great deal of the difficulty in physiological research is due to the microscopic size of 

the living cell. 

-E.D. Adrian, 1928 

 

 

 

 

This chapter contains a previously published manuscript:  

A.M. Lyons-Warren, T. Kohashi, S. Mennerick, B.A. Carlson (2013). Retrograde 

Fluorescent Labeling Allows for Targeted Extracellular Single-unit Recording from 

Identified Neurons in vivo. J. Vis. Exp. 26:76. 

 

Author contributions for the above citation: 

A.L-W developed the initial idea for the procedure and performed the experiments.  T.K. 

designed the recording chamber and assisted with technical aspects.  The manuscript was 

written by A.L-W with input from all other authors. 
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ABSTRACT 

Retrograde transport of fluorescent dye labels a sub-population of neurons based 

on anatomical projection.  Labeled axons can be visually targeted in vivo, permitting 

extracellular recording from identified axons. This technique facilitates recording when 

neurons cannot be labeled through genetic manipulation or are difficult to isolate using 

‘blind’ in vivo approaches.  
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INTRODUCTION 

The overall goal of this method is to record single-unit responses from an 

identified population of neurons.  In vivo electrophysiological recordings from individual 

neurons are critical for understanding how neural circuits function under natural 

conditions.  Traditionally, these recordings have been performed ‘blind’, meaning the 

identity of the recorded cell is unknown at the start of the recording.  Cellular identity can 

be subsequently determined via intracellular1, juxtacellular2 or loose-patch3 iontophoresis 

of dye, but these recordings cannot be pre-targeted to specific neurons in regions with 

functionally heterogeneous cell types.  Fluorescent proteins can be expressed in a cell-

type specific manner permitting visually-guided single-cell electrophysiology4-6.  

However, there are many model systems for which these genetic tools are not available.  

Even in genetically accessible model systems, the desired promoter may be unknown or 

genetically homogenous neurons may have varying projection patterns.  Similarly, viral 

vectors have been used to label specific subgroups of projection neurons7, but use of this 

method is limited by toxicity and lack of trans-synaptic specificity.  Thus, additional 

techniques that offer specific pre-visualization to record from identified single neurons in 

vivo are needed.  Pre-visualization of the target neuron is particularly useful for 

challenging recording conditions, for which classical single-cell recordings are often 

prohibitively difficult8-11.  The novel technique described in this paper uses retrograde 

transport of a fluorescent dye applied using tungsten needles to rapidly and selectively 

label a specific subset of cells within a particular brain region based on their unique 
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axonal projections, thereby providing a visual cue to obtain targeted electrophysiological 

recordings from identified neurons in an intact circuit within a vertebrate CNS.  

The most significant novel advancement of our method is the use of fluorescent 

labeling to target specific cell types in a non-genetically accessible model system.  

Weakly electric fish are an excellent model system for studying neural circuits in awake, 

behaving animals12.  We utilized this technique to study sensory processing by ‘small 

cells’ in the anterior exterolateral nucleus (ELa) of weakly electric mormyrid fish.  ‘Small 

cells’ are hypothesized to be time comparator neurons important for detecting 

submillisecond differences in the arrival times of presynaptic spikes13.  However, 

anatomical features such as dense myelin, engulfing synapses, and small cell bodies have 

made it extremely difficult to record from these cells using traditional methods11, 14.  Here 

we demonstrate that our novel method selectively labels these cells in 28% of 

preparations, allowing for reliable, robust recordings and characterization of responses to 

electrosensory stimulation. 
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PROTOCOL TEXT 

1) Prepare Dye-Coated Needles 

1.1)  Sharpen a 160 μm diameter tungsten wire electrolytically15.  Final needle tip 

diameters should range from 5-50 μm.  The number of needles needed depends on the 

size of the region being labeled.  We prepared 5 needles for 4 injections into ELp. 

1.2) The night before the experiment, place a drop (<0.25 μL) of 2 mM dextran-

conjugated Alexa Fluor 10,000 MW dye onto the distal 100 μm of each needle.  

1.3) Allow the needles to air dry at room temperature, leaving concentrated dye at the tip.  

Store the needles at 4°C in a dark container to protect them from light.  

 

2) Prepare Animal for Surgery  

2.1) Induce general anesthesia by placing the fish in a solution of 300 mg/l MS-222 in 

tank water. 

2.2) Weigh the fish and measure fork length (tip of snout to fork of caudal fin) and body 

depth (maximal dorso-ventral distance in the transverse plane).  These measurements 

should fall within the ranges indicated in Table 1 so that the fish fits inside a recording 

chamber small enough to place under a water-immersion microscope objective (Fig. 1). 

2.3) Immobilize and electrically silence the fish by injecting 100μL of 3 mg/ml flaxedil 

into the dorsal body musculature.  

2.4) Fill the recording chamber (Fig. 1A) with tank water.  Place the fish ventral-side 

down on the platform in the center of the chamber (Fig. 1).  Deliver an aerated solution of  
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Table 1: Optimal weight, length and body depth ranges for fish. 
 
 Mass (g) Fork Length (cm) Body Depth (cm) 
Mean 2.42 6.20 1.14 
Standard Deviation 0.64 0.52 0.18 
Range 1.2-4.0 5.5-8.4 0.9-1.6 
 
 
 
 
 
 
 
Table 1: Optimal weight, fork length (tip of snout to fork of caudal fin) and body depth 
(maximal dorso-ventral distance in the transverse plane) ranges allowing fish to fit in the 
recording chamber illustrated in Figure 1.  Fish that are too small may be less likely to 
survive the surgery and will have a small ELp, making dye placement challenging.  Fish 
that are too large will have a large, over-reaching cerebellum that will reduce access to 
ELa and ELp and may prevent lowering of the high power, water-immersion objective 
close enough to focus on ELa and ELp. 
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FIG 1: Specifications for a recording chamber that can fit underneath the objective of a 
fixed-stage epiflourescent microscope.  (A) To-scale square recording chamber made 
from plexiglass showing top, side and back views.  Paired sets of stimulating electrodes 
(asterisks) at the periphery allow for either transverse (red-black) or longitudinal (blue-
yellow) stimulation.  An additional piece of plexiglass in the corner, with a rubber-lined 
hole in the center (orange), holds a suction pipette that maintains a constant water level.  
Two vertical stainless steel posts screwed into the bottom of the chamber (solid green) 
connect to stainless steel posts (green outline) attached to the platform supporting the fish 
(light grey, detailed in C) via adjustable disc clamps.  A photograph of the chamber is 
shown below the to-scale drawing.  (B) Individual and assembled views of the circular 
plastic disc clamps used to secure the platform to the vertical posts.  Each disc clamp has 
a groove (green) for a post and a center hole for the tightening screw.  Disc clamps are 
rotated so the grooves are perpendicular to each other.  Tightening the screw (red) clamps 
the posts in place to prevent further vertical and rotational movement of the platform.  (C) 
Front and side to-scale views of the plexiglass platform used to hold the fish in place.  
The platform is coated with a layer of paraffin wax (blue) that holds wooden dowels 
(black bars) in place to support the fish.  Tubing for respirating the fish passes through a 
hole in the ‘headboard’ of the platform and ends in a pipette tip placed in the fish’s mouth.   
A stainless steel head post (gray bar) connects to the platform via a ball joint allowing 
360 degree rotation.  Stainless steel horizontal posts (green) are screwed into either end 
of the platform.   
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100 mg/l MS-222 using a pipette tip placed in the fish’s mouth (1-2 ml/min).  Stabilize 

the fish with rods fixed in wax placed on both sides of the body (Fig. 1C).  Monitor the  

fish’s health by checking for continuous blood flow in the ocular vessels and a normal 

body color. 

2.5) Rotate the platform along its long axis and lower the back end of the platform so that 

one side of the dorsal surface of the fish’s head is exposed above the water while the rest 

of the fish’s body remains submerged.  A small piece of Kimwipe should be placed on 

any non-submerged portion of the skin to prevent drying. 

 

3) Surgery (Figure 2) 

The basic surgical procedure described here is well established and reliably used for blind 

in vivo recordings in mormyrids16.  For other applications, expose the desired regions for 

labeling and recording.  The region containing axon terminals of the cells of interest must 

be reachable by a sharp needle.  The region containing more proximal segments of those 

same axons must have sufficient space above the tissue to accommodate the working 

distance of the water-immersion lens (2 mm in our case). 

 

3.1)  Apply a 0.4% solution of lidocaine to the exposed surface of the head using a Q-tip. 

3.2)  Using a scalpel blade, cut the perimeter of a rectangular piece of skin.  Remove the 

rectangle using a pair of forceps.  The size of the rectangle will scale with fish size, but 

should be approximately 3mm X 5mm for a 6.2 cm fish (Fig. 2A).  The lateral edge of 

the rectangle should align with the center of the eye, the anterior edge of the rectangle  
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FIG 2: Schematic overview of surgery looking down at the dorsal surface of the head.  
(A) Make four cuts, in the order indicated, to remove a rectangular piece of skin (red).  
(B) Extend the opening anteromedially to remove an additional rectangular piece of skin 
(green).  (C) Scrape off any remaining fat or ligaments by moving the scalpel blade as 
indicated by the arrow and dry the surface completely with Kimwipes and forced air.  (D) 
Glue a stainless steel post to the skull using Super Glue.  Scale bar in A applies to A-D.  
(E) Use a dental drill to make four cuts, in the order indicated, to remove a rectangular 
piece of bone (blue), exposing the anterior and posterior exterolateral nuclei (ELa and 
ELp, respectively). 
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should be just posterior to the eye, and the medial edge of the rectangle should be just 

lateral of the fish’s midline.   

3.3)  Expand the exposed skull region anteromedially to expose an additional 2.5 mm 

square non-overlapping area (Fig. 2B). 

3.4)  Completely clear and dry the exposed surface of the skull using the scalpel blade to 

scrape away any excess tissue and Kimwipes and forced air to dry the surface (Fig. 2C). 

3.5) Glue a metal post to the anteromedial exposed skull region using Super Glue.  Wait 

until the glue is completely dry (Fig. 2D).   

3.6)  Remove a rectangle of skull, approximately 2mm X 4mm for a 6.2 cm fish.  Use a 

dental drill with a ~0.5 mm diameter ball mill carbide tip to thin the perimeter of the 

rectangle.  Then, using a scalpel and forceps, cut the perimeter of the rectangle and peel it 

away to expose the underlying brain.  Additional drilling or cutting with small scissors 

may be necessary to fully expose EL (Fig. 2E).  If muscle bleeding occurs, an 

electrocautery unit may be used.  

3.7) Cut away both the dura mater (pigmented) and the pia mater (clear) using spring 

scissors or a needle and remove the cut portions with a pair of forceps.  The anterior and 

posterior portions of EL (ELa and ELp, respectively) are now visible (Fig. 3A) 

 

 4) Retrograde Labeling of Axons of Interest 

4.1)  Position a manipulator with a dye-coated needle (made in Step 1) above the target 

region containing axons of interest, in our case ELp.   

4.2) Swiftly insert the needle approximately 25 μm into the tissue.  Wait 15-30 seconds,  
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FIG 3: Fluorescent labeling in the posterior exterolateral nucleus 3 hours after injection 
of dextran-conjugated Alexa Fluor 568.  (A) The anterior and posterior exterolateral 
nuclei (ELa and ELp, respectively) visualized with bright field illumination from above.  
Note that the extensive myelination within ELa gives it a relatively bright appearance that 
distinguishes it from ELp.  (B) The same area visualized using epifluorescence viewed 
through a TRITC filter.  (C) A merged image using blue for A (brightfield) and red for B 
(TRITC). (D) Example of a scaled drawing of ELa and ELp including major blood 
vessels (red lines) that can be used as landmarks to identify the exact location of labeled 
axons visible only under high magnification (the exact location of blood vessels varies 
from fish to fish). Dotted line indicates the border between ELa and ELp. (E) Sample 
images acquired using a TRITC filter from 5 different preparations illustrating a range of 
successful labeling patterns of Small cell axons and somas in ELa. 
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until all the dye has come off, and then retract the needle.   

4.3) Repeat with additional fresh needles as needed, placing each one in a different 

location so that the dye is distributed throughout the target region. We used 3-5 needles 

per preparation. 

4.4)  Rinse excess dye from the cavity with Hickman’s ringer solution. 

4.5) Wait at least 2 hours for dye uptake and transport.   

 

 5) Visualization of Axons of Interest 

5.1) Place the recording chamber, along with the fish, underneath the objective of an 

upright, fixed-stage epifluorescent microscope.  As the body of the fish occludes light 

penetration, both white and fluorescent light sources must come from above.  Careful 

placement of a fiber optic light source above the skull cavity allows satisfactory 

brightfield images.  For epifluorescence viewing, fluorescence filter specifications should 

match the absorption/emission spectrum of the dye. 

5.2) Switch respiration to fresh tank water and maintain the same flow rate.  Place a 

ground wire in the exposed brain cavity and connect to the ground of the recording 

headstage (see 6.3).   

5.3) Place a pair of recording electrodes next to the base of the tail and connect to a 

differential amplifier and recording device (e.g. audio monitor, oscilloscope, or 

computer) to monitor the electric organ discharge command (EODC). After the fish 

recovers from anesthesia, the EODC can be used as an indicator of the fish’s condition. 
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5.4)  Prepare a scaled sketch of the brain region viewed at low magnification.  Include 

major blood vessels as landmarks (may vary from fish to fish) to identify the exact 

location of labeled axons visible only under high magnification (Fig. 3D).  

5.5) Confirm dye placement.  First view entire tissue with brightfield illumination for 

orientation (Fig. 3A).  Then view with fluorescent illumination (Fig. 3B).  ELp will have 

diffuse labeling (Fig. 3B,C).  Minimize fluorescence excitation to limit the photodynamic 

and phototoxic effects of the dye. 

5.6) Use the vessels as landmarks to locate ELa under high magnification. Illuminate 

with fluorescent light while searching for a labeled axon near the surface. (Fig. 4). 

 

 6) Record Extracellular Activity 

6.1)  Pull suction recording electrodes using 1 mm OD, 0.58 mm ID borosilicate capillary 

glass with filament.  Ideal tip size will depend on the diameter of the target axons, which 

in our case is 0.1-0.2 μm17.  For our application, electrode tip diameters were 1.5 ± 0.4 

μm (range: 1.0-2.4 μm) with a 5 mm long, narrow shank in order to approach labeled 

axons without moving the surrounding densely packed tissue. 

