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ABSTRACT OF THE DISSERTATION 

Sustained and Transient Reward Effect on Cognitive Control in Schizophrenia:  

The Relevance of Negative Symptoms 

by 

Yu Sun Chung 

Doctor of Philosophy in Psychology 

Washington University in St. Louis, 2014 

Professor Deanna M. Barch, Chair  

 

 Schizophrenia (SCZ) is characterized by severe cognitive impairments and amotivation, 

generally referred to as negative symptoms, including anhedonia and/or avolition. Amotivation 

tends to exist in prodromal patients and persist over the illness course regardless of successful 

antipsychotic medications, which are known to reduce positive symptoms, including 

hallucination and delusions (e.g., (Horan, Blanchard, Clark, & Green, 2008; Tarbox et al., 2013). 

Importantly, amotivation is a promising predictor for later social functioning in SCZ, even after 

accounting for patients’ cognitive impairments (e.g., (Evensen et al., 2012; Faerden et al., 2010). 

Despite this crucial impact on functioning outcome in SCZ, to date, no study has systematically 

investigated neural mechanism underlying amotivation in SCZ. 

To date, it has been well documented that many of cognitive impairments in SCZ may 

reflect a core deficit of non-emotional context processing, supported by the dorsolateral 

prefrontal cortex (DLPFC), and defined by the ability to maintain non-emotional context 

information necessary to regulate upcoming behavioral response towards goal-directed 

behavior (e.g., (Cohen, Barch, Carter, & Servan-Schreiber, 1999). Recent evidence from both 

animal and healthy human neuroimaging work suggests that the DLPFC plays a crucial role in 

representing and integrating reward-related context information. However, it has been 

unexplored whether individuals with SCZ can represent and integrate reward-related contextual 
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information to modulate cognitive control function implicated in the DLPFC. 

Thirty-six individuals with SCZ and twenty-seven healthy controls (HC) underwent 

behavioral and fMRI data collection at 3Tsela while performing a modified response conflict 

processing task under two contexts, that is, no-reward baseline and reward contexts. 

Participants first performed baseline conditions without any knowledge regarding the future 

potential for incentives (Baseline-Context; BCXT). Each trial started with a baseline cue, “XX” 

that was pre-instructed to participants as being irrelevant to the task. After each cue, “XX,” 

either a house or building picture (with overlaid words that are either congruent or incongruent) 

was presented to each participant one at a time. The job of the task was to categorize each 

picture as either a house or a building by pressing a certain button while ignoring the overlaid 

word. Following the baseline condition, participants performed additional reward blocks on 

which they were told that they could win money on some trials by performing fast (faster than 

their median correct reaction times (RT) in the baseline and accurately). Each trial was then 

preceded either by a “$20” cue (Reward-Cue; RC), indicating that a fast and correct response 

would be rewarded or by a “XX” cue (Reward-Context; RCXT), indicating zero money would be 

possible on the trial. After the target stimulus, participants received immediate feedback 

regarding the reward points they earned on the trials, as well as their cumulative earning in 

points.  

As such, this response conflict task paradigm enabled examination of: (1) reward context 

effects by comparing performance and brain activity when the cue, “XX” was presented in the 

baseline context versus in the reward context (BCXT vs. RCXT trials cued by the same cue, 

“XX”) and (2) reward cue effects by comparing performance during RC (cued by “$20”) versus 

RCXT (cued by “XX”) within reward blocks. Importantly, by employing a mixed state-item fMRI 

design, I investigated both sustained (block-based) context-dependent and transient (trial-by-

trial) reward-related cue activity at both behavioral and neural levels.  

The behavioral data revealed two main patterns: contrary to our prior behavioral work 
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(Mann, Footer, Chung, Driscoll, & Barch, 2013), like the HC, individuals with SCZ also showed 

faster response on the Reward-Context trials within reward contexts (“XX”, zero money) 

compared to Baseline-Context trials (“XX” in baseline blocks), which we refer to as the reward 

context effect. On the other hand, the SCZ showed a trend-level of reduced reward cue effect 

relative to the HC, as evidenced by less reduction in reaction times (RT) from RCXT (“XX”, zero 

money) to RC (“$20”) within reward blocks. 

The neuroimaging data revealed four main patterns of results. First, in terms of 

sustained context-dependent effect, contrary to my prediction, individuals with SCZ showed 

intact pattern of increased sustained activity during reward contexts in the bilateral DLPFC at a 

group level like the HC. Secondly, in terms of transient trial-by-trial reward-predicting cue-

related activity, different from the HC, patients showed blunted VS activity to the cue regardless 

of its type (“XX” or “$20”). During the target phase, the SCZ showed blunted target-related 

activity in the right DLPFC (BA9) while HC showed reduced activity on RC and RCXT relative to 

BCXT across condition-type. These results might be suggestive of patients’ reduced ability to 

represent reward-related contextual information supported by the right DLPFC in motivationally 

salient situations. Lastly, regarding the relation to negative symptoms in SCZ, in the right 

DLPFC (BA9: +42, +16, +29) where both group showed the same pattern of increased 

sustained activity during reward vs. baseline context, we found that more sustained activity 

during reward vs. baseline blocks at an individual level was associated with lower amotivation 

scores. Also, transient cue-related activity during RC vs. RCXT in the DLPFC was significantly 

associated with individual difference in negative symptoms scores. These results suggest that 

patients’ motivational impairments (i.e., anhedonia, avolition) are closely related to DLPFC 

function to integrate reward-related information in motivationally salient situations. Taken 

together, current behavioral and fMRI results may suggest patients’ abnormalities of both DA-

related right DLPFC and subcortical systems (i.e., ventral striatum) during reward processing 

despite intact behavioral pattern of reward context effect. 
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Introduction 

 Overview.  Schizophrenia (SCZ) is one of the most debilitating neuropsychiatric 

disorders that afflict approximately one in every 100 young people (American Psychiatric 

Association, 1994). Since Kraepelin (Kraepelin, 1919), cognitive and motivational impairments 

have been considered as fundamental clinical features of this illness (Meehl, 2001; Rector, Beck, 

& Stolar, 2005). In SCZ literature, amotivation is generally categorized as a negative symptom, 

which also includes anhedonia, asociality, avolition, alogia, and blunted affect (e.g., (Kirkpatrick, 

Fenton, Carpenter, & Marder, 2006). Negative symptoms often occur before the onset of 

psychosis and persist over the course of illness even when antipsychotic treatment is 

successfully in relieving symptoms such as hallucinations and delusions (e.g., (Horan et al., 

2008; Tarbox et al., 2013)). Notably, converging data show that the negative symptom domain 

(e.g., amotivation and/or apathy) is a prominent predictor of functional outcomes in first-episode 

(e.g., (Evensen et al., 2012; Faerden et al., 2010) and chronic patients (e.g., (Kiang, 

Christensen, Remington, & Kapur, 2003) across the illness course even after accounting for 

cognitive impairments. However, despite the potentially crucial impact of motivational 

impairments on functional outcomes in SCZ, little is known about the neural mechanisms 

underlying negative symptoms in SCZ. 

To date, independent lines of research have shown that individuals with SCZ display 

deficits in cognitive control function (e.g., (Cohen et al., 1999), and both intact and impaired 

aspects of dopamine (DA)-related reward processing (Gold, Waltz, Prentice, Morris, & Heerey, 

2008). Deficits in cognitive control functions are thought to reflect impairments in the lateral 

prefrontal cortex (PFC), which is hypothesized to have dysregulated input from the midbrain 

dopamine (DA) system in SCZ (Braver, Barch, & Cohen, 1999; Cohen & Servan-Schreiber, 

1992); Cohen, 1999). Recent evidence suggests that the lateral PFC plays a crucial role in 

integrating cognitive and reward-related information (Jimura, Locke, & Braver, 2010; Sakagami 

& Watanabe, 2007; Watanabe & Sakagami, 2007). However, despite a body of literature 
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suggesting cognitive control impairments associated with impaired lateral PFC function in SCZ 

(Glahn et al., 2005; Goldman-Rakic & Selemon, 1997; Van Snellenberg, Torres, & Thornton, 

2006), little is known about whether individuals with SCZ can use reward-related information to 

modulate cognitive control function. As such, the purpose of this study is to investigate the 

influences of motivational (monetary) incentives on cognitive control function in SCZ at both 

behavioral and neural levels. 

 Emerging evidence from neurophysiological studies in non-human primates and 

neuroimaging studies in humans suggest that the lateral PFC is involved in encoding reward-

related information, which is used to enhance cognitive control functions (Kouneiher, Charron, & 

Koechlin, 2009; Krawczyk, Gazzaley, & D'Esposito, 2007; Szatkowska, Szymanska, Marchewka, 

Soluch, & Rymarczyk, 2011). This enhanced cognitive control function, potentially via internal 

representations of reward value, is referred to as “motivated” cognitive control. For example, 

many neurons in primate lateral PFC showed differential visual responses to reward-predicting 

cue stimuli compared to other no-reward predicting cue stimuli (Sakagami & Watanabe, 2007). 

Consistent with findings in primates, human neuroimaging studies provide evidence suggesting 

that reward incentives modulate cognitive control function in various task paradigms. For 

example, when healthy individuals performed a conflict-processing task under reward and no-

reward conditions, conflict processing was significantly reduced on reward trials relative to no-

reward trials, as evidenced by faster reaction times during reward conditions (Padmala & 

Pessoa, 2011). Furthermore, reward-predicting cues during the reward condition increased 

neural activity in several brain regions related to cognitive control function, often referred to as 

the Cognitive Control Network (CCN), as well as in reward-related regions including the dorsal 

and ventral striatum. More importantly, increased reward cue-related responses during reward 

versus no-reward trials were associated with decreased conflict-related responses in the medial 

PFC, suggesting that the presence of rewarding cues enhances cognitive control function by 

decreasing conflict processing (Padmala & Pessoa, 2011). Interestingly, more recent work from 
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human neuroimaging provides evidence that the representation of reward-related context 

information impacts cognitive control function. For example, according to (Locke & Braver, 

2008), healthy individuals showed faster and better behavioral performance as measured by the 

AX variant of the Continuous Performance Test (AX-CPT) during reward blocks in which 

incentives were available on some trials compared to when they performed the same task with 

no knowledge of the potential incentives. This effect, as referred to as the reward context effect, 

indicates the reward enhancement of cognitive control in the presence of incentives, which 

facilitates representing and preparatory processing of the upcoming target-related information. 

The reward context effect has been associated with increased sustained activations in several 

cognitive control regions such as the lateral PFC at the neural level (e.g., (Jimura et al., 2010; 

Locke & Braver, 2008). Taken together, this line of prior findings has suggestive evidence for 

the motivational enhancement of cognitive control function both at the behavioral and neural 

levels. 

 However, relatively little is known regarding the effect of motivation on cognitive 

control function in SCZ, despite a body of literature on cognitive control function in this illness 

(e.g., (J. D. Cohen et al., 1999). Mixed and complex findings exist in the reward processing 

literature in SCZ depending on the demands of the tasks used. On the one hand, individuals 

with SCZ show relatively intact reward-related experiences at the time of reward-related 

outcomes, which may not require the internal representation of reward value (Kirsch, 

Ronshausen, Mier, & Gallhofer, 2007; Maher, 1972; Simon et al., 2010; Waltz et al., 2010). For 

example, individuals with SCZ showed intact brain responses during reward receipt (e.g., 

monetary incentive) in tasks with low cognitive requirements in regions such as the ventral 

striatum, midbrain, and frontal cortex (Dowd & Barch, 2012). On the other hand, some studies 

have found that patients with this illness show reduced neural responses to reward-predicting 

cues in reward-related regions such as the ventral striatum (Juckel, Schlagenhauf, Koslowski, 

Filonov, et al., 2006; Kapur, 2003; Kirsch et al., 2007; Robbins, 1976; Schlagenhauf et al., 2008). 
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These findings provide evidence that motivational deficits in SCZ may come from impairment of 

representing reward value internally. Taken together, these recent works suggest the possibility 

that abnormalities of motivational behavior in SCZ may be related to patients’ deficiency of 

integrating reward-related information in the motivational context rather than reward-related 

experiences per se (Gold et al., 2012; Gold et al., 2008; Strauss et al., 2011). 

In this context, the primary aim of this study was to examine the effect of reward on 

cognitive control in SCZ and its relationships to negative symptoms by using a response conflict 

task paradigm previously validated (Padmala & Pessoa, 2011). In this task, compound picture-

plus-word stimuli were presented to participants. The images are either overlaid with a matching 

word (e.g., “BLDNG” on a building; congruent trials), a non-matching word (e.g., “HOUSE” on a 

building; incongruent trials) or a row of five red Xs (e.g., “XXXXX”; neutral trials) (see Figure 1 

and 2 for task stimuli and paradigm). The job of participants was to categorize images as either 

houses or buildings while ignoring the overlaid words. Participants first performed non-incentive 

baseline conditions in the absence of knowledge regarding the future potential for incentives. 

Following the baseline condition, participants performed blocks on which they were told that 

they could win money on some trials by performing fast (faster than their median correct RT in 

the baseline) and accurately. Each trial was then preceded either by a cue (“$20”) indicating that 

a fast and correct response would be rewarded or by a cue (“XX”) indicating no reward would be 

possible on that trial. After the target stimulus, participants received immediate feedback 

regarding the reward points they earned on the trials, as well as their cumulative earning in 

points. Participants were told that they could earn money up to $20 in addition to the base pay 

given that the accumulated money points would be converted to cash at the end of experiment. 

As such, this response conflict task paradigm allowed us to examine whether reward-related 

information can enhance cognitive control function in motivational contexts, by enabling the 

examination of: (1) a reward context effect, isolated by comparing performance and brain 

activity during non-incentive baseline versus no-reward trials (cued by “XX”); and (2) a reward 
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cue effect, isolated by comparing performance during reward (cued by “$20”) versus no-reward 

trials (cued by “XX”). To address these reward effects at neural level, I employed a hybrid 

experimental design, which allowed me to investigate both sustained and transient components 

of  “motivated” cognitive control function in SCZ. Sustained components of the design 

correspond to events that are maintained for the duration of the blocks, as referred to as reward 

context effect. At the same time, transient components of the design correspond to events 

associated with the processing of briefly presented incentive cue within a block, as referred to 

as reward cue effect. Therefore, a mixed event and blocked fMRI design was employed, that 

enabled examination of which aspects of reward effect (cue, context) on cognitive control 

function are impaired in SCZ. Specific aims are as follows: 

 

Specific Aim 1: Behavioral Study 

To examine the behavioral effect of motivational context on conflict processing in SCZ using a 

response conflict processing task (Padmala & Pessoa, 2011)  

Specific Aim 2: Neural Study 

To investigate neural mechanism that lead to impaired reward context effect on cognitive control 

processing.  

Specific Aim 3: Relation to Negative Symptoms 

To examine the relationship between negative symptoms and both behavioral and neural 

indices of the reward context effect.  

 

The first two sections below contain an overview of the literature in each area related to 

current study from both animal and healthy human studies: (i) cognitive control function and (ii) 

the reward enhancement of cognitive control function (“motivated” cognitive control) in the 

lateral PFC. The next third and fourth sections review SCZ research in each relevant area: (iii) 

dysfunctional context processing and (iv) both intact and impaired aspects of reward processing 
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in SCZ. 

I. Cognitive Control Function In the Lateral Prefro ntal Cortex   

 Cognitive control refers to a resource-limited cognitive system that provides top-down 

support for task-relevant processes in accordance with internal goals (Miller & Cohen, 2001). 

Most voluntary and complex human behaviors require a high-degree of cognitive control 

function, which allows us to represent task-relevant goal internally and inhibit task-irrelevant 

information (Miller & Cohen, 2001). Several studies using functional Magnetic Resonance 

Imaging (fMRI) have related cognitive control function to activity in several brain regions, that is 

often referred to as the Cognitive Control Network (CCN). The CCN consists of several 

subregions of the lateral PFC including dorsolateral PFC, anterior cingulate cortex, dorsal 

premotor cortex, anterior insular cortex, inferior frontal junction, and posterior parietal cortex 

(Cabeza & Nyberg, 2000; Cole & Schneider, 2007; Duncan & Owen, 2000; Rolls & Grabenhorst, 

2008). 

 The PFC, specifically DLPFC, has been long thought to be involved in processing of 

non-emotional “context” information, or context processing (Cohen & Servan-Schreiber, 1992; 

MacDonald, Goghari, et al., 2005; Servan-Schreiber, Cohen, & Steingard, 1996). Since the term, 

“context” was first introduced by (Pribram, 1971), a robust literature provides evidence showing 

the involvement of the DLPFC in processing of cognitive “context”  via top-down regulation 

(Braver et al., 1999; Braver & Cohen, 1999; MacDonald, 2008; MacDonald & Carter, 2003; 

MacDonald, Goghari, et al., 2005; Miller & Cohen, 2001). To be specific, the “context” 

information is defined as the “information that has to be held actively in mind in such a form that 

it can be used to mediate an appropriate behavioral response.” (p.1105, (Servan-Schreiber et 

al., 1996)). Thus, context processing is a crucial component of cognitive control since it requires 

flexible behavioral adjustments along with internal representation of task-relevant goal. 
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II. Reward Enhancement of Cognitive Control Functio n in the Lateral PFC 

A. Transient Cue-Driven Effects On Cognitive Contro l 

 Evidence from later neurophysiological studies in nonhuman primates and neuroimaging 

works in humans suggest that the lateral PFC is involved in processing reward-related context 

as well as cognitive context information (Barch, Moore, Nee, Manoach, & Luck; Kouneiher et al., 

2009; Sakagami & Watanabe, 2007). The lateral PFC receives projections from sensory areas 

and sends outputs to the higher-order motor cortices such as premotor and supplementary 

motor areas (Tompkins, Goldman, & Axelrod, 1995). In addition, the lateral PFC also receives 

projections from other parts of brain such as the orbitofrontal cortex (OFC) (Peters & Buchel, 

2010; Rolls & Grabenhorst, 2008) and the striatum that are thought to help encode neural 

representation of value (Kimura, Yamada, & Matsumoto, 2003; Samejima, Ueda, Doya, & 

Kimura, 2005). According to single unit studies in the lateral PFC with nonhuman primates, the 

majority of neurons in the lateral PFC encode the representation of the response relating to 

reward value (Sakagami & Watanabe, 2007). For example, when monkeys were trained to 

make go or no-go responses to the physical features of cue stimulus such as colors, most 

neurons in the lateral PFC showed differential visual responses only to rewarding cues 

regardless of the physical features of the cue stimulus (Watanabe & Sakagami, 2007). 

 In line with neurophysiological studies in nonhuman primates, more recent studies in 

humans provides strong evidence that reward-predicting cues exert enhancing effects on 

cognitive control functions thought to be supported by the lateral PFC across various cognitive 

control paradigms. For example, a task-switching paradigm is one of the frequently used 

cognitive control function tasks since reprioritizing task goals during task switching heavily 

depends on cognitive control function (Kiesel et al., 2010). The magnitude of the switch cost 

when task sets change is a good index of cognitive control (Kleinsorge & Rinkenauer, 2012).  

In (Savine, Beck, Edwards, Chiew, & Braver, 2010), healthy individuals completed a cued task-

switching paradigm with knowledge about potential monetary incentives for their correct and fast 
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responses. Healthy individuals’ performance was faster on incentive trials relative to no-

incentive trials, showing decreased switch costs, referred to as the incentive cue effect.  

The demand on cognitive control function increases in situations where there are 

competing stimulus dimensions in tasks. In typical conflict processing paradigms, for example, 

the Stroop Color and Word test (Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 2006), task-

irrelevant stimuli are usually presented to participants, which produces conflicts with task-

relevant stimuli  (e.g., naming the word “red” printed in blue colors). A wealth of behavioral and 

neuroimaging data in humans provides strong evidence showing that incentive cue can 

enhance cognitive control by decreasing conflict processing on reward trials (Krebs, Boehler, & 

Woldorff, 2010).  For example, in neuroimaging work by (Padmala & Pessoa, 2011), healthy 

individuals performed a conflict processing task both on reward trials cued by “$20” or no-

reward trials cued by “$0” with the instruction saying that correct and fast performance on “$20” 

trials would be rewarded by getting additional money up to $20. Consistent with prior studies 

showing reward enhancement of cognitive control (Engelmann, Damaraju, Padmala, & Pessoa, 

2009; Small et al., 2005), they found a reward cue-related facilitation effect on cognitive control 

both at the behavioral and neural levels. Conflict was reduced on reward trials relative to no-

reward trials, as evidenced by faster response time (Padmala & Pessoa, 2011). At the neural 

level, the incentive cue-related neural responses were increased in several fronto-parietal 

regions including reward-related subcortical regions such as the nucleus accumbens and 

caudate. Furthermore, conflict-related responses in the medial PFC during the reward versus 

no-reward conditions were decreased (Padmala & Pessoa, 2011). 

 In addition to conflict processing and task-switch processing, monetary incentives 

enhance visual attention processing via top-down control (Easterbrook, 1959; Engelmann & 

Pessoa, 2007; Mogg, Bradley, Hyare, & Lee, 1998). That is, cues associated with reward value 

capture attention, which leads to attentional modulation, as evidenced by decreased reaction 

time and enhanced neural activity in attentional processing networks (e.g., (Bradley, Mogg, 
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White, Groom, & de Bono, 1999; Pourtois & Vuilleumier, 2006). For example, (Small et al., 

2005) conducted a covert attention task (Posner, 1980) under three incentive conditions: win-

money, lose-money, and neutral. In all three conditions, the presentation of targets was 

preceded by a directional cue (valid trial), a cue to the opposite side (invalid trial), or neutral, 

non-directional (central) cues. The job of participants was to respond to a target stimulus as 

soon as possible (e.g., peripheral Xs) but not to non-target stimulus (e.g., +s). The neutral 

condition was always performed first so that the mean reaction time to non-directional trials 

could be used as a cut-off. In the win-money condition, participants got monetary incentives for 

faster responses than this cut-off while in the lose-money condition, they were given $25, base 

money and lost money for slower responses than the cut-off. As a result, they found that 

monetary incentives showed a facilitation effect on directionally cued trials, as participants were 

faster on directionally cued trials in the incentive conditions compared to neutral condition, with 

no significant differences in reaction times between win- versus lose-money conditions for any 

of the trial types (Small et al., 2005). The degree to which the valid cue enhanced performance 

(e.g., faster reaction times on directional cues compared to non-directional cues) was 

associated with neural responses within the attentional network including the posterior cingulate 

cortex and medial prefrontal cortex (Small et al., 2005). Taken together, prior findings from 

neurophysiological studies in nonhuman primates and neuroimaging works in human provide 

ample evidence showing that reward-predicting cues have salient motivational value, which 

leads to facilitating task performance across various cognitive control function task paradigms. 

 

B. Sustained State-Dependent Context Effects On Cog nitive Control  

 While a wealth of nonhuman and human studies provides strong evidence suggesting 

incentive cue-related facilitation effect on cognitive control, as reviewed above, state-dependent 

incentive context effects has been relatively less explored until recent years (e.g., (Pessoa, 

2009). Interestingly, reward incentives have been recently observed to modulate task 
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performance in a sustained fashion as well as in a transient cue-driven fashion. In other words, 

reward incentives have been associated with a sustained increase in lateral PFC activity in 

regions implicated in cognitive control functions (Engelmann, Damaraju, Padmala, & Pessoa, 

2009; Jimura et al., 2010; Locke & Braver, 2008; Pessoa, 2009). For example, when accurate 

working memory performance on tasks such as the n-back tasks was associated with high 

monetary incentives, there was an increase in sustained activity in the DLPFC [Broadmann area 

(BA) 9/46] observed in healthy individuals compared to when the same task was associated 

with no monetary reward (Pochon et al., 2002). These findings suggest that cognitive control 

functions supported by the lateral PFC are modulated by the representation of reward-related 

context information during an ongoing task. In other work by (Engelmann et al., 2009) using a 

Posner-type task in which cues indicated the location of the face target stimulus in 70% of the 

trials, motivation was manipulated in a blocked fashion by varying the valence (e.g., winning, 

avoiding-loss), and the magnitude of a monetary incentive associated with task performance 

(e.g., winning of $1, $4, or avoid losing $2.5, and $0). The job of participants was to report the 

target location as quickly and accurately as possible by pressing a button using either index 

finger when the target was on the left or using their middle finger when the target was on the 

right. Consistent with prior findings, a greater magnitude of incentives led to cue-related 

response modulations. Importantly, (Engelmann et al., 2009) also found that sustained neural 

responses through the block increased as a function of the magnitude of incentive, referred to 

as context effect. The sustained state-related context effects in several brain regions are 

associated with attentional processing, suggesting that both transient and sustained fMRI 

signals modulate task performance (Engelmann et al., 2009). 

 More recent work by (Jimura et al., 2010) extended prior findings by showing that even 

no-reward trials can lead to better task performance when embedded in the context of being 

able to earn rewards. To be specific, when healthy individuals completed a working memory 

task under no-reward versus a reward context in which the magnitude of reward randomly 
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varied (high, low, or none), they showed faster performance on reward trials relative to no-

reward trials, consistent with prior findings (e.g., (Padmala & Pessoa, 2011). Interestingly, their 

performance even on neutral trials in the reward condition (no reward) was faster compared to 

the same trials conducted in non-incentive baseline condition with no knowledge of monetary 

incentives, which is referred to as the incentive context effect. Importantly, this behavioral 

incentive context effect was associated with an increase in the activity in the right lateral PFC 

(BA 9/46) that was sustained across both reward and non-reward trials in the task blocks 

(Jimura et al., 2010).  

