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ABSTRACT OF THE DISSERTATION 

Identification of Deleterious and Disease Alleles  

in a General Population and Preterm Labor Patients 

by 

Sung Gook Chun 

Doctor of Philosophy in Biology and Biomedical Sciences 

Computational and Systems Biology 

Washington University in St. Louis, 2012 

Associate Professor Justin C. Fay, Chairperson 

 

With the recent advance in sequencing technology, there have been growing 

interests in developing new methods to predict disease-causing alleles in a personal 

genome by integrating functional evidences from sequence conservation, genome-wide 

association studies and the transcriptional regulatory network. However, even in protein-

coding regions, it is not well understood how often and by what mechanism deleterious 

alleles disrupting strong sequence conservation can become common in population 

frequency and affect complex traits in humans. Moreover, in non-coding regions, even 

for known disease-causing genes, it is not clear how sequence conservation can be 

combined with functional genomic data to predict underlying disease-causing variants.   

To address the first question, I developed a new likelihood ratio test for sequence 

conservation to predict deleterious missense alleles in the human genome. By applying 
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the new test to three personal genomes, I find that the presence of only 10% of common 

deleterious SNPs can be explained by false positives due to multiple hypothesis testing, 

violation of evolutionary model assumptions, recent gene duplication and relaxation of 

selective constraints on biological processes. Next, by applying the likelihood ratio test to 

a general human population, I find that both computationally predicted deleterious SNPs 

and known disease-associated alleles are enriched within genomic regions that have been 

influenced by positive selection in the recent past. The observed pattern agrees with the 

prediction that deleterious alleles can dragged along to higher-than-expected allele 

frequencies due to the genetic linkage with beneficial alleles by the hitchhiking effect.  

Second, I developed an integrative strategy to predict disease-causing non-coding 

variants in FSH receptor, a gene known to be associated with preterm birth, as a proof of 

principle. I sequenced protein-coding and conserved non-coding regions in preterm and 

term mothers, and conducted fine-mapping and transcription factor binding site analysis 

to narrow down the causal non-coding variants. Here, I find that in non-coding regions 

the causal variants can be resolved better by accounting for the expected effects of 

binding site mutations on the transcription regulatory network in addition to sequence 

conservation. 

These results indicate that the comparative genomics will provide the new 

opportunity to explore deleterious and disease-causing genetic variation at an 

unprecedentedly high resolution across the genome and in a population especially if 

functional genomics can be integrated with comparative genomics.  
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Background on deleterious mutations 

Deleterious mutations are defined by their reduction of fitness to survive and 

reproduce relative to the wild-type allele. Since deleterious alleles lower an individual’s 

reproductive output, deleterious alleles are selected against by negative selection, and 

thus have low allele frequencies in the absence of other interfering factors. However 

deleterious mutations can be maintained in a population. The main mechanism 

maintaining deleterious mutations in a population is the balance between spontaneous 

germ-line mutation and negative selection.  

 

 

Figure 1.1. Classification of genetic variation by the direction of natural selection. 

The deleterious, neutral, and beneficial alleles are classified by the selection 

coefficient, which is the fitness of the variant allele relative to the wild-type. The 

Ne stands for the effective population size.  

 

Although the majority of deleterious mutations are hidden by rare allele 

frequencies and heterozygosity, the genetic load of deleterious mutations can be observed 

indirectly by a number of means. For instance in the offspring of consanguineous 
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marriage, many rare recessive deleterious mutations can become homozygous and cause 

an increase of infant mortality and morbidity [1]. Contrarily, the hybrid between pure 

lines has an increased fitness compared to the original parental lines since deleterious 

alleles become hidden heterozygously in the hybrid [2].  

The fitness impact of deleterious alleles often takes the form of genetic disorders 

in humans. The majority of Mendelian disorders clearly reduce the fitness of individuals 

[3], and many complex genetic disorders are also attributed to aggregate burden of rare 

deleterious alleles, as previously shown in serum cholesterol phenotype and many others 

[4-6].   

In contrast, beneficial alleles, which increase fitness, are selected for and rapidly 

spread in population. When the fitness change is much smaller than ~1/Ne, where Ne is 

the effective population size, the variant alleles behave nearly neutrally and influenced 

more by genetic drift than by natural selection (Figure 1.1) [7].   

Comparative genomics identifies deleterious variants  

The recent advances in comparative genomics enable the identification of 

deleterious variants to single-site resolution. The basis of two main approaches is that the 

functional constraints at each site is observed through sequence conservation across 

multiple species, and a mutation disrupting the patterns of sequence conservation is 

highly likely to be deleterious in terms of the fitness.  

 One of the two approaches, used by software such as SIFT [8] and PolyPhen [9], 

is to transform protein sequence alignments to a position-specific scoring matrix, which 

represents how likely each of 20 amino acid residues is evolutionarily allowed at each 
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position (Figure 1.2). From the position-specific scoring matrix, a heuristic classifier 

determines whether a mutation disrupts the site-specific amino acid preference based on 

somewhat arbitrarily defined scoring cut-offs.  

 

Figure 1.2. Heuristic to predict deleterious or neutral nonsynonymous variants 

based on sequence conservation. Protein-sequence-based approach applied to 

distinguish deleterious from neutral variants by comparative genomics software 

such as SIFT and PolyPhen. The position-specific scoring matrix are represented 

here as a sequence logo. The conserved sites stand out as high information-

content peaks, highlighted in red boxes, and at each position, the kinds of 

evolutionarily allowed amino acid residues are annotated below.  

 

The other approach is a nucleotide-sequence-based test, mainly used for non-

coding regions [10; 11]. Because the functional constraints in non-coding regions are not 

as simple as the biochemical similarity observed in protein-coding regions, sequence 
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conservation is tested by taking advantage of a probabilistic model of DNA sequence 

evolution and the estimated rate of neutral substitutions. Until recently, to our knowledge, 

the nucleotide-sequence-based tests have not been commonly applied to protein-coding 

regions.  

As a hybrid between the above two approaches, a likelihood ratio test (LRT) for 

significant sequence conservation has been recently developed to identify deleterious 

mutations in protein-coding regions for the yeast genome [12]. The LRT directly 

accounts for the evolution of codons similarly to the protein-sequence-based methods but 

also relies on a probabilistic model of DNA sequence evolution as the nucleotide-

sequence-based methods. The codon evolution model utilized by the LRT[13] has been 

well characterized through its extensive use in numerous evolutionary genetic studies 

since it was devised almost two decades ago.  

Common deleterious polymorphism in the human genome 

In agreement with the idea that the majority of variants disrupting sequence 

conservation are under negative selection, variants predicted as deleterious by 

comparative genomics have significantly lower allele frequencies compared to variants 

predicted as neutral [9]. However, at the same time, there exist an abundant number of 

deleterious variants segregating at common allele frequencies in human population. For 

instance, in the HapMap, ~50% and ~20% out of single nucleotide polymorphisms 

(SNPs) predicted as deleterious by PolyPhen have minor allele frequencies over 5% and 

even 25%, respectively [14]. The observed abundance of common deleterious SNPs is 

not simply because rare variants are more difficult to ascertain for the HapMap than 
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common variants. A similar abundance of common deleterious SNPs was observed using 

the LRT within three personal genomes, in which both rare and common variants were 

ascertained without bias by sequencing [15].  

The abundance of such common deleterious SNPs has been noted in public SNP 

databases as early as 2001 and 2002 [9; 16]. At the time, however, a systematic study 

could not be undertaken because the number of known nonsynonymous variants was still 

relatively small, and the allele frequency of deposited SNPs was heavily affected by 

ascertainment biases. Nonetheless, it was debated whether common deleterious SNPs 

identified in the SNP repositories were false positives or not. Sunyaev et al. argued that 

they were not entirely false positives based on the false positive rate estimated by using 

ancestral mammalian substitutions as negative controls [9]. On the other hand, Ng and 

Henikoff argued that common deleterious SNPs ascertained in a small number of healthy 

individuals are mostly false positives because complementation assays do not find a 

detectable phenotypic effect for ~20% SNPs disrupting sequence conservation [16]. 

Clearly, the sensitivity of complementation assay is too low to detect negative selection, 

which can operate at the fitness change greater than ~1/Ne. Humans have a relatively 

small Ne, but it is still in the order of ~10,000. Thus, for most of common deleterious 

SNPs, the fitness deficit can be as tiny as 0.01%.  

A recent population simulation study estimates that 25-40% of deleterious SNPs 

predicted by PolyPhen are effectively neutral or weakly deleterious with the fitness 

reduced by less than 0.1% [17]. This study utilized the unbiased allele frequency 

spectrum, which became available with the recent advances in high-throughput 
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sequencing technology, and assumed a reasonably demographic history that closely fit 

the observed data. The estimated fitness impact of 0.1% or less is small enough to allow 

them to reach very high allele frequency in human populations. Although this explains 

why some deleterious mutations can reach common allele frequencies, it does not explain 

why mutations disrupting strong sequence conservation have such tiny fitness effects.  

Preterm birth 

Preterm birth, a delivery of a fetus prior to the completion of gestational week 37, 

is one of the major unsolved healthcare problems. In the United States, the rate of 

preterm birth has been steadily increasing for the past two decades and reached 12.3% of 

all pregnancies in 2008 [18; 19]. Despite this alarming prevalence, current treatment 

options are not effective in preventing or delaying preterm birth [20][Smith 09], and once 

born, premature infants are at a high risk of mortality and life-long morbidity [21].  

