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ABSTRACT OF THE DISSERTATION 

 

Organization of the Streptococcal ExPortal and its Interaction with Cationic  
Antimicrobial Peptides 

By 

Luis Alberto Vega 

Doctor of Philosophy in Molecular Microbiology and Microbial Pathogenesis 
Washington University in St. Louis, 2012 

Professor Michael G. Caparon, Chairperson 
 

Streptococcus pyogenes and other Gram-positive pathogens are highly dependent 

on secreted virulence proteins for their ability to colonize a host and evade the immune 

effectors that act on pathogens to prevent this. Unlike eukaryotes and Gram-negative 

bacteria, all Gram-positive pathogens lack a cellular compartment dedicated to folding 

and processing secreted proteins once they have been translocated across the cytoplasmic 

membrane. S. pyogenes and other Gram-positive organisms overcome this challenge by 

clustering the secretory translocons at a defined anionic lipid microdomain of the 

cytoplasmic membrane that is enriched for accessory factors needed for protein 

biogenesis, referred to as the ExPortal. The manner in which S. pyogenes achieves and 

maintains spatial coordination of the factors that constitute the ExPortal is not 

understood. Given the importance of secreted virulence proteins to streptococcal 

pathogenicity, the ExPortal is an attractive target for the development of therapeutics that 

can efficiently counter streptococcal infections. I investigated the interaction of cationic 

antimicrobial peptides with the streptococcal ExPortal to provide insights into how this 
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secretory organelle is organized and how it may be targeted by this mechanism of innate 

immunity. 

Cationinc antimicrobial peptides (CAPs) targeted the anionic lipid microdomain 

of the ExPortal. Traditionally regarded as membrane permeabilizing compounds, CAPs 

interacted with the streptococcal membrane at concentrations that did not porate the 

membrane. Rather, exposure of S. pyogenes to sub-lethal CAP concentrations resulted in 

concomitant redistribution of anionic lipids, translocons and accessory factors to 

peripheral regions of the membrane. In addition, CAPs inhibited secretion of important 

virulence proteins, including the pathogenically relevant SpeB protease and Streptolysin 

O (SLO) cytolysin. One of the CAPs investigated also targets the lipid II precursor of 

extracellular peptidoglycan, suggesting the influence of CAPs on ExPortal organization 

extended beyond their affinity for negatively charged membrane lipids and that the 

streptococcal cell wall is involved in organizing the ExPortal.  

Removal of extracellular peptidoglycan also resulted in redistribution of anionic 

lipids and ExPortal protein, indicating the cell wall is required for maintaining proper 

localization of both lipid and protein components of the ExPortal. Exposure of 

streptococci to lantibiotics that preferentially bind and sequester lipid II in the 

cytoplasmic membrane disrupted ExPortal organization and secretory function in a 

manner similar to CAP activity. Given that both CAPs and lantibiotics target lipid 

components of the cytoplasmic membrane, it appears that lipid segregation in the 

membrane is central to organization of the ExPortal. Establishment or maintenance of 

this lipid segregation could involve interaction with petidoglycan synthesis in the 

streptococcal membrane, as two membrane-localized synthetic enzymes, one integral 
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(MraY), the other membrane-associated (MurN), that are required for lipid II production 

are localized in the same anionic lipid microdomain to where secretory translocons of the 

ExPortal are targeted to. This provides a potential model for the mechanism(s) organizing 

the ExPortal. Cytoskeletal proteins and cell wall biogenesis components which are 

observed to interact with cytoplasmic membrane structures to organize membrane 

localized processes required for cell growth and division influence the segregation of 

anionic lipids in the membrane, and by extension, where and how the ExPortal is 

organized. 

Testing of this model by genetic and molecular approaches that target components 

of cell division and peptidoglycan will provide both further insights into how Gram-

positive bacteria coordinate protein biogenesis with secretion as well as reveal novel 

potential targets for the development of effective therapeutics against pathogens like S. 

pyogenes.  

 

 



  v 

ACKNOWLEDGEMENTS 

First and foremost, I am indebted to all the members of the Caparon lab, past and 
current, whose assistance in my investigative endeavors has been invaluable. Many 
thanks to Jason Rosch, without whose pioneering work this dissertation would not have 
been possible, Kyu Hong Cho, Jennifer Loughman, Joydeep Ghosh, Ben Weston, Colin 
Kietzman, N’goundo Magassa, Ada Lin, Suki Chandrasekaran, Zac Cusumano, Cara 
Mozola, Elyse Paluscio, Mike Watson, David Riddle, Gary Port and Mike Caparon. 
Whether through discussions on science, family or pop-culture, your help and 
camaraderie has been greatly appreciated. 

I would also like to thank all members of my thesis committee: John Atkinson, 
David Haslam, David Hunstad, Petra Levin, Heather True-Krob, and former committee 
member Daniel Ory. Thank you for dedicating so much time to my development as a 
research scientist. Your ideas, critiques, advice, suggestions and close examination of my 
work have made this dissertation possible. I am a more erudite, insightful and aware 
investigator thanks to your mentorship. I would like to thank most of all my mentor Mike 
Caparon, for always being available to discuss experiments, exchange hypotheses, 
question results and for encouraging me to pursue my ideas fearlessly but with an 
awareness of what it takes to do high quality research. 

A very heartfelt thanks goes to the Imaging facility led by the very capable and 
always helpful Wandy Beatty. Her contribution to my thesis work can be appreciated 
throughout this dissertation in the wonderfully precise and crisp electron micrographs 
that are a very important part of the experimental data presented here. 

I also acknowledge the many wonderful faculty, staff and students at the 
Washington University School of Medicine Division of Biology and Biomedical 
Sciences. There are too many of you to mention by name here, but know that each of you 
in your own special way contributed to making my doctoral training experience a 
fulfilling and memorable one. 

Many thanks are due to the funding agencies that made my doctoral training and 
dissertation research possible, including a National Institutes of Health (NIH) 
Institutional Training Grant and the National Institute of Allergy and Infectious Diseases 
(NIAID) which awarded me a Ruth L. Kirschstein National Research Service Award 
(NRSA) for Individual Predoctoral Fellowships to Promote Diversity in Health-Related 
Research for the duration of 09/2009-09/2011. 

I would also like to give a special thank you to Mr. Robert and Mrs. Teresa 
Lewandowski of Arlington Heights, IL. They opened their home to me and provided a lot 
of the warmth of family life that due to geographical distance I missed from my own 
family back home. Thank you. 

Last but not least I thank and dedicate this dissertation to José María, Amanda and 
Alberto Vega. My family, they are my rock and without you none of this would have 
been possible. Thank you for your love, support, encouragement and understanding 
throughout this long journey. 

 



  vi 

TABLE OF CONTENTS 

 
Abstract of the Dissertation…………………………..………………………………….ii 
Acknowledgements ……...…………………………..……………………………….….v 
List of Figures……………………………………..……………….…………………….ix 
List of Tables……………………………………..……………………………...………xii 
 
 
 
 
Chapter I  ExPortal Secretion, Cell Wall Biogenesis and Cationic 

Antimicrobial Peptide Involvement in Streptococcus 
pyogenes Pathogenesis 

 
 
Scope of the Thesis …….………………….……………………………………………2 
Streptococcus pyogenes Pathogenenesis………………………….……………………..4 
Secreted protein biogenesis and the ExPortal of GAS…………….…………………...10 
Bacterial lipid membrane microdomains………………………………..……………...14 
Gram positive cell wall synthesis……………………………………………...………..16 
Cationic antimicrobial peptides……………………………………………………...….20 
Characterizing ExPortal organization and its interaction with CAPs….............……….27 
References …………………………………………………………………………..….29 
 
 
 
 
Chapter II Cationic Antimicrobial Peptides Disrupt the 

Streptococcus pyogenes ExPortal 
 
 
Abstract.…….………………………………..…………………………………………42 
Introduction………………………………………..………………………………..…..43 
Results……………………………………………………..…...…………………..…...46 
Discussion.………………………………………………………..……………...……...61 
Experimental Procedures…………………………………….…………..……….……..66 
Supplementary Figures………………………………….……………………..…….….72 
Acknowledgements…...……………………………………………………………..….76 
References ………………………………………………………………..…………….77 
 

 

 



  vii 

Chapter III  The Streptococcal Cell Wall and Peptidoglycan 
Synthesis are Involved in ExPortal Organization 

 
 
Abstract.…….…………………………………………………………………....……83 
Introduction………………………………………………………………………..…..84 
Results…………………………………………………...………………………..…...89 
Discussion.……………………………………………………………………..…….105 
Experimental Procedures…………………………………….………………............112 
Acknowledgements…...……………………………………………………………...118 
References …………………………………………………………………………...119 
 

 

Chapter IV  Work in Progress: Characterizing ExPortal Substrates 
 and Factors Contributing to its Organization 

 
 
Abstract.…….…………………………………………………………………….…..123 
Introduction……………………………………………………………….………..…124 
Results…………………………………………………...………………………...….127 
Discussion.……………………………………………….……………………..…….132 
Experimental Procedures……………………………………….….….………...…....134 
References …………………………………………………………….……………...139 
 

 

Chapter V  An Emerging Model for Spatial Coordination of Protein 
Biogenesis and Secretion: the Role of Lipid Segregation 
and Cell Wall Synthesis in ExPortal Organization 

 
 
Introduction……………………………………………………………………..…..…142 
Conclusions…………………………………………………...…………………....….144 
Future Work.……………………………………………………………...……..…….152 
References ………………………………………………………………………..…...155 
 

 

 

 



  viii 

Appendix  The Signal Recognition Particle Pathway is Required 
for Virulence in Streptococcus pyogenes 

 
 
Abstract……………………………………………………………………..…………160 
Introduction……………………………………………………………………..…..…161 
Materials and Methods……...………………………………...…………………....….165 
Results………………………………………………………...…………………....….169 
Disscussion…….……………………………………………...…………………....….176 
Acknowledgements……..………………………………………………...……..…….181 
References ………………………………………………………………………..…...182 
Figures ………………………………………………………………………..……….186 

 

Curriculum Vitae………………………………………………………………………193 



  ix 

LIST OF FIGURES 

 
 
 
Chapter I  ExPortal Secretion, Cell Wall Biogenesis and Cationic 

Antimicrobial Peptide Involvement in Streptococcus 
pyogenes Pathogenesis 

 
 
Figure 1. Virulence factors secreted by Streptococcus pyogenes ………………………6 
Figure 2. Secretion systems of Gram-positive bacteria….……….……………………..9 
Figure 3. Gram-positive cell wall biogenesis………. …………….…………………...15 
Figure 4. CAP membranolytic mechanisms...…………………………..……………...22 
 

 

Chapter II Cationic Antimicrobial Peptides Disrupt the 
Streptococcus pyogenes ExPortal 

 
 
Figure 1. Focal binding of polymyxin B to the S. pyogenes surface …………..………48 
Figure 2. The site of polymyxin B binding is coincident with the site  

    of SpeB secretion………………………………………………………….…49 
Figure 3. Sub-lethal challenge with polymyxin B alters the distribution  

    of anionic membrane lipids………. …………….…………………....……...51 
Figure 4. Redistribution of ExPortal proteins following sub-lethal polymyxin B 

    challenge………………………….…………………………..……………...53 
Figure 5. High dub-lethal challenge with polymyxin B inhibits secretion of  

    SpeB and SLO, but not SIC……………………………………….....………55 
Figure 6. Focal localization and inhibition of SpeB expression by HNP-1………….…58 
Figure 7. Challenge with HNP-1 results in redistribution of HtrA…...………....……...60 
Figure S1. Validation of sub-lethal polymyxin B challenge...……………….....………72 
Figure S2. Focal localization of anionic lipids is unaffected by heat stress…………….73 
Figure S3. Validation of secretion-inhibitory effects in streptococci of  

      sub-lethal polymyxin B levels…...………....……………………………….74 
 

 

 

 



  x 

Chapter III  The Streptococcal Cell Wall and Peptidoglycan 
Synthesis are Involved in ExPortal Organization 

 
 
Figure 1. Surface peptidoglycan is required for maintenance of the ExPortal 

    anionic lipid microdomain ………………………………….………..………90 
Figure 2. Loss of anionic lipid segregation at a microdomain is not due to  

    membrane permeabilization ...……………………………………………..…91 
Figure 3. Redistribution of ExPortal proteins following removal of surface 

    peptidoglycan ………. …………….…………………....…………………....93 
Figure 4. The lantibiotic gallidermin disrupts localization of anionic lipids  

    at non-lytic concentrations……...….…………………....…………………....95 
Figure 5. Redistribution of HtrA following non-lytic gallidermin challenge ......………97 
Figure 6. Non-lytic challenge with gallidermin inhibits secretion of SpeB and SLO..…99 
Figure 7. Focal localization of MraY and MurN at the S. pyogenes surface …....……..101 
Figure 8. Distribution of YajC on the S. pyogenes surface...…………..…….....………102 
Figure 9. The sites of MraY and MurN localization are coincident with the 

    site of the ExPortal in the streptococcal mmebrane ……………………...….104 
 

 

Chapter IV  Work in Progress: Characterizing ExPortal Substrates 
 and Factors Contributing to its Organization 

 
 
Figure 1. High sub-lethal challenge with polymyxin B and HNP-1 inhibits 

    secretion of EndoS ……………………….…………………………………128 
Figure 2. Characterization of Isp and Isp2 putative cell wall hydrolases and 

    their role in ExPortal organization ……………………………………….…131 
 

 

Chapter V  An Emerging Model for Spatial Coordination of Protein 
Biogenesis and Secretion: the Role of Lipid Segregation 
and Cell Wall Synthesis in ExPortal Organization 

 
 
Figure 1. An emerging model of ExPortal organization.………………………………143 
 

 

 



  xi 

Appendix  The Signal Recognition Particle Pathway is Required 
for Virulence in Streptococcus pyogenes 

 
 
Figure 1. Deletion of ffh results in specific nutritional requirements …………..….…186 
Figure 2. The majority of membrane proteins are correctly targeted in  

    the absence of the SRP..……………………………………………...…….187 
Figure 3. The SRP is required for the secretion of a distinct subset of virulence 

     factors………. …………….………………………………………...…….188 
Figure 4. A medium-dependent secretion defect ..…………………..………………..189 
Figure 5. The SRP is required for virulence in an animal model of necrotic 

    myositis …………………………………………………………….....……190 
Figure 6. The SRP is required for virulence in the murine subcutaneous 

    ulcer model ………………………………………………………..….…….191 
Figure 7. Comparison of virulence factor signal sequences ……....………........……..192 



  xii 

LIST OF TABLES 

 

Chapter III  The Streptococcal Cell Wall and Peptidoglycan 
Synthesis are Involved in ExPortal Organization 

 
 
Table 1. Primers utilized for construction of fluorescent protein tagged 

constructs………………………………………………………………....……117 
 
 
 
Chapter IV  Work in Progress: Characterizing ExPortal Substrates 

 and Factors Contributing to its Organization 
 
 
Table 1. Primers utilized for construction of epitope/fluorescent-tagged  

   constructs and in-frame deletions……..……………………………….……138 
 

 

Appendix  The Signal Recognition Particle Pathway is Required 
for Virulence in Streptococcus pyogenes 

 
 
Table I. Comparison of virulence factor expression levels between wild-type 

  and Ffh- S. pyogenes strains…………………………………………….……192 
 

 

 



 1 

 

 

 

 

 

Chapter I 

 

 

 

ExPortal Secretion, Cell Wall Biogenesis and Cationic Antimicrobial Peptide 

Involvement in Streptococcus pyogenes Pathogenesis  

 

 

 



 2 

SCOPE OF THESIS 

Streptococcus pyogenes and other Gram-positive bacteria circumvent the lack of a 

specialized cellular compartment for folding secreted proteins following their 

translocation by clustering the Sec translocons at a defined microdomain of the 

cytoplasmic membrane that is also enriched in anionic lipids and accessory factors for 

protein biogenesis, referred to as the ExPortal. The function of this secretory organelle 

appears to be that of spatially coupling secretion with protein maturation, but the 

mechanisms organizing the ExPortal are still poorly understood. In order to further 

knowledge of how spatial coordination of protein secretion and processing is achieved 

and maintained in streptococci, examination of cationic antimicrobial peptide (CAP) 

interaction with the anionic lipid-enriched membrane microdomain of the ExPortal was 

undertaken. Two CAPs, the therapeutically important polymyxin B and physiologically 

relevant human neutrophil peptide 1 (HNP-1), preferentially targeted the ExPortal at sub-

lethal, non-porating concentrations. This non-permeabilizing interaction with the 

membrane resulted in disruption of ExPortal organization, as observed by the 

redistribution of ExPortal anionic lipids, the secretory translocon ATPase SecA and the 

chaperone protease HtrA into the peripheral membrane. Redistribution was associated 

with inhibition of secretion of certain toxins, including the SpeB cysteine protease and 

the Streptolysin O (SLO) cytolysin, but not SIC, a protein that protects S. pyogenes from 

CAPs. These data suggest a novel function for CAPs in targeting the ExPortal and 

interfering with secretion of factors required for infection and survival.  This report also 

contributed to literature indicating CAPs can kill their bacterial targets in the absence of 

pore formation, exerting their lethal effect by interfering with the dynamic function of 
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lipid-associated complexes, such as the ExPortal, by a so-called “sand in a gearbox” 

mechanism. 

Previous research showed that interaction of HNP-1 with the bacterial membrane 

is not limited to anionic lipids, since the peptide also binds the lipid II peptidoglycan 

precursor. As an emerging literature indicates that cell wall biogenesis components 

interact with cytoplasmic membrane structures to organize membrane-localized 

processes, involvement of the streptococcal cell wall in organizing and maintaining the 

ExPortal was investigated. Removal of extracellular peptidoglycan by the action of a 

streptococcal phage lysin resulted in redistribution of both lipid and aforementioned 

protein components of the ExPortal, suggesting the cell wall is required for maintaining 

proper localization of the secretory organelle. Exposure to a lipid II-targeting lantibiotic 

also concomitantly disrupted localization of anionic lipids and ExPortal proteins, as well 

as secretion of the streptococcal virulence factors observed to be affected by CAPs. These 

results support the hypothesis that lipid localization in the membrane is central to 

organization and maintenance of the ExPortal. Given that lantibiotic activity disrupts cell 

wall synthesis by binding lipid II and sequestering it away from the sites of peptidoglycan 

biogenesis, it was of interest to determine whether lipid II production and ExPortal 

secretion are spatially coordinated processes. Fluorescent tagging of MraY and MurN, 

two proteins involved in the membrane-associated steps of lipid II synthesis, revealed 

these to localize at foci in the streptococcal membrane that coincide with the anionic lipid 

microdomain and secretory translocons of the ExPortal. These results suggest a model for 

ExPortal organization in which peptidoglycan synthesis co-localizes with the ExPortal, 

influences its establishment and is required for its maintenance. 
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INTRODUCTION 

Streptococcus pyogenes Pathogenesis 

S. pyogenes is a gram-positive pathogen that can cause numerous diseases in 

humans that range from superficial infection of the skin and mucous membranes 

(impetigo, pharyngitis), to highly invasive and life-threatening diseases (necrotizing 

fasciitis), as well as serious post-infection sequelae (rheumatic fever, glomerulonephritis, 

reviewed in [1]). Annually, Group A streptococcus (GAS) infections account for an 

estimated 700 million cases of mild, non-invasive infections worldwide, of which 

approximately 650,000 progress to severe, invasive (at a sterile site) infections with an 

associated mortality of approximately 25% [2].  

This ability to cause disease is dependent on the secretion of an extensive network of 

virulence proteins (Figure 1) [1, 3]. Among these are the proteases ScpC (SpyCEP), 

ScpA, EndoS and SpeB; surface-bound Protein F (SfbI) and M protein adhesins or 

polymeric structures such as pili; host-targeted cytotoxins such as Streptolysin O (SLO), 

streptococcal NAD glycohydrolase (SPN) and Streptolysin S (SLS); polypeptides like 

streptococcal inhibitor of complement (SIC) and extracellular DNAses that directly 

inhibit immune effectors [3, 4]. Extracellular DNAses degrade chromatin and break down 

the neutrophil extracellular traps (NETs) extruded by neutrophils to trap pathogens and 

subject them to microbicidal effectors, thus helping streptococci evade neutrophil killing 

[5, 6]. SIC is one of multiple defenses streptococci have developed against such 

microbicidal effectors. As its name indicates, SIC was first identified as a secreted 

polypeptide that can inhibit membrane attack complex of complement by preventing 

uptake of C5b67 complement complexes on bacterial membranes [7, 8]. SIC however, 
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also interacts with and inhibits multiple host microbicidal proteins, including lysozyme, 

cathelicidin LL-37, human neutrophil peptide-1 (HNP-1) and human beta-defensins 

(hßD1, -2, -3) [9-11]. Proteins bound to the streptococcal surface also play a major role in 

the evasion of phagoyctic cells and their effectors [3]. Specifically, M protein inhibits 

opsonophagocytosis of streptococci by binding multiple host proteins [12-14] and 

promotes colonization alongside SfbI by interacting with extracellular matrix components 

and adhering to host epithelial cells [15-17]. Additionally, similar to other pathogenic 

bacteria, S. pyogenes assembles multimeric proteinaceous fibres on its surface known as 

pili, which are involved in the adhesion of the bacterium to host epithelia [18]. 

Like all Gram positive bacteria, Group A streptococci lack the specialized secretory 

systems and the accompanying host cell cytosol-targeted effectors that are necessary for 

virulence in some gram-negative pathogens (e.g. Type III secretion of Salmonella 

enterica [19]). However, the cytolysin SLO and NAD glycohydrolase SPN constitute a 

unique mechanism for specifically translocating the latter into the host cell via so-called 

cytolysin mediated translocation (CMT) [20]. The cholesterol-dependent cytolysin SLO 

oligomerizes to form large pores in host cell membranes and can thus acts on its own to 

induce cell death [21].   However, this pore-forming capacity is not required for the 

translocation of SPN by CMT [22] and mutations to SLO that do not interfere with pore-

forming activity, or modifications to SPN that do not affect NAD-glycohydrolase activity 

render these proteins incompetent for CMT [23, 24].  The precise mechanism by which 

CMT of SPN occurs then is an area of active research, but it is clear that CMT is 

important for pathogenesis [20, 25], and that the process involves interaction of 

streptococci with the host cell surface as well as between SPN and SLO. Another 
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secreted toxin of streptococci, SLS, is cytolytic to erythrocytes, leukocytes and 

subcellular organelles [26-28], promotes evasion of phagocytic killing via its cytolytic 

activity on neutrophils [29] and inhibits neutrophil recruitment during the early stages of 

streptococcal infection [30]. 

 

 

Figure 1. Virulence factors secreted by Streptococcus pyogenes. These factors include 
proteases (ScpA, ScpC, EndoS, SpeB, Mac1/IdsE), surface-bound adhesins (SfbI, M protein, 
Protein H) host-targeted cytotoxins (SLO, SLS), extracellular DNAses (Sda1) immunity effector-
targeted polypeptides (SIC). A majority of these virulence factors are involved in the evasion of 
phagocytic killing [3]. 
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The secreted proteases of Group A streptococci (GAS) serve to inactivate all kinds 

of proteins involved in host immunity. ScpC cleaves and inactivates interleukin-8 (IL-8) 

[31] and ScpA acts as an endopeptidase to cleave the C5a polypeptide fragment of the 

complement cascade [32]. EndoS hydrolyzes the chitobiose core of the asparagine-linked 

glycan on Immunoglobulin G (IgG) to prevent recognition of IgG by phagocyte Fc 

receptors, while SpeB cleaves IgA, IgM, IgD and IgE antibodies as well [33]. In fact, 

SpeB degrades a myriad of host proteins, including extracellular matrix components, 

cytokine precursors and antimicrobial peptides [34, 35]. The protease activity of SpeB 

extends to extracellular and surface-associated streptococcal proteins, including M 

protein [36], various superantigens [37], streptokinase  [38], SLO [39] and SIC [40]. 

Given such a variety of virulence-associated targets, the precise role of SpeB in 

streptococcal pathogenesis is still unclear and an area of active investigation. 

The SpeB cysteine protease is one of the most intensively researched virulence factors of 

GAS, and these efforts have revealed that production of enzymatically active SpeB is a 

complex process involving a variety of regulatory controls and multiple accessory factors 

post-translation (reviewed in [41]). Expression of SpeB is growth phase dependent and 

influenced by environmental factors including pH [42], NaCl concentration [43] and 

nutrient availability [44]. Peptide transport also affects SpeB expression as was 

determined by the mutational inactivation of the oligopeptide permease (Opp) and 

dipeptide permease (Dpp) systems responsible for peptide acquisition [45, 46].  Multiple 

regulatory proteins influence speB expression by either directly activating (RopB, CcpA 

[47-49]) or indirectly inducing (Mga, CodY, SagP, LuxS [50-52]) or repressing 

(CovR/CovS, Srv, LacD.1, Nra, Vfr [53-58]) transcription; something that reflects the 
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variety of inputs that affect SpeB production and suggests that timely and appropriate 

synthesis of this protease is of great importance to streptococcal pathogenesis. The speB 

transcript is translated into a 40kDa zymogen, that through either inter- or intramolecular 

autocatalytic processing at nine reported cleavage sites is proteolytically processed into a 

28kDa active enzyme [59-61]. Prior to this processing however, the SpeB zymogen is 

modified by the peptidyl-prolyl cis-trans isomerases (PPIase) RopA and PrsA [47, 62]. 

The PPIases isomerize one or more of the 13 proline residues in the SpeB zymogen and 

this activity is required for proteolytic processing of the polypeptide. Dysregulation of 

PrsA adversely affects both SpeB activity and pathogenicity of GAS [63]. Interestingly, 

the PPIase activity of RopA is dispensable for secretion of the SpeB zymogen, but loss of 

RopA expression inhibits secretion of SpeB [47], suggesting that aside from its 

processing role RopA is an accessory factor for secretion of the protease. Another 

accessory factor of SpeB secretion and processing is the serine protease HtrA. This 

extracellular membrane-anchored protease is involved in the folding and maturation of 

secreted proteins as well as the degradation of proteins misfolded during secretion in 

Lactococcus lactis [64]. In GAS functional HtrA is required for the efficient conversion 

of secreted SpeB zymogen into its active form [65], although HtrA does not directly 

process SpeB in vitro [66]. Additionally, mis-localization of HtrA out of the cytoplasmic 

membrane results in altered maturation kinetics of SpeB [67]. Given the multitude of 

stretptococcal and host proteins SpeB acts on, it is not surprising that its biogenesis is a 

highly regulated process involving many factors. It is possible though that other secreted 

virulence proteins of streptococci that have not been as well characterized as SpeB also 

require the interaction of multiple accessory factors for their production. Most 
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importantly, existing research has demonstrated that loss or inhibition of these secreted 

proteins’ activity results in reduced virulence [5, 68-71], highlighting the importance of 

understanding the mechanism(s) by which these proteins are secreted and processed into 

their active forms. 

 

 

Figure 2. Secretion systems of Gram-positive bacteria. In gram-positive bacteria (Monoderm, 
as the figure states), secreted proteins can be (i) anchored to the CM (i.e. lipoproteins); (ii) 
attached to the CW either covalently (i.e. LPXTG proteins) or non-covalently (i.e. by LysM, GW, 
CWBD1, CWBD2, SLHD or WXL motifs); (iii) part of cell-surface appendages, such as pili 
(whose subunits are secreted via Sec), competence pseudo-pili (assembled via FPE) or flagella 
(assembled via FEA); (iv) released into the extracellular milieu via Sec, Tat, holin or Wss; or (v) 
translocated into a host cell after secretion via Sec of a cholesterol-dependent cytolysin, which 
integrates into the membrane of a host cell to permit transport of secreted effectors via cytolysin-
mediated translocation (CMT). Black arrows show routes of proteins targeted to CM exhibiting 
an N-terminal signal peptide, blue arrows routes used by proteins lacking a signal peptide. Red 
arrows relate to secretion, and violet arrows refer to integration of membrane proteins (IMP). 
Secreted proteins are blue. Abbreviations: Cyto, cytoplasm; CM, cytoplasmic membrane; CW, 
cell wall; Ext, extracellular milieu; FPE, fimbrilin-protein exporter; FEA, flagella export 
apparatus [72]. S. pyogenes possesses only the Sec secretory pathway. 
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Secreted protein biogenesis and the ExPortal of GAS 

In bacteria, the most conserved route of protein translocation across the 

cytoplasmic membrane is the general secretory (Sec) pathway (for a detailed review see 

[73]). The membrane-embedded enzyme complex that constitutes the translocase is 

composed of a molecular motor, the peripheral adenosine triphosphatase (ATPase) SecA 

[74] and a trimeric protein complex that acts as the conducting channel. This channel is 

formed by the SecY [75], SecE [76] proteins that together associate with the integral 

membrane subunit SecG [77], or with another heterotrimeric complex composed of the 

SecD, SecF and YajC proteins encoded in the secD operon [78, 79]. S. pyogenes however 

expresses the SecYEG complex, SecA and YajC proteins, but its genome does not 

encode genes for SecDF  [80]. Studies in Escherichia coli and Bacillus subtilis reveal that 

YajC is a membrane protein with a single transmembrane segment and a large cytosolic 

domain that, except for the observation that it associates with SecDF, is not needed for 

protein translocation or viability [81, 82]. Therefore, given that streptococci lack SecDF, 

the precise function of YajC in GAS remains unknown.  