6.2) Fill electrodes with filtered Hickman’s ringer solution.  Final tip resistance is 45.2 ± 

38.0 MΩ (range: 16 to 155 MΩ).  

6.3) Place the electrode in an electrode holder with a pressure port and connect it to an 

amplifier headstage mounted on a manipulator.  Run a pressure line from the pressure 

port to a T-junction ending in a manometer and a syringe for monitoring and controlling 

pressure, respectively. 



92 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG 4: Single-unit extracellular recording from a labeled axon. (A) Recording electrode 
(arrow head) under positive pressure placed adjacent to a labeled small cell axon in ELa 
(top) records only edge artifact (arrow heads) in response to a 100 ms 20 mV/cm 
monophasic, contralateral-positive, transverse square pulse (bottom).  (B) Releasing 
outward pressure from the electrode (arrow head) causes the axon to move slightly 
towards the electrode (top) but there are still no responses to the stimulus (bottom).  (C)  
Slight negative pressure pulls the axon into the electrode (top, arrow head) and action 
potentials in response to stimulus onset are now visible (bottom, asterisk).  Bottom 
portions of all three panels are overlaid responses to 20 repetitions of the stimulus. 
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6.4) Connect the headstage to an amplifier and an analog-to-digital acquisition device. 

6.5) With 30 mbar outward pressure in the electrode line, place an electrode next to a 

labeled axon.  A low-light level camera interfaced with imaging software is used to 

visualize pipette placement.  Start near the tissue surface and advance the electrode  

towards the axon.  As you approach the axon, the outward pressure should cause a slight, 

but noticeable movement of the axon. 

6.6) While the electrode is next to the axon, (Fig. 4A, top) record the potential at the 

electrode while presenting test stimuli (in our case, we used 100 ms monophasic positive 

and negative transverse pulses at an intensity of 20 mV/cm; Fig. 1A).  Action potentials 

should not be observed, although an electrical artifact confirms proper 

recording/stimulation (Fig. 4A, bottom). 

6.7) Release the outward pressure in the electrode and repeat stimulation/recording.  

Action potentials should still not be observed (Fig. 4B).   

6.8) Apply slight (125 ± 25 mbar) suction to the electrode and repeat stimulation 

/recording.  Action potentials should now be observed in response to stimulation (Fig. 

4C).  Spontaneous activity may also occur.  If action potentials are not observed, release 

the suction, clear the electrode with slight pressure, move the electrode slightly, and 

attempt suction again.  Once action potentials are visible, close the pressure line. 

6.9) Stimulate and record as desired.   
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 7) Termination and Disposal 

7.1) Once all desired recordings are complete, switch to respiration with 100 mg/l MS-

222 until the EODC has stopped.  No EODC should be detected for at least 10 minutes. 

7.2) Dispose of the fish according to institutional guidelines and approved animal care 

protocols. 

 

RESULTS 

For our particular application, we are interested in studying stimulus coding by 

central sensory neurons. Successful recordings from labeled axons allow analysis of 

single-unit responses to sensory stimulation18.  Figure 5A shows representative action 

potentials evoked by transverse electrosensory stimulation using bipolar electrodes 

located on the insides of the left and right walls of the recording chamber.  Spike times 

can be presented as a spike raster plot (Fig. 5B).  A 25 ms pre-stimulus recording window 

shows the low level of spontaneous activity.  This particular ELa small cell is long-pass 

tuned to stimulus duration at a stimulus intensity of 6 mV/cm, increasing the number of 

spikes per repetition as stimulus duration increases (Fig. 5C).  The mean first spike 

latency is 4.28 ± 0.16 ms, consistent with the expected latency for small cells in ELa11. 
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FIG 5: Representative results using this technique.  (A) 5 sample traces showing action 
potentials evoked by a 0.1 ms 6 mV/cm monophasic, contralateral-positive, transverse 
square pulse stimulus.  (B) Raster plot showing spike times during 20 repetitions of a 75 
ms recording window for the same unit stimulated at time 0 with 6 mV/cm stimuli at the 
range of durations listed on the right.  (C) Duration tuning curve quantifying the 
responses displayed in the raster as spikes per stimulus repetition. 
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DISCUSSION  

Once mastered, this technique will allow one to target identified neurons, 

including individual axons, for in vivo recordings in many model systems.  In addition, 

this technique allows one to reliably record spike output from neurons with unique 

anatomical characteristics that make traditional in vivo recording methods challenging.  

We have utilized this technique to record from ELa small cells in mormyrid weakly 

electric fish.  Previous attempts to study the tuning properties of small cells were 

unsuccessful due to challenging recording conditions11, 14.  Similar anatomical features 

create barriers to obtaining single-unit recordings from many different vertebrate auditory 

and electrosensory neurons8-10.  To overcome these challenges in our system, we took 

advantage of the fact that small cells are the only cells in ELa that project to ELp.  Thus, 

retrograde transport of dye placed in ELp limits labeling in ELa to small cell somas and 

axons.  Fluorescent labeling of the axons allowed precise electrode placement next to 

labeled axons, making single-unit recordings from identified cells possible despite 

inaccessible somas.  We attempted somatic recordings, but were unsuccessful, probably 

due to the surrounding engulfing synapses11,17.  However, somatic labeling was clearly 

visible suggesting that this technique could be used to target somatic recordings in other 

cell types and other circuits.  Fluorescent labeling of neurons through retrograde transport 

in vivo has been used for guiding targeted recordings in vitro19-21.  A similar technique 

was used for targeted in vivo recordings from motor neurons in zebrafish spinal 

cord22.  Our work represents a novel expansion of this approach, in which both labeling 

and recording are done in vivo within the brain.  Our method demonstrates that in vivo 
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labeling of CNS areas with a retrograde tracer can be expanded to the study of other 

intact circuits with similarly selective projection neurons.  For example, in mammalian 

auditory processing, the inferior colliculus (IC) serves as an important relay center for 

inputs from multiple rhombencephalic structures23.  Dye injection into the IC would 

selectively label the projection cells from each of these nuclei.  The superior colliculus 

(SC) serves a similar function for vision24.  Spinal cord preparations are particularly well 

suited for this technique, as the spinal cord is easily accessed, dye injection can occur far 

from the recording site, and it can be combined with intracellular recording and filling of 

select neurons to acquire more detailed anatomical information25.  Finally, tract-tracing is 

a well established technique used throughout the central nervous system to map complex 

circuitry26.  Our method can be utilized to add functional information to these studies as 

has been done with calcium-sensitive indicators in cat visual cortex27. 

The surgery, which is well established, reliable, and regularly used for blind in 

vivo recordings16, must be completed with minimal bleeding and no damage to the 

surface of the brain to allow the animal and the tissue to survive.  With practice, the 

surgery and dye application can be completed in 30-45 minutes.  We successfully labeled 

small cell axons in 67% of the preparations.  Most preparations have only 1 or 2 visible 

labeled axons, but some have as many as 8.  Of the 119 labeled units attempted, we 

obtained single-unit recordings from 26 units distributed over 12 preparations (Table 2).  

Thus, data were collected from 41% of preparations with labeled axons for an overall 

success rate of 28%.   

The critical aspect of dye application is labeling depth.  Shallow insertion of the  
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Table 2:  Success rates for each dye injection method.  Methods are divided based on 
injection site and dye type.  For each method, the total number of fish attempted and the 
percentage of these experiments that resulted in successful labeling in ELa and ELp is 
shown.  Note that the targeted recording area is the opposite of the application site 
(highlighted boxes). For the injection site, dye uptake was considered successful with 
labeling of both somas and axons.  In contrast, at the recording site, only preparations 
with labeled axons were counted as successful labeling experiments.  The total number of 
attempted units and the percentage of these units that resulted in successful recordings are 
also shown.    
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tungsten wire will result in the dye being washed away.  However, if the penetration is 

too deep, labeled axons will not be visible for targeting.  Further, some mechanical 

damage to the cell must occur for the dye to be adequately taken up25, 28.  However, too 

much damage will kill the cells.  We attempted labeling with other dyes and other 

methods (Table 2), including anterograde labeling through dye injection into ELa paired 

with recording from labeled axons in ELp (Table 3).  We hypothesize that anterograde 

labeling was not successful because labeling was limited to cells with somatic damage, 

making them unresponsive.  Additionally, pre-synaptic terminals may have been 

disturbed.  By contrast, retrograde labeling minimizes both of these concerns.  The 

amount and location of dye application can be modified according to the particular circuit 

being studied.  Maximal labeling occurs with the greatest dye concentration, which we 

achieved using coated tungsten wires.  However, for labeling axons with deep projections, 

dye may come off a tungsten needle as it is advanced.  In these cases, pressure injection 

would be more appropriate.  Dye uptake and transport are rapid, with labeled axons in 

our preparation being visible as early as 2 hours post-injection and additional labeled 

axons appearing as late as 6 hours post-injection.  Thus, labeling and recording can be 

accomplished in a single day, eliminating technical difficulties associated with survival 

surgery.  Timing will vary for each application depending on the distance required for 

dye transport.   

Another critical aspect is electrode placement.  It is important to enter the tissue 

close to the site of the labeled axon to prevent clogging of the tip.  For dense tissue such 

as in ELa, a long, thin shank on the recording electrode minimizes excess movement of  



100 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
Table 3: Quantities of dye applied for each of the three mechanisms used to inject Alexa 
Fluor into ELa (first method from table 2).  Dye injection into ELa was performed with 
both a nanoinjector and a microinjector using either a 33 gauge Hamilton syringe needle 
or a pulled glass capillary pipette.  We varied the number of injection sites, the volume 
per injection and the total volume of dye injection.  
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surrounding tissue.  If a successful recording is not achieved on the first attempt, repeat 

with fresh electrodes until a recording is obtained or the tissue is disrupted to the point at 

which the axon is no longer visible.  However, it is also important to quickly place the 

electrode next to the axon to minimize the amount of fluorescent exposure, which can 

cause phototoxicity, bleaching and may affect physiological properties of the cell29-31    

Once a segment of axon is successfully suctioned into the recording electrode, 

recordings can be obtained for several hours.  If units are consistently lost in less than 1 

hour, consider making smaller electrode tips to prevent the axon from slipping out.  On 

the other hand, too small of a tip may result in clogging, low signal-to-noise, or damage 

to the axon. A steady decrease in spike amplitude and the ‘return’ of a unit with 

additional suction is an indication that the tip is too large.  Too much suction may cause 

irreparable damage to the axon.  One solution is to allow a small leak in the air line so the 

pressure slowly returns to zero.  Rapidly equalizing the pressure will result in a transient 

relative-outward ‘push’ which may expel the axon.  

  Although this technique represents a major advantage for obtaining targeted 

recordings from identified projection neurons, it will not be useful for distinguishing 

local interneurons, as dye would be taken up by all cell types at the injection site.  

Theoretically, the use of multiple fluorophores with separate injection sites may allow 

this method to be expanded.  For example, comparison of single- versus double-labeling 

could be used to distinguish interneurons from projection neurons following dual 

injections at two points in the circuit32.  Similarly, retrograde tracers can be combined 

with other advanced imaging techniques, such as two-photon imaging, as was done 
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recently in zebra finch High Vocal center (HVc)32.  Also, recording regions are limited to 

those near the surface when using epifluorescence microscopes, as we were only able to 

resolve 1 μm structures within the first 30 μm of tissue.  However, this depth could be 

extended through the use of other microscopy techniques, such as two-photon 

microscopy33 or objective-coupled planar illumination microscopy34.  Overall, this 

technique represents an important advancement in the study of neural circuits in vivo 

because it can be used to record from single neurons in many different circuits in a 

variety of model systems – including those that are relatively inaccessible. 
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Chapter 4 

 

 

Detection of submillisecond spike timing differences based on delay-line 

anti-coincidence detection 

 

 

The question of the timing of the impulses in the different fibres of a nerve trunk has a 

considerably importance in the case of the sensory nerves. 

-E.D. Adrian, 1928 
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ABSTRACT 

Detection of submillisecond interaural timing differences is the basis for sound 

localization in reptiles, birds and mammals. Although comparative studies reveal that 

different neural circuits underlie this ability, they also highlight common solutions to an 

inherent challenge: processing information on timescales shorter than an action potential. 

Discrimination of small timing differences is also important for species recognition 

during communication amongst mormyrid electric fishes. These fishes generate a 

species-specific electric organ discharge (EOD) that is encoded into submillisecond-to-

millisecond timing differences between receptors. Small, adendritic neurons (Small 

Cells) in the midbrain are thought to analyze EOD waveform by comparing these 

differences in spike timing, but direct recordings from Small Cells have been technically 

challenging. Here we use a fluorescent labeling technique to obtain visually guided 

extracellular recordings from individual Small Cell axons. We demonstrate that Small 

Cells receive 1-2 excitatory inputs from one or more receptive fields with latencies that 

vary by over 10 ms. This wide range of excitatory latencies is likely due to axonal delay 

lines, as suggested by a previous anatomical study. We also show that inhibition of Small 

Cells from a calyx synapse shapes stimulus responses in two ways: through tonic 

inhibition that reduces spontaneous activity, and through precisely timed, stimulus-driven, 

feed-forward inhibition. Our results reveal a novel delay-line anti-coincidence detection 

mechanism for processing submillisecond timing differences, in which excitatory delay 

lines and precisely timed inhibition convert a temporal code into a population code. 
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INTRODUCTION 

Temporal coding, in which information is encoded into the precise timing of 

action potentials, is common in sensory systems (VanRullen et al. 2005). In some cases, 

behavioral sensitivity can reach the submillisecond or even submicrosecond range, 

several orders of magnitude shorter than a typical action potential (Kawasaki 1997; 

Moiseff and Konishi 1981; Simmons 1979). Understanding this hyperacute temporal 

sensitivity provides insight into general properties of temporal processing and the diverse 

neural mechanisms that can support it (Carr and Friedman 1999). 

