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ABSTRACT OF THE DISSERTATION

Pattern formation and magnetism in pulsed laser-induced self-organized

nanostructures from single and bilayer metallic films

by

Hare Krishna

Doctor of Philosophy in Physics

Washington University in St. Louis, 2010

Professor Ramki Kalyanaraman, Chairperson

Self-organization via nanosecond pulsed laser melting of thin metal films is attractive

as a reliable and low cost method to create surface metallic nanostructures. The potential

applications of these resulting structures are related to their magnetic, optical, plasmonic,

and magneto-optical properties, such as in high density magnetic storage, energy harvest-

ing, and sensing. In this dissertation experimental and theoretical mechanisms of nanoscale

patterning by dewetting self-organization was explored in nanoscopic thickness single and

bilayer metal films. Magnetism in the resulting nanostructures was also explored. Exper-

imental techniques included thin film deposition, laser irradiation, scanning and transmis-

sion electron microscopy, atomic force and magnetic force microscopy. A thermodynamic

model of dewetting based on comparing the rate of change of free energy to frictional loss

via viscous dissipation was developed. From this model the length scale characteristics

of the self-organization in single and bilayer metal systems was determined. The model

was successfully applied to experimental behavior of pulsed-laser induced dewetting of

Ag, as well as for Co, where intrinsic thermocapillary effects influenced dewetting. An-

other finding was that the metal films show a thickness dependent dewetting morphology.

This was investigated in detail for Ag on SiO2 substrates and it was found that for films

less then 9.5 nm, the early stages of dewetting consisted of bicontinuous structures, while
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above, it consisted of regular sized holes. This observation was consistent with a pre-

viously published theoretical argument that morphology was based on the film-thickness

dependent location of the minimum in the free energy curvature. In this model, bicontin-

uous patterns occur for thickness below the curvature minimum, while holes occur above

it. For bilayer self-organization, the immiscible metals Ag and Co were investigated on

SiO2 substrates. The thermodynamic theory predicted substantially different length scales

for the two bilayer configurations, Ag/Co/SiO2 and Co/Ag/SiO2. This behavior was cor-

roborated by experimental measurements based on pulsed laser dewetting. The difference

arises due to change in the sign and magnitude of intermolecular forces for the two config-

urations. The nanoparticles resulting from bilayer self-organization consisted of granular

nanostructure with each nanoparticle containing phase separatedl grains of Ag and Co,

thus representing nanoscale nanocomposites. Extensive magnetic investigations were per-

formed on hemispherical shaped nanoparticles of elements (Co, Fe, Ni), alloys (FeCo) and

composites (CuCo), created by the laser dewetting process. By utilizing magnetic force mi-

croscopy technique, the magnetic anisotropy of individual nanoparticles was determined.

The most important discovery was a size-dependent single-domain magnetic anisotropy

due to which, smaller particles had an in-plane magnetic orientation while larger particles

were out-of-plane. The reason for the unusual out-of-plane orientation for the hemispher-

ical particles was a residual strain in the nanoparticles following the large cooling rates

under laser melting. The resulting magnetoelastic energy was sufficient to overcome shape

and magnetocrystalline anisotropy energies. These investigations present a fundamental

picture of nanostructure synthesis via pulsed laser-induced dewetting and self-organization

in single and bilayer films and the magnetic behavior of the processed materials.
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Chapter 1

Introduction

Nanoscale materials have unique properties compared with both macroscopic bulk materi-

als and individual atoms/molecules. Research in nanoscience focuses on the fundamental

study and manipulation of materials in order to design, fabricate and characterize struc-

tures in the nanometer scale. The ultimate goal is to develop materials and devices that will

overcome the existing technological limitations and even create new and novel functional-

ities. In this respect, the ability to manipulate and measure matter at the nanometer level

is making it possible to synthesize a new generation of materials with enhanced mechani-

cal [7], optical [8], plasmonic [9, 10], magnetic [11, 12, 13] and magneto-plasmonic [14]

properties. Nanostructure devices can be based on tailoring these properties starting, at the

molecular level [15, 16], in the structures comprised of three-dimensions nanometer scale

components [17], or based on nanostructured surfaces with lateral features and/or ultrathin

films of nanometer scale thickness [18, 19, 20]. Because of the partial realization of some

of these objectives and vast potential for future applications, it has captured the attention

and imagination of researchers in every area of science.

The focus of this work is to explore robust and cost-effective pathways to make nanos-

tructured metallic and magnetic materials, comprised of different nanomorphologies of

particles, polygons, wires, and bicontinuous structures (see Fig. 1.1), whose size, and
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spatial arrangements can lead to various interesting applications. For example, spatially

ordered arrays of single domain magnetic nanoparticles can be used for high density mag-

netic storage applications [21], nanowires for nanomagnetics [22], electronics [23] and

sensors [24], surface plasmon waveguides made from linear chains of metal nanoclusters

[25, 26], ordered metal nanocatalyst seeds to make high-efficiency flat-panel displays from

carbon-nanotube arrays [27], and coupled magneto-plasmonic nanostructures for high den-

sity magneto-optical recording technology [28]. In most of these applications, controlling

the spatial ordering, size, shape, composition and crystallographic orientation over large

macroscopic length scales is necessary [29].

The development of magnetism in the nanoscale is primarily motivated by the demand

for increasing areal density in magnetic data storage [21]. The technically challenging

parameters to achieve are size, separation, and the long term stability of the magnetic state

of the material. The highest density can be achieved by using particles with magnetization

direction perpendicular to the plane, which simultaneously improves the signal-to-noise

ratio [30] and lowers the read and write errors [31], compared to particles with in-plane

magnetization. In addition, arrays of magnetic nanoparticles have potential applications

in non-volatile and high speed magnetic random access memories (MRAM) [32]. These

requirements call for robust and cost-effective nanomanufacturing processes that can make

ordered surface nanostructures with the desired attributes. Nanostructured self-assembly

and/or self-organization is one of the potential routes to achieve these ends [33, 34, 35].

By exploiting these techniques of assembling nanoscale building blocks with molecular

precision, it becomes possible to design materials with a wider choice of functionalities

and properties with well-defined architectures at different length scales.

In this chapter, the next section (sec. 1.1) will provide the background of self-organization

theory for single and bilayer metal systems. Following this, the background on nanomag-

netism and the properties of different nanostructures will be presented, in sec. 1.2. Finally,
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(a) (b)

(c) (d)

Figure 1.1: Different nanomorphologies as a result of self-organization of thin metal films;
(a) bicontinuous structure, (d) polygon networks [1], (c) ordered nanowires, and (d) ordered
nanoparticles.
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the chapter will end with an outline of the important problems and results explored in this

dissertation (sec. 1.3), which will be detailed in the subsequent chapters.

1.1 Self-organization

The spontaneous formation of patterns of well-defined structures by self-organization is

a fundamental and technologically relevant topic of ongoing research. Various material

systems show self-organizing characteristics: atoms rearrange in a predictable manner to

form specific crystals, epitaxially strained thin films break into quantum dots [2], biolog-

ical systems develop characteristic patterns and length scales [3, 36] (see Fig. 1.2). The

processes involved in these systems possess some very attractive features from the per-

spective of manufacturing, namely, repeatability and cost-effectiveness. Another important

characteristic is that such spontaneous processes can encompass a wide range of length

(and time) scales, from nanometers in the case of thin film dewetting [37] to hundreds of

kilometers in geological structures [38]. Therefore, the study of self-organizing systems is

of tremendous practical importance and will likely play an important role in the realization

of various nano- and micro-technologies. In this work, the spontaneous pattern formation

or self-organization resulting from nanosecond (ns) pulsed laser melting and subsequent

dewetting of the ultrathin films was investigated. The results show that this approach is a

promising route to realize robust nanoscale structures for magnetic, electronic and optical

applications.

Self-organization (SO) is the process by which intrinsic forces of a system lead to a

spontaneous selection of length scales and patterns. It is an underlying principle that can

explain structural organization over a wide range, from the molecular to the astronomical

scales. Some examples of SO system include weather patterns, solar systems, and self-

assembled monolayers. Some of the widely investigated self-organizing systems include
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(a) (b)

(c)

Figure 1.2: Self-organized structures; (a) assembly of atoms to form periodic arrangements
in a crystal, (b) Ge quantum dots on Si [2] (image size is 3µm×2µm), and (c) patterns on
the wing of the lady butterfly [3] (Magnification, ×400).
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thin films of liquid polymers [33, 39, 40, 41, 42], biomolecular self-assembly in protein

folding or within cells [43], and the formation of micelles by surfactant molecules in a

solution [44]. Mimicking these strategies and creating novel molecules with the ability

to self-organize into molecular assemblies is an important paradigm in nanotechnology. In

SO, the final structure is encoded in the shape and properties of the molecules that are used,

as compared to traditional techniques, such as lithography, where the desired final structure

must be obtained from a larger block of matter.

The phenomenon of dewetting, in which an initially flat liquid or solid film sponta-

neously breaks-up into various complex morphologies, is one potential route to create

SO surface structures [45, 46, 47, 48, 33, 49, 40, 37, 4, 50, 35, 51]. Dewetting is a part

of everyday life, and also plays an important role in many technological processes. Few

common examples are biological systems such as self-cleaning plant leaves, rolling down

of water drops down the car windshield, oil droplets on water surface and surface coat-

ings. A thorough understanding of this dynamic dewetting phenomena in the nanoscale is

a prerequisite to utilize this process for applications in nanotechnology. On a macroscopic

scale, dewetting phenomena can be described in terms of the Young’s equation, with the

surface tensions between the different phases determining the equilibrium contact angle

θeq = cos−1[(γSV − γSL)/γLV ]. Here γSV , γSL and γLV are the surface energies between the

substrate-vacuum, substrate-liquid and liquid-vacuum, respectively. However, in thin films,

the interfacial interactions are much stronger and provide more interesting insights of the

dewetting process. The dynamics of the thin liquid film can be determined by using the

parameters of the hydrodynamic equations such as viscosities, surface tensions, and the

boundary conditions.

1.1.1 Background

The fundamental reason for the formation of drops is that the droplet-surface system has a

lower energy than the continuous film-substrate system. What is most relevant to current
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nanomanufacturing strategies is whether this spontaneous dewetting process can yield pre-

dictable nanomorphologies in a reliable and cost-effective manner. Based on the studies

of dewetting of thin polymer films made over the past 50 years, it is evident that dewet-

ting could be a very advantageous processing technique, even for metallic materials. These

studies have uncovered several features that are very relevant to nanomanufacturing strate-

gies. Most importantly, the thermodynamically unstable polymer film-substrate systems

show evidence for spontaneous dewetting with well-defined intermediate and final mor-

phologies at specific length scales. For film-substrate systems that show this effect, there is

a strong resemblance between the shape of the free energy as a function of film thickness to

the composition dependent behavior in binary systems showing spinodal phase segregation

[52] (Fig. 1.3). Hence, such systems are often referred to dewet by spinodal dewetting

[53, 54, 55, 56]. A typical thin film-substrate spinodal dewetting system will have a thick-

ness dependent free energy per unit area G(h) given by:

G(h) = GSur f +GInt +GVol +GExt (1.1)

The surface free energy (GSur f ) describes the energy of a liquid-vapor or solid-vapor in-

terface, and for a film in contact with vacuum is given by the appropriate surface tension

γ f v with units of energy/area. The interfacial free energy (GInt) describes the energy of

the liquid-solid, liquid-liquid or solid-solid interface and for a film on substrate is given by

the interfacial tension γ f s. A typical external free energy (GExt) is the gravitational energy

GExt = 1/2ρgh2, where ρ is the density of the film, g is the local acceleration due to gravity

and h is the height of the film. Unlike the surface, interface, and gravitational energy terms,

the volume free energy term (GVol) can take several forms and is dictated by the system of

interest. For instance, in epitaxial solid film-substrate systems the energy associated with

lattice mismatch strain will contribute to the volume free energy [57, 58, 59]. In the case of
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Figure 1.3: Plot of free energy per unit area as a function of film thickness h.

polymer films and metal films on inert amorphous substrates such as SiO2, the commonly

observed volume free energy term arises from intermolecular dispersion forces. The atomic

origin of this intermolecular force is the van der Waals interaction between non-polar atoms

in which the interaction energy varies as 1/h6, where h is the spacing between the particles.

The extension of this point-like interaction energy to describe the free energy of interaction

between planar interfaces is achieved by a pairwise addition of the van der Waals interac-

tion. This results in an energy per unit area expressed as GDisp
vol = A/h2, where A is the

Hamaker coefficient, which determines the sign and magnitude of interaction between the

substrate-film and film-vacuum interface. The Hamaker coefficient, A, can be calculated

through a relation of the frequency-dependent dielectric coefficients of the different media,

which is summed over the entire frequency regime and is proportional to (ε1−ε2)(ε2−ε3),

where ε1, ε2 and ε3 are the dielectric functions of substrate, film and vacuum, respectively

[60, 61]. From the Hamaker relation, it is seen that the interaction energy is attractive
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when the film has a larger (or smaller) dielectric constant than both the substrate and the

vacuum (or vapor). In the case of polymer liquids and metal films on dielectric substrates

like SiO2 in a gaseous or vacuum medium, the free energy is attractive, i.e, Hamaker co-

efficient is negative. More importantly, for films in the thickness regime of 1 to 100 nm,

for which gravitational energy is negligible, the curvature of the free energy is negative,

i.e. d2G/dh2 < 0, as shown in Fig. 1.3. This unstable regime strongly resembles the free

energy curvature found within the spinodal regime of binary phase segregating systems.

The second important finding of dewetting studies of unstable films is the progression

of morphology from a initially smooth liquid film to the final droplet state. This occurs with

intermediate states that have well-defined length scales and complex morphologies. Gener-

ally, two different intermediate morphologies are seen before the final particulate state: the

film breaks by formation of holes followed by polygonal structures or through the forma-

tion of bicontinuous structures [53, 54, 55, 56]. In this dewetting instability regime, which

is typically found for films with thickness 1≤ h≤ 100 nm, the formation of holes or bicon-

tinuous structures occurs spontaneously and characteristic length scales emerge, because

the subsequent dewetting dynamics is characterized by a narrow spread of preferential or

fastest growing length scales [62, 63]. As shown theoretically, the dynamics leads to the

selection of characteristic patterning length scales λ that vary with film thickness as λ ∝ h2

[62, 49, 40, 42], known as the classical dewetting behavior. This has been observed ex-

perimentally by several authors, verifying the existence of a spontaneous, self-organizing,

spinodal-like process for polymeric [53, 42] as well as metallic films [46, 35, 37].

1.1.2 Dewetting mechanism through dissipation

As discussed in the previous section, the classical dewetting instability in thin films can be

interpreted as a competition between two energy terms. For the case of a large number of

polymer or metallic films studied, these two energies correspond to the surface tension and

the attractive intermolecular dispersion force between the film-substrate and film-vacuum
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interfaces mediated by the film material. As shown first by Vrij [62, 63], the instability

can be described from an energetic viewpoint by evaluating the thermodynamic free en-

ergy change of the system under perturbations to the film height. The prediction from such

an energy analysis is that for certain perturbation wave vectors, the film enters an unstable

state and thus, can spontaneously dewet. As a result, studies of dewetting have focused

largely on the fluid dynamics of the film, through which it is possible to obtain the rela-

tionship between the rate of growth or decay of surface perturbations to their wave vector,

i.e. the dispersion relation. However, the fluid dynamics for even the simplest dewetting

scenario, such as the example above, is a highly nonlinear process.Although this can be

solved by many numerical techniques [33, 64, 65], a linear analysis is often employed

to achieve physical insights into the dewetting process. An alternate approach to quanti-

tatively evaluate dewetting is by thermodynamics. Fluid flow pathways can be analyzed

through thermodynamic considerations, in which the conversion of useful internal energy

to external energy loss via heat, such as by viscous dissipation, is used to quantify the

behavior [66, 67].

Such an approach can provide meaningful insight into the nature of fluid flow as well as

the energy pathway for dewetting instabilities. Specifically, the thermodynamic formula-

tion can be applied to the case of dewetting, where film thickness dependent Marangoni or

thermocapillary forces are also present. Such a situation has been observed in the melting

of thin metallic films by nanosecond pulsed lasers [4, 1]. In this thermodynamic analysis

the rate of thermodynamic free energy decrease due to film thickness fluctuations is bal-

anced with the rate of energy loss due to viscous flow, i.e. viscous dissipation. This leads to

an analytical description of the dewetting process without any need for linearization. The

thermodynamic and linear approach show identical results for classical dewetting.

Dewetting mechanism can be understood by considering the energy transfer and/or en-

ergy conversion in systems during the liquid flow. Both the classical dewetting behavior
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Figure 1.4: Schematic illustrating laser heating of ultrathin liquid films. A liquid metal film
of initial height ho undergoes surface height fluctuations due to capillary waves. This non-
uniform height couples to the incident laser light and results in a local height-dependent
temperature.

(as discussed in sec.1.1.1) as well as a substantially modified behavior (will be discussed

in chapter 2) due to the nanosecond laser heating, can be understood on the principle of

maximizing the rate of energy transfer between the thermodynamic state of the film and its

viscous flow on the substrate. For an ultrathin metal film on an inert substrate such as glass

(SiO2), the total free energy of the system is made up of two terms: the surface/interface

energies γ f v and γ f s of the film-vacuum and film-substrate interfaces respectively; and the

disjoining pressure Π(ho), where ho is the initial height of the film. The disjoining pressure

Π(ho) is typically comprised of an attractive dispersive interaction between the metal film-

substrate and film-vacuum interface of type A/12πh2
o, where A is the Hamaker coefficient

with a negative sign, and a short range repulsive term between the film and substrate atoms,

typically given by B/hn
o, where n is typically ≥ 4. For ultra thin films, the gravitational en-

ergy term is negligible, as is the short range repulsive term, and will therefore be ignored

in the subsequent analysis. For such thin films, a height perturbation of the liquid film

surface (see Fig. 1.4) , such as by capillary waves, results in a change in free energy. The

contributions to this free energy change come from two terms. First, the area of the film

11



surface increases with respect to its original flat state for perturbations of any wavelength

and hence the surface tension will contribute a positive term to the free energy change. Sec-

ond, the attractive dispersion energy (which is proportional Π(ho)
′′ ∝ 1/h4

o) contributes a

large negative term. Therefore, the resulting total free energy change can be negative when

the wavelength of the perturbation is of appropriate value, thus implying conditions for a

spontaneous break-up of the liquid film [62]. In this situation, the characteristic patterning

length scale λ is known to scale with the initial film thickness as λ ∝ h2
o [63, 53]. As shown

in this work (chapter 2 and 3), dewetting of metallic liquid films of nanometer thickness

under nanosecond (ns) laser melting show this classical behavior as well as a substantially

modified behavior, depending on the film thickness. Both these results can be understood

by the principle of maximizing the rate of energy transfer between the thermodynamic state

of the film and its viscous flow on the substrate.

The change in free energy per unit length can be evaluated from the difference in ener-

gies between the initial state ho and a perturbed state h(x, t), as depicted in Fig. 1.4. The

perturbed height can be conveniently expressed as a Fourier component of type:

h(x, t) = ho + εeσte−ikx (1.2)

where the perturbation has an amplitude of ε , a characteristic temporal decay rate σ and a

corresponding wave vector k. In this 1-dimensional system, the temporal rate of change of

free energy can be expressed as:

∆̇F =
∂

∂ t
[F(h)−F(ho)] =

∂

∂ t
[
1
2

γ | ∂h
∂x
|2 +1

2
Π
′′
∆h2] (1.3)

which, upon using, Eq. 2.1 and Π
′′
= A/2πh4

o gives:

∆̇F = σ(γk2 +
A

2πh4
o
)ε2e2(σt−ikx) (1.4)
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Here, the first term on the right side is the rate of increase of surface tension energy

due to increase in surface area of the film, while the second term, evaluated at the initial

film height, is the rate of change in energy resulting from the dispersive interaction. From

this, one can see that for attractive dispersive forces, i.e. A < 0, the second term in Eq.

3.1 competes with the surface tension term and could decrease the free energy depending

on the value of k. This free energy behavior, which shows a negative curvature, is similar

to the spinodal found in binary phase systems [52]. More importantly, it implies that the

film will be unstable to perturbations of certain wave vectors k , creating the possibility of

spontaneous dewetting and pattern formation. In order to evaluate the value of the pattern-

ing length scale λ = 2π/k that actually dominates the dewetting process, the rate of free

energy decrease ∆̇F is compared with the rate of energy lost ĖV due to viscous flow, in the

presence of a film thickness-dependent temperature. These quantities allow one to evaluate

the rate of viscous energy loss per unit length ĖV occurring over the entire thickness of the

liquid film due to the flow in the x-direction as [68]:

ĖV = η

ho∫
0

(
dvz

dz
)2dz (1.5)

The above analysis was performed for dewetting of single layers of Co and Ag on SiO2

substrates, as will be discussed in detail in chapter 2.

In contrast to the vast number of theoretical and experimental investigations for dewet-

ting of single layer films, only a few theoretical studies have been performed for multiple

film layers, such as bilayer polymer liquids on solid substrates [69, 70, 71, 72], using linear

and non-linear analysis of the fluid flow equations. In this case, the instability character-

istics were explained on the basis of different combinations of surface tensions of liquid

layers and the solid surface. Depending on the ratio of the layer thicknesses and the van

der Waals interactions between different interfaces, the system follow different pathways

of dewetting [72, 69].
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1.2 Nanomagnetism

Nanomagnetism is the area of research in physics which deals with the magnetic properties

of objects that have at least one dimension in the nanoscopic range [73, 12]. The emergence

of new phenomena in nanomagnetism results from important differences in nanoscopic

and macroscopic samples [74, 75, 76, 77]. The nanoscopic objects: (i) have dimensions

comparable to characteristic lengths, such as the limiting size of magnetic domains [78];

(ii) exhibit a higher proportion of surface or interface atoms compared to bulk. Another

factor that modifies the magnetic properties of nanostructures is the close contact with

other physical systems, for example, with a substrate in the case of most thin films, surface

nanostructures and multilayers [73, 79, 80, 81]. In each case, the nanomagnet may feel

a strong interaction with its immediate neighborhood. Also, in general, as nanoparticles

are prepared with smaller dimensions, the presence of imperfections or anisotropies and

defects becomes more relevant [82, 83].

Nanomagnetism includes the study of properties and applications of the magnetism

of isolated or cluster of nanoparticles, nanodots, nanowires, thin films and multilayers

[84, 73, 85]. In the last few decades tremendous progress has been made in the area of

nanomanufacturing techniques including lithography and self-organization processes. In

addition, the progress in magnetic characterization techniques e.g. magnetic and atomic

force microscopy (AFM, MFM), magneto-optic Kerr effect (MOKE) and nano supercon-

ducting quantum interference device (nano SQUID), have made it much easier to study

and understand nanomagnetism [86]. The magnetic nanostructures are characterized by a

fascinating diversity of geometries, ranging from complex structures to a broad variety of

small systems. The typical nanostructure geometries of interests are thin flat films, dots,

nanowires, rings etc. First, the large surface-to-volume ratio of these elements lead to a

comparatively strong size-dependence of the magnetic properties on surface and interface

atoms. Also the ground-state domain configuration and the mechanism of magnetization re-

versal in small magnetic particles depend on the particle size and shape [76, 13, 12, 73, 78].
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The total energy of a magnet includes the terms due to dipole interaction, shape anisotropy,

crystal structure-related anisotropy or magnetocrystalline anisotropy, and the strain related

magnetoelastic energy. These energy terms will be discussed in the next subsections, fol-

lowed by the effect of size and shape of magnets on magnetic domains.

1.2.1 Dipole-dipole interactions

Magnetic dipole-dipole interaction refers to the direct interaction between two magnetic

dipoles. Classically, the dipole-dipole interaction energy depends on the relative orientation

of the magnetic moments. To obtain the dipolar interaction energy, consider the case for

two magnetic dipoles, µ1 and µ2, held at a distance r at some angle between them. The

dipole-dipole interaction energy per unit volume (EDip) can be expressed by the well known

Eq. 5.9[87];

EDip =
µ0

4πV

[
µ1 ·µ2

r3 − 3
(µ1 · r)(µ2 · r)

r5

]
(1.6)

where µ1 = µ2 = M0V , where V is the particle volume and M0 the saturation magne-

tization [87]. As can be seen in the above equation, the interactions energy is proportional

to the field strength, which falls off as 1/r3, and is highly dependent on the angle between

the dipoles. In the present work, the interaction energies associated with the neighboring

nanomagnets are considered and evaluated in chapter 5.

1.2.2 Magnetocrystalline anisotropy energy

For a single crystalline ferromagnet, the magnetic energy will be the lowest when the mag-

netization aligns along the easy axis, determined by the magnetocrystalline anisotropy.

However, for the polycrystalline magnets, the magnetocrystalline anisotropy will be aver-

aged out over all grains orientated in different directions, resulting in a weaker anisotropy

[88]. For a polycrystalline cubic crystal with n number of grains, the magnetocrystalline
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energy density (EMA per unit volume) is given by [85]:

EMA = 1
n ∑

n
i=1 K1

[
sin4(αi−β )·sin2 2φ

4 + cos2(αi−β ) · sin2(αi−β )
]

+
1
n

n

∑
i=1

K2 sin2 2φ · sin2 2(αi−β )

16
(1.7)

where K1 and K2 are the second and third order magnetocrystalline anisotropy con-

stants. The grain orientation αi, is the angle between the easy axis of the ith grain with the

substrate plane, β is the magnetization direction and φ is the azimuthal angle. The order

of magnitude for EMA depend on the number of grains (n) and the grain orientation [88],

which depends on the actual microstructure of the magnetic particle. For example, parti-

cles made of a single grain will have the highest magnetocrystalline energy, compared to

randomly oriented multiple grained particles of the same shape and size [88].

1.2.3 Demagnetization energy or shape anisotropy

The demagnetization energy or shape anisotropy is measured by the magnetic energy of a

sample due to its own magnetic field (Hd). The demagnetization energy density EDM, is

given by:

EDM =− 1
2V

µo

∫
V

Hd ·M dV

where the integral is performed over the volume, V , of the sample. The magnetostatic

energy of samples of ellipsoidal shape is simple to calculate since the magnetic field is the

same at every point of the sample. However, the hemispherical shape, as in the present

work, introduces complications due to the presence of truncated surface. The demagneti-

zation energy per unit volume (EDM) as a function of magnetization direction (β , w.r.t sub-

strate plane) can be estimated for single domain hemispherical particles using the approach

outlined in ref. [89], assuming uniform magnetization of the hemispheres. The calculation

was performed by first evaluating the magnetic scalar potential (ΦM) using general spher-

ical harmonics (Ylm). The final expression for the hemispherical demagnetization energy
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per unit volume was obtained as [85]:

EDM = µ0M2
0 (100−9cos2β )/768 (1.8)

where, µ0 = 4π ·10−7Wb/A ·m and Mo is the saturation magnetization.

1.2.4 Magnetostrictive energy

The magnetostrictive energy (or magnetoelastic energy) of a ferromagnetic solid arises

from the interaction between the magnetization and the strain (ε) [90, 91]. Magnetostriction

is a measure of change in dimensions of a solid as its magnetic state is changed. This

energy basically introduces an additional extrinsic anisotropy due to strain, similar to the

anisotropy introduced by shape. Using the magnetostriction and the stress or strain, the

magnetostrictive energy density EMS can be calculated using the relation [92];

EMS = (3/2)λε(c11− c12)[1+(2c12/c11)]cos2
β (1.9)

where λ is the magnetostriction constant, ε is the thermal strain, c11 and c12 are the elastic

stiffness constants and β is the direction of magnetization.

1.2.5 Magnetic domain size

To minimize the demagnetization energy, the macroscopic samples of magnetic materi-

als break up into regions of uniform magnetizations with opposite spins, called magnetic

domains, separated by domain walls or transition regions over which the magnetization

changes direction [12, 93, 77]. When the nanoparticle size approaches the width of the

domain walls, determined by the magnetic exchange and anisotropy energies, the particles

become single domain (SD). This domain transition can be predicted by comparison of the

magnetostatic energy of a uniformly magnetized particle (proportional to its volume) to the
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domain wall energy of a multi-domain state (proportional to the particle surface) [13].

In addition to the size, effect of shapes is also important in magnetism of low dimen-

sional objects, such as nanodisks, nanorings or nanowires. In some aspects, the magnetism

of these objects is comparable to the magnetism of nanoparticles, and therefore, what is

applicable to nanoparticles is also valid for nanodisks, nanorings, and nanowires. On the

other hand, the fact that the nanoscopic disks and rings are approximately bi-dimensional,

justifies why some results for extended thin films are also relevant for them

Thin magnetic disks, or circular dots of thickness of the order of the exchange length,

exhibit a vortex spin structure. The magnetization is mostly confined to the plane of the

disk and the vortex center is located near the center of the disk with magnetization nor-

mal to the disk plane [94, 95]. This perpendicular magnetization of the vortex core is

verified experimentally through images of nanodisk arrays obtained using magnetic force

microscopy (MFM), that shows dark or bright dots at the center of the disks [94], arising

from the uncompensated magnetic poles, indicating up or down vortex core magnetization.