Proteins destined for secretion via the Sec pathway are synthesized as preproteins 

that are targeted to the Sec translocons by an 18 to 30 amino acid N-terminal signal 

sequence containing a positively charged N-terminal domain, a hydrophobic core and a 

more polar C-terminal domain [83]. This signal is cleaved off by a signal peptidase, a 

membrane bound protease that acts on the cleavage site in the C-domain of the signal 

peptide during the translocation reaction. Proteins thus produced can either be post-

translationally or co-translationally translocated, and the mechanism in GAS for directing 

the latter process is the signal recognition particle (SRP) pathway. In bacteria the SRP is 
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a complex composed of a 4.5S RNA and the GTPase Ffh [84] that interacts with the 

signal sequence of nascent preproteins as they emerge from the ribosome [85]. This so-

called ribosome nascent chain (RNC) complex bound to SRP in a GTP-dependent 

manner interacts with a membrane bound receptor, FtsY [86]. It is this complex that, 

upon GTP hydrolysis by both FtsY and SRP, transfers the RNC to the translocase to 

initiate export of the polypeptide [87]. For many bacteria the SRP pathway is essential to 

survival, but, as described in the Appendix, in GAS it was found to be dispensable for 

growth under in vitro conditions, yet necessary for virulence and the production of certain 

secreted virulence factors, including SLO, SPN and SpeB, the latter in a nutrient-

dependent manner. [88]. 

The secreted proteins of streptococci that remain surface-bound are anchored to 

either the outer leaflet of the cytoplasmic membrane or to the streptococcal cell wall via 

sortases. These enzymes function to covalently join secreted surface factors to cell wall 

peptidoglycan or to polymerize the proteins that constitute multimeric structures like pili 

into their functional fibrous form (for a detailed review see [89]). Though not virulence 

effectors themselves, the role sortases play in targeting surface factors required for 

virulence like those previously described means sortases are crucial for pathogenesis. The 

known sortases that act on cell wall-anchored substrates all function as cysteine 

transpeptidases, joining proteins containing a cell wall sorting signal to an acceptor 

amino group on the outer cell surface [90]. The sorting signal consists of an LPXTG 

motif (X standing for any amino acid), followed by a segment of hydrophobic amino 

acids and a tail of predominantly positively charged residues. The enzymatic reaction 

carried out by these sortases consists of breaking the threonine and glycine peptide bond 
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in the LPXTG motif to form a substrate-sortase complex in order to transfer the surface 

protein to the peptidoglycan precursor lipid II, thus generating an isopeptide linked 

protein-lipid II product [91]. The transglycosylation and transpeptidation reactions that 

synthesize the cell wall then incorporate the lipid-II bound surface protein into the 

peptidoglycan polymer. The gram-positive sortases characterized to date are categorized 

into six different classes based on sequence homology and functionality [89]. Two of 

these classes are represented in S. pyogenes. One is the class commonly referred to as the 

‘housekeeping’ Class A sortases, whose enzymatic activity anchors a diverse array of 

surface proteins to the cell wall, including M protein, SfbI and ScpA [92]. The other is 

the Class B sortases exemplified by Sortase C, which is involved in the assembly of the 

adhesive pili required for streptococcal biofilm formation and adhesion to host epithelia 

[93]. 

S. pyogenes lack all of the other known secretion systems of Gram-positive bacteria, 

diagrammed in Figure 2 [72, 80]; thus all secreted virulence proteins of GAS are 

exported via the Sec pathway. Sreptococci however, like all Gram-positive bacteria, lack 

a specialized cellular compartment for folding secreted proteins following their 

translocation across the membrane by the Sec system.  This problem is circumvented in 

S. pyogenes and several other species of Gram-positive cocci by clustering the Sec 

translocons and secretory accessory factors at a defined microdomain of the cytoplasmic 

membrane that has been termed the ExPortal [67, 94-97]. In S. pyogenes, secretion of the 

SpeB protease occurs at a unique site on the streptococcal surface, as does secretion of a 

non-native Sec pathway substrate (PhoZ) expressed from a plasmid [94]. This site of 

SpeB secretion coincides with the membrane localization of the SecA ATPase and of the 
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HtrA serine protease [67, 94]. Likewise SrtC, the sortase required for the polymerizatioin 

of pili in Enterococcus faecalis, co-localizes with SecA in the enterococcal membrane, 

and loss of SrtC expression resulted in accumulation of pilus subunits (EbpA, EbpC) at 

unique foci on the bacterial surface [95]. Other examples of this coordination of Sec 

translocons and accessory proteins include the co-localization of SecA and the cell wall 

protein–anchoring Sortase A at unique foci in the membrane of Streptococcus mutans 

[97], whereas in replicating Streptococccus pneumoniae cells HtrA and SecA were 

observed to oscillate between septal and polar membrane microdomains [98]. The 

membrane microdomain to which SpeB secretion localizes to in S. pyogenes is also 

enriched in anionic lipids [99], while in S. pneumoniae, cells devoid of the cardiolipin 

synthase encoding gene cls failed to localize SecA to septal membrane microdomains 

[98]. A similar mutation in GAS did not affect secretion of SpeB, suggesting that in S. 

pyogenes it is the more abundant phosphatidylglycerol that localizes to the ExPortal [99]. 

Moreover, additional evidence from both enterococci and GAS indicates that sorting of 

cell wall-anchored virulence factors occurs in the immediate vicinity of their site of 

secretion and coincides with the site of de-novo peptidoglycan synthesis [95, 97, 100, 

101]. Altogether, this suggests that a function of the ExPortal is to spatially couple 

secretion with protein maturation, and that this coordination could involve membrane 

lipid organization and cell wall synthesis as well. 
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Bacterial lipid membrane microdomains 

As mentioned, the ExPortal of S. pyogenes has been shown to have an asymmetric 

lipid content enriched in anionic phospholipids [99] that may contribute to the 

preferential retention of certain proteins at the ExPortal vs. the peripheral membrane [95]. 

Other bacterial membranes have been known to contain localized microdomains enriched 

for specific phospholipds, as was shown in the case of cardiolipin and 

phophatidylethanolamine-rich septal membrane domains of B. subtilis [102, 103]. These 

domains were absent in mutants disrupted in the cardiolipin synthase-encoding gene clsA 

[102] and in the genes encoding phosphatidlyserine carboxylase (psd) and 

phophatidylserine synthase (pssA) [103]. Interestingly, the majority of the lipid synthases 

localize to the septal membrane region at which cardiolipin and 

phosphatidylethanolamine are retained [103]. Membrane lipid spirals detected along the 

long axis of cells in B. subtilis co-localized with GFP protein fusions of MinD, thus 

hinting at possible involvement of lipid membrane microdomains in cell division [104]. 

Anionic lipids also play a multitude of roles in organizing the protein components 

of the bacterial membrane, including targeting secretory proteins by their signal 

sequence, directing membrane proteins via the SRP pathway, facilitating the interfacial 

insertion of peripherally attached protein domains, influencing or even determining the 

correct topology of transmembrane segments, and promoting efficient formation of 

protein complexes in the membrane (reviewed in [105]). Particularly with respect to 

protein secretion, phosphatidylglycerol is involved in optimal protein translocation via 

the Sec pathway by influencing interaction of the SecA ATPase with the SecYEG 

translocon [106-108], as well as interacting with pre-protein signal sequences during 
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protein translocation [109], and with the FtsY component of the SRP pathway, enhancing 

its GTPase activity [110]. Thus, bacterial membrane lipids play a vital role in the 

organization and functionality of the bacterial cell’s secretory processes. However, in 

gram-positive bacteria secretion is one of several important cellular processes occurring 

at the surface for which lipid organization appears to be of particular importance. Another 

such process, as described below, is cell wall synthesis.  

 

Figure 3. Gram-positive cell wall biogenesis.  The enzymatic steps of cell wall synthesis in 
Staphylococcus aureus, a representative gram-positive pathogen, are shown. The cytoplasmic 
conversion of UDP-GlcNAc to the soluble precursor UDP-MurNAc-pentapeptide is carried out 
by sequential action of the MurA to MurF enzymes. The membrane-associated synthesis of lipid 
II by MraY and MurG involves conjugation of MurNAc-pentapeptide to undecaprenyl-phosphate 
(C55-P) and addition of GlcNAc. Addition of the interpeptide crosslinker (5 x Gly) is catalyzed by 
the FemXAB transferases just prior to translocation of the lipid II precursor across the 
cytoplasmic membrane. Extracellular transglycosylation (TG) and transpeptidation (TP) reactions 
carried out by penicillin binding proteins (PBPs) assemble lipid II precursors into the cell wall 
peptidoglycan polymer [111]. 
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Gram-positive cell wall synthesis 

The cell wall of Gram-positive pathogens is an extracellular organelle that plays a 

multitude of roles essential to both survival and virulence (for a review see [112]). A 

rigid peptidoglycan exoskeleton made up of polymers of alternating N-acetylglucosamine 

(GlcNAc) and N-acetylmuramic acid (MurNAc) glycan units cross-linked via peptide 

bridges, its main purpose is to preserve cellular integrity against osmotic forces from 

without and within the bacterial cell [113]. The structural rigidity required for this is 

balanced by the flexibility necessary to allow for changes in cell shape during growth and 

division. This plasticity results from the combined activities of penicillin binding proteins 

(PBPs) and cell wall hydrolases. PBPs are the enzymes that carry out the 

transglycosylation reactions involved in the polymerization of disaccharide units to 

produce the individual strands of peptidoglycan, as well as the transpeptidation reactions 

that crosslink these strands via peptide bridges [114]. Their name stems from the fact that 

they are the targets of the ß-lactam class of antibiotics to which penicillin belongs to. 

PBPs are classified as high molecular weight (HMW) Class A PBPs, which are 

bifunctional proteins with both glycosyltransferase and transpeptidase activity, HMW 

Class B PBPs with transpeptidase activity and low molecular weight PBPs with 

carboxypeptidase or endopeptidase activity [115]. Along with enterococci and other 

streptococci, GAS morphologically fit into the class of so-called ovococci, referring to 

gram-positive bacteria that are not true cocci due to their ellipsoid shape and divide in the 

same single plane perpendicular to the long axis of the cell, thus forming chains of cells 

[114]. To accomplish this most ovococci utilize a common set of PBPs: three class A 

PBPs (PBP1a, 1b and PBP2a), two class B PBPs (PBP2b and 2x) and a LMW PBP 
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(PBP3); GAS encodes all of the above with the exception of PBP2b. The hydrolases 

involved in modifying peptidoglycan during cell wall synthesis include N-

acetylmuramidases and N-acetylglucosaminidases that digest the glycan backbone, 

amidases that cleave the peptide cross-links, and lytic transglycosylases [116]. In S. 

pyogenes these enzymes have remained largely uncharacterized; however a secreted 

protein containing a cysteine and histidine-dependent aminohydrolase/peptidase (CHAP) 

domain [117] common to N-acetylmuramidases was recently identified as a functionally 

active peptidoglycan hydrolase required for virulence [118]. Disrupting expression of this 

protein, termed CdhA (CHAP-domain containing and chain forming cell wall hydrolase), 

resulted in severe growth defects, including the inability to form chains, suggesting a role 

in coordinating cell division plane recognition and cell wall synthesis in streptococci. It is 

known that ovococci synthesize the cell wall mostly at the division site mid-cell, the new 

hemispheres of the daughter cells being synthesized between the parting parent 

hemispheres [119, 120]. The precise coordination of PBPs and other cell wall synthesis 

factors (i.e. hydrolases and cell division proteins) in order to achieve this is an area of 

active investigation and the organization of cell wall biogenesis appears to result largely 

from underlying cytoplasmic membrane organization and the positioning of cell division 

machinery [104, 121-123]. 

 Synthesis of the cell wall by PBPs requires the production and translocation 

across the cytoplasmic membrane of peptidoglycan subunits in the form of undecaprenyl-

pyrophosphoryl-MurNAc-(petapeptide)-GlcNAc (lipid II). The final steps of lipid II 

biogenesis occur at the inner leaflet of the cytoplasmic membrane (Figure 3) and involve 

membrane-associated (MraY, MurG) as well as cytosolic proteins (FemABX; for a 
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review see [124]). MraY is an integral membrane protein that carries out the first 

membrane-associated step in the synthesis of lipid II by catalyzing the transfer of the 

phospho-MurNAc-pentapeptide from the soluble cytoplasmic UDP-MurNAc-

pentapeptide substrate to the membrane embedded undecaprenyl-phosphate (C55-P) 

acceptor [125, 126], thus producing undecaprenyl-pyrophosphoryl-MurNAc-pentapeptide 

(lipid I), the immediate precursor of lipid II. The subsequent step involves the extrinsic 

membrane transferase MurG, which catalyzes the transfer of the GlcNAc moiety from 

UDP-GlcNAc to lipid I in order to produce lipid II [127]. The peptidoglycan structure of 

many gram-positive bacteria contains an additional peptide cross-link between the 

pentapeptide chain and the cross-linked strand, something that requires the addition of 

interchain residues to the pentapeptide of the lipid II intermediate [128]. Cytosolic non-

ribosomal peptidyltransferases carry out this reaction in Staphylococcus aureus 

(FemABX [129, 130]), E. faecalis, S. pneumoniae and S. pyogenes (MurMN [131, 132]) 

on the inner leaflet of the cytoplasmic membrane prior to translocation of lipid II across 

the membrane [124]. In S. aureus synthesis of these peptide bridges is required for the 

sortase-mediated attachment of surface virulence factors to the cell wall [133] and their 

loss results in reduced virulence [134].  

The dynamic quality of the cell wall is also important for its function as an 

attachment site for extracellular factors that interact with the host environment, which 

aside from surface virulence proteins also includes lipoteichoic and teichoic acids. Given 

the role of sortases in processing the former, most research into the interaction of gram-

positive secretion with cell wall biogenesis to date, particularly in the case of 

streptococci, has focused on the characterization of sortase function [89], rather than the 
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the coordination  between secretion  and cell wall synthesis, an area that holds great 

potential for important discoveries. The cellular processes described thus far (i.e. proteins 

secretion, membrane lipid segregation and cell wall synthesis) are clearly linked to one 

another in a variety of ways; whether it is that molecular substrates of one process (e.g. 

secreted surface factors) are inputs for another (cell wall assembly), or the organization of 

one (membrane lipid segregation) appears to inform the functionality of another (protein 

secretion). It follows then that certain disruptive influences on any one of these processes 

could have deleterious consequences on the others and, by extension, the most effective 

antimicrobials will be those that can influence any one of these processes in such a way 

as to affect the others as well. Such antimicrobial compounds exist in nature, are the 

subject of active investigation and a summary of their known properties and activities is 

given below. 
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Cationic antimicrobial peptides 

Cationic antimicrobial peptides (CAPs) are gene-encoded peptides produced by 

nearly all known life-forms as part of an ancient nonspecific innate immune system that 

is the main defense mechanism during the initial stages of infection against many 

organisms (for a review see [135]). They display a broad range of activity across a range 

of pathogens, including bacteria, fungi, metazoans, parasites and viruses [136], and some 

are even active against cancerous cells [137]. Some are systemically expressed while 

others are localized to specific cells or tissue types most susceptible to infection by 

pathogens (e.g. histatins in human saliva [138]). In mammalian hosts, their contribution 

to overall immunity varies between different tissue sites (skin, oral, gastrointestinal and 

respiratory epithelia) within a host and from one organism to another [139].  

Though they display a broad range of activity, have limited sequence homology and 

a wide range of secondary structures, the great majority of CAPs share similar physical 

properties. In general, they derive from larger precursors by proteolytic processing, are 

12 to 50 amino acids in size, carry a net cationic charge (+2 to +11), possess a nearly 

50% hydrophobic residue composition and are able to adopt an amphipathic structure in 

contact with lipid membranes [140]. Structurally, the majority of CAPs fall into either of 

two categories: amphipathic α- helices, and amphipathic β-sheets. The former group is 

made up of the majority of CAPs known so far, which are short linear cationic α-helical 

peptides (e.g. magainins, cathelicidins, cecropins [141-143]). The amphipathic β-sheets 

on the other hand present a defined number of β-strands organized in a common 

amphipathic manner, with relatively few or no helical domains, and constrained either by 

disulfide bonds (e.g. defensins, protegrins) or by cyclization of the peptide backbone 
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(gramicidin S or polymyxin B). The defensins make up most of the cysteine-containing 

peptides and are frequently formed by several antiparallel β-strands stabilized by a series 

of up to six disulfide bonds [144]. They are expressed by neutrophils and epithelial cells 

of humans and other mammals, functioning both as broad-spectrum microbicides and as 

modulators of the immune response by influencing epithelial cell proliferation, enhancing 

wound healing, regulating production of pro-inflammatory cytokines, and directing 

chemotaxis of several types of leukocytes [139, 145]. 

As described previously, the conjugation of lipids with proteins in supramolecular 

complexes is central to multiple biological processes. Thus, it is not surprising that the 

lipid membrane of pathogens is the principal target of CAP activity. It is generally 

accepted that the primary mechanism of antibacterial activity of CAPs involves 

interactions of their charged and hydrophobic residues with the hydrophilic charged head 

groups and the fatty acyl chains of phospholipids in the bacterial membrane. The 

consequences of this interaction include the dissipation of the electrochemical potential 

and lipid asymmetry, loss of important metabolites and cellular components due to the 

destruction of membrane permeability and eventual bacterial cell death [146-148]. The 

membrane-CAP interaction typically involves initial adsorption and binding of peptides 

to the membrane, followed by the accumulation of bound peptides that upon reaching a 

threshold level results in conformational transitions that permit peptide insertion into the 

membrane in order to exert their membranolytic activity [135]. Given their variety in size 

and structure, there is no unique mode by which all CAPs permeabilize bacterial 

membrane, rather a variety of mechanisms shared amongst different CAPs, as illustrated 

in Figure 4. 
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Figure 4. CAP membranolytic mechanisms. The principal models proposed for the pore-
forming activity of CAPs are shown. Following binding to the outer surface of the cytoplasmic 
membrane (top-left), peptides can oligomerize and form pores according to the barrel-stave 
model (A), aggregate on the membrane surface in a detergent-like manner as in the carpet model 
(B) or distort the membrane to form lipid/peptide-lined pores as in the toroidal pore model (C). In 
the molecular electroporation model (D), lipid-bound CAPs promote an electrical potential 
difference across the membrane that induces transient poration. The sinking raft mechanism (E) 
proposes that peptide aggregation on the outer leaflet causes a mass imbalance between the two 
leaflets. The ensuing curvature gradient causes peptides to ‘sink’ into the membrane and form 
transient pores that permeabilize the cell and promote translocation of CAPs to the inner leaflet 
[135]. 
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The membranolytic mechanisms of CAP activity include the formation of stable 

pores (barrel-stave and toroidal pore models), membrane thinning (via molecular 

electroporation or the sinking raft model) and micellization of membranes in a detergent-

like manner (carpet model). In the barrel stave model (Figure 4A), peptide helices form a 

bundle in the membrane with a central lumen that constitutes the pore, a mechanism 

observed for alamethicin and zervamicin peptides [149, 150]. It is interesting to note that 

the formation of cytolytic pores by SLO and other cholesterol-dependent cytolysins like it 

involves a similar mechanism of oligomerization and protein conformational changes of 

the cytolytic polypeptide [151]. The toroidal pore model (Figure 4C) involves similar 

partitioning of peptides into the membrane, with the additional effect of inducing bending 

of the membrane leaflets such that the resulting pore is lined by both the inserted peptides 

and lipid head groups [148]. The molecular electroporation model (Figure 4D) describes 

the pore-forming activity of annexin V and consists of the aggregation of CAPs at the 

membrane surface with sufficient charge density to generate an electrical field that 

induces the formation of pores similar in size to those of polymyxin B and melitin 

peptides in the absence of overall membrane disruption [152, 153]. Another membrane 

thinning mechanism, the sinking raft model (Figure 4E), was described only recently for 

an α-helical peptide and involves an imbalance in mass ratio of the membrane due to 

binding of a particular lipid microdomain [154, 155]. This results in the formation of 

transient pores following translocation of the peptide and dissipation of the peptide 

induced membrane leaflet mass imbalance. The carpet model (Figure 4B), as its name 

implies, consists of adsorption of CAPs to the membrane such that the bilayer surface is 

‘carpeted’ by the peptides. At the critical threshold concentration, peptides that act via 
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this mechanism (e.g. ovispirin, dermaseptin, magainins [156, 157]) will form toroidal 

pores lined by the peptide, allowing further access to the inner leaflet of the membrane by 

the CAP, and resulting in membrane disintegration through the formation of micelles in a 

detergent-like manner.  

Recent studies however, suggest that many CAPs have multiple targets and/or much 

more complicated mechanisms of action than membrane poration alone (reviewed by 

[158]).  In particular, some peptides can produce significant membrane perturbation by 

forming lipid-peptide domains, lateral phase segregation of zwitterionic lipids from 

anionic lipids and even inducing non-lamellar phases under physiologically relevant 

conditions [135]. A more in depth discussion of such CAP activity on bacterial 

membranes can be found in Chapter IV, especially as it relates to the effect of CAPs on 

ExPortal organization. Peptide-induced lipid segregation of anionic components has 

mainly been observed in gram-positive model membranes that are enriched in 

phosphatidylglycerol [159-162], the principal anionic lipid of S. pyogenes and other 

gram-positive pathogens [99, 163]. Another aspect of the peptide-pathogen interaction 

that was not often examined but is now of increasing interest is the effect CAPs have on 

their bacterial targets at levels below their minimum inhibitory concentrations. One 

studied effect is the induction of regulatory responses involved in resistance to CAPs. 

Bacteria have developed multiple factors to resist killing by CAPs, and expression of 

these factors is activated by regulatory mechanism responsive to sub-lethal amounts of 

CAPs. Researchers have exploited this to uncover previously unknown resistance 

mechanisms, by treating bacteria with sub-lethal peptide amounts and performing 

transcriptional analyses of the ensuing responses. Examples of this include studies on 
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Bacilllus cereus resistance to enterocin [164], Aspergillus niger responses to caspofungin 

and fenpropimorph [165], and characterization of SigB-mediated antibiotic resistance in 

Listeria monocytogenes [166], to name a few. In the case of GAS responses to CAPs, 

sub-inhibitory concentrations of cathelicidin LL-37 stimulate expression of the S. 

pyogenes hyaluronic acid capsule synthesis operon (hasABC), which results in a more 

invasive phenotype [167]. This is a regulatory effect apparently exclusive to LL-37 

among all the CAPs tested and involves direct sensing of the extra-cellular concentration 

of the LL-37 peptide by the CsrRS (CovRS) two-component regulatory system [167, 

168]. Replacement of three acidic amino acids with uncharged residues in the 

extracellular domain of the CsrS (CovS) sensor-kinase abrogated induction of the 

hasABC operon by LL-37 [168], providing strong evidence of a close relationship 

between CAPs and streptococcal virulence. Mutagenic approaches combined with 

exposure to CAPs have conversely uncovered the regulatory networks controlling CAP 

resistance, as was the case in S. aureus with the identification of a two component 

regulatory system (GraRS) as the controller of key determinants of staphylococcal 

surface charge (mprF and dlt) required for resistance to multiple CAPs (HNP-1, 

polymyxin B) [169]. Another actively investigated effect of sub-lethal exposure to CAPs 

is the inhibition of antibiotic resistance factors produced by pathogens. For example, sub-

lethal amounts of designer analogs of the CAP pyrrhocoricin inhibited the activity of the 

TEM-1 ß-lactamase by targeting the heat-shock protein DnaK, thus restoring amoxicillin-

sensitivity to ß-lactam resistant strains of E. coli [170]. Also at sub-lethal levels, the 

enterocin peptide modifies the ion permeability of bacteria, dissipating the membrane 

proton motive force; this impairs the activity of multidrug efflux systems in Listeria 
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innocua, rendering it susceptible to traditional antibiotics [171], a potentially useful 

therapeutic tool given the troubling rise in multidrug resistance amongst pathogens. 

Certain CAPs have additionally been demonstrated to act on intracellular targets 

or by non-permeabilizing mechanisms [172]. Examples include, activation of bacterial 

proteases by indolicidin [173], inhibition of DNA replication by PR-39 or microcin B17 

[174, 175], or protein synthesis inhibition by pleurocidin [176]. However, the best 

characterized and most effective CAPs with additional non-permeabilizing activity are a 

class of lipid II-targeting bacterial defense peptides commonly referred to as lantibiotics 

(for a review, see [177]). The term lantibiotic designates gene-encoded peptides that 

contain the thioether amino acids lanthionine or methyllanthionine, which are formed by 

post-translational modifications that introduce intramolecular cyclic structures. The most 

representative lantibiotic, nisin, specifically binds lipid II in a defined stoichiometry in 

order to form pores that efficiently permeabilize bacterial membranes [178, 179]. More 

importantly however, non-porating variants of nisin have been shown to efficiently kill 

bacteria using an alternative mechanism by which lipid II is clustered into patches in the 

cytoplasmic membrane away from the regions where cell wall peptidoglycan synthesis 

occurs [180]. Other lantibiotics such as gallidermin, epidermin and mutacin have been 

observed to act via this alternative mechanism [180-182], thus inhibiting cell wall 

synthesis and causing bacterial cell death without permeabilizing the cytoplasmic 

membrane. 
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Characterizing ExPortal organization and its interaction with CAPs 

Recent studies have shown that multiple human CAPs are lethal to GAS in vitro 

[183, 184], and that the CAP cathelicicin LL-37 is highly expressed in severe soft tissue 

infection in humans at sites coinciding with high tissue burdens of S. pyogenes [185].  

Several studies have highlighted the important role of CAPs in innate immune defenses 

against S. pyogenes.  These include the observation that soft tissue infection by S. 

pyogenes in mice deficient in a major CAP of the cathelicidin family (CRAMP) was 

significantly exacerbated [186] and that overexpression of a cathelicidin in murine skin 

provides enhanced protection [187]. It is not surprising then, that much recent research 

has been directed at identifying streptococcal factors that subvert the lethal effects of 

CAP activity [10, 167, 188].   

The signature ability of CAPs to bind to the cytoplasmic membrane, offers 

numerous targets whose functions could be affected at sub-inhibitory concentrations.  

The cytoplasmic membrane is of particular importance to S. pyogenes since, as described 

previously, its pathogenicity relies on an extensive network of virulence proteins.  Due to 

their cationic nature, CAPs predominantly bind to anionic phospholipids in bacterial 

membranes [147].  The ExPortal of S. pyogenes has been shown to have an asymmetric 

lipid content enriched in anionic phospholipids [99] that may contribute to the 

preferential retention of certain proteins at the ExPortal vs. the peripheral membrane [95].  

These observations suggest that the ExPortal may thus be uniquely sensitive to the action 

of CAPs.  

This presented the unique opportunity to expand understanding of the interaction of 

a strictly human pathogen like S. pyogenes with an important component of the innate 
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immune response, such as CAPs are, and of the mechanisms underlying the coordination 

of protein secretion and processing by the ExPortal in an organism as dependent as GAS 

are on secreted virulence factors. Thus, I investigated the interaction of CAPs at sub-

lethal concentrations with S. pyogenes and the effects of said interaction on ExPortal 

organization and function. Given that lipid II-targeting CAPs can disrupt cell wall 

synthesis absent effects on membrane permeability and the potential for the ExPortal as a 

target for CAPs, this work was also designed to determine whether a link exists between 

cell wall biogenesis and organization of the secretory organelle that is the ExPortal. 
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ABSTRACT 

Although they possess a well-characterized ability to porate the bacterial 

membrane, emerging research suggests that cationic antimicrobial peptides (CAPs) can 

influence pathogen behavior at levels that are sub-lethal. In this study, we investigated 

the interaction of polymyxin B and human neutrophil peptide (HNP-1) with the human 

pathogen Streptococcus pyogenes. At sub-lethal concentrations, these CAPs 

preferentially targeted the ExPortal, a unique microdomain of the S. pyogenes membrane, 

specialized for protein secretion and processing. A consequence of this interaction was 

the disruption of ExPortal organization and a redistribution of ExPortal components into 

the peripheral membrane.  Redistribution was associated with inhibition of secretion of 

certain toxins, including the SpeB cysteine protease and the Streptolysin O (SLO) 

cytolysin, but not SIC, a protein that protects S. pyogenes from CAPs. These data suggest 

a novel function for CAPs in targeting the ExPortal and interfering with secretion of 

factors required for infection and survival.  This mechanism may prove valuable for the 

design of new types of antimicrobial agents to combat the emergence of antibiotic-

resistant pathogens. 
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INTRODUCTION 
 

Cationic antimicrobial peptides (CAPs) are gene-encoded antibacterial peptides 

produced by nearly all known life-forms. A group of these, the defensins, are expressed 

by neutrophils and epithelial cells of humans and other mammals, functioning both as 

broad-spectrum microbicides and as modulators of the immune response [1]. It is 

generally accepted that the antibacterial activity of CAPs involves interactions of their 

charged and hydrophobic residues with the hydrophilic charged head groups and the fatty 

acyl chains of phospholipids in the bacterial membrane.  The consequence of this 

interaction is the destruction of membrane permeability and bacterial cell death [2, 3].  