The best studied examples of submillisecond temporal discrimination involve 

detection of interaural timing differences (ITDs) for sound localization (Ashida and Carr 

2011; Köppl 2009; Schnupp and Carr 2009). In birds and reptiles, ITDs are analyzed 

through delay-line coincidence detection of binaural excitatory inputs (Carr and Konishi 

1990; Carr et al. 2009; Funabiki et al. 2011). In mammals, ITD detection also relies on 

coincidence detection of binaural excitatory inputs, but the mechanistic basis for ITD 

tuning remains controversial and cannot be explained by axonal delay lines (Brand et al. 

2002; Grothe et al. 2010; McAlpine and Grothe 2003; Roberts et al. 2013; van der 

Heijden et al. 2013). In both systems, inhibition appears to play important but different 

roles in shaping binaural processing (Grothe 2003; Roberts et al. 2013; Yamada et al. 

2013). One general theme that emerges is that submillisecond temporal processing is 

implemented using similar neural substrates that are combined in unique ways by 

different circuits (Carr and Friedman 1999; Carr and Soares 2002; Carr et al. 2001; 

Kawasaki 2009). 
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Mormyrid fishes communicate using a species-specific electric organ discharge 

(EOD) consisting of 1-5 distinct phases and a total duration ranging from ~0.1-20 ms 

(Carlson et al. 2011; Hopkins 1981). Sharp temporal features of the EOD waveform, 

particularly the relative timing of phase onsets and offsets, are used for species 

recognition and mate choice (Arnegard et al. 2006; Feulner et al. 2009; Hopkins and Bass 

1981). For example, in the Ivindo River of Gabon there are at least 21 mormyrid 

species/morphs living in sympatry, each having a distinctive EOD (Arnegard et al. 2010; 

Carlson et al. 2011; Hopkins 1981). Thus, detecting subtle timing differences among 

EOD waveforms is an essential computation that fish must perform in their natural 

environment. 

EODs are encoded by peripheral electroreceptors distributed throughout the 

surface of the skin called knollenorgans (KOs), which respond with a single, fixed 

latency spike to the onset of inward currents (Bennett 1965; Harder 1968). Variation in 

the location and orientation of KOs with respect to external electric fields results in 

different receptors receiving local EOD stimuli with different polarities and intensities 

(Hopkins 1986; Hopkins and Bass 1981). As a result, different KOs respond to distinct 

edges of an EOD waveform, thereby encoding EODs into spike timing differences among 

the population of receptors (Baker et al. 2013). 

These timing differences are thought to be analyzed by Small Cells in the 

midbrain anterior exterolateral nucleus (ELa) (Fig. 1A) (Baker et al. 2013; Xu-Friedman 

and Hopkins 1999). Small Cells receive excitatory inputs from ascending axons and 

GABAergic input from local interneurons called Large Cells via a calyx synapse  
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FIG 1: Retrograde labeling allows for visually guided extracellular recordings from 
Small Cell axons. (A) Schematic representation of the knollenorgan (KO) electrosensory 
pathway. KOs generate short-latency spikes in response to inward current caused by 
changes in voltage across the skin surface. In response to an electrical stimulus, KOs on 
opposite sides of the body experience opposite stimulus polarities. Thus, when recording 
from a single KO, the responses to normal and reversed polarity stimuli reveal how KOs 
on opposite sides of the body would respond to a single stimulus (Hopkins and Bass 
1981; Lyons-Warren et al. 2012). Here, we show the spiking responses of a single KO, 
recorded extracellularly, to normal (simulating KOleft) and reversed (simulating KOright) 
polarity square pulses of two different durations (0.5 ms; left, 1 ms; right). The stimuli 
are shown in the bottom trace, and stimulus artifact can be seen at stimulus onset and 
offset (black arrowheads). The difference in spike timing between KOleft and KOright 
codes for pulse duration. These spike timing differences are relayed with high temporal 
fidelity from the hindbrain nucleus of the electrosensory lateral line lobe (nELL) to the 
midbrain exterolateral nucleus (EL). EL has two components, anterior (ELa) and 
posterior (ELp). nELL axons synapse onto large GABAergic interneurons (Large Cells) 
soon after entering ELa, and then travel for up to 7 additional mm, synapsing on dozens 
of Small Cells throughout ELa. Small Cells also receive GABAergic input from Large 
Cell calyx synapses. Small Cell axons provide the only projection from ELa to ELp. Thus, 
dye placed in ELp (gray needle) selectively labels Small Cells through retrograde 
transport. 
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(Friedman and Hopkins 1998; George et al. 2011; Mugnaini and Maler 1987). Incoming 

axons synapse on Large Cells immediately after entering ELa and then continue on a 

convoluted path for up to 7 mm, synapsing on dozens of Small Cells along the way 

(Friedman and Hopkins 1998). The variable length of the axons projecting to Small Cells 

are suggestive of delay-lines that establish variation in the relative timing of excitatory 

and inhibitory input (Xu-Friedman and Hopkins 1999). This observation led to a delay-

line anti-coincidence detection model, in which the processing of submillisecond spike 

timing differences results from a combination of precisely timed inhibition and delayed 

excitation arising from different receptive fields (Friedman and Hopkins 1998). 

Unfortunately, it is difficult to record from Small Cells due to their distinctive anatomical 

features, so we do not know how they actually perform temporal comparisons. Therefore, 

we developed a fluorescence-based method to directly target Small Cell axons for 

extracellular recording (Lyons-Warren et al. 2013). To determine how Small Cells code 

for peripheral timing differences, we recorded responses to spatially uniform, square 

pulse electric stimuli that allowed us to precisely manipulate the relative timing of KO 

responses on opposite sides of the body (Fig. 1A). Our data provide empirical evidence in 

support of a novel delay-line anti-coincidence detection mechanism for processing 

submillisecond timing differences. 
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MATERIALS AND METHODS  

Animals. We used developmentally mature individuals of both sexes of the 

weakly electric mormyrid fish Brienomyrus brachyistius. Fish were purchased from 

commercial distributors and housed in community aquariums at a temperature of 26-28 

ºC and conductivity of 200-400 μS/cm, with a 12:12 hour light:dark cycle. Fish were fed 

live black worms four times per week. Prior to all procedures, fish were anesthetized in 

300 mg/l tricaine methanesulfonate (MS-222) and then paralyzed with either 20-100 µl of 

0.3 mg/ml gallamine triethiodide (for KO recordings) or with 100 μL of 3 mg/ml 

gallamine triethiodide (for evoked potential and Small Cell recordings). They were then 

placed on a platform, supported with vertical rods, and respirated by a tube placed in the 

mouth that fed aerated water across the gills. For evoked potential and Small Cell 

recordings, we respirated fish under general anesthesia (100 mg/l MS-222) throughout 

surgery and we applied lidocaine as a local anesthetic before performing a craniotomy. 

Fish were brought out of general anesthesia before all recordings. To monitor fish health 

during experiments, we recorded the descending EOD command from the spinal cord 

using a pair of electrodes placed next to the caudal peduncle (Carlson 2003). Fish used 

for KO recordings were returned to their home tank after recovering from the paralytic. 

Fish used for Small Cell and evoked potential recordings were placed back under general 

anesthesia after all recordings were completed before being euthanized. All procedures 

were in accordance with guidelines established by the National Institutes of Health (NIH) 

and were approved by the Animal Care and Use Committee at Washington University in 

St. Louis. 
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KO Recordings. We obtained non-invasive, in vivo extracellular recordings from 

KOs as previously described (Arnegard et al. 2006; Bennett 1965; Hopkins and Bass 

1981; Lyons-Warren et al. 2012). We used 3 fish ranging in size from 11.2 to 13.0 cm 

standard length. We used relatively large fish for these recordings because larger fish 

have more KOs and can be more reliably dosed with gallamine triethiodide to allow for a 

full recovery after the experiment. Previous studies did not find any differences in KO 

physiology with respect to fish size. Electrodes were forged from 1.0 mm OD, 0.5 mm ID 

borosilicate glass by heating the distal end and bending the last 1 cm to a 10 degree angle. 

The electrode was then filled with tank water, connected to the headstage of a DC 

amplifier (A-M Systems model 1600), and placed just above an individual KO. 

Monophasic square pulse stimuli were generated using isolated square pulse generators 

(A-M Systems model 2100), attenuated (Hewlett Packard 350D), and then delivered as a 

constant-current stimulus directly through the recording electrode, using bridge balance 

to minimize artifact. Thus, KO stimuli consisted of localized current pulses injected 

directly into the receptor organ and referenced to ground. Stimulus intensities varied from 

0.5-5.7 nA. For isointensity tuning curves, stimuli were monophasic positive square 

pulses ranging in duration from 0.01 to 100 ms. For paired pulse experiments, the 

stimulus was a 50 ms monophasic positive square pulse followed by a 0.3 ms 

monophasic positive square pulse with delays of 0.1 to 10 ms between the end of the first 

pulse and the start of the second pulse. In both experiments, each stimulus was presented 

for 10, 20 or 30 repetitions. KO electrical activity was amplified 10x and digitized at 
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195.3 kHz (Tucker-Davis Model RP2.1). Responses were saved using custom software 

(Matlab). 

Small Cell Recordings. We obtained extracellular single unit recordings from 76 

retrogradely labeled Small Cell axons in 37 fish as described in detail in a companion 

methods paper (Lyons-Warren et al. 2013). Individuals ranged from 5.5-8.6 cm in 

standard length. We were limited to using fish ≤8.6 cm in standard length because the 

compound microscope objective constrained the size of the recording chamber (Lyons-

Warren et al. 2013). Sharpened tungsten wires coated in 2 mM dextran-conjugated Alexa 

Fluor 10,000 MW dye were inserted 1-4 times approximately 25 μm deep into the 

posterior exterolateral nucleus (ELp) for dye placement. Small Cells are the only neurons 

in ELa that project to ELp, so this provided a means of selectively labeling these neurons 

within ELa (Fig. 1A). Recording electrodes were made from 1 mm OD, 0.58 mm ID 

borosilicate glass pulled to a 1.0-2.4 μm tip, and they were then filled with filtered 

Hickman’s Ringer and connected to a headstage (Axon instruments CV-7B). After 2-6 

hours for dye uptake and retrograde transport, an electrode under positive pressure was 

placed next to a labeled axon in ELa visualized using an upright, fixed-stage 

epifluorescent microscope. Suction was then used to bring the axon into the recording 

electrode. We attempted to obtain intracellular whole-cell recordings from labeled Small 

Cell somas, but we were unable to obtain a membrane seal. We also attempted 

intracellular whole-cell recordings from Small Cells in vitro using both slice (George et 

al. 2011) and whole-brain (Ma et al. 2013) preparations. However, even when visualizing 

Small Cells at high magnification in vitro, it was difficult to obtain a membrane seal, and 
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on rare instances when a seal was achieved the resulting intracellular recordings were of 

low quality (low, unstable resting potential and no ability to drive spiking). Finally, we 

attempted sharp intracellular recordings from Small Cells in vitro, but these also resulted 

in low quality recordings and an inability to drive spiking with current injection. These 

difficulties most likely relate to the extensive myelination within ELa, the small size of 

the cells (diameter = 5-7 µm), and synaptic terminals from other cells covering most of 

the soma (Friedman and Hopkins 1998; Mugnaini and Maler 1987). Thus, we are 

currently limited to using extracellular recordings from Small Cells in this study. 

Monophasic square pulse stimuli were generated using isolated square pulse 

generators (A-M Systems model 2100), attenuated (Hewlett Packard 350D), and then 

delivered as global electrosensory stimuli to the tank in one of two orientations, 

transverse or longitudinal (Lyons-Warren et al. 2013). Transverse stimuli were delivered 

between 3 vertically oriented silver wires located on the left wall of the chamber and 3 

vertically oriented silver wires located on the right wall of the chamber, resulting in a 

uniform electric field vector between the left and right sides of the fish. Longitudinal 

stimuli were delivered between 2 vertically oriented silver wires located on the front wall 

of the chamber and 2 vertically oriented silver wires located on the back wall of the 

chamber, resulting in a uniform electric field vector between the head and tail of the fish. 

After getting a unit, we used both monophasic positive and negative 100 ms square 

pulses to determine which stimulus orientation (transverse vs. longitudinal), polarity 

(normal vs. reversed), and intensities elicited a response. We then used the preferred 

stimulus orientation to assess duration tuning to both stimulus polarities, and when 
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possible, to multiple stimulus intensities. If a unit responded to both stimulus orientations, 

then duration tuning was assessed for both orientations whenever possible. Stimulus 

intensities were calibrated in units of mV/cm at the fish’s position, but with the fish 

absent. 

The duration tuning of a unit was determined by presenting monophasic positive 

and negative stimuli ranging in duration from 1 µs to 20 ms. The specific durations 

presented were chosen to best capture the tuning of each particular unit. Each stimulus 

was presented as either 1 set of 20 or 4 sets of 5 repetitions each. An inhibitory corollary 

discharge in the hindbrain timed to the fish’s own EOD prevents the knollenorgan 

pathway from responding to stimuli arriving 2-4 ms after the fish’s own EOD (Bell and 

Grant 1989). Therefore, a sweep was discarded if a spinal EOD command occurred 

during 5 ms windows preceding both stimulus edges. 

Responses were obtained using a Multiclamp 700B amplifier (Molecular Devices). 

Recorded signals were low-pass filtered using a 10 kHz 8-pole Bessel filter, digitized at 

166-200 kHz using a Digidata 1322A 16-bit A/D converter, and acquired in pCLAMP 

software (Molecular Devices). Pipette capacitance compensation was automatically 

adjusted using Multiclamp 700B commander software. Either a threshold or a template 

search function was used to identify the timing of each spike in each sweep using 

Clampex software (Molecular Devices). In some recordings, there appeared to be two 

separate units, likely due to an unlabeled axon in close proximity to the target axon. For 

these recordings, we used principal components analysis to confirm that multiple units 

were present and to separate waveforms so that the units could be analyzed separately. 
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We used 12 waveform parameters that resulted in clearly separated units: peak amplitude, 

time to peak, rise time, rise slope, decay time, decay slope, half-width, area, anti-peak 

amplitude, time to anti-peak, time to rise to half-amplitude, and time to decay from half-

amplitude. We used data from all recorded units in subsequent analyses. 

