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ABSTRACT OF THE THESIS 

 
 

Reducing Energy Demand in Commercial Buildings:  

Balancing Convection and Radiant Cooling 

by 

Andrew K. Harris 

Master of Science in Mechanical Engineering 

Washington University in St. Louis, 2009 

Research Advisor:  Professor Ramesh K. Agarwal 

 
Using Computational Fluid Dynamics (CFD), three different cooling systems used in 

contemporary office environments are modeled to compare energy consumption and 

thermal comfort levels. Incorporating convection and radiation technologies, full-scale 

models of an office room compare arrangements for (a) an all-air overhead system (mixing 

ventilation), (b) an all-air raised floor system (displacement ventilation), and (c) a combined 

air and hydronic radiant system (displacement ventilation with a chilled ceiling). The 

computational domain for each model consists of one isothermal wall (simulating an exterior 

wall of the room) and adiabatic conditions for the remaining walls, floor, and ceiling 

(simulating interior walls of the room). Results show superior thermal comfort levels as well 

as substantial energy savings can be accrued using the displacement ventilation (b) and 

especially the displacement ventilation with a chilled ceiling (c) over the conventional mixing 

ventilation system (a).  
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Chapter 1   

 

Introduction 

 

1.1 Motivation 
 

In recent years, greenhouse gas (GHG) emissions and their contribution to global climate 

change have been brought to the forefront of our everyday lives. Policymakers, commercial 

enterprises, and scientists are focusing attention on sources of energy and associated GHG 

emissions. There are two ways by which the GHG emissions can be lowered: (1) using clean 

sources of energy (non-fossil fuels) and (2) decreasing the energy consumption. Significant 

effort has been placed on renewable sources of clean energy such as Nuclear, Hydro, Clean 

Coal, Wind, Solar, Geothermal, Tidal Wave, etc. Unfortunately, due to cost, long lead times, 

proximity to populous zones, and other infrastructure problems, there is a dearth of near-

term affordable solutions for clean energy. “Even in the most optimistic scenarios, most 

solutions require long lead times, on the order of decades, before they can make a substantial 

contribution to global energy supplies”[Glicksman, 2008].  

 

 
Figure 1.1 Energy Use in US by Sector [Carnegie Endowment for International Peace, 2009] 
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A more immediate rational approach to limiting global warming would be to place equal 

weight on curbing energy consumption through increasing efficiency until long-term, 

environmentally acceptable energy-supply technologies can be deployed at meaningful levels. 

The energy use chart (Figure 1.1) shows that the primary energy 1use in the US can be 

categorized into four main sectors: industry, transportation, commercial buildings and 

residential buildings. Together the commercial and residential building sectors make up close 

to 40% of the total US primary energy usage, making them the largest sectors for energy 

consumption.  

 

If we further group buildings from the other sectors to include structures from industrial, 

commercial, and transportation sectors, we can see from the charts shown in Figures 1.2 and 

1.3, that buildings are responsible for almost half (48%) of all energy consumption and 

GHG emissions annually; globally this percentage is even greater. In terms of electricity 

consumption in the US, it can be seen from Figure 1.3 that 76% of all power-plant generated 

electricity is used for building operations.  

 

 

Figure 1.2 Energy use in US by sector  
[Architecture 2030, 2009] 

 

Figure 1.3 Electricity use in US by sector  
[Architecture 2030, 2009] 

 
 

                                                 
1 Primary energy refers to the raw energy directly consumed, which includes the fossil energy and other energy 
sources needed to generate electricity. Electricity is not included as a separate end-use sector because it 
represents an intermediate conversion of energy rather than an end-use. 
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1.1.1   Overview of Energy Use in Buildings 
  
When assessing the potential to reduce energy consumption in buildings, we must first 

breakdown the different uses of energy in order to see where the biggest gains in efficiency 

can be made. Moreover, the building energy usage depends upon different types of buildings 

constructed in various regional climates. Thus there won’t be a one size fits all solution to 

making buildings more energy efficient. When examining the breakdown of energy use in the 

residential and commercial buildings in the US, European Union (EU), and Canada (Figures 

1.4 and 1.5), we can clearly see that the single largest use of energy in these geographical 

regions is for space heating, followed by water heating. Similarly, space heating is the single 

largest use of energy in commercial buildings for the EU and Canada, accounting up to two-

thirds of total energy use. Lighting can sometimes be the largest single use of electricity in 

commercial buildings, although in hot climates air-conditioning tends to be the single largest 

consumer of electricity.  

 

1.1.2 Reducing Heating and Cooling 
 
 
Heating and cooling loads are best reduced through the use of a high performance envelope 

(insulation, windows, air tightness) [Ürge-Vorsatz, Harvey, Mirasgedis, & Levine, 2007] 

combined with heat-recovery ventilation. Optimized building shape and orientation can also 

make a significant impact on heating and cooling loads, as can extensive equatorward-facing 

windows combined with internal thermal mass to avoid daytime overheating and to release 

stored heat at night. The European Passive House Standard and advanced houses in Canada 

and the US have achieved reductions in heating energy use by 75 – 90% in this way 

compared with the conventional practice [Ürge-Vorsatz, Harvey, Mirasgedis, & Levine, 

2007].  
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1.2 Scope of the Thesis 
 

1.2.1 2-D Model 
 
Using Computational Fluid Dynamics (CFD) software, we will analyze 2-D and 3-D models 

of a single zone of the building (e.g. an office room). For the 2-D model, a closed domain 

with buoyancy driven flow is considered. The boundary conditions consist of two isothermal 

vertical walls (a hot and cold wall) and an adiabatic ceiling and floor allowing a direct 

comparison with the results of Olson, Glicksman, and Ferm, 2008.  

 

1.2.2 3-D Models 
 
For the 3-D models, different cooling techniques for modern office buildings are 

considered. All of the models consist of a computational domain representing a typical office 

room, with different ventilation systems providing the cooling. These 3-D models are used 

to compare three ventilation systems, (a) an all-air overhead system (mixing ventilation), (b) 

an all-air raised floor system (displacement ventilation), and (c) a combined air and hydronic 

radiant system (displacement ventilation with a chilled ceiling), for energy efficiency and 

thermal comfort levels. The full-scale models consist of one isothermal wall (simulating an 

exterior wall of the room) and adiabatic conditions for the remaining walls, floor, and ceiling 

(simulating interior walls of the room). Results show superior thermal comfort levels as well 

as substantial energy savings can be accrued using the displacement ventilation (b) and 

especially the displacement ventilation with a chilled ceiling (c) over the conventional mixing 

ventilation system (a).  
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Figure 1.4 Residential energy use for the US [Koomey, 2000], EU [European Commission, 2001], and 

Canada [NRCan, 2005] 
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Figure1.5 Commercial energy use for the US [Energy Information Administration, 2009], EU 

[European Commission, 2001], and Canada [Natural Resources Canada, 2005] 
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Chapter 2   

 

Ventilation Systems: Literature Survey 

 

2.1 Conventional Variable-Air-Volume (VAV) 
Ventilation  

 
In general, buildings, especially modern designs, are tightly constructed with low leakage 

rates from materials that provide high thermal insulation. In the simplest HVAC systems, 

where all-air overhead ventilation relies on turbulent mixing of room air with ventilated air, 

the mechanical air-conditioning must overcome the internal heat loads in a very direct way. 

The internal heat loads typically consist of heat plumes created from occupants, lights, and 

office equipment (including electronic devices on standby). The conventional office and 

industrial building design criteria for ventilation are based on the need to remove this excess 

heat (and pollutants) rather than to provide adequate air for respiration. A person requires 

about 7.5 liter/sec for respiration, while typical air changes needed for thermal comfort 

require at least ten times this amount [Linden, 1999].  

 

In addition, for the typical mixing system, initial construction costs are low and it requires 

little maintenance; however, because of the large volume of air needed for heat exchange, 

this results in an increase in space allocation in comparison to the alternative systems. This 

increased space requirement typically results in greater building envelope surface area, and an 

associated increase in envelope heating and cooling loads. Given these factors, it is 

reasonable to assume that considerable inroads towards energy efficiency can be made by 

modifying these traditional HVAC systems.  
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2.2 Displacement Ventilation 
 

A superior system is the displacement ventilation (DV) in which ventilated air is dispersed at 

low speeds along the floor (or near the floor along the walls) and is warmed by internal heat 

sources (occupants, lights, plug-in equipment) as it rises to the top, displacing the air already 

present. DV is more effective at removing contaminants than conventional turbulent mixing 

ventilation, while permitting a smaller airflow rate by a factor of two [Ürge-Vorsatz, Harvey, 

Mirasgedis, & Levine, 2007]. In addition, the supply air temperature for DV is significantly 

higher for the same comfort conditions (about 18° C versus about 13° C in a conventional 

mixing ventilation system), reducing the chilling load significantly. Depending on the 

regional climate, DV can reduce energy use for cooling and ventilation by 30-60% [Bourassa, 

2002; Howe, 2003]. 