However, more recent studies have suggested that many of these peptides may have 

multiple targets and/or much more complicated mechanisms of action (reviewed by [4]).  

In particular, one aspect of the peptide-pathogen interaction that is not often examined is 

the manner in which CAPs act on their bacterial targets at levels below their minimum 

inhibitory concentrations.  

Interaction with CAPs plays an important role in host-pathogen interactions for 

infections caused by Streptococcus pyogenes (group A streptococcus).  This Gram-

positive pathogen can cause numerous diseases in humans that range from largely 

superficial infection of the skin and mucous membranes (impetigo, pharyngitis), to highly 

invasive and life-threatening diseases (necrotizing fasciitis), as well as, serious post-

infection sequelae (rheumatic fever, glomerulonephritis, reviewed in [5]).  Recent studies 

have shown that multiple human CAPs are lethal to S. pyogenes in vitro [6, 7], and that 

the CAP cathelicicin LL-37 is highly expressed in severe soft tissue infection in humans 

at sites coinciding with high tissue burdens of S. pyogenes [8].  Several studies have 
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highlighted the important role of CAPs in innate immune defenses against S. pyogenes.  

These include the observation that soft tissue infection by S. pyogenes in mice deficient 

in a major CAP of the cathelicidin family (CRAMP) was significantly exacerbated [9] 

and that overexpression of a cathelicidin in murine skin provides enhanced protection 

[10].  It is not surprising then, that much recent research has been directed at identifying 

streptococcal factors that subvert the lethal effects of CAP activity [11-13].   

The signature ability of CAPs to bind to the cytoplasmic membrane, offers 

numerous targets whose functions could be affected at sub-inhibitory concentrations.  

The cytoplasmic membrane is of particular importance to S. pyogenes, as its ability to 

cause disease is dependent on the secretion of an extensive network of virulence proteins 

[14]. Lacking other known secretion systems, these virulence proteins are exported by the 

general secretory [15] pathway, which is highly conserved between Gram-positive and –

negative bacteria and eukaryotes (for a review see [16]).  However, unlike these latter 

two classes, Gram-positive bacteria lack a specialized cellular compartment for folding 

proteins following their translocation across the membrane by the Sec system.  A solution 

to this problem used by S. pyogenes and several other species of Gram-positive cocci, is 

to cluster the Sec translocons at a defined microdomain of the cytoplasmic membrane 

that has been termed the ExPortal [17-21].  The ExPortal is also highly enriched with 

accessory factors for protein biogenesis, including sortases, and HtrA. The former are 

involved in the covalent attachment of proteins to the cell wall, while the latter is a multi-

function protease and chaperone that is required for the biogenesis of the active form of 

the SpeB protease.  These data suggest that one function of the ExPortal is to spatially 

couple secretion with protein maturation [17-19, 22, 23].  This is supported by the 
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observation that mutations causing the mis-localization of HtrA or sortase C outside of 

the ExPortal microdomain result in a highly reduced efficiency for maturation of secreted 

proteases and pili, in S. pyogenes and Enterococcus faecalis, respectively [18, 19].   

Due to their cationic nature, CAPs predominantly bind to anionic phospholipids in 

bacterial membranes [3].  Of interest, the ExPortal of S. pyogenes has been shown to have 

an asymmetric lipid content enriched in anionic phospholipids [22] that may contribute to 

the preferential retention of certain proteins at the ExPortal vs. the peripheral membrane 

[19].  These observations suggest that the ExPortal may be uniquely sensitive to the 

action of CAPs.  In the present study, we examined the interaction between several CAPs 

and S. pyogenes and report that CAPs preferentially interact with the ExPortal when 

examined at sub-lethal concentrations and that this results in a re-distribution of ExPortal 

components into the peripheral membrane.  Furthermore, this disruption is associated 

with an inhibition of secretion of the SpeB cysteine protease and the Streptolysin O 

(SLO) cytolysin.   
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RESULTS   

Polymyxin B binds to a single, unique site on the S. pyogenes membrane.  To test the 

hypothesis that CAPs may interact with the ExPortal, we examined how the CAP 

polymyxin B interacts with the S. pyogenes membrane at sub-lethal concentrations. 

Readily available and well-characterized in its ability to bind anionic lipids [24], 

polymyxin B is a cyclic CAP antibiotic that is highly active against Gram-negative, but 

not most Gram-positive bacteria [25].  However, S. pyogenes is an exception and is 

highly susceptible to polymyxin B (see below), which likely reflects that unlike many 

other Gram-positive species its genome does not contain mprF [26], which encodes an 

enzyme that modifies the negative charge of phosphatidyl glycerol via lysinylation to 

reduce its affinity for binding CAPs [27, 28].  The interaction of polymyxin B with S. 

pyogenes was therefore examined using a biotin-labeled derivative of polymyxin B to 

treat cultures of the M1 serotype S. pyogenes strain SF370 in a “challenge assay.” In this 

assay (see “Experimental Procedures”), polymyxin B was added to cultures in the late 

logarithmic phase of growth (time = 0 h) and samples harvested for analysis after cultures 

had entered stationary phase (Fig. S3).  The concentrations of polymyxin B used had no 

effect on viability in this assay and did not result in significant poration of membranes 

(see “Experimental Procedures” and Fig. S1).  Bound polymyxin B was detected using a 

streptavidin-gold conjugate and examined by electron microscopy.  This analysis 

revealed that rather than a uniform pattern of circumferential staining, cells consistently 

exhibited a single intense focus of gold particles at a discrete location adjacent to the 

membrane (Fig. 1A).  An identical pattern was observed following treatment of the M14 

serotype S. pyogenes strain HSC5 (data not shown) and minimal staining with the 
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streptavidin conjugate was observed in the absence of treatment with biotin-labeled 

polymyxin B (data not shown).   

 

Polymyxin B targets the ExPortal. The pattern of polymyxin B binding was then  

examined following treatment with a fluorescent derivative of polymyxin B (dansyl-

polymyxin B) at sub-inhibitory concentrations. Treatment with <60 µM polymyxin B 

under our challenge assay conditions (see “Experimental Procedures”) did not alter the 

viability of cultures at the end of the period of incubation as determined by enumeration 

of colony forming units (Fig. S1A).  Examination of cultures treated with a fluorescent 

probe that is excluded by intact membranes (Live/Dead®) confirmed the viability of 

polymyxin B treated cultures and demonstrated that most cells had membranes that were 

not porated (Fig. S1B). Examination by fluorescent microscopy revealed that when 

treated at concentrations <15 µM the fluorescent CAP typically localized to a single 

discrete site of the membrane (Fig. 1B, C, D, E). Some cells with staining at multiple foci 

or with a more diffuse distribution around the circumference of the cell were also 

observed (data not shown).  However, when examined quantitatively, the number of cells 

with single foci exceeded 60% and was significantly higher than that observed for any 

other staining pattern (P<0.0001, Fig. 1F).  To assess whether polymyxin B was targeting 

the ExPortal, co-staining was conducted to determine if these foci corresponded to the 

site of secretion of the SpeB cysteine protease, a signature feature of the ExPortal [17, 

18].  This was conducted using an assay that employs a protease substrate that is 

intramolecularly quenched but becomes active when cleaved to visualize the site of 

secretion of active SpeB protease in cells that have been embedded in agarose [17, 29].  
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Figure 1. Focal binding of Polymyxin B to the S. pyogenes surface: The distribution of 
polymyxin B on the surface of S. pyogenes SF370 following sub-lethal challenge was revealed: 
(A) by treatment with biotinylated polymyxin B (1:10,000) and immunogold electron microscopy 
using staining with a streptavidin-gold conjugate (scale bar = 200nm) and (B, C, D, E) by 
fluorescent microscopy following challenge with dansyl-polymyxin B alone (B) at the 
concentration indicated in the Figure (scale bar = 1µm) or in cells counterstained with Nile Red 
(C), fluorescent vancomycin (D) or wheat germ agglutinin Alexa Fluor 488 conjugate (E). 
Staining patterns following challenge with dansyl-polymyxin B were quantitated as described in 
the Experimental Procedures (F). Data represents the mean and standard error of the mean (SEM) 
derived from at least 3 independent experiments and examination of a minimum of 1000 stained 
cells. The number of cells with a single focus was significantly higher than any other staining 
pattern (P < 0.0001). 
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 When a sub-inhibitory concentration of dansyl-polymyxin B (5 µM or 10 µM) was 

included in this assay about 50% of the cells showed staining with both reagents.  

However, when co-stained (Fig. 2), the coincidence of the membrane site recognized by 

dansyl-polymyxin B and the site of SpeB secretion approached 100% (out of at least 200 

co-stained cells observed). 

 

 
 
Figure 2. The site of polymyxin B binding is coincident with the site of SpeB secretion. Cells 
of S. pyogenes SF370 were challenged with dansyl-polymyxin B (10 µM), fluorescent 
vancomycin stained to visualize cell wall and subjected to the red protease assay, which monitors 
cleavage of BODIPY TR-X-casein by the SpeB protease.  Stained cells were then examined by 
fluorescent microscopy. Panels are as follows: (A, E) fluorescent vancomycin, (B, F) BODIPY 
TR-X-casein, (C, G) Dansyl-polymyxin B and (D, H) Merge of Panels A, B and C.  Scale bar = 
1µm. 



  50 

Polymyxin B disrupts ExPortal Lipids.  The data above suggest that at sub-lethal 

concentrations, polymyxin B preferentially targets the ExPortal.  The consequence of this 

interaction was then examined using higher, but still sub-lethal concentrations of the 

CAP.  ExPortal integrity was assessed by staining with 10-nonyl acridine orange (NAO), 

a fluorescent membrane probe that preferentially binds anionic phospholipids [22, 30].  In 

the absence of polymyxin B, NAO stained cells at single foci (Fig. 3A), which were 

previously shown to be co-incident with the ExPortal [22].  Following treatment with 30 

µM polymyxin B, most cells had either multiple foci or a more diffuse staining pattern 

(Fig. 3B), while this latter pattern predominated following treatment with 60 µM 

polymyxin B (Fig. 3C).  This result suggested that the CAP was altering the organization 

of ExPortal-associated anionic phospholipids. Consistent with this, treatment with a 

higher, but still sub-lethal concentration of biotin-labeled polymyxin B resulted in cells 

stained at multiple foci or more diffusely around the membrane when examined by 

electron microscopy, rather than staining at single foci as was observed at lower 

concentrations (compare Fig. 3E with Fig. 1A,).  Similarly, treatment with a higher 

concentration of dansyl-polymxin B resulted in a majority of cells stained at multiple foci 

(compare Fig. 3F, G to Fig. 1B, D, E).  This shift was examined quantitatively (Fig. 3H), 

revealing that the number of cells stained at multiple foci was significantly higher than 

other staining patterns observed. Stressing membranes by subjecting cells to a condition 

known to induce the heat shock response (42oC, 30 mins.; [18]) did not alter the focal 

pattern of NAO staining (Fig. 3; compare panels 3D, 3A).  Similarly, heat shock did not 

alter the focal binding pattern of a low sub-lethal concentration of bodipy-labeled 

polymyxin B (10 µM, Fig. S2C,D), which contrasts with the disruption observed at a  
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Figure 3. Sub-lethal challenge with polymyxin B alters the distribution of anionic membrane 
lipids. Cultures of S. pyogenes SF370 were stained with NAO following challenge with 0 µM 
(A), 30 µM (B) or 60 µM (C) polymyxin B or heat shock at 42˚C (D) and examined by 
fluorescent microscopy (scale bar = 1µm).  The distribution of polymyxin B following higher, but 
still sub-lethal challenge, was revealed by treatment with biotinylated polymyxin B (1:500) and 
immunogold electron microscopy using staining with a streptavidin-gold conjugate (scale bar = 
200nm) (E) and by fluorescent microscopy following challenge with dansyl-polymyxin B alone 
at the concentration indicated in the Figure (scale bar = 1µm) (F) or costained with fluorescent 
vancomycin (G). Staining patterns following challenge were quantitated as described previously 
(H). Data represents the mean and SEM derived from at least 3 independent experiments and 
examination of a minimum of 1000 stained cells. The number of cells with multiple foci was 
significantly higher than any other staining pattern (P < 0.0001) at this polymyxin B 
concentration. 
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higher sub-lethal concentration (45 µM, Fig. S2E,F). Thus, these data suggest that 

disruption of the ExPortal-associated anionic lipid domain is specific to high sub-lethal 

concentrations of polymyxin B and does not result from a general membrane stress 

response.   

 

Polymyxin B disrupts ExPortal Organization.  There is evidence to suggest that the 

asymmetric lipid content of the ExPortal contributes to the retention of some ExPortal-

associated membrane proteins [19]. This suggests that the polymyxin B-mediated 

disruption of ExPortal lipid structure observed above could result in an overall disruption 

of ExPortal organization. To test this, the distribution of several proteins known to be 

enriched at the ExPortal was examined in cells of strain SF370 exposed to a sub-lethal 

concentration of polymyxin B. The concentrations tested (30-60 µM) were those that 

produced a high frequency of cells with multiple NAO- or polymyxin B-stained foci (see 

above). Consistent with prior studies [17, 18], in the absence of polymyxin B, the 

translocon ATPase SecA localized to a single membrane site in a majority of cells when 

examined by immunogold electron microscopy (Fig. 4A).  Similarly, the membrane-

associated HtrA serine protease [18] localized to a single membrane site in a majority of 

cells when examined by immunogold electron microscopy (Fig. 4D) and by 

immunofluoresent microscopy (Fig. 4G, H).  Adding polymyxin B at concentrations <30 

µM did not alter this pattern for either SecA or HtrA. However, polymyxin B 

concentrations of of 30 µM  through 60 µM resulted in redistribution of SecA (Fig. 4B,C) 

and HtrA (Fig. 4E,F, I, J) as demonstrated by a more circumferential staining pattern and 

a significant increase in the number of cells demonstrating multiple stained foci (Fig. 4K;  
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Figure 4. Redistribution of ExPortal proteins following sub-lethal polymyxin B challenge.  
The distribution of SecA (A, B, C) and HtrA (D, E, F) on S. pyogenes SF370 was assessed by 
immunogold electron microscopy following challenge with polymyxin B at the concentrations 
indicated in the Figure (scale bar = 200nm).  The distribution of HtrA was also assessed by 
immunofluorescent microscopy in the absence of (G, H) and following challenge with polymyxin 
B at 47 µM (I, J) and was quantitated as described previously (scale bar = 500nm)  (K). Data 
represents the mean and SEM derived from at least 3 independent experiments and examination 
of a minimum of 1000 stained cells.  In untreated cultures, the number of SF370 or HSC5 cells 
with a single focus was significantly higher than any other staining pattern (P < 0.05), whereas in 
polymyxin B-treated cultures, the number of streptococcal cells with multiple foci was 
significantly higher (P < 0.05). 
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P<0.05). Similar results were observed with the unrelated strain HSC5 (data not shown). 

Analysis of culture fractions indicated that the levels of SecA protein were unchanged in 

peptide-challenged streptococci and that the protein was retained in the same fractions in 

treated and untreated cells (Fig. S3A), suggesting that only localization of SecA at the 

membrane is affected. These data demonstrate that sub-lethal polymyxin B treatment can 

result in a disruption of ExPortal organization. 

 

Polymyxin B inhibits ExPortal-mediated secretion of SpeB. Disruption of ExPortal 

organization could have a deleterious effect on protein secretion.  Particularly vulnerable 

would be those proteins that require the ExPortal to coordinate the activities of multiple 

secretion and biogenesis factors. A prominent example of this class is the SpeB cysteine 

protease, which requires numerous accessory factors, including the ExPortal-localized 

HtrA, for its secretion and conversion of its 43 kDa zymogen into the 28 kDa mature 

form [18, 31-34].  In addition, because the gene encoding SpeB is expressed at the onset 

of the stationary phase of culture [35-37], its expression would provide a sensitive 

assessment of the effect of prior challenge with a CAP at the late logarithmic phase of 

growth.  Treatment of strain SF370 with various sub-lethal concentrations of polymyxin 

B resulted in a dose-dependent reduction in the amount of cysteine protease activity in 

culture supernatant (Fig. 5A), to a level less than 20% of that observed in the absence of 

the CAP (Fig. 5A, 60 µM).  This reduction correlated with a dose-dependent decrease in 

the amount of SpeB polypeptide that was detected in treated culture supernatants (Fig. 

5B). Secretion of SpeB in strain HSC5 was inhibited at lower concentrations of 

polymyxin B (Fig. S3B) and challenge with 60 µM polymyxin B  
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Figure 5. High sub-lethal challenge with polymyxin B inhibits secretion of SpeB and SLO, 
but not SIC. Expression of the SpeB protease in cultures of S. pyogenes SF370 was determined 
following challenge with the indicated concentrations of polymyxin B by quantitation of cysteine 
protease activity in culture supernatant (A), by real-time RT-PCR analysis of speB transcript 
abundance (A, inset) by Western blot analysis of culture supernatant (B) in whole cell lysates (C) 
and following overnight culture on protease indicator plates containing (+) or lacking (-) 150 µM 
polymyxin B (D).  Expression of SpeB results in a zone of clearing around colonies.  Western 
blotting was also used to analyze the amount of SLO (E) and SIC (F) present in culture 
supernatant following challenge with the indicated concentrations of polymyxin B. All samples 
for SpeB analysis were harvested at 3 hrs post-challenge; samples for SLO and SIC were 
harvested 2hrs post-challenge. Open and filled triangles indicate the migration of the zymogen 
and mature form of SpeB, respectively. The migration of the SLO and SIC polypeptides are also 
indicated.  
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resulted in a >95% inhibition of SpeB activity (data not shown). Several lines of evidence 

indicated that inhibition was not caused by an effect on growth, induction of stress or by 

suppression of speB transcription. Firstly, at the time of analysis of SpeB in culture 

supernatants (3 hrs post-challenge, Fig. S3C), the speB transcript was as abundant or 

present at higher levels as compared to untreated cultures (Fig. 5A, inset). Secondly, 

when transcription of speB was de-repressed and partially uncoupled from its growth 

phase-dependent control by mutation of the regulatory gene vfr [34, 38], polymyxin B 

challenge resulted in the same profile of inhibition of SpeB secretion that was observed 

for the wild type strain (Fig. S3D). Thirdly, sublethal polymyxin B did not induce a 

general stress response, as treatment had no effect on levels of the HtrA protease (Fig. 

S3E). Fourthly, while treatment reduced the amount of SpeB present in supernatants, the 

SpeB polypeptide was still produced and could be detected in cell lysates (Fig. 5C).  

Finally, incorporation of polymyxin B into protease indicator plates at concentrations that 

did not reduce numbers of CFU’s, did inhibit expression of protease activity, as indicated 

by an absence of zones of clearance around colonies on treated media following 

overnight culture (Fig. 5D), although some activity was evident upon a prolonged period 

of incubation (not shown).  Taken together, these data indicate that polymyxin B 

challenge inhibits SpeB expression at the level of secretion.   

 

Polymyxin B inhibits secretion of SLO but not SIC. The Sec pathway delivers 

presecretory proteins to the translocons via either the post-translational pathway or the 

co-translational signal peptide recognition (SRP) pathway. While SpeB can be secreted 

via the post-translational pathway, the cytolysin SLO is targeted via the SRP pathway 
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[33].  Given that expression of this cytolysin begins during the early logarithmic phase of 

growth, the challenge assay was slightly modified (see Experimental Procedures) in order 

to detect SLO that was secreted post-challenge. Comparison of supernatant harvested 

from peptide-challenged and untreated cultures of SF370 revealed a dose-dependent 

decrease in the amount of SLO protein detected in treated cultures (Fig. 5E); an effect 

that was more pronounced in HSC5 (data not shown). Similar to speB, slo transcript 

levels in polymyxin B-challenged cultures were as abundant as in untreated cultures at 

the time of analysis (Fig. S3F). A prominent difference between SF370 and HSC5 is that 

the former possesses the Streptococcal Inhibitor of Complement (SIC), which has been 

shown to enhance the resistance of S. pyogenes to CAPs [13, 39].  In contrast to SLO, no 

apparent differences in secreted SIC polypeptide was observed between culture 

supernatants from untreated and challenged cultures of SF370 (Fig. 5F). Thus, inhibition 

of toxin secretion is selective for certain toxins and is not a universal feature of sub-lethal 

polymyxin B treatment.   

 

Human Defensin HNP-1 also disrupts the S. pyogenes ExPortal.  In order to assess if 

human CAPs could also disrupt ExPortal function, cultures were challenged with sub-

lethal concentrations of the α-defensin HNP-1, the ß-defensins hBD-1 and hBD-2, and 

the cathelicidin LL-37.  A Western blot analysis of culture supernatant revealed that of 

these, only HNP-1 noticeably inhibited secretion of SpeB at the CAP concentrations 

tested (<50 µM for all CAPs tested), and did so at concentrations lower than those 

required for similar inhibition by polymyxin B (Fig. 6A). Examination of the staining 

pattern of a fluorescent derivative of HNP-1 (5-FAM-HNP1) revealed that while staining  
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Figure 6. Focal localization and inhibition of SpeB expression by HNP-1. Cultures were 
challenged with HNP-1 or by 5-FAM-HNP-1 at the concentrations indicated. Expression of SpeB 
was evaluated by a Western blot analysis (A) and binding to the S. pyogenes surface was assessed 
using fluorescent microscopy (B, C, D).  Presented are overlays of fluorescent and phase images 
(B, C) or the fluorescent image alone (D) (scale bar = 1µm).  Staining patterns were quantitated 
as described previously (E). Data represents the mean and SEM derived from at least 3 
independent experiments and examination of a minimum of 1000 stained cells.  At minimal 
concentration the number of cells with single foci is significantly higher than all other staining 
patterns, whereas multiple foci and hemisphere staining predominated significantly at higher 
peptide concentrations (P < 0.05).  
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was observed on a small population of cells at low concentration (5 µM, Fig. 6B), that 

these predominantly stained at discrete single or multiple foci (Fig. 6E). Increasing 

concentrations (15 µM) resulted in a higher percentage of cells with multiple foci (Fig. 

6C, 6E), while at even higher concentrations (30 µM) the CAP primarily localizes to one 

hemisphere of the cell (Fig. 6D).  Finally, localization of HtrA by immunofluorescence 

demonstrated that similar to polymyxin B, treatment with HNP-1 at sub-lethal 

concentrations that inhibited SpeB secretion also significantly decreased the number of 

cells exhibiting HtrA at discrete foci (P<0.0001, Fig. 7).  These results suggest that a 

CAP to which S. pyogenes may be exposed to inside a human host can disrupt the 

organization and function of the ExPortal. 
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Figure 7. Challenge with HNP-1 results in redistribution of HtrA. Cultures of S. pyogenes 
HSC5 were challenged with the indicated concentrations of HNP-1 and subjected to 
immunofluorescent microscopy to assess the distribution of HtrA (A, B).  Cell walls were 
visualized by staining with fluorescent vancomycin (scale bar = 1µm).  Staining patterns were 
quantitated as described previously (C). Data represents the mean and SEM derived from at least 
3 independent experiments and examination of a minimum of 1000 stained cells. Challenge with 
the peptide significantly decreased the number of SF370 or HSC5 cells exhibiting HtrA at single 
foci (P<0.0001) and resulted in a significant increase in the number of multiple foci (P<0.0001) 
in the SF370 strain. 
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DISCUSSION 

The ability of S. pyogenes to cause a wide range of diseases has been linked to its 

production of virulence factors that neutralize or subvert innate mechanisms of immunity, 

including the lethal effects of CAPs (for review, see [14, 40, 41]). However, by showing 

that sub-lethal concentrations of CAPs are able to disrupt the secretory ExPortal, the 

results of this study suggest that interaction with CAPs may play a more intimate role in 

S. pyogenes pathogenesis, serving to modulate virulence factor expression at both the 

transcriptional and post-transcriptional levels. Finally, the observation that disruption of 

ExPortal organization is associated with a defect in secretion of certain toxins provides 

additional support for the concept that the ExPortal serves a functional role in facilitating 

protein secretion. 

 A literature is emerging indicating that individual CAPs have a considerable 

diversity in how they interact with and kill bacteria using both lytic and non-lytic 

mechanisms (reviewed in [42-44]).  However, an initial step common to all pathways 

analyzed to date, involves the binding of the CAP to anionic lipids in the membrane.  

While little is currently known about the mechanism(s) by which sub-lethal 

concentrations of CAPs may affect bacterial physiology, the data presented here indicate 

that disruption of ExPortal organization and inhibition of SpeB and SLO secretion were 

also associated with membrane binding by the CAPs.  Most models of CAP action 

postulate that at low sub-lethal concentrations, the peptides bind in a parallel orientation 

relative to the lipid membrane and begin to aggregate as concentrations increase, until a 

lethal concentration is reached and the peptides reorient to attack the membrane 

(reviewed by [4, 43]).  The observation that CAP binding to the ExPortal leads to 
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redistribution of anionic lipids in the absence of pore formation contrasts with CAP 

behavior in model membranes, where they typically cluster anionic lipids (reviewed in 

[45]). Additionally, this redistribution of anionic lipids does not appear to induce or result 

from generalized disruption of the cytoplasmic membrane, as our data show that the 

integrity of the membrane is not compromised. Furthermore, numerous functions that 

depend on membrane integrity are also not compromised, including energy-dependent 

processes such as gene transcription and cell-growth, the latter of which also requires the 

assembly of macromolecular complexes at the membrane. The binding of polymyxin B to 

the membrane appears to only affect the physical location of anionic lipids and SecA 

within the membrane relative to each other and to accessory factors like HtrA. This 

suggests that the initial binding and/or aggregation of the CAPs is sufficient to disrupt the 

factor(s) that maintains ExPortal organization.  If the anionic character of these lipids 

plays a fundamental role in organization, then it is possible that CAP binding serves to 

neutralize their charge to promote disruption. Alternatively, the interaction of CAPs with 

ExPortal lipids may disrupt the insertion or translocation of factors that function to 

maintain ExPortal lipid organization.  The redistribution of ExPortal-associated 

membrane proteins may then occur subsequent to disruption of lipid structure, as analysis 

of a bitopic membrane protein (sortase C) has suggested that interaction between anionic 

lipids and a high density of positive charge in the cytoplasmic tail of its transmembrane 

helix is responsible for its localization at the ExPortal [19]. 

 Many bacterial pathogens segregate charged lipids into microdomains (reviewed 

in [46, 47]) and these support the function of several multi-enzyme complexes required 

for secretion, membrane protein biogenesis and cell division [48-50]. Since some CAPs 
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can kill in the absence of pore formation and can also target charged lipids, it has been 

proposed that they exert their lethal effect by interfering with the dynamic function of 

these lipid-associated complexes, referred to as the “sand in a gearbox” mechanism [51]. 

This concept is supported by the observation that these CAPs can elicit enhanced 

expression of some components of these complexes [51]. By documenting the physical 

disruption of a multi-component organelle in the absence of poration, the results of the 

present study provide strong support for this mechanism. Furthermore, they extend this 

emerging concept to show that disruption can also occur at sub-lethal exposure to CAPs, 

and as a consequence, significantly influence how the bacterium interacts with its 

environment.   

 To date, modulation of signaling via the CovRS (CsrRS) two-component 

transcription regulator has been the most widely studied consequence of sub-lethal S. 

pyogenes-CAP interaction.  Analysis of this mechanism has shown that from among a 

large panel of CAPs that included HNP-1, only human LL-37 functioned to induce 

signaling [12].  Similarly, ExPortal targeting was not a property that was shared by all the 

CAPs tested in the present study, including LL-37.  While the reason for this is not 

known, it was not unexpected, as the considerable diversity of CAP structure is reflected 

in differences in selectivity, binding efficiency, mechanism of killing and the physical 

conditions required for optimum activity (reviewed by [42]).  Furthermore, these 

behaviors have not been extensively investigated at sub-lethal concentrations for any 

CAP.   