In the case of nanorings, the possible magnetic states are vortex, onion or twisted state

[96]. In the vortex case, the directions of local magnetization turn around the annular

part,where the magnetization is tangential to the perimeter of the nanoring, forming a vor-

tex magnetic state. A second common magnetic configuration is an arrangement of spins in

which the ring is divided into two magnetic domains, with magnetizations oriented tangen-

tially in two different directions, clockwise and counterclockwise, a structure that is usually

referred to as an onion state [97]. A third common structure is an asymmetric onion state or

twisted state, containing two regions of opposite direction of rotation and different lengths,

and is referred to as a twisted state [97].

Due to shape anisotropy, nanowires, especially single crystalline nanowires, usually

favor the alignment of the magnetization along the axis of the wire [98]. However, for

polycrystalline nanowires, depending on the crystallographic orientation of the grains, the

magnetization may also point perpendicular to the axis [5]. In both cases, imperfections,
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such as defects, kinks and bends in the nanowires, may lead to domain wall pinning and

affect the size, shape, and orientation of each domain.

1.3 Outline of dissertation

The dissertation presents detailed study of self-organization in thin liquid metal films using

ns pulsed laser to create ordered metallic nanostructures on semiconductor surfaces and

its characterizations. The experimental observations are supported by the theoretical anal-

ysis of SO mechanisms. In addition, exhaustive studies have been done on the magnetic

properties of ferromagnetic structures.

• CHAPTER 2: The thermodynamic theory of spinodal dewetting in single layers is

presented. It was shown theoretically that the self-organization principle based on

the rate of transfer of free energy equal to the minimum value of the viscous dissipa-

tion during liquid flow, accurately describes the characteristic scales of spontaneous

spinodal dewetting [1]. This principle was also applied to the case of dewetting in

the presence of intrinsic thermocapillary forces generated by nanosecond pulsed laser

melting. The results agree well with the experimental observations of pulsed laser

dewetting of Ag and Co on SiO substrates.

• CHAPTER 3: Similar to the single metal layer, theoretical and experimental dewet-

ting studies have been performed in bilayer metal systems. To experimentally study

the dewetting in bilayers, the immiscible metals Ag and Co were chosen on SiO2

substrates. The theoretical analysis of dewetting in bilayer was performed using the

thermodynamic approach. The characteristic length scales predicted by this theory

show different behavior for different configurations of bilayers of Ag and Co on SiO2

substrates (e.g. Ag/Co/SiO2 and Co/Ag/SiO2). This difference in length scale was

explained by the differences in the sign and magnitude of the intermolecular forces

for the two arrangements. The experimental length scale behavior for both the con-
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figurations was consistent with theory. Nanostructural studies were also performed

on the nanoparticles created by laser processing of bilayer Ag-Co thin films on SiO2.

• CHAPTER 4: The particular morphology selected by a polymer film during spinodal

dewetting has been predicted to be related to the functional form of the free energy

and its curvature [33, 42]. In this chapter, we have investigated this characteristic

for metallic films. The morphological pathway of dewetting in ultrathin Ag films on

SiO2 in the thickness range of 2 ≤ h ≤ 20 nm was investigated. The morphology

consisted of an intermediate stage of bicontinuous structures for the thinner films

h≤ 9.5 nm, and regularly-sized holes or polygons for films 11.5≤ h≤ 20 nm. This

behavior can be explained by the curvature of the free energy.

• CHAPTER 5: The magnetic properties of hemispherical shape nanomagnets of ele-

mental Co and Fe prepared by pulsed laser dewetting is presented[85, 99]. . Magnetic

force microscopy (MFM) and hysteresis loop measurements were done to character-

ize these nanomagnets. In the single domain size range, the magnetic behavior of

these particles show size-dependent magnetic orientations, where smaller particles

are in-plane with respect to the substrate plane and bigger particles show out-of-plane

magnetization directions. The size-dependent magnetic direction of the nanomagnet

was explained by the size-dependent residual strain and the microstructures formed

by rapid laser processing [85].

• CHAPTER 6: The magnetic properties of spatially ordered patterns of hemispheri-

cal nanoparticles of elemental ferromagnets Co, Ni, was compared to nanoparticles

of an alloy (Fe50Co50) and a mixture (Cu50Co50), synthesized on SiO2 substrates.

Magnetic force measurements reveals the predominantly out-of-plane magnetization

direction of Co and Ni nanoparticles, as compared to in the plane behavior for the

Fe50Co50 and Cu50Co50 nanoparticles. The difference in the magnetic behavior was

attributed to the dominating influence of magnetostrictive energy due to the differ-
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ence in the signs of magnetostriction coefficients. The magnitudes of each of the

magnetic energy terms was calculated for hemispherical shape Co, Ni elemental fer-

romagnets as well as for alloys (FeCo) and mixtures (CuCo) nanomagnets.

• CHAPTER 7: Here, a summary of this dissertation research as well as some directions

for future work on magnetism and self-organization are given.
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Chapter 2

Thermodynamic theory of

self-organization in single layer thin

metallic liquid films

Summary

Nanometer thick metallic liquid films on inert substrates can spontaneously dewet and

self-organize into complex nanomorphologies and nanostructures with well-defined length

scales. Nanosecond pulses of an ultraviolet laser can capture the dewetting evolution and

ensuing nanomorphologies as well as introduce dramatic changes to dewetting length scales

due to the nanoscopic nature of film heating. The physical manifestation of the instability

in terms of characteristic length and time scales can be described by a linearized form

of the initial conditions of the non-linear film’s dynamics. Alternately, a thermodynamic

approach based on equating the rate of free energy decrease to the viscous dissipation

can give similar information. Here the theoretical model show that the self-organization

principle based on equating the rate of thermodynamic free energy change with viscous

loss during liquid flow accurately describes the spontaneous dewetting. The results of this

approach agree with those from linear analysis and experimental observations provided the
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rate of decrease in free energy is equated to the minimum value of viscous dissipation.

The flow boundary condition that produces this minimum viscous dissipation is when the

film-substrate tangential stress is zero. Experimental measurements of laser dewetting of

Ag and Co liquid films on SiO2 substrates were used to confirm this principle. This energy

transfer approach could be useful towards analyzing materials and chemical processes as

well as behavior of nanomaterials in which spontaneous changes are important.
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2.1 Introduction

Understanding the mechanism(s) of energy transfer and/or energy conversion in systems

involving nanoscale materials is important for several reasons. This could lead to discov-

ery of new and improved materials for many applications. Such applications include, solar

energy harvesting [100, 101], sensing [102, 103], optical or magnetic information pro-

cessing [25, 26, 85, 104], biomedicine [105, 106], spintronics [107] and surface enhanced

Raman scattering (SERS) [100, 101, 102, 103]. One class of materials that can be used in

several of these applications is surface nanostructures made from complex shapes and/or

specific sizes of various metals. Such nanostructures could be achievable in an economical

and reliable manner if chemical and materials processing principles involving spontaneous

pattern formation, such as self-assembly or self-organization, are fully realized [108]. One

such technique that could be harnessed to create complex nanostructures from thin films

is the spontaneous self-organization of thin liquid films that lead to nanostructure forma-

tion on surfaces (Fig. 2.1). The extensive studies of this technique in polymer thin films

and growing number of investigations of dewetting in metallic thin films is indicative of

technological interest and also to the need for a deeper understanding of the phenomenon

[53, 42, 109, 110]. It is for these reasons that investigating and understanding the dewetting

mechanisms in thin metal films has gained attention [111, 112, 113, 37].

As mentioned in chapter 1, the theoretical understanding of the dewetting and dynam-

ics in thin liquid films has been primarily investigated by analyzing the non-linear mass

transport equations [71, 37], which is often evaluated through a linear analysis in order to

achieve physical insights into dewetting. An alternate approach to quantitatively evaluate

dewetting is thermodynamics. Fluid flow pathways can be analyzed through thermody-

namic considerations in which the conversion of useful internal energy to external energy

loss via heat, such as by viscous dissipation, can be used to quantify the behavior [114].

The dewetting of metallic liquid films of nanometer thickness under nanosecond (ns) laser

melting show both the classical spinodal dewetting behavior as well as a substantially mod-
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ified behavior due to the nanosecond laser heating. Both these results can be understood

on the principle of balancing the rate of free energy change of the thermodynamic state of

the film to the dissipation due to viscous flow on the substrate. It has been shown previ-

ously that melting of thin metal films by ultraviolet light (UV) from a nanosecond pulsed

laser permits one to quench-in various stages of the dewetting morphology and therefore

enables a highly accurate and quantitative understanding of the dewetting process [48, 37].

Furthermore since this laser dewetting is a result of nanometer-thin films interacting with

ns light of wavelength 266 nm, which is strongly absorbed within nanometer length scales

by metals, interesting thermal effects have been observed in the film [4]. Consequently, a

novel dewetting behavior, in which a dramatic change in the spontaneous patterning length

scale can be observed [4], has been reported. However, the previous understanding of

dewetting in thin metal films has focused primarily on the mechanism of mass transport in

the dewetting process [35].

It is shown here via experiment and theory, that dewetting can be accurately described

by equating the rate of thermodynamic free energy change to energy lost during liquid

flow. Ag and Co were chosen for their strong plasmonic and ferromagnetic responses

[85], respectively, as well as due to the large differences in thermal diffusivity (DT h
Ag >>

DT h
Co). The dewetting of Ag and Co was investigated in a thickness regime spanning 2 to

15 nm. In the case of Ag, only the classical spinodal behavior was observed, while for

Co, the classical behavior, as well as a modified dewetting regime was observed. These

experimental results could be explained by the thermodynamic theory suggesting that a

principle based on balancing the rate of free energy change with could be used to describe

nanoscale processing in which dynamical effects lead to robust pattern formation, such as

in dewetting of thin metallic films.
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2.2 Experimental details

Thin films of Ag of thickness ho from ∼4 to 12 nm and Co from ∼2 to 15 nm were de-

posited on SiO2 substrates by pulsed laser deposition and electron beam evaporation tech-

niques, respectively, under high vacuum (∼ 1×10−8 Torr) at room temperature [4, 37, 35].

The substrate was commercial available optical quality SiO2/Si wafers consisting of 400

nm thick thermally grown oxide layer on polished Si(100) wafers. Prior to evaporation, the

substrates were cleaned by ultrasonic rinsing in acetone, ethanol and DI water. The final

thickness was verified by an in-situ Inficon XTM/2 deposition monitor and by thickness

calibrated measurement of the Co and Ag signal counts from energy dispersive x-ray spec-

trometry (EDS) in a scanning electron microscope (SEM) [37]. Following deposition, each

film thickness was irradiated under vacuum at normal incidence by multiple pulses with a

uniform Nd:YAG laser beam having a Gaussian shaped pulse of 9 ns width, 266 nm wave-

length and 50 Hz repetition rate. The laser energy density was chosen to be just above the

film melt threshold, which is required to achieve the self-organization [35], and typically

varied between 100 to 300 mJ/cm2. The resulting dewetting nanomorphology for each film

thickness was measured as a function of the number of laser pulses (n) by scanning electron

microscopy (SEM) and atomic force microscopy (AFM).

2.3 Results and discussion

Fig. 2.1 shows composite images of the typical dewetting nanomorphologies for a 10 nm

Ag film as a function of n. The images were generated by combining SEM micrographs

with input on height information from AFM. At early stages (n∼10 pulses) a narrow size-

distribution of holes was evident (Fig. 2.1(a)), with polygonal structures (Fig. 2.1(b)) ap-

pearing at later stages (n∼1000) which eventually changed into nanoparticles (Fig. 2.1(c)),

which was the final stable state after long irradiation times (n∼10,000 pulses). Besides the

complex morphologies which could be repeatable obtained, another important observation
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was that at each stage of the dewetting pattern a characteristic length scale was present, as

evident and quantifiable by the ring-like radial distribution function (inset of each figure)

that measured the correlation between contrast in the images. From such measurements, a

characteristic dewetting length scale was defined as the nearest neighbor particle spacing

λ and its behavior as a function of film thickness for Ag and Co films is plotted in Fig.

2.3(a) and (b) respectively. While Ag films follow a smooth trend that can be fitted to a

λ ∝ h2
o behavior, consistent with the classical spinodal dewetting process, Co films showed

a dramatic change in behavior for thickness > 8 nm. As shown here, this modified dewet-

ting behavior can be explained by equating the rate of thermodynamic free energy with

frictional loss in energy due to viscous liquid flow under conditions of surface temperature

gradients that develop in the liquid film due to nanoscale laser heating.

(a) (b) (c)

Figure 2.1: The characteristic nanomorphologies following nanosecond pulsed laser-
induced spontaneous dewetting and self-organization of ultrathin Ag metal film on SiO2
substrates. (a) At early stages of dewetting (irradiation by n∼10 laser pulses), holes with
a narrow size distribution are visible (as evident from the ring-like power spectrum in the
inset). (b) Later stage dewetting (n∼1000 pulses) leads to the formation of polygonal fea-
tures which also have with a narrow size distribution (power spectrum in inset). (c) The
final stable dewetting state (n∼10,000 pulses) consists of nanoparticles with a well de-
fined nearest-neighbor spacing. Each image is of dimension 8×8 µm2 and contains infor-
mation about length (from scanning electron microscopy) and height (from Atomic force
microscopy and shown by the color bar on the right).

A transient intrinsic thermal gradient develops along the liquid surface due the strong

thickness-dependent ns laser heating of such nanoscopic metals films [4, 37]. This thickness-
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dependence arises from three effects, each of which is described here qualitatively. Firstly,

the skin depth of 266 nm wavelength UV light in metals typically ranges 3 to 12 nm,

which is the range of film thickness investigated here. Consequently, the intensity of

light absorbed will be a function of the film of thickness ho and can be expressed as

I(ho)= Io(1−e−α(λ )ho), where Io is the incident light intensity and α(λ ) is the wavelength-

dependent absorption coefficient in the metal film. Secondly, the effective reflectivity of

light from the surface of the metal film on the SiO2 substrate is also strongly thickness

dependent. This can be understood physically by noting that at zero film thickness the re-

flectivity will be that of the SiO2 substrate (which is practically zero for UV light) while

it will be the value of the bulk metal (which is >> zero) for a very thick film. From quan-

titative calculations based on evaluating the Fresnel coefficients for such metal/SiO2 bi-

layer systems, the general nature of the thickness dependent reflectivity for metals can

be found to be R(ho) = ro(1− exp(−arho)), where ar and r0 are materials-dependent pa-

rameters [115]. Third, the effective mass of the material heated M(ho) is also a strong

function of film thickness for the following reason. Due to the large thermal conductivity

of metals, any heat generated within the nanoscopic metal film due to optical absorption

will diffuse into the underlying SiO2 substrate. Consequently, the effective mass of mate-

rial heated will include the thermal mass of the film and an effective thermal mass of the

substrate estimated from the length scale of thermal diffusion occurring within the sub-

strate in the nanosecond time scales of the experiment. Therefore, the heated mass will be

M(ho) = (ρCp)mho +(ρCp)S

√
Dth

S τ , where the subscript m and s denote metal and sub-

strate while ρ and Cp are values of density and specific heat, Dth
S is the substrate thermal

diffusivity and τ is the ns time scale of laser heating. Consequently, energy balance shows

that the temperature rise will be qualitatively given by ∆T (ho) = I(ho)(1−R(ho))τ/M(ho).

As can be noted, in this function, I increases with increasing thickness while (1-R) and 1/M

decrease with increasing thickness. As a result, a non-monotonic variation in temperature

with film height ho can be expected for any given laser intensity and in fact at a critical film
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thickness h∗ the temperature rise will be a maximum. Furthermore the position of this h∗

will depend strongly on the laser energy density, which controls the rate at which the film

gets heated and hence effects the time scale τ . The T vs ho behavior was estimated using a

previously developed heating model based on 1D heat transport into the substrate, i.e. a lo-

calized heat absorption and heat transfer [37]. In this model the film temperature is uniform

in a direction perpendicular to the film thickness and the model has accurately predicted

the thickness-dependent laser energy density required to melt the films [37]. In Fig. 2.2(b)

representative T vs ho plots are provided for Ag and Co films evaluated from this model

for laser energy densities of 140 mJ/cm2 and 250 mJ/cm2 respectively. As is evident, a

non-monotonic behavior with a critical h∗ is seen for both films. Based on this behavior, it

was suggested previously that transient temperature differences can exist along the plane

of the liquid film, thus leading to intrinsic thermocapillary forces that could contribute to

the patterning process [4]. This gradient can be understood as follows: within a single laser

pulse the film melts at some fraction of the pulse time and therefore the liquid continues

to interact with the pulse. Subsequently, height fluctuations of the liquid surface due to

capillary waves interact with the laser light to produce local thickness-dependent tempera-

tures, and hence the temperature gradients along the liquid film surface. It is this gradient

that subsequently influences dewetting, as shown here via theoretical analysis based on the

thermodynamic principle stated earlier.
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(a) (b)

Figure 2.2: (a) Schematic figure illustrating laser heating of ultrathin liquid films. A liquid
metal film of initial height ho undergoes surface height fluctuations due to capillary waves.
This non-uniform height couples to the incident laser light and results in a local height-
dependent temperature. (b) Film temperature, calculated using a local heating model, for
Ag and Co metal films on SiO2 as a function of thickness ho following heating by a 9 ns
ultraviolet laser of 266 nm wavelength of energy density 140 and 250 mJ/cm2 respectively.
A non-monotonic change in T with ho is evident as is the critical thickness h∗ at which the
sign of the gradient Th changes . Consequently, this T vs ho behavior results in a positive
surface temperature gradient Th for the perturbed film (shown in a) whose initial thickness
ho < h∗ and negative gradients for perturbed films whose ho > h∗. This intrinsic thermal
gradient can substantially modify the length scale of dewetting from its classical values [4].

2.4 Thermodynamic theory

The change in free energy per unit length can be evaluated from the difference in energies

between the initial state ho and a perturbed state h(x,t), as depicted for 1D in Fig. 2.2(a).

The perturbed height can be conveniently expressed as having a Fourier component of type:

h(x, t) = ho + εeσte−ikx (2.1)

where the perturbation has an amplitude of ε , a characteristic temporal decay rate σ and a

corresponding wavevector k. In this 1D system, the temporal rate of change of free energy

can be expressed as [62, 63]:
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∆̇F =
∂

∂ t
[F(h)−F(ho)] =

∂

∂ t
[
1
2

γ | ∂h
∂x
|2 +1

2
Π
′′
∆h2] (2.2)

which, upon using, Eq. 2.1 and Π = A/12πh2 gives:

∆̇F = σ(γk2 +
A

2πh4
o
)ε2e2(σt−ikx) (2.3)

Here, the first term on the right side is the rate of increase of surface tension energy due

to increase in surface area of the film, while the second term, with Π
′′
= A/2πh4

o evaluated

at the initial film height, is the rate of change in energy resulting from the dispersive inter-

action. From this one can see that for attractive dispersive forces, i.e. A < 0, the second

term in Eq. 3.1 competes with the surface tension term and could decrease the free energy

depending on the value of k. This free energy behavior, which shows a negative curvature,

is similar to the spinodal found in binary phase systems. More importantly it implies that

the film will be unstable to perturbations of certain wavevectors k thus implying the possi-

bility of spontaneous dewetting and pattern formation. In order to evaluate the value of the

patterning length scale λ = 2π/k that actually dominates the dewetting process, the rate of

free energy decrease in comparison to the rate of energy lost ĖV due to frictional effects

associated with the viscous flow of the liquid metal film with a film thickness-dependent

temperature was explored. As has been shown in the past, flow in thin liquid films can be

described by the thin film form of the Navier-Stokes (NS) equation [116]. For such thin

films, viscous forces dominate inertial forces and so the 1D form of the NS describing liq-

uid flow with velocity v in the x-direction due to a pressure gradient ∇P = dP
dx along the

x-direction can be expressed as [116]:

v = ∇P
z2

2η
+Az+B (2.4)

where v is the z-variation (in the direction of film height) of the liquid velocity, η is the

dynamic viscosity, ∇P = dP
dx |ho is the gradient in pressure along the x-direction evaluated
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at the film surface, and A and B are constants related to the boundary conditions. For

the general flow situation being considered here, the liquid does not slip in contact with the

stationary substrate was assumed, and so v(h= 0)= 0 resulting in B= 0. For the top surface

of the liquid a local thickness dependent temperature T(h,x) was considered that results

from the thickness-dependent heating of the metal films by the UV laser, as described

above [37]. In order to satisfy the stress-free boundary condition at the top film surface,

η
dv
dz |h0 = −

dγ(T,x)
dx = − | γT | Th

dh
dx = −(| γT | Thh′)|ho , where: γ(T,x) is the temperature

and position dependent surface tension of the film-vapor interface; | γT |=| dγ

dT |, is the

magnitude of the temperature coefficient of surface tension; Th = dT
dh is the laser-induced

temperature gradient along the film surface due to thickness variations; and dh
dx = h′ is the

thickness gradient along the flow direction, with all quantities evaluated at the film surface.

From this, the velocity and velocity gradient in the film height direction can be expressed

as:

v =
∇P
η

(
z2

2
−hoz)− | γT | Thh′

η
z (2.5)

and
dv
dz

=
∇P
η

(z−ho)−
| γT | Thh′

η
(2.6)

These quantities allow us to evaluate the rate of viscous energy loss per unit volume ėv oc-

curring over the entire thickness of the liquid film due to flow in the x-direction as follows.

The total dissipation per unit volume of film is given by [68]:

ėV = η(
dv
dz

)2 =
∇P2

η
(z−ho)

2−2∇P
γT Thh′

η
(z−ho)+

(| γT | Thh′)2

η
(2.7)

As will be shown shortly, the minimum rate of viscous dissipation is needed for the ther-

modynamic principle to successfully yield results similar to those previously obtained by

linear analysis. For the fluid being subjected to pressure gradients, this can be estimated
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from the differential condition dėv/d∇P = 0, which gives:

˙deV

d∇P
=

d
d∇P

(η(
dv
dz

)2) =
2∇P

η
(z−ho)

2−2
γT Thh′

η
(z−ho) = 0 (2.8)

leading to the condition:

∇P(z−ho) =| γT | Thh′ (2.9)

From this is is seen that the minimum dissipation occurs when the pressure gradient ∇P is

related to the thermal stress due to temperature gradients. In order to identify the appro-

priate form of this relation, the behavior for various values of z−ho needs to be evaluated.

It can be immediately noted that the choice of z = ho does not yield a unique relation be-

tween ∇P and | γT | Thh′. Likewise, the general value of z−ho results in the total dissipation

ėv = 0, as can be noted by using Eq. 2.9 in Eq. 2.7. On the other hand, the choice of z = 0,

yields the useful case of ∇P =− |γT |Thh′
ho

. By utilizing Eq. 2.6, one can see that the physical

interpretation of this condition is that the tangential stress at the film-substrate interface at

z=0 is zero. The resulting viscous dissipation for thermocapillary dewetting will now be:

ėv =
(∇Pz)2

η
(2.10)

One can also verify that this is a minima by noting that the second derivative d2ėv/d2∇P

is positive. Therefore, the minimum dissipation rate per unit area of the film Ėm
v can be

obtained by integrating over the film height and is given by:

Ėm
v =

ḣo∫
o

(∇Pz)2

η
dz =

(∇P)2h3
o

3η
(2.11)

The next step in evaluating this integral is to relate the pressure gradient to the film height

through volume conservation arguments. Volume conservation requires that the rate of
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change of film height ∂h/∂ t be related to the flux of liquid flow J(x) as ∂h/∂ t =−∇ �J (x).

For this, he thin film lubrication approximation is used, in which flux can be written in

terms of the height-averaged liquid velocity < v > as [116]:

J (x) = ho < v >= ho.(
1
ho

∫ ho

0
vdz) =−∇P

3η
h3

o−
| γT | Thh′h2

o
2η

(2.12)

from which, the volume conservation equation is:

∂h
∂ t

=−∇.J =
∇2P
3η

h3
o +
| γT | Thh′′h2

o
2η

(2.13)

By rearranging terms, the desired relation for the pressure gradient is obtained as:

∇p =
∫

∇
2Pdx =

i
k
(
3ησ

h3
o

+
3 | γT | Thk2

2ho
)εeσt−ikx (2.14)

where the Fourier form of the height perturbation of h = ho + εeσt−ikx has been used. By

substituting Eq. 2.14 into Eq. 2.11, the final expression for the minimum viscous energy

loss in the film is:

Ėm
v =−

(
3η

h3
ok2 σ

2 +
3 | γT | Th

ho
σ +

3(| γT | Th)
2k2ho

4η

)
ε

2e2(σt−ikx) (2.15)

Using the principle that the rate of free energy change ∆̇F is balanced by the minimum

dissipation Ėm
V , the dispersion relation, which expresses the rate of deformation of film

height σ to the wavevector of the surface perturbation k is obtained from Eq.’s 2.3 and 2.15

as:

σ
2 +

h3
ok2

3η
(γk2 +

A
2πh4

o
+

3 | γT | Th

ho
)σ +

h3
ok2

3η

3
4η

(| γT | Th)
2hok2 = σ

2 +Bσ +C = 0

(2.16)

This quadratic relation between σ and k obtained by maximizing the rate of free energy

change for dewetting in the presence of a temperature gradient is the central theoretical

result of this chapter. In order to understand the physical implications of this result, the

dispersion relation has been evaluated for the spontaneous dewetting process for distinct

thermal gradient scenarios.
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This quadratic equation with coefficient B and C has roots given by:

σ± =−B
2
± 1

2

√
B2−4C (2.17)

By defining dF = γk2+A/2πh4
o and dG = (3 | γT | Th)/ho, the general form of Eq. 2.17 is:

σ± =−h3
ok2

6η
(dF +dG)± h3

ok2

6η

√
(dF +dG)2−dG2 (2.18)

Next, σ has been used to obtain the characteristic wavevectors k∗ from the condition

dσ/dk = 0 for several useful cases.

Case 1: No thermal gradients In this situation, Th = 0 and so dG = 0 and Eq.

2.18 gives:

σ− =−h3
ok2

3η
(γk2 +

A
2πh4

o
); and σ+ = 0 (2.19)

and using dσ−/dk = 0

k∗2 =
4π2

λ 2
C

=− A
4πγh4

o
(2.20)

it gives the classical values for the characteristic dewetting wavelength λC and dewetting

timescale (τC) as [63]:

λC =

√
−16π3γ

A
h2

o (2.21)

τC =
96π3γh5

o
A2 (2.22)

Case 2: Weak thermal gradients For the situation when the thermal gradients

are small in comparison to the free energy change, i.e. | dG |<| dF |, Eq. 2.18 can be
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approximated as follows:

σ± u−h3
ok2

6η
(dF +dG)± h3

ok2

6η

√
dF2−dG2 u−h3

ok2

6η
(dF +dG)± h3

ok2

6η
dF(1− dG2

2dF2 )

(2.23)

where the binomial approximation (1− (dG/dF)2)1/2 ∼ (1−dG2/2dF2) has been used.

Case 3: Strong thermal gradients In the case when the magnitudes of the ther-

mal gradients are large, i.e. for instance when 3 | γT Th |≥| A/2πh3
o |, then | dG |>| dF |.

This condition is the experimental case presented in this work and an approximate solution

can be obtained from Eq. 2.18 as follows:

σ± u−h3
ok2

6η
(dF +dG)± h3

ok2

6η

√
dG2−dG2 =−h3

ok2

6η
(dF +dG) (2.24)

or

σT h =−
h3

ok2

3η
(γk2 +

A
2πh4

o
+

3 | γT | Th

ho
) (2.25)

Where the subscript ’T h’ signifies the solution for strong thermal effects. From Eq. 2.25,

the characteristic wavelength λT h obtained from the maxima in the dispersion given by

dσ/dk = 0 is given by:

λT h =

√
− 16π3γ

A+6π | γT | Thh3
o

h2
o (2.26)

By utilizing Eq. 2.28 with values of Th obtained from the thermal model, the dashed

and dotted curves in Fig. 2.3 have been evaluated.

Based on these dispersion relations, a qualitatively and quantitative analysis of the role of

thermal gradients on dewetting for Ag and Co can be made. The most likely length scale(s)

that will be observed experimentally following spontaneous dewetting is(are) the one(s)

that grow at the fastest rate, and can be obtained from the equality dσ/dk = 0. Using,

this, one can compare the classical spinodal length scale, i.e. dewetting without thermal
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gradients (Case 1) to the characteristic wavelength resulting from strong thermal gradients

(Case 3), which respectively give:

λC =
2π

k
=

√
−16π3γ

A
h2

o (2.27)

λT h =

√
− 16π3γ

A+6π | γT | Thh3
o

h2
o (2.28)

As expected, Eq. 2.27 is the classical form of dewetting without thermal gradients and

a comparison of this length with that of Eq. 2.28 shows that intrinsic thermal gradients

will modify the characteristic length scale. Moreover, the length scale could decrease or

increase, depending on the magnitude and sign of the gradient Th. From Fig. 2.2, it is

clear that for liquid films whose starting thickness ho < h∗ the surface temperature gradient

between two points on the perturbed surface will have Th > 0. On the other hand for films

where ho > h∗ the sign of the surface temperature gradient will be negative, i.e. Th < 0. In

this context, for the case when Th < 0 (noting that A < 0 and γT < 0 is generally true for

all materials and the metals evaluated here) the characteristic length scale should decrease

in comparison to the classical value. On the other hand, for i.e. Th > 0, the length scale

should increase compared to its classical value.

