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ABSTRACT OF THE DISSERTATION 
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Chi Zhang 
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Professor Lihong V. Wang, Chair 

 
 
Photoacoustic imaging in biomedicine has the unique advantage of probing endogenous light 

absorbers at various length scales with a 100% relative sensitivity. Among the several modalities of 

photoacoustic imaging, optical-resolution photoacoustic microscopy (OR-PAM) can achieve high 

spatial resolution, on the order of optical wavelength, at <1 mm depth in biological tissue (the 

optical ballistic regime). OR-PAM has been applied successfully to structural and functional imaging 

of blood vasculature and red blood cells in vivo. Any molecules which absorb sufficient light at 

certain wavelengths can potentially be imaged by PAM. Compared with pure optical imaging, which 

typically targets fluorescent markers, label-free PAM avoids the major concerns that the fluorescent 

labeling probes may disturb the function of biomolecules and may have an insufficient density. This 

dissertation aims to advance label-free OR-PAM to the subcellular scale. 

 

The first part of this dissertation describes the technological advancement of PAM yielding high 

spatial resolution in 3D. The lateral resolution was improved by using optical objectives with high 

numerical apertures for optical focusing. The axial resolution was improved by using broadband 

ultrasonic transducers for ultrasound detection. We achieved 220 nm lateral resolution in 
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transmission mode, 0.43 µm lateral resolution in reflection mode, 7.6 µm axial resolution in normal 

tissue, and 5.8 µm axial resolution with silicone oil immersion/injection. The achieved lateral 

resolution and axial resolution were the finest reported at the time. With high-resolution in 3D, 

PAM was demonstrated to resolve cellular and subcellular structures in vivo, such as red blood cells 

and melanosomes in melanoma cells. Compared with previous PAM systems, our high-resolution 

PAM could resolve capillaries in mouse ears more clearly. As an example application, we 

demonstrated intracellular temperature imaging, assisted by fluorescence signal detection, with sub-

degree temperature resolution and sub-micron lateral resolution. 

 

The second part of this dissertation describes the exploration of endogenous light-absorbing 

biomolecules for PAM. We demonstrated cytochromes and myoglobin as new absorption contrasts 

for PAM and identified the corresponding optimal wavelengths for imaging. Fixed fibroblasts on 

slides and mouse ear sections were imaged by PAM at 422 nm and 250 nm wavelengths to reveal 

cytoplasms and nuclei, respectively, as confirmed by standard hematoxylin and eosin (H&E) 

histology. By imaging a blood-perfused mouse heart at 532 nm down to 150 µm in depth, we 

derived the myocardial sheet thickness and the cleavage height from an undehydrated heart for the 

first time. The findings promote PAM at new wavelengths and open up new possibilities for 

characterizing biological tissue. Of particular interest, dual-wavelength PAM around 250 nm and 420 

nm wavelengths is analogous to H&E histology. 

 

The last part of this dissertation describes the development of sectioning photoacoustic microscopy 

(SPAM), based on the advancement in spatial resolution and new contrasts for PAM, with 

applications in brain histology. Label-free SPAM, assisted by a microtome, acquires serial distortion-
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free images of a specimen on the surface. By exciting cell nuclei at 266 nm wavelength with high 

resolution, SPAM could pinpoint cell nuclei sensitively and specifically in the mouse brain section, as 

confirmed by H&E histology. SPAM was demonstrated to generate high-resolution 3D images, 

highlighting cell nuclei, of formalin-fixed paraffin-embedded mouse brains without tissue staining or 

clearing. SPAM can potentially serve as a high-throughput and minimal-artifact substitute for 

histology, probe many other biomolecules and cells, and become a universal tool for animal or 

human whole-organ microscopy, with diverse applications in life sciences. 
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Chapter 1 

 

Introduction 

 

 

1.1 Photoacoustic Imaging 
 

In 1880, Bell found that heat converted from light absorption by matter results in a pressure rise 

propagating as acoustic waves, known as the photoacoustic effect [1]. Based on this effect, 

photoacoustic imaging (PAI), which forms images of optical absorption from the detected acoustic 

waves, has been developing quickly during the past few decades. PAI in biomedicine has the unique 

advantage of probing endogenous light absorbers at various length scales with a 100% relative 

sensitivity [2, 3]. For example, by probing hemoglobin, a major light-absorbing molecule in 

biological tissue, PAI has been demonstrated to image red blood cells and blood vasculature in vivo, 

as well as the associated functional parameters, such as hemoglobin oxygen saturation, flow speed, 

and metabolic rate of oxygen [4-7]. 

 

PAI has various modalities for applications at different depths in biological tissue. By focusing light 

to selectively excite biomolecules, PAI can achieve high spatial resolution, on the order of optical 

wavelength, at <1 mm depth (the optical ballistic regime). This modality of PAI is referred to as 

optical-resolution photoacoustic microscopy (OR-PAM) [8]. Also, in the optical diffusive regime up 

to a few centimeters deep, PAI can be realized by either scanning a focused ultrasonic transducer or 

using an array of ultrasonic transducers for detection, while the spatial resolution is on the order of 

acoustic wavelength due to low acoustic scattering. The former is referred to as acoustic-resolution 

photoacoustic microscopy [9], and the latter is referred to as photoacoustic computed tomography 

(see Appendix) [10-12]. In general, for all the modalities, the ratio of the imaging depth to the best 

spatial resolution is roughly a constant of 200, making PAI a high-resolution imaging technique 

across a length scale from organelles to organs [2]. 
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Label-free PAI has demonstrated broad biomedical applications by imaging hemoglobin, melanin, 

DNA & RNA in nuclei, lipids, water, etc. [4, 13-15] over an optical wavelength range from middle-

ultraviolet (UV) to near-infrared. This list is still expanding with the ongoing exploration of 

endogenous absorption. In fact, any molecules which absorb sufficient light at certain wavelengths 

can potentially be imaged by PAI. Compared with pure optical imaging, which typically targets 

fluorescent markers, label-free PAI avoids the major concerns that the fluorescent labeling probes 

may disturb the function of biomolecules and may have an insufficient density. Moreover, PAI can 

also take advantage of the growing pool of fluorescent probes and extend fluorescence imaging 

techniques to a much greater depth [16, 17]. 

 

1.2 Motivation 
 

This work aims to advance label-free OR-PAM to the subcellular scale. First, we want to refine the 

technology in order to achieve high spatial resolution in 3D (Chapter 2). The lateral resolution can 

be improved by using a high numerical aperture (NA) optical objective for optical focusing. The 

axial resolution can be improved by using a broadband ultrasonic transducer for ultrasound 

detection. Second, with sufficient resolution, we want to explore more light-absorbing biomolecules 

for PAM and identify the corresponding optimal wavelengths for imaging (Chapter 3). This effort 

will broaden the potential biomedical applications of multi-wavelength PAM. Last, we want to 

demonstrate the potential of label-free PAM for high-throughput histology by imaging biomolecules 

of interest at selected wavelengths with subcellular resolution (Chapter 4). 
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Chapter 2 

  

High-resolution 3D Photoacoustic 
Microscopy 

 

This chapter describes the technical development of PAM for high resolution in 3D. The achieved 

lateral resolution and axial resolution were the finest reported at the time. Parts of this chapter have 

been published in Optics Letters, Journal of Biomedical Optics, and Applied Physics Letters [18-22]. 

 

2.1 Subwavelength-resolution Photoacoustic 
Microscopy in Transmission Mode 

 
Background PAM holds great potential for label-free imaging of melanoma and vasculature 

because nonfluorescent melanin and hemoglobin are major sources of endogenous absorption in 

biological tissue in the visible and near-infrared spectral range. Melanoma, arising from melanocytes, 

is the most deadly skin cancer [23]. The diagnosis of melanoma is based on inaccurate visual 

inspection and invasive biopsy. By providing in vivo, noninvasive, and high-resolution imaging, PAM 

promises to diagnose melanoma in the early stage, which is the key to successful treatment. 

Moreover, as a hallmark of cancer, tumor angiogenesis is currently imaged either ex vivo by 

microscopic methods at high resolution or in vivo by clinical methods at low resolution [24]. With 

high endogenous contrast, PAM can identify angiogenic vessels in vivo. 

 

In OR-PAM, the NA of the optical objective is the key—the tighter the optical focus, the finer the 

image resolution. The first OR-PAM system reached a resolution of 5 µm [8]. Here, by using a 

water-immersion optical objective with a 1.23 NA, which is close to the ultimate limit, we have 

finally approached the highest diffraction-limited optical resolution and achieved subwavelength-

resolution PAM (SW-PAM) with 220 nm resolution at 532 nm wavelength. 
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Figure 2.1  Subwavelength-resolution photoacoustic microscopy (SW-PAM). (a) Schematic diagram. (b) Close-
up diagram showing the confocal structure of the optical objective and the ultrasonic transducer. (c) Point 
spread function of the system to measure the transverse spatial resolution. Red circle: the averaged pixel value. 
Blue line: the theoretical Bessel-form function. 

 

 

Methods In SW-PAM (Fig. 2.1), a Nd:YVO4 laser generated pulses with a 532 nm wavelength 

(λ) and a 1.5 ns duration. The pulses were coupled to a single-mode optical fiber, which was 

connected to the optical objective with a 1.23 NA. The sample was irradiated by the laser pulse 

focused by the objective, and the ultrasonic transducer (with a central frequency of 40 MHz and an 

NA of 0.5) detected the resulting time-resolved photoacoustic wave in transmission mode. The 

typical pulse energy was 10 nJ for slide samples and 60 nJ for mouse ears. The signals were then 
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amplified and digitized at a sampling rate of 1 GHz. The objective and the transducer mechanically 

scanned in raster mode in the x-y plane with a scanning speed of 2 mm/s and a step size of 125 nm, 

which was controlled by a separate computer. After scanning, a maximum-amplitude projection 

(MAP) image was obtained by projecting the maximum amplitude of each time-resolved signal onto 

the x-y scanning plane. 

 

In order to measure the lateral resolution of SW-PAM, gold nanospheres with a diameter of 15 nm 

were imaged. A typical sphere was chosen, and the averaged pixel value was calculated with respect 

to the distance from the sphere center [Fig. 2.1(c)]. Then the data was fitted by the theoretical 

Bessel-form function [25]. The system resolution, given by the full width at half maximum (FWHM) 

of the Bessel-form point spread function (PSF), is 220 ± 20 nm (mean ± standard error), agreeing 

well with the theoretical value 0.51λ/NA ≈ 221 nm. 

 

Results To validate SW-PAM with wide-field optical microscopy, we imaged ex vivo 

melanoma cells and red blood cells. The PAM images have a dark background while the optical 

microscopy images have a bright background. The bright (white) dots in the PAM image of 

melanoma cells are melanosomes—organelles containing melanin [Fig. 2.2(a), left]. However, the 

melanosomes appear dark in the optical microscopy image [Fig. 2.2(a), middle] because their 

absorption attenuated the light transmission. The contrast between melanosomes and other areas in 

the PAM image [(54.5±0.4):1] is much higher than that in the optical microscopy image 

[(0.79±0.04):1] because PAM is sensitive to only absorption, but optical microscopy shows both 

absorption and scattering (the latter is relatively close between melanosomes and other areas). The 

average contrast-to-noise ratios (CNRs) for melanosomes are 49 dB and 25 dB in the PAM and 

optical microscopy images, respectively. The holes with few white dots inside the cells (PAM image) 

are nuclei, which is proved by staining them with 4',6-diamidino-2-phenylindole and taking a 

fluorescence optical microscopy image [Fig. 2.2(a), right]. The nuclei are difficult to identify in the 

optical microscopy image due to the low contrast. Here the melanoma cells have irregular shapes 

because they were grown on glass. For typical red blood cells [Fig. 2.2(b)], the contrast disparity 

between PAM and optical microscopy can also be observed, although we could not find the same 

cells under the two microscopes. 
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Figure 2.2  Ex vivo images of cells. (a) Melanoma cells grown on a cover glass and fixed. From left to right: 
PAM image, optical microscopy image (0.55 NA), and a composite of the PAM image and the fluorescence 
image of the stained nuclei (blue). In the PAM images the strong signals come mainly from melanin, and the 
white dots are melanosomes. CN: cell nucleus. (b) PAM and optical microscopy (1.0 NA) images of red blood 
cells. The strong signals in the PAM image come mainly from hemoglobin. 

  

 

Then we imaged mouse ears in vivo with SW-PAM. All experimental animal procedures were carried 

out in conformity with the laboratory animal protocol approved by the Animal Studies Committee 

of Washington University in St. Louis. The melanin distribution in the ear (depilated) of a black 

mouse (Harlan Co., C57BL/6NHsd, 25 g, male) is shown in Fig. 2.3. Melanin synthesis occurs in 

melanosomes of melanocytes, and most melanocytes reside in the basal layer of the epidermis, 

whose thickness is about 10 µm in this case [26]. Thus, we acquired two images focusing at ~10 µm 

and ~30 µm deep, respectively. In the shallower layer [Fig. 2.3(a)], the single melanosomes can be 

clearly identified. In the deeper layer [Fig. 2.3(b)], most melanosomes are out of focus but more skin 

structures are shown, such as the sebaceous glands. Within this depth range we did not find an 

obvious decrease in resolution due to scattering. The signals from the deeper layer are weaker, but 

Fig. 2.3(b) appears to have higher contrast since it is scaled to the full color range. The optical 

microscopy image of the ear, although not shown here, has extremely low contrast. These results 

suggest potential applications of PAM in quantifying melanin distribution in vivo, which is important 
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for detecting melanoma as well as determining individualized radiant exposure in dermatological 

laser therapies [27]. 

 

 

 

 
Figure 2.3  PAM images of a black mouse ear, showing the distribution of melanin. (a) Image focusing at ~10 

µm deep (the close-up image indicates melanosomes). (b) Image focusing at ~30 µm deep. SG: sebaceous 
gland. 

 

 

The ear of a nude mouse (Harlan Co., Hsd:Athymic Nude-Foxn1nu, 30 g, male) was also imaged in 

vivo. Here, we used an objective with a 0.60 NA (providing 400 nm resolution) instead because the 

thick layer of vessels required an extended focal zone. Since nude mice do not have much melanin in 

their skin, all the blood vessels, including capillaries, are shown with little background signals [Fig. 

2.4(a)]. In some areas, we can see motionless red blood cells with the characteristic donut shape [Fig. 

2.4(b)]. Because individual red blood cells can be imaged in vivo, SW-PAM can potentially be used to 

count red blood cells as an in vivo flow cytometer, measure blood flow velocity in capillaries, and 

monitor sickle cell disease.  
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Figure 2.4  Monitoring of melanoma growing on a nude mouse ear. (a) PAM image of blood vessels in the ear 
acquired before injection of melanoma cells. (b) PAM image where in vivo red blood cells (RBCs) can be 
identified (the close-up image indicates the biconcave structure of RBCs). (c) PAM image of blood vessels and 
melanoma taken 4 days after injecting melanoma cells. The melanoma is extracted by taking the difference of 
the two PAM images [(a) and (c)] and is plotted in gray. MT: melanoma tumor. (d) Optical microscopy image 
(0.057 NA) of the same area in (a) and (c). 

 

 

The same ear was imaged again, as shown in Fig. 2.4(c), 4 days after inoculation with 10 µL of 

suspension containing 1 million B16 melanoma cells. The melanoma generated stronger 

photoacoustic signals than the vessels and was easily identified. The vasculature and melanoma have 

contrasts of (12±1):1 (33 dB CNR) and (17±1):1 (36 dB CNR), respectively. If the laser wavelength 

is changed to, for example, 650 nm, we can further increase the contrast difference between 

vasculature and melanoma. In the wide-field optical microscopy image [Fig. 2.4(d)], the melanoma is 

obscure, with a contrast of (0.27±0.02):1 (21 dB CNR). Therefore, PAM has superior potential to 

detect melanoma in the early stage. 