To test for inhibition of Small Cells we used two different techniques. First, we 

used a complex stimulus protocol consisting of a 50 ms monophasic square stimulus 

(long pulse) at a polarity that elicited a response to the leading edge followed by a shorter 

pulse of the same polarity. The duration of the short pulse was the minimum duration that 

reliably elicited a response when presented alone, which ranged from 0.1-0.5 ms 

depending on the unit. The short pulse was presented at delays ranging from 0.1-25 ms 

after the end of the long pulse. As a control, we presented a 100 ms pulse with a second 

long pulse timed so the ‘excitatory’ edges occurred at the same intervals as in the paired 

pulse experiment, but without an ‘inhibitory’ edge between them. Second, we applied 

SR-95531 (gabazine), a competitive inhibitor of GABAA receptors (Lindquist et al. 2005). 

Inhibitory synapses are located on the Small Cell soma, which is not necessarily proximal 

to our recording site (Mugnaini and Maler 1987). Therefore, we used bolus application of 

5-50 μl of a 1-10 mM solution in Hickman’s Ringer (Bremner et al. 2006). The cavity 

surrounding ELa holds 100-500 μl of Ringer, so we estimate the final concentration of 

gabazine to be between 100 and 600 μM, which is above saturating levels (Lindquist et al. 

2005). In a separate experiment using evoked potential recordings (see below) we 

demonstrated that the effects of gabazine application on Small Cell activity are due to 

local actions within ELa, not effects on upstream GABAergic synapses. 
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Spike Response Analysis. To analyze Small Cell spike times, we generated peri-

stimulus time histograms using a bin size of 1 ms, and then divided by the number of 

stimulus repetitions. The average bin height during the pre-stimulus baseline period plus 

three standard deviations was set as a criterion response level. This criterion was then 

subtracted from the entire histogram, and all bins with a value greater than zero were 

considered part of the response. First-spike latency (FSL) was calculated as the median 

latency from stimulus edge to first spike across repetitions. We also calculated time-

locked response latency (TLL). The window for determining TLL was defined as the 

tallest bin in the peri-stimulus time histogram plus an additional 0.5 ms on either side of 

this bin. We then calculated the median and standard deviation of all spike times falling 

within this window. We used the median rather than the mean to eliminate the effect of 

outliers in skewing the FSL and TLL. For most units, the mean and median of FSL and 

TLL were in close agreement. However, some units were more variable in their responses, 

resulting in large outliers that skewed the mean away from the center of the distribution. 

When 100 ms stimuli were tested at multiple intensities, we used the highest 

intensity tested for analyzing response timing to ensure uniformity. Recordings from KO 

receptors reveal that response probability and temporal precision increase with stimulus 

intensity (Lyons-Warren et al. 2012). Response magnitude was determined as the area of 

all bins post stimulus presentation greater than the baseline criterion, in units of 

spikes/stimulus. Duration tuning curves were generated by plotting response magnitude 

as a function of stimulus duration and smoothed using a Savitzky-Golay filter in Matlab 

with a polynomial order of 1 and a frame size of 3. Tuning categorization was based on 
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which parts of the smoothed curve were greater than 50% of the maximal response. 

Paired pulse experiments for both Small Cells and KOs were analyzed using peri-

stimulus time histograms. We quantified responses to the two pulses as the height of the 

tallest bin following each stimulus edge, and then determined the ratio of the response to 

the second pulse relative to the first pulse. 

Statistical Analysis. All statistical analyses were performed using Statistica 6.1 

(StatSoft, Inc.). Because Small Cell duration tuning could change with both stimulus 

intensity and polarity, we treated each tuning curve as an independent sample in 

statistical analyses of duration tuning. Due to small sample sizes in some cases and 

deviations from normality in others, we used nonparametric tests for all statistical 

comparisons between groups. For pair-wise comparisons between independent groups, 

we used the Mann-Whitney U Test. For pair-wise comparisons of repeated measurements, 

we used the Wilcoxon Matched Pairs Test. For comparing multiple, independent groups, 

we used the Kruskal-Wallis one-way ANOVA. We used linear regression to test for 

correlations between variables. All tests were two-tailed with α = 0.05. We did not 

perform multiple comparisons on any data set. 

Evoked Field Potential Recordings. Evoked potentials were recorded from the 

ELa as described previously (Carlson 2009; Lyons-Warren et al. 2012). We recorded 

from one fish having a standard length of 12.0 cm. We chose a relatively large fish for 

this because we have found that evoked potential amplitudes in ELa generally scale with 

fish size. We delivered transverse, 0.5 ms monophasic square pulses at an intensity of 20 

mV/cm using 3 vertically oriented silver wires located on the left and right sides of the 
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chamber as described for Small Cell recordings. 10 repetitions of the stimulus were 

delivered at a range of latencies after the fish’s EOD command. After obtaining baseline 

responses, we added 15 μL of 5 mM gabazine in Hickman’s Ringer to the brain cavity 

surrounding ELa/ELp. The same stimuli were presented immediately after application 

and then repeatedly until 5 hours after application. 

Modeling. To determine how differences in the latency of excitation relative to 

inhibition could impact Small Cell responses to variation in peripheral spike timing 

differences, we generated leaky integrator neurons (Dayan and Abbott 2001) as 

m
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where Vm is the membrane potential, Cm is the membrane capacitance (10 µF), Rm is the 

membrane resistance (200 MΩ), and IE(t) and II(t) represent excitatory and inhibitory 

synaptic currents. Based on the anatomy of the circuit (Friedman and Hopkins 1998; 

Mugnaini and Maler 1987) and our recordings of Small Cell responses to square-pulse 

stimulation, we modelled two conditions: excitatory input in response to one stimulus 

edge with inhibitory input to the other edge; and separate excitatory inputs in response to 

both stimulus edges with inhibitory input to a single edge. We varied the latency of 

excitatory inputs from 0 to 10 ms, and we kept the inhibitory latency constant at 0 ms. 

This models excitatory latencies that vary from 0 to 10 ms relative to inhibitory latencies, 

which matches observed anatomical variation in axonal path lengths to Small Cells 

(Friedman and Hopkins 1998) and our observed spike latencies. We modelled all 

synaptic conductances as alpha functions (Dayan and Abbott 2001) using the equation 
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where gs is the synaptic conductance, gmax is the maximum conductance, and τs is the 

time constant of the conductance. We set τE to 0.5 ms and τI to 1 ms, and gmaxE to 1 nS 

and gmaxI to 10 nS. These values were chosen so as to reflect inhibition that is slow and 

strong relative to excitation. Varying these parameters affected the specific quantitative 

output of the model, but did not affect the patterns of duration tuning observed when 

varying excitatory synaptic latency. 

To incorporate the effects of long-pass peripheral filtering by knollenorgan 

electroreceptors on responses to variation in pulse duration (Lyons-Warren et al. 2012), 

we scaled synaptic conductances using a sigmoidal function 
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where d is stimulus duration and s(d) is a scaling factor that varies from 0 to 1. The other 

parameters were set so as to replicate the general peripheral filtering observed among 

knollenorgans (Lyons-Warren et al. 2012). 

The excitatory and inhibitory synaptic currents were determined from their 

respective conductances and driving forces as 

)()( rmss VVgtI −=  

where Vr is the reversal potential, which was set at +60 mV depolarized relative to rest 

for excitatory currents and -20 mV hyperpolarized relative to rest for inhibitory currents. 

We presented square-pulse stimuli of both polarities ranging in duration from 0.01 to 10 

ms. We measured the maximum depolarization of each model neuron as a function of 
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duration and then characterized duration tuning by normalizing the responses of each 

model neuron to the maximum response. We also characterized the duration tuning of 

each neuron after removing the inhibitory input to simulate the effects of blocking 

inhibition on duration tuning. 

Stereology counts. We used Stereo Investigator by MBF Bioscience to perform 

stereology counts of nELL and Small Cell somas from three fish ranging in size from 8.9 

to 10.2 cm in standard length (Gundersen et al. 1988). We used 50 μm serial transverse 

sections from paraformaldehyde-fixed brain tissue stained with cresyl violet. We used 

every section that included nELL or ELa for generating counts, which ranged from a total 

of 19-21 sections with nELL and 12-15 sections with ELa. In each section, the region of 

interest was outlined. Counting grids and frames were selected based on the density and 

regularity of cells in the region of interest, using a counting grid of 125 μm x 125 μm for 

nELL and 150 μm x 150 μm for ELa. The optical fractionator selected a random box in 

each grid space at the specified counting frame of 100 μm x 100 μm for nELL and 50 μm 

x 50 μm for ELa. A counter was used to mark the cells of interest. The total number of 

counters was extrapolated based on the area of the tissue to determine the total number of 

cells. We repeated this procedure for the left and right nELL and ELa of each fish to 

estimate the total number of nELL and ELa somas. Gunderson’s coefficient of error 

(m=1) was ≤0.05 for all counts (Gundersen et al. 1988). To estimate the number of nELL 

projections to Small Cells, we multiplied estimates of total nELL soma numbers in each 

fish by 1.1 to account for the ~10% of nELL neurons that project bilaterally to ELa 

(Friedman and Hopkins 1998), and then we multiplied this by 54.5, the median number 
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of Small Cells that individual nELL axons project to (Friedman and Hopkins 1998). We 

choose the median rather than the mean because only 4 nELL axons were systematically 

analyzed in this previous study (these 4 axons projected to 33, 44, 65 and 72 Small Cells). 

For each fish, we then determined the ratio of estimated nELL terminals to Small Cell 

somas. 

Axonal labeling. After general anesthesia, two fish (one with a standard length of 

6.4 cm and a second of 13.3 cm) were transcardially perfused with ice-cold Hickman’s 

Ringer followed by 4% paraformaldehyde. The brains were post fixed for 24 hours at 4°C, 

and then removed from the skull. Dye was placed in the left and right nELL by inserting 

sharpened tungsten wires coated in DiI or DiO paste throughout the anterior-posterior 

extent of nELL. The brains were then embedded in a gelatin block and stored in 4% 

paraformaldehyde at 37-42ºC for 14-16 weeks to allow for dye transport. We cut 50 μm 

horizontal sections on a vibratome, washed them in 0.1 M phosphate buffer, and then 

stained cell nuclei using Hoechst 34580 (2 µg/ml, 5 min incubation at room temperature). 

Slices were wet mounted in 0.1 M phosphate buffer and cover slipped for imaging on a 

confocal microscope. 
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RESULTS 

Targeted recordings from Small Cells 

We obtained extracellular recordings from Small Cells using a retrograde labeling 

technique that allowed us to target individual axons (Fig. 1A, B) (Lyons-Warren et al. 

2013). To determine whether excitatory inputs arose from ipsilateral or contralateral 

receptive fields and characterize their latency, we recorded responses of 70 units to 100 

ms square-pulse stimuli presented in a transverse orientation. Although this duration is 

outside the behaviorally relevant range of EOD durations, it allowed us to distinguish 

responses to different stimulus edges. 30 units (42.9%) responded to contralateral-

positive (down) edges, 17 (24.3%) responded to ipsilateral-positive (up) edges, and 23 

(32.8%) responded to both edges. These numbers roughly agree with anatomical 

evidence showing twice as many axons from the contralateral vs. ipsilateral hindbrain 

(Szabo et al. 1983). 

First spike latency (FSL), the median time from stimulus edge to the first spike, 

ranged from 2.2 to 39.8 ms (Fig. 1C). Time locked latency (TLL), the median time from 

stimulus edge to spikes that were time-locked to that edge, ranged from 2.2 to 13.4 ms 

(Fig. 1C). Some units did not respond with a time-locked spike on every stimulus 

repetition, skewing the FSL to an unreasonably high value due to spontaneous spiking 

(the reason for calculating TLL). Both distributions exceed the reported FSL values of 

2.5-3 ms for incoming axons and Large Cells, the only other neurons in ELa (Amagai et 

al. 1998), further demonstrating that our recordings were from Small Cells. Based on an 

estimated conduction speed of 0.5 m/s for axons <1 μm in diameter (Waxman and  
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FIG 1: Retrograde labeling allows for visually guided extracellular recordings from 
Small Cell axons. (B) Extracellular recordings from two different Small Cell axons, one 
showing responses to a 1 ms, 18.4 mV/cm stimulus (left) and a second showing responses 
to a 0.5 ms, 10 mV/cm stimulus (right). The stimuli are shown in the bottom trace, and 
stimulus artifact can be seen at stimulus onset and offset (black arrowheads). (C) 
Histogram of median first-spike latencies (FSL, gray) and time-locked latencies (TLL, 
black) from the stimulus edge (bin size = 0.5 ms). Inset shows the same result at a finer 
resolution (bin size = 0.2 ms) for the subset of latencies ranging from 1-15 ms. Large 
Cells and nELL axons have a FSL range of 2.5-3 ms (Amagai et al. 1998). 
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Bennett 1972) and axon lengths up to 7 mm (Friedman and Hopkins 1998), we calculated 

a 14 ms maximum latency difference for excitatory inputs to Small Cells, close to the 

observed range of TLL values (11.2 ms). In small diameter axons, increased axonal 

length results in increased temporal jitter (Wang et al. 2008). Therefore, if differences in 

TLL are due to variation in the lengths of nELL axons, units with higher TLL should 

have increased jitter. Indeed, median TLL was positively correlated with TLL standard 

deviation for all units that responded with at least 1 spike/stimulus (linear regression: 

n=68, r2=0.34, P<0.00001). 

 

Small Cells are diverse in their responses to peripheral spike timing differences 

We used monophasic square pulses of different durations to measure Small Cell 

responses to variation in peripheral spike timing differences. Although square pulses do 

not capture the complexity of natural EOD waveforms, they can be used to precisely 

manipulate the relative timing of KO receptor spikes on opposite sides of the body (Fig. 

1A). Further, square pulses that elicit the same KO spike timing differences as a natural 

conspecific EOD elicit similar behavioral responses (Hopkins and Bass 1981). 