2.5 Experiment vs. theory

1. Classical dewetting in Ag thin films: In Fig. 2.3(a), the experiment results for dewetting

observed in Ag thin films (solid squares) is plotted along with the the best fit (solid line).

For the best fit, the known value of surface tension γAg = 0.93 Jm-2 has been used and this

results in a value of 1.97 for the exponent of ho and a Hamaker coefficient of A =−4.78×

10−18 J, which is consistent with the magnitude expected for metals on SiO2 [60]. The

very good agreement between experiment measurement and the classical theoretical form
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of Eq. 2.27 suggests that nanosecond laser dewetting of Ag on SiO2 in the thickness regime

investigated here follows the classical behavior. The observation of classical dewetting in

Ag implies that the large intrinsic thermal gradients expected from Fig. 2.2(a) do not play

a role in patterning. This result can be interpreted by refining the intrinsic heating effect

to include thermal diffusion along the film surface. As noted earlier, the calculations of

Fig. 2.2(b) assumed a local heating, i.e. one in which thermal energy was only transported

perpendicular to the film and into the substrate, while thermal diffusion along the film

was neglected. In reality, based on the time and length scales of relevance, heat diffusion

along the film will not be negligible. In the laser heating experiment here, the relevant

time scale is the time-to-melt, since it is at this point when the thermal gradient on the

liquid surface will contribute to the patterning process. From experimental observations

and thermal modeling [37], this time-to-melt is determined by the laser energy density and

typically varies between 1 ns to ~tp/2, where tp is the Gaussian laser pulse width of 9 ns.

Based on this the relevant thermal diffusion length lth
Ag∼ 2

√
Dth

Agτ lies between 734 to 1557

nm for a known thermal Ag diffusivity of Dth
Ag ∼ 13.48×10−5 m2/s [117]. Therefore, for

surface perturbations whose wavelength λ < lT h
Ag , negligible thermal gradient effects can be

expected. From Fig. 2.3(a) it can be seen that the experimental dewetting length scales for

Ag are ≤ 600 nm and so λ < lT h
Ag over the entire film thickness regime investigated here,

i.e. 4≤ ho ≤ 12 nm. Thus, the large thermal conductivity of Ag suppresses the role of the

intrinsic thermal gradients on the dewetting process in these experiments.

2. Dewetting in Co thin films: As compared to Ag, the behavior in Co is fundamentally

different, as seen from Fig. 2.3(b). The thermal diffusivity of Co (Dth
Co ∼ 2.7×10−5 m2/s)

is much smaller then Ag and so the thermal smoothing length scale lT h
Co for times between

1 to 4.5 ns will be 328 to 697 nm respectively. Therefore, from Fig. 2.3(b),strong thermal

gradient effects on dewetting for films having thickness from 2 to ~7 nm will be unlikely.

Indeed, as seen by the best fit (solid line) of the experimental data ranging from 2 to 7 nm,

the observed behavior follows the classical trend. For the best fit, a value of γCo = 1.88
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Jm-2 was used and it results in a value of 1.98 for the exponent of ho and a Hamaker

coefficient value of A = −1.4× 10−18 J, which is again consistent with the expected sign

and magnitude of A. On the other hand, for films with ho > 7 nm, the intrinsic thermal

gradients should play some role on the dewetting length scale as λ > lT h
Co . Indeed, as seen

in Fig. 2.3(b), the experimental data deviate substantially from the classical trend for films

with ho > 7 nm. In fact the length scale decreases with increasing ho in striking contrast

to the classical behavior. In order to quantitatively evaluate the experimental results, the

sign and magnitude of Th for films in this thickness regime from curves, such as shown in

Fig. 2.2(b), were estimated. The sign and magnitude of Th for various values of the laser

energy density ranging from 250 mJ/cm2 to 400 mJ/cm2 was calculated. For these energies,

the various thicknesses reach their melting point in time scales ranging from 4.5 ns to ∼

1 ns. From this calculation it was determined that the magnitude of the thermal gradient

Th ranged between 109 ≤ ThK ≤ 5× 1010 K/m and the sign was negative, i.e. Th < 0.

Based on this and noting that | 3γT Th |>| A/2πh3
o | for this thickness regime (where |A|

used for Co as ∼ 1.4×10−18 J and γCo
T = −0.3×10−3 J/m2-K [118]), Eq. 2.28 was used

to estimate the characteristic length scales. From the functional form of the characteristic

λT h, Eq. 2.28, it is clear that for Th < 0 the length scale will decrease in comparison to

the classical scale. The results of this calculation using Th values for laser energies ranging

from 250-400 mJ/cm2 are plotted in Fig. 2.3(b) as dashed or dotted lines. It is evident that

the experimentally observed behavior for the dewetting length scales for ho > 7 nm can

be reasonably well described by invoking the intrinsic thermal gradients resulting from the

ns laser heating. More importantly, this result suggests that the rich dewetting behavior

that is observed experimentally following ns laser melting of thin metal films can also be

explained by the principle of equating the rate of free energy change to the minimum rate

of viscous energy loss in the system.
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(a) (b)

Figure 2.3: (a) Experimental length scales (solid squares) and best fit without thermal gradi-
ents (solid line) for dewetting of Ag on SiO2. The best fit results suggest that Ag dewetting
follows the classical behavior. (b) Experimental length scales (solid squares), best fit with-
out thermal gradients (solid line), and trends for dewetting with Th < 0 (dashed/dotted lines)
for dewetting of Co on SiO2. Co dewetting for 2 ≤ ho ≤ 7 follows the classical behavior
but it is strongly modified by intrinsic thermal gradients, leading to a substantial decrease
in length scale over the classical values for 9 ≤ ho ≤ 15 nm. The theoretical trends from
the energy transfer model estimated for various laser energy densities (dashed and dotted
lines) captures the experimental observations reasonably well.

2.6 Conclusion

In summary, spontaneous dewetting patterns that arise when thin metal films are melted

by a nanosecond pulsed laser with UV wavelength have been investigated. The dewetting

patterns are characterized by complex nanomorphologies with well-defined length scales.

Such thin films are expected to be in a thermodynamically unstable free energy state due

the strong attractive dispersion forces. Pulsed laser heating is known to result in a strong

thickness dependent film temperature. As a consequence, coupling of the incident laser

light to height perturbations in the liquid phase of the film are likely to result in transient

temperature gradients along the plane of the film. Based on this heating profile, a theoret-
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ical evaluation of dewetting has been made using the principle that of a balance between

the rate of free energy change to rate of viscous loss in the liquid thin film. The theory

gives excellent agreement with the experimental observations for Ag films, in which pat-

tern formation follows the classical behavior. Very good agreement for dewetting was also

observed for Co films, in which strong thermal effects are visible and result in pattern-

ing length scales substantially different from the classical case. These results suggest that

understanding and optimizing the rate of energy transfer in such nanoscale systems could

be a useful approach for manipulating pattern formation during nanomaterials manufac-

turing via self-assembly or self-organization. Such complex metal nanomorphologies with

predictable patterns and length scales can have applications in a variety of technologies, in-

cluding in light-to-electricity converting materials, surfaces for Raman sensing via optical

scattering and magnetism.
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Chapter 3

Bilayer liquid self-organization:

thermodynamic theory and experiments

Summary

In the previous chapter, a nanosecond pulsed laser-induced self-organization (SO) tech-

nique was applied to single layer metallic thin films on inert substrates to create spatially

ordered nanopatterns. This SO technique is applied here to immiscible bilayer metallic thin

films of Ag and Co on SiO2 substrates. A theoretical analysis is performed for the SO in

bilayer films, for both bilayer arrangements Ag/Co/SiO2 and Co/Ag/SiO2. The principle

of balancing the rate of Gibbs free energy change to viscous dissipation was utilized to

describe the length scales from spontaneous self-organization in ultrathin bilayer metallic

films. For both configurations, theory predicts characteristic length scales, but with differ-

ent functional behavior, as evidenced by the form of the film thickness dependence. This

difference in behavior was attributed to the difference in the sign and magnitude of the

intermolecular forces for the two configurations. The experimental length scale behavior

for both the configurations are consistent with theory. Measurements of physical properties

show that the nanoparticles are composites of Ag-Co, where the ratio of Ag and Co can be

independently controlled. This result provides a practical way to independently vary the
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length scale, composition, and size of the nanostructures. This bilayer self-organization is

a cost-effective and robust nanomanufacturing process to make hybrid nanoscale materials

with new properties. These studies can also assist in an understanding of dewetting in bi-

layer configurations of immiscible mixtures, which in turn could be used in the design and

fabrication of nanoscale mixtures for a variety of applications.
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3.1 Introduction

Self-organization is a powerful route to synthesize materials in a cost-effective and robust

manner because the ensuing length scales and morphologies are primarily governed by

forces intrinsic to the system. One of the simplest examples of self-organization leading

to unique morphologies and nanostructures is the spontaneous spinodal dewetting of liq-

uid films from an inert surface. In this process, the thermodynamic stability of the film

is governed by a competition between stabilizing surface tension forces and destabilizing

intermolecular forces, such as the attractive intermolecular dispersion force, with magni-

tude governed by the Hamaker coefficient A. The spontaneous patterning leading to well-

defined length scales and morphologies results when natural fluctuations of the film surface

produces an overall reduction in the free energy of the system. Since only specific fluctua-

tion wavelength cause a reduction in free energy, the ensuing structures have characteristic

scales. For instance, in single layer dewetting, the interparticle spacing λ is related to

the film-ambient surface tension γ , the Hamaker coefficient A, and the average initial film

thickness ho as λ =

√
16π3γ

A h2
o. Recently, theoretical work on dewetting in bilayer liquid

films has shown that it is possible to achieve superior control over patterning length scales

[72, 69]. This is because the intrinsic forces governing the self-organization is dependent

on the order of arrangement of the individual films, and as a result, improved control of

the composition, size, and spacing of nanoparticles could be expected. However, this effect

has not demonstrated experimentally.

A magneto-plasmonic (MP) nanoparticle is one which will have controllable ferromag-

netic orientation and strong localized surface plasmon (LSP) response. The magnetic state

and frequency-dependent resonant plasmonic response can exert control over photon and

electron interactions, leading to changes in spin (polarization) as well as current (inten-

sity). However, currently there is a dearth of such useful materials, especially those with

low optical absorption and ability to manipulate electron and photon properties in multiple

spatial dimensions. In practice, one way this can be achieved is by incorporating suit-
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able magneto-plasmonic nanoparticles, within dielectrics, metals, or semiconductors. The

resulting materials will show a multi-dimensional and coincidental control of the polariza-

tion state (or spin) and current (or intensity) of both photons, and electrons. As a result,

new materials and properties related to the control of photon and electron behavior, in-

cluding for magneto-optic sensing and data storage, for energy harvesting in photovoltaics

with photon and spin-dependent electronic behavior, and in semiconductor computing and

switching applications utilizing spintronic effects, will result. One suitable candidate for

the MP nanoparticle is a mixture of a ferromagnetic metal like Co, with a strong opti-

cal plasmonic scatterer, like Ag. From the binary phase diagram [119] there is no atomic

mixing between Co and Ag and therefore, combining Co with Ag can potentially show

controllable ferromagnetic anisotropy as well as strong LSP interactions. However, the

primary challenge lies in developing cost-effective nanomanufacturing routes to combine

Co and Ag to achieve precise composition, size, and shape, all of which strongly influence

ferromagnetic and optical behavior.

The motivation for the work presented here is to show that bilayer liquid self-organization

can lead to control of concentration, size, and spacing of composite magneto-plasmonic

nanoparticles, such as of Co and Ag, which are candidates for new materials and appli-

cation. Recently, we have developed a thermodynamic model to explore the behavior of

single film dewetting. In this model, the dispersion relation that characterizes the rate of

deformation σ of the film to the perturbation wavevector k can be obtained by equating the

rate of free energy change to the viscous dissipation, or the rate of frictional energy lost,

during fluid flow. Consequently, the necessary quantitative description of dewetting can

be readily obtained. Another benefit of using the thermodynamic approach is that it pro-

vides useful insight into the physical conditions of fluid flow. For instance, in the case of

single layer dewetting under thermocapillary forces, the thermodynamic model shows that

the ensuing self-organization is determined by conditions that minimize the rate at which

viscous energy is lost during flow [1]. The thermodynamic model was applied to describe

45



self-organization in bilayer liquid systems. From this the σ vs k dispersion relation pre-

dicts substantially different behavior for the different bilayer configurations. In Fig. 3.1,

the two possible deformation pathways, corresponding to squeezing and bending modes,

are schematically depicted. Theory shows the Ag/Co/SiO2 bilayer deforms by the bending

mode while the Co/Ag/SiO2 deforms by the squeezing mode. This is a result of the dif-

ference in interfacial and intermolecular forces for the two configuration. As a result, the

length scales and their behavior with bilayer thickness also show dramatic differences. For

the two bilayer configurations having identical thickness, vastly different length scales can

result, leading to superior control of particle size and spacing.

(a) (b)

Figure 3.1: Schematic of the bilayer configuration showing the various quantities used in
the theoretical model. (a) In Fig. a, the perturbation is a squeezing mode (α = ε2/ε1 is <
0). (a) In Fig. b, the perturbation is a bending mode (α = ε2/ε1 is > 0). The parameters
indicated in fig a is same for fig b.

To provide an experimental demonstration of bilayer self-organization, the liquid films

of immiscible Co and Ag were investigated. Since these metals have high melting points,

the liquid phase has been accessed by melting by nanosecond pulses of a ultraviolet laser.

It has been shown previously that spinodal dewetting of high melting point materials, such

as metals, can be initiated and progressed under multiple cycles of melting by a pulsed

laser [35, 4]. The pulsed laser dewetting of Ag and Co on silica (SiO2) substrates was per-

formed and the bilayer-thickness dependent behavior for the two possible configurations,
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i.e. Ag/Co/SiO2 and Co/Ag/SiO2 was determined. A detailed experimental measurement

of the ensuing nanoparticle spacing showed a substantial difference in the length scale

behavior with bilayer configuration. This was consistent with predictions of the thermody-

namic model. In addition, electron microscopy confirmed that the nanoparticles that result

are composites made from individual grains of Ag and Co in the same ratio as the film

thickness. As a result, the composition of the particles can be also be readily controlled.

3.2 Thermodynamic model for bilayer self-organization

In the thermodynamic model, the dispersion relation is obtained by equating the rate of

Gibbs free energy change ∆̇F to the total viscous dissipation ĖV for the bilayer under small

height perturbations to the liquid/vacuum surface and liquid/liquid interface. The rate of

free energy change ∆̇F is evaluated by comparing the free energy of this perturbed state to

that of the initial unperturbed state [1]. In Fig. 3.1, the schematic of the bilayer structure,

where the initially flat film thickness for bottom layer and the total bilayer is indicated as

h10 and h20, respectively. For the bilayer configuration the contributions to free energy

changes come from the surface tension forces at the top liquid/vacuum and middle liq-

uid/liquid interfaces, as well as due to the intermolecular interactions between the three

pairs of interfaces, i.e. top-middle, middle-bottom, and top-bottom. The analysis was done

by balancing the change in free energy between the flat unperturbed state to a perturbed

state by considering surface height disturbances that are small compared to the heights of

the individual films. The middle liquid/liquid interface and top free liquid surfaces are per-

turbed by Fourier components of type h1 = h10+ε1eσt−ikx, and h2 = h20+ε2eσt−ikx, where

the perturbation amplitudes are ε1 and ε2, respectively. There are two possible collective

modes for deformation [120, 72], where the decay rate and wavevector are identical for the

two surfaces. In the squeezing mode, the perturbation amplitude ratio α = ε2/ε1 is < 0

[shown in Fig. 3.1(a)], while in the bending mode, α is > 0 [Fig. 3.1(b)]. The Hamaker co-
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efficients for the intermolecular dispersion interactions between different interfaces in the

bilayer films are given by A21s, Ag21 and Ag21s, as indicated in Fig. 3.1, where the subscripts

1, 2, s and g denote liquid 1 (top layer), liquid 2, solid substrate, and gas, respectively.

With this information, the rate of free energy change from flat to the perturbed state of

the films can be expressed as [1]:

∆̇F =
∂

∂ t
{∑[F(h j)−F(h jo)]} (3.1)

∆̇F =
∂

∂ t
[
1
2

γ12

∣∣∣∣∂h1

∂x

∣∣∣∣2 + 1
2

γ2

∣∣∣∣∂h2

∂x

∣∣∣∣2 +∑
Ae f gh

2πh4
j0
4h2

j ] (3.2)

where4h j = ε jeσt−ikx and Ae f gh stands for the different Hamaker coefficients. The interfa-

cial energies of the liquid 1 - liquid 2 and liquid 2- gas interfaces are γ12 and γ2 respectively.

For the bilayer system, upon substituting the different height functions, the above equation

simplifies to:

˙∆F(k,α) = σε
2
1

[
γ2α

2k2 + γ12k2 +
Ag21sα

2

2πh4
2o

+
A21s

2πh4
1o

+
A12g (α−1)2

2π (h2o−h1o)
4

]
e2σt−2ikx (3.3)

˙∆F(k,α) = σε
2
1 dFe2σt−2ikx (3.4)

The total viscous dissipation ĖV per unit area of the bilayer system can be evaluated

from the knowledge of the fluid velocities and viscous stresses within each of the two fluid

layers [68]. The calculation (See Supplementary material) was performed by using fluid

flow analysis within the lubrication approximation [121] for a 1-D isothermal situation. In

this approximation, with boundary conditions, and the resulting expression for velocities

taken from Bandyopadhyay et al [72]. The boundary conditions for the bilayer situation are

as follows. The top surface of liquid 1 and gas (at z = h2 in Fig. 3.1) is considered stress

free, the bottom interface between liquid 2 and substrate (at z = 0) is a no-slip interface,
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while for the middle interface between liquid 1 and liquid 2 (at z = h1), the stress and

velocity are continuous across the interface. The velocity along the x-direction of the layer

is u j,5p j is the pressure gradient in the x-direction, and η j is the viscosity, where j = 1,2

indicates liquid 1 and liquid 2. The total viscous dissipation for the bilayer can be written

as [68]:

ĖV = η1

∫ h10

0
(
du1

dz
)2dz+η2

∫ h20

h10

(
du2

dz
)2dz (3.5)

Using the lubrication approximation and above mentioned boundary conditions, the

velocities (Eq. 3.6 and 3.7) and viscous stresses (Eq. 3.8 and 3.9) can be expressed as

follows:

η1u1 = ∇P1(z2/2)+(∇P2−∇P1)h10z−∇P2h20z (3.6)

η2u2 = ∇P2(
z2−h2

10
2

)−∇P2h20(z−h10)+η2(u1)h10 (3.7)

η1
du1

dz
= ∇P1(z−h10)+∇P2(h10−h20) (3.8)

η2
du2

dz
= ∇P2(z−h20) (3.9)

In order to estimate the dissipation, an expression for the pressure gradient is needed.

This is obtained from the simultaneous equations describing volume conservation of the

fluid within each layer:

∂h1

∂ t
=

h3
10

3η1
∇

2P1−
h2

10(h10−h20)

2η1
∇

2P2 (3.10)

∂h2

∂ t
=−

(h3
10/3−h2

10h20)

2η1
∇

2P1−∇
2P2(

(h10−h20)
3

3η2
+∇

2P2
(h10−h20)h10

η1
(h20−

h10

2
)

(3.11)

By using Cramer’s rule, the ∇2P’s can be expressed as:∇2P1 =
D1

D ; ∇2P2 =
D2

D , where
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D, D1 and D2 correspond to the 2x2 matrix of the simultaneous equation (Eq. 3.10 and

3.11) given by,

 ∇2P1

∇2P2


 h3

10
3η1

−h2
10(h10−h20)

2η1

−h2
10(

h10
3 −h20)
2η1

(− (h10−h20)
3

3η2
+

(h10−h20)h10(h20−
h10

2 )
η1

)

=

 ∂h1
∂ t

∂h2
∂ t

 (3.12)

By using the height perturbations of each of the two films in terms of single Fourier

mode, ∇Pj can be evaluated by integrating over the x-direction to get an indefinite integral

as ∇Pi =
∫

∇2Pidx, which gives:

∇P1 =
iσ
k

ε1
(D22−αD12)

(D11D22−D12D21)
eσt−ikx =

iσ
k

ε1 p1eσt−ikx (3.13)

∇P2 =
iσ
k

ε1
(−D21 +αD11)

(D11D22−D12D21)
eσt−ikx =

iσ
k

ε1 p2eσt−ikx (3.14)

Finally, the viscous dissipation can be evaluated from the form :

ĖV = f (p1, p2)

Using Eq. 3.8 and 3.9 in Eq. 3.5, the total dissipation can be evaluated as:

ĖV =
h3

1
3η1

(∇P1)
2 +

(h2−h1)
2 (h2 +2h1)

3η2
(∇P2)

2 +
h2

1 (h2−h1)

η1
(∇P1)(∇P2) (3.15)

Now using Eqs. 3.13 and 3.14, the above equation can be rewritten as:

˙EV (k,α) =−H
(

σ2 p2
1

k2

)
e2σt−2ikx (3.16)

50



where,

Ḣ =

[
h3

1
3η1

+
(h2−h1)

2 (h2 +2h1)

3η2

(
p2

p1

)2

+
h2

1 (h2−h1)

η1

(
p2

p1

)]
(3.17)

From the above derived equations, one can directly obtain the dispersion relation that

relates the rate of deformation σ with the wavevector k by equating the rate of free energy

change (eq. 3.3) to the viscous dissipation (Eq. 3.16). The resulting expression is of form:

σ(k,α) =−k2dF
H p2

1
(3.18)

From the form of Eq. 3.18, it can be noted that the deformation rate σ is a function of

two variables, k and α for any given value of h10 and h 20. Therefore, in order to obtain

the most probable length scale λ , the maximum deformation rate must be obtained from

a surface plot of σ vs k and α, or mathematically the maximum of equation ∂σ/∂k +

∂σ/∂α = 0. In Fig. 3.2(a), a typical 3-D dispersion plot is shown for the bilayer case of

Ag(5 nm)/Co(5 nm)/SiO2, while in Fig. 3.2(b) it is shown for the Co(5 nm)/Ag(5 nm)/SiO2

case. It is evident that for a specific combination of k and α , the deformation rate attains

a maximum. A conventional representation of this 3-D dispersion plot is a slice taken at a

particular value of α . In Fig. 3.2(c), a slice or 2-dimensional dispersion plot at particular α

is shown for Ag(5 nm)/Co(5 nm)/SiO2. Again, it is clear that the deformation rate achieves

a maxima at specific values of k, and these in turn vary with α . From such 3-D dispersion

plots, the characteristic rate σ∗, wavevector k∗ and the corresponding α value could be

evaluated for any combination of bilayer thickness and bilayer configuration. In Table 3.1,

the materials parameters used to evaluate the theoretical behavior is presented. Important to

note here that the Hamaker coefficient (Ae f gh) values can be obtained by two approaches.

In one case, the A values can be calculated using the dielectric function of the different

materials involved, as shown in ref. [122], while in ref. [72], they are evaluated using the

various interfacial energies. Both the values are provided in Table 3.1, with the calculations
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presented in Fig. 3.2 estimated from the dielectric function.

Table 3.1: Table of materials parameters, including the Hamaker coefficients calculated
using two different approaches and surface tensions and viscosities for the two bilayer
configurations investigated.

Hamaker coefficients (J) Ag/Co/SiO2 Co/Ag/SiO2

Using different
approaches

Using ref. [122] Using ref. [72] Using ref. [122] Using ref. [72]

Ag21s -2.25×10−19 -2.15×10−18 -2.10×10−19 -2.03×10−18

A21s -3.09×10−19 -9.19×10−19 1.97×10−19 6.07×10−19

Ag21 1.61×10−19 7.31×10−19 -2.26×10−19 -1.04×10−18

Viscosity (η) η
Tm
Co = 4.46x10−3Pa− s η

Tm
Ag = 3.88x10−3Pa− s

γCo = 1.88J/m2 γAg = 0.925J/m2 γCo/Ag = γAg/Co = 0.168J/m2
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(a)

(b)

(c)

Figure 3.2: Surface plots of the dispersion behavior showing variation in the decay rate σ

as a function of wave vector k and perturbation amplitude ratio α for Ag/Co/SiO2 [Fig. (a)]
and Co/Ag/SiO2 [Fig. (b)]. (c) Typical 2-dimensional (2-D) dispersion plot at a particular
α , used to obtain σ∗ and k∗for Ag/Co/SiO2. All these three plots are for 5 nm thick films
of both Ag and Co in both bilayer arrangements.
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In Table 3.2, the α values corresponding to maximum σ for different combinations of

film thicknesses for both configurations is shown. In both cases, the bottom liquid layer

thickness was fixed at 5 nm while the top layer was varied between 1 to 17 nm. Importantly,

the α values leading to the maximum deformation rate for the Ag/Co/SiO2 configuration

corresponded to the bending mode (α > 0) for all thicknesses, while for Co/Ag/SiO2 it cor-

responded to the squeezing mode (α < 0). In Fig. 3.3, the overall length scale, λ = 2π/k∗

is shown, behavior for the two bilayer combinations as a function of top layer thickness

ranging from 1 ≤ (h20− h10) ≤ 17 nm, and for values of the bottom layer ranging from

5 ≤ h10 ≤ 10 nm. Fig. 3.3 is the behavior for Ag/Co/SiO2 system, and shows that the

length scale transitions from an initial increase to a rapid decreases, and eventual satu-

ration with increasing top layer thickness. On the other hand, Fig. 3.3(b) shows that in

the Co/Ag/SiO2 system, the length scale increases monotonically with increasing top layer

thickness. The most important theoretical result can be summarized as follows. For iden-

tical thickness of each film in the bilayer, the two configurations give different patterning

length scales. This suggests that the nanoparticles created from same thickness of Ag and

Co can have different interparticle spacing and diameter simply by changing the configu-

ration of the bilayer. In order to verify this behavior, detailed experiments were performed,

as discussed next.
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Table 3.2: The ratio of perturbation amplitude α (= ε2/ε1) values for Ag/Co and Co/Ag on
SiO2 substrates for different bottom layers (5 nm, 7 nm and 10 nm). Positive and negative
α indicate the bending and squeezing modes, respectively.

Ag/Co/SiO2

hAg

(nm)
α for

hCo=5nm
α for

hCo=7nm
α for

hCo=10nm

1 1 1 1
2 0.99 1 1
3 0.95 0.99 0.99
4 0.85 0.99 0.95
5 0.56 0.95 0.88
6 0.25 0.80 0.85
8 0.06 0.50 0.80
10 0.04 0.1 0.2
12 0.01 0.1 0.2
15 0.01 0.08 0.1
17 0.005 0.05 0.1

Co/Ag/SiO2

hCo

(nm)
α for

(hAg=5, 7 and 10nm)

1 -2
2 -2
3 -2
4 -2
5 -2
6 -2
8 -2

10 -2
12 -2
15 -2
17 -2
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(a)

(b)

Figure 3.3: Theoretical length scale plots for different bottom layer thickness (5 nm, 7 nm
and 10 nm) for (a) Ag/Co/SiO2, and (b) Co/Ag/SiO2 configuration. The top layer thickness
was varied from 1 nm to 17 nm.
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3.3 Experimental measurements of bilayer self-organization

Ultrathin films of Co and Ag were first deposited under high vacuum conditions (∼ 1×

10−8 Torr) using electron beam evaporation (e-beam) and pulsed laser deposition (PLD)

techniques on commercially available optically smooth SiO2/Si(100) substrates. The thick-

ness of thermally grown SiO2 layer was 400 nm. Prior to film evaporation, the substrates

were cleaned by ultrasonic rinsing in acetone, ethanol and DI water. Two types of bilayer

structures were deposited. For the Ag/Co/SiO2 structure, the bottom Co film of a fixed

thickness of 5 nm was first deposited by e-beam and was followed by the deposition of

a top Ag layer by PLD. Several such samples were prepared with the top Ag layer film

varying from 1 to 12 nm. For the Co/Ag/SiO2 configuration, a bottom Ag layer of 5 nm

thickness was deposited by e-beam evaporation followed by deposition of Co by PLD.