 

Discussion As shown by the results in Figs. 2.2–2.4, SW-PAM can resolve structures as small as 

subcellular organelles for both ex vivo and in vivo imaging. Additionally, by simply replacing the 

optical objective, our system can work with scalable imaging resolutions. Since the thickness of 

tissues that can be imaged is limited by the transmission-mode configuration, we want to extend 
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SW-PAM to reflection mode (see section 2.2) for applications in more anatomical sites. As a result, 

SW-PAM along with the scaled-up macroscopy—deep-penetrating photoacoustic tomography—

may bridge microscopic research and clinical practice, especially for melanoma detection, vasculature 

visualization, reporter gene imaging [28], and sentinel lymph node mapping [29]. 

 

2.2 Submicron-resolution Photoacoustic Microscopy 
in Reflection Mode 

 
Background Resolution has always been a key factor and a research interest for PAM. The lateral 

resolution of the optical-resolution PAM (OR-PAM) is determined by the light wavelength (λ) and 

the numerical aperture of the optical objective—exactly speaking, by the formula 0.51λ / NA. We 

have achieved a lateral resolution of 220 nm for the transmission-mode OR-PAM (see section 2.1) 

by using a 1.23 NA optical objective at 532 nm wavelength. However, the transmission-mode 

configuration limits its applications to thin biological tissues, such as a mouse ear. While the 

reflection-mode configuration is not similarly limited, its implementation is more complicated, 

making it extremely difficult to realize a large NA in both optical illumination (for high resolution) 

and ultrasonic detection (for high sensitivity). Before this work, in the visible light range, the highest 

resolution reported for reflection-mode OR-PAM was ~2 µm with a 0.13 optical NA [30]. 

  

The existing design of the reflection-mode OR-PAM mainly falls into four categories, as shown in 

Fig. 2.5. First, an optical-acoustic combiner can be used to redirect the ultrasonic waves [Fig. 2.5(a)] 

[30]. However, the optical-acoustic combiner is too big to fit into the typically very small working 

distance of a large-NA objective. Moreover, under high-resolution conditions, it is difficult to 

precisely correct the optical distortion introduced by the acoustic lens and the 45o split between 

prisms. Second, a thin piece of glass can be used as the optical-acoustic splitter [Fig. 2.5(b)] [31]. But 

for a large-NA objective, even low refractive index glass (Magnesium Fluoride) will introduce non-

ignorable distortion to the optical focusing. Third, a ring-shaped focused ultrasonic transducer can 

be used to detect the ultrasonic waves [Fig. 2.5(c)] [13]. To fabricate such a transducer, a flat active-

surface is first made and then deformed to be spherical for the focusing, so the acoustic NA is 

limited to ~0.5. If the optical objective has a 0.5 NA, it is impossible to make a central hole in the 
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transducer that is big enough for the light to pass through. Last, it is possible to place a 

commercially-available focused transducer off axis [Fig. 2.5(d)] [32]. However, with a large optical 

NA, the NA of the transducer is very limited, and so is the detection sensitivity. Another issue with 

this design is the degradation of axial resolution (e.g., 2 times degradation with 60o off axis). 

Therefore, we need a new design for the submicron-resolution PAM. 

 

 

 

 
Figure 2.5  Major forms of reflection-mode OR-PAM. (a) An optical-acoustic combiner is used to transmit 
light and reflect sound. (b) A thin piece of optically transparent glass is used to reflect sound. (c) The 
ultrasonic waves are received by a ring-shaped focused ultrasonic transducer, which has a central hole to 
deliver light. (d) The focused ultrasonic transducer is placed off axis to prevent blocking the light. 

 

 

Methods We implemented the reflection-mode submicron-resolution PAM by using a 

customized parabolic mirror (Ultrasonic S-Lab, LLC) to focus and redirect the ultrasonic waves, as 

shown in Fig. 2.6. With the parabolic mirror (1.3 mm focal length, 60o apex angle of conical hole, 

made of stainless steel), sufficient photoacoustic signals (0.26π solid angle, roughly equivalent to the 

solid angle of a 0.5 NA transducer) were collected for good sensitivity while the optical focusing is 

unaffected. The optical objective (BD Plan Apo SL50, Mitutoyo) has an NA of 0.47. A customized 

meniscus lens (Biomedical-Optics LLC) with two spherical surfaces, both centered at the objective 

focus, was used to couple the light from air into water. So the effective NA of the objective is 0.47 × 

1.33 ≈ 0.63. Although a water-immersion objective might be more convenient, we did not find a 
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commercially available one with sufficient working distance (>7 mm). The photoacoustic signals 

were received by a flat ultrasonic transducer (53 MHz central frequency, 94% bandwidth, 4.5 mm 

diameter of active area) customized by ourselves. Besides the photoacoustic signals collimated by the 

parabolic mirror, those directly propagating to the ultrasonic transducer were also received. But they 

arrived earlier in time, and they destructively interfered on the transducer surface. So these early and 

weak signals were easily differentiated from the focused signals. 

 

 

 

 
Figure 2.6  Reflection-mode submicron-resolution PAM. (a) Schematic of the core system. Acoustic focusing 
is achieved by the parabolic mirror, which has a central conical hole for light delivery. (b) 3D model of the 
parabolic mirror. 

 

 

The complete system is described in detail as follows. A Nd:YVO4 laser (SPOT 100-200-532, 

Elforlight) was triggered by a computer to generate laser pulses with a 532 nm wavelength and a 1.5 

ns duration. The laser pulses were coupled to a single-mode optical fiber, which was then connected 

to a collimator to generate a parallel beam as the input of the optical objective. The laser illumination 

and ultrasonic detection was explained previously (Fig. 2.6). The photoacoustic signals detected by 

the ultrasonic transducer were amplified, digitized at 1 GS/s (PCI-5152, National Instruments), and 

recorded into a computer. 2D raster scanning (PLS-85, MICOS) of the objective and the transducer 

while the time-domain photoacoustic signals were digitized enabled three-dimensional 3D imaging. 

Here, the 3D images may be shown as 2D MAP images projected along the depth direction. 
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Figure 2.7  Measuring the lateral resolution of the submicron-resolution PAM. (a) PAM image of four gold 
nano-spheres of 50 nm in diameter each. (b) By fitting the point spread function centered at each nano-sphere, 
the lateral resolution is quantified as 0.58 ± 0.04 µm. Blue circle: experimental measurement. Red line: 
theoretical fit. (c) PAM image of an Air Force resolution test chart. (d) By fitting the edge spread function 
given by the bars, the lateral resolution is quantified as 0.50 ± 0.08 µm. Blue circle: experimental measurement. 
Red line: theoretical fit. 

 

 

Results We measured the lateral resolution of the submicron-resolution PAM. Gold nano-

spheres with a 50 nm diameter were imaged to measure the PSF of the system. Fig. 2.7(a) shows the 

image of four nano-spheres. Fig. 2.7(b) shows the mean photoacoustic amplitude of one nano-

sphere averaged over the 2 polar angular range versus the radial distance from the sphere center. 

The experimental data were fitted with the theoretical PSF, a Bessel-form function. The lateral 

resolution, defined by the FWHM of the PSF, was quantified to be 0.58 ± 0.04 µm by fitting the 

data from six nano-spheres. Taking into account that one nano-sphere in the image might be in fact 

an aggregation of several nano-spheres, which would worsen the estimated resolution, we measured 

the edge spread function (ESF) as a further validation. An Air Force resolution test chart was 

imaged, as shown in Fig. 2(c). The photoacoustic amplitude values along a line crossing the edge of a 

bar were fitted by the theoretical ESF [Fig. 2(d)], which could be calculated by integrating the 2D 
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PSF. In this way, the lateral resolution was quantified as 0.50 ± 0.08 µm by fitting the data from 16 

edges. Therefore, we claim that the submicron-resolution PAM has a lateral resolution of ~0.5 µm. 

The theoretical lateral resolution is 0.51λ / NA ≈ 0.43 µm. The experimentally measured resolution 

is slightly worse, likely due to the imperfect air-water coupling [Fig. 2.6(a)]. 

 

 

 

 
Figure 2.8  Measurement of the axial resolution of the submicron-resolution PAM. (a) The A-line 
photoacoustic signal of a black tape. (b) When summing two A-line signals [shown in (a)] with a >33 µm shift, 
the CNR of the envelope is greater than 2. Dashed line: CNR = 2. (c) In vivo 3D mouse ear image showing 
two crossed blood vessels (left panel) and a 2D cross-sectional image (right). By deconvolving the in vivo data 
with the impulse response shown in (a), the axial resolution is better than 15 µm. 

 

 

We also measured the axial resolution of the submicron-resolution PAM. The A-line photoacoustic 

signal of a black tape is shown in Fig. 2.8(a).  As a conservative estimation, the axial resolution could 

be calculated by numerically shifting and summing two A-line signals and checking whether the two 

peaks could be differentiated (CNR greater than 2) in the envelope [Fig. 2.8(b)] [33]. In this way, the 

axial resolution was quantified as 33 µm, agreeing with the 50 MHz bandwidth of the transducer. 

However, when the signal-to-noise ratio (SNR) is sufficiently high, the axial resolution can be 

further improved by deconvolving the experimental A-line data with the system impulse response 
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[34], for which Fig. 2.8(a) can be used as the estimation. Fig. 2.8(c) shows the in vivo 3D image of a 

mouse ear (Hsd:Athymic Nude-Foxn1nu, Harlan Co.) after using the Wiener deconvolution (~30 dB 

SNR here). Two blood vessels with a 15 µm distance in the depth direction were resolved. Therefore, 

with sufficient SNR (>12 dB as estimated by simulation), the axial resolution of the submicron-

resolution PAM is better than 15 µm. 

 

We tested the penetration depth of the submicron-resolution PAM by imaging a human hair 

inserted obliquely into chicken leg tissue ex vivo. Fig. 2.9(a) shows the B-scan image (fused from 3 B-

scan images acquired by focusing at different depths: 0.04, 0.1, and 0.3 mm). The hair was imaged 

clearly with an SNR of ≥6 dB down to 0.42 mm beneath the tissue surface [Fig. 2.9(b)]. Therefore, 

the submicron-resolution PAM can penetrate ~0.42 mm in soft tissue. 

 

 

 

 
Figure 2.9  Measurement of the penetration depth of the submicron-resolution PAM. (a) A human hair 
inserted obliquely into chicken leg tissue is imaged clearly down to 0.42 mm beneath the tissue surface. (b) 
SNR of the hair versus imaging depth. Dashed lines indicate 6 dB SNR at 0.42 mm imaging depth. The data 
from the three focal depths 0.04, 0.1, and 0.3 mm are denoted by solid, dashed, and dotted line types. 

 

 

The submicron-resolution PAM was compared with a 2.4 µm-resolution (calculated from the 

reported 2.6 µm resolution at 570 nm wavelength) PAM [30] by imaging a mouse ear (Hsd:Athymic 

Nude-Foxn1nu, Harlan Co.) in vivo. Both systems used a 532 nm-wavelength laser. When imaging the 

ear, the submicron-resolution PAM used ~80 nJ pulse energy, and the 2.4 µm-resolution PAM used 

~60 nJ pulse energy. Fig. 2.10(a) shows the image from the 2.4 µm-resolution PAM and the 

corresponding wide-field optical microscopy image (blood vessels had much lower contrast). The 

detailed comparison between the two PAM systems is shown in Fig. 2.10(b,c). As indicated by the 
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arrows, capillaries were resolved better by the submicron-resolution PAM. The capillaries appeared 

finer and richer in the submicron-resolution PAM image. But at the same time, some deeper vessels 

were out of focus because of the shorter focal zone (~1 µm). 

 

 

 
Figure 2.10  Comparing the submicron-resolution PAM with a 2.4 µm-resolution PAM by imaging a mouse ear 
in vivo. (a) 2.4 µm-resolution PAM image of the mouse ear (left panel) and the corresponding wide-field 
optical microscopy image (right panel). (b) Close-up of the blue dashed square area in (a) (left) and the 
corresponding image from the submicron-resolution PAM (right). Selected differences of interest are indicated 
by arrows. (c) Close-up of the gray dotted square area in (a) (left) and the corresponding image from the 
submicron-resolution PAM (right). All PAM images are shown with the same color scale. 
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Discussion We have developed the submicron-resolution PAM in reflection mode. The 0.5 µm 

lateral resolution and the reflection-mode configuration suggest potential in vivo applications in high-

resolution imaging, or even subcellular imaging, in anatomical sites up to ~0.42 mm in depth. 

 

2.3 Micron Axial Resolution Achieved with a 125 
MHz Ultrasonic Transducer 

 
Background For OR-PAM, the axial resolution, provided by the time-resolved ultrasonic 

detection, can be estimated, if the impulse response of the ultrasonic transducer has a Gaussian 

envelope, as 0.88 c / B (see Theory section), where c is the speed of sound and B is the ultrasonic 

transducer bandwidth (approximately proportional to the central frequency). Increasing the 

bandwidth for better axial resolution will decrease the maximum imaging depth, because higher-

frequency ultrasound attenuates faster in biological tissues. Before this work, ~15 µm axial 

resolution for depths up to 1.2 mm was reported, using the piezoelectric ultrasonic transducer with a 

75 MHz central frequency and a 100 MHz bandwidth [35, 36]. Nevertheless, the axial resolution 

remains much lower than the lateral resolution in OR-PAM. 

 

Besides piezoelectric ultrasonic transducers, optical sensors have been used for the ultrasonic 

detection, such as microring resonators [37] and Fabry-Perot sensors [38]. With broad bandwidth 

and low noise, microring resonators help achieve an axial resolution of 8 µm, which is the highest 

axial resolution achieved before this work. However, a microring resonator is unfocused, so, in spite 

of its high sensitivity to acoustic pressure, it generates images with lower quality than a focused 

piezoelectric transducer in a confocal arrangement [30]. Further, the 8 µm axial resolution has not 

been demonstrated in biological samples. Moreover, the microring resonator has not been 

commercialized yet, so it is not readily available to researchers. 

 

We aim to improve the axial resolution of PAM. The first approach is to increase the bandwidth B. 

By using a commercial 125 MHz ultrasonic transducer (100 MHz bandwidth) for signal detection 
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and the Wiener deconvolution method for signal processing (broadening the effective bandwidth), 

the axial resolution has reached 7.6 µm, which was experimentally validated.  

 

The second approach is to reduce the speed of sound c. Since an ultrasonic transducer detects the 

time-resolved signal, reducing the speed of sound would increase the time interval between two 

objects with a given spatial distance, thereby shortening the smallest resolvable distance between 

objects. Note that the time interval between two objects in the photoacoustic signal is determined by 

the speed of sound of the medium between them (ignoring acoustic scattering and reflection). In 

contrast, the speed of sound of the medium between the objects and the ultrasonic transducer 

determines the “time delay” to both signals from the two objects. Therefore, our method aims to 

reduce the speed of sound inside the imaging region of interest instead of the surrounding coupling 

medium (typically water or ultrasonic gel). This procedure can be realized by immersing the region 

of interest in a liquid that has a relatively low speed of sound. Our approach is analogous to the oil 

immersion used to increase the lateral resolution in optical microscopy [39]. In both cases, the 

acoustic or optical wavelength is decreased as the sound or light speed is lower in the immersion 

liquids. 

 

The selection of immersion liquid is critical. With a lower speed of sound, the immersion liquid is 

expected to have a different acoustic impedance Z (= ρc, where ρ is the density) from that of the 

surrounding medium. The acoustic impedance mismatch will induce acoustic reflection at the 

interface, decreasing the detected signal amplitude and generating reverberation. In most biomedical 

applications of PAM, the acoustic impedances of the imaged soft tissues and the coupling water are 

about 1.6 MRayl and 1.5 MRayl, respectively, while the speeds of sound are approximately 1.5×103 

m/s. To demonstrate the principle of our method, here we choose silicone oil (85421, Sigma-

Aldrich) as the immersion liquid, whose speed of sound is about 1.1×103 m/s and acoustic 

impedance is about 1.1 MRayl. Thus the axial resolution is expected to be enhanced by ~1.4 times, 

while the acoustic impedance mismatch is relatively low (the amplitude reflection coefficient 

between the silicone oil and water is 0.16). Moreover, silicone oil is non-toxic and has been used in 

medical applications, such as in eye injection for managing complicated retinal detachments [40, 41] 

and in soft tissue injection for tissue augmentation [42, 43]. Without carrying out systematic 

http://europepmc.org/abstract/MED/1454317/?whatizit_url=http://europepmc.org/search/?page=1&query=%22retinal%20detachments%22
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biological studies, we believe that silicone oil is a relatively simple and safe choice for injection into 

biological tissues to reduce the speed of sound. 