Current genetic epidemiological evidence suggests that preterm birth is a typical 

complex genetic disorder, defined by the complex interactions between multiple genetic 

and environmental risk factors. The most conclusive evidence for the genetic contribution 

to preterm birth comes from multiple twin studies that report higher correlation of 

preterm birth outcomes between monozygotic compared to dizygotic twins [22-25]. 

Interestingly, these studies estimate that the heritability (i.e. the fraction of observed 

phenotypic variation explained by additive phenotypic effects of alleles transmitted to the 

next generation) is consistently high for maternal genes (17-36%) but weak or 

nonexistent for paternal genes, which may act through fetus.  
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Which genetic mechanism can explain these patterns of heritability for preterm 

birth?  It can be explained simply by genes acting in the pregnant mother, but it is also 

possible that preterm birth is inherited by other genetic mechanisms such as maternally 

imprinted genes acting in the fetus, mitochondrial inheritance or vertical transmission of 

the vaginal and uterine microbiome from mother to fetus [18].  

With respect to the genetic imprinting in the fetus, the lack of paternal heritability 

is somewhat unexpected, considering that the parental conflict hypothesis suggests the 

contribution of both paternal as well as maternal heritability to preterm birth. Theorized 

to explain the evolutionary origin of genetic imprinting, the parental conflict hypothesis 

posits that paternal genes in the fetus are selected in the direction to increase the fitness of 

the offspring at the expense of the mother, whereas maternal genes are selected for the 

direction to diversify resources to multiple offspring [26]. If the length of gestation in 

humans follows the parental conflict hypothesis indeed, paternally inherited genes in the 

fetus may favor relatively longer gestation and thus protect the fetus from preterm birth. 

In contrast, maternally inherited genes in the fetus may favor relatively shorter gestation 

and thus predispose the fetus to preterm birth. The discrepancy between the expectation 

and observed lack of paternal heritability may be indicating that perhaps the parental 

conflict may be more complicated than we think, even if the imprinting is indeed 

involved in the regulation of gestational length.  

 The potential role of the vaginal and uterine microbiome is also an interesting 

possibility, since the sign of infection and inflammation is often observed in preterm birth 

[27; 28]. Even in this case, the human genome could have co-evolved with the 
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microbiome in order to conserve maternal resources by terminating a compromised 

pregnancy or pregnancy under adverse environmental conditions. As a consequence, the 

nuclear genome may have genetic variants predisposing women to preterm delivery by 

lowering a threshold for a stress response to the microbiome.  

An alternative theory is that preterm birth may be an extreme phenotype of 

heritable genetic variation in gestational length that is spontaneously determined [29]. In 

support of this idea, about a half of preterm birth cases seem spontaneous without 

identifiable cause [21] . In addition, the history of post-term as well as preterm deliveries 

strongly predicts the gestational length of subsequent pregnancies [30].  

Interestingly, chimpanzees seem to have very low susceptibility to preterm birth 

compared to humans [31]. Why did humans become susceptible to a high rate of preterm 

birth despite the detrimental fitness cost to prematurely born infants? One theory is that 

humans may have evolved to give birth earlier than chimpanzees as the human ancestor 

evolved to have a larger brain and a narrower pelvis, which increased the risk of 

cephalopelvic disproportion and threatened the survival of both mother and fetus, 

particularly in post-term birth [29]. Another interesting possibility is that positive 

selection may have increased the allele frequency of genetic variants promoting the risk 

for preterm birth by the hitchhiking effect. The African American population has a higher 

risk of preterm birth than other populations even after correcting for the socioeconomic 

confounders [32; 33]. Interestingly, there is evidence that FSH receptor (FSHR), which is 

known to be associated with the risk for preterm birth, was positively selected in Sub-

Saharan Africans [29; 34].  
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This work 

The goal of my thesis is to understand what evolutionary model can explain the 

small fitness effects of an abundant number of common deleterious SNPs found in human 

population. This question is implicated with why certain common disease alleles have 

higher-than-expected allele frequencies.  

In chapter 2, I adapt the likelihood ratio test, previously developed for the yeast 

genome, to the human genome to identify deleterious nonsynonymous variants in humans. 

By applying this test to three personal genome sequences, I count the number of 

deleterious nonsynonymous SNPs carried in each person and begin to address 

explanation of the abundance of common deleterious SNPs found in the three personal 

genomes. Specifically, I test the possibility of false positives due to multiple hypothesis 

testing, violation of model assumptions, recent gene duplication, and relaxation of 

selective constraints on a specific functional category of genes.  

In chapter 3, I explore the hypothesis that positive selection may have influenced 

the allele frequency of deleterious SNPs and disease alleles in the human population by 

the hitchhiking effect. When the recombination rate is low enough, the apparent fitness of 

a deleterious allele is determined not only by its own fitness but also by the combined 

fitness of other linked alleles.  

In chapter 4, I fine-map the candidate causal variants underlying the known 

genetic association of FSH receptor with preterm birth in the Finnish population by 

sequencing protein-coding and conserved non-coding regions in this locus. Here, I also 
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examine whether positive selection on FSH receptor has influenced the allele frequency 

of candidate causal variants promoting the risk of preterm birth.  
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CHAPTER 2: Identification of deleterious mutations 

within three human genomes 

 

Sung Chun1 and Justin C. Fay1,2 

1Computational Biology Program, Washington University, St. Louis, MO 

2Department of Genetics, Washington University, St. Louis, MO 

 

This work was done in collaboration with Justin Fay. My contribution was design of the 

experiments, execution of the experiments and analysis of the data. The web server for 

this algorithm is available from the Fay lab website. This chapter is a reprint of the 

manuscript originally published in Genome Research in 2009. Large supplemental data 

are available from the Fay lab website.  
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ABSTRACT 

Each human carries a large number of deleterious mutations. Together, these 

mutations make a significant contribution to human disease. Identification of deleterious 

mutations within individual genome sequences could substantially impact an individual's 

health through personalized prevention and treatment of disease. Yet, distinguishing 

deleterious mutations from the massive number of non-functional variants that occur 

within a single genome is a considerable challenge. Using a comparative genomics 

dataset of 32 vertebrate species we show that a likelihood ratio test can accurately 

identify a subset of deleterious mutations that disrupt highly conserved amino acids 

within protein coding sequences and that are likely to be unconditionally deleterious. The 

likelihood ratio test is also able to identify known human disease alleles and performs as 

well as two commonly used heuristic methods, SIFT and PolyPhen. Application of the 

likelihood ratio test to three human genomes reveals 796-837 deleterious mutations per 

individual, ~40% of which are estimated to be at less than 5% allele frequency. However, 

the overlap between predictions made by the likelihood ratio test, SIFT and PolyPhen is 

low; 76% of predictions are unique to one of the three methods and only 5% of 

predictions are shared across all three methods. Our results indicate that only a small 

subset of deleterious mutations can be reliably identified but that this subset provides the 

raw material for personalized medicine. 

 



 14

INTRODUCTION 

Mutations that impact an organism's ability to survive and reproduce are 

deleterious and must be eliminated by natural selection in order to ensure the long term 

survival of a species [35]. Removal of deleterious mutations from the gene pool requires 

a substantial number of genetic deaths and incurs a considerable reproductive cost [36]. 

However, many deleterious mutations persist for hundreds of generations or more before 

they are removed since their effects are largely masked in the heterozygous state [37]. 

The presence of deleterious mutations within the human population has a 

significant impact on human health. Inbreeding causes an increase in child morbidity and 

mortality and suggests that each human carries a sufficient number of deleterious 

mutations that if made homozygous would together result in premature death [1]. In 

addition, most mutations that cause monogenic diseases are clearly deleterious. Diseases 

with a complex genetic basis are also likely to be affected by deleterious mutations. In 

support of this possibility, rare variants that have been associated with complex human 

diseases are often predicted to be deleterious [5; 6]. However, even when rare variants 

have been associated with human disease there is considerable uncertainty as to which 

rare variants are responsible for the association. 

A number of methods have been developed to identify deleterious and/or disease-

causing mutations within protein coding sequences. These methods predict whether an 

amino acid altering mutation is deleterious or disease-causing based on physico-chemical 

properties [38], population frequency [39; 40], protein structure [9; 41; 42], and cross-

species conservation [8; 9; 42]. For a comprehensive review of methods see Ng and 
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Henikoff [43]. While these methods can identify 40-90% of disease-causing mutations, 

the rate of false positives is uniformly high, 10-20% [43]. The high rate of false positives 

may be caused by most predictions relying on some aspect of sequence conservation, 

which is difficult to accurately model. One factor that confounds evolutionary models is 

that not all disease-causing mutations are conserved, presumably due to compensatory 

changes elsewhere in the protein [44]. A further complication is that mutations in highly 

conserved sequences do not always produce phenotypes that are easily noticeable [6; 45]. 

Regardless of the cause, the accuracy of cross-species conservation depends on both the 

assumptions and parameterizations of evolutionary models that relate sequence 

conservation to fitness or function [43; 46]. 