Several such samples were prepared with the top Co layer film varying from ∼1 to 12

nm. The thicknesses of the e-beam films were estimated by measurement of the deposi-

tion rate monitored by quartz crystal thickness monitor. For the case of the films deposited

by PLD, the thickness was measured by performing quantitative energy dispersive x-ray

spectroscopy (EDS) measurements and comparing the metal x-ray counts with calibrated

measurements on metal films of known thicknesses [123]. Following deposition, the sam-

ples were irradiated (without breaking vacuum) at normal incidence with a pulsed laser

beam, with a Gaussian spatial profile whose intensity variation was less that 10% over the

regions of investigation (typically 1 mm). The Nd:YAG laser output consisted of 266 nm

wavelength light, 9 ns pulse width, with a repetition rate of 50 Hz. The laser energy den-

sity of 80 mJ/cm2 was chosen such that all the bilayer combinations could be completely

melted. This melting was confirmed by the experimental observation that a substantial sur-

face deformation occurs at a threshold energy, and this corresponds to the melt threshold,

as shown previously for single layer films [123]. This energy threshold was also confirmed

by the modeling of melting process by heating the bilayer under laser pulse [123]. The final

spontaneous self-organized state of nanoparticles was achieved by irradiating the samples
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with∼10,000 laser pulses. The ensuing nanoparticles were then characterized using a scan-

ning electron microscopy (SEM, Hitachi S-4300). The root means square roughness of the

as-deposited films were measured to be in the range of 0.5 nm (RMS) using atomic force

microscopy (AFM, Digital Instruments Dimension 3000 Multimode III A scanning probe

microscope). The crystalline structure and composition characteristics of the nanoparticles

was measured by transmission electron microscopy (TEM, JEOL JEM - 2100F field emis-

sion) and X-ray mapping in SEM (JEOL JSM - 7001 FLV field emission) investigations of

select samples.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.4: SEM images for the morphological evolution in bilayer Ag/Co/SiO2; (a-c)
images after irradiation on the bilayer film thicknesses of 1 nm of Ag and 5 nm Co, (d-f)
initial film thicknesses were 3.5 nm of Ag and 5 nm Co, (g-i) for 12 nm of Ag and 5 nm
Co. The images (a), (d) and (g) are after irradiation with 10 laser pulses; (b), (e) and (h) are
after ∼100 laser pulses; and figures (c), (f) and (i) are after ∼10000 laser pulses. The inset
of each image shows the FFT of the corresponding SEM image. The annular shape in each
FFT is the indication of presence of SRO.

To measure the self-organization length scale, the nearest neighbor interparticle spacing

was evaluated, which has been shown to be related to the spinodal dewetting length scale

in single layer systems [35, 123]. SEM micrographs as indicated in images (c), (f) and (i)

in Figs. 3.4 and 3.6 of the nanoparticles resulting from the self-organization for a series of

Ag/Co/SiO2 and Co/Ag/SiO2 samples were used. In which, the bottom layer thickness was
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fixed at 5 nm, and the top layer was varied from 1 - 12 nm. Also shown in the inset of each

of these figures is the Fast Fourier Transform (FFT) of the image contrast. The ring-like

spectrum is characteristic of short range order in the interparticle spacing, confirming that

there is indeed a characteristic length scale for the pattern formation. From these images,

the experimentally observed length scale was evaluated for the two bilayer configurations.

In Fig. 3.5(a) theory (solid and dashed lines) and experiment (symbols) for the Ag/Co/SiO2

system is compared, while Fig. 3.5(b) shows the results for the Co/Ag/SiO2 system. In

both cases, the bottom layer thickness was fixed at 5 nm, while the top layer thickness was

varied. The two sets of theoretical lines in each figure were obtained by using the two

sets of Hamaker coefficients, shown in Table 3.1. These Hamaker coefficient values were

calculated using two different approaches. The first approach [69] includes the interaction

between two surfaces through vacuum with a difference in their dielectric constants. In

the second approach [72], the Hamaker coefficients were estimated using the difference in

interfacial energies of the interacting surfaces. As seen from the two figures, very good

agreement between theory and experiment is evident. The dramatic change in length scale

behavior for the Ag/Co/SiO2 system predicted by theory is clearly seen in the experiments.

The difference in self-organizing behavior for the two bilayer combinations can be ex-

plained on the basis of the difference in intermolecular forces. As shown in Fig. 3.1,

the signs (negative sign is attractive interaction, see Table 3.1) and magnitudes of the

intermolecular dispersion forces are different for the two configurations. In the case of

Co/Ag/SiO2 the top Co layer is always destabilizing because of the negative Hamaker coef-

ficient (Ag21) while the bottom Ag layer is always stabilizing. As a result, the spontaneous

patterning is dictated primarily by the top layer and so the length scale increases mono-

tonically with top Co layer thickness. This explains the repeatable length scale behavior

obtained in theory for different bottom layer (Ag) thickness (hAg = 5, 7 and 10 nm) [see Fig.

3.3(b)]. For the case of Ag/Co/SiO2, the bottom Co layer is always unstable while the top

Ag layer is always stabilizing. In this case, when the top layer (Ag) is thin compared to the
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bottom layer (Co), the additive effect of attractive intermolecular dispersion force between

the top interface and the substrate (Ag21s) and the middle interface (liquid1 - liquid2) and

substrate (A21s) contributes to the instability. The length scale increases with increase in

top layer (Ag) thickness until such time that this interaction is sufficiently weak so that the

instability is then determined primarily by the bottom Co layer. In the case of Ag/Co, this

transition occurs when the top layer thickness reaches close to the bottom layer thickness.

In the theoretical analysis the transition occurs at ∼4 nm, 5.7 nm and 8 nm, respectively

for the bottom layer (Co) thicknesses of 5 nm, 7 nm and 10 nm [Fig. 3.3(a)] and experi-

mentally∼3.9 nm for 5 nm bottom thickness. Following the transition point, the patterning

length scale relaxes to a value determined primarily by the fixed thickness of the bottom

layer.
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(a)

(b)

Figure 3.5: Comparison of theoretical behavior (solid and dashed lines) to the experimen-
tally determined length scales (closed and open symbols) for the two bilayer configura-
tions; (a) Ag/Co/SiO2, and (b) Co/Ag/SiO2. In both the cases the bottom layer thickness
was kept constant at 5 nm and the top layer thickness was varied. The theoretical length
scales indicated by solid and dashed lines in both figures are plotted using the maximum
and minimum range of Hamaker coefficients values for different interfaces in the bilayers.
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3.4 Morphological analysis

Figures 3.4(a-i) shows a series of SEM micrographs of the evolution of dewetting mor-

phologies in bilayer Ag/Co/SiO2 for different film thickness combinations of Ag and Co

in the bilayer. Figures 3.4(a-c) are the SEM images for the progression of morphology in

bilayer Ag/Co/SiO2 with 5 nm thick Co and 1 nm Ag. The early stage dewetting morphol-

ogy, following irradiation by 10 laser pulses is shown in Fig. 3.4(a). The morphologies

following ∼100 and 10000 laser pulses are presented in Fig. 3.4(b) and (c), respectively.

The spatial characteristics of each morphology was obtained by evaluating the fast Fourier

transform (FFT) of the SEM image. The FFT information of the contrast correlation is

shown in the inset of each figure. The annular form for each of the FFT is the indication of

presence of short range order (SRO) in each stage of dewetting. Similarly, the morpholo-

gies following∼10, 100 and 10000 laser pulse irradiation are presented in Figures 3.4 (d-f)

and (g-i), for the thickness combinations of 5 nm Co, 3.5 nm Ag and 5 nm Co, 12 nm Ag,

respectively.

Similar to bilayer Ag/Co/SiO2, the progression of dewetting morphology was also stud-

ied for bilayer configuration Co/Ag/SiO2, as shown in Figures 3.6(a-i). Here the SEM im-

ages in Figures 3.6(a-c) was obtained after irradiation on bilayer film of 5 nm thick Ag

and 1.5 nm Co, following irradiation of ∼10 (fig. a), 100 (fig. b) and 10000 (fig. c) laser

pulses, respectively. Morphologies shown in Figures 3.6(d-f) and (g-i) were obtained using

thicknesses 5 nm Ag, 4.5 nm Co and 5 nm Ag, 12 nm Co, respectively.

In either bilayer arrangements, Ag/Co/SiO2or Co/Ag/SiO2, the morphological pathway

depends on the ratio of Co and Ag thicknesses in the bilayer, as can be seen in the series of

SEM images in Figures 3.4 and 3.6. The initial and intermediate stage morphologies (i.e.

after ∼10 and 100 laser pulses) in each thickness combinations are dictated by the thicker

layer of the two films in the bilayer. For instance, when Co film is thicker than Ag, then the

initial and intermediate stages follow by forming the holes and polygon networks, which

are the morphological stages in the case of a single layer of Co on SiO2 [35, 123]. However,
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when Ag film is thicker than Co in the bilayer, then the morphology pathway is through

the formation of bicontinuous structures (see Fig. 3.6(a) and (b)), until Ag film is ∼10 nm

thick. For the thicker Ag films (≥ 10 nm) in the bilayer, the morphology is dictated by

holes and polygons, as can be seen in Fig. 3.4(g) and (h). The formation of bicontinuous

and polygons was evident in the case of single layer of Ag on SiO2. Interestingly, when

both Ag and Co films are similar in thickness in either arrangements, the morphology was

evidenced by a combination of bicontinuous and polygons, as can be seen in images (d) and

(e) of Figures 3.4 and 3.6. In either case of the bilayer configuration, the final morphology

after ∼10000 laser pulses is an array of nanoparticles.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.6: SEM images for the morphological evolution in bilayer Co/Ag/SiO2; (a-c)
images after irradiation on the bilayer film thicknesses of 1.5 nm of Co and 5 nm Ag, (d-f)
initial film thicknesses were 4.5 nm of Co and 5 nm Ag, (g-i) for 12 nm of Co and 5 nm
Ag. The images (a), (d) and (g) are after irradiation with 10 laser pulses; (b), (e) and (h)
are after ∼100 laser pulses; and figures (c), (f) and (i) are after ∼10000 laser pulses. The
inset of each image shows the FFT of the corresponding SEM image. The annular shape in
each FFT is the indication of presence of SRO.

As discussed above that the morphology obtained after laser-induced self-organization

in bilayer metallic films is always dictated by the thicker film in the bilayer, which is in con-

trast to the results obtained for the case on bilayer polymer films [69]. More detailed study
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is required to address this difference in morphological behavior in metals and polymers.

3.5 Microstructural analysis

Figure 3.7(a) shows the plan view bright field TEM micrograph for nanoparticles created

after laser irradiation on Ag/Co/SiO2. The inset of Fig. 3.7(a) is TEM image of a particle

with diameter ∼100 nm. Each particle consist of small grains, and different grains inside

each particle show different contrast, a possible indication that the grains consist of differ-

ent chemical composition (or rather different atomic number or Z values). Similar results

were also obtained in the case of bilayer configuration Ag/Co/SiO2. Figure 3.7(b) shows

the selected area diffraction (SAD) pattern taken on a single nanoparticle of ∼50 nm in

diameter. The d spacings and the corresponding crystallographic planes [124, 125] for the

diffraction rings indicated with numbers in SAD pattern (see Fig. 3.7(b)) is shown in Table

3.3. The diffraction spots for each d spacings is distributed in several directions, indicating

the random orientation of the grains. The experimentally observed d spacings matched well

with the elemental theoretical d spacings of cubic phase of pure Co and face centered cubic

phase of pure Ag.

In order to verify the fraction of Ag and Co in each nanoparticle, x-ray mapping anal-

ysis in the SEM was performed. These measurements were performed on the array of

nanoparticles, as shown in Fig. 3.8. Figures 3.8(a), (d) and (g) are the SEM micrographs

of the array of nanoparticles obtained for the thickness combinations Co (1.5 nm)/Ag (5

nm), Co (4.5 nm)/Ag (5 nm), and Ag (1 nm)/Co (5 nm), respectively. Figures 3.8(b), (e)

and (h) show the spatial map of Ag in the arrays, while Figures 3.8(c), (f) and (i) show the

same for Co. The presence of both Ag and Co in each particle confirms that each particle

consists of both Ag and Co, supporting the result obtained by TEM analysis. From the

number of counts within each particle, the ratio of Co and Ag was established as a function

of their initial film thickness. Figure 3.9 shows a plot of ratio of x-ray counts of Ag and Co
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in the array to the ratio of initial film thickness of Ag and Co in the bilayer. This indicates

that the ratio of the x-ray count for each particle is similar to the ratio of the film thickness

(i.e. ∼1). This confirmed that the composition of each particle is determined by the ratio

of the film thickness. These TEM and SEM results were confirmed for a number of other

bilayer compositions as well as arrangements. While this behavior is expected, given the

immiscibility of Ag and Co, this is the first evidence that composite nanoparticles can be

synthesized with good control of size, spacing and composition.

(a) (b)

Figure 3.7: TEM analysis of nanoparticles obtained from dewetting of Co/Ag/SiO2; (a)
Plan-view TEM micrograph of Co/Ag/SiO2 nanoparticles showing contrast inside each
particle indicating presence of grains. The inset shows the TEM micrograph of a larger
particle (100 nm in diameter), (b) selected area diffraction (SAD) of a single nanoparticle
of Ag/Co/SiO2
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Table 3.3: Indexing of diffraction rings from SAD pattern shows presence of both Ag and
Co in their elemental state within each nanoparticle. Co is in cubic phase (high temperature
phase) and Ag is in its face-centered cubic phase.

Spot # dExpt.(Å) dT heory(Å) Elements (hkl)
1 2.05±0.2 2.04/2.05 Co(111)/Ag(200)
2 1.79±0.2 1.77 Co(200)
3 1.56±0.1 1.54 Ag
4 1.43±0.1 1.44 Ag(220)
5 1.28±0.1 1.25/1.23 Co(220)/Ag(311)
6 1.19±0.1 1.18 Ag(222)
7 1.06±0.1 1.06 Co(311)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.8: Energy dispersive x-ray mapping taken in SEM on the arrays of nanoparticles
obtained from dewetting of Ag/Co/SiO2 and Co/Ag/SiO2, for three different thickness ra-
tios of Co and Ag; (a-c) Co (1.5 nm)/Ag (5 nm), (d-f) Co (4.5 nm)/Ag (5 nm), and (g-i) Ag
(1 nm)/Co (5 nm). The images (a), (d) and (g) are the SEM micrographs; (b), (e) and (h) are
the elemental maps of Ag; and (c), (f) and (i) are the elemental maps of Co. The size of im-
ages in figures (a-c) is 2 µm×1.4 µm, (d-f) is 3.5 µm×2.4 µm, and (g-i) is 4 µm×2.75 µm
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Figure 3.9: A plot of ratio of x-ray counts of Ag and Co obtained during x-ray mapping
in SEM to the ratio of the initial film thicknesses of Ag and Co in the bilayer configura-
tions. The dotted straight line indicates the points of equal ratios of x-ray counts and film
thicknesses.

3.6 Conclusion

The thermodynamic principle of balancing the rate of Gibbs energy change with viscous

dissipation was used to theoretically describe the spontaneous self-organization in ultra-

thin bilayer metallic films. In this theory, the self-organized length scales can be obtained

without need for linear or non-linear analysis of the fluid flow equations. For either ar-

rangement, self-organization theory predicts characteristic length scales, but with different

self-organizing behavior, as evidenced by the form of the thickness dependence. This dif-

ference was attributed to the nature of the intermolecular forces for the two configuration.

The experiments of the self-organization in Co/Ag/SiO2 and Co/Ag/SiO2 bilayer systems

by pulsed laser melting were performed. The resulting patterns show evidence for a sponta-

neous process with characteristic length scales. The experimentally measured behavior of
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patterning length scale as a function of film thickness agrees very well with the prediction

from thermodynamic theory. The morphological analysis in both bilayer configurations

confirmed that thicker layer dominate the initial and intermediate morphologies. The mi-

crostructures of the nanoparticles revealed that each particle is made of both Ag and Co

and the ratio of the metals in each composite is controlled by the initial film thickness of

the films. These type of bilayer configurations could be useful towards manipulating the

structural properties and controlling the length scales of nanoscale mixtures and alloys.
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Chapter 4

Relation of dewetting morphology with

free energy curvature in thin metal films

Summary

In this chapter, the morphological pathway of spontaneous dewetting of ultrathin Ag

films on SiO2 under nanosecond laser melting is investigated, which is found to be film

thickness dependent. For films with thickness h between 2≤ h≤ 9.5 nm, the morphology

during the intermediate stages of dewetting consisted of bicontinuous structures. For films

11.5≤ h≤ 20 nm, the intermediate stages consisted of regularly-sized holes. Measurement

of the characteristic length scales for different stages of dewetting as a function of film

thickness showed a systematic increase, which is consistent with the spinodal dewetting

instability over the entire thickness range investigated. This change in morphology with

thickness is consistent with observations made previously for polymer films [A. Sharma et

al, Phys. Rev. Lett., v81, pp3463 (1998); R. Seemann et al, J. Phys. Cond. Matt., v13,

pp4925, (2001)]. Based on the behavior of free energy curvature that incorporates inter-

molecular forces, the morphological transition thickness for the intermolecular forces for

Ag on SiO2 was investigated. The theory predictions agree well with observations for Ag.

These results show that it is possible to form a variety of complex Ag nanomorphologies
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in a consistent manner, which could be useful in optical applications of Ag surfaces, such

as in surface enhanced Raman sensing.

4.1 Introduction

Silver (Ag) films and nanostructures have strong plasmonic activity and consequently, are

very useful in the chemical detection of species via surface enhanced Raman scattering

(SERS) [25, 126]. It is known that the magnitude of the localized field enhancement leading

to increase in Raman scattering is very sensitive to the roughness or asymmetry (aspect

ratio) of the nanostructures [127]. Therefore, controlling the morphology and nanostructure

characteristics, of metals like Ag, in a reliable and cost-effective manner is very important

towards further improving the sensitivity and selectivity of SERS detection.

One potential approach towards creating complex nanomorphologies in metals is to

utilize the spontaneous dewetting of thin films [46, 128, 35, 4, 129, 130]. In the classical

spinodal dewetting instability, an initially smooth film is unstable to height fluctuations be-

cause attractive intermolecular forces can exceed the stabilizing effect of interfacial tension

[62, 53, 46]. As a result, a narrow band of wavelengths can spontaneously grow, eventually

leading to film rupture and, more importantly, to morphologies with well-defined length

scales [131, 33]. One of the important observations in polymer dewetting is the behavior

of the dewetting morphology as the film progresses from its initially smooth state to a fi-

nal stable state of particles. It has been observed that below a transition thickness hT , the

intermediate stage dewetting morphology consists of bicontinuous structures, while above,

it consists of regularly sized holes [132, 133]. This change in morphology has been at-

tributed to the form of the intermolecular forces influencing dewetting [33]. Specifically,

for ultrathin films, with thickness between 1 and 20 nm, the film thickness-dependent in-

termolecular forces are made up of a long range attractive component, and a shorter-range

repulsive component. The transition thickness can be identified from the thermodynamic
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free energy of the system and, as shown by Sharma and Khanna [33], is located at the min-

imum in the curvature of the free energy. Consequently, the appearance of bicontinuous

structures is correlated with films whose initial thicknesses lie to the left of the curvature

minimum, while the formation of holes occur in films with thicknesses to the right of the

minimum. In polymers, the the magnitude of hT is found to be of the order of a few nm’s.

More importantly, knowledge of this transition can help guide the controlled fabrication of

materials with different morphologies and length scales.

Recently, detailed investigations by various authors have shown that nanosecond laser

irradiation of ultrathin metal films on non-wetting substrates can initiate a similar dewet-

ting instability, producing robust and repeatable patterns with well-defined length scales

[111, 48, 35, 4, 1]. Previously reported articles also showed that metal films can have dif-

ferent morphologies, including bicontinuous structures or holes, and in the case of Co on

SiO2 the transition was found to occur between 3 to 4 nm in film thickness [113, 37]. In

this chapter, the dewetting pathway for Ag metal on SiO2 substrates in the thickness range

of 2 ≤ h ≤ 20 nm under pulsed laser melting was explored. Besides the numerous appli-

cations associated with Ag nanostructures, another important reason to choose Ag for this

dewetting morphological study is that nanosecond laser heating effects do not introduce

any novel dewetting effects, due primarily to the large thermal conductivity of Ag [1]. To

capture the various morphologies between the flat film and the final nanoparticle state, the

dewetting was investigated as a function of number of pulses. Here Ag shows the bicontin-

uous morphology up to a thickness of ~9.5 nm, while above that it shows holes. Moreover,

measurements of the characteristic length scale showed the expected h2 behavior associ-

ated with spinodal dewetting over the entire thickness range investigated. Importantly, the

experimentally observed transition thickness hT agrees well with the value predicted by

using the sum of possible intermolecular forces for Ag on SiO2, and is analogous to results

for polymer films. The results from dewetting of Ag films show that various complex mor-

phologies, potentially useful towards plasmonic and non-linear optical properties, can be
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robustly fabricated in a repeatable and controllable manner.

4.2 Experimental details

Ag films with thickness from ∼2 to 20 nm were deposited in high vacuum (∼ 1× 10−8

Torr) by pulsed laser deposition at room temperature onto commercially obtained, optical

quality, SiO2/Si wafers consisting of 400 nm thick thermally grown oxide layer on pol-

ished Si(100) wafers [48]. The deposition rate was typically v 0.3 nm/min. The energy

dispersive X-ray spectrometry (EDS) was used to measure the Ag counts of the deposited

films in a scanning electron microscope (SEM). The EDS counts were converted into an

equivalent thickness value by using calibration based on step-height measurements of the

film thickness. For every film thickness the surface roughness was measured via atomic

force microscopy (AFM) and established an upper limit of 0.5± 0.2 nm for the average

root mean square (RMS) roughness over the entire thickness range. Following the depo-

sition, the films were irradiated in vacuum by a varying number of pulses n from a 266

nm ultraviolet laser having a pulse length τp of 9 ns. Irradiation was at normal incidence

by an unfocused laser beam of area 1× 1 mm2 at a repetition rate of 50 Hz. Under these

vacuum deposition and irradiation conditions, the film surface was never exposed to air and

hence no role of oxygen or an oxide layer was expected. The dewetting morphology was

investigated as a function of film thickness h, and the number of pulses n, which typically

ranged between 10 to 10,500 pulses, for irradiation at laser energies at or just above the

melt threshold of the films. It was shown earlier that the melt threshold energy is a func-

tion of the film thickness [37]. For each thickness the melt threshold was determined by a

visible roughening of the metal film surface, as detected under high-resolution SEM within

the longest time scale of the experiment (i.e. after 10,500 laser pulses) [134]. The range

of E used for the thickness regime investigated here was 60 ≤ E ≤ 120 mJ/cm2. For this

irradiation condition, the heating and cooling rate of the metal film was of the order of 1010
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K/s with a total heating plus cooling time per pulse of ∼ 100 ns, which was much smaller

than the spacing between pulses of 20 ms. Consequently, as it was quantitatively shown

earlier [135], that negligible contribution to the morphology evolution was expected from

processes in the solid state. Hence, any morphology changes occurred primarily during the

liquid phase following each pulse. The EDS measurements confirmed that the laser irradi-

ation did not result in substantial evaporation of the Ag, even after the longest irradiation

experiments of 10,500 pulses.

(a) (b)

Figure 4.1: (a) AFM image of an as deposited 2 nm Ag film on SiO2 (image size is 5x5
µm2). (b) A line profile taken along a horizontal dashed line of the AFM image (a) indi-
cating the root mean square roughness (RMS) of the Ag film is ∼0.5±0.05 nm.

4.3 Results and discussion

Figure 4.1(a) shows the AFM micrograph of as-deposited 2 nm Ag film on SiO2 substrate.

The average RMS roughness of the film was measured by plotting the profile of the film

along a horizontal dashed line (see Fig. 4.1(a)), which is shown in Fig. 4.1 (b), indicating

RMS roughness to be ∼0.5±0.05 nm. Similar measurements were made for all the films

investigated. In Fig. 4.2 (a-f), a series of SEM images denoting the early stage dewet-

ting morphology, following irradiation by 10 laser pulses, is shown for a different Ag film
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thickness. The important evidence from this series of images is the distinct transition in

the general nature of the morphology between the 9.5 and 11.5 nm films. Up to 9.5 nm

[Fig. 4.2(a-d)], the morphology generally consists of asymmetric undulations or a bicon-

tinuous type structure. On the other hand, for the 11.5 and 20 nm films [Fig. 4.2(e-f)],

regular holes are clearly visible. Quantitative information about the spatial characteristics

of these morphologies was obtained by evaluating the fast Fourier transform (FFT) of the

SEM image contrast, which is related to the dewetting film’s height variations. The re-

sulting FFT information of the contrast correlation is shown in the inset of each figure,

and the important information here is the annular form for each of the films. This annular

FFT is indicative of a narrow band of characteristic length scales for the height variations

on the surface. This is an important observation given that the dewetting morphology can

progress via either of the three pathways: homogeneous nucleation, heterogeneous nucle-

ation, or spinodal dewetting [67]. In the case of homogeneous nucleation, the features are

randomly distributed, both spatially, and in time, and no characteristic length scale should

appear in this type of dewetting [55]. Heterogeneous nucleation can occur due to defects,

impurities or other experimentally imposed heterogeneities. In this type of dewetting, a

characteristic length scale could appear at the early stages of dewetting only in the pres-

ence of available ordered nucleation sites. However, the spatially ordered heterogeneities

on the substrate surface, as well as on the as-deposited films, prior to irradiation, was never

observed. Therefore, the results presented here point strongly to the third option, which is

spinodal dewetting [54].
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: (a-f) SEM images of the early stage dewetting morphologies following irradi-
ation by 10 laser pulses. The film thickness from (a) to (f), corresponds to 2, 4.5, 7.4, 9.5,
11.5, and 20 nm, respectively. Also shown in the inset of each figure is the FFT of the con-
trast correlations of the SEM images. The annular spectrum indicates that a well-defined
length scale characterizes each pattern. The size of image (a) is 0.5x0.5 µm2, images (b-d)
are 1.5x1.5 µm2, and images (e) and (f) are 3x3 µm2 and 10x10 µm2, respectively.
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The characteristic length scale associated with spinodal dewetting is established at the

very early stages of film deformation [46]. The early stage undulations, which occur prior

to the appearance of large height variations in the film, are extremely difficult to capture

experimentally. However, the subsequent morphology, which is a result of ripening of the

initial undulations, forms as dewetting progresses and has length scales directly related to

the initial length scale. Therefore, as shown by many authors, the final nanoparticle length

scale, can be used as a measure of the thickness-dependent behavior [53, 35]. Here, the

length scales were measured at different stages of the dewetting process as a function of

film thickness. In Fig. 4.3(a-c), the progression of the morphology is shown for the 4.5

nm film, while Fig. 4.3(e-g) shows the same for the 11.5 nm films as a function of laser

pulses between 10 and 10,500 shots. Figures 4.3(d) and (h) are the radial distribution func-

tions (RDF) for each stage for the 4.5 and 11.5 nm film, respectively. From the position of

the peaks in such RDF measurements, obtained directly from the FFT’s, it was possible to

generate the characteristic length scale present in the pattern at each stage. The result of

measuring length scales from these progressions is shown in Fig. 4.4(a). The early stage

behavior is shown by the closed squares, the intermediate stage is shown by open triangles,

while the final nanoparticle state is shown by open circles. One important observation from

this measurement is that no dramatic change in length scale is seen when the morphol-

ogy changes from the bicontinuous to the hole structures, i.e. between 9 to 11 nm. This

strengthens the argument that both morphologies can arise for spinodal dewetting of Ag.

Since the characteristic length scale for spinodal dewetting is known to vary as λsp ∝ h2,

the trend line of h2 was plotted for the early stage (solid line) and nanoparticle stage (dotted

line) data sets with an h2 trend. The early stage dewetting agrees reasonably well with the

spinodal trend over the regime investigated, confirming a previously reported result for Ag,

based on the behavior of the nanoparticle state [1]. An important observation can be made

on the apparent deviation of the intermediate and final stage length scales for the thickest

film investigated, i.e. the 20 nm film. The nanoparticle length appears much smaller than
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the trend (dotted line), while the intermediate state appears much larger. This can be under-

stood as follows. The drop in the nanoparticle length scale is due to the nearest-neighbor

interparticle spacing being dominated by a Rayleigh-like break-up of the arms of the poly-

gon, as shown in Fig. 4.4(b). In contrast, particles in the 11.5 nm film form at the vertex of

the polygons formed during the dewetting stage [Fig. 4.3(g)]. A similar argument, based

on a change in the feature shape being measured, is likely to explain the intermediate state

behavior. As shown in Fig. 4.3(e-g), the progression of the hole morphology is through

merging of the holes into polygons, whose size (diameter) will be dependent upon the num-

ber of holes it was formed from. It is quite likely that the large increase in length scale for

the intermediate state of the 20 nm film is because the measured length scale is for polygons

formed from numerous holes.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: (a-c) SEM images (1.5x1.5 µm2) of progression of dewetting in the 4.5 nm
thick film with increasing number of laser pulses (10, 100, 10,500). (d) Plot of the radial
distribution function (RDF) for each stage of dewetting. The peak position in RDF was
used to estimate the characteristic length scales. (e-g) Progression (3x3 µm2) of dewetting
in the 11.5 nm thick film with increasing number of laser pulses (10, 100, 10,500). (h) Plot
of the radial distribution function for each stage. The letters in plots (d) and (h) indicate the
RDF’s for the corresponding SEM images.
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(a) (b)

Figure 4.4: (a) Plot of the characteristic length scale for various stages of progression as a
function of film thickness (h). The early stage behavior is shown by the closed squares, the
intermediate stage is shown by open triangles, and the final nanoparticle state is shown by
open circles. Trend lines with h2 variation for the early stage (solid line) and nanoparticle
stage (dotted line) data are also shown. For clarity, the error bars for the intermediate
and final state are not shown. (b) SEM image (15x15 µm2) of the intermediate stage to
nanoparticle stage transition for a 20 nm film showing that the break-up of the arms of the
polygons is via a Rayleigh-type process leading to multiple nanoparticles in each arm.