 

Theory Here we derived the axial resolution of PAM. The impulse response p(t) of the 

ultrasonic transducer is approximated as a Gaussian-modulated sinusoid [44]: 
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where t is time, A is the amplitude of impulse response, ω0 is the transducer central frequency, and 

t0, δ, and φ are constants. The axial resolution Ra is given by the corresponding distance of the 

FWHM of the temporal Gaussian envelope: 

 cRa  2ln22 , (2.2) 

where c is the speed of sound.  

 

The Fourier transformation of p(t) is: 
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where ω is the angular frequency. The acoustic -6 dB bandwidth B can be approximated by the 

FWHM of the Gaussian peak of )(ˆ P  at positive frequency: 
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Combining Eqs. (2.2) and (2.4) leads to: 
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Methods The experimental PAM system is shown in Fig. 2.11. A tunable OPO laser (NT242-

SH, Ekspla) generated laser pulses (5 ns pulse width, 1 KHz pulse repetition rate) with 532 nm 

wavelength. The laser pulses were spatially filtered by a 50 m pinhole and then focused by a 0.32 

NA objective, providing ~0.8 µm lateral resolution. The laser pulse intensity was measured by a 
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photodiode (SM05PD1A, Thorlabs) to compensate for the intensity fluctuation. The photoacoustic 

waves excited by the focused laser pulse were detected by an ultrasonic transducer (125 MHz central 

frequency, 100 MHz bandwidth, 15 Pa noise equivalent pressure in the 100 MHz bandwidth; V2062, 

Olympus NDT) with a focusing acoustic lens (0.8 NA). The photoacoustic signals were amplified 

and digitized at 1 GS/s (PCI-5152, National Instruments). The sample was mounted on a scanning 

stage (PLS-85, MICOS). Both the laser and the scanning stage were triggered by a homemade 

controller, and the data acquisition card was triggered by the laser output for synchronization. Each 

time-resolved photoacoustic signal was converted to a 1D depth-resolved image, and the sample was 

mechanically scanned in 2D to generate a 3D image. 

 

 

 

 
Figure 2.11  Schematic of the high-axial-resolution PAM system. The insert with a dashed line boundary shows 
the absorbers immersed in silicone oil and the ultrasonic transducer immersed in water. The acoustic flight 
time t from the absorbers to the ultrasonic transducer can be converted to depth based on the speeds of sound 
in the two media. 

 

 

To convert each photoacoustic signal to a depth-resolved image, the Hilbert transformation is 

normally used to extract the envelope of the short-pulsed photoacoustic signal.  However, as shown 

in the literature, deconvolution methods can further improve the axial (depth) resolution [34]. 

Defining the photoacoustic signal from a point target to be the system impulse response, any 

photoacoustic signal can be approximately modeled as the convolution of the system impulse 

http://www.thorlabs.com/thorProduct.cfm?partNumber=SM05PD1A
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response and the depth-resolved target function. Deconvolving the photoacoustic signal with the 

system impulse response exactly recovers the target function under perfect conditions (a linear and 

shift-invariant system with no noise). In other words, deconvolution recovers the attenuated 

frequency components of the signal and broadens the system bandwidth, thereby improving the 

axial resolution. In practice, however, deconvolution is very sensitive to noise, because the frequency 

components of the signal outside the system passband may be too weak to be recovered in the 

presence of noise. Therefore, the improvement of axial resolution by using deconvolution is limited, 

depending on the SNR. Here, the Wiener deconvolution method was used for imaging, and the 

results were compared with those using the Hilbert transformation method. 

 

To reduce the speed of sound, we immersed the sample into silicone oil or injected silicone oil into 

the sample. The axial resolution is expected to be enhanced by ~1.4 times. 

 

Results We designed a novel experiment to measure the axial resolution of the PAM system 

without silicone oil immersion. As shown in Fig. 2.12(a), the sample to be imaged consisted of two 

layers of red ink, one on the polymethylpentene (TPX) plastic (upper) and the other on the glass 

slide (lower). A small angle between the TPX plastic and the glass slide provided continuously 

variable distance between the two layers. The acoustic impedance of the TPX plastic is close to that 

of water, so the TPX plastic did not block the ultrasound to be received by the ultrasonic transducer 

placed on the top. The TPX plastic and the glass slide were coupled with ultrasound gel. A B-scan 

image of the sample calculated by the Hilbert transformation method is shown in Fig. 2.12(b). Note 

that the bottom layer of ink appears brighter in the image, because the light illuminates from the 

bottom. The CNR versus the distance between the two layers is shown in Fig. 2.12(c). The axial 

resolution, given by the distance with 6 dB CNR, is 12.9 µm. This is worse than the theoretical 

estimation given by the shift-and-sum definition (9.5 µm), likely because the top layer has a much 

weaker amplitude than the bottom layer and is therefore easier to be mixed into the bottom layer in 

the image. 

 

As explained above, the Wiener deconvolution method can be used to improve the axial resolution. 

The B-scan image calculated by the deconvolution method is shown in Fig. 2.12(d). Both layers 

appear sharper than those in Fig. 2.12(b). The axial resolution is 7.6 m [Fig. 2.12(e)], ~1.7 times 
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better than the result from the Hilbert transformation method. With higher SNR, we expect to 

achieve an even better axial resolution. Thus, the deconvolution method was used in the following 

imaging experiments. 

 

 

 

 
Figure 2.12  Experimentally measuring the axial resolution of PAM. (a) The sample to be imaged consists of 
two layers of red ink on polymethylpentene (TPX) plastic and glass slide, respectively. (b) The B-scan image 
of the sample calculated by the Hilbert transformation method. (c) The CNR versus the distance between the 
two layers of (b). The axial resolution is 12.9 µm by using the Hilbert transformation. (d) The B-scan image of 
the sample calculated by the deconvolution method. (e) The CNR versus the distance between the two layers 
of (d). The axial resolution is 7.6 µm by using the deconvolution. 

 

 

We further demonstrated the axial resolution improvement by reducing speed of sound. As shown 

in Fig. 2.13(a), two layers of red ink for imaging were smeared on a polymethylpentene (TPX) plastic 

sheet (upper, matching well with water in acoustic impedance) and a glass slide (lower), respectively. 

The gap between the two layers was filled with either water or silicone oil for comparison, and the 

space between the two layers and the ultrasonic transducer was filled with water for coupling. B-scan 

images of the water-filled sample and the silicone-oil-filled sample are shown in Figs. 2.13(b) and 
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2.13(c), respectively. In both images, the vertical direction is plotted in the units of time. It can be 

seen that the bottom layer of ink, which was placed horizontally, appears oblique in Fig. 2.13(c). 

This is because that as the thickness of the silicone oil in the gap increases, the photoacoustic signal 

from the bottom layer takes longer to travel to the ultrasonic transducer due to the slower speed of 

sound in silicone oil compared with water. For the same reason, the two layers can be separated 

more clearly. The CNR versus the axial distance between the two layers of the water-filled sample 

and the silicone-oil-filled sample are shown in Figs. 2.13(d) and 2.13(e), respectively. The axial 

resolution, defined as the axial distance with 6 dB CNR, is 7.8 µm for the water-filled sample. The 

axial resolution is improved to 5.8 µm by silicone oil immersion, which is close to the theoretical 

prediction of 7.8 µm / 1.5 × 1.1 ≈ 5.7 µm. 

 

 

 

 
Figure 2.13  Axial resolution of PAM enhanced by silicone oil immersion. (a) Two layers of red ink are smeared 
on a polymethylpentene (TPX) plastic sheet (upper) and a glass slide (lower), respectively, for imaging. The 
gap between the two layers is filled with water or silicone oil. B-scan images of the water-filled sample (b) and 
the silicone-oil-filled sample (c). The CNR versus the axial distance between the two layers of the water-filled 
sample (d) and the silicone-oil-filled sample (e). The axial resolutions, defined as the axial distance with 6 dB 
CNR, are 7.8 µm for the water-filled sample and 5.8 µm for the silicone-oil-filled sample, respectively. 
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We measured the maximum imaging depths of PAM. To test the penetration capability from the 

acoustic side, we placed a piece of 1.2 mm-thick chicken tissue between the ink sample and the 

ultrasonic transducer, whose working distance is 1.2 mm. The system impulse responses, both 

without and with the 1.2 mm chicken tissue, are shown in Fig. 2.14(a). With the 1.2 mm chicken 

tissue in place, the SNR decreases by 11 dB, and the pulse width broadens by 36%. Thus the axial 

resolution degrades approximately 36% because of the faster attenuation of the high-frequency 

ultrasound in the 1.2 mm chicken tissue. To test the penetration capability from the optical side, a 

human hair was inserted obliquely into chicken tissue. As shown in Fig. 2.4(b), the hair was imaged 

clearly with an SNR of ≥6 dB up to 0.44 mm deep in the tissue (deeper penetration is possible by 

using a lower-NA optical objective). Therefore, the PAM system can penetrate up to 0.44 mm into 

soft tissue from the optical side, limited by the SNR, and penetrate up to 1.2 mm from the acoustic 

side, limited by the working distance. 

 

 

 

 

 
Figure 2.14  Measuring the maximum imaging depths of PAM from both the acoustic and optical sides. (a) 
System impulse responses without (blue solid line) and with (red dashed line) 1.2-mm chicken tissue on the 
acoustic side. (b) A human hair inserted obliquely into chicken tissue from the optical side is imaged clearly 
up to 0.44 mm in depth. 
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Figure 2.15  Imaging of a melanoma cell. Two cross sections (with 4 µm axial distance) of the cell are imaged 
by (a,b) PAM and (c,d) bright-field optical microscopy, respectively. Red dashed circles indicate features for 
comparison. (e) 3D PAM image. The cuboid size is 60 µm by 60 µm by 30 µm. 

 

 

Melanoma cells fixed by formalin were imaged ex vivo. The cells were seeded onto a slide at a density 

of 30 mm-2. Two cross sections of a cell with 4 µm axial distance are shown in Fig. 2.15(a,b). The 

bright dots in the PAM images are melanosomes, the organelles containing melanin. The PAM 

images were validated by bright-field optical microscopy (0.75 NA, 20X; FV1000, Olympus), as 
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shown in Fig. 2.15(c,d). The PAM image of the melanoma cell is rendered in 3D [Fig. 2.15(e)]. Here 

the melanosomes can be approximated as point targets, so bright-field optical microscopy can 

provide 3D images by depth scanning (not for planar targets) [25]. Note that PAM generates a 3D 

image without depth scanning. In Fig. 2.15(a–d), the features of interest are indicated by the red 

dashed circles. The circled features are similar between the PAM and bright-field images, but they do 

not appear in the adjacent section. However, the difference between the PAM and bright-field 

images can still be observed, because in practice it is very difficult to take PAM and bright-field 

images exactly at the same depth and with the same sectioning angle. 

 

The high-axial-resolution PAM was compared with a PAM system [45] with a 50 MHz ultrasonic 

transducer (90% bandwidth) by imaging mouse ears in vivo. The difference in axial resolution was 

expected to be >2 times. Both systems worked in transmission mode for a fair comparison. Depth-

encoded maximum-amplitude projection (MAP) images of an ear from the two systems are shown 

in Fig. 2.16(a,b). Some blood vessels in the two images appear different, because the light was not 

focused at exactly the same depth in the ear in the two experiments. The side-view MAP images, as 

shown in Fig. 2.16(c,d), demonstrate the improvement in axial resolution. The high-axial-resolution 

PAM system with the 125 MHz ultrasonic transducer resolves the blood vessels much more clearly. 

 

 

 

 
Figure 2.16  Comparison of in vivo PAM images of a mouse ear acquired with 50 MHz and 125 MHz ultrasonic 
transducers. Depth-encoded PAM images acquired with the (a) 50 MHz and (b) 125 MHz ultrasonic 
transducers. Side-view PAM images acquired with the (c) 50 MHz and (d) 125 MHz ultrasonic transducers. 
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Figure 2.17  In vivo PAM images of a mouse ear with silicone oil injection. Top-view PAM images before (a) 
and after (b) injection of silicone oil. Side-view PAM images before (c) and after (d) injection of silicone oil. (e) 
Normalized PA amplitude along the dashed line in (c). (f) Normalized PA amplitude along the dashed line in 
(d). Corresponding features in (e) and (f) are labeled with numbers. (g) Overlay of (e) and (f) with the 
corresponding time axes, as indicated by the arrows. 
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We also showed potential biomedical applications of our method by injecting silicone oil into a 

mouse ear to enhance the axial resolution in vivo. Approximately 30 µL of silicone oil was injected 

into a nude mouse ear and allowed to diffuse for 30 min. The blood vessels in the silicone-oil-

diffused area of the ear were imaged with the same laser intensity in vivo before and 30 min after 

injection, as shown in Figs. 2.17(a–d). The top-view maximum-amplitude-projection images are very 

similar before and after injection, but the side-view images demonstrate the improvement in axial 

resolution by injecting silicone oil. The amplitudes along the dashed profiles in Figs. 2.17(c) and 

2.17(d) are shown in Figs. 2.17(e) and 2.17(f), respectively, with their overlay shown in Fig. 2.17(g), 

which further demonstrate that the blood vessels are resolved more clearly with silicone oil. In Fig. 

2.17(g), the time scale of the profile from Fig. 2.17(f) has been adjusted to maximize the correlation 

coefficient between the two profiles (maximum at 0.82). Based on the ratio between the time scales 

of the two profiles, the average speed of sound was estimated to be ~1.3×103 m/s in the post-

injection mouse ear, an environment mixed with silicone oil and water. Due to the acoustic 

impedance mismatch between silicone oil and water, the CNR in post-injection images is about 2 dB 

lower than that in pre-injection images. 

 

Discussion Detection sensitivity is a major concern when using a high-frequency ultrasonic 

transducer. In the in vivo mouse ear imaging experiment, the laser pulse energy was ~150 nJ. 

Assuming the optical focus was 80 µm beneath the skin surface, the surface laser fluence was 6.5 

mJ/cm2, well below the American National Standards Institute (ANSI) safety limit of 20 mJ/cm2. So 

the 125 MHz ultrasonic transducer is suitable for in vivo blood vessel imaging. It can be calculated 

from the results in Fig. 2.14(a) that the attenuation coefficient of ultrasound in the chicken tissue is 

92 dB/cm. For most soft tissues, the attenuation coefficient is nearly proportional to the acoustic 

frequency [46]. If the central frequency of the ultrasonic transducer is doubled, the acoustic 

penetration depth will decrease approximately 2 times. Therefore, challenges are expected if we want 

to further improve the axial resolution by simply using a higher-frequency ultrasonic transducer. 

 

The deconvolution method used to improve the axial resolution has its limitations as well. 

Deconvolution should be applied to a linear and shift-invariant system. In PAM, as the laser 

intensity increases, the photoacoustic signal may become nonlinear with the laser intensity due to 

absorption saturation or nonlinear thermal expansion [47]. For oxyhemoglobin, the saturation 
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intensity has been reported to be ~3×1012 W/m2 [47]. With the nonlinear effects under such 

intensity, the deconvolution method may become invalid. In our in vivo experiments, the laser pulse 

energy is 150 nJ and the pulse width is 5 ns. If the optical focus is 80 µm beneath the skin surface 

and the extinction coefficient of the tissue is 100 cm-1, light will attenuate ~55% at the optical focus 

according to Beer’s law [48]. Then the intensity may exceed the saturation intensity within a ~7 µm 

depth range with the center at the optical focus. Moreover, the shift invariance holds accurately only 

within the focal zone of the ultrasonic transducer (~60 µm here) because the impulse response was 

measured at the acoustic focus. If a point target is far away from the acoustic focus in the depth 

direction, the received photoacoustic signal from the target will be quite different from the impulse 

response from the acoustic focus, causing errors in the deconvolution method. Taking Fig. 2.12(d) 

for example, the acoustic focus is approximately located at the bottom ink layer, which may be the 

major reason why the bottom layer appears thinner than the top layer in the deconvolved image. 