 Of the human-derived CAPs tested in the present study, HNP-1 proved more 

potent that polymyxin B in ExPortal disruption. This α-defensin is expressed 
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constitutively in the azurophilic granules of neutrophils [1] and can be detected at 

concentrations of up to 63 µM [52] in secretions from nasopharyngeal tissue, a niche that 

can be colonized by S. pyogenes.  Thus, it is likely that S. pyogenes encounters HNP-1 

during infection.  Also, while HNP-1 targets anionic lipids, it may have additional 

targets, including the lipid II molecule involved in cell wall synthesis [53]. Binding to 

lipid II likely explains why higher concentrations of HNP-1 produced more heterogenous 

patterns of staining, including a tendency for staining one hemisphere of the cell. In 

“ovococci” like S. pyogenes, which divide in successive parallel planes perpendicular to 

their long axis, this pattern is consistent with the pattern of new cell wall synthesis 

(reviewed by [54]).  

The ability of S. pyogenes to secrete numerous toxins likely plays a central role in 

its ability to cause disease [55].  Thus, inhibition of SpeB and SLO may represent a 

physiologically relevant property of sub-lethal CAP concentrations. Since secretion of 

essential proteins will be required to support viability, it is unlikely that sub-lethal CAP 

treatment would produce a global blockade of protein secretion.  It is known that 

biogenesis of SpeB requires secretion factors that are not required for other Sec-secreted 

proteins [31-34]. Similarly, as an SRP substrate [33] SLO’s secretion requires 

coordination between FtsY, the membrane receptor for the SRP, and the Sec translocons 

[56]. In contrast SIC secretion in the SF370 strain was unaffected by CAP treatment, a 

result that suggests that its secretion may not require additional factors in addition to Sec.  

If the ExPortal functions to coordinate interactions between various secretion 

components, then disruption of ExPortal organization could lead to the secretion defect. 

Alternatively, it has been shown that some CAPs can act on internal targets (reviewed by 
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[4]), raising the possibility that sub-lethal CAPs may interfere with secretion factors in 

the cytoplasmic compartment of the streptococcal cell.   

Interestingly, analysis of the recently introduced antibiotic daptomycin has 

suggested that it principally targets regions of membrane enriched in anionic 

phospholipids [57], suggesting that these domains can be exploited for the development 

of even more potent antibiotics.  Thus, further analysis of CAP-ExPortal interaction will 

be valuable for uncovering the fundamental organizing principles of the ExPortal, how 

the ExPortal informs the coordination of protein secretion and maturation and the 

importance of modulation of secretion in response to host factors during infection.  
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EXPERIMENTAL PROCEDURES 

Strains, plasmids, media and growth conditions:  As indicated, experiments utilized S. 

pyogenes HSC5 [58] or SF370 [26]. Localization of HtrA was analyzed in HSC5 

following transformation by pHtrA-HA, which expresses a HA-tagged derivative of HtrA 

[18]. Strain GCP682 contains an in-frame deletion (vfrΔ15-289) in vfr (SPy_0887) (G. Port 

and M. Caparon in preparation). Routine culture was at 37°C in Todd-Hewitt broth 

(BBL) supplemented with 0.2% yeast extract (Difco) (THY medium).  Functional assays 

utilized cultures grown in unmodified C medium as described previously [59]. To 

produce solid media, Bacto Agar (Difco) was added to a final concentration of 1.4%. 

Expression of the secreted SpeB cysteine protease was evaluated on skimmed milk agar 

medium [31]. Liquid cultures were grown without agitation in closed containers and solid 

cultures were incubated under anaerobic conditions using a commercial gas generator 

(GasPak, cat. #260678, BBL) as described [59]. The SpeB protease was inhibited in 

cultures used to analyze the abundance of secreted streptococcal proteins by including the 

cysteine protease inhibitor E64 [31].  In selected experiments, media were supplemented 

with CAPs, including polymyxin B (cat. #P0972-50MU, Sigma), Human Neutrophil 

Peptide-1 (HNP-1, cat. #60743, AnaSpec), Human ß-defensin 1 (hßD-1, cat. #072-53, 

Phoenix Pharmaceuticals), Human ß-defensin 2 (hßD-2, cat.#072-48, Phoenix 

Pharmaceuticals), and Human cathelicidin LL-37 (LL-37, cat. #61302, AnaSpec) at the 

concentrations indicated in the text.   

 

Challenge with CAPs:  Unless otherwise indicated, bacteria were cultured overnight in 

liquid THY medium, diluted 1:100 in fresh C medium and then cultured to the late-
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logarithmic phase of growth (Fig. S3C, 0h).  The CAPs were then added to the various 

final concentrations indicated in the text and incubation continued until cultures reached 

stationary phase (3 hrs post-treatment, Fig. S3C) as determined by monitoring optical 

density (OD600).  Control cultures were grown in parallel, but were not treated with any 

CAPs; control and treated cultures entered stationary phase at approximately the same 

time (Fig. S3C).  For this challenge assay, the minimum concentration of polymyxin B 

and HNP-1 that resulted in a greater than one-log reduction in the number of SF370 

viable cells (determined by enumeration of colony forming units as described below) 

were 145 µM and 67 µM, respectively. This assay differs from a conventional assay for 

determining the minimal inhibitory concentration, which employs an inoculum of 

stationary phase cells from an overnight culture at a low cell density. As expected, SF370 

was more sensitive to polymyxin B in the conventional assay (22 µM). In contrast, SF370 

was more resistant to polymyxin B on protease indicator medium (see Fig. 5), which is 

likely due to its increased lipid content.  For analysis of proteins whose expression begins 

in early logarithmic phase, the challenge assay was modified in order to remove proteins 

secreted into the supernatant prior to challenge as follows: cultures were grown to mid-

logarithmic phase (Fig. S3C), harvested by centrifugation, immediately resuspended in an 

equivalent volume of warm fresh medium and then challenged with CAPs as indicated in 

the text. Samples were collected and processed for assessment of viability, for 

microscopy and for analysis of protein secretion, as described below.  Data presented are 

representative of those obtained over the range of sub-lethal concentrations of CAPs.   
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Analysis of Viability: At selected time points following challenge with CAPs, aliquots 

were removed from cultures and viability assessed by determination of CFUs following 

brief sonication to disrupt streptococcal chains, serial dilution in PBS and plating on C 

medium agar as described previously [60].  Viability was also assessed by staining with a 

fluorescent vital dye (LIVE/DEAD®, BacLighttm) as recommended by the manufacturer 

(Invitrogen). Viability was quantitated by examination using a fluorescent microscope 

(Leica model DM IRE 2) with enumeration of the percentage of live bacteria in randomly 

chosen microscopic fields totaling >1000 cells for each condition examined. Data 

reported represent the mean and standard error of the mean derived from a minimum of 3 

independent experiments. Differences between calculated means were evaluated for 

significance using a one-way Analysis of Variance (ANOVA). 

 

Cellular staining and fluorescent microscopy:  Streptococcal cultures were challenged 

with various CAPs as described above, stained with various fluorescent reagents and then 

analyzed by fluorescent microscopy as follows:  Analysis of the location and integrity of 

a membrane microdomain enriched in anionic phospholipids was assessed by staining 

with 10-nonyl acridine orange (NAO, cat. #A7847 Sigma) as described [22].  

Localization of the discrete membrane site of secretion of the SpeB cysteine protease was 

conducted using the red protease assay [17].  Analysis of CAP binding involved the 

substitution of native CAPs in the challenge assay with sub-lethal concentrations of 

fluorescent derivatives, including dansyl-polymyxin B (5, 10, 15 and 47µM, cat. 

#P13238, Invitrogen), polymyxin B BODIPY®FL conjugate (10 and 45µM, cat. 

#P13235, Invitrogen) or 5-FAM-HNP-1 (5, 15 and 30µM, custom synthesis by 
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AnaSpec). Samples were examined using a Leica model DM IRE 2 fluorescent 

microscope and images captured using a QImaging Retiga 1350 EX charged-coupled 

device camera and Openlab software (Improvision). Where indicated, simultaneous 

treatment with 2 reagents was conducted in order to assess co-localization of staining.  In 

these experiments streptococcal cells walls were visualized by staining with fluorescent 

vancomycin (1 µg ml-1, cat. #V34850, Invitrogen), or wheat germ agglutinin Alexa Fluor 

488 conjugate (5 µg ml-1, cat. #W11261, Invitrogen) and neutral membrane lipids were 

visualized by staining with Nile Red (2.5 ug ml-1, cat. #N1142, Invitrogen).  Focal 

localization in images of cells was quantitated as described in detail elsewhere [19] and 

scored as staining at a unique focus, multiple foci, or non-specifically (staining was of 

homogeneous intensity around the cellular circumference).  Co-localization in the red 

protease assay was quantitated as the percentage of vancomycin-stained cells that 

exhibited focal staining with each individual reagent where the two foci were 

superimposable.  Data presented for each condition represents the mean and standard 

error of the mean derived from at least 3 independent experiments and examination of a 

minimum of 1000 stained cells.  Images were processed for publication using Adobe 

Photoshop CS3. 

 

Immunofluorescent microscopy:  The localization of native and HA-tagged HtrA protein 

(in SF370 and HSC5, respectively) was detected by immunofluorescent microscopy, as 

described [18].  Aliquots from untreated or CAP-treated (47 µM polymyxin B or 29 µM 

HNP-1) challenge assay cultures (see above) were treated with PlyC lysin (prepared as 

described, [61]) and fixed according to the method of Raz and Fischetti [23].  Antisera 
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used included a polyclonal rabbit anti-HtrA antiserum (a gift from Mark Walker, 

University of Wollongong, Australia) used at a dilution of 1:100 that was detected using 

an AlexaFluor 594-lableled goat anti-rabbit IgG (Invitrogen) at 1:500 and an AlexaFluor 

594-conjugated rabbit IgG anti-HA epitope antiserum (Invitrogen) used at 1:500.  Wheat 

germ agglutinin (WGA)-AlexaFluor 488 (Invitrogen) at a final concentration of 5 µg ml-1 

was used to visualize the streptococcal cell walls.  Slides were mounted in an anti-fade 

reagent (Prolong Gold, Invitrogen) and images captured and staining patterns quantitated 

as described above. Differences between means were analyzed for significance using a 

two-tailed Student’s t-test. 

 

Immunogold electron microscopy:  Localization of polymyxin B binding was examined 

by electron microscopy, as follows:  Cultures in the assay described above were 

challenged with biotin-conjugated polymyxin B (HyCult Biotechnologies) at the various 

dilutions indicated in the text.  At 1 hr post-challenge, aliquots were removed and 

prepared for immunoelectron microscopy as described [17, 18].  Sections were stained 

using a streptavidin-gold conjugate (20nm, BBI International) and examined by electron 

microscopy as detailed [17, 18].  Localization of SecA and HtrA following treatment in 

the challenge assay with the concentrations of polymyxin B indicated in the text was 

determined at 2 hr post-challenge by immunogold electron microscopy [17, 18].  Focal 

staining was defined and quantitiated as described in detail elsewhere [19].   

 

Analysis of protein expression and secretion:  Expression of the transcript for the SpeB 

cysteine protease was determined at various time points following challenge with 
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polymyxin B by real time RT-PCR as described [59, 62].  Data represents the mean and 

standard error of the mean derived from 3 independent experiments conducted on 

different days, with each sample analyzed in quadruplicate. Supernantant fractions from 

cultures challenged with polymyxin B were analyzed for SpeB proteolytic activity as 

previously described [18] via the relative increase in fluorescence generated by the 

cleavage of fluorescein isothiocyanate-casein (cat. #C3777, Sigma). Supernatant, cell 

wall and protoplast fractions from cultures challenged with CAPs were prepared and 

analyzed for the presence of SpeB and HtrA by Western blotting as described [33].  Blots 

were developed using a Chemidoc XRS imager (BioRad) and relative protein 

concentrations determined using Quantity One software (BioRad, version 4.6.7).  Data 

are expressed relative to untreated cultures and were derived from a minimum of 3 

independent experiments. Differences between means were evaluated for significance 

using one-way ANOVA. 
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SUPPLEMENTARY FIGURES 

 

 
 
Figure S1. Validation of sub-lethal polymyxin B challenge. Cultures of S. pyogenes SF370 
were treated with the indicated concentrations of polymyxin B in the challenge assay and viability 
assessed by (A) determining the number of colony forming units (CFU) following serial dilution 
and plating on C medium and (B) fluorescent microscopy of cells following staining with 
reagents that distinguish between cells with intact membranes and those whose membranes have 
become porated (LIVE/DEAD BacLighttm, Invitrogen). Samples for both viability assays were 
harvested following 2 hrs of treatment, and numbers of CFU determined following 24 hrs of 
incubation. Numbers of cells with porated membranes were derived from examination of at least 
1000 stained cells.  All data presented represents the mean and standard error of the mean derived 
from at least 3 experiments.  Differences between mean values were evaluated for significance by 
a one-way ANOVA, which revealed no significant differences between any treated vs untreated 
cultures. Identical results were obtained from performing these same analyses on S. pyogenes 
strain HSC5 (data not shown). 
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Figure S2. Focal localization of anionic lipids is unaffected by heat stress.  Cultures of S. 
pyogenes HSC5 (A, C, E) and SF370 (B, D, F) were challenged in the standard assay as follows: 
Cultures were challenged with 10µM bodipy-labeled polymyxin B (Invitrogen) and incubated for 
30 min at 37oC (A, B) or subjected to heat shock (42oC, 30 min.) (C, D) or challenged with an 
ExPortal-disrupting concentration of bodipy-labeled polymyxin B (45µM) (E, F). Samples were 
then analyzed by microscopy and each individual field was examined using fluorescence or phase 
contrast modes  (left and right of each panel, respectively).  Scale bar = 1µm.   
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Figure S3. Validation of secretion-inhibitory effects in streptococci of sub-lethal polymyxin 
B levels. (A). Expression of the secretory translocon ATPase SecA in cultures of S. pyogenes 
SF370 was determined 2 hrs post-challenge with the concentrations of polymyxin B indicated in 
the Fig. A Western blot analysis of cell protoplasts is shown.  (B) Western blot analysis of SpeB 
in culture supernatants of S. pyogenes HSC5 following sub-lethal polymyxin B challenge.  Open 
and filled triangles indicate the migration of the zymogen and mature form of SpeB, respectively. 
(C). Growth of S. pyogenes in the absence or presence of the indicated amounts of polymyxin B.  
Arrows indicate the point at which cultures were challenged (0 h, Mid-log) and the subsequent 
time points where samples were harvested for the various analyses described in the text. (D). A 
Vfr- mutant of HSC5 (GCP682) was cultured to the time of challenge (Mid-log) and then treated 
with the indicated concentrations of polymyxin B. Shown is a Western blot analysis of SpeB in 
culture supernatant.  (E). A Western blot analysis of HtrA in lysates of S. pyogenes SF370 that 
were prepared 3 hrs post-challenge with the indicated concentrations of polymyxin B.  (F).  Real-
time RT-PCR analysis of slo transcript abundance following challenge of S. pyogenes HSC5 with 
the indicated concentrations of polymyxin B. Data shown represent the mean and SEM derived 
from at least three independent experiments conducted on different days and each sample was 
analyzed in triplicate.  
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ABSTRACT 

S. pyogenes and other Gram-positive bacteria circumvent the lack of a specialized 

cellular compartment for folding secreted proteins following their translocation by 

clustering the Sec translocons at a defined microdomain of the cytoplasmic membrane 

that is also enriched in anionic lipids and accessory factors for protein biogenesis, 

referred to as the ExPortal. The function of this secretory organelle appears to be that of 

spatially coupling secretion with protein maturation, but the mechanisms underlying 

ExPortal organization and maintenance are still poorly understood. Emerging literature 

suggests that cell wall biogenesis components interact with cytoplasmic membrane 

structures and the cell division machinery to organize membrane localized processes. In 

the present study we examined the role the streptococcal cell wall and peptidoglycan 

synthesis in the cytoplasmic membrane play in organizing and maintaining the ExPortal 

and report that extracellular peptidoglycan is required for maintaining proper localization 

of both lipid and protein components of the ExPortal. Treatment with a lipid II-targeting 

lantibiotic disrupted localization of anionic lipids and ExPortal proteins, as well as 

secretion of ExPortal substrates in a manner similar to what was observed previously 

with cationic antimicrobial peptides at sub-lethal concentrations. Furthermore, proteins 

responsible for the membrane-associated steps of lipid II synthesis localize to foci in the 

streptococcal membrane that coincide with the anionic lipid microdomain and secretory 

translocons of the ExPortal, suggesting that localization of peptidoglycan synthesis 

coincides with the ExPortal and influences its organization. 
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INTRODUCTION 

Streptococcus pyogenes is the causative agent of numerous diseases in humans that 

range from largely superficial infection of the skin and mucous membranes (impetigo, 

pharyngitis), to highly invasive and life-threatening diseases (necrotizing fasciitis), as 

well as, serious post-infection sequelae (rheumatic fever, glomerulonephritis, reviewed in 

[1]. A gram-positive pathogen, its ability to cause disease is dependent on the secretion of 

an extensive network of virulence proteins [1, 2]. In the absence of other known secretion 

systems, these virulence proteins are exported by the general secretory  [3] pathway (for a 

review see [4]. S. pyogenes and other Gram-postive pathogens circumvent the lack of a 

specialized cellular compartment for folding secreted proteins following their 

translocation, a feature shared by all Gram-positive bacteria, by clustering the Sec 

translocons at a defined microdomain of the cytoplasmic membrane referred to as the 

ExPortal [5-9].  The ExPortal is also highly enriched with accessory factors for protein 

biogenesis at the extracellular leaflet of the membrane, including the sortases involved in 

covalent attachment of proteins to the cell wall, and the multi-function protease and 

chaperone HtrA that aids in the biogenesis of the active form of the SpeB protease [5-7, 

10, 11]. These studies suggest the function of the ExPortal is to spatially couple secretion 

with protein maturation, but the mechanisms underlying the organization and 

maintenance of this secretory organelle are still poorly understood.  

The ExPortal of S. pyogenes has been shown to have an asymmetric lipid content 

enriched in anionic phospholipids [10] that may contribute to the preferential retention of 

certain proteins at the ExPortal vs. the peripheral membrane [7].  Research into the 

interaction between S. pyogenes and cationic antimicrobial peptides (CAPs), which bind 
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to negatively charged membranes, showed that sub-lethal concentrations of certain 

peptides disrupt both localization of anionic lipids and retention of HtrA and the Sec 

translocon ATPase SecA at the ExPortal microdomain, and in doing so inhibit its 

secretory activity [12]. Interestingly, this study also revealed that one of these CAPs, 

human neutrophil peptide 1 (HNP-1), localizes to the bacterial cell surface which 

overlaps to regions of new cell wall synthesis in streptococci at the sub-lethal, ExPortal-

disrupting concentrations tested. It has been previously demonstrated that HNP-1 targets 

the peptidoglycan precursor lipid II in bacterial membranes [13], much like other 

defensins for which a similar affinity for the lipid II molecule has been observed [14, 15]. 

This finding suggests that CAPs can interfere with ExPortal function by disruption of 

lipid II in addition to anionic lipids.  

The best characterized lipid II-targeting molecules known belong to a class of 

small bacterial defense peptides commonly referred to as lantibiotics (for a review, see 

[16]. The best characterized of these, nisin, specifically binds lipid II in a defined 

stoichiometry in order to form pores that efficiently permeabilize bacterial membranes 

[17, 18]. More importantly however, non-porating variants of nisin have been shown to 

efficiently kill bacteria using an alternative mechanism by which lipid II is clustered into 

patches in the cytoplasmic membrane away from the regions where peptidoglycan 

synthesis occurs [19]. Other lantibiotics such as gallidermin, epidermin and mutacin have 

also been observed to act via this alternative mechanism [19-21], thus inhibiting cell wall 

synthesis and causing bacterial cell death without permeabilizing the cytoplasmic 

membrane. The fact that lipid II-targeting molecules can disrupt cell wall synthesis 

without compromising membrane permeability, combined with the observation that a 
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CAP shown to interact with lipid II can similarly target and disrupt the ExPortal hint at a 

possible link between cell wall biogenesis and organization of this secretory organelle. 

The cell wall of Gram-positive pathogens is an extracellular organelle that plays a 

multitude of roles essential to both survival and virulence (for a review see [22]. A rigid 

exoskeleton made up of polymers of alternating N-acetylglucosamine (GlcNAc) and M-

acetylmuramic acid (MurNAc) glycan units crosslinked via peptide bridges, its main 

purpose is to preserve cellular integrity against osmotic forces from without and within 

the bacterial cell [23]. The cell wall is also the attachment site for extracellular factors 

that interact with the host environment, which include surface-associated virulence 

proteins, lipoteichoic and teichoic acids. Since cell wall-anchored proteins are covalently 

attached by sortases to their peptidoglycan acceptor immediately following their 

secretion, most research into the relationship between gram-positive secretion and cell 

wall biogenesis, particularly in the case of streptococci, has focused on the 

characterization of sortase function (reviewed in [24]. In contrast, our present study 

corresponds to an emerging literature on how the organization of cell wall biogenesis 

relates to underlying cytoplasmic membrane structures and cell division machinery [25-

28] by examining the possibility of a more direct relationship between protein secretion 

and cell wall synthesis in streptococci, particularly in terms of the organization of these 

processes. The final steps of cell wall peptidoglycan biogenesis occur at the inner leaflet 

of the cytoplasmic membrane. In gram-postive species including Streptococcus 

pneumoniae, Staphylococcus aureus and Enterococcus faecalis, these involve cytosolic, 

as well as membrane-intrinsic and extrinsic proteins  (for a review see [29]. The cellular 

localization of these proteins relative to the ExPortal microdomain of Streptococcus 
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pyogenes has not been documented and could reveal a great deal as to whether 

peptidoglycan biogenesis influences ExPortal organization. Thus, our current study also 

examined those proteins involved in the first and last of the membrane-associated steps of 

cell wall synthesis. MraY is a membrane intrinsic protein that carries out the first 

membrane-associated step in the synthesis of the lipid II precursor by catalyzing the 

transfer of the phospho-N-acetylmuramoyl(MurNAc)-pentapeptide from the soluble 

cytoplasmic UDP-MurNAc-pentapeptide substrate to the membrane embedded 

undecaprenyl-phosphate (C55-P) acceptor, thus producing undecaprenyl-pyrophosphoryl-

MurNAc-pentapeptide (lipid I), the immediate precursor of lipid II. MurN, on the other 

hand, is a cytosolic polypeptide belonging to the family of FemABX peptidyl transferases 

that attach the amino acids constituting the peptide cross-links between peptidoglycan 

subunits in the cell wall structure of many gram-positive bacteria [30]. This is the final 

synthetic step occurring on the inner leaflet of the cytoplasmic membrane prior to 

translocation of lipid II across the membrane. In S. aureus synthesis of these peptide 

cross-links is required for the sortase-mediated attachment of surface virulence factors to 

the cell wall [31]. Moreover, evidence indicates that sorting of surface virulence factors 

occurs in the immediate vicinity of their site of secretion and coincides with the site of 

de-novo peptidoglycan synthesis [7, 9, 11, 32]. These data further suggest that 

peptidoglycan biogenesis and ExPortal-mediated secretion may be spatially coordinated 

in the streptococcal membrane.  

Thus, in the present study we examined the role the streptococcal cell wall and 

peptidoglycan synthesis in the cytoplasmic membrane play in organizing and maintaining 

the ExPortal and report that cell wall peptidoglycan is required for maintaining proper 
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localization of both lipid and protein components of the ExPortal at their membrane 

microdomain. Treatment with a lipid II-targeting lantibiotic disrupted localization of 

anionic lipids and ExPortal proteins, as well as secretion of ExPortal substrates in a 

manner similar to what was observed previously with other CAPs at sub-lethal 

concentrations [12]. Furthermore, proteins responsible for the membrane-associated steps 

of lipid II synthesis localize to foci in the streptococcal membrane that coincide with the 

anionic lipid microdomain and secretory translocons of the ExPortal, suggesting that 

localization of peptidoglycan synthesis coincides with targeting and organization of the 

ExPortal. 
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RESULTS 

Cell Wall Peptidoglycan is required for maintenance of the ExPortal anionic lipid 

microdomain. In order to characterize the involvement of cell wall biogenesis in 

ExPortal organization we first determined whether the cell wall is necessary to maintain 

ExPortal integrity. To that end we examined the localization of anionic lipids in the 

cytoplasmic membrane in protoplasts devoid of extracellular peptidoglycan. Treatment 

with purified PlyC bacteriophage lysin of logarithmic and stationary phase streptococcal 

cultures resuspended in either raffinose buffer or glycerol-supplemented media removed 

all surface peptidoglycan from the majority of streptococci, as monitored by the 

breakdown of streptococcal chains into individual protoplasts and the absence of either 

FL-Vancomycin or Wheat Germ Agglutinin (WGA) labeling on the protoplast surface 

(Fig. 1). The loss of cell-wall labeling in PlyC-treated streptococci coincided with a 

redistribution of labeled polymyxin B from unique foci to the entirety of the bacterial 

cell’s surface, giving the protplasts a “halo” appearance (Fig. 1A, B, H), distinct from the 

focal localization of the labeled peptide observed in intact streptococci (Fig. 1C and D) 

and PlyC-treated streptococci in which not all of the cell wall peptidoglycan was 

removed, as evidenced by the presence of FL-Vancomycin or WGA label on their surface 

(Fig. 1A, top of panel). The distribution of labeled polymyxin B in protoplasts also 

coincided with the distribution of neutral lipid-binding dye Nile Red (compare Fig. 1H 

and I), suggesting that in the absence of cell wall peptidoglycan, integrity of the anionic 

lipid microdomain of the ExPortal is lost and anionic lipids are uniformly distributed in 

the streptococcal membrane in a manner similar to neutral lipids. Staining streptococcal 

protoplasts with a fluorescent vital dye (LIVE/DEAD BacLightTM) indicated that the  
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Figure 1. Surface peptidoglycan is required for maintenance of the ExPortal anionic lipid 
microdomain. The distribution of anionic lipids on the surface of S. pyogenes SF370 and HSC5 
protoplasts was revealed by fluorescent microscopy. Loss of cell wall labeling by FL-vancomycin 
in SF370 protoplasts coincided with redistribution of anionic lipid labeling by dansyl-polymyxin 
B from focal sites in intact bacteria (A, top) to the entire protoplast membrane surface (A, 
bottom). Similar redistribution of dansyl-polymyxin B to the entire surface was observed in 
HSC5 protoplasts (B), compared to focal localization in intact bacteria (C). Localization of 
dansyl-polymyxin B (D, H) and neutral lipids (E, I) in WGA-stained (F,J) HSC5 intact cells (D-
G) and protoplasts (H-K) further confirmed redistribution of anionic lipids to the entire 
membrane surface. Fluorescent (A, right; D-F, H-J), phase (B, top), and merged images (A, left; 
B,C,G,K) are shown. FL-vancomycin (1µg ml-1, green), Dansyl-polymyxin B (10µM, blue), 
WGA (5µg ml-1, green), Nile red (2.5µg ml-1, red). Scale bar = 1µm. 
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Figure 2. Loss of anionic lipid segregation at a microdomain is not due to membrane 
permeabilization. Membrane permeability of S. pyogenes protoplasts displaying altered anionic 
lipid distribution was assessed by fluorescent microscopy following staining with reagents that 
distinguish between protoplasts with intact membranes (viable) and those with permeabilized 
membranes (LIVE/DEAD BacLighttm, Invitrogen). Fluorescent images of a representative field of 
HSC5 protoplasts displaying uniform membrane-staining with dansyl-polymyxin B (A), viable 
(B) and permeabilized cell staining (C), as well as corresponding merged image (D) are shown. 
Protoplasts generated by PlyC lysin treatment (PlyC+) have non-permeabilized membranes, 
indicated by viable cell staining similar to untreated (PlyC-) HSC5 cells (E). A significant 
number of protoplasts (PlyC+) displaying uniform membrane labeling with dansyl-polymyxin B 
(Halo) had intact membranes (Halo+viable) as opposed to permeabilized membranes 
(Halo+permeabilzed)(F). Few intact cells display uniform membrane labeling by dansyl-
polymyxin B (Halo PlyC-). Numbers of viable, permeabilized protoplasts and intact streptococcal 
cells were derived from examination of 1000 stained cells. Data presented represents the mean 
and standard error of the mean derived from at least 3 experiments.  Differences between mean 
values were evaluated for significance by a one-way ANOVA (P<0.0001). Scale bar = 10µm. 
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cytoplasmic membranes of the protoplasts examined are not permeabilized (Fig. 2A-D). 