 Taken together, along with the evidence suggesting that the lateral PFC (BA 4/96) 

supports context processing, existent findings suggest that the lateral PFC integrates task 

information imbued with reward value in both a sustained and transient fashion when the 

information is internally represented, maintained, and updated depending on task demand 

(Engelmann et al., 2009; Gilbert & Fiez, 2004; Locke & Braver, 2008; Pessoa, 2009). To be 

specific, the presence of reward-predicting cues is associated with transient neural activity in the 

lateral PFC and other reward-related regions.  However, more recent work also demonstrates 

that the representation of reward-related context information modulates cognitive control 

function through an increase in sustained activity in the lateral PFC, which persists across the 

entire reward condition (both reward and non-reward trials) (Engelmann et al., 2009; Gilbert & 

Fiez, 2004; Locke & Braver, 2008; Pessoa, 2009). These findings suggest a possibility that 

reward value may modulate cognitive control via a common neural mechanism of context 

processing thought to be supported by the lateral PFC. 

C. Dysfunctional Context Processing in Schizophreni a 

In SCZ literature, a very robust literature shows that individuals with SCZ have cognitive 

impairments in a number of domains including working memory (Forbes, Carrick, McIntosh, & 

Lawrie, 2009; Lee & Park, 2005), episodic memory (Achim & Lepage, 2005) and inhibition (see 

(Westerhausen, Kompus, & Hugdahl, 2011), with recent meta-analyses evidence (see 
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(Fioravanti, Bianchi, & Cinti, 2012) for a meta-analysis of general cognitive deficits in SCZ, 

reviewed in (Barch & Ceaser, 2012; Burbridge & Barch, 2007; Cohen et al., 1999; Cohen &  

Servan-Schreiber, 1992; Servan-Schreiber et al., 1996; Vohringer et al., 2013) and symptoms of 

SCZ are associated with a disturbance of cognitive control function in the DLPFC (Braver et al., 

1999; Braver & Cohen, 1999; Kerns, Nuechterlein, Braver, & Barch, 2008; Kravariti, Dixon, Frith, 

Murray, & McGuire, 2005; Mahurin, Velligan, & Miller, 1998). Many of these cognitive 

impairments seem to reflect deficits in cognitive control due to abnormal dopamine function in 

the lateral PFC (e.g., (Braver et al., 1999; Cohen & Servan-Schreiber, 1992)). More specifically, 

it has been argued that the cognitive control deficits especially reflect deficits in connect 

processing, or the ability to represent and maintain non-emotional context information 

necessary to guide upcoming goal-directed behavior, as referred to as context processing 

(Barch, Carter, MacDonald, Braver, & Cohen, 2003; Braver et al., 1999; Cohen et al., 1999; 

McClure, Barch, Flory, Harvey, & Siever, 2008).  

Context processing in SCZ has been widely investigated using several task paradigms. 

A clear demonstration of context processing abnormalities can be found in language 

performance for SCZ. When early sentence components provide context information, which 

affects the comprehension of later sentence components, individuals with SCZ make poor use 

of context information (Maher, 1972). In particular, poor use of context in SCZ is found to be 

more pronounced when there is a temporal range over which individuals with SCZ have to 

process linguistic context (Salzinger, Portnoy, & Feldman, 1964). For example, in a lexical 

disambiguation task (Cohen et al., 1999), pairs of sentences were presented to participants who 

were then asked to respond to a visually presented probe. The probe was a letter string (e.g., 

SH_FT) that could be completed to make either of two words (e.g., dominant: SHIFT, 

subordinate: SHAFT). Given that two possible words have different frequencies (dominant 

versus subordinate meaning, the less frequent meanings), the completion of the letter string is 

determined by the context provided by one of the two preceding sentences favoring either the 
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dominant (more frequent) or the subordinate (less frequent) completion. Furthermore, there was 

a delay manipulation by presenting context in either the first or the second of the two preceding 

sentences. Therefore, it is expected that persons with impaired context processing would show 

less context-dependent interpretation of the probe, especially when the context occurred in the 

first sentence, requiring maintenance of that context across the second sentence. As predicted, 

several studies found that individuals with SCZ had fewer context-mediated responses in both 

the subordinate and dominant context conditions (e.g., (Cohen et al., 1999; Cohen & Servan-

Schreiber, 1992; Cohen & Servan-Schreiber, 1992). Further, the deficits of context processing 

were greater when the delay between context and probe is lengthened. 

 In a similar vein, the expectancy AX task modified by (J. D. Cohen et al., 1999) from the 

original AX Continuous Performance Test (AX-CPT; (Servan-Schreiber et al., 1996) has been 

frequently used to examine context processing in SCZ (e.g., (Cohen et al., 1999; MacDonald, 

2008; MacDonald, Pogue-Geile, Johnson, & Carter, 2003; McClure et al., 2008; Servan-

Schreiber et al., 1996). In this task, participants were presented with a series of letters one at a 

time and then, asked to make a target response to the letter X only when it follows the letter A. 

Therefore, the cue, whether an A or non-A letters such as B, serves as the context that should 

be internally represented and maintained for a subsequent target response decision. However, 

due to the high proportion of the AX trials (leading to the expectation of an X probe following an 

A cue), people with intact context processing ability tend to make more errors on AY trials 

relative to BX trials. In contrast, people with impaired context processing, which is hypothesized 

to be present in SCZ, tend to make more errors on BX trials than AY trials (MacDonald, Goghari, 

et al., 2005; Servan-Schreiber et al., 1996), as they are less able to use the context information 

provided by the B (i.e., non-A) cue to inhibit a tendency to want to respond target to the X. By 

manipulating the delay between contextual cue and response, a body of studies using the AX-

CPT confirmed a specific deficit of processing context information in SCZ when the task-

appropriate response was context-dependent and there was a temporal delay between 
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contextual cue and response, which required individuals with SCZ to maintain the context 

internally represented over time (Cohen et al., 1999; MacDonald, 2008; MacDonald et al., 2003; 

McClure et al., 2008; Servan-Schreiber et al., 1996). Furthermore, behavioral deficits in context 

processing have been consistently found to be associated with decreased activity in the DLPFC 

in individuals with SCZ (Cohen et al., 1999; MacDonald, Carter, et al., 2005) and their relatives 

(MacDonald et al., 2003).  

 The Dot Pattern Expectancy task (DPX) is a variant of the AX-CPT optimized for clinical 

use. The format of the DPX is the identical to that of the AX-CPT except that instead of letters, 

visuospatial stimuli comprised of specific dot patterns are used as cue-probe stimuli (Barch et 

al., 2009; MacDonald, Goghari, et al., 2005). Compared to the AX-CPT, the DPX has fewer 

trials and shorter inter-stimulus interval, which makes easier to administer in clinical settings. 

Consistent with prior work using the AX-CPT, work using the DPX has found that individuals 

with SCZ show a specific deficit of context processing (e.g., more errors on BX trials than AY 

trials) with the evidence of good reliability (Chung & Barch, 2011; Henderson et al., 2012; Jones, 

Sponheim, & MacDonald, 2010; MacDonald, Goghari, et al., 2005).  

 Taken together, this line of studies provides strong evidence that individuals with SCZ 

have deficits in representing and maintaining non-emotional context information over time, 

associated with reduced activity in the lateral PFC. However, despite emerging evidence that 

representation of reward-related context information can enhance cognitive control function in 

the lateral PFC, it has been unexplored whether patients with SCZ can represent reward-related 

context information during reward processing.  

IV. Intact and Impaired Aspects of Reward Processin g In Schizophrenia: Behavioral and 

Neural Evidence 

 With recent increased attention on the relevance of reward processing to positive (Barch 

et al.; Koch et al., 2010) and negative symptomatology of SCZ (e.g., (Gold et al., 2012; Gold et 

al., 2008)); see (Kring & Barch, 2014) for a recent review), the extant findings provide mixed 
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evidence suggesting both intact and impaired aspects of reward processing in SCZ. Reward 

processing comprises multiple dissociable psychological components of hedonic impact, “liking,” 

motivational impact of “wanting,” and learning (predictive associations and cognitions) incentive 

salience” (Berridge & Robinson, 1998, 2003). In the next sections, I summarize each relevant 

area of reward processing with behavioral and neural evidence. 

A. Relatively Intact “Liking” Pleasure in SCZ 

 The “hedonics or liking” component of reward processing refers to the ability to enjoy 

pleasurable experiences or responses to rewarding stimulus or event in the moment (e.g., 

(Barch & Dowd, 2010), see (Kring & Barch, 2014; Kring & Elis, 2013) for a recent review). 

Contrary to limited experiences of positive emotion in SCZ measured by interview-based clinical 

assessments (e.g., Horan et al., 2006), interestingly, converging data from behavioral studies 

shows that individuals with SCZ have similar pattern of intact pleasurable experience and/or 

responses to various pleasurable stimuli as healthy controls did (e.g., (Burbridge & Barch, 2002, 

2007), see (Cohen & Minor, 2010; Yan et al., 2012) for recent meta-analysis).  

In line with findings from behavioral studies (Kring & Moran, 2008), neuroimaging work 

using various reward task paradigms suggests that at least some aspects of “liking” experience 

appear not to be impaired as expected, as proven by intact neural responses associated with 

the magnitude of secondary rewards (e.g., monetary outcomes) regardless of typical or atypical 

antipsychotic medication status (Kirsch et al., 2007; Simon et al., 2010; Waltz et al., 2010; 

Weiler, Bellebaum, Brune, Juckel, & Daum, 2009), despite some non-monetary studies showing 

reduced responses to primary rewards (e.g., juice deliveries) (e.g., (Waltz et al., 2009)) or 

emotionally-evocative olfactory stimuli (e.g., pleasant or unpleasant odors) in the insula and the 

orbital frontal cortex (OFC) (e.g.,(Plailly, d'Amato, Saoud, & Royet, 2006; Schneider et al., 2007). 

For example, the Monetary Incentive Delay (MID) task (Knutson, Fong, Adams, Varner, & 

Hommer, 2001) is a commonly used task designed to measure reward processing associated 

reward anticipation and receipt. In the MID task, different types of visual cues (shapes) predict 
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monetary reward (gain), punishment (loss), and no monetary outcome depending on a rapid 

performance on a simple reaction time by pressing a button during the brief presentation of a 

visual target stimulus. Individuals with SCZ showed normal sensitivity to the magnitude of 

monetary outcomes (e.g., $2.50, $10. $15) in the ventral striatum to healthy controls (Waltz et 

al., 2010).  

 However, as (Dowd & Barch, 2012) pointed out, the majority of task paradigms used in 

reward processing literature include cognitive demands to some extent, which may have 

confounded patients’ pure reward-related responses. In this context, they extended prior 

findings by using a passive Pavlovian reward paradigm in which patients passively viewed 

reward-predicting cues followed by reward outcomes (e.g., monetary incentives) (Dowd & Barch, 

2012). They found that patients with SCZ exhibited intact neural responses in reward-related 

regions such as bilateral caudate at the time of monetary receipt with no requirement of 

response selection and execution (Dowd & Barch, 2012) suggesting that patients have intact 

reward-related experiences in the moment per se. Consistent with these findings, a meta-

analysis of neuroimaging work about emotional processing in SCZ also shows that individuals 

with SCZ show comparable amount of activation in the amygdala during positive vs. baseline 

conditions compared with the HC (Anticevic, Van Snellenberg, et al., 2012). 

 

B. Impairments of “Wanting” or Anticipatory Pleasur e in SCZ 

 If individuals with SCZ experience relatively intact hedonic experience “in-the-moment” 

like other individuals without SCZ, as reviewed above, where do motivational impairments in 

SCZ come from? Hedonic responses to rewarding stimulus in the moment are not enough to 

lead to motivated goal-directed behaviors. Another key component of reward processing that 

appears to show more pronounced impairments in SCZ is “wanting” or anticipatory pleasure (i.e., 

reward anticipation in the future). The animal literature distinguishes “liking” (“in-the-moment” 

pleasure) from “wanting”/anticipatory pleasure, which presumably comes from the internal 
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representation of motivational incentive value mediated by DA systems (Berridge, 2004; 

Berridge & Robinson, 1998, 2003).  

Different from relatively hedonic reward experiences or responses in SCZ at a group 

level, emerging evidence from several neuroimaging work suggests impairments of “wanting” 

/anticipatory pleasure in SCZ (reviewed in (Kring & Barch, 2014). For example, several 

neuroimaging studies using a variant of monetary incentive delay task in comparison of the HC 

found less ventral striatal activation during the presentation of reward-predicting cues in 

unmedicated individuals with SCZ (Esslinger et al., 2012; Ghuman, van den Honert, & Martin, 

2013; Juckel, Schlagenhauf, Koslowski, Filonov, et al., 2006; Juckel, Schlagenhauf, Koslowski, 

Wustenberg, et al., 2006; Schlagenhauf et al., 2009) as well as in those with typical 

antipsychotic mediations (Juckel, Schlagenhauf, Koslowski, Filonov, et al., 2006; Kirsch et al., 

2007; Schlagenhauf et al., 2008). In another reward task paradigm, a prediction-error task, 

different card stimuli were used as reward-predicting cues and reward stimulus (e.g., money) 

was either presented or omitted. Thus, participants’ predictions could be either correct or 

incorrect. Using this task paradigm, (Morris et al., 2012) found that neural activity in the ventral 

striatum of individuals with SCZ taking atypical antipsychotics was not driven by expected or 

unexpected reward value while neural activity in the same region of healthy controls 

differentiated between expected and unexpected events, suggesting that patients’ attenuated 

prediction error may reflect a deficiency of representing reward value (Morris et al., 2012). 

Similar pattern was observed in unmediated individuals with SCZ showing reduced VS 

activation elicited by prediction errors (Schlagenhauf et al., 2013). 

Importantly, an increasing number of studies found the relationship between negative 

symptom severity of SCZ and reduced ventral striatum response to reward predicting cues (e.g., 

(Gold et al., 2012). For example, reduced neural activity in the ventral striatum during reward-

predicting cues versus neutral cues was inversely correlated with the severity of negative 

symptoms, suggesting that the greater in the severity of negative symptoms, the more decrease 
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in neural response in the reward-related brain regions (Juckel, Schlagenhauf, Koslowski, 

Filonov, et al., 2006; Simon et al., 2010; Waltz et al., 2010). In more recent work, even when 

patients were asked to passively view reward-predicting cues without any requirements, 

patients having high anhedonia symptoms showed reduced activity in the ventral striatal and 

ventromedial PFC during reward anticipation (Dowd & Barch, 2012), which may come from a 

deficiency of representing reward value in SCZ. Taken together, these results suggest a 

possibility that negative symptoms of SCZ, in particular, anhedonia and/or avolition may be 

related to a specific aspects of reward processing, “wanting” pleasure, not necessarily relating 

to reward-related experiences per se (Gold et al., 2012). 

C. Impairments In Reward-driven Learning Towards Go al-directed Behavior 

Even though people are motivated by having positive prediction of upcoming stimuli, this 

motivational state does not necessarily lead to goal-directed behavior that maximizes reward or 

positive outcomes. The goal-directed behavior requires computation of reward value and flexible 

adjustment of action plans by updating internalized reward value that is associated with better-

than-expected outcomes given a reward-related context. 

In addition to impaired reward prediction in SCZ, as summarized above, in the past 

decade, there is has been a resurgence of interest in the relevance of reinforcement learning 

deficits and symptoms of SCZ in the literature (e.g., (Barch & Dowd, 2010; Gold et al., 2012; 

Heinz & Schlagenhauf, 2010)). To be specific, when individuals with SCZ are asked to translate 

internalized reward value to their response selection and execution towards goal-directed 

behavior, individuals with this illness exhibit impaired reward processing, as evidenced by their 

difficulty in choosing a stimulus previously associated with a higher reward value (Gold et al., 

2012; Strauss et al., 2011; Waltz, Frank, Robinson, & Gold, 2007; Weiler et al., 2009). For 

example, (Gold et al., 2012) used a probabilistic reinforcement learning paradigm, in which 

participants were presented four pairs of landscape items, one pair at a time of which two pairs 

involved monetary gain and the other pairs involved loss-avoidance learning. The correct choice 
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of the optimal stimulus in rewarding pairs was associated with probabilistic outcome (e.g., 

money receipt) while the correct choice in the loss-avoidance pairs results in no reward (a zero 

outcome). 

Following the initial acquisition phase of the task with feedback about their response, 

participants completed a transfer test phase in which novel pairs were included in addition to the 

original pairs without additional feedback. Importantly, some items of novel pairs were items 

previously associated with monetary gain and the other items were items previously associated 

with loss-avoidance pair. The job of participants was to choose the “best” item in the pair based 

on their earlier learning. Therefore, if participants are sensitive to the expected reward outcome 

of their response execution, they should show preference for the action with monetary gain over 

the action with a zero outcome. They found that patients with high negative symptoms had less 

tendency to learn from gains relative to learning loss-avoidance whereas healthy controls and 

patients with low negative symptoms showed to some extent preference for learning from gains 

(Gold et al., 2012).  

Summary 

In parallel with a body of work suggesting abnormalities in representing and processing 

non-emotional context information in SCZ, which is crucial component of cognitive control 

supported by the lateral PFC, emerging evidence suggests that individuals with SCZ show 

impairments in specific components of reward processing. Surprisingly, individuals with SCZ 

show relatively intact reward-related experiences (“liking”) to a range of rewarding outcomes, 

including monetary incentives. Specifically, when reward outcomes are presented in the 

external environment and do not require internal representations, individuals with SCZ show 

intact reward-related experiences at a group level (Heerey, Bell-Warren, & Gold, 2008). 

However, at an individual level, those with high negative symptoms, particularly, those with 

anhedonia and/or avolition, show impairments of processing associated with transferring 

internalized reward value into learning and action execution (e.g., (Gold et al., 2012). These 



 20

prior behavioral findings suggest that motivational deficits in SCZ may reflect, at least in part, a 

deficiency of representing reward-related context information. However, although there are 

several behavioral studies suggesting the association between deficits in representing reward 

value with negative symptoms (Gold et al., 2012), it is not known whether patients with SCZ can 

use internally represented reward value to modulate cognitive control function at the neural level 

although there are some behavioral studies showing relatively intact reward-related facilitation 

effect on cognitive control function measured by the Wisconsin Card Sorting task in SCZ (Green, 

Satz, Ganzell, & Vaclav, 1992; Summerfelt et al., 1991). More importantly, there is no evidence 

as to whether individuals with SCZ can represent reward-related context information in the 

lateral PFC during cognitive control function. Therefore, the current study was designed to test 

specific questions as described below to fill the gap in current literature. In the next section I 

present my hypotheses that are relevant to each specific aims. 

Presentation of Specific Aims and Hypotheses 

Specific Aim 1: To examine the behavioral effect of motivational context on conflict processing 

in SCZ using a response conflict processing task (Padmala & Pessoa, 2011).  

Hypothesis 1: I predicted that individuals with SCZ would show a deficiency in reward 

enhancement of cognitive control function in the presence of incentive-predicting information, as 

evidenced by reduced reward context effects compared to the HC and described in more detail 

below. On the other hand, I expected that individuals with SCZ would show normal reward-

related responses to a reward cue itself, as shown by incentive effect at a similar level to the HC 

during reward-cue (cued by “$20”) versus reward-context (cued by “XX”) trials.  

Specific Aim 2: To investigate neural mechanisms that lead to impaired reward context effect on 

cognitive control processing.  

Hypothesis 2 (a): I predicted that individuals with SCZ would show reduced sustained 

neural activity in the DLPFC [Brodmann area (BA) 9/46] during reward versus baseline blocks 

compared to the HC group.  
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Hypothesis 2 (b): In contrast, I expected that individuals with SCZ would display intact 

transient neural activity in reward-related brain regions such as the ventral striatum in response 

to “$20” cues and in response to receipt of money. 

Specific Aim 3: To examine the relationship between negative symptoms and both behavioral 

and neural indices of the reward context effect.  

Hypothesis 3 (a): I predicted that individuals with SCZ having greater anhedonia and/or 

amotivation symptom severity would show a reduced reward context effect, although they might 

still show intact reward cue effect.  

Hypothesis 3(b): I predicted that individuals with SCZ having greater anhedonia and/or 

amotivation symptom severity would show reduced transient trial-by-trial neural activity in the 

ventral striatum during “$20” vs. “XX” in reward conditions. 

Hypothesis 3(c): I expected that individual differences in anhedonia and/or amotivation 

symptoms in SCZ would be negatively correlated with brain activations in the DLPFC during 

reward versus baseline conditions.  
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Methods 

Participants and Recruitment Information. All participants were recruited through the 

Conte Center for the Neuroscience of Mental Disorders at Washington University in St. Louis to 

participate in return for payment ($25/h). In addition to this base payment, they were also given 

a maximum of $20 reward money depending on their behavioral performance on reward trials. 

The inclusion criteria were: 1) age 18-50 years and 2) ability to give informed consent. 

Exclusion criteria were: 1) DSM-IV substance abuse or dependence within the past six months 

except nicotine; 2) DSM-IV major depression or dysthymia in the past year; 3) past head injury 

with neurological sequelae or loss of consciousness; 4) DSM-IV mental retardation, and 5) any 

contraindication to MRI including pregnancy, any metallic object in the body, and claustrophobia, 

etc. Participants’ diagnoses were based on a Structured Clinical Interview for the DSM-IV-TR 

(First, Spitzer, Gibbon, & Williams, 2001) which was conducted by a Masters-level clinician. 

Using these criteria, 40 individuals with SCZ and 28 HC were recruited into the current study. Of 

these 68, four individuals with SCZ and one HC failed to pass our fMRI quality control measures 

and were not included for further analysis, as described in more detail below. Therefore, 36 

individuals with SCZ and 27 HC were included for the main analyses. All individuals with SCZ 

were stable outpatients with DSM-IV-TR schizophrenia or schizoaffective disorder, taking stable 

antipsychotic medication doses for at least two weeks before participating in the current study. 

Of the 36 participants with SCZ, 25 (69.4%) were taking atypical antipsychotic medication, 3 

(8.3%) were on a combination of both typical and atypical, and 4 (11.1%) were not taking any 

antipsychotic medication. All participants across groups were similar on sex, age, and parental 

education (see Table 1 for clinical and demographic characteristics of participants). On both the 

days of clinical assessment and on the day of scanning, participants received drug screening. If 

an individual tested positive for marijuana, cocaine, amphetamine, methamphetamine, or 

opiates, he or she was not allowed to participate in this study. Written informed consent was 

obtained from all participants, and all procedures were approved by the Washington University 
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Human Research Protection Office.  

Clinical Rating Scales. Clinical symptoms including negative symptoms were rated using 

the Scales for the Assessment of Negative Symptoms (SANS; (Andreasen, 1983b)), the Scale 

for the Assessment of Positive Symptoms (SAPS; (Andreasen, 1983a)) by a psychologist or a 

trained master’s level clinician. The positive and negative symptom domain scores were 

summarized using the following symptom domain scores (Andreasen, Arndt, Alliger, Miller, & 

Flaum, 1995): 1) positive symptoms- hallucinations and delusions and 2) negative symptom – 

alogia, anhedonia, avolition, affective flattening, and attentional impairment. 

In addition, the Brief Negative Symptom Scale (BNSS; (Kirkpatrick et al., 2011) was also 

included to investigate the relationship between individual differences in anhedonia and/or 

avolition and neural responses during sustained context effect. This newly developed clinical 

measure which assesses 5 negative symptoms such as blunted affect, alogia, asociality, 

anhedonia, and avolition using 13 items, consistent with the recommendation of the 2005 

National Institute of Mental Health (NIMH) and the Measurement and Treatment Research to 

Improve Cognition in Schizophrenia (MATRICS) Consensus Development Conference on 

Negative Symptoms (Kirkpatrick et al., 2006). It has been demonstrated to have good 

psychometric properties including inter-rater and test-retest reliability, convergent and divergent 

validity (Daniel, 2013). Importantly, the BNSS is designed to differentiate consummatory vs. 

anticipatory aspects of anhedonia by including two items asking about experience of pleasure 

during activities and one item about expected pleasure from future activities. This allows me to 

test two separate relationships between consummatory, “liking” pleasures vs. anticipatory, 

“wanting” pleasure and brain activity. That is, I can test the relation between individual 

differences in the severity of consummatory, “liking” pleasure and transient neural activity as a 

function of reward in ventral striatum. Also, at the same time, I can separately test the 

hypothesis that individual difference in the severity of anticipatory, “wanting” pleasure, as 

reviewed in the Introduction, would be negatively associated with sustained neural activity 
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during reward vs. baseline blocks in the DLPFC.  