Here the top layer in Fig. 2.12(d) should still be located inside the acoustic focal zone, so the 

thickening of the top layer in the image may also indicate that either deconvolution starts to have 

error even within the acoustic focal zone or the acoustic focus is in fact slightly below the bottom 

layer. However, we can measure impulse responses at multiple axial positions and use time-variant-

filtering inversion methods to ameliorate this problem [49, 50].  

 

The acoustic lens for the ultrasonic transducer was made with a large NA of 0.8 in order to increase 

the solid angle of acoustic detection and thereby the SNR. Here, SNR is critical because the 125 

MHz ultrasonic transducer has relatively low detection sensitivity, and high frequency ultrasound 

attenuates faster in biological tissue. The limitation associated with the high acoustic NA is the small 

depth of field (~60 µm), within which the acoustic amplitude degrades < 2  times compared with 

that at the focal point. Outside the acoustic focal zone, the SNR is weaker, and the axial resolution is 

lower. As shown by the results in Fig. 2.16(d), we could image blood vessels within a depth range of 

150 µm, about 20 times the axial resolutions, with relatively good image quality. 

 

Nonlinear effects in PAM can in fact be another mechanism to provide axial resolution other than 

the time-resolved ultrasonic detection. For example, two-photon-absorption induced PAM has been 

reported to achieve an optically-determined axial resolution of 45 µm [51]. Theoretically, even 

submicron axial resolution is possible with a high-NA optical objective. However, for this technique, 
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additional depth scanning is required as in two-photon microscopy, which dramatically slows down 

image acquisition. In addition, due to the inefficiency of two-photon absorption at the ANSI-limited 

laser intensity, the two-photon-absorption signal may be weak. 

 

An axial resolution of 7.6 µm has been achieved for PAM in general cases. With silicone oil 

immersion, we have achieved a finest axial resolution of 5.8 µm, and with silicone oil injection, we 

improved the axial resolution in imaging mouse ears in vivo. The improved axial resolution benefits 

PAM in high-resolution 3D imaging. It is possible to further improve the axial resolution, at the cost 

of detection sensitivity, by using an immersion liquid with a lower speed of sound, such as 

fluorosilicone oil (7.6×102 m/s) or tallow (3.9×102 m/s). For biomedical applications, we will seek 

more low-speed biocompatible immersion liquids. The immersion method can potentially be used in 

other imaging modalities, such as photoacoustic computed tomography and ultrasound imaging. 

 

2.4 Application in Intracellular Temperature 
Imaging 

 
Background Many cell events are accompanied by intracellular temperature change, such as cell 

division, nutrient metabolism, and gene expression [52-54]. Accurately measuring cellular 

temperature can, in turn, contribute to a deeper understanding of biochemical processes inside a cell.  

Although cellular thermometry has been realized at the single-cell level by employing tools such as 

micro- or nano-scale thermocouples [55, 56], fluorescence nanoparticles or nanogels [57, 58], and a 

photoacoustic thermometer [59], most of these techniques have treated a cell as a whole and 

measured its average temperature. Knowledge of the average cellular temperature is insufficient for 

exploring thermogenesis and thermal dynamics at the level of subcellular structures [53]. 

 

The difficulty of achieving intracellular temperature mapping lies in a fact that it requires measuring 

a physical quantity sensitive to local temperature changes but independent of the sensor’s 

concentration and excitation strength. Only two fluorescence-based techniques have realized 

intracellular temperature mapping, utilizing fluorescence lifetime [60] and polarization anisotropy 

[61], respectively.  Despite the high spatial (sub-micron) and temperature resolution (~ 0.5   C) they 
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have accomplished in cellular imaging experiments, both methods rely on custom-developed 

fluorescent biosensors, limiting their accessibility to only a few laboratories. 

 

A major impetus towards the widespread application of fluorescence microscopy is the ongoing 

development of fluorescent probes, which display excellent selective labeling of cellular structures 

[62]. However, most commercially available fluorescent probes were not intended to be temperature 

sensitive. To expand the toolbox of intracellular temperature mapping technique and make it 

accessible to a much broader biological research community, here we present a method – 

fluorescent-assisted photoacoustic thermometry (FAPT), which integrates fluorescence microscopy 

with photoacoustic thermometry on one platform. FAPT features the unique capability of 

transforming a generic fluorescent probe into a concentration- and excitation-independent 

intracellular temperature sensor. 

 

Theory Upon absorbing a photon, a fluorophore’s electron transits from the ground state to 

an excited state. The electron’s energy is released primarily via two paths [63, 64]: radiative decay, i.e., 

fluorescence, or non-radiative decay, i.e., thermal dissipation. The possibility of an electron following 

either of these two decay approaches is described by the fluorophore’s quantum yield  . After 

excitation, the emitted fluorescence intensity equals [64] 

f aI AF  , (2.6) 

where A is a constant, F is optical fluence (J/cm2), and a  is the absorption coefficient (cm-1).  a  

is dependent on the fluorophore’s concentration and its molecular absorption cross-section. 

 

On the other hand, if the excitation light is a short pulse, the generated heat during non-radiative 

decay produces an ultrasonic wave via thermoelastic expansion. The detected photoacoustic 

amplitude is [64, 65] 

(1 )aP BF    . (2.7) 

In Eq. (2.7), B is a constant, and  is the Grueneisen coefficient, which is temperature dependent by 

an empirical relation [66] 

1 2C C T   , (2.8) 

where T is the local temperature, and C1 and C2 are constants. 
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The temperature can be measured by collecting fluorescence and photoacoustic signals 

simultaneously at each scanning point. Combining Eqs. (2.6-2.8) leads to  

1

2 2

( , )
( , ) .

(1 ) ( , )f

CA P x y
T x y

C B I x y C




 


 (2.9) 

 

In FAPT, a new quantity R is defined as the ratio of the photoacoustic amplitude P to the 

fluorescence intensity If. For a fluorophore whose quantum yield   is insensitive to temperature 

changes, Eq. (2.9) can be simplified as 

1 2( , ) ( , ) ,T x y D R x y D   (2.10) 

where the coefficients 1 2/ (1 )D A C B   and 2 1 2/D C C  are independent of a  and F and 

remain constant for the same fluorophore, and R = P/If. Since 1D
 
and 2D  can be calibrated for, by 

measuring the ratio R at each scanning point, the corresponding local temperature can be derived. 

 

Method The FAPT was realized by adding a fluorescence channel to the high-resolution 

PAM system (described in Section 2.3). The FAPT system setup is shown in Fig. 2.18.  A pulsed 

laser (wavelength: 532 nm, pulse duration: ~5 ns) both excited the fluorescence and generated 

photoacoustic signals. Two objectives, with NA=0.32 (Leitz Wetzlar Phaco 10×) and NA=1.40 

(Olympus PLAPO 60×), focused the excitation laser and collected fluorescence signal. The spatial 

resolutions corresponding to these two objectives were 0.82 μm and 0.23 μm, respectively. A 

combination of an excitation filter (central wavelength 532 nm, bandwidth 3 nm), a dichroic 

beamsplitter (transmission wavelength 400-530 nm, reflection wavelength 575 nm-725 nm), and an 

emission filter (central wavelength 559 nm, bandwidth 34 nm) separated excitation light from 

fluorescence. The fluorescent light was detected by a photomultiplier tube (PN: PMM01, Thorlabs), 

while the PA signal was acquired by a custom-made focused ultrasound transducer with a central 

frequency of 40 MHz and a numerical aperture of 0.5. In order to obtain a 2D temperature map, the 

sample was raster scanned across the region of interest. 
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Figure 2.18  FAPT system setup. The fluorescence and PA signals were measured simultaneously at each 

scanning point. PMT: Photomultiplier tube. 

 

 

The sample was immersed in phenol-red free medium (PN: 21063-029, Life technologies) in an 

incubator chamber (PN: CSC-25, Bioscience Tools), whose temperature could be finely adjusted 

(step: 0.01oC) by the accompanying controller (PN: TC-1-100s, Bioscience Tools). The temperature 

of the incubator chamber was monitored by a thermocouple (ON-401-PP, Omega) immersed in the 

bath. 

 

Results To demonstrate FAPT, we imaged the temperature of a phantom, using a common 

fluorescent dye, Rhodamine 6G, as the temperature sensor. The excitation and emission maxima of 

Rhodamine 6G are at 530 nm and 552 nm, respectively, with a stable quantum yield over a wide 

temperature range [67, 68]. 

 

To calibrate the relation between the PA/fluorescence ratio R and temperature for Rhodamine 6G, 

first we measured the PA and fluorescence signals simultaneously from a thin layer of Rhodamine 

6G in aqueous solution (0.5 mM concentration) at different temperatures. The results are shown in 

Figs. 2.19(a)-(c). Here the PA signals were averaged over a 0.1×0.1 mm2 area for 10 seconds, and the 

temperature T was measured by the thermocouple in the bath while it rose from 25 oC to 37 oC [Fig. 

2.19(a)].  Fig. 2.19(b) implies that the PA signal generally increased with temperature T.  However, 
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fluctuations in both laser pulse energy and dye concentration caused by photobleaching and 

diffusion diverted this relation from linearity, and were also revealed by the corresponding 

fluorescence variations as shown in Fig. 2.19(c). However, the PA/fluorescence ratio, R, had a close 

linear relationship with the temperature [Fig. 2.19(d)), where the coefficient of determination (R2) for 

the linear fit is 0.98. Hence, the influences of laser pulse energy and dye concentration fluctuations 

were eliminated by taking the ratio. The relative increase of R per degree at 25 oC was 4 %, which is 

in good agreement with previous studies [69]. 

 

 

 

 
Figure 2.19  Calibration of PA/fluorescence ratio versus temperature. (a) Temperature versus measurement 

index. (b) PA amplitude versus measurement index. (c) Fluorescence intensity versus measurement index. (d) 

PA/fluorescence ratio R versus temperature T. The coefficient of determination is 0.98 for the linear fit. 

 

 

The uncertainty of the derived temperature from Eq. (2.10) was estimated as 

.
T P

T P

 
  (2.11) 
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Thus the uncertainty of the derived temperature T  approximates 0.08T. At 25 oC, this value is 

around 2 oC.  The relative low temperature resolution here is due to the weak PA signal generated by 

the fluorophore. To keep the excitation within the linear excitation range, we used moderate 

excitation pulse energy, ~70 nJ (laser fluence at the focus: 2.2 J/cm2).  Since the quantum yield of 

Rhodamine 6G is around 95%, the majority of absorbed light energy is converted to fluorescence, 

resulting in unbalanced signal distribution between the fluorescence and PA channels.  However, if 

higher temperature resolution is desired, PA signals can be averaged over time to improve their 

SNR. 

 

 

 

 
Figure 2.20  2D temperature mapping of a thin layer of Rhodamine 6G dye. The phantom sample was heated 

at the right end. The FAPT-recovered temperature mapping (a) before and (c) after heating. Vertically 

averaged temperature profile along the horizontal direction (b) before and (d) after heating. 

 

 

Next, based on this calibration, we measured the 2D temperature gradient of a heated phantom. A 

thin layer of Rhodamine 6G aqueous solution (0.5 millimolar concentration) was smeared on a piece 

of glass slide which was then heated at one end by a metal wire illuminated by a 50 mW near-
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infrared laser at 1064 nm. The microscope objective (Leitz Wetzlar Phaco 10×) with NA=0.32 

focused excitation light and collected fluorescence. The temperature gradients close to the wire, 

imaged by FAPT before and after heating, are shown in Figs. 2.20(a) and 2.20(c), respectively. As 

expected, before heating, the temperature was uniform across the field [Fig. 2.20(b)]; after heating, 

the measured temperature gradually decreased from the heated end (right) to the un-heated end (left) 

[Fig. 2.20(d)]. The temperature profile shown in Figs. 2.20(b) and 2.20(d) were calculated by 

averaging over the entire range along the y axis. 

 

We applied FAPT to cellular temperature imaging. A mitochondrion is a cellular organelle that 

produces energy and heat via oxidization. Temperature imaging of mitochondria would help to 

understand cellular metabolism [53].  Here we stained HeLa cells (30-40 microns in diameter) with a 

commercially available fluorescent dye – MitoTracker orange (PN: M-7510, Life technologies, Inc.) 

and monitored the mitochondria temperature during environmental temperature changes. 

 

The HeLa cells grew in Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 1% 

penicillin/streptomycin supplement. The cells were incubated at 37 °C in 5% CO2 and split every 72 

hours. After being dispersed in 0.25% EDTA-trypsin, they were seeded at 2-4×104 cells per square 

centimeter. Culture medium was removed 24 hours after imbedding cells on a cover glass and 

replaced by staining solution, a fresh culture medium containing 10 µM MitoTracker Orange probes 

(PN: M-5710, Life technologies). After incubation in staining solution for 60 minutes, the cells were 

rinsed twice with fresh medium. After staining, cells were trypsinized, collected and suspended in 

extraction buffer (PN: FNN0011, Life technologies). To inhibit proteolysis, 50 µL of protease 

inhibitor cocktail (PN: P2714, Sigma-Aldrich) for each milliliter of buffer and 0.5 mM 

phenylmethanesulfonyl fluoride (PN: P7626, Sigma-Aldrich) were added before the extraction. Cells 

with the extraction solution ware kept on ice for 40 minutes with occasional vortexing. The lysate 

was clarified by centrifugation at 13000×g for 15 mins. 
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Figure 2.21  Intracellular mitochondrial temperature mapping by FAPT. (a) The temperature dependence of 

fluorescence intensity for the fluorophore MitoTracker orange. The quantum yield of MitoTracker orange is 

stable over a temperature range of 25 oC – 37 oC. (b) The PA/fluorescence ratio R versus temperature for the 
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Mito Tracker orange fluorophore. The coefficient of determination is 0.995 for the linear fit. (c)-(e) PA, 

fluorescence, and FAPT-recovered mitochondrial temperature map at 36 oC. (f)-(h) PA, fluorescence, and 

FAPT-recovered mitochondrial temperature map at 27 oC. The dark blue background in (e) and (h) denotes 

unknown temperatures. (i)-(j) The temperature histograms of (e) and (h). The mean values are 35.9 oC and 

27.0 oC, respectively. 

 

 

To be eligible for FAPT imaging, the quantum yield of the chosen fluorescent dye must be 

temperature-insensitive. Since insensitivity had not been reported for the fluorescent dye 

MitoTracker orange, we first measured it in aqueous solution. By exciting the fluorophore and 

collecting the corresponding fluorescence at each temperature, the relation between fluorescence 

intensity and temperature was acquired [Fig. 2.21(a)]. The result shows that the quantum yield of 

MitoTracker orange is stable over 25 oC – 37 oC, a temperature range of interest in cellular studies 

[60, 61]. 

 

Then, by following a procedure similar to that in the phantom experiment, we calibrated the relation 

between the PA/fluorescence ratio R and temperature for MitoTracker orange in cell extract [Fig. 

2.21(b)]. The R2 is 0.995 for the linear fit. The SNR of the measured PA and fluorescence signals 

were 33 dB and 49 dB, respectively, resulting in ~0.7 oC temperature resolution in the presented 

experiment.  Note that the temperature resolution is higher here than that measured in the phantom 

experiment, because MitoTracker orange has a lower quantum yield than Rhodamine 6G and thus a 

more balanced PA signal versus fluorescence. 

 

Next, the HeLa cells stained with MitoTracker orange were imaged by FAPT at environmental 

temperatures of 36.0 oC and 27.0 oC. The microscope objective (Olympus PLAPO 60×) with NA = 

1.4 focused excitation light and collected fluorescence. Figs. 2.21(c)-(e) show the measured PA, 

fluorescence, and FAPT-recovered mitochondrial temperature map acquired at 36 oC, respectively.  

Figs. 2.21(f)-(h) show the corresponding images acquired at 27 oC. Since MitoTracker orange was 

selectively stained on the mitochondria, few photoacoustic and fluorescence signals were measured 

in other cellular organelles. The unknown temperature outside mitochondria was pseudo-colored as 

dark blue in Figs. 2.21(e) and 2.21(h). Additionally, the histograms of measured intracellular 

temperature distribution were also calculated [Figs. 2.21(i)-(j)]. The mean values are 35.9 oC and 27.0 
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oC, respectively, in good agreement with the corresponding environmental temperatures. Note that 

the standard deviation of measured cellular temperature (0.4 oC) at 36.0 oC is higher than that (0.2 

oC) at 27.0 oC, which may indicate the cells being more active in heat production and consumption 

at body temperature. 