Genome sequencing of a large number of closely related species makes it possible 

to develop better parameterized evolutionary models that more accurately predict human 

deleterious mutations. Closely related species minimize the frequency of compensatory 

changes that enable functional sites to diverge. Conversely, a large number of species 

maximizes the phylogenetic distance among taxa required to accurately distinguish 

selectively constrained sites from neutral sites that have not yet diverged [47]. A number 

of models use putatively neutral classes of sites to distinguish functionally constrained 

and neutral sites based on closely related genomes, e.g. [10; 12; 48]. Although 

evolutionary models may not identify all disease-causing mutations, they provide a 

probabilistic framework in which the subset of disease-causing mutations that disrupt 

highly conserved amino acid positions can be accurately identified given enough 

phylogenetic information. 
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Prediction of deleterious mutations within individual human genomes has the 

potential to impact both the prevention and treatment of disease at an individual level. 

Although a number of human genomes have been sequenced, the number of 

nonsynonymous variants predicted to impact protein function varies widely. Using SIFT 

[49], 14% (1,455) of nonsynonymous variants within the Venter genome were predicted 

to impact protein function [50]. Using PolyPhen [51], 7.3% (~770) of nonsynonymous 

variants within the Watson genome were predicted to impact protein function [52]. 

However, comparison of these predictions is difficult since they are based on different 

data, different models and use different methods to control for sequencing errors, a 

potentially important source of false positives [50]. 

To identify and characterize deleterious mutations present within an individual 

genome we examined three recently sequenced human genomes [52-54]. Using a 

likelihood ratio test [12], we identified 796-837 amino acid altering mutations per 

genome that disrupt highly conserved amino acids. Comparison with two other methods, 

SIFT and PolyPhen, revealed only a small amount of overlap among the three methods 

and suggests that multiple methods should be used when trying to identify deleterious 

mutations in humans. 
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RESULTS 

Identification of deleterious mutations in three human genomes 

Mutations that alter evolutionarily conserved sequences are likely to be 

deleterious and have a negative impact on fitness. To distinguish functionally constrained 

and unconstrained amino acid positions we generated a comparative genomics dataset 

using 32 vertebrate species (Methods). Multiple alignments of orthologous protein coding 

sequences were generated for 18,993 human genes. The synonymous substitution rate 

was estimated to be 12.2 across all species and 4.7 across the eutherian clade, placental 

mammals, similar to previous studies (Methods). The large amount of divergence among 

these species implies that unconstrained amino acid positions should rarely be conserved 

across species and mutations that alter conserved amino acids are likely to be deleterious. 

To identify deleterious mutations present within an individual human genome we 

examined nonsynonymous variants present within the genomes of J. Craig Venter, James 

D. Watson, and a Han Chinese male [52-54]. To eliminate sequencing errors we only 

used a subset of high quality alleles, a Phred quality score of 60 or greater for the Venter 

and Chinese genome and a variant score of 70 or greater for the Watson genome [52]. 

After eliminating 24-26% of variants that occur in regions without a sufficient number of 

aligned orthologs for accurate inference of functional constraint, less than ten eutherian 

species, we analyzed 5,417-5,707 nonsynonymous variants per individual. 
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Using a likelihood ratio test, we identified between 796 and 837 deleterious 

mutations in the three diploid genomes, ~15% of those tested (P < 0.001, Table 2.1). The 

likelihood ratio test compares the probability of the data under a conserved model, 

allowing for any level of selective constraint, relative to a neutral model, where there is 

no difference between the nonsynonymous and synonymous substitution rate (Methods). 

Most of the deleterious mutations, 59-62%, were individual-specific (Figure 2.1). In 

addition, the majority of deleterious mutations, 76-83%, were present in a heterozygous 

state. However, the true frequency of heterozygotes is likely higher since homozygotes 

are more easily identified than heterozygotes and some heterozygotes may be 

misclassified as homozygotes [52-54]. In addition to deleterious mutations present within 

the three individual genomes, we identified another set of 838 deleterious mutations that 

occur in the reference genome in comparison to either the Venter, Watson or Chinese 

genomes (Methods). Out of the 838 deleterious mutations, 474 were specific to the 

reference genome and were not present in either the Venter, Watson or Chinese genome. 

Consistent with previous studies [55], the frequency of deleterious mutations is 

lower on the X chromosome compared to the autosomes, 10.5% relative to 18.1%, 

respectively (P < 0.05, Fisher's Exact Test). Only 14 out of 1,928 deleterious mutations 

were found on the X relative to 119 out of 8,761 neutral variants. These results indicate 

that partially recessive deleterious mutations are more rapidly eliminated from the X 

chromosome. 
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An abundance of common deleterious mutations 

Most deleterious mutations are maintained at low population frequencies due to 

negative selection [4]. However, 435/1928 (23%) of the deleterious mutations are present 

in more than one of the three genomes, suggesting that at least some of the deleterious 

mutations may be common (Figure 2.1). Consistent with negative selection, the fraction 

of nonsynonymous alleles that are deleterious is lower for those that are shared among 

the three individuals, 19%, relative to those that are individual-specific, 26-32% (Table 

2.2). To more accurately quantify the frequency of deleterious mutations we used the 

HapMap phase II and III panels and found that 1121/1928 deleterious mutations (58%) 

are common, greater than 5% allele frequency in at least one of the three HapMap panels. 

Surprisingly, many deleterious mutations have reached intermediate to high frequencies. 

Out of 1,928 deleterious mutations typed by the HapMap project, 925 (48%) are at 

frequencies greater than 20%, 472 (24.5%) are at frequencies greater than 50% and 163 

(8.5%) are at frequencies greater than 80%.  

Deleterious mutations can become common if their effects are buffered by 

recently duplicated genes. Degeneration of recently duplicated genes is expected under 

both nonfunctionalization and subfunctionalization models of gene duplication [56]. 

Tabulating all deleterious mutations that occur in recently duplicated proteins (Methods), 

70 out of 1928 deleterious mutations (3.6%) occur in duplicated genes (Figure 2.2A). 

Although there is a significant enrichment of deleterious relative to neutral alleles in 

duplicated genes (Chi-square test, P < 0.01), only 7 of the common deleterious alleles 
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occur in duplicated genes. Thus, most common deleterious mutations are not buffered 

from selection by gene duplication. 

If negative selection is weak, a substantial number of deleterious mutations can 

become common by random genetic drift. To examine whether common deleterious 

alleles are under weaker selection than those that are rare we calculated the frequency of 

deleterious mutations in perfectly conserved sites, the frequency of deleterious mutations 

that caused radical amino acid substitutions, defined by a BLOSUM62 score of less than 

negative two, and the frequency of deleterious mutations for which the deleterious allele 

was observed in one or more non-eutherian species. Combining the data from all three 

genomes, rare deleterious mutations are more likely to occur in perfectly conserved sites, 

are more often radical and are less likely to be present in non-eutherian species (Chi-

square test, P < 0.01, Figure 2.2B). This result suggests that rare deleterious mutations are 

under stronger negative selection than common alleles, consistent with both empirical 

and theoretic studies [4; 17; 57]. However, some of the common deleterious mutations 

may also be false positives.  

Estimation of the false positive rate 

A number of factors could lead to false positive prediction of deleterious 

mutations. To estimate the rate of false positives we examined: multiple hypothesis 

testing, sequencing errors and model assumptions. Given an uncorrected P-value cutoff 

of 0.001 and the number of tests (Table 2.1), we estimate 5-6 false positive predictions 

per individual due to multiple hypothesis testing. A P-value cutoff of 0.01 results in a 
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prediction of 1,120-1,197 deleterious mutations within the three genomes but is also 

expected to include a higher number of false positives, 54-57 per individual. 

Sequencing errors can also result in false positive predictions. Given a Phred 

quality score cutoff of 60, 0.47 false positives are expected due to sequencing errors in 

the Venter genome (Methods). For the reference genome 53 false positives are expected 

assuming three nucleotide substitution errors per 1 Mbp [58]. The rate of sequencing 

errors is more difficult to know for the Watson and Chinese genomes since a complex 

series of quality filters were used and quality values derived from new sequencing 

technologies may not be entirely accurate, e.g. [59]. 

To empirically estimate the impact of sequence errors on prediction of deleterious 

mutations, we tested whether the frequency of deleterious mutations is affected by the 

quality score cutoff. Consistent with a minor effect of sequencing errors, the fraction of 

deleterious mutations in the Venter genome is nearly constant for Phred values greater 

than 60 (Figure S2.1A). High-quality nonsynonymous heterozygous variants from each 

genome were split into two groups of roughly equal numbers using their quality scores. 

In each case the proportion of variants called deleterious was slightly higher (0.3-3.6%) 

in the group with higher compared to lower quality values (Figure S2.1). This result 

suggests that few of the deleterious mutations identified by the likelihood ratio can be 

attributed to sequencing errors.  

False positive predictions can also arise if the assumptions of the likelihood ratio 

test are violated. The likelihood ratio test assumes a neutral substitution rate estimated 

from synonymous sites and so false positive predictions may occur for variants that occur 
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in positions with lower than average mutation rates. Two significant sources of variation 

in mutation rates are methylated CpG sites and regional variation across the genome [60; 

61]. To examine the effect of regional variation across the genome we estimated the 

number deleterious mutations using a synonymous substitution rate of 10.1, two standard 

deviations below the mean. The standard deviation due to regional variation in mutation 

rates was obtained from the coefficient of variation (8.75%) reported for mouse-rat 

divergence in ancestral repeats at a scale of 1 Mb [61]. To account for overestimation of 

the synonymous substitution rate due to methylated CpG sites all CpG-prone sites were 

eliminated and the synonymous rate was found to be reduced by 12% in the mammalian 

clade and by 5% overall. Because regional variation in mutation rates generated a greater 

reduction in the synonymous rate, 1 - 10.1/12.2 (17%), we used a total synonymous rate 

of 10.1 and found 621 deleterious mutations remain significant in the Venter genome. 