Individual-difference in Self-reports of Anhedonia. In addition to the clinical measures 

described above, all participants also completed self-reported measures, Chapman Social and 

Physical Anhedonia Scales (Chapman, Chapman, & Raulin, 1976) to examine individual 

differences in the severity of anhedonia/avolition symptoms. The Revised Physical Anhedonia 

Scale (Chapman & Chapman, 1978) consists of 61 items, which measure self-reported ability to 

experience pleasure from physical stimuli such as food and sex (e.g., “The beauty of sunsets is 

greatly overrated”). The Revised Social Anhedonia Scale (Eckblad, Chapman, Chapman, & 

Mishlove, 1982) is a 40-item self-report scale to measure the ability of experiencing pleasure 

from non-physical stimuli such as talking and exchanging expressions of feelings in social 

interactions (e.g., “Getting together with old friends has been one of my greatest pleasures”). In 

correlation analysis using individual difference in negative symptoms, I converted scores on 

each subtest into a z-score (i.e., The Social and Physical Chapman Anhedonia), and then 

combined two z-scored scores into one composite score, as the mean and standard deviation 

for each subtest are different. In this way, the “standardized” score had an equal weight from the 

raw scores on each subtest. 

Stimuli and Task Paradigm. A response conflict task originally developed by (Padmala & 

Pessoa, 2011) was modified for the use of fMRI scanner in current study. As presented in 

Figure 1, a mix of images-plus-words was used for stimuli. The images were either of a house 

or a building, and each image was overlaid with a word to create congruent, incongruent and 

neutral trials. For example, a congruent trial is one in which an image is presented with a 

matching word (e.g., a house picture with “HOUSE”, building picture with “BLDNG”). However, 

an incongruent trial is one in which an image is presented with a conflicting (e.g., a house 

picture with “BLDNG”, a building picture with “HOUSE”). Neutral trials are ones in which an 

image is presented with “XXXXX”. Each participant performed six runs, which included two 

baseline and four reward runs. Each run contains six blocks, three of which were task blocks 
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and three of which were fixation blocks. Each fixation block lasted 30 seconds (see Figure 2 (a) 

for schematic presentation of a response conflict task). 

Figure1: 

Task Stimuli  

 

                                        
 

                         
                  Note. A mix of either a house or building images and overlaid letters were used to 
create three different task trial types: congruent, neutral, and incongruent trials. 
         
 
As briefly described above, participants first performed non-incentive baseline conditions with 

no knowledge of the potential monetary incentives to be earned on subsequent task blocks and 

then, performed four reward blocks. In both conditions, participants were asked to ignore the 

letter and pay attention to the picture by pressing “1” for a house or “2” for a building on a 

keyboard. Before they began each baseline and reward run, participants had two separate 

practice sessions in the scanner to ensure that they were familiar with what they were supposed 

to do in each baseline and reward task runs. Behavioral data were acquired while participants 

performed the response conflict task in the scanner. A subset of participants [SCZ: n=7, HC: 

n=10] completed a post-scan questionnaire asking about self-reported motivation and difficulty 

levels during task (see Table S1 for mean and SD in Supplementary Materials).  

All BOLD scanning runs of a response conflict task were performed in a mixed block/  

event-related design. Each run consisted of three blocks of 9 trials (27 trials per run), alternating 

with three fixation (resting state) blocks (30 seconds each, one after the first task block, middle, 

and end of each scanning block) in order to examine sustained effect lasted during each task 

block. The fMRI task paradigm consisted of two baseline runs and four reward runs with a total 

House Congruent House Incongruent        Building Neutral 
 

   Building Incongruent 
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of 162 trials, 54 per each trial-type (i.e., baseline, reward-cue, reward-context).. In both baseline 

and reward phases of the session, each run was separated by pauses for rest. During task 

blocks, the inter-trial interval of 2 to 6 seconds was temporarily jittered to ensure robust 

deconvolution of even-related fMRI responses.  

 Figure 2 (b) shows an example of baseline blocks. Baseline sections consisted of two 

runs in which congruent, incongruent and neutral trials were intermixed with equal number of 18 

trials per trial-type, resulting in the total 54 trials. Participants first performed baseline blocks in 

which each task block started with a start cue, “TASK” for 2 seconds and end with a cue, 

“DONE” for 2 seconds. After each start cue, “TASK”,” there is a jitter, which varied between 0,2, 

and 4 seconds. In the baseline runs, each trial started with a cue, “XX” and participants was told 

that cues are irrelevant to their job of the task. This cue was presented for one second. Then, 

there was a jitter that varies between 2,4, and 6 seconds. Then, the target stimulus was 

presented for one second, followed by a delay of 0.5 seconds. Participants were instructed to 

press the index finger button to indicate that they saw a house image and the middle finger 

button to indicate that they saw a building image regardless of the overlaid word. After the target 

stimulus, visual feedback regarding the monetary points that they get on the trial as well as the 

cumulative points was presented for 1 second. Then, there was the second jitter or inter-trial 

interval (ITI) that varies between 2,4, and 6 seconds.  

Following the two baseline runs, participants performed four additional reward runs 

where reward-cue (“$20”) and reward-context (“XX”) trials were intermixed with equal number of 

54 trials each, resulting in the total number of 108 trials. Like the baseline sections, each 

reward-cue and reward-context trials were also intermixed with congruent, incongruent and 

neutral condition [reward-cue: congruent (20 trials), incongruent (16trials), neutral (18 trials); 

reward-context: congruent (16trials), incongruent (20trials), neutral (18trials)].  Figure 2(c) 

shows an example of reward blocks.  In the four runs of reward trials, “$20,” a reward-cue 

indicated that a correct and fast response would be rewarded by getting 2000 points on the trial 
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while “XX,” a reward-context cue indicated that there would be no reward (a zero point) on the 

trial. The structure of each run and participants’ job of the task were the same as the baseline 

runs. The RT threshold to determine “fast” response was set individually for each subject based 

on the median RT from the second baseline run.  



 

Figure 2: 

(a) Mixed State-item fMRI Design of 

(b) Example of Baseline-Context

(c) Example of Reward Blocks 

 

 

 
Note. BCXT: Baseline-Context, RC= Reward
(a): The mixed blocked and event-related experimental design used during a single fMRI run. Each 
functional run was separately blocked by fixation blocks to examine sustained 
task block (b): BCXT blocks: participants were presented with only baseline
without any knowledge about getting reward. Each trial evens repeated 

trials cued by “$20” and reward-context
proportions. In both (b) and (c) blocks, 
cue, “DONE.” Nine event trials were presented per block. Here, (b) and (c) shows example of 

: Sustained effect 
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item fMRI Design of the Response Conflict Task 

Context Block 

 

 

Context, RC= Reward-Cue, RCXT= Reward-Context trials 
related experimental design used during a single fMRI run. Each 

functional run was separately blocked by fixation blocks to examine sustained effect lasted during
blocks: participants were presented with only baseline-context trials cued by “

knowledge about getting reward. Each trial evens repeated  (c) reward blocks: 

context trials cued by “XX” were pseudo-randomly intermixed in equal 
In both (b) and (c) blocks, each block started with a start cue, “TASK” and ended with an end 
.” Nine event trials were presented per block. Here, (b) and (c) shows example of 

: Transient effect cued by “XX”  : Transient effect cued by “

 

related experimental design used during a single fMRI run. Each 
effect lasted during entire 

trials cued by “XX” 
(c) reward blocks: reward-cue 

randomly intermixed in equal 
” and ended with an end 

.” Nine event trials were presented per block. Here, (b) and (c) shows example of a trial in 

Transient effect cued by “$20”  
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each type of block. 
 
                  fMRI Data Acquisition. All images were acquired on a 3T Siemens TM TRIO system 

with a 12-channel head coil. Both structural and functional images were acquired every 

scanning session. High-resolution MPRAGE T1 images (echo time (TE) = 2.98 ms, repetition 

time (TR) =2300ms, 160 slices, 1.0 x1.0 x 1.2 mm voxels) and T2 images (TE= 84ms, TR= 

7000ms, 33 slices, 2.0 x 1.0 x 4.0 mm voxels) were acquired to be registered and transformed 

to a standardized atlas space (Koch et al., 2010; Talairach & Tournoux, 1988a), using a 12-

dimensional affine transformation (Gradin et al., 2011; Woods, Cherry, & Mazziotta, 1992).a 

Functional images were collected in six runs of 214 frames each using an asymmetric spin-echo 

echo-planar sequence (TR = 2000ms, TE= 27ms, field of view = 256 mm, flip = 90,° 33 slices). 

Functional images were acquired parallel to the anterior-posterior commissure plane with 4 mm3 

isotopic voxels. At the beginning of each blood oxygenation level-dependent (BOLD) scanning 

session, the first four images of each run were eliminated to allow for signal stabilization before 

preprocessing. Visual stimuli were presented using E-Prime software running on a Dell Inspiron 

laptop. Stimuli were projected to participants with an LCD projector onto a screen located 

behind the scanner. Participants were able to see the screen through an angled mirror 

positioned above the eyes. A fiber optic, light-sensitive keypress interfaced with the E-prime 

button box was used to record participants’ behavioral performance. 

General Data Analysis  

All imaging data was analyzed using an in-house software (FIDL analysis package, 

www.nil.wustl.edu/~fidl/). The Statistical Package for the Social Sciences version 18 (SPSS Inc., 

Chicago, IL) was used for statistical analyses regarding demographic, clinical, behavioral 

variables and neural activity for group comparisons and post-hoc analyses. 

fMRI Preprocessing. Structural and functional magnetic resonance imaging data 

preprocessing included the following typical steps: (1) correction for slice-dependent time shifts; 

(2) removal of the first four images of each run to allow for a steady-state BOLD signal; (3) 
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elimination of odd/even slice intensity differences due to interpolated acquisition; (4) realignment 

of the data acquired from each participant within and across runs to compensate for rigid body 

motion (Ojemann et al., 1997); (5) image intensity normalization to a whole-brain mode value of 

1,000; (6) registration of the 3-D structural volume (T1) to the atlas template in the Talairach 

coordinate system (Talairach & Tournoux, 1988), using a 12-parameter affine transform and 

resampling to a 1-mm cubic representation (Buckner et al., 2004; Ojemann et al., 1997); (7) 

coregistration of the 3-D fMRI volume to the T2, and the T2 to the participant’s structural image; 

(8) transformation of the fMRI data to a 3 x 3 x 3 mm voxel atlas space using a single affine 12-

parameter transform; and (9) spatial smoothing using a 6-mm full-width at half-maximum 

Gaussian filter.  

Movement Analysis. Measures of head movement within scan were assessed using the 

output of the rigid-body rotation and translation algorithm. The translations and rotations in the x, 

y, and z planes across frames and total root mean square (RMS) linear and angular precision 

measures were calculated for each run. BOLD runs in which a participant’s standard deviation 

of RMS movement exceeded 20 were excluded from further analysis. Values for included runs 

were averaged for each subject, and analysis of variance (ANOVA) were performed for testing 

group differences. Using this criterion, 36 participants in SCZ and 27 in HC group provided 

usable functional imaging data. Groups did not differ significantly in terms of movement 

(RMS/frame [mean (standard deviation)] SCZ = 0.18 (0.11); HC = 0.15 (0.07)]; F (1, 62) = 1.85, 

p = .17).  

General fMRI Data Analysis.  

 A voxel-wise general linear model (GLM) approach was used, which incorporated 

regressors for linear trend and baseline shifts. Using the mixed design, sustained and transient 

effects associated with reward enhancement on cognitive control can be simultaneously but 

independently coded within the same GLM, enabling dissociation of these two effects (Friston et 

al., 1995). The rationale of using this state-item approach is based upon the assumption that 
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event-related trial-by-trial effect should decay back to baseline during the ITI, whereas the state 

effects should remain constant during the task block (reviewed in (Petersen & Dubis, 2012).  

Sustained context effects (i.e., one for the reward block and one for the baseline block) 

were modeled by box-car functions lasting the length of the task block using an assumption of a 

fixed-shape response of long duration (Fischl et al., 2002). The event-related transient effects 

were analyzed separately for each trial-type by estimating the values for eight time point 

regressors (starting at trial onset) within the hemodynamic response epoch, which was 

estimated to be 16 seconds (TR: 2 seconds, 8 scanning frames) using unassumed 

hemodynamic response shapes. More specifically, each trial is coded by a set of regressors for 

both the cue-type and target-related events as well as start (“TASK”) and end (“DONE”) cues. 

That is, regarding the event-related effects, 3 cue-type regressors are separately coded as 

follows; “$20,” “XX” in reward, “XX” in baseline conditions separately, Also, regarding target-

related events, 9 target-related trial types regressors (i.e., 3 condition types x 3 cue types) are 

separately coded.  
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Data Analysis 

Behavioral Study (Specific Aim1):  

To test my hypothesis about the behavioral data, repeated measures ANOVAs were 

conducted on correct trials for both reaction times (RT) and error data with within-subject factors 

of a Reward (BCXT, RC, RCXT) and a Condition (congruent, incongruent, and neutral trials) 

and a between-subject factor of a Group (HC, SCZ). Any significant interactions were followed 

by post-hoc contrasts to determine the source of the interaction. In analyses involving RT data, 

the reward context effect was estimated by subtracting the RT in RCXT trials cued by “XX” from 

the baseline trials cued by the same cue, “XX.”  

Neuroimaging Study (Specific Aim2):  

To examine whether individuals with SCZ show reduced reward context effects in 

sustained activity, with the assumption of the hemodynamic response, I used a voxel-wise 

repeated measures ANOVA with a Group as a between-subject factor and a Reward (baseline, 

reward conditions) as a within-subject factor. I predicted a significant Group x Reward 

interaction, with individuals with SCZ showing less of an increase in sustained activity in regions 

such as the DLPFC in the incentive condition compared to the baseline condition. 

 To examine whether individuals with SCZ show intact cue-related reward effects, I 

conducted a voxel-wise repeated measures ANOVA using the transient cue-related estimates, 

with a Group as a between-subject factor, and a Reward  (“XX “ in BCXT, “XX” (RCXT), and 

“$20” (RC) in reward conditions) and Time point (the 8 time frame estimates) as within-subject 

factors. I predicted a significant Reward x Time point interaction, with an increase in cue-related 

activity in both ventral and dorsal striatum and DLPFC regions during $20 vs. “XX.” I predicted 

that a Reward x Time point interaction would be significant for both HC and individuals with SCZ. 

However, I did not predict a further interaction with a Group x Reward or Group x Reward x 

Time point. 

In the analyses described above, I focused on regions showing interactions with time 
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point, given our use of unassumed GLMs in terms of transient cue-related activity. When 

appropriate, post hoc ANOVAs were performed within all significant regions identified by the 

ANOVAs described above. For these post hoc analyses, the mean percent signal change 

across each region was extracted for each of the eight estimated time point to visualize general 

pattern of activity. Among all time points frames, I focused on the average of time point 3 and 4 

for the post-hoc analyses. Theses time points were chosen as they encompassed 5-8 seconds 

after stimulus onset, which would capture the initial peak in a stereotyped hemodynamic 

responses unconfounded by sustained activity. This was done for each applicable condition. 

Then, as briefly described above, I conducted post-hoc analyses using paired t-test to compare 

three Reward (e.g., BCXT, RCXT (“XX”), and RC (“$20”) by focusing on average of time point 3 

and 4 to parse significance of cue-related effects. 

In order to examine target and/or receipt-related effects, I also conducted a voxel-wise 

ANOVA on the target and/or feedback-related responses with Reward (BCXT, RCXT, RC) and 

Condition (incongruent, congruent, neutral) as within-subject factors and a Group (SCZ, HC) as 

a between-subject factor. I predicted that there would be main effects of Reward (receive $20 

money, receive no money cued by “XX”) and a Condition (incongruent, congruent, neutral) and 

further interaction between a Reward and Condition, with both groups showing greater 

activation in the reward-related regions such as the ventral striatum for reward receipt (cued by 

“$20”) on congruent trials. These ANOVAs were used in voxel-wise analyses either with a priori 

ROI masks or at the whole-brain level. To be specific, brain responses on incongruent trials 

were compared to those on neutral trials. The size of this difference in brain responses is called 

the “interference effect”, which can be considered as an index of cognitive control. Also, brain 

responses on neutral trials were compared to those on congruent trials, referred to as 

“facilitation effect.”  

DLPFC and BG A Priori ROI Mask Analyses 

Given previous works suggesting internal representation of abstract reward value during 
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cognitive control function in the DLPFC and striatum (Jimura et al., 2010; Locke & Braver, 2008), 

I started by constraining the analyses to a priori regions of interest (ROI) within the DLPFC and 

basal ganglia (BG). To be specific, I used masks of voxels within the DLPFC and BG including 

the ventral striatum and conducted voxel-by-voxel analyses restricted to these a priori ROIs. 

The anatomical DLPFC ROI mask regions were defined on an atlas-representative image using 

the boundaries described by Rajkowska and Goldman-Rakic (Rajkowska & Goldman-Rakic, 

1995). The BG ROI mask regions including the ventral striatum were based on guidelines 

suggested by (Postuma & Dagher, 2006). All statistical activation maps from ROI were 

appropriately corrected for multiple comparisons using combined p-value and cluster thresholds 

determined using Monte Carlo simulation; an approach equivalent to that employed by the 

AlphaSim program in the AFNI software package. For DLPFC ROI mask regions, z-value of 

2.05 and a contiguous 13 voxels for the DLPFC ROI mask were used. For the BG ROI mask 

region, z -value of 2.05 and a contiguous 14 voxels for the BG ROI mask region were used. 

After the identification of group differences, for significant clusters, I extracted average 

BOLD responses values and imported them into SPSS for further post-hoc analyses to parse 

the source of significant effects. These analyses included independent and paired t-test as 

appropriate. I also conducted correlation analyses between the BOLD response in these 

significant regions during reward vs. baseline blocks and individual difference in negative 

symptoms scales (e.g., the SANS, the BNSS) using Pearson r correlation given a priori 

hypotheses regarding the role of the DLPFC and striatum during conflict processing in reward 

context.  

Whole-Brain Group Analyses: Whole brain exploring analysis was performed to identify 

brain regions that revealed significant sustained or transient activity depending on reward 

context, as described above (see Supplementary Materials for all results from whole brain 

analyses). Whole-brain analyses were corrected for multiple comparisons using p-value/cluster 

size threshold of p < .001 and 13 contiguous voxels with z -values > 3.0. This correction was 
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determined by Monte Carlo simulations to provide a whole-brain false-positive rate of p < .05 

(e.g., (Forman et al., 1995; Gaffrey, Barch, Singer, Shenoy, & Luby, 2013)).  

When appropriate, using in-house peak finding scripts, the resulting significant maps in 

the whole-brain analyses were partitioned into ROI clusters where peaks of activity were 

considered separate regions if they were more than 15 mm apart from each other (e.g., 

(Michelon, Snyder, Buckner, McAvoy, & Zacks, 2003)). In addition, these ROIs were used to 

examine magnitude and time courses of the hemodynamic response for post-hoc contrasts to 

parse the source of significant effects.  

 

Relation To Negative Symptoms (Specific Aim3): 

1) The Correlation Between Negative Symptoms Severity and Two Behavioral Incentive 

Effects In SCZ. To test this, I correlated between clinical measures of negative symptoms 

severity scores in SCZ and mean RT decrement from non-incentive baseline to “XX” (RCXT) 

trials. Similarly, I also correlated between clinical measures of negative symptom severity 

scores in SCZ and mean RT decrement from “XX” (RCXT) to “$20” (RC) trials within reward 

conditions showing reward cue effect.  

 2) Correlation Between Negative Symptoms Severity and Sustained Brain Activity In the 

DLPFC During Reward vs. Baseline Blocks.  I conducted voxel-wise Pearson correlations 

between self-reported avolition and/or anhedonia in SCZ and sustained activity in the DLPFC 

and other reward-related regions during reward versus baseline conditions.   

 3) Correlation Between Negative Symptoms Severity and Transient Cue-related Activity 

in the ventral striatum During “XX” versus “$20” Cued Trials within Reward Conditions.  

I conducted voxel-wise Pearson correlations between self-reported avolition and/or anhedonia 

in SCZ and cue-related activity in the ventral striatum and DLPFC during “XX” versus “$20” 

cued trials within reward conditions. 
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Results 

Participant Characteristics.  Participants consisted of 27 HC with no personal or family 

history of psychosis and 36 individuals with SCZ. As presented in Table 1, the two groups were 

similar in terms of most demographic variables including age, sex, race, smoking status, or 

parental education except participant’s education: the HC showed slightly higher educational 

level compared with individuals with SCZ In addition, the SCZ self reported significantly higher 

social and physical anhedonia relative to the HC (see Table 1 for clinical and demographic 

characteristics of participants). 

Table 1: 

Clinical and Demographic Characteristics of Participants 

 
Variables 

 
HC (N =27) 

 
SCZ (N =36) 

 
Group Comparison 

 Mean (SD) Mean (SD)  
Age (years) 35.56 (8.61) 38.96 (8.47) F (1, 62) = 2.43, p =.12 
Gender (% male) 55.6 69.4 χ

2 (1) = 1.28, p = .25 
Race (% Caucasian) 29.6% 41.7 χ

2 (1) = 3.33, p = .18 
Smoking status (%Smokers) 37.0% 68.8% χ

2 (1) = 3.58, p= .06 
Handedness (% right) 92.6% 80.6% χ

2 (2) = 1.48, p= .47 
Highest Parental Education (years) 14.11 (1.73) 13.80 (3.62) F  (1, 61) = .16, p = .68 
Education (years) 14.51 (1.86) 13.13 (2.60) F (1, 62) = 5.44, p= .02 
Clinical Measures     
SAPS: Positive - 4.83 (4.31)  
SANS: Negative - 8.77 (3.33)  
BDI 2.14 (3.55) 8.47 (8.99) t (61) = -3.44, p =.001 
BNSS, consummatory - 3.83 (2.83)  
BNSS, anticipatory - 1.41 (1.42)  
BNSS, total - 19.13 (11.16)  
Chapman Social Anhedonia 7.96 (6.03) 16.13 (7.93) t  (61) =-4.46, p =.00 
Chapman Physical Anhedonia 9.81 (5.26) 17.52 (8.94) t  (61) =-3.98 p =.00 
Antipsychotic Medications     
Typical antipsychotics (%) - 11.1%  
Atypical antipsychotics (%) - 69.4%  
Both typical and atypical antipsychotics (%) - 8.3%  
Other Medications     
Antidepressant - 44%  
Mood Stabilizer - 16%  
Anticholinergic - 25%  

Note. HC = healthy controls, BNSS= The Brief Negative Symptom Scale (Andreasen, 1983b),  SCZ = 
schizophrenia, SAPS= The Scales for the Assessment of Positive Symptoms (Andreasen, 1983b), SANS 
= The Scales for the Assessment of Negative Symptoms (Andreasen, 1983b). 
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Behavioral Results  

Reaction Times: I expected to replicate prior behavioral work (Mann et al., 2013) 

suggesting reduced reward context effect in SCZ, as evidenced by a smaller RT decrement 

from non-incentive baseline trials to RCXT trials both cued by “XX” compared to the RT 

decrement of the HC. On the other hand, I expected that individuals with SCZ would show an 

intact pattern of faster performance on “$20” trials in reward conditions rather than on “XX” trials 

within reward conditions, referred to as reward cue effect. To test this hypothesis, the median 

RT only for correct responses and error data were analyzed using a repeated measures 

ANOVAs with a Reward (BCXT (cued by “XX”), RCXT (cued by “XX”), RC (cued by “$20”) and a 

Condition (neutral, congruent, incongruent trials) with within-subject factors and a Group (SCZ, 

HC) with a between-subject factor. It is assumed that RC trials refer to rewarded trials by getting 

additional reward money. In the current data set, approximately 72% of trials out of the total 

number of RC trials were rewarded (criteria: correct and RT below the median RT from the 

second baseline run for each individual). 

The repeated measure ANOVA indicated significant main effects of Group [F (1,61) = 

10.38, p = .002, η2
p= .14], Reward [F (2,122) = 34.12, p = .00, η2

p= .35], and Condition [F  

(2,122) = 32.01, p = .00, η2
p= .34]. The main effect of Condition indicated slower responses on 

incongruent trials compared to congruent trials [F (1,61)=51.93, p = .000, η2
p= .46] and slower 

RTs on neutral trials compared with congruent trials [F (1,61)=18.66, p = .000, η2
p= .23]. The 

main effect of Reward reflected faster performance on RCXT trials compared to BCXT 

conditions [F(1,61) = =12.93, p = .001, η2
p= .17], RC compared to baseline conditions [F (1,61) 

= 60.98, p = .00, η2
p= .50] as well as RC compared to RCXT conditions [F (1,61) =26.32, p 

= .000, η2
p= .30]. 



 

Figure 3: 

Behavioral Data 

                     
   (a). Reaction Time Data 
 

 
(b).  Behavioral Indices of Reward Context and Cue

 
 
Note. (a) Median reaction times for correct responses, (b) context and reward effects 
data. Error bar represents SEM. 
HC = healthy controls, SCZ = individuals with schizophrenia. 
subtracting the mean of reaction times 
baseline trials across all three conditions. The
reaction time in reward-cue trials (cued by “
by “XX”) across all three conditions.
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Reward Context and Cue Effects  

  

(a) Median reaction times for correct responses, (b) context and reward effects for

= individuals with schizophrenia. The context effect was calculated by 
mean of reaction times the reward-context condition from the mean of reaction time in 

trials across all three conditions. The reward-cue effect was calculated by subtracting mean 
trials (cued by “$20”) from mean of reaction time in reward-context trials 

conditions. 
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As shown in Figure 3(a), the main effect of Group reflected overall slower RTs in SCZ 

compared with the HC. However, contrary to my prediction, I did not find a significant Reward by 

Group [F (2,122) = 1.49, p = .22, η2
p= .02] interaction. There was also no significant Condition 

by Group [F  (2,122) = .76, p = .46, η2
p= .01] or Reward x Condition [F (4,244) = .91, p = .45, 

η
2
p= .01] or Group by Reward x Condition interactions [F (4,244) = .43, p = .78, η2

p= .00]. 