 

Discussion We presented a generic technique, FAPT, for intracellular temperature mapping 

applications. Phantom and cellular experiments demonstrated that FAPT is capable of measuring 

the 2D temperature distribution of an optically thin sample with sub-micron spatial resolution and 

sub-degree temperature resolution. 

   

Compared to previous fluorescence-based methods, FAPT features the unique capability of 

transforming a regular fluorescence dye into a concentration- and excitation- independent 

temperature sensor, a fact that opens up the possibility of utilizing a large collection of commercially 

available fluorescent probes for intracellular temperature sensing applications. This advantage should 

facilitate the conversion of intracellular temperature mapping into a routine lab tool and make it 

accessible to a much broader research community. Additionally, since environmental temperature 

can affect cellular activities by changing enzyme activity [70], membrane characteristics [71], or ion 

channel gating [72], FAPT can be utilized to study the dependence of cellular thermogenesis or 

reaction on environmental temperature changes, a knowledge that would promote our 

understanding of cellular metabolism regulation and diagnosis of related diseases. 

 

2.5 Conclusions 
 

We implemented technical advancements to improve the spatial resolution of OR-PAM in 3D. We 

achieved 220 nm lateral resolution in transmission mode, 0.43 µm lateral resolution in reflection 

mode, 7.6 µm axial resolution in normal tissue, and 5.8 µm axial resolution with silicone oil 

immersion/injection. These advancements facilitate the applications of PAM in cellular and 

subcellular imaging. We demonstrated the application of intracellular temperature imaging, achieved 

by FAPT, with sub-degree temperature resolution and sub-micron lateral resolution. 
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Chapter 3 

 

Endogenous Light-absorbing Biomolecules 
for Photoacoustic Microscopy 
 

This chapter describes the exploration of endogenous light-absorbing biomolecules for PAM. The 

findings promote PAM to new wavelengths and open up new possibilities for characterizing 

biological tissue. Parts of this chapter have been published in Journal of Biomedical Optics [73-76]. 

 

3.1 Photoacoustic Microscopy of Cytochromes 
 
Background Label-free PAM has been successfully applied to in vivo imaging of hemoglobin and 

melanin, two major sources of endogenous optical absorption in biological tissue in the visible 

spectral range. Recently, additional photoacoustic contrasts have been demonstrated by exciting 

DNA and RNA in nuclei [13] with UV illumination, and water [15] and lipid [14] with near-infrared 

illumination. In fact, PAM can potentially image any molecule which has sufficient absorption at 

specific wavelengths. 

 

We have realized OR-PAM with high resolution in 3D to show subcellular structures; however, few 

endogenous subcellular contrasts, apart from DNA and RNA in cell nuclei, have so far been imaged 

by PAM. Here we hypothesize that hemeprotein in cytoplasm can be imaged by PAM around the 

Soret peak (~420 nm). Hemoglobin and myoglobin, two types of hemeprotein, exist mainly in red 

blood cells and muscle cells, respectively. In other cells, the most common hemeproteins are 

cytochromes, mainly located in mitochondria, whose main function is electron transport using the 

heme group. Previous spectrophotometric results have provided evidence that cytochromes are a 

major source of endogenous subcellular optical absorption at their absorption peaks [77]. 

Photothermal technologies have been utilized to image mitochondria in cells, where the absorption 
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source has sometimes been assumed to be mainly cytochrome c [78], but the assumption has not 

been verified [79]. In this study, we analyzed the absorption origins in cells by photoacoustic 

spectroscopy [80]. 

 

Label-free PAM of cytochromes in cytoplasm is expected to be a useful technique for studying live 

cell functions, such as how the release of cytochrome c from mitochondria regulates apoptosis [81]. 

Label-free PAM avoids concerns about fluorescence microscopy that the fluorescent labeling probes 

may disturb the function of biomolecules and may have an insufficient density. For example, 

Mitotracker® labeling has been found to affect mitochondrial permeability and respiration [82]. 

Moreover, by imaging cytoplasm and nuclei without labeling, PAM can provide higher throughput 

than standard hematoxylin and eosin (H&E) histology, and even image live tissues in 3D in situ 

without sectioning. Here, by using optical illumination around the Soret peak, we applied PAM to 

image cytochromes in the cytoplasm of fixed cells and of histological sections. 

 

Methods We built a free-space PAM system for cytochrome imaging, shown in Fig. 3.1. An 

integrated diode-pumped Q-switched laser and optical parametric oscillator system (NT242-SH, 

Ekspla) generated laser pulses (5 ns pulse width, 1 KHz repetition rate) with a tunable wavelength 

range from 210 nm to 2600 nm. The laser pulses were sequentially filtered by an iris (ID25SS, 

Thorlabs; 2 mm aperture), focused by a condenser lens (LA4380, Thorlabs), filtered by a 50 µm 

pinhole (P50C, Thorlabs), and focused again by an objective. The objective for visible light (46 07 

15, Zeiss) has a 0.60 NA, and the one for UV light (LMU-20X-UVB, Thorlabs) has a 0.40 NA. This 

free-space system provides both greater tolerance of beam shifting and easier optical alignment than 

a fiber-based system for tuning the wavelength over a large range. The focused laser pulse generated 

a spatially and temporally abrupt temperature rise in the focal zone inside the sample and thereby 

excited photoacoustic waves. The photoacoustic waves were detected by a focused ultrasonic 

transducer (customized with 40 MHz central frequency, 80% bandwidth, and 0.50 NA) coupled by 

water, and then amplified, digitized at 1 GS/s (PCI-5152, National Instruments), and finally 

recorded by a computer. The relative optical absorption at the focal point was calculated by the 

amplitude of the photoacoustic signals. 3D imaging was realized by 2D raster scanning (PLS-85, 

MICOS) of the sample while converting the arrival time of each photoacoustic signal to depth. 

Here, since the sample thickness used in this paper was comparable to or even smaller than the axial 
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resolution (~40 µm, as determined by the acoustic bandwidth), we show only 2D MAP images 

projected along the depth direction. 

 

 

 

 
Figure 3.1  Schematic of the spectral PAM system. 

 

 

Results We used photoacoustic spectroscopy to analyze the origination of absorption around 

the Soret peak in fibroblasts (NIH/3T3, ATCC), the most common cells in the connective tissues of 

animals. Because both hemeproteins and other chromophores in cytoplasm absorb light, we 

analyzed the difference absorption spectrum between the oxidized and reduced states of cells, where 

the contributions from the chromophores other than hemeproteins were mostly removed. Most 

other chromophores do not have oxidized and reduced states like hemeproteins and should have 

approximately the same spectrum in the two states of cells. Here the hemeproteins consist of mainly 

cytochromes, including cytochrome c, cytochrome b, and cytochrome a,a3 (cytochrome c oxidase), 

whose difference molar extinction spectra  are shown in Fig. 3.2(a) (data from Ref. [83] and BORL 

website http://www.medphys.ucl.ac.uk/research/borl/research/NIR_topics/spectra/spectra.htm). 

We measured the average photoacoustic signal amplitude (normalized by the laser pulse energy) 

from air-oxidized and sodium-dithionite-reduced cell lysates [84], respectively, at multiple 

wavelengths around the Soret peak. The difference photoacoustic spectrum is shown in Fig. 3.2(b). 

The photoacoustic spectrum was fitted with the spectrum of a mixture of 21±12% (molar ratio, 

mean ± standard error) cytochrome c, 43±9% cytochrome b, and 36±4% cytochrome a,a3. The R2 
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was 0.98. The accuracy of this result, however, is subject to the possible presence of other neglected 

hemeproteins (such as cytochrome p450, nitric oxide synthases, and myeloperoxidase) with similar 

spectra. Then the photoacoustic spectra of the oxidized and reduced cell lysates were compared with 

the spectra of the calculated cytochrome mixture in the oxidized and reduced states, respectively, as 

shown in Fig. 3.2(c,d). It can be seen that the mixture of three types of cytochromes accounts for 

more than half of the optical absorption for the oxidized and reduced fibroblasts, respectively, at 

420 nm wavelength (the absorption peak). The remaining absorption in the fibroblasts may originate 

from other sources, such as flavoproteins and nicotinamide adenine dinucleotide, and from 

hemeproteins that remain in the oxidized/reduced state only, which is expected because the 

cytochromes may not have been fully oxidized/reduced. Therefore, it is highly probable that even 

more absorption in the cells is in fact due to the three cytochromes. 

 

 

 

 
Figure 3.2  Absorption spectra. (a) Difference (oxidized – reduced) molar extinction spectra of cytochrome c, 
cytochrome b, and cytochrome a,a3. (b) Difference photoacoustic (PA) spectrum of the fibroblast sample 
between the oxidized and reduced states. The PAM measurement (circles) is fitted with the spectrum of a 
mixture of 21% cytochrome c, 43% cytochrome b, and 36% cytochrome a,a3 (line). (c) PA spectrum of the 
oxidized fibroblast sample (circles). (d) PA spectrum of the reduced fibroblast sample (circles). The PAM 
measurements (circles) in (c) and (d) are compared with the spectra of the mixture (lines) in the oxidized and 
reduced states, respectively, according to the component concentrations calculated from (b). 
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Figure 3.3  PAM and fluorescence microscopy of fibroblasts. (a) Label-free PAM image of fixed but unstained 
fibroblasts acquired at 422 nm wavelength. (b) Label-free PAM image acquired at 250 nm wavelength. (c) 
Superimposed image of (a) and (b). (d) Fluorescence microscopy image of the cells with mitochondria stained 
in green and nuclei stained in blue. 

 

 

Next, we implemented label-free PAM of fixed fibroblasts. The fibroblasts were first maintained in 

Dulbecco's Modified Eagle® medium (Invitrogen) supplemented with 10% fetal bovine serum 

(ATCC) and 1% penicillin-streptomycin (Invitrogen). Then the cells were seeded onto quartz cover 

glasses (sterilized in 70% ethanol for 2 h and washed with phosphate-buffered saline) at a density of 

2 × 104 cells/cm2 and allowed to attach and spread overnight. At last the cells were fixed in 3.7% 

formaldehyde for 30 min and gently washed with water for the following imaging experiments. The 

fibroblast cytoplasms were imaged by PAM at 422 nm wavelength (where the laser provides stronger 

and more stable pulse energy than at 420 nm) and 200 nJ pulse energy, as shown in green in Fig. 

3.3(a). The fibroblast nuclei were also imaged by PAM at 250 nm wavelength, as shown in blue in 

Fig. 3.3(b). Fig. 3.3(c) is a superimposed image of Figs. 3.3(a) and (b). While most cytochromes are 
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located in mitochondria, some cytochromes and other subcellular chromophores have also been 

identified in extramitochondrial locations. The low contrast between the mitochondria and the other 

parts of the cytoplasm, along with the insufficient axial resolution of PAM, caused the entire 

cytoplasm to be shown without individual mitochondria being resolved. As a comparison, the cells 

were then stained with MitoTracker® Green FM (Invitrogen) for mitochondria and 4',6-diamidino-2-

phenylindole (Invitrogen) for nuclei (according to the manufacturer’s instructions). The stained cells 

were imaged by bright-field fluorescence microscopy. The fluorescence image shown in Fig. 3.3(d) 

matches well with the PAM image shown in Fig. 3.3(c). Here the mitochondria were not resolved by 

fluorescence microscopy either, because the bright-field microscopy has insufficient axial resolution. 

However, individual mitochondria of many of these fibroblasts were resolved by confocal optical 

microscopy (not shown here) due to its finer axial resolution. 

 

We then imaged a histological frozen section of a mouse ear by label-free PAM. The freshly excised 

mouse (Hsd:Athymic Nude-Foxn1nu, Harlan Co.) ear was frozen rapidly to -20 oC, sectioned in 

parallel to the skin surface at 5 µm thickness, and fixed with acetone for 15 min. A dual-wavelength 

PAM image of the mouse ear section is shown in Fig. 3.4(a). The cytoplasms (imaged at 422 nm 

wavelength) are shown in pink, and the nuclei (imaged at 250 nm wavelength) are shown in blue. 

Myocytes and adipocytes can be clearly identified in the image. An optical microscopy image of the 

same mouse ear section with H&E staining [Fig. 3.4(b)] matches well with the unstained PAM 

image. Therefore, PAM has the potential for label-free high-throughput histology by imaging 

specific substances of interest (e.g., cytochromes, DNA, RNA, lipid, hemoglobin, and melanin) at 

selected wavelengths. 

 

Discussion We have realized label-free PAM of cytochromes in cytoplasm, along with other 

subcellular chromophores. The specificity of PAM to mitochondria can be further studied by 

imaging cells with specific subcellular mitochondrial locations and by comparing the contrast of 

concentrated mitochondria with that of residual cytoplasm.  
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Figure 3.4  Imaging of a mouse ear section. (a) Dual-wavelength label-free PAM image. Absorption at 422 nm 
is shown in pink, and absorption at 250 nm is shown in blue. (b) Optical microscopy image acquired after 
H&E staining. 

 

 

We expect to further develop label-free PAM for real-time functional imaging of live cells. The 

imaging speed will be increased to satisfy real-time requirements by combining a high-repetition-rate 

laser with laser scanning or voice-coil scanning. Also, we need to build a culture chamber for live cell 

imaging. With these technical developments, high-resolution functional imaging of live cells can be 

realized by multi-wavelength PAM, such as imaging the ratio of reduced to oxidized cytochromes, 

which is difficult for fluorescence microscopy. Moreover, as in hyperspectral optical imaging, PAM 
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can potentially utilize a broad range of wavelengths for simultaneous imaging of various 

cytochromes with good specificity. 

 

3.2 Photoacoustic Microscopy of Myocardium 
 
Background The heart comprises a syncytium of cardiomyocytes that are important for 

optimizing cardiac functions through coordinated excitation-contraction-relaxation [85]. Delineating 

the exact myocardial architecture is critical to understanding the exact mechanisms of cardiac 

functions, such as the wall thickening and the ventricular longitudinal shortening. Recently, the 

myocardial fibers have been found to be organized in branching layers separated by cleavages, 

referred to as the “sheet architecture” [85-87]. It has been reported that the systolic wall shear aligns 

along the sheet direction [85], and the myocardial sheet is the major infrastructure contributing to 

systolic wall thickening for ejection of blood [88, 89]. However, the exact three-dimensional (3-D) 

complex sheet architecture remains to be defined for a better understanding of cardiac mechanisms 

[90]. 

  

One of the difficulties in studying myocardial sheet architecture is the lack of appropriate imaging 

technologies. Histology is the traditional method to image the myocardial architectures. However, 

the fixation and slicing procedures inevitably deform the native sheet architecture, resulting in 

unnatural morphology. Confocal optical microscopy has been used to image the surface of a block 

of fixed heart tissue [86]. The deeper part of the tissue can be imaged by repeatedly removing thin 

layers of the surface. Although the deformation induced by slicing can be avoided by this technique, 

the tissue still requires fixation and staining, which dehydrate and deform the native sheet 

architecture. Diffusion-tensor MRI can delineate the sheet architecture nondestructively in viable 

hearts [88, 91]; however, it cannot provide micrometer-level resolution within applicable scan time 

(less than a day). Therefore, a fast high-resolution imaging technology is still required for visualizing 

the myocardial sheets in unfixed and unstained, and thereby undeformed, hearts. 

 

PAM is suitable for imaging myocardial sheet architecture for the following reasons. First, PAM can 

achieve submicrometer lateral resolution in the optical ballistic regime (~1 mm deep), and can also 
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work in the optical diffusive regime (up to several centimeters deep) at acoustic resolution. PAM 

with scalable resolution and depth can provide consistent studies of the sheet architecture in hearts 

on various scales. Second, PAM can detect endogenous optical-absorption contrast with a 100% 

sensitivity without labeling the tissue [3]. The origins of signals from myocardium are expected to be 

myoglobin, a new PAM contrast reported here, as well as cytochromes and melanin [92-94]. In this 

pilot study, we implemented label-free PAM of myocardial sheet architecture. 