 

2.3 Displacement Ventilation with Radiant 
Cooling 

 

The radiant (hydronic) heating/cooling system provides even greater potential for energy 

efficiency. Water is 25-100 times more effective than air at transferring heat energy. Thus, 

tremendous efficiency gains can be made by decoupling the ventilation from the 

heating/cooling load. In general, this decoupled system circulates chilled or hot water 

through the ceilings and walls of office buildings and the floors of residential units for 

temperature control, while only distributing the volume of air required for ventilation. This 

decoupled system allows for 100% of the ventilated air to be from the outside rather than re-

circulating a portion of the indoor air, thereby providing health benefits. For example, it is 

not uncommon for conventional HVAC systems to recirculate up to 80% of the internal air 

on each circuit and replace the remaining 20% with fresh air [Harvey, 2009]. Also, further 

energy gains are achieved because the internal heat plumes generated by occupants, lighting, 

and plug-in equipment (constituting up to 30% of total cooling requirement [Harvey, 2009]) 

are vented directly outside rather than partly re-circulated, as in a conventional system. Using 

a decoupled system with constant ventilation can produce savings of 20-30%. It should be 

noted that the required airflow – now decoupled from heating/cooling functions – can be 
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made to vary with changing building occupancy. A demand controlled ventilation (DCV) 

system uses CO2 and/or other sensors to adjust the ventilation rate, this can reduce total 

HVAC energy by an additional 20-30% when compared with a fixed rate ventilation based 

on maximum occupancy [Brandemuehl & Braun, 1999]. 

 

In a chilled ceiling system, a large fraction of the ceiling is chilled by circulating cool water 

through pipes or lightweight panels. In addition to the aforementioned increased 

effectiveness of water over air in transporting heat, there is a reduced cooling load since 

typically water is supplied at 16-20º C rather than 5-7º C, as in conventional hydronic cooling 

systems. Not only does this reduction in cooling load allows a higher chiller coefficient of 

performance (COP, or cooling power divided by fan power, a direct measure of efficiency), 

but it also allows more frequent use of ‘water-side free cooling’, where the mechanical 

chilling is bypassed altogether and supplied water for space cooling directly comes from 

cooling tower. As an example, if chilled water is supplied at 18° C, a cooling tower could 

provide the cooling requirements 97% of the time in Dublin, Ireland, and 67% percent of 

the time in Milan, Italy [Costellor & Finn, 2003].  

 

In the case of conventional dehumidification systems with air-conditioning, dehumidification 

is accomplished by overcooling the air so that sufficient water vapor is condensed, and then 

the air is reheated to be supplied at a comfortable temperature. Dehumidification can be 

decoupled from cooling through a variety of desiccant-based techniques, with energy use 

savings of 25-30%, or by up to 50% if solar heat is used to regenerate the desiccant [Harvey, 

2006].  

 

Lastly, perceived temperature depends on more than just air temperature and its velocity. 

Infrared radiation from surrounding surfaces also plays a role, especially if there is significant 

radiant asymmetry. Infrared radiation depends on the temperature and emissivities of the 

surfaces enclosing the occupied space. As a result, radiant asymmetry happens when there is 

one surface, such as a window or exterior wall, is much hotter than other surfaces, such as 

the interior walls. Likewise, humans emit infrared radiation and if the emission of the 

surrounding surfaces and its subsequent absorption is greater than that of the human, then 

the person will feel warm even if the air is cool. Therefore, in the case of radiant cooling, the 
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set points for temperature and humidity can be adjusted higher due to the perceived 

temperature difference from traditional ventilation systems.  

 

2.4 Market Failures 
 

Implementation of new energy efficiency technologies and strategies face a plethora of 

obstacles to overcome. First, the building industry is very conservative and reluctant to 

accept technologies that are often incomplete, unavailable, expensive, and difficult to obtain 

or trust. Second, the industry is widely fragmented with a huge number of suppliers, builders, 

designers and developers, and lacks vertical or horizontal integration [Glicksman, 2008]. This 

fragmentation of the industry largely impacts the creation of a high performance envelope2, 

which is the single most important factor in the design of low-energy buildings. Third, 

building manufacturers are divorced from operating costs. The standard within the industry 

is to construct a building with minimum up-front cost with little or no regard for the 

operating costs. Fourth, it is the practice in many countries to subsidize the primary energy 

and electricity, creating a disincentive for energy efficiency. Particularly, this is the case in 

many developing countries, and historically it has been the situation in Eastern Europe and 

the former Soviet Union. Fifth, non-payment and electricity theft has been occurring at a 

large scale in many countries. Developed countries are not immune to this practice; in US, 

this electricity theft and non-payment is estimated to cost utilities billions of dollars each year 

[Ürge-Vorsatz, Harvey, Mirasgedis, & Levine, 2007]. This practice encourages thieving 

parties to induce waste and discourage energy efficiency.  

 

 

 

 

 

                                                 
2 Minimizing energy use requires optimizing the system as a whole by systematically addressing building form, 
orientation, envelope, glazing area, and host of interaction, and control issues involving the building’s 
mechanical and electrical systems. This is more evident in larger, commercial buildings; but is present to some 
degree even in smaller residential and non-residential buildings. However, the division of responsibilities in the 
typical design process often contributes to suboptimal results. 
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Chapter 3  

 

Computational Fluid Dynamics (CFD) 
Solver 

 
Two ANSYS computer programs are used for the numerical simulations. GAMBIT [Ansys 

Inc, 2007] creates the office room geometry and generates the mesh inside the room while 

FLUENT [Ansys Inc, 2007] solves for the flow field and heat transfer.  

3.1 GAMBIT 
 

GAMBIT is a geometric modeling and grid generation software. It allows users to create or 

import geometry from most CAD packages. Meshing surfaces and volumes can be generated 

automatically while allowing the user to control the mesh spacing through the use of sizing 

functions and boundary layer meshing near the walls. There are many meshing options that 

allow the user to create a structured, unstructured, or a hybrid structured/unstructured 

mesh. In addition, there is a "body-fitting" mesh technology, which can easily mesh large, 

complex geometries or repair surface meshes.  

 
After meshing the geometry, GAMBIT allows the user to group elements on which 

boundary conditions can be specified. These boundary conditions include the pressure 

outlet/inlet, velocity outlet/inlet, mass flow inlet/outlet, no-slip wall, and axis of symmetry 

conditions. Elements which are not part of the boundary conditions are assigned continuum 

parameters as either a fluid or a solid. Once the meshing process is completed, the file is 

exported to FLUENT, where all the elements and their designated conditions are integrated 

into a case file for processing. 
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3.2 FLUENT 
 

FLUENT is a general-purpose CFD code, which solves the Unsteady Reynolds-averaged 

Navier-Stokes (URANS) equations using the finite-volume method on a collocated grid. It 

can model fluid flow and heat transfer in complex geometries using an interactive, menu-

driven interface. It can solve 2- and 3-D problems in steady and unsteady simulations. 

FLUENT has the capability to solve incompressible and compressible flows using inviscid, 

laminar, and turbulent viscosity models. There is a wide array of turbulence models available, 

including Spalart-Allmaras (S-A), k-ω, and k-ε (standard, RNG, Realizable) models. Each 

turbulence model has its own separate options to change parameters for specific cases. 

When adapting an existing mesh for additional grid refinement, features are imported 

without changing the original mesh file from GAMBIT.  

 

FLUENT provides output options for simulations involving fluid flow and heat transfer. 

Contour and live plots can be made for the desired variables/functions, including static 

temperature, total energy, entropy, etc.  Furthermore, there are many post-processing 

options which make it easier to visualize and the calculated flow field data.  
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Chapter 4  

 

2-D Model of  Natural Convection in a 
Room 

 

4.1 Introduction 
 

The aim of this computation was to simulate a buoyancy-driven flow inside a 2-D 

rectangular enclosure for the purpose of validation. A 2-D closed rectangular domain with a 

length to height ratio of 3:1 was considered to compare the flow field results with those 

obtained experimentally by Olsen, Glicksman, and Ferm (1990).  The flow in the enclosure 

is governed by the gravity driven natural convection current created by the hot and cold 

vertical walls with an adiabatic top and bottom horizontal walls (Figure 4.1 & 4.4). Although 

the geometric configuration is simple, this buoyancy driven flow is difficult to compute since 

the flow undergoes laminar to turbulent transition near the wall as shown in the 

experimental studies of Olsen, Glicksman, and Ferm (Figure 4.8).  Furthermore, the natural 

convection flow is a low velocity (low momentum) flow which is sensitive to small 

perturbations making the steady state computation difficult. It has been found to be 

particularly difficult to produce a truly 2-D flow in the rectangular geometry [Tieszen, Ooi, 

Durbin, & Behnia, 1998].  
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Figure 4.1 Experimentally observed flow pattern inside the rectangular enclosure [Olsen, Glicksman, 

& Ferm, 2008] 

 

Figure 4.1 shows the sketch of the experimentally observed flow pattern in the rectangular 

box. The flow field  shows the turbulent eddies near the wall, secondary recirculating flow in 

the corner regions, and laminar primary recirculating flow in the center region of the box 

away from the walls. The noteworthy aspect of this flow is that the turbulent flow near the 

walls circulates clockwise while the primary laminar flow in the center region circulates in the 

counterclockwise direction (Glicksman, 2008). Our goal in this chapter is to compute this 

flow field.  