This implies that only 22% (621/796) of highly conserved amino acid positions could be 

due to low mutation rates rather than negative selection. The true percentage is much 

lower since the only a small fraction of sites tested, ~2.5%, are expected to have a 

mutation rate two standard deviations below the genome average. 

The false positive rate can also be estimated using a set of negative controls. 

Previous studies estimated the rate of false positives using nonsynonymous SNPs present 

in humans [16] or substitutions between humans and other mammals [51]. Given that a 

significant number of deleterious mutations and sequencing errors may be present within 

any sequenced genome, we generated a set of negative controls using 39,028 

nonsynonymous substitutions that occurred after orangutan but before chimpanzee split 
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off from the lineage leading to humans (Methods). The likelihood ratio test identified 

2,633 substitutions (6.7%) as deleterious (P < 0.001). This is lower than that estimated 

for both PolyPhen (9%)[9] and SIFT (20%)[16], but is still much higher than that caused 

by sequencing errors or variation in mutation rate. When the negative controls were 

subdivided into three classes by the severity of amino acid changes using Grantham's 

distance [38], the likelihood ratio test identified more conservative substitutions (8.3%), 

compared to moderate (6.1%) or radical substitutions (5.1%).  

Estimation of the false negative rate 

The false negative rate was estimated using known disease-causing missense 

mutations in the OMIM database (Methods). Out of 5,493 mutations, 3,947 (71.9%) are 

significant by the likelihood ratio test (P < 0.001). The false negative rate of the 

likelihood ratio test (28%) is similar to that of both SIFT (31%) [16] and PolyPhen (31%) 

[9]. Of the 1,546 disease mutations that were not identified, 644 (42%) occur at positions 

with little or no comparative genomic data (fewer than 10 eutherian mammals or a 

synonymous substitution rate less than or equal to two). Although the likelihood ratio test 

does not explicitly account for the type of amino acid change, the false negative rate is 

lower for radical disease-causing mutations (25.2%) than for moderate or conservative 

disease-causing mutations (30.2 and 29.7%, respectively). Such differences are not due to 

varying availability of comparative genomic data. A similar fraction of mutations lack 

sufficient comparative genomic data in all three classes of amino acid changes. 
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Comparison to SIFT and PolyPhen predictions 

A variety of methods have been developed to specifically identify mutations that 

cause human disease. Two of the most commonly used methods, SIFT [49] and PolyPhen 

[51], use heuristic measures of cross-species conservation along with the type of amino 

acid change to predict human disease mutations. SIFT uses a median conservation score 

rather than synonymous sites to measure protein conservation. PolyPhen also uses a 

normalized cross-species conservation score and combines this with a variety of protein 

structural features when available. Both methods use non-redundant protein databases 

and so make use of a much more diverse set of species than the likelihood ratio test. 

Compared to the 796 deleterious mutations identified by the likelihood ratio test 

(LRT), SIFT predicted 890 intolerable mutations and PolyPhen predicted 768 possibly 

damaging and 555 probably damaging mutations in the Venter genome (Methods). The 

overlap between these predictions is low but significantly greater than chance (Figure 

2.3). Out of all predictions, 18%, 30% and 28% were specific to PolyPhen, SIFT and the 

LRT, respectively, and 93 mutations (5%) were predicted by all three methods. The 

overlap of all three methods is greater than the 5.9 mutations (0.3%) expected by chance. 

Each of the methods predicted a similar fraction of mutations that were not predicted by 

the other two methods; 57%, 59% and 61% of predictions made by PolyPhen, SIFT and 

the LRT, respectively, were not predicted by either of the two other methods. 

The low overlap among predictions made by the LRT, SIFT and PolyPhen is not 

due to differences in coverage. Out of the 7,534 high-quality mutations present within the 

Venter genome, PolyPhen, SIFT and the LRT generated predictions for 6,746 (90%), 
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5,401 (72%) and 5,645 (75%) mutations and all three methods generated predictions for 

4,303 (57%) mutations. Most of these differences are likely the result of each method 

requiring a sufficient number and diversity of aligned sequences in order to make a 

prediction and each method using a different set of sequences and alignments. Despite the 

differences in coverage, the overlap among the methods remains low when only the 4,303 

mutations with predictions made by all three methods were compared (Figure 2.3). 

To determine whether the low overlap can be attributed to alignment differences, 

SIFT was run using the same alignments as those used for the likelihood ratio test. Figure 

2.3B shows that tuning SIFT's median conservation score to generate a similar number of 

deleterious predictions as the LRT improved the overlap between SIFT and the LRT from 

269 (19%) to 404 (34%). Thus, many but not all of the differences between SIFT and the 

LRT are due to differences in the sequences and/or alignments used to identify 

evolutionary conserved amino acids. 

The remaining differences between SIFT and the LRT predictions can be 

attributed to a number of factors. Out of 392 mutations that were predicted deleterious by 

the likelihood ratio test but not SIFT, 226 (58%) occurred in highly conserved proteins 

and were not identified as intolerable by SIFT due to the high median conservation score 

of the protein. SIFT uses the a median conservation score of a protein to eliminate 

predictions based on highly similar proteins. Because the LRT uses synonymous site 

divergence to calibrate conservation many cases are likely false negative predictions 

made by SIFT. In 184/392 (47%) cases the amino acid predicted to be deleterious by the 

LRT was found in one or more vertebrate species outside of the eutherian mammals. 
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Although this indicates that these alleles are probably neutral in distantly related species, 

the likelihood ratio test implies that amino acid conservation within the eutherian 

mammals is significant and so the allele may be deleterious in humans.  

A number of factors are also likely to contribute to the 404 mutations predicted to 

be intolerable by SIFT that were predicted neutral by the LRT. A total of 126/404 (31%) 

cases showed marginal significance by the likelihood ratio test, (0.001 < P < 0.01). Some 

of these cases may be due to the lower power of the LRT since SIFT differentiates 

between conservative and radical amino acid changes, a factor known to be predictive of 

function [62]. The LRT may also have lower power for sites with a significant number of 

missing species. A total of 133/404 (33%) cases occurred in alignments for which there 

were not enough species to apply the likelihood ratio test, as defined by a total 

synonymous substitution rate less than four. Because the LRT alignments are based 

mostly on closely related mammalian species, some of these cases are likely false 

positive predictions made by SIFT. However, these predictions may also be a 

consequence of forcing SIFT to use alignments from closely related species and would 

not be predicted by SIFT when run using its own set of alignments.  

 

DISCUSSION 

Identification of deleterious mutations within individual genomes has the 

potential to directly impact both health and reproductive decisions. The wealth of 

comparative genomics data now available makes it possible to rapidly identify all 

mutations that disrupt highly conserved amino acid positions and that are likely to be 
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deleterious. Here, we have evaluated the ability of a likelihood ratio test (LRT) to identify 

deleterious mutations within three human genomes. We identified a similar number of 

deleterious mutations, 796-837, in three human genomes and showed that only a handful 

are expected to be false positives due to sequencing errors or multiple hypothesis testing. 

While the likelihood ratio test performs as well as two other commonly used methods, 

SIFT and PolyPhen, the overlap among predictions made by different methods is 

disturbingly low. Analysis of these differences indicates that both the algorithms as well 

as the alignments used to identify conserved sites make a significant contribution to the 

low overlap among predictions. Our results suggest that multiple methods should be used 

to reliably identify deleterious mutations for association with human disease. 

The likelihood ratio test is conceptually distinct from other comparative genomic 

methods. To our knowledge, all previous methods designed to identify deleterious 

mutations (see [43] for review) rely on heuristic procedures to distinguish sites within a 

protein that are conserved from those that are not conserved. This is achieved by 

selecting sequences that are not too closely or too distantly related to the sequence of 

interest and comparing the degree of conservation at the site of interest to other sites in 

the protein. The advantage of this approach is that the phylogenetic relationship and 

evolutionary distance among the sequences is not required. However, there are also 

limitations to this approach since no distinction is made between distantly related proteins 

that are highly conserved and closely related proteins that have evolved rapidly. Although 

proteins can always be selected that show a desired degree of similarity, compensatory 

changes are more likely to have occurred in distantly related proteins. In comparison, the 
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likelihood ratio test was designed to explicitly model phylogenetic relationships using a 

probabilistic framework and to minimize compensatory changes, which are thought to be 

common [44] and can cause false negatives, by using closely related vertebrate species: 

mammals, chicken, frog and fish.  

 The likelihood ratio test also differs from other comparative genomic methods in 

that all amino acid changes are treated the same rather than weighting radical and 

conservative amino acid changes differently. While this is expected to reduce the power 

of the likelihood ratio test, empirically, both the false positive and the false negative rates 

of the likelihood ratio test are lower for radical relative to conservative amino acid 

changes. This may be a consequence of the genetic code and other mutational parameters 

being correlated with the ratio of radical to conservative amino acid changes [63]. 

