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ABSTRACT OF THE DISSERTATION

Magnetic Resonance Elastography of the Brain: from Phantom to Mouse to Man

by

Erik H. Clayton

Doctor of Philosophy in Mechanical Engineering

Washington University in St. Louis, 2012

Research Advisor: Professor Philip V. Bayly

The overall objective of this study is to develop magnetic resonance elastography (MRE)

imaging to better understand brain deformation, brain tissue mechanical properties, and

brain-skull interaction in vivo. The findings of this study provide parameters for numerical

models of human head biomechanics, as well as data for validation of these models. Nu-

merical simulations offer enormous potential to the study of traumatic brain injury (TBI)

and may also contribute to the development of prophylactic devices for high-risk subjects

(e.g., military personnel, first-responders, and athletes). Current numerical models have

not been adequately parameterized or validated and their predictions remain controversial.

This dissertation describes three kinds of MRE experiments, conducted in phantom (phys-

ical model), mouse, and man. Phantom studies provide a means to experimentally confirm

the accuracy of MRE estimates of viscoelastic parameters in relatively simple materials and

geometries. Studies in the mouse provide insight into the dispersive nature of brain tissue

mechanical properties at frequencies beyond those that can be measured in humans. Studies

in human subjects provide direct measurements of the human brain’s response to dynamic

extracranial loads, including skull-brain energy transmission and viscoelastic properties.
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each voxel, ā and displacement components u1, u2, u3 are specified. It may be
possible to estimate mechanical anisotropy locally with these measurements.
This will be the target of future studies. . . . . . . . . . . . . . . . . . . . . 132

A.1 The concept of total least squares versus ordinary least squares best-fit. No-
tice that error in both x and y are considered in a total least squares fit
(green), λ = 1 in the case presented. Only error in y is considered in an
ordinary least squares fit (red). . . . . . . . . . . . . . . . . . . . . . . . . . 140

B.1 (a) Normalized components of the viscoelastic shear moduli estimated from
MRE displacement data at 150 Hz and 400 Hz taken over a period of 7
hours. Measurements of G′/G′′eq (circles)and G′′/G′′eq (squares) are shown
with open symbols (150 Hz) or filled symbols (400 Hz). Solid and dashed
lines show decaying exponential function for G′/G′eq and G′′/G′′eq respectively,
with parameters given in text. (b) Temperature measured using probe at
center of another gel phantom. The gel reached an equilibrium temperature
of 21◦C after 4 hours. Dashed line shows exponential fit to temperature with
time constant of 1.3 hours. Adapted from [119]. . . . . . . . . . . . . . . . . 143

C.1 Coil form components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
C.2 Circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
C.3 The completed coil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

xvii



Chapter 1

Quantitative Imaging Methods for

the Development and Validation of

Brain Biomechanics Models

1.1 Overview

Rapid deformation of brain tissue in response to head impact or acceleration can

lead to numerous pathological changes, both immediate and delayed. Modeling and

simulation hold promise for illuminating the mechanisms of traumatic brain injury

(TBI) and for developing preventive devices and strategies. However, mathematical

models have predictive value only if they satisfy two conditions. First, they must

capture the biomechanics of the brain as both a material and a structure, includ-

ing the mechanics of brain tissue and its interactions with the skull. Second, they

must be validated by direct comparison with experimental data. Emerging imaging

technologies and recent imaging studies provide important data for these purposes.

This review describes these techniques and data, with an emphasis on magnetic res-

onance imaging approaches. In combination, these imaging tools promise to extend

our understanding of brain biomechanics and improve our ability to study TBI in

silico.
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A portion of material presented in this chapter is accepted for publication in Annual

Review of Biomedical Engineering (Bayly, Clayton, Genin, 2012).1

1.2 Introduction

1.2.1 Mechanical strain and strain rate are crucial factors in

traumatic brain injury

Traumatic brain injury (TBI) is a major health problem in both children and adults;

approximately 1.7 million new cases arise each year in the United States [38]. In

1999, more than 5 million Americans had disabilities resulting from TBI, incurring

costs estimated at $56.3 billion annually [167]. TBI is a global health issue, with the

incidence of brain injury due to traffic accidents even higher in Latin America and sub-

Saharan Africa (150–170 per 100,000) than in the United States and Europe [66]. Mild

TBI is the most prevalent form of head injury, with more than 300,000 sports-related

concussions per year in the United States [155]. Concussions have been observed

in American football at skull accelerations estimated to be in the range of 800–1,000

m/s2 [124]. Furthermore, blast-induced TBI has emerged as one of the most important

medical problems related to military deployment [62]. The effects of brain trauma

can be lasting – TBI is an established risk factor for Alzheimer’s disease, especially

in combination with the ε4 allele of apolipoprotein E [109, 96]. The mechanism of

this increased risk is not clear, but it is plausible that TBI affects the brain via

mechanically induced changes in handling and metabolism of amyloid β peptide, as

supported by studies reporting accelerated amyloid β deposition following TBI in

mice expressing mutant human amyloid precursor protein [153, 171].

The physical process underlying most TBI is rapid deformation of brain tissue caused

by acceleration of the skull [46]. In concussions, mild tissue strain is thought to

cause diffuse, mechanically induced depolarization of cortical neurons [147]. In severe

trauma, diffuse axonal injury occurs throughout the white matter of the brain, as

1Author Contributions: P.V.B. directed and performed the literature review and wrote the article.
E.H.C. performed the literature review, adapted figures, prepared tables, and co-wrote the article.
G.M.G. performed the literature review and co-wrote the article.
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axons are stretched beyond a physiological injury threshold [46]. The clearest studies

of the relationship between rapid neural tissue deformation and injury have been

performed outside the brain – for example, on the guinea pig optic nerve [8] and in in

vitro cell cultures or tissue slice preparations [66, 43, 67]. These studies show clearly

the effects of large strain on functional and morphological properties of axons (e.g.,

13). Although in vitro experiments are essential to understand the pathology of brain

injury, to be relevant they should replicate the key physical conditions experienced

by neurons and axons in the intact brain.

For decades, the details of brain deformation in human TBI have remained the subject

of much speculation and indirect study. An example is injury in the frontal lobe

of the brain that presents from occipital impacts far from the impact site—known

as contrecoup injury [46, 130]. Many explanations of contrecoup injury have been

proposed [147, 130], but definitive measurements of brain deformation needed to

evaluate competing hypotheses have only recently become available. This review

summarizes the state of the art in acquiring these data.

1.2.2 Computer models are highly promising but require data

for parameterization and validation

Computer simulations of TBI offer enormous potential, especially to replace experi-

ments that cannot be performed for ethical reasons (e.g., injury-level accelerations in

humans) or that are extremely difficult or expensive. However, simulations require

accurate models of tissue and tissue connectivity and, most importantly, experimen-

tal data to confirm the accuracy and predictive ability of these models. Lacking

such data, numerical predictions of brain deformation remain uncertain. One of the

most important reasons to measure deformation in the human brain is to improve the

quality and credibility of numerical models.

Computer models of slow (quasi-static) brain deformation have been developed by

Miga and coworkers [104, 105], Miller and coworkers [106, 108, 107], and Ji et al. [68]

for neurosurgical applications. The goals of such models are to update presurgical

magnetic resonance (MR) or computed tomography (CT) scans of the brain during

surgery and to assist in surgical planning. Although these quasi-static deformations
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are not a focus of this review, several commonalities exist in the associated imag-

ing needs and technologies, including the need for validation, the need for accurate

material data, and the need for careful consideration of boundary conditions.

A great many finite-element (FE) models describe human head and brain motion

during rapid acceleration [163, 164, 181, 175, 75, 61]. We highlight one example to

describe both the successes and challenges associated with this type of modeling and

to set the stage for the role of imaging studies. The Wayne State University Brain In-

jury Model [182] is a FE model of an adult human male head, with accurate geometry

and anatomical features [e.g., scalp, skull, dura, falx cerebri, tentorium, blood vessels,

white and gray matter, cerebrospinal fluid (CSF)] represented by different material

properties in different interacting regions, each connecting to its neighbors through

prescribed boundary and interaction conditions. Although the technology available

to input detail into this model is remarkable, that available to validate the model has

lagged behind. The state of the art has been comparison with intracranial pressure

data from cadaver impact tests [114, 169]. Measurements of pressure are coarse, and

a broad range of tissue models can replicate a single pressure trace. Needs for spa-

tial resolution and for validation at the level of the parameters implicated in TBI,

such as tissue strain and strain rate fields, motivate the emerging class of noninvasive

technologies described in this review.

Similarly, efforts to understand and prevent blast-induced TBI have motivated devel-

opment of mathematical models of blast-induced pressure fields affecting the human

head. The mechanical loading applied in such models takes advantage of decades of

theoretical development and experimental validation of blast physics. These models

also include detailed anatomy of the head and brain, determined by magnetic reso-

nance imaging (MRI) (Figure 1.1). However, constitutive models of tissue used in

these simulations are simplified and not calibrated to direct mechanical tests of tissue

response in vivo. Taylor & Ford [165] use linear viscoelastic tissue, and Nyein et

al. [117] use isotropic, hyperelastic brain tissue augmented with model viscoelastic

behavior. These simplified models may be appropriate to predict the brain’s re-

sponses to blast-induced mechanical loadings, but the accuracy of such predictions

is yet to be established, which underscores the importance of direct comparison with

experimental measurements.
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Figure 1.1: The technology underlying the physical discretization of computational
models of the human head can now produce remarkable anatomic accuracy and pre-
dictions of mechanical fields at very fine spatial resolution. However, mathematical
models and material data for the tissues, structures, and interactions within the brain
have lagged behind, as have data for validation of model predictions. Adapted from
Reference [61].

In summary, the development of imaging-based technologies for brain biomechanics

is driven by three needs. The first is the need to estimate and validate material

properties that serve as inputs to mechanical models. The brain is a heterogeneous

structure whose different constituents (e.g., cortical gray matter, white matter, sub-

cortical gray matter, and cerebellum) likely have different nonlinear, viscoelastic, and

anisotropic mechanical properties. The second is the need to estimate and validate

boundary conditions and interaction models. The brain is surrounded by CSF and

attached by a variety of materials (vessels, membranes, sheathed nerves) to the skull.

The skull has several bony prominences, particularly at the base, that restrict motion

of the brain relative to the skull. The membranes surrounding the brain (pia mater,

arachnoid mater, and dura mater) are all stiffer than the brain. The dura mater

includes structures (the falx cerebri and tentorium) that clearly interact with and

constrain the motion of the brain parenchyma. The third need is to test hypotheses

and validate models and their predictions. For example, interfacial structures might

be critically important to the mechanisms of impact- and blast-induced TBI, but data

to test this hypothesis are only beginning to become available.
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1.2.3 Challenges in making meaningful measurements of brain

motion

The human brain is well-hidden, well-protected, delicate, metabolically active, and

anatomically complex. These properties make the study of brain deformation daunt-

ing. Brain tissues of other large mammals have material and neurophysiological prop-

erties similar to those of the human brain, but geometry and boundary conditions

unique to the human brain are likely important in determining its response to impact

or blast. Cadaver studies are complicated by numerous factors, especially changes in

the mechanical state of the brain and its environment post mortem [44]. Accordingly,

imaging studies to illuminate TBI have been pursued along two general lines: (a)

animal and cadaver studies that address general mechanisms of injury, particularly

the material response of brain tissue, and (b) human studies that are noninvasive

and that target TBI indirectly by determining the response of the intact brain to

subinjurious mechanical stimuli.

In this review, we summarize the contributions of imaging to the understanding of

TBI and to the development of accurate numerical simulations of brain biomechanics.

We emphasize recent MRI-based studies, because they provide full-field measurements

of time-varying deformation in the living brain. Finally, we discuss some of the many

remaining challenges and possibilities for future work in this area.

1.3 Technical Requirements for Imaging Rapid Brain

Deformation

TBI involves spatial and temporal variations in brain motion. Quantification of in-

tracranial deformation has been approached in two ways. The first, exemplified by the

studies of Hardy et al. [57] and Zou et al. [183], involves tracking a small number of

physical markers. These authors imaged neutrally buoyant markers embedded within

a cadaveric brain, using high-speed X-ray images taken in two orthogonal planes. Tri-

angulation of marker positions over time yielded a time course of their displacements.

The second approach uses the image contrast itself, typically resulting in much higher
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spatial resolution. This method leads to a sequence of two-dimensional (2D) images

(or 3D image volumes) acquired over time and stored as 3D arrays (M x N pixels x

P sample times) or 4D arrays (M x N x K voxels x P times). We summarize in this

section the analysis of strain and deformation needed to interpret these data.

1.3.1 Displacement and strain fields

Deformation estimation typically begins with image processing to extract displace-

ment fields. Deformation is quantified by comparing a deformed configuration of the

imaged brain with an undeformed reference configuration of the imaged brain, in

terms of a displacement field and its spatiotemporal derivatives. The location of each

material point of the body is defined by its position X in the reference configuration

and its position x(X, t) = X + u(X, t) in the deformed configuration, where the dis-

placement field u(X, t) is a vector field representing the displacement at time t of the

material point that was initially at position X at time t = 0.

Displacement fields are commonly estimated by tracking markers in each image that

identify material points. Because multiple markers are used to define a spatial field,

establishing the correspondence between markers in deformed and reference config-

urations is a critical step. Some imaging techniques, such as phase-contrast MRI,

provide direct measurements of displacement or velocity for each voxel, eliminating

the problem of correspondence. Digital image correlation techniques may also be used

to estimate displacement fields [182].

Displacement fields take into account deformation, rigid-body translation, and rigid-

body rotation. Strain measures of interest isolate deformation and are based on the

deformation gradient tensor field, F(X, t), which maps an infinitesimal vector dX

in the reference configuration to a corresponding vector dx(X, t) in the deformed

configuration:

dx(X, t) = F(X, t)dX . (1.1)

An example of an appropriate strain tensor is the Green–St. Venant strain tensor:

E(X, t) =
1

2

(
FT(X, t)F(X, t)− I

)
. (1.2)
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where I is the identity tensor. Whereas F(X, t) includes the effects of rotation,

E(X, t) does not, so that E(X, t) vanishes in a body that rotates but does not deform.

Strain is a nondimensional measure of deformation. Normal strains can describe the

change in the length of a line relative to its length in the reference configuration; for

example, 0.05 strain corresponds roughly to a 5% change in length. In the limit of

infinitesimal deformations, shear strains describe the change in angle between lines

that are perpendicular in the reference configuration.

1.3.2 Spatial and temporal resolution, discretization, and noise

Converting from a series of pixelated images to a strain field involves tracking specific

image features (markers) through the series and presents challenges associated with

both spatial resolution and temporal resolution. Spatial resolution of displacement

fields is determined by the spacing between tracked markers, which is typically larger

than the pixel resolution. Because finite difference approximations are used to esti-

mate the spatial derivatives in Equation 1.1, strain can be estimated accurately only

if the distance between tracked points is much less than the characteristic wavelength

or spatial feature of interest. Temporal sampling must be sufficiently fast to resolve

displacements, and image acquisition must be sufficiently fast to avoid blurring. The

timescales for impacts and pressure pulses associated with TBI pose challenges. As

an alternative to studying short transient events directly, harmonic excitation can

be used to characterize the behavior of the skull and brain, and the duality between

frequency and time domain responses can be exploited [40]. For harmonic behavior,

the sampling rate must exceed twice the frequency of the behavior itself [120], and to

accurately capture transient response, the temporal sampling rate must be at least

twice the highest frequency of interest. In practice, higher temporal sampling rates

are always helpful to characterize continuous behavior.
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Figure 1.2: The earliest estimates of acceleration-induced shear strain fields within the
human brain are those of Holbourn [63], who observed shear deformation patterns
within gelatin-filled skulls due to occipital impact and angular acceleration/lateral
impact. The scale bar represents the relative magnitude of shear in arbitrary units.
Recent magnetic resonance imaging data have shown that shear strain patterns within
a gelatin-filled skull differ fundamentally from those within a living human owing to
several factors including brain architecture, vasculature, and attachment to the skull.
Reproduced from Reference [63].

1.4 Imaging Studies in Physical Brain Surrogates,

Animals, and Cadavers

1.4.1 Imaging studies of deformation in physical models

Much of our current insight into the mechanics of TBI comes from imaging of physical

models: soft materials encased in rigid containers exposed to accelerations. In a classic

study, Holbourn [63] filled models of a cross section of human skull with a gelatin

mixture, sheared it by imposing large linear and angular accelerations of the skull,

visualized strains with a polariscope, and depicted the strains using hand drawings

(Figure 1.2). More recently, Margulies et al. [93] and Meaney et al. [102] filmed the

motion of grid patterns in gel inside animal and human skulls during imposed angular

acceleration (Figure 1.3). The amplitudes (≈105 rad/s2) and durations (15–20 ms) of

angular acceleration used in these studies reached levels associated with diffuse axonal

injury in pigs [102]. Large shear strains (0.10–0.30) were observed in these studies.

Gel models, however, lack anatomic details such as vasculature, heterogeneous tissue
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Figure 1.3: High-speed and high-resolution videography techniques have enabled stud-
ies of physical models of the brain that undergo large deformations at high strain rates.
The skull of a miniature pig was filled with two layers of silicone gel; a grid pattern
was painted between the layers. The assembly was subjected to angular accelerations
of 50,000–200,000 rad/s2 while grid deformation was recorded at 1,000 frames per
second. Adapted from Reference [102].

structure, and CSF. This lack likely oversimplifies the response characteristics of the

human brain, whose anatomic detail may, in fact, dramatically affect its response to

impact or blast loading.

1.4.2 Visualization of brain deformation in animal studies

Imaging studies have long been performed in the brains of live animals, as well as

post mortem in fresh animal brain specimens. Pudenz & Shelden [130] replaced the

top half of the skull of a macaque monkey with transparent plastic and filmed the

top of the brain during blunt impact at 2,000–3,000 frames per second. Results,

presented as hand-drawn sketches in their 1946 paper, confirmed that impact leads

to relative motion of the brain within the skull and that the brain rotates and deforms

after impact. Nonetheless, internal brain deformations could not be visualized, and

deformations were not quantified.

Two recent high-speed optical imaging studies of deformation of the pig brain, post

mortem, illustrate the potential and challenges associated with these methods. Ibrahim

et al. [65] studied the response of the piglet brain in situ (post mortem, but within

10



Figure 1.4: Progress on understanding acceleration-induced strain in the animal brain
in situ has been made through high-speed video studies. The exposed flat surface of
the hemisected brain of a juvenile pig was marked with India ink (a), and the skull and
brain were covered by a layer of lubricant and by a transparent Plexiglas cover plate.
Strain fields were estimated from marker positions (b) during an angular acceleration
pulse with a peak magnitude of ≈10,000 m/s2. Reproduced from Reference [65].

the skull) to high angular acceleration (Figure 1.4). The head of the piglet was tran-

sected so that an interior plane of the brain was exposed. This surface was marked,

and the entire transected head was held securely in a container with a transparent

cover. The assembly was subjected to angular accelerations believed to be adequate

to cause injury, and high-speed (2,500 frames per second) images were acquired. Peak

shear strains estimated from the displacements of surface marks (strain estimation

methods are discussed below) typically exceeded 0.2. Lauret et al. [84] accelerated

to ≈2,000 m/s2 sagittal slices of pig brain, 4 mm thick, contained within a flat, stiff

container with a skull-shaped cross section and a transparent cover. Images acquired

at 1,600 frames per second were analyzed using digital image correlation to compute

the displacement field of a random speckle pattern painted on the exposed brain sur-

face. Peak strains of 0.10 to 0.20 were observed. The strength of these two studies is

the ability to image at strains and strain rates similar to those observed in TBI. The

shared drawback is the restriction to image strains on the surface of a portion of the

brain ex vivo, with dramatically altered boundary conditions.

Studies in the intact living animal brain have been performed on small animals using

MRI methods. Using MR tagging, Bayly et al. [16] measured strain fields in response

to closed-skull indentation in a juvenile rat. The combined response of the deformable

skull and of the heterogeneous, compliant, partitioned brain determined the strain

field; this theme is consistent with the idea of the brain as a structure as well as
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a material and consistent with observations taken on humans as described below.

Using MR elastography, Clayton et al. [29] measured intracranial strains induced by

harmonic loading in brains of living mice.

The great advantage of imaging studies in animals is the ability to characterize large

deformation behavior in the intact brain. The most important shortcoming is that the

anatomy of the human brain and skull differs greatly from those of other animals. The

studies detailed below suggest that brain geometry and the details of the interface

between the brain and skull are among the most important factors in the brain’s

mechanical response to mild impact, and this could well be the case for severe impact

and blast loading as well. Although qualitative observations on the general features

of brain injury can be derived from brain indentation studies in rodents, relating

these to acceleration-induced injury in humans is challenging. A key limitation is the

scaling effect [94, 92]: The acceleration required to attain a specific level of strain

in an animal model scales nonlinearly with brain mass and size. As a result, the

acceleration levels needed to produce closed-head acceleration-induced TBI in the

mouse are not feasible for MR studies.

1.4.3 Visualization of brain deformation in cadavers

Hardy et al. [57] used high-speed (250–1,000 frames per second) biplanar X-ray imag-

ing to track the displacement of 11 neutral-density radio-opaque markers in the brains

of cadavers during impacts. Although these displacement fields are informative, the

limited spatial resolution of the markers made it impossible to determine local tis-

sue strain [57]. In addition, the mechanical properties of the cadaver brain differ

significantly from those of a live subject [91], notwithstanding the considerable ef-

forts taken to maintain perfusion of the tissue [44]. Despite these challenges, Zou et

al. [183] reanalyzed these data and obtained informative estimates of brain motion

relative to the skull that likely provide a lower bound on actual displacements, and

they described qualitative features of the displacement field consistent with those of

earlier MR studies, including an important role for brain rigid-body rotation at lower

accelerations.
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1.5 Measurement of Human Brain Motion by Phase-

contrast Imaging and Magnetic Resonance Elas-

tography

Inherently noninvasive and benign, MRI is particularly well suited to study brain

tissue. Its signal derives from the spin precession of hydrogen nuclei in a strong

magnetic field. Spins, which align predominantly with the magnetic field, are “tipped”

by radiofrequency (RF) pulses; the frequency and phase of the ensuing precession are

associated with spatial location (“encoded”) by gradients in the magnetic field. In

classic anatomical MRI, image contrast arises from tissue-specific differences in water

content or rates of signal decay. Different tissues, such as white or gray matter, exhibit

differences in the decay of longitudinal (T1) or transverse (T2) components of spin

magnetization, enabling acquisition of detailed static T1-weighted or T2-weighted

anatomical images. Whereas such images are the most common application of MRI,

manipulation of spin amplitude and phase by magnetic gradients and RF pulses can

be used to measure motion. These techniques have been applied and adapted to

the study of brain biomechanics increasingly over the past decade. Here we review

some of the techniques that have recently produced valuable data and summarize the

insight into brain deformation mechanisms provided by these data.

Phase-contrast MRI methods measure the relative angular position (i.e., phase) of the

net transverse magnetization vector for each isochromat (spin packet). Because for

each isochromat the magnetization vector precession rate (frequency) depends on the

local magnetic field strength, isochromats moving in the presence of a spatially vary-

ing magnetic field (gradient) have a different phase than those that remain motionless

in the same magnetic field. Muthupillai et al. [112] harnessed this concept to develop

magnetic resonance elastography (MRE). They imaged steady-state, harmonic shear

wave propagation in biological materials by synchronizing an applied mechanical vi-

bration with an oscillatory magnetic field gradient, and they estimated the material’s

shear modulus from the shear wave velocity. MRE was developed originally to calcu-

late elastic properties of tissue and to detect diseased or degenerating tissue through

differences in propagation speed associated with differences in stiffness [111, 113].

Poncelet et al. [127] demonstrated the use of phase-contrast MRI to measure motion
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Figure 1.5: Phase-contrast MRI allows high spatial resolution imaging of the three-
dimensional displacement and strain fields in the moving brains of live human sub-
jects. Shown here is the strain-rate tensor field in the human brain due to normal
pulsatile motion of the brain parenchyma. Box icons are color coded and scaled to
represent the eigenvalues λi and scaled eigenvectors vi of the strain-rate tensor at
each voxel. Adapted from Reference [132].
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in the brain parenchyma of human subjects during physiological pulsatile motion and

voluntary head shaking. Reese et al. [132] used phase-contrast MRI to estimate 3D

strain fields in the human brain due to pulsatile motion (Figure 1.5).

Described here are the initial implementations of MRE that targeted linear-elastic,

homogeneous, isotropic materials, along with recent advances that enabled its appli-

cation to brain tissue, which is viscoelastic, heterogeneous, anisotropic, and nonlinear.

Our focus is data and methods for incrementally linear, homogeneous tissue that ex-

hibits viscoelasticity, the latter property is especially important in brain tissue, which,

like most biological materials, appears stiffer at higher rates of deformation.

1.5.1 Principles of magnetic resonance elastography

MRE measures oscillating shear displacements caused by harmonic vibration. Mea-

surements of harmonic displacement are obtained by modulating the gradient field of

the MR scanner at the vibration frequency [112]. Application of this sequence leads

to images in which phase contrast is developed between vibrating spins.

If oscillating gradients of constant amplitude, frequency, and duration are applied in

three orthogonal directions, a vector of motion-induced phase, φ, is obtained at each

voxel in the image space. The oscillatory displacement, u, of the voxel is proportional

to the phase, φ, of the tissue spins obtained from elastography images. We define the

position of a spin packet in a 3D sample as x(X, t) = X + u(X, t), where u(X, t) =

u0 cos(ωt − k ·X + θ), in which u0 describes the vibration amplitude and direction

and, X, ω, k, and θ are the initial position of the spin packet, vibration frequency,

spatial frequency vector, and vibration phase, respectively. Then the component of

the MR phase in the direction of the gradient is [113]

φG(X, θ) = γ

∫ 2πN/ω

0

G(t) · x(X, t) dt =
γπN

ω
(G0 · u0) cos(θ − k ·X), (1.3)

where φG(X, θ) is the component of the MR phase vector in the direction of G(t), γ

is the gyromagnetic ratio, N is the number of cycles, and G(t) = G0 cos(ωt) is the

magnetic-field gradient. Thus, tracking phase in three orthogonal directions allows

the three components of the displacement field to be obtained.
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1.5.2 Estimation of elastic properties from magnetic

resonance elastography data

Data from MRE studies consist of displacement fields. In order to obtain estimates of

material parameters, these displacement fields must be interpreted in the context of

elastodynamics. One approach is to fit the data directly to the differential equations

governing elastic wave propagation. Alternative approaches include the application

of the principle of virtual work, or the use of general signal processing techniques to

estimate the local wavelength of the image data.

Fitting of elastic wave equations

The equation governing 3D wave propagation in a linear, homogenous, isotropic,

unbounded medium is described by

ρ
∂2u(X, t)

∂t2
= µ∇2u(X, t) + (λ+ µ)∇(∇ · u(X, t)), (1.4)

where ρ is the material density, λ and µ are the Lamé constants, and derivatives

are relative to the reference configuration [80]. The dilatation (ud(X, t)) and shear

(us(X, t)) components of u(X, t), where u(X, t) = ud(X, t) + us(X, t), satisfy Equa-

tion (4) independently and may be calculated from Equation (4) using the divergence

and curl of u(X, t), noting that ∇ · us(X, t) = 0 and ∇× ud(X, t) = 0. Dilatational

waves (also known as pressure, compression, longitudinal, or irrotational waves) travel

at a speed of cL =
√

λ+2µ
ρ

, and shear waves (also known as distortional, transverse,

or equivoluminal waves) travel at a speed of cS =
√

µ
ρ
. In general, the two modes

are coupled through boundary conditions on u(X, t) and on the stress field, which

is related to through strain-displacement and constitutive relations [176]. For a dis-

placement field due solely to shear deformation, Equation 1.4 reduces to

ρ
∂2us(X, t)

∂t2
= µ∇2us(X, t) (1.5)

and can be solved to identify the elastic shear modulus, µ.
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In general, within geometrically complex inhomogeneous media, dilatational and

shear components of a wave field are coupled. The dilatational component of the

displacement field (second term in Equation 1.4) may distort material parameter

estimates if pure shear deformation is assumed and Equation 1.5 is used [152]. Tak-

ing the curl of the measured displacement field eliminates the dilatational compo-

nent [152, 49]; the resulting data can be fitted to the equations above, after the curl

operator has been applied. However, spatial derivatives involved in the curl operation

amplify the effects of noise. Spatial filtering can remove long-wavelength components,

but at the risk of mischaracterizing regions of unexpectedly high stiffness [152, 90];

the appropriate band limits of the spatial filter are seldom clear a priori. Clayton et

al. [29] showed that estimates of mouse brain material properties differed slightly in

measurements made between 600 and 1,800 Hz, depending on whether curl or spatial

filtering was used to remove dilatational components.