Behavioral Indices of Reward Context and Cue Effects. 

As noted above, contrary to my prediction, I did not see a significant Reward by Group 

interaction. To examine this effect in more detail, I conducted two follow-up analyses. First, I 

compared the magnitude of the reward context effect between individuals with SCZ and the HC. 

As described above, the reward context effect was computed by subtracting the RT in Reward-

Context (RCXT) trials cued by “XX” from the baseline trials cued by the same cue, “XX” across 

all three trials-type. As shown in Figure 3 (b), individuals with SCZ (mean RT: 29.14) and HC 

(mean RT: 22.75) showed a similar reward context effect [F (1,62) = .19, p  = .65, η2
p= .27]. 

Secondly, I compared the magnitude of the reward cue effect between those with SCZ and the 

HC. Again, as mentioned above, the reward cue effect was estimated by subtracting the RT in 

RCXT trials cued by “XX” from the baseline trials cued by the same cue, “XX” across all three 

trials-type. Different from my expectation, as presented in Figure 3(b), I found that individuals 

with SCZ showed somewhat reduced reward cue effect (mean RT: 18.39) compared with the 

HC (mean RT: 41.01) at a trend level  [F (1,62) = 3.81, p  = .06]. 

Psychometric Issues. It is commonly observed that SCZ have longer RTs and the 

standard deviation (SD) across the conditions for SCZ is typically larger than SD for HC (e.g., 

Mann et al., (2013)). This was true in the current data set [BCXT (Levene’s Test= 5.14, p = .02, 

SD: 114.17 vs. 69.54), RCXT (Levene’s Test= 11.19, p = .001, SD: 118.83 vs. 69.91), RC 

(Levene’s Test =6.51, p = .01, SD: 124.59 vs. 75.34)]. Therefore, I cannot rule out the possibility 

that current behavioral findings are artificially influenced by the effects of longer RTs (Chapman 
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& Chapman, 1973). The most effective way to address this is to convert RT scores into Z-scores, 

which is consistent with previous work in SCZ (Mann et al., 2013) and (Faust, Balota, Spieler, & 

Ferraro, 1999)’s recommendation. Thus, I converted RT scores into Z-scores of the mean RT 

across all conditions as the measure of RT in each condition for each participant (Faust, 1999). 

By doing this approach, I could use Z-scores as a function of the magnitude of the SD. Then, I 

computed the same ANOVA described above. This ANOVA again indicated no significant two-

way interaction between Condition and Group or Reward x Condition or Group by Reward x 

Condition interactions (all p = n.s.). Then, I also computed behavioral indices of reward context 

and cue effects described above. Again, the non-significant group differences in the reward 

context effect [F (1,62) = .19, p  = .65] and reduced reward cue effect in SCZ relative to HC [F 

(1,62) = 3.81, p  = .05] remained even when accounting for overall longer RTs in the SCZ.  

Accuracy: As shown in Figure 3 (c), the analogous ANOVA on error data indicated only 

a significant main effect of Condition [F (2,122) = 16.98, p = .00, η2
p= .21], reflecting more errors 

on incongruent trials compared to congruent trials [F  (1,61) = 27.92, p = .000, η2
p= .31] and 

neutral trials compared to congruent trials at a trend level [F  (1,61) = 3.48, p = .06, η2
p= .05]. 

There were no significant main effects of Reward [F  (2,122) = .94, p = .39, η2
p= .01] or Group [F 

(1,61) = 1.89, p = .17, η2
p = .03]. In addition, there were no significant interactions of Reward 

and Group [F (2,122) = 1.84, p = .16, η2
p = .02], Condition and Group [F (2,122)  = .28, p = .75, 

η
2
p = .005], Reward and Condition [F (4,244) = .82, p = .51, η2

p = .01] as well as Reward x Group 

x Condition interaction [F  (4,244) = .38, p  = .81, η2
p= .00] (see Figure 3 (c)). Given that there 

was no significant main effect of Group on error data, further analyses as described below were 

focused on using RT data. 

 

 

 

 



 

Figure 3 (c): 

Error Data 

                         

    

 

Neuroimaging Results (Specific Aim2)

1) Sustained Components of Motivated Cognitive Control

To examine whether individuals with SCZ would show reduced 

sustained activity at a neural level, I conducted a voxel
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(Specific Aim2) 

Sustained Components of Motivated Cognitive Control Function 

To examine whether individuals with SCZ would show reduced reward context effects in 

sustained activity at a neural level, I conducted a voxel-wise repeated measures ANOVA with 

subject factor and Reward (baseline, reward conditions) as a within

in both whole brain and ROI analyses. I predicted a significant a Group x 

interaction, with individuals with SCZ showing a less of an increase in sustained activity in 

regions (i.e., the DLPFC) during reward blocks compared to the baseline blocks relative to the 

A Priori ROIs: Given a priori regions of interest in the DLPFC 

and BG implicated in reward processing, the voxel-wise ANOVA as described above was 

the DLPFC and BG a priori ROI regions by separately applying each DLPFC and 
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across groups indicated that sustained activity in reward blocks were greater relative to baseline 

blocks across groups [right DLPFC (x: 42, y: 16, z: 29), paired t-test (62)= 4.30, p =.000; left 

DLPFC (x: -42, y: 10, z: 30), paired t-test(62)= 3.54, p =.001]. However, no regions displayed a 

main effect of Reward in the BG mask regions. 

Effects of Group in the A Priori ROIs: A significant main effect of Group was identified in 

the DLPFC and BG ROI analyses. As presented in Table 2 and Figure 4 (b), HC group showed 

greater sustained activity relative to individuals with SCZ in the lateral globus pallidus. On the 

other hand, in the middle frontal gyrus and putamen, individuals with SCZ showed overall 

greater sustained activity than the HC group at a group level [right DLPFC (x: 41, y: 19, z: 27) 

and Putamen (x: 14, y: 10, z: -3)]. 

Interaction of Reward and Group in the A Priori ROIs: As presented in Table 2, I also 

found a Group x Reward interaction in the Putamen (x:22, y: 10, z: 3) from BG ROI analysis. 

However, no region displayed the interaction effect from the DLPFC analysis. As shown in the 

bottom panel of Figure 4 (c), post-hoc paired t-test to compare sustained activity during reward 

vs. baseline blocks for each group revealed that the HC group showed an increased of 

sustained activity as a function of reward context in the Putamen (x:22, y: 10, z: 3) from the BG 

analysis [paired t-test(26) =4.10, p =.000]. However in the same region, individuals with SCZ did 

not show significant differences in sustained activity as a function of reward context (paired t-

test (35)= -.70, p =.48) different from the HC. 
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Table 2: 

Sustained Context-dependent Activity: Main effect of Reward, Group and Reward x Group Interaction Effect 

 

 

 

 

 

 

 

 

 
Note. B= baseline, BG =basal ganglia, DLPFC =dorsolateral prefrontal cortex, HC = healthy controls, R= Reward, 
ROI = region of interest, SCZ = individuals with schizophrenia, WB = whole brain analysis.  
Z values represent mean activation across the region. a Post-hoc paired t-tests or independent t--tests were conducted  
(all p < .05). See text for detailed post-hoc analyses.

 
Effect 

Analysis BA  
Region of Activation  

 
Cluster 

size 
(voxels) 

 
Talairach 

Coordinates 

 
 

Z 

 
Activation 
Patterna 

x y  z 

Reward DLPFC  
ROI 

9 Middle Frontal Gyrus 267 42 16 29 3.97 R > B 

 9 Middle Frontal Gyrus 81 -42 10 30 3.34 R > B 

Group DLPFC 
ROI 

9 Middle Frontal Gyrus 44 41 19 27 2.61 SCZ > HC 

 BG ROI  Putamen 25 14 10 -3 2.82 SCZ > HC 

   Lateral Globus Pallidus 24 -22 -6 -2 2.99 HC > SCZ 

   Lateral Globus Pallidus 15 23 -8 2 2.78 HC > SCZ 

Reward x 
Group 

BG ROI  Dorsal Striatum 24 22 10 3 2.66 SCZ: B > R 
HC: R > B 



 

Figure 4 (a): 

Bilateral DLPFC Regions Displaying Main Effect of Reward

Note.  DLPFC = dorsolateral prefrontal cortex, 
individuals with schizophrenia. This figure represents the results of repeated measures ANOVAs from the 
DLPFC ROI analysis. Reward (reward, baseline bloc
between-subjects factor. Post-hoc paired t
reward vs. baseline blocks across groups on each region (
appropriately corrected for multiple comparisons using combined 
> 2.05, 13 contiguous voxels) 
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isplaying Main Effect of Reward in A Priori ROI Analyses

DLPFC = dorsolateral prefrontal cortex, HC= Healthy Controls, ROI = region of interest
This figure represents the results of repeated measures ANOVAs from the 
(reward, baseline blocks) is a within-subjects factor and Group
hoc paired t-tests were conducted to compare sustained act

reward vs. baseline blocks across groups on each region (p < .05).  DLPFC ROI analyses were 
appropriately corrected for multiple comparisons using combined p-value and cluster thresholds (
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Figure 4 (b):  

Regions Displaying a Main Effect of Group from 

 

Note. BG= Basal Ganglia, DLPFC= Dorsolateral Prefrontal Cortex, 
SCZ= Schizophrenia, L= Left
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Regions Displaying a Main Effect of Group from the DLPFC and BG ROI Analyses

 

 

BG= Basal Ganglia, DLPFC= Dorsolateral Prefrontal Cortex, HC= Healthy Controls, 
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Figure 4 (c): 

Regions Displaying Reward x Group Interaction in 
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x Group Interaction in the BG Mask Analyses      
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Sustained Component of Motivational Cognitive Control: Results Summary 

Consistent with prior work in healthy individuals (e.g., (Jimura et al., 2010; Padmala & 

Pessoa, 2011), the current study found that the bilateral DLPFC showed increased sustained 

activity during reward compared to baseline blocks across groups. These results validate the 

use of response conflict processing paradigm used in current study, which was designed to 

measure changes in neural activity as a function of reward context. Contrary to my prediction, a 

Reward x Group interaction effect was not identified in the DLPFC but in the dorsal striatum 

where individuals with SCZ showed reduced sustained activity during reward vs. baseline 

contexts different from the HC.



 48

2) Transient Components of Motivated Cognitive Control Function  

Transient Cue-related Neural Activity As a Function of Reward: To examine whether 

individuals with SCZ showed intact cue-related reward effects, a voxel-wise repeated measures 

ANOVA using the cue-related estimates, with Group as a between-subject factor, and Reward  

(Baseline-Context (BC: “XX”), and Reward-Cue (RC: “$20”) and Reward-Context (RCXT: “XX”) 

in reward conditions) and Time point (the 8 time frame estimates) as within-subject factors. I 

predicted a significant Reward x Time point interaction, with an increase during RC (cued by 

“$20”) vs. RCXT (cued by “XX”) in cue-related activity in the ventral striatum. In addition, I 

predicted that the Reward x Time point interaction during “$20” vs. “XX” would be significant for 

both HC and individuals with SCZ. However, I did not predict a further interaction with a Reward 

x Group x Time point as I predicted intact reward-related transient activity in SCZ. 

Effects of Reward In the A Priori ROIs: Regions in the bilateral DLPFC, Putamen and 

caudate body from the DLPFC and BG ROI analyses displayed significant interactions between 

Reward (RC, RCXT, BCXT trials) and time point (see Table 3 for exact coordinates for each 

region). As predicted, post-hoc paired t-tests on each region displaying the interactions of 

Reward and time point at the average of time point 3-4 revealed a pattern of greater trial-by-trial 

activity on RC trials relative to RCXT and baseline trials, although some regions showed 

deactivation on either or both RCXT and baseline trials (see Figure 5 for example time courses). 

Effects of Group In the A Priori ROIs: No region displayed a significant Group effect 

within the DLPFC and BG masks. 

Interactions of Reward and Group In the A Priori ROIs: Regions in the Putamen and 

lateral globus pallidus displayed a significant Reward x Group interaction in the BG ROI 

analyses (see Table 4 for exact coordinates for each region). No region displayed a Reward x 

Group interaction in the DLPFC mask. To identify the source of the significant effect from the 

BG analyses, post-hoc paired t-tests were performed on each region displaying the interactions 

of Reward (RC, RCXT, BCXT) for each group. As shown in Figure 6, in both putamen and 
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lateral globus pallidus, HC showed increased trial-by-trial activity on RC trials relative to RCXT 

and BCXT trials. However, individuals with SCZ did not show any significant differences in 

terms of trial-by-trial activity as a function of reward. 
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Table 3: 

Transient Reward x Time Point in DLPFC and BG ROIs Analyses 

 

Note. BCXT= Bseline-Context trials, deact= deactivation, DLPFC = dorsolateral prefrontal cortex, RC = 
Reward-Cue trials, RCXT = Reward-Context trials,. Time window for post-hoc analyses= average of time 
point 3 and 4 (see Data Analysis). Bold  indicates deactivated regions. 
 aPost-hoc paired t-tests were conducted to examine the relationship between neural activity on reward 
trials and other cue-type activity on each region (p <0.05). +p-value was 0.05.

 
Analysis 

 
BA 

 
Region of Activation  

Cluster 
size 

(voxels) 

Talairach 
Coordinates 

 
Z 

 
Activation  
Patterna x y  z 

Basal 
Ganglia 

 Putamen 30 -19 3 -1 3.24 RC >BCXT+ =RCXT  

  Medial Globus Pallidus 16 -14 -8 0 3.33 RC > RCXT= BCXT 

  Caudate Body 85 12 -3 14 3.81 RC> RCXT= BCXT 

  Caudate Body 30 -14 -10 19 3.22 RC > RCXT =BCXT 

DLPFC 9 Middle Frontal Gyrus 253 -38 20 29 4.27 RC > RCXT =BCXT 

 9 Middle Frontal Gyrus 385 37 23 29 4.49 RC > RCXT =BCXT 
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Table 4: 

Transient Reward x Group x Time Point Interaction in the BG ROI regions 

 

 Note. BA = Broadman Area, B= baseline, RC = Reward-Cue, RCXT=Reward-Context, ROI = Region of 
interest, HC = Healthy controls,  
SCZ = Schizophrenia, WB = Whole brain analysis.  
a Post-doc t-tests to identify the source of significant effects were performed at the average of time point 
3-4 (see the text for more detail). 
Bold  letters indicate cue-type trials on which regions showed deactivations. 

 
Region of Activation 

 
Cluster 

size 
(voxels) 

 
Talairach 

Coordinates 

 
 

Z 

 
Activation Patterna 

x y  z  HC SCZ 

Putamen 37 21 3 0 3.13 RC > RCXT=B RC =B =RCXT 

Lateral Globus Pallidus 22 -23 -13 2 2.82 RC > RCXT=B RC =B=RCXT 



 

Figure 5: 

Example Time Courses From BG and DLPFC ROI

 

Note. BCXT= Baseline-Context, BG = basal ganglia
Reward-Cue, ROI = Region of Interest. Bold  indicates deactivated regions. 
between transient neural activity on reward-cue trials and other cue
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BG and DLPFC ROIs Showing a Significant Interaction Between Reward x Time Point 

 

BG = basal ganglia, deact= deactivation, DLPFC= dorsolateral prefrontal cortex, RCXT= Reward
indicates deactivated regions. Post-hoc paired t-tests were conducted to determine

trials and other cue-type trials on each region at the average of time point 3
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Figure 6: 

Example Time Courses for Each Cue-type From

Healthy Controls  
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type From BG ROIs Showing a Significant Interaction Between Reward x Group x Time Point 
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2-2) Transient Target-related Neural Activity: In addition to neural activity relating to transient 

trial-by-trial activity, I also examined target/receipt-related effects from the voxel-wise ANOVA 

on the target/feedback responses with 3 Reward (BCXT, RC, RCXT), 3 Condition (incongruent, 

congruent, neutral), and Time point (8 time points) as within-subject factors and a Group (SCZ, 

HC) as a between-subject factor. Again, to understand the source of any interaction with time 

point, I focused on averaged time point 3-4 as described above. I predicted that there would be 

main effects of reward Reward (receive $20 money, receive no money cued by “XX”) and a 

Condition (incongruent, congruent, neutral) and further interaction between a Reward and 

Condition, with both groups showing reduced conflict-related processing in the reward-related 

regions such as the ventral striatum for reward receipt (RC: cued by “$20”) on incongruent trials.  

These ANOVAs were used in both voxel-wise whole-brain and ROI analyses. All voxelwise 

statistical tests were corrected for multiple comparisons and the correction factor was 

determined by Monte Carlo AlphaSim simulations to provide a whole-brain false-positive rate of 

p < 0.05 (Langdon, Corner, McLaren, Coltheart, & Ward, 2006). 

Interactions of Reward and Group in the A Priori ROIs:  In the ANOVA restricted to a 

priori regions of interest using the DLPFC and BG masks, Reward (BCXT, RCXT, RC) x Time 

point X Group interactions were identified in several regions in the bilateral DLPFC, Putamen 

and medial globus pallidus (see Table 5 for coordinates for each region). In the putamen and 

medial globus pallidus, HC did not show a different degree of target-related activity as a function 

of reward, while individuals with SCZ showed greater target-related activity on BCXT (“XX”) than 

that on RCXT at a trend level (p =.05). In the right DLPFC (BA9; x:25, y:37,z: 29), HC showed 

reduced target-related activity during RC/RCXT vs. BCXT while individuals with SCZ showed no 

different activity as a function of reward in the same right DLPFC (see Figure 7 for time courses).
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Table 5: 

Reward x Group Interaction in the Target-related Activity 

 

Note. BCXT=Baseline-Context, RC = Reward-Context, RCXT=Reward-Context, TP = Time Point. + p = .05, ++ p =0.08. a Post-doc three paired t-
tests (RC-baseline, RC-RCXT, RCXT-baseline) at the average of time point 3-4 for each group were conducted (p < .05). 
Yellow indicates region where neural activities on RC-RCXT, RC-BCXT and RCXT-BCXT at the average of time point 3-4 did not differ. In this 
case, another paired t-tests at each time point 3 and 4 for each group were separately conducted to identify the source of significant effect
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Figure 7: 

Time Courses for Regions Displaying a Reward x Group Interaction in the Target
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Time Courses for Regions Displaying a Reward x Group Interaction in the Target-related DLPFC and BG ROIs Analyses
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Interactions of Reward and Condition In the A Priori ROIs: In the ANOVA restricted to a 

priori region of interest using the DLPFC and BG mask regions, I found Reward (BCXT, RCXT, 

RC) x Condition (congruent, incongruent, neutral) x Time point interactions in the left DLPFC 

and the Putamen as presented in Table 6. To examine target-related activity, I focused on 

examining the difference in neural activity between incongruent and neutral conditions. The size 

of this difference in brain responses is called the “interference effect”. Furthermore, I also 

examined whether the magnitude of facilitation effect (neutral-congruent) was different as a 

function of reward-related cue-types (i.e., RC vs. RCXT). Due to the enhancing reward effect on 

cognitive control, it is expected that facilitation effect would be greater on RC or RCXT 

compared to that on BCXT across groups, especially in the DLPFC. 

 Post-hoc paired t-tests using the interference effect (incongruent-neutral) were 

conducted to determine the relationship between reward and other cue-type activity. As 

presented in Figure 8 (a), conflict-related brain responses in the DLPFC (incongruent-neutral) 

were significantly reduced on RC trials (cued by “XX”, zero money) compared to RCXT (cued by 

“$20”) or baseline trials across two groups (see Figure S4 for full time courses for this effect). 

However, neural activity on incongruent and neutral trials at the average of time point 3-4 in the 

Putamen did not differ as a function of reward cue-type. When I did another follow-up paired t-

tests at each time point 3 and 4, the interference effect (incongruent-neutral) at time point 4 on 

RCXT trials was greater compared to that on BCXT (see Table 6 for paired t-tests for each time 

point 3 and 4). Another set of paired t-tests using the facilitation effect (neutral-congruent) was 

conducted to determine the relationship between reward and other cue-type activity. As 

presented in Figure 8 (b), facilitation effect on RCXT at the average time point3-4 in the left 

DLPFC was greater on BCXT or RC (p= .04).  

 Interactions of Condition and Group In the A Priori ROIs: As shown in Table 6, several 

regions in the left inferior frontal gyrus and the right Putamen from the DLPFC and BG a priori 

ROI analyses displayed a Condition (congruent, incongruent, neutral trials) x Group (SCZ, HC) 
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interaction. As can be seen in Figure 9, in these regions, HC showed greater neural activity on 

incongruent relative to congruent and neutral trials while individuals with SCZ showed no 

significantly different activity as a function of condition type in the same regions. 

Interactions of Reward, Condition, and Group In the A Priori ROIs: Only the right DLPFC 

(x: 30, y:28, z:32) displayed a Reward x Condition x Group x Time point  interaction. To test 

whether the presence of rewards affect cognitive control related activity in the DLPFC, I focused 

on examining whether or not conflict-related brain activity (incongruent-neutral) was reduced on 

RC (“$20”) compared to RCXT trials (“XX”) (see Figure 10 (a) for the magnitude of interference 

effect between the two groups). Repeated measures ANOVAs on the interference effect 

(incongruent-neutral) were conducted with Reward (RC, RCXT) as within-subject factor and 

Group (SCZ, HC) as between-subject factor. No main effect of Reward [F(1, 61) =2.16, p=.14, 

η
2
p = .03], Group [F(1, 61)= .25,  p= .61, η2

p = .004], Reward x Group [ F(1, 61) = 1.01, p=.31, 

η
2
p =.01]  were identified. Further, analogous repeated ANOVAs described above on 

interference effect were conducted at each time point 3 and 4. Again, there were no main effect 

of Reward, Group and Reward x Group (all p > .05).  

To identify the source of this four-way interaction, I conducted an analogous ANOVA on 

the magnitude of “facilitation” effect between neutral and congruent trials at the average of time 

point 3-4 with Reward (RC, RCXT) as within-subject factor and Group (SCZ, HC) as between-

subject factor. This ANOVA revealed no main effect of Reward (RC, RCXT) F(1, 61) =1.79, 

p=.18 η2
p = .03 and Group F(1, 61) = .002, p=.96, η2

p = .000] but significant Reward x Group 

interaction [F(1, 61) =4.94, p=.03, η2
p = .07]. Follow-up paired t-tests on the facilitation effect for 

HC revealed that the facilitation effect did not differ as a function of reward cue-type [RC-RCXT: 

paired t-test (t (26) = .70, p= .48] while for the SCZ, the facilitation effect (neutral-congruent) on 

RCXT was greater than RC [RC-RCXT: paired t-test (t (35) = -2.45, p= .02)]. That is, this four-

way interaction effect in the right DLPFC was driven by a greater magnitude of the facilitation 

effect during RCXT vs. RC trials in SCZ. Figure 11 shows time course of the right DLPFC 
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displaying a Reward x Condition x Group x Time point. 
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Table 6: 

Transient Target-related Activity in The DLPFC and BG A Priori ROIs Analyses 

Note. BCXT= Baseline-Context, BG= basal ganglia, C= congruent, DLPFC= dorsolateral prefrontal cortex, HC = healthy controls, I= incongruent, 
N = neutral, RC = Reward-Cue, RCXT= Reward-Context ,SCZ = schizophrenia, TP= time point. Bold letters indicate cue-type on which neural 
activity was deactivated. *** p=.000,  ++ p=0.08, +++ p=0.09. a Post-hoc paired t-tests at the average of time point 3-4 were conducted to identify the 
source of the interaction effects displayed above. b To identify the source of Reward x condition x time point, interference effect using difference of 
neural activity between incongruent and neutral trials at the average of time point 3-4 for each cue-type (e.g., RC, RCXT, BCXT). Then, post-hoc 
three paired t-tests (RC-BCXT, RC-RCXT, RCXT-BCXT) were performed to determine the relationship of conflict effect among three cue-types. c 

Facilitation effect using difference of neural activity between neutral and congruent trials at the average of time point 3-4 for each cue-type. Then, 
post-hoc three paired t-tests (RC-BCXT, RC-RCXT, RCXT-BCXT) were performed to determine the relationship of facilitation effect among three 
cue-type. d To identify the source of condition x group x time point interaction, post-hoc three paired t-tests (incongruent-neutral, congruent-neutral, 
incongruent-congruent) for each group. Yellow indicates regions where RCXT=BCXT=RC at the average of time point 3-4. To identify the source 
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BG ROI Putamen  137 -16 1 10 3.83 I > N =C I = N = C 
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 Caudate Body  16 15 -11 20 2.68 I > C =N I = N = C 

       TP3 TP4 TP3 TP4 
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of significant effect, another set of three paired t-tests (RC-BCXT, RC-RCXT, RCXT-baseline) at each time point 3 and 4 were separately 
conducted.  