The likelihood ratio test performs similar to two other commonly used 

comparative methods, SIFT [9] and PolyPhen [16]. We found that the likelihood ratio test 

was able to identify 72% of known disease-causing mutations, slightly higher than that 

reported for PolyPhen (69%) and SIFT (69%). However, it should be noted that these 

numbers are not directly comparable since accuracy depends on how it is measured.  For 

example, SIFT and PolyPhen detected 70% and 72% of deleterious mutations when 

applied to the same protein mutation database [64]. Many, 644/1,546 (42%), of the 

disease mutations that were not identified by the likelihood ratio test can be attributed to 

the absence of sufficient comparative genomic data, i.e. not enough species. The 

remaining cases may be attributed to compensatory changes that allowed sites that cause 

human disease to change in non-human species.  
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 The false positive rate of the likelihood ratio test (LRT) is estimated to be lower 

than that estimated for SIFT and PolyPhen. While few false positives are expected due to 

sequencing errors and multiple hypothesis testing, we found 6.7% of negative controls 

were called deleterious by the likelihood ratio test. The rate of false positives is lower 

than that estimated for both SIFT (20-30%) and PolyPhen (9-28%)[9; 16; 64]. However, 

some of these differences may be due to the use of different negative controls. Regardless 

of slight methodological differences, the frequency of putatively neutral mutations called 

deleterious (6.7%) is only half the fraction predicted to be deleterious in the Venter, 

Watson and Chinese genomes (14-15%), suggesting a false discovery rate of nearly 50% 

within individual genomes. Yet, the rate of false positives estimated from the negative 

controls may be an overestimate since not all human ancestral substitutions may be 

neutral. Some ancestral substitutions may be weakly deleterious mutations that became 

fixed by genetic drift, a process which can be exacerbated by a small effective population 

size. Other ancestral substitutions may be advantageous mutations that alter the function 

of previously conserved amino acids due to a change in the environment. Thus, ancestral 

substitutions provide an upper bound on the number of false positive predictions. 

 The potentially high rate of false positives may explain the large number of 

common alleles predicted to be deleterious in the three genomes.  Similar to the   

negative controls, some of the common alleles may occur in sites that have been under 

negative selection in primates and other mammals but have recently become neutral 

along the human lineage.  However, it is also possible that some deleterious mutations 

have increased in frequency due to hitchhiking along with recent positively selected 
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mutations. Further work will be needed to address the impact of positive selection on the 

number and frequency deleterious mutations. 

 Despite similar performance of the LRT, SIFT and PolyPhen, the overlap among 

predictions made by the three methods is low, 5% (Figure 2.3). The majority of 

differences are not due to cases where one or more methods did not make a prediction 

due to limited or insufficient data; the overlap remains low for cases where all three 

methods generated predictions (Figure 2.3). Inspection of cases where the three methods 

disagreed revealed two general explanations for the disagreements. First, distantly related 

species can have a strong influence on the prediction of deleterious mutations and each 

method uses a different set of distantly related species. Distantly related species tend to 

have a large effect since fewer sites are conserved and they are more likely to carry the 

deleterious allele due to compensatory changes. The impact of distantly related species is 

significant since each method measures conservation using a different set of distantly 

related species. Both SIFT and PolyPhen can use any homologous protein sequence and 

generate alignments using different non-redundant databases of protein sequences. In 

contrast, the likelihood ratio test only uses a few non-mammalian species: chicken, frog 

and five fish species (Figure S2.2). One of the goals of developing the likelihood ratio 

test was to avoid using distantly related species which are more likely to contain 

compensatory changes and which may produce variable results depending on arbitrary 

decisions as to which distantly related species to use. However, the use of closely related 

species has its own set of disadvantages (see below).  
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A second class of disagreements are sites that are perfectly conserved within each 

of the different alignments but are slightly above or below cutoffs used by the LRT, SIFT 

or PolyPhen. These borderline cases may also depend on which sequences are included in 

the alignment because SIFT and PolyPhen use a site-specific score that is normalized to 

conservation within the rest of the protein and the P-value of the LRT explicitly depends 

on which species are included since this determines the expected rate of change as 

measured by the synonymous substitution rate. One of the goals of developing the LRT 

was to accurately account for each species' contribution to the likelihood using the 

synonymous substitution rate. The drawback of this approach is that the increase in 

accuracy depends on a number of parameters that must be estimated from the data. 

The likelihood ratio test's use of closely related species may result in false 

positive and false negative predictions not made by either SIFT or PolyPhen. In order to 

use closely related species the likelihood ratio test uses synonymous sites to estimate the 

neutral substitution rate. However, the accuracy of this estimate depends on many factors. 

While we showed that CpG sites and large-scale regional variation in mutation rates are 

unlikely to have large effects on the prediction of deleterious mutations, other types of 

mutational variation were not accounted for, e.g. [65]. Even slight changes in the 

estimated neutral substitution rate will affect some predictions. Consequently, despite the 

advantages of using closely related species, many borderline cases may be false positives 

or false negatives. Borderline cases may be more accurately resolved by using additional 

closely related genomes or by inclusion of distantly species.  
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Is the power of the likelihood ratio test limited by the amount of comparative 

genomic data? For perfectly conserved sites, the fraction of mutations called deleterious 

does not increase with the number of species used to identify conserved sites (Figure 

S2.3). However, the fraction of mutations predicted to be deleterious increases with the 

number of species used for sites that are not perfectly conserved (Figure S2.3). This 

suggests that additional species will only increase the power of the LRT to detect sites 

that are not perfectly conserved. Increasing the power to detect semi-conserved sites may 

be useful given the large number of human disease alleles that occur at sites that are not 

perfectly conserved. 

What fraction of deleterious mutations were not identified? Not considering false 

negatives due to compensatory changes and other modeling assumptions, deleterious 

mutations could be missed due to a lack of alignments or low power associated with the 

available alignments. To estimate the number of deleterious mutations that did not reach 

a P-value of less than 0.001, i.e. low power, we estimated the number of true positives as 

a function of the false discovery rate. Figure S2.4 shows that as the P-value cutoff is 

lowered, the estimated number of true positives plateaus to approximately 1,100 

mutations, suggesting that nearly 75% of deleterious mutations were identified at a P-

value cutoff of 0.001. The number of deleterious mutations missed due to a lack of 

sufficient alignments is more difficult to know. Only 74-76% of mutations were tested in 

the Venter, Watson and Chinese genomes due to a paucity of mammalian homologs. 

However, a smaller proportion of these may be deleterious since they are more likely to 

occur in new, recently duplicated genes. An alternative method of estimating the number 
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of deleterious mutations is based on allele frequency and avoids deficiencies due to a lack 

of alignments [40]. Applying the allele frequency estimate to the Venter genome 

indicates that the likelihood ratio test identified 62% of rare deleterious mutations 

(Methods). However, many factors other than the presence of suitable alignments may 

contribute to the difference between the allele frequency and the LRT estimates.  

Despite different sequencing technologies we found a very similar number of 

deleterious mutations within three human genomes, 796-837. Previous reports predicted 

~770 [52] and 1,455 [50] missense mutations within the Watson and Venter genome, 

respectively. However, these differences can be almost entirely attributed to differences 

between the methods used to predict deleterious mutations and/or the quality score 

cutoffs used to eliminate sequencing errors. Using the same set of high-quality variants 

tested by the LRT, SIFT predicted 890, 769 and 861 and PolyPhen predicted 555, 501 

and 496 deleterious mutations in the Venter, Watson and the Chinese genomes, 

respectively. While the coefficient of variation is greater than one for both SIFT and 

PolyPhen, it is less than one for the LRT. The standard deviation of the the number of 

deleterious mutations identified by the LRT is 20.5 and is less than that expected 

assuming a Poisson distribution, 28.6. This supports the idea that truncating selection 

mediated by synergistic epistasis facilitates the removal of deleterious mutations [66]. 

However, not all features of deleterious mutations were similar among the three genomes. 

The fraction of deleterious or neutral mutations within recently duplicated genes was 

much smaller in the Chinese compared to the other two genomes. This difference may be 
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reflective of the greater difficulty of identifying SNPs in duplicated sequences using 

short-read sequencing technologies. 

In conclusion, the abundance of mutations that disrupt highly conserved amino 

acid positions within three healthy human genomes implies that in most cases their 

phenotypic effects are either small or that the mutations are recessive. However, many of 

the mutations may produce large effects when homozygous. Although only a small 

number of mutations were predicted deleterious by the LRT, SIFT and PolyPhen, the use 

of all three methods should provide an excellent source of candidates for association with 

human disease. Finally, since just over half of all deleterious mutations were found to be 

common, our results support the possibility that rare variants make a significant 

contribution to complex human diseases [4; 67]. 

 

METHODS 

Comparative genomic dataset 

Multiple sequence alignments of protein coding sequences were generated from 

32 vertebrate species (Figure S2.2). Orthologous protein sequences were downloaded 

from Ensembl (ftp://ftp.ensembl.org/pub/release-49/emf/ensembl_compara/homologies/), 

originally inferred by TreeBest [68], aligned using MUSCLE [69] and then back-

translated into nucleotide alignments. All known selenocysteine residues were masked. 

After removing alignments with too few orthologous, less than 10 eutherian mammals, 

there were 18,993 alignments with an average of 16.5 species per alignment.  
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Likelihood ratio test 

The likelihood ratio test was used to compare the null model that each codon is 

evolving neutrally, with no difference in the rate of nonsynonymous (dN) to synonymous 

(dS) substitution, to the alternative model that the codon has evolved under negative 

selection with a free parameter for the dN/dS ratio. The log likelihood ratio (LLR) of the 

conserved relative to the neutral model is: 

LLR=log
L(D∣T ,θ , dN=Ĉ dS )
L(D∣T ,θ , dN=dS )  

where D is an alignment of a single codon, T is a phylogenetic tree, dN and dS are the 

nonsynonymous and synonymous substitution rates of the codon and Ĉ  is the maximum 

likelihood estimate of dN/dS. The synonymous rate and θ, the parameters of the rate 

matrix, were estimated from the concatenated set of all codons without gaps, as described 

in the next paragraph. P-values were obtained by comparing twice the log likelihood ratio 

to a χ2 distribution with one degree of freedom. The likelihood ratio test was 

implemented using the MG94 codon model [13] combined with an HKY85 model [70] to 

account for unequal base frequencies and differences in the rates of transitions and 

transversions. This was accomplished within a maximum likelihood framework using 

HYPHY [71]. 