The above results provide a strong case for Ag dewetting via the spinodal process,

with additional support coming from that fact that similar morphological characteristics

are observed when polymer films dewet by the spinodal instability. As mentioned in the

introduction, polymer films have been observed to have a bicontinuous to hole transition at

thicknesses hT of a few nm and the theoretical position of this thickness has been correlated

to the nature of the free energy [33, 133]. Specifically, the location of minima in the free

energy curvature has been correlated to this transition thickness. To determine if a similar

behavior is seen for the Ag metal, a sum of different types of attractive and repulsive in-

termolecular interactions have been used to estimate the free energy and its curvature as a
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function of thickness h for Ag on SiO2. Since the films are very thin, the gravitational term

in our calculations was neglected.

Table 4.1: List of metal parameters required for free energy analysis

Metal
γM/Vacc

(J-m-2)
[118]

θ

(degree)

Sp

(J-m-2)
[136]

A
(J)

[60]

hc using Eq.
4.3

(nm)

hT using Eq.
4.4

(nm)

Ag 0.925 82 0.79 -1.33x10-19 0.300 0.3 - 11.45
Au 1.145 88 1.11 -1.76x10-19 0.293 0.29 - 11.92
Co 1.882 101 2.26 -3.1x10-19 0.273 0.27 - 12.10
Cu 1.304 92 1.35 -2.08x10-19 0.288 0.29 - 11.62
Fe 1.870 101 2.24 -2.9x10-19 0.265 0.26 - 11.88
Mn 1.152 88 1.12 -8.12x10-22 0.019 2.64 - 19.23
Ni 1.781 100 2.10 -9.9x10-20 0.160 1.13 - 13.47
Pt 1.746 100 2.04 -2.56x10-19 0.259 0.26 - 11.94
Ti 1.525 96 1.69 -4.32x10-19 0.372 0.37 - 10.72
V 1.770 100 2.08 -1.74x10-19 0.212 0.21 - 12.58

4.3.1 Free energy analysis to determine transition thickness hT

The intermolecular interaction free energy of a uniform thin film can be realized by first

describing the disjoining pressure acting on a film. Consider a liquid film of height h on

top of a flat substrate. The thickness dependent disjoining pressure, Π(h), can be expressed

by adding a long-range attractive (Van der Waals interaction) and a short range repulsive

interaction between the various interfaces formed as a result of having the film on a sub-

strate. The repulsive term typically consists of two parts: (i) a Lennard-Jones (L-J) type

repulsion [137] which appears due to the electron cloud interaction, and (ii) an electrostatic

force, which is a result of electric layers forming at the liquid-substrate interface.

The total disjoining pressure, by considering a long-range attraction, a short range re-

pulsion expressed as a Lennard-Jones type form [137], and the electrostatic force [137, 33],

is given by:
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Π(h) =
A
h3

c

[(
hc

h

)3

− 1
3

(
hc

h

)9
]
+

Sp

l
exp(−h/l) (4.1)

Here, A is the Hamaker coefficient, which has a negative value in units of Joule, and hc

is the critical length at minimum Π(h). Sp is the spreading coefficient which is related

to the magnitude of electrostatic part of the disjoining pressure, and l is a correlation (or

Debye) length. Using Eq. 4.1, the free energy density (energy/area) of a uniform film can

be written as:

∆G =
A

2h2 −
Ah6

c
24h8 +Spexp(−h/l) (4.2)

where, hc is defined as:
A
h2

c

34/3

8
=−2γsin2 (θ/2) (4.3)

and hT (the transition thickness) is calculated from the position of the minimum in the free

energy curvature as:

∂ 2∆G
∂h2 =

3A
h4 −

3Ah6
c

h10 +
Sp

l2 exp(−h/l) = 0 (4.4)

The above analysis was performed for Ag on SiO2 substrate, and the correlation length

l was taken to be in the range of 0.2−1.0 nm [136]. The values of the constants used in the

analysis for Ag are given in Table 4.1. Table 4.1 also consists of material parameters for

few other metals of interest, where the value of hT is estimated by considering that l lies

between 0.2 to 1 nm. The typical transition thickness (hT ) calculated using Eq. 4.4 for Ag

appears to be between 0.3 and 11.45 nm. The free energy and curvature plots using Eq. 4.2

and 4.4 and the correlation length l = 1 nm for Ag are shown in Fig. 4.5. With this result

the following observations were made. In polymer films, the bicontinuous structures are

observed for the thinner films, while holes are observed in the thicker ones. Similarly, for

the presented case of Ag films on SiO2 substrate, the bicontinuous structures are obtained
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for films hT ≤ 9.5 nm, while above this thickness the morphology evolution starts with the

formation of holes. This experimental result matches well with the theoretical prediction

of 11.45 nm, provided a correlation length of l = 1 nm is used.

Figure 4.5: Plot of the free energy, ∆G, (solid line) and free energy curvature, ∂ 2∆G
∂h2 , (dashed

line) vs film thickness for Ag on SiO2 using Eq. 4.2 and Eq. 4.4, respectively. The
transition thickness hT corresponds to the minimum in the curvature and occurs at ~ 11.45
nm for a correlation length of 1 nm.

4.4 Conclusion

In conclusion, the morphology evolution in nanometer thick Ag films (2 ≤ h ≤ 20nm)

under melting by nanosecond laser pulses was investigated. The initial dewetting morphol-

ogy is found to be a bicontinuous morphology for films with thickness ≤9.5 nm, while

discrete holes appear for films with thickness > 11.5 nm. Evaluation of the characteristic

dewetting length scales indicated a good agreement with a h2 trend, which was evidence
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for the spinodal dewetting instability. The observations of the different morphologies and a

transition thickness is consistent with the behavior observed previously for polymer films.

The experimentally observed transition value for Ag, of between 9.5 - 11.5 nm, agrees well

with predictions from intermolecular forces. This work shows that complex and control-

lable morphologies can be obtained for Ag, but more insight is needed to understand the

physical origins of dewetting pattern morphologies in thin metal films.
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Chapter 5

Size-dependent magnetization in

hemispherical Co and Fe nanomagnets

on SiO2

Summary

Nanosecond pulsed-laser melting of ultrathin metal films can lead to self-organized ar-

rays of spherical nanoparticles. This technique was applied to assemble arrays of nanoparti-

cles of the soft elemental ferromagnets, Co and Fe, on SiO2 substrates. Surface morphology

studies using scanning electron microscopy and atomic force microscopy established that

the nanoparticles were nearly hemispherical. Magnetic properties of these nanoparticles in

the size range of 30 - 250 nm diameter were investigated by magnetic force microscopy

(MFM) under zero applied field at room temperature in conjunction with simulations of

the magnetic tip-particle interaction. In the case of Co, particles up to 180 nm diameter

were found to be single-domain (SD) with the magnetization direction oriented predomi-

nantly in-plane (≤ 45o) for the smaller particles (≤ 75 nm) and out-of-plane (45−90o) for

the larger particles (≤ 180 nm). Similarly in the case of Fe nanoparticles, within the SD
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size of 150 nm, the particles upto 55 nm are predominantly in-plane. Magnetic hysteresis

measurements on Co arrays at room temperature confirmed that the arrays consisted of a

mixture of in-plane and out-of-plane orientations. Microstructural analysis by transmission

electron microscopy revealed that the nanoparticles had a granular microstructure with the

average grain size increasing with particle size. This size-dependent magnetic orientation

is inconsistent with the expected in-plane orientation due to shape anisotropy. The magne-

tization direction of the nanomagnets was explained by the size-dependent residual strain

and the microstructures formed by rapid laser processing. This idea was supported by the

significant increase in in-plane orientation of larger particles following thermal annealing in

Co arrays. These studies suggest that anisotropic nanomagnets comprised of nearly hemi-

spherical polycrystalline particles can be synthesized with desired magnetic orientations by

fast laser thermal processing.
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5.1 Introduction

Present research on magnetic devices is concentrated on reducing the component size

in order to achieve high density. Nanosized magnetic structures are important for many

applications, such as in non-volatile and high speed magnetic random access memories

(MRAM) [32, 138], high density magnetic data storage [139, 140, 21], opto-electronics

[141] and biological applications [142, 143]. Some of these applications require well-

defined zero-field magnetization directions of the nanoparticles. For instance, in the case of

recording media, strong magnetic anisotropy is desired with in-plane (longitudinal media)

or out-of-plane (perpendicular media) orientations. Traditionally, this magnetic anisotropy

has been achieved in nanostructured materials through design of high-aspect ratio structures

and/or selecting specific orientations of crystalline phases with large magnetocrystalline

anisotropy [144, 145, 54, 146, 147]. It is widely accepted, based on energy minimization

arguments, [93, 12] that magnetic nanoparticles with typical dimensions between 10 to 100

nm should be single domain compared to multi-domain behavior for the larger particles.

The direction of the zero-field magnetization in such nanostructures is a strong function of

size, shape, and processing conditions. As the size of the magnetic structures diminishes,

the properties show dramatic changes compared to bulk when the surface and interface

magnetic energies [80, 81] become comparable to the volume (magnetostatic) energy [93].

Shape is significant because it introduces large magnetic shape anisotropy. For instance,

polycrystalline thin films, which have large shape anisotropy (large in-plane compared to

out-of-plane dimensions), tend to show zero-field magnetization along the plane of the film

because of lower demagnetization energies. On the other hand, processing conditions can

also introduce additional magnetic anisotropy. Several studies on ultrathin epitaxial films

show out-of-plane magnetization [148, 149] because of large magnetoelastic energy arising

from epitaxial strains and/or surface anisotropy. This chapter shows that the hemispherical

polycrystalline nanoparticles of elemental ferromagnets like Co and Fe can be oriented

in a specific direction by introducing additional anisotropies dependent on the processing
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conditions, which, in this particular case, arises from fast laser processing.

Recently, a self-organizing route was developed to assemble spatially ordered nanoar-

rays of nearly hemispherical nanoparticles of ferromagnetic (Co, Fe) [85, 99] and param-

agnetic materials (Ti, V, Cu, Ag) [113, 150, 151, 152, 1]. In this process, ultrathin metal

films on an inert substrate (SiO2) are irradiated by nanosecond (ns) laser pulses. Self-

organization (SO) occurs in the molten phase through a thin film hydrodynamic instability,

which causes the spontaneous dewetting of the ultrathin continuous metal film into patterns

with well-defined length scales [153, 123]. When the dewetting is initiated by a spatially

uniform laser beam, with increasing number of laser pulses, the morphology of the thin

film progresses to regularly-sized holes, to cellular networks of polygonal shapes, to sta-

ble nanoparticle arrays [153]. The ensuing arrays show spatial short range order (SRO) in

the interparticle spacing and monomodal size distribution [153, 123]. It is shown that by

varying experimental parameters, such as film thickness and the spatial distribution of the

laser intensity, the spacings and ordering of the pattern could be modified in a predictable

manner [150, 34]. However, a detailed magnetic characterization of the nanoparticle arrays

has not been reported.

This chapter explains the correlations of particle size, shape and microstructure, with

the magnetic properties of the nanoparticles in these self-organized arrays. The ensuing

array characteristics, including the particle size distribution and particle contact angle,

were determined using atomic force microscopy (AFM) and scanning electron microscopy

(SEM). Transmission electron microscopy (TEM) measurements were performed to study

the microstructures inside the nanoparticles. The orientation of the magnetization of the

nanoparticles were determined by magnetic force microscopy (MFM) measurements in

zero applied field at room temperature, and comparing them with numerical simulations of

the MFM images. The as-prepared Co and Fe nanoparticles were found to be nearly hemi-

spherical, showing single domain magnetic behavior upto 180 nm diameter for Co and 150

nm for Fe; the larger particles were multi-domain. Interestingly, the magnetization direc-
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tion changed from a predominantly in-plane orientation for the smaller nanoparticles to an

out-of-plane orientation for the larger ones. TEM investigations showed that the smaller

particles (<40 nm) were single-grained and the larger particles multi-grained (polycrys-

talline), with random grain orientations. A clear understanding of this size-dependent mag-

netization behavior was possible by comparing the relative contributions of different energy

terms such as, the dipolar interaction energy, demagnetization energy, magnetocrystalline

anisotropy energy and magnetoelastic anisotropy energy (or magnetostrictive energy), and

correlating them with the nanostructures of the individual nanoparticles. This detailed

magnetic study of multi-grained near hemispherical nanoparticles suggests that fast ther-

mal processing could be used to control and manipulate nanomagnetic domain and domain

switching behavior.

5.2 Experimental procedure

Thin films of Co (3.2 nm) and Fe (4.5 nm) were deposited on commercially available

optical quality SiO2/Si(100) wafers using the electron-beam evaporation technique under

ultrahigh vacuum (∼ 1× 10−8 Torr). The thermally grown SiO2 layer on Si was 400 nm

thick. Prior to evaporation, the substrates were cleaned by ultrasonic rinsing in acetone,

ethanol and DI water. The film deposition rate was monitored by a quartz crystal based

deposition rate monitor. The final thickness of each film was further verified by quantitative

energy dispersive x-ray spectroscopy (EDS) measurements and by comparing the signals

with calibrated metal films of known thicknesses [123]. Following deposition, the samples

were irradiated under vacuum with a uniform Nd:YAG laser beam at normal incidence,

operating at its 4th harmonic of 266 nm wavelength. A 9 ns laser pulse width with a

repetition rate of 50 Hz was used. The laser energy density was chosen to be just above

the film melt threshold, which was required to achieve self-organization [153]. Typically,

∼3000 pulses with a laser energy density of ∼ 100−120 mJ/cm2 were necessary to create

the final nanoparticle pattern. To study the effect of thermal annealing on the magnetic
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behavior of particles, a Co array sample was annealed in-situ at 470oC for 3 hours under

high vacuum (2×10−6 Torr). The as-prepared and annealed arrays were characterized for

particle size, shape and magnetic properties under ambient conditions.

Scanning electron microscopy (SEM, Hitachi S-4500) images were analyzed to obtain

the particle size and spatial distribution. To estimate the contact angle, θ , independent mea-

surements of the particle height were made using a tapping mode atomic force microscope

(AFM, Digital Instruments Dimension 3000 Multimode IIIA scanning probe microscope)

and utilizing the relation θ = 90 + sin−1 [(h−D/2)/D/2], where h and D are the height

and diameter of the particle, respectively. The magnetic domain orientation with respect to

the substrate was determined from the bright and dark contrast of the magnetic force mi-

croscopy (MFM, Digital Instruments Dimension 3000) images and comparing them with

the simulated images, based on tip-sample interactions (see Sec. 5.3.3). The scan height

for all the MFM measurements was 50 nm. Scanning in different directions (0o and 90o)

and scanning heights (20 - 100 nm) was performed to ensure that the resulting MFM in-

formation was consistent, and not influenced by tip-sample interactions that could modify

the magnetization of the samples. The MFM Si-probes, coated with a few tens of nm

thick CoCr alloy, were obtained from Asylum research (ASY) [154]. Magnetic hysteresis

measurements were performed in a quantum design physical properties measurement sys-

tem (PPMS). Transmission electron microscopy was done using two different systems (200

KeV JEOL 2100F and JEOL 2000FX). The plan-view TEM samples were prepared using

a well-known Si-chemical etching procedure [see ref. [155] for detailed information].

5.3 Results

5.3.1 Morphology of Co and Fe nanoarrays

The single beam laser irradiation of 3.2 nm thick Co film produces an array of nearly hemi-

spherical nanoparticles with spatial SRO as shown in the SEM micrograph, Fig. 5.1(a).
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The inset shows the power spectrum corresponding to the spatial distribution of particles,

obtained by fast Fourier transformation (FFT) of the SEM micrograph. Short range order

in the interparticle spacing is confirmed by the annular ring visible in the power spectrum.

From the average diameter of the annular ring, the average interparticle spacing was esti-

mated to be 290 nm, which is consistent with the prediction of thin film dewetting theory

[153, 1]. The particle size distribution is shown in Fig. 5.1(b). The average diameter (from

the SEM measurement) and average height (from AFM measurement, Fig. 5.8(a)) was

estimated to be D = 88 ± 23 nm and h = 55 ± 16 nm, respectively. The contact angle

calculated using the formula mentioned in section 5.2 was 104 ± 22o. The morphology

was also studied after vacuum annealing of Co particles similar to as-prepared Co array,

mentioned above. The SEM micrograph of annealed Co arrays Fig. 5.2(a), along with

the power spectrum (the inset), confirmed the SRO. Fig. 5.2(b) shows the size distribution

of the annealed Co nanoparticles, which was similar to the as-prepared distribution (Fig.

5.1(b)). The average spacings, average diameter, and the average height were measured to

be 285 nm, 85 ± 25 nm and 53 ± 12 nm, respectively, which once again confirmed that

the thermal anneal did not substantially change the size distribution and spacings of the

nanoparticles.
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(a) (b)

Figure 5.1: Array morphology and size distribution for the as-prepared Co nanoarrays made
from a 3.2 nm thick Co film: (a) SEM micrograph of as-prepared Co nanoarrays; the inset
shows the FFT, indicating spatial short range order, (b) Particle size distribution obtained
from image (a).

(a) (b)

Figure 5.2: Morphology and size distribution of the annealed Co nanoarrays made from
a 3.2 nm thick film after 470oC (for 3 hr)anneal under vacuum. (a) SEM micrograph of
annealed Co nanoarrays; the inset shows the FFT, indicating spatial short range order, (b)
Particle size distribution obtained from image (a).

Similarly, the irradiation of a 4.5 nm thick Fe film results in an array of hemispherical Fe

nanomagnets on SiO2 substrate with a characteristic SRO, as shown in the SEM micrograph
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in Fig. 5.3(a) and the inset. From the particle size distribution (Fig. 5.3(b)), the average

diameter, height, and spacing between the particles were measured to be 68 ± 20 nm,

40 ± 12 nm and 320 nm, respectively. This corresponds to an equilibrium contact angle

of 100 ± 21o. Similar to Co arrays, the particle size and spacings were in agreement with

the characteristic length scales expected from classical dewetting of spinodal-like thin film

systems[153, 1].

(a) (b)

Figure 5.3: (a) SEM micrograph of arrays of Fe nanoparticles made from 4.5 nm thick Fe
film and the corresponding FFT (shown in the inset) confirms the SRO. (b) Particle size
distribution obtained from image (a).

5.3.2 Nanostructure of Co particles in arrays

Fig. 5.4(a) and (b) shows the plan-view of bright-field (BF) and dark-field (DF) TEM

images for the array from the same location, while Fig. 5.4(c) shows the correspond-

ing selected area diffraction (SAD) pattern. The diffraction spots corresponding to each

d-spacing were distributed in several directions, implying the random orientation of the

grains. The d-spacings and the corresponding crystallographic planes for the observed

diffraction spots (indicated on Fig. 5.4(c) by numbered arrows) are presented in Table 5.1.

The experimentally measured d-spacings agreed well with the theoretical d-spacings [156]
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for cubic Co, which is the stable phase above 450 oC. This confirmed that the ns pulsed laser

processing was fast enough to quench and retain the high temperature Co phase. Dark-field

analysis (Fig. 5.4(b)) confirmed the granular microstructure of the nanoparticles from the

dark and bright regions within each nanoparticle. By analyzing the BF and DF contrast, an

estimate of the average grain size within each particle was made. The result, shown by the

solid circles in Fig. 5.13, indicates an increase in average grain size with particle size. The

uncertainty in the grain size measurement (∼±10%) came primarily from approximating

irregular shaped grains to be circular, and from the statistical averaging of the grain size

over a number of particles of the same diameter.

(a) (b) (c)

Figure 5.4: Plan-view TEM micrographs showing microstructure of as-prepared Co
nanoparticles: (a) Bright-field, and (b) Dark-field images from the same area, (c) SAD
pattern confirming cubic phase for Co. The numbered spots (1 - 5) are indexed in Table
5.1.

Table 5.1: Indexing of diffraction spots and rings in SAD for as-prepared Co arrays. The
numbers in the first column correspond to the markings on the SAD pattern shown in Fig.
5.4(c).

Spot # dExpt.(Å) dtheory(Å)and (hkl) Co - Cubic phase
1 2.0±0.1 2.04 (111)
2 1.7±0.1 1.77 (200)
3 1.2±0.1 1.23 (220)
4 1.1±0.1 1.06 (311)
5 0.80±0.05 0.79 (024)
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Fig. 5.5(a-c) shows the plan-view TEM and SAD for the 450oC (for 3 hr) annealed

particles. The most important change after anneal was the formation of faceted grains,

compared to smooth circular shape for the as-prepared particles. The SAD (Fig. 5.5(c))

again showed a polycrystalline microstructure; however, in contrast to the cubic phase for

the as-prepared nanoparticles, the annealed samples consist of hexagonal [157] as well

as cubic phases. The d-spacings and the corresponding indexing of spots, indicated by

numbers (6 - 12), on the SAD are presented in Table 5.2. By using the BF and DF analysis,

the grain and particle sizes were estimated, as shown by open squares in Fig. 5.13. While

the trend is similar to the as-prepared arrays, the grain size is slightly larger, indicating

some ripening of the grains inside the particles during anneal.

(a) (b) (c)

Figure 5.5: Plan-view TEM micrographs showing microstructure of annealed Co nanoparti-
cles: (a) Bright-field, and (b) Dark-field images from the same area, (c) SAD pattern shows
evidence for both hexagonal and cubic phases for Co and the diffraction spots numbered
(6-12) are indexed in Table 5.2.
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Table 5.2: Indexing of diffraction spots in SAD shown in Fig. 5.5(c). Numbers in the first
column correspond to the markings on the SAD pattern shown in Fig. 5.5(c).

Spot # dExpt.(Å) dtheory(Å)and (hkl) Co - hexagonal phase dtheory(Å)and (hkl) Co - Cubic phase

6 2.2±0.1 2.16 (100) -
7 2.0±0.1 - 2.04(111)
8 1.9±0.1 1.91 (101) -
9 1.7±0.03 - 1.77 (200)

10 1.4±0.07 1.48 (102) -
11 1.3±0.1 - 1.23(220)
12 1.1±0.1 - 1.06(311)

5.3.3 Simulation of MFM response for hemispherical particles

In order to accurately interpret the experimental MFM image contrast presented in Sec.

5.3.4, a theoretical analysis of the interaction between the MFM tip and the uniformly

magnetized hemispherical particles was performed and the contrast in the MFM images for

different orientations of magnetization were simulated. The system used is a Dimension

3000 AFM/MFM, which uses Tapping Mode and Lift Mode (trademarks of Digital Instru-

ments, Inc.) techniques to map the topography of a sample and gather its magnetic force

information [158]. The oscillating probe rasters scans across the surface of the sample,

performing two passes for each line in the raster. On the first pass, the instrument taps the

probe across the surface and gathers the sample topography along the line. On the second

pass, a user-defined offset is added to this topographic information such that the probe tip

closely follows the sample topography at a fixed height above the surface, without touching

the sample. During the second pass, the probe is driven at a constant frequency close to the

probe’s nominal resonant frequency, and the instrument records variations in the phase of

the probe’s motion. The result of the raster scan is a pair of aligned images: a topography

image and a magnetic force phase image. Since the phase is observed at a fixed height

above the sample, the phase image is largely independent of the topography image.
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The phase variations ψ are approximately proportional to the force gradient in the di-

rection of the probe’s oscillation [159, 160]. Taking this direction to be the vertical z axis,

the phase is written as;

ψ ∝
∂Fz

∂ z
(5.1)

The force on the probe can be expressed as the gradient of the Zeeman energy for the

probe’s magnetized tip (Mtip), which responds to the stray field created by the sample

(Hsamp) [161];

F = −5
∫

Vtip

Mtip · Hsamp dV (5.2)

This integral here is carried out over the magnetic volume of the tip. Using the substi-

tution Hsamp = −5Φsamp, this can be rewritten as [162];

F = 5
∫

Stip

Φsamp Mtip · ds−5
∫

Vtip

Φsamp

(
5 ·Mtip

)
dV (5.3)

The first integral is over the surface of the tip, (Stip is the boundary for the volume Vtip),

where ds is locally normal to the surface. In this work, the tip is modeled as a uniformly

magnetized layer coating the surface of a cone. Therefore the second integral in Eq. 5.3

does not contribute to the force on the probe, since 5 · Mtip = 0. Eq. 5.1 can now be

written as;

ψ ∝

∫
Stip

∂ 2Φsamp

∂ z2 Mtip · ds (5.4)

For simulation purposes, the samples, similar to the probe, are considered to be uni-

formly magnetized. The magnetic potential Φsamp at location r = (x,y,z) for a uniformly

magnetized sample is given by (see page 247 in reference [163]);
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Φsamp

(
r
)
=

1
4π

∫
Ssamp

Msamp
(
r
′) · ds

′∣∣r− r′
∣∣ (5.5)

In this integral, r
′
varies over the boundary Ssamp of the sample volume, and ds is locally

normal to this boundary. Differentiating twice with respect to z gives;

∂ 2Φsamp

(
r
)

∂ z2 =
∫

Ssamp

I
(

r − r
′
)

Msamp
(
r
′)
· ds

′
(5.6)

where,

I(r) =
2z2− x2− y2

4π |r|5

Substituting Eq. 5.6 into Eq. 5.4 gives;

ψ (r) ∝

∫
S′′tip

(∫
S′samp

I
(

r + r
′′
− r

′
)

Msamp
(
r
′)
· ds

′

)
Mtip

(
r + r

′′)
· ds

′′
(5.7)

where r is the location of the probe tip in space, r
′

varies over the surface of the sample,

and r
′′

varies over points on the surface of the tip. To create simulated MFM data, Eq. 5.7

is approximated by a summation in Matlab.
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(a) (b)

Figure 5.6: (a) Cross-section of the modeled sample, MFM probe and probe path over the
sample with scan height, zscan = 50 nm. The probe cone angle is γ = 65◦, the probe height
is h = 300 nm, and the layer thickness is δ = 10 nm, (b) Points on the tip used to represent
the probe surface for the simulations.

The samples are modeled as hemispheres centered at the origin and symmetric about

the z axis. The probe is modeled as a uniformly magnetized layer on the surface of a cone.

Fig. 5.6(a) illustrates the details of the probe model. Three parameters describe the shape

of the probe: angle γ , height h and thickness δ . The values used for these parameters in

this simulation are 65o, 300 nm and 10 nm, respectively. Fig. 5.6(b) illustrates the points

chosen to represent the probe. Typically 900 and 1600 points were used in the simulations

to represent the probe and sample, respectively. Using this model, a series of simulated

MFM images are generated for single domain hemispherical particles with different mag-

netization directions using MATLAB, as shown in Fig. 5.7. Fig. 5.7(a) represents the path

of MFM probe over the hemispherical particle. Fig.5.7(b) - (h) shows MFM response for

different magnetization directions of the uniformly magnetized hemispheres from, out-of-

plane (Fig. 5.7(b)) to in-plane direction (Fig. 5.7(h)) in steps of 15◦.
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Figure 5.7: MFM simulation results for homogeneously magnetized hemispheres. (a)
Cross-section of the MFM tip - sample path for 200 nm diameter particle; (b) - (h) are
the simulated MFM images for out-of-plane (Fig. b) to in-plane magnetization (Fig. h) for
the hemispheres, shown in steps of 15◦ change in the magnetization direction.

5.3.4 Magnetic state of Co and Fe nanoarrays

Figures 5.8(a) and (b) show the AFM and the corresponding zero-field MFM images, re-

spectively, of the as-prepared Co nanoparticles. The magnetic information in the MFM

images (Fig. 5.8(b)) is represented by the bright and dark contrast. As has been shown

previously by a number of researchers, single domains are characterized by a symmetrical

dark-white dipolar contrast for in-plane orientation (0◦ as measured from the surface of

the substrate) (see Fig. 5.7(h)), or by a uniform center and oppositely contrasted periph-

ery for out-of-plane orientation of the magnetization (90◦ as measured from the surface of

the substrate) as shown in Fig. 5.7(b). However, if the magnetization direction rotates by

180◦, the contrast in the MFM images will be reversed (bright region will become dark

and vice-versa). Figs. 5.9(a-c) show the magnified images of the typical MFM contrast

observed from different particles, marked by arrows 1 (50 nm particle), 2 (78 nm particle)

and 3 (115 nm particle)) in Fig. 5.8(b). While particles marked by 1 and 3 in Fig. 5.9(a)

and (c) are consistent with in-plane and out-of-plane orientation of single domain magnets,

particle 3 is consistent with a magnetization direction at 45◦ to the substrate surface. The
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assignment of magnetization angle was based on simulations of the tip-sample interactions

presented in Sec. 5.3.3. Analysis of all particles within the size range of 30 - 160 nm in

Fig. 5.8(b), and up to 180 nm in thicker films indicated MFM contrast similar to that shown

in Fig. 5.7(b-h). This suggests that the particles are single domain with the magnetization

direction lying between in-plane and out-of-plane directions. Figure 5.11(a) shows the par-

ticle size-distribution combined with the size-dependent magnetization directions for all

particles, derived from the above analysis. The particles up to 75 nm diameter have their

magnetization between 0−45◦ and larger particles between 45−90◦, as indicated in Fig.