We presented square pulses of both positive and negative polarity ranging in 

duration from 1 µs to 90 ms at 1 (n=40), 2 (n=16) or ≥3 (n=11) intensities. We illustrate 

the resulting duration tuning curves using two plots, one on the left representing negative 

polarity square pulses and one on the right representing positive polarity square pulses 

(Fig. 2). The x-axis of the negative polarity plot on the left is reversed (duration increases 

to the left). Presented in this way, the two x-axes can be viewed as a single axis that  
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FIG 2: Small Cells are diverse in their tuning to peripheral spike timing differences. 
Raster plots (left) and smoothed tuning curves (right) from representative long-pass 
Small Cells (A) that responded preferentially to longer square-pulse durations, band-pass 
Small Cells (B) that responded preferentially to intermediate durations, and band-stop 
Small Cells (C) that responded preferentially to long and short durations. Rasters show 
spike times in response to 20 sweeps of each stimulus for both monophasic negative (left 
portion of raster) and positive (right portion of raster) stimuli (gray horizontal shading 
indicates durations not tested). Time is relative to stimulus onset. Responses were 
quantified as the mean number of spikes above baseline per stimulus repetition. The 
resulting data points (open circles in right panels) were then scaled to the maximum value 
within the unit and smoothed (black lines in right panels). In each case, smoothed tuning 
curves from two additional units of the same tuning type (light and dark gray) are also 
shown. The duration tuning curves are plotted on two axes, one on the left for negative 
polarity and one on the right for positive polarity, with the x-axis of the negative polarity 
plot reversed (stimulus duration increases to the left). Together, the two plots can be 
viewed as sharing a single x-axis that represents the relative timing of upward and 
downward stimulus edges. Gray background shading on tuning curves indicates the 
behaviorally relevant range of durations (Lyons-Warren et al. 2012). D: Tuning curves 
(not normalized) of example units that changed tuning with changes in intensity (left) and 
polarity (both). 
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represents the relative timing of upward and downward stimulus edges. 46 units had 

consistent duration tuning to all polarities and intensities tested that elicited a response: 

35 (76%) were long-pass tuned (Fig. 2A), 6 (13%) were band-pass tuned, (Fig. 2B), and 5 

(11%) were band-stop tuned (Fig. 2C). 20/62 units tested at both polarities (32%) had 

different duration tuning to positive and negative polarity stimuli (e.g. Fig. 2D); long-

pass paired with non-long-pass was the most common (n=18). Of 27 units tested at 

multiple intensities, 16 (59%) changed their tuning with changes in intensity (e.g. Fig. 

2D). 

For most units, responses varied widely over the behaviorally relevant range of 

durations (Fig. 2), defined as the duration of the shortest EOD phase (60 µs) to the 

longest total EOD duration (2.37 ms) among conspecific EODs (Carlson et al. 2000). 

This represents the total possible range of KO receptor spike timing differences in 

response to conspecific EODs (Lyons-Warren et al. 2012). To determine how much 

Small Cell responses varied across this behaviorally relevant range, we calculated the 

difference between the minimum and maximum responses within this range for all tuning 

curves (n=220). On average, responses varied within the behaviorally relevant range by 

1.17 ± 0.08 spikes/stimulus (range = 0-6.94 spikes/stimulus). 

Primary electroreceptors (KOs) are long-pass tuned at threshold intensities 

(Lyons-Warren et al. 2012). We confirmed that KOs are also long-pass tuned at higher 

intensities (not shown). Thus, Small Cell duration tuning is more diverse than receptor 

duration tuning. Further, Small Cells are the first place in the circuit where inputs from 
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widely separated receptive fields converge. We therefore hypothesized that Small Cell 

duration tuning results from integrating multiple synaptic inputs. 

 

Small Cell responses to complex stimuli suggest precisely timed inhibition 

We hypothesized that Small Cells receive precisely timed inhibition from Large 

Cells based on several lines of evidence: Large Cell axons give rise to large, calyceal 

synapses onto Small Cell somas (Friedman and Hopkins 1998; Mugnaini and Maler 

1987); Large Cells are GABAergic (George et al. 2011; Mugnaini and Maler 1987); and 

Large Cells respond to stimulus edges with a single, short-latency, time-locked spike 

(Amagai et al. 1998; Friedman and Hopkins 1998). We used a complex stimulus protocol 

to test for inhibition in response to the stimulus edge that did not elicit spiking. We 

presented a 50 ms stimulus that elicited an excitatory response to the leading edge, 

followed by a shorter pulse at a range of delays following the trailing edge (Fig. 3A, top). 

A response was consistently seen following the first edge of the long pulse. However, a 

response to the leading edge of the second pulse only occurred for sufficiently long 

delays. We determined the minimum delay where the magnitude of the response to the 

second pulse was >50 % of the response to the first pulse, which varied from 0.1 to 25 ms 

(Fig. 3B, asterisks). As a control, we presented a 100 ms pulse with a second overlapping 

pulse such that the ‘excitatory’ edges were presented at the same intervals as in the paired 

pulse experiment, but without an ‘inhibitory’ edge between them (Fig. 3A, bottom). In 

this case, the response to the second pulse was >50% of the response to the first pulse at 

all “delays” tested (Fig. 3B). 
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FIG 3: Paired pulse stimuli suggest functional inhibition of Small Cells elicited by the 
non-responsive stimulus edge. A: Representative rasters of the spiking responses of an 
individual Small Cell to electrosensory stimulation in paired pulse (top) and control 
(bottom) experiments. Time locked spikes occur following presumed excitatory edges 
(labeled ‘e’). The test pulse was presented at varying delays following the presumed 
inhibitory edge (labeled ‘i’). B: Responses to the paired pulse (solid) and control (dashed) 
experiments from three representative units showed a failure to respond to the test pulse 
at varying delays. Asterisks indicate shortest delays with a response >50%. Box plots 
showing medians, quartiles, and ranges of shortest delays with a response >50% for all 
units tested in response to paired pulse (gray) and control (black) across 4 different 
intensities are shown below (numbers refer to sample size for each condition). C: 
Responses to the paired pulse (solid) and control (dashed) experiments from two 
representative knollenorgans along with a box plot summary from all recorded 
knollenorgans below. 
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We performed the same experiment on KOs. KO responses to the second pulse 

were also blocked at short delays, but these delays were much shorter than those of Small 

Cells (Fig. 3C). Therefore, the blocking of Small Cell responses cannot be explained by 

peripheral effects, supporting the hypothesis that Small Cells receive inhibitory input in 

response to one edge of a stimulus that is strong enough to block responses to excitatory 

inputs. It is not clear why different Small Cells had ‘inhibitory’ windows of different 

durations, but this could reflect differences in excitatory latency, differences in the time 

course of IPSPs, and/or differences in intrinsic physiology. The relatively short delays 

over which KO responses were reduced were likely due to the direct integration of 

depolarizing and hyperpolarizing currents by KOs. KOs act as AC filters that respond to 

changes in current intensity (Bennett 1965). Thus, the trailing edge of a depolarizing 

current pulse results in a transient hyperpolarization and decrease in excitability, which 

would reduce responses to a depolarizing current pulse delivered after a short delay. 

 

GABAergic inhibition reduces spontaneous activity and blocks responses to excitatory 

input 

To directly test whether Small Cells receive functional GABAergic inhibition 

from Large Cells, we bath applied SR-95531 (gabazine), a competitive antagonist of 

GABAA receptors, to the cavity surrounding ELa (Fig. 4A). We tested 7 units with 

vehicle: 6 of these had no spontaneous activity before vehicle application, whereas one 

had relatively high spontaneous activity (Fig. 4B). After applying vehicle, the 6 units 

without spontaneous activity remained silent (Fig. 4B), and there was no significant  
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FIG 4: Gabazine affects Small Cell activity due to local actions in ELa. A: Example of 
increased spontaneous firing rate of a Small Cell after gabazine application. Twenty 
repetitions of a 25 ms recording of spontaneous activity are superimposed, revealing an 
average spontaneous firing rate of 0 spikes/second under baseline conditions (top) and 20 
spikes/second after gabazine application (bottom). B: Box plots showing spontaneous 
firing rates of Small Cells (median is in black; quartiles, non-outlier range, and outlier 
data points are in grey) before and after application of gabazine or vehicle revealed a 
significant increase following gabazine application (Wilcoxon matched pairs test: n=16, 
z=2.4, P<0.05), but not vehicle application (Wilcoxon matched pairs test: n=7, z=0, P=1). 
C: Representative peri-stimulus histogram of spike times in response to a 100 ms 
stimulus before (top) and after (bottom) gabazine application from a single unit shows a 
response to one edge under baseline conditions, but a response to both edges in the 
absence of inhibition. D: Schematic representation of the knollenorgan pathway leading 
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up to Small Cells, illustrating the locations of GABAergic synapses and an experiment to 
test whether gabazine application to ELa affects GABAergic transmission in the 
hindbrain. The electromotor command that initiates EOD production also triggers 
inhibitory GABAergic input to the hindbrain nELL through a corollary discharge 
pathway (dotted lines). This command-triggered inhibition blocks sensory responses in 
nELL for a brief window of time after each EOD. To assess functional inhibition in nELL, 
we delivered a sensory stimulus at different delays after the EOD command while 
recording evoked field potentials in ELa before and after delivering gabazine to the 
cavity surrounding ELa. E: Evoked potentials recorded in ELa in response to a stimulus 
(0.5 ms, 20 mV/cm, arrowhead indicates stimulus artifact) are blocked at delays of 2 to 4 
ms both before (left) and 10 minutes after (right) gabazine application, indicating that 
gabazine is not reaching the hindbrain GABA receptors. F: Responses are still blocked at 
delays of 2 to 4 ms after 1 (left), 2 (right), and 5 (not shown) hours following gabazine 
application. 
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change in spontaneous activity (Wilcoxon matched pairs test: n=7, z=0, P=1). We tested 

16 units with gabazine: 11 of these had no spontaneous activity before gabazine 

application, but only 5 of them remained silent after gabazine application (Fig. 4B). Thus, 

gabazine caused a significant increase in the spontaneous activity of Small Cells 

(Wilcoxon matched pairs test: n=16, z=2.4, P<0.05), suggesting they are tonically 

inhibited at rest. In addition, of three units that responded to only one edge of the 100 ms 

stimulus prior to gabazine application, two responded to both edges after gabazine 

application (e.g. Fig. 4C). This suggests the existence of an excitatory input in response 

to one of the edges that was previously masked by inhibition. 

Changes in Small Cell activity following application of gabazine could be due to 

effects on GABAergic synapses onto Small Cells or GABAergic synapses in the 

hindbrain nucleus of the electrosensory lateral line lobe (nELL) (Figs. 1A, 4D). In nELL, 

GABAergic inhibition triggered by the electromotor command blocks responses to the 

fish’s own EOD (Bell and Grant 1989). Although the fish were paralyzed during our 

experiments and therefore could not emit EODs, we could record the spinal motor neuron 

activity representing a fictive EOD (Carlson 2003). To determine whether gabazine 

application affected GABAergic synapses in nELL, we recorded evoked potentials in 

ELa in response to a stimulus pulse presented at a range of delays after the fictive EOD 

(Fig. 4D). Under baseline conditions, the evoked potential was blocked when the 

stimulus was presented 2-4 ms after the fictive EOD (Fig. 4E), due to the command-

triggered GABAergic inhibition in nELL. Following application of gabazine, this evoked 

potential became larger and longer lasting, but it was still blocked at delays of 2-4 ms 
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following the fictive EOD (Fig. 4E), even several hours after gabazine application (Fig. 

4F). Therefore, the effects of gabazine application on Small Cell activity were limited to 

local actions within ELa. Large Cells are the only GABAergic neurons in ELa, and their 

projections are limited to within ELa (Friedman and Hopkins 1998; George et al. 2011; 

Mugnaini and Maler 1987). Thus, we conclude that the effects of gabazine application on 

Small Cell activity are due to blocking inhibition at the Large Cell to Small Cell synapse. 

 

Some Small Cells receive multiple excitatory inputs 

Both mammalian and avian sound localization depends critically on binaural 

excitatory inputs converging onto time comparator neurons (Ashida and Carr 2011; 

Köppl 2009; Schnupp and Carr 2009). We found that 23 out of 70 units (32.8%) 

exhibited a spiking response to both edges of 100 ms stimuli, suggesting that some Small 

Cells likewise receive convergent excitatory inputs originating from the left and right 

sides of nELL (e.g. Fig. 5A). In some cases, application of gabazine unmasked responses 

to both stimulus edges (e.g. Fig. 4C). If responses to both edges are driven by excitatory 

inputs from different axons, each with its own delay, then we would expect no correlation 

in response latency (TLL) to each edge, which was indeed the case (Fig. 5B; linear 

regression: n=23, r2=0.02, P>0.4). 

To determine whether ELa anatomy would allow for multiple excitatory inputs to 

individual Small Cells, we used stereology (Gundersen et al. 1988) to estimate the total 

numbers of nELL neurons and Small Cells. Combined with data showing that ~10% of 

nELL axons project bilaterally to ELa and that each axon terminates on ~54.5 Small  
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FIG 5: Some Small Cells receive multiple excitatory inputs from different receptive 
fields. A: An example of a unit that responded to both positive-going and negative-going 
stimulus edges, with different latencies and response strengths. The stimulus (100 ms, 
32.6 mV/cm) is shown in the bottom trace, and stimulus artifact can be seen at stimulus 
onset and offset (black arrowheads). B: TLL in response to the edge eliciting a higher 
magnitude response (strong) was not correlated with TLL to the other edge (weak) (linear 
regression: n=23, r2=0.02, P>0.4). Dotted line is 1:1. C: Estimated numbers of Small 
Cells and nELL axon terminals onto Small Cells from three fish.  The numbers of Small 
Cells and nELL somas from both sides of the brain were estimated using stereology, and 
the numbers of axon terminals per nELL soma were estimated using published data on 
nELL axonal projection patterns (Friedman and Hopkins 1998), as described in the 
Materials and Methods.  
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Cells (Friedman and Hopkins 1998), the estimated ratio of nELL terminals to Small Cell 

somas ranged from 1.4 to 1.5 (Fig. 5C), suggesting that individual Small Cells receive 1-

2 excitatory inputs each. 

To further test whether Small Cells receive multiple excitatory inputs from 

different receptive fields, we stained the left and right nELLs with different lipophilic 

dyes. This resulted in densely labeled fiber tracts projecting into ELa and allowed us to 

distinguish contralateral from ipsilateral axons (Fig. 5D, E). Small Cells are adendritic, 

and all synaptic inputs to them are therefore on the soma (Friedman and Hopkins 1998; 

Mugnaini and Maler 1987). Because of their small size, the nuclei of Small Cells are 

located within <2 µm of the cell membrane (Mugnaini and Maler 1987). Thus, we used a 

nuclear stain to identify Small Cells scattered throughout ELa, and identified putative 

synaptic inputs as closely apposed nuclear and punctate axonal stain (Fig. 5D, E). 