 

It is well known that near the wall of high Rayleigh number flows, there is an overlap of the 

viscous sub-layer and the fully turbulent outer layer (Figure 4.2) [Hölling & Herwig, 2006; 

George & Capp, 1979]. Since this wall region is important for heat transfer, it has been 

found that the wall treatment is very important in modeling buoyant flows [Ince & Launder, 

1989; Henkes, 1990; Henkes & Hoogendoorn, 1989, 1995]. In previous work [Henkes, 

1990], it has been found that for a hot plate at a Rayleigh number (Ra) ≈ 1011, the k-ε 

turbulence model without wall treatment resulted in a prediction of heat transfer 52% above 

the experimental values. With wall treatment, the resulting discrepancy between the 

computation and the experiment for heat transfer was reduced to ±17% [Henkes, 1990]. 

Figure 4.3 shows the typical temperature and velocity profile for natural convection from a 

vertical hot flat plate. Lastly, for an accurate numerical solution, the effects of thermal 

radiation should also be incorporated in the computations [Çengel & Turner, 2001; Howell 

& Potts, 2002]. 
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It should be noted that there are important differences between the experimental setup of 

Olsen, Glicksman and Ferm (1990) and our 2-D computational model. In their experiment, 

a 3-D box was used with R114 gas as the testing fluid, whereas our computational model 

consists of a 2-D rectangular box with air as the test fluid. Furthermore, their experiments 

did not include the effects of radiation which is included in our computational model.  

 

Schematic of two layer structure in the near wall 
region for high Rayleigh number flow due to 
natural convection from a vertical hot plate 
showing the viscous sub-layer, overlap, and the 
fully turbulent outer layer. 

Figure 4.2 Boundary layer structure in natural 
convection on a vertical hot flat plate [Balaji, 
Hölling, & Herwig, 2007] 

 

 

Turbulent natural convection from a hot vertical 
flat plate losing heat to quiescent air: velocity and 
temperature profiles at an axial location x. 

Figure 4.3 Velocity and temperature profiles 
for natural convection from a vertical hot flat 
plate [Balaji, Hölling, & Herwig, 2007] 

 

4.2 Mesh Generation 
 

Gambit was employed for meshing the domain inside the rectangular box (Figure 4.4). A 

structured 100 x 100 Cartesian grid multiplied by a bi-exponent factor along both the vertical 

and horizontal directions was used to cluster the nodes near the boundaries (Figure 4.5). 

This was done to better resolve the steep flow gradients near the walls. For this mesh, the 

resulting node and cell counts are 10,201 and 10,000 respectively. 
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Figure 4.4
 
2-D mesh inside the rectangular enclosure 

 

4.3 Flow and Heat Transfer Computations 
 

4.3.1 Boundary Conditions 
 
For the 2-D model of Figure 4.4 (3 meters x 1 meter), the following boundary conditions are 

imposed:  

• Hot Wall: 305 K 

• Cold Wall: 300 K 

• Ceiling and Floor: adiabatic  

 

4.3.2 Density Calculation 
 

When considering buoyancy effect, because the expected temperature range for this study 

was slightly outside the applicable range of the Boussinesq approximation (<300 K) 

[Etheridge and Sandberg, 1996], the density of air was approximated as a function of 

temperature by a piece-wise linear approximation (Figure 4.5). The transient calculation was 

performed to achieve the steady state using the PISO algorithm in FLUENT to achieve the 
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coupling between the velocity and pressure. The first-order3 upwind scheme was employed 

in the calculations with the exception of using the second order solver PRESTO! for 

pressure. The initial value for temperature, T0=288.16 K, and the initial value for density, 

ρ0= 1.225 kg/m3, were specified.  

 

Figure 4.5 Air density vs. temperature [Appendix A] 

4.3.3 Turbulence Model 
 

Due to the presence of several flow regimes (laminar, transitional and turbulent) in buildings, 

there is not a single model of turbulence that can accurately describe the range of features 

generally found in room turbulence. The study of Howell & Potts (1998) has shown that the 

renormalization (RNG) k-ε turbulence model gives the best predictions of temperature 

stratification for a small room. Chen (1995) also suggested that the k-ε (RNG) turbulence 

model should be employed for simulating the building ventilation. Therefore, the k-ε (RNG) 

model with enhanced wall functions was employed.  

4.3.4 Radiation Model 
 

To account for the effects of radiation, the Discrete-Ordinates (DO) radiation model is 

employed [Ansys Inc, 2007]. The absorption coefficients for the wall material is assumed to 

be 0.85 and for the water vapor in air, it is taken to be 0.17 [ASHRAE, 1977].  

 

                                                 
3 Note: the differences between the results using the first and second-order upwind schemes were negligible. 

Air Density vs. Temperature 
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4.4 Heat Transfer Calculations 
 
The energy equation is used in FLUENT for heat transfer calculations. 
 

4.4.1 Energy Equation 
 

In FLUENT the following form of the energy equation is used: 

 

( ) ( ) j effeff j h
j

t E v E p k T h J v Sρ τ∂
∂

 
+ ∇ ρ + = ∇ ∇ − + + 

 
∑

� �� �

   (4.1) 

 

In equation (4.1), keff is the effective thermal conductivity (=k + kt, where k is the thermal 

conductivity of the fluid and kt is the turbulent thermal conductivity defined in the 

turbulence model being used) and jJ
��

 is the diffusion flux of species j. The first three terms 

on right-hand side of equation (4.1) represent energy transfer due to conduction, species 

diffusion, and viscous dissipation respectively. hS  includes the heat of chemical reaction and 

other volumetric heat sources.  

 

The total energy, E, is expressed in terms of static enthalpy: 

 

2

2

p v
E h

ρ
= − +      (4.2) 

 

Where h is enthalpy defined as j j
j

h Y h=∑  for an ideal gas; Yj is mass fraction of species j. 

From equations (4.1) and (4.2), the static temperature, T, can be calculated. 

 

4.4.2 Heat Transfer at the Wall Boundaries 
 

For a fixed temperature condition at the wall, the heat flux to the wall from the adjacent 

fluid is given by:  
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( )f w f radq h T T q= − +      (4.3) 

 

where fh is the fluid-side local heat transfer coefficient4, wT is the wall surface temperature, 

fT is the local fluid temperature, and radq is the radiative heat transfer. 

  

4.4.3 Heat Flux Boundary Conditions 
 

When a heat flux boundary condition is defined at a wall, the surface temperature adjacent to 

a fluid cell is calculated by the equation (4.3) as: 

 

rad
w f

f

q q
T T

h

−= +      (4.4) 

 

where all the terms are the same as defined in section 4.5.2. 

 

4.5 Results and Discussion 
 

In this section, the results of computations for buoyancy-driven flow inside the rectangular 

box of Figure 4.4 are presented. 

 

 

4.5.1 Flow Patterns 
 
Figure 4.6 shows the computed contours of velocity magnitude and Figures 4.7 and 4.8 

show the velocity vectors inside the box. Figures 4.9 and 4.10 show the zoomed-in view of 

the flow patterns in the left and right portions of the box respectively. These flow patterns 

                                                 
4
 The fluid-side heat transfer coefficient is computed based on the local flow field conditions 
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are qualitatively similar to the flow patterns observed in the experiments of Olsen, 

Glicksman, and Ferm (1990). Figure 4.11 shows the static temperature contours inside the 

box.  

 

4.5.2 Boundary Layer 
 
Figures 4.12 and 4.13 show the zoomed-in view of the velocity profiles on the vertical hot 

wall at y-50 location and the horizontal bottom wall at x-50 location respectively. It is 

interesting to note the difference in the velocity profiles in Figures 4.12 and 4.13. In Figure 

4.12, the velocity first increases rapidly and then decreases after attaining a peak value. In 

Figure 4.13, the velocity profile shows a monotonic behavior.  

 

The vertical boundary layer thickness in Figure 4.12, is between 1.75 to 5% of the enclosure 

height, which is similar to the 2-5% obtained in the experiment by Olsen, Glicksmam, and 

Ferm (1990). This variation in boundary layer thickness is due to the difference in the wall 

temperatures5 in the computation and the experiment. The maximum computed vertical 

velocity in the boundary layer is 15 cm/s (Figure 4.12), which is close to that in the 

experiment of Olsen, Glicksman, and Ferm (1990). Inside the 2-D enclosure, the eddy 

formations are illustrated in Figures 4.8 - 4.10.   

 

4.5.3 Secondary Flows in the Corner Regions 
 

Figures 4.9 and 4.10 show the recirculating vortices in the corner regions of the box. 

