
Washington University in St. Louis
Washington University Open Scholarship

All Theses and Dissertations (ETDs)

5-24-2012

Information processing in a midbrain visual
pathway
Dihui Lai
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/etd

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All
Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact
digital@wumail.wustl.edu.

Recommended Citation
Lai, Dihui, "Information processing in a midbrain visual pathway" (2012). All Theses and Dissertations (ETDs). 704.
https://openscholarship.wustl.edu/etd/704

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fetd%2F704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F704&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/704?utm_source=openscholarship.wustl.edu%2Fetd%2F704&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


 

 

Department of Physics 
 

Dissertation Examination Committee: 
Ralf Wessel, Chair 

Dennis Barbour 
Anders E. Carlsson 

Zohar Nussinov 
Barani Raman 

Li Yang 
 

INFORMATION PROCESSING IN A MIDBRAIN VISUAL PATHWAY 

by 
Dihui Lai 

 

 

A dissertation presented to the 

Graduate School of Arts and Sciences  

of Washington University in Saint Louis 

in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy in Physics 
 

May 2012

Saint Louis, Missouri



	
   ii  

Abstract 

Visual information is processed in brain via the intricate interactions between neurons. 

We investigated a midbrain visual pathway (optic tectum and its isthmic nucleus) that is 

motion sensitive and is thought as part of attentional system. We determined the 

physiological properties of individual neurons as well as their synaptic connections with 

intracellular recordings. We reproduced the center-surround receptive field structure of 

tectal neurons in a dynamical recurrent feedback loop. We reveal in a computational 

model that the anti-topographic inhibitory feedback could mediate competitive stimulus 

selection in a complex visual scene. We also investigated the dynamics of the competitive 

selection in a rate model. The isthmotectal feedback loop gates the information transfer 

from tectum to thalamic rotundus. We discussed the role of a localized feedback 

projection in contributing to the gating mechanisms with both experimental and 

numerical approaches. We further discussed the dynamics of the isthmotectal system by 

considering the propagation delays between different components. We conclude that the 

isthmotectal system is involved in attention-like competitive stimulus selection and 

control the information coding in the motion sensitive SGC-I neurons by modulating the 

retino-tectal synaptic transmission. 
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1 Introduction 

Information is processed in brains through complex interactions between neurons. Neural 

connections, forming through chemical synapses or electric gap-junctions, play a 

fundamental role in determining the activity of the neural network. Dependent on the 

transmitter released, the neural activity at the presynaptic site could either excite or 

inhibit the response of postsynaptic neurons. For example, the involvement of glutamate 

usually leads to depolarization of membrane potential while γ-aminobutyric acid (GABA) 

is a major inhibitory neurotransmitter in the central nervous system (Koch and Segev, 

1998). Synaptic dynamics such as long-term/short-term plasticity, spike-timing-

dependent plasticity enable the neural network to accomplish even more complicated 

behavior such as adaptation and memories. Third party neural transmitter such as 

acetylcholine (ACh), norepinephrine, dopamine etc., might further modulate the way 

neurons interacting with each other (Bear et al., 2007). For examples, ACh could enhance 

the synaptic efficacy between the pre-post neurons (Kawai et al., 2007); Dopamine is 

involved in altering spike-timing-dependent plasticity (Pawlak et al., 2010). A 

fundamental question of neuroscience is to understand the role of these interactions in 

deciding the behavior of neural networks (e.g. rhythmic oscillation, multi-stability) and 

how the network behavior is related to the macroscopic behaviors of animals (e.g. 

adaptive behavior, attention, learning). 

 

Together with the cellular and synaptic properties, topological organizations of neural 

connections are significant in controlling information flow and determining how 
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information is encoded in neural networks. Recurrent excitatory loops formed between 

excitatory interneurons determine the bursting activity that drives lamprey locomotion 

(Grillner, 2003). Recurrent excitation-inhibition organization has been proposed to 

operate as a coincidence detector in mammalian hippocampus (Buhl et al., 1994). Lateral 

inhibitions are regarded as an anatomical structure that can serve as a maxima detector 

(Mao and Massaquoi, 2007). Another striking feature of the brain is the strong feedback 

delivered from the areas where the neurons send their axons. In the primary visual cortex, 

neural feedback dominates in certain regions, indicating that the sensory inputs at low-

level visual system are greatly influenced by high-level neural activities (Sillito et al., 

2006). The understanding of circuit algorithm that is carried by neural connectivity and 

interactions among their components is also fundamental to neuroscience (Yuste 2008). 

 

We investigated a midbrain visual pathway, consisting of optic tectum (OT) and its 

satellite isthmic nucleus, which is thought as an attentional control component besides the 

forebrain networks (Knudsen, 2011). Specifically, a type of wild-field neuron termed 

stratum griseum centrale (SGC) receives retina efferent from the superficial layer of OT 

and sends visual information further to the thalamic nucleus rotundus. Neural activities of 

the tectofugal pathway are modulated by the feedback from isthmic magnocellularis 

(Imc), parvocellularis (Ipc), and semilunaris (SLu) nucleus. Immunocytochemical 

staining reveals that two major types of feedback connections are involved in the 

pathway i.e. topographically organized local cholinergic projections from Ipc/SLu and 

anti-topographically organized global GABAergic projections from Imc (Wang et al., 

2004, 2006).  The tectal neuron is motion sensitive and the isthmotectal system is 
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engaged in competitive selection of salient stimulus in a complex visual scene (Marin et 

al., 2007; Asadollahi et al., 2010, 2011; Mysore et al., 2010). The response of tectal 

neuron is also biased by feedback projection from high-level area such as arcopallial gaze 

field (AGF, Winkowski and Knudsen, 2006, Winkowski and Knudsen, 2008). We 

investigated the tectofugal pathway and its isthmotectal feedback loop with whole cell 

recordings and computational modeling. We discussed in different chapters the receptive 

field organizations of tectal neurons, the rhythmic oscillatory bursting activity observed 

in the system, the dynamics of competitive interactions and the modulatory effect of the 

local Ipc feedback.  

 

This dissertation contains seven chapters based on the following papers published in 

scientific journals and manuscripts in preparation 

• Chapter 2: Lai D and Wessel R A dynamical recurrent neural network reproduces 

the characteristic center/surround response profile (In preparation) 

• Chapter 3: Shao J, Lai D, Meyer U, Luksch H, Wessel R (2009) Generating 

oscillatory bursts from a network of regular spiking neurons without inhibition. J 

Comput Neurosci 27:591–606 

• Chapter 4: Lai D, Brandt S, Luksch H, Wessel R (2011) Recurrent 

antitopographic inhibition mediates competitive stimulus selection in an attention 

network. J Neurophysiol 105: 793–805. 

• Chapter 5: Lai D, Wessel R. Competitive selection and local feedback modulate 

population coding of motion-sensitive wild-field neurons (in preparation). 
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• Chapter 6: Lai D, Carlsson AE, Wessel R. The dynamics of novelty preference in 

a competitive neural network with adaptation (in preparation). 

• Chapter 7: Lai D, Carlsson AE, Nussinov Z, Wessel R. Stability of a three-neuron 

system with delayed feedback (in preparation). 

 

The receptive field (RF) of a neuron describes an area in the visual space where the 

presence of a stimulus could evoke the response of the neuron. Classical RFs of center 

surrounding structure were discovered in retina as well as the primary visual cortex 

(Kuffler, 1953; Hubel and Wiesel, 1959). A computational model that describes the RF 

organization by two Gaussian filters is firstly introduced (Rodieck, 1965) and 

successfully explained the response of retina ganglion cells to motion. This model 

approach is then wildly applied to similar center-surround RF structure (Soodak, 1986; 

Cavanaugh et al., 2002) due to its mathematical simplicity and success in explaining 

experimental data. However, the phenomenological model provides little understanding 

of the circuit dynamics underlying the RF structure and fails to capture the RF properties 

such as context dependent (David et al., 2004), contrast dependent (Enroth-Cugell and 

Robson, 1966; Sceniak et al., 1999) and nonlinearity (Hochstein and Shapley, 1976). In 

Chapter 2: we reproduced neuronal center/surround RF in a network with recurrent 

excitation and inhibition. Different from the difference-of-Gaussian (DOG) description, 

the recurrent network has a global inhibitory feedback instead of locally distributed 

Gaussian feedforward inhibition. The observed neural center/surrounding RF structure 

results from the interaction between the excitatory and inhibitory neuron group.  
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In Chapter 3: We established a neural network composed of tectal L10 and Ipc neurons 

and reproduced the in vivo observed oscillatory bursts of Ipc cells in response to visual 

stimulation (Marin et al., 2007). While depolarized by step current injections, both L10 

and Ipc neurons respond with regular tonic spikes. The neurons show high frequency 

spiking at the onset of the stimulus and then adapts to a steady state with relatively low 

firing frequency. We demonstrate in a computational model that oscillatory burst 

generation at Ipc neurons can be caused by strong and brief feedforward synaptic 

conductance changes led by the L10 activities. The mechanism is sensitive to spike-rate 

adaptation. Moreover, the bursting activity is dependent on the correlation in the 

presented stimuli. 

 

The isthmotectal system competitively selects the most salient stimulus (Marin et al., 

2007; Asadollahi et al., 2010, 2011; Mysore et al., 2010) in a complex visual scene. 

Winner-take-all (WTA) circuit is proposed as the underlying mechanism that subserves 

the competitive selection. However, classical discussion of WTA circuit has been focused 

on its functional role as a maxima detector (Mao and Massaquoi, 2007). Its response to 

dynamical stimulation profile is still poorly understood. In Chapter 4, we investigated an 

experimentally constrained model where the tectal L10, Ipc and Imc neurons are 

considered. Various experimental observations are reproduced and predictions are made. 

We illustrate in the model that the antitopographic inhibitory feedback from Imc neurons 

mediates winner-take-all mechanisms and enable the network to select globally the 

strongest stimulus in the visual field. This network is also capable of selecting among the 

multiple stimuli the most novel one with the facilitation of cellular spike rate adaptation. 
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Top-down input from forebrain area biases the competitive stimulus selection via its 

control over the local excitatory and antitopographic inhibitory circuits. 

 

The competitive interactions within isthmotectal system determine the activity of Ipc 

neurons, the rhythmic bursts of which are found to gate the signal transferring from OT to 

higher area in the brain e.g. rotundus, entopallium (Marin et al., 2012). Inactivation of Ipc 

activities impairs the neural responses at the high visual areas. In Chapter 5, we 

investigated the role of this localized feedback in motion processing with both in vitro 

whole cell recordings and computational modeling. Pulse stimulation at the superficial 

layer of tectal slices triggers the spiking response of tectal SGC-I neurons in a 

probabilistic manner (Luksch et al., 2004). The dynamical response suggests the 

involvement of certain depression mechanisms in retino-tectal transmissions. To further 

understand the role of Ipc feedback in determining the transmission, we bath applied 

mecamylamine, an antagonist of nicotinic acetylcholine receptor (nAChR). The recorded 

change of response implies the blockage of nAChRs slows the recovery speed of retino-

SGC synapses from depression. Tectal neurons respond to Ipc stimulation with excitatory 

EPSPs and spikes. We show that the application of CNQX greatly reduced the response 

of tectal neurons and the experimental results are consistent with the observation that 

both cholinergic and glutamatergic pathways are involved in Ipc feedback (Wang et al., 

1995; Wang 2003). We illustrate the role of Ipc feedback in motion processing by 

establishing a model network of the retino-tecto-rotundal pathway and the isthmotectal 

pathway. We show that the cholinergic feedback of Ipc neurons modulates divisively the 

response of tectal SGC-I neurons and the very same mechanisms can cause divisive 
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inhibition (Asadollahi et al., 2011). We also argue that the involvement of a strong Ipc 

feedback could induce coherent activities across the SGC-I population. 

 

Neurons encode the information of surrounding environment into different patterns of 

action potentials. The number of action potential occurrence within a unit time window is 

termed firing rate. In Chapter 2-5, we build neural networks of spiking neuron by 

specifically considering the occurrence of action potentials. However, it is not always 

necessary to model the neuron activities with this detail. In Chapter 6 and Chapter 7, we 

simplify the computational models by considering only neural firing rate and reveal the 

properties of isthmotectal system from dynamic perspectives.  

 

In Chapter 6, we constructed a network with two neurons mutually inhibiting each other. 

The model is designed as a simplified version of the competitive network considered in 

Chapter 4. Stimuli of two different scenarios are considered: static scene and dynamic 

scene. In a static scene, two stimuli are presented simultaneously while in a dynamic 

scene the two stimuli are presented in sequential order. We demonstrated that a two 

dimensional system is sufficient to reproduce WTA selection in a static scene. With weak 

mutual inhibitions, the network acts in a dynamic region where the neural activity 

triggered by the two stimuli suppress each other. As the inhibition increases, the network 

undergoes a nonlinear bifurcation and enables the network to select the stronger stimulus. 

In a dynamical scene, the parameters associated with the adaptation behavior are critical 

for novelty preference selection. We show that intermediate adaptation facilitates the 
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network to select between two stimuli the novel one while weak or strong adaptation 

leads to WTA and oscillatory behavior respectively. 

 

In Chapter 7, we consider the dynamics of the isthmotectal system by constructing a 

neural network of three neurons that represent L10, Ipc, and Imc respectively. 

Propagation delays are introduced and the system is described by a three-dimensional 

delayed differential equations (DDE) set. We analyzed the stability of the three-neuron 

system. Rich dynamics (stable oscillation, multi-stability) appear as synaptic strengths 

vary. The stable region shrinks as the delay increases. 
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2 A dynamical recurrent neural network 

reproduces the characteristic center/surround 

response profile 

Receptive field (RF) describes a spatial region where the presence of a stimulus can 

evoke the response of a neuron. Center/surround organized RF is found common 

throughout the whole visual system and is normally considered as a structure resulted 

from feedward excitation and inhibition. Here we investigated a circuitry model and 

reveal that the characteristic response of a center/surround RF could be reproduced 

through the dynamics of an interactive network with local excitation and global 

inhibition. This model also predicts stimulus dependent behavior of a RF structure. 

 

2.1 Introduction 

Antagonistic center/surround RF is common throughout the visual pathway (Kuffler, 

1953; Hubel and Wiesel, 1959, 1961; Kapadia et al. 1999). A common description of the 

RF is by a linear filter whose kernel is the difference of two independent Gaussian 

functions (DOG), which was originally introduced for the on-off/off-on type retinal 

ganglion cells (Rodieck and Stone 1965; Rodieck 1965). The DOG model is also wildly 

adopted as phenomenological descriptions for RFs of neurons in primary visual cortex 

(Sceniak et al., 1999, 2001; Chen et al., 2012). The computational model captures the 

physiological properties of excitatory and inhibitory neural response to visual stimulation 

and successfully predicts the response of retinal ganglion cells to motion (Rodieck 1965). 
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However, the linear DOG model fails to account multiple properties of center/surround 

RFs such as nonlinearity (Enroth-Cugell and Robson, 1966), contrast and context 

dependence (Sceniak et al., 1999; Worgotter and Eysel, 2000).  The neural RF is also 

altered dynamically by statistics of natural stimuli (David et al., 2004, Talebi and Baker 

Jr, 2012).  

 

To interpret various properties of neural RFs, phenomenological models with 

sophisticated designs are introduced (Hochstein and Shapley, 1976; Soodak, 1986; Victor 

JD 1987; Cauvanaugh et al., 2002). However, RF structure of a neuron is essentially 

determined by the interactive mechanisms of the intricate networks it connects to. 

Understanding the structure in terms of neurobiological components and the interactive 

dynamics is fundamental to neuroscience. Efforts have been made to unveil the circuitry 

mechanisms with different approaches (McMahon et al., 2004; Olshausen and Field, 

1996; Anderson et al., 2001, Demb et al., 1999). So far, computational models have been 

focusing on the discussion of the spatial origins of RF structure (Schwabe et al., 2006; 

Somers et al., 1998) but the temporal dynamics of RFs are rarely talked.  

 

Here, we study the center-surround RF structure in the context of a concrete neural 

network, where two population (excitatory and inhibitory) of spiking neurons form 

mutual connections with each other. Different from common local inhibitory feedback 

(Somers et al., 1998), the model includes a group of inhibitory neurons that project 

globally to the excitatory group. We show that the center-surround RF is generated in the 

recurrent feedback loop via the dynamical interaction between the two populations. 
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2.2 Methods 

2.2.1 Recurrent neural network with global inhibitory feedback 

We consider a recurrent network consisting of 2 linear arrays: the excitatory group and 

inhibitory group (Fig. 2.2a). Each group contains 300 neurons that are modeled as leaky-

integrate-fire neuron with spike-rate adaptation. Below spiking threshold V! ,i , the 

membrane potential of ith neuron 

! 

Vi  evolves according to the differential equation 

 ! idVi / dt = E i"Vi " Ri Isra,i + Is,i " Ie,i( ) . Whenever the membrane potential 

! 

Vi reaches 

the threshold iV ,θ , 

! 

Vi is instantaneously reset to iresetV ,  and interpreted as a spike. The 

other cellular parameters are denoted as following: the reset potential iresetV , , the resting 

membrane potential Ei , the membrane input resistance Ri , and the membrane time 

constant iτ .  

 

The firing-rate of the neurons is modulated by spike-rate adaptation current

I sra,i= gsra,i (t)(Vi ! Esra,i ) . Each time a spike occurs, the spike-rate adaptation 

conductance gsra,i  increases by an amount !gsra,i  i.e., gsra,i (t
+ )! gsra,i (t

" ) + #gsra,i  and 

subsequently decays exponentially with adaptation time constant isra,τ , i.e., 

! sra,idgsra,i / dt = "gsra,i  until the next spike occurs. The synaptic current 

Is,i = gijPijwij (Vi ! Eij )
j
"  from neuron j  to neuron i  is proportional to the open 

probability ijP  of the synaptic conductance, which has the form of
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Pij (t) = Bij e!(t! t j
k )/"1,ij ! e!(t! t j

k )/"2,ij( )
k
# . The normalization factor 

Bij = ((! 2,ij / !1,ij )
! rise,ij /!1,ij " (! 2,ij / !1,ij )

! rise,ij /!2,ij )"1  ensures that the peak value of ijP  generated 

by a single spike to be 1. The synaptic rise time is given by ! rise,ij = !1,ij! 2,ij / (!1,ij " ! 2,ij ) . 

The maximum synaptic conductance is denoted ijg , ijE  is the synaptic reversal potential, 

and ijw  is the weight matrix. The time constants ij,1τ  (fall time) and ij,2τ  ( ijij ,2,1 ττ > ) 

determine the time course of synaptic current. The variable k
jt  represents the time at 

which neuron j  generates the spike k . A summation is performed over all spikes 

generated by neuron j .  

 

In order to make the network specific we choose the parameter values of excitatory, 

inhibitory neurons and synapses based on in vitro intracellular recordings in the avian 

isthmotectal system (Shao et al. 2009) unless stated otherwise. All conductance are 

expressed in terms of an average membrane conductance, 78.2=mg  nS. For the basic 

cellular parameters the values are: V! ,E = "39  mV, V! , I = "40  mV, Vreset ,E = !50  mV,

Vreset , I = !60  mV, EE = !55  mV, EI = !64  mV, RE = 480  MΩ, RI = 240  MΩ, 

! E = 104  ms, ! I = 50  ms. The subscription E/I indicates the excitatory/inhibitory neuron 

group. For the spike-rate adaptation the parameter values are: ! sra,E = 50  ms, ! sra, I = 80  

ms, !gsra,E = 0.375gm , !gsra, I = 2.25gm , and Esra,E = Esra, I = !70  mV. The synaptic time 

constants for the excitatory synapses are: !1, IE = 7.6  ms, ! 2, IE = 0.47  ms (Shao et al. 

2009). The synaptic time constants for the inhibitory projections are !1,EI = 5.6  ms and 

! 2,EI = 0.3  ms, which are commonly used for GABAergic synapse (Destexhe et al. 1994). 
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The synaptic reversal potentials EIE = 0.0  mV, EEI = !80.0  mV, are consistent with 

literature values for excitatory and inhibitory synapses (Koch 1999). The maximum 

synaptic conductances for the excitatory and inhibitory projections are held fixed, 

gIE = 1.5gm and gEI = 0.24gm .  All others are specified in the text. 

 

We assume that the network includes topographic feedforward and global feedback 

connections, which are incorporated in the weight matrix ijw . Gaussian distribution 

describes the feedforward projections. For instance, the topographic projection from 

excitatory neuron j  to inhibitory neuron i  follows wij = e
!(i! j )2 /(2" IE

2 ) , where ! IE  

describes the width of the distribution and ! IE = 16 . The global feedback projection is 

generated according to a homogeneous distribution wij = 1 . 

 

The external excitatory stimulus, are modeled as a series of α-function 

I0 (t) =
ast
! s
exp(!t / ! s )  of frequency f , where as = 0.6  and ! s = 5.6  ms. The stimulus is 

centered at neuron #c and of half width s , i.e., 2s +1  neurons of the excitatory neuron 

centered at location c  receive stimulus input formulated by 

Ie,i = I0 (t)H (i ! (c ! s))H (c + s ! i) . The Heaviside step function, H , expresses that the 

current to L10 neurons is non-zero between neuron # (c ! s)  and # (c + s)  and zero 

elsewhere. 
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The output neuron is modeled using Hill’s function of the form arn / (rn + bn ) . Here 

! 

r  is 

the input firing rate from presynaptic neurons, 

! 

a  is the saturation firing rate, 

! 

b is the 

input firing rate when the output reaches the half of its saturation value, and 

! 

n describes 

the steepness of the response curve. These parameters are chose as a = 40 , b = 20 , 

n = 2 . 

 

2.2.2 Difference of Gaussian 

To compare our results with the DOG model, the simulated size-response curve is fitted 

by DOG function of the form ke e!(2t /re )
2

dt
!w

w

" ! ki e!(2t /ri )
2

dt
!w

w

" , where re  and ri  are the 

size of the excitatory and inhibitory receptive field respectively. The relative strength of 

the two parts are indicated by the coefficients ke  and ki . 

 

2.3 Results 

2.3.1 A recurrent neural network with local excitation and global inhibition 

Widespread lateral connections in cortical and sub-cortical areas (Gilbert, 1992; Gilbert 

et al., 1996; Wang, 2004) are likely to substrate the integration of spatial information of 

the visual world. To understand the RF structure that could result from such network 

organizations, we consider a network with two arrays of neurons: one excitatory group 

and one inhibitory group. The excitatory neurons project topographically to the inhibitory 

neurons, whereas, the inhibitory neurons projects globally to every excitatory neuron 

(Fig. 2.1a). The stimuli are spots of increasing size and deliver Poisson spike 

trains/regular pulse trains to the excitatory neuron group. In analogy to the linear-filter 
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description, we introduce an output neuron that receives input from excitatory neurons 

around the stimulus center, which could be interpreted as the neuron’s excitatory 

receptive field (eRF). The output neuron transfers the average firing-rate of its eRF 

through a sigmoid function. The parameters of the sigmoid function are chosen so that 

the output neuron faithfully represents the activity of its eRF without reaching the 

saturation branches of the sigmoid function. 

 

2.3.2 A feedforward size-response profile mimics recurrent circuit responses 

In the presence of regular spike train, the response curve of the output neuron follows the 

characteristic response profile of a center/surround RF: as the stimulus size increases the 

neuron response reaches a peak and then fall to a non-zero steady state. Specifically, for 

small size spots, parts of the output neuron’s eRF are activated, which excite the 

corresponding inhibitory neurons as well. With increasing spot size, more excitatory 

neurons are activated and the response climbing to the peak accordingly. As the spot size 

reaches beyond the eRF of the output neuron, the excitatory neurons within eRF 

increasingly receive more lateral inhibitions. As a result, the response of the output 

neuron starts to decrease. Intuitively, further increase of the spot size would induce more 

inhibition and eventually terminate the activity of the output neuron. However, the 

neuron reaches a steady state of non-zero firing rate (Fig. 2.1b). 

 

The non-zero asymptote of the response curve is a result of the dynamic interaction 

between the excitatory and inhibitory neurons. The inhibitory neurons are driven by the 

pre-synaptic excitatory neurons. Under the stimulation of periodic pulse train, the 
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inhibitory current always occurs within a short period after the spikes of the excitatory 

neurons. As the stimulus size increases, more inhibitory neurons are activated and the 

inhibitory conductance increases proportionally. With stimulus of small size, the 

membrane potential of the center excitatory neuron is far above the synaptic reversal 

potential ~ -80 mV. Therefore, the inhibition current is proportional to the synaptic 

conductance. With larger stimulus, the membrane potential is hyperpolarized close to the 

synaptic reversal potential. As a result, although the synaptic conductance increases, the 

inhibitory current saturates (Fig. 2.1c), which is also known as shunting. Accordingly, the 

firing-rate of the neuron within the eRF decreases and finally reaches the steady state. On 

the other hand, the decreased firing rate of excitatory neuron leads to lower activities of 

the inhibitory neurons and therefore reduces inhibitory current, which further enhances 

the saturation of the inhibitory current. 

 
Figure 2.1 a) A recurrent neural network with excitation and inhibition. The feedforward 
projections are topographic excitation of Gaussian distribution. The feedbacks are global 
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inhibition of homogeneous distribution. Stimulus is modeled as pulse trains of alpha-
function fed into the excitatory group. The output neuron transfers the average firing rate 
of the excitatory neurons around the stimulus center through a sigmoid function. b) The 
response curves to stimulus of periodic pulse train and Poisson pulse train (60Hz) are 
indicated by filled circle and square respectively. The simulated results are fitted to DOG 
model (solid line). The inset shows the excitatory and inhibitory components of the DOG 
model. The excitatory components of the two response curves are close while response 
curve to Poisson pulse train shows relatively larger inhibitory surrounding. c) From top to 
bottom shows the time course of membrane potential, synaptic conductance, and synaptic 
currents of the center excitatory neuron respectively. The stimuli are periodic pulse train. 
The gray level indicates width of the stimulus (also pointed out by arrows in b).  d) From 
top to bottom shows the time course of membrane potential, synaptic conductance, and 
synaptic currents of the center excitatory neuron respectively. The stimuli are Poisson 
pulse train. The gray level indicates width of the stimulus (also pointed out by arrows in 
b). 
 

2.3.3 The response curve is modulated by the spatio-temporal pattern of the 

stimulus 

Neuron RFs are stimulus dependent (Kapadia et al. 1999; Solomon et al. 2002, Angelucci 

et al., 2002). To view how stimulus pattern would affect the RF structure in the model, 

we stimulate the network with spatially uncorrelated Poisson pulse train. As the stimulus 

size increases, the response curve reaches a peak then decreases, maintaining the 

characteristic shape. However, comparing to regular spike train, the response to the 

Poisson spike trains shows lower steady state firing-rate and suggests a larger surround 

inhibition (Fig. 2.1b). Driven by spatially uncorrelated Poisson spike trains, the excitatory 

neurons fire randomly and so do the inhibitory neurons. Considering the excitatory 

neuron at the center of the stimulus, its synaptic conductance changes every time an 

inhibitory neuron fires regardless of its location (due to the global inhibitory feedback). 