The synonymous substitution rate was estimated from gap-free concatenated 

alignments of 1,227 genes completely conserved across all 32 species, a total of 54 kb, 

using the same model as that described above. The estimated dS values for the human to 
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the mouse-rat ancestor (0.46), mouse lineage (0.10), and rat lineage (0.13) are similar to 

previous estimates, 0.457, 0.095, and 0.101, respectively [72]. 

To make the predictions of the likelihood ratio test available to the community for 

every potential nonsynonymous variant in the human genome, we applied it to 

10,073,284 codons for which there were a sufficient number of aligned species. A total of 

5,828,045 sites were significant (P < 0.001 and dN/dS < 1). Note that a substantial 

number of nonsynonymous variants at these positions may not be predicted deleterious if 

the mutant allele being tested is present within one or more of the eutherian mammals. 

The complete dataset can be obtained by request from the authors or downloaded from 

the corresponding author's website (http://www.genetics.wustl.edu/jflab/). 

Identifying deleterious mutations 

A complete catalog of SNPs were obtained for J. Craig Venter and a Han Chinese 

male from their respective websites (http://www.jcvi.org/cms/research/projects/huref/ and 

http://yh.genomics.org.cn), and for James D. Watson directly from Dr. David Wheeler. 

Nonsynonymous and synonymous SNPs were identified using known genes in Ensembl 

release 49. Coding SNPs in ambiguous reading frames, due to overlap of adjacent genes 

or frame shifts between known splice variants, or in known pseudogenes were excluded.  

To avoid sequencing errors, stringent quality filters were applied. Since quality 

scores were not available for each allele in the Venter genome these were independently 

tabulated by mapping SNPs in the Venter genome to individual sequencing reads 

(ftp://ftp.ncbi.nih.gov/pub/TraceDB/Personal_Genomics/Venter/) and obtaining Phred 

quality values for each allele from the sum of the quality scores supporting each allele. 
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For each SNP, a 1000-bp flanking sequence around the SNP was extracted from the 

reference genome (NCBI build 36) and queried with MegaBlast against the Venter reads. 

Of the high scoring blast hits (E-value < 1e-100), only reads with perfect alignment 

across the 40-bp flanking each SNP were retained. Out of the original nonsynonymous 

SNPs, 22% failed to support a combined Phred score of greater than or equal to 60 and at 

least two supporting reads. By comparison to experimentally validated SNPs [54], this 

high-quality set of SNP has a lower rate of false positive (0 out of 15) but a higher rate of 

false negatives (4 out of 19) compared to the list of SNPs originally reported in Venter. 

The SNPs in the Chinese genome were also filtered using a Phred quality cutoff of 60. 

SNPs in the Watson genome are associated with a variant score that is similar yet not 

identical to a Phred quality score [52]. Based on the distribution of quality variant scores 

we used a quality variant cutoff of 70 for the Watson genome (Figure S2.1B).  

Deleterious mutations were predicted by nonsynonymous SNPs that disrupt 

significantly constrained codons defined by the likelihood ratio test (P < 0.001) and a 

number of subsequent filters (Table S2.1). First, positions with low power, less than 10 

eutherian mammals, were eliminated. Second, a small number of sites with dN 

significantly greater than dS were discarded. Finally, positions where the derived 

deleterious allele occurred in another eutherian species were eliminated. Deleterious 

mutations were assigned to either the tested or reference genome depending on whether 

the reference or variant allele resulted in a lower dN/dS ratio. The total number of 

deleterious mutations includes all heterozygous or homozygous positions that differ from 

the reference genome except for homozygous positions where the reference allele rather 
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than the variant allele was inferred to be deleterious. The number of deleterious mutations 

in the reference genome is the non-redundant set identified by comparison with the 

Venter, Watson and Chinese genomes.  

False positive rate 

The false positive rate due to sequencing errors was estimated using Phred quality 

scores. Using a Phred quality cutoff of 60, 0.027 false positive SNPs per 1 Mb are 

expected in the Venter genome. This calculated is based on an average Phred quality 

score of 75.7. A total of 10.4 million codons were tested and 56.2% of these, 17.6 Mb, 

were estimated to be significantly constrained codons (P < 0.001), based on a random 

sample of 6,357 codons. Using the estimated rate of sequencing errors and the total 

number of constrained codons, we expect a total of 0.47 false positive SNPs due to 

sequencing errors. Using the same approach, 1.06 false positives are estimated to occur in 

the Chinese genome. Using an error rate of 3 nucleotide substitutions per 1 Mbp for the 

reference genome [58], a total of 52.8 false positives are expected. 

To empirically estimate the rate of false positives, the frequency of deleterious 

mutations was estimated for heterozygous sites with lower and higher quality values. 

Only heterozygous sites were used since homozygous variants are less likely to be 

deleterious but are more likely to have high quality values. For the Venter, Watson and 

Chinese genome the quality value splits were 157, 129 and 97, respectively (Figure S2.1). 

In each case, the estimated number of false positives was zero since the fraction of 

deleterious mutations was higher using alleles with higher quality values. 
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The false positive rate was also estimated using a set up negative controls. A 

negative control set was defined by ancestral amino acid substitutions which were 

inferred by maximum parsimony to have occurred along the lineage leading to humans 

after the split with the orangutan lineage but before the split with the chimpanzee lineage. 

We identified 39,028 amino acids that are the same between human and chimpanzee and 

between orangutan and macaque but differ between human and orangutan. The likelihood 

ratio test was applied to the negative control set as if these ancestral substitutions were 

missense mutations present in the human population. The sequences of the primate 

species used to identify the set of negative controls (human, chimp, orangutan and 

macaque) were excluded from the likelihood ratio test. To examine different types of 

amino acid changes the negative controls were subdivided into three classes by the 

severity of amino acid changes using the Grantham scale [38]. Conservative amino acid 

changes were defined by a Grantham score of 50 or below, moderate changes by a 

Grantham score of 51 to 100 and radical changes by a score of greater than 100.  

False negative rate 

The false negative rate was estimated using disease-causing missense mutations in 

OMIM database. The coordinates of OMIM allelic variants were converted from protein-

based residue positions to genomic coordinates. Each OMIM gene was mapped to a 

single representative RefSeq protein which provided the best match to the positions and 

amino acids of curated OMIM alleles. To eliminate potential mapping errors, we filtered 

out amino acid variants which are more than one mutation away from the mapped codon 

in the reference genome. Out of 9,231 missense variants in OMIM, we mapped 5,493 
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variants (59.5%) to the genome and tested each of the using the likelihood ratio test. 

Identification of conservative, moderate and radical amino acid changes was quantified 

using the same set of Grantham scores as that used for the analysis of false positives. 

Allele frequency 

Filtered non-redundant allele frequencies in three HapMap analysis panels (CEU, 

CHB, and YRI) were downloaded from http://www.hapmap.org (Phase II+III, release 26) 

and used to identify SNPs with at least 5% frequency in the CEU, CHB, or YRI panels.  

Recent gene duplication 

Recently duplicated genes were defined by human paralogs with greater than 95% 

protein identity. Percent identity was calculated from human paralogs within the 

MUSCLE-generated multiple alignments of homologs from Ensembl. A total of 1,232 

human genes were identified as having at least one recently duplicated paralog in the 

human genome. 

SIFT and PolyPhen predictions 

SIFT 3.0 was downloaded and run locally to predict deleterious mutations in 

Venter using two different modes. First, SIFT was run using an independent set of 

alignments built using the TrEMBL 39.8 protein sequence database. Note that while 

TrEMBL contains many human sequence variants SIFT eliminates highly similar 

sequences [16]. SIFT was able to generate alignments and predictions without errors for 

6,539 out of 7,534 nonsynonymous variants. Filtering by the median conservation cutoff 

of 3.5 as in [50], we obtained 5,401 predictions and a total of 890 variants predicted to 
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affect protein function. Second, SIFT was run with the same set of alignments used by 

the likelihood ratio test. The median conservation score was set to 4.0 so that the number 

of SNPs predicted to impact protein function was similar to the number predicted by the 

likelihood ratio test. 

PolyPhen 1.15 was obtained from Shamil Sunyaev and run locally to generate 

predictions for the Venter genome. SwissProt 56.8 and the latest version of the BLAST 

NR, PDB, and DSSP databases were used as input. PolyPhen generated predictions for 

6,746 nonsynonymous variants and called 768 possibly damaging and 555 probably 

damaging. Because PolyPhen does not generate allele-specific predictions, some of these 

predictions may be for Venter-reference differences where the derived, deleterious allele 

is present in the reference but not Venter.  Both SIFT and the LRT avoided this issue 

because they both generate allele-specific predictions. 