When an imperfect theoretical model is used to interpret data from a physical system,

evaluation of the goodness of fit, or applicability of the model to the data, is essential.

Atay et al. [6] introduced the normalized residual error (the variance in the data that

is not explained by the model) as a measure to evaluate confidence in local estimates

of stiffness.

Local wavelength estimation

Elastic moduli may be estimated without explicitly fitting the equations of motion.

A technique named local frequency estimation (LFE) [76] has been used to find the

local wavelength λ of propagating mechanical waves from spatiotemporal images of

the wave field. If one assumes only shear waves are imaged, the propagation speed

is found simply from cS = λf , where f = ω/2π is the actuation frequency (Hz).

The shear wave velocity relationship (cs =
√
µ/ρ) can then be used to infer material

stiffness:

µ = ρc2
S = ρλ2f 2. (1.6)

Several investigators [90, 81] have used this approach to estimate the elastic shear

modulus of tissues. The advantage of this approach is that the need for two or

three numerical derivatives is circumvented, but, without a way to formally decouple

shear and dilatational displacement components, estimates suffer from corruption by
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dilatational waves. Our group has applied LFE to local rotation fields estimated from

the curl of displacement fields measured during wave propagation in the human brain

in vivo [30]. The use of local rotation in LFE is motivated by physics (it allows the

decoupling of distortional and dilatational components of the wave field) and relative

insensitivity to noise, as it requires only one spatial derivative.

Other methods

Other approaches to inverting MRE data involve energy principles. Romano et

al. [138] employed a variational technique to invert a weak form of the equations

of motion. Closely related is the work of Pierron and coworkers [47, 48], who used

the virtual fields method to estimate material parameters from full-field displacement

or strain data. Van Houten et al. [173] developed an inverse FE method to estimate

material parameters in subzones of the image volume. Manduca et al. [90] describe

LFE, algebraic direct inversion, and phase gradient approaches.

1.5.3 Estimation of viscoelastic properties from magnetic

resonance elastography data

The viscoelastic correspondence principle allows the purely linear-elastic equations of

motion to be generalized to analogous viscoelastic equations via Laplace or Fourier

transform [131, 145, 86], allowing elastic moduli to be replaced with corresponding

complex viscoelastic moduli without requiring a specific rheological model. The linear

modulus µ in Equation 2.5 is replaced in Laplace or Fourier space by the transformed

linear-viscoelastic complex shear modulus, G∗(iω) = G′(ω) + iG′′(ω), where G′(ω)

and G′′(ω) are the frequency-dependent storage and loss modulus, respectively, and

viscoelastic estimates can be made.

Alternatively, in cases in which the wave field is well characterized by 1D propagation

of plane waves or those in which it can be directionally decomposed into the super-

position of several plane wave fields, logarithmic decrement methods can be used to

extract the attenuation parameter α [80, 7]. The solution of plane distortional wave

propagation in an isotropic viscoelastic medium relates storage G′(ω) and loss G′′(ω)
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components of the complex shear modulus to the spatial attenuation constant α and

wavenumber k, equivalent to k = 2π/λ, as follows [80, 7]:[
k2 − α2 2αk

−2αk k2 − α2

]{
G′

G′′

}
=

{
ρω2

0

}
. (1.7)

1.5.4 Anisotropic material models

White matter, composed largely of aligned axonal fibers and associated myelin sheaths,

is expected to be mechanically anisotropic [3]. In an anisotropic material, the speed

of propagation varies with direction [80, 7], motivating approaches to quantify some

aspects of material anisotropy using MRE [151]. However, to our knowledge, this has

not been applied to brain tissue.

1.5.5 Magnetic resonance elastography imaging studies

MRE principles and techniques have now been used to estimate mechanical properties

in a range of tissues and organs. MRE has also been applied to surrogate biomaterials,

both for validating the technique and for characterizing the mechanical response of

these materials.

Magnetic resonance validation studies

MRE is attractive because it is noninvasive, but is challenging to apply because it

is inherently indirect: Mechanical properties are inferred from displacement fields

arising from vibratory motion. Broad variation in reported MRE estimates of tissue

mechanical properties has led to several efforts to evaluate the accuracy of MRE esti-

mates through comparison with mechanical properties measured by direct mechanical

tests [112, 6, 126, 54, 36, 134, 23, 125, 119]. The following conclusions were reached:

• Direct mechanical tests of biological tissue are difficult to perform, and results

can vary significantly with variations in test procedure and experimental con-

ditions [64]. Brain tissue is particularly compliant, fragile, and slippery, and
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its properties vary with temperature, hydration, blood pressure, and time post-

mortem.

• Brain tissue is viscoelastic. To be relevant, tissue phantoms used in studies to

evaluate MRE should mimic the viscoelastic response of living tissue.

• Because viscoelastic material parameters are usually frequency dependent, di-

rect mechanical tests performed for comparison with MRE should be performed

at the same driving frequency.

Validation studies have been performed in animal brain tissue by comparing estimates

from MRE in vivo with direct mechanical measurements ex vivo. Investigators have

used MRE to quantify the components of the viscoelastic shear modulus of porcine

brain tissue [174] and bovine liver tissue [71] and directly compared results with those

yielded by oscillatory rheometry. Both studies showed qualitative agreement of trends

in the values of G′(ω) and G′′(ω) with frequency, but rheological tests of porcine brain

tissue were performed at a much lower frequency (0.1 to 10 Hz) than that offered by

MRE (80–140 Hz), making interpretation of results inconclusive.

However, more conclusive validation is available for gels. Okamoto et al. [119] de-

veloped a dynamic shear test to measure the complex shear modulus of a tissue-

mimicking gel material at frequencies ranging from 20 Hz to 200 Hz. This allowed

for direct comparison with MRE at the same frequencies. A close agreement between

MRE results and dynamic shear test results at overlapping frequencies supports MRE

applicability over a wide frequency range.

Magnetic resonance elastography studies of brain material properties

Numerous recent MRE studies of the brain in human subjects have been performed [49,

97, 72, 56, 141, 142, 180, 30], with high-resolution displacement fields resulting (Fig-

ure 1.6). Methods of Sinkus, Bilston, and collaborators [49, 180] are typical, involving

harmonic motion to the skull through a vibrating bite bar. MRE data lie well within

the range of data obtained by shear and indentation tests ex vivo (Figure 1.7) but

are nevertheless somewhat variable. For example, McCracken and coworkers [97],

who used 80-Hz excitation and fit a pure elastic model to their data, found shear
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Figure 1.6: Magnetic resonance elastography (MRE) produces estimates of intracra-
nial displacement fields observed in response to dynamic pressure loading of the skull.
These can be inverted to estimate spatially varying mechanical properties of brain
tissue. Example displacement fields shown here are obtained from a single-slice mul-
tifrequency MRE experiment. (a) Standard MR anatomical images: T1-weighted
(T1w), proton density (PD), and T2-weighted (T2w) contrast. (b) Wave images
and parameter fields. U ′ and U ′′ denote the real and imaginary parts of the first
harmonic component U(x, y, ω) of the displacement field. The complex modulus im-
ages (G′ and G′′) denote the real and imaginary parts of the complex shear modulus
G∗(x, y, ω). The driving frequencies are given above the columns. Reproduced from
Reference [142].
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moduli of 5.3±1.3 kPa for cortical gray matter and 10.7±1.4 kPa for white matter.

Kruse et al. [81], who applied LFE to displacement wave fields to estimate elastic

parameters, found 5.2±0.4 kPa for gray matter and 13.6±1.3 kPa for white matter

at 100-Hz driving frequency. Clayton and coworkers [30] recently used LFE on the

isolated distortional component of the displacement field to calculate viscoelastic ma-

terial parameters of gray and white matter at 45, 60, and 80 Hz and found that both

gray and white matter storage moduli varied over this frequency range: 2.8–4.4 kPa

(gray), and 3.7–4.7 kPa (white). Green et al. [49] used 90-Hz excitation and found

cortical gray matter (3.1±0.1 kPa) stiffer than white matter (2.7±0.1 kPa). For refer-

ence, we note that Thibault & Margulies [166], using direct mechanical measurements

(dynamic shear tests) of pig brain gray matter ex vivo, found 1.2+i0.8 kPa at 50 Hz

and 1.5+i1.3 kPa at 100 Hz. Experimental approaches and parameter estimates from

different MRE studies are summarized in Table 1.1.

1.6 Discussion and Conclusions

Imaging is an important component of the study of TBI mechanics, complementary

and essential to efforts in modeling and simulation. It is likely that both simulation

and imaging of biomechanics will play a major role in the effort to prevent TBI. Accu-

rate computer models would also be valuable to those researching the neuropathology

of TBI who wish to understand the direct effects of mechanical insult and separate

these primary effects from delayed, or secondary, effects. However, without accurate

mechanical parameters and careful validation by experimental studies such as those

reviewed here, simulations will be neither reliable nor useful.

Important open questions remain, however. Perhaps the most important decision is

which quantities to measure or calculate. Although strain and strain rate are known

to be important metrics of tissue disruption, they may not be the only factors in

injury severity. Imaging studies may help answer these questions. An example is

the recent study of closed-head injury in the juvenile rat [14, 16], in which images of

mechanical strain, obtained by MR tagging, are compared directly with histological

images (Figure 14) to gain insight into neuropathological mechanisms [16]. This

study shows not only that local measures of strain are important to the outcome in
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Table 1.1: Magnetic resonance elastography (MRE)-based estimates of brain elastic
or viscoelastic mechanical properties (healthy living human subjects).

Study Frequency G′ (kPa) G′′ (kPa) Actuator
(Hz) Gray White Avg Gray White Avg

[142] 25 – –
1.1
±
0.2

– –
0.5
±
0.1

Head
rocker

[142] 37.5 – –
1.3
±
0.3

– –
0.6
±
0.1

Head
rocker

[30] 45
2.8
±
0.5

3.7
±
0.8

–
0.80
±
0.2

1.3
±
0.4

–
Acoustic
pressure

[142] 50 – –
1.5
±
0.2

– –
0.6
±
0.1

Head
rocker

[30] 60
3.1
±
0.3

3.3
±
0.1

–
1.7
±
0.3

2.0
±
0.1

–
Acoustic
pressure

[142] 62.5 – –
2.0
±
0.2

– –
0.8
±
0.1

Head
rocker

[97] 80
5.3
±
1.3

10.7 – – – – Bite bar

[30] 80
4.4
±
0.3

4.7
±
0.6

–
2.3
±
0.2

2.4
±
0.5

–
Acoustic
pressure

[180] 80
2.3
±
0.2

2.4
±
0.2

–
1.1
±
0.0

1.2
±
0.2

Bite bar

[49] 90
3.1
±
0.1

2.7
±
0.1

–
2.5
±
0.2

2.5
±
0.2

– Bite bar

[81] 100 5.2 13.6 – – – – Bite bar
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an injury-level event but also that other (biological) factors play an important role.

Strain fields correlate with, but do not replicate, patterns of neuronal apoptosis. The

pattern of neuronal apoptosis was well explained, however, by the intersection of the

strain field with the axonal tracts connecting these neurons to their synaptic partners.

The pervasive technical challenge that underlies all work on the biomechanics of TBI

is predicting the response of the human brain to high loading without performing di-

rect tests. Because it is impossible to study directly the mechanics of TBI in humans,

different models (gel surrogates, animal, cadaver, and human) and imaging techniques

are required to span the range of necessary data. For example, to understand the

effects of the human anatomy, data must be acquired in humans at safe, physiologi-

cally relevant levels of strain and strain rate; yet data from animal models or in vitro

studies are needed to understand the nonlinear properties of the brain during large

deformation. Results from studies in gel surrogate phantoms can be compared with

carefully controlled laboratory tests and closed-form solutions. The complete picture

of brain biomechanics will be a mosaic of the results of such complementary studies.

1.7 Summary

Imaging studies have been pursued for decades to understand the motion of the brain

that occurs in response to impact or acceleration of the skull. Recent advances have

exploited high-speed video, digital image correlation, and MRI techniques developed

specifically to visualize and characterize fast events. We believe that MRI-based

techniques in particular provide a window into the complex structural interactions

that modulate mechanical injury in the human brain.

Imaging studies will continue to help develop a comprehensive picture of the brain’s

behavior when the skull accelerates and to illuminate how the transduction of mechan-

ical stresses to the brain relates to brain injury. Continued effort in these directions

promises to have great impact on our scientific understanding of TBI and our ability

to prevent and treat brain injury.
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Summary Points

• Imaging of brain biomechanics is important for validation and calibration of

biomechanical models and for testing of hypotheses about the mechanical re-

sponse of the brain.

• At physiologically relevant acceleration magnitudes, the meninges, vessels, and

sheathed cranial nerves arrest brain motion; wave motion is not observed; and

higher strains associated with brain-skull attachment appear at sites associated

with contrecoup injury.

• Strains on the order of 5% are common in the brain in response to daily activity.

• At high acceleration levels in cadavers, high-speed biplanar X-ray images sug-

gest that the meninges are unable to resist inertial forces, and broad brain-skull

contact may occur.

• High-speed video imaging allows measurement of large deformations at high

strain rates in brain slices or brain sections in situ or in vitro.

• MRE provides both visualization of wave propagation patterns and noninvasive

estimates of frequency-dependent brain biomechanical properties.

1.8 Specific Aims and Organization of this Work

This work aims to develop and use magnetic resonance elastography for the purposes

of quantitatively measuring dynamic brain response to validate numerical models of

the human head. Brain material properties, boundary conditions, and basic response

characteristics to dynamic loading must be validated in vivo. Until numerical models

of brain biomechanics are validated with appropriate in vivo data, they will remain

controversial within the scientific community. Their predictions will be treated with

skepticism and their utility limited.
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1.8.1 Specific aims

Experimental techniques which provide direct measures of brain biomechanics in vivo

and non-invasively are limited. MR elastography is a recently developed imaging

technique and provides new means to acquire biomechanical information on the living,

intact brain. This study investigates the utility of MRE for these purposes, and to

do so three (3) specific aims are proposed:

• Aim 1: Develop and validate an isotropic viscoelastic inversion algorithm for

MR elastography data.

• Aim 2: Develop capabilities to perform high-throughput longitudinal MR elas-

tography screening at high actuation frequencies in the living mouse brain.

• Aim 3: Develop experimental capabilities to perform MR elastography in the

living human brain and novel algorithms to extract biomechanical information

from these data.

1.8.2 Organization of this work

The requisite mathematical preliminaries to perform this work are outlined in Chap-

ter 2. This includes a brief development of continuum mechanics and magnetic reso-

nance imaging theory.

Chapter 3 is an exposition of the elastography validation study. The viscoelastic

properties of a tissue analog were characterized by bench-top mechanical test and

used as a calibrated phantom for MRE experiments.

A displacement-based viscoelastic isotropic inversion algorithm was developed for

MRE data and applied to the mouse brain in Chapter 4. Dispersion of brain tissue

shear modulus was assessed at high actuation frequencies. Brain response to rapid

loading is an important consideration in understanding and modeling traumatic brain

injury.
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The structural-functional dynamics of the intact living human head were assessed in

Chapter 5. Shear motion in brain tissue is suspected to cause axonal damage, thus

inducing brain injury; as such, the transmission, attenuation, and reflection of shear

wave propagation in the human brain was investigated.

Chapter 6 introduces a preliminary study of a method to detect and quantify anisotropic

mechanical properties of tissue. A unique feature of this work, structural properties

of tissue, obtained via diffusion tensor imaging, are capable of being used to extract

mechanical tissue properties from MRE elastography data.

Overarching conclusions, methodological limitations, and suggestions for future stud-

ies are discussed in Chapter 7.
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Chapter 2

Theoretical Framework

2.1 Overview

In this chapter the equations of motion for steady-state harmonic wave propagation

in extended media are developed within the limit of small displacement gradients.

Equations of wave propagation in isotropic and transversely isotropic media are dis-

cussed because they are useful in approximating the response of biological tissues to

harmonic excitation. Viscoelasticity is addressed in two ways: via the correspondence

principle and by assumption of a rheological model a priori. The basic concepts un-

derlying the use of magnetic resonance imaging to measure wave propagation fields

(magnetic resonance elastography) and tissue structure (diffusion tensor imaging)

are introduced. Details of parameter estimation vary based on application and are

addressed in subsequent chapters.

Although biological tissue commonly undergoes large deformations, it is important to

understand small-strain behavior in order to guide the selection of appropriate large-

deformation models. In this work, imposed strain amplitudes are small (<< 1.0) and

much less than any threshold known to induce TBI. Questions regarding nonlinearity

in both a kinematic and material sense are not addressed.
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Figure 2.1: Deformation of two particles, A and B, in a deformable body D.

2.2 A Brief Review of Continuum Mechanics

2.2.1 Kinematics

The displacement of a particle at any point in a deformable body may be decomposed

into coordinates parallel to an orthogonal reference system. A Cartesian system with

reference axes x1, x2, and x3 describing displacements u1, u2, and u3 along those axes

(Figure 2.1) is used here. Consider a particle within the body D at an undeformed

position A: (x1, x2, x3) with a corresponding deformed position A’: (x1 + u1, x2 +

u2, x3 + u3). Material deformation is developed when particles within a body are

displaced relative to each other. Now consider another point infinitesimally close to

the reference position. Its undeformed position is B: (x1 + δx1, x2 + δx2, x3 + δx3)

with defined displacements (u1 + δu1, u2 + δu2, u3 + δu3). The differential particle
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displacement δui is then described by

δu1 =
∂u1

∂x1

δx1 +
∂u1

∂x2

δx2 +
∂u1

∂x3

δx3, (2.1a)

δu2 =
∂u2

∂x1

δx1 +
∂u2

∂x2

δx2 +
∂u2

∂x3

δx3, and (2.1b)

δu3 =
∂u3

∂x1

δx1 +
∂u3

∂x2

δx2 +
∂u3

∂x3

δx3, (2.1c)

or, in a more compact notation, as

δui =
∂ui
∂xj

δxj. (2.2)

∂ui/∂xj is known as the displacement gradient matrix and is, by itself, a deficient

measure of deformation because it does not distinguish rigid body motion from mate-

rial deformation [7]. That is to say, a body undergoing rigid motion produces non-zero

displacement gradients regardless of whether or not material deformation occurred.

A sufficient measure of deformation is strain:

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.3)

This definition of strain εij is known as linearized tensorial strain and is valid for

small displacement gradients ∂ui/∂xj. Tensorial strain differs from engineering strain

by the leading factor of 1/2 on the shear strain terms (i.e., when i 6= j).

2.2.2 Equilibrium

Consider an infinitesimal rectangular parallelepiped with a general state of stress

(Figure 2.2). The equations of equilibrium are obtained by considering an infinites-

imal variation δ in stress across each face of the parallelepiped with respect to each

coordinate axis and multiplying it by the face area. This geometric visualization tool

used to invoke Newton’s second law of motion. For example, the resultant force F1
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Figure 2.2: Stresses acting on an infinitesimal rectangular parallelepiped of volume
V = δx1δx2δx3.

acting in the x1-direction is

F1 =

(
σ11 +

∂σ11

∂x1

δx1

)
δx2δx3 − σ11δx2δx3 +(
σ12 +

∂σ12

∂x2

δx2

)
δx1δx3 − σ12δx1δx3 +(
σ13 +

∂σ13

∂x3

δx3

)
δx1δx2 − σ13δx1δx2. (2.4)

Newton’s second law states that forces acting along a particular line of action must

balance the inertial load along that line of action. If body forces are neglected, then

F1 = ρ(δx1δx2δx3)
∂2u1

∂t2
, (2.5)

where ρ is the material density and u1 is the displacement component in the x1-

direction.

Simplifying Equation 2.4 and using Equation 2.5, the x1-direction equation of motion

is obtained. The process is repeated for the x2- and x3-directions to find all three
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equations of motion with respect to a Cartesian reference frame:

ρ
∂2u1

∂t2
=
∂σ11

∂x1

+
∂σ12

∂x2

+
∂σ13

∂x3

, (2.6a)

ρ
∂2u2

∂t2
=
∂σ21

∂x1

+
∂σ22

∂x2

+
∂σ23

∂x3

, and (2.6b)

ρ
∂2u3

∂t2
=
∂σ31

∂x1

+
∂σ32

∂x2

+
∂σ33

∂x3

. (2.6c)

Equations 2.6 can be represented using the following compact notation:

∂σij
∂xj

= ρ
∂2ui
∂t2

, (2.7)

for i, j = 1, 2, 3.

2.2.3 Constitutive behavior

The intrinsic structure of a material dictates how it deforms under load. For an elastic

medium, in the linear response regime, a generalized form of Hooke’s law is applied:

The six components of stress at any point of an elastic solid body are connected with

the six components of strain at the point [87]. Hence,

σij = Cijklεkl, (2.8)

for i, j, k, l = 1, 2, 3. Cijkl is the rank four stiffness tensor and contains the elastic

constants of the material. They are the coefficients of a homogeneous quadratic

function W , known as the strain-energy function [87]. Symmetry of the stress σij and

strain εij tensors requires the stiffness tensor to be symmetric (Cijkl = Cjikl = Cijlk =

Cjilk, Cijkl = Cklij) [80, 83, 18].

Voigt developed a convenient compact notation to facilitate visualization of the stress-

strain relation:

ij ↔ m,n ≡

{
11↔ 1, 22↔ 2, 33↔ 3

23↔ 4, 13↔ 5, 12↔ 6
. (2.9)
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Hence, Equation 2.8 becomes

σ1

σ2

σ3

σ4

σ5

σ6


=



c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

sym.
c44 c45 c46

c55 c56

c66





ε1

ε2

ε3

2ε4

2ε5

2ε6


. (2.10)

The general strain-energy expression can now be expressed as:

W =
1

2
Cmnεmεn. (2.11)

(In this abbreviated notation, note the factor of two on shearing strains to convert

them from tensorial to engineering descriptions of strain.) Given a particular material,

21 constants in Cijlk must be explicitly defined. If planes of material symmetry exist,

the number of constants is reduced.

Isotropy

The simplest and by far most common material model used in engineering appli-

cations is isotropy. Under the conditions of isotropy, the material is said to have

complete symmetry. No matter the set of rectangular axes chosen, only two inde-

pendent constants remain. For such a material the strain-energy function has the

form [156]

W =
1

2
λεiiεjj + µεijεij. (2.12)

Strain will produce an internal stress that depends only on two material constants,

Cmn =



λ+ 2µ λ λ

λ λ+ 2µ λ

λ λ λ+ 2µ

µ

µ

µ


(2.13)
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Figure 2.3: (a) Transversely isotropic material model with fibers aligned with the
x1-axis. (b-d) Application of shear stress along a face produces a corresponding shear
strain in proportion to the shear modulus. In transversely isotropic media there are
two shear moduli: µT describes shear in a plane normal to the symmetry axis, and
µL in planes parallel to the symmetry axis. Biological media often exhibit µL > µT.
(γij = 2εij, for i 6= j.)

where λ and µ are known as the Lamé constants [80]. In practice, µ is known simply

as the shear modulus since it governs shear deformation in the stress-strain relation.

Contrarily, λ is coupled in the stress-strain relation. Its effect is perhaps better under-

stood in terms of the engineering constant governing uniaxial tension (i.e., Young’s

modulus) [80]:

E =
µ(3λ+ 2µ)

(λ+ µ)
.

It is also helpful to define Poisson’s ratio in these terms [144]

ν =
λ

2(λ+ µ)
.

Transverse isotropy

In biological media, a material model imposing transverse isotropy (hexagonal anisotropy)

is often employed since it approximates the fibrous composition of many types of tis-

sue. In this case, the stiffness tensor can be described in terms of five independent

constants. The strain-energy function has the form [156]

W =
1

2
λεiiεjj +µTεijεij +αaiεijajεkk+2(µL−µT)aiεijεjkak+

1

2
βaiajεijakalεkl, (2.14)
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where ai is the vector defining the axis of symmetry. Following Spencer’s nota-

tion [156], if fibers are assumed to be aligned along the x1-axis (a1 = 1, a2 = a3 = 0),

then the stiffness tensor will have the form

Cmn =



λ+ 2α + 4µL − 2µT + β λ+ α λ+ α

λ+ α λ+ 2µT λ

λ+ α λ λ+ 2µT

µT

µL

µL


, (2.15)

where µT and µL are the shear moduli describing shear acting on planes normal

and parallel to the axis of symmetry (Figure 2.3). Similar to the isotropic material

model, the constants λ, α, and β are difficult to interpret in terms of the stress-

strain relationship. The following expressions provide relationships between all five

constants and the engineering constants that govern uniaxial tension both parallel

(EL) and normal (ET) to the fiber direction:

EL = 4µL − µT + β − (α− µT)2

λ+ µT

, and

ET = 4µT
βλ+ 2αµT + βµT + 4λµL − λµT + 4µLµT − α2 − 2µ2

T

βλ+ 4αµT + 2βµT + 4λµL + 8µLµT − α2 − 4µ2
T

.

(2.16)

It also helpful to define the three Poisson ratios in these terms:

νT =
−α2 + βλ+ 4λµL − λµT

βλ+ 4αµT + 2βµT + 4λµL + 8µLµT − α2 − 4µ2
T

,

νTL =
µT(α + λ)(λ+ µT)

(λ+ µT)(βλ+ 4αµT + 2βµT + 4λµL + 8µLµT − α2 − 4µ2
T)
, and

νLT =
λ+ α

2(λ+ µT)
.

The Poisson ratios νTL and νLT are not equal, but must satisfy νLT/EL = νTL/ET for

symmetry of the stress-strain relation [20]. If α = β = 0 and µT = µL = µ, each

expression above reduces to the isotropic Young’s modulus E and Poisson’s ratio ν.
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2.3 Wave Propagation in Unbounded Homogeneous

Linear Elastic Media

2.3.1 Isotropic media

By combining Equations 2.3, 2.7, and 2.8 with an isotropic constitutive relation

(Equation 2.13), the equations of dynamic equilibrium for an unbounded, isotropic,

homogeneous, linear, elastic solid are derived:

ρ
∂2ui
∂t2

= µui,jj + (λ+ µ)uj,ij. (2.17)

Plane waves propagating in a direction specified by direction cosines (n1, n2, n3) are

described by

(u1, u2, u3) = A (p1, p2, p3) ei(n1·x1+n2·x2+n3·x3−ct), (2.18)

or, more compactly, as

ui = A pi exp[i(ni · xi − ct)], (2.19)

where ni is the wave propagation direction unit vector, and pi is the unit vector defin-

ing the direction of particle motion (often referred to as the “polarization direction”).

The wavenumber k and wave frequency ω are related to the phase velocity c = ω/k.

By combining Equations 2.17 and 2.19, the Christoffel equation is obtained:

Cijklnjnlpk = ρc2pi. (2.20)

The Christoffel equation compactly expresses three-dimensional plane wave propaga-

tion in terms of propagation and polarization directions [80, 156, 22, 7]. Equation 2.20

can be further simplified to

Qik(nj)pk = ρc2pi (2.21)

by introduction of the Christoffel (acoustic) tensor

Qik = Cijklnjnl. (2.22)

Equation 2.21 states that the polarization direction pi is an eigenvector of the Christof-

fel tensor Qik(nj) with an eigenvalue corresponding to ρc2. The Christoffel tensor is
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always symmetric and positive definite because the elastic stiffness tensor Cijkl is

symmetric and positive definite. It is also a second rank tensor, so its characteris-

tic equation describes three propagation speeds along three propagation directions.

In general, depending on the orientation of material symmetries with respect to the

wave propagation vector, propagation speeds may be degenerate in that some are

duplicated and not all are detectable.

In isotropic media the Christoffel tensor takes the following form:

Qik =

 (λ+ 2µ)n2
1 + µn2

2 + µn2
3 (λ+ µ)n1n2 (λ+ µ)n1n3

(λ+ µ)n1n2 µn2
1 + (λ+ 2µ)n2

2 + µn2
3 (λ+ µ)n2n3

(λ+ µ)n1n3 (λ+ µ)n2n3 µn2
1 + µn2

2 + (λ+ 2µ)n2
3

 . (2.23)

Wave solutions in isotropic media are the same for any direction of propagation. The

Christoffel tensor can be reduced by propagating waves along one of the axes of the

material reference coordinate system.