Therefore, although the spike timings vary greatly among individual inhibitory neurons, 

the synaptic conductance deflections of the excitatory neuron distribute evenly along the 
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time-axis (Fig. 2.1d). With increased stimulus size, the deflection happens more 

frequently and with higher amplitude. Since the spiking time is random now, the 

deflections do not necessarily occur during the hyperpolarizing phase of the excitatory 

neuron and the inhibitory current saturation only happens occasionally. Therefore, a 

larger inhibition effects is expressed after the current is integrated by the excitatory 

neuron.  

 
Figure 2.2 Comparison between linear-filter description and the recurrent network 
description. a) In a linear filter description, stimulus excites the excitatory and the 
inhibitory component of the RF. The output neuron sums up the two components. Since 
the inhibitory surround has a larger spatial extension than the excitatory center, the 
response curve reaches a peak and then decreases as the stimulus size increases. b) In the 
new recurrent network description, the stimulus only activates the excitatory neural 
group. The excitatory group and the inhibitory group interact though the feedback loop. 
The activity of the excitatory group is read out by the output neuron and the response 
curve shows the same characteristic shape as of in the filter description. 
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2.4 Discussion 

Linear-filter has been used as a standard technique in describing neuron RF. This idea 

that roots in the difference-of-Gaussian (DOG) model (Rodieck, 1965; Einevoll and 

Plesser, 2004) has also been applied to cells of simple to complex RF structures (Rust et 

al., 2005). However, the assumption of non-interactive RF subunits behind the 

description is only for mathematic simplicity but not biologically based (Fig. 2.2a). We 

use a completely different approach and build a model that is based on concrete neural 

circuitry. We construct a network consisting of topographic excitation and global 

inhibition (Fig. 2.2b). Topographic excitation is common in the visual pathway and wide-

field inhibition is also an anatomical structure shared among visual systems having 

center/surround RF (Rockland et al. 1982; Rockland and Lund 1983; Mysore, 2010). The 

model reproduced the characteristic response of a center/surround RF.  Moreover, in the 

network model, stimulus-dependent RF structure comes naturally as an inherited property 

of dynamic interaction between excitatory and inhibitory subunits. 
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3 Generating oscillatory bursts from a network of 

regular spiking neurons without inhibition 

 

Avian nucleus isthmi pars parvocellularis (Ipc) neurons are reciprocally connected with 

the tectal layer 10 (L10) neurons and respond with oscillatory bursts to visual stimulation. 

Our in vitro experiments show that both neuron types respond with regular spiking to 

somatic current injection and that the feedforward and feedback synaptic connections are 

excitatory, but of different strength and time course. To elucidate mechanisms of 

oscillatory bursting in this network of regularly spiking neurons, we investigated an 

experimentally constrained model of coupled leaky integrate-and-fire neurons with spike-

rate adaptation. The model reproduces the observed Ipc oscillatory bursting in response 

to simulated visual stimulation. A scan through the model parameter volume reveals that 

Ipc oscillatory burst generation can be caused by strong and brief feedforward synaptic 

conductance changes. The mechanism is sensitive to the parameter values of spike-rate 

adaptation.  

 

3.1 Introduction 

Oscillatory bursts play an important role in stimulus encoding (Gabbiani et al. 1996; 

Lesica, Stanley 2004; Oswald et al. 2004; Reinagel et al. 1999) and in the communication 

between neurons (Izhikevich et al. 2003; Lisman 1997; Sherman 2001). Mechanisms of 

oscillatory burst generation (Coombes and Bressloff 2005) range from the interaction of 

fast and slow currents in single neurons (Izhikevich 2007; Krahe and Gabbiani 2004; 
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Rinzel and Ermentrout 1998; Wang and Rinzel 2003) to the interaction of neurons in 

networks typically consisting of excitatory and inhibitory connections (Buzsaki 2006; 

Traub et al. 2004). Here, we investigate oscillatory burst generation in a recurrently 

connected network of spiking neurons with excitatory synapses, where activity-dependent 

adaptation replaces the stabilizing role of inhibition. 

 

The avian isthmo-tectal system (Fig. 3.1) plays a key role in visual information 

processing (Cook 2001; Maczko et al. 2006; Marin et al. 2007; Wang 2003). It consists of 

three key anatomical elements. A subpopulation of tectal layer 10 (L10) neurons receive 

retinal inputs and project to the ipsilateral nucleus isthmi pars parvocellularis (Ipc) and 

the nucleus isthmi pars magnocellularis (Imc) in a topographic fashion (Wang et al. 2004, 

2006). The cholinergic Ipc neurons form topographic reciprocal connections with the 

tectum, where their axons terminate in a columnar manner ranging from layer 2 to 12 

(Wang et al. 2006). The GABAergic Imc neurons consist of two cell types. One type 

projects broadly to the Ipc, whereas the other type projects upon tectal layers 10 to 13 

(Wang et al. 2004). 

 

Ipc neurons respond with fast oscillatory bursts to flashing or moving visual stimulations 

(Fig. 3.1(a); Marin et al. 2005). Because of the extensive arborisation of Ipc axons in 

upper tectal layers (Wang et al. 2006), the Ipc oscillatory bursts (Marin et al. 2005) are 

also detected in extracellular recordings from superficial and intermediate tectal layers 

(Knudsen 1982; Neuenschwander and Varela 1993; Neuenschwander et al. 1996). Thus, 

as pointed out by Marin and co-workers, oscillatory burst recordings in the tectum may 
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falsely be interpreted as oscillatory bursts originating in the tectum (Marin et al. 2005). 

The oscillatory bursts in tectal recordings disappear after injecting micro-drops of 

lidocaine into the corresponding area of the Ipc nucleus (Marin et al. 2005), thus 

confirming the role of the Ipc neurons in the oscillatory burst generation. The Ipc nucleus 

receives two inputs (Fig. 3.1(b), (c)). It receives glutamatergic (Hellmann et al. 2001; 

Marin et al. 2007) and possibly cholinergic (Britto et al. 1992; Wang et al. 2006) inputs 

from a subpopulation of tectal L10 neurons, characterized by unusual “shepherd’s crook” 

axons that arise from the apical dendrite and then make a U-turn to leave the tectum 

through deeper layers (Wang et al. 2006). It receives GABAergic input from the adjacent 

Imc nucleus (Wang et al. 2004). Importantly, the Ipc oscillatory burst responses persist 

when the Imc nucleus is inactivated via local application of CNQX (see Fig. 6D in Marin 

et al. 2007). Further, the retinal inputs to L10 neuron dendrites in upper tectal layers (Fig. 

3.1(c)) show no evidence of bursting; rather in vivo recordings seem to suggest that spots 

of light produce continuous and long-lasting evoked potentials in superficial tectal layers 

(Holden 1980; Letelier et al. 2000). These observations narrow down the possible 

mechanisms for the observed Ipc oscillatory burst generation to the reciprocally 

connected L10 and Ipc neurons. For instance, the delays in the reciprocal connection 

(Meyer et al. 2008) could imply the involvement of delayed feedback in the induction of 

oscillatory dynamics (Brandt et al. 2006; Brandt and Wessel 2007; Brandt et al. 2007; 

Chacron et al. 2005; Doiron et al. 2003; Laing and Longtin 2003; Milton 1996). 

 

To investigate the mechanisms of the observed oscillatory bursting in Ipc, we conducted 

whole-cell recordings from L10 and Ipc neurons combined with synaptic stimulations in 
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chick brain slice preparations (Fig. 3.1(b)). Based on the in vitro experimental results, we 

built a model network consisting of reciprocally connected leaky integrate-and-fire 

neurons, representing L10 and Ipc neurons, and tested under what conditions this 

experimentally constrained model network reproduces the observed bursting activity in 

Ipc.  

 

Figure 3.1 Schematic drawings of in vivo and in vitro recording set-ups. (a) Recordings in 
vivo showed that nucleus isthmi pars parvocellularis (Ipc) neurons responded to moving 
dots and flashing dots with oscillatory bursts (Marin et al. 2005). The rectangle inset 
shows a schematic lateral view of the chick brain with the retina, optic nerve, and optic 
tectum (OT) in red. The dashed line indicates the approximate location of the transverse 
slicing. (b) A transverse slice of the chick midbrain both in histological image and 
corresponding outlines (scale bar = 2 mm). The nucleus isthmo-opticus (ION) and the 
nucleus semilunaris (SLu) are not considered in this study. The patch-electrode schematic 
indicates a typical recording location from an Ipc neuron. The dashed rectangle indicates 
the location of the schematic circuitry described in (c). (c) Schematic drawings of the 
isthmo-tectal circuitry consisting of the retinal ganglion cells axons (vertical black 
arrows), the tectal layer 10 (L10) neurons (red), the Ipc neurons (green), and the nucleus 
isthmi pars magnocellularis (Imc) neurons (blue). 
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3.2 Methods 

3.2.1  Experiments 

White Leghorn chick hatchlings (Gallus gallus) of less than 3 days of age were used in 

this study. All procedures used in this study were approved by the local authorities and 

conform to the guidelines of the National Institutes of Health on the Care and Use of 

Laboratory Animals. Animals were injected with ketamine (40 mg per kg, i.m.). Brain 

slices of the midbrain were prepared following published protocols (Dye and Karten 

1996; Luksch et al. 2001). Briefly, preparations were done in 0°C, oxygenated, and 

sucrose-substituted saline (240 mM sucrose, 3 mM KCl, 5 mM MgCl2, 0.5 mM CaCl2, 

1.2 mM NaH2PO4, 23 mM NaHCO3, and 11 mM D-glucose). After decapitation, the 

brains were removed from the skull, and the forebrain, cerebellum, and medulla 

oblongata were discarded. A midsagittal cut was used to separate the tectal hemispheres. 

The tectal hemispheres were sectioned at 500 µm on a tissue slicer (Vibroslice, Campden 

or VF-200, Precisionary Instruments) in either the transverse or the horizontal plane. 

Slices were collected in oxygenated saline (120 mM NaCl, 3 mM KCl, 1 mM MgCl2, 2 

mM CaCl2, 1.2 mM NaH2PO4, 23 mM NaHCO3, and 11 mM D-glucose) and kept 

submerged in a chamber that was bubbled continuously with carbogen (95% oxygen, 5% 

CO2) at room temperature. The slice was then transferred to a recording chamber (RC-

26G, Warner Instruments) mounted on a fixed-stage upright microscope equipped with 

differential interference contrast optics (BX-51WI, Olympus). The slice was held gently 

to the bottom of the chamber with an anchor of nylon threads, and the chamber was 

perfused continuously with oxygenated saline at room temperature. The potential effects 
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of temperature or age on measured cellular and synaptic properties were not addressed in 

this study. The L10 and Ipc neurons are visible with DIC optics. 

 

Local electrical stimulation was achieved by inserting bipolar tungsten electrodes under 

visual control into either the tectal layers 10/11, or the Ipc nuclei with a three-axis 

micromanipulator (U-31CF, Narishige). Electrodes were custom-built from 50-µm 

diameter, insulated tungsten wires (California Fine Wire) that were glued together with 

cyanoacrylate and mounted in glass micro capillaries for stabilization. The wires 

protruded several hundred µm from the capillaries, and the tips were cut at an angle. 

Stimulus isolators (Isolated Pulse Stimulator 2100, AM Systems) generated biphasic 

current pulses (20 – 200 µA, 500 µs). 

 

Whole-cell recordings were obtained with glass micropipettes pulled from borosilicate 

glass (1.5 mm OD, 0.86 mm ID, AM Systems) on a horizontal puller (P-97, Sutter 

Instruments or DMZ Universal Puller, Zeitz Instruments) and were filled with a solution 

containing 100 mM K-Gluconate, 40 mM KCl, 10 mM HEPES, 0,1 mM CaCl2, 2 mM 

MgCl2, 1.1 mM EGTA, 2 mM Mg-ATP, pH adjusted to 7.2 with KOH. Electrodes were 

advanced through the tissue under visual guidance with a motorized micromanipulator 

(MP-285, Sutter Instruments) while constant positive pressure was applied and the 

electrode resistance was monitored by brief current pulses. Once the electrode had 

attached to a membrane and formed a seal, access to the cytosol was achieved by brief 

suction. Whole-cell recordings were performed with the amplifier (Axoclamp 2B, Axon 

Instruments or SEC-05L, npi-electronic) in the bridge mode (current clamp). The series 



	
   35  

resistance was estimated by toggling between the bridge and the DCC (discontinuous 

current clamp) mode, and subsequently compensated with the bridge balance. 

Depolarizing and hyperpolarizing currents were injected through intracellular electrodes. 

Analog data were low-pass filtered (4-pole Butterworth) at 1 kHz, digitized at 5 kHz, 

stored, and analyzed on a PC equipped with a PCI-MIO-16E-4 and LabView software 

(both National Instruments). 

 

Labeling of a subset of recorded neurons was carried out as described previously (Luksch 

et al. 1998; Mahani et al. 2006). In brief, whole-cell patch recordings were obtained as 

described above. Additionally, the electrode solution contained 0.5% Biocytin (w/v) to 

label the recorded neurons. Individual cells were filled intracellularly with 2 nA of 

positive current injection over 3 minutes through the patch electrode. After recording and 

labeling, slices were kept in oxygenated ACSF for an additional 30 minutes and 

subsequently fixed by immersion in 4% paraformaldehyde in PB for at least 4 hours. 

Slices were then washed in phosphate buffer (PB, 0.1 M, pH 7.4) for at least 4 hours, 

immersed in 15% sucrose in PB for at least 4 hours and then immersed in 30% sucrose in 

PB for 12 hours, and resectioned at 60 µm on a freezing microtome. The sections were 

collected in PB and the endogenous peroxidase blocked by a 15-minute immersion in 

0.6% hydrogen peroxide in methanol. The tissue was washed several times in PB, and 

then incubated in the avidin-biotin complex solution (ABC Elite kit, Vector Labs) and the 

reaction product visualized with a heavy-metal intensified DAB protocol. Following 

several washes in PB, the 60 µm-thick sections were mounted on gelatin-coated slides, 

dried, dehydrated, and coverslipped. Sections were inspected for labeled neurons, and 
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only data from cells that could unequivocally be classified according to published criteria 

(Wang et al. 2004, 2006) were taken for further analysis. Cells were reconstructed at 

medium magnification (10x or 20x) with a camera lucida on a Leica microscope and 

projected onto the 2D plane. 

 

3.2.2 Two-neuron model 

We investigated the network dynamics of two reciprocally connected model neurons, 

representing the L10 and the Ipc neuron in the avian isthmotectal system. Each model 

neuron is of the leaky integrate-and-fire type with spike-rate adaptation. The dynamic of 

the membrane potentials 10 LV  and IpcV  are determined by two coupled differential 

equations: 

)( 10,1010,10,1010,
10

10, LeLIpcLsraLmLLr
L

Lm IIIRVE
dt
dV

−+−−= →τ              (1) 

)( 10,,,, IpcLIpcsraIpcmIpcIpcr
Ipc

Ipcm IIRVE
dt
dV

→+−−=τ             (2) 

where 10,LrE  denotes the resting membrane potential of the L10 neuron, 10,LmR  is the 

membrane input resistance, and 10,Lmτ  is the membrane time constant. The measured 

membrane time constants (Table 3.1) are larger than the measured axonal delays (Meyer 

et al. 2008). Thus delays in synaptic voltage responses of leaky integrate-and-fire model 

neurons are dominated by the membrane time constants. Therefore, we did not explicitly 

include axonal delays in the network model. When the membrane potential 10LV  reaches 

the threshold 10,LV θ  it is reset to 10,LresetV  instantaneously. This is interpreted as the 
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occurrence of a spike. The external current input 10,LeI  to the L10 neuron represents the 

stimulus from the retinal ganglion cell. The spike-rate adaptation current,  

))(( 10,1010,10, LsraLLsraLsra EVtgI −=                                        (3) 

has the adaptation reversal potential 10,LsraE , and the time varying adaptation 

conductance )(10, tg Lsra , which evolves according to the differential equation  

 10,
10,

10, Lsra
Lsra

Lsra g
dt

dg
−=τ                                           (4) 

Whenever the neuron fires a spike, the adaptation conductance changes according to  

 )()( 10,10,10, LsraLsraLsra gtgtg Δ+→ −+                                (5) 

The synaptic current  

))(( 1010101010 LIpcLLIpcLIpcLIpc EVtPgI →→→→ −=                             (6) 

from the Ipc neuron to the L10 neuron projection is proportional to the open probability 

)(10 tP LIpc→  of the synaptic conductance, where 10LIpcg →  is the maximum synaptic 

conductance and 10LIpcE →  is the synaptic reversal potential. The open probability 

)(10 tP LIpc→  of the synaptic conductance from the Ipc to the L10 neuron has the form 
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ensures that the peak value of )(10 tP LIpc→  generated by a single spike equals to 1, the 

variable k
Ipct  represents the time at which the Ipc neuron generates the kth  spike, and a 

summation is performed over all spikes generated by the Ipc neuron. The time constant 

10,1 LIpc→τ  and 10,2 LIpc→τ  ( 10,210,1 LIpcLIpc →→ > ττ ) determine the time course of the synaptic 

conductance change. The synaptic rise time is
10,210,1

10,210,1
10,

LIpcIpcL

LIpcLIpc
LIpcrise

→

→→
→ −

=
ττ

ττ
τ , while 

10,1 LIpc→τ  represents the fall time. The variables and parameters of the Ipc model neuron in 

Eq. (2) are all analogous to those of the L10 model neuron. The Ipc model neuron does 

not receive an external current input. 

 

The Ipc steady-state response (taken to start 100 ms after stimulus onset) is represented 

by the “burst score” (Fig. 3.5). A spike preceded by an inter-spike-interval (ISI) of more 

than 10 ms and followed by an ISI of less than 4 ms is classified as the beginning of a 

burst. Subsequent spikes with ISIs of less than 4 ms are part of the burst. All other spikes 

are classified as isolated (Sillito and Jones 2002). The burst score is defined by the 

number of bursts divided by the sum of the number of bursts and the number of isolated 

spikes in the steady-state response. The score equals 1 when all spikes belong to bursts 

and equals 0 when all spikes are isolated. When the firing rate exceeds 1000 Hz the Ipc 

response is classified as diverging. 
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3.2.3 Population model with uncorrelated noise 

For the population model of L10 and Ipc neurons (Fig. 3.6a) each individual neuron is of 

the leaky integrate-and-fire type with spike-rate adaptation as described above. Each 

population consists of 400 neurons. When referring to an individual neuron, we use the 

subscript i  for L10 neurons and the subscript j  for Ipc neurons. The dynamics of the 

membrane potentials iV  (L10 neuron i ) and jV  (Ipc neuron j ) are determined by the 

coupled differential equations: 

)( ,,10,10,10, iieiIpcisraLmiLr
i

Lm IIIRVE
dt
dV

χτ +−+−−= →                       (9) 

  )( 10,,,, jjLjsraIpcmjIpcr
j

Ipcm IIRVE
dt
dV

χτ ++−−= →                         (10) 

The synaptic currents, jLI →10  and iIpcI → , are similar in form to the one described above, 

Eq. (7), but now include contributions from a population of presynaptic neurons. For 

instance, the synaptic current in Ipc neuron j  

∑ →→→ −=
i

IpcLjjijiIpcLjL EVWtPgI )()( 101010                           (11) 

includes contributions from all L10 synaptic inputs to Ipc neuron j . The synaptic 

conductance is the product of the maximum synaptic conductance, IpcLg →10 , and the 

weight distribution  
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of width IpcL →Δ 10 . The latter reflects the narrow topographic projection from L10 to Ipc 

(Wang et al. 2006). The open probability of the synaptic conductance from L10 neuron i  

to Ipc neuron j  has the form  
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The time constants and the normalization factor are the same as described above. The 

variable k
it  represents the time at which the L10 neuron i  generates the kth  spike. The 

total synaptic current received by Ipc neuron j  is therefore a sum of all the synaptic 

currents from the population of L10 neurons. The expression for the synaptic current 

iIpcI →  received by L10 neuron i  has a similar form. 

 

The external current input, )240()160()( ,0, iHiHII ieie −−+= η , to L10 neuron i  

represents the stimulus from the retinal ganglion cell. This external current input has a 

constant component 0I  and a noise component ie,η . The Heaviside step function, H , 

expresses that the current is non-zero to the L10 neurons numbered between 160 and 240 

and zero elsewhere. The noise component, ie,η , is modeled as uncorrelated white noise of 

standard deviation eσ , i.e., '
2

',, )'(2)'()( iieieie tttt δδσηη −= .  

 

To allow for spontaneous activity, each L10 and Ipc neuron receives an uncorrelated 

noise current, iχ  and jχ , respectively. The noise currents are modeled as uncorrelated 

white noise, i.e. '
2
10' )'(2)'()( iiLii tttt δδσχχ −=  and '

2
' )'(2)'()( jjIpcjj tttt δδσχχ −=  of 

standard deviation 10Lσ  and Ipcσ , respectively. 

 

In one set of simulations, we implemented an after-depolarization to the Ipc leaky 

integrate-and-fire model neurons using a phenomenological description (Doiron et al. 
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2007). When an Ipc spike occurs, an after-depolarizing current )(tAxI ADP =  is evoked 

after a time delay ADPτ . Here 

! 

x(t)  evolves according to the set of two differential 

equations 

! 

dx
dt

= y  and ∑ −−+−−=
i

ADPittyx
dt
dy )(2 22 τδααα , where it  is the time at 

which the Ipc neuron spikes, 

! 

"  is the inverse of the time constant of the depolarization 

current and A  is the current amplitude. The ADP current parameters ( 7.0=A  nA, 

5.0=ADPτ  ms, ! = 4.5  s
-1) were chosen for the simulated after-depolarization to match a 

large recorded after-depolarization. 

 

The source code for the model is accessible at http://physics.wustl.edu/dlai/#Codes. 

 

 

3.3 Results 

3.3.1 Cellular and synaptic properties of L10 and Ipc neurons 

A total of 12 neurons located in tectal layer 10 were recorded and were sufficiently 

labeled for unequivocal identification as shepherd’s crook neurons. The Ipc nucleus 

receives glutamatergic inputs from a subpopulation of L10 neurons with the characteristic 

shepherd’s crook axon (Wang et al. 2006). This type of neuron consists of an apical 

dendrite, several basal dendrites, and an axon originating from the apical dendrite with a 

characteristic U-turn before it courses towards the deep tectal layers (Fig. 3.2(a)). The 

average resting membrane potential was –59 ± 8 (mean ± SD, n = 12) mV, the average 

input resistance was 349 ± 198 MΩ, and the average membrane time constant was 105 ± 

77 ms. We analyzed the cellular properties of the L10 neurons with depolarizing somatic 
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current injections from 0.01 to 0.2 nA. The recorded L10 neurons responded with a 

regular series of action potentials (Fig. 3.2(b)). The average firing rates, determined from 

the total number of spikes divided by the duration of the current pulse, increased 

approximately linearly with current amplitude (Fig. 3.2(c)). The average instantaneous 

onset firing rates, determined from the inverse of the first interspike intervals in response 

to the onset of the current pulse, were larger than the average firing rates (Fig. 3.2(c)), 

thus indicating some level of spike-rate adaptation. 

 

A total of 45 cells were recorded in the Ipc nucleus and 27 of them were labeled 

sufficiently to allow for the attribution to the Ipc nucleus. The filled Ipc neurons were 

round or oval in shape and had a bipolar dendritic structure (Fig. 3.2(d)). The efferents 

from Ipc neurons terminate in the optic tectum in “paintbrush” terminal fields in a 

columnar manner (Wang et al. 2006). The average resting membrane potential was –61 ± 

7 mV, the input resistance was 114 ± 37 MΩ, and the average membrane time constant 

was 35 ± 15 ms. The recorded Ipc neurons responded with a regular sequence of spikes to 

depolarizing current injections in the range from 0.1 to 1.0 nA injected into the soma 

(Fig. 3.2(e)). The average firing rates increased approximately linearly with current 

amplitude (Fig. 3.2(f)). For current amplitudes above ~0.5 nA, the average instantaneous 

onset firing rates were larger than the average firing rates (Fig. 3.2(f)), thus indicating 

some level of spike-rate adaptation. For completeness, we tested the possibility of 

intrinsic bursting from hyperpolarized levels, such as the T current-mediated bursting in 

thalamic relay neurons (McCormick and Huguenard 1992; Sherman 2001; Wang 1994; 
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Zhan et al. 1999). We observed regular spiking in response to depolarizing current steps 

from hyperpolarized levels of -90 mV in Ipc neurons (data not shown). 

 

Figure 3.2 Morphological and electrophysiological properties of L10 and Ipc neurons. (a) 
Intracellular biocytin fills of three tectal L10 neurons. The U-shaped axon (arrow head) 
characterizes the center neuron as a shepherd’s crook neuron, which projects to the 
nucleus isthmi. A U-shaped axon is also visible for the left neuron. Scale bar = 20 µm. (b) 
Response of a representative L10 neuron to a 0.1 nA current step. (c) Average firing rate 
(black diamonds) and instantaneous firing rate (the inverse of the first interspike intervals, 
red triangles) vs. current for the population of recorded L10 neurons. The black line 
represents a linear fit ( 61.486.217)( −×= IIF ; 9821.0 2 =r ) of the firing rate, F , as a 
function of the injected current, I , to the measured average firing rate data points. (d) 
Intracellular biocytin fill in an Ipc neuron (scale bar = 50 µm). (e) Response of a 
representative Ipc neuron to a 0.5 nA current step. (f) Average firing rate (black 
diamonds) and instantaneous firing rate (the inverse of the first interspike intervals, red 
triangles) vs. current for the population of recorded Ipc neurons. The black line represents 
a linear fit ( 73.5427.63)( −×= IIF ; 9988.0 2 =r ) of the firing rate as a function of the 
injected current to the measured average firing rate data points. 
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Table 3.1 Single neuron parameters. Abbreviations: τm = membrane time constant, Rm = 
membrane input resistance, Er = resting membrane potential, Vθ = threshold for spiking, 
Vreset = reset voltage, τsra = spike-rate adaptation time constant, Δgsra = spike-rate 
adaptation conductance increment, Esra = spike-rate adaptation reversal potential. 

 

To measure the amplitude and time courses of the reciprocal synaptic connections 

between L10 and Ipc neurons, we positioned an extracellular stimulus electrode in either 

structure and recorded the response to local extracellular electrical stimulation in the 

other one. Recorded Ipc neurons responded to the stimulation in tectal layer 10 with fast 

and strong EPSPs that could generate one to three action potentials for sufficiently strong 

stimulation (Fig. 3.3(a)). The synapse showed little depression (Fig. 3.3(a) inset). From 

seven recorded L10 à Ipc connections we estimated the values for the synaptic time 

constants, 7.42.710,1 ±=→IpcLτ  ms and 16.047.010,2 ±=→IpcLτ  ms, by matching the time 

course of model neuron synaptic responses (Sec. 2.2) to the recorded subthreshold 

EPSPs. The feedback connection was qualitatively different. Recorded L10 neurons 

responded to brief electrical stimulation within the Ipc nucleus with small and long 

lasting EPSPs (Fig. 3.3(b)). The large L10 membrane time constant of approximately 100 

ms precludes a reliable estimation of the synaptic time constant for the Ipc à L10 

connection from the voltage response. Therefore, we limited the quantification of the 

synaptic responses to the time course of the EPSPs. The recorded EPSPs dropped to 37 % 

of their peak value after 87 ± 8 ms (n = 3 cells). These observations indicate that in the 

avian isthmo-tectal system the synaptic conductance change is strong and brief in the 
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feedforward direction, L10 à Ipc, and weak and long-lasting in the feedback direction, 

Ipc à L10. 