Estimation of rare deleterious mutations 

To estimate the number of deleterious mutations using allele frequencies we 

compared the ratio of nonsynonymous (N) to synonymous (S) variants for rare versus 

common frequency classes [40]. Because allele frequencies were not always available 

and nonsynonymous alleles may be more often selected for genotyping, we used double 

hits in the dbSNP database as a proxy for rare versus common alleles, where double hits 

are defined by SNPs with at least two submissions. Within the three human genomes, the 

N/S ratio of double hit variants was 0.84-0.85 and non-double hit variants was 1.01-1.08, 

leading to an average estimate of 689 (18.6%) rare deleterious mutations. After 

accounting for the fact that only 48% of all deleterious mutations predicted by the 
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likelihood ratio test are present as double hits within dbSNP and so do not contribute to 

the frequency calculation, we estimate that 62% of all rare deleterious mutations were 

identified by the likelihood ratio test (0.52*816/689). 
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FIGURES 

 

 

Figure 2.1. Venn diagram of deleterious mutations identified in J. Craig Venter, James D. 

Watson and a Han Chinese individual. The percentage of individual-specific deleterious 

mutations found in each genome is shown in parentheses. 
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Figure 2.2. Characteristics of deleterious mutations. (A) Deleterious mutations (n = 

1,928) are more likely to occur in recently duplicated genes relative to neutral variants (n 

= 8,287). (B) Mutations at perfectly conserved sites, mutations that cause radical amino 

acid changes, defined by BLOSUM62 <= -2, and mutations to amino acids that not are 

observed outside of eutherian mammals are more frequent among rare (n = 807) 

compared to common deleterious mutations (n = 1,121). 
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Figure 2.3. Comparison of SIFT, PolyPhen and the likelihood ratio test (LRT) 

predictions. (A) Venn diagram of the number of predictions made by the three methods. 

Probably damaging mutations were used for PolyPhen. Numbers below and above each 

line are for the complete set of 7,534 high-quality variants present within the Venter 

genome and a subset of 4,303 where all three methods generated a prediction, 

respectively. (B) Overlap between the LRT and SIFT predictions based on the same 

alignments. 
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TABLES 

Table 2.1. Summary of deleterious mutations found in three individuals and the 
reference genome. 

  Tested  Deleterious 

Genome 

High-
quality 
variants Number 

Heterozygotes 
(%)b  Numbera 

Heterozygotes 
(%)b 

J. Craig Venter 7,534 5,645 52  796 (14%) 78% 
James D. Watson 7,353 5,417 49  816 (15%) 76% 
Han Chinese 7,462 5,707 58  837 (15%) 83% 
Reference n.a. 10,689 n.a.  838 (8%) n.a. 

 

aThe percentage of tested mutations that are deleterious is shown in parenthesis.  

bThe frequency of heterozygotes were derived from genotype calls in the original 

publications.  
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Table 2.2. Deleterious mutations are enriched in rare frequency classes.  

 Rare alleles  Common allelesa 

Gnome Tested Deleteriousb  Tested Deleteriousb 

J. Craig Venter 766 213 (28%)  3066 583 (19%) 
James D. Watson 940 303 (32%)  2632 513 (19%) 
Han Chinese 703 186 (26%)   3438 651 (19%) 

 

aCommon alleles include those that are shared between any of the three genomes.  

bPercent deleterious is shown in parentheses.  
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SUPPORTING INFORMATION 

Table S2.1. A sequence of filters used to identify deleterious mutations in the Venter 
genome. 

Filter Sites Genes

Coding 
sequence 

(Mbp) 
Heterozygotes 

(%) 

Nonsynonymous SNP 9708 5758 12.4 56 
High quality SNP 7534 4879 10.7 53 
SNPs with alignments 5645 3756 8.9 52 
Derived allele in Venter 3832 2755 6.7 75 
dN not equal to dS (P < 0.001) 1012 886 2.3 76 
dN < dS 942 827 2.2 77 
Not observed in other eutherian  
mammals 796 700 1.9 78 

 

Filters were applied cumulatively from top to bottom. 
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Figure S2.1. The fraction of mutations that are deleterious for different quality intervals 

within the Venter (A), Watson (B) and Han Chinese (C) genome. The quality value cutoff 

for high-quality SNPs is marked by a red vertical line. 
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Figure S2.2. Phylogenetic tree of species used and their synonymous rate (dS) of 

evolution.  
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Figure S2.3. The percentage of mutations predicted to be deleterious as a function of the 

total synonymous substitution rate (dS). Each bar represents a different dS interval and 

sample sizes are denoted by n. Dark gray shows deleterious mutations at perfectly 

conserved sites, medium gray shows sites where all eutherian mammals are perfectly 

conserved but at least one vertebrate outside of Eutheria is different, and light gray shows 

deleterious mutations at all other types of sites. 
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Figure S2.4. The estimated number of deleterious mutations as a function of the false 

discovery rate (FDR). The number of deleterious mutations was estimated by the number 

of mutations predicted to be deleterious at a P-value cutoff of 0.0001, 0.0005, 0.001, 

0.005, 0.01, 0.05, 0.1 minus the number of false positive predictions expected due to 

multiple testing. The false discovery rate was calculated by the estimated number of 

deleterious mutations (true positives) divided by the total number of mutations predicted 

at each P-value cutoff. For example, at a P-value cutoff of 0.1, 1,509/5,645 mutations 

were predicted to be deleterious in the Venter genome, 0.1*5,645 = 564 of these are 

expected to be false positives. The leads to a false discovery rate of 564/1,509 = 37%. 



 53

CHAPTER 3: Evidence for hitchhiking of deleterious 

mutations within the human genome  

 

Sung Chun
1 

and Justin C. Fay
1,2 

 

1
Computational and Systems Biology Program, Washington University, St. Louis, MO 

2
Department of Genetics and Center for Genome Sciences and Systems Biology, 

Washington University, St. Louis, MO 

 

This work was done in collaboration with Justin Fay. My contribution was design of the 

experiments, execution of the experiments and analysis of the data. This chapter is a 

reprint of the manuscript originally published in PLoS Genetics 2011. Large 

supplemental tables are available from the Journal website.  

 



 54

ABSTRACT  
 

Deleterious mutations present a significant obstacle to adaptive evolution. 

Deleterious mutations can inhibit the spread of linked adaptive mutations through a 

population and, conversely, adaptive substitutions can increase the frequency of linked 

deleterious mutations and even result in their fixation. To assess the impact of adaptive 

mutations on linked deleterious mutations we examined the distribution of deleterious 

and neutral amino acid polymorphism in the human genome. Within genomic regions 

that show evidence of recent hitchhiking, we find fewer neutral but a similar number of 

deleterious SNPs compared to other genomic regions. The higher ratio of deleterious to 

neutral SNPs is consistent with simulated hitchhiking events and implies that positive 

selection eliminates some deleterious alleles and increases the frequency of others. The 

distribution of disease-associated alleles is also altered in hitchhiking regions. Disease 

alleles within hitchhiking regions have been associated with auto-immune disorders, 

metabolic diseases, cancers, and mental disorders. Our results suggest that positive 

selection has had a significant impact on deleterious polymorphism and may be partly 

responsible for the high frequency of certain human disease alleles.  
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INTRODUCTION  
 

The continuous removal of deleterious mutations is essential to maintaining a 

species' reproductive output and even its existence. While deleterious mutations incur a 

considerable fitness cost [1], they are not always effectively removed from a population. 

Deleterious mutations are more difficult to remove from small populations and their 

accumulation can lead to further reductions in population size and eventually to 

extinction, a process called mutational meltdown [73-75]. Sexual recombination 

facilitates the elimination of deleterious mutations [76] and the lack of recombination on 

the Y sex chromosome may have contributed to its degeneration through the 

accumulation of deleterious mutations [77].  

In humans, many deleterious mutations have reached high population frequencies. 

Each human is estimated to carry on the order of 1,000 deleterious mutations in their 

genome [9; 15; 40]. Although most deleterious mutations are rare, a significant fraction is 

common in the population. For example, 19% of deleterious mutations identified in three 

human genomes are common enough to be shared among them [15]. However, the cause 

and consequence of common deleterious mutations have been difficult to determine.  

A number of factors may contribute to the large number of common deleterious 

mutations in humans. Most genome-wide methods used to identify deleterious mutations 

are based on the alteration of sites that are significantly conserved across species [43; 78]. 

As such, lineage-specific changes in selective constraint provide one explanation for 

common alleles that alter highly conserved sites.  
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Changes in selective constraint can be caused by changes in population size, the 

environment, or other genetic changes [79]. Because the efficacy of selection is a 

function of effective population size, a reduction in population size can result in reduced 

constraints on sites that are conserved in other species [80]. Many common deleterious 

mutations in humans can be attributed to the small effective population size of humans 

and recent human population bottlenecks [17; 81]. However, changes in constraint can 

also be mediated by genetic or environmental changes. For example, the thrifty gene 

hypothesis posits that the high frequency of diabetes risk alleles is a consequence of their 

being previously advantageous during periods of food scarcity [82]. Relaxed constraints 

may also arise due to certain types of genetic changes, such as gene duplication or 

compensatory mutations. The observation that human disease alleles are often present in 

mouse supports the notion that the selective constraints on a site are not always static but 

can change with the genetic or environmental background [44]. However, not all 

common deleterious mutations may result from species-specific differences in selective 

constraint.  