 

Methods OR-PAM was applied to image myocardial sheet architecture, as demonstrated in 

Fig. 3.5. For spectral measurement, we used an integrated diode-pumped Q-switched laser and 

optical parametric oscillator system (NT242-SH, Ekspla) with a wavelength tunable from 210 nm to 

2600 nm and a pulse repetition rate of 1 KHz [73]. For fast imaging, we used a Nd:YVO4 laser 

(SPOT 10-200-532, Elforlight), which provides a repetition rate up to 50 KHz but a fixed 

wavelength of 532 nm [18]. The details of the optical parts of the system can be found in the 

references [18, 73]. The laser pulses were focused by an optical objective (0.32 NA) to the heart 

muscle. The excited photoacoustic waves, with amplitudes proportional to the optical absorption 

density at the optical foci, were detected by an ultrasonic transducer (40 MHz central frequency, 

80% bandwidth). 3D mapping of optical absorption was achieved by 2D raster scanning while the 

depth was converted from the arrival time of the photoacoustic signals from each scanning point. 

Here the lateral resolution was ~0.8 µm (at 532 nm wavelength), and the axial resolution enhanced 

by deconvolution was ~15 µm. 

 

 

 

 
Figure 3.5  Schematic of the PAM system for myocardium imaging. 
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Figure 3.6  Spectra of the absorption coefficient of the blood-free mouse myocardium. Circle: PAM 
measurement. Line: fit with reduced cytochrome c, melanin, and metmyoglobin. 

 

 

The origins of optical absorption in heart muscles were measured quantitatively by photoacoustic 

spectroscopy. A mouse (Hsd:ND4, Harlan Co.) heart was saline-perfused (to wash out blood and 

avoid strong signals from hemoglobin), excised, and formalin-fixed. We used PAM to measure the 

average signal amplitude (normalized by the laser pulse energy) from the left ventricular myocardium 

within the wavelength range of 400–600 nm, as shown in Fig. 3.6. In the absence of hemoglobin, the 

main absorbers in myocardium are expected to be cytochromes (here we used the spectrum of 

reduced cytochrome c because the formalin used in heart preparation would reduce cytochrome c 

[95]), melanin, and metmyoglobin (accumulated in dead muscles) [92-94]. The PAM data can be 

fitted with the following linear combination of the molar absorption spectra of the main absorbers 

to quantify the relative concentrations of the constituents (Fig. 3.6) [80]: 

myomyomelmelcytcyt )()()()( CCC   , (3.1) 

where )(  is the wavelength-dependent photoacoustic signal amplitude; )(cyt  , )(mel  , and 

)(myo   are the wavelength-dependent molar extinction coefficients of reduced cytochrome c, 

melanin, and metmyoglobin, respectively; cytC , melC , and myoC  are the molar concentrations of 
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reduced cytochrome c, melanin, and metmyoglobin, respectively. cytC , melC , and myoC can be 

calculated in relative values by Eq. (3.1). The mass ratio (converted from the molar ratio) of reduced 

cytochrome c to melanin to metmyoglobin is 6.1 : 3.7 : 1 with a R2 of 0.993. The accuracy of this 

result, however, is subject to the possible presence of other neglected absorbers (other cytochromes, 

oxy-/deoxy-myoglobin, lipofuscin, etc.). 

 

We imaged a histological section of a blood-free paraffin-embedded dog heart. The unstained 

section (left ventricular wall area) was imaged by PAM (~50 nJ pulse energy). As shown in Fig. 

3.7(a), the myocardial sheets and sheet cleavages can be identified clearly with a CNR of 41 dB 

between the two tissue components. These unstained structures are nearly invisible with bright-field 

optical microscopy due to the extremely low CNR of 4.6 dB (not shown here). The bright-field 

image with Masson's trichrome staining is shown in Fig. 3.7(b). The two images match well with a 

correlation coefficient of 0.91 when both images were thresholded at 3 times of the corresponding 

noise levels. Therefore, PAM can sensitively detect the endogenous absorption in myocardium with 

a fine resolution to resolve the sheet architecture. Moreover, it can be seen in Fig. 3.7 that the sheet 

architecture is deformed (e.g., the cleavage height becomes much larger than usual) due to 

dehydration and slicing.  

 

With high endogenous contrast, PAM was investigated to image the unstained and unsliced heart 

without introducing deformation artifacts. A saline-perfused blood-free heart of a mouse (Hsd:ND4, 

Harlan Co.) was excised and then imaged by PAM ex vivo (~80 nJ pulse energy). The heart was split 

into halves as shown in Fig. 3.8(a); but it was unfixed and unstained and thereby undeformed. The 

myocardium in the left ventricular free wall, indicated by the square region in Fig. 3.8(a), was imaged 

by PAM. Fig. 3.8(b) shows the PAM image in MAP along the depth direction from 20 µm to 50 µm. 

A close-up of the marked region in Fig. 3.8(b) is shown in Fig. 3.8(c), where the branching sheets 

can be clearly identified with a CNR of 36 dB. Two populations of oppositely signed sheet angles 

were observed. The boundaries of the sheets were extracted, and the long axis (from the apex to the 

base of the heart) was marked [Fig. 3.8(c)]. Various morphological parameters can be calculated 

from this image. The average sheet angle (angle between the sheet and the ventricular short axis) is 

30 ± 2 degrees, agreeing with previously reported data [88]. The average sheet thickness is 80 ± 10 
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µm, and the average cleavage height is 11 ± 1 µm, both parameters being reported, to the best of 

our knowledge, for the first time in an undehydrated heart. 

 

 

 
Figure 3.7  Imaging of a histological section of a dog heart in the left ventricular wall region with and without 
labeling. (a) Label-free PAM image. (b) Bright-field optical microscopy image with Masson's trichrome 
staining. 
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Figure 3.8  Imaging of a blood-free half-split mouse heart (unfixed and unstained). (a) Photograph of the 
heart. LV, left ventricle; RV, right ventricle; FW, free wall. (b) PAM image of the FW region marked in (a) 
acquired at 532 nm wavelength. (c) Close-up PAM image of the marked region in (b). The boundaries of the 
branching sheets are extracted. Red dashed line: long axis. Yellow dashed-dot line: sheet boundary. 

 

 

The 3-D sheet architecture of the same heart is shown by Fig. 3.9. The heart was scanned twice, 

focusing at 40 µm and 100 µm depth, respectively. Fig. 3.9 shows 3D image stacks in the same area 

as Fig. 3.9(b) down to 150 µm in depth. As shown by the results, PAM can delineate the accurate 3D 

myocardial structure in unfixed and unstained hearts. 
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(a) (b)

(d)

100 m

 

 
Figure 3.9  3D image stacks in the same area as Fig. 3.8(b) down to 150 µm in depth. PAM images at depths of 
(a) 0 µm, (b) 50 µm, (c) 100 µm, and (d) 150 µm. 

 

 

Discussion Here the PAM image of the heart muscle was obscure beyond the depth of 150 µm, 

so the heart was split into halves in order to reveal the 3D sheet architecture. To show the sheet 

architecture in an intact mouse heart, we need a penetration depth of ~1 mm, which is nearly the 

penetration limit of OR-PAM. Near-infrared illumination and acoustic-resolution PAM can be used 

for the 1 mm or deeper penetration in future studies. Moreover, by further enhancing the imaging 

speed [35, 96], we expect to develop PAM for accessing dynamic changes of myocardial 

architectures in ex vivo perfused and viable hearts. The heart can be arrested in diastole and systole in 

sequence, during which the heart is imaged by PAM. The functional role of the myocardial sheets 

can then be analyzed. 

 

We have realized label-free PAM of the myocardial sheet architecture in the undeformed mouse 

heart ex vivo. The sheet thickness and the cleavage height in an undehydrated heart are reported for 
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the first time. We expect to further develop PAM for the functional imaging of sheet architecture in 

ex vivo perfused and viable hearts. 

 

3.3 Conclusions 
 

We demonstrated cytochromes and myoglobin as new absorption contrasts for PAM, with 

applications in cell imaging and myocardium characterization. Moreover, although not included in 

this dissertation, we have shown PAM of bilirubin and myelin, with applications in jaundice 

diagnosis and peripheral nerve imaging [75, 76]. The exploration of endogenous light-absorbing 

biomolecules is still going on, in support of potential biomedical applications of multi-wavelength 

PAM. 

 

By imaging DNA/RNA in cell nuclei around 250 nm wavelength and imaging cytochromes in 

cytoplasm around 420 nm wavelength, PAM is analogous to H&E histology. However, multi-

wavelength PAM can be readily applied to intact tissue without staining. Therefore, this technique 

can potentially be a high-throughput substitute for H&E histology. 
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Chapter 4 

 

Label-free Sectioning Photoacoustic 
Microscopy 

 

This chapter describes the development of a sectioning photoacoustic microscopy system with 

applications in brain histology. The results are based on the advancements in spatial resolution and 

new contrasts for PAM, as described in previous chapters. 

 

4.1 Sectioning Photoacoustic Microscopy 
 

Background In biomedical imaging, nearly all techniques face a fundamental trade-off between 

spatial resolution and tissue penetration depth; hence, obtaining an organelle-level resolution image 

of a whole organ has remained a great challenge. Over the past decade, optical microscopy assisted 

by mechanical sectioning or chemical clearing of tissue has been demonstrated as a powerful ex vivo 

technique to overcome this dilemma, with particular interest in the imaging of the brain neural 

network [97-102]. Thanks to recent advances in computing power, the acquired data, typically 

terabytes in size, can be automatically processed to visualize the 3D neural network in a whole brain. 

However, all the variations of this technique need special preparation of the tissue specimen, which 

is technically quite difficult and hinders their potential broad applications in life sciences. For 

example, diffusion staining of a whole brain [98] is an extremely slow process due to the scant 

extracellular space in the central nervous system; electrophoretic removal of lipids in the brain [102], 

resulting in a transparent brain for easy staining and imaging, causes an unclear loss of biological 

information. Therefore, finding an imaging method applicable to minimally processed tissue, ideally 

fresh tissue, will facilitate the transition of whole-organ microscopy into a universal laboratory 

technique. 
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One potential solution is PAM, a fast developing label-free imaging method. While in an unstained 

piece of tissue most endogenous biomolecules do not fluoresce, all of them absorb photons at some 

wavelengths. Label-free PAM has demonstrated broad biomedical applications by imaging 

hemoglobin, melanin, DNA & RNA in nuclei, cytochromes, lipids, etc. [4, 13, 14, 18, 73] over an 

optical wavelength range from middle-UV to near-infrared. Moreover, PAM in reflection mode is 

applicable to large tissue volumes, not requiring preparation of thin tissue sections [100]. Combined 

with a microtome for serial removal of tissue sections, spectral PAM fits well as a tool in imaging 

biomolecules of interest in an unstained organ at subcellular resolution. Here, we demonstrate the 

first label-free sectioning photoacoustic microscopy (SPAM). SPAM uses UV light for cell nuclear 

imaging without staining in mouse brains, which are formalin fixed and paraffin embedded for 

minimal morphological deformation. 

 

SPAM System  In SPAM (Fig. 4.1), a formalin-fixed paraffin-embedded tissue block is 

mounted on a specimen holder immersed in water. The specimen is automatically imaged as 

controlled by a computer. The x-y-z stages control both the scanning for imaging and the tissue 

sectioning by the microtome. The specimen is imaged on the surface, then a thin layer is shaved off 

and the new surface is imaged. This sequence is repeated to obtain a 3D image.  

 

The user interface of the SPAM system is programmed in LabVIEW. After acquiring all the inputs 

from the user, the computer transfers all the parameters to a central controller (sbRIO-9623, 

National Instruments), which integrates a real-time processor (400 MHz) and a reconfigurable 

FPGA (field-programmable gate array). The controller triggers an Nd:YLF Q-switched UV laser 

(QL266-010-O, Crystalaser) to generate laser pulses at 266 nm wavelength, 7 ns pulse width, and 10 

KHz repetition rate. The laser beam is focused onto the specimen immersed in water by a custom-

made water-immersion UV objective (consisting of an aspheric lens, a concave lens, and a convex 

lens (NT49-696, NT48-674, NT46-313, Edmund Optics); Fig. 4.2) with an NA of 0.16. The excited 

photoacoustic waves from the specimen are detected by a custom-made ring-shaped ultrasonic 

transducer (42 MHz central frequency, 76% bandwidth), which has a central hole for light delivery. 

The signals are then amplified, digitized by a data acquisition card (installed on the computer and 

triggered by the controller; ATS9350, Alazar Technologies Inc.), and recorded on the computer hard 

disk with real time display on the computer screen. The controller also triggers the scanning stages 
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(x and z stages: PLS-85, PI miCos; y stage: LS-180, PI miCos), in synchronization with the laser, for 

point-by-point imaging of the specimen surface. By calculating the amplitude of each A-line 

photoacoustic signal, we obtain a 2D image of the specific optical absorption (J/m3) of the 

specimen. After each surface image is acquired, the specimen, controlled by the scanning stages, is 

automatically sectioned by a microtome blade mounted inside the water tank. The sliced-off thin 

sections of the specimen float to the water surface and are confined within a specific area. The 

imaging and sectioning process is repeated as required. Later the serial 2D images are processed for 

3D visualization. 

 

 

 

 
Figure 4.1  Schematic of sectioning photoacoustic microscopy (SPAM). The unstained paraffin block 
specimen is imaged on the surface and sectioned by the microtome, layer by layer, for 3D visualization. M, 
microtome; UT, ultrasonic transducer. 

 

 

The system’s lateral resolution is determined by the optical focusing, as in the focal plane only those 

biomolecules inside the optical focus are excited [18]. According to Zemax simulation, the UV 

objective can provide a diffraction-limited resolution as fine as 0.34 µm at 0.4 NA. But in practice 

the optical NA is limited to 0.16 by the size of the central hole of the ring ultrasonic transducer. 

Accordingly, the lateral resolution is 0.91 µm, as validated by experiments (Fig. 4.2). The axial 

resolution of a linear photoacoustic system is determined by the bandwidth of the ultrasonic 

transducer [20] (estimated as 40 µm for SPAM). However, here the signal generation from paraffin-
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embedded specimens is likely to be highly nonlinear because the strong UV absorption is estimated 

to cause tens of degrees temperature rise at the optical focus [96]. So the signals are generated much 

more efficiently within the optical depth of focus of ~20 µm than in other regions, which agrees 

with the estimation of imaging depth (shown later, Fig. 4.5). Thus the axial resolution of SPAM is 

about 20 µm. The imaging speed is limited by the laser repetition rate to 104 pixels per second, and 

an additional ~20 seconds is required for each mechanical sectioning. 

 

 

 

 
Figure 4.2  Resolution of SPAM. (a) Zemax design of the optical objective for focusing UV light into water. 
AL, aspheric lens; CCL, concave lens; CVL, convex lens. (b) By imaging a sharp edge and fitting the data to 
the error function, the system PSF, assumed to be a product of two orthogonal line-spread functions, is 
obtained. The lateral resolution of SPAM, defined by the FWHM of the PSF, is 0.91 µm. 

 

 

Tissue preparation The organs we used were extracted from Swiss Webster mice (Hsd:ND4, 

Harlan Laboratories). The brains and lungs were harvested immediately after the mice were 

sacrificed, and then they were fixed in 10% neutral-buffered formalin at room temperature for 5 

days. Afterwards, the brains and lungs were embedded in paraffin as block specimens, and then 

sectioned to thin slices as required.  All experimental animal procedures were carried out in 

conformity with the laboratory animal protocols approved by the Animal Studies Committee of 

Washington University in St. Louis. 
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Figure 4.3  Extracting cell nuclei from SPAM images. (a) Label-free SPAM image. (b) Nuclei extracted from 
(a) by a Hessian filter. (c) Optical microscopy image acquired after H&E staining. (d) Superimposed image of 
(b) and (c), with (b) pseudo-colored in green. 

 

 

Image processing We designed a Hessian filter to extract the cell nuclei from the 2D SPAM 

images (Fig. 4.3). For a 2D image function f (x,y), a Hessian matrix was constructed for each pixel 

[103]: 
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The two eigenvalues of H were then calculated. Negative and large eigenvalues suggest a bright and 

round local structure [103], i.e., a cell nucleus in our case. Hence the output image pixel value was set 
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to either the product of the two eigenvalues if both were negative, or simply to zero otherwise. Last, 

a slight thresholding was applied to the output nuclear image to remove excessive background. 