 

 



 

Figure 8:  

Regions Displaying a Reward x Condition

Analyses  

Note. BG= Basal Ganglia, DLPFC = Dorsolateral Prefrontal cortex, L = left, 
Reward-Context, ROI = Region of interest.
 
a Interference effect was estimated by difference in neural activ
trials. b Facilitation effect was estimated by difference in neural activity on between neutral and congruent 
trials. 
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x Condition x Time Point in Target-related DLPFC 

 

DLPFC = Dorsolateral Prefrontal cortex, L = left, RC = Reward
ROI = Region of interest. * p < .05 
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Figure 9: 

Example of Time Courses For Regions Displaying a Condition

in the Target-related DLPFC and BG 
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Regions Displaying a Condition x Group x Time Point 

DLPFC and BG ROIs Analyses  

 Individuals with Schizophrenia
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Figure 10: 

Interference and Facilitation Effect

related DLPFC ROI Analyses 

 

 

 
Note. ** p = .02 
DLPFC= dorsolateral prefrontal cortex, 
ROI = Region of interest, SCZ=Schizophrenia.
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Effects during Reward-Cue vs. Reward-Context in the

     

 

DLPFC= dorsolateral prefrontal cortex, HC= Healthy controls, RC =Reward-Cue, RCXT=Reward
, SCZ=Schizophrenia. a At the average of time point 3 and 4, for both groups, the 

magnitude of interference effects on RC was not significantly different compared to that on RCXT. 
At the average of time point 3-4, SCZ group showed greater facilitation effect on 

RCXT relative to RC while the HC showed no different magnitude of facilitation effect.

SCZ

RC

SCZ

RCXT RC

**

in the Target-

RCXT=Reward-Context, 
At the average of time point 3 and 4, for both groups, the 

compared to that on RCXT. See 
, SCZ group showed greater facilitation effect on 



 

Figure 11: 

Time courses for the Right DLPFC Region Displaying a Reward x Condition x G
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courses for the Right DLPFC Region Displaying a Reward x Condition x Group Interaction in the Target Related Activity
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Transient Component of Motivational Cognitive Control: Results Summary 

During the reward-related cue phase, consistent with prior work in healthy individuals, 

regions in the DLPFC showed increased transient trial-by-trial activity as a function of reward as 

well as in a sustained fashion as described in the section above. However, different from my 

prediction, I found a Reward x Group interaction effect in the ventral striatum, with individuals 

with SCZ showing reduced transient activity as a function of reward-predicting cue compared 

with the HC at a group level. 

During the subsequent target and/or reward receipt-related phase, right DLPFC 

displayed Reward x Condition x Group x Time point interaction. Post-hoc tests by focusing on 

inference effect (incongruent-neutral trials) during RCXT vs. RC trials revealed that for both 

groups, the magnitude of the interference effect did not differ depending on the presence of 

rewards. However, another set of post-hoc analyses on the facilitation effect (neutral-congruent) 

revealed that this four-way interaction was driven by greater magnitude of facilitation effect on 

RCXT compared to that on RC trials in SCZ while the HC did not display significantly different 

degree of interference effect on RC vs. RCXT. One plausible interpretation about these results 

is that regardless of the presence of rewards (i.e., $20), the knowledge about potential reward 

itself, which is hypothesized to be integrated with task-relevant information, might have led to 

greater facilitation effect on RCXT relative to RC. Relating to this, it is worth pointing out that 

there was anecdotal report from the SCZ saying that they felt more pressure to perform better 

and more distracted to respond this task after RC was presented compared to when they 

performed after RCXT cue was presented. Although only a small subset of participants 

completed post-scan questionnaire asking about task difficulty (HC: n=10, SCZ: n=7), both 

groups reportedly felt somewhat higher level of difficulty during reward vs. baseline contexts 

(see Supplementary Materials for post-scan analyses) (p < .05). 

 



 

Behavior-Brain Relationships 

The Relationships Between Sustained Activity in the DLPFC and Behavioral Indices of Reward 

Context and Cue Effects. 

Another set of Pearson correlation analyses was conducted between behavioral indices 

of context effect and increased sustained activity during reward vs. baseline blocks in the 

bilateral DLPFC region displaying a main effect of 

analyses as presented in Table 7.

activity and behavioral indices of context effect (all 

regions from the whole brain analysis 

The Relationship Between Transient Activity and Behavioral Indices of Reward Context and 

Cue effects. 

To examine the relationship between transient brain activity and behavior in SCZ, I 

conducted voxel-wise Pearson correlation

effects as described above and transient neural activity from regions displaying a ROI effect o

Reward (see Table 8A) and ROI interaction effect of 

Table 7: 

Relationship between Behavioral Context Effects and Sustained Brain Activity in SCZ

Note. L= left, R= right, DLPFC= dorsolateral prefrontal cortex.
and p-value in parentheses. (A): Region displaying 
at a whole brain level,(B) and (C): Regions displaying a main effect of 
in ROI DLPFC mask analyses. 

 

Sustained activity during Reward

(B) L DLPFC 

(BA9: -42, 10,30) 

 

(C) R DLPFC 

(BA9: 42, 16,29) 
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Between Sustained Activity in the DLPFC and Behavioral Indices of Reward 

Another set of Pearson correlation analyses was conducted between behavioral indices 

of context effect and increased sustained activity during reward vs. baseline blocks in the 

displaying a main effect of Reward in the DLPFC a priori

analyses as presented in Table 7. There were no significant associations between sustained 

activity and behavioral indices of context effect (all p > 0.10). The correlation analysis 

whole brain analysis is presented in Supplementary Materials.  

The Relationship Between Transient Activity and Behavioral Indices of Reward Context and 

To examine the relationship between transient brain activity and behavior in SCZ, I 

wise Pearson correlation analyses using behavioral indices of context and cue 

effects as described above and transient neural activity from regions displaying a ROI effect o

ROI interaction effect of Reward and Group (see Table 8B)

between Behavioral Context Effects and Sustained Brain Activity in SCZ

dorsolateral prefrontal cortex.This table represents Pearson correlation 
(A): Region displaying Reward (reward, baseline blocks) x 

at a whole brain level,(B) and (C): Regions displaying a main effect of Reward (reward, baseline blocks

Reward vs. baseline Behavioral Context Effect 

 

-.007(.96) 

 

.08 (.63) 

Between Sustained Activity in the DLPFC and Behavioral Indices of Reward 

Another set of Pearson correlation analyses was conducted between behavioral indices 

of context effect and increased sustained activity during reward vs. baseline blocks in the 

a priori ROI mask 

There were no significant associations between sustained 

analysis with 

in Supplementary Materials.   

The Relationship Between Transient Activity and Behavioral Indices of Reward Context and 

To examine the relationship between transient brain activity and behavior in SCZ, I 

analyses using behavioral indices of context and cue 

effects as described above and transient neural activity from regions displaying a ROI effect of 

(see Table 8B) 

between Behavioral Context Effects and Sustained Brain Activity in SCZ 

 

 

 

 

 

 

 

This table represents Pearson correlation r 
x Group interaction 

(reward, baseline blocks) 



 

 

Table 8A: 
Relationships between Behavioral Reward Effects and Transient Brain Activity Displaying 

Priori ROI Reward Effect in SCZ

Regions 

Putamen (-19,3,1) 

 
Medial Globus 

Pallidus (-14,-8,0) 

 
Caudate Body 

(12,-3,14) 

Caudate Body 

(-14,-10,19) 

DLPFC 

(-38,20,29) 

DLPFC 
(37,23,29) 
 

 

Note. DLPFC= Dorsolateral Prefrontal Cortex
parentheses. 
1 The relation between behavioral context effect and neural activity during RC
region displaying a Reward x Time point at the average of 3 and 4 was examined using 
correlation analysis in SCZ (n =36) 
  2 The relation between behavioral reward cue effect and neural activity during RC vs. RCXT in each ROI 
region displaying a Reward x Time point at the average of 3 and
correlation analysis in SCZ (n =36) 
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between Behavioral Reward Effects and Transient Brain Activity Displaying 

in SCZ 

Behavioral Context1 Behavioral Cue2 

 

-.16 (.34) -.21(.20) 

 

-.006(.97) .007(.96) 

 

-.009(.95) -.06(.70) 

  

  

 

.07(.68) -.03(.82) 

 

.14(.39) .20(.22) 

  

  

 

-.08(.62) .03(.86) 

Dorsolateral Prefrontal Cortex. This table represents Pearson correlation 

between behavioral context effect and neural activity during RCXT vs. baseline
x Time point at the average of 3 and 4 was examined using 

 
The relation between behavioral reward cue effect and neural activity during RC vs. RCXT in each ROI 

x Time point at the average of 3 and 4 was examined using a 
 

between Behavioral Reward Effects and Transient Brain Activity Displaying A 

Pearson correlation r and p-value in 

XT vs. baseline in each ROI 
x Time point at the average of 3 and 4 was examined using Pearson 

The relation between behavioral reward cue effect and neural activity during RC vs. RCXT in each ROI 
4 was examined using a Pearson 



 

Table 8B: 

Relationships between Behavioral Reward Effects and Transient Brain Activity in 

Regions Displaying Reward and Group Interaction Effect

Note. RC =Reward-Cue, RCXT= Reward
value in parentheses. 
1 The relation between behavioral context effect and neural activity during RC
region displaying a Reward x Group x 
Pearson correlation analysis in SCZ (
  2 The relation between behavioral reward cue effect and neural activity during RC vs. RC
region displaying a Reward x Group x 
Pearson correlation analysis in SCZ (
 
 

Different from my prediction, f

significant correlation between transient context

BCXT trials in the lateral globus pallidus

point interaction and behavioral indices of contex

same pattern of non-significant correlation was observed in regions displaying ROI effect of 

Reward.  

 

The Relationship Between Negative Symptoms and Both Behavioral and Neural Indices 

of Reward Context Effects Results (Specific Aim 3)

Behavior-Symptom Relationships

3-3) Behavior-Negative Symptom Relationship

about relationships between self

Region 

Ventral Striatum 

(21, 3, 0) 

 

Lateral Globus Pallidus 

(-23, 13,2) 
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between Behavioral Reward Effects and Transient Brain Activity in 

and Group Interaction Effect in SCZ 

Cue, RCXT= Reward-Context. This table represents Pearson correlation 

The relation between behavioral context effect and neural activity during RCXT vs. baseline
Group x Time point at the average of 3 and 4 was examined using a 

Pearson correlation analysis in SCZ (n=36) 
The relation between behavioral reward cue effect and neural activity during RC vs. RC

Group x Time point at the average of 3 and 4 was examined using a 
Pearson correlation analysis in SCZ (n=36) 

Different from my prediction, for SCZ, Pearson correlation analyses revealed no 

significant correlation between transient context-related neural activity during reward

lateral globus pallidus and ventral striatum from a Reward x Group

behavioral indices of context effect on RT data (all p > 0.05

significant correlation was observed in regions displaying ROI effect of 

The Relationship Between Negative Symptoms and Both Behavioral and Neural Indices 

Results (Specific Aim 3) 

ships 

Symptom Relationship (see Table 9): Based on previous evidence 

about relationships between self-reported negative symptoms and reward-related neural 

Behavioral Context1 Behavioral Cue

-.01 (.99) -.18 (.31) 

-.15 (.37) -.29 (.09) 

between Behavioral Reward Effects and Transient Brain Activity in A Priori ROI 

 

 

 

 

 

 

 
This table represents Pearson correlation r and p-

XT vs. baseline in each ROI 
Time point at the average of 3 and 4 was examined using a 

The relation between behavioral reward cue effect and neural activity during RC vs. RCXT in each ROI 
4 was examined using a 

revealed no 

reward-context vs. 

Group x time 

> 0.05). Also, the 

significant correlation was observed in regions displaying ROI effect of 

The Relationship Between Negative Symptoms and Both Behavioral and Neural Indices 

Based on previous evidence 

related neural 

Cue2 
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responses (Waltz et al., 2009), I expected to find a negative correlation between self-reported 

avolition and/or anhedonia and behavioral reward context effect in SCZ showing the greater 

negative symptom severity, the more decreased reward context effect. In contrast, I expected to 

find no significant correlation between negative symptom severity and reward cue effect in SCZ. 

However, different from prediction, I did not find association between negative symptom and 

behavioral indices of reward context and cue effects on RT data. There were no significant 

correlations between any individual difference in negative symptoms scales including the SANS, 

BNSS, and Chapman anhedonia scales and behavioral indices of reward and context effect for 

SCZ (all p >0.05). 

 

Table 9: 

Relationships between Behavioral Reward Effects and Individual Difference in Symptoms of 

SCZ 

 

 

 

 

 

 

 

 

 

 

 

 

Note. BNSS = Brief Negative Symptom Scale, SANS=  Scale for the Assessment of Negative Symptoms, 
SAPS = Scale for the Assessment of Positive Symptoms. 
aEach subtest of the BNSS was z-scored. Each value represents Pearson correlation coefficient, r and p-
value in parentheses  
 

 

 

Symptom Measures Behavioral  

Context Effect 

Behavioral  

Cue Effect 

BNSS: Total scores -.01(.99) .07(.70) 

BNSS: consummatorya -.03 (.84) .13 (.46) 

BNSS: Anticiaptorya   -.10 (.56) .29 (.09) 

Chapman Social Anhedonia -.13 (.47) .20 (.25) 

Chapman Physical Anhedonia -.20 (.25) -.08 (.67) 

SAPS: Total .24 (.16) .01 (.98) 

SANS: Total -.06 (.74) .10 (.55) 
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Brain-Symptom Relationships 

3-4) Sustained Brain Activity and Negative Symptom Relationships:  Based on previous 

evidence about relationships between self-reported negative symptoms and reward-related 

neural responses (e.g., (Waltz et al., 2009), I expected to find negative correlation between 

symptoms severity and neural activity in the DLPFC during reward-context vs. baseline 

conditions, with patients having most severe negative symptoms showing the least increase in 

sustained activity in the DLPFC during reward as compared to baseline blocks.  

At a group level, individuals with SCZ showed similar pattern of increased sustained 

activity during reward vs. baseline blocks in the bilateral DLPFC from the ROI analyses like the 

HC group as described above. To address the relationships between individual difference in 

negative symptoms and sustained activity in the same DLPFC for SCZ, I conducted Pearson 

correlation analyses using sustained activity in the bilateral DLPFC regions displaying a main 

effect of Reward in Figure 12. As predicted, at an individual level, patients with greater negative 

symptoms scores as measured by total score of the SANS tended to show a less of an increase 

in the sustained activity in the right DLPFC (r = -.39, p  = .01) and the left DLPFC (r  = -.37, p 

=.02). Further, I attempted to ascertain that these correlations are not just due to outliers, which 

may artificially inflate a correlation. Therefore, I used two commonly used procedures by 

examining the Cooks’ Distance metric (cutoff > 1) and leverage values (cutoff > 0.5) (e.g., 

Spengler et al., 2010; Strigo et al., 2014;). In the left DLPFC, after excluding a potential outlier 

(maximum value of Cook’s Distance: 1.4), the correlation failed to reach significance (r = -.17, p  

= .31) (see Figure 12A). 

In terms of correlation between increased sustained activity during reward vs. baseline 

blocks in the right DLPFC and the total score of the SANS, none of the data points showed a 

value greater than 0.7 (Cook’s Distance) and 0.2 (leverage value) and most data points had 

values smaller than 1.0 (Cook & Weisberg, 1982). This significant association between 

increased sustained activity during reward vs. baseline blocks in the right DLPFC and the 
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severity of SANS is presented in Figure 12 (B).  

Accumulating evidence from factor analysis of analytic studies of negative symptom 

scales studies suggests that the SANS includes two independent factors: (1) diminished 

expression, which consists of affect flattening and alogia, and (2) amotivation, which consists of 

anhedonia, avolition, and asociality (e.g., (Blanchard & Cohen, 2006; Strauss et al., 2012). To 

further investigate what factor mainly led to the significant association with sustained activity in 

the right DLPFC described above, I conducted two separate correlation analyses using 

individual difference in diminished expression and amotivation subscales of the SANS, 

respectively (see Figure 12B-1 and 2). As presented in Figure 12B-2, the significant association 

between the total SANS and sustained activity in the right DLPFC is driven by the association 

between individual difference in amotivation and sustained activity during reward context in the 

right DLPFC (r = -0.39, p= 0.01). These results show that patients having greater negative 

symptoms, in particular, amotivation symptoms tended to show a less of an increase in 

sustained activity during reward vs. baseline blocks in the right DLPFC.  



 

Figure 12: 

Relationships Between Sustained Activity in the DLPFC

  

Note. Orange and dark red region represents left and right dorsolateral prefrontal cortex, respectively. Threshold of 
ROI DLPFC mask 
A. Non-significant correlation in the left DLPFC between sustained activity during reward vs. baseline blocks and the severity of ne
scores after excluding an outlier (See text for more detail
vs. baseline blocks and the severity of negative symptom scores, which was mainly driven by the association between “motivati
the SANS and sustained activity during reward context in the same right DLPFC (B
of the SANS, B-2. b the sum of anhedonia, avolition, asociality subscales of the SANS
** p < 0.02,  DLPFC= dorsolateral prefrontalcortex, 
Andreasen, 1983b) 
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in the DLPFC and the Severity of Negative Symptoms in SCZ 

Orange and dark red region represents left and right dorsolateral prefrontal cortex, respectively. Threshold of z=2.05 and 

significant correlation in the left DLPFC between sustained activity during reward vs. baseline blocks and the severity of ne
See text for more detail). B. Significant correlation in the right DLPFC between sustained activity during reward 

vs. baseline blocks and the severity of negative symptom scores, which was mainly driven by the association between “motivati
ard context in the same right DLPFC (B-2). B-1.a The sum of affective flattening and alogia subscales 

the sum of anhedonia, avolition, asociality subscales of the SANS 
< 0.02,  DLPFC= dorsolateral prefrontalcortex, L = left, R= right, SANS = The Scales for the Assessment of Negative Symptoms 
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=2.05 and 13 voxels within 

significant correlation in the left DLPFC between sustained activity during reward vs. baseline blocks and the severity of negative symptom 
correlation in the right DLPFC between sustained activity during reward 

vs. baseline blocks and the severity of negative symptom scores, which was mainly driven by the association between “motivation” subscales of 
The sum of affective flattening and alogia subscales 

The Scales for the Assessment of Negative Symptoms (N.C. 

2 4 6 8

Diminished Expressiona

r =-.18,p 

5 10

r =-.39**

2.    Amotivationb



 

3-5) Transient Brain Activity and 

correlation analyses were also conducted to examine the relationship between transient cue

related reward context and/or cue

each group in the ventral striatum and lateral globus pallidus 

x Time point interactions as well as in the DLPFC 

interactions. As presented in Table 1

during RC vs. RCXT trials in the left DLPFC (

difference in the BNSS (total scores) i

Table 10:  

Correlations Between Transient Activity and Individual Difference in Amotivated Symptoms in 

Schizophrenia 

Ventral Striatum (21, 3, 0) SAPS

Neural Context Effectb -.15(.40)

Neural Reward Effectc .07(.67)

Lateral Globus Pallidus 

 (-23,13,2) SAPS

Neural Reward Effect .08(.66)

Neural Context Effect -.26(.12)

DLPFC (-38,20,29) SAPS

Neural Reward Effect -.17 (.30)

Neural Context Effect .04 (.79)

DLPFC (37, 23, 29) SAPS

Neural Reward Effect -.11 (.49)

Neural Context Effect -.14 (.39)

Note. This table represents Pearson c
indicates significant association. SAPS= The Scales for the Assessment of Positive Symptoms 
Andreasen, 1983b), SANS = The Scales for the Assessment of Negative Symptoms 
1983b). BNSS =The Brief Negative Symptom Scale 
Methods section, each subtest of the 
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and Negative Symptom Relationships: Another set 

were also conducted to examine the relationship between transient cue

and/or cue effects and individual difference in amotivated symptom for 

each group in the ventral striatum and lateral globus pallidus regions displaying 

as well as in the DLPFC region displaying Reward x Time point

presented in Table 10, in terms of transient neural activity, neural reward effect 

during RC vs. RCXT trials in the left DLPFC (-38, 20, 29) significantly correlated with 

in the BNSS (total scores) in SCZ (see Figure 13 for scatter plot of correlations

Between Transient Activity and Individual Difference in Amotivated Symptoms in 

SAPS SANS BNSS Chapman Anhedonia

5(.40) .16 (.34) .13(.45) .19(.27) 

.07(.67) -.18(.29) -.08(.64) -.14(.41) 

SAPS SANS BNSS 

 

Chapman Anhedonia

.08(.66) -.17(.32) .20(.24) -.18(.30) 

.26(.12) .28(.10) .28(.10) .21(.23) 

SAPS SANS BNSS Chapman Anhedonia

.17 (.30) -.25 (.13) -.33(.04) .005 (.97) 

.04 (.79) .20 (.23) .24 (.15) .08 (.63) 

SAPS SANS BNSS Chapman Anhedonia

.11 (.49) -.21 (.20) -.17(.30) .01 (.91) 

.14 (.39) .02 (.87) -.004(.98) .10 (.54) 

Pearson correlation r and p-value in parentheses in SCZ (n 
SAPS= The Scales for the Assessment of Positive Symptoms 

, SANS = The Scales for the Assessment of Negative Symptoms (N.C. Andreasen, 
The Brief Negative Symptom Scale (N.C. Andreasen, 1983b). a As descr

Methods section, each subtest of the Chapman scale, Social and Physical anhedonia scores were z

Another set of Pearson 

were also conducted to examine the relationship between transient cue-

and individual difference in amotivated symptom for 

displaying Reward x Group 

Reward x Time point 

neural reward effect 

38, 20, 29) significantly correlated with individual 

of correlations) 

Between Transient Activity and Individual Difference in Amotivated Symptoms in 

Anhedoniaa 

 

Chapman Anhedoniaa 

 

Chapman Anhedoniaa 

 
Chapman Anhedoniaa 

 
 =36). Yellow 

SAPS= The Scales for the Assessment of Positive Symptoms (N.C. 
N.C. Andreasen, 

As described in the 
hysical anhedonia scores were z-



 

scored and then combined into one 
transient activity during RCXT vs. BCXT trials. 
transient activity during RC vs. RCXT trials.
 
 
Figure 13: 

Relationship between Transient Neural 

 

Note. BNSS: Brief Negative Symptom Scale
 

3-6)  Comparisons of the magnitude of t

Of note, two significant correlation

activity were observed in the DLPFC mask from the sam

of the DLPFC in representing and sustaining reward value during cognitive control,

expected that the magnitude of correlation between sustained activity in the DLPFC and 

individual difference scores would be greater than that of correlation between transient activity 

in the DLPFC mask regions and indi

relationship of the two Pearson correlation coeffic

described above (see Figure 12 

expectation, Fisher’s r to Z transformations indicated that 

sustained versus transient) did not 

1980). 

Furthermore, to test whether 
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 composite score. b Neural context effect was estimated by contrast of 
transient activity during RCXT vs. BCXT trials. c Neural cue effect was estimated by the contrast of 
transient activity during RC vs. RCXT trials.   

Relationship between Transient Neural Activity and Individual Difference in Negative Symptoms

 
ef Negative Symptom Scale, DLPFC = Dorsolateral Prefrontal Cortex. 

the magnitude of two Correlation Coefficients  

two significant correlations between individual difference measures and brain 

in the DLPFC mask from the same sample (SCZ: n=36). Due to the role 

of the DLPFC in representing and sustaining reward value during cognitive control,

e of correlation between sustained activity in the DLPFC and 

individual difference scores would be greater than that of correlation between transient activity 

in the DLPFC mask regions and individual difference scores. To test this, I examined the 

two Pearson correlation coefficients in the DLPFC a priori mask regions

 and Table 10 for each correlation). However, different from the 

transformations indicated that the magnitude of two 

did not differ significantly [Z = 0.28, two-tailed p =0.77

o test whether the regions showing both sustained and transient 

20 30 40 50

DLPFC (-38,20,29)

BNSS: Total scores

r =-.33, p= .04

Neural context effect was estimated by contrast of 
Neural cue effect was estimated by the contrast of 

Activity and Individual Difference in Negative Symptoms 

between individual difference measures and brain 

. Due to the role 

of the DLPFC in representing and sustaining reward value during cognitive control, it is 

e of correlation between sustained activity in the DLPFC and 

individual difference scores would be greater than that of correlation between transient activity 

examined the 

mask regions as 

However, different from the 

correlations (i.e., 

=0.77) (Steiger, 

both sustained and transient effects in 
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the right DLPFC mask regions included overlapping voxels, I created a overlap map of the two 

right DLPFC regions (x:42, y:16,z: 29) and transient cue-related effects (x:37,y:23,z:29). I found 

no overlapping voxels. The region displaying sustained context-dependent effect was located 

more in the lateral portion of the DLPFC (x:42, y:16,z: 29) relative to the other DLPFC region 

(midlateral PFC: x:37,y:23,z:29). These results might suggest that right lateral DLPFC is more 

involved in sustaining reward-related contextual information, which is hypothesized to be 

integrated with task-relevant goal information during cognitive processes. To support this, 

emerging evidence from both primates and human neuroimaging work shows that right-

lateralized portion of the DLPFC (e.g., (x:41,y:21, z:28)) is involved in encoding and sustaining 

information about reward-related contexts in motivationally salient situations (e.g., (Jimura, 

Locke, & Braver, 2010; Watanabe & Sakagami, 2007) 
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Relation to Negative Symptoms: Results Summary 

As predicted, individuals with SCZ having greater negative symptoms, in particular, 

amotivation symptoms, showed less of an increase in sustained activity during reward 

compared to baseline blocks in the DLPFC. With regard to transient cue-related activity, more 

severe negative symptoms scores (i.e., the BNSS) at an individual level were significantly 

associated with transient cue-related activity in the DLPFC during RC (cued by “$20”) vs. RCXT 

(cued by “XX”, zero money), but not in the ventral striatum. Taken together, the current 

individual difference analyses could suggest the interpretation that the representation and 

maintenance of reward value during cognitive control, which is hypothesized to be supported by 

the bilateral DLPFC, might be related to patients’ negative symptom. 
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Overall Results Summary: 

In the sections above I reported three main analyses: 1) Behavioral data during a 

response conflict task (reward context and cue effects); 2) fMRI data during the response 

conflict task, and 3) The relations to negative symptoms of SCZ. 