Electron microscopic studies have demonstrated that about 80% of putative synapses 

identified on the basis of axonal puncta located close to the cell membrane are functional 

synapses (Feldmeyer et al. 2006; Feldmeyer et al. 2002; Lübke et al. 1996; Markram et al. 

1997; Mishchenko et al. 2010; Wang et al. 2002). Using this criterion, we found several 

labeled Small Cells that appeared to receive synaptic inputs from both sides of nELL (Fig. 

5D, E), providing an additional piece of evidence for the convergence of bilateral 

excitatory inputs onto Small Cells. 
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FIG 5: Some Small Cells receive multiple excitatory inputs from different receptive 
fields. D: Ipsilateral nELL axons labeled with DiO (green) and contralateral nELL axons 
labeled with DiI (magenta) colocalized adjacent to individual Small Cell somas (blue) in 
the left ELa. The large image to the left shows ELa based on a maximum intensity 
projection from six 2.53-µm slices (Scale bar = 100 µm). The adjacent optic tectum (OT) 
also had labeled axons, likely due to labeling of hindbrain regions other than nELL 
during dye injection. The smaller images to the right show an expanded view of the 
enclosed box, illustrating colocalization of ipsilateral and contralateral nELL terminals 
next to Small Cell nuclei, based on a maximum intensity projection from two 1.14-µm 
slices (Scale bar = 5 µm). Arrowheads indicate putative synaptic boutons, asterisks 
indicate Small Cell nuclei where putative ipsilateral and contralateral boutons colocalized. 
E: Labeled axons and Small Cell nuclei from the right ELa of the same brain, based on a 
maximum intensity projection from four 1.14-µm slices (Scale bar = 5 µm). 
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Variation among Small Cells can be explained by differences in excitatory latency 

Unlike the long, winding projections from nELL axons to Small Cells, the inputs 

from nELL axons to Large Cells and from Large Cells to Small Cells are both direct 

(Friedman and Hopkins 1998). This suggests that inhibitory latencies are relatively 

uniform among Small Cells and that variation in duration tuning is determined primarily 

by differences in excitatory latency. Axonal delay lines to Small Cells (Friedman and 

Hopkins 1998) and our observed spike latencies (Fig. 1C) suggest that excitatory 

latencies can vary from about 0 to 10 ms relative to Large Cell latencies. Finally, some 

Small Cells appear to receive separate excitatory inputs in response to the two stimulus 

edges (Fig. 5). To determine whether these features of synaptic input to Small Cells could 

explain the observed diversity of duration tuning, we modeled Small Cells as leaky 

integrator neurons receiving excitatory and inhibitory synaptic inputs with different 

relative latencies (Fig. 6). Each model neuron received excitatory input in response to one 

stimulus edge, and either inhibitory input or both excitatory and inhibitory input in 

response to the other stimulus edge. We varied the excitatory latencies from 0 to 10 ms 

relative to the inhibitory latency (set at 0 ms), and we scaled the inhibitory conductances 

to be larger and longer lasting than the excitatory conductances (see Materials and 

Methods for details). Finally, we incorporated a long-pass filter of duration that scaled 

the synaptic conductances to simulate the observed peripheral filtering imposed by KO 

electroreceptors (Lyons-Warren et al. 2012). 

The resulting model neurons had the same types of duration tuning observed 

among actual Small Cells, including long-pass, band-pass, and band-stop. None of the  
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FIG 6: Schematic illustrating the modeling of synaptic integration by Small Cells. Each 
cell was modeled as a leaky integrator neuron that received excitation in response to the 
rising stimulus edge (ipsilateral), and either inhibition only or inhibition plus excitation in 
response to the falling stimulus edge (contralateral). Inhibitory latencies were set at 0 ms, 
and excitatory latencies (Δtipsi and Δtcontra) were varied from 0 to 10 ms. Synaptic 
conductances were simulated as alpha-functions (see Materials and Methods for details). 
These conductances were passed through a sigmoidal filter that modeled the effects of 
peripheral long-pass filtering by knollenorgans, thereby reducing synaptic input strength 
at short durations. 
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model cells responded to short durations because of the long-pass peripheral filter. 

Variation in responses to longer durations among model neurons was caused by 

differences in excitatory latency, which determined which stimulus durations resulted in 

overlapping excitation and inhibition, and in the case of model neurons with two 

excitatory inputs, overlapping excitatory inputs in response to the two edges. To illustrate, 

we show simulation traces for three different stimuli along with duration tuning curves 

under three different scenarios (Fig. 7A): ipsilateral excitation (7 ms latency) with 

contralateral inhibition (0 ms latency) but no contralateral excitation (left); ipsilateral 

excitation (7 ms latency) with contralateral inhibition (0 ms latency) and contralateral 

excitation (0 ms latency) (middle); and ipsilateral excitation (7 ms latency) with 

contralateral inhibition (0 ms latency) and contralateral excitation (5 ms latency) (right). 

The arrowheads above the duration tuning curves correspond to the example traces 

shown above. 

Figure 7B shows heat maps that illustrate how duration tuning changes with 

variation in ipsilateral excitatory latency for model neurons under three different 

scenarios: ipsilateral excitation with contralateral inhibition (0 ms latency) but no 

contralateral excitation (left); ipsilateral excitation with contralateral inhibition (0 ms 

latency) and contralateral excitation (0 ms latency) (middle); and ipsilateral excitation 

with contralateral inhibition (0 ms latency) and contralateral excitation (5 ms latency) 

(right). In each heat map, the x-axis shows stimulus duration, the y-axis shows ipsilateral 

excitatory latency, and the color indicates normalized synaptic response. The asterisks to 

the right of each heat map correspond to the ipsilateral excitatory latencies of the example  



145 

 

 

 
 
 
FIG 7: Model neurons that integrate inhibition in response to one stimulus edge and 
variably delayed excitation in response to one or both stimulus edges recreate the 
diversity in duration tuning observed among Small Cells.  
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(A) Example simulation traces and duration tuning curves from three model neurons, 
each having ipsilateral excitation with Δtipsi = 7 ms and contralateral inhibition with 0 ms 
latency. The model neuron in the left panel does not receive contralateral excitatory input. 
The other two model neurons receive contralateral excitation with Δtcontra set at 0 ms 
(middle panel) or 5 ms (right panel). For all three model neurons, synaptic conductances 
(gE-ipsi in blue, gE-contra in cyan, gI in red) and membrane potential (control Vm in 
black, Vm without inhibition in grey) are shown in response to a 7 ms reversed polarity 
stimulus (left), 0.7 ms normal polarity stimulus (middle), and 5 ms normal polarity 
stimulus (right). Changes in stimulus duration alter the relative timing of different 
synaptic inputs, and the stimulus durations at which these inputs overlap are determined 
by their relative latencies. The duration tuning curves show the normalized response of 
each model neuron for both stimulus polarities for durations ranging from 0.01 to 10 ms 
under control conditions (black) and after removing the inhibitory input (gray). 
Arrowheads indicate the durations corresponding to the sample traces shown above. (B) 
Duration tuning changes with variation in excitatory latency. The left panel shows the 
tuning of model neurons that receive ipsilateral excitation and contralateral inhibition 
only, with Δtipsi varying from 0 to 10 ms. The other two panels show the tuning of model 
neurons that also receive contralateral excitation with Δtcontra set at 0 ms (middle panel) or 
5 ms (right panel). In the heat maps, the x-axis represents stimulus duration (right plot = 
normal polarity, left plot = reversed polarity) and the y-axis represents Δtipsi. Thus, each 
row represents the duration tuning of a single model neuron with a given Δtipsi, with 
responses normalized to its maximum response and colored as indicated in the scale to 
the right. The lower plots illustrate duration tuning of the same model neurons after 
removing the inhibitory synaptic input. The asterisks indicate the Δtipsi (7 ms) that 
corresponds to the example traces and tuning curves shown in (A). 
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model neurons shown in Figure 7A. 

Long-pass tuning was always observed at relatively short excitatory latencies, 

whereas band-pass and band-stop tuning were only observed at longer excitatory 

latencies (Fig. 7B). When there is a relatively short excitatory latency, contralateral 

inhibition will block excitation at short stimulus durations (Fig. 8A, top). With longer 

excitatory latencies, however, inhibition and excitation can interact at longer durations, 

thereby establishing more complex patterns of tuning (Fig. 8A, bottom). To see whether 

this prediction held for recordings from actual Small Cells, we analyzed the relationship 

between TLL and duration tuning. Extracellular recording does not allow for a direct 

determination of synaptic latency, but TLL can serve as a proxy for excitatory latency. 

When considering the units that only responded to one stimulus edge, the TLL of long-

pass tuning curves (n=68) was significantly shorter than the TLL of band-pass (n=11) and 

band-stop (n=17) tuning curves (Kruskal-Wallis ANOVA: H2,96=14.6, P<0.001), as 

predicted by our model (Fig. 8B). 

For long-pass tuning curves with relatively short excitatory latencies, our model 

also predicted differences in tuning curve shape depending on whether excitation was to 

the leading or trailing edge (Fig. 7B, compare opposite polarity stimuli). When excitation 

is to the trailing edge of the stimulus, a longer stimulus duration is required to elicit a 

response compared to when excitation is to the leading edge of the stimulus. The reason 

for this is that when excitation leads inhibition, the stimulus only needs to be long enough 

for the excitation to arrive before the onset of inhibition (Fig. 8C, top). When excitation 

trails inhibition, however, the stimulus needs to be long enough for the excitation to  
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FIG 8: Responses to peripheral spike timing differences are determined by the relative 
latency of excitation and inhibition. (A) Model simulations illustrating how short-latency 
excitation combined with contralateral inhibition gives rise to long-pass tuning (top), 
whereas long-latency excitation combined with contralateral inhibition gives rise to band-
stop tuning (bottom)  (B) As predicted by the model, long-pass tuning curves of actual 
recorded units had significantly shorter TLL than band-stop or band-pass tuning curves 
(Kruskal-Wallis ANOVA: H2,96=14.6, P<0.001). (C) Model simulations illustrating how 
reversing the sequence of excitation and inhibition by changing stimulus polarity results 
in responses to shorter durations when excitation is leading (top) compared to when 
excitation is trailing (bottom). For A and C, ‘X’ shows stimuli for which excitation is 
blocked by inhibition, resulting in responses <50% of maximum. (D) As predicted by the 
model, long-pass tuning curves of actual recorded units had a significantly shorter 
minimum duration for eliciting a half-maximal response when excitation was to the 
trailing, rather than leading, edge of the stimulus (Mann-Whitney U test: z=3.5, P<0.001). 
(E) Model simulations illustrating how variation in the relative latencies of two excitatory 
inputs leads to different durations at which these two inputs are coincident, resulting in 
the strongest response (asterisks). (F) As predicted by the model for units that responded 
to both edges, the difference between the TLL of each excitatory edge was significantly 
correlated with the best duration of band-pass tuning curves (linear regression: r2=0.90, 
P<0.05) and worst duration of band-stop tuning curves (linear regression: r2=0.97, 
P<0.05). 
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arrive after the inhibitory synaptic potential has ended (Fig. 8C, bottom). To test this 

hypothesis in our recordings from actual Small Cells, we compared the minimum 

duration where responses reached >50% of the maximal response for stimulus polarities 

in which excitation was to the leading or trailing edge. As predicted by our model, the 

half-maximal duration of excitation-leading long-pass tuning curves (n=36) was 

significantly shorter than the half-maximal duration of excitation-trailing long-pass 

tuning curves (n=32) (Fig. 8D; Mann-Whitney U test: z=3.5, P<0.001). 

In our model neurons, interactions between separate excitatory inputs to the two 

stimulus edges also contributed to complex patterns of duration tuning such as band-pass 

and band-stop tuning (Fig. 7). This is because excitation will be maximal for stimulus 

durations that cause these two excitatory inputs to arrive simultaneously (Fig. 8E). 

Therefore, in our recordings from actual band-pass and band-stop Small Cells that 

responded to both edges, we compared the difference in TLL to the two edges with their 

‘best’ and ‘worst’ stimulus durations, respectively (Fig. 8F). Despite the small number of 

units that met these criteria (n=4 each), there was a significant correlation between 

difference in TLL and best duration of band-pass units (linear regression: r2=0.90, 

P<0.05), as well as worst duration of band-stop units (linear regression: r2=0.97, P<0.05). 

Thus, several predictions of our computational model are supported by correlations 

between TLL and duration tuning among Small Cells, supporting the hypothesis that 

variation in excitatory latency contributes to the wide diversity of Small Cell tuning that 

we observed. It is important to note, however, that Small Cells may also differ in other 

respects, including passive and active membrane properties as well as the strengths and 
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time courses of excitatory and inhibitory synaptic currents. In the absence of intracellular 

recordings, it is not yet possible to evaluate the potential contribution of these factors to 

variation in Small Cell tuning. 

 

Stimulus-driven feed-forward inhibition shapes Small Cell responses to peripheral spike 

timing differences 

To directly test the role of GABAergic inhibition from Large Cells in establishing 

Small Cell duration tuning, we quantified tuning before and after gabazine application. 

Due to space constraints, susceptibility of recordings to mechanical disturbance during 

drug delivery, and normal difficulties with maintaining stable long-term recordings, it 

was difficult to hold a unit long enough to get complete tuning curves after drug 

application. Nevertheless, we were able to collect a total of 32 tuning curves from 5 units 

after gabazine application. The multiple tuning curves from each unit included tuning 

curves to both stimulus polarities, as well as to different stimulus intensities, but not 

repetitions of the same polarity and intensity. 