 

Figure 3.3 Synaptic properties of the L10 à Ipc and the Ipc à L10 connections. (a) 
Brief electrical stimulation with a biphasic current pulse (200 µA, 500 µs) in tectal layer 
10 evoked an EPSPs plus spikes or just EPSPs in the recorded Ipc neurons. Inset: 
Synaptic current recorded from an Ipc neuron in voltage clamp in response to electrical 
stimulation in tectal layer 10 with a train of 5 pulses of 20 ms interval. The membrane 
potential was held at –70 mV (scale bars = 20 ms, 200 pA). (b) Brief electrical 
stimulation in the Ipc nucleus evoked long-lasting EPSPs in recorded L10 neurons. Note 
the different scale bars in (a) and (b). 
 

 

3.3.2  Determining experimentally constrained model parameters 

For our model investigation into the mechanisms of oscillatory burst generation, we 

considered leaky integrate-and-fire model neurons, representing the L10 and the Ipc 

neuron in the avian isthmotectal system. The cellular properties of a model neuron (Eq. 

(1) to (5)) are specified by 8 parameters. We constrained the parameters by comparing 

the simulated responses of the L10 and Ipc model neurons (Eq. (1) and (2)) to 

depolarizing current injections (Fig. 3.4) with the experimental results (Fig. 3.2). A L10 

(Fig. 3.4(a)) or Ipc (Fig. 3.4(b)) model neuron responds with a regular spike train to an 

injected current pulse. Because of the spike-rate adaptation (Eq. (3) to (5)), a model 

neuron responds with a short inter-spike-interval (ISI) between successive spikes at the 
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onset of a current pulse. The ISI then increases with time t  after the current pulse onset 

and reaches a steady state within the duration of the current pulse. From the simulated 

spike train, we calculated the average firing rate, dividing the number of spikes by the 

duration of the current pulse. We repeated this procedure for different current amplitudes. 

We then derived the model F-I curve by fitting a linear function through the calculated 

average firing rates (Fig. 3.4(c), (d)). We also calculated the inter-spike-interval (ISI) 

between successive spikes in the simulated spike train and fitted an exponential function 

to the calculated values (Fig. 3.4(e), (f)). All 8 cellular parameter values (Table 3.1) were 

tuned within their experimental constraints until the model F-I curve and the ISI 

functions for all current amplitudes (Table. 3.2 and 3.3) matched the experimental data 

(Fig. 3.4(c) to (f)). The 8 cellular parameter values for each neuron were then kept fixed 

for all the simulations presented in the paper.  

 

The model contains two types of synapses (Eq. (6) to (8)), each of which is described by 

4 parameters. We adopted the synaptic reversal potential from the literature. The L10 à 

Ipc projection is mediated in part by glutamate receptor subtypes GluR1 or GluR2/3 

(Hellmann et al. 2001) and is blocked by CNQX (Marin et al. 2007). Therefore, we 

assume a standard value of  010 =→IpcLE  mV for the synaptic reversal potential of the 

glutamate receptor channel complex (Koch 1999). Ipc neurons also show a strong 

somatic staining for the α7 subunit of nicotinic acetylcholine receptors (nAChR) (Britto 

et al. 1992; Wang et al. 2006). Since the reversal potential for the nAChR channel 

complex of –5 mV (Koch 1999) is close to the synaptic reversal potential of 0 mV, we 

did not add the nAChR channel complex as a separate pathway in the model L10 à Ipc 
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projection. Ipc neurons project with dense cholinergic axonal terminals across many 

tectal layers (Bagnoli et al. 1992; Hellmann et al. 2001; Medina and Reiner 1994; 

Sorenson et al. 1989; Wang et al. 2006). Therefore, for the Ipc àL10 projection, we 

assumed  510 −=→LIpcE mV, which is a typical reversal potential for the nAChR channel 

complex (Koch 1999). The time course of the synaptic conductance change is determined 

by two time constants (Eq. (7)). For the Ipc model neuron with AMPA synaptic 

conductances (Hellmann et al. 2001; Marin et al. 2007) typical rise time values, 

32.010, =→IpcLriseτ  ms, and fall time values,  6.510,1 =→IpcLτ  ms, were taken from the 

literature (Destexhe et al. 1994) and are consistent with the estimates based on our 

recordings (Fig. 3.3a). Matching L10 model neuron synaptic response to the recordings 

(Fig. 3.3b) led to a synaptic rise time of 1.110, =→LIpcriseτ  ms and a fall time of 

 1010,1 =→LIpcτ  ms. With the chosen values for the synaptic time constants, the time 

courses of the model synaptic responses (Fig. 3.4(g), (h)) reproduce slow EPSPs in the 

L10 neuron (Fig. 3.3(b)) and fast EPSPs in the Ipc neuron (Fig. 3.3(a)). Note that the 

maximum synaptic conductance is not constrained by the in vitro measurement. The 

extracellular stimulation was not limited to single-axon stimulation, rather the number of 

stimulated synaptic inputs depended on the chosen stimulus current and the position of 

the stimulus electrode relative to the presynaptic axons. 
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Figure 3.4 Cellular and synaptic properties of L10 and Ipc model neurons. (a) The 
response of the L10 model neuron to an injected current pulse of 0.2 nA amplitude. (b) 
The response of the Ipc model neuron to an injected current pulse of 0.7 nA amplitude. 
(c) The fitted F-I curve of the L10 model neuron, 5.74.268)( −×= IIF  ; 9883.0 2 =r . 
The experimental data (average firing rates from Fig. 3.2(c)) of the recorded real L10 
neurons in response to current injections are shown for comparison (gray squares). (d) 
The fitted F-I curve of the Ipc model neuron, 5.60.73)( −×= IIF ; 9992.0 2 =r . The 
experimental data (average firing rates from Fig. 3.2(f)) of the recorded real Ipc neurons 
in response to current injections are shown for comparison (gray squares). (e) The fitted 
ISI curve, ))/exp(1()( BtAtISI −−= , of the L10 model neuron for a current injection of 



	
   49  

0.2 nA (see Table 3.2). The experimental data from 9 recorded real L10 neurons in 
response to the same current injection are shown for comparison (gray circles). (f) The 
fitted ISI curve, ))/exp(1()( BtAtISI −−= , of the Ipc model neuron for a current 
injection of 1.0 nA (see Table 3.3). The experimental data from 18 recorded real Ipc 
neurons in response to the same current injection are shown for comparison (gray 
circles). (g) The synaptic response of the L10 model neuron to a single pre-synaptic 
action potential. The synaptic parameters were  08.210 =→LIpcg nS,  1010,1 =→LIpcτ ms, 

 110,2 =→LIpcτ ms and the cellular parameters were the same as described in the text and 

Table 3.1. (h) The synaptic response of an Ipc neuron to a single pre-synaptic action 
potential. The synaptic parameters were 5.210 =→IpcLg nS,  6.510,1 =→IpcLτ ms, 

 3.010,2 =→IpcLτ ms, and the cellular parameters were the same as described in the text and 

Table 3.1. The synaptic input caused the Ipc neuron to spike two times in a short period 
of time. The number of spikes depends on the chosen value of the maximum synaptic 
conductance. 
 

3.3.3 Mechanisms of oscillatory bursting in a reciprocally coupled pair of L10 and 

Ipc model neurons 

Armed with the biologically plausible and experimentally constrained description of the 

cellular and synaptic properties of individual L10 and Ipc model neurons, we next 

investigated whether a reciprocally coupled pair of neurons (Fig. 3.5(a)) could generate 

oscillatory bursting in the Ipc model neuron in response to a plausible retinal 

representation of a flash of light. Since a brief flash of light generates long-lasting evoked 

potentials in tectal superficial layers in vivo (Holden 1980; Letelier et al. 2000), we 

simulated the retinal input by a depolarizing current pulse of 0.2 nA amplitude and 350 

ms duration into the L10 model neuron. For the chosen values of a strong L10 à Ipc and 

a weak Ipc à L10 maximum synaptic conductance, the current injection generates a 

regular sequence of spikes with an average firing rate of 51 Hz in the L10 model neuron 

(Fig. 3.5(b)). Concurrently, the Ipc model neuron responds with a short burst of spikes to 
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every presynaptic L10 spike, thus generating oscillatory bursting in the Ipc model neuron 

(Fig. 3.5(c)).  

 

Our model simulation shows that the recorded oscillatory bursts in Ipc neurons in 

response to a flash of light (Marin et al. 2005) can be mediated by feedforward 

mechanisms alone. Qualitatively, the following sequence of events causes Ipc oscillatory 

bursts. The retina and its tectal projection transform a brief flash of light into a long-

lasting L10 synaptic current (approximated as an external current input in the model), 

which in turn causes the L10 neuron to spike. The L10 neuron spike generates a large 

depolarizing synaptic current in the Ipc neuron. The synaptic current is sufficiently strong 

to generate a spike and to push the membrane potential repeatedly from the reset value to 

the threshold for spiking, thus generating a burst of multiple spikes with ISIs of less than 

4 ms. A synaptic and a cellular mechanism jointly contribute to the termination of the 

burst; the short duration of the synaptic current, determined by the synaptic fall time, 

IpcL →10,1τ , and the activation of the spike-rate adaptation current with every Ipc spike. The 

arrival of the next L10 spike, approximately 20 ms after the previous one in the displayed 

simulation (Fig. 3.5(b)), evokes the next burst in the Ipc neuron. Since the L10 neuron 

responds to the flash-induced long-lasting L10 synaptic current with a regular spike train, 

the Ipc neuron also responds with a regular sequence of bursts. In short, regular 

sequences of L10 spikes are transformed into regular sequences of Ipc bursts.  
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Table 3.2 Fitting ISI curves, ISI = A(1! exp(!t / B)) , to calculated ISI data points from 

recorded and simulated spike trains for L10 neurons. The small r2  values for the 
experimental data are due to the large variations of ISI values between cells, which are 
also reflected in the large SD of the measured firing rates (Fig. 3.2). The values of A, B 
and r2  for 0.2 nA correspond to Fig. 3.4(e) 
 

This mechanism of Ipc oscillatory burst generation is valid for the parameter area that 

represents a strong feedforward L10 à Ipc and a weak feedback Ipc à L10 maximum 

synaptic conductance (Fig. 3.5(d)). For reduced L10 à Ipc maximum synaptic 

conductance, only sequences of Ipc spikes rather than bursts are generated. Interestingly, 

the Ipc à L10 feedback can render the L10 spike train more irregular, but is not 

necessary for the Ipc burst generation. Rather, for increased Ipc à L10 feedback 

maximum synaptic conductance, the two neurons excite each other continuously and the 

system transitions into a diverging regime. Another important parameter is the 

feedforward synaptic fall time, IpcL →10,1τ , which contributes to the termination of the 

burst. For increasing values of IpcL →10,1τ , significant temporal summation of EPSPs occurs 

in the Ipc neuron, the Ipc spike-rate adaptation is not enough to terminate the bursts, and 

the system transitions into a diverging regime (Fig. 3.5(e), (f)). The numerical value of 

IpcL →10,1τ  at which the transition to divergence occurs decreases with decreasing ISI of the 

L10 neuron, which of course depends on the chosen value of the retinal input; 0.2 nA for 
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the simulation results shown in Fig. 3.5. For decreasing values of the feedforward 

synaptic fall time, IpcL →10,1τ , the time for burst generation is too short and only isolated 

Ipc spikes occur. Thus, there is a limited range of parameter values for burst generation 

(Fig. 3.5(f)). With decreasing IpcL →10,1τ  values the burst generation becomes more robust 

to the value of the feedforward maximum synaptic values, IpcLg →10 . 

 

Figure 3.5 Generation of oscillatory bursting in a pair of model neurons with recurrent 
excitation. (a) Schematic drawing of the reciprocally coupled pair of L10 and Ipc model 
neurons with retinal (RGC) inputs to the L10 model neuron. (b) and (c) Responses of the 
reciprocally coupled L10 and Ipc model neurons to depolarizing current injection into the 
L10 model neuron. The injected current had a duration of 350 ms (starting at time = 50 
ms) and an amplitude of 0.2 nA. The cellular and synaptic parameter values were chosen 
as described in the text and Table 3.1. The maximum synaptic conductances relative to 
the membrane conductance were 10/10 =→ IpcIpcL gg  and 2.0/ 1010 =→ LLIpc gg . The Ipc 

burst score (see Methods) for this trace equals 93.015/14 ≅ . (d), (e), (f) Ipc responses for 
three cross sections through the 3-dimensional parameter space spanned by the maximum 
synaptic conductances IpcIpcL gg /10→  and 1010 / LLIpc gg → , and by the feedforward synaptic 
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fall times  10,1 IpcL →τ . The three cross sections intersect the point (asterisk) 10, 0.2, 5.6 ms, 

respectively, which is also the parameter set chosen for the sample trace in (b) and (c). 
The Ipc responses are represented in pseudo color by the burst score. When all spikes 
belong to bursts the score is 1 (red), when all spikes are isolated the score is 0 (blue), 
when the firing rate exceeds 1000 Hz the Ipc response is classified as diverging (gray). 
 

3.3.4 A population of L10 and Ipc neurons with spontaneous activity 

Does the mechanism of oscillatory bursting in a reciprocally coupled pair of L10 and Ipc 

model neurons extend to populations of neurons? Because of the finite width of the 

L10àIpc projection (Wang et al. 2006), an Ipc neuron, embedded within the isthmo-

tectal system, receives synaptic inputs from more than one L10 neuron. Further, because 

of the high level of spontaneous activity (Maczko et al. 2006; Sherk 1979), the Ipc 

neuron may receive uncorrelated inputs at such a high frequency that it will spike 

tonically, not burst. This raises an important question: Under what conditions does this 

simple mechanism of oscillatory burst generation break down in a population of L10 and 

Ipc neurons with spontaneous activity when each Ipc neuron receives inputs from many 

L10 neurons?  

 

To address this question we investigated a population model of L10 and Ipc neurons with 

topographic reciprocal excitation (Fig. 3.6(a)) and spontaneous activity. Important model 

parameters are the widths, IpcL →Δ 10  and 10LIpc→Δ , of the projections, which determine the 

strength of synaptic inputs from other neurons, and the standard deviations, eσ , 10Lσ  and 

Ipcσ ,of the noise currents, which determine the uncorrelated activity of neurons. For a set 

of parameters within the bursting regime, a stimulus current step delivered to a group of 

L10 neurons (centered around L10 neuron #200) generates oscillatory bursts in Ipc 
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neuron #200 (Fig. 3.6(b)). Because of the width and the strength of the L10 à Ipc 

projection, the spiking activity spreads to numerous Ipc neurons beyond the group of Ipc 

neurons that correspond to the topographic projection of the directly stimulated group of 

L10 neurons. In contrast, the feedback projection, Ipc à L10, of the same width, is too 

weak to generate L10 spikes beyond the group of directly stimulated L10 neurons. The 

feedback projection does however cause dispersion in the timing of L10 spikes, i.e., 

because of the larger summation of excitatory feedback, L10 neurons in the center spike 

earlier than L10 neurons away from the center. The uncorrelated L10 activity introduces 

variability in the Ipc burst duration. 

 

For narrow feedback, i.e., 10LIpc→Δ  is small, the number of correlated L10 inputs to an Ipc 

neuron increases with increasing width, IpcL →Δ 10 , of the feedforward projection and thus 

the Ipc neuron generates more bursts rather than isolated spikes (Fig. 3.6(c)). However, 

for broad feedback, L10 spike trains from neurons away from the center are less 

correlated. Thus, with increasing width of the feedforward projection, Ipc burst 

generation increases only over a narrow range then the Ipc activity diverges. In this 

parameter region, the adaptation current is not sufficient to prevent the system from 

diverging.  

 

Because of the strong feedforward synapse, Ipc burst generation is very sensitive to 

uncorrelated noise in L10 neurons. The mechanism of feedforward burst generation 

breaks down when the value of the standard deviations, eσ  or 10Lσ , of the noise currents 

approach the chosen mean value, 0.18 nA, of the stimulus current (Fig. 3.6(d) and (e)). 
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Because of the weak feedback connection and suppressive effect of adaptation current, 

Ipc burst generation is much less sensitive to uncorrelated noise current into Ipc neurons 

(Fig. 3.6(f)).  

 

 

Figure 3.6 Generation of oscillatory bursts in a population model with recurrent 
excitation and uncorrelated noise. (a) Schematic drawing of the reciprocally coupled 
populations of L10 and Ipc model neurons with local RGC inputs to a small group of L10 
neurons. The projections are topographic, but have a certain width as indicated by the 
spread of arrows. (b) Sample L10 and Ipc population responses (raster plot of spikes) to a 
stimulus current step delivered to 80 neurons centered on L10 neuron #200. The 
concurrent voltage response of Ipc neuron #200 is shown in the bottom trace. Single 
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neuron parameters are listed in Table 3.1. The stimulus, synaptic, and noise parameters 
are: =0I 0.18 nA, 85.110 =→IpcLg  nS, 3

10 1069.4 −
→ ×=LIpcg  nS, 5010 =Δ →IpcL , 

5010 =Δ →LIpc , 06.0=eσ  nA, 5.1=Ipcσ  nA, 1.010 =Lσ  nA. The stimulus current is 

turned on at =t 50 ms and lasts for 250 ms. (c) to (f) Ipc responses for four cross sections 
through the 5-dimensional parameter space spanned by the spatial width of the synaptic 
weight distributions IpcL →Δ 10  and 10LIpc→Δ , and the white noise standard deviations eσ , 

Ipcσ , and 10Lσ . The four cross sections intersect the point (asterisk) 50, 50, 0.06 nA, 1.5 

nA, 0.1 nA, respectively, which is also the parameter set chosen for the sample trace in 
(b). The Ipc responses are represented in pseudo color (see Fig. 3.5) by the “average burst 
score”, which is the burst score (see Methods) averaged over 5 trials. (g) Ipc responses 
for different values of the Ipc spike-rate adaptation increment,  ,IpcsragΔ , and the decay 

time constant, Ipcsra,τ . All other parameters are as in (b). 

 

In contrast, Ipc burst generation is less sensitive to noise in L10 neurons when the noise 

is correlated. Because of common inputs to adjacent L10 neurons, noise correlations in 

the L10 input currents are likely to exist. Given the potential importance of noise 

correlations for burst generation and stimulus representation in sensory systems (Chacron 

and Bastian 2008), we investigated the role of noise correlations in the isthmo-tectal 

system. We simulated the population model with correlated noise, ie,η , in the external 

current input, )( ,0, ieie II η+= , to the subset of L10 neurons, labeled 160=i  to 240=i . 

The noise correlation in the external current input to two L10 neurons, i  and 'i , 

decreases with distance as described by )()/|'|exp(2)'()( 2
',, ttiitt eieie ʹ′−−−= δλσηη , 

where λ  represents a correlation length (Abbott and Dayan 1999). In the limit of 

! 

" # 0, 

we recover the case of uncorrelated noise, '
2

',, )'(2)'()( iieieie tttt δδσηη −= . It is 

instructive to start the simulation with uncorrelated noise with a large standard deviation, 

2.0=eσ  nA, comparable to the value of the constant component, 0I . In this case, L10 
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neurons produce largely uncorrelated spike trains and Ipc neurons do not burst (burst 

score below 0.3; Fig. 3.6(d)). However, with increasing noise correlation, spike trains of 

stimulated L10 neurons become more correlated and Ipc bursting resumes. For instance, 

with a correlation length of 

! 

" = 30 the burst score reaches 0.9 (data not shown). 

 

The Ipc spike-rate adaptation conductance is determined by the decay time constant, 

Ipcsra,τ , and the conductance increment,  ,IpcsragΔ . Interestingly, the two-dimensional 

parameter space reveals a narrow region for Ipc burst generation (Fig. 3.6(g)). For the 

conductance increment decreasing from this region, the Ipc neuron activity diverges as 

expected, since spike-rate adaptation is the only activity-dependent regulatory mechanism 

in this network of reciprocal excitation. For the conductance increment increasing from 

this region, the Ipc neuron produces isolated spikes, rather than bursts, to synaptic inputs. 

Similarly, Ipc activity diverges with decreasing decay time constant and transitions to 

tonic spiking when the time constant increases. 

 

Since some Ipc recordings displayed a spike after-depolarization (ADP) and since in 

general ADPs can provide a mechanism for bursting (Higgs and Spain 2009), the 

potential role of ADPs in the case of Ipc bursting was evaluated. We implemented ADPs 

in the Ipc model neuron using a simple formalism (Doiron et al. 2007), where each Ipc 

spike triggers a delayed depolarizing current (see Sec. 2.3). Simulation results with the 

ADP included indicate that the ADP is not necessary for Ipc burst generation; however 

the ADP slightly enlarges the region of parameter space for burst generation (data not 

shown) compared to Ipc model neurons without ADPs (Fig. 3.6(g)). 
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3.4 Discussion 

We measured the cellular and synaptic properties of avian L10 and Ipc neurons in vitro. 

We found regular spiking neurons with spike-rate adaptation. We also found reciprocal 

excitation, with a strong and brief feedforward L10 à Ipc and a weak and long-lasting 

feedback Ipc à L10 synaptic conductance change. Our simulation of an experimentally 

constrained excitatory neural network reveals that Ipc oscillatory burst generation in 

response to simulated retinal inputs to L10 neurons can be mediated by regular L10 

neuron spiking combined with Ipc burst responses to an L10 spike. The mechanism 

requires a strong and brief feedforward synaptic conductance change and is aided by Ipc 

spike-rate adaptation. The measured weak and long-lasting feedback synaptic 

conductance change is not necessary for Ipc oscillatory burst generation. Increasing 

components of uncorrelated Ipc inputs force a transition from oscillatory bursting to 

irregular tonic spiking. 

 

3.4.1 Excitatory neural networks with adaptation 

The mechanisms of oscillatory burst generation typically have in common a fast 

excitatory current causing a train of spikes and an activity-dependent slow inhibitory 

current that interrupts the spike train (Izhikevich 2007; Marder and Calabrese 1996). 

However, purely excitatory neural networks can produce oscillatory bursts as well (Feller 

1999; O’Donovan 1999; Smith et al. 1991). In these networks, recurrent excitation 

mediates episodes of activity, which is terminated by activity-dependent depression or 

adaptation (Hansel et al. 1995; Nesse et al. 2008; Tabak et al. 2000; Tabak and Rinzel 
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2005; Van Vreeswijk and Hansel 2001; Vladimirski et al. 2008) rather than inhibitory 

synaptic currents. 

 

Adaptation affords a rich repertoire of neurophysiological effects (Kohn 2007). Our 

model simulations indicate that the Ipc spike-rate adaptation current plays an important 

role in terminating the burst. The oscillatory bursts in Ipc neurons are evoked by the 

strong projection from periodically firing L10 neurons. Without the adaptation current, 

the burst duration is largely determined by the synaptic fall time, IpcL →10,1τ . For increasing 

values of IpcL →10,1τ , a small increase in maximum synaptic conductance, IpcLg →10  and

10LIpcg → , would push the system from bursting to diverging. In contrast, when the Ipc 

spike-rate adaptation current is present, it provides an activity-dependent negative 

feedback that terminates the bursts after a few spikes. Ipc spike-rate adaptation thus 

enlarges the volume for bursting in the three-dimensional parameter space (Fig. 3.5(d), 

(e), (f)). Two parameters, the decay time constant, Ipcsra,τ , and the conductance increment, 

 ,IpcsragΔ , specify the Ipc spike-rate adaptation conductance. The population model 

investigation reveals a narrow area for bursting in this two-dimensional parameter space 

(Fig. 3.6(g)). 
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Table 3.3 Fitting ISI curves, ISI = A(1! exp(!t / B)) , to calculated ISI data points from 

recorded and simulated spike trains for Ipc neurons. The small r2 values for the 
experimental data are due to the large variations of ISI values between cells, which are 
also reflected in the large SD of the measured firing rates (Fig. 3.2). The values of A, B 
and r2 for 1.0 nA correspond to Fig. 3.4(f). 

 

Spike-rate adaptation is often mediated by potassium currents with slow inactivation 

(Brown et al. 1990; Brownstone 2006; Lewis et al. 1986; Storm 1990). In the 

phenomenological description chosen for our model, the parameter values for the spike-

rate adaptation (Table 3.1) are experimentally constrained by the measured )( IF  and 

)(tISI  curves (Fig. 3.4). The fact that the )(tISI  curves for model and real neurons are 

well matched for all current injection values considered (Fig. 3.4(e), (f) and Table 3.2, 

3.3), indicates that the leaky integrate-and-fire model provides a good approximation for 

the real L10 and Ipc neurons. 
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3.4.2 Brief feedforward synaptic conductance changes 

Even with the experimentally constrained spike-rate adaptation included, oscillatory burst 

generation requires the synaptic fall time, IpcL →10,1τ , to be well below 100 ms (Fig. 3.5(e), 

(f)). With increasing synaptic fall times the excitatory synaptic potentials in the Ipc 

neuron sum. As a result the system activity transits into the diverging regime even for 

small synaptic conductances. This model result is consistent with the observation that the 

L10 à Ipc projection is mediated by AMPA-type glutamate receptors (Hellmann et al 

2001; Marin et al. 2007) and possibly by nicotinic acetylcholine receptors (Britto et al. 

1992; Wang et al. 2006); both of which have the required short synaptic fall times 

(Destexhe et al. 1994). 

 

3.4.3 Neuronal noise produces variable burst durations 

The consequences of neuronal noise and correlations on the integrative properties of 

neural systems have received increasing attention in recent years (Averbeck et al. 2006; 

Chance et al. 2002; Destexhe and Contreras 2006; Destexhe and Rudolph 2009; Fox et al. 

2006; Wolfart et al. 2005). Ipc bursts in vivo have variable burst durations (Marin et al. 

2005). Our population model provides a simple explanation. Uncorrelated L10 activities, 

mediated by noise currents, add variability to the Ipc burst duration (Fig. 3.6(b)). With 

increasing noise levels the Ipc response transitions from bursting to irregular spiking (Fig. 

3.6(d), (e)). Because of the weak feedback connection and the suppressive effect of 

adaptation current, the mechanism of Ipc burst generation is less sensitive to noise 

currents into Ipc neurons (Fig. 3.6(f)). 
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3.4.4 The cholinergic feedback is weak 

We recorded a slow and long-lasting Ipc à L10 synaptic potential change (Fig. 3.3(b)). 

This observation is consistent with, but does not test, the previously discussed hypothesis 

that the cholinergic feedback to the optic tectum might be mediated by a paracrine mode 

of synaptic transmission (Gruberg et al. 1994; Sargent et al. 1989; Sereno and Ulinski 

1987; Wang et al. 2006). 