Behavioral Results: The behavioral results revealed two main patterns in SCZ: Intact 

reward context effect but trend-level reduced cue effect in SCZ. Contrary to our prior behavioral 

findings (Mann et al., 2013), current data showed that like the HC, individuals with SCZ also 

showed faster performance even on RCXT (“XX”, zero money) than BCXT (“XX” in baseline 

blocks). On the other hand, individuals with SCZ showed marginally significant reduced reward 

cue effect relative to the HC, as evidenced by less reduction in RT from RCXT (“XX”) to RC 

(“$20”) within reward blocks. Regarding the HC group, I found a general enhancement of reward 

on cognitive performance as evidenced by faster performance on RCXT or RC relative to BCXT 

trials (i.e., main effect of reward, but no reward x condition interaction). These behavioral results 

are not consistent with (Padmala & Pessoa, 2011) showing that interference effect was reduced 

with rewards (i.e., reward x condition interaction effect). 

fMRI Data During Response Conflict Processing: Different from our prediction, but in 

parallel of the behavioral findings, the neuroimaging data suggested that both groups showed 

increased sustained activity during reward vs. baseline blocks supported in the bilateral DLPFC. 

Additionally, contrary to the HC, individuals with SCZ failed to show an increase in both 

transient neural activity as a function of reward-predicting cues in the DA-related subcortical 

regions (i.e., ventral striatum) and the sustained activity as a function of reward contexts (i.e., 

dorsal putamen). 

Consistent with prior neuroimaging work in healthy individuals suggesting the 

engagement of the DLPFC in reward processing (e.g., Jimura et al., 2010), we found that that 

interference effect (incongruent-neutral) was reduced on RC (“$20”) relative to BC or RCXT 
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across groups. Interestingly, Reward x Condition x Group x Time point interaction in target-

related activity was observed in the right DLPFC; the group of individuals with SCZ showed 

greater degree facilitation (neutral-congruent) even on RCXT trials relative to that on RC trials. It 

is possible that any knowledge about potential rewards itself (i.e. reward-related information) 

may have resulted in greater facilitation effect in the SCZ.  

Relationships to Negative Symptoms in SCZ: I found an association between sustained 

and transient brain activity in the DLPFC and individual difference in negative symptoms in SCZ. 

The right DLPFC (BA9: +42, +16, +29) region displayed a significant association between 

individual differences in negative symptoms severity as measured by clinical ratings of the 

SANS and increased sustained neural activity during reward vs. baseline blocks. Of note, as 

described above, this region is the same region showing the similar pattern of greater sustained 

activity during reward vs. baseline blocks for both groups at a group level. Also, transient cue-

related activity in the DLPFC during RC vs. RCXT was significantly associated with individual 

differences in total scores from the BNSS. These results suggest that patients’ negative 

symptom may reflect a deficiency of representing and sustaining reward value during cognitive 

processes, which is hypothesized to be supported by the DLPFC. Given the heterogeneity of 

this illness, these current results pronounce the importance of individual level analysis in SCZ, 

which may contribute to our better understanding about specific nature of symptomatology in 

SCZ. 
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Discussion 

The present study examined the effect of reward (i.e., monetary incentives) on cognitive 

control at both behavioral and neural levels by using a mixed state-item fMRI design. 

Importantly, by examining the relationship between individual difference in negative symptoms 

(i.e., amotivation) in SCZ and neural activity, this study elucidated specific aspects of motivated 

cognitive control function (i.e., sustained context-dependent vs. transient trial-by-trial reward-

related activity) relating to negative symptoms of the illness. Thus, the present findings can be 

divided into five broad categories: 1) Behavioral reward context and cue effects; 2) Sustained 

context-dependent activity; 3) Transient trial-by-trial cue-related activity; 4) Transient target-

related activity, 5) Relation to negative symptoms in SCZ. Lastly, I will discuss these findings 

together focusing on new insights underlying neural mechanism of amotivation in SCZ based on 

current data set. 

1.Behavioral Reward Context and Cue effects. 

Given that the response conflict processing task is a validated task showing the 

enhancing effect of monetary incentives on inhibitory control in healthy individuals (Padmala & 

Pessoa, 2011), we adopted the task and modified it for the use of mixed state-item fMRI design. 

To be specific, Padmala and colleagues found a significant Reward (reward cued by “$20”, no-

reward cued by “$00”) x Condition (or Congruent called in their work; congruent, incongruent, 

neutral) interaction as well as a main effect of Reward. However, the current study did not find a 

significant Reward x Condition interaction effect. Rather, there was only a significant main effect 

of Reward (baseline, RCXT, RC), suggestive of general effect of monetary incentives on 

enhancing speed of performance across groups.  

It is possible that one explanation for the weak or non-significant -Reward by Condition 

behavioral effects in present study is that the participants found the task someone easier than in 

the (Padmala & Pessoa, 2011) study. In terms of accuracy, overall performance in current study 

(accuracy in the HC: 0.92~0.99) was somewhat better compared to that in Padmala and 
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colleagues (approximate range of accuracy: 0.86~0.97). As presented in Supplementary Table 

1, self-reported task difficulty measured in post-scan questionnaire also indicated that a subset 

of participants (n=17) felt that this task was very easy. Thus, the comparison of accuracy data 

between two studies seems to be suggestive that the weak or non-significant Reward by 

Condition interaction effect may be due to relatively different difficulty level given individual 

sample in independent studies. It is required to use more challenging conflict processing 

paradigm, which should be designed to be sensitive to different levels of difficulty depending on 

the sample recruited in the future studies. 

One of the primary aims of this study was to replicate our prior behavioral findings using 

the same response conflict processing task paradigm. Our prior research (Mann et al., 2013) 

had suggested a reduced reward context effect in SCZ at a behavioral level, but an intact 

reward cue effect. In contrast, in present study, individuals with SCZ showed an intact reward 

context effect, but some evidence for a reduced incentive cue effect. The discrepancy between 

two studies may be due to methodological differences and heterogeneity of the illness between 

the studies. The clear difference in current study from (Mann et al., 2013) is that present study 

used a modification of the response conflict task for the use of mixed state-item fMRI design. 

Thus, current study included jittering period ranging from 2 to 6 seconds between the 

presentation of cue and target phase while our prior behavioral study did not include such 

jittering period; target phase was followed right after the presentation of each cue. Thus, it is 

possible that due to such jittering period after cue presentation, participants had some time to 

prepare for upcoming stimuli, which in turn may have resulted in relatively intact pattern of 

reward context effect for the SCZ in current study. 

Of note, in current study, individuals with SCZ showed considerable individual variations 

relative to HC. In terms of RT data, as described above, Levene’s Test showed that the SD in 

SCZ was significantly larger than the SD in HC, suggesting greater individual variation in SCZ 

relative to HC. These findings support the importance of examining analyses of individual 
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differences as a function of symptoms in schizophrenia, as compared to only group analyses. Of 

note, individuals with SCZ included in current study had slightly higher level of negative 

symptoms (total SANS: 8.77) compared to those in our prior study (total SANS: 7.78). Thus, the 

heterogeneity of symptoms and considerable variations of behavioral performance in SCZ (e.g., 

(Goldstein, Beers, & Shemansky, 1996; Manoach, 2003) may contribute to discrepancy across 

behavioral studies depending on compositions of the sample recruited in independent studies.  

Thus, I also examined behavioral performance in relationship to individual differences in 

negative symptoms. I will discuss current findings relating to individual difference in negative 

symptoms, in particular, amotivation in the next section below. 

In summary, I predicted a specific pattern of behavioral deficits, that is, reduced reward 

context effects in SCZ, consistent with prior work (Mann et al., 2013). Contrary to my prediction, 

I found no diagnostic group difference in terms of behavioral reward context effect. However, 

the lack of diagnostic group differences in one sense provides an opportunity to examine neural 

findings in a situation not confounded by different behavioral performance between SCZ and HC 

groups. Within this context, I will discuss neuroimaging data in the next section below. 

2. Sustained Context-dependent Component of Motivat ed Cognitive Control 

The early line of investigations into the effect of reward on cognitive control in healthy 

populations tended to focus on examining transient trial-by-trial reward-related cue effects on 

cognitive control, as described in the Introduction. However, updating reward value in a 

transient manner may not be sufficient to maximize reward outcomes. Accumulating evidence 

converges to suggest that keeping goals active in a sustained manner via proactive control in 

the DLPFC facilitates preparatory processing and in turn, leads to enhanced cognitive 

performance (e.g., (Chiew & Braver, 2013; Jimura et al., 2010; Locke & Braver, 2008). 

Importantly, different from Padmala and Pessoa (2011), the mixed state-item fMRI design used 

in current study enabled to me to examine both sustained context-dependent and transient cue-

related components of motivated cognitive control; (Padmala & Pessoa, 2011) included only 
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reward conditions in which reward-cue ($20) and no-reward cue ($00) were used.  

As described in the Introduction above, given the hypothesis that patients’ core non-

emotional context processing deficits are due to a disturbance in DLPFC function (e.g., (Barch 

et al., 2001), I hypothesized that individuals with SCZ would show reduced sustained activity 

during reward context in the DLPFC compared with HC. However, contrary to my prediction, but 

paralleling present behavioral findings, individuals with SCZ showed an intact pattern of greater 

sustained activity in the bilateral DLPFC during reward vs. baseline contexts, as did the HC. 

Interestingly, a Reward x Group interaction effect was identified in the subcortical regions (i.e., 

dorsal striatum) where patients showed blunted sustained activity during reward contexts.  

Consistent with prior neuroimaging work in healthy individuals suggesting the role of the 

right lateral PFC on reward processing (e.g., (Jimura et al., 2010; Locke & Braver, 2008), the 

DLPFC displayed greater sustained activity during reward versus baseline blocks in both HC 

and individuals with SCZ. In the whole brain analyses presented in the supplement, we did find 

that the individuals with schizophrenia showed a significant reduction in sustained activity in the 

orbital frontal cortex (OFC), but not the DLPFC. This was not a finding that I predicted a priori. 

However, accumulated evidence from non-human primates (reviewed in (Schultz, Tremblay, & 

Hollerman, 1998) and healthy neuroimaging studies (reviewed in (Hollerman, Tremblay, & 

Schultz, 2000; McClure, York, & Montague, 2004) points to the fact that several cortical regions 

including the OFC and DLPFC and subcortical neural structures (e.g., the BG) play a distinct 

role during reward processing depending on each phase of reward processing. To be specific, 

the OFC is implicated in computing the nature of reward value, serving to hold the information in 

working memory, which in turn facilitates goal-directed responses (Wallis, 2007). The DLPFC 

system is considered to integrate reward value obtained from other projections from the OFC 

and other PFC regions and making plan to obtain valued outcomes.  

Our findings showing reduced sustained activity in the OFC during reward context in 

SCZ may indicate that patient’s are impaired in computing and maintaining mental 
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representations of reward value necessary to regulate upcoming behavior. A number of 

previous studies in SCZ have suggested that these functions are impaired and associated with 

altered OFC function and altered reinforcement learning (Kring & Barch, 2014; Strauss, Waltz, & 

Gold, 2014). Prior research using reinforcement learning paradigms has consistently suggested 

that individuals with SCZ may have impairments in reward value computation due to abnormal 

function of the OFC and BG systems, as evidenced by their difficulty making rapid behavioral 

adjustment according to explicit feedback. For example, in (Gold et al., 2012)’s behavioral work 

using a probabilistic reinforcement learning paradigm, individuals with SCZ showed their 

difficulty in choosing a stimulus previously associated with a higher reward value (i.e., monetary 

incentives), which reflect patients’ deficiency to use explicit representation of feedback to make 

trial-by-trial behavioral adjustment when choosing a response (Waltz, Frank et al., 2011; Waltz 

& Gold, 2007). In particular, individuals with SCZ with higher negative symptoms tended to 

show a less tendency to learn from monetary gains relative to learning loss-avoidance. At a 

neural level, these behavioral reinforcement learning deficits in SCZ are thought to be 

associated with abnormal responses in the OFC and BG systems (e.g., (Waltz & Gold, 2007; 

Waltz et al., 2013), reviewed in (Strauss et al., 2014). However, these ideas are speculative, 

especially given that we did not find a behavioral difference in reward context effects. 

The BG a priori ROI analysis revealed blunted sustained activity during reward vs. 

baseline contexts in SCZ relative to HC in the dorsal striatum. The basal ganglia complex is 

another major component of the neural circuitry that is involved in reward processing (reviewed 

in (Delgado, 2007). The striatum is known to be a major input structure of the BG, which is 

considered to represent a neural circuit responsible for mediating goal-directed behavior by 

receiving synaptic input from cortical and subcortical afferents (Kimura et al., 2003; Samejima et 

al., 2005). Specifically, the dorsal striatum, which consists of the caudate nucleus and the 

putamen, receives extensive projections from the DLPFC as well as other frontal regions.  

The dorsal striatum is thought to be one of motivation-sensitive regions of which neural 



 86

activity is modulated by reward context (Delgado, Locke, Stenger, & Fiez, 2003; Delgado, 

Stenger, & Fiez, 2004). Specifically, neural activity in the dorsal striatum is thought to be 

affected by both magnitude of rewards and valence of stimulus (reward versus punishment) 

(e.g.,(Nieuwenhuis et al., 2005). For example, (Katsyri, Hari, Ravaja, & Nummenmaa, 2013) 

found that wins (monetary gain) versus losses evoked significantly greater transient trial-by-trial 

activity in the dorsal striatum in healthy individuals. In a similar vein, current study extended this 

line of work by showing that the HC group showed increased sustained activity in the dorsal 

striatum during reward compared to baseline context. In contrast, individuals with SCZ showed 

blunted sustained activity in the same region during reward context. Taken together, these 

results suggest abnormal function of the OFC and dorsal striatum system, potentially reflecting 

altered maintenance reward value during cognitive control in SCZ.  However, again, we did not 

see evidence in the current study for behavioral differences at the group level in the reward 

context effect. It is possible that these would be more apparent in a more challenging task, but 

that is a speculation that awaits empirical testing. 

3. Transient Reward-Cue-related Activity  

Reward processing is not a unitary concept. Rather, it consists of several dissociable 

constructs including reward prediction, reward receipt, and feedback phases of reward 

processing. Contrary to the traditional notion that motivational impairments in SCZ may come 

from their inability to experience pleasure (e.g., Meehl (1989)), an increasing number of 

behavioral and neuroimaging studies converge to suggest that amotivation in SCZ may come 

from a specific phase of DA-driven reward processing (e.g., dysfunctional reward anticipation, 

reinforcement learning deficits). For example, regardless of medication status, several studies 

found less ventral striatal activation during the presentation of reward-predicting cues in SCZ 

relative to HC (e.g., (Esslinger et al., 2012; Juckel, Schlagenhauf, Koslowski, Filonov, et al., 

2006). In contrast, there is neural evidence showing that individuals with SCZ displayed intact 

pattern of increased transient activity at the receipt of reward, particularly with no cognitive 
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demand (e.g., action selection, action execution) (e.g., (Dowd & Barch, 2012). Importantly, 

patients’ severe negative symptom severity has been relatively consistently found to be 

associated with blunted VS activity during reward-predicting cues (e.g. (Dowd & Barch, 2012). 

Consistent with this line of reasoning, in the current study, individuals with SCZ showed blunted 

VS activity during reward-predicting cues while HC showed increased neural activity as a 

function of reward in the VS.  

Consistent with prior neuroimaging work in healthy adults, the present study closely 

replicated the pattern of increased transient neural activity as a function of reward in the bilateral 

DLPFC and subcortical brain regions including the putamen and caudate body across groups. 

However, a Reward x Group interaction effect was identified in several subcortical regions. HC 

showed increased transient activity during RC (“$20”) versus RCXT (“XX” in reward blocks) or 

baseline (“XX”) in the VS and lateral globus pallidus. In contrast, individuals with SCZ showed 

blunted neural activity regardless of reward-predicting cues in the same subcortical regions. 

The VS is a part of a OFC-limbic circuit subserving emotional and reward-related 

processing and thought to be involved in processing both primary (e.g., pleasant sensory 

outcomes: taste, smell, sights) and secondary rewards (i.e., monetary incentives) (Aharon et al., 

2001; Haber & Knutson, 2010; Knutson, Fong, Bennett, Adams, & Hommer, 2003; Rolls et al., 

2003). The current findings of reduced VS and globus pallidus activity is consistent with 

previous work showing blunted VS activity during reward anticipation in SCZ regardless of 

antipsychotic medication status. For example, a number of neuroimaging studies using a variant 

of a monetary incentive delay task found less ventral striatal activation during the presentation 

of reward-predicting cues in unmedicated individuals with SCZ (Esslinger et al., 2012; Ghuman 

et al., 2013; Juckel, Schlagenhauf, Koslowski, Filonov, et al., 2006; Juckel, Schlagenhauf, 

Koslowski, Wustenberg, et al., 2006; Schlagenhauf et al., 2009) as well as in those with typical 

antipsychotic mediations (Juckel, Schlagenhauf, Koslowski, Filonov, et al., 2006; Kirsch et al., 

2007; Schlagenhauf et al., 2008). These patterns of abnormal neural activity during reward 
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anticipation is consistent with prior studies showing abnormal striatal activity during reward 

anticipation (e.g., (Esslinger et al., 2012; Ghuman, van den Honert, & Martin, 2013; Juckel, 

Schlagenhauf, Koslowski, Filonov, et al., 2006), but is in contrast to relatively intact patterns of 

striatal activity in response to the receipt of reward in many in previous studies (e.g., (Dowd & 

Barch, 2012); see (Kring & Barch, 2014; Strauss et al., 2014) for recent literature review). Thus, 

activity during reward anticipation may represent a specific biological target relating to patients’ 

amotivation.  

 

4. Transient Target-related Activity 

In the past several decades, there is a surge of research interests regarding how 

cognitive control interacts with motivation in the field of basic cognitive neuroscience (e.g., 

(Chiew & Braver, 2014; Locke & Braver, 2008; Padmala & Pessoa, 2011). A rich literature from 

both behavioral and neuroimaging work in healthy individuals points to the findings that task-

relevant goal representation is enhanced in motivationally salient situations via top-down control 

(e.g., (Sescousse, Li, & Dreher, 2014; Watanabe, Kodama, & Hikosaka, 1997; Watanabe & 

Sakagami, 2007) as confirmed by several meta-analytic reports  (e.g.,(Liu, Hairston, Schrier, & 

Fan, 2011; Sescousse, Caldu, Segura, & Dreher, 2013). This effect is called “motivated 

cognitive control” (e.g., (Mann et al., 2013), as described in the Introduction. Importantly, the 

enhanced task-relevant goal representation in reward contexts is thought to facilitate cognitive 

processing especially when demands on cognitive control are high (e.g., conflict-related 

responses on incongruent trials) (e.g., (Padmala & Pessoa, 2011).  

Conflict processing presumably engendered by incongruent trials requires a higher 

demand on cognitive control function to inhibit task-irrelevant stimuli to generate task-relevant 

response (reviewed in Carter & van Veen, 2007). During the target phase, consistent with 

previous literature about cognitive control in healthy populations (e.g.,(Padmala & Pessoa, 

2011), we closely replicated prior findings by showing that several cortical and subcortical brain 
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regions thought to be involved in cognitive control function (i.e., inferior frontal gyrus, cingulate 

gyrus, precuneus) showed greater activity on incongruent trials than congruent or neutral trials 

across groups from a whole brain analysis. 

More importantly, we were interested in determining whether the presence of rewards 

moderated these conflict-related differences in brain activity. Prior work has suggested the role 

of the DLPFC in representing and integrating reward value to modulate cognitive control 

presumably through enhanced representation of reward value (e.g., (Ballard et al., 2011; 

Engelmann et al., 2009; Locke & Braver, 2008). Thus, it was expected that individuals with SCZ 

would show impaired DLPFC-driven cognitive control function during reward contexts compared 

with the HC. Relating to this, Reward x Condition x Group x Time point interaction was identified 

in the right DLPFC (x:30, y: 28, z: 32) where for both groups, the magnitude of interference 

effect (incongruent-neutral trials) did not differ as a function of rewards. Rather, the four-way 

interaction was driven by different degrees of the facilitation effect only in SCZ; the SCZ showed 

greater magnitude of facilitation effect (neutral-congruent trials) on RCXT than that on RC trials. 

This is not a finding that I expected a priori. It might be that regardless of the presence of 

rewards, general knowledge about potential rewards itself in motivationally salient situations 

may have greater impact to the SCZ, which may have resulted in greater facilitation effect on 

the RCXT than that on RC trials.  

The DLPFC is a core component of a brain network that supports cognitive control 

function to regulate goal-directed behavior (e.g., (Cole, Yarkoni, Repovs, Anticevic, & Braver, 

2012; Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004). There is a very robust literature 

suggesting that individuals with SCZ have deficits in the active maintenance of non-emotional 

context information in working memory, which may be necessary to regulate upcoming 

responses towards goal-oriented behavior, as referred to as context processing (Cohen &  

Servan-Schreiber, 1992) and see (Lee & Park, 2005; Minzenberg, Laird, Thelen, Carter, & 

Glahn, 2009) for a meta-analytic summarizing evidence). More recently, it has been increasingly 
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considered that motivational contexts (i.e., reward conditions) as well as reward-related external 

cues may enhance cognitive performances presumably via enhanced maintenance of reward 

information in the DLPFC (e.g., (Jimura et al., 2010). In current study, group analyses revealed 

that different from my expectations, the SCZ showed an intact pattern of greater sustained 

context-dependent and transient cue-related DLPFC activity as a function of motivational factors 

like the HC. In this context, I will discuss what components of neural activity (i.e., sustained 

context-dependent vs. transient cue-related DLPFC activity) are more closely related to patient’s 

negative symptoms at an individual level in the next section below. 

Behavior-Brain Relationships:  

In present study, I attempted to elucidate specific behavioral indices of reward 

processing and the corresponding neural responses. I predicted that behavioral indices of 

reward context and cue effects would be associated with the corresponding BOLD signal 

changes in the DLPFC and BG. Contrary to my predictions, there was no statistically significant 

correlations between behavioral indices of reward context and/or cue effects and corresponding 

neural responses in the DLPFC and BG ROIs regions. This may be due to a ceiling effect given 

consistently high performance across condition-type. As noted above, many participants felt this 

task was relatively easy for them (see self-reported post-scan questionnaire results in 

Supplementary Materials) and average accuracy rate was approximately 97% and 95% for HC 

and SCZ, respectively. Thus, there is a possibility that relatively high accuracy rates could have 

masked true correlation between behavior and brain activity.  

5.Relation to Negative Symptoms in SCZ  

In addition to examining reward-related cue activity in SCZ, another critical component of 

the present investigation was to examine specific neural mechanisms closely relating to 

amotivation (i.e., anhedonia and/or avolition) in SCZ. I did not find any significant relationships 

between individual differences in self-report or clinical ratings of negative symptoms or 

anhedonia (i.e., the SANS, the BNSS) and either behavioral index of the reward context or cue 
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effects. The non-significant relationships between individual differences in self-report or clinical 

ratings of negative symptoms or anhedonia and either behavioral index of the reward context or 

cue effects are consistent with prior work (Mann et al. (2013). Considering the relatively 

reasonable sample of participants for SCZ (n=36), it is unlikely that non-relationship to negative 

symptoms is due to low power. I had also predicted that individual difference in anhedonia 

and/or amotivation in SCZ would be negatively associated with sustained activity in the DLPFC 

during reward vs. baseline conditions. Consistent with my hypothesis about sustained activation, 

patients with greater amotivation showed reduced sustained activity during reward vs. baseline 

blocks in the right DLPFC. Of note, the right DLPFC is the same brain region in which patients 

with SCZ showed similar pattern to HC of greater sustained activity during reward vs. baseline 

contexts at a group level. It should be noted that individual differences in diminished expression 

subscales of the SANS were not found to be significantly associated with sustained activity 

during reward blocks in the same DLPFC. Although this finding should be considered 

provisional and requires further study, motivational impairments in SCZ may reflect their 

inefficiency of representing and sustaining reward value during their cognitive control function 

potentially due to abnormal DLPFC-medicated context processing.  

In terms of the association between transient cue-related activity and negative 

symptoms in SCZ, given prior work showing a negative association between individual 

difference in anhedonia and transient cue-related activity in the ventral striatum (e.g.,(Dowd & 

Barch, 2012), I predicted that individuals with SCZ having greater anhedonia and/or amotivation 

would show a less of transient cue-related activity in the ventral striatum during RC (“$20”) vs. 