 

While imaging a paraffin block, the paraffin also generates photoacoustic signals and appears as 

granular structures in the images. Spurious nuclei were extracted by the Hessian filter in the paraffin 

areas. Hence we separated tissue from paraffin automatically in the images based on the fact that 

tissue areas have a larger average pixel value and a smaller variation than paraffin areas. The local 

average and variation values were calculated for each pixel. The pixel was marked as tissue if the 

average was larger than an empirical threshold and the variation was smaller than an empirical 

threshold, or marked as paraffin otherwise. Then the spurious nuclei in the paraffin areas were 

removed. 

 

The serial 2D images acquired by SPAM were converted to step-through videos by MATLAB for 

3D visualization. Image co-registration is not needed because the mechanical scanning is stable and 

the specimen has no sectioning deformation while being imaged. 3D views of the specimen were 

also generated by VolVIEW. 

 

Image analysis To evaluate the nuclear imaging results of SPAM, H&E images were used as 

the gold standard. We defined nuclear sensitivity as the ratio of the number of true nuclei identified 

by SPAM to the number of all nuclei identified by H&E staining, defined nuclear specificity as the 

ratio of the area of true non-nuclear tissue identified by SPAM to the area of all non-nuclear tissue 

identified by H&E, and defined nuclear positive predictive value as the ratio of the number of nuclei 

that were true in the SPAM images to the number of all nuclei (including the spurious ones) in the 

SPAM images. 

 

To generate the nuclear density map, we first generated a nuclear image by using Hessian filtering. 

Each nucleus in the image was reduced to one pixel with unit amplitude, and the background was set 

to zero amplitude. Then each pixel of this new image was replaced by the average of the 50×50 µm2 

neighborhood area, creating a nuclear density map where each pixel value equals the relative nuclear 

density of the 50×50 µm2 neighborhood area. 
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4.2 Label-free Photoacoustic Brain Histology 
 

First, we validated the system by imaging a thin section of a mouse brain (Fig. 4.4). The unstained 

paraffin section, fixed on a quartz slide, was imaged by SPAM and then stained with H&E for 

comparison. The cell nuclei in the SPAM image were enhanced by Hessian filtering and highlighted 

in blue.  

 

 

 

Figure 4.4  Imaging of a paraffin section of a mouse brain. (a) Label-free SPAM image, where the cell nuclei 
are enhanced by a Hessian filter and marked in blue. (b) Optical microscopy image acquired after H&E 
staining. (c,d) Close-up images of a and b, respectively, corresponding to the marked region in a. The nuclei 
are clearly resolved by SPAM. 

 

 

The grey matter and white matter can be differentiated in the SPAM image because the former has a 

higher density of nuclei than the latter. The nuclei in the SPAM image matched well with those in 
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the H&E image. Using the H&E image as the gold standard, SPAM has a sensitivity of 93.2%, a 

specificity of 99.8%, and a positive predictive value of 96.7% in identifying nuclei. This experiment 

shows that SPAM could pinpoint cell nuclei sensitively and specifically in the mouse brain section. 

 

 

 

Figure 4.5  Comparison between SPAM images of a paraffin block surface and H&E images of the paraffin 
sections from the block surface. (a) Label-free SPAM image of the paraffin block surface with nuclei marked in 
blue. (b–d) H&E images of the paraffin sections that are sliced from the block surface in sequence, each with 
a 7 µm thickness. (e–h) Nuclear density maps of (a)–(d), respectively. (i) The ratio of the nuclear count in the 
H&E images within the given depth range to that in the SPAM image. (j) The correlation coefficient between 
the nuclear density map of the H&E images within the given depth range and that of the SPAM image. 
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Next, we imaged a formalin-fixed paraffin-embedded mouse brain block at the surface by SPAM 

(Fig. 4.5). Compared with imaging a thin section, imaging an unstained paraffin block resulted in a 

stronger background and, thereby, a lower image contrast for nuclei. Due to UV-light attenuation, 

the nuclear signal was expected to decrease exponentially with depth. To estimate the SPAM 

imaging depth in the block, which was related to the selection of sectioning thickness in 3D SPAM, 

the mouse brain block was sectioned at the surface by a standard microtome for quantitative 

analysis. A series of H&E images of these sections, each 7 µm thick, was obtained. Due to the 

deformation caused by sectioning, the nuclei in the H&E section images cannot be matched exactly 

with those in the SPAM block image (as we did in Fig. 4.4). However, the distributions of nuclei in 

the SPAM and H&E images are strongly correlated. To quantify this correlation, the nuclear count 

and nuclear density were calculated for these images. The ratio of the nuclear count in the H&E 

images within a given depth range to that in the SPAM image was calculated to be closest to unity 

for a depth range of 21 µm. The correlation coefficient was calculated between the nuclear density 

map of the H&E images within a given depth range and that of the SPAM image, with a maximum 

of 0.78 with a depth range of 14 µm. Here, in fact, the sensitivity of SPAM to nuclei decreases 

gradually, depending on both the light attenuation with depth and the absorption coefficients of 

different nuclei, but this phenomenon is difficult to model accurately and so is not taken into 

account. Given the values of the nuclear count ratio and the correlation coefficient, we estimated 

that SPAM images 14–21 µm deep in the paraffin block. 

 

Last, we demonstrated the full capacity of SPAM for 3D high-resolution imaging (Fig. 4.6). The 

unstained mouse brain block (as used previously) was imaged on the surface and sectioned at 20 µm 

thickness, repeatedly, by SPAM. The imaged volume was 3.75 mm by 3.00 mm by 2.00 mm and 

took ~70 hours for data acquisition. The volume covered both the cerebrum and the cerebellum. 

Since the images were acquired at the block surface, SPAM did not present artifacts of deformed or 

discontinuous structures, which are common in histology (In Fig. 4.4(b), for example, deformation is 

especially evident at the bottom). The serial 2D images were combined into a 3D image without the 

need for image co-registration. Cell nuclei were shown clearly in coronal, horizontal, and sagittal 

views. 
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Figure 4.6  3D SPAM image of an unstained mouse brain embedded in a paraffin block. (a) A section of the 
entire mouse brain image (coronal view). (b) A 3D view of the imaged brain block corresponding to the 
marked region in a. (c) x-y image at z = 0.16 mm (coronal view), with the cell nuclei marked in blue. The 
boundary between the cerebrum and the cerebellum is extracted. P, paraffin. (d) x-z image at y = 2.31 mm 
(horizontal view). (e) y-z image at x = 0.63 mm (sagittal view). 

 

 

Label-free SPAM of cell nuclei can be a high-throughput and minimal-artifact substitute for 

histology. Label-free SPAM (preferably with enhanced speed) facilitates rapid 3D imaging of large 

tissue specimens, which, for example, can be applied to identify and map tumor margins, since 

tumors have a larger nuclear size and an irregular nuclear shape [104]. In conventional pathology, 

due to the low throughput, only limited histologic examination of each specimen is performed, 

which may lead to incomplete information and suboptimal treatment. Moreover, label-free SPAM 

can be readily applied to most standard paraffin blocks used in histology, e.g., a paraffin block of a 
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mouse lung (Fig. 4.7). This is impossible with any of the current limited choices for whole-organ 

microscopy. 

 

 

 

Figure 4.7  3D SPAM image of an unstained mouse lung embedded in a paraffin block. (a,b) Two x-y sections 
of the 3D image, with the nuclei marked in blue. (c) Close-up image of the marked region in b. A, alveoli; AD, 
alveolar duct; B, bronchiole; TB, terminal bronchiole. 

 

 

SPAM is currently in the early stages of development, and significant technical improvements will be 

realized over the coming years. First, we have found that around 266 nm wavelength, images of 

fresh tissue or its frozen sections have better image contrast for nuclei over proteins than images of 

formalin-fixed tissue. This is likely because formaldehyde cross-links the amino groups in proteins, a 

change in molecular structure that may reduce the difference in characteristic UV absorption 

between proteins and nuclear DNA & RNA. For this reason and also for faster preparation of 

tissues, we plan to modify SPAM for imaging frozen tissue blocks such as those prepared for 

cryostats. The imaging system will be redesigned for working in a low-temperature environment, 

typically around –20 oC. Second, the laser repetition rate of only 10 KHz makes it too slow to image 
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a whole organ (e.g., a mouse brain). In our experiment, it took ~70 hours to image about one 

twentieth the volume of a mouse brain. By combining a fast laser [105] and a fast scanning 

mechanism [35] in the future, the imaging speed is expected to be increased by two orders of 

magnitude, i.e., achieving subcellular imaging of a whole mouse brain within one day. In addition, by 

implementing multiple channels using a microlens array [106], the acquisition can be accelerated by 

orders of magnitude more. Third, by incorporating the capability of wavelength selection in the 

future, SPAM has the potential to probe many more endogenous biomolecules and specific cells, 

such as neurons in brains, at their absorption peak wavelengths. 

 

4.3 Conclusions 
 

We demonstrated label-free SPAM, which acquires serial distortion-free images of a specimen on 

the surface. SPAM has been applied to brain histology, highlighting cell nuclei. SPAM can 

potentially serve as a high-throughput substitute for histology, probe many other biomolecules and 

cells, and become a universal tool for animal or human whole-organ microscopy, with diverse 

applications in life sciences. 
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Chapter 5 

 

Summary and Outlook 

 

 

5.1 Summary 
 

This dissertation has described the advance of label-free OR-PAM to the subcellular scale. We 

realized technical advancements to improve the spatial resolution of PAM in 3D, explored light-

absorbing biomolecules as new contrasts for PAM, and demonstrated label-free SPAM as a potential 

high-throughput substitute for histology. 

 

In Chapter 2, we achieved 220 nm lateral resolution in transmission mode by using a 1.23 NA 

objective, and 0.43 µm lateral resolution in reflection mode by using a parabolic mirror design. We 

achieved 7.6 µm axial resolution in normal tissue with a 125 MHz ultrasonic transducer, and 5.8 µm 

axial resolution with silicone oil immersion/injection. With high-resolution in 3D, PAM was 

demonstrated to resolve cellular and subcellular structures in vivo, such as red blood cells and 

melanosomes in melanoma cells. Compared with previous PAM systems, our high-resolution PAM 

could resolve capillaries in mouse ears more clearly. As an example application, we demonstrated 

intracellular temperature imaging, assisted by fluorescence signal detection, with sub-degree 

temperature resolution and sub-micron lateral resolution. 

 

In Chapter 3, we demonstrated cytochromes and myoglobin as new absorption contrasts for PAM, 

with applications in cell imaging and myocardium characterization. Fixed fibroblasts on slides and 

mouse ear sections were imaged by PAM at 422 nm and 250 nm wavelengths to reveal cytoplasms 

and nuclei, respectively, as confirmed by standard H&E histology. By imaging a blood-perfused 

mouse heart at 532 nm down to 150 µm in depth, we derived the myocardial sheet thickness (80 ± 
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10 µm) and the cleavage height (11 ± 1 µm) from an undehydrated heart for the first time. Also, 

without further description, we briefly introduced PAM of bilirubin and myelin, with applications in 

jaundice diagnosis and peripheral nerve imaging. 

 

In Chapter 4, we developed label-free SPAM, which, assisted by a microtome, acquires serial 

distortion-free images of a specimen on the surface. By exciting cell nuclei at 266 nm wavelength 

with high resolution, SPAM could pinpoint cell nuclei sensitively and specifically in the mouse brain 

section, as confirmed by H&E histology. SPAM was demonstrated to generate high-resolution 3D 

images, highlighting cell nuclei, of formalin-fixed paraffin-embedded mouse brains without tissue 

staining or clearing. SPAM can potentially serve as a high-throughput and minimal-artifact substitute 

for histology, probe many other biomolecules and cells, and become a universal tool for animal or 

human whole-organ microscopy, with diverse applications in life sciences.  

 

5.2 Outlook 
 

We developed PAM with 220 nm lateral resolution, which is nearly the theoretical diffraction-limited 

resolution. However, to observe cell structures and functions on the organelle scale, better 

resolution is desired. Super-resolution PAM, which breaks the optical diffraction limit, is being 

actively developed based on nonlinear photoacoustic generation and nonlinear photobleaching, etc. 

[107]. Super-resolution PAM is expected to improve the lateral resolution of PAM by one order of 

magnitude. 

 

We achieved 5.8 µm axial resolution for PAM, limited by the ultrasonic transducer. Further 

broadening the transducer bandwidth is challenging. However, the axial resolution can be potentially 

improved to submicron level by optical sectioning [108], as realized in confocal microscopy and two 

photon microscopy. Improving the 3D resolution of PAM is a pressing research interest in the 

photoacoustic community. 

 

The exploration of endogenous light-absorbing biomolecules is still going on. Potential endogenous 

absorbers include nicotinamide adenine dinucleotide (reduced form: NADH), flavine adenine 
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dinucleotide (FAD), glucose, white blood cells, neurons, etc. over a broad wavelength range of 

absorption. To resolve these absorbers with sufficient contrast, spectral PAM covering their 

absorption peaks is being developed. Spectral PAM may find broad biomedical applications in life 

science.  

 

Label-free SPAM may become a high-throughput substitute for histology. To resolve cell nuclei with 

better contrast and to prepare tissues faster, we plan to modify SPAM for imaging frozen tissue 

blocks, such as those prepared for cryostats. The laser repetition rate is also expected to be 

significantly increased for faster imaging. With these technical advancements, label-free SPAM may 

be applied to identify and map tumor margins, since tumors have a larger nuclear size and an 

irregular nuclear shape. Also, by exciting neurons with proper wavelengths, SPAM may be applied to 

visualize the brain neural network in 3D. 
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Appendix 

 

Fast and Robust Deconvolution-based Image 
Reconstruction for Photoacoustic Computed 
Tomography in Circular Geometry 
 

 
Photoacoustic computed tomography (PACT) is suitable for small animal in vivo imaging. In this 

appendix, we introduce a deconvolution-based PACT reconstruction algorithm that models the 

imaging process as a linear and shift-invariant system. This work has been published in IEEE 

Photonics Journal and Journal of the Optical Society of America A [109, 110]. 

 

Background In recent years, PACT has been successfully applied to in vivo blood vessel imaging 

and brain structural and functional imaging of small animals [10, 111]. To enable the reconstruction 

of 3D tissue structures in PACT, spherical, planar, and cylindrical geometries are normally used in 

PA signal acquisition. In most applications, they are reduced to circular and linear geometries to 

image a 2D tissue cross section. Linear detection geometry normally provides poorer image quality 

than circular geometry, because of its limited view of detection. Yet linear geometry is widely used 

because it is easily applicable to various tissue shapes and can lead to fast, or even real-time, imaging 

[112, 113] by using a linear transducer array and corresponding fast algorithms [114, 115]. Circular 

geometry offers full-view detection and hence good image resolution. However, imaging in such 

geometry is usually very slow for two reasons: the long signal acquisition time (introduced by 

rotating a single-element transducer around the tissue) and the large time cost of the reconstruction 

algorithms (either the commonly used exact back-projection algorithm [116] or the simple delay-

and-sum algorithm [117]). The former can be overcome by customizing a ring-shaped transducer 

array [118]. But the latter, to the best of our knowledge, still remains a problem. For example, the 

512-element-array-based PAT system reported in [118] can achieve real-time signal acquisition, but 

not real-time image formation. 



 

  70 

 

 

A possible solution is to reduce the number of detection angles in circular geometry, which will 

decrease not only image reconstruction time, but also signal acquisition time or equipment cost. 

Nevertheless, for most algorithms the quality of the reconstructed image is strongly related to the 

number of detection angles. In many cases, 128 angles or fewer may result in strong artifacts in the 

reconstructed image. The compressed sensing algorithm can be utilized to improve image quality 

[119]. But this algorithm is in essence an optimization approach that requires iterative calculation, 

and therefore is not suitable for fast or real-time imaging. 

 

Here we propose the deconvolution reconstruction (DR) algorithm for PACT in 3D spherical 

geometry and 2D circular geometry. The DR algorithm is very fast since its key step is the Fourier-

based deconvolution. Moreover, the DR algorithm renders better image quality than other popular 

algorithms when using a small number of detection angles. Therefore, the DR algorithm promises to 

enable real-time imaging in circular geometry. 