Reasons for the formation of the secondary flow vortices in the corner regions are as 

follows. Near the ceiling, close to the hot wall, the momentum-driven horizontal wall-jet 

entrains fluid until it reaches near the cold wall. By this time, the mass flow is too great to be 

entirely entrained into the cold wall boundary layer. As the flow turns downward along the 

cold vertical wall, there is little heat transfer to the outer portion of the wall-jet. Since this 

                                                 
5 In the experiment, for the full scale room, the temperature difference (∆T) between the hot and cold wall was 
12º - 20º C and for the 1:5.5 scale model ∆T was 30º C.  In our model ∆T was 5º C. Olsen et al (1990) used a 
higher ΔT to achieve higher Rayleigh number (Ra). 
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outer portion of the wall-jet is still relatively warm compared to the core flow in the box, it 

loses momentum due to the upward buoyant force as it travels downward. Eventually, this 

upward buoyant force generates enough momentum to redirect the flow upwards generating 

secondary flow vortices. The outer flow turns back towards the hot wall and serves as a 

source of entrainment for the hot wall boundary layer [Olsen, Glicksman, & Ferm, 1990].  

 

In figures 4.14 and 4.15, the velocity magnitude profiles along the x-50 and y-50 lines 

respectively, show steep velocity gradients along the walls, especially along the hot and cold 

vertical walls. In figures 4.16 and 4.17, the v-velocity profiles along the x-50 and y-50 lines 

respectively, show only the flow near the hot and cold vertical walls has substantial vertical 

movement. In figures 4.18 and 4.19, the u-velocity profiles along the x-50 and y-50 lines 

respectively, show significant horizontal movement in the center of the room, mainly near 

the adiabatic top and bottom walls, with little horizontal movement near the hot and cold 

vertical walls. In figures 4.20 and 4.21, the temperature profiles along x-50 and y-50 lines 

respectively, show steep temperature gradients near the hot and cold vertical walls.  

 

In figures 4.22 and 4.23 show the comparison between the computed and experimental 

temperature profiles near the boundary of the hot wall. Figures 4.24 and 4.25 show the 

comparison between the computed and experimental temperature profiles along the vertical 

axis at the center of the box. Reasonable agreement between the computed and experimental 

profiles can be observed. 
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Figure 4.6 Velocity magnitude contours inside the rectangular enclosure due to buoyancy-driven flow  

 

 

Figure 4.7 Velocity vectors inside the rectangular enclosure due to buoyancy-driven flow  

Velocity Vectors  

Velocity Magnitude Contours 
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Figure 4.8 Velocity vectors (multiplied by scale of 70) inside the rectangular enclosure 

 

 

 

Figure 4.9 Velocity vectors near the hot wall region 
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Figure 4.10 Velocity vectors near the cold wall region 

 

 

 

Figure 4.11 Temperature contours at x-25, x-50, x-75, & y-50 
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Figure 4.12 Velocity field along the x-axis at y=50 near the hot wall boundary 

 
 

 
Figure 4.13 Velocity field along the y-axis at x=50 near the bottom wall boundary 

 

 

 

Figure 4.14 Velocity magnitude along x-50 line 

Velocity Magnitude along X-50 

Cold Wall 

Hot Wall 

Velocity Field along X-50 Line near the 
Bottom Wall (multiplied by a scale of 10) 

Velocity Field along Y-50 Line near the 
Hot Wall (multiplied by a scale of 3) 
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Figure 4.15 Velocity magnitude along y-50 line 

 
Figure 4.16 V-velocity along x-50 line 

 

 
Figure 4.17 V-velocity along y-50 line 
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Figure 4.18 U-velocity along x-50 line 

 

Figure 4.19 U-velocity along y-50 line 

 

Figure 4.20 Temperature along x-50 line 
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Figure 4.21 Temperature along y-50 line 

 

Dimensionless Temperature Profile Near Boundary of Hot Wall 
Comparison of Computed and Experimental Results  

 

2-D model: Ra=2.6 x 108; ΔT=5 K 

 

 

Comparison of small-scale and full-scale hot wall 
boundary layer temperatures along center of the 
room (at Z/H = 0.5). Small scale: Ra=3.1 x 1010, 
ΔT=18.4 K; full scale: Ra=3.4 x 1010, ΔT=30.0 K  

Figure 4.22 Computed dimensionless temperature at 
y-50 

Figure 4.23 Experimental dimensionless 
temperature profile of observed flow [Olsen, 
Glicksman, & Ferm, 1990] 
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Dimensionless Temperature Profile Along Vertical Axis 
Comparison at the Center of the Enclosure 

 
2-D model: Ra=2.6 x 108; ΔT=5 K 
 
 

 

4.24 Computed dimensionless temperature 
profile at x-50 

 

Comparison of core vertical temperature profiles at 
X/L = 0.5 in the empty enclosure for small-scale, 
full-scale, and water experiments. Small scale: Ra=2.2 
x 1010, ∆T=20.5 K; full scale: Ra=2.6 x 1010, ∆T=15.4 
K.  
4.25 Experimental dimensionless temperature 
profile [Olsen, Glicksman & Ferm, 1990] 

4.6 Conclusions 
 
In this chapter, we have attempted to show that the 2-D flow field of natural convection in a 

rectangular box can be accurately calculated using CFD. The computations compare 

remarkably well with the experiment of Olsen, Glicksman and Ferm (1990) for flow patterns 

inside the box capturing the turbulent, laminar, and secondary laminar recirculating regions 

inside the box. Minor differences are found between the computation and experiment for 

the temperature profiles; it is likely that these small differences in the thermal stratification 

may be due to the different fluids used in the experiment (R114 gas) and the computation 

(air), since the air will have slightly more thermal stratification than the R114 gas.  

 

There are other differences between the computation and the experiment as well; the 

computation is strictly 2-D while the experiments are performed in a 3-D enclosure. 

Nevertheless, there is reasonable agreement between the computation and the experiment. 

CFD validation in this chapter sets the stage for 3-D computations described in Chapter 5 of 

buoyancy-driven flow field in an office room using the three ventilation systems described in 

Chapter 2.  

θ θ 

Z/H 
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Chapter 5  

 

3-D Models of  Different Ventilation 
Systems 

 

5.1 Introduction 
 

The goal of the computations performed in this chapter is to directly compare the energy 

consumption and thermal comfort levels of three different ventilation systems described 

earlier in Chapter 2. For the computational domain, a typical office room space of 

approximately 12’-0” x 12’-0” x 9’-6” inside a multi-floor building is considered. In Figure 

5.1, the first model (Room 1) uses an all-air overhead arrangement or variable air volume 

(VAV) system (Figure 5.1 (A)), representative of a conventional ventilation system. The 

second model (Room 2) uses an all-air raised floor arrangement, representative of the 

Displacement Ventilation (DV) system (Figure 5.1 (B)). The third model (Room 3) uses the 

combined DV and hydronic radiant systems (Figure 5.1 (C)).  

 
(A) Variable Air    (B) Under-floor Dis-              (C) Combined Dis- 

  Volume Ventilation  placement Ventilation              placement Ventilation  
 System    System                          and Radiation System  

Figure 5.1  Ventilation systems for an office building  
 Fresh Air Supply  

Return Air 
Radiant Chilled Ceiling 
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5.2 Computational Methodology 
 

 
Figure 5.2 Temperature variation during a cooling cycle 

 
Computational simulations are performed for the three ventilation systems shown in Figure 

5.1 along the exterior wall of a model 3-D room of 12’ x 12’ x 9.5’ dimensions. The cooling 

cycle shown Figure 5.2 is employed in the simulation; it shows the typical temperature curve 

during the hot part of the day. The red curve indicates the rising indoor temperature, caused 

by the hot interior and exterior sources, while the blue curve indicates the decrease in the 

indoor temperature due to the cold air supplied by the vents. Figure 5.2 also indicates the 

high and low temperature points inside the room, which are set by the controller (governed 

by the room occupant). Since we have not coupled our fluid dynamic simulations with the 

controller, we simulate the effect of the controller by opening the vents for ten minutes with 

the required amount of cold air as given in Table 5.1 and then closing the vents for 

remainder of the ninety minute cycle. This is obviously different from an actual ventilation 

system, where the thermostat (or similar controller) is used to determine when the cold air 

should be supplied to the room (determined by the temperature setting on the thermostat).  

 

5.3 HVAC Requirements 
 

The standard temperature, relative humidity (rh), and airflow rates inside a room in an office 

building during winter and summer months are given in Table 5.1.  

 

Temperature Set 
 Points 

1 Cooling Cycle 

__ 

__ 
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Design Conditions Inside A Room 
(Adapted from the ASHRAE Handbook, 1995) 

Office Buildings Winter Summer Air Movement 
Circulation, Air 

Changes per Hour 

British Units 
70 to 74º F 74 to 78º F 25 to 45 fpm 4 to 10 

 
20 to 30% rh 50 to 60% rh 0.75 to 2 cfm/ft²  

Metric Units 296.3 to 298.5 K 294.1 to 296.3 K 
7.62 to 13.72 

m/min 
155.0 to 387.4 m³/hr 

 
  0.127 to 0.229 m/s  

 

Table 5.1 Design conditions in a room [Howell, Ronald, and Saur, 1998] 

 

5.4 Room 1: Ceiling Ventilation (VAV) 
 
Figure 5.3 shows the schematic of Room 1 with two vents in the ceiling. 