 

Our model simulations indicate that the Ipc à L10 feedback is not necessary for the Ipc 

oscillatory burst generation (Fig. 3.5(d)). However, these model results can not exclude 

the possibility that feedback may contribute to the oscillatory burst generation in vivo via 

mechanisms not included in the simple model. For instance, cholinergic feedback may 

control the excitability (Kawai et al. 2007) of RGC axons, the calcium influx into RGC 

axon terminals (Dudkin and Gruberg 2003) and thus synaptic transmission, or may 

activate GABAergic tectal circuits (Luksch and Golz 2003) with potentially inhibitory 

effect on L10 neurons. 

 

Feedback in our model can affect the oscillatory burst pattern. With increasing feedback 

strength the L10 spike train pattern, and thus the Ipc oscillatory burst pattern, becomes 

more irregular. Interestingly, the related concept of spike-triggered feedback currents has 

previously been included in leaky integrate-and-fire models to provide more realistic 

model responses (Jolivet et al. 2004; Paninski et al. 2004 Pillow et al. 2005).  

 



	
   63  

When the Ipc à L10 feedback increases above a critical value, the L10 and Ipc neuron 

excite each other continuously and the system transitions into a diverging regime (Fig. 

3.5(d)). The latter observation is consistent with the ‘no-strong-loops hypothesis’ (Crick 

and Koch 1998), which states that a strong excitatory loop formed between two cortical 

areas would lead the system into uncontrolled oscillations (Schnitzler and Gross 2005).  

 

Although the Ipc à L10 feedback is apparently weak and is not required for the 

oscillatory burst generation, cholinergic feedback is involved in tectal visual processing. 

For instance, cholinergic feedback enhances calcium influx into optic nerve fiber 

terminals in frog (Dudkin and Gruberg 2003) and inactivation of cholinergic feedback 

prevents visual responses in the ascending visual pathway to the nucleus rotundus in 

birds (Marin et al. 2007). Bursts facilitate synaptic transmission across unreliable 

synapses via increased transmitter release (Izhikevich et al. 2003; Lisman 1997; Sherman 

2001). We expect this effect to be significant for paracrine transmission in the cholinergic 

feedback as well. In conclusion, delivering the cholinergic feedback via oscillatory 

bursting Ipc axon terminals in the tectum is likely to be of great importance for the 

population coding of visual information in the intricate retino-tecto-rotundal pathway 

(Khanbabaie et al. 2007; Luksch et al. 1998, 2001, 2004; Mahani et al. 2006; Marin et al. 

2003). 
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4 Recurrent antitopographic inhibition mediates 

competitive stimulus selection in an attention 

network 

Topographically-organized neurons represent multiple stimuli within complex visual 

scenes and compete for subsequent processing in higher visual centers. The underlying 

neural mechanisms of this process have long been elusive. We investigate an 

experimentally-constrained model of a midbrain structure, the optic tectum and the 

reciprocally connected nucleus isthmi. We show that a recurrent antitopographic 

inhibition mediates the competitive stimulus selection between distant sensory inputs in 

this visual pathway. This recurrent antitopographic inhibition is fundamentally different 

from surround inhibition in that it projects upon all locations of its input layer, except to 

the locus from which it receives input. At a larger scale, the model reveals how a focal 

top-down input from a forebrain region, the arcopallial gaze field, biases the competitive 

stimulus selection via the combined activation of a local excitation and the recurrent 

antitopographic inhibition. Our findings reveal circuit mechanisms of competitive 

stimulus selection and should motivate a search for anatomical implementations of these 

mechanisms in a range of vertebrate attentional systems. 

 

4.1 Introduction 

The process of vision as the competitive interaction in a dynamical neural system is 

poorly understood (Rabinovich et al. 2008). Spike trains from topographically-organized 
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neurons in early visual pathways represent the occurrence of a stimulus in the retinal 

image. When multiple visual stimuli appear at different locations (Fig. 4.1), the neural 

populations compete for dominance and only the winning representations propagate to 

higher visual centers for further processing (Desimone and Duncan 1995; Kastner and 

Ungerleider 2000). Such competitive neural interaction is thought to mediate the 

selection of the most salient stimulus in a given parameter space from complex visual 

scenes (Itti and Koch 2001; Knudsen 2007).  

 

Figure 4.1 Presentation of multiple visual stimuli. The presentation of a target (black dot) 
at t = 0 ms within a neuron’s receptive field (dashed circle), followed by the presentation 
of a novel stimulus (black dot) at a later time, t = T ms, at a distant location within 
another neuron’s receptive field (dashed circle). The timings of the two stimuli are 
indicated by the gray bars. 
 

Understanding competitive neural interaction in terms of the neurobiological components 

and the systems dynamics is a major goal in neuroscience. A prime candidate mechanism 

for competition among inputs is mutual inhibition (Sum et al. 1999; Mao and Massaquoi 

2007), which is present in phenomenological models of shifting attention aimed at 

selecting salient stimuli from visual scenes (Koch and Ullman 1985; Olshausen et al. 
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1993; Usher and Niebur 1996; Lee et al. 1999; Reynolds et al. 1999). Here we present a 

comprehensive microcircuit-level investigation of competitive input selection for time-

varying stimuli (Fig. 4.1) within a concrete neural circuit, the superior colliculus, a 

midbrain structure that receives sensory information and directs the animal’s gaze and 

attention (Stein and Meredith 1993; Hall and Moschovakis 2004; Bisley 2010; 

Mulckhuyse and Theeuwes 2010). 

 

The superior colliculus represents the locations of stimuli as a topographic map of space 

and participates in stimulus selection when competing visual stimuli are present 

(Ignashchenkova et al. 2004; McPeek and Keller 2004; Li and Basso 2005; Müller et al. 

2005; Lovejoy and Krauzlis 2010). Similarly, the avian optic tectum (homolog of the 

superior colliculus in mammals) and its satellite, the nucleus isthmi (homolog of the 

parabigeminal nucleus in mammals) participate in stimulus competition (Marin et al. 

2007; Mysore et al. 2010; Asadollahi et al. 2010), which is further modulated by top-

down inputs from a forebrain region (Winkowski and Knudsen 2008). Within the avian 

isthmotectal circuitry (Wang et al. 2004, 2006) we consider the tectal layer 10 neurons 

(L10), the parvocellular (Ipc) and two types of magnocellular (Imc) isthmic neurons (Fig. 

4.2a). In this circuit, the GABAergic Imc projection to the optic tectum displays a 

heterotopic organization (Wang et al. 2004), i.e., a given Imc neuron does not project 

back to the locus in the optic tectum from which it receives L10 input, but projects upon 

all other locations in that layer. In this sense, the Imc projection to the optic tectum can 

be termed ‘antitopographic’.  
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Figure 4.2 Anatomical features of the avian isthmotectal system. A, Schematic of the 
connectivity pattern as seen in a transverse section of the optic tectum and nucleus isthmi. 
Tectal layer 10 (L10) neurons (blue) receive retinal inputs (not shown) in upper tectal 
layers and project topographically to the parvocellular (Ipc, green) and magnocellular 
(Imc, red) isthmic nuclei. The Ipc feedback projection to the optic tectum is topographic, 
whereas the Imc feedback projection is antitopographic. In addition, Imc neurons mediate 
a global projection to the Ipc nucleus. B, Schematic of the model circuitry consisting of 
retinal ganglion cell inputs (RGC, black) and L10 (blue), Ipc (green), and two 
morphological types of Imc (red) neurons. C, In the population model, the topographies 
of the 5 projections are described by Gaussian spatial distributions of the synaptic 
weights, ijw . 

 

We designed an experimentally-constrained model network of the isthmotectal system 

(Fig. 4.2b and 4.2c) and undertook a detailed investigation of the structural and 

physiological parameter space relevant for stimulus competition. Specifically, we show 

how the superposition of topographic and antitopographic visual information emerges as 

a key organizational feature of the isthmotectal system, how the antitopographic 

projection mediates competitive stimulus selection, and how localized top-down inputs 

modulate this process. The model reproduces in vivo observations of stimulus 

competition in owl and pigeon and generates experimentally testable and nontrivial 

predictions. In addition, a model investigation beyond the experimental constraints 
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reveals an alternative mechanism of competitive stimulus selection in a network with 

homogeneous inhibition and strong topographic excitation. 

 

4.2 Methods 

The model network consists of 4 linear arrays; L10 and Ipc neurons, and two types of 

Imc neurons (Fig. 4.2). Each array contains 300 neurons. These neurons respond to 

somatic current injection with regular spiking, and show spike-rate adaptation and linear 

frequency-current curves (Shao et al. 2009). Therefore, each neuron in the network is 

modeled as leaky integrate-and-fire type, including a spike-rate adaptation conductance. 

In short, the membrane potential 

! 

ViV! of neuron i  evolves according to the differential 

equation, ( )ieinoiseisisraiii
i

i IIIIRVE
dt
dV

,,,, −++−−=τ .  When the membrane 

potential 

! 

Vi reaches the threshold iV ,θ  V!it is instantaneously reset to iresetV , , which isV!"#$ 

interpreted as the occurrence of a spike. The basic cellular parameters are the threshold 

iV ,θ , the reset potential iresetV , , E!the resting membrane potential 

! 

Ei , R!the membrane 

input resistance iR , and the membrane time constant iτ .  

 

Each neuron receives a spike-rate adaptation current israI , , a sum of synaptic currents isI ,

, and a noise current inoiseI , I!. The L10 neurons also receive an external excitatory current 

! 

Ie,i I!,!, which represents the stimulus from the retinal ganglion cells. The spike-rate 

adaptation current is given by ))(( ,,, israiisraisra EVtgI !=  and has the adaptation reversal 

potential 

! 

Esra,i . The spike-rate adaptation conductance  ,israg  increases by an amount 
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! 

"gsra,i  immediately after a spike, i.e.,  )()( ,,, israisraisra gtgtg Δ+→ −+ , and subsequently 

decays exponentially with adaptation time constant isra,τ , i.e.,  ,
,

, isra
isra

isra g
dt
dg

!=" , until 

the next spike occurs.  

 

The synaptic current ∑ −=
j

ijiijijijis EVwPgI )(,  from neuron j  to neuron i  is 

proportional to the open probability ijP  of the synaptic conductance, where ijg  is the 

maximum synaptic conductance, ijE  is the synaptic reversal potential, and ijw  is the 

weight matrix (see below) for the given network. The open probability has the form 

∑ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−

−
−=

k ij

k
j

ij

k
j

ijij

tttt
BtP )exp()exp()(

,2,1 ττ
, where the normalization factor ijB  ensures 

that the peak value of ijP  generated by a single spike equals to 1. The time constants ij,1τ  

(fall time) and ij,2τ  ( ijij ,2,1 ττ > ) determine the time course of synaptic current. The 

synaptic rise time is given by
ijij

ijij
ijrise

,2,1

,2,1
, ττ

ττ
τ

−
= . The variable k

jt  represents the time at 

which neuron j  generates the spike k . A summation is performed over all spikes 

generated by neuron j .  

 

Unless stated otherwise, parameter values of model neurons and synapses are based on 

previous studies (Shao et al. 2009), where parameter values were tuned within their 

experimental constraints until the results of model neuron simulations matched results 

from in vitro intracellular recordings. All conductances are expressed in terms of an 
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average membrane conductance, 78.2=mg  nS. For the basic cellular parameters the 

values are: 3910, −=LVθ  mV, 40, −=IpcVθ  mV, 40, −=ImcVθ  mV, 5010, −=LresetV  mV, 

50, −=IpcresetV  mV, 60, −=ImcresetV  mV, 5510 −=LE  mV, 61−=IpcE  mV, 64−=ImcE  

mV, 48010 =LR  MΩ, 135=IpcR  MΩ, 240=ImcR  MΩ, 10410 =Lτ  ms, 25=Ipcτ  ms, 

50=Imcτ  ms. For the spike-rate adaptation the parameter values are: 5010, =Lsraτ  ms, 

60, =Ipssraτ  ms, 80, =Imcsraτ  ms, mLsra gg 375.010, =Δ , mIpcsra gg 93.2, =Δ , 

mImcsra gg 25.2, =Δ , and 70,,10, −=== ImcsraIpcsraLsra EEE  mV. The synaptic time constants 

for the excitatory synapses are: 6.710,110,1 == →→ ImcLIpcL ττ  ms, 47.010,210,2 == →→ ImcLIpcL ττ  

ms, 0.1010,1 =→LIpcτ  ms, 0.110,2 =→LIpcτ  ms (Shao et al. 2009). The synaptic time 

constants for the Imc projections are 6.5/10,1 =→ IpcLImcτ  ms and 3.0/10,2 =→ IpcLImcτ  ms, 

which are commonly used for GABAergic synapses (Destexhe et al. 1994). 

Autoradiographic studies indicate that the avian isthmotectal system is rich in GABA-A 

receptors and that GABA-B receptors are also present (Veenman et al. 1994). The 

potential contribution of GABA-B receptors to the network dynamics is not considered in 

this study. The synaptic reversal potentials 0.0/10 =→ ImcIpcLE  mV, 0.80/10 −=→ IpcLImcE  

mV, and 0.510 −=→LIpcE  mV, are consistent with literature values for excitatory and 

inhibitory synapses (Koch 1999) and with in vivo electrophysiological studies, which 

suggest that GABA acts as an inhibitory neurotransmitter in this system (Felix et al. 

1994). The maximum synaptic conductances for the L10 projections are held fixed, 

mIpcL gg 1.210 =→  and mImcL gg 5.110 =→ . All others are specified in the text. 
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The anatomical features of the isthmotectal system (Wang et al. 2004, 2006) are 

incorporated in the weight matrix, ijw . The synaptic conductances of the topographic 

projections (L10 à Ipc, L10 à Imc, Ipc à L10) are assumed to be described by a 

Gaussian distribution. For instance, the topographic L10 à Ipc projection from L10 

neuron j  to Ipc neuron i  follows a Gaussian distribution, ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Δ
−

−=
→

2
10

2

2
)(exp
IpcL

ij
jiw , where 

IpcL →Δ 10  describes the width of the distribution (Fig. 4.2c). The other two topographic 

projections, L10 à Imc and Ipc à L10, are generated in the same manner, however with 

different width parameters ImcL →Δ 10  and 10LIpc→Δ , respectively. The chosen widths of the 

three topographic projections are 111010 =Δ=Δ →→ LIpcIpcL  and 1610 =Δ →ImcL . The 

antitopographic Imc à L10 projection is generated according to an inverted Gaussian 

distribution ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Δ

−
−−=

→
2

10

2

2
)(exp1
LImc

ij
jiDw , which dips near ji = . The distribution is 

specified by two parameters; the width 10LImc→Δ  and the depth D  of the dip. The synaptic 

conductance from Imc neuron j  to L10 neuron i  increases with increasing distance, 

|| ji − , between the two locations i  and j . When 

! 

D =1, the antitopographic distribution 

is strict and there is no feedback from Imc neuron j  to L10 neuron i  at the same 

location, ji = . The global Imc à Ipc projection is specified by a uniform distribution, 

1=ijw . 

 

Each neuron receives a noise current, inoiseI , , which is modeled as uncorrelated white 

noise, i.e. '
2

',, )'(2)'()( iiiinoiseinoise tttItI δδσ −=  of standard deviation iσ . The external 
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excitatory current input, )())((0, iscHsciHII ie −+−−= , to L10 neuron i  represents 

the stimulus from the retinal ganglion cell. Here 

! 

I0  is the input current amplitude, H  is a 

Heaviside step function, 

! 

c  is the location of the input center, and s  is the stimulus half 

width, i.e., 12 +s  neurons of the L10 type centered at location c  receive current 

injections. The Heaviside step function, H , expresses that the current to L10 neurons is 

non-zero between neuron # )( sc −  and # )( sc +  and zero elsewhere. 

 

The competition score is defined as the ratio )/()( 1212 rrrr +− , where 2r  and 1r  are the 

average spike rates of 13 Ipc neurons around the two stimulation centers. The average Ipc 

spike rates are taken over a time window of 100 ms starting 50 ms after the onset of the 

novel stimulus. Competition score values can range from -1 (no activity shift) to +1 

(complete activity shift). When the two locations display similar activities, the 

competition score is near zero. Similar activities arise when the two locations do not 

interact or when the two locations suppress each other. 

 

The top-down input is modeled following anatomical and physiological considerations 

(Fig. 4.9). The AGF projects strongly and in parallel to the deep layers of the OT and to 

nuclei of the brainstem, including the n. isthmi (Knudsen et al. 1995). In the AGF sensory 

space is organized in a clustered representation in which neighboring neurons encode a 

similar location, but neighboring groups of neurons encode different, unpredictable 

locations (Cohen and Knudsen 1995). AGF microstimulation within a cluster tuned to a 

certain location in sensory space (i) increases the responsiveness of OT neurons tuned to 

the same location and (ii) decreases the responsiveness of OT neurons tuned to all other 
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locations (Winkowski and Knudsen 2006, 2007, 2008). At present, there is no compelling 

explanation for why clustered organizations exist (Cohen and Knudsen 1999). The two 

AGF inputs in our model (thick arrows, Fig. 4.9a) represent two different locations in 

sensory space. 

 

To compare the simulated responses with recordings from deep tectal layers (Winkowski 

and Knudsen 2008), we introduce an additional read-out neuron, which is modeled as a 

Hill’s function 

! 

arn

rn + bn
 (Fig. 4.9c). Here 

! 

r  is the input firing rate from presynaptic 

neurons, 

! 

a  is the saturation firing rate, 

! 

b is the input firing rate when the output reaches 

the half of its saturation value, and 

! 

n  describes the steepness of the response curve.  

 

4.3 Results 

4.3.1 Structure of the isthmotectal model network 

To investigate the dynamics of stimulus competition in the isthmotectal system, we 

represent the available anatomical (Wang et al. 2004, 2006) and physiological (Shao et al. 

2009) information about the avian isthmotectal circuit (Fig. 4.2a) in a model network (see 

METHODS) consisting of 4 interacting populations of spiking model neurons (Fig. 4.2b) 

of the leaky integrate-and-fire type, including a spike-rate adaptation conductance. Tectal 

L10 neurons receive simulated retinal representations of visual stimuli, which are the sole 

inputs into this topographically-organized model network. The width of an axonal 

projection is expected to be an important structural feature of any system with 

competitive interaction. For the feedforward pathway, we describe the lateral spread of 
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individual axons in the L10 à Ipc and L10 à Imc excitatory projections by Gaussian 

distributions of their synaptic weights (Fig. 4.2c). The global Imc à Ipc inhibitory 

projection is described by a uniform distribution of synaptic weights. For the feedback 

pathway, we represent the Ipc à L10 excitatory projection by a Gaussian distribution of 

its synaptic weights. Imc neurons, in contrast, project diffusely upon L10 neurons, but 

little to the locus from which they receive input (Wang et al. 2004) This antitopographic 

GABAergic Imc à L10 feedback projection is described by an inverted Gaussian 

distribution, where the strength of synaptic weights dips at its center, corresponding to 

the location from which the Imc neuron receives its input. Thus, an Imc model neuron 

provides weak inhibition on the L10 neurons corresponding to the same location and 

stronger inhibition on distal L10 neurons. In summary, the experimentally-constrained 

isthmotectal model system consists of a specific combination of excitatory topographic, 

and inhibitory antitopographic and global projections (Fig. 4.2). 

 

4.3.2 Competitive bottom-up selection of novel stimuli 

The network response to two sequentially-presented stimuli with temporal overlap 

reveals the competitive nature of the isthmotectal network (Fig. 4.3a). The isolated target 

stimulus elicits regular and correlated spiking in L10 neurons, which in turn generates 

rhythmic bursting in a group of Ipc and Imc neurons corresponding to the target location. 

Such rhythmic Ipc bursting has been recorded in pigeon Ipc neurons in response to visual 

stimulation (Marin et al. 2005, 2007). 
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The additional and delayed presentation of a novel stimulus of equal or larger amplitude 

(Fig. 4.3a, 4.4) at a distant location has two effects on the population activity. The retinal 

input to L10 neurons at the novel location overcomes the inhibitory input from the Imc 

neurons at the distal target location. Approximately 50 ms after onset of the novel 

stimulus, the L10 neurons at the novel location start to spike, which in turn triggers 

spikes in the corresponding Ipc and Imc neurons. The delay has three causes: the L10 

neuron membrane time constant (! L10 = 104  ms), the hyperpolarized level of the L10 

membrane potential at the novel location at the onset of the novel stimulus, and the small 

size of the depolarizing current, which is the difference of the excitatory current (novel 

stimulus) and the inhibitory current (from the Imc target location). The Imc activity at the 

novel location provides inhibitory current in L10 neurons at the target location. This new 

inhibitory current together with the existing adaptation current overcomes the excitatory 

input current in the L10 target neurons, which ends spiking in these and the 

corresponding Ipc and Imc neurons at the target location. A complete shift in activity 

from the target to the novel location has occurred, even though stimulation at the target 

site continues for the entire duration of novel stimulus presentation.  

 

Apart from the functionally significant shift in activity to novel stimuli of equal or larger 

amplitude (Fig. 4.3a), the population model (Fig. 4.2) reproduces four important in vivo 

observations previously recorded in the avian isthmotectal system (Marin et al., 2005, 

2007): (i) Ipc neurons respond with rhythmic bursting to visual stimulation, (ii) the novel 

stimulus can be far for the shift in activity to occur, (iii) the delay in shift measured from 

the onset of the novel stimulus is variable between 35 and 100 ms, and (iv) Imc neurons 
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fire synchronously and at regular intervals. The retrodiction of these four in vivo 

observations indicates that the population model captures key anatomical and 

physiological elements of the avian isthmotectal pathway. 

 

 

Figure 4.3 Competitive neural interaction between two retinal inputs in a population 
model of the avian isthmotectal system. A, Raster plots of spiking activity in L10, Ipc, 
and Imc model neurons in response to the presentation of a target stimulus followed by 
the presentation of a novel stimulus of slightly larger amplitude. The target stimulus 
consists of an input current of 0.4 nA starting at t = 0 ms into 15 L10 neurons centered on 
neuron #110 (location 1). The novel stimulus consists of an input current of 0.42 nA 
starting at t = 250 ms into 15 L10 neurons centered on neuron #191 (location 2). The 
location, width and timing of the stimuli into L10 neurons are indicated by the gray bar in 
the L10 raster plots. No current is injected into Ipc and Imc neurons, but, for comparison, 
the gray bar is also reproduced in the Ipc and Imc raster plots. The synaptic strengths are 

mLIpc gg 01.010 =→ , mIpcImc gg 12.0=→ , and mLImc gg 24.010 =→ . The depth 10LImcD →  and the 

width 10LImc→Δ  of the antitopographic Imc à L10 projection are 0.6 and 8, respectively. 
The input current has a noise of 05.0=σ  nA. Inset: Average spike rate of 13 Ipc neurons 
(5 trials) centered at neuron #110 (location 1) during isolated target (0.4 nA) presentation 
(time window 0 to 250 ms) and during concurrent target (0.4 nA) and novel (0.42 nA) 
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stimulus presentation (time window 250 to 500 ms). B, Raster plots of spiking activity in 
response to the presentation of a target stimulus (0.42 nA) followed by the presentation of 
a novel stimulus (0.4 nA) of slightly smaller amplitude. Other parameters are the same as 
in A. Inset: Average spike rate of 13 Ipc neurons (5 trials) centered at neuron #191 
(location 2) during isolated target (0.42 nA) presentation and during concurrent target 
(0.42 nA) and novel (0.4 nA) stimulus presentation. 
 

When the novel stimulus is of smaller amplitude than the target stimulus, no shift in 

activity occurs (Fig. 4.3b, 4.4). A small difference in input current causes no significant 

differences in the responses at the two locations when each stimulus is presented in 

isolation (Fig. 4.3a and 4.3b). Yet, for sequential stimulation with temporal overlap the 

response to a weaker novel stimulus (Fig. 4.3b) is qualitatively different from the 

response to a stronger novel stimulus (Fig. 4.3a) described above. The weaker novel 

stimulus overcomes the inhibitory current from the target Imc neurons and causes L10 

spiking. Nevertheless, the corresponding Imc spike rate at the novel location does not 

generate sufficient inhibitory current in the L10 target neuron. The excitatory current in 

the target L10 neuron remains larger than the sum of the inhibitory and the adaptation 

current. As a result, L10 and thus Ipc neurons at target and novel location spike, however 

at a reduced rate. 

 

This model result reproduces in vivo recordings from pigeon Ipc neurons, which 

demonstrated that a novel visual stimulus in a superior receptive field strongly suppresses 

target responses in an inferior receptive field, but showed only little suppression vice 

versa (Marin et al. 2007). We thus demonstrate that even though in the population model 

all locations have equal status, the observed response asymmetry can be implemented by 

an asymmetry in the retinal representation of the visual stimuli. When the amplitude of 
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the novel stimulus is varied systematically while the target stimulus amplitude remains 

fixed, the transition from no shift to complete shift occurs within a narrow range of novel 

stimulus strength below the value of the target stimulus strength (Fig. 4.4); a model 

prediction that is accessible for in vivo tests. 

 

The model further predicts that in this range of novel stimulus strength the neural 

activities synchronize at the two locations (Fig. 4.3b). The synchrony is independent of 

the onset timing of the novel stimulus and is robust to noise in the system. Specifically, 

whether the activities are synchronous (for large inhibition) or antisynchronous (for small 

inhibition) depends on the strength of the recurrent antitopographic inhibition. The 

dynamics of synchrony between coupled neurons is complex (Lewis and Rinzel 2003). In 

the isthmotectal system synchrony emerges from the reciprocal inhibition (Imc à L10) 

between groups of neurons at the target and novel location. 

 

Figure 4.4 Change of competitive neural interaction between target and novel stimulus 
with varying novel stimulus amplitude. The competition score (see METHODS) is shown 
as a function of the novel stimulus amplitude. All parameters are the same as in Figure 3. 
The transition happens within a narrow range of novel stimulus strength around the value 
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of the target stimulus strength. Without spike-rate adaptation, the transition range shifts to 
larger values of novel stimulus strength. 
 

4.3.3 Competitive bottom-up selection of stimuli in static visual scenes 

To gain insight into the system response to static visual scenes, we investigated the model 

responses to two simultaneously presented stimuli, a target and a distant competitor 

stimulus. When the competitor is weaker than the target stimulus, the Imc activity at the 

target location generates a strong inhibitory current in the L10 neurons at the competitor 

location. The competitor-induced excitatory current in the L10 neurons is too small to 

trigger spikes. In contrast, when the competitor is stronger than the target, L10 neurons at 

the competitor location spike. In this case L10 neurons at the target locations are 

inhibited, which prevents them from spiking. The model generates three nontrivial 

predictions for simultaneous stimulus presentation (Fig. 4.5a). First, when a target and a 

distant competitor stimulus of different strength are presented simultaneously, the 

isthmotectal model network selects in a winner-take-all manner the strongest stimulus in 

this static visual scene. Second, for fixed target strength and varying competitor strength, 

the transition occurs around the value of the target strength. Third, the transition as a 

function of competitor strength can be gradual or switch-like, as the slope of the 

transition depends on the strength of the recurrent antitopographic inhibition. In the limit 

of zero recurrent antitopographic inhibition, no competition occurs. When this inhibition 

is weak the transition is gradual, when the recurrent antitopographic inhibition is strong 

the transition is switch-like. Interestingly, transitions around the target strength with a 

distribution of slopes have been observed in neurons of the isthmotectal system of barn 

owls in response to visual stimulation with a target and a competitor (Mysore et al. 2010, 
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Asadollahi et al. 2010). This in turn suggests a distribution of the recurrent 

antitopographic inhibition strength. 