For example, the Christoffel equation (2.20) for transmission along the direction n1 =

1, n2 = n3 = 0 in isotropic media becomes (λ+ 2µ) 0 0

0 µ

0 0 µ




p1

p2

p3

 = ρc2


p1

p2

p3

 , (2.24)

and provides three wave velocities corresponding to three wave polarizations. There

are two shear waves, SH: p = (0, 1, 0) and SV: p = (0, 0, 1), both with velocity

c =
√
µ/ρ, and one pressure wave P: p = (1, 0, 0) with velocity c =

√
(λ+ 2µ)/ρ.

A key concept lies in this example. Isotropic media are universally symmetric; there-

fore the material reference coordinate system can always be aligned with the direction

of wave propagation to produce a diagonalized Christoffel tensor like that presented

in Equation 2.24. In general, this is not true for wave propagation in anisotropic

media (Figure 2.4).
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Figure 2.4: As a consequence of complete material symmetry, wave propagation in
isotropic media will always produce three distinct waves, each corresponding to the
direction of wave polarization. In general, this is not true for waves in anisotropic
media. Wave degeneracy and quasi waves may present.

2.3.2 Transversely isotropic media

The equations of dynamic equilibrium for an unbounded, transversely isotropic, ho-

mogeneous, linear, elastic solid are derived in the same fashion as the isotropic case,

with one distinction; a transversely isotropic constitutive relation (Equation 2.15)

is utilized. An explicit compact form of equilibrium in terms of material constants,

like that presented for the isotropic case Equation 2.17, is not readily available. The

reader is referred to others [2] for these expressions.

In transversely isotropic media, when the axis of material symmetry is along x1, the

Christoffel tensor takes the following form:

Qik =

 (λ+ 2α + 4µL − 2µT + β)n2
1 + µLn

2
2 + µLn

2
3 (α + λ+ µL)n1n2 (α + λ+ µL)n1n3

(α + λ+ µL)n1n2 µLn
2
1 + (λ+ 2µT)n2

2 + µTn
2
3 (λ+ µT)n2n3

(α + λ+ µL)n1n3 (λ+ µT)n2n3 µLn
2
1 + µTn

2
2 + (λ+ 2µT)n2

3

 . (2.25)

Consider now only waves traveling in a plane such that n1 = cos θ, n2 = sin θ, and

n3 = 0, where θ is the angle between the symmetry axis and the propagation direction.
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The Christoffel tensor expressed as Equation 2.25 is recast into

Qik =

 (λ+ 2α + 4µL − 2µT + β)c2 + µLs2 (λ+ α + µL)sc 0

(λ+ α + µL)sc µLc2 + (λ+ 2µT)s2 0

0 0 µLc2 + µTs2

 , (2.26)

with s = sin θ and c = cos θ.

At the limit of incompressibility, only shear waves exist. Ergo, the polarization must

be perpendicular to the propagation direction and only two propagation velocities

exist: mS1 = a × n and mS2 = n ×mS1. The first shear wave is polarized so parti-

cle displacements are perpendicular to both the fiber direction and the propagation

direction; the second wave involves particle displacements perpendicular to the prop-

agation direction, but not to the fiber axis. Hence the propagation speeds are:

mS1 :
ω2

k2
ρ = µL cos2 θ + µT sin2 θ (2.27)

and

mS2 :
ω2

k2
ρ = µL + β cos2 θ sin2 θ. (2.28)

2.3.3 Treatment of viscoelastic effects

If a medium exhibits time-dependent response to loading, it is said to be viscoelastic.

In these media internal stresses are developed from components of elastic (Equa-

tion 2.8) and viscous response. The precise nature or form of the viscous mecha-

nism(s) in biologic tissue remains elusive. Variations in viscous stress may present

uniquely over broad time scales; however in practice, limitations in experimental hard-

ware often results in frequency-limited observations by which multiple models may

fit. In this work, viscoelasticity is addressed in two ways: (i) via the correspondence

principle, and (ii) by a priori constitutive modeling.

Correspondence Principle. The correspondence principle allows the purely elas-

tic equations of motion to be transformed into analogous viscoelastic equations via

40



Laplace or Fourier transforms [131, 86, 41, 18]. Invoking the correspondence prin-

ciple allows the real elastic moduli to be replaced with the corresponding complex

viscoelastic moduli, without requiring a specific rheological model. For example, the

real elastic parameters in an isotropic model are transformed into their complex vis-

coelastic analogs as follows:

µ→ G∗(iω) =G′ + iG′′ and

λ→ λ∗(iω) =λ′ + iλ′′,

in which the real and imaginary components describe elastic and viscous response,

respectively.

Kelvin-Voigt Rheological Model. Alternatively, a specific viscoelastic constitu-

tive model could be assumed a priori and the equations of motion developed ac-

cordingly. A reasonable model for biological media is the Kelvin-Voigt viscoelastic

model. In this model, internal stresses are described by the contributions of elastic

and viscous forces in the following way:

σij = Cijklεkl + ηijlkε̇kl, (2.29)

where the viscosity tensor ηijkl [83] takes an analogous form to the stiffness tensor as

ηmn =



η11 η12 η13 η14 η15 η16

η22 η23 η24 η25 η26

η33 η34 η35 η36

sym.
η44 η45 η46

η55 η56

η66


. (2.30)

In a Kelvin-Voigt material, viscous stresses are developed in proportion to the material

strain-rate, i.e.,

ε̇ij =
∂εij
∂t

=
1

2

(
∂2ui
∂t∂xj

+
∂2uj
∂t∂xi

)
. (2.31)

The resolution and time-scale over which elastography measurements are acquired

lend well to an isotropic form of the viscosity tensor. In this case, ηmn consists of
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only two independent viscous constants, ζ and η:

ηmn =



ζ + 2η ζ ζ

ζ ζ + 2η ζ

ζ ζ ζ + 2η

η

η

η


. (2.32)

2.3.4 Energy transport in harmonic waves

The application of this work is geared toward better understanding structural-biomechanical

properties of the living intact brain. Poynting vectors may prove useful in quanti-

fying shear wave propagation fields measured by magnetic resonance elastography

imaging. Poynting vectors describe the direction and rate of the energy-flux crossing

a wave surface [18, 7]. The mathematical preliminaries are presented here for future

application to MRE data [27].

The Poynting vector Pi is calculated from the product of stress and velocity:

Pi = −σiju̇j, (2.33)

with the stress tensor σij and velocity vector u̇i at each measurement point. With

MRE data the constitutive behavior of the medium (brain tissue) is unknown, yet

the dominate deformation mode is known to be shear. As such, the Poynting vector

could be specialized quantify energy-flux due only to propagating shear waves. Then

in cases when an isotropic linear elastic material is assumed, shear stress and shear

strain are directly proportional to one another via shear modulus µ. Accordingly, the

following approximation to a scaled Poynting vector is suggested:

Pi = −ε̂iju̇j, (2.34)

with ε̂ij denoting the deviatoric strain tensor.

ε̂ij = εij − εkkδij/3. (2.35)
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Figure 2.5: The basic concept of MRE imaging is described. Motion-sensitive MR
image is used to record shear wave propagation in tissue. A tissue-simulating phantom
with an embedded cylindrical inclusion of stiffer material is shown here. The governing
equations of motion are inverted to produce an elastogram - an image with contrast
proportional to shear modulus. Adapted from Reference [82].

This vector, Pi, possibly called the “pseudo-Poynting”, then would not carry the

usual units of energy-flux, but could be scaled by the shear modulus to quantitatively

describe the direction and energy transport of shear waves. This vector could be a

reasonable descriptor of the true energy-flux even though the brain is viscoelastic and

probably anisotropic in some regions.

2.4 Imaging Methods

2.4.1 Magnetic resonance elastography

Magnetic resonance elastography (MRE) is a novel magnetic resonance imaging (MRI)

technique that allows the viscoelastic mechanical properties of biologic tissue to be

probed in vivo and non-invasively [112]. MRE data are rich in information; four

spatiotemporal dimensions (i.e., x, y, z, t) are readily acquired. These specialized

MR data can be used to invert the governing equations of wave propagation to ap-

proximate isotropic tissue parameters spatially. The result is MR parametric maps

(elastograms) with intensity proportional to tissue shear modulus, Figure 2.5.
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Figure 2.6: In a magnetic resonance elastography pulse sequence, specialized
magnetic-field gradients encode harmonic tissue motion produced by an actuator as
a shift in NMR signal phase. Applying multiple motion-encoding gradients (MEG)
on different channels simultaneously permits acquisition of any motion component.
Temporal variations in motion are recorded by time-delaying MEG events relative
to the applied mechanical actuation (φ). A 1-cycle MEG (dashed) is shown on each
gradient channel, so the recorded motion would be perpendicular to an oblique plane
in the imaged body. RF-pulse and magnetic-field gradient events required to create
a standard MR image are also shown. Reproduced from Reference [29].

MRE provides many advantages for the study of tissue mechanics: (1.) high spatial

and temporal resolution permit heterogeneous and viscoelastic material property re-

construction; (2.) in vivo and non-invasive experiments preserve structural integrity,

anatomical connectivity, and metabolic state during measurement; and (3.) recon-

structed material properties can be coalesced with other MRI modalities to elucidate

structural and functional properties of tissue, e.g. diffusion tensor imaging (DTI)

viz. local diffusion coefficients. MRE measurements provide steady-state harmonic

response data at spatial and temporal resolutions of 250 µm–3 mm and 10–2000 Hz,

respectively, with displacement sensitivities approaching 200 nm [112, 29].

The vast majority of medical (biological) MRI involves imaging of the 1H nuclear

spins of water in tissue. The physical quantity acquired to produce MR images are

the radio-frequency (RF) signals produced by nuclear spins precessing in the plane
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perpendicular to the static magnetic-field. An MRE pulse sequence differs from a

standard MRI sequence in that additional temporally-varying “motion-sensitizing”

magnetic-field gradients are included (Figure 2.6). These gradients shift the phase

(i.e., accumulated frequency) of the detected signal in proportion to spin displace-

ment. If the proton spin packet undergoes harmonic mechanical excitation and is

subjected to a sinusoidal, motion-encoding magnetic-field gradient Gi sin(ωg) parallel

to an orthogonal reference coordinate i, the shift in NMR signal phase θi at position

x0, y0, z0, is governed by:

θi(x0, y0, z0, φ) = γ

∫ t

0

Gi sin(ωgτ + φ)ui sin(ωdτ)dτ . (2.36)

In this equation, Gi and ωg are the motion-encoding gradient amplitude and oscillat-

ing frequency, respectively; ui(x0, y0, z0) is the amplitude of the displacement com-

ponent of the spin packet at this location and ωd is the mechanical actuator driving

frequency; γ is the gyromagnetic ratio of 1H nuclei.

The synchronization delay φ results in a temporal phase shift between the motion of

a particular spin packet and the motion-encoding gradient. If multiple phase images

are acquired, each with a different synchronization delay (corresponding to a fraction

of the actuation period), a time history of spin phase (i.e., displacement) is measured.

If the experiment is repeated three times, with the motion-encoding magnetic-field

gradients aligned along a different axis of the reference coordinate system each time,

all three components of spin-packet motion (i.e., u1, u2, u3) can be imaged.

The amplitude of each spin-packet displacement component ui(x0, y0, z0) is directly

related to the amount of spin phase θi(x0, y0, z0) accrued by a scaling factor pro-

portional to the amplitude, frequency, and duration of the applied motion-encoding

gradient. Sensitivity to motion is greatest when the mechanical actuation frequency

ωd and motion-encoding gradient frequency ωg are equal (ω = ωd = ωg) and the os-

cillating gradients are synchronized with the applied motion for an integer number of

cycles n. In this case, for sinusoidal encoding and excitation motion, the spin-phase

displacement sensitivity can be calculated, in general as:

u

θ
=

ω

γGπn
.
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2.4.2 Diffusion tensor imaging

Diffusion is the process whereby material is transported from one part of a system

to another as a result of random molecular motion [32]. In the context of MR imag-

ing, measurement of tissue diffusivity means tracking the molecular motion of water

(i.e., 1H protons). Starting in the late 1950’s, the concept of using magnetic reso-

nance to measure apparent diffusion coefficients (ADC) in structurally isotropic and

homogeneous media was established [168, 157, 158]. Later, Basser and various col-

leagues [11, 10, 9] extended this work to measure diffusion coefficients in anisotropic

media. They called this technique diffusion tensor imaging (DTI) and suggested it

be used to quantify the micro-structural properties of biological tissues.

The basic concept of DTI and its potential utility as a clinical imaging tool are

straightforward. Water will diffuse uniformly in tissues which possess structural

isotropy (e.g., gray matter, etc.) because the molecular motion of water is not re-

stricted by micro-structures such as membranes or fiber tracts. On the contrary, in

tissues which possess structural anisotropy (e.g., white matter, muscle, etc.) water

will diffuse non-uniformly since the molecular motion of water is more restricted in

some directions by micro-structures. A change in the directional diffusivity of water

in tissue might suggest an actual change in tissue structure and has been suggested

as a marker of disease pathology and injury [12, 59, 88, 50, 74].

The theoretical tenants of DTI are well established [11, 10, 9], so only a brief overview

is provided here. Diffusion of water in an anisotropic medium can be described by

Fick’s first law: 
J1

J2

J3

 = −

 D11 D12 D13

D21 D22 D23

D31 D32 D33




∂C
∂x1
∂C
∂x2
∂C
∂x3

 , (2.37)

where diffusive flux vector Ji is related to the concentration gradient vector C,j

through the symmetric effective diffusion tensor Dij [10]. Consider the spin-echo

diffusion weighted imaging sequence presented as Figure 2.7. NMR signal intensity

S can be related to an apparent diffusion coefficient through the applied diffusion

weighting magnetic-field gradient vector Gi as follows:

ln

(
S(bij)

S(b0)

)
= − [b11D11 + b22D22 + b33D33 + 2b12D12 + 2b23D23 + 2b13D13] . (2.38)
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Figure 2.7: A spin-echo magnetic resonance imaging pulse sequence can be modified
to measure diffusion by the addition of diffusion weighting magnetic-field gradients
(DWG) on each side of the 180◦ refocusing RF pulse. Applying DWG of various
duration (δ), spacing (∆), and magnitude (G) along one or more gradient axes si-
multaneously creates diffusion weighted images (DWI) whose signal intensities can
be related to the incoherent displacement of water of varying signal intensity.

S(b0) is the signal intensity absent a diffusion gradient vector and S(bij) is the sig-

nal intensity given a particular diffusion gradient vector orientation. Since bij will

be coupled to both the applied diffusion gradients and those used for imaging, the

specific form of the bij depends on the particular imaging sequence and protocol em-

ployed [115, 95]. In the absence of imaging gradients (e.g., spectroscopy experiment),

bij = γGiGjδ
2(∆− 1/3δ) (2.39)

for trapezoidal diffusion gradients with negligible rise time having amplitude G, spac-

ing ∆, and duration δ (Figure 2.7).

In principle, to solve for Dij at each voxel only seven measurements are required –

corresponding to six non-collinear Gi and one b0. However, in practice, measurement

noise is a factor. Robustness is obtained by over-determining the problem with k
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measurements:



ln[S(b1
ij)]

...

ln[S(bkij)]


= −



b1
11 b1

22 b1
33 b1

23 b1
13 b1

12 − ln[S(b0)]

...
...

bk11 bk22 bk33 bk23 bk13 bk12 − ln[S(b0)]





D11

D22

D33

2D23

2D13

2D12

1


(2.40)

Dij is a second rank tensor and can be diagonalized via eigenproblem. In the di-

agonalized form, the principal eigenvector λ1 describes the direction of preferential

diffusivity and is oriented with the tissue fiber direction (Figure 2.8). It should be

noted that DTI data describe structural anisotropy of tissue. It does not describe me-

chanical anisotropy, which is the relationship between applied load and deformation.

2.4.3 Application of MRE and DTI data for anisotropic ma-

terial inversion

Diffusion tensor imaging provides insight into tissue structure which could be har-

nessed to better characterize tissue mechanics when probed by magnetic resonance

elastography. As previously discussed, propagation of pure shear waves in an incom-

pressible transversely isotropic medium is governed by two shear moduli µL and µT,

cf. Equation 2.26. The local shear wave velocity will depend on the wave propagation

direction, particle polarization direction, and the axis of material symmetry (i.e., fiber

axis) at each point in the medium. In theory, if shear waves are induced in the media

that activate both shear moduli it is possible to iteratively solve for the two shear

moduli by incrementally rotating the material fiber axis until an established error

metric is minimized [151]. Computational expense and experimental measurement

error make this “brute force” technique unattractive. However, DTI data could es-

tablish the material fiber axis relative to MRE displacement measurements, thereby

eliminating the need to iteratively solve the equation of motion.
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Figure 2.8: (a) Each diffusion weighted image corresponds to a specific bij and is
related to the amplitude and direction of an applied diffusion magnetic-field gradient
vector Gi. Multi-variable regression permits reconstruction of the diffusion tensor
with as little as seven non-collinear measurements. (b) Principal directions of diffu-
sivity are obtained by diagonalizing the diffusion tensor and have been shown to be
aligned parallel (λ1) and perpendicular (λ2, λ3) to tissue fibers. (S002)

49



(a) (b) 

x1, X1 

X1 

X2 

X3 

X1 

X2 

X3 

x2, X2 

x3, X3 

(c) 

Figure 2.9: Diffusion tensor data can be used to align axes of material symmetry (xi)
with MRE displacement data acquired in a laboratory reference frame (Xi). (a) The
native material orientation with respect to laboratory coordinate system. (b) The
diffusion ellipsoid calculated from DTI data. (c) The eigenvectors of the diffusion
tensor can be used transformation of material orientation to laboratory coordinates.

Here we propose to use the principal eigenvector λ1 of the diffusion tensor to iden-

tify the axis of material symmetry xi relative to the fixed laboratory reference frame

Xi in which MRE displacement data components are measured (Figure 2.9). A spa-

tiotemporal directional filter can be applied to shear wave fields calculated, from MRE

displacement data, to extract the wave propagation direction relative to the same lab-

oratory reference frame. The angle θ between the shear wave propagation direction

and fiber axis can be calculated to extract the transversely isotropic shear moduli µL

and µT based on local estimates of the shear wavelength k (Equation 2.26). Coalesc-

ing DTI and MRE data aims to reduce uncertainty in anisotropic material property

estimates, as well as computational expense.
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Chapter 3

Viscoelastic Properties of Soft

Gels: Comparison of Magnetic

Resonance Elastography and

Dynamic Shear Testing

3.1 Overview

Previous MRE validation studies have been conducted with bench-top mechanical

tests, but were performed at actuation frequencies lower than MRE. Noted dispar-

ities in the measurements obtained were owed to frequency-dependent viscoelastic

effects. In this study, a novel dynamic shear test (DST) was used to measure the

viscoelastic shear modulus of a tissue-mimicking material at frequencies high enough

for direct comparison to those commonly employed for MRE. Viscoelastic properties

were extracted from DST data obtained at 20–200 Hz by use of a closed form solution

which considered inertial effects induced at these higher actuation frequencies. MRE

was performed in cylindrical phantoms of the same material and at 100–400 Hz, in

a frequency range overlapping the DST measurements. MRE measured displacement

fields were fit to a viscoelastic form of Navier’s equation using a total least squares

approach to obtain local estimates of viscoelastic shear modulus. DST estimates of

the storage modulus G′ increased with frequency from 0.868 kPa at 20 Hz to 0.973

kPa at 200 Hz (n = 16). MRE estimates of G′ increased with frequency from 1.06

kPa at 100 Hz to 1.15 kPa at 400 Hz (n = 6). The loss factor (η = G′′/G′) also
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increased with frequency for both test methods: 0.06 to 0.14 for DST and 0.1 to 0.23

for MRE, over the same respective frequency ranges. Close agreement of measure-

ments obtained with these two tests, at overlapping frequencies, indicates our MRE

inversion technique is accurate over a wide frequency range. Low signal-to-noise ratio,

long shear wavelengths, and boundary effects produced measurement artifacts that

were found to increase residual fitting error. This reinforces the use of an error metric

to assess confidence in local viscoelastic estimates obtained by MRE.

The material presented in this chapter is published in Physics in Medicine and Biology

(Okamoto, Clayton, Bayly, 2011)2.

3.2 Introduction

Magnetic resonance elastography (MRE) is a novel experimental technique for prob-

ing the dynamic shear modulus of soft biological tissue non-invasively in living sub-

jects [112]. To perform MRE, shear waves are excited by external harmonic me-

chanical actuation, and a standard MRI scanner equipped with a specialized imaging

sequence is used to capture spatiotemporal images of the propagating wave field. Re-

gional estimates of tissue shear modulus are made by local analysis of the wave field

using wavelength measurement, direct inversion of the wave equation, or inverse finite

element methods. These modulus estimates can be used to assess baseline properties

of healthy tissues or to identify local or regional changes in tissue properties associated

with disease.

The majority of MRE studies have estimated the elastic shear modulus, often at a

single frequency. The accuracy of the method has been assessed by comparing esti-

mates of the elastic shear modulus in tissue analogs to those provided by mechanical

tests or ultrasound elastography [121]. The most common phantom materials include

agar [112, 54, 134] and gelatin [36, 23, 34, 6] or a blend of these materials [121, 60] with

2Author Contributions: R.J.O. and E.H.C. contributed equally to this study. R.J.O. designed,
performed, and analyzed DST experiments. E.H.C. designed and performed MRE experiments
and developed the MRE inversion algorithm. R.J.O. wrote the manuscript, formulated analytic
solutions, and adapted MRE inversion to include TLS fitting. P.V.B. conceived the project. All
authors reviewed and discussed the manuscript. For completeness and continuity, the entire study
is recapitulated here; specific contributions of other authors are noted in the text.
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shear modulus values reported in the range of 0.5 to 60 kPa. A variety of mechanical

test methods have been used: static compression [112, 126, 54, 23], oscillatory lin-

ear shear [134], oscillatory rotational shear [6], and oscillatory compression [35, 125].

These studies have shown reasonable agreement between the elastic shear moduli

measured with MRE and mechanical tests, even though the frequency range of direct

mechanical testing is usually lower than the frequency range of MRE. Similar trends

in the elastic shear moduli measured by MRE and transient ultrasound elastography

were found for frequencies from 60 to 220 Hz [121].

More recently, MRE has been used to characterize the components of the viscoelastic

shear modulus in brain, liver, and skeletal muscle tissue [152, 72, 49, 142, 73, 160,

177, 29, 133]. Substantial differences in viscoelastic shear modulus values of brain

tissue have been reported. Differences in experimental setup, data collection, and

data analysis may be confounding factors.

Oscillatory, or dynamic, shear testing (DST) has been frequently used to characterize

soft biomaterials. Thin samples of the material are subject to oscillatory shear strains.

These tests may be done on a commercial rheometer [174, 17, 64] or a custom-built

system [4, 3, 89]. In these systems, shear force or shearing torque is measured and

converted to shear stress, usually over a range of frequencies, and the data are ana-

lyzed to obtain the complex shear modulus. The data analysis method assumes that

the shear displacement is linear and shear strain is constant through the thickness

of the sample. In soft materials, very thin samples are used to avoid inertial effects

(shear waves) at higher frequencies. As the thickness of the sample decreases, it is

more difficult to cut samples of uniform thickness and to maintain their structural

integrity. Without inertial correction, shear modulus estimates in soft materials are

limited to low frequencies [89]. Investigators have used MRE to quantify the vis-

coelastic shear modulus of porcine brain tissue [174] and bovine liver tissue [71], and

directly compared results to oscillatory rheometry. Both studies showed qualitative

agreement in the trend of the viscoelastic response with frequency, but rheological

tests of porcine brain tissue were performed at a much lower frequency (0.1 to 10 Hz)

than MRE (80 to 140 Hz). Hence, quantitative interpretation of results is difficult.

Hrapko and co-workers [64] have emphasized the wide range of values of brain tissue

shear modulus obtained from mechanical tests, due to differences in temperature,

hydration, sample size and boundary conditions.
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This study a soft, homogeneous, tissue analog is used to assess the accuracy of MRE-

based estimates of viscoelasticity. Bench-top mechanical tests and MRE were per-

formed in an overlapping frequency range to allow direct comparison of frequency-

dependent viscoelastic behavior. Dynamic shear testing in this study was deliberately

performed in a regime in which shear waves affect the force-displacement relationship.

Shear wave effects in DST are explicitly taken into account as they provide valuable

information for comparison to corresponding MRE measurements.

MRE studies were carried out using the same tissue analog in a cylindrical geometry.

Axial displacement of a central rod created radially propagating shear waves. MRE

displacement data is analyzed both by (1) direct local inversion of the shear wave

equation and (2) a closed-form solution of the specific boundary value problem. By

using two different approaches for analysis of shear wave displacement fields, we are

able to investigate the effect of numerical differentiation, discretization error and local

fitting error on estimates of viscoelasticity.

3.3 Methods

3.3.1 Gelatin preparation: MRE phantoms and DST samples

Food grade gelatin (Knox) was mixed with de-ionized water and glycerol to produce

a mixture of 2.8% w/w gelatin. Glycerol stabilizes gelatin mixtures by increasing

their melting temperature [69] and shear modulus [116, 13], and was also found to

reduce water loss during mechanical testing. First, 4.03 g of gelatin was sprinkled

on 70 g of room-temperature deionized water and allowed to stand for approximately

10 minutes. 70 g of glycerol was heated to 50◦C in a water bath, and added to

the gelatin/water mixture, then heated to 60◦C in a water bath to fully dissolve the

gelatin. The final mixture had a density of approximately 1.1 g/cm3.

MRE phantoms were created by pouring 85 g of the warm gelatin mixture into a

45 mm diameter cylindrical container (Figure 3.1a), filling the container with gelatin

to a depth of 48–50 mm. The actuator fit into a custom cap placed on top of the

container. A 3 mm diameter polypropylene actuation rod extended approximately
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Figure 3.1: MRE experimental setup. (a) MR phantom; (b) orientation of phantom
in scanner. The vertical dashed lines show approximate bounds of the transverse
planes imaged. Reproduced from Reference [119].

20 mm into the mixture. After the mixture set, the entire container was sealed and

refrigerated overnight at 4◦C.

DST samples were prepared by pouring 39.8 g of the warm gelatin mixture into 100

mm cell culture dishes. The resulting samples were approximately 5.8 mm thick.

After the gelatin mixture had set, the dishes were sealed and refrigerated overnight

at 4◦C. A circular punch (15 mm dia.) was used to punch cylindrical samples from

the gel. Each cylindrical sample was weighed before and after testing.

3.3.2 MRE data acquisition and analysis

Elastography data were obtained for each phantom at 4.7 T using a Varian Direct-

Drive small-animal MR scanner. The scanner consists of an Oxford horizontal-bore

magnet, Magnex self-shielded gradient coils, and high-performance, gradient power

amplifiers (Copley Controls Corp.) capable of providing 45 G/cm peak magnetic-field

gradient amplitude within 0.20 msec. MRE data were collected with a commercial

quadrature volume coil (Agilent/Varian).

As shown in Figure 3.1, the gelatin-filled container was placed inside the RF imag-

ing coil horizontally. Small foam spacers were used to center the container in the
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Figure 3.2: A gradient echo MR imaging sequence was modified to acquire elastogra-
phy data. Sinusoidal motion-encoding magnetic-field gradients (MEG) are included
with standard RF and magnetic-field gradient events required to form an MR im-
age. MEGs are synchronized with the applied mechanical motion by the phase shift
parameter Φ. A 3-cycle MEG (dashed) is shown on each gradient channel. In this
example, motion-encoded phase images are acquired with contrast proportional to
displacements perpendicular to an oblique plane in the imaged body.

coil. Mechanical vibrations were generated by an amplified piezoceramic-actuator

(APA100M-NM, Cedrat Technologies) and transmitted to the sample via a polypropy-

lene rod that had been embedded in the gelatin mixture before it set. The actuator

was powered by a low-current, high-voltage amplifier (EPA 105, Piezo Systems Inc).

A sinusoidal voltage waveform was supplied to the amplifier by a transistor-transistor

logic (TTL) equipped function generator (FG-7002C, Ez Digital Co., Ltd.).

A customized gradient-recalled echo MRI pulse sequence was developed to record

spatiotemporal partical motion as a shift in NMR signal phase for this study Fig-

ure 3.2. The imaging sequence was triggered by transistor-transistor logic (TTL)

pulse, allowing a function generator to control image acquisition and scanner-actuator

synchronization. Images at different points in time of a wave cycle were obtained by

a programmable phase-delay Φ between the actuator and motion-encoding gradients.
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The actuator was run uninterrupted for the duration of each experiment to ensure

steady-state harmonic material response was measured.