 
Figure 5.3 Room 1 geometry: 3-D view and the side View 

 
Figure 5.4 shows the two vents in the ceilings and the boundary conditions as given in Table 

5.2. 

 
Figure 5.4 Room 1 boundary conditions 

Outlet Inlet 

Exterior 
Hot Wall 

Remaining Walls are adiabatic 
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Room 1 Boundary Conditions 

Boundary Boundary Type Settings 

Hot Wall Isothermal Temp: 80º F (299.817 K) 

All Other Walls, Floor 
and Ceiling 

Adiabatic q = 0 

Inlet Vent Mass Flow Inlet 
Flow Rate: 
Temp: 
Direction: 

0.052767 kg/s 
60º F (288.706 K) 
Normal to boundary 

Outlet Vent Pressure Outlet 
Back Flow Temp: 
Direction:    

295 K 
Normal to boundary 

Table 5.2 Room 1 boundary conditions 

 

5.4.1 Determination of Vent Size 
 

In determining the size of the vents, the HVAC requirements are carefully considered. For 

the ceiling ventilation shown in Figure 5.4, both the inlet and outlet dimensions of the vents 

are 1’- 6” x 1’ – 6” (Figure 5.5), which gives an area of 2.25 ft² (0.209 m²) for each vent. 

Now, by meeting the guidelines of four air changes per hour [Howell, Ronald, & Saur, 1998] 

for a volume of 38.738 m³, this vent size gives a flow velocity of 40.54 ft/min (0.206 m/sec), 

which meets the HVAC requirement for air movement [Table 5.1].  

 

 

Figure 5.5 Room 1 vent sizes 
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5.4.2 Mesh Generation 
 
3-D Cartesian mesh inside Room 1 was generated by GAMBIT, with a uniform grid spacing 

of 3” [Figure 5.6]. 

 
 

 
Figure 5.6 Room 1 mesh: top view and 3-D view 

 

Despite the steep gradients near the walls, this spacing is sufficient to capture the flow field 

with reasonable accuracy [Madireddi, 2009]. This mesh has a cell count of 87,552 and a node 

count of 93,639.  

 

5.4.3 Flow Field Computations 
 
Many of the same parameters that were used in 2-D computations described in Chapter 4 

are employed in the 3-D computations: Figure 4.2 is used to determine the variation of 

density with temperature, the initial starting values of temperature, T0=288.16 K, and 

density, ρ0= 1.225 kg/m3, are employed, Discrete-ordinate method for the radiation 

calculation is employed, the governing equations are solved using the First-Order-Upwind 

scheme and the pressure is calculated using the PRESTO! scheme. However, the SIMPLE 

algorithm is employed for the coupling of the velocity and pressure instead of the PISO 

algorithm that was used in the 2-D computations. This change was done based on the 

recommendations of previous work in computing the natural convection flows [Tieszen, 

Top 
3-D View 
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Ooi, Burbin, & Behnia, 1998; Zhao, Zhang, Li, Yang, & Huang, 2003; Balaji, Hölling, & 

Herwig, 2007]. However, since the mesh is Cartesian (not skewed), there is little difference 

between the PISO and SIMPLE algorithms [Ansys Inc, 2007].  We also employed a different 

turbulence model, the Spalart Allmaras (S-A) instead of the k-ε (RNG) model that was used 

in the 2-D computations. The S-A is a simpler turbulence model, which only uses one 

equation to describe the turbulent eddy viscosity, compared to the k-ε (RNG) model, which 

uses two equations to calculate the eddy viscosity. All the three computations reported in 

Chapter 5 employ the S-A model. 

 

5.4.4 Numerical Solution Procedure 

 

To obtain the transient (time-varying) solution in the room for one cooling cycle of ninety 

minutes, the following numerical solution procedure is employed: The solution process is 

initialized using a steady state solution obtained with the boundary conditions on the wall 

given in Table 5.1 with vents closed. The unsteady solver is then run with vents open for a 

ten minute period using a constant time step2 determined by the stability condition. After 

running the transient solution for ten minutes with vents open, the vents are closed and the 

transient solution is calculated for an additional eighty minutes.  

 

5.4.5 Results and Analysis 
 

Figure 5.7 shows various cross-sectional xy- and yz- planes where we show the temperature 

and velocity contours. The temperature contour plots (Figures 5.8-5.15), show the change in 

the room temperature progress with time in the yz-plane at z-50. It should be noted that at 

z-50 yz-plane intersects both the vents. The temperature scale (288 - 300 K) is the same in all 

the contour plots. It can be seen from these contours plots that the cold air jet exits the inlet 

vent for the first ten minutes slowly spreading inside the room (Figures 5.8 – 5.11). After the 

vent is closed after ten minutes into the ninety minute cooling cycle, the cold air jet starts 

mixing with the existing warm air in the room, thereby lowering the temperature of the 

                                                 
2 To ensure stability, check that the time step ∆t ≤ CFL condition [Ansys Inc, 2007].  
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room (Figures 5.12 - 5.13). The hot wall (80° F) continues to heat the room for the entire 

time period of 90 minutes. As a result, the temperature in the room begins to rise after 40 

minutes or so. At the end of the 90 minute cooling cycle (Figure 5.15), the temperature of 

the room becomes close to that of the hot wall, 80° F (299.8 K). Figures 5.18 – 5.28 show 

the temperature contours in a 3-D domain; they show the areas of the room which are at 

cooler temperature (60 - 74° F). These contours depict the cold air jet exiting from the vent 

and extending to the floor after two and half minutes (Figure 5.18 & 5.19). As time 

progresses, the cold air continues to mix with air in the room and finally after ten minutes 

nearly the entire room is at temperatures between 60 – 740 F (Figures 5.24 – 5.25). After ten 

minutes the vents are closed. Then, after twenty minutes, the top half of the room is at 

temperature >740 F (Figure 5.26 – 5.27), and after thirty minutes, the room is completely 

void of any air below 74° F (Figure 5.28). Note there is a small temperature gradient around 

the vents (Figure 5.28). These small traces of cold air near the vents are caused by the 

boundary conditions at the inlet and outlet vents. The mass flow rate for both the vents is 

zero; however, it is necessary to set a temperature boundary condition at the vents, which is 

set at the average volume temperature in the room after ten minutes (71.3° F).  

The velocity magnitude contours (Figure 5.16) and velocity vectors (Figure 5.17) are shown 

in the yz-plane at z-50. From these figures, it can be seen that the column of cool air jet 

extends from the inlet to the floor in about 2.5 minutes. It can be observed that the jet 

velocity which is ~0.2 m/s at the inlet vent significantly increases to ~0.5 m/s near the 

middle of the room: this flow velocity first increases as the jet descends to the middle of the 

room and then decreases as it moves into the region of higher density cool air near the floor. 

The change in the total energy of the fluid in a time period of 90 minutes is shown in Figure 

5.29. It is directly monitored by FLUENT and is given in Joules per unit mass (J/kg).  The 

unit of specific heat (Cp) is J/kg/K. Thus, dividing the energy/mass by the specific heat of 

air (1006.43 J/kg/K), the curve for change in the average volume temperature with time 

(Figure 5.30) is obtained. This average volume temperature is also monitored directly from 

FLUENT. Figure 5.30 shows that the average volume temperature of the room decreasing 

when the inlet vent is open for ten minutes and it starts increasing after the vent is closed 

after ten minutes eventually approaching the original room temperature after 90 minutes. 
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Figure 5.7 Results for all three ventilation systems (Room 1, Room 2, and Room 3) are given in the xy- 

and yz-planes shown in this figure. 
 

Temperature Contours in YZ-Plane at Z-50 with Flow On 

 

Figure 5.8 Temperature contours in the yz-plane 
at z-50 after 2.5 minutes (vents open - flow on) 

 

Figure 5.9 Temperature contours in the yz-plane 
at z-50 after 5 minutes (vents open - flow on) 

 
Figure 5.10 Temperature contours in the yz-plane 

at z-50 after 7.5 minutes (vents open - flow on) 

 
Figure 5.11 Temperature contours in the yz-plane 

at z-50 after 10 minutes (vents open - flow on) 
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Temperature Contours in YZ-Place at Z-50 with Flow Off 

 

Figure 5.12 Temperature contours in the yz-plane 
at z-50 after 20 minutes (vents open - flow on) 

 

Figure 5.13 Temperature contours in the yz-plane 
at z-50 after 30 minutes (vents open - flow on) 

 

Figure 5.14 Temperature contours in the yz-plane 
at z-50 after 40 minutes (vents open - flow on) 

 

Figure 5.15 Temperature contours in the yz-plane 
at z-50 after 90 minutes (vents open - flow on) 

 
Velocity Magnitude Contours YZ-Plane at Z-50 with Flow On 

 
Figure 5.16 Velocity Magnitude contours in yz-plane at z-50 after 2.5 minutes (vents open - flow on) 
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Velocity Vectors YZ-Plane at Z-50 with Flow On 

 
Figure 5.17 Velocity vectors in yz-plane at z-50 after 2.5 minutes (vents open - flow on) 

 
3-D Temperature Contours with Flow On (Temperature 

range is set from 60° to 74°F) 