 

Figure 4.5 Competitive neural interaction between a target and a simultaneously-
presented distant competitor. a, The target stimulus strength is kept fixed at 0.4 nA, the 
competitor strength is varied, and the results are expressed in terms of a winner-take-all 
(WTA) score, which is defined as the ratio )/()( 1212 rrrr +− . Here 2r  and 1r  are the 
average spike rates of 13 Ipc neurons around the two stimulation centers. The average Ipc 
spike rates are taken over a time window of 450 ms starting 50 ms after the onset of the 
two stimuli. Other parameters are the same as in Figure 3. b, Ipc average firing rate at the 
target location (averaged over 3 Ipc neurons at the target center) as a function of 
competitor width for two different target widths. The target and competitor stimuli are of 
the same strength (0.4 nA). Network parameters are the same as in Fig. 4.3. The 
simulated results are fitted to a sigmoidal function (solid line). 
 

When the sizes of the target and competitor stimulus are varied, the isthmotectal model 

network does not select the largest stimulus in a typical winner-take-all manner; rather 

the Ipc response at the target location continues to represent information about the target 

stimulus width (Fig. 4.5b). We consider two target widths and vary the width of the 

competitor stimulus. With increasing competitor width, the Ipc target response decreases 

until it reaches a steady state. Importantly, the steady-state value increases with target 
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width. Two circuit mechanisms cause this deviation from a winner-take-all behavior. 

First, with increasing competitor width the inhibitory synaptic current in L10 neurons 

saturates as the membrane potential hyperpolarizes towards the synaptic reversal 

potential. Second, the number of activated L10 neurons increases with increasing target 

width. Because of the width of the L10 à Ipc projection (Fig. 4.2c), this in turn increases 

the excitatory input to an Ipc neuron at the target location. Thus the Ipc target response 

increases with target width (Fig. 4.5b). This model prediction is consistent with recorded 

responses in owl Ipc in response to looming dots of varying final sizes (Asadollahi et al. 

2010).  

 

4.3.4 Recurrent antitopographic inhibition 

An intriguing structural feature of the isthmotectal pathway is the combination of global 

feedforward (Imc à Ipc) and recurrent antitopographic (Imc à L10) inhibition mediated 

by Imc neurons (Wang et al. 2004), which determines complex responses of this 

dynamical system (Caudill et al. 2009). Pharmacological inactivation of the Imc 

demonstrated the essential role of Imc neurons in mediating the shift of Ipc activity to 

novel stimuli (Marin et al. 2007). This experiment, however, could not determine the 

individual roles of the global (Imc à Ipc) and antitopographic (Imc à L10) inhibition in 

the competitive stimulus selection. To address this question, we scanned the model 

parameter space for varying synaptic strengths, IpcImcg →  and 10LImcg → , of the two Imc 

projections and displayed the simulated response to sequential stimulation (Fig. 4.3a) of 

equal strength in terms of a competition score (see METHODS). This score is based on 

the Ipc activity within a time window after the onset of the novel stimulus. The Ipc 
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response was chosen as a measure of the simulation results, because the Ipc activity gates 

the processing in the tecto-rotundal visual pathway (Marin et al. 2007).  

 

When both inhibitory projections are weak, neurons at the target and novel stimulus 

location respond largely independently to their local inputs (Fig. 4.6a). This model result 

reproduces the in vivo observation that Imc neurons are required for the shift in activity 

to happen (Marin et al. 2007). For increased strength of the feedforward inhibition, the 

global Imc à Ipc projection does not contribute to competitive interaction, but rather 

merely regulates the level of Ipc activity. With increasing strength of the antitopographic 

Imc à L10 feedback projection, however, stimulus competition sets in. The Imc activity 

at the novel location generates sufficient inhibitory current in the L10 target neurons, 

such that the sum of the inhibitory and the adaptation current overcomes the excitatory 

current. The L10 target neurons cease to spike, i.e., the Ipc competition score is 1+ . 

Further increase of the Imc à L10 projection strength mediates large inhibitory currents 

at both locations and dynamically reduces the L10 spike rate. Depending on the relative 

strength of excitation and antitopographic inhibition, either L10 neurons at the novel 

location do not spike (competition score equals 1− ) or L10 neurons spike at both 

locations (competition score near 0). In conclusion, given the weak Ipc à L10 excitatory 

feedback, the Imc à L10 antitopographic inhibition at intermediate strength is essential 

for the isthmotectal selection of novel stimuli. The experimental test of this model 

prediction requires the selective block of the Imc à L10 pathway within the avian 

isthmotectal system. 
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Figure 4.6 Recurrent antitopographic inhibition mediates competitive stimulus selection 
between two distant sensory inputs of equal strength. Parameter-dependence of novelty 
detection in the isthmotectal model network is expressed by the competition score as a 
function of A, global inhibition mIpcImc gg /→  and recurrent antitopographic inhibition 

mLImc gg /10→ ; B, the strength mLImc gg /10→  and depth 10LImcD →  of the recurrent 

antitopographic inhibition; C, the strength mLImc gg /10→  and width 10LImc→Δ  of the 
recurrent antitopographic inhibition. The competition score is color coded representing -1 
(blue, no shift in activity), 0 (green, similar spike rates at both locations) to 1 (red, 
complete shift in activity to the novel location). The novel stimulus starts 250 ms after the 
onset of the target stimulus. Both stimuli are of the same amplitude ( 4.0== noveltarget II  

nA). Panels A to C show three cross sections through the multidimensional parameter 
space. The cross sections intersect at the point indicated by the white asterisk, which is 
also the parameter set chosen for Fig. 4.3 and 4.9. No noise is included in the simulations. 
All other parameters are the same as in Fig. 4.3. 
 

The importance of the antitopographic inhibitory Imc à L10 projection within the 

isthmotectal system raises the question to what extent the two structural parameters, the 

depth 10LImcD →  and the width 10LImc→Δ  of the dip in this feedback projection, influence the 

competitive interaction (Fig. 4.6b and 4.6c). When the depth or width of the dip is small, 

an Imc neuron exerts a strong inhibition on the L10 neuron from which it receives input. 

Thus, the L10 and Imc activity at the target location is too small for the spike-rate 

adaptation current to reach a significant level. Similarly, Imc activity at the target 

location mediates only a small inhibitory current in L10 neurons at the novel location. As 

a result, when the novel stimulus occurs, neurons at both locations fire at a reduced but 
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similar rate (competition score near 0). With increasing depth or width parameter, the 

inhibition of the L10 neurons at the target location is reduced. This leads to an increased 

spike rate with a concurrent increase in the spike-rate adaptation current at the target 

location and an increased inhibitory current at distal locations. When a novel stimulus 

occurs at a distant location, the corresponding L10 and Imc neurons start spiking. 

Consequently, the L10 neurons at the target location cease spiking as the sum of the 

currents from the continuing adaptation and the new antitopographic inhibition cancels 

the excitatory stimulus current (competition score equals 1+ ). Further increase of the 

depth (width) of the antitopographic inhibition, 10LImcg → , decreases the inhibition of the 

L10 neurons at the target location, thus increasing the local spike rate. For large strength 

of the antitopographic Imc à L10 feedback projection, the Imc-mediated inhibitory 

current at distal locations prevents L10 neurons at these distant locations to spike in 

response to novel stimuli. As a result, there is no shift in activity in this parameter range 

(competition score equals 1− ). Consequently, a large depth or width narrows the range 

of inhibitory feedback strengths for which a shift in activity occurs.  

 

Motivated by in vitro studies of the isthmotectal system (Shao et al. 2009), this model 

investigation assumed a weak Ipc excitatory feedback onto L10 neurons. With increasing 

strength of the Ipc à L10 excitatory feedback an appropriate level of recurrent inhibition 

is required to stabilize the system and for novelty shifts to occur (Fig. 4.7).  
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Figure 4.7 A new role arises for the topographic Ipc à L10 excitatory feedback when the 
inhibitory Imc projections are more homogeneous. The parameter-dependence of novelty 
detection in these isthmotectal model networks is expressed by the competition score 
(color code) as a function of a, the strength mLImc gg /10→  of a global Imc à L10 

inhibition ( 0.010 =→LImcD ) and the topographic excitatory feedback mLIpc gg /10→ , b, the 

strength mLImc gg /10→  of an antitopographic Imc à L10 inhibition ( 9.010 =→LImcD ) and 

the topographic excitatory feedback mLIpc gg /10→ , c, the strength mIpcImc gg /→  of a global 

Imc à Ipc inhibition and the topographic excitatory feedback mLIpc gg /10→ . The color 

code and stimulus settings are as in Figure 6. Gray represents diverging activity; defined 
as an average firing rate of the center Ipc neuron above 1000 Hz. White represents 
vanishing activity. 
 

A new role arises for the topographic Ipc à L10 excitatory feedback when the inhibitory 

Imc à L10 projection is homogeneous ( 010 =→LImcD ), i.e., no dip in the inhibitory 

projection. In this case, the inhibition of L10 neurons at the target location reduces 

spiking thus limiting the spike-rate adaptation current. The local inhibitory feedback thus 

prevents novelty shifts to occur for stimuli of equal strength. However, with increasing 

local Ipc à L10 excitatory feedback, the local inhibition can be overcome. This increases 

the spike rate and the concurrent spike-rate adaptation current, which promotes the 

occurrence of activity shifts in response to novel stimuli at distant locations (Fig. 4.7a). 

Interestingly, in this case competitive stimulus selection occurs only within a narrow 

parameter range of inhibition and excitation strength. When the inhibitory Imc à L10 
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projection is antitopographic ( 9.010 =→LImcD ), the neural activity at the target location is 

sufficiently high, even without Ipc à L10 excitatory feedback, to allow for activity shifts 

in response to novel stimuli (Fig. 4.7b). In general, with increasing strength of the Ipc à 

L10 feedback, the Ipc activity plays a larger role in L10 responses and thus the nature of 

the inhibitory global Imc à Ipc projection changes from feedforward (Imc à Ipc) to 

feedback (Imc à Ipc à L10 à Imc). To illustrate this point, we consider a model with 

excitatory topographic Ipc à L10 projection and inhibitory homogenous Imc à Ipc 

projection, but with a weak Imc à L10 projection. In this case, competitive stimulus 

selection is possible, but requires strong excitation and inhibition (Fig. 4.7c). 

 

In conclusion, these parameter scans show that stimulus selection in the avian 

isthmotectal system requires a careful balance of the physiological and anatomical 

parameters in the antitopographic Imc à L10 feedback projection. 

 

4.3.5 Adaptation 

Isthmotectal neuron firing rates adapt to somatic current injection (Shao et al. 2009). To 

quantify the role of adaptation in competitive stimulus selection in the avian isthmotectal 

system, we analyzed neural competition for varying amplitude of spike-rate adaptation, 

! 

"gsra,L10  and Imcsrag ,Δ , for L10 and Imc neurons, respectively. Because of their weak 

synaptic strength on L10 neurons (Shao et al. 2009), the role of Ipc spike-rate adaptation 

was not considered. For small values of spike-rate adaptation, 

! 

"gsra,L10  and Imcsrag ,Δ , the 

L10 and Imc spike frequency at the target location is high. As a result, the Imc-mediated 

inhibitory current in L10 neurons prevents the L10 neurons at the novel location from 
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spiking in response to the novel stimulus. Consequently, no shift in activity occurs, i.e., 

the Ipc competition score is 1−  (Fig. 4.8). However, for intermediate values of spike-rate 

adaptation, 

! 

"gsra,L10  and Imcsrag ,Δ , the rate of L10 and Imc spiking at the target location is 

reduced, thus reducing the inhibitory synaptic current in L10 neurons at the novel 

location. The novel excitatory input to L10 neurons overcomes the inhibition. 

Consequently, the L10 and thus the Imc neurons at the novel location start to spike. The 

resulting Imc-mediated inhibitory current (together with the adaptation current) at the 

target L10 neurons reduce further the L10 response to the target excitatory input. As a 

result, Ipc neurons spike at both, the target and the novel location, which leads to a 

competition score near 0. With further increase of the spike-rate adaptation, the sum of 

the inhibitory synaptic current from the antitopographic projection together with the 

increased adaptation current in L10 neurons overcomes the target excitatory current. The 

L10 target neurons cease spiking, i.e., a shift in activity occurs and the Ipc competition 

score is near 1+ . In conclusion, spike-rate adaptation facilitates the isthmotectal selection 

of novel stimuli. 

 

Figure 4.8 Spike-rate adaptation facilitates the selection of novel stimuli. Novelty 
detection is expressed by the competition score as a function of spike-rate adaptation 

mImcsra gg /,Δ  and 

! 

"gsra,L10 /gm . The competition score is color coded representing -1 (blue, 

no shift in activity), 0 (green, similar spike rates at both locations) to 1 (red, complete 
shift in activity to the novel location). The novel stimulus starts 250 ms after the onset of 
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the target stimulus. Both stimuli are of the same amplitude ( 4.0== noveltarget II  nA). The 

white asterisk indicates the parameter set chosen for Fig. 4.3 and 4.9. No noise is 
included in the simulations. All other parameters are the same as in Fig. 4.3. 
 

This facilitation is documented further, when the amplitude of the novel stimulus is 

varied systematically while the target stimulus amplitude remains fixed (Fig. 4.4). 

Without spike-rate adaptation the novel stimulus has to be larger than the target stimulus 

for activity shifts to occur. In contrast, competition between simultaneously presented 

target and competitor stimuli is not significantly influenced by spike-rate adaptation (Fig. 

4.5a). 

 

4.3.6 Competitive interaction between top-down and sensory inputs 

Electrical microstimulation in the avian arcopallial gaze field ([AGF], putative homolog 

of the primate frontal eye field region) increases the sensitivity of sensory responses for 

deep tectal neurons with a receptive field aligned to the AGF stimulation site, but 

decreases the gain of deep tectal neurons representing stimuli at other locations 

(Winkowski and Knudsen 2008). The AGF projects to both the optic tectum and the 

isthmic nuclei (Knudsen et al. 1995), suggesting that the mechanisms for the top-down 

control of tectal gain and sensitivity emerge from the interaction of the AGF and the 

sensory input within the isthmotectal circuit. The isthmic output, e.g., Ipc spiking, then 

modulates the responses of postsynaptic deep tectal neurons.  

 

To elucidate these mechanisms, we simulated the interaction of a sensory input (from 

retinal ganglion cells) and a top-down input (from AGF) in the isthmotectal model 
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network for varying stimulus strength (Fig. 4.9a). Given the spatially broad tuning curves 

of sensory pathways, we assume that, at the level of the tectum, stimulus strength is 

usefully represented by the number of activated L10 neurons. We refer to the latter as the 

stimulus width.  

 

 

Figure 4.9 Competitive interaction within the isthmotectal system between a sensory 
input and a top-down input. A, Schematic of the isthmotectal model circuitry consisting 
of retinal ganglion cell inputs (RGC, black) and L10 (blue), Ipc (green), Imc (red) 
neurons and two external inputs from the AGF onto L10 neurons and the Imc neurons 
with projections to L10. The two AGF inputs (thick arrows) represent two different 
locations in sensory space. A representative deep tectal model neuron is assumed to 
receive inputs from a group of Ipc neurons. B, Average firing rate of the 13 central Ipc 
neurons (time window 250 to 800 ms) as a function of the stimulus width for three 
different situations of top-down modulation: no AGF input (black), aligned AGF input 
(purple), non-aligned AGF input (yellow). The external currents are 2.0=targetI  nA, 

1.010 =→LAGFI  nA and 8.0=→ImcAGFI  nA. The AGF input consists of two excitatory 
current inputs in 13 L10 neurons and 13 Imc neurons. C, Average firing rate of the deep 
tectal model neuron ( 8=n , 

! 

a =120 Hz, 57=b  Hz) as a function of the stimulus width 
for the three different situations of top-down modulation (colors as in B). 
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The isthmic responses to sensory stimuli of varying width emerge from the recurrent 

interaction of excitatory (L10) and inhibitory (Imc) neurons. In response to a sensory 

stimulus alone, the number of activated L10 neurons increases with increasing stimulus 

width and thus the average L10 firing rate increases. This in turn activates more Imc 

neurons and, because of the recurrent antitopographic inhibition, the average L10 firing 

rate of a group of neurons around the stimulation center saturates with increasing 

stimulus strength. Since Ipc neuron activity largely follows their L10 input (Fig. 4.3), the 

Ipc stimulus response function displays a qualitatively-similar sigmoidal form (Fig. 4.9b). 

 

Guided by the available anatomical information (Knudsen et al. 1995), we represent the 

AGF control with two excitatory current inputs in a group of L10 and Imc neurons (Fig. 

4.9a). When the sensory stimulus and the AGF control are aligned, the L10 response to 

the sensory input is increased because of the additional excitation from the AGF. Because 

of the antitopographic feedback of Imc neurons, the AGF excitation of Imc neurons has 

little effect on the local L10 responses. In contrast, when the sensory stimulus and the 

AGF control are nonaligned, the AGF input to distant Imc (and L10) neurons activates an 

antitopographic inhibition, which reduces the L10 response to the sensory stimulus. 

Consequently, compared to the control case, the Ipc stimulus response function is slightly 

shifted to smaller stimulus width for the aligned case, and overall reduced for the 

nonaligned case (Fig. 4.9b). 

 

With these results at hand, we evaluated the stimulus-width response function of a deep 

tectal model neuron that is assumed to receive inputs from a group of Ipc neurons. A 
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single-neuron rate model (see METHODS) with the simulated Ipc activity as inputs 

qualitatively reproduces (Fig. 4.9c) the stimulus-width response function of deep tectal 

neurons in owls for the aligned and non-aligned top-down control scenarios (Winkowski 

and Knudsen 2008) and thereby indicates two distinct mechanisms for the top-down 

control of neural sensitivity and gain, respectively. Aligned AGF input increases the 

sensitivity of the deep tectal neuron via the excitation of L10 neurons at the sensory 

stimulation site. Non-aligned AGF input decreases the gain of the deep tectal neuron via 

the excitation of distant Imc neurons, which then provide antitopographic inhibition of 

L10 neurons at the sensory stimulation site. The top-down control of the L10 neurons 

isthen communicated from L10 to Ipc to the deep tectal neurons. 

 

 

Figure 4.10 Ipc and Imc responses to a sensory input synchronize to distant isthmic 
activity induced by a top-down AGF input. A target stimulus consisting of uncorrelated 
Poisson current pulses ( )/exp(/)(,0 sssi ttatI ττ −= , 100=f  Hz, 6.0=sa  nA, 6.5=sτ  

ms) delivered to 25 L10 neurons (centered on neuron # 110; indicated by the gray bar in 
the L10 raster plots) triggers irregular spiking in this group of L10 neurons. The AGF 
input consists of continuous current inputs in 37 L10 neurons (0.5 nA) and 37 Imc 
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neurons (0.8 nA) centered on neuron # 191 (green bars in the L10 and Imc raster plots). 
The cellular and synaptic parameters of the network are the same as in Fig. 4.3 and 4.9.  
 

In addition to its modulatory effect on steady-state firing rate, top-down inputs can also 

modulate temporal aspects of neural responses to sensory inputs (Reynolds et al. 2000; 

Fries et al. 2001; Mitchell et al. 2007). To evaluate the dynamics of competitive 

interaction between a sensory input and a nonaligned top-down input in the isthmotectal 

system, we stimulate a group of L10 target neurons with uncorrelated Poisson current 

pulses and mimic the top-down input with constant current input to a group of distant 

L10 and Imc neurons. When the nonaligned AGF input is sufficiently strong, Ipc and Imc 

responses at the target location become periodic and synchronize to the oscillatory bursts 

at the distant location, which is activated by the nonaligned top-down AGF input (Fig. 

4.10). The synchrony is mediated by the Imc (nonaligned) à L10 (target) inhibitory 

projection, which imposes a temporal structure onto the otherwise irregularly firing L10 

neurons. 

 

4.4 Discussion 

4.4.1 Mechanisms of competitive stimulus selection 

Attention is a crucial component of sensory processing, yet, the circuit mechanisms that 

mediate attentional stimulus selection have remained elusive. The superior colliculus 

(mammals) and the optic tectum (other vertebrates) are intricately involved in stimulus 

selection and share common circuit features, including the nucleus isthmi. Investigating 

an anatomically- and physiologically-constrained network model of the avian 
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isthmotectal system, we found that recurrent antitopographic inhibition mediates 

competitive stimulus selection and that cellular spike-rate adaptation facilitates the 

selection of novel stimuli. Moreover, forebrain influences are integrated by their 

modulation of the isthmotectal circuitry, uniting both bottom-up and top-down 

mechanisms into a common control system. 

 

Confidence in the validity of plausible model assumptions is supported by the fact that 

the model reproduces a wide range of in vivo observations from pigeons and owls (Marin 

et al. 2007; Winkowski and Knudsen 2008; Mysore et al. 2010; Asadollahi et al. 2010). 

The observations include shifts in activity to a novel stimulus, sharp transitions to strong 

stimuli, global competition, and changes in gain and sensitivity mediated by top-down 

control.  

 

The extension of our investigation to a model network not constrained by the isthmotectal 

system revealed an alternative mechanism of competition, where competitive stimulus 

selection is mediated by homogeneous inhibition combined with a strong topographic 

excitation. 

 

4.4.2 Recurrent antitopographic inhibition 

The recurrent antitopographic inhibition extends throughout the entire structure, with a 

dip only at the center. This antitopographic organization is fundamentally different from 

the better-known surround inhibition in the center-surround organization. Here, the 

surround inhibition is largest at the center and vanishes asymptotically with increasing 
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distance. While this local organization is limited to local computations (contrast 

enhancement, edge detection, gain control); the far-reaching nature of the antitopographic 

inhibitory organization is ideally suited to mediate competitive interaction between 

distant sensory stimuli. 

 

To date, the anatomical evidence for recurrent antitopographic inhibition is best 

documented for the avian isthmotectal system (Wang et al. 2004). The emergent role of 

the antitopographic inhibitory organization for stimulus selection raises the question 

whether this structural principle generalizes to other systems. In all species studied, 

reciprocal connections exist between the optic tectum (superior colliculus) and the 

nucleus isthmi (parabigeminal nucleus) (reviewed in Wang 2003; Gruberg et al. 2006; 

May 2006; Isa and Hall 2009). In reptiles and birds, the nucleus isthmi consist of 

spatially-separate cholinergic and GABAergic groups of neurons with topographic and 

diffuse, respectively, projections to the optic tectum (reptile: Sereno and Ulinski 1987; 

Powers and Reiner 1993; Saha et al. 2010; bird: Wang et al. 2004, 2006). The 

GABAergic diffuse isthmotectal projection modulates tectal cells and thereby, as shown 

here, can mediate the competitive interaction of visual stimuli in the avian isthmotectal 

system (Marin et al. 2005, 2007; Winkowski and Knudsen 2006; Mysore et al. 2010; 

Asadollahi et al. 2010). In mammals, the superior colliculus maintains topographic 

reciprocal connections with the parabigeminal nucleus (Graybiel 1978; Sherk 1979; 

Baizer et al. 1991; Jiang et al. 1996). The parabigeminal nucleus to SC projection is 

cholinergic (Wang et al. 1988; Hall et al. 1989; Hashikawa 1989), thus providing an 

excitatory topographic feedback. In contrast to birds and reptiles, for mammals, no 
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diffuse GABAergic projection from the parabigeminal nucleus to the superior colliculus 

has been reported. Rather, ACh release from parabigeminal nucleus axon terminals in SC 

activates GABAergic interneurons in the intermediate layers with broad projections 

(Binns and Salt 2000; Lee et al. 2001), which in turn inhibit projection neurons (Endo et 

al. 2005). Thus, in mammals the diffuse projection appears to be mediated by 

GABAergic interneurons within the superior colliculus that are activated by 

parabigeminal nucleus input. 

 

4.4.3 Shifting spatial attention 

The simulated competitive stimulus selection has an immediate functional significance 

for the avian isthmotectal system and the retino-tecto-rotundal visual pathway. Ipc axons 

form narrow tectal columns with hundreds of presynaptic terminals (Wang et al. 2006) 

(Fig. 4.2a), enabling Ipc neurons to gate tectal signal processing at that location (Wang 

2003; Marin et al. 2007).  

 

Attention is the selection of relevant signals from an enormous amount of often 

topographically-organized information. The isthmotectal system mediates a competitive 

stimulus selection, which results in a shift of Ipc axon terminal activity to the novel 

stimulus location in the retino-tecto-rotundal visual pathway. To date, the organization of 

the nucleus rotundus (pulvinar in mammals) has remained puzzling (Marin et al. 2003; 

Mahani et al. 2006). The simulated shift of Ipc activity may help to clarify this puzzle. 

This shift results in a selective mapping from the tectal topographic representation into 
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the rotundal representation. This implies that at any instant the rotundal representation 

contains the properties of only a single location in the visual scene, the selected location. 

 

Interestingly, the isthmic activity that mediates the gating of tectal signals is not itself 

involved in the visual processing. Rather, isthmic activity selects the area of visual space 

that will be analyzed by tectal circuitry. This observation supports an early hypothesis of 

competitive stimulus selection, which postulates that the selection system itself is not 

responsible for the information processing relevant to the visual task, but merely selects 

which area of visual space should be inspected (Posner et al. 1980; Koch and Ullman 

1985). This focal attention hypothesis was further popularized by the searchlight or 

spotlight metaphor (Crick 1984). 

 

Perhaps surprisingly, psychophysical experiments indicate that focal selection does not 

necessarily involve contiguous parts of the visual field (Pylyshyn and Storm 1988; 

Sperling and Weichselgartner 1995). In other words, the spotlight does not seem to sweep 

continuously across the visual field. In this respect, the isthmotectal model results are 

consistent with focal selection in humans. Isthmic activity decreases at the target location, 

while increasing at the distant novel location (Fig. 4.3a). In terms of the spotlight 

metaphor, two (or more) spotlights are required; one spotlight fades at the target location 

while another spotlight brightens at the novel location. Neurons corresponding to 

locations between the target and novel location remain quiet during this process. From 

the model investigation, we know that in the isthmotectal system, the jump in activity is 

mediated by the long-range antitopographic inhibitory Imc feedback. This insight is 
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likely to provide a useful clue in the search for the underlying mechanisms of human 

focal selection. 

 

The jump in isthmic activity, corresponding to a shift in spatial covert attention (no eye 

movements), is reminiscent of saccades and the concurrent shift in spatial overt attention 

(with eye movements). This may not be coincidental, as experimental evidence suggests a 

close relationship between covert and overt attention (Shepherd et al. 1986; Sheliga et al. 