RCXT (“XX”) within reward blocks. Different from my prediction, I did not find any significant 

correlation between specific aspects of anhedonia as measured by the BNSS and neural activity 

in the ventral striatum. However, transient cue-related activity during RC vs. RCXT in the 

DLPFC showed a significant association with individual differences in BNSS total scores. 

Considering converging evidence suggesting dissociable neurobiological mechanism of  
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“anticipatory” and “consummatory,” “liking” aspects of anhedonia (amotivation) (reviewed in 

(Kring & Barch, 2014; Strauss et al., 2014), I attempted to examine neural mechanism relating 

to specific aspects of anhedonia by using several individual difference measures (i.e., the BNSS. 

and sustained activity during reward contexts in the DLPFC. However, I did not find any 

significant correlation between specific aspects of anhedonia as measured by the BNSS and 

sustained activity during reward contexts in the DLPFC. It may be due to limited number of 

items in the BNSS for each “anticipatory” (one item) and “consummatory” (two items) aspects of 

negative symptoms in SCZ. Additionally, the BNSS is a relatively new, and thus less well-

validated clinical scale ( based on the 2005 NIMH recommendation) relative to the SANS and 

PNSS. Thus, it may be required to increase statistical power by adding enough number of items 

for each “anticipatory” and “consummatory” aspects of negative symptoms. 

6. Overall Limitations and Future Directions 

Despite crucial findings relating to amotivation in SCZ, as with any study, the present 

study has several limitations. The primary limitation was that most patients with SCZ recruited in 

this study were taking dopamine receptor blocking antipsychotic medications, which may 

influence reward-related neural responses (McCabe, Huber, Harmer, & Cowen, 2011). 

Antipsychotic medications have been shown to affect reward-related neural responses in 

healthy adults (Abler, Erk, & Walter, 2007; Mathews et al., 2012) and patients with SCZ (Juckel, 

Schlagenhauf, Koslowski, Filonov, et al., 2006; Nielsen et al., 2012). Thus, I cannot exclude a 

possibility that current results may have been affected by antipsychotic medications. However, 

to my knowledge, there is no empirical study reporting significant correlations between 

estimation of antipsychotic drug dose and any negative symptom ratings and/or neural 

responses to reward-predicting cues [e.g., (Dowd & Barch, 2012; Gold et al., 2012; Mann et al., 

2013; Waltz et al., 2010). Despite a potential impact of antipsychotic medication on reward 

processing, importantly, it is highly unlikely that current findings are purely related to 

antipsychotic action, as motivational deficits as evidenced by abnormality of reward-related 
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neural responses have been observed even in unmedicated patients with first-episode SCZ 

(Esslinger et al., 2012; Schlagenhauf et al., 2009)) and individuals at prodromal phase o f the 

illness (Piskulic et al., 2012; Yung & McGorry, 1996).  

Another limitation is that I cannot exclude a possibility that reward context effect might 

be driven by arousal differences across blocks. Relating to this, there is a debate regarding the 

reward specific versus salience debate of the striatum. For example, it is proposed that the 

striatum is involved in coding stimulus saliency as well as reward processing ((Zink, Pagnoni, 

Martin, Dhamala, & Berns, 2003; Zink, Pagnoni, Martin-Skurski, Chappelow, & Berns, 2004). 

However, there is still evidence that the striatum is not merely mediating stimulus salience as 

evidenced by a deactivation in the ventral striatum in response to the omission of an 

unexpected reward (Knutson et al., 2001; S. M. McClure, Berns, & Montague, 2003; O'Doherty, 

Dayan, Friston, Critchley, & Dolan, 2003; Pagnoni, Zink, Montague, & Berns, 2002). To support 

this, empirical data suggests that when participants were asked to complete subjective arousal 

ratings using a Likert-type scale after the presentation of reward-relating cues in the scanner, 

individuals with SCZ showed similar patterns of arousal as the HC did; both groups rated 

themselves as more anxious after loss cues than after either gain cues or neutral cues (Waltz et 

al., (2010)).  

Future Directions: 

Based on several limitations pointed out above, I would like to suggest several things to 

be addressed in future research. First of all, as described in the Introduction, an increasing 

amount of neurobiological evidence converges to suggest that the anticipatory and 

consummatory phases of reward processing are distinctive. In current task paradigm, we could 

not disentangle reward outcome-related responses from target-related responses. To address 

this, is would be necessary to use a paradigm that temporally dissociates the response phase 

from the feedback phase. Further, in order to elucidate specific neural mechanism that is closely 

related to each distinctive aspects of amotivation symptom (i.e., anticipatory versus 
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consummatory of amotivation), it is necessary to develop and use clinical measures of negative 

symptoms, aiming to differentiate anticipatory versus consummatory aspects of amotivation with 

better psychometric properties. In present study, I attempted to address this issue by including a 

clinical rating scale, the BNSS and several self-report measures of anhedonia symptoms (i.e., 

the Chapman Social and Physical Anhedonia Scales). However, I could not find significant 

association between neural responses during anticipatory phase and individual difference in 

anticipatory subscale of the BNSS, which only includes one item about expected pleasure from 

future activities. Thus, it is crucial to increase discriminating power of the BNSS by increasing 

more items for distinctive consummatory versus anticipatory subscales of amotivation. 

In the context of increased interests towards elucidating the neural mechanism 

underlying amotivation in SCZ in recent years, and necessity of developing better negative 

symptom measures (reviewed in (Kring & Barch, 2014), the Clinical Assessment Interview for 

Negative Symptoms (CAINS; (Kring, Gur, Blanchard, Horan, & Reise, 2013) has recently 

finalized its development and psychometric validation (Horan, Kring, Gur, Reise, & Blanchard, 

2011). The CAINS is a newly developed clinical rating scale designed to assess negative 

symptoms across multiple domains, which contains one tapping emotion expression (four items) 

and the other measuring motivation and expected pleasure (nine items) (Kring et al., 2013). 

Thus, the CAINS is a promising clinical rating tool that can be used in future study aiming to 

differentiate specific mechanisms associated with “anticipatory” versus “consummatory” aspects 

of negative symptoms in SCZ. 

In present study, I conducted hypothesis-driven a priori Region-of-Interest Analyses by 

focusing on the role of the DLPFC and striatum during reward processing in SCZ. Although 

current study provided neural evidence suggesting the relevance of individual difference in 

amotivation with neural activity in the DLPFC during reward contexts in SCZ, functional 

connectivity abnormality within reward network of brain regions would provide another piece of 

crucial evidence that would contribute to completing a “big picture” about neural mechanisms 



 95

underlying amotivation in SCZ. Relating to this, a very rich literature in reward processing shows 

the involvement of a brain network of cortical-subcortical regions in healthy individuals, with 

quantitative evidence from meta-analytic studies (e.g., (Engelmann et al., 2009; Liu et al., 2011; 

Sescousse et al., 2013)). To be specific, both non-human primate and healthy human imaging 

work points to the findings that both several regions in the DLPFC and OFC, and striatum are at 

the center of reward-related brain network (e.g.,(Balleine, Delgado, & Hikosaka, 2007; Delgado, 

2007; Jimura et al., 2010; Wallis & Miller, 2003). More importantly, neuroanatomical evidence 

shows that most of cortex including the DLPFC projects to the striatum (e.g., (Rosenbloom, 

Schmahmann, & Price, 2012). That is, the dorsal striatum receives major projections from the 

DLPFC while the ventral striatum receives extensive projections from the ventral PFC including 

the OFC (reviewed in (Delgado, 2007; Gottfried, 2011). Therefore, future studies examining 

functional connections of the DLPFC and striatum during reward processing might elucidate 

different pattern of reward-related neural responses between diagnostic groups. Along with 

functional and structural connections of the frontostriatal regions, it is speculated that individuals 

with SCZ may show a breakdown in connectivity of the DLPFC with striatum (e.g., (Anticevic, 

Repovs, Krystal, & Barch, 2012; Quan et al., 2013)) presumably due to their inefficiency of top-

down control. For example, it is possible that the DLPFC-striatum connectivity during RCXT 

versus baseline might be reduced in SCZ relative to HC considering both structural and 

functional neuroimaging evidence suggesting the abnormal connectivity of the DLPFC and other 

subcortical regions  (i.e., the striatum) in SCZ  

 
7. General Conclusions 

 
This study was designed to examine the effect of reward using monetary incentives on 

cognitive control in SCZ at both behavioral and neural levels. By examining reward context and 

cue effects at both behavioral and neural levels, this study attempted to elucidate specific neural 

mechanism underlying amotivation in SCZ. At a behavioral level, individuals with SCZ showed 
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intact pattern of reward context effect like the HC, while they showed somewhat reduced reward 

cue effects relative to HC. At a neural level, in terms of sustained context-dependent component 

of motivated cognitive control, individuals with SCZ showed an intact pattern of greater 

sustained activity during reward context in the bilateral DLPFC like the HC. However, individual 

difference analyses revealed that patients having greater amotivation displayed more reduced 

sustained context-dependent as well as transient trial-by-trial cue-related activity in the DLPFC 

as a function of rewards. Taken together, although these findings should be interpreted with 

caution and replicated in further study, current study provided neural evidence suggesting 

patients’ DLPFC function during reward processing is closely related to amotivation in SCZ at 

an individual difference level. 
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Supplementary Materials 

Post-Scan Questionnaire of Analysis 

Self-reported Motivation: A Repeated-measures of ANOVA on self-reported motivation 

was conducted to make sure that motivational states were manipulated by monetary incentives. 

There was a significant main effect of Motivation [F (2,30) = 4.78, p= .01, η2
p= .24]. Neither main 

effect of Group [F (1,15) = .68, p = .42, η2
p= .04] nor Motivation (RCXT, RC, B) x Group 

interaction [F (2,30) = .04, p = .95, η2
p= .003] was identified. Three post-doc paired t-tests (RC-

baseline, RCXT-Baseline, RC-RCXT) were conducted to follow up a main effect of Motivation. 

Both groups reported higher motivation on RC (“$20”) than baseline (“XX”) [paired t-test 

(16)=2.74, p=0.01] and on RC (“$20”) relative to RCXT (“XX”) within reward blocks [paired t-test 

(16)=2.63, p= .018]. However, there was no difference in self-reported motivation between 

RCXT and baseline [paired t-test (16)= 0.23, p= .87].  

Self-reported Task Difficulty: another repeated-measures ANOVA on difficulty was 

conducted. There was a significant main effect of difficulty [F (1,15) = 5.38, p= .03, η2
p= .26]. 

Neither main effect of Group [F (1,15) = .008, p = .92, η2
p= .001] nor Difficulty (reward, baseline 

blocks) x Group interaction [F (1,15) = 2.25, p = .15, η2
p= .13] was identified. Post-hoc paired t-

test on difficulty between reward and baseline blocks indicates that both groups felt somewhat 

higher level of difficulty on reward than baseline blocks [paired t-test (16)=2.52, p= .02].  
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Supplementary Table 1: 

Post-Scan Questionnaire of Analysis 

 Task Blocks HC (n=10) SCZ (n=7) 

Baseline Blocks    

How motivated were you on this 5.50 (1.43) 5.00 (1.00) 

How difficult was this task, in general? 2.0 (1.69) 2.71 (1.70) 

Reward Blocks    

How motivated were you on “XX” trials? 5.50 (1.58) 5.14 (0.89) 

How motivated were you on “$20” trials? 6.20 (0.91)        5.85 (0.69) 

How difficult was this task, in general? 4.0 (2.40)        3.14 (1.57) 

Note. Higher value represents higher level of motivation and difficulty ranging from 1 (very unmotivated, 

very easy) to 7 (very motivated, very difficult). 
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Whole Brain Analyses: 

Sustained Context-dependent Component of Motivated Cognitive Control 

Whole-Brain Effects of Reward: The voxel-wise ANOVA as described above was 

conducted at a whole brain level to examine exploratory effects. A significant main effect of 

Reward (reward, baseline blocks) was identified in a number of regions in the middle and 

inferior frontal gyrus and parietal lobe including the precuneus (see Table S2 for exact 

coordinates of each region and the pattern). To follow up, I conducted paired t-tests to compare 

sustained activity during reward vs. baseline blocks on each region showing a main effect of 

Reward across groups. As shown in Figure S1, most regions showed greater sustained activity 

during reward than baseline blocks.  

Whole-Brain Effects of Group: No region displayed a main effect of Group at a whole 

brain level. 

Whole-Brain Interaction of Reward and Group: A significant Group x Reward interaction 

was also found in the right OFC (x:32, y: 33, z:  -5) and right claustrum (x:22, y: 27, z: 2) in the 

whole-brain analysis (see Table S3 for exact coordinates of each region and the pattern shown 

in each region). To further identify the source of Reward x Group interactions effects, I 

conducted post-hoc paired t-tests to compare sustained activity during reward vs. baseline 

blocks for each group. As presented in Figure S2 below, the HC showed greater activity during 

reward vs. baseline blocks in all regions displaying a Reward x Group interaction [the right OFC 

(x: 32, y: 33, z: -5), paired t-test (26)=3.52, p =.002); the right claustrum (x:22, y: 27, z: 2), 

paired t-test (26)= 3.51, p =.002]. In contrast, individuals with SCZ failed to show an increase of 

sustained activity as a function of reward context: a group of SCZ showed greater activity in 

baseline relative to reward blocks in the right OFC [(x:32, y: 33, z: -5): paired t –test (35)= -2.57, 

p = .01] and the right claustrum at a trend level [(x:22, y: 27, z: 2), paired t -test (35)= -2.02, p 

=.05]. 
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Supplementary Table 2: 

Activated and Deactivated Regions Displaying a Main Effect of Reward in a WB Analysis 

 

 

 
Region of Activation  

 
BA 

 
Cluster size 

(voxels) 

 
Talairach Coordinates 

 
Z 

 
Activation 
Patterna 

x y  z 

Activation 

Precentral Gyrus 9 147 42 4 34 4.42 R > B 

Middle Frontal Gyrus 8 20 38 28 43 3.89 R >B 

Middle Frontal Gyrus 9 67 48 25 31 4.64 R >B 

Inferior Frontal Gyrus 9 19 -46 5 32 3.95 R >B 

Middle Temporal Gyrus 22 80 52 -41 5 4.49 R > B 

Declive  87 -11 -77 -20 5.35 R > B 

Pyramis  120 -25 -63 -30 5.12 R > B 

Superior Parietal Lobule 7 151 30 -61 53 4.88 R > B 

Precuneus 7 111 -20 -64 44 4.41 R > B 

Inferior Semi-Lunar Lobule  62 -12 -76 -35 5.02 R > B 

Inferior Parietal Lobule 40 151 43 -49 46 4.30 R > B 

Inferior Parietal Lobule 40 102 -35 -55 45 4.50 R > B 

Precuneus 7 131 15 -65 41 4.48 R > B 

Pyramis  62 14 -75 -30 4.74 R > B 

Inferior Parietal Lobule 40 21 -51 -45 48 4.015 R >B 

Culmen  22 -34 -49 -30 4.65 R >B 

Cerebellar Tonsil  21 3 -54 -34 3.77 R >B 

Deactivation 

Superior Temporal Gyrus 40 74 49 -48 20 4.46 B > R 

Fusiform Gyrus 37 126 -41 -61 -13 5.32 B > R 

Fusiform Gyrus 37 40 -41 -46 -17 4.70 B > R 

Fusiform Gyrus 19 125 -30 -72 -14 5.46 B > R 

Middle Temporal Gyrus 39 26 45 -59 9 3.88 B > R 
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Note. B= baseline, R= reward, R = right, L = left, HC = healthy controls, SCZ = individuals with 
schizophrenia, WB= Whole brain, Z values represent mean activation across the region. 
a post-doc paired t-tests between reward and baseline blocks across groups were performed. 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 

 

 

 
Region of Activation  

 
BA 

 
Cluster size 

(voxels) 

Talairach Coordinates  
Z 

 
Activation 
Patterna 

x y  z 

Inferior Occipital Gyrus 19 44 40 -74 -2 4.04 B > R 

Cuneus 19 113 -27 -74 27 4.88 B > R 

Fusiform Gyrus 37 86 45 -54 -9 4.62 B > R 

Middle Occipital Gyrus 19 67 35 -80 18 4.36 B > R 

Middle Occipital Gyrus 19 34 -25 -87 14 4.36 B > R 

Precuneus 19 158 28 -73 33 4.55 B > R 

Declive  119 31 -66 -14 5.02 B > R 

Culmen  94 -27 -54 -16 5.02 B > R 

Culmen  74 32 -48 -17 4.85 B > R 
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Supplementary Table 3: 

Sustained Context-dependent Activity: Reward x Group Interaction Effect 

 

Note. B= baseline, BG =basal ganglia, DLPFC =dorsolateral prefrontal cortex, HC = healthy controls, R= 
Reward, ROI = region of interest, SCZ = individuals with schizophrenia, WB = whole brain analysis. Z 
values represent mean activation across the region. 
a Post-hoc paired t-tests or independent t--tests were conducted (all p < .05). See text for detailed  
post-hoc analyses.

 
Effect 

BA  
Region of 
Activation  

 
Cluster size 

(voxels) 

Talairach 
Coordinates 

 
 

Z 

 
Activation 
Patterna 

x y  z 

Reward x 
Group 

47 Orbitofrontal Cortex 13 32 33 -5 4.10 SCZ: B > R 
HC: R > B 

  Claustrum 20 22 27 2 3.58 SCZ: B > R 
HC: R > B 



 

Supplementary Figure 1: 

Regions Displaying a Main Effect of Reward At a Whole Brain Level
 

Note. This figure represents regions displaying a main effect of 
were performed on each region across groups (p <
regions with the pattern of greater sustained activity during reward relative to baseline blocks. 
pattern of greater deactivation during baseline than reward blocks across groups. See TableS1 for the exact cooridinates for each re
Supplementary Material
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At a Whole Brain Level 

This figure represents regions displaying a main effect of Reward. As described in the text, post-hoc paired t-tests (reward 
< .05) to compare sustained activity depending on each task block. Pink

regions with the pattern of greater sustained activity during reward relative to baseline blocks. Yellow represents deactivated r
eactivation during baseline than reward blocks across groups. See TableS1 for the exact cooridinates for each re

 
tests (reward -baseline blocks) 

Pink indicates activated 
deactivated regions with the 

eactivation during baseline than reward blocks across groups. See TableS1 for the exact cooridinates for each region in 



 

Supplementary Figure 2: 

Regions Displaying Whole Brain Reward

Note. HC = Healthy controls, R = Right, SCZ = Schizophrenia 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-0.15

-0.1

-0.05

0

0.05

0.1

SCZ

R Orbitofrontal Cortex
(BA47; 32,33,-5)

%
 S

ig
na

lC
ha

ng
e

115 

Regions Displaying Whole Brain Reward x Group Interaction Effect 

 

HC = Healthy controls, R = Right, SCZ = Schizophrenia  
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Transient Trial-by-Trial Component of Motivated Cognitive Control 

Whole-Brain Cue-related Effects of Reward: First of all, a voxel-wise ANOVA at a whole 

brain level as described above was performed to examine exploring effects. I found a significant 

main effect of transient Reward x Time point in a number of regions in the DLPFC, cingulate, 

lingual gyrus and parietal regions including precuneus as presented in Table S4 (see Table S5 

for exact coordinates for deactivated regions and the example time courses for Figure S3 in 

Supplementary Materials). To understand the source of the interaction effect, post-hoc three 

paired t-tests (i.e., RC-BCXT, RCXT-BCXT, RC-RCXT) were conducted in order to determine 

the relationship between reward and other types of trials such as RCXT and BCXT trials. As 

described in the Data analysis above, post-hoc analysis regarding any interaction effect with 

time point focused on the average of time point 3 and 4. Figure S4 shows the example time 

courses for regions displaying reward-related cue-type effect. Most regions including the middle 

frontal gyrus as well as in the cuneus and precuneus showed greater transient activity on RC 

trials than RCXT or BCXT trials from a whole brain level. 
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Supplementary Table 4: 

Regions Displaying a Reward x Time Point Interaction at a WB Level (z > 3.0, 13 voxels) 

 
 

Note. BCXT= Baseline-Context, BA = Broadman Area, RC= Reward-Cue, RCXT= Reward-Context, 
WB=Whole brain. 
a Post hoc paired t-tests were performed on each region displaying significant cue-type x time point 
interaction as described in the text. The mean activation at the average of time point 3 and 4 for reward-
cue, reward-context, baseline-context trials were used in three t-tests (Reward-Cue-Baseline-context, 
Reward-Context-Baseline-Context, Reward-cue – Reward-Context trials) to determine the relationship 
between reward and other cue-type activity. 
 
 
 
 

 
Region of Activationa  

 
 BA1 

 
Cluster size 

(voxels) 

Talairach Coordinates  
Z 

x y  z 

Regions where RC> RCXT=Regions where RC> RCXT=Regions where RC> RCXT=Regions where RC> RCXT=BCXTBCXTBCXTBCXT    
Middle Frontal Gyrus 9 155 44 7 38 5.26 
Middle Frontal Gyrus 6 68 44 -1 52 4.84 
Middle Frontal Gyrus 10 35 -30 49 12 4.01 
Precentral Gyrus 9 80 44 23 35 4.86 
Superior Frontal Gyrus 6 29 40 15 52 4.76 
Inferior Frontal Gyrus 9 57 -36 5 27 4.37 
Superior Temporal Gyrus 40 98 50 -52 20 4.72 
Middle Temporal Gyrus 22 23 52 -37 -1 4.87 
Middle Occipital Gyrus, 18 296 31 -80 -8 7.03 
Middle Occipital Gyrus 19 186 -39 -78 0 5.41 
Lingual Gyrus 17 287 16 -88 4 6.52 
Cuneus 17 195 -10 -88 6 5.15 
Cuneus  19 162 30 -82 22 4.68 
Cuneus 31 176 -22 -81 24 4.54 
Superior Parietal Lobule 7 319 -27 -62 43 6.13 
Superior Parietal Lobule 40 75 42 -52 57 4.80 
Parietal lobe, Precuneus 7 380 27 -62 41 5.79 
Angular Gyrus 40 132 48 -55 36 5.33 
Pyramis  71 -38 -73 -32 4.88 
Culmen  163 -35 -56 -22 6.36 
Culmen  71 30 -41 -21 5.76 
Culmen  42 -28 -32 -20 5.29 

Regions where RC =BCXT > RCXT 
Middle Temporal Gyrus 37 84 41 -64 8 5.09 
Fusiform Gyrus 37 37 48 -52 -8 4.34 
Middle Occipital Gyrus 19 117 38 -81 7 5.04 
Occipital Lobe 19 179 -22 -76 -11 5.31 
Lingual Gyrus 19 72 -30 -61 2 4.71 

Regions where RC > BCXT > RCXT 
Declive  166 29 -56 -13 6.65 
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Supplementary Table 5: 

 Activated and Deactivated Regions Displaying a Reward x Time Point Interaction from a Whole 

Brain Level  

 

 

 
Regions 

 
 BA1 

Cluster 
size 

(voxels) 

Talairach Coordinates  
 

Z x y  z 

Regions where RC > RCXTRCXTRCXTRCXT=BBBBCXTCXTCXTCXT  

Middle Frontal Gyrus 6 217 -29 -9 59 5.34 

Middle Frontal Gyrus 6 168 24 -6 60 5.21 

Middle Frontal Gyrus 6 61 -20 7 60 4.84 

Middle Frontal Gyrus 10 84 37 37 24 4.35 

Middle Frontal Gyrus 9 15 -33 40 29 3.76 

Precentral Gyrus 4 29 30 -24 66 4.79 

Superior Frontal Gyrus 6 179 -2 5 51 4.54 

Superior Frontal Gyrus 8 66 3 22 50 4.22 

Superior Frontal Gyrus 10 53 29 46 14 4.50 

Inferior Frontal Gyrus 13 19  -34 12 -15 4.13 

Cingulate Gyrus 32 23 8 21 34 3.75 

Posterior Cingulate 31 60 20 -60 21 4.31 

Superior Temporal Gyrus 22 13 48 13 -4 4.10 

Lingual Gyrus 18 107 5 -65 5 5.01 

Lingual Gyrus 19 47 16 -54 -1 4.23 

Cuneus 18 151 -2 -76 16 4.31 

Lingual Gyrus 18 107 -16 -70 6 4.68 

Cuneus 19 125 10 -85 27 3.85 

Inferior Frontal Gyrus 13 19  -34 12 -15 4.13 

Cingulate Gyrus 32 23 8 21 34 3.75 

Cingulate Gyrus 24 45 17 -4 40 4.13 

Superior Temporal Gyrus 22 28 -52 10 1 4.89 

Posterior Cingulate 31 60 20 -60 21 4.31 

Superior Temporal Gyrus 22 13 48 13 -4 4.10 

Lingual Gyrus 18 107 5 -65 5 5.01 

Lingual Gyrus 19 47 16 -54 -1 4.23 

Inferior Parietal Lobule 40 364 -45 -40 51 4.97 

Postcentral Gyrus 3 70 46 -21 50 5.37 

Precuneus 7 280 -1 -75 43 5.83 

Precuneus 7 165 -4 -57 48 4.90 

Precuneus 7 28 3 -40 44 3.95 

Thalamus  22 -15 -28 -2 4.65 
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Note. BCXT= Baseline-Context, RCXT= Reward-Context, RC= Reward-Cue 
Relating to Table3, these regions were identified from a cue-type (BCXT, RCXT, RC) x time point 
interaction at a whole-brain level (z > 3.0, 13 continuous voxels). Here these regions include at least one 
or all deactivated regions depending on cue-type activity. Bold indicates deactivated regions. 
Post hoc paired t-tests were performed on each region displaying significant cue-type x time point 
interaction.The mean activation at time point 3 and 4 for reward, no-reward, baseline trials were used in 
three t-tests  (reward-baseline, reward-no-reward, no-reward-baseline trials) to determinie ine the 
relationship between reward and other cue-type activity 
 