 

Theory In PACT, the relation between the illuminating light and the excited acoustic wave in 

an inviscid medium obeys the following wave equation: 
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where )(rA  is the absorbed energy density, ),( tp r  is the excited acoustic pressure, r  is the 3D 

position vector, t  is the time, )(tI  is the illumination pulse function, c  is the sound speed,   is the 

coefficient of volumetric thermal expansion, and pC  is the specific heat. )(tI  is usually assumed to 

be a delta function, and c  is assumed to be constant. PA signals are detected along a sphere, defined 

by dr , whose radius is dr  and whose center is the origin. Then, by using Green’s functions, the 

detected PA signal ),( tp dr  can be expressed as 
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In practical experiments, each detected signal is convolved by both the illumination pulse and the 

transducer impulse response. We can get a better estimation of ),( tp dr  by deconvolving the signal if 
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the impulse response is known and the signal-to-noise ratio is sufficiently high. Then image 

reconstruction is an inverse problem of calculating )(rA  from ),( tp dr , solved algorithmically. 

 

The basic idea of the DR algorithm is to construct a 3D system. When the system input is )(rA , the 

output will be a 3D space function that is related to ),( tp dr . By reasonable design, this system can 

be constructed to be linear and shift-invariant. Then )(rA  can be calculated by deconvolution. 

 

Let us define 

tttptS
t

dd 
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Substituting Eq. (A.2) into Eq. (A.3) leads to 
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where )4( pC  . 

 

In order to construct the linear and shift-invariant system, we start by constructing the system 

output from ),( tp dr  when the input is )(rA . The output function )(rC  is constructed as 
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where maxt  is an adjustable parameter. PA signals during time 0– maxt  are used to construct )(rC . In 

order to cover the major information in PA signals, normally it should satisfy that drct 2max  . )(rC  

is zero when maxctr . Substituting Eq. (A.4) into Eq. (A.5) leads to 

  rrr
2d)()( AC  ,  (A.6) 

where the integral surface   can be expressed as 

r
r

r
r  maxctrd

.  (A.7) 

Considering that the detected tissue is contained by the sphere dr , )'(rA  has nonzero values only if 

dr'r  (which means )'(rA  needs to be integrated only over   within this region). Further, 
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drct  max'2r  if maxct  is greater than dr3  or the tissue volume is relatively small. If each ultrasonic 

detector receives photoacoustic signals within a sufficiently small solid angle, Eq. (A.7) can be 

approximated to the following surface by using the Taylor series expanded to the first order [110]: 

drct  maxrr . (A.8) 

The smaller the maximum of 'r  is, the smaller the ignored higher-order Taylor polynomials. In 

other words, a smaller tissue volume in comparison to the detection radius results in less error. 

Thus, Eq. (A.6) can be approximated as 
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The constructed system as described by Eq. (A.9) can be easily shown to be linear and shift-

invariant. In other words, if )(rA  is shifted spatially by r , the response )(rC  will be shifted by 

the same distance in the same direction because drct  maxrr  must hold. Therefore, Eq. (A.9) 

can be rewritten as 

)()()( rrr hAC  , (A.10) 

where )(rh  is the system impulse response—the response of the constructed system to a point 

photoacoustic source located at the origin—and   represents 3D convolution. When the system 

input is the 3D delta function, )(rh  is the system output: 
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Based on Eq. (A.10), )(rA  can be calculated by a simplified Wiener deconvolution method [120]: 
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where )(
~
ωA , )(

~
ωh , and )(

~
ωC  are the 3D Fourier transforms of )(rA , )(rh , and )(rC , 

respectively; and   is a constant (adjustable according to applications). 
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To summarize, the DR algorithm consists of two steps: first, construct )(rC  based on Eqs. (A.3) 

and (A.5); second, calculate )(rA  by Eq. (A.13). It is worth noting again that DR is an approximate 

algorithm because Eq. (A.9) is approximated from Eq. (A.6). Smaller tissue volumes in comparison 

to the detection radius result in less error. It has also been shown that the optimal value of maxt  is 

crd2  (as used in the following experiments), where DR provides the fastest calculation while 

maintaining good image quality [110]. 

 

Physical meaning The physical meanings of the key formulas in this DR algorithm are 

explained here. The function ),( tS dr , defined in Eq. (A.3), can be understood as the processed 

time-domain PA signal, which is proportional to the velocity potential multiplied by the time of 

arrival. It is due to the integration of )(rA  over a spherical shell, as shown in Eq. (A.4). Then 

),( tS dr  is transformed to )(rC  by Eq. (A.5). The value of )(rC  at position r  corresponds to the 

signal S  processed from the pressure p  received by the r -direction transducer, located at position 

rr dr , at time   cct rmax . In other words, the value of )(rC  at position r  corresponds to the 

tissue lying on a spherical surface whose center is rr dr  and whose radius is rmaxct , as shown 

in Fig. A.1. This transformation allows us to merge two variables  td ,r  into a single variable r . 

 

According to Eq. (A.10), )(rC  approximates to the convolution of )(rA  and )(rh  when each 

acoustic detector receives PA signals within a narrow cone. As shown in Eq. (A.12), )(rh  

approaches infinity on the sphere whose center is the origin and whose radius is drct max , and 

equals zero at other places. Based on the characteristics of the delta function and the origin-

symmetric shape of )(rh , it is easy to derive that )()( rr hA   at position r  equals to the integration 

of )(rA  over a sphere whose center is r  and radius is drct max , as shown in Fig. A.1. 

 

 



 

  74 

 

 

 
Figure A.1  Illustration of detection geometry and photoacoustic signal integration. 

 

 

In short, )(rC  and )()( rr hA   correspond to integrations on two spherical surfaces that do not 

perfectly overlap, and thereby only approximately equal. This misalignment is the physical origin of 

the error in the DR algorithm. It is also worth mentioning that these two spheres are tangential on 

the acoustic axis of each acoustic detector in the direction of r  (or r ). If the tissue volume is 

relatively small, the mismatch between these two spheres within the tissue will also be small, and so 

will be the error of this DR algorithm. This explanation is consistent with the conclusion of the 

previous mathematical derivation. 

 

While the integration spherical surface of )(rC  has a radius of curvature dependent on variable r , 

the integration spherical surface of )()( rr hA   has a constant radius of curvature once maxt  is set. 

We can exactly match the approximate spherical surface with the original spherical surface at one 

position. If the tissue volume is centered within the detection surface, it is reasonable to set the 

matching position at the origin by choosing drct 2max  . 
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One can further approximate the integration spherical shells to planes orthogonal to the acoustic 

axis [121], which is tantamount to a zero-order Taylor expansion of the cosine function of the 

acoustic detection angle. Although such an approximation reduces the spherical Radon transform to 

the planar counterpart, errors in the reconstructed images can be severe unless the tissue volume is 

extremely small. 

 

Algorithm implementation Here we describe how to implement the DR algorithm in the most 

common 2D applications, where PA signals are detected along a circle. The transducer used here 

should receive signals from the focal plane and reject out-of-plane signals. In this case, the 

convolution in Eq. (A.10) will approximately hold true in the 2D case (r  is reduced to a 2D position 

vector). 

 

During detection, the generated acoustic signal ),( tp dr , in which dr  is reduced to follow a circle, is 

sampled in both the space and time domains. Thus, the detected ),( tp dr  can be represented by an 

ta NN   matrix, where aN  is the number of detection angles and tN  is the number of sampled 

time points at each detection angle. Also, ),( tS dr  is represented by an ta NN   matrix. 

 

Suppose we want to reconstruct an image with the resolution of NN   (stored as an )(rA  matrix), 

which represents a spatial size of aa  (located at the center of the detection circle). )(rh  can be 

represented by a matrix corresponding to the spatial size of dd rr 22   (here, drct 2max  ). Since the 

)(rA  matrix and )(rh matrix will be convolved, each of their elements should represent the same 

discrete space interval. So )(rh  should be constructed as a    arNarN dd /2/2   matrix, and 

)(rC , the convolution of )(rA  and )(rh , should be constructed as a   11/2  arN d   

  11/2  arN d  matrix. While calculating an element in the )(rC  matrix, the spatial coordinate 

of this element is transformed to the corresponding coordinate in the ),( tS dr  matrix, and then the 

value of the nearest ),( tS dr  element is chosen (bilinear interpolation can be used for better accuracy 

at the cost of computation time). After all the elements of the )(rC  matrix are calculated, the )(rA  

matrix, namely, the to-be-reconstructed image, can be obtained by using deconvolution. 
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The main steps in the DR algorithm are constructing )(rC  and deconvolution. To speed up the 

algorithm, )(rh  and the relationship between the variables of )(rC  and ),( tS dr  can be 

precalculated. The size of the )(rC  matrix is on the order of 2N , so constructing )(rC  has a time 

complexity of )( 2N . The deconvolution step involves fast Fourier transformation (FFT), division 

in the frequency domain, and inverse fast Fourier transformation (IFFT). The time complexity of 

the division is )( 2N , and that of both FFT and IFFT is )log( 2 NN . Thus, in total, the DR 

algorithm has a time complexity of )log( 2 NN . 

 

In comparison, back-projection algorithms and the delay-and-sum algorithm, two kinds of 

commonly used time-domain algorithms, add up all the aN  detected signals (with or without 

processing in the time domain) at each pixel of reconstructed image. So, they have a time complexity 

of )( 2NNa . Considering that aN  is normally of the same order as N  for good image quality, the 

time complexity of these algorithms can be written as )( 3N . Therefore, the DR algorithm is much 

faster than back-projection algorithms and the delay-and-sum algorithm, especially when 

reconstructing high-resolution images. Moreover, as far as we know, the available frequency-domain 

algorithms for circular geometry either use a similar projection strategy [116] as these time-domain 

algorithms or calculate )(
~
ωA  based on Bessel and Hankel functions [122]. They are even more 

time-consuming and in fact rarely used in practice. 

 

Results The DR algorithm was applied to in vivo mouse brain imaging. The head of a mouse 

was depilated and then imaged with intact skull and skin. The experimental setup is shown in Fig. 

A.2. The Nd:YAG laser (LOTIS II LS-2137/2) generated pulses with a wavelength of 532 nm, a 

width of 16 ns and a repetition rate of 10 Hz. PA signals were received by a 512-element 

cylindrically-focused circular transducer array whose diameter was 5 cm. The center frequency of the 

transducer was 5 MHz, and the bandwidth was greater than 80%. The signals were amplified, 

sampled at 40 MHz, and transferred to a computer for processing by the signal acquisition system. 
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Figure A.2  Experimental setup of PACT. 

 

 

The received PA signals (after deconvolving the transducer impulse response) are shown in Fig. 

A.3(a). The two axes denote time and detection angle; the grayscale denotes normalized signal 

amplitude. The constructed space function )(rC  (also normalized) in the DR algorithm is shown in 

Fig. A.3(b). Here the parameter maxt  is set to crd2 , and only the signals during 10–33 µs are used. 

 

Figures A.4(a) and A.4(b) show the images reconstructed by the exact back-projection algorithm 

[116] and the DR algorithm, respectively, when signals from all 512 detection angles are used. Then 

we tested the robustness of these two algorithms by reducing the number of angles uniformly 

around the detection circle. Figures A.4(c) and A.4(d) show the images reconstructed over 128 

angles (selected every fourth one from the 512 angles). Figures A.4(e) and A.4(f) show the images 

reconstructed over 64 angles. For comparison, we opened the skin of the mouse brain after PA 

imaging and took a photograph of the cerebral cortex [Fig. A.4(g)]. 

 

When reconstructed over 512 angles, the results of both algorithms are nearly identical and agree 

well with the photograph. The DR algorithm outperforms the back-projection algorithm when using 

signals from fewer angles. It can be seen that the reconstructed image of the DR algorithm over 128 

angles is as good as the image reconstructed over 512 angles, while the back-projection algorithm’s 

result suffers from many vessel-like artifacts. When reconstructed over 64 angles, the image from the 
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back-projection algorithm has very strong vessel-like artifacts that obscure real vessels. The image 

from the DR algorithm is blurred but generally better. 

 

 

 
Figure A.3  Received photoacoustic signals (a) and constructed space function C(r) (b). 
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Figure A.4  In vivo and noninvasive reconstructed images using (a) back-projection over 512 angles, (b) 
deconvolution reconstruction over 512 angles, (c) back-projection over 128 angles, (d) deconvolution 
reconstruction over 128 angles, (e) back-projection over 64 angles, (f) deconvolution reconstruction over 64 
angles. (g) Photograph of the mouse cerebral cortex taken after imaging. 

 

 

To compare the speeds of the back-projection and DR algorithms, we reconstructed images of a 

22  cm2 region (at the center of the transducer array) with different numbers of pixels. In practical 

applications, we reconstruct images with more pixels if we can achieve better spatial resolution, 

otherwise adding pixels is meaningless because the added pixels contain little new spatial 

information. Moreover, more detection angles are normally required for better spatial resolution. 

Therefore, in order to investigate the calculation efficiencies of these two algorithms with different 

requirements of spatial resolution, the number of detection angles and the pixel resolution of 

reconstructed images in our calculation were varied simultaneously. In other words, we used signals 

from N  detection angles to reconstruct an NN   image and recorded the time cost of each 

algorithm (Intel Core2 Duo CPU @ 3.00GHz, Matlab R2009a), where N  was chosen to vary from 

64, 128, 256, to 512. The results are shown in Fig. A.5. 
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Figure A.5  Time costs of the back-projection algorithm and deconvolution reconstruction algorithm when 

reconstructing NN   images using signals from N detection angles. 

 

 

It can be seen that the time cost of the DR algorithm is much smaller than that of the back-

projection algorithm. For each algorithm, the trend of increased time cost with N  is consistent with 

the time complexity analysis. When 512N , the DR algorithm is about ten times faster than the 

back-projection algorithm. It can be predicted that the speed advantage of the DR algorithm is 

greater when 512N . Moreover, according to these data, real-time imaging is possible only if 

256N  (in our system) if the DR algorithm is used. Since the DR algorithm presents stronger 

robustness for sparse detection angles, it should be preferably considered for real-time PA imaging 

in circular geometry. 

 

Discussion The exact back-projection algorithm uses an inverse formula, which ideally requires 

knowledge of the detected signals at every position of the detection circle. But in practice one can 

detect signals from only a limited number of angles. The back-projection algorithm does not project 

the undetected signals by assuming them to be zero. This assumption is in fact not true, and it 

introduces large errors if detection angles are sparse. In contrast, the DR algorithm is based on a 
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valid forward model given by Eq. (A.10). The effectiveness of this forward model will not be 

affected by the number of detection angles. In fact, in )(rC  only the elements perfectly matching 

with the measurement points are exactly known. If the detection angles are too sparse, this model 

will be ill-conditioned and lead to unstable solutions. But it is a better starting point than an invalid 

inverse formula. Moreover, the DR algorithm’s forward model is based on convolution, which can 

be directly and quickly solved using a deconvolution method without iterative calculations normally 

included in most forward-model-based methods. In our deconvolution, the unmeasured elements in 

)(rC  are estimated by the detected signals. The solution is not a least-squares one, but is close to. 

 

The DR algorithm assumes, as mentioned above, that the object dimension is relatively small 

compared to the detection circle. In our experiment, the cross section of the mouse head is 

approximately elliptically shaped with a major axis of 2 cm, which is not much less than the 

detection diameter (5 cm). However, most vessels are within a 8.06.0   cm2 region, roughly 

centered within the detection circle, and are clearly imaged. In practice, if an object is so large that 

the DR algorithm cannot reconstruct the full cross section clearly, we can limit the region of interest 

at the detection center for better image quality. 

 

Conclusions We derived the DR algorithm theoretically and validated it experimentally. The DR 

algorithm uses a convolution-based forward model, which is more effective than the inverse formula 

for sparse detection angles. Moreover, this model can be quickly solved by using a deconvolution-

based method. When designing a real-time PACT system, the number of detection angles cannot be 

very large, and the image reconstruction algorithm should be fast, so the DR algorithm becomes a 

good choice. In addition, by utilizing the DR algorithm in PACT systems, we can use fewer 

measurements for given image quality, thereby reducing experimental cost. 
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