5.11(a). The uncertainty in assigning the magnetization direction came primarily from the

comparison of the diffuse contrast in the experimental data, and from the comparison of a

true hemisphere in simulations (contact angle 90◦) with an approximate hemisphere in the

experiment (contact angle 104 ± 22o). The typical MFM contrast for the larger (>180 nm)

multi-domain particles is shown in Fig. 5.9(d). Importantly, no evidence for vortex states,

which consist of a dark center and dark edges as shown in Fig. 5.9(e) [5], was found for

any particle..
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(a) (b)

(c) (d)

Figure 5.8: AFM and MFM images of as-prepared (a-b) and annealed (c-d) Co particles
acquired under zero field condition. Nanoparticles identified by # 1, 2 and 3 in figs. (a) and
(b) represent in-plane, near 45o and out-of-plane magnetization directions, respectively.
Nanoparticles identified by #1 and 2 in figs. (c) and (d) represent in-plane, while # 3
represents out-of-plane magnetization direction.

The AFM, and the corresponding zero-field MFM, measurements on the annealed ar-

rays of Co nanoparticles are shown in Fig. 5.8(c) and (d), respectively. In Fig. 5.8(d), the

arrows 1 (for 35 nm diameter) and 2 (for 70 nm diameter) indicate particles with in-plane

magnetization, whereas arrow 3 (for 125 nm diameter) represents a particle with out-of-

plane magnetization. In Fig. 5.11(b) the size ranges for particles with magnetization direc-

tions between 0−45◦ (up to 115 nm diameter) and 45−90◦ are shown. Compared to the

as-prepared arrays (Fig. 5.11(a)), the annealed arrays show that even much larger particles

102



(30 - 115 nm compared to 30 - 75 nm for the as-prepared) have preferential in-plane ori-

entation (magnetization direction ≤ 45◦). Once again, no evidence for vortex states was

found.

(a) (b) (c) (d) (e)

Figure 5.9: High magnification simulated MFM images for: (a) in-plane, (b) near 45◦, and
(c) out-of-plane magnetization. Fig. (d) shows MFM contrast for multi-domain particles
(larger than 180 nm in diameter), and (e) for vortex state in a circular dot of Co (taken from
Fig. 6B of ref.[5]).

Similar to Co, the orientation of magnetization of Fe nanoparticle arrays on SiO2 sub-

strate was analyzed . Figure 5.10 shows the AFM (Fig. 5.10(a)) and the corresponding

MFM (Fig. 5.10(b)) images of a region from the Fe nanoparticle array. The 30 nm, 55 nm

and 85 nm diameter particles, indicated by numbers 1, 2 and 3 in the AFM and correspond-

ing MFM images, show magnetization directions at 0◦, 45◦ and 90◦ with respect to the

substrate plane, respectively. After assignment of magnetization directions, the particles

were divided into two regions: a) preferentially in-plane (0− 45◦ for particles ≤ 55 nm)

and, b) preferentially out-of-plane (45−90◦ for larger particles), as shown in Fig. 5.11(c).

The Fe nanoparticles were SD until approximately 150 nm diameter and multi-domain

thereafter; with no evidence for vortex state.
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(a) (b)

Figure 5.10: (a) AFM from a region of the arrays showing Fe nanoparticles. (b) Zero
applied field MFM images from the AFM region shown in (a). Particles identified by # 1, 2
and 3 (in figs. a and b) correspond to 30 nm, 55 nm and 85 nm size diameters, respectively,
and their MFM contrast corresponds to magnetization directions along 0o, 45o and 90o ,
respectively.

(a) (b) (c)

Figure 5.11: Size distribution of Co and Fe arrays and the corresponding regimes show-
ing experimentally measured magnetization direction with respect to the substrate for as-
prepared Co (Fig. a), annealed Co (Fig. b) and as-prepared Fe (Fig. c) with magnetization
directions along 0−45◦ and 45−90◦.
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5.4 Discussion

The magnetic states of Co and Fe arrays processed by ns laser pulses were either single

domain with size dependent magnetization direction or multi-domain. While the experi-

mentally observed single domain size regime (Co∼180 nm and Fe∼150 nm) is large com-

pared to theoretical calculations (Co∼60 nm and Fe∼20 nm) [77, 13], it is not inconsistent

with other reported experimental single domain sizes (e.g. elliptically shaped Co islands

[88, 164, 165]). This discrepancy is primarily due to the fact that the calculations for single

domain are fairly approximate and assumes a single crystal [13, 166, 167]. The present

experimental condition is different because the particles are polycrystalline and the grains

are crystallographically oriented in random directions, coupled by magnetic exchange in-

teractions. This is equivalent to introducing some kind of random anisotropy that lowers

the effective magnetocrystalline anisotropy, which increases the domain size compared to

single crystal particles. Importantly, apart from single and multi-domain magnetic states,

there is no evidence for vortex magnetic states in the experiments on the near hemispher-

ical nanoparticles. This is an important difference, given that micromagnetic calculations

for unstrained polycrystalline hemispheres predict vortex states in the size regimes of the

present experiments [168, 169]. Obviously further work is needed to resolve these issues.

To verify the observation of size-dependent magnetic behavior of these nanomagnets,

magnetic hysteresis loop measurement was performed. The hysteresis measurements at

room temperature, using the PPMS, for the magnetic field parallel and perpendicular to

the substrate plane (M − H curves) are presented in Fig. 5.12(a) for the as-prepared Co

nanoarrays with similar microstructures as in Fig. 5.1(b). The solid lines represent the data

for magnetic field applied in-plane and the dashed lines for the field perpendicular (out-

of-plane) to the plane. The overall characteristics of the M − H curves in both cases were

similar, confirming that particles with in-plane as well as out-of-plane magnetization were

present. The absence of sharp jumps in the hysteresis curve also implied that there was no

substantial contribution from vortex magnetic states in these nanoparticles [168].
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(a) (b)

Figure 5.12: Parallel (solid line) and perpendicular (dashed line) hysteresis curves for as-
prepared Co arrays (initial film thickness of 3.2 nm) with particle size distribution similar
to Fig. 5.1(b). Inset shows a blow-up of the same hysteresis plot in the range of −1000 to
1000 Oe, (b) Calculated demagnetization energy per unit volume for uniformly magnetized
hemispheres oriented along different directions.

To understand the size dependent magnetization, various magnetic energy contributions

for these granular nanomagnets were estimated. In this analysis, any anisotropy contribu-

tion related to the interface was neglected because the ratio of surface to volume atoms

for these particles is small. The total energy per unit volume (ET ) of the arrays includes:

the dipolar interparticle interaction energy (EDip), the shape dependent demagnetization

energy (EDM), magnetocrystalline anisotropy energy (EMA), and magnetoelastic anisotropy

or magnetostrictive energy (EMS);

ET = EDip +EDM +EMA +EMS (5.8)

The dipole-dipole interaction energy per unit volume (EDip) was calculated between

two identical uniformly magnetized hemispheres using the following expression;

EDip =
µ0

4πV

[
µ1 ·µ2

r3 − 3
(µ1 · r)(µ2 · r)

r5

]
(5.9)
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where r is the relative distance between the dipoles with magnetic moments µi, which is

related to the saturation magnetization (M0) by; µ1 = µ2 = M0V , where V is the particle

volume [87]. The maximum value of EDip for two identical single domain Co hemispher-

ical particles of average diameter 88 nm, separated by 290 nm, was estimated to be 8

J/m3 (M0 = 1400Gauss [93] and µ0 = 4π · 10−7Wb/A ·m) when both the particles are

magnetized out-of-plane; the corresponding energy for the in-plane magnetization of both

particles was 17 J/m3.

The demagnetization energy per unit volume (EDM) as a function of magnetization

direction (β , w.r.t substrate plane) was estimated for hemispherical particles (contact angle

90o), using the approach outlined in ref. [89]. The method assumes that the particles are

single domain homogeneously magnetized hemispheres. The calculation was performed

by first evaluating the magnetic scalar potential (ΦM), using general spherical harmonics

(Ylm). The final expression for the hemispherical demagnetization energy per unit volume

was obtained as;

EDM = µ0M2
0 (100−9cos2β )/768 (5.10)

Fig. 5.12(b) shows the plot of EDM for Co magnets with different magnetization directions,

measured with respect to the substrate plane, for the uniformly magnetized hemispheres.

It showed that in the case of Co, the out-of-plane magnetized state is higher in energy by

3.62× 102 J/m3 compared to the in-plane state with an energy of 1.8× 103 J/m3. This

result is consistent with the shape anisotropy favoring magnetization along the longer ef-

fective dimension, which is the truncation plane of the hemisphere in the present case

(aspect ratio ∼1.7). Given the small difference in aspect ratio between a hemisphere (con-

tact angle 90o) and the experimentally observed nanoparticles (contact angle of 104o for

Co), the general trend of Fig. 5.12(b) is expected to be valid for the nanoparticles under

consideration.

The magnitude of magnetocrystalline anisotropy energy EMA depends on the anisotropy

constants (K1 and K2) of the crystal structure. For polycrystalline cubic Co with n number
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of grains, EMA per unit volume can be written in the following form [77];

EMA = 1
n ∑

n
i=1 K1

[
sin4(αi−β )·sin2 2φ

4 + cos2(αi−β ) · sin2(αi−β )
]

+
1
n

n

∑
i=1

K2 sin2 2φ · sin2 2(αi−β )

16
(5.11)

where αi is the angle between the easy axis of the ith grain with the substrate plane, β is

the magnetization direction of the particle w.r.t. the substrate plane and φ is the azimuthal

angle. Constants K1 and K2 for cubic Co [170] are−2.3×104 J/m3 and−4.31×104 J/m3,

respectively . The approximate magnitude of EMA was obtained by assuming φ = 0◦ . This

reduces Eq. 5.11 to;

EMA =
K1

4n

n

∑
i=1

sin2 [2(αi−β )] (5.12)

The order of magnitude for EMA for Co particles, estimated using the experimentally

observed number of grains (n) and a range of values for αi (−π/2 to +π/2) in Eq. 5.12,

is ∼ 103 J/m3, which corresponds to the maximum energy required to orient the magneti-

zation away from the easy axis [88]. However, the true crystalline anisotropy contribution

is dependent on the actual microstructure. For example, particles made of single grain

will have the highest contribution, whereas randomly oriented multiple grains will have

much smaller contribution [88]. In the present case, nanoparticles > 40 nm are typically

multi-grained with random crystallographic orientations (Fig. 5.13). Therefore, the mag-

netocrystalline anisotropy contribution will be significantly lower for these particles.
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Figure 5.13: Comparison of grain size with particle size for the as-prepared (closed circles)
and annealed Co nanoparticles (open squares).

Finally, the magnetostriction energy contribution EMS arises from the coupling of strain

to magnetization via the magnetostriction constants [90, 91]. The order of magnitude esti-

mate of EMS for cubic Co crystal was made by using the following relation [92];

EMS = (3/2)λε(c11− c12)[1+(2c12/c11)]cos2
β (5.13)

where λ is the polycrystalline magnetostriction constant, ε is the thermal strain, c11 and

c12 are the elastic stiffness constants and β is the direction of magnetization. Under

the processing conditions, the strain on the nanoparticles arises from the difference in

thermal expansion coefficients of the Co (∼ 13× 10−6 K−1) and the SiO2 substrate (∼

0.55×10−6 K−1) during rapid thermal processing. The strain is expected to be tensile since

the thermal expansion coefficient of the substrate is smaller than that of the metal. The up-

per limit of EMS for Co was estimated using the upper limit of the thermally-induced biaxial

strain (εCo ∼ 0.026) and the maximum temperature difference achieved during processing

(melting point of Co (1495oC) to room temperature). For cubic Co [90], λ is −15×10−6,
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c11 and c12 are 2.25× 1011 J/m3 and 1.6× 1011 J/m3, respectively [171]. The maximum

estimated value for EMS ∼ 105 J/m3 for Co, which, appears to be the highest energy con-

tribution in this problem.

The same energy analysis was also performed for Fe nanomagnets. For Fe arrays, the

dipolar interaction energy (EDip) for such large (∼320 nm) interparticle spacings are min-

imal (using Eq. 5.9 and M0 = 1700Gauss [93]), of the order of ∼ 10J/m3. The magne-

tocrystalline anisotropy (EMA), will also be significantly low because of the polycrystalline

behavior of Fe nanoparticles (TEM image for Fe particles are not shown in this chapter).

The shape anisotropy or demagnetization energy (EDM) for the Fe nanoparticles was cal-

culated (using Eq. 5.10) to be of the order of ∼ 103 J/m3. Finally, the magnetostriction or

magnetoelastic anisotropy (EMS) using the magnetostriction coefficient (λ ) of −7× 10−6

for polycrystalline Fe [77], and an estimated upper limit for thermal mismatch strain (εFe

∼ 0.022) between Fe (∼ 11× 10−6 K−1) and SiO2, the upper limit for magnetostrictive

energy was estimated to be, EMS ∼ 105 J/m3.

Based on these energy calculations two simple situations can be described:

1. Non-interacting polycrystalline hemispherical particles with no residual strain: In

this scenario, the magnetic orientation will be determined primarily by the EDM term

in the total energy, aligning the zero-field magnetization along the truncation plane

for particles of all sizes.

2. Non-interacting polycrystalline hemispherical particles with large tensile strain along

the truncation plane: For large enough strains (EMS > EDM), the dominant magnetoe-

lastic energy will determine the magnetization direction of the particles. Because the

magnetostriction constant [90, 91] is negative for polycrystalline, soft ferromagnets,

like Co, Fe or Ni, the magnetic orientation will be perpendicular to the strain axis.

Based on the above discussion, the experimental results for the multi-grained particles,

presented in Figs. 5.11, could be qualitatively understood in the following manner. For
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the larger as-prepared particles (Co> 75 nm and Fe> 55 nm) the residual thermal strain

from the fast laser processing likely results in EMS > EDM, favoring out-of-plane orienta-

tion. To qualitatively determine whether this indeed was the case, the Co particle arrays

were thermally annealed. As seen from Fig. 5.11(b), the distribution of particles with in-

plane versus out-of-plane magnetization changed significantly; particles up to 115 nm now

show in-plane orientation, compared to 75 nm for the as-prepared Co arrays (Fig. 5.11(a)).

Further, the estimated residual strain (detail analysis is in Chapter 5) that should change

the orientation from in-plane to out-of-plane was calculated to be ∼ 0.001 [172]. Such a

small value, compared to the maximum thermal strain, indicates that even if a substantial

fraction of the thermal strain is removed, out-of-plane orientation is possible. The in-plane

orientation for the smaller particles suggests that the magnetoelastic energy is compara-

ble or smaller than EDM for these particles. Since there is no size-dependence in EDM,

a grain-size dependent strain relaxation mechanism could be responsible for the observed

in-plane orientation of the smaller nanoparticles. There is substantial evidence that the rate

of stress/strain relaxation in nanostructured materials is a strong function of the grain size.

As shown by Shan et. al. [173], Ni nanoparticles undergo size-dependent deformation

with smaller particles deforming more easily than larger particles. This behavior was at-

tributed to the energetically favorable surface or grain boundary mediated deformation for

very small grains, compared to dislocation-mediated deformation for the larger grains. For

grain/surface boundary mediated deformation, the deformation rate is expected to scale

with diameter as D−4, implying much faster strain relaxations for the smaller particles.

The smaller residual strain in the multi-grained smaller particles in the present case may,

therefore, be a result of their smaller grain sizes (Fig. 5.13). Accordingly, the in-plane

orientation for the smaller particles appears to be primarily due to shape anisotropy or

demagnetization energy.

However, one aspect of the problem remains still unclear. All single grained (single

crystal) Co particles (∼40 nm and smaller) show in-plane magnetization (Fig. 5.13). The
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TEM analysis on Co particles, based on a few grains, suggest that the crystallographic

planes of the grains are randomly oriented with respect to the substrate plane. Now, since

the EMA term (2.3×104 J/m3) for single crystal particles is larger than all other contribu-

tions, when the strain is small, their magnetization should also show random orientation.

However, the MFM measurements consistently show an in-plane orientation. A more rig-

orous study to correlate the microstructure, residual strain, and magnetization direction of

these nanomagnets is needed to provide a more quantitative understanding of this unusual

size-dependent magnetization.

5.5 Conclusion

A laser-induced self-organization technique was used to create spatially ordered, nearly

hemispherical, nanoparticles of Co and Fe on SiO2 substrates. An extensive study of the

magnetization, morphology, and microstructure was performed as a function of particle size

for the as-prepared Co and Fe arrays, as well as for the thermally annealed Co arrays, us-

ing zero-field MFM, SEM, AFM and TEM studies and magnetic hysteresis measurements.

The MFM measurements under zero applied field showed single domain behavior for the

smaller particles with size dependent magnetization directions in Co and Fe nanoparticles,

and multi-domain behavior for the larger particles. TEM analysis revealed a granular mi-

crostructure with the grain size increasing with particle diameter. To interpret the MFM

image contrast from the nanoparticles, simulations of the MFM images were performed

taking into consideration the MFM tip-hemispherical particle interactions for the uniformly

magnetized spheres with different magnetization directions. Histograms of the particle size

distribution with the magnetization direction were constructed from these images for the

as-prepared and annealed Co arrays, as well as for the as-prepared Fe nanomagnets. In

the as-prepared arrays, smaller particles (Co< 75 nm and Fe< 55 nm) showed in-plane

magnetization orientation, while larger particles showed out-of-plane orientation. For the
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annealed Co sample, in-plane orientation was observed over a larger range of particle sizes,

from 30 to 115 nm, compared to 30-75 nm for the as-prepared particles. The origin of this

size-dependent magnetization is attributed to a size-dependent relaxation of thermal strain

and the granular microstructure produced during fast laser thermal processing. These de-

tailed studies of magnetic properties of the laser-induced self-organized nanoparticles with

near hemispherical shapes could be important towards understanding the size, shape and

process dependent magnetism in the nanoscale. It should be emphasized that while there

is substantial evidence for out-of-plane magnetization in epitaxial and/or continuous thin

films due to thermal strain [174, 175, 176], such studies for nanoparticles on an amorphous

substrate are still lacking.
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Chapter 6

Nanoparticles of elements, alloys, and
mixtures with in-plane and
perpendicular to the plane
magnetizations

Summary

Patterned arrays of ferromagnetic hemispherical nanoparticles of elemental Co and Ni,

an alloy (Fe50Co50), and a phase separated mixture of Cu and Co (Cu50Co50) have been

synthesized from their ultrathin metal films on SiO2 substrate by nanosecond laser-induced

self-organization. The morphology, nanostructure, and magnetic behavior of the nanopar-

ticle arrays are investigated by a combination of electron, atomic force, and magnetic force

microscopy techniques. Transmission electron microscopy investigations reveal a granular

polycrystalline nanostructure, with the number of grains inside the nanoparticle increasing

with their diameter. Magnetic force measurements suggest that the magnetization direction

of Co and Ni nanoparticles are predominantly out-of-plane while those for the Fe50Co50

and Cu50Co50 are in the plane of the substrate. This difference in behavior is due to the

dominating influence of magnetostrictive energy on the magnetization as a result of resid-

ual thermal strain following fast laser processing. Since the magnetostriction coefficient is
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negative for polycrystalline Co and Ni, and positive for Fe50Co50, the tensile residual strain

forces the magnetization direction of the negative magnetostriction materials out-of-plane

and the positive magnetostriction materials in-plane. In the case of Cu50Co50 mixture, the

magnetostrictive energy is small because of the low residual strain present in these nanopar-

ticles. As a result, the observed in-plane magnetization is due to shape anisotropy. This

demonstrates a cost-effective non-epitaxial technique for the fabrication of patterned arrays

of magnetic nanoparticles with tailored magnetization orientations.
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6.1 Introduction

As mentioned previously in chapter 5, of prime importance in the field of nanotechnology

is the fabrication of patterned nanostructures consisting of discrete nanoparticles whose

physical properties (e.g. magnetic, semiconducting, or optical) can be reliably controlled

by shape, size, and spacing, in conjunction with processing parameters. Arrays of magnetic

nanoparticles can be used for many applications, including high density magnetic data stor-

age [21] to non-volatile and high speed magnetic random access memories (MRAM) [32],

opto-electronics [141], and biological sensor applications [142]. One of the important chal-

lenges in the applications of magnetic nanoparticles is the control of magnetic orientation

of each nanoparticle. When the magnetization direction of nanoparticles can be tailored

to lie in-plane or perpendicular to the plane, additional advantages are evident. For exam-

ple, particles with perpendicular to the plane anisotropy enable higher density for the same

signal-to-noise ratio [30] and lower the read and write errors [31], compared to particles

with in-plane magnetization. In the absence of an external magnetic field, the magnetic

moment of a ferromagnetic material aligns spontaneously along a preferred direction. This

direction corresponds to the minimum magnetic energy, which in turn is determined by

intrinsic material parameters such as magnetocrystalline anisotropy, as well as extrinsic pa-

rameters such as shape, size, interfacial strain. Therefore, achieving desired magnetic ori-

entation and switching behavior, requires control of magnetic energy through the choice of

intrinsic and extrinsic material properties. For instance, epitaxial thin film growth technique

can be used to synthesize single crystal magnetic nanodots, where the magnetocrystalline

anisotropy uniquely determines the magnetization direction [177].

This chapter demonstrates magnetic orientation control in polycrystalline nanoparticles

through non-epitaxial means. The ordered magnetic nanoparticle arrays were synthesized

with the magnetization direction tailored either in-plane or perpendicular to the plane. The

magnetic nanoparticle arrays were produced on amorphous SiO2 surfaces by nanosecond

(ns) laser-induced self organization of nanometer thick ferromagnetic metal films, as de-
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scribed in the previous chapters. As shown in chapter 5, the single-domain Co [6] and

Fe nanoparticles [99] showed particle size-dependent magnetic anisotropy behavior. A

significant contribution to this anisotropy came from extrinsic mechanisms. While the

polycrystalline nature of the larger nanoparticles (multiple grains) reduced the contribu-

tion of magnetocrystalline anisotropy, the residual thermal mismatch strain made a large

contribution to the magnetic energy via coupling of the strain to the magnetostriction co-

efficient. In this chapter, we show how exploiting these process dependent parameters,

the magnetization directions of the nanoparticles can be tailored to lie in-plane or perpen-

dicular to the substrate plane. Elemental ferromagnets (Ni, and Co), an alloy (Fe50Co50),

and a composite nanomaterial (Cu50Co50, made of phase separated magnetic Co and non-

magnetic Cu) were selected for their different signs of magnetostriction coefficient and

magnitude of thermal expansion coefficients. The elemental ferromagnets have negative

magnetostriction coefficient (λS) (Co, λS= -30 ppm and Ni, λS = -34 ppm) and the alloy,

Fe50Co50, has positive magnetostriction coefficient (λS = +84 ppm) [77, 178, 179]; the

quoted values are for randomly oriented polycrystalline materials. The ensuing investiga-

tions of magnetic properties showed that the single-domain Co nanoparticles have prefer-

ential perpendicular to the plane (out-of-plane) orientation, while those of Fe50Co50 and

Cu50Co50 in-plane orientations. The reason for this difference was attributed to the cou-

pling of residual thermal strain (tensile), generated on the nanoparticles by the substrate

during rapid thermal processing, to the magnetostriction. The residual tensile strain con-

tributed to a high value of the magnetostrictive energy that favored out-of plane orientation

of the magnetization for the negative magnetostriction materials (Co and Ni), and in-plane

orientation for positive magnetostriction material (Fe50Co50). A much lower strain in the

nanoparticles of Cu50Co50 due to chemical phase separation into very fine grains, allowed

the shape anisotropy to dominate, favoring in-plane orientation.
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6.2 Experimental details

A thin film of Co (∼ 4 nm) was deposited using electron beam evaporation (e-beam),

while Ni (∼ 5 nm), Fe50Co50 (∼ 4 nm) and Cu50Co50 (∼ 6.5 nm) films were deposited

using pulsed laser deposition (PLD) technique on commercially available optically smooth

SiO2/Si(100) substrates, under ultra high vacuum (∼ 1× 10−8 torr). The ingots for PLD

used for FeCo alloy and CuCo mixture were made by repeated arc-melting of stoichio-

metric mixtures of elements (4N purity) in a water-cooled copper hearth under high purity

TiZr-gettered argon atmosphere. The films were irradiated with a Nd:YAG pulsed laser

beam as described in the previous chapter. Two types of laser irradiation experiments were

performed. For the case of Ni and FeCo, a spatially uniform single beam was incident

perpendicular to the substrate surface to produce nanoparticle arrays by spinodal dewetting

[1, 150, 153]. For Co and CuCo, two beam laser-interference irradiation was performed to

produce 1-dimensional ordered nanoparticle arrays [34].The resulting nanoparticle arrays

were characterized by SEM, TEM, AFM, and MFM techniques, as described in chapter 5.

Finite element simulations were performed to model the thermal relaxation of a single

hemispherical nanoparticle with diameters ranging from 20 - 100 nm diameter, placed on a

400 nm thick SiO2 substrate. This was accomplished using the COMSOL software package

for a 2-D axi-symmetric geometry, where the particle is perfectly adhered to the substrate.

The model was set to be stress-free at the melting point of the nanoparticle, and the stresses

and strains present from thermal contraction from the melting temperature to 298 K were

determined. The substrate was assumed to be elastic, and the particle was modeled as both

a purely elastic and elastic-perfectly plastic solid. The yield strength, σy, of annealed pure

Co, 400 MPa, and pure Ni, 300 MPa, was determined by converting large depth hardness

data by means of the tabor relation, Hardness = 3σy [180, 181, 182]. The average stresses

within the particle were converted to elastic strain by Hooke’s law resulting in two tensile

in-plane principal elastic strains.
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6.3 Results

The nanostructural studies of the individual particles of Co, Ni and Fe50Co50 are shown in

Fig.6.1. Figure6.1(a) is the bright field (BF) TEM micrograph of Co nanoparticles. De-

tailed nanostructural analysis for Co particles, as explained in chapter 5 [6], revealed a

granular nanostructure with random orientation of the grains inside the nanoparticles. The

number of grains increased with increasing nanoparticle size from 1 grain (i.e. single crys-

tal) for the smaller particles (< 40 nm) to 20-30 grains for the bigger particles (∼ 120

nm), with small statistical variation when different similar size particles were compared.

Figure6.1(b) is the BF TEM image for the array of Ni nanoparticles. These also indicate

a granular nanostructure with random orientation of the grains. Similar to Co, the very

small Ni particles (∼ 15 nm) are single grained while the bigger particles have multiple

grains (e.g., ∼ 40 nm particle is made of about 20 grains). The TEM image of Fe50Co50

nanoparticles [shown in Fig.6.1(c)] also showed similar granular behavior. The main dif-

ference was the large statistical variation in the number of grains from particle to particle,

even when the size was similar (e.g., a small fraction of ∼ 150 nm size particles had only

2-5 grains, while the majority had more than 15 grains).
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(a)

(b)

(c)

Figure 6.1: Representative bright field TEM micrographs for nanoparticle arrays synthe-
sized by the laser-induced self-organization; (a) Co nanoparticles, (b) Ni nanoparticles, and
(c) Fe50Co50 nanoparticles. The contrast within each nanoparticle arises from random crys-
tallographic orientation of multiple grains. Such images were used to generate statistics on
the number of grains as a function of nanoparticle size.
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(a)

(b)

Figure 6.2: AFM (a) and zero field MFM (b) images of one dimensional patterned Co
nanoparticles produced by 2-beam pulsed laser interference irradiation of a 4 nm Co film.

Figure 6.2 shows the AFM (6.2(a)) and zero-field MFM (6.2(b)) images of an array of

Co nanoparticles produced by two beam irradiation. The separation between the rows of

particles is ∼ 400 nm, which is consistent with the separation of the interference fringes

from the two beams. The regular 1-D pattern of the nanoparticles along the lines is clearly

evident. A 2-D pattern can also be formed using three beam irradiation [104]. The average
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particle diameter was measured to be 110± 34 nm. The corresponding MFM image in

Figure 6.2(b) shows that the image contrast of the particles, is either uniformly dark with a

bright periphery or uniformly bright with a dark periphery. When compared with the sim-

ulated MFM image contrast of single domain particles oriented along different directions

(Fig.6.5), it is clear that all particles in Fig.6.2(b) are single domain and have their magneti-

zation orientation perpendicular to the substrate plane; the exactly opposite image contrast

of the two groups is due to their magnetization pointing either up or down (see chapter 4

for detailed analysis).
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(a)

(b)

Figure 6.3: AFM (a) and zero field MFM (b) images of Ni nanoparticles produced by single
beam pulsed laser irradiation of a 5 nm Ni film. The nanoparticles marked as #s 1, 2, and
3 in the AFM image (Fig. (a)) are 75 nm, 135 nm and 200 nm diameter, respectively. The
corresponding MFM image [Fig. (b)] indicates the magnetization directions with respect
to the substrate plane at 0o, 45o and 90o, respectively.