Our modeling results predict that different patterns of duration tuning result from 

inhibition blocking excitation at different stimulus durations, due to variation in 

excitatory latency. For long-pass neurons with relatively short excitatory latencies, our 

model predicts that inhibition blocks excitation only at short durations, thereby increasing 

the minimum duration for eliciting a response (Figs. 7B, 8A). Thus, after removing 

inhibition from long-pass model neurons, there was a decrease in the minimum duration 

for eliciting a response (Fig. 7B). In recordings from actual long-pass units, blocking 
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inhibition by applying gabazine had a similar effect, leading to increased responses to 

short stimulus durations (Fig. 9A). Among all long-pass tuning curves tested, gabazine 

application resulted in a significant decrease in the minimum stimulus duration that 

elicited a response greater than 50% of the maximum response (Fig. 9A; Wilcoxon 

matched pairs test: n=16, z=2.9, P<0.01). This supports our model prediction that 

inhibition contributes to long-pass tuning by blocking responses to short duration stimuli. 

For band-pass and band-stop neurons with relatively long excitatory latencies, our 

model predicts that inhibition blocks excitation at longer durations (Figs. 7B, 8A). Overall, 

this results in weak responses to the shortest durations due to the peripheral filter, 

increasing responses as duration increases, and then decreasing responses due to 

inhibition as duration increases further (Fig. 7B). Thus, after removing inhibition from 

band-pass and band-stop model neurons, the secondary decrease in response at relatively 

long durations disappeared (Fig. 7B). In recordings from actual band-pass and band-stop 

units, blocking inhibition by applying gabazine had a similar effect, resulting in an 

increased response at longer durations that had previously elicited weak responses. For 

example, the neuron shown in Fig. 9B was band-stop tuned to both polarities, but became 

long-pass tuned after gabazine application because the decrease in response to longer 

duration stimuli no longer occurred. For all band-pass and band-stop tuning curves tested, 

we identified the minimum duration at which further increases in duration resulted in 

responses that dropped below 50% of the maximum response. We then determined the 

total range of durations above this value that elicited a response less than 50% of the 

maximum response, and compared this to the total range of durations below this criterion 
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after gabazine application. Among all band-pass and band-stop tuning curves tested, 

gabazine application resulted in a significant decrease in the range of durations that 

elicited a response less than 50% of the maximum response (Fig. 9B; Wilcoxon matched 

pairs test: n=13, z=2.4, P<0.05). This supports our model prediction that inhibition 

contributes to band-pass and band-stop tuning by blocking responses to stimuli over a 

particular range of durations. 
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FIG 9: Blocking inhibition in ELa affects Small Cell responses to peripheral spike timing 
differences. (A) Smoothed, normalized tuning curves from a representative long-pass 
Small Cell before and after gabazine application, presented as in Fig. 2. This cell had 
long-pass tuning to both stimulus polarities before and after gabazine application. 
However, the minimum duration eliciting a response >0.5 decreased after gabazine 
application for both polarities (arrowheads), suggesting that inhibition was affecting 
excitatory input to the Small Cell at short durations. The bar graph to the right shows the 
minimum duration eliciting a response >0.5 (mean ± sem) for all 16 tuning curves that 
were long-pass before gabazine application. After gabazine application, there was a 
significant decrease in the minimum duration eliciting a response >0.5 (Wilcoxon 
matched pairs test: n=16, z=2.9, P<0.01). (B) Smoothed, normalized tuning curves from a 
representative band-stop Small Cell before and after gabazine application. This cell had 
band-stop tuning to both stimulus polarities, but the tuning to both polarities changed to 
long-pass after gabazine application. The band-stop portion of the tuning curves that was 
<0.5 of the maximum response before gabazine (arrowheads) was no longer present after 
gabazine application, suggesting that inhibition was responsible for the decreased 
response at these durations. The bar graph to the right shows the range of durations 
eliciting a response <0.5 (mean ± sem) for all 13 tuning curves that were either band-pass 
or band-stop before gabazine application. After gabazine application, there was a 
significant decrease in the range of durations eliciting a response <0.5 (Wilcoxon 
matched pairs test: n=13, z=2.4, P<0.05).
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DISCUSSION 
 

Small Cells are diverse in their responses to variation in peripheral spike timing 

differences and are the first location where inputs from widely separated receptive fields 

converge. Our results suggest several factors that determine the responses of individual 

cells: variation in excitatory latency, likely due to axonal delay lines (Friedman and 

Hopkins 1998); feed-forward inhibition, likely mediated by Large Cell calyces (Friedman 

and Hopkins 1998; George et al. 2011; Mugnaini and Maler 1987); multiple excitatory 

inputs from different receptive fields for some cells; and variation in the relative timing 

of excitation and inhibition owing to latency differences and the relative timing of 

stimulus edges. 

Variation in excitatory latency determines which peripheral timing differences the 

cell will respond to. Excitation will be greatest when two excitatory inputs arrive in 

synchrony, but the strong inhibition from the calyx synapse will effectively silence any 

excitation. Combined with the peripheral long-pass filter (Lyons-Warren et al. 2012), this 

mechanism can establish different temporal filters of spike timing differences. Specific 

predictions of this model regarding the relationship between excitatory latency and 

duration tuning, and the effects of blocking inhibition on duration tuning, were supported 

by our extracellular data. Our model can also explain changes in tuning with changes in 

stimulus intensity. As intensity increases, additional receptive fields will be activated, 

leading to the recruitment of additional inputs. 

Mechanisms for detecting submillisecond timing differences have been well 

studied in auditory pathways that use interaural timing differences (ITDs) to locate 
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azimuthal sound sources (Ashida and Carr 2011; Köppl 2009; Schnupp and Carr 2009). 

There is strong evidence in birds and reptiles for the canonical Jeffress model (1948), in 

which a counter-current organization of ipsilateral and contralateral projections to the 

nucleus laminaris (NL) converts a temporal code into a place code through delay-line 

coincidence detection (Carr and Konishi 1990; Carr et al. 2009; Funabiki et al. 2011). By 

contrast, binaural projections to the mammalian medial superior olive (MSO) do not 

appear to include delay lines (McAlpine and Grothe 2003; Smith et al. 1993). Instead, 

binaural excitation and inhibition convert a temporal code into a rate code, in which 

azimuthal sound location is represented by the relative firing rates of neurons in the left 

and right MSO (Brand et al. 2002; Grothe et al. 2010; van der Heijden et al. 2013). Our 

data suggests a novel mechanism for processing spike timing differences that combines 

features of both sound localization pathways, including axonal delay lines and precisely 

timed feed-forward inhibition. Integration of precisely timed excitation and inhibition is 

also thought to establish sound duration tuning in the midbrains of mammals and 

amphibians (Aubie et al. 2009; Leary et al. 2008; Sayegh et al. 2011). 

Our results provide empirical support for the delay-line anti-coincidence detection 

model of Friedman & Hopkins (Friedman and Hopkins 1998). However, our findings 

also add to this model by revealing multiple excitatory inputs to some cells, an important 

role for tonic inhibition, and greater diversity of Small Cell response patterns than first 

predicted. In its original formulation, the model predicted that all Small Cells would be 

long-pass tuned to square-pulse duration, with variation in excitatory latency determining 

the minimum cut-off duration that Small Cells would respond to (Xu-Friedman and 
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Hopkins 1999). However, Small Cell duration tuning was more diverse than this for three 

reasons. First, the periphery imposes a long-pass filter before stimulus information 

reaches Small Cells (Lyons-Warren et al. 2012). Second, relatively long excitatory 

latencies result in coincident excitation and inhibition at durations that are longer than the 

cut-off of this peripheral filter. Third, multiple excitatory inputs from different receptive 

fields result in coincident excitation at certain durations. 

Thus, while the original model proposed a population code in which the number 

of responsive Small Cells codes for square-pulse duration (Xu-Friedman and Hopkins 

1999), our results suggest a distributed population code in which the identity of 

responsive cells codes for duration. Individual Small Cells respond equally well to a wide 

range of stimulus durations, polarities, and intensities, such that they cannot individually 

code for specific stimuli. However, the tuning of each cell is unique, meaning that 

different stimuli will elicit responses from distinct populations of Small Cells. 

Monophasic square pulses provide a convenient stimulus for precisely 

manipulating the timing of receptor responses to study the decoding of peripheral timing 

differences. However, natural EOD waveforms are more complex than square pulses, 

typically consisting of multiple phases of different durations (Carlson et al. 2011; 

Hopkins 1981). Variation in the polarity and intensity of an EOD stimulus across the 

body surface results in a mosaic of peripheral timing differences as opposed to the simple 

“start-stop” responses to uniform square-pulse stimuli that we elicited (Baker et al. 2013). 

Thus, in a natural context, the particular timing difference that an individual Small Cell 

will experience depends on the receptive fields of its synaptic inputs and on the polarity 
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and intensity of the EOD at those locations. Relative movements of the signaling and 

receiving fish will further complicate the matter, causing this mosaic of timing 

differences to shift. Nevertheless, just as changes in square-pulse duration alter the 

relative timing of peripheral inputs to Small Cells, so too will changes in EOD waveform 

and sender position alter the relative timing of these inputs. Thus, our findings suggest 

that both EOD waveform and sender position are represented as a distributed population 

code among Small Cells. This contrasts with the mammalian MSO, which converts a 

temporal code into a rate code, and the avian NL, which converts a temporal code into a 

place code. 

Although the source of much speculation, it remains unclear why different circuits 

have evolved different mechanisms and recoding strategies for processing submillisecond 

timing differences (Köppl 2009; Schnupp and Carr 2009). Why would mormyrids utilize 

yet another strategy? We recently found that at near threshold stimulus intensities, when 

the temporal code for EOD waveform breaks down, variation in KO tuning establishes a 

peripheral population code for stimulus duration (Lyons-Warren et al. 2012). Thus, there 

are two peripheral codes operating at different intensities, a population code at low 

intensities and a temporal code at high intensities. It may be that the temporal code is 

converted into a population code so that two different peripheral codes come to be 

represented as a single, unified population code centrally. A similar argument has been 

proposed to explain different strategies for ITD processing. Mammals use both ITDs and 

interaural level differences (ILDs) for azimuthal sound localization (Macpherson and 

Middlebrooks 2002). Since sound intensity is represented using a rate code, the MSO 
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may convert ITDs from a temporal code to a rate code so that both features are in the 

same “currency” (Schnupp and Carr 2009). Birds, however, use ILDs for elevational 

sound localization; because ITDs and ILDs represent different information, it may not be 

necessary to convert them into a common coding scheme. 

Another reason that mormyrids may convert a temporal code into a population 

code is that this circuit must deal with the coding of both spatial and identity information 

into complex patterns of timing differences among many receptors. By contrast, the 

mammalian MSO and avian/reptilian NL only need to perform a binaural timing 

comparison for the sole purpose of azimuthal sound localization. Population codes are 

able to more efficiently and more accurately represent a large number of stimuli than 

codes based on individual neurons (Averbeck et al. 2006), and they may be well suited to 

representing the high dimensionality and variability of electric signals that ELa must deal 

with. 

Multipolar neurons in ELp integrate the outputs of many Small Cells along their 

extensive dendritic arbors (Xu-Friedman and Hopkins 1999). This high degree of 

convergence makes ELp neurons ideally suited to detecting coherent spiking among 

distinct subpopulations of Small Cells, and this likely represents the first step in decoding 

Small Cell population activity (Amagai 1998). Further, sensory stimulation will result in 

coherent synaptic input to ELp from many Small Cells, but spontaneous inputs will be 

uncorrelated. Thus, even though spontaneous activity among Small Cells was generally 

quite low, this convergence should help prevent the propagation of spontaneous activity 
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and ensure reliable sensory coding. Indeed, ELp neurons have low levels of spontaneous 

synaptic activity and no spontaneous spiking in vivo (Amagai 1998; Carlson 2009).  

To our knowledge, this study is the first to document functional roles for an 

inhibitory calyx. We propose that just as the excitatory calyx of Held functions to 

increase the reliability of synaptic transmission (Borst and van Hoeve 2012), the calyx 

structure of the Large Cell-to-Small Cell synapse is particularly effective at blocking 

excitation. It is somewhat puzzling that some Small Cells receive excitation in response 

to a stimulus edge that is normally blocked by inhibition in response to that same edge. It 

may be that coincident excitatory inputs in response to two edges can overcome this 

inhibition, similar to the anteroventral cochlear nucleus in mice (Chanda and Xu-

Friedman 2010). In mammalian MSO neurons, it was recently shown that inhibition 

increases the linearity and temporal precision of binaural coincidence detection (Roberts 

et al. 2013). Inhibition in response to the same stimulus edge as excitation could also 

shorten the window for excitatory integration (Pouille and Scanziani 2001). Conversely, 

delayed excitation in response to the same stimulus edge as inhibition could effectively 

shorten the inhibitory window. Finally, even though excitation and inhibition were often 

elicited by a single stimulus edge in our preparation, these inputs may have arisen 

through adjacent, but separate receptive fields. Slight changes in stimulus orientation 

during natural social interactions could differentially activate these receptive fields, 

which would be reflected in the resulting Small Cell output. 

We also found evidence suggesting tonic inhibition of Small Cells. This could 

arise through tonic activation of GABAA receptors by ambient GABA at the Large Cell 
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terminal, spontaneous miniature IPSPs, spontaneous spiking of Large Cells, or a separate 

source of GABAergic inhibition. We consider the latter two possibilities highly unlikely. 

Intracellular recordings from nELL axons and Large Cells reveal little, if any, 

spontaneous firing (Amagai et al. 1998; Friedman and Hopkins 1998). In addition, the 

cytology and anatomy of ELa has been well described, and there is no evidence for any 

neurons other than Small Cells, Large Cells, and nELL axons (Friedman and Hopkins 

1998; George et al. 2011; Mugnaini and Maler 1987). Tonic excitation and inhibition due 

to low ambient levels of neurotransmitter have been well described (Cavelier et al. 2005; 

Semyanov et al. 2004). The extensive synaptic cleft formed by the calyx may limit the 

diffusion and clearance of GABA, resulting in high ambient levels that remain long after 

presynaptic spiking. Although the exact mechanism remains unknown, it is clear that 

tonic inhibition of Small Cells reduces spontaneous firing, which increases the fidelity of 

stimulus coding by limiting spiking to stimulus-driven events, similar to the effect of 

tonic inhibition on mechanosensory coding by cerebellar granule cells (Duguid et al. 