Quantitation of protoplasts displaying the uniform membrane distribution of labeled 

polymyxin B described above revealed that a significantly large proportion of them had 

intact membranes (Fig. 2E and F, P<0.0001). This suggests that the observed 

redistribution of anionic lipids resulting from the removal of surface peptidoglycan under 

our experimental conditions is not due to perturbation of membrane permeability. 

 

Cell Wall Peptidoglycan is required for ExPortal protein targeting at the membrane. 

Previous work demonstrated that localization of ExPortal-associated proteins such as 

SecA and HtrA coincided with the anionic lipid microdomain of the ExPortal [6, 10] and 

that disruption of the lipid microdomain by CAPs resulted in redistribution of these 

proteins in the streptococcal membrane [12]. Thus, we examined whether disruption of 

anionic lipid localization in the streptococcal membrane resulting from the absence of 

surface peptidoglycan affected the distribution of ExPortal-associated proteins. 

Immunofluorescence microscopy of streptococcal protoplasts revealed that the 

membrane-associated HtrA protease was distributed uniformly over the entirety of the 

membrane (Fig. 3A). Likewise, the translocon ATPase SecA was observed uniformly in 

the membrane for the most part, as protoplasts in which multiple foci of SecA labeling 

were also observed (Fig. 3B). Removal of cell wall peptidoglycan was confirmed by the 

absence of staining with WGA following PlyC treatment and fixation of streptococci. 

Again, streptococci in which surface peptidoglycan removal was incomplete following 

treatment displayed the unique foci of HtrA (Fig. 3C) and SecA (data not shown) 

localization that are commonly observed in streptococci with intact cell walls, consistent 
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with prior studies [6, 12]. The observed altered localization of HtrA and SecA further 

supports the hypothesis that integrity of an anionic lipid microdomain is central to 

targeting of ExPortal-related proteins in the membrane. Moreover, that localization of 

lipid and proteinacious ExPortal components is altered in the absence of surface 

peptidoglycan suggests that an intact cell wall is necessary for ExPortal organization. 

 

 

 

 
Figure 3. Redistribution of ExPortal proteins following removal of surface peptidoglycan.  
The distribution of HtrA (A) and SecA (B) in S. pyogenes HSC5 cells and protoplasts was 
assessed by immunofluorescence microscopy. Incomplete removal of surface peptidoglycan from 
streptococci following treatment with PlyC lysin does not alter focal localization of HtrA (C). 
Merged fluorescence images of intact streptococci (A, left; B, top) and protoplasts (A, right; B, 
bottom) are shown. WGA (5µg ml-1, green), HtrA and SecA (red). Scale bar = 1µm.  
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The lantibiotic gallidermin disrupts targeting of lipid and proteinaceous ExPortal 

components as well ExPortal-mediated secretion. The experimental results previously 

described suggest that beyond its role of protecting the membrane from damage from 

internal turgor pressure and maintaining cell shape, the streptococcal cell wall might also 

play a role in organizing or maintaining organization of the secretory organelle that is the 

ExPortal. Disruption of the ExPortal resulting from the loss of extracellular 

peptidoglycan does not appear to be due to compromised membrane permeability, 

indicating that the cell wall’s involvement in organizing the ExPortal goes beyond that of 

maintaining membrane integrity. One possibility is that peptidoglycan synthesis and the 

ExPortal are linked, meaning the site of peptidoglycan production at the membrane 

coincides with and influences the localization of protein secretion and processing at the 

ExPortal. To test this hypothesis we first examined whether compounds known to be 

disruptive to cell wall synthesis affect ExPortal organization and function. As mentioned 

previously, lantibiotics such as nisin, gallidermin and mutacin have been demonstrated to 

possess a high affinity for the peptidoglycan precursor lipid II and to interact with it in 

order to porate membranes and disrupt cell wall synthesis. Thus, we monitored the 

localization of the anionic lipid microdomain of the ExPortal in the presence of 

lantibiotics at concentrations that were not lytic to streptococci. We assessed membrane 

permeability using a Live/Dead® stain to quantitate numbers of porated streptococci in 

lantibioitc treated cultures and determined lytic concentrations to be those that resulted 

<50% viable cells in observed microscopy fields. Examination of either HSC5 or SF370 

strain cultures showed that gallidermin and nisin do not compromise streptococcal 

membrane integrity at concentrations lower than 2µM and 0.5µM, respectively (Fig. 4A  
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Figure 4. The lantibiotic gallidermin disrupts localization of anionic lipids at non-lytic 
concentrations. The localization of anionic lipids in S. pyogenes SF370 and HSC5 was assessed 
by fluorescence microscopy following challenge with a non-lytic concentration of gallidermin 
(1µM). Non-lytic concentrations of the lantibiotics gallidermin (A) and nisin (B) were determined 
by fluorescent microscopy of cells following staining with LIVE/DEAD BacLighttm reagents 
(Invitrogen). Distribution of anionic lipids in the membrane was monitored by staining with sub-
lethal levels of polymyxin B BODIPY®FL conjugate (10µM) in gallidermin exposed (C) and 
untreated streptococci (D). Streptococci treated with anionic lipid microdomain-disrupting 
concentrations of polymyxin B BODIPY®FL conjugate (60µM) are shown for comparison (E). 
Fluorescent, phase and merged images are shown. Scale bar = 1µm. Samples for analysis of 
viability were harvested following 1 hr of lantibiotic treatment and numbers of cells with porated 
membranes were derived from examination of at least 1000 stained cells.  All data presented 
represents the mean and standard error of the mean derived from at least 3 experiments. Numbers 
of viable protoplastst (PlyC+) are shown for comparison. Identical results were obtained from 
performing these same analyses on S. pyogenes strain SF370 (data not shown).  
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and B, data not shown). Fluorescent microscopy using bodipy-labeled polymyxin B to 

ascertain the localization of ExPortal-associated anionic lipids revealed that non-lytic 

concentrations of gallidermin disrupt the anionic lipid microdomain of the ExPortal (Fig. 

4C) in a manner similar to high sub-lethal amounts of polymyxin B (compare, Fig. 4C, D 

and E), as observed by the localization of the labeled cationic peptide to multiple foci or 

in a more diffuse staining pattern than in untreated streptococci. Nisin had a disruptive 

effect on the localization of the fluorescent peptide to unique foci at concentrations 

determined to be lytic to streptococci in treated cultures (data not shown), which makes it 

difficult to discern whether this effect of nisin was due to its membrane-porating capacity 

or to its affinity for lipid II. However, given that the disruptive effect of gallidermin on 

anionic lipid localization in the membrane was observed with non-lytic amounts of the 

lantibiotic, we examined whether gallidermin also affected the localization of ExPortal-

related proteins. Immunofluorescence microscopy revealed that gallidermin treatment of 

streptococcal cultures at a non-lytic concentration resulted in redistribution of HtrA to 

either multiple foci or, for the most part, in a diffuse pattern on the streptococcal surface 

(compare Fig. 5A and B). Co-labeling with fluorescent polymyxin B confirmed that the 

observed localization of HtrA corresponded with a re-distribution of ExPortal-associated 

anionic lipids, as identified by the labeled CAP.  

Since gallidermin was observed to interfere with the localization of both lipid and 

proteinaceous components of the ExPortal, we examined whether the lantibiotic could 

inhibit translocation of proteins requiring an intact ExPortal for their secretion, as has 

been previously studied with cationic antimicrobial peptides [12]. Treatment of strain 

SF370 with a non-lytic concentration of gallidermin resulted in a reduction in the amount  
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Figure 5. Redistribution of HtrA following non-lytic gallidermin challenge.  The distribution 
HtrA on S. pyogenes HSC5 was assessed by immunofluorescent microscopy in the absence of (A) 
and following challenge with gallidermin at 1 µM (B). Fluorescent images of cell wall (WGA, 
5µg ml-1, green), HtrA (red), anionic phospholipid (dansyl-polymyxin B, 10µM, blue) labeling 
and merged fluorescent images (bottom panel) are shown.  Scale bar = 1µm. 
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of cysteine protease SpeB in culture supernatants as revealed by Western blot analysis 

(Fig. 6A). This reduction in the amount of secreted SpeB was similar to that observed in 

supernatants from cultures treated with high sub-lethal amounts of polymyxin B and was 

observed in supernatants from the HSC5 strain as well (Fig. 6B). Decreased levels of 

secreted Streptolysin O (SLO) cytolysin were also observed in gallidermin-treated 

cultures of both HSC5 and SF370 strains (Fig. 6 C and D), in the same manner as 

resulted from treatment with high sub-lethal amounts of polymyxin B.  Protein synthesis 

and the capacity to translocate proteins appear to be unaffected as levels of SecA protein 

in gallidermin-exposed streptococci are unaltered relative to untreated bacteria as 

indicated by Western analysis of streptococcal lysates (Fig. 6E), suggesting the effect of 

gallidermin on secretion of ExPortal substrates is due to its disruption of ExPortal 

organization. Altogether, these results indicate that the lipid II-targeting activity of a 

lantibiotic disrupts the streptococcal ExPortal and support the hypothesis that synthesis of 

the peptidoglycan precursor at the membrane influences ExPortal organization.  

 

Synthetic enzymes required for  lipid II peptidoglycan precursor biogenesis co-localize 

with the ExPortal. As mentioned previously, the final steps of cell wall subunit 

biogenesis occur at the cytoplasmic membrane, meaning that lantibiotic interaction with 

lipid II likely occurs in the proximity of the membrane site where precursor synthesis 

takes place. The disruptive effect of gallidermin on ExPortal organization in the absence 

of changes in membrane permeability further supports the possibility that lipid II 

synthesis at the membrane affects maintenance of the ExPortal. If peptidoglycan 

precursor synthesis and the organization of ExPortal-mediated protein biogenesis and  
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Figure 6. Non-lytic challenge with gallidermin inhibits secretion of SpeB and SLO. Secretion 
of the SpeB protease in cultures of S. pyogenes was determined following  challenge with the 
indicated concentrations of gallidermin and polymyxin B by Western blot analysis of culture 
supernatant from SF370 (A) and HSC5 strains (B).  Western blotting was also used to analyze the 
amount of SLO present in culture supernatant following challenge with the indicated 
concentrations of gallidermin and polymyxin B of SF370 (C) and HSC5 (D) cultures. Expression 
of SecA in HSC5 cultures was determined following challenge with the indicated concentrations 
of gallidermin by Western blot analysis of streptococcal lysates (E). All samples for SpeB 
analysis were harvested at 2 hrs post-challenge; samples for SLO and SecA were harvested 1hr 
post-challenge. Open and filled triangles indicate the migration of the zymogen and mature form 
of SpeB, respectively. Migration of the SLO and SecA polypeptides is also indicated. 
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translocation are linked in this manner, then lipid II synthesis and the ExPortal are likely 

to be spatially coordinated in the streptococcal membrane. To further examine this 

hypothesis we monitored the localization of two enzymes involved in the membrane-

associated steps of lipid II synthesis, the membrane spanning MraY, which carries out the 

first membrane-associated step, and the cytosolic MurN transferase that catalyzes the 

final enzymatic step prior to translocation of the peptidoglycan subunits across the 

membrane. Both proteins were C-terminally tagged with superfolder GFP (sfGFP) and 

their expression examined by Western analysis, fluorescence and electron microscopy 

(Fig. 7). Peak expression of MraY and MurN occurred during log phase (Fig. 7A), which 

was not unexpected since most peptidoglycan synthesis occurs during cell division and 

growth. The membrane intrinsic MraY was observed to predominantly localize to unique 

foci in the streptococcal membrane (Fig. 7B-D). Localization of MraY to a membrane 

microdomain occurred under all experimental media conditions used in this study, 

observed most strongly during log-phase in both cultures grown in C media (Fig. 7B) and 

ThyB (Fig. 7C), as determined by fluorescence microscopy. Electron microscopy 

analysis of log-phase streptococci confirmed localization of the tagged protein to unique 

membrane microdomains, as evidenced by the clustering of immunogold particles at 

distinct sites (Fig. 6D). Cytoplasmic MurN was also found at foci in the vicinity of the 

streptococcal membrane (Fig. 7E-G), though some localization throughout the 

streptococcal cytoplasm was also observed (data not shown). Like MraY, MurN localized 

to foci at log phase (Fig. 7E and F) and was ascertained by electron microscopy as well 

(Fig. 7G). 
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Figure 7. Focal localization of MraY and MurN at the S. pyogenes surface. The expression of 
C-terminally sfGFP-tagged MraY and MurN in S. pyogenes HSC5 was confirmed by Western 
blot analysis of the indicated streptococcal culture fractions (A). Arrows indicate the expected 
size of the fluorescent protein-tagged polypeptides (MraY-sfGFP: 63.5kDa; MurN-sfGFP: 
74kDa). Localization of sfGFP-tagged MraY (B-D) and MurN (E-G) in S. pyogenes HSC5 was 
revealed by fluorescent microscopy (scale bar = 1µm) (B,C,E and F) and immunogold electron 
microscopy using staining with a streptavidin-gold conjugate (scale bar = 500nm) (D and G). 
Real color, phase and merged images (B,D; sfGFP, green) are shown, as well as false color 
images (C,F; sfGFP red; WGA, 5µg ml-1, green).  
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To confirm that the observed localization of the tagged proteins corresponded to 

their native localization and not to any effects stemming from expression of the 

fluorescent protein tag, we also monitored the localization of C-terminally tagged YajC 

protein, which is maintained at the membrane by its single transmembrane segment. In 

other bacteria, YajC is considered an auxiliary subunit of the protein translocase by virtue 

of its co-expression and interaction with SecD and SecF proteins, but has been found to 

be non-essential for both viability and secretion [33]. Additionally, S. pyogenes does not 

express SecD and SecF [34] and thus the function of YajC in streptococci remains 

unknown. Unlike MraY and MurN, sfGFP-tagged YajC was observed over the entirety of 

the streptococcal membrane by both fluorescence (Fig. 8A and B) and electron 

microscopy (Fig. 8C) under all conditions tested, suggesting that the observed 

localization of MraY and MurN corresponds to their native cellular site. 

 

 

 
Figure 8. Distribution of YajC on the S. pyogenes surface. Localization of C-terminally sfGFP-
tagged YajC in S. pyogenes HSC5 was revealed by fluorescent microscopy (scale bar = 1µm) (A 
and B) and immunogold electron microscopy using staining with a streptavidin-gold conjugate 
(scale bar = 500nm) (C). Real color, phase and merged images (A; sfGFP, green) are shown, as 
well as false color images (B; sfGFP red; WGA, 5µg ml-1, green). 
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Next we determined whether focal localization of MraY and MurN corresponds to 

the site of the ExPortal. We have previously demonstrated that a fluorescently labeled 

cationic animicrobial peptide preferentially targets to the site of the ExPortal lipid 

microdomain at low sub-lethal concetrations [12]. Fluorescence microscopy revealed that 

MraY (Fig. 9A and C) and MurN (Fig. 9B and D) localization predominantly coincides 

with that of labeling by the dansyl-polymyxin B probe, indicating that lipid II synthesis 

occurs at the anionic lipid microdomain of the ExPortal. Finally, we confirmed the 

targeting of lipid II synthetic machinery to the membrane region of the ExPortal by 

determining their localization relative to the Sec machinery translocons. Electron 

microscopy showed that immunogold labeling with antibodies against SecA and sfGFP-

labeled MurN localized to the same focal site on the streptococcal surface (Fig. 9E), 

confirming that peptidoglycan precursor synthesis is spatially coordinated with the 

ExPortal. 
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Figure 9. The sites of MraY and MurN localization are coincident with the site of the 
ExPortal in the streptococcal mmebrane. Localization of sfGFP-tagged MraY (A,C) and MurN 
(B,D) relative to the anionic lipid microdomain of the ExPortal in S. pyogenes HSC5 was 
revealed by fluorescent microscopy following staining by dansyl-polymyxin B (10µM; scale bar 
= 1µm). False color, phase and merged images (A,B: dansyl-polymyxin B, red; sfGFP, green; 
C,D: dansyl-polymyxin B, blue; sfGFP, red; WGA, green) are shown. Co-localization of sfGFP-
tagged MurN and SecA at the ExPortal was revealed by immunogold electron microscopy using 
staining with a streptavidin-gold conjugate (E). SecA was labeled with 12nm beads, MurN-sfGFP 
with 18nm gold-beads. Scale bar = 500nm.  
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DISCUSSION 

 Understanding the mechanisms involved in the biogenesis of secreted virulence 

factors in an organism whose pathogenicity depends highly on secreted effectors is of 

great importance to developing therapeutic strategies against infection by these 

pathogens. A great deal of research has been devoted to elucidating the regulation and 

expression of virulence proteins by S. pyogenes and other related Gram-positive 

pathogens [35]. However, knowledge of how these factors get translocated out of the 

streptococcal cell and processed into their biologically active forms is sparse and 

deserving of further investigation, especially given the emergence of resistance amongst 

gram-positive pathogens against clinically used antibiotics targeted at other cellular 

processes (e.g. macrolides which target protein synthesis; reviewed in [36]).  

 The data presented here indicate that biogenesis of the bacterial cell wall is not 

only necessary for protection from environmental insults and as a scaffold for the display 

of extracellular virulence effectors, but also for the maintenance of the secretory 

organelle that is the ExPortal. Examination of peptidoglycan involvement in the 

distribution of lipids in the underlying cytoplasmic membrane in Bacillus subtilis 

revealed that the cell wall is required for retention of anionic lipids at discrete 

microdomains [25]. In the investigation by Muchova et al. removal of surface 

peptidoglycan by lysozyme treatment produced protoplasts in which 

phosphatidylglycerol failed to localize in the spiral configuration that had been 

previously observed in intact cells using fluorescent lipid dyes [37, 38]. Most 

interestingly, inhibition of peptidoglycan production by depletion of the lipid II-

synthesizing enzyme MurG disrupted localization of both phosphatidylglycerol and 
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cardiolipin in the membrane [25]. This suggests that peptidoglycan synthesis is necessary 

for the establishment of specific lipid domains in B. subtilis or that disruption of lipid II 

production causes disassembly of existing domains [25]. Our experimental data confirms 

that the presence of extracellular peptidoglycan is necessary for maintaining the 

asymmetric distribution of anionic lipids in the cytoplasmic membrane of a gram-positive 

pathogen. Additionally, disruption of anionic lipid localization in the membrane 

following cell wall removal in GAS resulted in mis-localization of ExPortal proteins, 

further supporting the hypothesis that segregation of anionic lipids at a particular 

microdomain constitutes a mechanism underlying ExPortal organization.  

Our data and the results from Muchova et al indicate the gram-positive cell wall is 

involved in restricting lipids and proteins to specific regions of the cytoplasmic 

membrane. The bulk of each of the ExPortal proteins examined is found on opposite 

sides of the membrane, HtrA extracellularly and SecA intracellularly. Both, however, 

were mis-localized to a similar degree in the streptococcal cell membrane in the absence 

of the cell wall, even though SecA is unable to interact directly with extracellular 

peptidoglycan. Like HtrA in S. pyogenes, sortase localization in E. faecalis coordinates 

with that of the secretory translocons in the cytoplasmic membrane [7]. Most importantly, 

the cell wall sorting signal (CWS) of SrtC and SrtA sortases in E. faecalis contains a 

positively charged tail that was hypothesized to determine topology and mediate targeting 

and retention of the sortases within the membrane microdomains at which they were 

observed to localize [7]. Mutagenesis of the C-terminal CWS of SrtC to remove the 

positively charged tail or reduce its cationic character resulted in mis-localization of SrtC 

and reduction of its physiologic activity (pilus assembly), indicating that proper targeting 
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of the sortase to the membrane depended on the interaction of its cationic CWS with 

anionic components in the membrane [7]. Altogether, this data suggests that the retention 

of anionic phospholipids at specific, unique membrane sites constitutes the primary 

mechanism for targeting ExPortal proteins to their destination in the membrane, and that 

peptidoglycan mediates the site restriction of anionic phospholipids. 

The non-membranolytic, lipid II-binding activity of gallidermin also disrupted 

localization of both lipid and proteinaceous elements of the ExPortal. The reported 

mechanism of lantibiotics like gallidermin that are bactericidal despite not permeabilizing 

cytoplasmic membranes is the sequestration of lipid II away from the sites of 

peptidoglycan synthesis [19, 20]. The effect of this can be considered to be two-fold: 

arresting further growth of the cell wall by starving penicillin binding proteins (PBPs) of 

substrate needed for peptidoglycan polymerization at the site of de novo cell wall 

synthesis, and depleting the lipid II content of the cell by preventing recycling of C55-P 

lipid anchors needed for further lipid II production at the inner leaflet of the cytoplasmic 

membrane. The role of the cell wall in organizing the ExPortal may then have more to do 

with peptidoglycan synthesis, rather than with the peptidoglycan polymer itself, though it 

is apparent that integrity of this macromolecule is essential for lipid segregation in the 

membrane. 

Previous research indicates that segregation of anionic lipids in bacterial 

membranes is also a mechanism for targeting the macromolecular complexes involved in 

cell wall synthesis and other essential cellular processes to the sites where their 

physiological activity is required. Lipid microdomains identified in B. subtilis can be 

isolated together with homologues of eukaryotic Flotillin1 and other proteins involved in 
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transport and signaling [39]. In Caulobacter crescentus the dependence of MurG 

localization on helical cables of the cytoskeleton protein MreB [40] and the co-

localization of the division protein MinD with phosphatidylglycerol lipid spirals in the 

cytoplasmic membrane of B. subtilis [28] point to a link between the molecular 

machineries of peptidoglycan synthesis, cell division and membrane lipids. Most 

recently, examination of cell wall synthesis in growing B. subtilis cells found that MreB 

and its isoforms (Mbl, MreBH) assembled with components of the cell wall synthesis 

holoenzyme (MreC, MreD, PbpH, PBP2A and RodA) into discrete patches at the 

cytoplasmic membrane that moved processively along peripheral tracks perpendicular to 

the cell axis [26, 27]. MreC and MreD are transmembrane proteins reported to couple 

cytosolic MreB and its isoforms to the extracellular peptidoglycan synthesis machinery, 

and RodA an integral membrane protein linked to cell wall elongation and to the PBPs 

examined (PbpH and PBP2A; for a review see [41]). Motility of the observed MreB-

associated peptidoglycan biosynthetic complexes was driven by cell wall synthesis and 

MreB polymers restricted localization of patch components in the membrane and directed 

their movement [26, 27]. One possible mechanism then by which peptidoglycan synthesis 

in GAS might affect lipid segregation in the cytoplasmic membrane is by association of 

cytoskeletal components inside the cell with cell wall synthesis outside the cell, placing 

constraints on the distribution of phospholipids in the intervening membrane, thus leading 

to the creation and stabilization of lipid domains. However, S. pyogenes lacks homologs 

to the cytoskeletal MreB proteins [34], and as a morphologically ovococcoid bacterium, 

given its pattern of cell division in successive parallel planes perpendicular to the cell 

axis, S. pyogenes does not express the synthetic machinery required for cell elongation in 
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rod-shaped bacteria like B. subtilis (RodA, MreC, MreD; reviewed in [42]). Rather, the 

macromolecular complex directing cell division and growth in S. pyogenes consists of the 

tubulin homologue FtsZ, its accessory divisome proteins (i.e. FtsA, FtsW, EzrA, DivIB, 

DivIVA) and a set of high- and low-molecular weight PBPs common amongst 

enterococcal and streptococcal species [42]. Thus, although the relevance of 

peptidoglycan to the localization of membrane anionic lipids appears to be similar in S. 

pyogenes and B. subtilis, the mechanism underpinning this function of cell wall 

biogenesis may be different in each species and its elucidation requires characterization 

of the role divisome proteins of GAS play in organization of the ExPortal and cell wall 

synthesis.  

In model membranes, lipids can adopt various fluid and liquid-ordered phases, 

characterized by the different spatial arrangement and motional freedom of each lipid 

molecule with respect to the surrounding molecules, and dependent on the composition, 

structure and environment of the membrane [43]. Different fluid phases can coexist 

within a single membrane plane delimited by a plane boundary, resulting in lateral phase 

segregation and contributing to the formation of lipid microdomains similar to those 

observed in bacterial cytoplasmic membranes. The properties of these lipid phases can 

determine the orientation, mobility and interaction of proteins and lipids contained 

therein and thus directly influence the biological functionality of the domains [44]. An 

alternative, or perhaps contributing mechanism underlying organization of the ExPortal 

by membrane lipid segregation may be localization of the C55-P anchor of lipid II in the 

membrane. The membrane region at which C55-P is localized, thereby determining the 

site at which lipid II synthesis occurs, is different in composition and environment from 



  110 

the rest of the membrane and thus determines where anionic lipids segregate in the 

membrane. The data we present here demonstrate that in GAS, the membrane-associated 

steps of lipid II synthesis are restricted to a unique microdomain of the streptococcal 

membrane, since both an integral membrane transferase (MraY) and a cytoplasmic 

enzyme (MurN) required for the production of lipid II were predominantly localized at 

unique foci in streptococcal cells, as observed by both fluorescent and electron 

microscopy. Moreover, this site coincides with the localization of the anionic lipid 

microdomain and secretory translocons of the S. pyogenes ExPortal. Restriction of lipid II 

synthesis to the site C55-P is found in the membrane could direct localization of 

phosphatidylglycerol, the predominant anionic lipid of GAS membranes. Alternative 

models in which anionic lipids maintain C55-P localization in the membrane or in which 

C55-P and phosphatidylglycerol are equally dependent on each other for localization 

cannot be ruled out. Regardless, both existing research and the data presented here are 

indicative of spatial coordination between molecules like C55-P and anionic lipids. 

Previous work in B. subtilis suggests that the lipids associated with bacterial membrane 

microdomains include polyisoprenoids synthesized via pathways involving squalene 

synthases, as treatement with zaragozic acid, an inhibitor of squalene synthesis, prevented 

the formation of functional lipid microdomains in B. subtilis membranes [39]. Most 

interestingly, further characterization of squalene synthesis inhibition by inactivation of a 

gene involved in the pathway converting farnesyl pyrophosphate into squalene, inhibited 

protein secretion and biofilm formation, but not viability of the bacterium. The C55-P 

membrane anchor of lipid II is also a polyisoprenoid synthesized from the condensation 

of eight isopentenyl pyrophosphate units to farnesyl pyrophosphate, catalyzed by 
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undecaprenyl pyrophosphate synthase (UppS) [45, 46]. Therefore, production of the 

essential C55-P isoprenoid could be the key factor for localization of both cell wall 

synthesis and the ExPortal. This does not however exclude the possibility that targeting 

of C55-P in the cytoplasmic membrane depends on the localization of the UppS 

transferase responsible for its production, which in turn may involve the action of 

divisome proteins, as these are involved in determining the site of cell wall growth and 

septation necessary for the genesis of two daughter cells with their own cell walls from a 

single parent cell.  

Further characterization of the ExPortal organization will require examining the 

involvement of proteins known to coordinate cell division with cell wall synthesis in 

other gram-positive bacteria. It will also be useful to examine the effect of compounds 

that target different aspects of peptidoglycan and lipid II synthesis on organization and 

function of the ExPortal. Recent work revealed that the secretory activity of the 

streptococcal ExPortal and its organization are particularly sensitive to the action of 

CAPs [12]. Since CAPs are a class of antimicrobial molecules against which bacterial 

pathogens have developed limited resistance, it is important to understand how these 

peptides target the ExPortal in order to develop novel and more effective therapeutics 

against GAS. Conversely, characterizing the mechanisms and specific factors supporting 

organization and function of the ExPortal can reveal novel targets to be exploited against 

S. pyogenes and other gram-positive pathogens with similar secretory mechanisms. 

 

  



  112 

EXPERIMENTAL PROCEDURES 

Strains, media and growth conditions: As indicated, experiments utilized S. pyogenes 

HSC5 [47] or SF370 [34]. Localization of HtrA was analyzed in HSC5 following 

transformation by pHtrA-HA, which expresses a HA-tagged derivative of HtrA [6]. 

Localization of MraY, MurN, YajC was analyzed in HSC5 strain streptococci expressing 

C-terminal SuperFolder GFP protein fusions generated by chromosomal integration of 

pLAV5912, pLAV51012 and pGCP477. Routine culture was at 37°C in Todd-Hewitt 

broth (BBL) supplemented with 0.2% yeast extract (Difco) (THY medium).  Functional 

assays utilized cultures grown in unmodified C medium as described previously [48], 

supplemented with spectinomycin (100ug ml-1, Sigma #S4014) when indicated. To 

produce solid media, Bacto Agar (Difco) was added to a final concentration of 1.4%. 