The AFM and MFM images for the Ni array produced by single beam irradiation,

is shown in Figure6.3(a) and 6.3(b), respectively. Due to self-organization by spinodal

dewetting, the particles have a characteristic interparticle spacing (∼615 nm) and a fairly

narrow particle size distribution (176±37 nm). Compared to the two beam irradiation, the

spatial distribution of these particles do not follow any pattern, however. Similar to Co, the
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contrast in the MFM image [Fig.6.3(b)] indicates that almost all particles (similar in size

to that marked as # 3) have their magnetization perpendicular to the substrate plane, either

up or down. A few particles (e.g. marked as 2 in Figure6.3(a)) have their magnetization

at an angle < 90o to the plane; only the smallest particle (marked as 1) of about 75 nm in

diameter is oriented at a small angle to the plane. The nanoparticles have a multi-grained

microstructure, but are single domain up to about 220 nm diameter, which is slightly larger

than the previously reported value of ∼180 nm for spherical single grain Ni nanoparticle

[183].
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(a)

(b)

Figure 6.4: AFM (a) and the zero-field MFM (b) images of Fe50Co50 nanomagnets pro-
duced from a 4 nm film by pulsed laser irradiation. The nanoparticles indicated as #s 1 and
2 in the AFM image (Fig. (a)) are 50 nm and 150 nm diameters; the corresponding MFM
image (Fig. (b)) indicates that both have magnetization direction in the substrate plane (0o),
while another 150 nm diameter particle ( # 3) is aligned at ∼ 45o to the substrate. The bold
arrows in Fig. (b) indicate the in-plane random orientations of the other nanoparticles.
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Figure 6.5: The simulated contrast in the MFM images of a single domain ferromagnetic
particle with (a) in-plane (0o), (b) at an angle of 45o and (c) perpendicular to the plane (90o)
(taken from chapter 4 [6]).

The AFM and the MFM images on an array of Fe50Co50 nanoparticles, produced by

single beam irradiation, are shown in Figures6.4(a) and (b), respectively. The average par-

ticle diameter is 113±32 nm with about∼580 nm separation. The particles with diameters

50 nm and 150 nm, indicated as 1 and 2 in the AFM and MFM images, show in-plane

(0o) magnetization. In stark contrast to Co and Ni nanoparticles, most of the Fe50Co50

nanoparticles (around 70 %) show in-plane magnetization while the rest (e.g. number 3)

are at a small angle (≤ 45o) to the plane. These multigrain particles remain single domain

up to about 175 nm in diameter. These results clearly show a difference in the orienta-

tion of the magnetization of the nanoparticles with respect to the substrate plane when the

magnetostriction coefficient changes sign.
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(a)

(b)

Figure 6.6: AFM (a) and the corresponding MFM (b) for Cu50Co50 nanoparticle showing
in-plane magnetization. The size of each micrograph is 5µmX 5µm. The arrows in the
inset of image (b) show the direction of in-plane directions. The size of each inset image is
1µmX 1µm

Figure 6.6(a) shows the AFM and corresponding magnetic information for Cu50Co50

particles [Fig. 6.6(b)]. The average particle size for Cu50Co50 composites was measured

to be 121± 20 nm in diameter. The separation between the rows of particles is ∼ 350

nm, consistent with the separation of the interference fringes from the two beams at 45o

angle. The contact angle was measured to be 97± 15o. The split dark-bright contrast in

these particles in Fig. 6.6(a) is consistent with in-plane directions (∼ 0o with the substrate
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plane).

The average in-plane elastic thermal strains determined from the finite element simula-

tions were found to be independent of particle size. This is because the only relevant length

scale present in the problem is the ratio of particle diameter to the size of the SiO2 substrate,

which was sufficiently large. The larger of the two average in-plane elastic strains is given

in Table6.1, along with the material parameters used in the simulation [184]. Only the av-

erage elastic component of strain is reported due to its contribution to the megnetostrictive

energy. With no mechanism to relieve internal stresses, the elastic solutions represent an

upper bound on the average elastic strains. The average elastic strain is found to be lower

for the elastic-perfectly plastic simulations due to the presence of large plastic deforma-

tions. The yield strength chosen and the nature of the elastic-perfectly plastic simulations

neglects any size, strain hardening and cooling rate affects, which may significantly reduce

plastic deformations consequently increasing average stresses and elastic strains within the

particle [185, 186]. For this reason, the elastic-plastic simulations are assumed to be a

lower bound of the resulting average elastic strain.

Table 6.1: List of material parameters used for finite element simulation and the average
in-plane elastic strain values obtained from the simulation . The strain reported is the larger
of the in-plane principal strains averaged over the volume of the particle.

Property SiO2 Cobalt Nickel Co-Fe
Thermal expansion coeff. α×10−6 0.55 13 13.4 12.4

Melting temperature Tm(K) 1768 1728 1748
Young’s modulus E (GPa) 72 209 200 82.7

Poisson’s ratio ν 0.17 0.31 0.31 0.31
Yield strength σy (MPa) ∞ ∞ 400 ∞ 250 ∞

Avg. in-plane elastic strain ε
(
×10−4) 10 3.9 10.5 4.6 24

128



6.4 Discussion

To understand this difference, various contributions to the magnetic energy of a nanoparti-

cle was estimated. The magnetocrystalline anisotropy, which depends on the crystal struc-

ture, is significant only for single crystal or polycrystalline particles with preferred crystal-

lographic orientation of the grains. The anisotropy constants for single crystal Co, Ni, and

Fe50Co50 are 2.3×104, 0.5×104 and 4.8×104 J/m3, respectively [77]. For random crys-

tallographic orientation of the grains, such as the case here, the contribution of crystalline

anisotropy scales inversely with the number of grains [88], reducing to at least one to two

orders of magnitude smaller values when the number of grains exceed about 20 (see Fig.6.7

and [6]). Because of the large interparticle separation (400 to 600 nm), dipolar interaction

energy is also small, as will be shown below. The shapes of these nanoparticles are nearly

hemispherical as has been determined by the AFM measurements. The estimated contact

angles were 104± 22o, 106± 26o, and 103± 20o, for Co, Ni, and Fe50Co50, respectively.

For the average particle size and separations, using the known saturation magnetizations

(1400, 485, and 1922 Gauss for Co, Ni, and Fe50Co50, respectively [77]), the demagnetiza-

tion energy was estimated to be∼ 1.8×103, ∼ 2.3×102, and∼ 3.6×103 J/m3 for Co, Ni,

and Fe50Co50, respectively [see horizontal lines in Fig.6.7(a-c)]. To estimate the magne-

tostrictive energy, two approaches were used. A simplistic estimation, as given in chapter

5, considered the difference in the thermal expansion coefficients of the substrate and the

metal (13×10−6 K-1, 13.4×10−6 K-1, and 12.4×10−6 K-1, and 0.55×10−6 K-1, for Co,

Ni, Fe50Co50 alloy, and SiO2, respectively [187]) during cooling from the melting point to

room temperature, gave an upper limit of the tensile strain to be ~ 2.5%. The corresponding

value for EMS is about 1×105 J/m3, much higher than all other energy contributions in the

present case. A more sophisticated calculation, as explained in the previous section, gave

the maximum theoretical elastic strain to be 0.1% for both Co and Ni and 0.24% for Fe50Co

(see Table6.1). The corresponding values of EMS are 7.7×103, 1.1×104 and 3.3×104 J/m3

for Co, Ni and Fe50Co50 respectively. The estimated magnetostrictive energies (EMS) as a
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function of strain (%) for Co, Ni, and Fe50Co50, along with the magnetocrystalline energy,

EMC, and demagnetization energy, EDM, as a function of number of grains in the nanopar-

ticles are shown in Fig. 6.7.. They clearly show that, EMS dominates over all other energy

terms (EMC or EDM), even when a very small amount of strain (∼ 0.1%) is present in these

magnetic particles.
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(a)

(b)

(c)

Figure 6.7: The comparison of different magnetic energies for the three different materials.
The magnetocrystalline energy (EMC) is shown as a function of number of grains, and the
magnetostrictive energy (EMS) as a function of strain (%). The demagnetization energy
(EDM) is also shown. Fig (a) corresponds to Co, Fig. (b) to Ni and, Fig. (c) to Fe50Co50. In
each of the three cases a small amount of residual strain (~0.1%) is sufficient to make the
EMS dominate over EMC and EDM.
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With this reasoning, the difference in the behavior of magnetization direction for the

nanoparticles of Co and Ni versus Fe50Co50 can be explained. For an in-plane tensile strain,

the magnetization will be perpendicular to the substrate plane when the λS is negative, as

is the case for Co and Ni. On the other hand, for positive values of λS, the magnetization

will be in-plane, as is the case for Fe50Co50. One point needs to be clarified, however. A

fairly significant number of Fe50Co50 nanoparticles (about 30%), also show slightly out of

plane (0−45o) magnetization. Interestingly, as mentioned in the previous section, the TEM

analysis of Fe50Co50 showed large statistical variations in the number of grains for the same

diameter nanoparticles. As can be seen from Fig. 6.7, the magnetocrystalline anisotropy

contribution cannot be neglected when the number of grains is small. For example, the

magnetocrystalline anisotropy energy for Fe50Co50for 2 grains was calculated to be ∼ 1×

104 J/m3, compared to an order of magnitude smaller value of≤ 1×103 J/m3 for 15 grains

(anisotropy constant K1 = 4.8×104 J/m3 [77]). The magnetocrystalline energy, therefore,

may compete with the magnetostrictive energy for particles containing smaller number of

grains and orient the magnetization from the in-plane direction. The same argument may

be applied to the in-plane magnetization of smaller Ni nanoparticles. Moreover, some

statistical variation in the amount of strain in particles of the same size may also be partly

responsible for the above observations.

The in-plane magnetic behavior of Cu50Co50 nanoparticles can also be explained by

similar arguments, but with a slightly different strain relaxation mechanism. Since bi-

nary phase diagram of Cu-Co system reveals a very small miscibility in each other, each

Cu50Co50 nanoparticle is expected to be made of phase separated smaller grains of Cu and

Co. Although detailed x-ray mapping of the nanoparticles have not been done in this case,

such studies for a similar immiscible system, AgCo, showed phase separated Ag and Co

grains inside the nanoparticles (chapter 3). Moreover, previous studies of thin films and

devitrified CuCo alloys [188] have clearly shown the presence of phase separated Co and
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Cu grains in such nanocomposite materials. Under the present processing conditions, it

is quite realistic to expect that because of the much lower melting point of Cu (1356 K)

compared to Co (1768 K), Co grains will nucleate and grow first from the liquid during

cooling . Since they remain in contact with the remaining Cu-rich liquid, they do not ex-

perience any strain until the Cu-rich liquid solidifies. Therefore, the temperature window

over which the Co grains experience strain is much narrower; room temperature to the

melting point of Cu, instead of m.p. of Co. Thereafter, the strain experienced by the Co

grains is small, because of two reasons. First, the thermal expansion mismatch between

Cu and Co is small (Cu, αth ∼ 16.5× 10−6K−1 and Co, αth ∼ 13× 10−6K−1). Whatever

strain now comes form the SiO2 interface, most likely causes plastic deformation of Cu

because of its low elastic limit. The harder Co grains, being embedded in the softer Cu

matrix, experience much smaller strain and may also transfer some their strain to the Cu

grains. Therefore the magnetostrictive energy is, expected to be much smaller compared

to the elemental metals or miscible alloys. The magnetocrystalline is also expected to be

small because of the fine grained nanostructure. The shape anisotropy (demagnetizing) is,

therefore, expected to dominate and favor in-plane magnetization direction. Clearly, more

theoretical and experimental investigations are required to support this argument.

6.5 Conclusion

In conclusion, magnetic nanoparticle arrays of Co, Ni, Fe50Co50 and Cu50Co50 were syn-

thesized using ns laser-induced self-organization from ultrathin films deposited on SiO2

surfaces. The resulting nanoparticles were hemispherical in shape with polycrystalline

nanostructure. An extensive study of the orientation of the magnetization as a function

of nanoparticle size was performed using zero-field MFM. This revealed that the single-

domain magnetic nanoparticles of Co and Ni were primarily oriented out-of-plane. On the
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other hand, nanoparticles of Fe50Co50 and Cu50Co50 were primarily in-plane. The reason

for this difference was attributed to the difference in the sign of magnetostriction coeffi-

cients and the magnitude of magnetostrictive energy. Magnetic energy arguments showed

that the magnetostrictive energy dominates among all other contributions, when some resid-

ual tensile strain is present in the nanoparticles due to the fast cooling process following the

ns pulsed laser irradiation. As a result, metals with negative magnetostriction coefficient

(Co, and Ni) show out-of-plane magnetization while, positive magnetostriction coefficient

materials (Fe50Co50) show in-plane magnetization. The in-plane behavior in Cu50Co50

composites was explained by small magnetostrictive energy due to the presence of lower

strain and finer grain size in these particles. This demonstrates a cost-effective, and non-

epitaxial, laser-based processing technique for the production of one- and two-dimensional

arrays of magnetic nanoparticles with controlled magnetization directions.
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Chapter 7

Summary and future work

7.1 Summary

This chapter summarizes the key findings of this dissertation and also identifies some po-

tential directions for future research based on preliminary results (sec. 7.2). The scientific

and technological motivation of this research was presented in the introductory message

in chapter 1. Self-organization via dewetting in ultrathin films has received attention be-

cause of its potential application as a nanomanufacturing process and also because of the

fundamental interplay between energy and dynamics. Practically, dewetting is a simple,

low cost, robust and reliable route to create surface nanostructures. It results in a variety

of complex structures with ability to control size, shape and spacing. Scientifically, the

correlation between the temporal behavior of the free energy of the thin film system with

energy loss mechanisms during fluid flow (viscous dissipation) is a fundamental princi-

ple underlying spontaneous self-organization. Finally, the use of nanosecond pulsed laser

irradiation to initiate and foster the dewetting process is also an important aspect of this

work as it allows a systematic exploration of the dewetting morphology evolution, permits

exploration of high-melting point materials, introduces intrinsic nanoscale effects that can

modify dewetting, and influences the magnetic properties of nanostructures prepared by

this process.

The dewetting in thin metal films on inert substrates was observed to follow the spin-
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odal dewetting mechanism, and in certain instances, modified by intrinsic thermocapillary

forces. A thermodynamic model was developed to understand the characteristics of dewet-

ting in single layer and bilayer metal films. This model is based on the principle of equating

the rate of change of free energy to the viscous dissipation during liquid flow. The char-

acteristic length scales of spontaneous dewetting were accurately described by this model.

The experimental observations of thickness (h) dependent dewetting length scales (λ ) in

single layer Ag metal on SiO2 substrate was correctly explained by the thermodynamic

theory, where the length scale showed a parabolic dependence on the initial film thickness

(λ ∝ h2). The model was also successful at explaining the dewetting behavior of Co, which

deviated from the classical spinodal case for larger thicknesses. This occured because of

the presence of intrinsic thermocapillary forces generated by the nanosecond laser heat-

ing process. For bilayers, the theoretical and experimental dewetting study was performed

for the immiscible metals Ag and Co on SiO2 substrates. The length scale behavior was

obtained as a function of film thicknesses for both the bilayer configurations, Ag/Co/SiO2

and Co/Ag/SiO2, via the thermodynamic model. A substantial difference in length scale

with bilayer thickness was seen for the two configurations. The length scale was a non-

monotonic function of bilayer thickness for Ag/Co/SiO2, while it increased monotonically

for Co/Ag/SiO2. This difference could be explained by the difference in the sign and mag-

nitude of the intermolecular forces for the two cases. The experimental observations for

both configurations were consistent with the theory. Nanostructure studies were also per-

formed using TEM and x-ray mapping in the SEM for the nanoparticles created by laser

processing of bilayer Ag-Co thin films on SiO2. These revealed that each nanoparticle is

a composite of Ag and Co. The ratio of Ag and Co in each nanocomposite, which was

calculated by measuring the x-ray counts of both elements, was identical to the individual

film thickness in the bilayer.

The morphological evolution during dewetting was studied as a function of film thick-

ness for the case of Ag on SiO2. In the thickness range of 2≤ h≤ 20 nm, the length scale
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trend confirmed the spinodal dewetting process. However, the morphology showed bicon-

tinuous structures as an intermediate stage for films h ≤ 9.5 nm, and regularly sized holes

and polygon networks for 11.5 ≤ h ≤ 20 nm. This transition in morphology at a specific

thickness was correlated to the position of the minima in the free energy curvature. The

thickness-dependent free energy contributions came from a long-range attraction, a short

range Lennard-Jones type repulsion, and an electrostatic term. The resulting prediction for

morphology change for Ag was consistent with experimental observations.

The magnetic properties of hemispherical shaped nanomagnets were investigated for

the elemental (Co, Fe, and Ni), alloy (Fe50Co50), and a phase mixture (Cu50Co50), on SiO2

substrates. The MFM and hysteresis loop measurement techniques were used to charac-

terize these nanomagnets arrays comprising of 30 - 250 nm diameter nanoparticles. De-

pending on the particle size, the nanomagnets showed single or multi domain behavior; no

evidence for vortex magnetic states was observed in any of these nanomagnets. For the

single domain Co, Fe, and Ni nanoparticles, the magnetization showed size-dependent ori-

entations, with the smaller particles aligned in the substrate plane and the bigger particles

perpendicular. The size-dependent magnetic behavior was explained by the size-dependent

residual thermal strain (tensile), developed during fast laser processing, and the coupling

of strain to the negative magnetostriction coefficients of the ferromagnetic elements. A de-

tailed estimate of the various contributions to the magnetic energy revealed that the domi-

nating influence of the magnetostrictive energy controls the magnetization direction of the

nanoparticles. This found additional support when the magnetic properties were studied for

an array of nanoparticles of a positive magnetostriction coefficient material, Fe50Co50, and

a phase separated mixture of Co and Cu nanoparticles with very small residual strain, syn-

thesized from a Cu50Co50 alloy. Magnetic force measurements revealed in-plane behavior

for both Fe50Co50 and Cu50Co50 nanoparticles. These results clearly show that controlling

the interfacial strain during fast laser processing and judicial choice of magnetostrictive

properties of materials, the magnetization directions of nanoparticle arrays can be tailored
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to lie in specific directions.

7.2 Future work: Magnetic properties in complex shapes

As mentioned in the earlier chapters, the shape is an important factor in magnetism. After

studying the magnetic properties of hemispherical nanoparticles, the investigation of mag-

netism in other shapes (morphologies) such as nanowires and polygons created by rapid

laser processing, appeared to be interesting. Here, a summary of some preliminary results

obtained for different morphologies, for elemental Co and composite Co40Ag60, on SiO2

substrates, is provided.

7.2.1 Experimental details

Either a thin film of Co (∼ 4 nm), or a bilayer films of Ag (∼ 5 nm) and Co (∼ 7 nm)

was evaporated on commercially available optically smooth SiO2/Si(100) substrates under

ultra high vacuum (∼ 1×10−8 torr). The thermally grown oxide (SiO2) layer was 400 nm

thick. The deposition of Co and Ag was done by electron beam evaporation and pulsed

laser deposition techniques, respectively. To produce one-dimensional ordered array of

Co nanowires, the film was exposed to a two-beam laser (wavelength of 266 nm with

a pulse length of 9 ns, at a repetition rate of 50 Hz) interference pattern, with an angle

of 40o between the beams. The nanopolygon structures of Co and Co40Ag60 were made

by irradiating the Co/SiO2 and Co/Ag/SiO2 films, respectively, using a spatially uniform

single beam, incident perpendicular to the substrate surface. In all these experiments, the

energy density of the laser pulses (∼ 60 mJ/cm2) was chosen to be slightly above the melt

threshold. Approximately, 100 laser pulses were required to achieve the pattern with arrays

of nanowires or nanopolygon networks.

The resulting morphologies were characterized for topographic and magnetic images,

by a tapping mode atomic force microscopy (AFM) and zero-field magnetic force mi-
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croscopy (MFM), respectively, using a Digital Instruments Dimension 3000 instrument.

A silicon cantilever, coated with a few tens of nm thick CoCr alloy (Asylum Research,

ASY), with a scan height of 50 nm, was used in the MFM measurements. To rule out any

influence of the MFM-tip on the measurement, MFM was performed in different directions

(0o and 90o) and at different heights from the samples.

7.2.2 Results and Discussion

7.2.2.1 Co nanowires

Figure 7.1 shows the AFM [Fig. 7.1(a)] and the corresponding zero-field MFM [Fig.

7.1(b)] micrographs of the one-dimensional ordered Co nanowires on SiO2 substrate, pro-

duced by two-beam laser interference irradiation on a Co (∼ 4 nm) film. The spacing

between the nanowires was measured to be∼390 nm, which is consistent with the interfer-

ence angle of 40o for the two 266 nm laser beams. The length of nanowires was measured

to be in the range of 5-20 µm. The average width and height of nanowires were 150 nm and

45 nm, respectively. The contact angle of the nanowire with the substrate was calculated,

assuming a cylindrical shape with width and height estimated from AFM, to be 65o. The

magnified AFM and MFM image of a part of the Co nanowire is also shown in the outset of

Figures 7.1(a) and (b). The continuous dark and bright contrast in the magnified MFM im-

ages along the nanowire indicate that Co breaks up into 250 - 400 nm long domains (SD),

with random in-plane magnetization directions. The break-ups appear to be at places where

the cross-sectional area (height and width) changes significantly. Such inhomogeneity in

shape and formation of defects at these sites, may help domain wall formation and pinning

[189]. The shape anisotropy for such Co nanowires is calculated to be 6×105 J/m3 [190],

compared to 6.3× 104 J/m3 [84] for the magnetocrystalline anisotropy for single crystal

cubic Co, which should be further reduced because of the polycrystallinity 7.3. Clearly,

the shape anisotropy is dominating over magnetocrystalline anisotropy, favoring magne-

tization orientation along the long-axis of the wires in the substrate plane. The random
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in-plane orientation may be related to the random kinks and bends in the nanowires.

(a) (b)

Figure 7.1: AFM (a) and the corresponding zero-field MFM (b) of ordered Co nanowire,
the magnified part of the Co nanowire is indicated in both (a) and (b).

7.2.2.2 Co nanopolygon

Figure 7.2 shows the AFM [Fig. 7.2(a)] and the corresponding MFM [Fig. 7.2(b)] images

of a polygon made from single beam irradiation of Co film on SiO2 substrate. The average

width and height of the polygonal arms were measured to be 95 nm and 30 nm, respectively,

and the calculated contact angle was 68o. The TEM image of the polygons are shown

in Fig. 7.3. The highly inhomogeneous cross sections of the polygonal arms is clearly

visible, which is not surprising, considering that the polygons form at fairly early stages of

the dewetting process. The MFM image indicates the formation of magnetic flux-closure,

where the domains terminate at the nodes of the polygon and change direction along the

arms of the polygon, forming a closed loop. Similar to the nanowires, the kinks and bends

at the nodal points appear to have helped the formation of domain walls at these points.
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(a) (b)

Figure 7.2: AFM (a) and MFM (b) of a polygon of Co on SiO2 (both image size is 600nm×
850nm).

Figure 7.3: TEM micrograph of Co polygon networks, indicating polycrystalline behavior
of the microstructure.
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7.2.2.3 Ag-Co nanowire

The nanowires made after laser irradiation of a Co40Ag60 film, are expected to be made of

phase separated small grains of Ag and Co, similar to the nanoparticles shown earlier in

chapter 3. The average width and height of the nanowires were measured to be 400 nm and

150 nm, and the calculated contact angle was 75o. The nanowires are ∼3 µm long with

in-plane magnetization, consisting of much larger domains (1000 - 2000 nm), compared to

pure Co (250 - 400 nm). In spite of the presence of a significant fraction of non-magnetic

Ag grains, the magnetic nature of these nanowires indicate that the Co grains are easily

exchanged coupled. The Co exchange length is ∼3.5 nm [191, 190]. The important dif-

ference in the magnetic properties of nanowires of Co40Ag60 composite compared to pure

Co are: (a) much larger domain size, and (b) along the axis of the nanowire magnetization,

compared to the random in-plane orientations for pure Co. The former is most likely a

result of smaller magnetocrystalline anisotropy, while the reason for the latter is less clear.

It is conceivable that because of the finer grains, the small scale irregularities in the mor-

phology average out over the much larger length scale of the domains. This enables the

magnetization to follow the direction of the shape anisotropy (along the wire axis), without

being hindered by small scale defects and imperfections in the wire morphology.

(a) (b)

Figure 7.4: Co40Ag60 nanocomposite nanowire; (a) AFM, (b) MFM (both image size is
3µm X 1µm)

142



7.3 Acknowledgments

I would like to acknowledge Dr. C. Favazza for the TEM image of Co polygon networks,

shown in Fig. 7.3.

143



Bibliography

[1] H. Krishna, N. Shirato, C. Favazza, and R. Kalyanaraman, “Energy driven self-

organization in nanoscale metallic liquid films,” Phys. Chem. Chem. Phys., vol. 11,

pp. 8136–8143, 2009.

[2] F. Ross, J. Tersoff, and R. Tromp, “Coarsening of Self-assembled Ge Quantum Dots

on Si(001),” Phys. Rev. Lett., vol. 80, pp. 984–87, 1998.

[3] S. Camazine, “Patterns in nature,” Natural history, vol. June, pp. 34–41, 2003.

[4] J. Trice, C. Favazza, D. Thomas, H. Garcia, R. Kalyanaraman, and R. Sureshkumar,

“Novel self-organization mechanism in ultrathin liquid films: theory and experi-

ment,” Phys. Rev. lett., vol. 101, no. 1, p. 017802, 2008.

[5] C. L. Dennis, R. P. Borges, L. D. Buda, U. Ebels, J. F. Gregg, M. Hehn, E. Jouguelet,

K. Ounadjela, I. Petej, I. L. Prejbeanu, and M. J. Thornton J. Phys: Condens. Matter.,

vol. 14, p. R1175, 2002.

[6] H. Krishna, C. Miller, L. Longstreth-Spoor, Z. Nussinov, A. K. Gangopadhyay, and

R. Kalyanaraman J. Appl. Phys., vol. 103, no. 7, p. 073902, 2008.

[7] M. A. Meyers, A. Mishra, and D. J. Benson, “Mechanical properties of nanocrys-

talline materials,” Prog. Mat. Sci., vol. 51, pp. 427–556, 2006.

[8] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of

144



metal nanoparticles: The influence of size, shape, and dielectric environment,” J.

Phys. Chem., vol. 107, pp. 668–677, 2003.

[9] Y. Xia and J. N. Halas, “Synthesis and surface plasmonic properties of metallic

nanostructures,” MRS Bull., vol. 30, p. 338, 2005.

[10] S. Maier, P. G. Kik, and H. A. Atwater, “Observation of couple plasmon-polariton

modes in Au nanoparticle chain waveguide of different length: Estimation of waveg-

uide losses,” Appl. Phys. Lett, vol. 81, pp. 1714–16, 2002.

[11] D. L. Leslie-Pelecky and R. D. Rieke, “Magnetic properties of nanostructured mate-

rials,” Chem. Mater., vol. 8, pp. 1770–1783, 1996.

[12] C. Kittel Rev. Mod. Phys., vol. 21, p. 541, 1949.

[13] C. Kittel Phys. Rev., vol. 70, p. 965, 1946.

[14] J. B. Gonzalez-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. Cebollada,

G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au

Nanosandwiches with Enhanced Magneto-optical Activity,” Small, vol. 4, pp. 202–

205, 2008.

[15] K. Drexler, “Molecular engineering: An approach of the development of general

capabilities for molecular manipulation,” in National Academy of Sciences, vol. 78,

pp. 5275–5278, 1981.

[16] K. Drexler and J. S. Foster, “Synthetic tips,” Nature, vol. 343, pp. 600–604, 1990.

[17] H. Gleiter, “Nanostructured materials: basic concepts and microstructure,” Acta.

Mater., vol. 48, pp. 1–29, 2000.

[18] K. Inomata and Y. Saito, “Spin-dependent tunneling through layered ferromagnetic

nanoparticles,” Appl. Phys. Lett., vol. 73, pp. 1143–1145, 1998.

145



[19] J. Stahl, M. Debe, and P. Coleman, “Enhanced bioadsorption characteristics of a

uniquely nanostructured thin film,” J. Vac. Sci. Tech. A, vol. 14, pp. 1761–1764,

1996.

[20] D. Shtanski, S. Kulinich, E. Levashov, and J. Moore, “Structure and physical-

mechanical properties of nanostructured thin films,” Phys. Sol. St., vol. 45, pp. 1177–

1184, 2003.

[21] M. Todorovic, S. Schuttz, J. Wong, and A. Scherer Appl. Phys. Lett., vol. 74, p. 2516,

1999.

[22] X. Huang, L. Tan, H. Cho, and B. J. H. Stadler, “Magnetoresistance and spin transfer

torque in electrodeposited co/cu multilayered nanowire arrays with small diameters,”

J. Appl. Phys., vol. 105, p. 07D128, 2009.

[23] G. Jo, M. J. Hong, W-K., M. Choe, W. Park, and T. Lee, “Logic inverters com-

posed of controlled depletion-mode and enhancement-mode zno nanowire transis-

tors,” Appl. Phys. Lett., vol. 94, p. 173118, 2009.

[24] S. K. Gupta, A. Joshi, and M. Kaur, “Development of gas sensors using zno nanos-

tructures,” J. Chem. Sci., vol. 122, pp. 57–62, 2010.