A central section of each phantom was imaged with 11 contiguous trans-axial slices

in an interleaved manner. The image acquisition parameters were: resolution: 250 x

250 x 500 µm3; TR/TE: 200/13.75 msec; flip ∠: 25◦. Two excitations were acquired

and averaged. A magnetic field gradient amplitude of 8 G/cm was used throughout

for motion encoding. The number of MR motion-encoding gradient cycles varied

with the actuation frequency from 1 to 4 to accommodate constant TR/TE imaging

parameters. Phase contrast was doubled by acquiring two sets of motion-encoded

data, one each with positive and negative polarity motion-encoding gradients, which

were subtracted from one another. Eight time points were acquired per actuation

cycle.

MRE experiments were performed at actuation frequencies of 100, 150, 200, 250,

325, 350 and 400 Hz. With the exception of 100 and 400 Hz, the order of the

actuation frequencies was randomized for each MRE experiment. The amplitude

of the imposed displacement was independently measured with a special bench-top

test rig and a capacitance probe. The z-displacement (uz) amplitude of the gelatin-

embedded polypropylene rod ranged from approximately 40 µm at 100 Hz to less

than 10 µm at 400 Hz. During each experiment, all three displacement components

[ux, uy, uz], were acquired for a single frequency from 100 to 400 Hz. For all other

frequencies in that experiment, only the through-image-plane component of motion

uz was recorded. Acquisition time was approximately 22 minutes per displacement

component, and the total imaging time for each experiment was approximately 5

hours.

Phase wrapping artifacts, if present, were removed via commercial software (Phase

Vision Ltd). The relationship between the phase and displacement is governed by the

amplitude of the motion encoding gradient G0, and number of motion encoding cycles

N . The proportionality constant for converting phase φ (in radians) into displacement

u, including the factor of two introduced by positive and negative polarity image

subtraction, is given by the following:

u

φ
=

ω

2NπG0γ
, (3.1)
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where ω is the driving frequency (rad sec−1); γ is the gyromagnetic ratio for 1H

nuclei (26.537 x 104 rad sec−1 G−1), and N is the number of motion encoding cycles.

Equation 3.1 is valid for sinusoidal motion-encoding gradients with the frequency

equal to the driving frequency.

For each voxel, displacement data from the eight acquisition phases uz(x, y, z, t) were

Fourier transformed in the time domain, and the coefficient of the fundamental har-

monic Uz(x, y, z, ω) was extracted, resulting in three-dimensional (3D) field of these

complex frequency domain coefficients. A 3D Gaussian filter was applied to the entire

11 image stack of complex displacement data using the smooth3 function in MAT-

LAB (R2009a, The MathWorks) with a filter kernel of 13 x 13 x 7 pixels (3.0 x 3.0 x

3.0 mm) in the x, y, and z directions and a filter standard deviation of 3 pixels (0.75

mm). To remove edge effects in the x− y plane, only voxels whose entire smoothing

kernel lay within the masked region of the field of view were included in the smoothed

displacement field.

Direct least-squares inversion of the wave equation

The correspondence principle was used to transform the linear, isotropic, locally ho-

mogeneous, elastic Navier equation into its viscoelastic analogue. The components

of the complex modulus G∗ were estimated by fitting the axial component of dis-

placement to a reduced equation of motion in which the dilatational component of

displacement was neglected [29]:

(G′ + iG′′)∇2Uz(x, y, z, ω) = −ρω2Uz(x, y, z, ω), (3.2)

where ρ is the material density (1100 kg/m3). A simple central difference scheme was

used to approximate the Laplacian of the displacement field. Inversion was performed

by a local total least-squares (TLS) fit using a 13 x 13 x 7 kernel. Details of the

inversion method are given in Appendix A. The mean value and standard deviation of

G′ and G′′ were reported using only voxels in which the normalize residual error of the

local fit was less than 0.5. The mean values of G′ and G′′ from different experiments

were grouped by frequency. For each frequency, the mean values of G′ and G′′ for all

six experiments and the corresponding standard deviations were computed.
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Analytical model and closed-form solution

[R.J.O. contributed this section.]

The MRE phantom geometry and the axial displacement due to the harmonic vi-

bration of the displacement rod can be described accurately by a straightforward

mathematical model. The appropriate boundary value problem is posed, using the

wave equation in cylindrical coordinates and the viscoelastic correspondence princi-

ple. This model was used to independently estimate the values of G′ and G′′ from

shear wave displacement data. Since the system is approximately axisymmetric, the

displacement field is assumed to depend only on the radius r, neglecting any varia-

tions in the angular coordinate θ. Under these conditions, the reduced equation of

motion in cylindrical coordinates becomes:

(kr)2 d2Uz
d(kr)2

+ kr
dUz
d(kr)

+ (kr)2Uz = 0,where k =

√
ρω2

G∗
. (3.3)

For a viscoelastic material, the wavenumber k and the displacement Uz(kr) are com-

plex quantities. The solution to the boundary value problem is the sum of Bessel

functions of the first kind (J0) and second kind (Y0), both of order zero:

Uz(kr, ω) = AJ0(kr) +BY0(kr). (3.4)

We found analytical solutions to Equation 3.4, specifying boundary conditions at the

outer radius of the actuating rod (r = ri) and at the outer radius of the gel (r0)

that matched the measured displacements at those locations for each frequency and

experiment. The values of the constants A and B were determined from the boundary

conditions. For an outwardly propagating wave, the displacement at the outer radius,

Uz(r0), is zero and, if the amplitude of the displacement at the actuating rod is uri,

then:

A =
uriY0(kr0)

J0(kri)Y0(kr0)− J0(kr0)Y0(kri)
; B = −AJ0(kr0)

Y0(kr0)
. (3.5)

At frequencies of 250 Hz and above, we also observed an inwardly propagating wave

(i.e. the displacement at ro was not zero due to vibration of the gel container).

With the same approach, we found the values of constants describing the inwardly
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Figure 3.3: Dynamic shear test (a) sample and (b) setup. Samples were placed on
the tester and subjected to small amplitude vibrations (0–200 Hz). Adapted from
Reference [119].

propagating wave in terms of the displacement measured at the outer radius, ur0:

A′ =
ur0Y0(kri)

J0(kr0)Y0(kri)− J0(kri)Y0(kr0)
; B′ = −A′J0(kri)

Y0(kri)
. (3.6)

The four constants A, B, A′, B′ were calculated determined from Uz values at r0 and

ri for θ = 0 and θ = 180 at each frequency using a single imaging plane (slice 6 of 11).

Then the values of the complex modulus that best fit the unfiltered z-displacement

data at that frequency were determined using a non-linear fitting function. This

produced a global estimate of G′ and G′′ based on a complete 2D displacement field.

3.3.3 DST data acquisition and analysis

[R.J.O. contributed this section.]

In order to overcome the frequency limits of conventional DST for our soft gel ma-

terial, we extended the frequency regime of DST by deliberately introducing shear

waves in the sample, which created corresponding peaks in the measured shear force.

The frequency and magnitude of this peak allowed us to determine the complex shear
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modulus of the material up to 200 Hz using a custom built DST system (Figure 3.3b).

The mass, m, and the approximate thickness of each punched circular DST sample

were measured prior to testing. A punched circular DST sample (Figure 3.3a) was

placed on the flexure, which was displaced horizontally by the voice coil, causing the

lower surface of the sample to undergo small amplitude (≈ 0.03 mm) horizontal os-

cillations. We used a circular sample because it was easier to punch circular samples

than to trim rectangular samples of consistent size. The voice coil was excited with

sinusoidal oscillations at a constant frequency or with a chirp, which sweeps through

frequencies from 0 to 200 Hz in 15 seconds using a SigLab data acquisition system

(Spectral Dynamics, Inc). The horizontal displacement of the flexure, ux, was mea-

sured with a capacitance probe. The difference between the signals of two piezoelectic

force transducers (Model PCB209C, PCB Electronics) was used to calculate the net

shear force when the sample is in contact with the upper plate. The 200 Hz fre-

quency limit was chosen to avoid mechanical resonances of the upper assembly which

occurred at frequencies above 280 Hz, as measured by an accelerometer attached to

the upper assembly.

With the flexure operating at a low frequency, the vertical position of an upper as-

sembly was adjusted with a digital micrometer until the upper circular plate touched

the sample, as indicated by the presence of a shear force signal and a slight change in

normal force. Because the shear force transducers are stationary, inertial effects in the

shear force measurement are limited to the sample. Once contact was established,

the thickness of the sample was computed. The sample was compressed by 5% of

this measured thickness h to provide consistent contact on the upper and lower sur-

faces [25] and a chirp signal was applied to the voice coil. Time domain signals from

the force and displacement transducers were transformed into the frequency domain

and a complex transfer function (net shear force/flexure displacement) was obtained.

Data analysis was performed using custom scripts in MATLAB. As shown in Fig-

ure 3.4, shear force Fs is divided by the sample cross-sectional area A to obtain an

average shear stress. The amplitude of the harmonic shear strain is initially assumed

uniform through the sample thickness and estimated as the amplitude of vibration

uo divided by sample thickness h. The apparent complex shear modulus G∗app is

calculated as

G∗app(iω) =
τ(iω)

ε(iω)
=
Fs(iω)/A

u0(iω)/h
. (3.7)
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sample Sample ux(y,t) 
 h 

 Fs 

 A       ux(0,t)= δ cos (ωt) 

Figure 3.4: Dynamic shear test sample nomenclature used in Equations 3.7–3.13.
Adapted from Reference [119].

Inertial load correction

[R.J.O. contributed this section.]

As other investigators [4, 89] have commented, sample inertia can cause shear waves

to propagate within the DST sample. This invalidates the assumption of uniform

shear strain and leads to deviations between the apparent shear modulus and the

shear modulus of the material being tested. These deviations are usually avoided

by using thin samples or testing at low frequencies. Because we wanted to directly

obtain estimates of shear modulus of soft materials at frequencies above 100 Hz, we

could not avoid measurements that included inertial effects in the sample. For thick

samples of the gelatin/glycerol mixture, we found that two peaks in the shear force

measurements were observed in the tested frequency range of 0 to 200 Hz.

Using an analytical model described by Berry [19], we derived a relationship between

the measured force/displacement relationship and the complex shear modulus of the

material. This equation is valid when the shear force is measured on the stationary

surface of the gel, as in our test setup. Shuck and Advani [148] derived a similar rela-

tionship for thick circular samples of brain tissue undergoing torsional shear testing-in

those experiments the shear force transducer was located on the oscillating surface,

similar to the setup in most oscillatory rheometers.

The displacement, ux(y, t), is assumed to be the separable product Ux(y) exp(iωt).

The one-dimensional wave equation

G∗
d2Ux
dy2

+ ρω2Ux = 0 (3.8)

62



is determined by force balance in the x-direction. G∗ is the complex shear modulus

and ρ is the material density. The homogeneous solution for Ux(y) is:

Ux(y) = C1 cos(ky) + C2 sin(xy); k2 =
ρω2

G∗
. (3.9)

Applying the boundary conditions Ux(0) = u0 and Ux(h) = 0, the solution for the

displacement is:

u(y, t) = u0 [cos(ky)− cot(kh) sin(ky)] exp(iωt). (3.10)

The shear stress at the stationary surface (y = h) is

τxy = G∗
∂u

∂y

∣∣∣
y=h

= −G∗ku0 [sin(kh) + cot(kh) cos(kh)] exp(iωt) (3.11)

= −G∗ ku0

sin(kh)
exp(iωt).

If the material is elastic, then G∗ is a real quantity and τxy is unbounded when kh is

equal to multiples of π, or when

h =
nπ

k
=
nπ

ω

√
G

ρ
; n = 1, 2, . . . . (3.12)

For a viscoelastic material sin(kh) is complex and the maximum magnitude of τxy is

bounded. Given h, the value of ω at which τxy reaches a maximum will depend upon

the specific functional form of G∗ and the values of the function’s parameters. In

general, the ratio of maximum magnitude of τxy to u0 will be smaller for more viscous

materials. For the model, the relationship between the shear stress and the nominal

shear strain (uo/h), i.e. the apparent modulus, is given by:

G∗app =
τ(iω)

u0/h
= −G∗ kh

sin(hk)
. (3.13)

DST data were fit to three different viscoelastic material models: (i) spring-pot [77],

(ii) standard linear solid (or Zener) model, and (iii) fractional Zener model [78]. These

models have been used for interpreting MRE data obtained at multiple frequencies [72,

150]. The best-fit values of material model parameters were obtained for each sample

63



10 

-10 

0 µm 

(a) (b) 
x 

y 

z 

y 

Figure 3.5: Images of the uz displacement field support the plane wave assumption
used for MRE data inversion. (a) Axial and (b) coronal images of the displacement
field show that within the analysis volume, boxed in green, planes of wave symmetry
exist along the z-axis. (250 Hz) Adapted from Reference [119].

by minimizing the difference between the apparent modulus given by Equation 3.7

and determined from experimental data and the predicted apparent modulus obtained

from the closed-form solution given by Equation 3.13. These fits were performed in

MATLAB using standard functions and customized scripts.

3.4 Results

3.4.1 Estimates of viscoelasticity from MRE data

MRE experiments were performed on six gelatin phantoms on six different days. In

one experiment, we also acquired a set of images with the imaging plane parallel to the

z-axis at 250 Hz (Figure 3.5). These images were used to verify that the displacements

were uniform in the region where the transverse images were obtained (i.e., plane

wave assumption). In addition, the magnitudes of Ux and Uy in transverse images

were compared to the magnitude of Uz over the range of 100 to 400 Hz. The RMS

magnitude of Ux and Uy was less than 25% of Uz at all frequencies, indicating that
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Figure 3.6: Displacement fields and viscoelastic parameters at each excitation fre-
quency. (top) Real and imaginary components of the fundamental time harmonic of
the through-plane displacement uz are shown for slice 6 of 11. (bottom) Elastograms
calculated from the displacement fields after spatially filtering with a 3D Gaussian
kernel of 13 x 13 x 7 voxels (3.0 x 3.0 x 3.0 mm3). The diameter of the gelatin
container was 45 mm. Reproduced from Reference [119].

the dominant direction of displacement was along the z-axis. The real and imaginary

parts of the fundamental time harmonic of the displacement field, Uz(x, y, z, ω), are

shown in Figure 3.6 (rows 1 and 2) for one experiment at frequencies of 100 to 400

Hz. The data shown is not spatially filtered.

Direct least-squares inversion of the wave equation

Estimates of complex shear modulus obtained by direct inversion are shown in Fig-

ure 3.6. The modulus values at each pixel were spatially averaged to obtain mean

values of G′ and G′′ for each frequency (Figure 3.8).The standard deviations of G′

within the displacement field were less than 7% of the mean values; the standard

deviations of G′′ within the displacement field were less than 30% of the mean values.
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Fit to the closed-form solution

Estimates of complex shear modulus obtained by direct inversion were verified by

closed-form solution. MRE displacement data were evaluated along a line-path re-

gion of interest (ROI), passing through the center of the actuation rod (Figure 3.7a,c),

and fitted to the closed-form solution of the boundary value problem in cylindrical

coordinates. At frequencies below 250 Hz, shear waves propagated outward from the

actuation rod and the shear wave amplitude decayed toward the outer radius of the

cylinder (Figure 3.7b). At 250 Hz and above, there was also a noticeable inwardly

propagating shear wave. This may have been caused by rigid body vibration of the

gel cylinder container. In some cases this caused destructive interference of the in-

wardly and outwardly propagating wave in portions of the cylinder. However, it was

possible to fit both wave fields simultaneously using a single estimate of G′ and G′′

(Figure 3.7d) by using the measured MRE displacements at both the inner and outer

radii to determine the constants in Equations 3.5–3.6. In addition, using the best-fit

coefficients for the closed-form solution, the maximum shear strain (dUz/dr) at each

frequency was also computed and averaged for frequencies between 100 and 400 Hz.

The maximum shear strains were all less than 3% and generally occurred near the ac-

tuation rod. Estimates of G′ and G′′ for all six experiments using both direct inversion

and the closed-form solution were averaged at each frequency (Figure 3.8b,c).

As noted in the methods section, we observed that the estimates of G′ and G′′ at a

particular frequency were strongly influenced by the order in which frequencies were

tested in each experiment. The test order was randomized for frequencies between

150 and 350 Hz, but was not randomized for 400 Hz (always the first frequency tested)

and 100 Hz (usually the last frequency tested). We examined the effect of test order

by performing two additional MRE experiments, each at a single frequency (150 Hz

or 400 Hz), with repeated data acquisition over a six-hour period. The estimates of G′

and G′′ decreased monotonically in those experiments, reaching an equilibrium value

after about four hours. As described in Appendix B, we found that this time-related

decrease was likely caused by increasing temperature in the phantom over the course

of each experiment and we developed a method to estimate the equilibrium values of

G′ and G′′ for each experiment.

66



Figure 3.7: Real and imaginary parts of the complex displacement field Uz(x, y)
obtained by MRE at (a) 150 and (b) 350 Hz. The orientation of the line-path ROI
used for comparison of MRE data with the closed-form solution is shown as a yellow
dashed line. Real and imaginary parts of unfiltered MRE displacement data (solid
line) and the predicted closed-form solution (dotted line) are compared at (b) 150 Hz
and (d) 350 Hz. Reproduced from Reference [119].
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Figure 3.8: Viscoelastic shear moduli estimated from MRE displacement data via:
direct inversion (solid line), and axisymmetric closed-form solution (dashed line).
Error bars + or − 1 std. Adapted from Reference [119].
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Figure 3.9: Viscoelastic shear moduli by direct inversion of MRE displacement data:
as acquired (solid line), temperature corrected (dashed line). Error bars + or − 1
std. Adapted from Reference [119].
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Figure 3.10: Typical results of DST. (a) Magnitude and (b) phase angle of apparent
shear modulus. The phase angle changes rapidly at each shear wave peak. Experi-
mental data (solid line) and best fits to standard linear solid (dotted line), fractional
Zener (dashed line), and springpot (dash-dot line) models are shown. (c) Predicted
G′ and G′′ from 0 to 400 Hz based on best-fit model parameters from test are shown.
Reproduced from Reference [119].

A comparison of the measured values of G′ and G′ and the estimated equilibrium

values is shown in Figure 3.9. The equilibrium values of G′ increased slowly from

1.06± 0.07 kPa (100 Hz) to 1.15± 0.16 kPa (400 Hz). G′′ increased from 0.11± 0.01

kPa (100 Hz) to 0.27±0.04 kPa (400 Hz). The loss factor increased from 0.11 to 0.23

over the same frequency range.

3.4.2 Estimates of viscoelasticity from DST data

For each MRE experiment, three samples from the same batch were tested by DST.

During one experiment, two of the samples were damaged; hence data from a total of

16 samples were analyzed (Table 3.1). The presence of two shear wave peaks within

the tested frequency range was consistent among all the samples.

Equations 3.9 and 3.13 were used to fit individual sets of experimental data to the

three material models, as illustrated in Figure 3.10a,b. In this figure, the apparent

shear modulus amplitude and phase are plotted because they clearly illustrate the
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Table 3.1: DST sample properties (n = 16).

Property Mean ± 1 Std Units

In-plane area, A 177± 6 mm2

Thickness, h 5.5± 0.2 mm
Density, ρ 1.1 g·cm−3

First Resonance 83± 4 Hz
Second Resonance 167± 9 Hz

amplitude peaks at the frequencies where |k| ≈ π/h or 2π/h. In general, we found

that all three models could closely fit the data from DST tests. The primary difference

in the model fits was the predicted magnitude of the first and second amplitude peaks.

If the loss factor (G′′/G′) increases with frequency, the height of the second peak will

relatively smaller than the first.

The fractional Zener model was initially fit with the fractional exponent β fixed at

values between 0.25 and 0.9. We found β = 0.5 to best–fit the height both resonant

peaks simultaneously (Figure 3.10). The values of τ and β tend to vary inversely

if both parameters are fitted, therefore β was fixed (0.5) and best–fit values of the

remaining three parameters were computed for each sample. In figure 3.10c, the

predicted complex shear modulus for all three models are plotted as a function of

frequency from 0 to 400 Hz for one sample. All models predict an increase in both

G′ and G′′ with frequency.

The models differ primarily in their predictions of G′ and G′′ when extrapolated

beyond the measurement range of 20 Hz to 200 Hz. The mean values of the parameters

for each model (±1 std) are shown in Table 3.2. We elected to use the fractional

Zener model to compare DST predicted complex shear modulus with the estimates

from MRE experiments because this model best approximated the height of both

shear wave peaks in DST experiments.
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Table 3.2: Rheological model best–fit parameters (DST data).

Model Form Mean ± 1 Std

Springpot G∗(ω) = κ(iω)α
κ = 557± 46 Pa-s−α

α = 0.08± 0.14

Zener G∗(ω) = G0
1+d(iωτ1)

1+iωτ1

G0 = 918± 68 Pa
d = 1.79± 0.21
τ1 = 0.24± 0.14 ms

Fractional Zener G∗(ω) = G0
1+d(iωτ)β

1+(iωτ)β

G0 = 820± 57 Pa
d = 6.75± 1.64
β = 0.50 (fixed)
τβ = (1.48± 0.70) · 10−6 s0.5

3.4.3 Comparison of MRE and DST viscoelastic estimates

The values of complex shear moduli predicted by the individual fractional Zener

model parameters were averaged for all DST tests and compared to the average MRE-

predicted equilibrium values of G′ and G′′, obtained by scaling the experimental values

according to the method described in Appendix B. As shown in Figure 3.11, both

MRE and DST estimates of the storage and loss moduli show a similar slow increase

in G′ and G′′ with frequency. Above 200 Hz, DST predicted loss moduli are lower than

MRE estimates. As shown in Figure 3.10c, predicted values of G′′ are more sensitive

to the choice of model than G′. For the fractional Zener model, increasing β will

increase the predicted values of G′′ at high frequencies, so there is greater variability

in the predicted values of G′′ in the Zener model, equivalent to the fractional Zener

model with β = 1.0.

3.5 Discussion

We have estimated the complex shear modulus of a soft viscoelastic material over a

broad range of frequencies. Previous validation studies have used MRE frequencies

below 100 Hz [112, 36, 134, 34, 35, 123, 125], similar to frequencies used in MRE of

human tissues. Other validation studies have performed MRE over a higher frequency

ranges, e.g. Hamhaber et al. [54]: 125 to 400 Hz; Chan et al. [23]: 50 to 200 Hz;
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Figure 3.11: Comparison of viscoelastic shear moduli estimated from DST (solid line)
and MRE (dashed line) (DST: n = 16; MRE: n = 6). A fractional Zener model was
used for DST parameter extraction and to extrapolate behavior beyond measured
frequency range (dash-dot line). MRE data shown were obtained by direct inversion
and temperature corrected. Error bars ±1 std. Adapted from Reference [119].

Atay et al. [6]: 200 to 800 Hz; but in these studies, mechanical tests were performed

at frequencies below those used for MRE and only the elastic shear modulus was

computed.

These are the first multi-frequency estimates of the viscoelastic shear modulus from

direct mechanical tests and from MRE in an overlapping frequency range above 100

Hz. MRE data were analyzed by direct local inversion of the equation of motion and

by globally fitting the displacement field to the closed-form solution of the axisymmet-

ric boundary value problem. Both analyses yield similar estimates of viscoelasticity

over the frequency range studied. DST was used to directly measure the storage and

loss moduli. The frequency range of DST was extended by performing experiments in

the shear wave regime and accounting for the induced inertial effect in our analysis.

Our novel DST method was validated. We checked that modulus values obtained

from DST at driving high frequencies (>150 Hz), in the shear wave regime, were

consistent with conventional DST at low driving frequencies (<50 Hz). The frequency

of the shear wave peak and the sample thickness were used to estimate the storage

modulus using Equation 3.12. Reference values of the viscoelastic shear modulus

of the gelatin-glycerol blend we used were not available. Hence, samples of similar

thickness were tested as the gelatin concentration was varied from 75% to 200%

of the baseline value. A linear increase in the frequency of the shear wave peak was
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observed. This is consistent with a previous report which notes a quadratic increase in

modulus with increasing gelatin concentration [116]. We also tested different sample

thicknesses at the baseline gelatin concentration. The frequency of the shear wave

peak increased linearly with decreasing thickness, in agreement with Equation 3.12.

As an additional consistency check during our study, we compared the apparent

storage and loss moduli measured at 10 Hz in each sample with the model predicted

values. At this low frequency, inertial effects are small. Model-predicted values using

the fractional Zener model with β = 0.5 (G′ = 853 ± 54 Pa and G′′ = 34 ± 2 Pa)

agreed closely with the measured values (G′ = 846± 63 Pa, G′′ = 39± 34 Pa).

When making quantitative estimates of the complex shear modulus using MRE, ob-

taining the displacement data is only the first in a series of data analysis steps. These

steps include extraction of the fundamental time harmonic to separate the spatial

and temporal variations in displacement, spatial filtering of displacement data, and

calculation of G′ and G′′ on a point-wise basis or using a local fit to the wave equa-

tion. The end result of the data analysis is an elastogram (Figure 3.6; row 3,4),

where the computed values of the storage and loss moduli are displayed spatially.

Spatial averages may be calculated within an anatomical region of interest [150], in a

region where the displacement amplitude is deemed sufficiently large [133], or where

a goodness-of-fit parameter has been estimated [6, 29]. Since biological tissues may

be heterogeneous, it is not always clear whether spatial variations in elastograms of

G′ and G′′ are due to real differences in tissue properties or caused by limitations in

the data collection or data analysis. In this study, we used a homogeneous material,

so we do not expect G′ and G′′ to vary with location.

The normalized residual error (NRE) of the local fit of G′ and G′′ provides useful

information about the reliability of the fitted values of G′ and G′′ at a particular

location. In regions of the sample where displacement amplitude is small, NRE

tends to be larger, reflecting the lower signal-to-noise values in those regions. Longer

wavelengths relative to the field of view reduce the magnitude of the Laplacian and

increase its sensitivity to noise in the displacement values.

In our study, the 3D Gaussian filtering of a single displacement component across a

stack of images slightly reduced the NRE compared to using a single slice, because

signal noise was smoothed across adjacent imaging planes. However, the in-plane filter
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Figure 3.12: Causality of MRE estimated viscoelastic moduli was checked by a local,
low-order Kramers-Kronig (K-K) approximation (Equation 3.14). K-K was used to
predict the storage modulus from the measured loss modulus. Experimental measure-
ments (solid lines, circles, error bars ±1 std); predicted storage modulus (dashed line,
squares); and piecewise linear fit of loss modulus (dash-dot line, crosses). Adapted
from Reference [119].

parameters were the most important factor for decreasing NRE in regions of low signal

amplitude. Increasing the Gaussian filter kernel size usually decreased NRE, but

the Gaussian filter kernel should not span more than a wavelength. Furthermore, in

possibly heterogeneous tissue samples, a large spatial filter kernel can span boundaries

between different regions. Selection of a NRE threshold is specific to the experiment

being performed and high NRE thresholds may be unavoidable. In general, using a

larger NRE threshold implies a larger uncertainty in the estimated values of G′ and

G′′.

Agreement between MRE and DST results provides confirmation that local direct

inversion of the equation of motion can estimate both the storage modulus and loss

modulus of a viscoelastic material. The Kramers-Kronig (K-K) relation provides a

way to check the required causal relationship between the storage and loss moduli.

The exact K-K relation requires measurement of both G′ and G′′ as continuous func-

tions of frequency over an infinite domain. This is practically infeasible. MRE data

were obtained over a finite frequency domain and at discrete frequencies. To circum-

vent these limitations, local approximations of the K-K relation were employed [170].

We used a low-order, local approximation of the K-K relation to predict the storage
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modulus from the measured loss modulus [170, 89]:

dG′(ω)

d(lnω)
≈ 2

π
G′′(ω). (3.14)

This approximate K-K relation was applied to experimental data by piecewise-fitting

the loss modulus to a series of first-order polynomials in lnω,

G′′(ω) = a1 lnω + a0. (3.15)

Equations 3.14 and 3.15 are combined and integrated to estimate the storage modulus

as follows:

G′(ω)−G′(ω0) =
2

π

∫ lnω

lnω0

[a1 lnω + a0] d(lnω) (3.16)

=
[a1

2
(lnω)2 + a0(lnω)

] ∣∣∣lnω
lnω0

. (3.17)

This method gives a solution up to an arbitrary integration constant ω0, which was

chosen to match the measured value of G′ at one experimental frequency. The pre-

dicted storage modulus closely matches the measured (Figure 3.12). Hence, our data

obeys the local, low-order K-K causality relation.