Liquid cultures were grown without agitation in closed containers and solid cultures were 

incubated under anaerobic conditions using a commercial gas generator (GasPak, cat. 

#260678, BBL) as described [48]. SpeB protease activity was inhibited in cultures used 

to analyze the abundance of secreted streptococcal proteins by including the cysteine 

protease inhibitor E64 (Sigma #E3132) [49].  In selected experiments, media were 

supplemented with the cationic antimicrobial peptide polymyxin B (cat. #P0972-50MU, 

Sigma), the lantibiotics nisin (Sigma #N5764), or gallidermin (a generous gift from Dr. 

James Smith, Texas A&M University). Protoplasts were generated by treating 

streptococci with PlyC lysin (5U ml-1, 10 minutes) in 30% (wt/vol) raffinose solution 

supplemented with 5mM EDTA. For visualization of lipid and protein localization, 

protoplasts were resuspended in either ThyB or C media supplemented with 5-8% (v/v) 

glycerol, as indicated. 
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DNA techniques: Plasmid DNA was isolated via standard techniques and used to 

transform S. pyogenes as described previously [50]. Restriction endonucleases, ligases 

and polymerases were used according to manufacturer’s recommendations. 

 

Fluorescent protein-tagged constructs: All fluorescent-tagged proteins examined in this 

study were expressed in the HSC5 strain by chromosomal integration of the C-terminal 

tags. Cloning primers are detailed in Table 1. To generate GFP-tagged constructs, the 

coding sequence for SuperFolder GFP (sfGFP) was first amplified from pET28sfGFP  (a 

kind gift from Geoff Waldo at Los Alamos National Laboratory 

http://www.lanl.gov/projects/gfp/index.shtml and 

http://www.theranostech.com/products.htm) using primers GP526 and GP527. The 

amplified sfGFP sequence was then directly cloned by overlap extension PCR cloning 

using Phusion DNA polymerase (Finnzymes) as previously described [51] into pSPC18, 

a derivative of the pUC18 vector with the ampicilin resistance gene bla replaced by the 

spectinomycin resitance gene aad9 [52, 53]. The final product (pGCP458) contains a 

promoter-less sfGFP lacking the start ATG and a 5’ BamHI restriction site for direct 

cloning of the 3’ ends of ORFs to create C-terminal tag protein fusions upon 

chromosomal integration. Amplification of 300 nucleotide C-terminal fragments, absent 

the stop codon, from mraY, murN and yajC using the primer pairs MraY2 Fwd/MraY2-

Rev, MurN Fwd/MurN Rev and GP532/GP533 respectively, followed by double 

restriction digest (BamHI/PstI) and ligation generated pSPC18:MraY-sfGFP 

(pLAV5912) and pSPC18:MurN-sfGFP (pLAV51012) and pSPC18:YajC-sfGFP 

(pGCP477).  
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PlyC expression and purification: Recombinant PlyC, a lysin produced by streptococcal 

phage C1, was expressed and purified as previously described [54, 55], with certain 

modifications. Both subunits of the lysin (PlyCA and PlyCB) were 6-X-His C-terminally 

tagged, and co-purified on Talon® metal affinity resin (Cat#: 635503, Clontech) from 

lysates of separate strains (pPlyCA, pPlyCB). Specific activity of the purified enzyme 

was measured according to established protocols [55]. 

 

Analysis of Viability: Viability was assessed by staining with a fluorescent vital dye 

(LIVE/DEAD®, BacLighttm) as recommended by the manufacturer (Invitrogen). Viability 

was quantitated by examination using a fluorescent microscope (Leica model DM IRE 2) 

with enumeration of the percentage of live bacteria in randomly chosen microscopic 

fields totaling >1000 cells for each condition examined. Data reported represent the mean 

and standard error of the mean derived from a minimum of 3 independent experiments. 

Differences between calculated means were evaluated for significance using a one-way 

Analysis of Variance (ANOVA). 

 

Cellular staining and fluorescent microscopy:  Streptococcal cultures were challenged 

with polymyxin B or lantibiotics as described above, stained with various fluorescent 

reagents and then analyzed by fluorescent microscopy as follows:  Analysis of the 

location and integrity of a membrane microdomain enriched in anionic phospholipids was 

assessed by staining with sub-lethal concentrations of fluorescent polymyxin B 

derivatives including dansyl-polymyxin B (10µM, cat. #P13238, Invitrogen) and 

polymyxin B BODIPY®FL conjugate (10µM and 60µM, cat. #P13235, Invitrogen). 
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Samples were examined using a Leica model DM IRE 2 fluorescent microscope and 

images captured using a QImaging Retiga 1350 EX charged-coupled device camera and 

Openlab software (Improvision). Where indicated, simultaneous treatment with 2 

reagents was conducted in order to assess co-localization of staining.  In these 

experiments streptococcal cells walls were visualized by staining with FL-vancomycin (1 

µg ml-1, cat. #V34850, Invitrogen), or Wheat Germ Agglutinin (WGA) Alexa Fluor 488 

or 350 conjugates (5 µg ml-1, cat. #W11261, #W11263 Invitrogen) and neutral membrane 

lipids were visualized by staining with Nile Red (2.5 ug ml-1, cat. #N1142, Invitrogen). 

Images were processed for publication using Adobe Photoshop CS3. 

 

Immunofluorescent microscopy:  The localization of SecA and HA-tagged HtrA protein 

was detected by immunofluorescent microscopy, as described [6].  Aliquots from cultures 

of intact cells, protoplasts, as well as untreated or lantibiotic-treated (1µM gallidermin) 

challenge assay cultures (see above) were treated and fixed according to the method of 

Raz and Fischetti [11].  Antisera used included a polyclonal rabbit anti-SecA antiserum (a 

generous gift from Donald Oliver) used at a dilution of 1:100 that was detected using an 

AlexaFluor 488-labeled goat anti-rabbit IgG (Invitrogen) at 1:500 and an AlexaFluor 

594-conjugated rabbit IgG anti-HA epitope antiserum (Invitrogen) used at 1:500.  Wheat 

germ agglutinin (WGA)-AlexaFluor 350 (Invitrogen) at a final concentration of 5 µg ml-1 

was used to visualize the streptococcal cell walls, and polymyxin B BODIPY®FL 

conjugate (10µM) was used to visualize anionic lipids.  Slides were mounted in an anti-

fade reagent (Prolong Gold, Invitrogen) and images captured.  
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Immunogold electron microscopy:  Localization of sfGFP-tagged MraY and MurN and 

YajC along with polymyxin B binding was examined by electron microscopy, as follows:  

Cultures were grown as indicated above, aliquots were removed and prepared for 

immunoelectron microscopy as described [5, 6]. Sections were stained using a 

streptavidin-gold conjugate (20nm, BBI International) and examined by electron 

microscopy as detailed [5, 6].  Localization of MraY and MurN and YajC was 

determined at early- and mid-logarithmic phase [5, 6]. Co-localization of MurN and SecA 

was assessed by staining using streptavidin-gold conjugated beads of different sizes 

(12nM and 18nM, BBI International). 

 

Analysis of protein expression and secretion: Supernatant and lysate fractions from 

cultures challenged with gallidermin and polymyxin B were prepared and analyzed for 

the presence of SpeB, SLO and SecA by Western blotting as described [56]. Lysate 

fractions from strains expressing sfGFP-tagged MraY, MurN and YajC were similarly 

examined for the presence of the sfGFP tag. Blots were developed using a Chemidoc 

XRS imager (BioRad) and relative protein concentrations determined using Quantity One 

software (BioRad, version 4.6.7).  
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Table 1. Primers utilized for construction of fluorescent protein tagged constructs. 

Primer Sequence1 

MraY2 Fwd CCCCTGCAGCTTGGAGCTATGTTGGCTGC 

MraY2 Rev CCCGGATCCGAAGACGTATAAGATAGCTAAAACTAGTAAACTAGC 
 

MurN Fwd CCCCTGCAGTTTATCTATACCGAACAAGAGGCC 

MurN Rev CCCGGATCC ATAGCGGTTTAATAGCTTTTTTGC 

GP526 gcaggtcgactctaga ggatcc AGCAAAGGAGAAGAACTTTTCAC 

GP527 cacacaggaaacagctatgacat CCCGGG TTATTTGTAGAGCTCATCCATGC 

GP532 GATACTGCAGTGGTTTATGCAACGTCAAC 

GP533 GATAGGATCCATGGCTTTCAATGGCAC 

1Restriction sites underlined, and for GP526, GP527 lower case denotes pSPC18 
sequence and the uppercase denotes sfGFP sequence. 
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ABSTRACT 

 Further characterization of ExPortal organization will entail multiple genetic and 

molecular approaches to isolate the precise factors involved in its establishment and 

maintenance. These approaches include molecular screens to identify substrates in 

addition to SpeB and SLO requiring the spatial coordination of secretory translocons and 

accessory factors for efficient biogenesis and export, as well as targeted mutagenenesis of 

additional cell wall synthesis proteins (i.e. transglycosylases, transpeptidases and cell 

wall hydrolases) to characterize their involvement in ExPortal maintenance. Preliminary 

data resulting from such efforts is presented here. A proteomics screen for polypeptides 

other than SpeB or SLO with altered secretion profiles in response to CAP exposure 

identified the virulence protein EndoS as a potential ExPortal substrate. Identification of 

putative cell wall hydrolases encoded in the Streptococcus pyogenes genome and initial 

characterization of their involvement in ExPortal maintenance by mutagenic approaches 

revealed that though the Isp polypeptide co-localizes on the streptococcal surface with the 

anionic lipid microdomain of the ExPortal, Isp and its homolog Isp2 are not required for 

maintenance of said microdomain. Additionally Isp is unaffected in its expression or 

localization following exposure of streptococci to polymyxin B, indicating further work 

is necessary to determine what role, if any, these putative hydrolases have in ExPortal 

organization. 
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INTRODUCTION 

One approach to elucidating the mechanism(s) by which the ExPortal coordinates 

protein secretion and processing is to identify and characterize its secreted substrates. 

Understanding how these substrates are expressed and what post-translational 

modifications they undergo in order to be processed into their biologically active forms 

can reveal a great deal about ExPortal function. Not all proteins secreted by streptococci 

require the spatial coordination of accessory factors and the secretory translocons, as 

indicated by the effect exposure to sub-lethal levels of CAPs had on ExPortal 

organization and protein secretion. Since sub-lethal polymyxin B concentrations 

selectively inhibited secretion of those proteins requiring an intact ExPortal, I undertook 

a preliminary analysis of what other secreted proteins of streptococci are affected in their 

biogenesis by exposure to sub-lethal levels of a CAP. This analysis identified EndoS, a 

secreted 108kDa protein with specific endoglycosidase activity that cleaves human 

Immunoglobulin G [1], as a potential ExPortal substrate affected by CAP-mediated 

disruption of its secretory activity. 

Data presented in Chapter III demonstrates that cell wall biogenesis is involved in 

organizing the ExPortal and suggests localization of the secretory organelle is 

coordinated with the site of peptidoglycan precursor (lipid II) synthesis. In coccoid 

bacteria like S. pyogenes, cell wall synthesis primarily occurs at the site of cell division 

and involves the action of transglycosylases, transpeptidases and cell wall hydrolases [2]. 

Activity and regulation of these may be important to ExPortal organization as well as cell 

growth and division. Eukaryotic-type Ser/Thr kinases (STK) reported in bacteria, 

including GAS, can regulate cell division, growth, and virulence. Recent research 
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demonstrated that S. pyogenes STK -controlled cell division is mediated under the 

positive regulation of a secreted protein termed CdhA that possesses a cysteine and 

histidine-dependent aminohydrolase/peptidase (CHAP) domain with functional cell wall 

hydrolase activity [3]. Disruption of the CdhA-encoding gene resulted in severe cell 

division and growth defects, while a mutant expressing CdhA absent the CHAP domain 

was solely attenuated for virulence and highly susceptible to cell wall-acting 

antibiotics[3]. CdhA was thus characterized as a multifunctional protein with a N-

terminal region involved in cell division plane-recognition and a C-terminal CHAP 

domain involved in virulence[3]. Characterization of CdhA suggests that localization of 

the macromolecular machineries involved in cell division and cell wall synthesis at their 

site of action in streptococci requires accessory proteins. CdhA and/or related proteins 

then may also act directly or indirectly, through their involvement in regulation of cell 

wall synthesis, on ExPortal organization. Thus, I hypothesize that CdhA or orthologous 

proteins associated with cell wall assembly and involved in determining the plane of cell 

division in GAS, may also play a role in ExPortal organization.  

The work of Pancholi et al indicates the functional CHAP domain of CdhA is not 

involved in the protein’s role of cell division plane-recognition, given that the absence of 

this domain does not produce the same division and growth defects that disrupting 

expression of the whole CdhA polypeptide does. Additional cell wall hydrolases may 

compensate for the absence of CdhA enzymatic activity and the role of recognizing the 

plane of cell division could involve interaction of CdhA with these hydrolases in the cell 

wall or with other factors at the cytoplasmic membrane. Two additional proteins of GAS 

contain a C-terminal CHAP domain closely resembling that of CdhA. Identified as Isp 
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(Immunogenic secreted protein) and Isp2, they are highly homologous to one another, are 

encoded as part of the mga regulon, but have no assigned cellular function [4, 5]. Since 

the CHAP domain of CdhA was shown to still be important for virulence and antibiotic 

resistance, I hypothesize Isp and Isp2 function in conjunction with CdhA to modulate cell 

wall assembly, while targeting to their site of action by CdhA influences localization of 

the cell division plane and the ExPortal. Thus, I proceeded to characterize the function of 

Isp, Isp2 and CdhA in cell division and ExPortal organization. Preliminary data shows 

that lack of isp alone, or in combination with the absence of isp2, does not recapitulate 

the effects on cell division and morphology observed by disruption of CdhA. The absence 

of isp and isp2 also did not affect localization of the ExPortal anionic lipid microdomain 

nor secretion of the SpeB protease. Attempts to generate an in-frame deletion of CdhA or 

its CHAP domain in the strains lacking isp and/or isp2 have thus far proven unsuccessful, 

which hints at a dependence of theses factors on each other for cell viability.  
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RESULTS 

EndoS. Proteins in supernatants harvested from stationary phase streptococcal cultures 

that were treated with a sub-lethal concentration of polymyxin B were compared to those 

from untreated cultures. Proteins found in both samples were isolated by gel 

electrophoresis and subjected to trypsinization and subsequent analysis by mass 

spectrometry at the Siteman Cancer Center Proteomics Core Laboratory (Barnes-Jewish 

Hospital/Washington University School of Medicine, 

http://proteomics.wustl.edu/siteman/Proteomics_page3_new.htm). The results obtained 

were examined using ScaffoldTM 2 Proteome software (ScaffoldTM Version_2.1.03, 

Proteome Software Inc.). Spectrometry analysis confirmed that SpeB was absent from 

supernatants of streptococcal cultures exposed to polymyxin B and identified additional 

proteins absent or in lower relative amounts in treated cultures. Among these, one protein 

of interest for which no trace was detected in peptide treated samples, was the EndoS. 

Further characterization of EndoS as an ExPortal substrate was conducted by examining 

expression of the endoglycosidase in the presence of polymyxin B. Previous research 

indicates that, like SpeB, EndoS expression is growth phase regulated, with peak 

expression occurring in stationary phase [6]. Western analysis of supernatants from CAP-

treated and untreated cultures harvested under the same conditions as indicated for SpeB 

in Chapter I, revealed a dose-dependent reduction in the amount of secreted EndoS 

protein resulting from exposure to polymyxin B (Fig. 1A) and HNP-1 (Fig. 1B). This 

effect on levels of secreted EndoS was observed in both HSC5 and SF370 (Fig. 1C, D) 

strains. Transcriptional analysis however, showed that levels of EndoS transcript were 
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also affected by exposure to polymyxin B (Fig. 1E). These results suggest that disruption 

of the ExPortal can also affect transcription of streptococcal virulence proteins. 

 

Figure 1. High sub-lethal challenge with polymyxin B and HNP-1 inhibits secretion of 
EndoS. Expression of the EndoS endoglycosidase in cultures of S. pyogenes HSC5 (A, B) and 
SF370 (C, D) was determined following challenge with the indicated concentrations of 
polymyxin B and HNP-1 by Western blot analysis of culture supernatant (A-D) and by real-time 
RT-PCR analysis of endoS transcript abundance (E). All samples for EndoS analysis were 
harvested at 2 hrs post-challenge. 
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CdhA, Isp/Isp2. Penicillin binding protein (PBP) transglycosylases, transpeptidases and 

cell wall hydrolases are hypothesized to primarily localize as a multienzyme complex or 

holoenzyme to the sites of peptidoglycan synthesis in bacteria (for a review see [7]). Cell 

wall hydrolase activity serves to remodel peptidoglycan strands as new subunits are 

added to the polymer during growth, cell separation following division and cell wall 

turnover [8-10]. CdhA was demonstrated to have functional hydrolase activity, and given 

that Isp contains a C-terminall CHAP domain similar to that of CdhA, Isp is potentially a 

previously unidentified streptococcal cell wall hydrolase. Thus in order to further 

characterize the role of peptidoglycan biogenesis in ExPortal organization, I examined 

how Isp localizes in the streptococcal cell. Isp localization was monitored by C-

terminally tagging Isp using a hemaglutinin (HA)-mCherry tandem tag. The purpose of 

the tandem tag was to examine localization of the protein by both fluorescent and 

immunofluorescent microscopy as well as expression by Western analysis. Fluorescent 

microscopy revealed that Isp localizes to discrete regions on the streptococcal surface in 

both HSC5 (Fig. 2A) and SF370 strains (Fig. 2B). These regions are observed as either 

unique foci or as hemispherical domains between cells, mirroring the observed 

localization of HNP-1 in GAS (see Fig. 6, Chapter II).  

The disruption of anionic lipid microdomains by CAPs does not appear to disrupt 

cell growth and division, as indicated by data presented in Chapter I. The converse, that 

disruption of the cell wall and of peptidoglycan synthesis affects anionic lipid 

microdomain localization, appears to be the case, as supported by data described in 

Chapter III. I examined then whether exposure to a CAP alters localization of Isp. Neither 

low nor high sub-lethal concentrations of polymyxin B appear to affect localization of Isp 
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(Fig. 2C, D). The lack of an effect on Isp localization as a result of exposure to an 

ExPortal-disrupting CAP was observed in both the HSC5 (Fig. 2C, D) and SF370 strain 

(data not shown). Next I determined whether loss of Isp expression affects localization of 

the ExPortal anionic lipid microdomain. Low sub-lethal amounts of a fluorescently 

labeled polymyxin B derivative (dansyl-polymyxin B) shown to target the ExPortal (see 

Fig., Chapter I) in wild-type streptococci similarly localized to unique foci in a mutant 

strain containing an in-frame deletion of Isp (Fig. 2E). Deletion of both Isp and its 

homolog Isp2 did not alter localization of dansyl-polymyxin B either (Fig. 2F), 

suggesting that individually or together these putative cell wall hydrolases do not 

influence ExPortal localization. Lastly I examined the localization of Isp on the 

streptococcal cell surface relative to the ExPortal. Fluorescence microscopy shows that 

the fluorescently-labled Isp polypeptide and the anionic lipid microdomain of the 

ExPortal labeled with polymyxin B localize adjacent to one another (Fig. 2G, H). This 

could be the result of both targeting to sites of active peptidoglycan synthesis and does 

not imply that localization of one is dependent on the other given the previous data 

described.  
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Figure 2. Characterization of Isp and Isp2 putative cell wall hydrolases and their role in 
ExPortal organization. Localization of Isp and Isp2 on the streptococcal surface and their 
involvement in organization of the ExPortal was examined by fluorescence microscopy. 
Localization of C-terminally mCherry-tagged Isp protein was revealed by fluorescence 
microscopy in HSC5 (A) and SF370 (B) strains. Localization of Isp-mCherry was unaltered by 
polymyxin B challenge of streptococci with low (C) and high (D) sub-lethal levels of the cationic 
peptide.  Localization of anionic lipids was examined by fluorescence microscopy using dansyl-
polymyxin B to label membranes of HSC5 mutant strains containing in-frame deletions of isp (E) 
and both isp and isp2 (F). Co-localization of the ExPortal anionic lipid microdomain and Isp 
protein was determined by fluorescence microscopy in dansyl-polymyxin B-stained (blue) HSC5 
strains expressing mCherry-tagged Isp (red) (G) and quantitated (H). Fluorescence, phase and 
merged images are shown. Scale bar = 1µm. Numbers of polymyxin B and mCherry 
fluorescence-labeled streptococci were derived from examination of at least 1000 stained cells. 
All data presented represents the mean and standard error of the mean derived from at least 3 
experiments. 
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DISCUSSION 

The observed effects of polymyxin B on expression of EndoS indicate that 

disruption of ExPortal integrity by the CAP can also alter expression of streptococcal 

virulence factors at the level of gene transcription. This suggests that localization of 

anionic membrane lipids and associated ExPortal proteins also affects gene regulation. 

One possible mechanism by which polymyxin B may be affecting EndoS expression is 

disruption of one of the multiple two-component signal transduction systems identified in 

GAS that regulate virulence gene expression in response to environmental cues [11]. The 

CAP itself could be interacting with such a two component regulator, as is hypothesized 

in the case of cathelicidin induced stimulation of the hasABC operon described in 

Chapter I [12, 13]. Another possibility is that ExPortal disruption inhibits the function of 

an accessory factor required for activation or de-repression of EndoS transcription. 

Function of such a factor could be dependent on lipid-protein or protein-protein 

interactions at the site of protein secretion, similar to how phosphatidylglycerol has been 

shown to be involved in optimal protein translocation via the Sec pathway by influencing 

interaction of SecA with the SecYEG translocon [14, 15]. Whatever the case, the 

identification of EndoS as a virulence factor of streptococci affected by CAP activity on 

the ExPortal opens up an additional avenue of investigation into the role of ExPortal 

function in streptococcal virulence. 

Further characterization of Isp, Isp2 and CdhA localization and activity is 

evidently necessary in order to determine whether these are all indeed functional cell wall 

hydrolases involved in peptidoglycan synthesis and if and how their activity affects 

ExPortal organization. The experimental data published by Pancholi et. al. strongly 
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suggest that CdhA does play a role in proper cell wall assembly during cell division. If 

Isp and Isp2 have functional cell wall hydrolase activity, then the phenotype of the 

∆isp/∆isp2 suggests a functional CHAP domain in CdhA is necessary and sufficient for 

cell division and growth. It will be most interesting to examine whether deletion of the 

CHAP domain of CdhA in an ∆isp/∆isp2 background recapitulates the ∆CdhA 

phenotype, as this would strongly indicate that interaction of all three CHAP-domain 

proteins is required or the division-plane localizing role of CdhA, with the N-terminal 

domain of CdhA acting as the targeting factor for all three proteins and the associated Isp 

and Isp2 activity involved in the role of CdhA in virulence and beta-lactam resistance. 

Other as of yet unidentified factors may also be involved, highlighting the importance 

and novelty of this research. Characterization of the ExPortal in the CdhA-disrupted 

strain is pending collaboration with Pancholi et al, as my attempts to generate a CdhA 

null mutant have been unsuccessful. Further mutagenesis and characterization of CdhA, 

Isp, Isp2 and other components of cell wall synthesis is needed to assess their 

involvement in ExPortal organization.  
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EXPERIMENTAL PROCEDURES 

Strains, media and growth conditions:  As indicated, experiments utilized S. pyogenes 

HSC5 [16] or SF370 [17] and all references to genomic loci are based on the genome of 

SF370 [17]. Localization of Isp was analyzed in HSC5 following transformation by pIsp-

HA-mCherry (pLAV41312), which expresses a Hemagglutinin (HA)-mCherry-tandem-

tag derivative of Isp. Localization and integrity of the ExPortal anionic lipid 

microdomain was assessed in HSC5 following in-frame deletion of isp and isp2 coding 

regions. Routine culture was at 37°C in Todd-Hewitt broth (BBL) supplemented with 

0.2% yeast extract (Difco) (THY medium). Localization and functional assays utilized 

cultures grown in unmodified C medium as described previously [18], supplemented with 

spectinomycin (100ug ml-1, Sigma #S4014) when indicated. To produce solid media, 

Bacto Agar (Difco) was added to a final concentration of 1.4%. Liquid cultures were 

grown without agitation in closed containers and solid cultures were incubated under 

anaerobic conditions using a commercial gas generator (GasPak, cat. #260678, BBL) as 

described [18]. In selected experiments, media were supplemented with the cationic 

antimicrobial peptide polymyxin B (cat. #P0972-50MU, Sigma). 

 

DNA techniques: Plasmid DNA was isolated via standard techniques and used to 

transform S. pyogenes as described previously [19]. Restriction endonucleases, ligases 

and polymerases were used according to manufacturer’s recommendations. 
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Construction of S. pyogenes deletion mutants: All references to genomic loci are based 

on the genome of S. pyogenes SF370 [17]. The construction of mutants containing in-

frame deletions in isp (spy2025) and isp2 (spy1801) was performed by allelic 

replacement [20] using the primers listed in Table 1. The in-frame deletions were 

constructed as follows. Flanking regions of isp and isp2 were amplified from HSC5 

genomic DNA using the corresponding primers indicated in Table 1 to generate 

fragments 500 nucleotides in length with a 5’ XhoI upstream restriction site, an SphI 

restriction site in common at the 3’ end of the upstream flanking region and 5’ end of the 

downstream flanking region and an XbaI downstream restriction site at the 3’ end of the 

downstream flanking region. The amplified flanking regions were ligated following 

restriction digestion of the shared SphI site. The resulting products were amplified using 

the 5’ upstream and 3’ downstream primer pairs (Spy_2026/Isp4 Fwd-Isp/Spy_2023 Rev 

and Spy_1802/Isp2 Fwd- Isp2/Spy_1798 Rev) to generate fragments containing in-frame 

deletions of the regions of isp and isp2 encoding L11-P542 and M11-N493 respectively. 

These deletion fragments were cloned into the pJRS233 shuttle vector using the XhoI and 

XbaI restriction sites to generate pJRS233-∆Isp (pLAV4910) and pJRS233-∆Isp2 

(pLAV11510). HSC5 strain streptococci were transformed as previously described [20] 

with pLAV4910 to generate HSC5:∆isp, which was subsequently transformed using 

pLAV11510 to generate HSC5:∆isp/∆isp2. In frame deletions were confirmed by PCR 

and sequence analysis using the appropriate primers. 

 

Epitope/fluorescent protein-tagged constructs:  Epitope and fluorescent-tagged proteins 

examined in this study were expressed in the HSC5 strain by chromosomal integration of 
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the C-terminal tags. Cloning primers are detailed in Table 1. To generate the HA-

mCherry-tandem-tagged constructs, the coding sequence for mCherry was first amplified 

from pmCHerry-ATG5 (Addgene) using primers IspmCherry2 Fwd/Rev. The amplified 

mCherry sequence was then directly cloned using BamHI/SacI restriction sites into 

pSPC18, a derivative of the pUC18 vector with the ampicilin resistance gene bla replaced 

by the spectinomycin resitance gene aad9 [21, 22]. The final product (pLAV8510) 

contains a promoter-less mCherry lacking the start ATG and a 5’ BamHI restriction site 

for direct cloning of the 3’ ends of ORFs to create C-terminal tag protein fusions upon 

chromosomal integration. Amplification of a 500 nucleotide C-terminal fragment from 

isp, absent the stop codon and including a 3’ HA-tag nucleotide sequence, using the 

primer pair Isp-HA Fwd/Rev followed by double restriction digest (BamHI/PstI) and 

ligation generated pSPC18:Isp-HA-mCherry (pLAV41312).  

 

Cellular staining and fluorescent microscopy: Analysis of the location and integrity of a 

membrane microdomain enriched in anionic phospholipids was assessed by staining with 

sub-lethal concentrations of a fluorescent polymyxin B derivative (dansyl-polymyxin B, 

10µM, cat. #P13238, Invitrogen). Samples were examined using a Leica model DM IRE 

2 fluorescent microscope and images captured using a QImaging Retiga 1350 EX 

charged-coupled device camera and Openlab software (Improvision).  Co-localization of 

Isp with fluorescent polymyxin B derivatives was quantitated as the percentage of 

polymyxin B -stained cells that exhibited focal staining with each individual reagent 

where the two foci were superimposable. Data presented for each condition represents the 

mean and standard error of the mean derived from at least 3 independent experiments and 
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examination of a minimum of 1000 stained cells.  Images were processed for publication 

using Adobe Photoshop CS3. 