[25] M. Quinten, A. Leitner, J. Krenn, and F. Aussenegg, “Electromagnetic energy trans-

port via linear chains of silver nanoparticles,” Opt. Lett., vol. 23, p. 1331, 1998.

[26] S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal

nanoparticle chain waveguides,” Phys. Rev. B, vol. 67, p. 205402, 2003.

[27] S. Fan, M. Chapline, N. Franklin, T. Tombler, A. Cassell, and H. Dai, “Self-Oriented

Regular Arrays of Carbon Nanotubes and Their Field Emission Properties,” Science,

vol. 283, pp. 512–514, 1999.

146



[28] S. Tsunashima, “Magneto-optical recording,” J. Phys. D: App. Phys., vol. 34,

pp. R87–R102, 2001.

[29] J. Lodder, M. Haast, and L. Abelman in NATO Advanced Study Institute on Mag-

netic Systems Beyond 2000 (G. C. Hadjippannayis, ed.), (Dordrecht), p. 117, Kluwer

Academic, 2002.

[30] H. N. Bertram and M. Williams IEEE Trans. Magn., vol. 36, p. 4, 2000.

[31] M. Albrecht, S. Ganesan, C. T. Rettner, A. Moser, M. E. Best, R. L. White, and B. D.

Terris IEEE Trans. Magn., vol. 39, p. 2323, 2003.

[32] S. Y. Chou, P. R. Krauss, and L. Kong J. Appl. Phys., vol. 79, p. 6101, 1996.

[33] A. Sharma and R. Khanna, “Pattern Formation in Thin Liquid Films,” Phys. Rev.

Lett., 19 Oct. 1998.

[34] C. Favazza, R. Kalyanaraman, and R. Sureshkumar, “Dynamics of ultrathin metal

films on amorphous substrates under fast thermal processing,” J. Appl. Phys,

vol. 102, p. 104308, 2007.

[35] C. Favazza, R. Kalyanaraman, and R. Sureshkumar Nanotechnology, vol. 17,

p. 4229, 2006.

[36] S. Kondo and R. Asal, “A reaction-diffusion wave on the skin of the marine angelfish

Pomacanthus,” Nature, vol. 376, pp. 765–768, 1993.

[37] J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman, “Investiga-

tion of laser-induced dewetting in nanoscopic Co films: Experiments and modeling

of thermal behavior.” 2006.

[38] A. Ashton, A. Brad Murray, and O. Arnault, “Formation of coastline features by

large-scale instabilities induced by high-angle waves,” Nature, vol. 414, pp. 296–

300, 2001.

147



[39] A. Sharma and E. Ruckenstein J. Colloid. Interface Sci., vol. 106, p. 12, 1985.

[40] A. Sharma, “Relationship of thin film stability and morphology to macroscopic

parameters of wetting in the apolar and polar systems,” Langmuir, vol. 9, no. 3,

pp. 861–869, 1993.

[41] A. Sharma and A. Jameel, “Nonlinear stability, rupture and morphological phase

separation in thin fluids on apolar and polar substrates,” vol. 161, pp. 190–208, 1993.

[42] R. Seemann, S. Herminghaus, and K. Jacobs, “Dewetting patterns and molecular

forces,” Phys. Rev. Lett., vol. 86, pp. 5534–37, 2001.

[43] C. Zhang and R. Kalyanaraman, “In-situ nanostructured film formation during phys-

ical vapor deposition,” App. Phys. Lett., vol. 83, no. 23, pp. 4827–29, 2003.

[44] M. Vasudevan, A. Shen, B. Khomani, and R. Sureshkumar, “Self-similar shear-

thickening behavior in ctab/nasal surfactant solutions,” J. Rheol., vol. 52, pp. 527–

550, 2008.

[45] J. Bischof, D. Scherer, S. Herminghaus, and P. Leiderer, “Dewetting Modes of Thin

Metallic Films: Nucleation of Holes and Spinodal Dewetting,” Phys. Rev. Lett., 19

Aug. 1996.

[46] S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery, M. Ibn-Elhaj, and

S. Schlagowski, “Spinodal dewetting in liquid crystal and liquid metal films,” Sci-

ence, vol. 282, pp. 916–919, 1998.

[47] C. Favazza, J. Trice, H. Krishna, R. Kalyanaraman, and R. Sureshkumar Appl. Phys.

Lett., vol. 88, p. 1531181, 2006.

[48] C. Favazza, J. Trice, H. Krishna, R. Kalyanaraman, and R. Sureshkumar, “Laser-

induced short- and long-range ordering of Co nanoparticles on SiO2,” Appl. Phys.

Lett., vol. 88, pp. 1531181–83, 2006.

148



[49] A. Sharma and E. Ruckenstein, “Finite-Amplitude Instability of Thin Free and Wet-

ting Films: Prediction of Lifetimes,” Langmuir, vol. 2, pp. 480–494, 1986.

[50] C. Favazza, J. Trice, A. Gangopadhyay, H. Garcia, R. Sureshkumar, and R. Kalya-

naraman, “Nanoparticle ordering by dewetting of Co on SiO2,” J. Elec. Mat., vol. 35,

pp. 1618–20, 2006.

[51] F. Brochard-Wyart, P. G. Gennes, and D. Quere, Capillarity and Wetting Phe-

nomenon. New York: Springer, 2003.

[52] J. W. Cahn, “Phase separation by spinodal decomposition in isotropic systems,” J.

Chem. Phys., vol. 62, pp. 93–99, 1965.

[53] G. Reiter, “Dewetting of thin polymer films,” Phys. Rev. Lett., vol. 68, no. 1, pp. 75–

78, 1992.

[54] J.-U. Thiele, L. Folks, M. F. Toney, and D. K. Weller, “Perpendicular magnetic

anisotropy and magnetic domain structure in sputtered epitaxial fept (001) l1[sub

0] films,” Journal of Applied Physics, vol. 84, no. 10, pp. 5686–5692, 1998.

[55] T. Stange and D. Evans, “Nucleation and growth of defects leading to dewetting of

thin polymer films,” Langmuir, vol. 13, pp. 4459–4465, 1997.

[56] U. Thiele, M. G. Velarde, and K. Neuffer, “Dewetting: film rupture by nucleation in

the spinodal regime,” Phys. Rev. Lett., vol. 87, no. 1, p. 016104, 2001.

[57] B. J. Spencer, P. W. Voorhees, and S. H. Davis, “Morphological Instabilities in Epi-

taxially Strain Dislocation-Free Solild Films,” Phys. Rev. Lett., vol. 67, pp. 3696–

3699, 23 Dec. 1991.

[58] W. Lu and Z. Suo, “Dynamics of nanoscale pattern formation of an epitaxial mono-

layer,” J. Mech. Phys. Solids, vol. 49, pp. 1937–1950, 2001.

149



[59] F. K. LeGoues, V. P. Kesan, S. S. Iyer, J. Tersoff, and R. Tromp, “Surface-Stress-

Induced Order in SiGe Alloy Films,” Phys. Rev. Lett., vol. 64, pp. 2038–2042, 23

Apr. 1990.

[60] J. Israelachvili, Intermolecular and surface forces, ch. van der Waals forces between

surfaces. London, UK: Academic Press, 1992.

[61] V. A. Parsegian, Van der Waals Forces: A Handbook for Biologists, Chemists, En-

gineers, and Physicists. New York, NY: Cambridge University Press, 2006.

[62] A. Vrij, “Possible mechanism for the spontaneous rupture of thin, free liquid films,”

Discuss. Faraday Soc., vol. 42, pp. 23–27, 1966.

[63] A. Vrij and J. T. G. Overbeek, “Rupture of Thin Liquid Films Due to Spontaneous

Fluctuations in Thickness,” J. Am. Chem. Soc., vol. 90, pp. 3074–78, 1968.

[64] J. Becker, G. Grun, R. Seeman, H. Mantz, K. Jacobs, K. Mecke, and R. Blossey,

“Complex dewetting scenarios captured by thin-film models,” Nature Materials,

vol. 2, p. 59, 2003.

[65] J. Trice, R. Kalyanaraman, and R. Sureshkumar, “Computational modeling of laser-

induced self-organization in nanoscopic metal films for predictive nanomanufactur-

ing,” in Instrumentation, Metrology, and Standards for Nanomanufacturing (M. T.

Postek and J. A. Allgair, eds.), vol. 6648 of Proceedings of SPIE, p. 66480K, SPIE,

SPIE, 2007.

[66] P. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and Wetting Phenom-

ena: Drops, Bubbles, Pearls, Waves. Springer, 2004.

[67] P.-G. de Gennes, F. Brochard-Wyart, and D. Quere, Capillarity and wetting phe-

nomenon. New york: Springer, 2003.

150



[68] E. Guyon, J.-P. Hulin, L. Petit, and C. D. Mitescu, Physical Hydrodynamics, ch. Hy-

drodynamic instabilities, pp. 439–489. Oxford university press, 2001.

[69] A. Pototsky, M. Bestehorn, D. Merkt, and U. Theile Phys. Rev. E, vol. 70, p. 025201,

2004.

[70] A. Pototsky, M. Bestehorn, D. Merkt, and U. Thiele Euro. Phys. Lett., vol. 74, p. 665,

2006.

[71] A. Sharma and R. Khanna, “Pattern Formation in Unstable Thin Liquid Films,” Phys.

Rev. Lett., vol. 81, no. 16, pp. 3463–3466, 1998.

[72] D. Bandyopadhyay, R. Gulabani, and A. Sharma Ind. Eng. Chem. Res., vol. 44,

p. 1259, 2005.

[73] D. Sander, “The magnetic anisotropy and spin reorientation of nanostructures and

nanoscale films,” J. Phys.: Condens. Matter, vol. 16, pp. R603–R636, 2004.

[74] R. Skomski and J. M. D. Coey, Parmanent magnetism. Bristol: Institute of Physics

Publishing, 1999.

[75] R. M. Bozorth, Ferromagnetism. NJ: IEEE, 1993.

[76] C. Kittel, Introduction to solid state physics, 7th ed. New York: John Wiley and

Sons, Ltd., 2003.

[77] B. D. Cullity, Introduction To Magnetic Materials. Addison-Wesley Publishing

Company, 1972.

[78] R. Skomski, “Nanomagnetics,” J. Phys.: Condens. Matter, vol. 15, pp. R841–R896,

2003.

[79] P. B. Johnson, Christy, and R. W., “Optical Constants of Noble Metals,” Phys. Rev.

B, vol. 6, p. 4370, 1972.

151



[80] J. Shen and J. Kirschner Surf. Sci., vol. 500, pp. 300–322, 2002.

[81] R. Moroni, D. Sekiba, F. Buatier de Mongeot, G. Gonella, C. Boragno, L. Mattera,

and U. Valbusa Phys. Rev. Lett., vol. 91, p. 167207, Oct 2003.

[82] J. A. C. Bland and B. Heinrich, Ultrathin magnetic structures. Springer, 2005.

[83] J. A. C. Bland and B. Heinrich, Ultrathin magnetic structures. Springer, 1994.

[84] D. J. Sellmyer, M. Zheng, and R. Skomski, “Magnetism of fe, co and ni nanowires

in self-assembled arrays,” J. Phys.: Cond. Matt., vol. 13, pp. R433–R460, 2001.

[85] H. Krishna, C. Miller, L. Longstreth-Spoor, Z. Nussinov, A. K. Gangopadhyay, and

R. Kalyanaraman, “Unusual size-dependent magnetization in near hemispherical

co nanomagnets on sio[sub 2] from fast pulsed laser processing,” J. Appl. Phys.,

vol. 103, no. 7, p. 073902, 2008.

[86] O. Fruchart and A. Thiaville, “Magnetism in reduced dimensions,” Nov. 2005.

[87] M. Beleggia, S. Tandon, Y. Zhu, and M. D. Graef J. Magn. Magn. Mat., vol. 278,

p. 270, 2004.

[88] R. M. H. New, R. F. W. Pease, and R. L. White IEEE Trans. Magn., vol. 31, p. 3805,

1995.

[89] J. D. Jackson, Classical Electrodynamics. John Wiley & Sons, Inc., 1999.

[90] X. Chen, S. Mandre, and J. J. Feng, “Partial coalescence between a drop and a

liquid-liquid interface,” Phys. Fl., vol. 18, no. 5, p. 051705, 2006.

[91] F. G. West J. Appl. Phys., vol. 35, p. 1827, 1964.

[92] R. Baron and R. W. Hoffman J. Appl. Phys., vol. 41, p. 1623, 1970.

[93] C. Kittel, Introduction to Solid State Physics. John Wiley and Sons, Inc., 1971.

152



[94] K. Nakamura, T. Ito, and A. J. Freeman Phys. Rev. B, vol. 68, pp. 180404–180408,

2003.

[95] C. L. Chien and J. G. Zhu Phys. Today, vol. 60, pp. 40–45, 2007.

[96] M. Klaui, C. A. F. Vaz, L. L. Diaz, and J. A. C. Bland J. Phys.: Condens. Matter.,

vol. 15, p. R985, 2003.

[97] Y. G. Yoo, M. Klaui, C. A. F. Vaz, L. J. Heyderman, and J. A. C. Bland Appl. Phys.

Lett., vol. 82, pp. 2470–2472, 2003.

[98] M. Vazquez, Advanced Magnetic Nanowires. Wiley, Chichester, 2007.

[99] H. Krishna, N. Shirato, A. K. Gangopadhyay, and R. Kalyanaraman, “Fe nanomag-

nets with unusual size-dependent magnetization directions produced by fast laser-

induced self-organization,” Proc. SPIE, vol. 7039, p. 703909, 2008.

[100] H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photode-

tectors,” App. Phys. Lett., vol. 73, no. 26, pp. 3815–3817, 1998.

[101] S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced

silicon solar cells,” Journal of Applied Physics, vol. 101, no. 9, 2007. Pillai, S.

Catchpole, K. R. Trupke, T. Green, M. A.

[102] K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spec-

troscopy and sensing,” Ann. Rev. Phys. Chem., vol. 58, pp. 267–297, 2007.

[103] J. M. McLellan, Z. Y. Li, A. R. Siekkinen, and Y. Xia, “The SERS activity of a

supported Ag nanocube strongly depends on its orientation relative to laser polariza-

tion,” Nano Lett., vol. 7, pp. 1013 –1017, 2007.

[104] A. Gangopadhyay, H. Krishna, C. Favazza, C. Miller, and R. Kalyanaraman, “Het-

erogeneous nucleation of amorphous alloys on catalytic nanoparticles to produce 2D

patterned nanocrystal arrays,” Nanotechnology, vol. 18, p. 485606, 2007.

153



[105] J.-M. Nam, C. S. Thaxton, and C. A. Mirkin, “Nanoparticle-Based Bio-Bar Codes

for the Ultrasensitive Detection of Proteins,” Science, vol. 301, p. 1884, 2003.

[106] M.-C. Daniel and D. Astruc, “Gold Nanotparticles: Assembly, Supramolecular

Chemistry, Quantum-Size-Related Properties, and Applications toward Biology,

Catalysis, and Nanotechnology,” Chem. Rev., vol. 104, pp. 293–346, 2004.

[107] W. K. Park, R. J. Ortega-Hertogs, J. S. Moodera, A. Punnoose, and M. Seehra,

“Semiconducting and ferromagnetic behavior of sputtered Co-doped TiO2 thin films

above room temperature,” J. Appl. Phys., vol. 91, no. 10, p. 8093, 2002.

[108] G. Nicolas and I. Prigogine, Self-Organization in Non-Equilibrium Systems. New

York: Wiley, 1977.

[109] C. Redon, F. Brochard-Wyart, and F. Rondelez, “Dynamics of dewetting,” Physical

Review Letters, vol. 66, no. 6, pp. 715–718, 1991.

[110] S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery, M. Ibn-Elhaj, and

S. Schlagowski, “Spinodal dewetting in liquid crystal and liquid metal films,” Sci-

ence, vol. 282, pp. 916–919, 1998.

[111] J. Bischof, M. Reimmuth, J. Boneberg, H. Herminghaus, T. Palberg, and P. Leiderer

in SPIE, vol. 2777, p. 119, 1996.

[112] S. J. Henley, J. D. Carey, and S. R. P. Silva, “Pulsed-laser-induced nanoscale is-

land formation in thin metal-on-oxide films,” Phys. Rev. B, vol. 72, pp. 195408–I–

195408–10, 2005.

[113] C. Favazza, J. Trice, R. Kalyanaraman, and R. Sureshkumar Appl. Phys. Lett.,

vol. 91, p. 043105, 2007.

[114] P.-G. de Gennes, “The dynamics of a spreading droplet,” C. R. Acad. Paris, vol. 298,

pp. 111–115, 1984.

154



[115] O. S. Heavens, Optical properties of thin solid, pp. 76–77. London: Butterworth

Publications, LTD., 1955.

[116] L. Kondic, “Instabiliites in gravity driven flow of thin fluid films,” SIAM Review,

vol. 45, pp. 95–115, 2003.

[117] C. L. Yaws, ed., Chemical Properties Handbook. McGraw-Hill, 1999.

[118] H. M. Lu and Q. Jiang, “Surface tension and its temperature coefficient for liquid

metals,” J. Phys. Chem. B, vol. 109, no. 32, pp. 15463–15468, 2005.

[119] T. B. Massalski, Binary Alloy Phase Diagrams, vol. 1. American Society for Metals,

1986.

[120] M. P. Brochard Wyart, F. and C. Redon, “Liquid/liquid dewetting,” Langmuir, vol. 9,

pp. 3682–3690, 1993.

[121] L. Kondic, “Instabilities in Gravity Driven Flow of Thin Films,” SIAM Rev., vol. 45,

pp. 95–115, 3 Feb. 2003.

[122] J. N. Islaelachvili, Intermolecular and Surface Forces. London: Academic Press,

1985.

[123] J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman Phys. Rev.

B, vol. 75, p. 235439, 2007.

[124] PCPDFWIN database, CAS No. 7440-48-4, PDF No. 02-1098, 03-0931, 1997.

[125] PCPDFWIN database, CAS No. 7440-48-4, PDF No. 15-0806, 1997.

[126] K. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spec-

troscopy and sensing,” Annu. Rev. Phys. Chem., vol. 58, p. 267, 2007.

[127] M. Fleischmann, P. J. Hendra, and A. MacQuillan, “Raman spectra of pyridine ad-

sorbed at a silver electrode,” Chem. Phys. Lett., vol. 26, pp. 163–168, 1974.

155



[128] A. Atena and M. Khenner, “Thermocapillary effects in driven dewetting and self

assembly of pulsed-laser-irradiated metallic films,” Physical Review B (Condensed

Matter and Materials Physics), vol. 80, no. 7, p. 075402, 2009.

[129] Y. F. Guan, R. C. Pearce, A. V. Melechko, D. K. Hensley, M. L. Simpson, and

P. D. Rack, “Pulsed laser dewetting of nickel catalyst for carbon nanofiber growth,”

Nanotechnology, vol. 19, p. 235604, 2008.

[130] J. Boneberg, A. Habenicht, D. Benner, M. Leiderer, Trautvetter, C. Pfahler, A. Plettl,

and P. Ziemann, “Jumping nanodroplets: a new route towards metallic nano-

particles,” Appl. Phys. A: Mater. Sci. and Proc., vol. 93, pp. 415–419, 2008.

[131] F. Brochard Wyart and J. Daillant, “Drying of solids wetted by thin liquid films,”

Can. J. Phys., vol. 68, pp. 1084–88, 1990.

[132] R. Xie, A. Karim, J. Douglas, C. Han, and R. Weiss, “Spinodal dewetting of thin

polymer films,” Phys. Rev. Lett., vol. 81, pp. 1251–1254, AUG 10 1998.

[133] R. Seemann, S. Herminghaus, and K. Jacobs, “Gaining control of pattern formation

of dewetting liquid films,” J. Phys. Cond. Matt., vol. 13, p. 4925, 2001.

[134] C. Favazza, J. Trice, A. Gangopadhyay, H. Garcia, R. Sureshkumar, and R. Kalya-

naraman, “Nanoparticle ordering by dewetting of Co on SiO2,” J. Elec. Mat, Aug.

2006.

[135] C. Favazza, R. Kalyanaraman, and R. Sureshkumar, “Dynamics of ultrathin metal

films on amorphous substrates under fast thermal processing,” J. Appl. Phys.,

vol. 102, p. 104308, 2007.

[136] A. Sharma, “Relationship of thin film stability and morphology to macroscopic

parameters of wetting in the apolar and polar systems,” Langmuir, vol. 9, no. 3,

pp. 861–869, 1993.

156



[137] V. Mitlin, “On dewetting conditions,” Colloids Surf. A, vol. 89, pp. 97–101, 1994.

[138] R. M. H. New, R. F. W. Pease, and R. L. White J. Vac Sci. Technol. B, vol. 12,

p. 3196, 1994.

[139] P. R. Krauss, P. B. Fischer, and S. Y. Chou J. Vac. Sci. Technol. B, vol. 12, p. 3639,

1994.

[140] S. Y. Chou, P. R. Krauss, and P. J. Renstrom J. Vac. Sci. Technol. B, vol. 14, p. 4129,

1996.

[141] M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leit-

ner, and F. R. Aussenegg Opto-Electron. Rev., vol. 10, p. 217, 2002.

[142] R. S. Molday and D. Mackenzie J. Immunol. Methods, vol. 52, p. 353, 1982.

[143] A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix J.

Magn. Magn. Mater., vol. 194, p. 185, 1999.

[144] K. Coffey, M. Parker, and J. Howard IEEE Trans. Mag., vol. 31, pp. 2737 – 2739,

1995.

[145] S. Charap, P.-L. Lu, and Y. He, “Thermal stability of recorded information at high

densities,” IEEE Trans. Mag., vol. 33, pp. 978 – 983, 1997.

[146] C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang,

M. Walsh, M. C. Abraham, and R. J. Ram J. Vac. Sci. Tech. B, vol. 17, pp. 3168–

3176, 1999.

[147] S. Kang, S. Shi, Z. Jia, G. B. Thompson, D. E. Nikles, J. W. Harrell, D. Li,

N. Poudyal, V. Nandwana, and J. P. Liu, “Microstructures and magnetic alignment

of l1[sub 0] fept nanoparticles,” vol. 101, p. 09J113, AIP, 2007.

157



[148] X. W. Wu, M. S. Rzchowski, H. S. Wang, and Q. Li Phys. Rev. B, vol. 61, p. 501,

2000.

[149] O. Moran, D. Fuchs, P. Adelmann, and R. Schneider Ann. Phys. (Leipzig), vol. 13,

p. 74, 2004.

[150] C. Favazza, J. Trice, H. Krishna, R. Kalyanaraman, and R. Sureshkumar Appl. Phys.

Lett., vol. 88, p. 1531181, 2006.

[151] C. Favazza, J. Trice, A. K. Gangopadhyay, H. Garcia, R. Sureshkumar, and R. Kalya-

naraman J. Electron. Mater., vol. 35, p. 1618, 2006.

[152] C. Favazza, H. Krishna, R. Sureshkumar, and R. Kalyanaraman Proceedings, SPIE,

p. 664809, 2007.

[153] C. Favazza, R. Kalyanaraman, and R. Sureshkumar Nanotechnology, vol. 17,

p. 4229, 2006.

[154] “www.asylumresearch.com.”

[155] L. Longstreth-Spoor, J. Trice, H. Garcia, C. Zhang, and R. Kalyanaraman J. Phys.

D: Appl. Phys., vol. 39, p. 5149, 2006.

[156] Natl. Bur. Stand. (US) Monogr., vol. 24, no. 4, p. 10, 1966.

[157] Hofer and Peebles J. Am. Chem. Soc., vol. 69, p. 897, 1947.

[158] Digital Instruments, Veeco Metrology Group, Scanning Probe Microscopy Training

Notebook, 3.0 ed., 1998.

[159] D. Rugar, H. J. Mamin, P. Guethner, S. E. Lambert, J. E. Stern, I. McFadyen, and

T. Yogi J. Appl. Phys., vol. 68, p. 1169, 1990.

[160] U. Hartmann Annu. Rev. Mater. Sci., vol. 29, p. 53, 1999.

158



[161] C. D. Wright and E. W. Hill Appl. Phys. Lett., vol. 67, p. 433, 1995.

[162] A. Hubert, W. Rave, and S. L. Tomlinson Phys. Stat. Sol. (b), vol. 204, p. 817, 1997.

[163] D. K. Cheng, Field and Wave Electromagnetics. Prentice Hall, 2nd ed., 1989.

[164] A. Fernandez, P. J. Bedrossian, S. L. Baker, S. P. Vernon, and D. R. Kania IEEE

Trans. Magn., vol. 32, p. 4472, 1996.

[165] R. M. H. New, R. F. W. Pease, and R. L. White J. Vac. Sci. Technol. B, vol. 13,

p. 1089, 1995.

[166] W. F. Brown J. Appl. Phys., vol. 39, p. 993, 1968.

[167] A. Aharoni J. Appl. Phys., vol. 63, p. 5879, 1988.

[168] R. P. Boardman, J. Zimmermann, H. Fangohr, A. A. Zhukov, and P. A. J. d. Groot J.

Appl. Phys., vol. 97, p. 10E305, 2005.

[169] R. P. Boardman, H. Fangohr, S. J. Cox, A. V. Goncharov, A. A. Zhukov, and P. A.

J. d. Groot J. Appl. Phys., vol. 95, p. 7037, 2004.

[170] W. Sucksmith and J. E. Thompson in Mathematical and Physical Sciences, vol. 225

of Series A, p. 362, Royal Society of London, 1954.

[171] J. Gump, H. Xia, M. Chirita, R. Sooryakumar, M. A. Tomaz, and G. R. Harp J. Appl.

Phys., vol. 86, p. 6005, 1999.

[172] H. Krishna, A. K. Gangopadhyay, J. Strader, and R. Kalyanaraman, “Self-organized

synthesis of patterned magnetic nanostructures with in-plane and perpendicular to

the plane magnetization.” Nanotechnology, Jan 2010.

[173] Z. Shan, E. A. Stach, J. M. K. Wiezorek, J. A. Knapp, D. M. Follstaedt, and S. X.

Mao Science, vol. 305, p. 654, 2004.

159



[174] A. M. V. Diepen and F. J. A. Broeder J. Appl. Phys., vol. 48, p. 3165, 1977.

[175] M. Huth and C. P. Flynn J. Mag. Mag. Mat., vol. 204, p. 204, 1999.

[176] A. Mougin, C. Dufour, K. Dumesnit, and P. Mangin Phys. Rev. B, vol. 62, p. 9517,

2000.

[177] H. M. Hwang, S. W. Shin, J. H. Kang, J. Lee, J. H. Lee, J. H. Song, J. Y. Choi, H. H.

Lee, and H. S. Lee J. Korean Phys. Soc., vol. 49, pp. 1016–1019, 2006.

[178] B. E. Lorenz and C. D. Graham IEEE Trans. Magn., vol. 40, p. 2751, 2004.

[179] R. C. Hall J. Appl. Phys., vol. 30, p. 816, 1959.

[180] A. A. Karimpoor, U. Erb, K. T. Aust, and G. Palumbo Scripta Mat., vol. 49, pp. 651–

656, 2003.

[181] Z. Zong, J. Lou, O. O. Adewoye, A. A. Elmustafa, F. Hammad, and W. O. Soboyejo

Mat. Sci. and Eng. A, vol. 434, pp. 178–187, 2006.

[182] D. Tabor, The Hardness of Metals. Clarendon Press, Oxford, 1951.

[183] Liu Y.L., Yang H.F., and Yang Y., “Gas sensing properties of tin dioxide coated onto

multi-walled carbon nanotubes,” Thin Sol. Film., vol. 497, pp. 355–360, 2006.

[184] G. A. Alers, J. R. Neighbours, and H. Sato J. Phys. Chem. Solids, vol. 13, p. 40,

1960.

[185] G. F. Dieter, Mechanical metallurgy (3rd ed.). McGraw Hill, New York, 1986.

[186] Q. Ma and D. Clarke, “Size dependent hardness in silver single crystals,” J. Mater.

Res., vol. 10, p. 853, 1995.

[187] B. K. Lee J. Mat. Sci., vol. 38, p. 1135, 2003.

160



[188] J. Q. Xiao, J. S. Jiang, and C. L. Chien, “Giant magnetoresistance in nonmultilayer

magnetic systems,” Phys. Rev. Lett., vol. 68, pp. 3749–3752, 1992.

[189] C. C. Wang, A. O. Adeyeye, and Y. H. Wu, “Magnetic properties of asymmetric

antirectangular ni80fe20 arrays,” J. Appl. Phys., vol. 94, pp. 6644–6648, 2003.

[190] R. Skomski, H. Zeng, and D. J. Sellmyer, “Incoherent magnetization reversal in

nanowires,” J. Mag. Mag. Mat., vol. 249, pp. 175–180, 2002.

[191] J. Lu and X. R. Wang, “Magnetization reversal of single domain permalloy

nanowires,” J. Mag. Mag. Mat., vol. 321, pp. 2916–2919, 2009.

161


	Washington University in St. Louis
	Washington University Open Scholarship
	January 2010

	Pattern formation and magnetism in pulsed laser-induced self-organized nanostructures from single and bilayer metallic films
	Hare Krishna
	Recommended Citation


	tmp.1328375877.pdf.ySRdj