We found that our MRE phantoms reached temperature equilibrium three to four

hours after the MRE experiments began. The initial rise in gelatin temperature

appears to coincide with decreases in G′ and G′′ over the same time frame. One

explanation for the time-dependent change in modulus is the sensitivity of the gelatin-

glycerol blend to temperature. Our DST tests were conducted at room temperature,

which was 22–24◦C. DST samples are much smaller than the MRE phantom and will

reach equilibrium with the surroundings faster. Since the DST samples experience

significant mechanical work, including a brief pass through a type of mechanical

resonance with the apparatus during the test, it is likely that the sample temperature

increased above room temperature. When our MRE predicted storage and loss moduli

are adjusted to equilibrium values (i.e., the values we would expect if the gel phantom

had been in the scanner for 4–5 hours prior to MRE data collection), the values of

G′ and G′′ in the overlapping frequency range show reasonable agreement and similar

increase with frequency.
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All of our measurements were made between 24 and 32 hours after mixing the gel

ingredients. Frequency test order was randomized and modulus estimates were consis-

tent with frequency after correcting for temperature change during the test, suggesting

that sample mechanical behavior remains stable during the test period. Compared

to gels made with gelatin and water only, gelatin-glycerol gels lose much less mass

due to evaporation during storage, and can be stored for weeks without apparent

degradation. We did not investigate whether mechanical properties were affected by

extended storage.

The loss factor (G′′/G′) is used as a measure of a material’s dissipative (viscous)

behavior. Shear waves in a material with a large loss factor will attenuate over fewer

wavelengths, making penetration of shear waves into a material more difficult. The

loss factor for the gelatin-glycerol mixture was 0.12 to 0.20 over the range of 100 to

400 Hz, which is larger than values found for agar or agar-gelatin mixtures in rheo-

logic measurements, but comparable to values reported for 15% gelatin-20% glycerol

mixtures [125] at frequencies of 75 to 125 Hz or agar-gelatin blends at frequencies of

60 to 220 Hz [121]. Sack and co-workers [122, 133] have used an agar-glycerol-water

mixture as a soft, visco-elastic tissue-mimicking phantom, but its properties have not

been characterized with independent mechanical tests. Previous in vivo MRE stud-

ies suggest that that the loss factor of brain tissue is in the range of 0.4 to 0.6 at

50 Hz [72, 142]. Thus, while the gelatin-glycerol mixture we used is viscoelastic, its

behavior is still markedly more elastic than brain tissue.

The sensitivity of the viscoelastic properties of the gelatin-glycerol blend to temper-

ature changes during testing is a limitation that should be considered when choosing

a phantom material. Hall and co-workers [53] measured the elastic properties of agar

and of gelatin crosslinked with formaldehyde to improve stability for ultrasound elas-

tography. The cross-linking process takes several weeks to months to complete in the

gelatin and the increase in melting temperature is accompanied by a large increase

in elastic modulus, making fabrication of soft phantoms difficult. The authors also

reported that agar gels exhibited non-linear elastic behavior. Ease of fabrication, cost

and tunability are also important factors in choosing a phantom material, and in these

areas the gelatin-glycerol blend has advantages. In future studies, the sensitivity to

temperature changes can be mitigated by allowing the MRE phantoms to equilibrate
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for several hours before use and should reduce time-dependent changes in the shear

moduli that we observed and characterized.

3.6 Conclusions

The viscoelastic properties of a tissue-mimicking material were measured using a

novel mechanical test technique (DST in the shear wave regime) and compared to

properties obtained from MR elastography experiments. Storage and loss moduli were

estimated from MRE displacement fields using (1) direct inversion and (2) by fitting

a closed-form solution appropriate for our phantom geometry. The two methods gave

similar values for both components of the shear moduli over the range of frequencies

studied. We found that the trends in MRE storage and loss moduli were similar

to those obtained from DST, though the mean values were about 10% higher in

the overlapping frequency range. These results confirm that both storage and loss

moduli of a moderately viscoelastic material can be reliably estimated using MRE.

Confidence in these parameter estimates should be assessed by a “goodness-of-fit”

measure such as normalized residual error. These findings can also provide a basis

for assessing the quantitative accuracy of shear moduli obtained from MRE of soft

tissues in vivo.
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Chapter 4

Frequency-dependent Viscoelastic

Parameters of Mouse Brain Tissue

Estimated by MR Elastography

4.1 Overview

Viscoelastic properties of mouse brain tissue were estimated non-invasively, in vivo,

using magnetic resonance elastography (MRE) at 4.7 T to measure the dispersive

properties of induced shear waves. Key features of this study include (i) the devel-

opment and application of a novel MR-compatible actuation system which transmits

vibratory motion into the brain through an incisor bar, and (ii) the investigation of

the mechanical properties of brain tissue over a 1200 Hz bandwidth from 600–1800

Hz. Displacement fields due to propagating shear waves were measured during con-

tinuous, harmonic excitation of the skull. This protocol enabled characterization of

the true steady-state patterns of shear wave propagation. Analysis of displacement

fields obtained at different frequencies indicates that the viscoelastic properties of

mouse brain tissue depend strongly on frequency. The average storage modulus (G′)

increased from approximately 1.6 to 8 kPa over this range; average loss modulus (G′′)

increased from approximately 1 to 3 kPa. Both moduli were well approximated by a

power-law relationship over this frequency range. MRE may be a valuable addition

to studies of disease in murine models, and to pre-clinical evaluations of therapies.

Quantitative measurements of the viscoelastic parameters of brain tissue at high fre-

quencies are also valuable for modeling and simulation of traumatic brain injury.
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The material presented in this chapter is published in Physics in Medicine and Biology

(Clayton, Garbow, Bayly, 2011)3.

4.2 Introduction

4.2.1 Motivation: traumatic brain injury and other brain

pathology

Traumatic brain injuries (TBI) are widespread in the United States and can result

in permanent physical, cognitive, and/or behavioral impairment. Despite the preva-

lence and severity of TBI, the condition remains poorly understood and difficult to

diagnose. Computer simulations of injury mechanics offer enormous potential for the

study of TBI. Simulations can supplant experiments which are extremely difficult or

expensive to perform, or cannot be performed for ethical reasons. However, computer

models require accurate descriptions of tissue constitutive behavior and tissue con-

nectivity (boundary conditions). Lacking such data, numerical predictions of brain

deformation remain of questionable value. Quantifying tissue viscoelasticity is par-

ticularly important for understanding TBI, since rapid deformation of brain matter is

a common feature among these injuries. MRE has also been suggested as a possible

diagnostic or research tool for other brain disorders. Changes in material properties

have been proposed as markers of tumor pathology [112] or progression of disease and

degenerative processes, including Alzheimer’s disease [123], multiple sclerosis [177],

and aging [142].

3Author Contributions: E.H.C. designed, performed, analyzed experimental data, developed the
inversion algorithm, and wrote the manuscript. J.R.G. and P.V.B. conceived the project. All authors
reviewed the findings and discussed the manuscript.
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4.2.2 Magnetic resonance elastography

Magnetic resonance elastography (MRE) is a non-invasive imaging technique for quan-

titative measurement of the mechanical properties of biological tissue [112]. To per-

form MRE the standard nuclear magnetic resonance imaging (MRI) method is modi-

fied to measure displacements due to wave propagation. The basic data in MR images

are the radio-frequency (RF) signals produced by the precession of nuclear spins; 1H

is the predominant nucleus of interest in biological imaging. An MRE pulse sequence

contains additional, temporally varying, “motion-sensitive” magnetic-field gradients

which produce changes in spin-emitted RF signal phase that are proportional to spin

displacement. These changes in spin phase can be measured throughout the imag-

ing volume, producing displacement fields of high spatial resolution. Components

of displacement in any direction can be measured by applying the motion-encoding

gradients along that direction.

Several studies have explored the diagnostic value of MRE in the clinical setting.

Interest has largely been driven by the empirical relationship between tissue health

and stiffness. The mechanical properties of human tissues have been investigated

using MRE. Plewes et al. [126] estimated isotropic elastic properties of breast tissue,

whereas Sinkus et al. [151, 152] probed both isotropic and anisotropic viscoelastic

properties. MRE has been applied to the human brain [81, 56], liver [5, 139, 178],

heart [37, 143, 135], and prostate [70].

Fewer MRE studies have been conducted in animals. MRE has been applied to

the canine prostate [26], porcine heart [79], and the murine and bovine eye [28, 31,

85]. In most animal studies, the primary research objective has been to demonstrate

proof-of-concept for implementation as a clinical diagnostic tool. MRE studies in

animal models have considerable value for monitoring disease staging and effects of

therapy [33, 110, 123, 146, 179]. Of small animal models, the mouse is most frequently

employed since it is low cost, small, relatively easy to handle, and its genomics are

readily probed and manipulated.

Atay et al. [6] were the first to demonstrate feasibility of MR elastography in the mouse

brain at 1200 Hz. Since then, others have performed studies at similar actuation

frequencies (e.g., 1000, 1500 Hz) to investigate disease progression in the murine
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brain and its effect on mechanical tissue properties [33, 110, 146]. The protocols of

Atay et al. [6] and Murphy et al. [110] required an invasive procedure to affix the

mechanical actuator to the mouse. Diguet et al. [33] and Schregel et al. [146] induced

longitudinal waves into the skull using a mechanical transducer consisting of a coil

and programmable pulse generator.

In this study, a novel, non-invasive, easy-to-use actuation setup was designed, built,

and incorporated into animal studies. Mechanical vibrations were induced through

an actuated incisor bar, allowing for efficient and well-tolerated studies. Experiments

were performed at seven actuation frequencies, between 600 and 1800 Hz, to charac-

terize the dispersive properties of mouse brain tissue. The analysis of experimental

data was performed in three ways to cross check results: (i) using a single component

of the displacement field (the most efficient approach); (ii) using all three components

of the three-dimensional (3D) displacement field, and (iii) using the curl of the 3D

displacement field (to eliminate longitudinal wave contributions).

4.3 Methods

4.3.1 Acquisition of spatiotemporal wave fields

Later work by Muthupillai and colleagues [113] describes in detail the physics of mea-

suring harmonically-varying displacement fields with NMR spin-phase accumulation;

the key points are summarized briefly in this section. Consider a single 1H proton

spin packet undergoing harmonic mechanical excitation and subjected to a sinusoidal,

motion-encoding magnetic-field gradient, Gi sin(ωgt), parallel to an orthogonal refer-

ence coordinate i. The shift in NMR signal phase θi at position x0, y0, z0 is governed

by:

θi(x0, y0, z0,Φ) = γ

∫ τ

0

Gi sin (ωgτ) · ui sin (ωdτ + Φ) dτ. (4.1)

Gi and ωg are the motion-encoding gradient amplitude and oscillating frequency,

respectively; ui(x0, y0, z0) is the amplitude of the displacement component of the

spin packet at this location and ωd is the mechanical actuator driving frequency;

γ is the gyromagnetic ratio of 1H nuclei (protons). The synchronization delay, Φ,
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results in a temporal phase shift between the motion of a particular spin packet and

the motion-encoding gradient. If multiple phase images are acquired, each with a

different synchronization delay (corresponding to a fraction of the actuation period),

a time history of spin phase is measured. Accordingly, each component of spin-packet

motion, i.e., ui(x0, y0, z0), can be imaged if the experiment is repeated three times

and the motion-encoding magnetic-field gradients are aligned to a different axis of an

orthogonal reference coordinate system each time.

The amplitude of each spin-packet displacement component, ui(x0, y0, z0), can be

determined directly from the amount of spin phase accrued, θi(x0, y0, z0), by a scaling

factor proportional to the amplitude, frequency, and duration of the applied motion-

encoding gradient, Gi sin(ωgτ). Sensitivity to motion is greatest when the mechanical

actuation frequency, ωd, and motion-encoding gradient frequency, ωg, are equal (ω =

ωd = ωg) and the oscillating gradients are synchronized with the applied motion for

an integer number of cycles, n. In this case, for sinusoidal encoding and excitation

motion, the spin-phase displacement sensitivity can be calculated, in general, as,
u
θ

= ω
γGπn

.

4.3.2 Steady-state harmonic viscoelastic material response

The mechanical properties of biological tissue may be approximated by fitting mea-

sured displacement data to the equations governing wave propagation in an un-

bounded, isotropic, homogeneous, linear viscoelastic solid. Difficulty in this direct

approach arises in selecting the appropriate viscoelastic model a priori. The corre-

spondence principle allows the purely elastic equations of motion to be transformed

into analogous viscoelastic equations via Laplace or Fourier transform [86, 41, 18].

As such, invoking the correspondence principle allows the real elastic moduli to be

replaced with the corresponding complex viscoelastic moduli without requiring a spe-

cific rheological model.

The equations of dynamic equilibrium for an unbounded, isotropic, homogeneous,

linear elastic solid are,

µui,jj + (λ+ µ)uj,ij = ρüi , (i, j = 1, 2, 3), (4.2)
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where λ and µ are the elastic (Lamé) parameters of the material; ρ is the material

density (typically assumed to be 1000 kg/m3 for tissue) and u, and ü are tissue

displacement and acceleration, respectively.

In many soft tissues, the dilatational component of motion may be neglected with-

out dramatically affecting estimates of distortional parameters [90]. The velocity of

a pressure wave-front in a nearly incompressible material (e.g., biological tissue) is

approximately 1500 m/s; at frequencies up to 2000 Hz (feasible for MRE) the wave-

length is greater than 0.75 m, which greatly exceeds the field of view of most MRE

experiments. The displacement amplitude of the pressure wave is often sufficiently

small that its contribution is within the measurement noise floor. This is especially

true if the primary mode of tissue excitation is shear [151], as is the case with our

experiments. If the dilatational components of the displacement field in Equation 4.2

are neglected, the following simpler equations are obtained governing shear wave

propagation in an elastic material [80]:

µui,jj = ρüi , (i, j = 1, 2, 3). (4.3)

If the imposed mechanical excitation is harmonic and steady-state, the material re-

sponse at each location in the sample is,

uk(x, y, z, t) = (U ′k + iU ′′k ) eiωt + (U ′k − iU ′′k ) e−iωt , (k = 1, 2, 3), (4.4)

where U ′k = U ′k(x, y, z, ω) and U ′′k = U ′′k (x, y, z, ω) are the real and imaginary co-

efficients of the complex exponential. Employing the correspondence principle, the

real elastic parameter µ in Equation 4.3 is replaced by the complex shear modulus,

G∗(iω):

µ→ G∗(iω) = G′(ω) + iG′′(ω), (4.5)

where G′ is the storage modulus and G′′ is the loss modulus. In general both compo-

nents of the complex modulus depend on frequency. Substituting Equations 4.4-4.5

in to Equation 4.3, and separating the real and imaginary terms, leads to a coupled
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set of real equations, recast in terms of the harmonic coefficients:

G′U ′i,jj −G′′U ′′i,jj = −ρω2U ′i (4.6a)

G′U ′′i,jj +G′′U ′i,jj = −ρω2U ′′i . (4.6b)

In these equations displacements in orthogonal directions are uncoupled. For this

reason, material property estimates can be made from acquisition of any single dis-

placement component. In practice, the displacement component with the largest

amplitude, and thus highest contrast-to-noise ratio, is used.

We illustrate the correspondence principle for the specific case of a Voigt material.

Wave propagation in an unbounded homogeneous Voigt solid take the following Carte-

sian form [80]:

µui,jj + (λ+ µ)uj,ij + ηu̇i,jj + (ξ + η)u̇j,ij = ρüi. (4.7)

Here ξ and η correspond to viscous “Lamé constants”, analogous to λ and µ, respec-

tively. Substitution of the expressions for harmonic displacement (Equation 4.4) into

Equation 4.7 leads to the relationships:

µU ′i,jj + (λ+ µ)U ′j,ij − ηωU ′′i,jj − (ξ + η)ωU ′′j,ij = −ρω2U ′i (4.8a)

µU ′′i,jj + (λ+ µ)U ′′j,ij − ηωU ′i,jj + (ξ + η)ωU ′j,ij = −ρω2U ′′i . (4.8b)

If the dilatational contribution to the displacement field is neglected, Equation 4.8

are equivalent to Equation 4.6 above with storage modulus G′ = µ and loss modulus

G′′ = ηω.

In some extremely soft, porous tissues in which internal fluid flow occurs readily,

the volumetric material distortion may not be negligible. In such cases, algorithms

such as numerical Helmholtz decomposition may be employed to remove the contri-

butions of longitudinal waves from experimental displacement fields [136, 151, 6]. Full

Helmholtz decomposition is computationally expensive and may introduce additional

artifacts [52]. Alternatively, when data are suspected of containing significant dilata-

tional contributions, the curl of the 3D displacement field can be computed and fitted
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to the corresponding equations of motion [151, 152]

Γi = εijkUj,k , (4.9)

where εijk is the Levi-Civita permutation operator. Γi is then substituted into Equa-

tions 4.6. Note the divergence of the curl of any vector field is always zero, thus

Γi,i = 0 by definition. Therefore,

G′Γ′i,jj −G′′Γ′′i,jj = −ρω2Γ′i (4.10a)

G′Γ′′i,jj +G′′Γ′i,jj = −ρω2Γ′′i . (4.10b)

Equations 4.10 are free of dilatational terms and isolate the transverse components

of the full equations of motion.

4.3.3 Data Acquisition

In total, 14 female mice (BALB/cAnNHsd, Harlan), aged 9 to 10 weeks-old, were

studied. Mice were anesthetized with 1.5% isoflurane supplied by nose cone at 1.0

L/min oxygen for the duration of all experiments. Body temperature was maintained

via a heating pad formed using re-circulating water bath. All procedures were ap-

proved by the institutional Animal Studies Committee in accordance with the NIH

Guide on the Care and Use of Animals.

Elastography data were obtained in mouse brain at 4.7 T using an Agilent/Varian Di-

rectDriveTM small-animal MR scanner. The scanner consists of an Oxford horizontal-

bore magnet, Agilent/Magnex self-shielded gradient coils, and high-performance, gra-

dient power amplifiers (International Electric Company) providing 60 G/cm peak

magnetic-field gradient amplitude within 0.27 msec. NMR data were collected us-

ing an actively-decoupled transmit/receive coil pair [42]. A modified spin-echo NMR

imaging pulse sequence was used to record spatiotemporal tissue motion as a shift

in NMR signal phase (Figure 4.1). There are two noteworthy features of our pulse

sequence: (i) sinusoidal motion-encoding magnetic-field gradients are used instead of

trapezoidal-shaped gradients, and (ii) harmonic actuator motion is constant through-

out the entire experiment to ensure true steady-state tissue response. Instead of
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Figure 4.1: The modified spin echo magnetic resonance pulse sequence used for elas-
tography data acquisition. In addition to RF and magnetic-field gradient events
required to create a spin echo MRI, sinusoidal, motion-encoding gradients (MEG) are
placed on each side of the 180◦ RF pulse. MEG events and the mechanical actua-
tion signal may be temporally shifted by the parameter Φ. By varying the delay Φ
temporal variations in the wave field are recorded. In this example, a 1-cycle MEG
(dashed) is shown on each gradient channel. As a result, motion-encoded phase im-
ages are acquired with contrast proportional to displacements perpendicular to an
oblique plane in the imaged body. Reproduced from Reference [29].
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Figure 4.2: The custom-built stereotaxic mouse head holder used for elastography
studies. The head of each mouse was secured between the ear bars and incisor bar.
Light tension on the incisor bar ensures contact throughout the actuator stroke. An
MR-compatible, amplified piezoceramic actuator drives the incisor bar harmonically,
inducing mechanical vibration of the mouse skull along the rostral-caudal axis. Re-
produced from Reference [29].

toggling the actuator on and off in synchronization with the scanner, the scanner is

triggered by the actuator signal.

Propagating shear waves were induced in the brain with the custom-built head holder

shown in Figure 4.2. Mechanical vibrations were generated by amplified-piezoceramic-

actuator (APA150M-NM, Cedrat Technologies) and transmitted to the mouse via

an incisor bar. The actuator was powered by a low-current, high-voltage amplifier

(LA75C, Cedrat Techologies). A sinusoidal voltage waveform was supplied to the am-

plifier by a transistor-transistor logic (TTL) equipped function generator (FG-7002C,

Ez Digital Co., Ltd.). The MR elastography imaging sequence was set to acquire

one line of k–space with each TTL pulse, thereby synchronizing applied mechanical

motion with MR motion-encoding gradients. Efficient data acquisition was facilitated

by our novel head holder; with only three contact points, animal setup was simple

and brief.

The entire mouse brain was imaged with 29 contiguous trans-axial slices in an in-

terleaved manner. Experimental parameters were: resolution, 250 x 250 x 250 µm3;
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TR/TE: 1000/27.5 msec; two excitations averaged for each line of k–space. Phase

contrast was doubled by acquiring two sets of motion-encoded data, one each with

positive and negative polarity motion-encoding gradients, which were subtracted from

one another. Actuation frequencies ranged 600–1800 Hz at 200 Hz intervals. The tem-

poral resolution of 600, 800, 1200, and 1800 Hz data was 8 points per actuation cycle.

The temporal resolution of 1000, 1400, and 1600 Hz data was 4 points per actuation

cycle.

Elastography data were acquired for six animals at each mechanical actuation fre-

quency studied. For one animal, at each frequency, all three displacement components

were acquired at temporal resolution of 4 points per actuation cycle. For all other

data, only the through-image-plane component of motion u3(x, y, z, t) was recorded.

A magnetic-field gradient amplitude of 15 G/cm was used throughout for motion

encoding. TR/TE was held constant for all data; hence, the number of MR motion-

encoding gradient cycles varied with the actuation frequency from 3 to 10. Acquiring

a complete phase contrast image (i.e., positive and negative polarity images) required

approximately 5.5 minutes per displacement component per time-point for each ex-

periment conducted. Time under anesthesia varied according to test plan and ranged

from 23–160 minutes (mean 108 min.). All mice survived imaging.

4.3.4 Data processing

Data post-processing was performed with programs written within the MATLAB

(2009b, The MathWorks) computing environment. Motion-sensitized, phase-contrast

images were obtained by complex division of positive- and negative-polarity phase

images. Parasitic phase wrapping, if present, was removed via commercial software

(Phase Vision Ltd.). Phase-contrast data were converted into displacements using

the phase-displacement sensitivity relation previously discussed; taking into account

the factor of two introduced through complex division of positive- and negative-

polarity phase images. The fundamental harmonic coefficient U ′k + iU ′′k was extracted

by Fourier transform along the time dimension. All data were smoothed with a

circular, 4th-order Butterworth bandpass filter (in: 1.52 mm, out: 6.25 mm). A

central difference scheme was used to approximate the Laplacian.
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Figure 4.3: (Top) Finite element model geometry and imposed boundary conditions
used for validation of the inversion techniques. (Bottom, left) Real and imaginary
parts of the fundamental harmonic displacement component u3. (Bottom, right)
Estimates of the viscoelastic parameters shown as functions of location in the central
plane. (2 mm vertical scale bar shown.) Reproduced from Reference [29].

Inversion of Equations 4.6 and 4.10 was performed via regional least-squares fit. For

each voxel, the complex modulus was found that minimized the squared error between

the equilibrium equations and data in a kernel surrounding that voxel. The residual

error of each fit, normalized by the variance in that kernel, was calculated to assess the

“goodness-of-fit” of the linear isotropic homogeneous material model at that location.

A normalized residual error (NRE) of zero indicates a perfect local fit; a residual of

1.0, a poor fit.

4.3.5 Inversion validation

The efficacy of our 1D and 3D inversion schemes were assessed with simulated data

generated via finite element analysis (FEA). A numerical model (COMSOL Mul-

tiphysics 3.5a, Comsol Inc.) with similar geometry and material dynamics (i.e.,

attenuation and phase velocity) to those observed experimentally was developed
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(Figure 4.3). A model discretized by 7,904 quadratic hexahedral elements (205,821

degrees-of-freedom) with a nominal side length 250 µm was used to simulate the re-

sponse of a viscoelastic material to harmonic loading. Harmonic frequency analysis

was performed at 600, 1200, and 1800 Hz by imposing a harmonic boundary displace-

ment of 10 µm to the bottom surface of the brain model. The steady-state response

was calculated and data were exported at 250 x 250 x 250 µm3 resolution, maintaining

equivalence between FEA and experimental data.

4.4 Results

4.4.1 Inversion validation

Stability and accuracy of our inversion method was assessed using FEA displacement

data. A parametric study was conducted to determine the optimal inversion kernel

size [Nx, Ny, Nz] and normalized residual error threshold (NRE). For 1D data inver-

sion, the size of the fitting region was defined by Nx = Ny = 3; fits with high residual

error (NRE > 0.8) were rejected. For 3D data inversion, the fitting region was de-

fined by Nx = Ny = 3; estimates obtained from poor fits (NRE > 0.8) were rejected.

Multiple slice planes were incorporated so that through-plane derivatives could be

approximated for a single, central plane of data; hence Nz = 1 for all analysis. These

same parameter values were used for processing of experimental data.

Results from the inversion of simulated data are shown in Table 4.1. The results

in this table indicate that over the ranges of material parameters, frequencies, and

wavelengths observed, errors of less than 1 kPa were typical. At all frequencies, 3D-

curl inversion provided storage modulus estimates with greater spatial variation than

other methods as evinced by its higher standard deviation. The storage modulus

was consistently under-estimated, regardless of the actuation frequency or analysis

scheme. All analysis schemes performed adequately.
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Table 4.1: Validation of inversion methods. Estimates of viscoelastic parameters were
obtained from simulated (FE) data for each of three inversion methods. (Poisson’s
ratio of 0.49.)

Frequency Model G′ (kPa) G′′ (kPa)
(Hz) Mean Std Error Mean Std Error

600

FE Model Parameters 2.81 – – 0.56 – –
1D Inversion 2.11 0.29 -0.70 0.47 0.16 -0.10
3D Inversion 2.04 0.30 -0.78 0.42 0.12 -0.14
3D-curl Inversion 2.18 0.42 -0.64 0.44 0.16 -0.13

1200

FE Model Parameters 6.04 – – 1.21 – –
1D Inversion 5.88 0.36 -0.16 1.23 0.65 0.02
3D Inversion 5.72 0.43 -0.32 1.09 0.49 -0.12
3D-curl Inversion 5.89 0.83 -0.15 1.16 0.61 -0.04

1800

FE Model Parameters 14.09 – – 2.82 – –
1D Inversion 13.49 0.84 -0.60 2.90 1.46 0.08
3D Inversion 13.15 0.99 -0.95 2.52 1.14 -0.30
3D-curl Inversion 13.55 1.90 -0.54 2.78 1.40 -0.03

4.4.2 Mouse brain elastography

Experimental data from the largest transaxial plane of mouse brain were processed

using the previously discussed methodology. For 1D and 3D inversion, material esti-

mates were made using three contiguous slice planes of data to accommodate numer-

ical calculation of through-plane derivatives required for the Laplacian calculation.

Only the through-plane motion component u3, was considered for 1D inversion. All

three motion components were considered for 3D inversion. For 3D-curl inversion,

five contiguous data slices were selected to accommodate numerical calculation of ad-

ditional through-plane derivatives required for the curl operation. Data were parsed

into three overlapping slice groups, each consisting of three image slices, and the curl

was calculated for each group. The central slice from each group was retained such

that three contiguous dilatation-free slice planes remained; these data were then run

through the existing 3D inversion routine. Representative anatomical images, dis-

placement fields, and estimates of material parameters are shown, for each frequency,

in Figure 4.4.
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Figure 4.4: Example anatomical images, displacement fields and estimates of vis-
coelastic parameters for each excitation frequency. (Row 1): Magnitude images of a
central (A/P) region of the brain; four contiguous slices 250 µm thick were averaged
(1 mm total thickness). (Rows 2 & 3): External mechanical motion induces propa-
gating waves within mouse brain tissue. The real, U ′3, and imaginary, U ′′3 , component
of the fundamental harmonic of the through-plane displacement is shown for slice two
of three contiguous slices used for inversion. (Rows 4 & 5): Elastograms (images of
storage modulus, G′, and loss modulus, G′′) calculated from the displacement fields
of Rows 2 & 3. Reproduced from Reference [29].
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Figure 4.5: The frequency dependence of the average viscoelastic mechanical param-
eters estimated for the central region of the mouse brain (n = 6). Estimates were
obtained by fitting a single motion component of the complex displacement harmonic
to Equations 4.6. A power-law fit of the form G(ω) = κωα is shown as a dashed line.
(G′: κ = 0.04 x 10−3, α = 1.29; G′′: κ = 1.24 x 10−3, α = 0.83) Reproduced from
Reference [29].