2.5 Minutes (flow on) 

 

Figure 5.18 3-D temperature contours 
after 2.5 minutes: view 1 

 

Figure 5.19 3-D temperature contours 
after 2.5 minutes: view 2 
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5 Minutes (flow on) 

 

Figure 5.20 3-D temperature contours 
after 5 minutes: view 1 

 

Figure 5.21 3-D temperature contours 
after 5 minutes: view 2 

7.5 Minutes (flow on) 

 

Figure 5.22 3-D temperature contours 
after 7.5 minutes: view 1 

 

Figure 5.23 3-D temperature contours 
after 7.5 minutes: view 2 

10 Minutes (flow on) 

 

Figure 5.24 3-D temperature contours 
after 10 minutes: view 1 

 

Figure 5.25 3-D temperature contours 
along z-50 after 10 minutes: view 2 
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3-D Temperature Contours with Flow Off (Temperature 
range is set from 60° to 74°F) 

20 Minutes (flow off) 

 

Figure 5.26 3-D temperature contours after 
20 minutes: view 1 

 

Figure 5.27 3-D temperature contours 
after 20 minutes: view 2 

30 Minutes (flow off) 

 

Figure 5.28 3-D temperature contours after 30 minutes 

   

 

 

Figure 5.29 Room 1 change in energy with time 

 

Minutes 

Room 1 Change In Energy with Time 
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Figure 5.30  Room 1 change in temperature with time 

 

5.5 Room 2: Displacement Ventilation 
 
Figure 5.31 shows the schematic of Room 2 with the two outlet vents in the ceiling and six 

inlet vents on the floor. 

 

Figure 5.31 Room 2 vent sizes in the ceiling and the floor 

  

5.5.1 Determination of Vent Sizes 
 
Room 2 inlet vents are designed to have the same total inlet vent area as Room 1. There are 

six inlet vents on the floor. Hence, the Room 2 inlet vents are 6" x 9", which gives an area of 

* Calculated Temperature = [Difference of the Fluid Energy] / Cp 

Total Outlet Area = 4.5 ft2 (0.418 m2) 
Total Inlet Area = 2.25 ft2 (0.209 m2) 

Minutes 

Room 1 Change in Temperature with Time 

∆ T – Monitored by FLUENT (Ave Vol Temp) 

∆ T – Calculated* 
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2.25 ft2 (0.209 m2) for six vents (Figure 5.31). Since there is no change in the total inlet vents 

area compared to Room 1, Room 2 meets the ASHRAE guidelines of air movement 

(Section 5.4.1) in the room. The six inlet vents are placed on the floor near the adiabatic 

walls. This is done to keep the installation of the vents on the floor practical, so that the 

vents may not blocked by the furniture in the room. The outlet vent area of Room 2 is 

double the size of the outlet vent area of Room 1. Each outlet vent is of the size, 1'-6" x 1-

6", giving an area of 4.5 ft2 (0.418 m2)) for the 2 outlet vents in Room 2. The boundary 

conditions for Room 2 are given in Table 5.3. 

Room 2 Boundary Conditions 

Boundary Boundary Type Settings 

Hot Wall Isothermal Wall Temp: 80º F (299.817 K) 

All Other Walls, Floor and 
Ceiling 

Adiabatic Wall q = 0 

Inlet Vents (x 6) Mass Flow Inlet Flow Rate:   0.0087945 kg/s (=[0.052767 kg/s] / 6 vents)  

  Temp: 60º F (288.706 K) 
  Direction: Normal to boundary 

Outlet Vents (x 2) Pressure Outlet 
Back Flow 
Temp: 

295 K 

  Direction:  Normal to boundary 

Table 5.3 Room 2 boundary conditions 

5.5.2 Mesh Generation 
 
The same 3-D Cartesian mesh that was employed for Room 1 is employed for Room 2 

(Section 5.4.2). The mesh was generated by GAMBIT, with a uniform grid spacing of 3" 

(Figure 5.32). 

 
Figure 5.32 Room 2 mesh: 3-D view 
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5.5.3 Flow Field Computations  
 
The same flow field computation methodology that was employed for Room 1 (Sections 

5.4.3 & 5.4.4) is employed for Room 2.  

 

5.5.4 Results and Analysis 
 
Figure 5.33 shows various cross-sectional xy- and yz-planes where we show the temperature 

and velocity contours. The temperature contour plots (Figures 5.33-5.5.40) show the change 

in the room temperature with time in the yz-plane at z-50. Note that at z-50, yz-plane 

intersects both of the ceiling vents. The temperature scale (288 - 300 K) is the same in all the 

contour plots. The contour plots with the flow on (Figures 5.33 - 5. 36) clearly show the two 

layer thermal stratification associated with DV [Linden, 1999]. This two layer thermal 

stratification forms because of the effects of buoyancy on the fluid. The higher density cold 

air from the vents settles on the floor and displaces the lower density hot air at the ceiling. 

Over time, the cold air mixes with the convective heat from the hot wall and warmer air 

already present in the room, and in doing so a more gradual change from the ambient 

conditions at the bottom of the enclosure to a maximum temperature at the top is observed 

[Linden, 1999](Figure 5.36). After the vents are closed, ten minutes into the cycle, the cold 

air near the floor continues to mix with the existing warm air in the room, thereby 

diminishing the temperature gradients (Figures 5.37 - 5.40). It is apparent that the DV 

system is designed to flush out the lower density warm air, which when compared to the 

mixing demonstrated in Room 1, not only more effectively cools the room but also more 

effectively removes the contaminants in the air [Linden, 1999]. Similar to Room 1, the hot 

wall (800 F) continues to heat the room for the entire time period of 90 minutes. As a result, 

the temperature in the room continues to rise after 40 minutes or so (Figure 4.39). At the 

end of the 90 minute cooling cycle (Figure 5.40), the temperature of the room becomes close 

to that of the hot wall,  800 F (299.8 K). 

 

Figures 5.43 - 5.52 show the temperature contours in a 3-D domain; similarly to Room 1, 

they show the areas of the room which are at cooler temperature (60 - 740 F). These 

contours depict the two-layer thermal stratification extending for the length of the room 
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(Figures 5.43 - 5.49). As time progresses, the cold air continues to mix with the air in the 

room and finally after ten minutes, all of the air except for a small portion near the ceiling is 

at temperatures between 60 - 740 F (Figure 5.49). After ten minutes, the vents are closed. 

Then, after twenty minutes, much of the room is still at temperature <740 F (Figure 5.50). 

After thirty minutes, only the bottom one-third portion of the room is at temperature <740 

(Figure 5.51), and finally after forty minutes, the room is completely void of any air below 

740 F (Figure 5.52). The small temperature gradients around the vents (Figure 5.52) are an 

artifact of the boundary conditions as explained in Section 5.4.5. 

 

The velocity magnitude contours after two and half minutes, Figures 5.41 and 5.42, are 

shown in the yz-plane at z-10 and z-50 respectively. From these contours, we notice the 

significant air movement near the floor, which is a characteristic of DV systems.  

 

The change in temperature in a time period of 90 minutes is shown in Figure 5.53. As 

explained in Section 5.4.5, temperature change from the average volume temperature is 

directly monitored from FLUENT while the temperature difference is calculated by dividing 

the change in the total energy of the fluid, given in energy per unit mass, by the Cp. Note that 

the total energy of the fluid is directly monitored by FLUENT. Figure 5.53 shows that the 

average volume temperature of the room decreases when the inlet vents are open for ten 

minutes and it starts increasing after the inlet vents are closed after ten minutes eventually 

approaching the original room temperature after 90 minutes. 
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Temperature Contours in YZ- Plane at Z-50 with Flow On 

 
Figure 5.33 Temperature contours in the yz-plane 

at z-50 after 2.5 minutes (vents open - flow on) 

 
Figure 5.34 Temperature contours in the yz-plane 

at z-50 after 5 minutes (vents open - flow on) 

 
Figure 5.35 Temperature contours in the yz-plane 

at z-50 after 7.5 minutes (vents open - flow on) 

 
Figure 5.36 Temperature contours in the yz-plane 

at z-50 after 10 minutes (vents open - flow on) 

 
Temperature Contours in YZ- Plane at Z-50 with Flow Off 

 
Figure 5.37 Temperature contours in the yz-plane 

at z-50 after 20 minutes (vents closed - flow off) 

 
Figure 5.38 Temperature contours in the yz-plane 

at z-50 after 30 minutes (vents closed - flow off) 
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Figure 5.39 Temperature contours in the yz-plane 

at z-50 after 40 minutes (vents closed - flow off) 

 
Figure 5.40 Temperature contours in the yz-plane 

at z-50 after 90 minutes (vents closed - flow off) 

 
Velocity Magnitude Contours in YZ-Plane after 10 Minutes with Flow On 

 
Figure 5.41 Velocity magnitude contours in 
the yz-plane at z-10 after 2.5 minutes (vents 
open - flow on) 

 
Figure 5.42 Velocity magnitude contours in yz-
plane at z-50 after 2.5 minutes (vents open - 
flow on) 