1995; Kustov and Robinson 1996). This relationship is particularly strong in the superior 

colliculus, which directs saccadic eye movements (Müller et al. 2005; Lovejoy and 

Krauzlis 2010). The excitatory isthmic feedback with axonal terminals in both, upper 

collicular layers of sensory processing and lower collicular layers of motor control, is 

thus ideally suited to communicate stimulus selection to the superior colliculus and to 

trigger concurrent jumps in spatial attention and saccadic eye movement to the same 

location. 

 

4.4.4 The role of adaptation in stimulus competition 

We show that adaptation within the isthmotectal circuitry, namely L10 and Imc spike-rate 

adaptation, can facilitate the competitive selection of novel stimuli (Fig. 4.4 and 4.8). We 

included cellular spike-rate adaptation in the model, because this implementation of 

adaptation is experimentally constrained in the avian isthmotectal circuit (Shao et al. 

2009). However, our model investigation can not exclude that other implementations of 

adaptation, such as synaptic plasticity or delayed inhibition, contribute to isthmotectal 

stimulus competition as well.  
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Spike-rate adaptation depends on the activation history of the neuron. Thus a single 

neuron alone, receiving inputs from two locations, can not achieve novelty sensitivity. 

Rather, the enhanced sensitivity to a stimulus at a novel location is mediated by stimulus-

specific adaptation. This adaptation depends on the stimulus history rather than on the 

activation history and has been described in visual and auditory pathways (Dragoi et al. 

2002; Ulanovsky et al. 2003; Hosoya et al. 2005; Sharpee et al. 2006; Reches and 

Gutfreund 2008); although it has been challenging to pinpoint the biophysical 

implementation of adaptation in these complex circuits. In general, the computations to 

achieve stimulus-specific responses require a network to compare between current and 

past stimulus conditions (Abbott et al. 1997). In such a network, different stimuli activate 

separate paths to the stimulus-specific neuron and the adaptation is localized to the 

activated path (Eytan et al. 2003). This characteristic feature of stimulus-specific 

adaptation is present in the isthmotectal network, where stimuli at different locations 

activate adaptation in separate paths.  

 

4.4.5 WTA networks 

When a target and a distant competitor stimulus of different strength are presented 

simultaneously, the isthmotectal system can serve as a WTA network (Fig. 4.5a). We 

have shown that the observed distribution of slopes in the transition as a function of 

competitor strength (Asadollahi et al. 2010) can be reproduced by a distribution of the 

recurrent antitopographic inhibition strength (Fig. 4.5a). Interestingly, when the target 

and competitor stimulus width are varied, the Ipc response at the target location continues 
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to represent information about the target stimulus width (Asadollahi et al. 2010). Our 

model investigations reveal how this deviation from a winner-take-all behavior can be 

mediated by a combination of cellular and circuit mechanisms (Fig. 4.5b). 

 

The theoretical analysis of neurally implemented maximum detectors has a long history 

(Koch and Ullman 1985). The architecture of model WTA networks falls into two broad 

categories: (I) lateral inhibition without self inhibition (Sum et al. 1999; Mao and 

Massaquoi 2007; Yuille and Grzywacz 1989) and (II) global inhibition with self 

excitation (Hahnloser et al. 1999, Brandt and Wessel, 2007). The anatomically-

constrained model (Fig. 4.2) of the isthmotectal system includes elements of both 

network categories. The recurrent antitopographic inhibition (Imc à L10) belongs to 

category I, while the global inhibition (Imc à Ipc) with self excitation (Ipc à L10) 

belongs to category II. Depending on the relative strength of the inhibition and excitation, 

the stimulus maximum selection can be based on a combination of the two basic network 

categories. WTA selection and the selection of novel stimuli are related in that both 

require competitive interaction. However, the selection of novel stimuli poses higher 

requirements on the network. In a WTA network, strong inhibition usually ensures the 

selection of the winner (Hahnloser et al. 1999; Fig. 4.5a). In contrast, for inhibition above 

a certain level the network fails to respond to novel stimuli. Thus a network has to 

maintain its inhibition at an appropriate level to execute the task of novelty detection 

(Fig. 4.6). 
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4.4.6 Top-down modulation of the stimulus-response function 

Our model provides new insight into the microcircuit mechanisms of top-down stimulus-

response modulation (Fig. 4.9). Directing attention to a target stimulus enhances visual 

responses of cortical neurons (V4) to the attended stimulus while suppressing the 

responses to other stimuli (reviewed in Reynolds and Heeger 2009). The effects of focal 

attention on V4 visual responses can be mimicked by low-level electrical 

microstimulation of the macaque frontal eye field region (Moore and Armstrong 2003). 

This microstimulation paradigm was extended to the owl forebrain arcopallial gaze field 

([AGF], putative homolog of the primate frontal eye field region), which projects to both 

the nucleus isthmi and the deep tectal layers (Knudsen et al. 1995). Stimulating an AGF 

site aligned with the receptive field of a recorded deep tectal neuron caused a leftward 

shift of the neurons stimulus-response function. In contrast, stimulating an AGF site 

outside the receptive field of a recorded deep tectal neuron reduced the responses across 

all stimulus levels (Winkowski and Knudsen 2008).  

 

The observed differential effect of aligned and non-aligned AGF stimulation has led to 

the suggestion that AGF inputs involve two distinct mechanisms modulating tectal 

responses (Winkowski and Knudsen 2008). Our model investigation indicates two such 

mechanisms. The aligned AGF stimulation causes a leftward shift of the neurons stimulus 

response function via the direct AGF excitation of tectal L10 neurons. The non-aligned 

AGF stimulation, however, reduces the responses across all stimulus levels dynamically 

via the competitive interaction of the target stimulus and the distal top-down input onto 

L10 and Imc neurons. The long-range interaction is then mediated by the antitopographic 
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inhibitory Imc à L10 projection. The isthmotectal circuit thus integrates the top-down 

influence into the bottom-up competitive interaction network. 

 

The top-down modulation results in stimulus-response functions may be mimicked, at 

least for simple stimuli, by the normalization model of attention. However, the 

phenomenological normalization model (Reynolds and Heeger 2009) and the circuit-

based competitive interaction model (Fig. 4.2b, c, 4.9a) are fundamentally different. The 

former is based on feedforward mechanisms and steady-state firing rates alone, whereas 

the latter includes feedback and temporal aspects of the responses. Specifically, in 

response to simple stimuli, the circuit-based model predicts that nonaligned top-down 

input imposes periodic bursting on target responses that synchronize with the activity at 

the top-down input location (Fig. 4.10). We hypothesize that in natural viewing the 

differences in predictions of stimulus-response modulation between the two classes of 

models will become more apparent. 

 

In conclusion, based on the detailed anatomical information of the avian isthmotectal 

system, the present study reveals a set of neural mechanisms for competitive stimulus 

selection. Given the parallels between attentional phenomenology of barn owls and 

rhesus monkey (Reynolds 2008; Winkowski and Knudsen 2008), it will be interesting to 

see to what extent this detailed circuit insight will assist useful working hypotheses for 

the investigation of attentional selection in monkey and man. 
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5 Competitive selection and local feedback 

modulate population coding of motion-sensitive 

wide-field neurons 

 

5.1 Abstract 

A salient stimulus gains the focus of attention via competitive mechanisms. The neural 

representation of the selected stimulus is enhanced and further mapped to higher visual 

area. The midbrain isthmic nucleus is involved in competitive selection and information 

flow control. Here we investigate the hypothesis that the retino-tectal synaptic 

transmission is modulated by cotransmission of acetylcholine (ACh) and glutamate from 

parvocellular isthmic (Ipc) nucleus. We show the blockade of nicotinic acetylcholine 

receptor (nAChR) alters the time course of synaptic depression. The suppression of tectal 

response to electric stimulation at Ipc nucleus by CNQX supports the hypothesis that Ipc 

neurons also innervate the optic tectum (OT) by glutamate. In a model of OT and its 

nucleus, we demonstrate that the release of ACh can lead to divisive modulation of the 

tectal responses to motion. The effect is dependent on stimulus intensities. We further 

reveal how the glutamatergic feedback might evoke coherent activity in the SGC-I 

population. 
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5.2 Introduction 

Attentional modulation optimizes visual processing by enhancing neural response to 

attended location (Ito and Gilbert, 1999; McAdams and Maunsell, 1999) or altering 

coherent activities of neural population (Fries et al., 2001). The studies have suggested a 

two-phase algorithm the brain might adopt to accomplish such tasks through its intricate 

neural circuits. In the first phase, competitive mechanisms (e.g. winner-take-all) serve to 

determine the most salient location in topographic representation maps of visual field 

(Koch and Ullman, 1985; Reynolds et al., 1999). The selected region becomes the focus 

of attention and the visual representation of particular properties (spatial location, color, 

orientation etc.) is facilitated and further processed at high-level brain structure in the 

second phase (Maunsell and Treue, 2006; Knudsen, 2007). The circuitry that dynamically 

guides the attentional focus in the first phase is not necessarily directly involved in 

sensory information processing (Koch and Ullman, 1985; Olshausen et al., 1993). In a 

large scale, the thalamic pulvinar is hypothetically suggested as the major source of the 

routing control of the ventral stream in visual cortex (Anderson et al., 2005). However, a 

neurobiological understanding of the attentional control mechanism is still missing. 

 

The mesencephalic OT (mammalian superior colliculus) is responsible for motion 

processing (Figure 5.1A). Neurons in deep and intermediate tectal layers are sensitive to 

translational and looming stimuli (Frost and Nakayama, 1983; Yan and Wang, 1986; 

Mysore et al., 2010). The OT forms reciprocal connections with the parvocellular (Ipc, 

mammalian parabigeminal nucleus) and the magnocellular (Imc) isthmic nuclei (Wang et 

al., 2004, 2006).  Both nuclei contain topographic visual space maps (Wang and Frost, 
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1991) and send back their axons to OT in topographic and antitopographic manners 

respectively (Wang et al., 2004, 2006). This intertwined midbrain organization is thought 

to direct spatial attention together with forebrain network (Knudsen, 2011).  

 

The nucleus structure Ipc innervates multiple layers of OT through its columnar axon 

terminals (Wang et al., 2006). The Ipc axons arborize densely at the retinorecipient layer 

5 where the retina fibers contact the extensive circular dendritic field of SGC-I neurons 

(Figure 5.1 B, C). The feedback projection controls signal flow of the tectofugal pathway 

(Luksch et al., 1998; Karten et al., 1997; Marin et al., 2003) and local inactivation of Ipc 

nucleus impairs the response at corresponding Rt area. Responses of Rt and entopallium 

are found synchronous to the bursting activities of Ipc (Marin et al., 2007, 2012) but Ipc 

neurons show no direct axonal projections to the higher visual areas. Understanding the 

role of Ipc feedback in determining the circuit dynamics requires the assessment of two 

questions. Firstly, what is the interactive mechanism between Ipc axons and the targeted 

tectal neurons? Secondly, how is the Ipc-tectum interaction related to the observed circuit 

dynamics? Moreover, Ipc neurons are involved in competitive selections of multiple 

stimuli and are most responsive to salient stimuli in a visual scene (Marin et al., 2007; 

Asadollahi et al., 2011). Understanding the role of Ipc feedback is important for 

interpreting attention and gaze control in visual processing (Knudsen, 2011).  

 

Here we studied the role of Ipc feedback on retino-tectal synaptic transmission in a tectal 

slice preparation and reveals its effect on tectal motion processing in an experimentally 

constrained model network. We show that the blockade of nAChR alters the dynamics of 
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synaptic depression. The excitatory response evoked by electric stimulation at Ipc 

nucleus is reduced by bath application of CNQX, indicating the involvement of glutamate 

in synaptic transmission. In the computational model, we demonstrate how the 

cotransmission of ACh and glutamate may modulate the response of tectal SGC-I cell to 

motion.  

 

5.3 Methods 

Experiments: Tectal slices were prepared from White Leghorn chick hatchlings (Gallus 

gallus; <5d old). All procedures used in this study were approved by the local authorities 

and conform to the guidelines of the National Institutes of Health Guide on the Care and 

Use of Laboratory Animals. Briefly, chickens were anesthetized, the brain was quickly 

removed and the optic tectum was sectioned at 300-450 µm. Stable whole cell recordings 

were obtained from a total of n = 67 SGC-I neurons with glass micropipettes pulled from 

borosilicate glass. The series resistance of recording was 10±3  MΩ and was routinely 

compensated. Electro-stimulations were carried out with bipolar tungsten electrodes as 

described previously (Luksch et al. 2001, 2004). The SGC-I cells were recorded from the 

outer layer of tectal L13 and are characterized by their chattering response to somatic 

current injection. The cells have stable resting membrane potentials of -59.1± 7.3  mV 

(mean SD). Sharp-onset spikes are recorded when pulse stimulations were delivered at 

tectal layer 2-4 and a second pulse within 30 ms always fails to drive any responses 

(Luksch et al 2001, 2004). Pulse train stimuli of certain inter-pulse-intervals !t  were 

typically repeated 5 times with a waiting time of 3-5 min between trials. Various 

stimulation intervals were tested in a pseudorandom sequence. 
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Figure 5.1 The schematics of the tectofugal pathway. A, The SGC-I neurons have large 
RF (gray) and the RF of the cell is modulated by local Ipc feedback (green). B, Tectal 
slice contains the layer 13 SGC neurons, the Ipc and SLu nucleus. C, The dendritic 
endings of SGC-I cells receive the axonal projection from retina at the retinorecipient 
layer 5. The retino-tectal synapses are modulated by the tectal-isthmic feedback loop, 
consisting of L10 (blue), Ipc and SLu neurons (green). 
 

To determine the effect of acetylcholine on retino-tectal transmission, we bath applied to 

the slice [20 µM], mecamylamine (Sigma-Aldrich, St. Louis), a non-competitive nAChR 

antagonist and repeated the recording under the control condition. Washout was observed 

in 3/10 cases, which is consistent with the assumption that mecamylamine is a use 

dependent reversible drugs (Fedorov et al., 2009) and has a slow recovery/dissociation 

rate from nicotinic receptors (Papke et al., 2001), which might result in irreversible 

cumulative (use-dependent) block with repeated application. The role of mAChR 

receptors was also tested by bath application of the antagonist atropine but no significant 

response change was observed (n = 3, data not shown). 
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To exam whether the SGC-I response is stationary, we analyze the response probability 

of SGC-I neurons (n = 57) in control conditions by dividing the recorded trials into two 

halves and calculating the response probability over the first half  (P = 0.536± 0.07 ) and 

the second half (P = 0.526± 0.07 ). No significant change is observed. To further test that 

the SGC-I responses are stationary over the recording period before and after application 

of mecamylamine, we recorded from a separate set of SGC-I neurons (n = 6) over a 

typical recording time of 50 minutes without drug application. The response probability 

for the first and second half trials are P = 0.363± 0.14  and P = 0.355± 0.14  (

mean± s.e.m. ), respectively. 

 

We also tested the hypothesis that the Ipc axons release glutamate (Gonzalez-Cabrera et 

al, 2011). Intracellular whole cell patch recordings were made from tectal neurons while 

electric stimulations were delivered to Ipc nucleus with bipolar tungsten electrode. Ipc 

nucleus was located by identifying Ipc neurons with intracellular recording. The Ipc 

neurons typically have membrane time constant ~35 ms and membrane resistance ~114 

MΩ. The Ipc neurons respond to step current injection with regular spikes and show 

numerous spontaneous activity. We then placed the bipolar tungsten electrode in the Ipc 

nucleus and recorded the response of tectal neurons while electric pulses are delivered. 

After recording 10~20 trials in the normal saline, [10 µM] CNQX (Sigma-Aldrich) was 

bath applied to the tectal slice and synaptic responses of tectal neurons were recorded. 

 

Model. We constructed a 5-layer two-dimensional neural network whose architecture is 

constrained to the anatomy of the retino-tecto-rotundal and isthmotectal pathway. The 
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model network consists of 5 arrays of neurons, representing retina ganglion cells (RGC), 

SGC-I, tectal layer 10 neurons (L10), magnocellular (Imc) and parvocellular (Ipc) 

isthmic neurons, respectively. 

 

RGC layer. The RGC layer is modeled as a NRGC !NRGC neuron grid, representing a 

visual field of 60°x60°. Unless otherwise stated, RGC array have a size of NRGC =100 . 

Each RGC neuron is modeled as a binary neuron that either has a spiking or a non-

spiking state. The presence of a stimulus in the visual field will randomly trigger the 

responses of corresponding RGC neurons. The dynamic response of each RGC neurons is 

modeled as a Poisson process of rate r = rRGC exp(!
(ix !Cx )

2

2! s
2 !

(iy !Cy )
2

2! s
2 ) , where Cx  and 

Cy  indicate the center of the stimulus. ix  and
 
iy  determine the coordinate of ith  RGC cell. 

The stimulus size is indicated by ! s . rRGC  is peak firing rate triggered at the center of the 

stimulus. 

 

SGC-I layer. We considered a 40 x 40
 
SGC-I neuron grid with its nodes uniformly 

distributed over the visual field considered. The dendrites of each SGC-I neuron sample 

the activities of RGC neurons and have a cosine distribution about the center of the 

receptive field !(r) = a(1+ cos("r / R)) , where r  is the distance between the receptive 

field center of the SGC-I dendrite and the RGC neuron. The receptive field radius R  is 

experimentally constrained and chosen as ~ 20! . The normalization factor 

a = !Nd / (R
2 (! 2 ! 4))ensures 2!r"(r)dr = Nd0

R
! , where Nd  is the estimated number of 



	
   136  

dendritic endings of each SGC-I cell and constrained as Nd =160  (Mahani et al., 2006).  

Each SGC-I dendrite responds in a binary manner to RGC spikes with probability 

P(!t) = Pmax (1" e
"!t/! ) , where !t  is the interval between two RGC spikes. The maximum 

response probability Pmax  is reached at the limit !t"#  when the interval between two 

stimulating pulse is large and according to the experimental measurement we set

Pmax = 0.9 . The time constant !  describes the recovery speed of SGC-I dendrites from 

synaptic depression. The dendritic spikes cause somatic spikes if no spike was generated 

previously at the soma within a refractory period of Tr = 30ms (Luksch et al., 2004). 

Accordingly, SGC-I spike rate will not exceed the limit of 33.3 Hz. Moreover, the 

dendrite of the SGC-I neurons also receives modulatory inputs from the Ipc neurons. 

Each SGC-I dendrites is modulated by an Ipc neuron whose receptive field center is the 

most adjacent to the SGC-I dendrites. The dynamics of the modulation is described in 

details in following session. 

 

L10, Ipc, Imc layers. The three layers represent the isthmotectal system and are modeled 

as three 40x40 neuron arrays. The neurons are modeled as leaky-integrate-fire type with 

spike-rate adaptation. The cellular and synaptic properties are modeled as described in 

previous works (Shao et al., 2009, Lai et al., 2011). The anatomical features of the 

isthmotectal connections are captured by the synaptic weights wij . Specifically, two types 

of connection structure, topographic and anti-topographic are described by 2D-Gaussian 

functions of the forms wij = exp(!
(ix ! jx )

2

2! x
2 !

(iy ! jy )
2

2! y
2 ) and
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wij =1!Dexp(!
(ix ! jx )

2

2! x
2 !

(iy ! jy )
2

2! y
2 ) , respectively. The index i  and j  indicate the 

neuron at post and pre end of the synapses. The subscription x  and y  denotes the two 

dimensions at the neuron grids.  

 

Cholinergic modulation. The release of ACh from Ipc neurons shortens the recovery time 

constant ! of SGC-I dendrites. Here we assume the dynamics follows the formula

! (t) = ! 0 /(1+"(t)) , where !(t)  could be interpreted as a quantity that described the 

amount of ACh that is released. Without presynaptic Ipc activity, no ACh is released and 

the quantity decays over time according to ! "d"(t) / dt = !"(t) . It has an increment 

!(t)! !(t)+"e"! (t )  whenever an Ipc spike occurs. Here !  is the increment amount 

induced by Ipc spikes, when no acetylcholine is released !(t) = 0 . The increment is 

dependent on the existing acetylcholine release and !(t)  cannot go unbounded. ! "  is a 

time constant that describes how long the acetylcholine will stay at the targeting location. 

 

Response of SGC-I soma. The dendrites of a SGC-I neuron respond to RGC pulses in a 

binary manner with probability P(!t) = Pmax (1" e
"!t/! ) . In response to Poisson pulse trains, 

the response probability could be effectively considered as having two components: the 

transient Po ~ Pmax  and the steady state Ps ~ Pmax!t / !  given a high RGC input rate 

(!t <<1 ). We therefore decompose the dendritic response into two random processes: the 

transient response Do,i (t)  that is triggered by the initial spike within the pulse train and 

the steady-state component Ds,i (t)  that is triggered by the rest, where i  indicates the 
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dendritic index of a SGC-I neuron. The indices vary over time as the stimulus is moving 

across the visual field of the neuron. The somatic response X(t)  of a SGC-I neuron is 

therefore the superposition of the dendritic spikes X(t) = Do,i (t)+Ds,i (t)( )
i
!
"

#
$

%

&
'
Tr

, the 

subscript indicates that the somatic response is modulated by the refractory period and 

two spikes will not occur within a time window of Tr  ms.  

 

Assuming that ith dendrites of a SGC-I neuron generated spike at a time set t j{ }i , the 

firing rate of a SGC-I soma is evaluated by the formula 

rSGC =
1
T

dt !o,i (t ! t j )+
i, j
" !s,i (t ! t j )

i, j
"

#

$
%%

&

'
(()

#

$
%
%

&

'
(
(
Tr

. Here !  is the Dirac-delta function. We 

consider the spike train as a result of the transient and steady state response, denoted by 

the subscripts o and s , respectively. Tr  indicates the refractory period of somatic spike.  

 

To get a estimation of the SGC firing rate, we neglect the refractory period and assume 

that Tr = 0  ms. Transient response of SGC-I soma: The transient response of a SGC-I 

dendrite is evoked when the first spike in a RGC pulse train is delivered. Since the 

response probability is close to ~1, it is highly probable that a dendritic spike is triggered. 

In the presence of a moving dot, the transient response occurs shortly after the stimulus 

enters the RF of a SGC-I dendrite. Since only one transient spike will occur at each 

dendritic ending, the transient component of the somatic firing rate can be evaluated as 

1
T

dt !o,i (t ! t j )
i, j
"# $

ndPmax
T

, where nd is the number of dendrites that confront the 
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moving dot during its presence. Steady state response of SGC-I soma: The steady state 

response is dependent on the intervals between RGC spikes. Given RGC rate of rRGC , the 

pulse interval is approximately !t ~ 1
rRGC

. Given a high RGC input rate, the ith  dendrite 

of a SGC-I neuron respond with Poisson spike train of rate ri = rRGCPs ~ Pmax / ! . The 

steady state somatic firing rate is accordingly estimated as 

1
T

dt !s,i (t ! t j )
i, j
"0

TD# $
ndTDPmax
"T

, where TD  is time duration that a stimulus stays within 

the ith  dendrite. The effect of acetylcholine is quantified by calculating the enhancement 

factor Fe !
rSGC
r0,SGC

, where rSGC  and r0,SGC  are the response rate of a SGC-I neuron with and 

without the modulation of Ipc activity, respectively. 

 

Cross-correlation. The cross-correlation coefficients between two SGC-I neurons Ci  and 

Cj  are calculated by the formula!ij =
cov(mi,mj )

var(mi ) var(mj )
, where mi , mj  is the number 

of SGC spikes counted in a sliding time window of certain length. We divide the spike 

count into transient and steady state components as mi =mo,i +ms,i . By assuming 

independence between the two components and no refractory period Tr = 0 , we get a 

rough evaluation for the cross-correlation coefficient  

 

!ij !
cov(mo,i,mo, j )+ cov(ms,i,ms, j )

var(mo,i )+ var(ms,i ) var(mo, j )+ var(ms, j )
   (1) 
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To further understand the cross-correlation among the SGC-I population in the presence 

of glutamatergic modulation, we consider two SGC-I neurons i  and j  with response 

probability p  to pulse stimulation. The dendrites of each SGC-I neurons could be 

naturally divided into two parts: (1) the dendrites that share common synaptic inputs from 

RGC neurons, the number of which are denoted by nc  (2) the dendrites that receive RGC 

excitation independently, denoted by ns . Assuming a symmetric dendrite distribution, we 

have the dendritic number ns, j = ns,i = ns . We decompose the spikes into two 

components: the response due to common pulse inputs and the independent pulse inputs, 

we accordingly have mi =mc, j +ms, j . Each dendrite responds to the Poisson pulse train of 

rate rRGC  into a Poisson spike train of rate prRGC  and therefore we have 

mc,i = mc, j = nc prRGCT  and ms,i = ms, j = ns prRGCT . The covariance between i  and j  

SGC-I neuron is only dependent on the spikes induced by common RGC inputs and 

mimj ! mi mj = mc,imc, j ! mc,i mc, j . In order to estimate mc,imc, j , we consider 

the case when the common pulse inputs deliver a spike train of l spikes. Since the 

dendritic response of neuron i  and j  are independent given a fixed pulse train, we have 

mc,imc, j l
= mc,i l

mc, j l
= l2p . It follows that 

mc,imc, j = Pll
2p2 = p2

m=0

!

" (ncrRGCT + (ncrRGCT )
2 )  where l  obeys the Poisson distribution 

and we have Pl =
(ncrRGCT )

l e!ncrRGCT

l!
. The spike number covariance between neuron i  and 

j  is accordingly mimj ! mi mj = p2ncrRGCT  and the cross correlation coefficient 
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!ij = pnc / (ns + nc ) . The cross-correlation is dependent on the response probability and 

the number of SGC-I dendrites that share common RGC inputs. 

 

Glutamatergic modulation from Ipc neurons. In additional to its role as a cholinergic 

modulator, the axonal feedback from Ipc neurons might also use glutamate as 

neurotransmitter. We introduced an additional parameter to the model and assumed that 

each spike of Ipc neurons will trigger the corresponding dendrites of SGC-I neurons to 

spike with probability pGlu . 

 

 

5.4 Results 

5.4.1 The role of ACh on retino-tectal synaptic transmission 

To characterize the properties of synaptic transmission from RGC to OT, we locally 

stimulated the RGC axons at the superficial layers of the tectal slice and recorded the 

response of SGC-I somata. The effect of ACh on the transmission is determined by 

repeating the measurement with bath application of mecamylamine, a nAChR antagonist. 

Specifically, a pulse train of 10 electric pulses of regular interval !t  was delivered to the 

tectal layer 2-4 and the responses of SGC-I somata were recorded (Figure 5.2A). 

Consistent with previous findings (Luksch et al., 2004; Khanbabaie et al., 2007), when 

driven by single pulses, SGC-I cells respond either with one to two action potentials or 

with small EPSPs. The SGC-I responses typically have high probability to pulse#1 in the 

stimulation train and the probability decayed to a lower value for the following up pulse 

#2-10 (Figure 5.2A). The bath application of mecamylamine greatly reduced the number 
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of action potentials in response to pulse #2-10 (Figure 5.2A). In few cases (3/10), the 

effect was washed out when normal ACSF was re-applied to the slice (Figure 5.2A) and 

the response recovered to the control condition. The shape of pulse-driven action 

potential was not altered with the application of mecamylamine (Figure 5.2B). To test 

whether the cellular properties of SGC-I cells were altered during the application of 

mecamylamine, we measured the response of SGC-I somata to both depolarizing and 

hyperpolarizing step current. No significant change was observed in the response before 

or after the application of mecamylamine (Figure 5.2C). 