Root-mean-square displacement amplitudes of 1.0–2.5 µm are typical in these exper-

iments; amplitudes are smaller at the highest experimental frequencies. The decrease

in amplitude with frequency likely reflects the intrinsic frequency response character-

istics of the actuator itself, as well as reduction in skull transmissibility and increased

energy dissipation in brain tissue at these frequencies.

The 1D storage and loss moduli averaged over the entire image plane are reported

for each frequency in Figure 4.5. Power-law models of the frequency dependence

of storage and loss moduli, fitted independently to each material parameter, are

also shown. At each frequency, all three components of the displacement field were

acquired for one animal (n = 1), thereby permitting use of 3D inversion schemes.

Analogous estimates of 3D storage and loss moduli averaged over the entire image

plane are presented in Figure 4.6.
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Figure 4.6: Comparison of the apparent dispersive properties of mouse brain tissue
as obtained by three different inversion methods: “1D” - Equations 4.6, i = 3; “3D” -
Equations 4.6, i = 1, 2, 3; “3D-curl” - Equations 4.10. Mechanical property estimates
obtained from fitting 3D displacement fields to the viscoelastic equations of motion are
within a standard deviation of estimates obtained by fitting only a single displacement
component. (1D: n = 6; 3D: n = 1). Reproduced from Reference [29].

4.5 Discussion

MRE of the mouse brain was performed over a range of frequencies to illuminate

the mechanical response of brain tissue. A novel, non-invasive, and versatile actua-

tion system was developed and employed for data collection in vivo. The actuator

maintained steady harmonic motion and the MR scanner was triggered by the ac-

tuation system, which allowed measurement of true steady-state parameter values.

The viscoelastic properties of brain were determined over a broad range of driving

frequencies, from 600–1800 Hz. The averaged material properties of central (A/P)

mouse brain matter exhibit pronounced dispersive properties. Both the storage and

loss moduli of brain tissue depend strongly on the frequency of excitation, which has

important ramifications for numerical modeling of TBI.

Previous studies conducted in mouse brain have probed tissue properties at a single

driving frequency, within the range of 1000–1500 Hz [33, 110, 6, 146], cf. Table 4.2. In

the work by Atay et al. [6] and Murphy et al. [110], tissue was assumed to be purely

elastic and only the apparent elastic shear modulus was estimated. In comparison,
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Table 4.2: Material property estimates of in vivo mouse brain tissue measured by
MRE.

G′ G′′ Study details
Study Frequency Mean Std Mean Std Strain Age Region

(Hz) (kPa) (kPa) (kPa) (kPa) (wks)

[6] 1200 13.8 1.49 – – C57BL/6 12–15

Central
cortical
gray
matter

[33] 1000 7.36 0.50 3.33 0.80 C57BL/6 9–11
Central
corpus
callosum

[146] 1000 ≈5.40 – ≈1.50 – C57BL/6 –
Corpus
callosum

[110] 1500
26.0 – – – WT 70±2

Central
cerebrum

22.0 – – – APP-PSI 82±2
Central
cerebrum

viscoelastic material properties obtained in this study with those from other studies

reveals variation within an order of magnitude. Differences in the material model

assumed for inversion (elastic vs. viscoelastic) are clearly responsible for some dis-

crepancies. Other discrepancies may reflect true differences in material properties due

to age or analysis region. We do not advocate a specific material model to describe

brain tissue viscoelasticity (i.e., a Voigt, Maxwell, springpot, or other analog); rather

our results are presented simply as frequency-dependent complex moduli.

Causality of the estimated complex shear modulus was qualitatively assessed by the

local Kramers-Kronig (K-K) approximation [129, 89]. The exact K-K relations are

integral equations that relate the storage and loss moduli over an infinite range of

frequencies. Local approximations to the K-K relations [129, 89, 118] have been used

to demonstrate that a material obeys the principle of causality. The method described

by Madsen et al. [89] was used to characterize the dispersion relationships observed

in the current study. Estimates of loss modulus were fit to a polynomial function of

log(ω), which was then integrated to predict the dispersion of storage modulus. The

increases in G′ and G′′ are consistent with the K-K requirements, but they are not
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particularly well modeled by the local (approximate) K-K relationship. Nor are both

moduli well described by a springpot (single complex power-law) model, as in the

studies by Sack et al. [142] and Wuerfel et al. [177]. However, this is not surprising.

The theoretical investigation by Pritz [129] explains the conditions under which the

local K-K approximation is accurate. According to Pritz, if the moduli increase

rapidly with frequency (as those of mouse brain tissue appear to) then qualitative,

but not quantitative agreement with the local K-K relations is expected.

MR elastography has limitations. Material property estimates are subject to the con-

straints of imaging resolution, shear-wave wavelength, and the size of the anatomic

feature of interest. It is desirable to have multiple waves in the anatomic region of

interest to ensure the accuracy of numerical derivatives. The smaller the anatomic re-

gion of interest, the shorter the shear-wave wavelength required to maintain inversion

accuracy. If the material properties are constant, increasing the excitation frequency

would lead to a shorter wavelength. However, because of the dispersive properties of

biologic tissue (the stiffening of material as actuation frequency increases) an increase

in excitation frequency does not proportionally decrease wavelength.

MR imaging resolution determines the spatial-frequency fidelity of elastography data.

The Nyquist criterion dictates the shortest wavelength (highest spatial-frequency)

detectable in acquired wave-field images. The theoretical minimum wavelength is

twice the voxel dimension. In other words, the maximum spatial frequency that

can be resolved is half the spatial sampling frequency. In practice, approaching the

Nyquist frequency can cause difficulty - oversampling of at least 10 times the Nyquist

frequency is common in other engineering applications. Unfortunately, as the MR

image resolution is increased (voxel size is decreased) the NMR signal amplitude is

decreased. Imaging resolution was parametrically evaluated at the start of this study;

we concluded that (250 x 250 x 250 µm3) cubic voxels represented the best compromise

between imaging resolution, signal-to-noise ratio, and acquisition time at 4.7 T. This

is, in fact, the smallest isotropic voxel size used to date in MRE of the mouse brain.

Even at this resolution, the finite voxel size does introduce discretization error in the

numerical calculations of the Laplacian of the displacement field, which remains a

potential source of variation in our estimates of shear modulus.
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Figure 4.7: Average, root-mean-square (RMS) shear-strain ∂u3
∂y

amplitudes (left); and

average, RMS shear-strain rates ∂2u3
∂t∂y

observed in 1D experimental data (right); n = 6,

standard deviations shown. Reproduced from Reference [29].

The majority of the parameter estimates in this study were obtained with a basic

1D inversion technique (analysis of a single component of displacement, obtained

throughout the 3D image volume). Because only a single component is acquired, the

analysis cannot include a direct Helmholtz decomposition to eliminate displacements

due to longitudinal waves. However, estimates from the 1D inversion are very close

to estimates obtained in a subset of the animals by a 3D inversion technique in which

the curl of the displacement field is used to remove the contributions of longitudinal

waves. Both of these estimates are also close to the estimates obtained by a 3D algo-

rithm without the curl operation. While the 3D method using the curl is theoretically

the most accurate, it is likely that the estimation of numerical derivatives introduces

another source of error [151] (also, cf. analysis of FE data in Table 4.1). These

results suggest that careful spatial filtering of the raw data to remove the low spatial-

frequency (long wavelength) response, combined with the use of our novel actuator

setup, which primarily induces shear waves in the brain, effectively mitigate the ef-

fects of longitudinal waves. The ability to use a 1D method is important, it reduces

the acquisition time by a factor of three and obviates the need to estimate third-

order derivatives (required for the curl-based algorithm) or perform computationally

intensive Helmholtz decomposition routines [152].

In reality, brain tissue is not only viscoelastic - it is nonlinear, heterogeneous, and

anisotropic. In this study, displacement-gradients, i.e. strains, were observed to be

small, ∂u3
∂z

< ∂u3
∂x

< ∂u3
∂y
� 1, so kinematic nonlinearity was negligible (Figure 4.7). In

contrast, the frequency-dependent trend of calculated mechanical properties presented

in Figures 4.5-4.6 indicates the importance of viscoelasticity. Mathematically, without
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reference to the physics of a particular rheological model, the dispersive properties

of mouse brain tissue over the frequencies investigated here are well characterized by

a power-law relation of the form: G(ω) = κωα. Strain rates increased slightly with

increasing actuation frequency (Figure 4.7), which may contribute to the apparent

frequency dependence of G′′. It is important to note that mechanical properties

reported here are the average values over the entire brain cross-section. The material

properties of the brain are not homogeneous, but variations in properties at these

length scales are not likely to be captured accurately. As such, anisotropy, which

might be expected in the relatively small regions of white matter in the mouse brain,

was not investigated. Direct mechanical tests on excised tissue [128] indicate that

directional dependence is weak, even in white matter. Heterogeneity and anisotropy

are logical targets for future studies.

4.6 Conclusions

The average dispersive properties of mouse brain tissue in a central region were esti-

mated in vivo using MR elastography. Storage and loss moduli were estimated (i) in

all animals by fitting the data to a single component of the equation of motion (1D

analysis) and (ii) in a subset of animals by simultaneously fitting all three compo-

nents of displacement data to the full 3D equation of motion. Results in all cases were

similar, and reflected a strong dependence of complex shear modulus (both storage

and loss components) on excitation frequency. MRE studies in small animals require

motion at high frequencies to propagate shear waves with wavelengths short enough

to resolve small features. However, tissue viscoelasticity limits both wavelength and

wave penetration depth. Despite these limitations, MRE may provide valuable insight

into studies of disease in murine models, and allow pre-clinical evaluations of thera-

pies. Measurements of the viscoelastic parameters of brain tissue at high frequencies

are also valuable for modeling and simulation of traumatic brain injury, since TBI

results from short-duration events, e.g., blast and impact. The comparison of results

from both simulation and experiment provides valuable insight into the quantitative

accuracy of MRE.
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Chapter 5

Transmission, Attenuation, and

Reflection of Shear Waves in the

Human Brain

5.1 Overview

Traumatic brain injuries (TBI) are caused by acceleration of the skull or exposure

to explosive blast, but the processes by which mechanical loads lead to neurological

injury remain poorly understood. We adapted motion-sensitive magnetic resonance

imaging methods to measure the motion of the human brain in vivo as the skull was

exposed to harmonic pressure excitation (45, 60, 80 Hz). We analyzed displacement

fields to quantify the transmission, attenuation, and reflection of distortional (shear)

waves as well as viscoelastic material properties. The results suggest that the inter-

nal membranes such as the falx cerebri and the tentorium cerebelli play a key role

in reflecting and focusing shear waves within the brain. The skull acts as a low-pass

filter over the range of frequencies studied, with transmissibility of pressure waves

through the skull decreasing and shear wave attenuation increasing with increasing

frequency. The skull and brain function mechanically as an integral structure that

insulates internal anatomic features; these results are valuable for building and vali-

dating mathematical models of this complex and important structural system.
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The material presented in this chapter is currently in review (Clayton, Genin, Bayly,

2012)4.

5.2 Introduction

Traumatic brain injury (TBI) can result from blunt force trauma, rapid inertial load-

ing, or extracranial pressure (i.e., explosive blast). Much of the pathway between

mechanical insult and neurological injury remains unclear, in part because data on

the mechanical response of the brain are difficult to acquire in vivo. Diffuse axonal

injury, in which neural axons stressed beyond limit initiate a biochemical cascade cul-

minating in axon destruction, is believed to be a direct consequence of this mechanical

response [161, 162, 154]. Recent developments in magnetic resonance imaging (MRI)

have uncovered a critical mechanical role of brain-skull attachment in determining

the locations of high strains when the skull is accelerated [15, 140, 39, 1].

The ability to simulate TBI computationally is quite advanced [75, 61, 165, 117] but

has historically outpaced the data available for validation. The range of data available

begins with a study by Holbourn [63], who investigated strains in gel-filled molds of the

human cranium subjected to angular accelerations. Holbourn postulated that injury

locations correlate with regions where high shear strain was observed in his gelatin

brain models. Others [93, 101] have studied more complex gel-filled head models.

Hardy et al. [57, 58] advanced this type of analysis to the heads of human cadavers,

where internal brain motion was measured by tracking implanted neutral-buoyancy

markers using high-speed bi-planar X-ray imaging. These studies represented signif-

icant progress in the study of brain injury biomechanics. However, gels and cadaver

heads differ substantially from the human brain in vivo, and the spatial resolution of

implanted markers falls far short of capabilities of imaging methods such as MRI.

The use of MRI to characterize wave propagation, especially as related to TBI, is

an emerging application [99, 98]. In the current study, we implement a motion-

sensitive MRI scheme to map the structural response of the brain-skull system to

4E.H.C. designed and performed experiments, analyzed data, developed the inversion algorithm,
and wrote the manuscript. All authors discussed the findings and commented on the manuscript at
all stages. P.V.B. and G.M.G. conceived the study.

100



measured extracranial pressure oscillations. We present here MRI data that suggest

that brain-skull attachments as well as the internal meninges (falx and tentorium)

strongly affect patterns of wave propagation in the brain. We also introduce a novel

viscoelastic material property reconstruction scheme and apply it to these data. The

transmissibility of the skull to oscillatory pressure loading, and the attenuation of

inwardly propagating shear waves are quantified. The findings presented here will be

very useful for the validation of numerical models intended to simulate head trauma.

5.3 Materials and Methods

5.3.1 Motion-sensitive magnetic resonance imaging

Images of tissue motion can be recorded using a standard clinical MRI scanner

equipped with a motion-sensitive imaging pulse sequence and an MR-compatible ac-

tuator to produce tissue motion [112]. The NMR signal used for clinical imaging is

produced by precession of 1H proton spin packets in a strong magnetic-field (com-

monly 1.5–3 T). Spin precession (Larmor) frequency is determined by the magnetic-

field amplitude. In the presence of a spatially varying magnetic-field gradient, a spin

packet displaced to a location with higher magnetic-field strength will precess faster.

Over time the displaced spin will acquire additional phase relative to a spin in the

original configuration. Applying harmonically oscillating magnetic-field gradients into

an imaging sequence allows harmonic spin displacement to be recorded as a phase

shift in the NMR signal. With this technique, motion sensitivity to displacements

as small as 100 nm have been reported [112]. This type of motion-sensitive MRI,

known as MR elastography, has been employed to image propagating shear waves,

and from the shear wave propagation speed, to infer the mechanical properties of

tissue in vivo [112, 82, 149, 21, 90].

The physical framework describing the measurement of spatiotemporal displacement

fields with motion-sensitive MRI is described in detail by Muthupillai and colleagues [113].

Here we briefly review the mathematics. Consider a single 1H proton spin packet orig-

inally at position r̄0 = x0ē1 + y0ē2 + z0ē3, undergoing harmonic motion. Its vector
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displacement ū(r̄0, t) can be expressed in complex exponential form as:

ū(r̄0, t) = Ū(r̄0)ei(ωt+ψ(r̄0)+Φ) + complex conjugate. (5.1)

The displacement coefficient vector Ū(r̄0) can also be expressed in terms of its Carte-

sian components: Ū(r̄0) = Uk(r̄0) · ēk. To measure this motion, a time varying

motion-encoding gradient Ḡ(t) = Gk(t) · ēk is imposed. Accrual of NMR signal phase

θ is governed in general by

θ̄ = γ

∫ T

0

Ḡ(t) · ū(r̄0, t)dt, (5.2)

where γ is the gyromagnetic ratio of 1H nucleus. The duration of the applied gradient

is T = 2πn/ω, which is dependent on the actuator frequency ω (rad/sec) and the

number of motion encoding cycles n chosen. In practice, one component of the

gradient field is imposed at a time, yielding a corresponding phase image:

θk(r̄0,Φ) = γUk(r̄0)ei(ψ(r̄0)+Φ)

∫ T

0

Gk(t) e
iωtdt + complex conjugate. (5.3)

The amplitude and phase, Uk(r̄0) exp [i(ψ(r̄0) + Φ)], of each voxel imaged can be

determined directly from spin phase θk accrued, since Gk(t) is prescribed. The syn-

chronization delay Φ is a temporal phase shift between the applied motion and the

motion-encoding gradient. If multiple images are acquired, each with a different

synchronization delay (corresponding to a fraction of the actuation period), a time

history of spin phase is measured, cf. Figure 5.1.

In our experiments the components of Gk(t) took the following form:

Gk(t) =


−|G|, for 2π(n−1)

ω
≤ t ≤ π(4n−3)

2ω

+|G|, for π(4n−3)
2ω

≤ t ≤ π(4n−1)
2ω

−|G|, for π(4n−1)
2ω

≤ t ≤ 2πn
ω
.

(5.4)

Full displacement vector fields may be acquired by repeating the experiment with

the motion-encoding magnetic-field gradients aligned to each axis of an orthogonal

coordinate system.
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Figure 5.1: (a) High resolution anatomic images of the brain slice in which displace-
ment data were recorded highlight anatomic structures and boundaries (e.g., gray and
white matter, lateral ventricles, etc.). Displacement data were acquired on approx-
imately transverse slice planes through the superior corpus callosum. (b) In-plane
spatiotemporal displacement Fields were used to calculate the through-plane compo-
nent of distortion Γ. Transmission, attenuation, and reflection of distortion within
the living human cranium were analyzed in this study. (S014, 45Hz)

5.3.2 Measurement procedure and equipment

A motion-sensitized gradient-recalled echo (GRE) MRI pulse sequence (Figure 5.2)

was used to acquire data in six healthy male subjects, aged 19-42 years-old (mean:

28.7 yr), at actuation frequencies of 45, 60, and 80 Hz. In each subject data were

acquired on single transverse-oblique slice through the top of the corpus callosum

(Figure 5.1). Imaging parameters were: repetition time (TR): 111.1-137.5 ms, echo

time (TE): 27.5 ms, flip angle: 25◦, resolution: 3 x 3 x 3 mm3. The imaging proce-

dure was repeated three times with different motion-encoding gradient orientations

to record 3D displacement vector fields relative to the oblique imaging plane. The

Human Research Protection Office Internal Review Board of Washington University

approved the experimental protocol.
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Figure 5.2: (a) Schematic diagram of the experimental apparatus for inducing shear
waves in the brain by extracranial pressure loading. (b) The specialized gradient-
recalled echo (GRE) magnetic resonance imaging pulse sequence used for data ac-
quisition. In addition to the standard radio frequency (RF) pulses and orthogonal
magnetic-field gradient orientations (SS: slice select, RO: readout, PE: phase encode)
required to create the GRE MR image, a trapezoidal motion-encoding gradient is
included.

The absolute peak motion-encoding gradient amplitude |G| was nominally 25 mT/m

for all test frequencies, and spin phase was accrued over a single gradient cycle n

(Equation 5.4). The actuation system was configured to transmit a 4, 6, and 8

cycle acoustic pressure-wave train at 45, 60 and 80 Hz, respectively. Actuation was

initiated by a TTL pulse generated by the scanner and synchronized with each NMR

excitation. MRI motion-encoding gradients were configured to run at the same fre-

quency as the actuator for each experiment. All data was acquired with a temporal

resolution of four points per actuation cycle to satisfy the Nyquist-Shannon sampling

criterion. Phase-to-displacement conversion factors of 5.63 µm/rad (45 Hz), 7.66

µm/rad (60 Hz), and 10.6 µm/rad (80 Hz) were calculated by numerical integration

of Equations 5.3 and 5.4, taking into consideration actual gradient performance spec-

ifications. The total scan time to acquire 2D displacement field data in each subject

was approximately fourteen minutes per actuation frequency.

Volunteers were imaged in a 1.5 T MAGNETOM Avanto (Siemens) whole-body clin-

ical scanner equipped with a phased-array head coil. Harmonic motion was induced
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in the brain via extracranial pressure generated by an acoustic actuation system

(ResoundantTM, Resoundant Inc., Rochester, MN). The system was modified with

two equal lengths of flexible vinyl tubing and a T-fitting so that a single active driver

could power two passive drivers with equal amplitude and phase. Each passive actua-

tor pad was positioned on the side of the head near the left and right pterion bone and

affixed with an elastic bandage, cf. Figure 5.2. The head of each subject was snugly

secured within the imaging coil using foam inserts to prevent subject movement dur-

ing scans. Imposed acoustic pressure loads were measured with a PCB Piezotronics

(103B01) dynamic pressure sensor connected to a variable gain voltage amplifier PCB

Piezotronics (494A). The pressure signal, in the form of analog voltage, was digitized

and stored on a laptop PC using a National Instruments shielded connector block

(SCB-68) and 12-bit A/D converter (DAQCard-6062E).

Raw MRI data (k-space) were analyzed in MATLAB (The MathWorks, Inc.). Mo-

tion encoded MR data were obtained using a switched-polarity acquisition scheme

to remove systematic phase errors and enhance displacement contrast [90]. After

applying the 2D inverse Fourier transform to the raw (k-space) data, phase-contrast

images were obtained by complex division of positive and negative polarity images

and displacement fields with sensitivity factors described above.

Displacement data were spatiotemporally filtered to remove higher-order harmonics

and noise. First, the fundamental complex time harmonic of the displacement field

was extracted by Fourier transform along the time dimension. Then, the fundamental

harmonic was spatially filtered with a Gaussian spatial filter (kernel: 11 x 11, std:

0.80). Finally, filtered displacement fields were reconstituted in the time domain via

inverse Fourier transform, using only the fundamental time harmonic.

5.3.3 Analysis of the distortional component of motion

Harmonic oscillation of the skull leads to propagation of waves of distortion and di-

latation through brain parenchyma [82, 90, 56, 49]. Analysis of raw displacement data

is challenging because both types of wave motion are intrinsically coupled through

loading and boundary conditions [176], but the waves speeds differ by several orders

of magnitude.
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The equations governing wave motion in an extended linear elastic, isotropic, homo-

geneous material are

ρ
∂2uk
∂t

= µ∇2uk + (λ+ µ)
∂

∂xk
(∇ · ū) , (5.5)

where λ and µ are the Lamé constants and ρ is the material density [80]. The di-

latational (irrotational) and distortional (equivoluminal, or shear) deformation modes

can be decoupled by applying the divergence and curl to Equation 5.5

∂2

∂t2
(∇ · ū) =

λ+ 2µ

ρ
∇2 (∇ · ū) , (5.6a)

∂2

∂t2
(∇× ū) =

µ

ρ
∇2 (∇× ū) , (5.6b)

respectively [80, 7, 176]. Use of the decoupled equations of motion provides a way to

isolate the dilatational wave phase velocity c1 =
√

(λ+ 2µ)/ρ from the shear wave

phase velocity c2 =
√
µ/ρ.

We define

Γ =
1

2

(
∂u2

∂x1

− ∂u1

∂x2

)
(5.7)

as the distortional wave component normal to the image plane, which is calculated

from the in-plane displacements. The root-mean-squared (RMS) value of the distor-

tion Γ was computed and normalized by the RMS applied pressure load according to

the following expression:

Γ

P
=

√
1

T

∫ T

0

[Γ(t)]2dt

/√
1

T

∫ T

0

[P (t)]2dt . (5.8)

These data - distortion normalized by applied pressure - were analyzed to quantify

the frequency-dependent transmissibility, attenuation, and reflection of shear waves

in the living human brain.

Transmission of acoustic pressure through the skull and into the brain was assessed

by the pressure-normalized distortion averaged over a 1.5 cm wide region immediately

interior to the skull.
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Attenuation of shear waves in the brain was quantified by the decay in amplitude as

a function of distance from the skull. Regions of interest were obtained by applying

a series of concentric elliptical masks to the shear wave field. These masks were

created by iteratively eroding the outer boundary of the field inward. Two consecutive

masks were subtracted to produce an annular elliptical mask with a thickness of

approximately 1 voxel (i.e., 3 mm). The distortion was averaged for each region of

interest, and these average values plotted as a function of distance from the brain-

skull boundary. Exponential attenuation of shear waves was observed in the brain

and is consistent with expected viscoelastic behavior.

Wave Normal Extraction and Qualitative Energy Analysis

Reflection of shear waves in the brain was assessed from vector fields of amplitude-

weighted average propagation direction. In principle, a scalar field Γ(r̄0, t) that is

harmonic in time and periodic in space may be represented as a double Fourier series

Γ(r̄0, t) = eiωt
∞∑

m=−∞

∞∑
n=−∞

amne
i(km·x0+kn·y0) + complex conjugate. (5.9)

The 2D wavenumber k̄mn = kmē1 + knē2 describes the wave length and propagation

direction. Here the angle of propagation θmn of each plane wave component is defined

as the four-quadrant inverse tangent of kn/km.

Contributions of plane shear waves along a particular direction θp may be obtained

by applying a directional spatial filter to the distortional wave field as follows,

Γp(r̄0, t) = eiωt
∞∑

m=−∞

∞∑
n=−∞

amn · fp(θmn)ei(km·x0+kn·y0) + complex conjugate. (5.10)

In this work, we apply a spatial directional filter is defined by,

fp(θmn) =

{
cos2 (θmn − θp), ‖θmn − θp‖ ≤ π/8

0, ‖θmn − θp‖ > π/8
(5.11)

to plane wave components propagating along sixteen directions; θp = pπ/8, for (p =

1, 2, ...16).
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The amplitude-weighted average propagation direction vector at the location r̄0 was

calculated as,

v̄(r̄0) =
16∑
p=1

|Γp(r̄0)| · (cos θpē1 + sin θpē2). (5.12)

These vector fields allow quantitative characterization of shear wave propagation as

well as qualitative features. The divergence of these vector fields was used to qualita-

tively assess wave energy in the brain. In particular, anatomic boundaries, at which

reflection occurs, appear as energy sources and sinks in these fields. This approach

is illustrated in Figure 5.3, which shows shear wave propagation in a cylindrical gel

sample excited by a central stinger5.

Material Property Estimation

Local frequency estimation (LFE) [76] has been used to locally extract the wavenum-

ber k = |k̄| from displacement wave fields in order to estimate the elastic shear mod-

ulus [21, 90]. LFE-based inversion is attractive because it allows material parameters

to be estimated without explicitly invoking the coupled or uncoupled equations of

motion (Equations 5.5–5.6b), thus obviating the need to numerically compute second

or third-order spatial derivatives. LFE applied to displacement fields is challenging

in practice since the effects of dilatational waves, rigid body motion, boundary reflec-

tions, and standing wave patterns can corrupt wavelength estimates. Investigators

have attempted, not always successfully, to circumvent these effects by aggressively

filtering displacement data [90] or by taking the curl of the equation of motion [152],

which requires third-order spatial derivatives.

In this study, viscoelastic properties of brain tissue at multiple frequencies were ob-

tained by local frequency estimation (LFE) applied to distortion fields. According

to Equation 5.6b, all components of the distortional wave field (∇× ū) depend only

on the shear modulus and density of the media. Therefore, in mechanically isotropic

and locally homogeneous media as we assume here, the shear modulus can be ex-

tracted from any one component of the distortion field so long as that component is

activated. Application of LFE to the distortion component identified in this study

5cf. Okamoto et al. [119] for gel experiment details.
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Figure 5.3: (a-f) Vector fields of amplitude-weighted average propagation direction in
a homogeneous cylinder of gelatin in which both the container and a central rod are
coupled to a piezoelectric actuator. Vector fields are superimposed on (a,b) estimated
distortion fields Γ and (c,d) high resolution “anatomical” images. (e,f) Divergence of
the propagation direction field highlights energy production (source) and dissipation
(sink). (a,c,e) At 150 Hz shear waves propagate predominantly outward. (b,d,f) At
400 Hz shear waves propagate both inward and outward, and interfere destructively
at intermediate radial locations. Standing waves due to constructive interference are
also possible. Standing waves in this system would be indicated by distortion fields
with significant amplitude but near-zero average propagation velocity.

109



0 

.01  

-.01  

1.3 

0 
kPa 

b. c. a. 
2.5  

0 
kPa 

Figure 5.4: The presented viscoelastic inversion scheme was tested on MRE data
obtained in gelatin [119]. (a) Distortion wave field (Γ). Viscoelastic moduli (b) G′

and (c) G′′. (150Hz)

(Γ) avoids inversion artifacts attributed to dilatational waves and rigid body motion

in displacement data.

Implicit in existing LFE-based inversion formulations [21, 90, 51] is the wave phase

velocity relation c = ω/k, which permits elastic material property reconstruction.