 
Regions 

 
 BA1 

Cluster 
size 

(voxels) 

Talairach Coordinates  
z x y  z 

Caudate Body  53 13 -10 20 4.45 

Lateral Posterior Nucleus  36 -15 -20 18 3.39 

Insula 13 24 31 15 17 3.78 

Regions where RC > RCXTRCXTRCXTRCXT= BCXT  

Middle Frontal Gyrus 6 63 -45 1 39 4.48 

Lingual Gyrus 18 178 -1 -78 -1 5.19 

Cingulate Gyrus 31 175 0 -34 30 6.31 

Posterior Cingulate 30 112 21 -70 7 4.57 

Precuneus 7 138 -15 -66 32 4.61 

Posterior lobe, Tuber  58 47 -59 -25 4.85 

Regions where RC > RCXT= BBBBCXTCXTCXTCXT  

Precentral Gyrus 9 42 -39 24 38 4.32 

Middle Frontal Gyrus 11 24 -29 39 -3 4.83 

Temporal lobe, Sub-Gyral  37 43 -48 -42 -4 5.20 

Inferior Parietal Lobule 40 52 -51 -55 36 4.55 

Thalamus  13 18 -29 -2 4.52 

Posterior Cingulate 29 20 5 -44 11 4.34 

Thalamus  21 7 -24 14 4.70 

Regions where RC=RCXT > BBBBCXTCXTCXTCXT  

Precuneus 19 90 45 -70 41 4.15 



 

Supplementary Figure 3: 

Example Time courses for ROI (de)activated 

Regions where RC > RCXT=BCXT 

Regions where RC > RCXT= BCXT 

Note. BCXT=Baseline-Context, RC =Reward-Cue, RCXT= Reward
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ROI (de)activated Regions Displaying a Reward x Time point Interaction 

 

Regions where RC > RCXT= BCXT 

  

Region where RC=RCXT > BCXT 

 

 

Cue, RCXT= Reward-Context, WB= Whole brain. Bold  indicates deactivated region
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Supplementary Figure 4 

Example Time Courses From Regions Showing a Significant Interaction Between 

Note. BCXT= Baseline-Context, RCXT= Reward-Context, RC = Reward
Post-hoc paired t-tests were conducted to examine the 
region during time point 3-4 (p < .05). Lines indicate the average time courses fo
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Example Time Courses From Regions Showing a Significant Interaction Between Reward x Time Point From WB Analyses

 
 

Context, RC = Reward-Cue trials, WB= Whole Brain 
tests were conducted to examine the relationship between neural activity on reward trials and other cue

.05). Lines indicate the average time courses for each cue-type

Pattern 2) RC =BCXT > RCXT Pattern 3) RC > B

-0.1

0

0.1

0.2

1 2 3 4 5 6 7 8

Lingual Gyrus 
(BA19;-30,-61,2)

%
 S

ig
na

lC
ha

ng
e

Time (TRs) -0.1

0

0.1

0.2

1 2

Declive

%
 S

ig
na

lC
ha

ng
e

x Time Point From WB Analyses 

relationship between neural activity on reward trials and other cue-type activity on each 

) RC > BCXT > RCXT 

 

3 4 5 6 7 8

Declive (29,-56,-13)

Time (TRs)



 122 

Whole-Brain Effects of Group: Whole brain analysis again revealed a main effect of 

Group x Time point in the frontal and superior parietal lobes  (see Table S6 for exact 

coordinates in each region and Figure S5 for example time courses below). Among regions 

displaying Group effect, I did not include several regions in the temporal, postcentral, cinglulate 

gyrus, and cuneus showing uninterpretable time courses for further analyses. Again, post-hoc 

independent t-tests focused on the average of time point 3-4 as described in the Data Analysis 

above. As shown in Table S6, regions in the precentral, superior temporal, lingual gyrus and 

superior parietal lobule displayed greater transient activity in HC group compared with 

individuals with SCZ. The cuneus displayed greater activity in those with SCZ relative to the HC.  

Whole-Brain Interaction of Reward and Group: Regions in the medial, superial PFC, the 

temporal, occipital and parietal lobe displayed significant interactions between Group and 

Reward within time window (the 8 time frames, TR:2 seconds). As presented in Table S7 and 

Figure S6 for the example time courses, several regions in the middle occipital gyrus, 

postcentral, and temporal gyrus displayed a significant Reward x Group interaction. In most 

regions, the HC group showed greater transient activity on RC (cued by “$20”) trials relative to 

RCXT (cued by “XX”) and/or baseline (cued by “XX”) trials. On the other hand, individuals with 

SCZ showed a less of an increase in trial-by-trial activity on RC trials relative to baseline and/or 

RCXT trials. For example, the medial frontal gyrus displayed greater activity on RC trials than 

baseline in the HC group while individuals with SCZ failed to show an increase in their transient 

activity on RC trials than baseline trials in the same region.



 123 

Supplementary Table 6:  

Transient Group x Time Point Interaction at a Whole Brain Level 

Note. HC = Healthy controls, SCZ = schizophrenia. 
a Post-hoc independent sample t-tests were conducted to compare neural activity between the two groups 
during time point 3-4 across three cue-types (baseline, no-reward, reward) (p < 0.05). Yellow indicates 
regions where p-value < 0.10: + p = 0.05, + +p = 0.08. Bold  indicates deactivated regions 

 
Region of Activation  

 
BA1 

Cluster 
size 

(voxels) 

Talairach 
Coordinates 

 
Z 

 
Activation 
Patterna  x y  z 

Regions where HC > SCZRegions where HC > SCZRegions where HC > SCZRegions where HC > SCZ    
Superior Parietal Lobule 7 16 39 -64 49 3.73 HC > SCZ 

Precentral Gyrus 4 31 34 -21 51 3.99 HC > SCZ+   

Fusiform Gyrus 37 21 -39 -62 -11 3.77 HC > SCZ++  

Superior Temporal Gyrus 39 39 54 -54 21 4.59 HC > SCZ++   

Lingual Gyrus 18 13 19 -87 -10 3.49 HC > SCZ+    

Regions where SCZ > HCRegions where SCZ > HCRegions where SCZ > HCRegions where SCZ > HC    

Cuneus 19 15 14 -83 32 3.64 SCZ > HC  



 

Supplementary Figure 5: 

Example Time courses for Regions Displaying a 

Analyses 

                                             

Regions where HC > SCZ

Note. SCZ = Schizophrenia, HC = Healthy controls, WB = Whole brain
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courses for Regions Displaying a Group x Time Point Interaction 

                                              

Regions where HC > SCZ Regions where SCZ > HC
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Supplementary Table 7: 

Transient Reward x Group x Time Point Interaction 

 

 
Note. BA = Broadman Area, B= baseline, RC = Reward-Cue, RCXT=Reward-Context, ROI = Region of interest, HC = Healthy controls,  
SCZ = Schizophrenia, WB = Whole brain analysis.  
a Post-doc t-tests to identify the source of significant effects were performed at the average of time point 3-4 (see the text for more detail). 
Bold  letters indicate cue-type trials on which regions showed deactivations. Yellow indicates region where p-value < 0.10: + p = 0.05, + +p = 0.06, 
+++p=0.07. 

 
Analysis 

 
Region of Activation  

 
 BA 

 
Cluster 

size 
(voxels) 

Talairach 
Coordinates 

 
 

Z 

 
Activation Patterna 

x y  z HC SCZ 

WB Regions Regions Regions Regions where RC > B=RCXT or RCXT=B in HCwhere RC > B=RCXT or RCXT=B in HCwhere RC > B=RCXT or RCXT=B in HCwhere RC > B=RCXT or RCXT=B in HC    

 Medial Frontal Gyrus 6 20 1 -12 51 3.44 RC > BCXT=RCXT RC =BCXT> RCXT+ 

 Middle Occipital Gyrus 19 15 -34 -75 -10 3.71 RC > RCXT++=BCXT RC >BCXT +++= RCXT  

 Middle Occipital Gyrus 30 20 -27 -74 8 4.27 RC > RCXT+= BCXT BCXT >RC =RCXT 

 Fusiform Gyrus 37 64 45 -53 -10 5.17 RC> RCXT=B 
 

BCXT>RC+++=RCXT 

 Postcentral Gyrus 40 139 -44 -28 45 4.85 RC > BCXT= RCXT RC =BCXT> RCXT+  

 Postcentral Gyrus  2 15 50 -28 39 3.85 RC > RCXT=BCXT BCXT> RC++ =RCXT  

 Postcentral Gyrus 3 20 48 -17 43 3.96 RC > BCXT+=RCXT  BCXT > RCXT=RC 

 Lingual Gyrus 18 25 4 -92 -10 4.44 RC >RCXT++ =BCXT RC= RCXT>BCXT++++ 

WB Regions Regions Regions Regions where RC=RCXT >B in HCwhere RC=RCXT >B in HCwhere RC=RCXT >B in HCwhere RC=RCXT >B in HC    

 Superior Temporal Gyrus 41 15 -51 -21 4 3.99 RC=RCXT > BCXT  RC =BCXT=RCXT 



 

 
Supplementary Figure 6:   

Example Time courses for Regions Displaying Reward x Group x Time point Interaction from a 

WB Analyses 
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Example Time courses for Regions Displaying Reward x Group x Time point Interaction from a 

 
Individuals with Schizophrenia
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Transient Target-related Neural Activity 

Whole-Brain Effects of Condition: The voxel-wise ANOVA revealed a Condition x Time 

point, as well as a Condition x Group x Time point effect across groups. As presented in Table 

S8, several regions in the middle, inferior frontal gyrus, occipital gyrus, and precuneus showed 

greater activity on incongruent trials than congruent or neutral trials across groups at a whole 

brain level (see Figure S7 for the time courses in each region). 

Whole-Brain Interactions of Condition and Group: As presented in Table S9 and S10, in 

most regions in the middle, superior, and inferior frontal gyrus and the occipital lobe, the HC 

showed greater activity in incongruent than congruent or neutral conditions while individuals 

with SCZ showed no significant differences as a function of condition type in the same regions 

except one region in the inferior frontal gyrus (x:53, y:20, z:4): those with SCZ also showed 

similar pattern of greater activity on incongruent trials relative to congruent and neutral trials like 

the HC. However, many regions in the inferior parietal lobule, precuneus and superior parietal 

lobule did not display significant differences depending on condition type for both groups (see 

Figure S8 for the time courses). 
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Supplementary Table 8: 

Transient Target-related Interactions of Condition and Time Point at a Whole Brain Level 

Note. C= congruent, N= neutral, I =incongruent. Yellow indicates where p-value was <0.10: + p=0.05, ++ 

p=0.06, +++p=0.09. a As described in the text, post-hoc three t-tests (incongruent-neutral, congruent-
neutral, incongruent-neutral) at the average of time point 3-4 across cue-type (p < 0.05) were performed 
on each region displaying condition effect. b For regions showing no significant activity among types of 
conditions at the average of time point 3-4, additional post-hoc t-tests at later time point 5 and 6 were 
computed to identify exact source of significance effect 

 
Region of Activation  

 
BA1 

Cluster 
size 

(voxels) 

Talairach Coordinates  
Z 

 
Activation Patternsa 

x y  z 

Regions where I > C > N 

Precentral Gyrus 6 260 -45 2 37 6.26 I > C > N 

Regions where I > C = N 

Middle Frontal Gyrus 9 201 -43 18 28  6.19 I > C = N 

Medial Frontal Gyrus 8 223 -1 19 47 4.90 I > C = N 

Inferior Frontal Gyrus 47 30 45 20 -1 5.01 I > C = N 

Inferior Frontal Gyrus 46 39 -47 28 14 4.68 I > C = N 

Inferior Frontal Gyrus 47 48 -48 18 0 5.28 I > C = N 

Middle Occipital Gyrus, 19 38 -40 -68 -10 4.49 I > C = N 

Cingulate Gyrus 31 62 -2 -38 27 4.79 I> C+=N 

Posterior Cingulate  30 41 0 -60 10 4.88 I > C = N 

Precuneus 19 147 -28 -69 36 4.57 I > C = N 

Medial Geniculum Body  30 -18 -25 -1 4.73 I > C = N 

Regions where I=C >N 
Middle Temporal Gyrus 21 20 -51 -30 -5 4.12 I = C > N 
Inferior Parietal Lobule 40 154 -42 -52 46 5.53 I = C > N 

Regions where I>N>C  
or I=N>C or N > I=C 
Inferior Occipital Gyrus 18 8 -38 -83 -3 3.80 I > N >C++ 
Posterior Lobe, Pyramis  19 15 -81 -30 4.63 I=N>C+++  
Cuneus 19 19 30 -77 29 3.99 I=N> C++ 
Cuneus 18 19 3 -97 15 4.92 N > I = C 

Regions where I=C=N b TP3-4 TP5 TP6 
Precuneus 7 76 1 -77 45 4.59 I=C=N  I> N+>C I>C=N 
Inferior Parietal Lobule 40 33 53 -48 47 4.41 I=C=N  I=C=N  I>C+++=N 
Lingual Gyrus 18 22 -3 -93 -10 4.58 I=C=N  I>C=N I>C=N 
Posterior Lobe, Tuber  13 42 -67 -23 3.96 I=C=N  I=N>C I>C=N 



 

Supplementary Figure 7: 

Example Time courses for Regions Displaying Condition x Time point Interaction from WB Analysis
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Example Time courses for Regions Displaying Condition x Time point Interaction from WB Analysis    
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Regions where I=C=N  

C = Congruent, I = Incongruent, N= Neutral trials 
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Supplementary Table 9:  

Transient Target-related Activity: Condition x Group x Time Point At a Whole Brain Level 

 

 
Region of Activation  

 
 BA1 

 
Cluster size 

(voxels) 

 

Talairach Coordinates 

 
Z 

Activation Patterns  

During Time Point 
 3-4 

x y  z HC SCZ 

Frontal Lobe 

Precentral Gyrus 6 26 51 -1 42 4.38 I >C=N I=C=N 

Precentral Gyrus 6 42 -50 -2 45 4.29 I >C=N I=C>N 

Precentral Gyrus 6 62 -36 -9 49 4.68 I >C=N  I=C>N 

Medial Frontal Gyrus 6 92 3 -2 55 4.37 I >C=N I=N>C 

Paracentral Lobule 31 59 1 -24 48 4.43 I >C=N I=N>C 

Superior Frontal Gyrus 6 20 -1 17 61 4.04 I >C=N I=C=N 

Inferior Frontal Gyrus 44 36 -48 5 16 4.07 I >C=N  I=C=N 

Medial Frontal Gyrus 8 21 4 19 45 3.98 I>C=N I=C=N 

Inferior Frontal Gyrus 44 41 54 6 14 4.36 I >C=N I=C=N 

Inferior Frontal Gyrus 45 19 53 20 4 4.06 I >C=N I=C>N 

Middle Frontal Gyrus 6 62 37 -1 51 4.94 I >N++ =C I =C=N 

  Limbic Lobe 

Anterior Cingulatea 32 49 7 48 -1 4.44 I =C=N I =C=N 

Temporal Lobe 

Sub-Gyral, white matter  101 -45 -41 4 5.31 I>C=N  C>N++=I  

Middle Temporal Gyrus 22 51 50 -43 3 4.73 I>C=N  I =C=N 

Middle Temporal Gyrus 37 158 -45 -63 11 5.53 I>C=N  I =C=N 

Middle Temporal Gyrus 21 20 -52 -4 -11 4.67 I>C=N  I =C=N  

Middle Temporal Gyrus 22 20 -66 -36 4 4.46 I>C=N  I=C>N++ 

Precuneus 7 37 28 -66 26 4.37 I=N>C I =C=N 

Middle Temporal Gyrusa 39 62 -30 -66 20 4.89 I =C=N I =C=N  

Sub-Gyral, white mattera  32 36 -51 5 4.16 I =C=N I =C=N 

Occipital Lobe 
Cuneus 18 151 15 -75 17 4.93 I>C =N I =C=N 
Cuneus 17 79 -9 -96 2 4.96 I>C=N I =C=N 
Inferior Temporal Gyrus 37 84 -41 -63 -4 5.01 I>C=N I =C=N 
Lingual Gyrus 18 37 4 -84 00 4.04 I>C=N  I =C=N 
Cuneus 18 133 -18 -75 17 4.83 I>C=N  I =C=N 
Inferior Occipital Gyrus 18 46 -33 -86 -4 4.93 I=N>C I =C=N 
Middle Occipital Gyrus 18 61 -26 -91 12 4.52 I=N>C I =C=N 
Middle Occipital Gyrus 18 29 12 -94 15 4.37 I=N>C I =C=N 
Middle Occipital Gyrus 37 40 45 -67 4 4.39 I=N>C I =C=N 
Inferior Occipital Gyrus 18 17 32 -80 -5 4.25 I=N>C I =C=N 
Middle Occipital Gyrus 19 35 30 -87 17 4.62 I=N>C N>I=C 
Cuneus 19 113 9 -84 30 4.66 I=N>C++ I =C=N 
Cuneus 30 26 9 -60 7 4.16 I=N+>C I =C=N 



 132 

Note. C = congruent, HC= healthy controls, N= neutral, I = incongruent, SCZ= schizophrenia. 
Post-hoc paired t-tests were performed at the average of time point 3-4 (see Methods). a indicates regions 
where individuals with SCZ showed uninterpretable timecourses. Yellow dicates regions where p-value 
was <0.10:+p= 0.05, ++p =0.06, +++ p =0.07, ++++p =0.08. Bold letters indicate condition in which neural 
activity was deactivated. Blue indicates regions where I=C=N at the average of time point 3 and 4. 
Additional follow-up paired t-tests at each time point 3,4,5,6 were conducted to identify the source of 
interactions. The results were presented in Supplementary Materials (see TableS10). 

Regions of Activation 
 

 BA1 Cluster size 
(voxels) 

Talairach Coordinates  Z Activation Patterns  

 
   x y  z  HC SCZ 

Cuneus 18 115 -12 -89 18 4.72 I=N> C+ I =C=N 

Parietal Lobe 
Inferior Parietal Lobule 40 108 -41 -28 42 4.85 I> C=N I =C=N 
Inferior Parietal Lobule 40 38 -60 -37 40 4.82 I =C > N I =C=N 
Supramarginal Gyrus 40 40 -58 -48 27 4.83 I> C=N I>N++ =C 
Postcentral Gyrus 4 45 41 -18 43 4.47 I >C+++=N I =C=N 
Postcentral Gyrus 5 63 -29 -39 64 4.84 I >C++=N I =C=N 
Declive  44 -21 -59 -16 4.08 I >C+++=N I =C=N 
Precuneus 19 160 -19 -81 34 4.78 I =N>C++++  I =C=N 
Precuneus 7 96 18 -78 44 5.00 I =N > C  I =C=N 
Superior Parietal Lobule 7 173 26 -61 48 5.18 I=N>C++  I =C=N 
Precuneus 7 71 7 -51 44 4.20 I =C=N I =C=N 
Precuneus 31 38 16 -49 30 4.40 I =C=N I =C=N  
Precuneus 7 141 -15 -56 55 5.15 I =C=N I =C=N 
Superior Parietal Lobule 7 60 8 -65 56 4.52 I =C=N I =C=N 
Postcentral Gyrus 3 154 31 -34 58 4.91 I =C=N I =C=N 
Insula 13 16 -40 -44 25 4.23 I =C=N I =C=N 
Angular Gyrus 39 18 -27 -55 32 4.07 I =C=N I =C=N 
Postcentral Gyrus 2 75 52 -28 38 4.87 I =C=N I =C=N 
Postcentral Gyrus 40 26 -53 -26 17 4.41 I =C=N I =C=N 
Inferior Parietal Lobule 40 58 40 -46 39 4.41 I =C=N I =C=N 
Postcentral Gyrus 2 20 -45 -27 57 3.93 I =C=N I =C=N 
Declive  20 -7 -84 -19 4.32 I =C=N I =C=N 
Pyramis  10 -17 -71 -27 3.67 I =C=N I =C=N 
Uvula  17 -29 -83 -25 4.43 I =C=N I =C=N 

Cerebellum 
Culmen  57 -32 -55 -26 4.74 I >C++ =N I =C=N 
Claustrum  20 26 18 -4 4.44 I >C+ =N I =C=N 
Culmen  18 -6 -57 2 4.38 I =N>C+++ I =C=N 
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Supplementary Table 10:  

Regions Displaying Condition x Group Interaction at Early or Later Time Point 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note. BA=Broadman Area, C= congruent, I= incongruent, N=neutral,TP = Time Point.  Yellow indicates regions where p < 0.10; + p = 0.05, p= 
++0.07, +++ p = 0.08, ++++p = 0.09. Bold  indicates deactivated regions. This table represents regions displaying no different activity as a function of 
condition-type at the average of time point 3-4 from Table S9. In this case, to identify the exact source of condition x group x time point interaction, 
first, post-doc-t-test at each time point 3,4,5,6 were conducted for each group, separately.  
a indicates regions where the source of interaction effects were found either or both at time point 3 and 4. b indicates regions where the source of 
interaction effects were found either or both at time point 5 and 6.

 
Regions of Activation 

 

Regions where I=C=N 
at the average of TP3-4a  

 
 BA1 

 
Cluster 

size 
(voxels) 

Talairach 
Coordinates 

 
Z 

 
Post-Hoc t-tests 

 
x y  z HC SCZ 

TP3 TP4 TP3 TP4 

Postcentral Gyrus 2 75 52 -28 38 4.87 I=C=N I=C=N I=C=N N>I=C  

Postcentral Gyrus 40 26 -53 -26 17 4.41 I=C=N I=N>C I=C=N C=N>I+++ 

Inferior Parietal Lobule 40 58 40 -46 39 4.41 I=C=N I=C=N I=C=N N=C>I++++ 

Postcentral Gyrus 2 20 -45 -27 57 3.93 I=C=N I>C=N I=C=N I=C=N 

Pyramis  10 -17 -71 -27 3.67 I=C=N I>C=N I>C+++=N N>I=C 

Regions where I=C=N 
at the average of TP3-4b 

      TP5 TP6 TP5 TP6 

Precuneus 7 71 7 -51 44 4.20 I>N=C I=C=N I=C=N I=C=N 

Precuneus 31 38 16 -49 30 4.40 I>C=N I>C+=N I>C+=N I>C=N 

Precuneus 7 141 -15 -56 55 5.15 I>C=N I=C=N I=C=N I=C=N 

Superior Parietal Lobule 7 60 8 -65 56 4.52 I=N>C I=N>C I=C=N I=C=N 

Postcentral Gyrus 3 154 31 -34 58 4.91 I>C=N I=C=N C=N>I I=C=N 

Insula 13 16 -40 -44 25 4.23 I>C=N I=C=N I=C=N I=C=N 

Angular Gyrus 39 18 -27 -55 32 4.07 I>C=N I>C=N I=C=N I=C=N 

Declive  20 -7 -84 -19 4.32 I>C=N++ I>C=N C=I>N++++ I>C+++=N 

Uvula  17 -29 -83 -25 4.43 I>C=N I>C=N C>I=N I=C=N 



 

Supplementary Figure 8: 

Example Time courses for Regions Displaying a Condition x Group x Time point Interaction 

from WB Analyses 
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Regions Displaying a Condition x Group x Time point Interaction 
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Individuals with schizophrenia

 

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5

Precuneuus (18,

Time (TRs)

%
 S

ig
na

l C
ha

ng
e

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 2 3 4 5

Postcentral Gyrus (52,

Time (TRs)

%
 S

ig
na

l C
ha

ng
e

-0.2

-0.1

0

0.1

0.2

0.3

0.4

1 2 3 4 5

Postcentral Gyrus 

Time (TRs)

%
 S

ig
na

l C
ha

ng
e

7 8

78, 44)

7 8

28,38)

7 8

27,57):HC 

Individuals with schizophrenia  

 

 

6 7 8

(18, -78, 44)

5 6 7 8

(52,-28,38)

Time (TRs)

5 6 7 8

Postcentral Gyrus (-45,-27,57)



 136 

 

 

 

 

 

Behavior-Brain Relationships 

The Relationship Between Sustained Activity in the DLPFC and Behavioral Indices of Reward 

Context and Cue Effects. 

I correlated increased sustained activity during reward vs. baseline blocks in the OFC 

(BA47: 32, 33,-5) displaying a Reward x Group interaction from a whole brain analysis. There 

were no significant associations between sustained activity and behavioral indices of context 

effect (r = -0.02, p =.89). 

Brain-Symptom Relationships 

Sustained Brain Activity and Negative Symptom Relation 

I also correlated between negative symptom scores and sustained activity in the OFC 

region (x: 32, y: 33, z: -5) displaying Reward x Group interaction. Again, there was no significant 

association between sustained activity in the OFC and symptom (r  = -.15, p =.35)  in the whole 

brain analysis.  
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