 

 

Figure 5.2 The responses of a SGC-I soma to sequential pulses. A, The response of a 
SGC-I cell to a sequence of 10 electrical pulses (!t = 2000ms). Top row, recorded 
membrane potential of the SGC-I neurons. The SGC-I cells typically had resting 
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membrane potential of -65 mV. Bottom row, rasters of the SGC-I response over multiple 
trials. Left, control condition. Middle, bath application of mecamylamine. Right, response 
after washout. B, Typical spike responses of a SGC-I cell (black box in A) are shown 
overlaid before (black) and after (gray) bath application mecamylamine. C, The cellular 
response of a SGC-I cell to depolarizing step current injection (top, I = 1.3 nA) and 
hyperpolarizing current injection (bottom, I = -0.1 nA). The response under control 
condition and mecamylamine is shown in black and gray, respectively. 
 

The response probability of SGC-I cells depends on the pulse interval (Luksch et al., 

2004; Khanbabaie et al., 2007). To further reveal the synaptic dynamics and the effect of 

ACh, we tested the retino-tectal synaptic transmission by using electro-stimulation of 

various pulse intervals (Figure 5.3A-J). The response probability is quantified by 

calculating the response probability Pi (i =1,2...10)  for each of the 10 stimulation pulses 

over multiple trials. For pulses of various intervals (!t = 500 ms, 1000ms, 1500ms, 

2000ms, 4000  ms) the response probability of a SGC-I cell has a transient value P1  

close to 1 while triggered by the first pulse in the pulse train and the response probability 

P2!10  reaches to a steady state value when triggered by the following pulses #2-10 (Figure 

5.3A-E). The steady-state response probability Ps  is calculated by averaging over the 

response probabilities P2!10  (Figure 5.3F-J). After the application of mecamylamine, the 

response probability P2!10 was greatly reduced for the pulses of intervals !t =1000  ms 

1500ms, 2000ms (Figure 5.3B-D) and the steady state response probabilities show 

highly significant changes (Figure 5.3G-I, paied t-test p << 0.01 ). The response 

probabilities P2!10  show relatively small changes for pulses of intervals !t = 500, 4000  

ms (Figure 5.3A, I) and the changes of steady state response (Figure 5.3F, J) are not 
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highly significant ( p = 0.61, p = 0.03 , respectively). The response probability to pulse #1 

shows no significant change for all the pulse intervals tested ( p > 0.05 ).  

 

Figure 5.3 The response probability as a function of pulse No. A-E, The response 
probability of SGC-I cell as a function of pulse number. Various pulse intervals (
!t = 500 ms, 1000 ms, 1500 ms, 2000 ms, 4000 ms) were used to test the response 
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probability change before (black-circle line) and after (open-circle line) bath application 
of mecamylamine. The responses to pulse #2-10 show significant decrease after the bath 
application of mecamylamine for pulse intervals of !t =1000ms, 1500ms, 2000ms. F-J, 
Left column: the response probability to pulse #1 The response for each individual cell is 
shown in gray, indicating the response probability before (filled circle) and after (open 
circle) the application of mecamylamine. The average responses of the population are 
shown in black, indicating the control (filled circle) and mecamylamine (open circle) 
conditions. Right column: the response probability of SGC-I cells to pulse #2-10.  
 

The steady state response probability Ps  is dependent on the stimulus intervals !t  in an 

exponential form of Ps = Pmax (1! e
!"t/! 0 )  (Figure 5.4A). The parameters of the formula are 

fitted to the experimental data. In the control condition, we have Pmax = 0.87  and 

! 0 =1888ms. Blocking nAChR greatly increases the recovery time constant ! 0 = 3596  

ms but the maximum response probability remains at a high value with Pmax = 0.93 . The 

response probability varies greatly among the SGC-I population and results in a large 

deviation in the response. The percentile response change of the SGC-I cells provides a 

better way of showing the mecamylamine effects by minimizing the response variation 

across the SGC-I population (Figure. 5.4B).  

 

 
Figure 5.4 The steady-state responses of SGC-I neurons as a function of pulse intervals. 
A, The steady state response probability (to pulse #2-10) of a SGC-I cell as a function of 
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pulse interval. The steady response probability increases as the pulse interval increases. 
The response probability shows a significant decrease for pulse interval of 
!t =1000, 1500, 2000  ms with the application of mecamylamine (open circle), 
comparing to the control condition (black circle). B, The percentile change of response 
probability after the bath application of mecamylamine as a function of pulse interval. 
The response probability to pulse #1 shows little change (black square). In response to 
pulse #2-10, the percentile change increases as the pulse interval increases, peaking at 
!t = 2000  ms and decreases as the pulse interval increases further.  
 

5.4.2 Co-release of glutamate at Ipc axon terminals 

Evidence is accumulating that Ipc neurons release glutamate (Wang et al., 1995; Wang, 

2003; Gonzalez-Cabrera et al., 2011) in addition to the expected release of ACh(Medina 

and Reiner, 2004, Wang et al., 2006). To test whether Ipc axons interact with OT via 

glutamatergic neurotransmitter, we recorded intracellularly from the tectal neurons while 

stimulating the Ipc nucleus. Recorded tectal neurons respond with small EPSPs of 

amplitude ~3 mV to electric stimulations in Ipc nucleus (Figure 5.5A) and action 

potentials were occasionally evoked. The response was greatly reduced after bath 

application of CNQX (Figure 5.5A), indicating the involvement of glutamate in synaptic 

transmission. The EPSP peak is significantly reduced after bath application of CNQX 

(Figure 5.5B paired t-test, p < 0.01) 

 

5.4.3 The model of retino-tecto-rotundal and isthmotectal pathway 

In order to understand the role of Ipc feedback in motion processing, we constructed a 

computational model where both the retino-tecto-rotundal pathway and the isthmotectal 

feedback loop are considered (Figure 5.6A). The design of the model network is 

constrained by the available anatomical (Wang et al., 2004, 2006) and physiological 

information (Shao et al., 2009) of the OT and its nucleus. RGC neurons transfer visual 
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stimulus into Poisson spike train and activate the L10 neurons through topographic 

projections. The dendritic endings of SGC-I neurons follow cosine distribution (Figure 

5.6B; Mahani et al., 2006) and are activated by the pulses generated at the corresponding 

RGC neuron. The topographic projections L10àIpc, L10àImc, and IpcàL10 are 

represented by 2D Gaussian distributions. The RGC-SGC synapses are modulated by 

adjacent Ipc neurons whose RF is the closest. One individual Ipc axonal terminal can 

modulate multiple RGC-SGC synapses. The GABAergic ImcàL10 projection is 

represented by an inverted 2D Gaussian function and the synaptic weight of ImcàIpc 

projection follows a uniform distribution. 

 

 
Figure 5.5 The response of tectal neurons to electric stimulations at the Ipc nucleus. A, 
The averaged EPSPs before (black line) and after (gray) bath application of CNQX. The 
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response shows a significant decrease with the application of CNQX. B, The amplitude 
of the EPSP before (black bar) and after (gray bar) the application of CNQX. 

5.4.4 Divisive modulation of SGC-I response tuning curve 

Divisive modulation, where the change of neural response is proportional to the neural 

activity, has been observed in various contexts (DeAngelis et al., 1994; Cavanough et al., 

2002; McAdams and Maunsell, 1999; Treue and Martinez-Trujillo, 1999). The response 

of tectal neurons to looming stimuli is divisively attenuated in the presence of a 

competitor outside the receptive field (Mysore et al., 2010). Moreover, inactivation of Ipc 

neurons also results in divisive modulation on the tectal neuron response (Asadollahi and 

Knudsen, 2011). To understand the divisive modulatory effects, we activated the model 

network with single/multiple moving dots of various speeds and investigated the response 

change of SGC-I neurons with varying Ipc activity.  

 

 

Figure 5.6 The architecture of the retino-tecto-rotundal and isthmotectal neural network. 
A, Five two-dimensional neuron arrays are used to represent the RGC, SGC-I, tectal L10, 
Ipc and Imc neuron groups. The stimulus is a moving dot modeled as a two dimensional 
Gaussian function. The SGC-I neuron has its dendritic endings distributed at the RGC 
layer following a cosine distribution. The projection from L10 to Ipc and Imc neurons 
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follows Gaussian distribution. The Ipc neurons project topographically to the L10 
neurons with Gaussian distribution and feed back to the retino-tectal synapses with the 
most adjacent RF center. The Imc neurons send their inhibitory feedback broadly to the 
L10 and Ipc groups, with anti-topographic and homogeneous distribution respectively. B, 
The distribution of a SGC-I dendritic endings follows the shape of a cosine function. The 
green shade indicates the spatial extent of Ipc feedback from a single Ipc unit. 
 
We consider the response of a SGC-I neuron by two components: the transient response 

and the steady-state response. Because of the high response probability, the transient 

component dominates the response of a SGC-I neuron (Mahani, 2006) and is proportional 

to the number nd  of dendritic endings on the trajectory of a moving dot (see methods). 

The response rate reaches a maximum when the stimulus is moving across the RF center 

of a SGC-I neuron where the distribution of dendrites has the highest density. The 

response decreases as the stimulus moves across the path away from the RF center, where 

the dendritic distribution has low density (Figure 5.7 A-D). The tuning curve of SGC-I 

neurons therefore follows a distribution close to a cosine function. On the other hand, 

within certain time interval T , the number of activated dendritic endings nd  increases as 

the speed of the stimulus increases and is approximately estimated as rSGC ~
ndPmax
T

. The 

firing rate of SGC-I neuron is therefore a monotonically increasing function of stimulus 

speed (Figure 5.7 A-D). Since the relevant parameter for SGC response rate is not altered 

by synaptic modulation, the transient response is not affected by Ipc feedback. 

  

In contrast to the transient response, the steady state response has a much lower response 

probability that is proportional to ~ Pmax
!

, provided a high RGC input rate. The response 
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rate is accordingly estimated as ~ ndTDPmax
!T

, assuming no refractory period (see 

methods), where TD  is the average duration within which a dendrite of the SGC-I neuron 

is exposed to the visual stimulus. The steady state response is dependent on Ipc activity 

since the recovery time constant !  varies with the release of ACh. In vitro observation 

indicates that blocking nAChRs prolongs the recovery time constant ! . The SGC-I 

somatic rate rSGC ~
ndPmax
T

1+ TD
!

!

"
#

$

%
&  decreases accordingly (Figure. 5.7A-D) without Ipc 

activity. With large recovery time constant ! , it follows that TDPmax
!

<<1. Thus, the 

enhancement factor defined as the ratio between the SGC-I response rate with and 

without Ipc feedback has a form of Fe ~ 1+
TD
!

!

"
#

$

%
& / 1+

TD
! 0

!

"
#

$

%
& , where !  and ! 0  is the 

average value of the recovery time constant with and without the Ipc modulation, 

respectively. The enhancement factor is independent on dendritic distribution parameter 

nd  and is therefore constant over various stimulus locations (Figure 5.7E). The steady 

state response rate of a SGC-I neuron is also dependent on the parameter TD , which is 

inversely proportional to the speed of a moving dot. A slow moving dot stays longer in 

the RF of a SGC-I dendrite (larger TD ) and the effect of acetylcholine is potentiated 

accordingly (Figure 5.7A-D). The enhancement factor therefore decreases as the stimulus 

speed increases (Figure 5.7F). 

 

In the presence of multiple visual stimuli, the isthmotectal neural responses interact with 

each other through the global antitopographic feedback mediated by Imc axons. A salient 
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stimulus at a distal location suppresses the neural response triggered by a local stimulus 

through competition mechanisms (Lai et al., 2011). The suppressed activity of Ipc 

neurons reduced acetylcholine release at the postsynaptic RGC-SGC synapses. With the 

same mechanism described above, divisive modulation is observed (data not shown). 

 

 

Figure 5.7 The response tuning curve to moving stimulus of different speed. The 
response rate is the average rate of the center 5 neurons at the center column 
(perpendicular to the direction of moving stimulus) of the simulated neuron sheet (over 
10 trials, error bar indicates the SD). The stimulus size is chosen as! s =1.5 ° and the 
RGC layer has the size of NRGC =100 . The projection parameters are chosen as 
! x,RGC!L10 =! y,RGC!L10 = 3° , ! x,L10!Ipc =! y,L10!Ipc = 3° , ! x,Ipc!L10 =! y,Ipc!L10 = 5° , 
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! x,Imc!L10 =! y,Imc!L10 =10 °, DImc!L10 =1.0 , DImc!L10 = 0.0 .  The dendritic parameters for 

the SGC-I cells are chosen as Pmax = 0.9 , ! 0 = 2200  ms. The modulatory parameters for 
the cholinergic feedback is chosen as ! =1.0 , ! " = 200  ms, The glutamatergic 

modulation is not considered here pGlu = 0.0 . A, speed = 5 °/s The tuning curve (black-
dot line) is divisively attenuated when the Ipc units are inactivated (open-dot line) B, C, 
D, Tuning curve in response to stimulus of speed = 10 °/s, 15 °/s, 20 °/s. E. The 
enhancement factor is calculated at each stimulus location by taking the ratio between the 
SGC-I response with/without the Ipc modulation. The factor appears to be constant over 
different stimulus locations. F the average enhancement factor is calculated by taking the 
ratio between the average response rate with/without Ipc modulation. 
 

5.4.5 The role of Ipc in modulating correlated activities of SGC-I population  

The axonal endings of Ipc neurons terminate densely at the retinorecipient layer, overlaps 

spatially with the dendritic endings of numerous SGC-I neurons. It has been proposed 

that the axons of Ipc neurons might serve to coordinate the activity across the SGC-I 

population through this localized projection (Wang et al., 2006). Here we quantitatively 

examine the hypothesis by analyzing the cross-correlations among the SGC-I population. 

We activate the model network with a moving dot that starts at the RF center. The cross-

correlation matrix is calculated between the neurons at the center column of the SGC-I 

grids. The direction of the moving dot is perpendicular to the considered SGC-I neuron 

column. Without Ipc feedback, the SGC-I neurons respond largely independent to 

uncorrelated RGC Poisson spike inputs (Figure 5.8A). We then tested the response 

correlations of the SGC-I population with two types of Ipc modulation. Firstly, we 

modeled the Ipc feedback as solely cholinergic. The activity of Ipc neurons leads to the 

release of acetylcholine, which shortens the recovery speed of the synaptic depression at 

the retino-tectal projections (see methods). The response rate of the SGC-I cells increases 

due to the Ipc modulation (Figure 5.8C) but little correlation is observed (Figure 5.8D). 



	
   153  

Perhaps surprisingly, the simultaneous modulation of the wide field SGC-I cells by the 

local Ipc axons introduces little correlation in the population activity. The low steady-

state response probability and small number of common RGC inputs shared by any two 

SGC-I cells are the major reasons that cause the low correlation. This issue is discussed 

in details in the following section.  

 

We then tested an alternative model assuming the cotransmission of acetylcholine and 

glutamate from Ipc. In general, glutamate is an effective excitatory neurotransmitter that 

can evoke depolarization and action potentials at the postsynaptic neurons. Here, we 

assume the activity of Ipc axons will stochastically activate the spikes of SGC-I 

dendrites. When a moving dot enters the RF of Ipc neurons, it triggers the Ipc neurons to 

respond with rhythmic bursting (Figure 5.8E), the mechanisms of which were discussed 

previously (Shao et al., 2009; Lai et al., 2011). The spikes of Ipc neurons now locally 

activate the spiking response of SGC-I dendrites. Rhythmic responses are observed in the 

SGC-I populations and the frequency of the activity is tuned to the frequency of Ipc 

bursts (Figure 5.8E). Two mechanisms contribute to the correlation. First, the local Ipc 

axons excite multiple SGC-I cells with a relatively high probability through their 

contacting with SGC-Is’ wide distributed dendrites. Second, the recurrent excitation and 

inhibition between the L10 and Imc neurons evoke correlated oscillatory activities among 

the Ipc population (Figure 5.8E), which imposes correlated inputs to the SGC-I 

population. The correlations between SGC-I neurons are therefore enhanced by Ipc 

feedback. Detailed discussion is shown in the following section. 
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Figure 5.8 The cross-correlations of SGC-I population in response to moving stimuli. A, 
Raster of SGC-I neurons spiking activity in response to a moving stimulus without Ipc 
activity. The histogram is shown below the raster plots. The raster shows SGC-I activity 
at the center column of the neuron grids with the spot moving perpendicular to the 
column B, The cross-correlation matrix between the SGC-I neurons. The color is coded 
in a way where green indicate a low correlation close to 0 while red indicates a high 
correlation close to 1. C, Raster of SGC-I neurons and Ipc neurons in response to a 
moving stimulus with cholinergic feedback from Ipc. Histogram is shown below the 
raster plots of both neural group. No significant correlation is observed with the 
cholinergic modulation of SGC-I responses. The neural response decreases as the 
stimulus moves out of the RF of the Ipc neurons. D, The cross-correlation matrix between 
the SGC-I neurons. E, Raster of SGC-I neurons in response to a moving stimulus with 
glutamatergic feedback from Ipc. F, The cross-correlation matrix between the SGC-I 
neurons. 
 

5.4.6 Analysis of the cross-correlation between two SGC-I cells 

The cross-correlation between two SGC-I neurons has two components, resulting from 

transient response and steady-state response and the formula follows as 

!ij !
cov(mo,i,mo, j )+ cov(ms,i,ms, j )

var(mo )+ var(ms )
, assuming that var(mo ) = var(mo,i ) = var(mo, j ) . Here  

mo  and ms  is the spike counts with in a time window of certain length Tw . The steady 
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state term in the cross-correlation coefficient cov(mo,i,mo, j ) = ps
2ncrRGCTw  and 

var(ms ) = psncrRGCTw  are negligible comparing to the transient terms due to the low 

response probability ps <<1  with or without Ipc feedback and small number of dendritic 

endings that share common RGC input nc <<1 , because of the sparse distribution.  

 

To understand the correlation in the SGC population activity with the modulation of 

glutamate, we analytically calculated the cross-correlation coefficient between two SGC-I 

neurons that have a constant response probability p  to RGC pulses. The cross-correlation 

coefficient between two SGC-I neurons is of the form !ij = pnc / (ns + nc )  (see Methods), 

where nc  is the number of dendrites that receive common RGC input and ns  is the 

number of dendrites that receive independent RGC input. Two major properties 

positively affect the response correlation between two SGC-I neurons. Firstly, the 

response probability p  to the triggering spikes and secondly the number of dendrites nc  

that shares common inputs from RGC axons. When all dendrites of the two SGC-I 

neurons share the same RGC inputs ns = 0 , the cross correlation is solely dependent on 

the response probability !ij ~ p . The responses of the two SGC-I neurons are identical 

when p ~1 , and accordingly the cross correlation follows !ij ~1 . On the other hand, 

when nc ~ 0 , the response of the two SGC-I neurons are independent and the cross 

correlation becomes !ij ~ 0 . In the presence of glutamatergic Ipc feedback, we assume 

that the spikes of Ipc neurons will cause spikes at the corresponding SGC-I dendritic 

endings with a response probability pGlu . Moreover, the correlated activity of Ipc axons 
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effectively increases the number of dendrites nc  that shares the same pulse stimulations 

between two SGC-I neurons. The bursting activity of Ipc neurons together with the 

relatively large response probability pGlu  leads to the strong correlated activity of the 

SGC-I population. 

 

5.5 Discussion 

5.5.1 Cotransmission of ACh and glutamate from Ipc axons 

Immunochemistry study indicates that Ipc contains cholinergic neurons (Medina and 

Reiner, 2004) and the isthmic structure has long been referred as cholinergic (Wang et al., 

2006). However, recent studies found expression of mRNA for the vesicular glutamate 

transporter 2 in Ipc neurons (Gonzalez-Cabrera et al., 2011). Electrophysiological 

recordings also suggest that the Ipc-tectal projection could make use of two 

neurotransmitter systems, glutamate and acetylcholine (Wang et al., 1995; Wang, 2003). 

Here we show that the dynamics of retino-tectal synaptic transmission are regulated by 

nAChRs (Figure. 5.2, 5.3). We also recorded EPSPs/action potentials at postsynaptic 

tectal neurons while delivering electric stimulations at Ipc nucleus. The reduced response 

after bath application of CNQX suggests the involvement of glutamate in synaptic 

transmission (Figure 5.5). However, L10 axons also send collateral projections within the 

OT (Wang et al., 2006). Therefore, the possibility of that the recorded response change is 

resulted from the antidromic stimulation of glutamatergic L10 axons can not be excluded 

in this study.  Interestingly, co-release of multiple neurotransmitters from the same axon 

terminal has been found common in mammalian center nervous system (Lu et al., 2008; 
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Chuhma et al., 2004). The idea once controversial to Dale’s principle is now well 

established (Seal and Edwards, 2006). 

 

5.5.2 The regulating mechanisms of nAChR on synaptic depression 

Acetylcholine (ACh) is involved in multiple stages of visual processing (Yazejian and 

Fain, 1993; Endo et al., 2005) as well as cognitive functions such as attention, learning 

and memory (Mirza and Stolerman, 1998; Miranda and Bermudez-Rattoni, 1999; Levin 

and Torry, 1996; Hasselmo and Barkai, 1995). Although a wealth of data has been 

collected on the effect of postsynaptic ACh release (McCormick, 1993; Metherate, 2004; 

Lucas-Meunier et al. 2003, 2009), a functional interpretation of the ACh is still missing 

due to complex innervation of ACh synapses.  

 

The decaying response of SGC-I cells to a sequence of electrical stimulations at the 

retinal fibers suggests the involvement of short-term synaptic depression (Luksch et al., 

2004). This study reveals that the blockade of nAChR slows the recovery speed of 

synaptic depression. Ligand-gated ion channels formed from nAChRs are permeable to 

[Ca2+ ] / [Na+ ]  ions (Mulle et al., 1992) and its activation/inactivation can cause changes 

of intracellular [Ca2+ ] concentration. The residual [Ca2+ ]  model (Pyle et al., 2000; 

Zucker and Regehr, 2002) provides us with one of many mechanistic interpretations of 

the electrophysiology data. Mechanisms of short-term synaptic plasticity vary from 

vesicle depletion to glial neuronal interactions and involve the use of [Ca2+ ]  ions (Zucker 

and Regehr, 2002). Synaptic depression typically recovers with a time constant of a few 

seconds and is thought as a result of the depletion of releasable neurotransmitter pool at 
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the presynaptic side. The recovery speed of synaptic depression is dependent on the 

concentration of intracellular residual [Ca2+ ]  (Dittman and Regehr, 1998). The increment 

of residual [Ca2+ ]  will enhance the rate of refilling the releasable pool and thus 

potentiates the recovery of synaptic depression (Wang and Kaczmarek, 1998). Perhaps, 

under the experimental condition the blockade of nAChR leads to a decrement in the 

intracellular [Ca2+ ]  concentration and the refilling rate of the releasable neurotransmitter 

pool is accordingly reduced. As a result, the synaptic recovery time constant is prolonged.  

   

5.5.3 Cholinergic feedback mediates divisive gain modulation 

Divisive gain modulation is described in various contexts, including center-surround 

suppression (DeAngelis et al., 1994; Cavanough et al., 2002), attention enhancement 

(McAdams and Maunsell, 1999; Treue and Martinez-Trujillo, 1999) and competitive 

stimulus selection (Asadollahi et al., 2011; Mysore et al., 2010). Mechanisms such as 

voltage-dependent inhibition (Doiron et al., 2000) and synaptic noise (Ayaz and Chance, 

2009) are thought to subserve the divisive response change. 

 

In response to moving stimuli, the tuning curve of tectal neuron is divisively attenuated 

with local inactivation of Ipc units (Asadollahi and Knudsen, 2011) or with the presence 

of a competitor outside the RF (Mysore et al., 2010). The computational model suggests 

that the two observations could be mediated by the same underlying mechanism and the 

activity of Ipc feedback might be the key block that accounts for both phenomena. The 

tuning curve of a SGC-I cell follows from its dendritic distribution and the somatic 

response rate is proportional to the dendritic density at the stimulus location. The release 
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of acetylcholine from local Ipc neurons enhances the steady state response of a SGC-I 

soma and the enhancement is also proportional to the dendritic density. The suppression 

of the local Ipc activity, either through winner-take-all mechanism or through drug 

application, lead to the decreasing of tectal neural activity. The ‘divisive inhibition’ is 

therefore a phenomenon that results from synaptic dynamics as well as cellular 

morphology. 

 

5.5.4 The role of Ipc feedback in modulating coherent activity of SGC-I population  

The release of ACh regulates signal transmission between or within hierarchical levels in 

visual pathway (McCormick, 1988; Lucas-Meunier et al., 2009) and is involved in 

coherent neural activity, e.g. rhythmic oscillation, synchronization (Steriade, 2003; 

Rodriguez et al., 2004; Dickson et al., 2000). ACh shows a mixed role in regulating the 

coherence of neural response. In vivo stimulation of cholinergic nucleus basalis shift 

cortical neuron response from phasic to tonic (Metherate et al., 1992) while intracortical 

application of cholinergic agonist could also enhance the synchronization of Gamma 

oscillation (Rodriguez et al., 2004). In vitro recordings and model investigation illustrates 

that ACh could desynchronize cortical electroencephalogram by reducing the rate of 

synaptic depression (Tsodyks and Markram, 1997).  

 

The cholinergic modulation from Ipc neurons enhances the steady state response rate but 

it contributes little to the cross correlation between SGC-I cells (Figure 5.8B). We 

demonstrated in a probabilistic model that the overlap between SGC-I dendrites could 

lead to correlated activities between two SGC-I neurons and the cross-correlation 
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increases with higher dendritic response probability. A large RGC projection field or a 

dense distribution of SGC-I dendrites could increase the overlaps of between SGC-I 

dendrites. However, morphological data suggests a sparse distribution of SGC-I dendrites 

(Mahani et al., 2006) and narrow radial arbors of retinal axons (Karten et al., 1997). The 

morphologically constrained network shows little correlated activities in the SGC-I 

population (Figure. 5.8B).  

 

The model investigation reveals that the cholinergic feedback alone is not sufficient to 

account for the observed synchrony between Ipc and higher visual areas activities 

(rotundus, entopallium, Marin et al., 2012). By assuming that Ipc neurons trigger spikes 

at SGC-I dendrites, our model provides two interesting predictions. Firstly, the correlated 

bursting of Ipc neurons, generated via the isthmotectal interactions, synchronizes the 

activity of SGC-I neurons through its columnar feedback. The widely arborized SGC-I 

dendrites cause correlated activities across a large SGC-I population. Secondly, the Ipc-

induced correlated activity ensures the stable information propagation through multiple 

stages along the visual pathway. Indeed, the bursting activities of Ipc neurons are critical 

in controlling the ascending visual signals. Blocking the Ipc activity either by a 

competitor or local CNQX application leads to suppressed activities of rotundus and 

entopallium (Marine et al., 2007, 2012). The model provides physiological understanding 

for the gating mechanisms and suggested the importance of glutamate in generating 

correlated activity in OT.  
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6 The dynamics of novelty preference in a 

competitive neural network with adaptation 

 

In this chapter we consider a network that consists of two mutually inhibitory neurons 

with intrinsic adaptation regulation. We illustrate that the network is capable of 

competitively selecting multiple stimuli through winner-take-all (WTA) or novelty 

preference mechanisms. A reduced two-dimensional system is sufficient to reproduce the 

WTA activity of the full system while a 3-dimensional system is probably a minimum 

requirement to replicate the novelty preference behavior. We also discuss the role of 

connectivity strength and adaptation in determining the system’s dynamics. 