Nevertheless, the equation describing planar shear wave propagation in an isotropic

lossy medium, [
k2 − α2 2αk

−2αk k2 − α2

]{
G′

G′′

}
=

{
ρω2

0

}
, (5.13)

could be employed to extract viscoelastic shear moduli [80, 7]. We used the LFE im-

plementation provided by Grimm et al. [51] to locally obtain the wavenumber k, then

applied Equation 5.13 with our global estimates of attenuation constant α to extract

viscoelastic shear moduli regionally. An exponential form of α was assumed because

it is a simple and intuitive model of dissipation, and approximates the observed be-

havior. This approach is illustrated in MRE data obtained in cylindrical gel sample

actuated at 150 Hz. Estimates of viscoelastic moduli G′ and G′′ are presented in

Figure 5.4. These estimates (mean G′ = 1111 Pa; mean G′′ = 260 Pa) are consistent

with those reported in Okamoto et al. [119] (mean G′ = 1106 Pa; mean G′′ = 151

Pa).
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Figure 5.5: (Top) Waveforms of the pressure applied to the skull in one subject: (a)
45 Hz; (b) 60 Hz; (c) 80 Hz. (Bottom) Distortion wave fields (Γ, dimensionless)
observed in the human brain in response to the applied pressure fields above. Arcs
on the left and right denote the locations of passive actuator pads. (S008)

5.4 Results

5.4.1 Extracranial pressure and brain deformation

Acoustic pressure applied to the head near the left and right pterion produces distor-

tional (shear) waves in the brain (Figure 5.5). Spatiotemporal patterns of distortion

reflected propagation of shear waves which was generally, but not exclusively, from

the skull inward. One might expect anatomical differences in the skull and brain of

individual subjects to cause differences in the responses of the brain. Averaged over

the entire brain slice, the pressure-normalized distortion (Γ/P ) showed consistent

magnitude (Figure 5.6a). Some subject-to-subject variation was observed; however,

among subjects who experienced all three frequencies of excitation, the decrease in

response with frequency is consistent.
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Figure 5.6: Pressure-normalized distortion Γ/P (Equation 5.8) was used to evaluate
transmission and attenuation. (a) The amplitude of Γ/P was spatially averaged over
the entire brain (shown right) and plotted for each subject. Subject-to-subject vari-
ability exists; however when data were acquired at all three frequencies in the same
subject, the amplitude consistently decreased with increasing acoustic frequency. (b)
The amplitude of Γ/P was spatially averaged in a 1.5 cm-wide annular region of brain
tissue immediately interior of the skull/dura mater (shown right) and plotted as a
function of acoustic frequency. Transmission coefficients were extracted by exponen-
tial curve fit: Γ/P = Af exp (−βff); min βf = 0.046 Hz−1 (S014), max βf = 0.058
Hz−1 (S009), mean βf = 0.050 Hz−1. (c) The amplitude of Γ/P was regionally av-
eraged in concentric annular elliptical rings (shown right) and plotted as a function
of depth from the brain skull boundary. Attenuation coefficients were extracted by
exponential curve fit: Γ/P = Ad exp(−αd); 45 Hz: α = 23.7 m−1; 60 Hz: α = 51.1
m−1; 80 Hz: α = 54.3 m−1. 112



5.4.2 Quantitative analysis of shear wave energy transmis-

sion into the brain

The transmission of mechanical loads through the skin, skull, and meninges was

evaluated via pressure-normalized distortion (Γ/P ) in the annular region of interest

in the brain adjacent to the skull (Figure 5.6b). This regionally-averaged quantity

was calculated for each subject, plotted as a function of frequency, and fit to an

exponential model. A clear decrease in transmissibility with frequency is evident over

this range.

5.4.3 Quantitative analysis of shear wave energy attenuation

within the brain

The attenuation of pressure-normalized distortion (Γ/P ) was averaged within annular

regions of interest and plotted as a function of depth from the brain-skull boundary

(Figure 5.6c). Data from all subjects were averaged together for a given frequency.

The shear wave attenuation parameter α, which characterizes the dissipative behavior

of brain matter, was extracted for each frequency by performing a least-squares fit

with a model of exponentially decaying amplitude.

5.4.4 Reflection of shear waves at anatomical interfaces

Vector fields of amplitude-weighted average propagation direction of shear waves in

the human brain were calculated and presented in Figure 5.7. These vectors highlight

that propagation is generally inward from the skull toward the interior of the brain,

but anomalies are apparent at the anterior and posterior extremes of the midline of

the brain. This is more pronounced, and occurs over a larger region, in the posterior

midline region. The locations of these anomalies correspond to the intersections of

the tough, relatively stiff membranous insertion of the dura mater, the falx cerebri,

with the brain in the images. The falx extends from the roof of the skull down

between the hemispheres of the brain. Wave propagation near the posterior midline

may be affected by the tentorium, which lies below the image plane. The tentorium
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Table 5.1: Viscoelastic properties of brain tissue (mean ±1 standard deviation).

Frequency k (x 102 rad/m) α (rad/m) G′ (kPa) G′′ (kPa)
(Hz) Gray White Gray White Gray White Gray White

45 (n=6) 1.68±0.142 1.46±0.161 23.7 23.7 2.8±0.5 3.7±0.8 0.80±0.2 1.3±0.4
60 (n=5) 1.99±0.126 1.89±0.305 51.1 51.1 3.1±0.3 3.3±0.1 1.7±0.3 2.0±0.1
80 (n=4) 2.26±0.104 2.17±0.131 54.3 54.3 4.4±0.3 4.7±0.6 2.3±0.2 2.4±0.5

is a tent-like structure that supports the occipital lobe of the cerebrum and separates

the cerebrum from the cerebellum. Propagation vector and divergence fields for all

subjects at 45 Hz are presented in Figures 5.9 and 5.10.

5.4.5 Estimates of viscoelastic parameters from shear wave

fields

The viscoelastic shear moduli G′ and G′′ of the brain parenchyma were calculated

for all subjects using local frequency analysis of the distortion field Γ. In Figure 5.8

viscoelastic estimates are presented spatially in one subject at 45 Hz. In Table 5.1

ensemble average moduli for all subjects were calculated in white and gray matter

regions of interest. Magnitude images were used to manually segment gray and white

matter regions of interest in each subject. The attenuation coefficient α was assumed

to be approximately constant over the brain, which provides an estimate of loss

modulus G′′.

Moduli averaged over regions of interest in gray matter and white matter for all

subjects are given in Table 5.1. Spatial heterogeneity in G′ is consistent with ex-

pected differences in stiffness of interior white matter [64, 172], which is composed of

myelinated axonal fibers, and cortical gray matter.
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Figure 5.7: Vector fields of amplitude-weighted average propagation direction su-
perimposed on (a-c) estimated distortion fields and (d-f) high resolution anatomical
images in one human subject at three frequencies. Shear waves in the brain appear to
propagate inward from the brain-skull boundary toward the ventricles. (g-i) Diver-
gence of the propagation direction field at the anterior/posterior falx and above the
tentorium indicates that these membranous structures may act like sources of shear
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5.5 Discussion

In this study, the living human head was subjected to harmonic, laterally symmet-

ric, extracranial pressure loading at 45, 60, and 80 Hz. The applied loading pro-

duced propagating distortional (shear) waves in the brain parenchyma. Distortion Γ

was normalized by the applied RMS pressure load and analyzed to characterize the

structural dynamic properties of the head. Transmission of harmonic extracranial

acoustic pressure load through the skull decreases as the acoustic frequency increases

(Figure 5.6b). On average, outer regions of the brain experience pressure-normalized

distortion Γ/P at amplitudes of approximately 150 x10−9Pa−1 at 45 Hz, but less than

30 x10−9Pa−1 at 80 Hz. Attenuation of propagating shear (distortional) waves within

the brain increases as the extracranial acoustic frequency increases (Figure 5.6c) as

expected for a viscoelastic system [80], such as the brain.

Reflection of shear waves in the brain was assessed from amplitude-weighted aver-

age propagation vector fields (Figure 5.7). Amplitude-weighted average propagation

vector fields permit qualitative and quantitative characterization of shear wave prop-

agation. Propagation was generally inward from the skull toward the interior of the

brain, with important anomalies apparent at the anterior and posterior extremes of

the brain midline. This was more pronounced, and occurred over a larger region,

in the posterior midline region. The locations of these anomalies correspond to the
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intersections of the brain with the tough, relatively stiff membranous insertion of the

dura mater: the falx cerebri. The falx extends from the roof of the skull down between

the hemispheres of the brain, serving as a transmission barrier. The posterior wave

field may also be affected by reflections from the tentorium cerebelli, even though

the tentorium lies below, and does not intersect, the image plane. The tentorium is

a tent-like structure that supports the occipital lobe of the cerebrum and separates

the cerebellum from mechanical waves in the cerebrum. Divergence of the propa-

gation vector fields indicate anatomical boundaries are regions of energy production

(source) and dissipation (sink). This technique was illustrated by characterization of

shear waves in a simple cylindrical gel sample (Figure 5.3).

Viscoelastic shear moduli were estimated from approximations of the local wavenum-

ber k and global attenuation parameter α as evident from distortional wave fields Γ.

Estimates of brain viscoelasticity provided here are within the wide range of values

reported in a comprehensive review [24] of the mechanical properties of human brain

tissue estimated by various methods. Scan duration limited our multifrequency study

to data collection on a single slice. The assumption that variations in the through-

plane direction are small (inherent in the use of single-slice in-plane displacement data

rather than multislice 3D displacement data) leads to wavelength estimates that may

be longer than the true wavelength. Accordingly, estimates of G′ presented here may

be higher than the values that would be estimated from multi-slice 3D displacement

data. Spatial heterogeneity in G′ is consistent with expected differences in stiffness

of interior white matter [64, 172], which is composed of myelinated axonal fibers,

relative to cortical gray matter. This technique was illustrated by characterization of

shear waves in a cylindrical gel sample (Figure 5.4).

MRE displacement data consist of the volume-averaged NMR signal within discrete

volume elements (voxels). Consequently, NMR signal decreases with decreasing voxel

volume. The voxel size in this study (3 x 3 x 3 mm3) provides adequate signal-to-

noise ratio without requiring multiple NMR excitations, which would lengthen scan

duration. Spatial resolution in this study is comparable to other MRE studies in the

human brain at 1.5 T [177, 55, 159, 160]. In some cases [177, 159, 160], the investi-

gators have decreased the in-plane voxel dimension (1.5 x 1.5 mm2) while increasing

the through-plane dimension (slice thickness), to 6 mm, for example. The smallest

isotropic voxels used to date for human brain MRE are 2 x 2 x 2 mm3, as reported
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by Romano et al. [137]. The current voxel dimension is considerably smaller than the

shear wave wavelength at 45 Hz (Figure 5.5a, Figure 5.7a). This resolution is also

sufficient to resolve major anatomical features and regions of the brain (Figure 5.8),

although at boundaries and thin structures some “volume-averaging” occurs within

each voxel. Errors due to numerical approximations of derivatives are a primary

concern when working with discrete samples of continuous data. An advantage of

the viscoelastic inversion scheme introduced in this study is that longitudinal wave

and rigid body contributions can be minimized at the expense of only one spatial

derivative.

5.6 Conclusions

Data were limited to low pressure levels and strain levels far below any suspected for

TBI, but offer important quantitative data for validation of mathematical models,

and insight into the structural response of the brain and skull.

1. Frequency-dependent transmission of energy into the brain. Over the range of

conditions tested, the skin, skull, and meninges (e.g., the dura, pia, and arach-

noid matters) behave as a low-pass filter. Transmission of mechanical energy

into the brain decreases with increasing acoustic frequency. The measured val-

ues of transmissibility are important parameters to replicate in mathematical

models of brain biomechanics.

2. Frequency-dependent dissipation of energy within the brain. The approximately

exponential decay in wave amplitude with depth into the brain confirms and

quantifies the expected viscoelastic response of brain tissue. The measured

values of attenuation, and the increase in attenuation with frequency, are also

important to replicate in simulations.

3. Membranous structures within the skull affect wave propagation patterns. The

propagation direction of waves was predominantly radially inward, from the

brain-skull boundary toward the ventricles, but outward propagation from mem-

branous structures including the falx cerebri is also observed. Reflections from

such structures outside the image plane (tentorium cerebelli) may also affect
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the wave field. The effects of these membranous structures on wave propaga-

tion direction are likely to be very important in determining the response of

brain to impact and blast.

These data illuminate fundamental mechanical properties of the skull, brain, and as-

sociated intracranial anatomy. The quantitative details of the response of the intact

living head to extracranial acoustic pressure load could be used to asymptotically

validate computer simulations of blast-induced TBI by illuminating the expected be-

havior at lower amplitude levels that are governed by linear system theory. These

data also highlight an emerging role of MRI as a tool for not only material charac-

terization, but also for the structural function characterization of organ systems.
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Chapter 6

Preliminary Work: 3D MRE and

DTI in Human Subjects

6.1 Overview

In this chapter, two preliminary studies are presented as the initial stages of a more

comprehensive work for future publication. The first study is an investigation of

the displacement, strain, and distortion of brain when harmonic extracranial pres-

sure loads are applied. This study differs from that presented in Chapter 5 in two

ways: vector field displacement data were acquired over a 3D image volume and

pressure loading was applied asymmetrically (right pterion only). Volumetric vector

field displacements provide empirical evidence of brain tissue near-incompressibility.

Asymmetric loading of the skull produced wave fields in the brain with characteris-

tics surprisingly similar to those acquired with symmetric loads (right and left pterion

together). The second study applies the anisotropic inversion scheme developed in

Chapter 2 to simulated data. A parametric study was conducted to provide practical

insight for the eventual application of this technique to data from human brains. In-

version was performed on waves traveling through homogeneous and heterogeneous

anisotropic media. The inversion method performs well; however, there are limi-

tations. Future studies will focus on fully understanding inversion limitations and

extracting anisotropic mechanical properties from MRE and DTI data acquired in

the human brain.
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6.2 3D Strain Dilation and Distortion Estimated

in the Living Human Brain from MR Images

of Propagating Shear Waves.

6.2.1 Introduction

Traumatic brain injury (TBI) can result from blunt force trauma, rapid inertial load-

ing, or extracranial pressure (i.e., explosive blast). Much of the pathway between

mechanical insult and neurological injury remains unclear, in part because data on

the mechanical response of the brain are difficult to acquire in vivo. The physics of

measuring harmonically-varying displacement fields with motion-sensitive magnetic

resonance imaging (MRI) is well understood [112], yet to date data in the human brain

have not been investigated in terms of strain and local rotation. Here these kinematic

quantities are examined and new light is shed on biomechanics of the living intact

human brain as it is subjected to harmonic acoustic pressure load.

6.2.2 Methods

The brains of three healthy subjects (2M/1F) aged 25-46 years old (mean: 34.3 yr)

were imaged. Five transverse-oblique slices of motion encoded data were acquired for

each subject through the central (Inferior/Superior) cerebrum. The total scan time

per subject was approximately 15 minutes. Experimental protocols were approved by

the institutional Human Research Protection Office Internal Review Board to ensure

that the rights and welfare of each research participant were protected.

Displacement vector field ui(x, y, z) data were acquired with a specialized gradient-

recalled echo (GRE) NMR imaging pulse sequence equipped with specialized motion-

encoding magnetic-field gradients. Data were collected using a 1.5 T MAGNETOM

Avanto (Siemens) series whole-body clinical scanner equipped with a phased-array

head coil (TR/TE: 133/28.2 ms, flip angle: 25◦, NEX: 1, resolution: 3x3x3 mm3). The

absolute peak motion-encoding magnetic-field gradient amplitude was 19.3 mT/m,

122



Figure 6.1: Oscillatory pressure was generated by an acoustic actuator and trans-
mitted to a passive actuator pad positioned near the right pterion bone via flexible
tubing.

nominally. Data were acquired with a temporal resolution of four points per actuation

cycle.

Motion was induced in the brain using an acoustic actuation system (ResoundantTM,

Resoundant Inc., Rochester, MN) affixed to each subject’s skull at the right pterion

(Figure 6.1). The actuation system was configured to transmit a 1 kPa pressure-

wave train at 45 Hz in synchronization with the imaging sequence. MRI data were

sensitized to motion with a single-cycle magnetic-field gradient. A switched-polarity

encoding scheme was employed to remove systematic phase errors and enhance dis-

placement contrast. Phase-contrast images were obtained by complex division of

positive and negative polarity phase images and converted to displacements with a

sensitivity factor of 7.24 µm/rad. Displacement data were Gaussian filtered (kernel:

5 x 5 x 5 voxel, std: 1 voxel).

Displacement gradients and shear angles were observed to be small for all data. As

such, the 3D infinitesimal strain tensor

εij = (ui,j + uj,i) /2 (6.1)
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was calculated, where subscript (i, j) denotes ∂ui/∂xj for i, j, k ∈ {1, 2, 3}. The curl

of the displacement field

Γi = eijkuj,k (6.2)

describes local rotation about the i axis, where eijk is the Levi-Civita permutation

operator.

Normal and shear components of the octahedral strain were calculated to assess the

dilatational and distortional deformation components [100]. Octahedral normal strain

εn = (ε11 + ε22 + ε33) /3 (6.3)

describes dilatation. Octahedral shear strain

εs = 2/3
[
(ε11 − ε22)2 + (ε11 − ε33)2 + (ε22 − ε33)2 (6.4)

+ 6
(
ε212 + ε213 + ε223

)]1/2
describes distortion.

6.2.3 Results & Discussion

Measured displacement fields are shown for one subject in Figure 6.2. Estimates of

strain and local rotation (Equations 6.1 and 6.2) are presented in Figures 6.3 and 6.4.

Low octahedral normal strain furnishes evidence that tissue compressibility is low in

vivo. Relatively high octahedral shear strain and local rotation indicate distortion is

the prominent deformation mode.

6.2.4 Conclusions

The ability to measure 3D displacement fields in a 3D brain volume due to har-

monic excitation of the skull was demonstrated in this section. Full 3D strain fields

were obtained. MRI-based displacement measurements provide new insight into brain

biomechanics. Extracranial acoustic pressure excitation produces distortional brain

deformation. Observations of tissue dilatation and distortion may illuminate injury
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Figure 6.2: Measured displacement fields shown above were used to calculate strain
and local rotation fields (S002, Slice 3 of 5).

Figure 6.3: Calculated strain fields in the living intact human brain resulting from
extracranial acoustic pressure load (S002).
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Figure 6.4: Calculated local rotation fields indicate significant distortional wave mo-
tion (S002).

mechanisms. The kinematic quantities calculated here should be used to validate

computer models of the brain. Future work will investigate brain response to alter-

native loading locations.

6.3 Estimating Transversely Isotropic Material Pa-

rameters with Magnetic Resonance Elastogra-

phy and Diffusion Tensor Imaging

6.3.1 Introduction

Throughout this work magnetic resonance elastography data have been used to esti-

mate isotropic mechanical properties of various media. In reality, many tissues (viz.

white matter) possess structural anisotropy and in turn may exhibit some degree of

mechanical anisotropy. Measurements of mechanical anisotropy could enhance nu-

merical models of brain biomechanics, and may also have utility as a marker of tissue

health. With the exception of Sinkus et al. [151] and Romano et al. [137], explo-

ration of anisotropic mechanical properties with MRE has not been addressed. In

this section, a proof-of-concept study is conducted with numerical wave field data

to demonstrate the inversion routine described in Chapter 2. As in Chapter 2, we

restrict the analysis to planar wave propagation in transversely isotropic (TI) media.
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Figure 6.5: A thin slab finite element model used for inversion validation. Subdomains
are color coded and labeled I-IV. All subdomains are connected so that displacement
continuity exists. The four quadrants create one monolithic structure; however, the
material properties within each subdomain may be uniquely specified. Harmonic
steady-state motion, polarized in the x3-direction, was applied to the sides of domains
I, II and IV, simultaneously. The wave normals associated with this motion are
denoted as n̄1 and n̄2. Orientation of the material symmetry axis ā is specified as
cos θ = ā · [1, 0]. Plane symmetry boundary conditions were applied as shown.

6.3.2 Methods

The TI inversion theory was developed in Chapter 2. Practical implementation is

the focus of this section. Consider a plane wave propagating in the direction of the

unit vector ni. If the x1-x2 plane is defined as the plane that contains both the fiber

direction and the propagation direction, the displacement field due to this single plane

wave can be expressed as

(u1, u2, u3) = (p1, p2, p3) exp[ik(n1 · x1 + n2 · x2 − ωt)]. (6.5)
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Table 6.1: Properties of simulated TI medium. Engineering constants ET, EL, µT,
and µL (Pa). Poisson ratios νLT, νTL, and νT (dimensionless).

ET EL µT µL νLT νTL νT

2748 8250 750 1500 0.4997 0.1665 0.8322

Table 6.2: Properties of simulated TI medium in Spencer’s [156] notation (Pa).

α β λ µT µL

200 3000 1x106 750 1500

As previously described, one of the two shear wave velocities in incompressible TI

media has the form
ω2

k2
ρ = µL cos2 θ + µT sin2 θ. (6.6)

This equation governs waves in which the polarization direction is perpendicular to

both the fiber direction and the propagation direction.

If directional filters along x1- and x2-axes are applied to the wave field individually,

local frequency estimation can be used to recover the directional wavenumbers k1 =

kn1 and k2 = kn2. Use of Equation 6.6 with each directional wavenumber provides a

system of two equations,

ρω2

{
1/k2

1

1/k2
2

}
=

[
cos2 θ sin2 θ

cos2 θ sin2 θ

]{
µL

µT

}
. (6.7)

Both shear moduli can be determined for each point in the medium.

A finite element model was used to simulate wave propagation in TI media as a func-

tion of the material symmetry axis orientation ā. Our anisotropic inversion routine

was applied to the simulated data to estimate the TI shear moduli µT and µL. Fig-

ure 6.5 shows the thin square slab geometry modeled and the applied boundary and

loading conditions (nodes: 81,608; hexahedral elements: 70,000; degrees-of-freedom:

244,824). The lower left, through-plane edge of III was clamped to fully constrain

the model. Anisotropic mechanical properties of the TI material simulated in this

study are presented in Tables 6.1 and 6.2. Numerical simulations include energy

dissipation. A “loss factor” of 0.05 was used.
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Figure 6.6: Validation of the TI inversion algorithm on a homogeneous anisotropic
medium in various orientations. The material symmetry axis orientation ā and u3-
displacement field are simulated inputs to the inversion algorithm. Elastograms of
shear moduli µT and µL are algorithm outputs. (True µT and µL are 750 Pa and 1500
Pa, respectively.)

6.3.3 Results & Discussion

Both homogeneous and heterogeneous anisotropic media were simulated in this val-

idation study. Simulations in homogeneous TI media were performed to assess the

sensitivity of the algorithm to variations in the fiber (symmetry) axis orientation. Es-

timates of the TI shear moduli µT and µL at four different orientations are presented

spatially in Figure 6.6. Averaged estimates of the shear moduli have been tabulated

with respect to the fiber orientation simulated (Table 6.3).

Simulations in heterogeneous TI media more accurately reflect conditions encountered

in practice. A heterogeneous medium was created by assigning a different material

fiber orientation to each subdomain. In living species, isotropic structures (i.e., gray
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Table 6.3: Inversion performance in a homogeneous TI medium as the axis of material
symmetry ā is varied. (cos θ = ā · [1, 0])

θ µT (Pa) µL (Pa)
(deg) mean stdv mean stdv

0 759 22 1421 48
15 758 37 1428 29
25 744 63 1397 39
35 763 111 1403 100
45 – – – –
55 760 111 1408 99
65 745 66 1395 50
75 760 35 1430 32
85 759 28 1409 33
90 758 21 1415 36

Table 6.4: Inversion performance in heterogeneous anisotropic media. In domain I-IV
a unique axis of material symmetry ā is specified. (cos θ = ā · [1, 0]) Domain III is
mechanically isotropic, so theoretically µT = µL. (True µT and µL are 750 Pa and
1500 Pa, respectively. True µiso is 1500 Pa.)

Domain θ µT (Pa) µL (Pa)
quadrant (deg) mean stdv mean stdv

I 0 772 64 1375 130
II 35 728 388 1453 432
III – 1429 95 1432 73
IV 90 787 61 1378 223

matter) are commonly juxtaposed to those exhibiting anisotropy (i.e., white matter).

As such, our heterogeneous simulation also included a subdomain of isotropic mate-

rial (i.e., µT = µL theoretically). Results of this study are presented as Figure 6.7.

Quantitative statistics are presented as Table 6.4.

Table 6.3 suggests TI inversion uncertainty increases as the angle between material

symmetry axis and the x1-axis approaches 45◦. Equation 6.7 is singular at θ = 45◦.

This is a limitation of the inversion implementation presented in this section.

Table 6.4 indicates uncertainty in anisotropy estimates increases when the medium

is heterogeneous. This finding is consistent with our observations in heterogeneous
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Figure 6.7: Validation of the TI inversion algorithm on a heterogeneous medium. The
material symmetry axis orientation ā and u3-displacement field are simulated inputs
to the inversion algorithm. Elastograms of shear moduli µT and µL are algorithm
outputs. Note subdomain III is an isotropic material. (True µT and µL are 750 Pa
and 1500 Pa, respectively. True µiso is 1500 Pa.)

isotropic media. Heterogeneity increases wave interference and refraction induced by

boundaries and diminishes certainty in wavelength estimates.

6.3.4 Conclusions

In several subjects to date, data specifying the local fiber direction were acquired by

DTI in the same image planes as MRE data. The combined data sets may be suffi-

cient to estimate local material parameters of a transversely isotropic elastic material

model.

To understand potential pitfalls and limitations of the developed inversion algorithm,

finite element simulations of wave propagation in viscoelastic TI media were per-

formed. FE models described simultaneous propagation of two shear wave polar-

izations (along two different directions). This creates two plane waves each with

polarization in the x3-direction (u3). One propagates in the negative x2-direction,

the other in the negative x1-direction. Both shear moduli are activated by these

waves at every point in the slab. A heterogeneous simulation model, one with sub-

domains of TI media at different orientations, was used to illustrate the performance

of the inversion routine in heterogeneous media. It is important to note that another
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Figure 6.8: DTI and MRE data have been acquired in human brains. The principal
diffusion direction λ1(v̄1) is used to orient the axis of material symmetry ā. In each
voxel, ā and displacement components u1, u2, u3 are specified. It may be possible to
estimate mechanical anisotropy locally with these measurements. This will be the
target of future studies.

shear wave polarization exists, and must be considered in general. Considering this

additional polarization may be the key to numerically stabilizing Equation 6.7 at

θ = 45◦.

The work in this section must be considered preliminary, but represents important

progress toward the ultimate objective of characterizing brain tissue adequately for

accurate simulation of TBI. Future work will include application of the developed

anisotropic inversion scheme to data acquired in human brains (Figure 6.8).
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Chapter 7

Summary, Conclusions, and Future

Directions

This work sought to use MRE to increase our understanding of the biomechanical

behavior of the brain. New experimental methods were combined with improved

data analysis techniques to gain insight into the structural-material mechanics of

living brains when subjected to dynamic harmonic loads.

7.1 Summary of Work

The specific aims of this dissertation have been fulfilled as follows:

Aim 1: Develop and validate an isotropic viscoelastic inversion algorithm for MR

elastography data.

A locally homogeneous, linear viscoelastic isotropic inversion algorithm was devel-

oped; its background and application to the mouse brain are described in Chapter 4.

Chapter 3 describes how this algorithm was improved and validated through a com-

prehensive imaging study conducted on a calibrated gelatin phantom. This study

was the first of its kind in this field. Mechanical bench-top tests and elastography

measurements were performed in an overlapping frequency range.

Aim 2: Develop capabilities to perform high-throughput longitudinal MR elastography

screening at high actuation frequencies in the living mouse brain.
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As an additional feature of this work, the dispersive properties of the mouse brain were

quantified for the first time. Chapter 4 describes a novel stereotaxic head-holding rig

developed to induce shear waves in the mouse brain via an actuated bite bar. This rig

was implemented in an imaging study in which a cohort of mice were each scanned at

multiple actuation frequencies. High driving frequencies decrease propagating shear

wave wavelength, increasing elastography resolution, so potential pre-clinical use of

MRE as a biomarker of disease and/or injury in the mouse model is a possibility with

the test rig and methods developed.

Aim 3: Develop experimental capabilities to perform MR elastography in the living

human brain and novel algorithms extract to biomechanical information from these

data.