2012). Further, a tonic inhibitory conductance would decrease the membrane time 

constant, thereby decreasing temporal integration windows and increasing the precision 

of coincidence (or anti-coincidence) detection (Cavelier et al. 2005; Häusser and Clark 

1997). 
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Chapter 5 

 

 

Conclusions and future directions 

 

 

It does not bridge the gap between stimulus and sensation, but at least it shows that the 

gap is a little narrower than it was before. 

-E.D. Adrian, 1928 
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SUMMARY AND SIGNIFICANCE 

 Nervous systems encode information using both the rate and timing of action 

potentials (Ainsworth et al., 2012; Ferster and Spruston, 1995).  While rate codes can 

achieve submillisecond resolution (Montemurro et al., 2007), temporal codes are more 

suited to encoding timing information on this rapid timescale (Panzeri et al., 2010).  

Temporal codes are used to process sensory information on a submillisecond time scale 

in vision (Gollisch and Meister, 2008; Victor, 2000), audition (Grothe and Klump, 2000; 

Sayegh et al., 2011), and smell (Bathellier et al., 2008).  Given the variety of proposed 

mechanisms for encoding submillisecond timing information, it is critical to compare 

approaches used by different species in order to appropriately extrapolate common 

principles (Carlson, 2012).   

 Electrosensory processing in mormyrid weakly electric fish is an ideal model 

system for this task because these fish are time coding experts, able to discriminate 2 

μsec timing differences using a dedicated, easily accessible neural circuit (Carr, 1993; 

Paintner and Kramer, 2003; Zakon, 2003).  Importantly, this circuit contains anatomical 

features that have been shown in other time coding systems including delay-lines and 

coincidence detectors.  These similarities allow for direct cross-mechanism comparisons. 

We began our investigation of electrosensory processing by looking at peripheral 

receptors called knollenorgans which respond to positive changes in electrical charge 

(Hopkins and Bass, 1981).  Because knollenorgans only respond to positive changes, 

different receptors will respond to the start or end of an electrical signal depending on 

their relative body location.  This creates a start-stop temporal code for stimulus duration.  
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However, at lower stimulus intensities, knollenorgans exhibit decreased temporal 

precision, or jitter (Lyons-Warren et al., 2012).  Time locked responses used to detect 

interaural time differences in cats are similarly intensity dependent (Michelet et al., 2012).  

We showed that knollenorgans are tuned to both duration and frequency with variation in 

tuning between receptors.  Tuning variation results in a unique combination of 

knollenorgan responses for each stimulus duration, suggesting a population code for 

stimulus duration.  This population code is important because it provides an additional 

source of information about stimulus duration not influenced by jitter.   

 Interestingly, a subgroup of mormyrid fish termed Clade A have a broad 

distribution of KOs across the entire body, the number of which increases nonlinearly 

with increasing body size (Carlson et al., 2011; Harder, 1968).   Each of these KO has 1-

10 sensory cells, all innervated by the same primary afferent (Harder, 1968).  Primary 

afferents project to nELL where they make 1- 4 club endings onto each nELL cell soma 

they contact, further increasing temporal fidelity.  Similarly, each nELL cell will receive 

inputs from 1- 4 KOs.  Notably, each KO projects to 3-11 nELL cells (Bell and Grant, 

1989).  Simultaneous convergence and divergence increases heterogeneity across a 

population of neurons, in this case the nELL cells.  Increasing variation in a population of 

cells increases the efficiency of a population code (Marsat and Maler, 2010).  

Due to the complex nature of sensory integration, all information is inevitably 

converted to a population code (Ainsworth et al., 2012).  For example, rats use first spike 

latency following whisker movement to encode stimulus location, which is converted to a 

population code in barrel cortex (Petersen et al., 2001).  Similarly, in electrosensory 



174 

processing, both the temporal code and the population code originating in the periphery 

will ultimately merge into a single midbrain population code (Lyons-Warren et al., 2012).   

Our experiments revealed a population code for stimulus duration created by 

diversity in peripheral filters operating in parallel with a start-stop temporal code.  

Notably, peripheral filtering also impacts temporal coding.  Signals arrive in the midbrain 

already long-pass tuned, contributing to diversity of time comparator neuron responses.  

Peripheral filters similarly impact the input to a temporal code in the detection of 

interaural time differences for which monaural inputs must be spectrotemporally matched 

to maximally excite the coincidence detector (Fischer et al., 2011). 

Next we addressed central mechanisms of temporal coding.  There are three 

cellular elements in the anterior portion of the exterolateral nucles (ELa): Large Cells, 

Small Cells and hindbrain axons from the nucleus of the electrosensory lateral line 

(nELL).  Large Cells and nELL axons exhibit time locked, long-pass tuned responses to a 

single stimulus edge (Amagai et al., 1998).  Friedman and Hopkins demonstrated 

anatomical evidence for delay-lines by filling individual nELL axons with biocytin 

(Friedman and Hopkins, 1998).  Large Cells make GABAergic calyceal synapses onto 

Small Cells (Friedman and Hopkins, 1998; George et al., 2011; Mugnaini and Maler, 

1987).  Based on these findings, Friedman and Hopkins proposed a delay-line anti-

coincidence detection mechanism which predicts that all Small Cells will be long-pass 

tuned to stimulus duration (Xu-Friedman and Hopkins, 1999).  To directly test their 

model, we recorded from Small Cells. 
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Cells with small somas are difficult to record from (Rose and Fortune, 1996).  

Small Cells in ELa are particularly challenging to record from because their somas are 

engulfed by calyceal synapses from Large Cells (Friedman and Hopkins, 1998; Mugnaini 

and Maler, 1987).  Further, ELa contains large amounts of myelin which clogs the sharp 

electrodes required for intracellular recordings.  Even if an electrode can remain 

unclogged, in my experience, trying to record from Small Cells is like trying to stab a 

small balloon.  For all of these reasons, no one has been able to record from Small Cells 

despite considerable effort (Amagai et al., 1998; Friedman and Hopkins, 1998).  Still, 

recording from Small Cells is the most direct way to measure how submillisecond spike 

timing differences are processed in this circuit.  Therefore, we designed a novel method 

to record from Small Cell axons.  We applied fluorescent dye to a nucleus adjacent to 

ELa, the posterior portion of the exterolateral nucleus (ELp).  The dye labeled all 

elements in ELp including Small Cell axons.  Small Cell axons retrogradely transported 

dye to ELa (Lyons-Warren et al., in press).  Small Cell axons are the only element to go 

from ELp to ELa, and therefore all labeling in ELa is specific to Small Cells.  Visualizing 

these labeled axons allowed us to target them with extracellular recording electrodes.  

Recording from axons rather than somas avoided the challenges associated with calyceal 

synapses.  Further, the larger extracellular electrode was less likely to clog.  This method 

will be generally useful for recording from other small or inaccessible cells in other 

systems.   

Using retrograde labeling to visualize Small Cell axons, we characterized the 

response properties of 76 Small Cells.  Contrary to the predictions of the Friedman-



176 

Hopkins model, we showed that some Small Cells are band-pass or band-stop tuned to 

stimulus duration.  Across the population of Small Cells there was variation in tuning 

between units, and within units between polarity and intensity.  We investigated the 

source of this variation by analyzing both the inhibitory and excitatory inputs to Small 

Cells.  We showed evidence of blanking inhibition following the non-responsive edge of 

a 50 ms square pulse.  We also showed that removing inhibition changed tuning 

properties in 5 Small Cells.  Unexpectedly, tuning did not reflect peripheral filtering after 

removal of inhibition, leading us to hypothesize multiple excitatory inputs.  Indeed, we 

observed 23 Small Cells that responded to both edges of a stimulus under control 

conditions, suggesting multiple excitatory inputs.  We also observed 2 units that exhibited 

a response to a previously non-responsive edge after pharmacological blockade of 

inhibition.  Based on our experiments, we propose a new model for submillisecond spike 

time detection using a combination of blanking inhibition corresponding to one edge of a 

stimulus and variably delayed excitation corresponding to one or both edges of a stimulus. 

The model for discriminating submillisecond differences in stimulus duration 

proposed in this thesis parallels the existing models for encoding submillisecond stimulus 

duration in previously described systems.  Specifically, many models for detecting 

stimulus duration utilize a “start-stop” temporal code in which time comparator neurons 

receive inputs corresponding to the beginning and end of the stimulus (Aubie et al., 2009).  

Pulse duration tuning in bat inferior colliculus is GABA dependent (Jen and Feng, 1999) 

and duration tuning in frogs involves integration of excitatory and inhibitory inputs 

(Leary et al., 2008).  The critical distinction between these models and the model for 
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electrosensory duration tuning proposed here is the specific way inhibition contributes to 

creating duration tuned responses.  Importantly, the existence of duration tuned neurons 

has been shown in mice although there is no clear mechanism for how these neurons arise 

(Brand et al., 2000).  Therefore it is important to consider a mechanism similar to 

electrosensory duration tuning when analyzing duration tuned neurons in other systems. 

Mechanisms of duration tuning have not been studied in other species of weakly 

electric fish.  However, wave type weakly electric fish can detect phase timing 

differences as small as 400 nsec and are therefore similarly useful for studying 

submillisecond spike time detection (Carr et al., 1986a).  Specifically, mechanisms of 

phase detection in the weakly electric fish Eigenmannia share several interesting parallels 

with mormyrid electrosensory processing.  Stimulus phase is encoded by peripheral 

receptors and then processed by time comparators in the midbrain that receive delayed 

inputs, similar to coincidence detectors in sound localization.  Notably, delay-lines in 

Eigenmannia are generated through widely branching dendrites, rather than axons (Carr 

et al., 1986b).   

Finally, one of the best studied mechanisms for detecting submillisecond spike time 

differences is the comparison of interaural time differences to determine where a sound is 

coming from (Ashida and Carr, 2011; Grothe et al., 2010).  Interestingly, multiple 

mechanisms for sound localization have been shown to include a role for inhibition 

(Batra et al., 1997; Brand et al., 2002; Burger et al., 2011).  Inhibition can create a more 

specific response by blocking coincidence detection under select conditions such as 

occurs with side suppression (Mori, 1997).  This mechanism is most similar to the 
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blanking inhibition proposed in this thesis.  Alternatively, inhibition can preferentially 

block a sub-set of excitatory inputs based on the timing of each signal to convert a 

temporal code into a rate code as occurs in the medial superior olive in mammals (Grothe 

et al., 2010).  Similarly, we observe that the order of excitation and inhibition - 

determined by stimulus polarity - is essential for Small Cell tuning.  Finally, inhibition 

can prevents neurons from responding to single inputs and thus convert them into 

coincidence detectors as in the anteroventral cochlear nucleus in mice (Chanda and Xu-

Friedman, 2010).  Similarly, GABAB receptors in gerbil medial superior olive modulate 

both excitatory and inhibitory currents to sharpen ITD selectivity (Fischl et al., 2012).   

One of the novel findings of this work is the first functional description of an 

inhibitory calyceal synapse.  Excitatory calyces have been extensively studied in the 

anteroventral cochlear nucleus, the lateral geniculate nucleus, and the cerebellum (Borst, 

2010).  This raises the question, do inhibitory calyxes not exist in other systems or have 

they just not been discovered?  The novelty of the calyx structure and its presence in 

pathways utilizing temporal coding suggests a very specific purpose requiring such 

unique morphology.  Therefore, it will be useful to actively look for inhibitory calyceal 

synapses in circuits that could benefit from precise and reliable inhibition.   

 

FUTURE DIRECTIONS 

My results suggest a novel mechanism for submillisecond spike time detection 

using precisely timed delayed excitation and precisely timed inhibition.  I demonstrated 

functional inhibition using two methods, complex stimuli and pharmacological 
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application of an inhibitory blocker.  However, application of both drug and vehicle was 

technically challenging.  Therefore, it will be important to expand pharmacological 

studies using new drug application techniques such as iontophoresis.  Ideally, extensive 

trials will be done with each application method to identify an accurate success rate for 

each method. The best method can then be used to test gabazine on a larger sample size 

as well as testing other inhibitory blockers such as strychnine hydrochloride which blocks 

glycine receptors.  These experiments will reveal what percentage of Small Cells derive 

their tuning from inhibition.   

 In a departure from the previously proposed model by Friedman and Hopkins, my 

results suggest multiple excitatory inputs from different receptive fields to some Small 

Cells.  I support this conclusion with multiple lines of evidence including tuned responses 

in the absence of inhibition and histological approximations of the ratio of Small Cell 

somas to nELL axonal projections.  However, there are two direct tests of the multiple 

excitatory input hypotheses that should be completed.  First, serial reconstruction of 

electron micrographs of ELa can be used to quantify the number of excitatory and 

inhibitory synapses onto each Small Cell.  While this will not distinguish the source of 

these synapses, spatially distinct excitatory boutons would suggest multiple excitatory 

inputs.  Although technically challenging, electron microscopy combined with bilateral 

labeling of nELL axons in different colors would allow direct quantification of how many 

Small Cells receive excitatory inputs from the left, right or both sides of the hindbrain.  

Second, recording from Small Cells while stimulating local receptive fields can be used 

to quantify how many distinct receptive fields elicit an excitatory or inhibitory response. 
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Finally, I investigated the mechanisms of tuning at Small Cells, but I did not look 

at how tuned Small Cells contribute to later processing.  As Small Cells project in a 

topographical manner from ELa to ELp (Friedman and Hopkins, 1998) it may be 

interesting to correlate Small Cell recording location along the medial-lateral axis with 

tuning properties of ELp neurons.   

 

CONCLUSIONS 

 Processing information on a submillisecond timescale represents an especially 

interesting computational challenge because such short intervals are below the resolution 

of a single action potential.  In this thesis I have provided evidence for a novel 

mechanism for detecting submillisecond spike time differences in electrosensory 

processing.  I have demonstrated an important role for peripheral filtering in sensory 

processing that impacts how sensory signals are coded.  Peripheral filters should be 

considered both as tuning mechanisms in their own right, and as contributors to central 

processing.  Further, I have designed and utilized a novel method for recording from 

small time comparator neurons in vivo.  Hopefully this method will facilitate progress in 

understanding time comparator neurons in other systems.  Finally, I have proposed a 

novel mechanism for detecting submillisecond spike time differences in mormyrid 

weakly electric fish.  This work may be useful for understanding related areas including 

submillisecond duration tuning in other systems and identifying a common role of 

inhibition in processing interaural time differences for sound localization. 
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