 

6.1 Introduction 

To survive the complex environment, an animal has to choose from an enormous set of 

events and respond with most relevant course of action. To accomplish a task, 

competitive mechanisms are triggered while multiple stimuli are presented (Reynold et 

al., 1999; VanRullen and Koch, 2003). The representative neural activities corresponding 

to the stimuli might either be attenuated or enhanced through competitive mechanisms in 

a bottom-up or top-down manner (Knudsen, 2007). The modulatory effects of neural 

response also depend on the environmental context as well as the internal states of the 

animal (Reynolds and Heeger, 2009; Knudsen, 2007). However, the dynamics of 

competitive interaction in neural network are poorly understood (Rabinovich et al., 

2008).  
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The WTA network has been thought as a mechanism to subserve competitive stimulus 

selections (Koch and Ullman, 1985). Lateral inhibition, an anatomical structure that could 

imply a WTA mechanism, has been found in multiple regions along the visual pathway 

from the retina to the visual cortex (Troy and Shou, 2002; Chisum and Fitzpatrick 2004). 

Prominent long-range inhibitory connections have been found in a midbrain structure: 

optic tectum (OT) and its isthmic nucleus (Wang et al., 2004), which is thought to 

involve in attentional control (Knudsen, 2011). So far, most discussions on the WTA 

mechanisms have been focused on the connection strengths between network neurons 

(Mao and Massaquoi, 2007). However, neurons as well as their synapses are adaptive 

units whose activities are dependent on the response history (Kohn, 2007). Adaptive 

responses, such as novelty detection are also found on a macroscopic level (Tiitinen et 

al., 1994; Aston-Jones, 1999). 

 

In the following sections, we investigate the dynamics of competitive stimulus selection 

mechanisms by considering a two-neuron system with adaptation. We discuss the 

dynamic of the network by representing two types of competing stimuli. In the static 

scenario, two stimuli are presented simultaneously to the network while in the dynamic 

scenario, the stimuli are presented in sequence. The stability and bifurcation of the 

network is dependent on the parameters associated with inhibition strength and neural 

adaptation. 
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6.2 A competitive network with adaptation 

To understand the dynamics of competitive stimulus selection, we compose a two-neuron 

network with reciprocal inhibition. The activities of model neurons are described by its 

firing rate ri (t)  and the dynamics of the networks evolve according to the differential 

equation set 

! r
dri
dt
= !ri +"(si ! Ia,i ! wijrj

i# j
$ )

! a
dIa,i
dt

= !Ia,i + Ari

%

&
''

(
'
'

 i =1, 2  

where ! r  is the time constant of the firing rate. !(x)  is an activation function that 

transfers various neural stimulation into neural activity and is chosen as a rectified Hill’s 

function with the properties that !(x) = xa

(ba + xa )
if x > 0 , and !(x) = 0  if x ! 0 , a,b > 0

. It follows directly that the derivative of the activation function is ! '(x) = abaxa"1

(ba + xa )2
 if 

x > 0  and ! '(x) = 0  if x ! 0 . si  is the external stimulus triggered at the presence of an 

object. Ia,i  is the adaptation current that modulates the neural activity and is determined 

by the firing rate of the neuron. The negative sign indicates that the adaptation currents 

tend to reduce the neural activity. Weight matrix wij  describes the strength of neural 

connections.  If we assume a symmetric mutual inhibitory connection we have the weight 

matrix of the form wij =
0 w
w 0

!

"
#

$

%
&  and w > 0 . The zero diagonal terms indicate that 

neurons do not synapse onto themselves.  
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6.3 WTA and novelty preference in the 4-dimensional system 

While simultaneously presented with stimuli of different strength, a WTA mechanism 

could be triggered and the network could choose between two stimuli the strongest one 

(Fig. 6.1a). At the stimuli onset, both neuron 1 and 2 are excited. Due to the difference in 

stimuli intensity, the activity of neuron 2 increases slightly faster than neuron 1. The 

activity of neuron 2 then starts to suppress that of neuron 1 and eventually become the 

winner of the competition. In this situation, the network behaves as a maxima selector 

and only the neuron corresponding to the maximum stimulus is activated. 

 

 

Figure 6.1: The response of the neural network to static and dynamic visual scenes. (a) 
Two stimuli s1 =1.0  and s2 =1.1  are delivered to neuron 1 and 2 simultaneously at 
s1 = 0.0  (the time course is shown in black bar). The parameters are chosen as A = 0.3 , 
b = 0.5 , a = 5.0 ,w =1.5 , ! r = 5.0 , ! a =10.0 . The top panel shows the neural activity as 
a function of time and the bottom panel shows the phase plot of the solution in the r1 ! r2  
plane. The initial condition is set as r1 = r2 = 0 . (b) Two stimuli of the same strength 
s1 = s2 =1.0  are delivered in sequence to neuron 1 and 2. s1  is delivered at t = 0.0  and s2  
is delivered at t = 333.3 . The parameters are chosen as w =1.2  and A = 0.69 , the rest of 
the parameters are the same as in (a). 
 



	
   175  

Presenting two stimuli with the same intensity in sequential order sheds further light on 

the behavior of the network in responding to dynamic stimuli, where two stimuli have the 

same intensity but presented in sequential order. The appearance of the first stimulus 

triggered the response of neuron 1 that reaches to a steady state value after a while (Fig 

6.1b).  The onset of the second stimulus triggers the response of neuron 2 which in turn 

suppressed the activity of neuron 1 completely after a delay of about !t ~100 . While the 

two stimuli have comparable intensity, the network gives preference to the novel 

stimulus. 

 

6.4 Stability analysis 

To understand the dynamics of the system, we consider its stability in the presence of two 

stimuli of the same intensity, assuming s1 = s2 = s0 . Due to the symmetry, the fixed point 

has the property that r1 = r2 = rf  where rf = !(s0 "w 'rf )  andw ' = (w+ A)  is the effective 

weight matrix. The adaptation current accordingly has the form of Ia,1 = Ia,2 = Arf . The 

Jacobian matrix at the fixed point has the form of

J =

!
1
! r

!
w
! r
" '(x f ) !
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" '(x f ) 0
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! r
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, where x f = s 0!(A+w)rf .  
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The stability of the symmetric system is determined by the following parameters s0 , A , 

w , a , b , ! a ,! r . By rescaling the time constant, the last two parameters could be 

reduced to be one independent parameter. a  and b  determine the shape of Hill’s 

function and the saturation rate as a function of inputs. The intensity of stimulus s0  

determines the active level of the network neurons. In the following sections, we focus on 

discussing the role of synaptic weights and adaptation in determining the dynamics of the 

system. 

 

6.5 WTA in a reduced two-dimensional system  

In order to further capture the essences that determine the WTA mechanisms we consider 

a reduced 2-dimensional system where we assume a neuron has no intrinsic adaptation 

and set A = 0 . The Jacobian is reduced to J =
!
1
! r

!
w
! r
" '(x f )

!
w
! r
" '(x f ) !

1
! r

#

$

%
%
%
%
%

&

'

(
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, and 

x f = s 0!wrf , and rf is the fixed point of the system that follows rf = !(s0 "wrf ) . The 

eigenvalues of the Jacobian are !± = !
1
" r
±
w" '(x f )
" r

. In the limit when the interactions 

between the two neurons are weak w! 0 , and the eigenvalues !± !"
1
" r

. The system 

has a stable fixed point where rf !
s0
a

s0
a + ba

.  When the interaction strength becomes 

stronger w!" , and the fixed point loses its stability if !+ > 0 . 
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We examine the response of the network by delivering stimuli of two different scenarios. 

In the case of static stimuli, we deliver two stimuli of slightly different intensity. Given a 

weak inhibitory strength between neuron 1 and neuron 2 (Fig. 6.2a), both neurons are 

activated and the responses reach a steady state where only a slight difference is observed 

between the two neurons. The differences between the neural responses increase as the 

synaptic strength increases. The activity of neuron 1 suppresses the response of neuron 2 

completely when w  goes beyond a certain threshold value. 

 

 

Figure 6.2 The behavior of a two-dimensional neural system. The parameters are chosen 
as a = 2.0 , b = 0.5 , ! = 5 . Time courses of the stimuli are shown in black bars.  (a) Two 
stimuli s1 =1.1  and s2 =1.0  are simultaneously delivered to neuron 1 and 2. On the top 
panel, the responses of neuron 1 and 2 as a function of time are shown in solid and 
dashed line respectively. On the bottom panels the solution of the system is shown in the 
r1 ! r2  plane  (b) Stimuli s1 =1.0  and s2 =1.0  are presented at time t = 0.0  and t = 333.3 , 
respectively. 
 

In the 2-dimensional system, the response to two sequential stimuli of the same strength 

shows no novelty preference. The presence of s1  excites the activity of neuron 1.  In a 

network of weak interactions, the presence of stimulus s2  at a later time suppresses the 
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response triggered by s1 , and the network eventually settles at a stable state where both 

neurons respond simultaneously with low firing rate (Fig. 6.2b). The increase of 

connection weights leads to a structural change in the system’s dynamics. When w  

reaches beyond a certain threshold, the presence of s2  can no longer suppress the activity 

at neuron 1 and the system shows little response to s2 . The WTA behavior of the 2-

dimensional system resembles that of the 4-dimensional system. However, the 2-

dimensional system fails to replicate the novelty preference behavior. The following 

section reveals that a 3-dimensional system is sufficient for a network to have novelty 

preference. 

 

6.6 Novelty preference in a reduced 3-dimensional system  

To replicate the novelty preference behavior, we introduce a third variable !i  that varies 

according to the rate difference between the two neurons. The network evolves according 

to the differential equation set 

! r
dr1
dt

= !r1 +"(s1 !#i!wr2 )

! r
dr2
dt

= !r2 +"(s2 +#i!wr1)

! a
d#i
dt

= !#i+ A(r1 ! r2 )

 

In the presence of two symmetric stimuli of the same strength s1 = s2 = s0 , the system has 

a fixed point of r1 = r2 = rf , !i = 0  and rf  satisfies the following relation rf = !(s0 "wrf ) . 

Notice the formula for the fixed point is the same as that of the 2-dimensional system and 

the existence of the third variable does not change the value of the fixed point. The 
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Jacobian has a simple form of J =
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, where 

x f = s0 !wrf  and the characteristic function has the following form 
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We explored the responses of the network to dynamical stimuli presented in sequential 

order at various synaptic strengths (Fig. 6.3). With weak synaptic connections, both 

neurons respond with reduced activities to both stimuli (Fig. 6.3a). Given medium 

strength of synaptic weights, the novelty preference behavior appears (Fig. 6.3b). The 

novel stimulus appearing at a later time triggers an increasing activity of neuron 2 and the 

activity eventually takes over that of neuron 1. The whole network shifts its activity to 

responding to stimulus 2. The existence of the third variable enables the network to 

escape from one stable attractor to the other. As the synaptic connections become 

stronger, the neurons only respond to the first stimulus presented, similar to the case of 

the 2-dimensional system (Fig. 6.3c). 
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Figure 6.3 A three dimensional system reproduces the WTA selection and novelty 
preference. The parameters are chosen as a = 5.0 , b = 0.5 , ! r = 5 , ! a =10 w =1.0 . Two 
stimuli s1 =1.0  and s2 =1.0  are delivered to neuron 1 and 2 in a sequential order at time 
t1 = 0.0  and t2 = 333.3 . (a) A = 0.1. The top panel shows the time course of the responses 
of neuron 1 (in solid line) and neuron 2 (dash line) respectively. On the bottom panels the 
solution of the system is shown in the r1 ! r2 !"i  space, no novelty preference shows up 
(b) activity shifts to novel stimulus A = 0.25  (c) A = 0.3  a supercritical Hopf-bifurcation 
occurs and the neurons start oscillating. 
 

The variable !i  associated with the adaptation current is important for the novelty 

preference and we demonstrate its role in determining the dynamics of the system. We 

explore the behavior of the network as the adaptation current increases (Fig 6.4). With 

small adaptation (Fig 6.4a) the network behaves as that in a 2-dimensional system. The 

presence of the second stimulus in sequence does not alter the response that is triggered 

by s1 , and no response shift takes place.  The increase of the adaptation enables the 
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network’s ability to shift to a novel stimulus (Fig 6.4b).  Further increase in adaptation 

leads to a supercritical Hopf-bifurcation in the system and the presence of two stimuli 

triggers the neurons into an out-of-phase stable oscillation (Fig 6.4c).  

 

 

Figure 6.4 The effect of adaptation to the behavior of the neural system. The parameters 
are chosen as a = 5.0 , b = 0.5 , ! r = 5 , ! a =10 w =1.0 . Two stimuli s1 =1.0  and s2 =1.0  
are delivered to neuron 1 and 2 in a sequential order at time t1 = 0.0  and t2 = 333.3 . (a) 
A = 0.1 . The top panel shows the time course of the responses of neuron 1 (in solid line) 
and neuron 2 (dash line) respectively. On the bottom panels the solution of the system is 
shown in the r1 ! r2 !"i  space. No novelty preference occurs (b) activity shifts to novel 
stimulus A = 0.25  (c) A = 0.3  a supercritical Hopf-bifurcation occurs and the neurons 
start oscillation. 
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6.7 Summary 

We investigated the dynamics through numerical simulation of the 4-dimensional system 

and its corresponding images in 2 and 3-dimensional systems. The analysis suggests that 

triggering WTA mechanisms requires strong synaptic inhibitory connections and a 2-

dimesional system is sufficient for this type of stimulus selection. The WTA mechanisms 

in neural network are also reminiscent of a biological switch that has been discussed 

much in biological systems such as protein synthesis (Thorn, 1997, Jr et al., 1998). 

Moreover, we show that a 3-dimensional system is sufficient for novelty detection in the 

presence of two dynamically presented stimuli. No proof has been made to show that a 3-

dimension system is necessary in producing novelty preference behavior. The search 

through parameter space indicates that a balance of inhibition strength and adaptation are 

critical for the generation of novelty preference. 
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7 Stability of a three-neuron system with delayed 

feedback 

 

We consider the dynamics of a three-neuron system where neurons form reciprocal 

connections with each other. Delays are introduced for signal propagations. The stability 

of the system is discussed. The stable region in the parameter space shrinks as the delay 

increases. Rich dynamics, such as oscillation and multistability emerge as the parameter 

reaches beyond the boundary of the stable region. 

 

7.1 Introduction 

When forming a network, neurons communicate with each other by sending action 

potentials along their axons (Goodman BE and Waller SB, 2002). Transmission delays 

are introduced during the process due to the finite propagation speed of action potentials 

and the dynamics of neurotransmitter release. Delays can cause very complex dynamics, 

such as oscillation, multistablity and chaos (Campbell et al., 1995, Foss et al., 1997) in an 

otherwise stable system. However, the effect of delays to neural systems is poorly 

understood. 

 

In the central visual pathway, the optic tectum (OT, mammalian superior colliculus) is 

one of the major targets of retinal efferent. Rhythmic oscillatory bursts (Marin et al., 

2007; Goddard et al., 2011) are observed within the isthmotectal feedback loop, formed 
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by OT and its satellite nucleus (Ipc, Imc and SLu). However, intracellular recordings of 

individual isthmotectal neurons show no intrinsic oscillatory behavior (Jing et al., 2009). 

Recordings from the tectal slices indicate delayed signal propagation between 

isthmotectal elements (Meyer et al., 2008). Here we consider the isthmotectal system as a 

simplified 3-neuron system, where each neuron represents the OT, Ipc and Imc structure 

respectively (Fig. 7.1). Propagation delays are introduced. We analyzed the stability as 

the synaptic efficacies change continuously. The role of delay is also discussed in 

determining the system’s stability. Dynamical behaviors such as stable oscillation, 

multistablity is observed. Coexistence of an oscillatory attractor and a stable fixed point 

is observed within a certain parameter range. 

 

 

Figure 7.1 The schematics of the simplified three-neuron isthmotectal system: three types 
of neurons are considered, including tectal layer 10 neurons (L10), parvocellular (Ipc) 
and magnocellular (Imc) isthmic nucleus. The retina inputs are delivered to the L10 
neuron and the L10 neurons further project to Ipc and Imc neurons respectively. The Ipc 
and Imc neurons send feedback to L10 neuron, forming two closed loops in the network. 
The Imc neuron also projects to Ipc neuron. 



	
   187  

7.2 Isthmotectal system as a delayed 3-neuron system 

To understand the dynamics, we simplify the isthmotectal system by considering the 

optic tectum (OT) and its nuclei isthmi (Ipc, Imc) as single neurons. The connection 

strengths between neurons are characterized by a weight matrix wij . The subscript 

indicates the synaptic efficacy from the jth  neuron to the ith  neuron. Propagation delays 

!  are introduced and we assume a homogeneous distribution of delays for all the 

connections. The dynamics of each neuron are described by a set of delayed differential 

equations (DDE)  

!m
dri (t)
dt

= !ri (t)+F wijrj t !!( )+ si
j
"
#

$
%%

&

'
((   i =1, 2, 3 , 

where ri (t)  could be interpreted as the firing rate of the ith  neuron and si is the external 

stimulus delivered to it. F(x)  is a transferring function that converts presynaptic 

neuronal activities into postsynaptic inputs and is normally chosen as a function of 

sigmoidal shape with the property that F(0) = 0 . In this study, we choose the transferring 

function to be a hyperbolic tangent function F(x) = tanh(x)when x ! 0 and F(x) = 0

when x < 0 . The weight matrix of the isthmotectal system could be specifically written in 

the form wij =

0 W12 W13

W21 0 W23

W31 0 0

!

"

#
#
##

$

%

&
&
&&

.  We assume that no self-projections are formed 

within each neuron group and the diagonal terms in the matrix are set to 0. The synaptic 

connections between Ipc and Imc groups happen to be unidirectional and we accordingly 

set W32 = 0 . The system could be simplified further by rescaling the time constant and 

setting !m =1 . The neuronal dynamics then follows the DDE set  
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dri (t)
dt

= !ri (t)+F wijrj t !!( )+ si
j
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((   i =1, 2, 3  

 

7.3 Stability analysis 

In the homogenous case, where no external stimuli are exerted, the system has a trivial 

fixed point ri = 0 . Linearizing the system at the fixed point yields  

dri (t)
dt

= !ri (t)+ wijrj t !!( )
j
"     i =1, 2, 3  

note that !rF =1 at the fixed point. We further impose an initial condition that all neurons 

are inactive and have the property that ri (t) = 0,   when -! < t ! 0 . Applying a Laplace 

transformation to the equation set, we get the expression of the system in frequency space 

(1+! ! e!!"wij )!rj (!) = 0  

The exponential term follows from the Laplace transformation 

L ri t !!( )"# $%= ri t !!( )e!!t dt
0

&

' = e!!" !rj , where !  is the characteristic frequency of the 

system and !rj  is the function of neuron activity in the time domain. The weight matrix is 

assumed to be stationary over time. A non-trivial solution for the system requires that 

det(1+! ! e!!"wij ) = 0 . Written explicitly, we have the characteristic equation  

(1+!)3 !"(1+!)e!2!# !$e!3!# = 0  

where !  and !  are reduced parameters, satisfying ! =W23W32 +W12W21 +W31W13  and

! =W23W31W12 +W13W32W21 . Given W32 = 0 , we have a further simplified version of 

! =W12W21 +W31W13  and ! =W23W31W12 . It turns out that the stability of the system is 
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determined by 3 effective parameters ! , ! , ! , two of which are derived from the 

synaptic connections and the other one from the delay.  

 

Substituting ! = 0 into the characteristic equation we get the boundary of the stable 

region where!  and !  obey the relation  

B1 :  1!! !" = 0 . 

Further analysis shows (Belair and Dufour, 1996) that !  has no real positive value when 

! <1!"  if ! ! "2  and ! < 3 " / 2 2/3  if ! < !2 . This particular boundary is independent 

of the delay ! . 

 

We then get the boundary of the stable region where !  has a purely imaginary root by 

substituting ! = i"  into the characteristic function and get the real part and the imaginary 

part of the characteristic equation respectively as 

1!3! 2( )cos 3!"( )+ ! 3 !3!( )sin 3!"( )!! cos "#( )!! sin !"( )( )!! = 0
3" !" 3( )cos 3!"( )+ 1!3! 2( )sin 3!"( )!! " cos "#( )+ sin !"( )( ) = 0

 

We can solve !  and !  as a function of !  and the boundary curves have the form 

B2 :  

! =
3" !" 3( )cos 3"#( )+ 1!3" 2( )sin 3"#( )

" cos "#( )+ sin "#( )

$ =
1+" 2( ) " 2 !1( )sin 2"#( )! 2" cos(2"# )( )

" cos "#( )+ sin "#( )

"

#

$
$$

%

$
$
$

 if " & ! tan("# )  

 

and 
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B3 :  ! =
sin 3"#( )

! cos 2!"( )! sin 2!"( )
! +

3" !" 3

" cos 2"#( )! sin 2!"( )
  

if ! = ! tan(!" )  

 

In the parameter plane, we show the stability boundary curves in black lines for delays of 

different values (Fig. 7.2 a-c). We also solve the characteristic equations numerically and 

show in shaded areas where the maximum real parts of the solution have negative values. 

As the delay increases, the shaded area shrinks and the stable point is more likely to lose 

stability. The maximum real part of the solution is shown in Fig. 7.2 d-f. 

 

 

Figure 7.2 Stability analysis of the 3-dimensional system (a) The stability region in ! !"  
plane when ! = 0 . The black lines show the analytical solution of the stable boundaries 
labeled as B1  and B2  respectively. (b) and (c) show the stable region in ! !"  plane 
when ! = 0.5  and ! =1.0 . (d)-(f) show the maximum real part of the solution to the 
characteristic equation. Color coded in a way that red indicates a large value and blue 
indicates a small value. 
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7.4 Bifurcations 

We assume that the mutual connection between L10 and Ipc neurons is symmetric and 

W12 =W21 = w . The L10àImc projection is chosen to have the same strength as that of 

L10àIpc projection and W31 = w . The feedback from Imc is assumed to be inhibitory 

and is chosen to be negative. The effective parameters are therefore ! = w2 +wW13 , 

! = w2W23 , and the two parameters are now independently determined by the two 

feedback connections ImcàL10 and ImcàIpc. With a weak inhibitory ImcàIpc 

connection, the system responds to RGC input of a constant value by reaching to a steady 

state where each neuron has a constant firing rate (Fig. 7.3). 

 

 

Figure 7.3 The stable steady-state behavior of the system. The parameters are chosen as 
w = 2 , W23 = !0.1 and  W13 = !2.0 . The effective parameters are ! = 0.0  and  ! = !0.4 . 
The initial condition is set as ri = 0.0 when !! " t < 0 . A constant input is delivered to the 
L10 neuron and s1 = 0.1 (a) The time course of the neural activity (b) the trajectory of the 
solution in the r1 ! r2 ! r3  space. 
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As the inhibitory connection strength of ImcàIpc increases the stable fixed point loses 

its stability by crossing the boundary B2  and stable oscillation occurs via supercritical 

Hopf-bifurcation. The stimulus triggers the activity of L10 neurons, which in turn excite 

the activity of Ipc and Imc neurons after a certain period of delay. The activity of Imc 

neurons then exerts a much stronger inhibition on the Ipc neurons. The activity of L10 

neurons is accordingly reduced, which leads to a decrease of the Imc inhibitory feedback. 

The interactions between excitation and delayed inhibition result in the oscillation of the 

system. The oscillation shows a phase delay among the oscillatory behaviors of the three 

neurons. The oscillation of L10 and Ipc neurons show comparable amplitudes. 

 

 

Figure 7.4 Oscillatory behavior with strong ImcàIpc inhibition. The parameters are 
chosen as w = 2 , W23 = !0.6  and  W13 = !2.0 . The effective parameters are ! = 0.0  and  
! = !2.4 . The initial condition is set as ri = 0.0when !! " t < 0 . A constant input is 
delivered to the L10 neuron and s1 = 0.1  (a) The time course of the neural activity (b) the 
trajectory of the solution in the r1 ! r2 ! r3  space. Limiting cycle is formed. 
 

On the other hand, increasing the connection from Imc to L10 neurons also leads to a 

supercritical Hopf-bifurcation in the system. The increase of W13  leads a decreasing of 
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the effective parameter ! . The oscillatory behavior of Imc and Ipc shows comparable 

amplitude and the activity between Imc and Ipc is almost synchronous (Fig. 7.5). 

 

 

Figure 7.5 Oscillatory behavior with strong ImcàL10 inhibition. The parameters are 
chosen as w = 2 , W23 = !0.1  and  W13 = !4.0 . The effective parameters are ! = !4  and  
! = !0.4 . The initial condition is set as ri = 0.0when !! " t < 0 . A constant input is 
delivered to the L10 neuron and s1 = 0.1 (a) The neural activity as a function of time. (b) 
The trajectory of the solution in the r1 ! r2 ! r3  space. A limiting cycle is formed. 
 

7.5 Bistability 

Postsynaptic recordings from Ipc neurons reveal the excitatory response to stimulation of 

Imc nucleus. Here we consider the dynamics of the neural network when the feedback 

from Imc to Ipc is excitatory. While the synaptic weight W23  becomes positive, the 

effective parameter !  becomes positive as well. The effective parameter pair !  and !  

reach the region where the two stability boundaries B1  and B2  intersect with each other. 

Multiple stable attractors could appear in the phase space while the effective parameter 

pair is carefully chosen within the region. Fig. 7.6a shows a case where two attractors, a 

stable fixed point and a limit cycle coexist in the r1 ! r2 ! r3  phase space. Dependent on the 
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initial condition, the neurons might either reach to the stable fixed point or to the stable 

limit cycle. External noise might induce transition from one attractor to the other (Fig. 

7.6b). 

 

 

Figure 7.6 Coexistence of oscillation and stable fixed point. The parameters are chosen as 
w =1.0 , W23 = 4.0  and W13 = !1.3 , ! = 2.0 . The effective parameters are ! = !0.3  and  
! = 4.0 . A constant input is delivered to the L10 neuron and s1 = 0.1. No rectification is 
considered in the transfer function. (a) The trajectory of the solution in the r1 ! r2 ! r3  
space. A limiting cycle is formed. For the stable fixed point (gray line) the initial 
condition is set as r1 = 0.0 , r2 = !0.2 , r3 = 0.0 when !! " t < 0 . An initial condition of 
r1 = 0.0 , r2 = !0.3 , r3 = 0.0  leads to the limiting cycle (black line). (b) A perturbative 
noise transits the system from the stable fixed point to the state of stable oscillation. 
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