 
3-D Temperature Contours with Flow On  

(Temperature range is set from 60° to 74°F) 

2.5 Minutes (flow on) 

 
Figure 5.43 3-D temperature contours after 2.5 

minutes: view 1 

 
Figure 5.44 3-D temperature contours after 2.5 

minutes: view 2 
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5 Minutes (flow on) 

 
Figure 5.45 3-D temperature contours after 5 

minutes: view 1 

 
Figure 5.46 3-D temperature contours after 5 

minutes: view 2 

7.5 Minutes (flow on) 

 
Figure 5.47 3-D temperature contours after 7.5 

minutes: view 1 

 
Figure 5.48 3-D temperature contours after 7.5 

minutes: view 2 

10 Minutes (flow on) 

 
Figure 5.49 3-D temperature contours after 10 minutes: view 1 

 
 
 
 
 



 

 
 

49

3-D Temperature Contours with Flow Off  
(Temperature range is set from 60° to 74°F) 

20 Minutes (flow off) 

 
Figure 5.50 3-D temperature contours after 20 

minutes: view 1 

 
Figure 5.51 3-D temperature contours after 30 

minutes: view 2 

30 Minutes (flow off) 

 
Figure 5.52 3-D temperature contours after 30 minutes 

 

 
Figure 5.53 Room 2 change in temperature with time 

Minutes 

∆T - Monitored by FLUENT (Vol Ave Temp) 

∆T - Calculated* 
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5.6 Room 3: Displacement Ventilation with 
Chilled Ceiling 

 

Figure 5.54 shows the schematic of Room 3 with the outlet vent placed along the adiabatic 

wall near the floor (opposite to the hot wall), the six inlet vents placed on the floor near the 

side walls, and the radiation slab placed close to the ceiling. 

  

 

Figure 5.54 Room 3 geometry 

 

5.6.1 Determination of Vent and Radiation Slab Sizes 
 

For Room 3, there are no changes in the sizes of the inlet vents from Room 2, but there is a 

slight decrease in the volume (38.228 m3) of Room 3 due to the radiation slab. By meeting 

the ASHRAE guidelines of four air changes per hour for this volume, these vent sizes (with 

a total area of 2.25 ft2) give a flow velocity of 40.53 ft/min (0.203 m/sec), which meets the 

HVAC guidelines for air movement (Table 5.1). The outlet vent (6" x 9’) is placed along the 

floor of the adiabatic wall opposite to the hot wall. This gives an area of 4.5 ft2 (0.418 m2), 

which is the same as that for Room 2. Room 3 has the addition of the radiation slab, 6' x 6' x 

Total Outlet Area = 4.5 ft2 (0.418 m2) 
Total Inlet Area = 2.25 ft2 (0.209 m2) 

Radiation Slab Dimensions: 
6’ x 6’ x 6” Hot 

Wall 
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6", which provides the chilled ceiling effect. The radiation slab is placed 6” below the ceiling3 

in the center of the room.  

 

The boundary conditions for this room are given in Table 5.4. The radiation slab is treated as 

a radiating wall at 60° F (288.706 K) with an emissivity of 0.85 (~weathered stainless steel). 

Notice that the outlet vent is moved from the ceiling to the base of the wall (Figure 5.54), 

which puts it in close proximity to inlet vents labeled as three and six in Figure 5.54. 

Consequently, the flow from both of these inlet vents is directed at a 45° angle in the 

negative x-direction to keep the cold air from being directly discharged by the outlet vent. 

Otherwise, the boundary conditions are the same as for the previous Rooms 1 and 2 (Table 

5.4). 

Room 3 Boundary Conditions 

Boundary Boundary Type Settings 

Hot Wall Isothermal Wall Temp: 80º F (299.817 K) 

Radiation Slab Radiating Wall Temp: 60º F (288.706 K) 

  Emissivity: 0.85 (~ weathered stainless steel) 

All Other Walls, Floor 
and Ceiling 

Adiabatic Wall q  = 0 

Inlet Vents Mass Flow Inlet Flow Rate:   0.0087945 kg/s (= [0.052767 kg/s] / 6 vents) 

  

Temp:  60º F (288.706 K) 

Direction: Vents 1,2,4,5 - Normal to boundary  
Vents 3,6      - 45° (-)x direction 

Outlet Vent Pressure Outlet 
Back Flow 
Temp:  

295 K  

  Direction:  Normal to boundary 

Table 5.4 Room 3 Boundary Conditions 

 

5.6.2 Mesh Generation 
 
Similar to Rooms 1 and 2, a 3-D Cartesian mesh inside Room 3 was generated by GAMBIT, 

with a uniform grid spacing of 3" (Figure 5.55). 

                                                 
3 This design is close to reality since often times, when retrofitting existing buildings with a hydronic system, 
radiant panels are simply added to the ceiling rather than by totally stripping the existing framework, which 
generally is not cost effective.  
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Figure 5.55 Room 3 mesh: 3-D view 
 

Figure 5.56 Room 3 interior view 

 

The Room 3 mesh varies slightly from the other two rooms, since the radiation slab is 

included in Room 3. Consequently the volume for Room 3 also slightly smaller than the 

other two rooms (Room 3 Volume = 38.228 m3). This mesh has a cell count of 86,400 and a 

node count of 93,110. 

 

5.6.3 Flow Field Computations  
 
The same flow field computation methodology that was employed for Rooms 1 and 2 

(Sections 5.4.3 & 5.4.4) is employed here for the solution of Room 3. The radiation 

boundary condition on the slab is included in this simulation. 

5.6.4 Results and Analysis 
 

Figure 5.57 shows various cross-sectional xy- and yz-planes where we show the temperature 

and velocity contours. The temperature contour plots (Figures 5.57-5.5.64) show the change 

in the room temperature with time in the yz-plane at z-50. Note that at z-50, yz-plane 

intersects the center of the radiation slab near the ceiling. The temperature scale (288 - 300 

K) is the same in all the contour plots. The contour plots with the flow on (Figures 5.57-

5.60) show the gradual cooling of the room. By ten minutes (Figure 5.60), the room 

temperature is uniformly cool with very little temperature variation. After the inlet floor 

vents are closed, ten minutes into the cycle, we observe that the hot wall is gradually heating 

the room (Figures 5.61-5.64). Similar to the other two rooms (Rooms 1 & 2), the hot wall 

(800 F) continues to heat the room for the entire time period of 90 minutes; however, 
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because the radiation slab continues to operate for the 90 minute cycle, the Room 3 

temperature remains relatively cooler throughout the simulation.  

 

Figures 5.67 - 5.79 show the temperature contours in a 3-D domain; similarly to the other 

two rooms, they show the areas of the room which are at cooler temperature (60 - 740 F). 

These contours depict the cold air jets exiting the inlet vents on the floor and diffusing near 

the corner of the hot wall and the ceiling (Figures 5.67 - 5.69). As time progresses, the cold 

air continues to mix with the air in the room and finally after ten minutes, nearly all the air 

inside the room is at temperatures between 60 - 740 F (Figure 5.74). After ten minutes, the 

vents are closed. Then, after twenty minutes, there are slightly higher temperatures near the 

walls, however much of core area of the room is still at temperatures <740 F (Figures 5.75-

5.77). Even after 90 minutes (Figure 5.79), large portions of the room are at ≤740 F. This is 

in stark contrast to the temperatures in the other two rooms (Rooms 1 &2), which after 90 

minutes attain the temperature of the hot wall, 800 F (299.8 K). 

 

The velocity magnitude contours, Figures 5.41 and 5.42, are shown after two and half 

minutes. Figure 5.41, shown in the yz-plane at z-10, illustrates the flow from the inlet vents 

along the floor. Note that vents 1, 2, and 3 are labeled in red. Also from this figure, note that 

vent 3 is at an angle of 450 in the negative x-direction. In figure 5.42, the 3-D velocity 

magnitude contours, show air jets extending from the inlet vents and some air movement in 

the center of the room.  