 

Analysis of protein expression and secretion: Supernatant fractions from cultures 

challenged with polymyxin B were prepared and analyzed for the presence of EndoS by 

Western blotting as described [23].  Blots were developed using a Chemidoc XRS imager 

(BioRad) and relative protein concentrations determined using Quantity One software 

(BioRad, version 4.6.7). Antibody against EndoS was a generous gift from Mattias Collin 

(Lund University, Sweeden). 
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Table 1. Primers utilized for construction of epitope/fluorescent-tagged constructs and in-frame 
deletions. 

Primer Sequence1 Description 

IspmCherry2 Fwd CCCGGATCCGTGAGCAAGGGCG
AGGAG 

5’ amplification primer for 
mCherry 

IspmCherry2 Rev CCCGAGCTCCTACTTGTACAGCT
CGTCCATGC 

3’ amplification primer for 
mCherry 

Isp-HA Fwd CCCCTGCAGATATCATGACCAAA
CTAGACCAAT 

5’ primer for insertion of HA 
epitope tag 

Isp-HA Rev CCCGCATGCTTAAGCATAATCTGG
AACATCATATGGATATGGTCTTGG
GAGTTTGTCCCC 

3’ primer for insertion of HA 
epitope tag 

Spy_2026/Isp4 Fwd CCCCTCGAGTATCAATCTCGAAG
AACAATTCGTCAA 

 5’ primer for amplifying the 
upstream flanking region of 
isp 

Spy_2026/Isp Rev CCCGCATGC 
TGTTACTGCTAACAATTTCCTTTT
CTTCAT 

3’ primer for amplifying the 
upstream flanking region of 
isp 

Isp/Spy_2023 Fwd CCCGCATGCGTCGTAGGGGACAA
ACTCCCAAGACCATAA 

5’ primer for amplifying the 
downstream flanking region 
of isp 

Isp/Spy_2023 Rev CCCTCTAGATGAGAAAACAGGGC
TTTGGGTTCTATTTTG 

3’ primer for amplifying the 
downstream flanking region 
of isp 

Spy_1802/Isp2 Fwd CCCCTCGAGGGTTCTGATCTAAG
CTTACCATTTC 

5’ primer for amplifying the 
upstream flanking region of 
isp2 

Spy_1802/Isp2 Rev CCCGCATGCGGCAACTCTTAATA
GTTTGTTTTTATT 

3’ primer for amplifying the 
upstream flanking region of 
isp2 

Isp2/Spy_1798 Fwd CCCGCATGCAACATATGTTAT 
TGGCAAGAGTAAAAA 

5’ primer for amplifying the 
downstream flanking region 
of isp2 

Isp2/Spy_1798 Rev CCCTCTAGATCTATCACTTTG 
TGATTATTTTGTCAA 
 

3’ primer for amplifying the 
downstream flanking region 
of isp2 

1Restriction sites underlined, Hemagglutinin (HA) tag italicized. 
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Chapter V 

 

 

 

An Emerging Model for Spatial Coordination of Protein Biogenesis and Secretion: 

the Role of Lipid Segregation and Cell Wall Synthesis in ExPortal Organization 
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INTRODUCTION 

Previous work discovered the co-localization of secretory translocons with an 

accessory factor for protein biogenesis at an anionic lipid microdomain, which defined 

the ExPortal as a secretory organelle dedicated to coordinating protein processing with 

secretion. My thesis research sought to further understanding of how such spatial 

coordination in the membrane is achieved and maintained, and what its relevance is to 

streptococcal pathogenensis. The experimental data resulting from this research 

constitutes a meaningful and exciting contribution to both of these aims.  

Investigation of cationic antimicrobial peptide (CAP) interaction with the 

ExPortal increased knowledge of an aspect of streptococcal pathogenesis that is not often 

examined. As effectors of innate immunity, CAPs have traditionally been considered to 

primarily act as membrane permeabilizing factors against which bacteria have little 

resistance. However, the work presented here demonstrates in a physiological model 

what has, for the most part, been investigated in model lipid membranes. That is, CAPs 

interact with the cytoplasmic membranes of bacteria via mechanisms that do not result in 

membrane permeabilization, but can have substantial effects on cell viability nonetheless. 

In Streptococcus pyogenes, CAPs influenced the secretion of virulence factors that have 

been demonstrated to be of great importance to pathogenicity, opening up a new area for 

investigation into how CAPs may participate in colonization of a human host by GAS.  

The results presented also support a tentative model for ExPortal organization. 

According to this model, anionic lipids in the streptococcal membrane play a central role 

in the localization of secretory translocons and accessory factors in the membrane. 
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Segregation of these charged lipids to a microdomain in the membrane appears to be 

mediated by, or at least involve, interaction with the cell wall and with peptidoglycan 

production. Further testing of this model will include characterization of the involvement 

in ExPortal organization and function of cell division proteins required for directing cell 

wall synthesis and growth. This makes S. pyogenes an emerging model organism for 

examining the intersection of multiple cellular processes in the membrane of Gram-

positive pathogens. 

 

Figure. 1 An emerging model of ExPortal organization. Spatial coordination of anionic lipids, 
peptidoglycan biogenesis proteins and secretory translocons in the ExPortal to effect efficient 
secretion and processing of streptococcal virulence factors. 



  144 

CONCLUSIONS 

The model of ExPortal organization and maintenance supported by the 

experimental results presented can be described as follows and is schematically 

represented (Fig. 1). Interaction of anionic lipids with the Sec translocons, accessory 

factors (HtrA), and secreted substrates requiring post-translational processing (SpeB, 

SLO) appears to target and maintain these polypetides at the ExPortal. I have shown that 

without segregation of anionic lipids to unique microdomains in the streptococcal 

membrane, targeting and maintenance of these ExPortal proteins at their cellular site is 

lost, meaning lipid segregation in the membrane is central to ExPortal organization. Thus 

segregation of anionic lipids, mainly phosphatidylglycerol, constitutes the primary 

mechanism for targeting protein components to the site of the ExPortal. Identification of 

the peptide sequences involved in the lipid-protein interactions localizing these proteins 

is therefore an area of interest for further research. The establishment and maintenance of 

anionic lipid microdomains is in turn dependent on the presence of extracellular 

peptidoglycan and its biogenesis. Production of the peptidoglycan precursor lipid II is 

localized to the same membrane site as the ExPortal, and loss of peptidoglycan disrupts 

anionic lipid and ExPortal protein localization in the membrane. Lipid II production at 

the site of the ExPortal may also be dependent on the presence of an anionic lipid 

microdomain to which membrane-associated lipid II-synthetic proteins are targeted. 

However, the observation that a lipid II-binding lantibiotic (gallidermin) disrupts 

ExPortal lipid and protein localization favors a mechanism whereby targeting of the 

peptidoglycan precursor influences lipid segregation in the membrane, rather than the 

converse. The experimental results presented support a model in which cell wall outside 
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the membrane restricts localization of anionic lipids by determining the site of lipid II 

synthesis. Without an intact cell wall in which PBPs assemble peptidoglycan, lipid II in 

the outer leaflet of the cytoplasmic membrane is deprived of acceptors for its 

glycopeptide cargo. This can prevent recycling of its prenyl-phosphate anchor and inhibit 

further lipid II production, thus disrupting ExPortal organization and inducing 

morphological defects if peptidoglycan synthesis is completely arrested (see Fig. 3 

Chapter I). There is experimental precedent that supports such a model in the substrate 

recognition mechanism of PBP recruitment to division septa. A D-Ala-D-Ala 

carboxypeptidase (PBP3) of S. pneumoniae, encoded by the dacA gene also present in 

GAS, degrades the substrate of PBP transpeptidases by trimming the lipid II peptapeptide 

[1-3]. S.pneumoniae mutants disrupted in PBP3 display defects in division [4] and in co-

localization of PBPs with the FtsZ ring [2]. PBP3 appears distributed over the whole cell 

surface except the mid-cell region before division starts [2], meaning pentapeptides are 

only available at equatorial peptidoglycan, where PBPs would be recruited to by affinity 

for their substrate. This cooperation between PBP substrate affinity and availability lends 

support to the hypothesis that the cell wall restricts localization of peptidoglycan 

synthesis through the activity of PBPs and the availability of sites for peptidoglycan 

polymerization in intact cell wall. According to this model then, the site at which cell 

wall synthesis primarily occurs determines where lipid II is produced and in so doing 

affects ExPortal localization. In summary, my thesis work has expanded our model of 

ExPortal organization, by demonstrating that anionic lipid segregation is central to 

targeting ExPortal proteins to their membrane site and that this lipid microdomain is 

maintained by the cell wall and depends on lipid II biogenesis localized at the ExPortal. 
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This model of ExPortal organization proposes that spatial coordination of protein 

secretion and processing results from cooperation of multiple cellular mechanisms in a 

highly interdependent manner. The individual contributions cell wall biogenesis, lipid 

segregation and protein interaction make are each necessary but not sufficient by 

themselves to either establish or maintain the spatial coordination of secretory 

translocons and accessory factors. This suggests further dissection of the specific roles 

each plays in ExPortal organization may prove difficult. However, it is that much more 

important for the discovery of highly effective antimicrobials, as it makes the ExPortal a 

useful target for the development of novel antibiotics that can disrupt multiple cellular 

processes. 

 

Mechanism of CAP activity on the ExPortal. One aim of my thesis research was to 

investigate involvement of the ExPortal in streptococcal pathogenesis. Previous research 

suggested that CAP activity is an aspect of host immunity that would interact directly 

with the ExPortal. As described in Chapter I, the principal mechanism of CAP activity is 

the permeabilization of the cytoplasmic lipid membrane. Interaction of membrane lipids 

with multimeric protein complexes is central to the biological processes of membrane 

biogenesis, cell wall synthesis, and responding to environmental challenges (i.e. cell 

signaling, secretion of virulence factors). Integrity of the cytoplasmic membrane is 

therefore crucial to bacterial survival. Hence the prominence and effectiveness of CAPs 

as antimicrobials against which bacterial pathogens have limited resistance. The 

experimental data presented here indicate that CAPs affect their bacterial target in a 

manner other than by altering membrane permeability. A readily available CAP 
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(polymyxin B) and a physiologically important one (HNP-1) were shown to interact 

directly with the ExPortal and disrupt its organization and function in the absence of 

membranolytic activity. These findings contribute novel observations in a physiological 

model to emerging research that is elucidating the mechanisms of non-membranolytic 

interaction by which CAPs influence pathogens. 

Several factors modulate how CAPs partition into membranes, the most important 

of which are membrane electrical potential, curvature strain of the membrane and 

hydrophobic interactions with the lipid acyl chains [5]. Electrical potential is dictated by 

the electrostatic interactions between the lipid headgroups and the peptides’ charged 

residues. Cell membranes rich in lipids with a net negative charge at physiological pH, 

like phosphatidylglycerol (PG), cardiolipin (CL) or phosphatidylserine [6], tend to be 

highly electronegative, making them preferentially targeted for interaction with CAPs. 

Unlike unsaturated lipids that promote negative curvature strain in monolayers, PG 

generates no such strain given its cylindrical geometry. Interaction of CAPs with the acyl 

chains of lipid molecules occurs via van der Waals and hydrophobic interactions that can 

frustrate lipid packing in the membrane, inducing membrane thinning and/or lipid phase 

segregation. These properties of PG/CAP interaction explain the preferential localization 

of CAPs like polymyxin B and HNP-1 at the ExPortal. The electronegativity of an 

anionic lipid microdomain such as that of the ExPortal promotes interaction with the 

CAPs, and the reduced membrane strain in a region enriched for the cylindrical topology 

of PG facilitates insertion of the peptides into the bilayer and interaction with the 

hydrocarbon acyl chains.  
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Hydrophobicity and a net cationic nature are common to all CAPs however, but 

not all CAPs tested showed a propensity to affect ExPortal secretory function. One 

explanation is that varying degrees of hydrophobicity and net charge have great influence 

on the affinity of CAPs for membranes of varying composition. A study of 

diastereomeric peptides composed of varying ratios of lysine and leucine revealed that 

highly hydrophobic peptides had lytic activity against anionic and zwitterioinic 

phsopholipid vesicles alongside hemolytic and antibacterial activities, whereas highly 

cationic peptides only permeabilized acidic phoshpolipid vesicles and  lysed bacteria [7]. 

Though composed of the same two amino acids in different proportions, these 

proportions had a marked effect on the activity of the synthetic CAPs. Given the 

enormous diversity in the amino acid sequences of CAPs, not all will target the ExPortal 

as effectively.  

Binding to the streptococcal membrane was not directly examined in all the CAPs 

studied, thus it is possible that those CAPs that did not affect ExPortal secretory function 

do bind anionic lipids at the ExPortal, but their initial interaction with the membrane 

surface did not have any appreciable disruptive effects on its organization. This could be 

because these peptides do not exert any effects beyond a membranolytic activity on their 

bacterial targets or that the sub-lethal concentrations tested don’t reflect the threshold 

concentration of the peptides under the experimental conditions used.  Below this so-

called threshold concentration CAPs fold and remain adsorbed parallel to the bilayer [8-

11]. As the ratio of peptides to lipid increases, peptides orient perpendicular to the 

membrane [12], insert and partition into the hydrophobic core of the bilayer. Aspects 

influencing partitioning are peptide concentration, the propensity of a CAP to 
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oligomerize, composition of the membrane, fluidity, chemistry and size of the 

phospholipid headgroups, transmembrane electrical potential and pH [8, 11, 13-15]. 

Thus, CAPs that did not have disruptive effects on the ExPortal might not have achieved 

the threshold concentrations necessary to influence its organization or they had a 

propensity to only adsorb at the surface unless they achieved the threshold concentration 

that induces permeabilization of the membrane by one of the mechanisms described in 

Chapter I.  

As described in chapter III, different lipid phases can coexist within a single 

membrane plane, delimited by a plane boundary, giving rise to lateral phase segregation 

and formation of the lipid microdomains observed in bacterial cytoplasmic membranes. 

The properties of these lipid phases determine the orientation, mobility and interaction of 

proteins and lipids contained therein and thus directly influence the biological 

functionality of the domains. Research using synthetic amphipathic α-helical peptides 

showed that formation of lipid phases can be influenced by peptides of this kind, which 

also exhibited antimicrobial activity [16]. Peptides affecting lipid phases have been 

observed to perturb the membrane by forming specific lipid-peptide domains, by lateral 

phase segregation of zwitterionic from anionic phospholipids and by inducing non-

lamellar phases at physiologically relevant concentrations [5]. One demonstration of such 

modes of action was the observation of anionic phospholipids de-mixing in Gram-

positive model membranes exposed to peptides with this kind of activity [17]. Peptide 

induced lipid segregation then appears to be the mechanism employed by those CAPs 

that have disruptive effects on the ExPortal. The activity of CAPs like polymyxin B and 

HNP-1, which target PG and/or lipid II localized in an anionic lipid microdomain of the 
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streptococcal membrane, most likely disrupts the physiological role of the ExPortal by 

causing lipid phase boundary defects through peptide-induced reorganization of 

membrane lipids. The possibility that polymyxin B and HNP-1 act on other or additional 

polypeptide targets to influence ExPortal organization and biogenesis of secreted factors 

requires further investigation as previously described in Chapter I and therefore cannot be 

entirely ruled out. However, the data presented here as well as investigation conducted in 

other bacterial organisms strongly suggests that lipid segregation by CAPs promotes 

dissolution of lipid-protein complexes in the membrane and abrogates their functionality. 

 

Challenges to the ExPortal model of coordinated protein secretion and processing. A 

great deal of data, published and unpublished, has been presented here to support a 

mechanism of localized protein secretion and maturation in S. pyogenes. However, 

experimental data has been published that disputes the spatial coordination of secretory 

translocons and accessory factors at a unique site in the streptococcal membrane. One 

study indicated that M protein and Protein F (SfbI) localized at the cell surface of GAS at 

distinct and separate sub-cellular regions: M protein directed at septa and SfbI at polar 

domains [18]. Swapping of N-terminal signal sequence domains between the two proteins 

switched their localization patterns, with SfbI observed at septa and M protein at polar 

domains [18], suggesting that differences in signal sequences is determinant in targeting 

of streptococcal factors to their extracellular site. Analysis of sortase-mediated anchoring 

of M protein and SfbI to their respective cellular surface locations revealed that the two 

proteins are anchored simultaneously throughout the cell cycle, with M protein rapidly 

anchored at the septum and SfbI accumulating gradually on peripheral peptidoglycan, 
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culminating in mainly polar localization at the old cell poles [19]. However, disruption of 

sortase function did not impede the appearance of M protein and SfbI at their respective 

cellular sites, suggesting that these secreted factors were not translocated at a shared, 

unique microdomain and then sorted to their extracellular site, but directly translocated at 

their site of localization [19]. Though these data appear to call into question the existence 

of an ExPortal for coordinated protein secretion and biogenesis, alternative mechanisms 

for this differential targeting of secreted proteins in GAS should be considered and 

investigated. For example, the data indicates that these proteins target differently on the 

streptococcal surface, whether by sortase-mediated anchoring or immediately following 

translocation. It is possible that the signal sequences, which as demonstrated by Carlsson 

et. al. are the determinants of localization, serve to segregate the secreted proteins in the 

membrane immediately following translocation and prior to the action of sortase-

mediated anchoring to the cell wall, in order to efficiently distribute M protein and SfbI 

to their final surface destination. One experimental approach to determine if this is the 

case would be to swap signal sequence domains of M protein and SfbI with those of 

known ExPortal substrates (SpeB and SLO) to assess localization upon translocation.  

Efforts to directly tag the SecYEG translocon in the streptococcal membrane have thus 

far proven unsuccessful, but if accomplished, direct labeling of SecYEG in the 

cytoplasmic membrane will greatly help resolve these conflicting results.  



  152 

FUTURE DIRECTIONS 

Further characterization of ExPortal organization and refinement of this model 

will include examination of the role cytoskeletal and cell wall synthesis proteins play in 

ExPortal maintenance. Due to their ellipsoid shape and pattern of division in successive 

parallel planes perpendicular to the long cell axis, GAS are morphologically described as 

ovococci along with other streptococci and enterococci [20]. Ovococci synthesize the cell 

wall primarily at the division site, with new hemispheres of the daughter cells synthesized 

between the old hemispheres of the parent cell, as demonstrated by labeling of S. 

pnemoniae cells mostly at mid-cell with fluorescent-vancomycin [21]. Ultrastructural, 

mutational and drug treatment studies in streptococci indicate that PBPs are arranged into 

two synthetic machineries co-localized at a single cellular site [22, 23]. One machinery 

synthesizes peptidoglycan at mid-cell on the inner face of the cell wall concomitant with 

splitting of the new wall, resulting in the observed initial phase of longitudinal growth. 

[20]. This is followed by activity of the second PBP machinery which builds the septal 

cross-wall ahead of septal splitting of the wall in order to produce the cross-wall observed 

in ovococci. High molecular weight (HMW) PBPs localize mid-cell at the site of FtsZ 

ring formation at the onset of cell division, suggesting a mechanism of FtsZ triggered cell 

wall synthesis [20]. Thus, most activity of PBPs in ovococci involves polymerization of 

peptidoglycan during cell division-associated growth.  

One hypothesis of interest for future work to test then, is that the multimeric cell 

division machinery (divisome) of streptococci is involved in localizing the ExPortal, most 

likely by determining the site of peptidoglycan synthesis. As mentioned in Chapter III, 

GAS lack cell wall elongation-associated divisome proteins (RodA, MinCD), but express 
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other peptidoglycan synthesis-related divisome factors: DivIB, DivIC, DivIVA, and 

EzrA. DivIB and DivIC are bitopic membrane proteins with major extracellular domains 

that in other ovococci are often encoded in operons along with genes involved in lipid II 

synthesis [20]. In S. pyogenes DivIB is encoded directly downstream of a lipid II 

synthase gene (murG) and immediately upstream of a Z-ring accessory factor gene (ftsA), 

while DivIVA is encoded a not very far downstream of the latter [24]. In S. pneumoniae 

and E. faecalis, loss of DivIVA expression produces aberrant cell shapes, incomplete 

septa and cells devoid of nucleoid [25, 26] and in S. aureus DivIVA has been shown to 

primarily localize at division septa [27]. The integral membrane protein EzrA regulates 

timing and positioning of FtsZ rings in B. subtilis [28] and can directly bind to and 

regulate assembly of FtsZ polymers in vitro [29]. EzrA is also required for recruitment of 

PBP1 to the cell division site in B. subtilis as part of the septal wall synthesis machinery 

[30]. While not essential in S. aureus, EzrA is important for regulation of cell size and is 

likewise required for localization of PBP1 [31]. 

 Given all this experimental evidence of the close relationship between divisome 

proteins and cell wall synthesis in ovococci like GAS, one approach to examine the role 

of said proteins in ExPortal organization would be to generate in S. pyogenes mutants 

disrupted in DivIB, DivIVA and EzrA. Attempts to generate in-frame deletion mutants as 

well as targeted disruptions of DivIB, EzrA and its associated PBP (PBP1) have thus far 

been unsuccessful. A method of targeted gene disruption using synthetic inducible 

riboswitches, developed by Topp et al. [32] and applied in GAS by Bugrysheva et al. in 

controlling expression of an essential gene [33], is an alternative approach to consider for 

generating the desired disruption of EzrA, DivIB and PBP1. Examining localization of 
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these proteins and the effect of their disruption on the distribution of lipid and 

proteinaceous ExPortal components constitutes an important next step in understanding 

organization of this secretory organelle. 

Given the diversity and ubiquity of CAPs throughout all realms of life, it should 

come as no surprise that bacterial pathogens have developed resistance mechanisms 

against them. As described in Chapter I, a great deal of research has gone into identifying 

and characterizing these mechanisms in order to develop therapeutic strategies that 

enhance the inherent ability and efficiency of CAPs at killing pathogens. One avenue of 

research that resulted from the investigation of CAP interaction with the ExPortal 

undertaken in this thesis work was the development of a screen to isolate spontaneous 

mutations rendering S. pyogenes impervious to the inhibitory effect of CAPs on ExPortal-

mediated protein secretion. The aims of such a screen are to further understanding of 

host-pathogen interactions by dissecting how GAS coordinate the protein secretion and 

processing that is central to their pathogenesis and to gain insight into how streptococci 

might overcome the action of host antimicrobials. Initial characterization of mutants 

isolated in this screen has validated the experimental approach by identifying mutants 

encoding between 1 and 4 single nucleotide polymorphisms that map to molecular 

pathways involved in secretion, lipid biosynthesis and protein processing. Efforts to 

recreate the identified mutations by directed mutagenesis and characterize their 

phenotypes are currently underway and show great promise. 
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ABSTRACT 
 
 The signal recognition particle (SRP) pathway is a universally conserved pathway 

for targeting polypeptides for secretion via the co-translational pathway.  In particular, 

the SRP pathway is thought to be the main mechanism for targeting polypeptides in 

Gram-positive bacteria, including a number of important human pathogens.  Though 

widely considered to be an essential cellular component, recent advances have indicated 

this pathway may be dispensable in Gram-positive bacteria of the genus Streptococcus 

under in vitro conditions.  However, its importance for the pathogenesis of streptococcal 

disease is unknown.  In this study, we investigated the importance of the SRP pathway 

for virulence factor secretion in the human pathogen Streptococcus pyogenes.  While not 

essential for viability in vitro, SRP mutants demonstrated a carbohydrate-specific growth 

defect.  We also observed that a distinct subset of virulence factors were dependent upon 

the SRP pathway for secretion, whereas others were completely independent of this 

pathway.  Significantly, deletion of the SRP pathway resulted in mutants that were highly 

attenuated in both a zebrafish model of necrotic myositis and a murine subcutaneous 

ulcer model, highlighting the importance of this pathway in vivo. These studies 

emphasize the importance of the SRP pathway for the in vivo survival and pathogenesis 

of S. pyogenes.  
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INTRODUCTION 
 
 The important human pathogen Streptococcus pyogenes is able to establish 

infection and cause disease in a wide variety of tissues in the host including the pharynx 

(eg. “strep throat”) and the epidermis (eg. impetigo, erysipelas), as well as deeper tissues 

like the dermis, fascia and muscle (eg. cellulits, necrotizing faciitis, myositis).  Crucial to 

the establishment of infection is the production of a multitude of virulence factors that are 

secreted across the single cellular membrane of this Gram-positive pathogen (14).  

Understanding how these various factors are trafficked to their appropriate destinations, 

including the streptococcal cell membrane, its cell surface, the extracellular spaces and 

host cells, will be important for elucidating the role of protein secretion in streptococcal 

virulence.  An unexplored question is how intracellular routing of a nascent polypeptide 

contributes to its trafficking fate. 

 Protein secretion by Gram-positive bacteria has recently been revealed to be a 

complex, organized process with specific domains dedicated to protein secretion and 

folding (11, 42, 43).  However, the pathways used to route presecretory proteins to the 

sites of translocation across the membrane are not well understood.  As Gram-positive 

bacteria lack a discernable homolog of SecB, a chaperone involved in the post-translation 

targeting pathway, most polypeptides are presumably targeted co-translationally via the 

signal recognition particle (SRP) pathway (45).  This is supported by the fact that most 

Gram-positive signal sequences tend to be longer and more hydrophobic than their Gram-

negative counterparts, which are features thought to be important for efficient routing of 

the presecretory protein to the SRP pathway (12).  Many studies in model bacterial 

species, including Escherichia coli and Bacillus subtilis, have highlighted the essential 
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nature of the SRP pathway for bacterial viability (25, 41).  However, more recent studies 

of bacteria in the genus Streptococcus have indicated that SRP essentiality may not be a 

universal characteristic of all bacteria (23).  

 The SRP itself is a ribonucleotide-protein complex composed of a protein, the 

fifty-four homolog (Ffh) and an RNA known as the small cytoplasmic RNA 

(scRNA)(45).  The SRP binds to signal sequences as they exit the ribosome and targets 

them to the bacterial membrane by binding the membrane-associated receptor, FtsY, 

which then releases the signal peptide to the Sec translocon (30).  Recent cyro-electron 

micrographs revealed the details behind this process whereby the interaction between 

FtsY with the ribosome and Ffh results in a conformational change in the ribosome to 

promote binding to the translocation machinery (21).  Crucial for proper function of SRP 

is the GTPase activity of both Ffh and FtsY, which is shared in a common catalytic 

chamber of this heterodimeric complex (17).  The SRP receptor interacts directly with the 

SecYEG translocon, highlighting the close association between these two protein 

complexes (3).   

 Interestingly, deletion of the genes encoding Ffh, FtsY and scRNA singly or in 

combination in Streptococcus mutans is not a lethal event for growth on complex media 

(23).  Under non-stress conditions, the SRP- mutants have growth yields similar to wild 

type, although with somewhat longer doubling times during logarithmic growth (23).  

The SRP mutants do have a reduced capacity to resist certain stresses, most prominently 

osmotic and acid shock (20) and fail to form biofilm (24).  However, a decreased 

resistance to stress is not a global phenotype as the mutants do retain an ability to adapt to 

acidic environments under conditions that more gradually expose them to decreased pH 
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(13).  Also, their growth patterns are not altered in response to many other stresses 

including high and low temperature (23).  The importance of the SRP for the 

pathogenesis of S. mutans disease remains to be determined.   

 Studies in E. coli have suggested that the SRP pathway is the major pathway for 

targeting secretion of integral membrane proteins, which typically lack cleavable signal 

sequences (44).  Similarly, analysis of membranes of S. mutans SRP- mutants 

demonstrated that approximately 17 proteins were either absent or were present at 

significantly reduced levels (24).  This latter class included the β-subunit of the F1F0 

ATPase, which is known to be a SRP substrate in other bacterial species (47).  Since this 

proton pump plays a central role in the ability to adapt to acidic conditions (5), this defect 

may explain the enhanced sensitivity of these mutants to acid stress.  Other proteins with 

altered membrane abundance included several glycolytic enzymes and LuxS, which is 

responsible for synthesis of an autoinducer known to be important for formation of 

streptococcal biofilm (46, 48).  However, most of these proteins lack clearly identifiable 

signal sequences, so the global importance of the SRP for the trafficking of polypeptides 

with both cleavable and non-cleavable signal sequences in the streptococci is unknown.   