Chapter 5 describes the modification and development of experimental procedures

to conduct MRE in the human brain. Several data processing schemes were devel-

oped to assess the transmission of energy into the brain as well as the attenuation

and reflection of shear waves inside the skull. A new viscoelastic inversion scheme

was developed and used to extract tissue mechanical properties, using local frequency

estimation of distortional wave fields. With a single spatial derivative, this method

decouples contributions from longitudinal waves and rigid body motion using kine-

matics. The framework for anisotropic mechanical property estimation using DTI and

MRE data was established in Chapter 2. Much of the data required to implement

this routine in the human brain has been acquired (Chapter 6).

7.2 Limitations

While magnetic resonance elastography may provide unprecedented access to living

intact tissues, its utility and accuracy are limited by important physical and compu-

tational constraints. A few of the difficulties encountered in completing this work are

discussed here.
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7.2.1 Imaging resolution and signal

MR imaging resolution determines the ability to resolve spatial wavelengths in elas-

tography data, and thus limits bandwidth and accuracy. The Nyquist-Shannon sam-

pling theorem applied to MRE data dictates that the shortest detectable wavelength

is twice the largest voxel dimension. It is therefore advantageous to reduce the imag-

ing voxel dimensions to increase spatial-frequency resolution. However, as voxel size

is decreased, the NMR signal is also decreased. Signal loss can be compensated for

by acquiring multiple averages (NMR excitations), at the expense of increasing scan

duration. Elastography scans are already considered lengthy in comparison to other

MR imaging modalities. At the limit, decreasing imaging voxel size is a losing battle

due to the rapidly decreasing signal and gradient hardware limitations with present

technology.

7.2.2 Wave propagation in viscoelastic media

In addition to the constraints of imaging resolution, material property estimates are

limited by shear wave wavelength relative to the size of the anatomic feature of in-

terest. It is desirable to have multiple shear waves in the region of interest to ensure

wavelength estimates are accurate. As regions of interest become smaller, shear wave

wavelengths must be shorter to maintain inversion accuracy. If biological media were

purely elastic, an increase in driving frequency would result in a proportionally shorter

wavelength. Nonetheless, tissue is viscoelastic. An increase in actuation frequency

will increase the contribution of rate-dependent (viscous) stresses developed in the

media, which creates two practical limitations. First, materials will appear to stiffen

as the actuation frequency is increased, the wavelength will not proportionally de-

crease. Second, energy attenuation is increased so wave penetration depth is reduced.

Both effects were encountered in these studies.
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7.2.3 Isotropic viscoelastic inversion

Two different viscoelastic inversion methodologies were utilized in this work. Ap-

plication of the correspondence principle permits local estimates of viscoelasticity

without specifying particular a rheologic model, but direct inversion of the equations

of motion requires two or more spatial derivatives. Numerical differentiation leads

to increased uncertainty in modulus estimates, care must be taken when interpreting

these results. This work follows the advice of Atay et al. [6] and utilizes a quantita-

tive error metric to accept or reject local shear modulus estimates. Sometimes fewer

estimates are reported, but those that are reported are more reliable.

Estimation based on local frequency estimation (LFE) circumvents issues attributable

to numerical differentiation, but can be corrupted by rigid body and dilatational

waves in displacement data. This type of error is remedied by applying LFE to

the curl of the displacement field, which requires only a single spatial derivative in

each direction. In extending this method to viscoelastic media, a particular rheologic

model must be specified in advance. A Kelvin-Voigt material seems appropriate

for studies conducted in the human brain, but this may not be the case for other

tissues. The shear wave wavelength can be estimated locally; however, extraction of

the attenuation parameter is challenging, if not impossible, in compact anatomical

regions. Directionally filtering wave fields helps to isolate particular traveling wave

components, but sensitivity in the extraction method increases uncertainty in shear

modulus estimates. We recommend estimating local material properties from local

wavelength estimates and a global attenuation constant. Finally, in this project a 2D

LFE algorithm was used, and thus the assumption of wave propagation in a specific

plane was required.

7.2.4 Wave interference and shadowing

Destructive wave interference and shadows in the wave field, created by inclusions

or anatomic boundaries, are essentially a signal-to-noise issue, but one of a different

nature. NMR signal intensity is not compromised, but wave motion can be nulled in

regions by the way waves propagating in different directions interact with one another.

Directional filters can be used to isolate wave propagation directions and mitigate
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the wave cancellation effect, but phase artifacts induced by directional filters may

overwhelm the true phase relationships in the response due to viscoelastic behavior.

Such phase artifacts would thus compromise viscoelastic inversion based on the cor-

respondence principle. Elastic inversion is still possible, but to estimate viscoelastic

parameters, methods insensitive to local phase relationships must be explored (such

as the LFE inversion scheme described above). In the future, use of non-simultaneous

multi-source actuation schemes may reduce artifact caused by wave interference and

shadowing.

7.2.5 Anisotropic inversion

Moving forward, perhaps the most challenging feat is anisotropic mechanical property

reconstruction. Utilizing diffusion tensor images to identify structural properties of

tissue reduces the uncertainty associated with aligning the material axis of symmetry

in a transversely isotropic model. Nonetheless, activation of both shear moduli at

every point in the medium is difficult in practice. Tissue displacements must occur in

many directions and with sufficient amplitude to recover anisotropic material prop-

erties. Achieving this has so far proven difficult, and is likely to continue to be a

challenge in estimating mechanical properties in vivo.

7.3 Future Directions

Despite its limitations and challenges, the future use of MRE as both a scientific

measurement instrument and clinical diagnostic tool appear promising. A few of the

many future directions for this work are identified here.

Elastography imaging protocols and analysis routines have been developed and ap-

plied in studies in isotropic phantoms and healthy mice and humans. Phantom valida-

tion studies should be extended to include those of anisotropic media. Future studies

in mice and other small animals should focus on investigating tissue viscoelasticity as

a marker of disease or injury. This could lead to new diagnostic tools with utility in

therapeutic pharmaceutical drug development.
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The mechanical properties of healthy living tissue remain incompletely characterized.

Estimates of anisotropic material parameters remain an important goal. As actuation

and imaging technologies become more sophisticated, the feasibility and efficiency of

elastography measurements will increase, allowing better characterization of tissue

viscoelasticity in smaller regions of interest with greater directional specificity.

7.4 Conclusion

Quantitative non-invasive measures of in vivo brain biomechanics are essential for

understanding the basic science of traumatic brain injury. The data and methods de-

scribed in this dissertation provide increased understanding of the structural-dynamic

properties of the living brain. This work represents an important step toward un-

derstanding the mechanics of brain injury. The results increase our confidence in

the ability of MRE to estimate viscoelastic material parameters, provide new insight

into the constitutive behavior of brain tissue, and extend our understanding of how

mechanical waves propagate into and throughout the human brain.
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Appendix A

Local Least-squares Inversion

According to Equation 3.2, the components of the complex shear modulus can be

determined from the displacement field and the corresponding Laplacian field, com-

puted from finite difference approximations of the second spatial derivatives of the

displacement field. In practice, noise in the displacement and Laplacian fields leads

to errors in local estimates of the complex shear modulus. In ordinary least squares

(OLS), it is assumed that there is no error in the measurement of the independent

variable, i.e. the variance of the independent variable measurement error εη is zero.

The variance in the error of measurements of the dependent variable εβ is inferred

from a “goodness-of-fit” metric. If there are measurement errors in both the indepen-

dent and dependent variables, then the total least squares (TLS) method may provide

a closer approximation to the values of G′ and G′′ than OLS. We implemented a TLS

routine using singular value decomposition [45]. The variables were centered and

scaled prior to fitting:

x̂ =
(x− x̄)

σx
; ŷ =

(y − ȳ)

σy
, (A.1)

where x̄ and ū are the mean values, σx and σy are the variances. x̂ and ŷ are the

centered and scaled values of the independent and dependent variables x and y. The

correlation coefficient r [103] can be computed directly from x̂ and ŷ, as

r =
cov(x̂, ŷ)√

σ̂xσ̂y
. (A.2)
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Figure A.1: The concept of total least squares versus ordinary least squares best-fit.
Notice that error in both x and y are considered in a total least squares fit (green),
λ = 1 in the case presented. Only error in y is considered in an ordinary least squares
fit (red).

The variances σ̂x and σ̂y of the centered and scaled variables are unity, by definition.

Hence, r2 = cov(x̂, ŷ)2. The normalized residual error (NRE) is defined as

NRE =
√

1− r2. (A.3)

The TLS procedure then calculates the maximum likelihood slope â1 by minimizing

the perpendicular distances from the centered and scaled data points to line with

intercept â0 = 0. The actual slope a1 and intercept a0 are found by transforming

the scaled variables back to x and y. The variances in the un-scaled and scaled

measurement errors are given by

εβ =
N∑
i=1

(x∗i − xi)2

N
= σ2

β ; εη =
N∑
i=1

(y∗i − yi)2

N
= σ2

η (A.4a)

ε̂β =
σ2
β

σ2
x

=
N∑
i=1

(x̂∗i − x̂i)2

N
; ε̂η =

σ2
η

σ2
y

=
N∑
i=1

(ŷ∗i − ŷi)2

N
= σ2

η. (A.4b)
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The TLS procedure minimizes the distances from x̂ and ŷ to the line ŷ∗ = â1x̂
∗ by

satisfying
−1

â1

=
(ŷ∗i − ŷi)
(x̂∗i − x̂i)

. (A.5)

Re-arranging, then squaring and summing both sides shows the relation between ε̂β

and ε̂η and the slope that is implicit in this TLS procedure

1

(â1)2
=

∑N
i=1(ŷ∗i − ŷi)2∑N
i=1(x̂∗i − x̂i)2

(A.6a)

1

(â1)2
=

ε̂η
ε̂β

(A.6b)

(â1)2 =
ε̂β
ε̂η
. (A.6c)

Because both variables are centered and scaled, the magnitude of â1 will be unity,

implying that ε̂β ε̂η = 1. This constrain can be removed by specifying an additional

parameter λ [45]. If, after centering and scaling the data, ŷ is multiplied by λ, then

Equations A.4b and A.5 become

−1

â1

=
λ(y∗i − ŷi)
(x∗i − x̂i)

and
ε̂β
ε̂η

= λ(â1)2 = λ. (A.7)

In our study, the Laplacian is the independent variable and is calculated by second-

order numerical differentiation of the displacement fields. Hence, the Laplacian is

relatively noisier than the displacement fields, so we expect λ > 1. This was verified

by simulating outwardly propagating shear waves in a circular cylinder using our

closed form solution (Equation 3.5. The simulated field was sampled at the same

resolution as the MRE experiment and duplicated 11 times to represent 11 data slices

(192 x 192 x 11). Gaussian noise was added to the data and λ was computed. The

appropriate magnitude of λ depended on both the simulated noise level and the size

of the Gaussian smoothing kernel. For noise amplitudes ranging from 0.05 to 0.25

times the prescribed displacement (uri in the closed form solution) and smoothing

kernel size from [5 x 5 x 3] to [13 x 13 x 7], the range of λ extended from 1.0 (low

noise, large smoothing kernel) to 70 (higher noise, small smoothing kernel). Based

on these simulations, we set λ = 10 when fitting experimental MRE data.
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Appendix B

A Method to Temperature-correct

Shear Moduli

When analyzing the viscoelastic shear modulus obtained from our MRE studies in

gelatin, we observed that the modulus values were larger when a given frequency was

tested early in a particular experiment. In addition, the measured moduli at 400 Hz

were consistently higher than those at other frequencies. Since we had always tested

the 400 Hz frequency first, this led us to suspect that the properties of the gelatin

phantoms were changing during the experiment. Such changes were likely due to

warming of the sample, partly due to heat transfer from the environment, and partly

to “RF heating” from the MR pulse sequence. To verify our observations, we ran two

additional MRE experiments where we held the actuation frequency constant at 400

Hz or 150 Hz and repeatedly acquired MRE data for up to six hours. The data was

analyzed using the 3D direct inversion and 2D closed form methods using the same

filter and fitting kernels as for the previous experiments. The values of G′ and G′′

decreased rapidly, then approached an equilibrium value after four to five hours. We

fit the relative decrease in G′ and G′′ with time to decaying exponential functions:

a0 exp (−t/τ0) = G′/G′eq − 1 (B.1a)

a1 exp (−t/τ1) = G′′/G′′eq − 1. (B.1b)

Data were combined for both frequencies and fit to the exponential relation, obtaining

constants of a0 = 1.00 and τ0 = 89 minutes. G′′ approached an equilibrium value

faster than G′′ and decreased proportionately less (a1 = 0.71 and τ1 = 67 minutes).
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Figure B.1: (a) Normalized components of the viscoelastic shear moduli estimated
from MRE displacement data at 150 Hz and 400 Hz taken over a period of 7 hours.
Measurements of G′/G′′eq (circles)and G′′/G′′eq (squares) are shown with open symbols
(150 Hz) or filled symbols (400 Hz). Solid and dashed lines show decaying exponential
function for G′/G′eq and G′′/G′′eq respectively, with parameters given in text. (b)
Temperature measured using probe at center of another gel phantom. The gel reached
an equilibrium temperature of 21◦C after 4 hours. Dashed line shows exponential fit
to temperature with time constant of 1.3 hours. Adapted from [119].
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In another experiment, a small temperature probe was inserted into the gelatin-

glycerol mixture when cast and left in place during overnight refrigeration at 4◦C.

The phantom was then subjected to the typical MRE imaging protocol. (Imaging

artifacts due to the temperature probe rendered these images useless for elastogram

reconstruction.) The ambient temperature in the scanner room was Tamb = 19◦C The

gel temperature, Tgel, reached Tamb in two hours and reached an equilibrium temper-

ature of 21◦C after 4 hours. We also prepared another gel phantom under the same

conditions and measured its temperature on the laboratory bench (Tgel = 22◦C). In

this case, the gel temperature reached ambient temperature equilibrium in approx-

imately 2 hours. From these data, we concluded that increase in gel temperature

could explain the decrease in the shear moduli, and that the primary cause of the

temperature increase was the ambient temperature with a smaller, secondary effect

due possibly to RF heating. While the addition of glycerol to gelatin increases its

melting temperature, there is a gradual decrease in G′ and G′′ below the melting

temperature [69] which is consistent with our observations.
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Appendix C

Design of an Actively-decoupled

Transmit Volume Coil for Small

Animal MRI

In the process of performing studies in the mouse, it became evident that the exist-

ing transmit coil could be improved. Figures C.1-C.3 describe the design of a new

coil built and subsequently donated to the Biomedical Magnetic Resonance Imag-

ing Laboratory (BMRL). The structural and electrical components are described in

Table C.1.

For the existing coil, an open unsupported coil-form architecture and heavy use meant

it suffered from reliability issues at times. This motivated a design improvement

and was the purpose for building a new shielded transmit coil. The primary design

goals: (i) reinforce the coil using rigid acrylic pipe as a coil-form; and (ii) reduce

interference with the small animal MRE actuation rig. By increasing the transmit

coil inner diameter, the coil could be placed outside of the acrylic tray holding the

mouse. With the previous setup, the coil was placed inside of the tray holding the

mouse. This was a bit cramped.
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Parts of Transmit Coil 

200 MHz LC circuitry  
& acrylic coil form 

RF Shield 
& acrylic form 

Acrylic “O-ring”  
spacers 

Figure C.1: Coil form components.Tx Coil Circuit Diagram 
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Parallel Saddle Coil Design 
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2- 15 pF 
(SG-3002) 
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(SG-3001) 

15 pF (500 V) 

RF Choke:  
180kΩ 0.5W carbon film resistor 
w/ 25 turns of 30AWG wrap 

Figure C.2: Circuit diagram.
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Table C.1: Bill of materials.

Item Description

Acrylic tube (RF shield) Clear cast, 4”O.D. x 3-3/4” I.D. x 1” L
Acrylic tube (RF coil) Clear cast, 3-1/8”O.D. x 3” I.D. x 1” L
Copper foil tape (main bus) 1/2” x 18 yds
Copper foil tape (minor bus) 1/4” x 18 yds
Pin diode MA4P7464F-1072T
Ceramic disc capacitor 22 pF, 1000V, non-magnetic
Ceramic disc capacitor 15 pF, 500V, non-magnetic
Variable capacitor (tune) 2-15 pF, 200V, Q≥1000 at 1MHz, 8 mm
Variable capacitor (match) 2-10 pF, 200V, Q≥1000 at 1MHz, 8 mm,

Final Product  
(with optional flexible PCB RF-shield) 

Figure C.3: The completed coil.
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- Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Ver-
fahren, 176(08):1094–1099, 2004.

[71] D. Klatt, C. Friedrich, Y. Korth, R. Vogt, J. Braun, and I. Sack. Viscoelas-
tic properties of liver measured by oscillatory rheometry and multifrequency
magnetic resonance elastography. Biorheology, 47:133–141, 2010.

[72] D. Klatt, U. Hamhaber, P. Asbach, J. Braun, and I. Sack. Noninvasive as-
sessment of the rheological behavior of human organs using multifrequency
MR elastography: a study of brain and liver viscoelasticity. Phys. Med. Biol.,
52(24):7281–7294, 2007.

[73] D. Klatt, S. Papazoglou, J. Braun, and I. Sack. Viscoelasticity-based MR
elastography of skeletal muscle. Phys. Med. Biol., 55:6445–6459, 2010.

[74] E. C. Klawiter, J. Xu, R. T. Naismith, T. L. Benzinger, J. S. Shimony, S. Lan-
cia, A. Z. Snyder, K. Trinkaus, S.K. Song, and A. H. Cross. Increased radial
diffusivity in spinal cord lesions in neuromyelitis optica compared to multiple
sclerosis. Mult. Scler., page epub ahead of print, 2012.

153



[75] S. Kleiven and W. N. Hardy. Correlation of an FE model of the human head
with local brain motion - consequences for injury predicition. Stapp Car Crash
J., 46:123–144, 2002.

[76] H. Knutsson, C. F. Westin, and G. H. Granlund. Local multiscale frequency and
bandwidth estimation. In Proceedings of the IEEE International Conference on
Image Processing, pages 36–40, 1994.

[77] R. C. Koeller. Applications of fractional calculus to the theory of viscoelasticity.
J. Appl. Mech.-T ASME, 51:299, 1984.

[78] M. Kohandel, S. Sivaloganathan, G. Tenti, and K. Darvish. Frequency depen-
dence of complex moduli of brain tissue using a fractional zener model. Phys.
Med. Biol., 50:2799–2805, 2005.

[79] A. Kolipaka, P. A. Araoz, K. P. McGee, A. Manduca, and R. L. Ehman. Mag-
netic resonance elastography as a method for the assessment of effective myocar-
dial stiffness throughout the cardiac cycle. Magn. Reson. Med., 64(3):862–870,
2010.

[80] H. Kolsky. Stress Waves in Solids. Dover Publications, 1963.

[81] S. A. Kruse, G. H. Rose, K. J. Glaser, A. Manduca, J. P. Felmlee, C. R. Jack, Jr.,
and R. L. Ehman. Magnetic resonance elastography of the brain. NeuroImage,
39(1):231–237, 2008.

[82] S. A. Kruse, J. A. Smith, A. J. Lawrence, M. A. Dresner, A. Manduca, J. F.
Greenleaf, and R. L. Ehman. Tissue characterization using magnetic resonance
elastography: preliminary results. Phys. Med. Biol., 45(6):1579–1590, 2000.

[83] L. D. Landau, E. M. Lifshitz, A. M. Kosevich, and L. P. Pitaevskii. Theory of
Elasticity. Pergamon Press, 1986.

[84] C. Lauret, M. Hrapko, J. A. W. van Dommelen, G. W. M. Peters, and J. S.
H. M. Wismans. Optical characterization of acceleration-induced strain fields
in inhomogeneous brain slices. Med. Eng. Phys., 31:392–399, 2009.

[85] D. V. Litwiller, S. J. Lee, A. Kolipaka, Y. K. Mariappan, K. J. Glaser, J. S.
Pulido, and R. L. Ehman. MR elastography of the ex vivo bovine globe. J.
Magn. Reson. Imaging, 32(1):44–51, 2010.

[86] F. J. Lockett. Nonlinear Viscoelastic Solids. Academic Press, 1972.

[87] A. E. H. Love. A Treatise on the Mathematical Theory of Elasticity. Dover, 4th
edition, 1944.

154



[88] C. L. Mac Donald, A. M. Johnson, D. Cooper, E. C. Nelson, N. J. Werner,
J. S. Shimony, A. Z. Snyder, M. E. Raichle, J. R. Witherow, R. Fang, S. F.
Flaherty, and D. L. Brody. Detection of blast-related traumatic brain injury in
u.s. military personnel. N. Engl. J. Med., 364(22):2091–2100, 2011.

[89] E. L. Madsen, G. R. Frank, M. A. Hobson, S. Lin Gibson, T. J. Hall, J. Jiang,
and T. A. Stiles. Instrument for determining the complex shear modulus of soft-
tissue-like materials from 10 to 300 Hz. Phys. Med. Biol., 53(19):5313–5342,
2008.

[90] A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse,
E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman. Magnetic res-
onance elastography: non-invasive mapping of tissue elasticity. Med. Image
Anal., 5(4):237–254, 2001.

[91] S. S. Margulies and D. F. Meaney. Handbook of Biomaterials Properties. Lon-
don: Chapman & Hall, 1998.

[92] S. S. Margulies and L. E. Thibault. A proposed tolerance criterion for diffuse
axonal injury in man. J. Biomech., 25:917–923, 1992.

[93] S. S. Margulies, L. E. Thibault, and T. A. Gennarelli. Physical model simula-
tions of brain injury in the primate. J. Biomech., 23(8):823–836, 1990.

[94] P. G. Massouros and G. M. Genin. The steady-state response of a maxwell
viscoelastic cylinder to sinusoidal oscillation of its boundary. Proc. R. Soc.
Lond. Ser. A, 464:207–221, 2008.

[95] J. Mattiello, P. J. Basser, and D. LeBihan. Analytical expressions for the
b matrix in NMR diffusion imaging and spectroscopy. J. Magn. Reson. A,
109:131–141, 1994.

[96] R. Mayeux, R. Ottman, M. X. Tang, L. Noboa-Bauza, K. Marder, B. Gur-
land, and Y. Stern. Genetic susceptibility and head injury as risk factors for
alzheimer’s disease among community-dwelling elderly persons and their first-
degree relatives. Ann. Neurol., 33(5):494–501, 1993.

[97] P. J. McCracken, A. Manduca, J. Felmlee, and R. L. Ehman. Mechan-
ical transient-based magnetic resonance elastography. Magn. Reson. Med.,
53(3):628–639, 2005.

[98] P. J. McCracken, A. Manduca, J. P. Felmlee, and R. L. Ehman. Transient-based
MR elastography of the brain. In International Society for Magnetic Resonance
Imaging in Medicine, page 799, 2004.

155



[99] P. J. McCracken, A. Manduca, J. P. Felmlee, and R. L. Ehman. Transient MR
elastography: modeling traumatic brain injury. In International Conference
on Medical Image Computing and Computer Assisted Intervention (MICCAI),
pages 1081–1082, 2004.

[100] M. D. McGarry, E. E. Van Houten, P. R. Perrinez, A. J. Pattison, J. B. Weaver,
and K. D. Paulsen. An octahedral shear strain-based measure of SNR for 3D
MR elastography. Phys. Med. Biol., 56(13):N153–164, 2011.

[101] D. F. Meaney, D. H. Smith, D. I. Shreiber, A. C. Bain, R. T. Miller, D. T.
Ross, and T. A. Gennarelli. Biomechanical analysis of experimental diffuse
axonal injury. J. Neurotrauma, 12(4):689–694, 1995.

[102] D.F. Meaney, D. H. Smith, D. I. Shreiber, A. C. Bain, R. T. Miller RT, and et al.
Biomechanical analysis of experimental diffuse axonal injury. J. Neurotrauma,
12:689–694, 1995.

[103] W. Mendenhall. Introduction to Probability and Statistics. Duxbury Press,
1983.

[104] M. I. Miga, K. D. Paulsen, J. M. Lemery, S. D. Eisner, A. Hartov, F. E.
Kennedy, and D. W. Roberts. Model-updated image guidance: initial clin-
ical experiences with gravity-induced brain deformation. IEEE Trans. Med.
Imaging, 18(10):866–874, 1999.

[105] M. I. Miga, T. K. Sinha, D. M. Cash, R. L. Galloway, and R. J. Weil. Cortical
surface registration for image-guided neurosurgery using laser-range scanning.
IEEE Trans. Med. Imaging, 22(8):973–985, 2003.

[106] K. Miller. Constitutive model of brain tissue suitable for finite element analysis
of surgical procedures. J. Biomech., 32(5):531–537, 1999.

[107] K. Miller and K. Chinzei. Mechanical properties of brain tissue in tension. J.
Biomech., 35:483–490, 2002.

[108] K. Miller, K. Chinzei, G. Orssengo, and P. Bednarz. Mechanical properties
of brain tissue in-vivo: experiment and computer simulation. J. Biomech.,
33(11):1369–1376, 2000.

[109] J. A. Mortimer, C. M. van Duijn, V. Chandra, L. Fratiglioni, A. B. Graves,
A. Heyman, A. F. Jorm, E. Kokmen, K. Kondo, W. A. Rocca, and et al. Head
trauma as a risk factor for Alzheimer’s disease: a collaborative re-analysis of
case-control studies. EURODEM Risk Factors Research Group. Int. J. Epi-
demiol., 20 Suppl. 2:S28–35, 1991.

156



[110] M. C. Murphy, G. L. Curran, K. J. Glaser, P. J. Rossman, J. Huston, J. F.
Poduslo, C. R. Jack, J. P. Felmlee, and R. L. Ehman. MR elastography of the
brain in a mouse model of Alzheimer’s disease. In International Society for
Magnetic Resonance in Medicine, 2010.

[111] R. Muthupillai and R. L. Ehman. Magnetic resonance elastography. Nat. Med.,
2(5):601–603, 1996.

[112] R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca,
and R. L. Ehman. Magnetic resonance elastography by direct visualization of
propagating acoustic strain waves. Science, 269(5232):1854–1857, 1995.

[113] R. Muthupillai, P. J. Rossman, D. J. Lomas, J. F. Greenleaf, S. J. Riederer,
and R. L. Ehman. Magnetic resonance imaging of transverse acoustic strain
waves. Magn. Reson. Med., 36(2):266–274, 1996.

[114] A. Nahum, R. Smith, and C. Ward. Intracranial pressure dynamics during head
impact. In Proc. 21st Stapp Car Crash Conference, 1977.

[115] M. Neeman, J. P. Freyer, and L. O. Sillerud. A simple method for obtaining
cross-term-free images for diffusion anisotropy studies in NMR microimaging.
J. Geophys. Res., 21(1):138–143, 1991.

[116] J. R. Nixon, P. P. Georgakopoulos, and J. E. Carless. The rigidity of gelatin-
glycerin gels. J. Pharm. Pharmacol., 18:283–288, 1966.

[117] M. K. Nyein, A. M. Jason, L. Yu, C. M. Pita, J. D. Joannopoulos, D. F. Moore,
and R. A. Radovitzky. In silico investigation of intracranial blast mitigation
with relevance to military traumatic brain injury. Proc. Natl. Acad. Sci. USA,
107(48):20703–20708, 2010.

[118] M. O’Donell, E. T. Jaynes, and J. G. Miller. Kramers–Kronig relationship
between ultrasonic attenuation and wave velocity. J. Acoust. Soc. Am., 69:696–
701, 1981.

[119] R. J. Okamoto, E. H. Clayton, and P. V. Bayly. Viscoelastic properties of soft
gels: comparison of magnetic resonance elastography and dynamic shear testing
in the shear wave regime. Phys. Med. Biol., 56(19):6379–6400, 2011.

[120] A. V. Oppenheim and R. W. Schafer. Digital Signal Processing. Englewood
Cliffs, NJ: Prentice Hall, 1975.

[121] J. Oudry, J. Chen, K. J. Glaser, V. Miette, L. Sandrin, and R. L. Ehman.
Cross-validation of magnetic resonance elastography and ultrasound-based tran-
sient elastography: a preliminary phantom study. J. Magn. Reson. Imaging,
30(5):1145–1150, 2009.

157



[122] S. Papazoglou, U. Hamhaber, J. Braun, and I. Sack. Algebraic helmholtz inver-
sion in planar magnetic resonance elastography. Phys. Med. Biol., 53(12):3147–
3158, 2008.

[123] A. J. Pattison, S. S. Lollis, P. R. Perriñez, I. M. Perreard, M. D. McGarry, J. B.
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