 

The change in temperature in a time period of 90 minutes is shown in Figure 5.80. As 

explained in Section 5.4.5, the average volume temperature is directly monitored from 

FLUENT. Figure 5.80 shows that the average volume temperature of the room decreases 

when the inlet vents are open for ten minutes and it starts gradually increasing after the vents 

are closed after ten minutes. Unlike the other two rooms which nearly reach the temperature 

of the hot wall after 90 minutes, Room 3 continues to stay relatively colder with only a small 

increase in temperature by the end of the 90 minutes. 
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Temperature Contours in YZ-Plane at Z-50 with Flow On 

 
Figure 5.57 Temperature contours in yz-plane at 

z-50 after 2.5 minutes (vents open -flow on) 

 
Figure 5.58 Temperature contours in yz-plane at 

z-50 after 5 minutes (vents open -flow on) 

 
Figure 5.59 Temperature contours in yz-plane at 

z-50 after 7.5 minutes (vents open -flow on) 

 
Figure 5.60 Temperature contours in yz-plane at 

z-50 after 10 minutes (vents open -flow on) 

 
 

Temperature Contours in YZ-Plane at Z-50 with Flow Off 

 
Figure 5.61 Temperature contours in yz-plane at 

z-50 after 20 minutes (vents closed -flow off) 

 
Figure 5.62 Temperature contours in yz-plane at 

z-50 after 30 minutes (vents closed -flow off) 

 
Figure 5.63 Temperature contours in yz-plane at 

z-50 after 40 minutes (vents closed -flow off) 

 
Figure 5.64 Temperature contours in yz-plane at 

z-50 after 90 minutes (vents closed -flow off) 
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Velocity Magnitude Contours at 2.5 Minutes 

 
Figure 5.65 Velocity magnitude contours in yz-

plane at Z-2.5 after 2.5 minutes 

 
Figure 5.66 3-D velocity magnitude contours after 

2.5 minutes 

 
3-D Temperature Contours with Flow On 

(Temperature range is set from 60° to 74°F) 

2.5 Minutes (flow on) 

 
Figure 5.67 3-D temperature contours after 2.5 

minutes: view 1 

 
Figure 5.68 3-D temperature contours after 2.5 

minutes: view 2 

 
Figure 5.69 3-D temperature contours after 2.5 minutes: view 3 

 
 
 

1    2      3 
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5 Minutes (flow on) 

 
Figure 5.70 3-D temperature contours after 5 

minutes: view 1 

 
Figure 5.71 3-D temperature contours after 5 

minutes: view 2 

 
Figure 5.72 3-D temperature contours after 5 minutes: view 3 

 
7.5 Minutes (flow on) 10 Minutes (flow on) 

 
Figure 5.73 3-D temperature contours after 7.5 

minutes: view 1 

 
Figure 5.74 3-D temperature contours after 10 

minutes: view 1 
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3-D Temperature Contours with Flow Off 
(Temperature range is set from 60° to 74°F) 

20 Minutes (flow off) 30 Minutes (flow off) 

 
Figure 5.75 3-D temperature contours after 20 

minutes 

 
Figure 5.76 3-D temperature contours after 30 

minutes 

50 Minutes (flow off) 60 Minutes (flow off) 

 
Figure 5.77 3-D temperature contours after 50 

minutes 

 
Figure 5.78 3-D temperature contours after 60 

minutes 

90 Minutes (flow off) 

 
Figure 5.79 3-D temperature contours after 90 minutes 
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Figure 5.80 Room 3 change in temperature with time 

 

5.7 Comparison of Results for Three Ventilation 
Systems (Room 1, Room 2, and Room 3) 

 
Comparing the change in the average volume temperature for the three rooms (Figure 5.81 

& 5.82), it is clear that Rooms 2 and 3 reach much colder temperatures over Room 1 in ten 

minutes. Note that the total inlet vent areas and mass flow rates are the same for all the three 

rooms (the same amount of cold air was pumped into each room). The temperature change 

is the best indicator of thermal comfort. From the graph of the temperature change of 

Room 2 and Room 3 with respect to Room 1 (Figures 5.82), after the ten minutes, we note 

that Room 2 achieves a 5.9 K drop in temperature, which, when compared to the 

temperature drop for Room 1, is a 1.1 K (2.00 F) difference in room temperatures (Figure 

5.83). This temperature difference yields a 22.1% decrease in temperature of Room 2 

compared to Room 1(Figure 5.84). As mentioned earlier, there is typically a 30 – 60% 

reduction in energy required for cooling with the displaced ventilation system compared to 

overhead standard VAV ventilation system; our results are in the same ballpark. In literature 

it has been shown that there is a 30% reduction in volumetric airflow for achieving the same 

level of thermal comfort with displacement ventilation system compared to that needed for 

standard VAV system [Flonomix, 2009], this calculation is not performed in this thesis.  

 

Analyzing the results for Room 3 (Figure 5.84) at the end of the ninety minute cycle, it can 

be concluded that Room 3 has achieved a 600% decrease in temperature over Room 1. 

∆T - Monitored by FLUENT (Vol Ave Temp) 

Minutes 

Room 3 Change in Temperature (∆T) with Time 
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Room 3 has the chilled ceiling which provides radiative cooling for the entire 90 minutes of 

the simulation and it adds to the energy required for cooling Room 3. As mentioned earlier, 

a cooling tower (running on solar energy) alone can supply much of the necessary cooling 

load in many parts of the world.  However, in case a cooling tower cannot cool the water of 

a hydronic system to the required temperature, it can at least pre-cool the water for a 

mechanical system to reduce the cooling load. In addition, by reducing the space necessary 

for large ventilation ducts in standard VAV systems and requiring significantly smaller 

mechanical heating/cooling units by reducing the heating/cooling loads, and a whole host of 

other changes [Harvey, 2009], the displacement ventilation with radiant cooling offers a 

superior system in most geographical regions, including the US, Europe, and Canada. 

Furthermore, in addition to using less primary energy and increasing the thermal comfort, 

such systems cost less to build in the commercial sector [Ürge-Vorsatz, Harvey, Mirasgedis, 

& Levine, 2007].  

 

 

 

Figure 5.81 Change in volume-average temperature with time for Rooms 1, 2, and 3 
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Figure 5.82 Monitored volume-average temperatures with time for Rooms 1, 2, and 3 

 

 

Figure 5.83 Rooms 2 & 3 temperature difference with time w.r.t. Room 1 
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Figure 5.84 Rooms 2 & 3 percentage temperature difference with time w.r.t. Room 1 

 

5.8 Conclusions 
 
For the three different ventilation systems considered in this chapter, we have attempted to 

show the difference in the energy requirements and the thermal comfort levels for the three 

different cooling systems using CFD. From the calculations, it can be concluded that the 

displacement ventilation with chilled ceiling provides the most efficient cooling system along 

with the highest level of thermal comfort. However, experimental data is needed for 

validation of CFD results. 

 
 
 
 
 

Room 2 & Room 3 Percentage Temperature Difference 
w.r.t. Room 1 
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Chapter 6  

 

Conclusions 
 
In Chapter 4, we attempted to show that the 2-D flow field of natural convection in a 

rectangular box can be accurately calculated using CFD. The computations compared 

reasonably well with the experiment of Olsen, Glicksman, and Ferm (1990) for flow patterns 

inside the box capturing the turbulent, laminar, and secondary flow regions inside the box. 

Minor differences were found between the computation and the experiment for the 

temperature profiles; it is likely that these small differences in the thermal stratification were 

due to the different fluids used in the experiment (R114 gas) and the computation (air), since 

the air would have slightly more thermal stratification than the R114 gas.  

 

Some of these differences could also be attributed to the fact that the computation was 

strictly 2-D while the experiment was performed in a 3-D enclosure. Nevertheless, there was 

reasonable agreement between the computation and the experiment. These calculations were 

performed for validation of CFD methodology.  

 

In chapter 5, using Computational Fluid Dynamics (CFD), three different cooling systems 

used in contemporary office environments were modeled to compare energy consumption 

and thermal comfort levels. Incorporating convection and radiation technologies, full-scale 

models of an office room were employed to compare three ventilation systems: (a) an all-air 

overhead system (Variable-Air-Volume ventilation), (b) an all-air raised floor system 

(displacement ventilation), and (c) a combined air and hydronic radiant system (displacement 

ventilation with a chilled ceiling). The computational domain for each model consisted of 

one isothermal wall (simulating an exterior wall of the room) and adiabatic conditions for the 

remaining walls, floor, and ceiling (simulating interior walls of the room).  

 

For the three different ventilation systems considered, we attempted to show the difference 

in the energy requirements and the thermal comfort levels for the three different cooling 
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systems. From the calculations, it was concluded that the displacement ventilation with 

chilled ceiling provided the most efficient cooling system along with the highest level of 

thermal comfort. However, experimental data is needed for validation of CFD results. 
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Chapter 7  

  

Future Work 
 

1. Experiments should be performed to validate the 3-D CFD results of Chapter 5.  

 

2. Once the CFD results are validated, it should be straight forward to modify the 

room geometry to incorporate doors, windows, furniture, occupants, office 

equipment, exterior radiation, and any other features that can influence the cooling 

effects in the room. FLUENT has a solar ray tracing algorithm, which allows the 

user to specify geographical coordinates and then the program automatically predicts 

the direct illumination energy associated with the sun. Thus, once the overall cooling 

strategy is decided, it is quite simple to make a few modifications and numerically 

simulate a particular ventilation system in various geographical regions. CFD 

simulations can provide a direct comparison of energy and cost savings for a 

particular ventilation system for cooling in different climates. CFD can also be used 

to optimize the performance envelope of residential and commercial buildings.  

 

3. The thermal properties of building materials should also be included in the 

simulations. As an example one can include a layer of phase change material (PCM) 

in the construction of walls and window curtains etc, which can improve the 

performance envelope of the room/building. 
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Appendix A:  
 
Air density table  
 

Piecewise-Linear Profile of Variation 
of Air Density with Temperature 

[WAsP, 2009] 

Temperature (K) Density (kg/m3) 

273.15 1.293 

288.16 1.225 

293.15 1.205 

298.15 1.184 

303.15 1.164 

308.15 1.145 

313.15 1.127 
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