 The objectives of the present study were to examine whether the non-essentiality 

of the SRP can be generalized to other pathogenic streptococcal species, and if so, what 

role the SRP pathway may play in the secretion of virulence factors and whether the SRP 

is required for virulence.  Our analysis of an Ffh-deficient mutant of S. pyogenes revealed 

that a distinct subset of virulence factors with cleavable signal sequences was dependent 

upon the SRP pathway for secretion.  Furthermore, SRP- mutants were highly attenuated 

in animal models of necrotic myositis and subcutaneous infection.  These data provide 
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insight into the conservation of the SRP pathway function in the streptococci, and suggest 

that while it is not essential for growth, it is essential for virulence.   
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MATERIALS AND METHODS 

Strains, media, culture conditions. Strains used included, Escherishia coli DH5α and S. 

pyogenes HSC5 (22). Routine culture of S. pyogenes was at 37oC and employed Todd-

Hewitt medium (BBL) supplemented with 0.2% yeast extract (Difco).  Culture of E. coli 

utilized Luria-Bertanini (LB) broth at 37oC with shaking.  Proteolytic assays employed 

strains grown in C-medium that were cultured under the conditions previously described 

(32).  When required, antibiotics were used at the following concentrations:  

erythromycin, 750 µg/ml for E. coli and 1 µg/ml for S. pyogenes. 

DNA and computational techniques. Plasmid DNA was isolated via standard 

techniques and used to transform S. pyogenes as described previously (10). Restriction 

endonucleases, ligases, and polymerases were used according to manufacturer’s 

recommendations.  The fidelity of all constructs derived by PCR were confirmed by 

DNA sequencing analyses.  All references to genomic loci are based on the genome of S. 

pyogenes strain SF370 (15).  Gene assignments were based on the information available 

in the Kyoto Encyclopedia of Genes and Genomes (www.genome.jp), and were 

supported by subsequent interrogation of the SF370 genome using BLAST (2) and query 

sequences derived from Bacillus subtilis gene products with experimentally confirmed 

activities, as noted in the text. 

Construction of Mutants. An in-frame deletion was constructed by an inverse PCR 

technique (31) to delete an internal fragment encompassing 500bp of the central portion 

of ffh (Spy1200). Allelic replacement proceeded as described previously (31), with 

confirmation of mutant genome structure by PCR using primers of the appropriate 

sequences. Primers for the deletion included Ffhdeletion1 AAC CTA GGG GGC CTA 
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TGG AAG ACC TCT TGA AAA TGA TTC CAG G and Ffh deletion 2 AAC CTA GGC 

AAA CCT TTT CTG ACA ATA TCG ACT GC. The resulting fragment of ffh has a 

deletion from amino acids spanning positions 180 to 340.  

Cellular fractionation and preparation of membranes.  Protoplasts were prepared as 

previously described (40) and then lysed by multiple freeze-thaw cycles (-80oC/37oC) 

followed by agitation with glass beads (106 µm, Sigma) using a reciprocating shaking 

device (FastPrep®, Q.biogene) at a speed setting of 4.5 for 45 seconds, repeated 4-5 

times.  Membranes were collected by centrifugation (120,000xg, 4˚C, 60 minutes) and 

resuspended in distilled water. SDS sample buffer was added to the membranes followed 

by a 10 minute boil. Membrane fractions were then separated by SDS-PAGE, transferred 

to Immobilon-PSQ membrane, and stained with Coomasie Brilliant blue R. Protein 

identification was performed by N-terminal sequencing of Coomasie-stained bands 

(Midwest Analytical, St. Louis, MO). 

Analysis and identification of proteins. Cell wall fraction, membrane, and cytosolic 

fractions were prepared from cultures as previously described (43). Cell free supernatants 

were subjected to TCA precipitation for protein concentration. Cell wall fractions from 

protoplast preparations were utilized for M protein analysis while culture supernatants 

were utilized for SpeB, SLO, and SPN.  Other fractions were consistently negative for the 

presence of these proteins. Protein samples were separated by SDS-PAGE and transferred 

to PVDF membranes. Blocking and antibody binding was done in PBS-T with 5% non-

fat dry milk. Antisera against SLO and SpeB have been described previously (31, 35).  

An anti-peptide antiserum that recognizes multiple serotypes of M protein was generated 

as described (16). An antiserum that specifically reacts against SPN was generated using 
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purified SPN (C. Smith, M. Caparon, S. Hultgren; unpublished).  Analyses of culture 

supernatant fluids for SpeB proteolytic activity and SLO hemolytic activity were 

conducted as described (32, 35).   

Analysis of transcription.  RNA from various streptococcal strains was isolated and 

analyzed as described previously (7, 29). Briefly, overnight growth in THY medium was 

diluted 1:100 in fresh THY medium followed by growth at 37°C to mid-logarithmic 

phase (OD600 = 0.500). RNA was then isolated by using glass beads (Lysing Matrix A, 

Q/BioGene) and a high-speed reciprocating shaking device (FP-120, Savant Instruments). 

RNA was further purified (RNeasy Mini Kit, Qiagen) and contaminating DNA was 

removed by DNase treatments according to the manufacturers instructions (RNase free 

DNase set, QIAGEN and DNase I, amplification grade, Invitrogen). The A260/A280 ratio 

was used to determine the RNA concentration and purity. For cDNA synthesis, 5 µg total 

RNA was treated with 200 U Superscript II Reverse transcriptase (Invitrogen) using 250 

ng of oligonucleotide random primers (Invitrogen). Real time RT-PCR was performed 

employed an iCycler thermocycler (Bio-Rad) using iQ SYBR Green Supermix (Bio-Rad) 

and the methods and primers described previously (29). Transcript abundance was 

normalized to recA as previously described (29) and data presented represent the mean 

and standard deviation derived from at least two independent experiments that were 

performed on different days, with each individual sample analyzed in triplicate.   

Zebrafish infections. Bacterial strains were back-diluted 1:100 from overnight culture 

and grown in THY broth until OD600=0.30. Bacteria were then subjected to brief 

sonication to disrupt bacterial chains and used for intramuscular injection of zebrafish, as 

described previously (39). Experimental groups consisted of 10 zebrafish, each of which 
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was injected with 105 CFU in a volume of 10 µl or with an equivalent volume of sterile 

medium alone in the case of Mock infection.  Survival was monitored for 5 days and any 

differences in survival between groups infected with wild type or mutant strains tested for 

significance as described (7).  Data presented are pooled from 3 independent 

experiments, each of which was conducted on a different days.   

Mouse subcutaneous infections. Bacterial strains were grown and prepared as outlined 

above, then used to infect mice subcutaneously as previously described (8). Experimental 

groups consisted of 5 mice, each of which received a subcutaneous injection into the right 

flank of 108 CFU in a volume of 100μl. Lesion development was monitored over a period 

of 96 hours and recorded as described elsewhere (8).  Differences between groups in 

lesion area and in the number of mice developing an ulcer were tested for significance by 

the Mann-Whitney U test and the Chi-square test with Yates’ correction, respectively (8).  

For all test statistics, the null hypothesis was rejected when P < 0.05.  Data presented are 

pooled from two independent experiments that were conducted on different days. 
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RESULTS 
 
Ffh is not essential in Streptococcus pyogenes.  Disruption of the SRP pathway leads to 

a variety of phenotypes in the various bacterial species examined.  In E. coli and B. 

subtilis deletion of Ffh is lethal (41).  Furthermore, conditional depletion of Ffh and FtsY 

in B. subtilis results in a marked impairment of protein secretion (25), although the effect 

on the secretome may be more modest when the bacteria are cultured in rich media (49).  

In Streptococcus mutans, disruption of Ffh was first revealed in a screen for acid-

sensitive mutants (19).  It was subsequently shown that all components of the SRP 

pathway could be extensively disrupted in S. mutans with few phenotypic consequences 

apart from sensitivity to certain stresses (13).  Interestingly, disruption of both the SRP 

and one of its two homologs of YidC (YidC2) resulted in S. mutans cells which were 

severely impaired in growth (23).  We sought to ascertain whether SRP was also 

dispensable for the growth of S. pyogenes and the effect of SRP disruption on the 

secretion of several important virulence factors.  An in-frame deletion allele of the gene 

encoding Ffh was constructed to remove 500 bp from the central portion of the Ffh open 

reading frame, which includes the region encoding conserved residues necessary for 

GTPase activity that are crucial for function (17).  The resulting allele (ffhΔ180-340) was 

successfully used to replace the wild type gene in S. pyogenes HSC5 (Fig. 1A) and the 

resulting mutants grew normally and produced colonies on THY agar plates that were 

indistinguishable from wild-type.  Thus, similar to S. mutans, the SRP pathway is 

dispensable for viability of S. pyogenes.   
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A medium-specific growth defect.  The method for allelic replacement generates a 

tandem duplication of wild type and mutant alleles that resolves by homologous 

recombination to produce strains carrying either the wild type or mutant allele (9).  One 

Ffh- mutant (FFH1) was chosen for further analysis and its ability to grow in liquid media 

under various nutrient conditions was examined when compared with a matched wild 

type revertant (WTrev).  When grown in standard THY broth, a complex medium rich in 

glucose (18) the mutant showed a modest defect in its growth rate, but obtained an 

equivalent growth yield as compared to wild type on the basis of culture densities (Fig. 

1B).  When grown in C-medium, a more minimal medium rich in peptides but low in 

glucose, the Ffh- mutant presented a pronounced defect in both growth rate and yield, 

with cultures reaching a final density that was less that 50% of that obtained with a strain 

with the wild type gene (Fig. 1C).  However, this defect could be rescued by the addition 

of additional glucose to C-medium, which produced a growth profile that was 

indistinguishable from that of THY medium (Fig. 1, compare 1D to 1B).  Addition of 

NaCl (up to 150 mM) did not restore growth; however, buffering the pH of the medium 

to between pH 6.0 to pH 6.5 had the same effect as the addition of glucose, and restored 

growth of the mutant to levels identical to THY medium (data not shown). 

 

Stress Response Activated.  Membrane protein profiles of the wild type revertant and 

Ffh- mutant were compared.  Consistent with the relatively normal growth characteristics 

of the mutant in THY broth medium, these profiles were remarkably similar (Fig. 2).  An 

exception was the presence of two bands that were consistently more intense in 

membranes of the mutant when compared with the wild type revertant.  Subjecting these 
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bands to N-terminal sequencing revealed them to be DnaK and GroEL (Fig. 2).  These 

proteins play prominent roles in several stress responses, particularly under conditions 

where misfolded proteins accumulate (38, 49).  This observation suggests that despite 

near normal growth characteristics in this medium, that the mutant is accumulating some 

mis-folded proteins.   

 

Selective defects in secretion of proteins with cleavable signal sequences.  A 

prominent characteristic of S. pyogenes is its ability to secrete a large number of proteins 

during growth in culture and in tissue that have cleavable signal sequences.   The fate of a 

subset of these proteins, including the M protein, is to become covalently associated with 

the cell wall (34).  Others have well-characterized toxic activities and are known to have 

distinctly different trafficking fates when the bacterium is growing while attached to 

surface of host cells.  For example, many secreted proteins, such as the SpeB cysteine 

protease, are trafficked into the extracellular spaces.  At least one, the S. pyogenes NAD-

glycohydrolase (known as Nga or SPN), is translocated across the host cell membrane 

into its cytosol by a process that involves a second secreted translocator protein, 

streptolysin O (known as SLO), that is itself delivered to the host cell membrane (33, 35, 

37).  Since M protein, SpeB, SPN and SLO have different trafficking fates, the 

consequence of the loss of Ffh on their secretion was assessed.  Following its secretion 

via the Sec pathway, the signal sequence of the M protein is cleaved and then it is 

subsequently processed at a site towards it carboxy-terminal end and covalently cross-

linked to peptidoglycan by the enzyme sortase (4).  Examination of cell walls revealed 

that the amount of M protein in the mutant was as similar or lower than the amount of M 
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protein in the wild type parental strain (Fig. 3) indicating that Ffh is not essential, for the 

secretion of M protein and its delivery to the sortase pathway.  In contrast, the loss of Ffh 

had marked effects on the secretion of SPN and SLO.  Analysis of culture supernatants 

revealed that SPN and SLO were undetectable even after the proteins in these 

supernatants were concentrated by TCA precipitation (Fig 3). Additionally, culture 

superntants from Ffh- mutants lacked detectable SLO hemolytic activity and SPN NAD 

glycohydrolase activity (Table 1), confirming a defect for secretion of these proteins.  

The genes encoding SPN and SLO are co-transcribed from a common promoter (36) and 

the failure to observe the secreted forms of either protein was not due to a defect in 

transcription from this promoter as analysis of the slo and spn transcript by real time RT-

PCR at the time of maximal expression in logarithmically-growing cultures indicated that 

it was as abundant in the mutant as it was in the wild type revertant (Table 1). A similar 

analysis of the transcript levels of the gene encoding M protein at a time point 

corresponding to the period of its maximal expression also showed no differences 

between the Ffh- mutant strain in comparison with the wild type revertant (Table 1).  No 

intracellular pool of SLO was detected when the mutant was subjected to lysis at this 

time point (data not shown), suggesting that the polypeptide was rapidly degraded in the 

absence of secretion. ).  Taken together, these data show that the SRP pathway does make 

a critical contribution to secretion of at least a subset of the exported virulence factors of 

S. pyogenes that possess cleavable signal sequences. 

 

Medium-dependent effect on secretion of SpeB.  The absence of Ffh had a different 

effect on secretion of SpeB, as it was observed that the Ffh- mutant secreted the SpeB 
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polypeptide at levels higher than those observed for the wild type revertant during growth 

in THY medium (Fig. 3).  However, this increased level of SpeB protein did not result in 

greater expression of protease activity in the Ffh- mutant, as SpeB-dependent cysteine 

protease activity in culture supernatant from the mutant was somewhat reduced from 

levels observed for the wild type revertant (Table 1).  This phenotype was medium-

dependent, as the supernatant fluids from the Ffh- mutant lacked both detectable cysteine 

protease activity (data not shown) and detectable levels of the SpeB polypeptide 

following culture in the glucose-deficient C medium, which is a medium that supports 

robust expression of SpeB by the wild type reveratant (Fig. 4).  This defect was not due 

to a failure of the mutant to express SpeB, as the intracellular fraction of the mutant 

contained detectable levels of the SpeB polypeptide (cytoplasmic, Fig. 4).  Glucose has a 

repressive effect on expression of SpeB (28, 29) and as expected, supplementing C media 

with glucose resulted in repression of SpeB expression in the wild type revertant 

(compare WTrev supernatant, C medium + Glc to C medium, Fig. 4).  However, the 

addition of glucose resulted in increased SpeB expression in the Ffh- mutant, as levels in 

the supernatant fraction for both the SpeB polypeptide (C medium + Glc, Fig. 4) and 

cysteine protease activity (data not shown) were elevated to the levels observed in the 

wild type revertant in unsupplemented C medium.  Similar to their effects on growth in C 

medium (see above), buffering to pH 6.5, but not the addition of NaCl, resulted in 

enhanced levels of SpeB in the supernatant fluids of the mutant (data not shown).    

 

The SRP pathway is required for pathogenesis in a zebrafish model of necrotic 

myositis.  Since the Ffh- mutant had a both a medium-specific growth defect and a 
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selective deficiency in its ability to export several toxins, it was of interest to determine if 

the mutant was also altered in its ability to cause disease.  The virulence of the Ffh- 

mutant was evaluated in a zebrafish model of necrotic myositis that reproduces several 

features commonly observed in streptococcal infection of human muscle, including local 

growth in muscle tissue, extensive necrosis of the infected tissue and diminished 

inflammation (39).  Infection of zebrafish with the wild type revertant at approximately 

10-fold the LD50 produced characteristic survival curves in which greater than 90% of 

infected zebrafish did not survive past day 3 post-infection (Fig. 5).  Also, all fish 

infected with the wild type revertant demonstrated a characteristic discolored lesion at the 

site of infection apparent 24 hrs post-infection that reflects the extent of the underlying 

necrosis in muscle (39) and all zebrafish that developed a lesion did not survive.  In 

contrast, greater than 95% of zebrafish infected with the Ffh- mutant were still viable at 

Day 3 (Fig. 5) demonstrating that the loss of the SRP rendered S. pyogenes significantly 

less virulent (p < 0.0001).  Although not as intense or of equivalent area as in zebrafish 

infected with the wild type revertant, approximately 25% of the zebrafish infected with 

the mutant did develop lesions by Day 2, and these animals typically survived and their 

lesions resolved.  Lesion development had not been associated with any of the attenuated 

mutants analyzed previously (8, 39).   

 

The SRP pathway is required for pathogenesis in a murine model of subcutaneous 

infection.  Virulence of the Ffh- mutant was also examined in a murine model of 

subcutaneous infection, in which challenge with S. pyogenes HSC5 has been observed to 

cause visible ulcer-like lesions following injection into subcutaneous tissue (8).  
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Consistent with previous reports, all mice injected with the wild type revertant had visible 

lesions by 48 hrs post-infection, while most mice infected with the Ffh- mutant failed to 

develop any evidence of a visible ulcer even following 72 (Fig. 6) and 96 hours of 

examination (data not shown), demonstrating that the mutant was significantly less 

virulent (P < 0.02).  A subset of mice infected with the mutant did develop ulcers (Fig. 

6).  However, the wild type reverant caused lesions that were significantly larger in size 

compared with the mutant when compared at a time when lesion formation by the wild 

type revertant had reached a maximum (72 hrs, P < 0.005, Fig. 6) and at subsequent time 

points over the duration of the experiment (96 hrs).  These data provide additional 

evidence to suggest that Ffh play an important role in S. pyogenes virulence.   
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DISCUSSSION 
 
 These data suggest that the non-essentiality of the SRP pathway may be a general 

feature of the streptococci.  However, the SRP does contribute to a number of important 

functions of S. pyogenes, including the ability to efficiently utilize carbohydrates for 

growth, to secrete several proteins involved in host cell-pathogen interactions, and to 

cause disease in multiple animal models of streptococcal infection.  The fact that the SRP 

is not required for growth should allow more refined molecular studies of this important 

pathway for targeting presecretory proteins that should provide insight into the pathway 

in other bacterial species where the SRP is essential.  Further analyses of the SRP 

pathway in S. pyogenes should also be useful for understanding how targeting pathways 

may influence the trafficking fate of secreted proteins during infection.   

 While it is clear that the signal sequence is important for recognition by the SRP, 

the specific features of the signal sequence that dictate whether the nascent presecretory 

protein will be routed to the SRP pathway or to another pathway are not clear.  Signal 

sequences themselves canonically have 3 regions, including an amino-terminal region 

enriched in positively charged residues (N region), a central region consisting of 

hydrophobic residues (H region) and moderately polar carboxy-terminal domain (C 

region) (Fig. 5).  Studies in E. coli have suggested that while it is not an exclusive signal, 

that the probability of SRP recognition of any one signal peptide does correlate with its 

degree of hydrophobicity (26, 27).  Preliminary results from our analysis using the 

computational method of Huber et al (26) failed to identify any correspondence between 

hydropobicity and whether the signal sequences of the 4 protein analyzed in this study 

were routed to the SRP pathway.  A complication is that the longer hydrophobic regions 
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typical of Gram-positive signal sequence generally renders them quite hydrophobic 

overall.  The signal sequences of SLO, SPN, M protein and SpeB are unremarkable in 

this regard and have H regions encompassing 17-18 residues (Fig. 5).  It has also been 

suggested that the presence of glycine residues in the H region can destabilize formation 

of an alpha-helix that results in an inability to interact with the SRP (1).  An examination 

of the four streptococcal signal sequences shows their H regions all contain multiple 

glycine residues (Fig. 5).  Thus, there are no obvious characteristics of these signal 

sequences that distinguish between their routing pathway.    

 Evidence suggests that an important function for the SRP pathway is in the 

insertion of integral membrane proteins (44). Since nutrient transporters typically include 

an integral membrane component, the loss of a transporter could explain the medium-

specific growth defect of the S. pyogenes Ffh- mutant. As the growth and SpeB secretion 

defect could be reversed by the addition of glucose, it is possible that an important 

peptide transporter requires the SRP for its insertion into the membrane, making the 

mutant more dependent on carbohydrates for growth and the secretion of virulence 

factors.  A differential dependence of nutrient transporters on the SRP pathway may also 

explain recent studies that shown that depletion of the SRP in B. subtilis results in a 

pronounced secretion defect when cells were grown in minimal media that was much less 

severe when cell were grown under rich media conditions (49).  Likewise, the viable SRP 

null mutants of S. mutans are typically grown in complex rich media (23).  An increased 

requirement for glucose could help to explain the S. pyogenes Ffh- mutant’s attenuated 

ability to cause disease.  Analysis of the transcriptome during infection has shown that S. 

pyogenes experiences a significant starvation for carbohydrates in well-developed 



 178 

necrotic lesions (29).  This idea is supported by evidence that suggests that the nutritional 

environment experienced by S. pyogenes in a necrotic lesion is similar to the nutritional 

landscape presented by unsupplemented C medium during growth in culture (29) and this 

medium had the most restrictive effect on the Ffh- mutant’s growth and secretion of the 

several media evaluated.   

 Alternatively, the Ffh- mutant’s requirement for glucose for growth and for 

secretion of SpeB in C medium may reflect the complex transcriptional regulatory 

networks that control expression of SpeB.  It is known that transcription of the gene that 

encodes this protease is highly regulated and sensitive to several different regulatory 

pathways, including those that respond to nutritional cues (29).  For example, 

transcription of speB is repressed by a culture pH higher than pH 6.5, and glucose and 

NaCl concentratins of 100 mM and 140 mM or greater, respectively (29).  Interestingly, 

the Ffh- mutant expressed higher levels of SpeB, and hyperexpression was not sensitive 

to repression by glucose or pH.  Also, while the mutant grew poorly in unsupplemented C 

medium, it did express SpeB, although failed to secrete the protease.  A failure to secrete 

the protease could be a factor that contributes to poor growth in unsupplemented medium 

as SpeB proteolytic activity in the cytoplasmic compartment of the cell would likely be 

deleterious.  In addition, since the effect of supplementation does not appear to be a 

repression of speB expression, but rather, a rescue of the secretion defect, it is possible 

that there is an accessory secretion factor required for high level secretion that is 

regulated by pH and glucose.  Accessory factors secretion factors that promote high 

levels of secretion have been described for other Gram-positive bacterial species (for 

review, see Ref # 45).   
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 Analysis of the trafficking of thioredoxin in E. coli has suggested that proteins 

exported by SRP-dependent signal sequences are those that have the ability to fold 

rapidly in the cytoplasm (26).  If allowed to accumulate in the cytoplasm for any length 

of time, it is likely that these proteins would jam the translocons if an attempt was made 

to secrete them in a partially-folded state, a situation that can be by-passed by co-

translational secretion (26).  Support for this function for the SRP pathway comes from 

the observation that SPN depends on the SRP for secretion.  As an NAD glycohydrolase, 

SPN is indiscriminate in its source of substrate and is toxic to both streptococcal and host 

cells.  In fact, the ability of S. pyogenes to produce SPN is absolutely dependent on co-

expression of an immunity factor known as IFS (36).  This immunity factor acts as a 

competitive inhibitor of SPN’s NAD substrate to ameliorate its toxicity (36).  

Interestingly, IFS resides exclusively in the streptococcal cytoplasm, suggesting that even 

if a few molecules of SPN go off-pathway and fold rapidly in the cytoplasm, the result is 

an inability to sustain viability.  Secretory stress induced by partially folded proteins 

could also explain the fact that even under conditions where it is growing robustly, that 

the mutant appeared to be experiencing a stress response as evidenced by the enhanced 

association of DnaK and GroEL with membranes.  A similar stress response has been 

observed in Ffh-depleted B. subtilis (49) and in S. mutans mutants (24).   

 Our analysis has contributed to the emerging picture that protein secretion by S. 

pyogenes and other Gram-positive bacteria is a complex and organized process.  For 

example, S. pyogenes has been shown to have a distinct membrane microdomain 

dedicated to protein secretion known as the ExPortal (42), which may serve as a protein 

folding organelle by promoting the interaction of unfolded nascent secretory proteins 
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with accessory maturation factors (43).  Secreted proteins that are substrates of the 

sortase pathway are not distributed randomly in the cell wall.  Rather, the M protein first 

appears linked to the cell wall predominantly along septum, while Protein F first appears 

at higher concentrations at the cell poles (11).  These events imply that there is 

considerable cooperation between the protein export and cell wall synthesis machineries 

and imply that intracellular routing signals play an important role in dictating trafficking 

fate.  This notion is supported by the observation that exchange of signal sequences 

between M protein and Protein F alters how the proteins appear in the wall (11).  Thus, 

while the SRP appears dispensable for growth of various species of streptococci, 

understanding how the SRP pathway contributes to the secretion process will be essential 

for understanding how protein secretion contributes to the pathogenic mechanisms by 

which this group of bacteria cause disease.   
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FIGURES 
 
 

 
 
 
 
Figure 1. Deletion of ffh results in specific nutritional requirements. Successful replacement 
of ffh (spy1200) in the wild type strain with a deletion allele (ffhΔ180-340) produced Ffh- strain 
FFH1.  (A) Analysis of PCR products generated using ffh-specific primers by agarose gel 
electrophoresis revealed bands of the expected sizes for the wild type (WT) and mutant (Ffh-) 
strains as shown.  Open and closed arrows at the left of the DNA size standards (Std.) (TrackIttm 
DNA ladder, Invitrogen) indicate the 1650 and 1000 bp bands, respectively.  The growth of the 
mutant (Ffh-) in liquid media was compared to a matched wild type revertant (WTrev) using THY 
medium (B), C-medium (C) and C-medium supplemented with glucose (D).  Data shown are 
from a single experiment representative of a minimum of three independent experiments, each of 
which was conducted on different days.   
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Figure 2.  The majority of membrane proteins are correctly targeted in the absence of the 
SRP.  Membranes purified from mutant (Ffh-) and a matched wild type revertant (WTrev) were 
analyzed by SDS-PAGE and staining with Coomasie blue as shown.  The identities of the bands 
labeled on the left of the Figure were determined by N-terminal amino-acid sequencing.  The 
migration of several size standards is indicated to the right of the Figure.   
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Figure 3. The SRP is required for the secretion of a distinct subset of virulence factors.  
Analysis of the secretion of a selection of virulence factors that have both cleavable signal 
sequences and distinct trafficking fates during infection is shown.  Included are the sortase 
pathway substrate the M protein, the SpeB cysteine protease that is released into the extracellular 
compartment, SLO that is trafficked to the host cell membrane, and SPN that is translocated into 
the host cell cytosol.  Compared by Western blot analyses are the mutant (Ffh-) and a matched 
wild type revertant (WTrev) using antisera specific for each indicated protein.  Samples analyzed 
for M protein were cell walls from protoplast preparations, cell-free overnight culture supernatant 
fluids for SpeB, and cell-free overnight supernatant fluids that were concentrated by TCA 
precipitation for SLO and SPN.  The migration of the zymogen (proSpeB) and mature (SpeB) 
forms of SpeB are indicated to the right of the SpeB panel.   
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Figure 4.  A medium-dependent secretion defect.  A Western blot analysis of SpeB expression 
from mutant (Ffh-) and wild type revertant (WTrev) following culture in C medium or C medium 
supplemented with glucose (C medium + Glc) is shown.  As indicated in the Figure, both 
supernatant and cytoplasmic fractions were analyzed.   
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Figure 5. The SRP is required for virulence in an animal model of necrotic myositis.  Groups 
of zebrafish were challenged intramuscularly with 1 x 105 CFU of mutant (Ffh-), a matched wild 
type revertant (WTrev) or were injected with sterile media alone (Mock).  Survival was monitored 
for 72 hours and the data presented as a Kaplan-Meier plot.  Data are pooled from three 
independent experiments, each of which was conducted using 10 zebrafish per group.  These data 
indicate that the mutant was significantly less lethal than the wild type revertant (P < 0.0001).   
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Figure 6.  The SRP is required for virulence in the murine subcutaneous ulcer model.  
Groups of female SKH1 hairless mice received a subcutaneous injection of 107 CFU of mutant 
(Ffh-) or a matched wild type revertant (WTrev) into the hind flank.  Following 72 hrs, the area of 
any visible ucler that formed at the site of injection was determined as described (8).  Data shown 
are pooled from two independent experiments.  Each symbol represents the area of the ulcer 
observed in an individual mouse, and the horizontal bar indicates the mean value obtained for the 
pooled set of 10 mice.  As indicated in the Figure, lesions caused by the WTrev were significantly 
larger than those caused by the Ffh- mutant.   
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Figure 7. Comparison of virulence factor signal sequences.  The N, H and C regions of the 
signal peptides of SPN (Spy0165), SLO (Spy0167), Emm1 (Spy2018) and SpeB (Spy2038) are 
shown.  Positively-charged residues in the N region and the residues of the hydrophobic H region 
are indicated in bold type and by grey highlighting, respectively.  Helix disrupting glycine 
residues in the H regions are indicated in white type.  The signal peptidase cleavage site 
(indicated by the arrow) predicted computationally by SignalP, version 3.0 (6) agreed with the 
mature N-termini that have been experimentally determined and reported for each protein. 
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