Positive selection can influence the frequency of deleterious mutations directly, 

through genetic hitchhiking, or indirectly, through a reduction in effective populations 

size mediated by an increase in the variance of reproductive success [83]. As a 

consequence, positive selection can increase the rate at which deleterious mutations 

accumulate, particularly when the effect of the advantageous mutation outweighs the 

effects of linked deleterious mutations [84-87]. Hitchhiking of deleterious mutations 

along with advantageous mutations may have contributed to the degeneration of the Y sex 
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chromosome [86; 88] and the increased number of deleterious mutations present in 

domesticated species [89; 90].  

In this study, we examined the effect of positive selection on linked deleterious 

polymorphism in the human genome. We compared the abundance of deleterious and 

neutral nonsynonymous single nucleotide polymorphisms (SNPs) in regions showing 

evidence of hitchhiking to other genomic regions. While hitchhiking is expected to 

remove neutral variation from a population [91], we find that the rate of deleterious SNPs 

is not reduced, resulting in an enrichment of deleterious relative to neutral SNPs in 

hitchhiking regions. Our results imply that positively selected mutations may often 

influence the frequency of linked deleterious mutations.  

 

RESULTS  
 

Simulated effect of hitchhiking on deleterious mutations  

To characterize the effect on positive selection on linked deleterious mutations we 

conducted simulations under a Wright-Fisher model. Subsequent to a single hitchhiking 

event, the rate of neutral and deleterious polymorphism was reduced as a function of the 

rate of recombination (Figure 3.1A). Despite the overall reduction in the number of 

deleterious polymorphisms, at intermediate rates of recombination, hitchhiking caused an 

increase in the number of high frequency deleterious polymorphisms, as measured by θH 

(Figure 3.1A), similar to its effect on neutral polymorphism [92]. Compared to 

deleterious polymorphism, hitchhiking caused a greater reduction in neutral 
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polymorphism, resulting in an enrichment of deleterious relative to neutral polymorphism. 

The enrichment was greatest for high compared to intermediate and low frequency 

polymorphism, as measured by θH, θπ, and θW, respectively (Figure 3.1B). Because the 

reduction in fitness due to deleterious polymorphism remained constant during 

hitchhiking, the cost of increasing the frequency of some deleterious alleles to high 

frequency must be offset by the elimination of other deleterious alleles.  

To examine the average effect of multiple hitchhiking events we also simulated 

populations under a continuous influx of advantageous mutations. Similar to single 

hitchhiking events, recurrent hitchhiking reduced the rate of neutral and deleterious 

polymorphism (Figure 3.1C), and increased the ratio of deleterious to neutral 

polymorphism (Figure 3.1B). While the degree to which hitchhiking caused an 

enrichment of deleterious polymorphism depended on the strength of positive and 

negative selection and the rate of advantageous and deleterious mutation (Figure S3.1), 

our simulations indicate that hitchhiking may often have a measurable impact on the ratio 

of deleterious to neutral polymorphism segregating in natural populations.  

 

Classification of deleterious and neutral nonsynonymous SNPs in humans  

To examine the impact of positive selection on deleterious polymorphism in 

humans we classified nonsynonymous SNPs from the 1000 Genomes Project [93] as 

neutral or deleterious using a likelihood ratio test based on cross-species conservation 

(Materials and Methods). Although not all classifications may be correct, the likelihood 
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ratio test classifies 72% of human disease mutations as deleterious and only 6.7% of 

nonsynonymous substitutions between species as deleterious [15]. Out of 48,558 

autosomal nonsynonymous SNPs tested, 14,094 (29.0%) were predicted to be deleterious, 

of which 2,263 (16.1%) have a derived allele frequency of over 10%. Using a cutoff of 

10%, the fraction of SNPs called deleterious is 17.8% for common alleles compared to 

33.0% for rare alleles, consistent with the expected effects of negative selection.  

 

Enrichment of deleterious SNPs in regions showing evidence of hitchhiking  

Hitchhiking is expected to have a stronger effect on linked variation in regions of 

low recombination [91]. While the spread of a positively selected allele through a 

population causes a reduction in the amount of linked neutral variation, it may interfere 

with the elimination of linked deleterious mutations. Consistent with this hypothesis, the 

rate of synonymous and neutral nonsynonymous SNPs decreases in regions of low 

recombination, whereas the rate of deleterious SNPs remains nearly constant (Figure 

3.2A). As a consequence, the ratio of deleterious to neutral and deleterious to 

synonymous SNPs is significantly correlated with the rate of recombination (P = 3.1 x 10
-

15
 and P < 2.0 x 10

-16
, respectively, Figure 3.2B). The association remains significant 

when accounting for the frequency of conserved codons and biased gene conversion (P = 

2.1 x 10
-7 

and P = 9.3 x 10
-6

, respectively, Figure S3.2), which are also correlated with the 

rate of recombination. However, this correlation is also expected due to background 

selection, which reduces the efficacy of selection against deleterious mutations [94; 95].  
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In contrast to background selection, which exerts more uniform effects across the 

genome [96], hitchhiking can generate strong local effects. Furthermore, hitchhiking can 

have large effects in regions of both low and high recombination whereas background 

selection is expected to have much smaller effects in regions of high recombination [97].  

To determine whether deleterious SNPs have been influenced by recent episodes 

of positive selection, we examined genomic regions showing evidence of hitchhiking 

based on multiple tests of selection [98]. In hitchhiking regions defined by two or more 

tests of selection, we found a significantly higher ratio of deleterious to neutral SNPs 

compared to other genomic regions (Figure 3.3 and Table S3.1). The elevated ratio of 

deleterious to neutral SNPs within hitchhiking cannot be explained by a reduced rate of 

recombination or a higher density of conserved sites; the difference between hitchhiking 

and non-hitchhiking regions remained significant using a logistic regression model with 

these factors as covariates (P = 6.3 x 10
-5

, Figure S3.3). The increase in the ratio of 

deleterious to neutral SNPs in hitchhiking relative to non-hitchhiking regions is 1.09-fold 

for regions identified by two or more tests of selection and increases to 1.87-fold for 

regions identified by all nine tests of selection. The increase in the ratio of deleterious to 

neutral SNPs in hitchhiking regions is due to a decrease in the number of neutral SNPs 

rather than an increase in the number of deleterious SNPs (Figure 3.3B and 3.3C). With 

the exception of the composite likelihood ratio test (CLR) [99], all of the methods used to 

detect hitchhiking identify regions with a higher ratio of deleterious to neutral SNPs 

(Figure 3.3D). Thus, the increase in the relative abundance of deleterious SNPs in 

hitchhiking regions does not appear to be associated with any specific test of selection. 
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 The effects of hitchhiking are expected to decline as a function of 

recombinational distance from the site under selection [91]. To examine the decay in the 

number of deleterious SNPs associated with hitchhiking, we used iHS [100] and Rsb 

[101] defined hitchhiking regions. iHS is better at detecting incomplete hitchhiking 

events [100], where the advantageous mutations is still segregating in the population, 

whereas Rsb is better at detecting complete or nearly-complete episodes of selection 

[101]. The frequency of deleterious SNPs decreases as a function of distance from iHS 

defined hitchhiking region (P = 2 x 10-7, Figure 3.4A). Compared to iHS regions, the 

frequency of deleterious SNPs shows a more modest decline with distance from the Rsb 

defined hitchhiking regions (P = 0.018, Figure 3.4B). This difference could result from 

Rsb detecting older hitchhiking events providing additional time for negative selection to 

eliminate linked deleterious mutations or due to a weaker influence of hitchhiking outside 

of Rsb defined regions, which are twice as large as iHS defined regions (Table S3.1).  

 

Hitchhiking regions show a similar enrichment of rare, intermediate and common 

deleterious SNPs  

As the rate of recombination decreases, hitchhiking causes a larger increase in the 

ratio of deleterious to neutral SNPs for common compared to low frequency SNPs 

(Figure 3.1). To determine whether hitchhiking regions show a similar pattern, we 

compared the ratio of deleterious to neutral SNPs as a function of allele frequency. 

Similar to the simulation results, the ratio of deleterious to neutral SNPs declines with 

increasing allele frequency. However, the ratio of deleterious to neutral SNPs in 
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hitchhiking regions is not significantly different among three frequency classes (Table 

3.1). We observed the same pattern using HapMap SNPs (data not shown) indicating that 

low coverage sequencing errors in the 1000 Genomes Project is unlikely to explain this 

result. Although the absence of differences in the ratio of deleterious to neutral SNPs 

across allele frequencies is somewhat surprising, it is consistent with simulations with a 

high rate of recombination or strong negative selection (Figure 3.1 and Figure S3.1).  

 

Deleterious SNPs in regions showing population-specific patterns of hitchhiking  

Many of the methods used to detect hitchhiking were independently applied to 

populations of different ancestry. Although some hitchhiking events may be specific to 

European, African, or Asian populations, e.g. [100], the power to detect hitchhiking is 

expected to differ among populations even when an adaptive mutation is fixed in all 

populations [102; 103]. We examined the enrichment of deleterious SNPs in iHS defined 

hitchhiking regions in the European, African, and Asian samples. Surprisingly, we found 

no enrichment of deleterious SNPs in African and Asian defined hitchhiking regions 

(Table S3.2). Despite these population-specific differences revealed by iHS, the ratio of 

deleterious to neutral SNPs is elevated in hitchhiking regions defined by multiple 

methods in the African, European and Asian samples (Table S3.3).  
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Deleterious SNPs within and around genes under positive selection  

For most hitchhiking regions the target of selection is not known. We identified 

ten hitchhiking regions from the literature for which there is evidence for the target of 

selection. The putative targets are LCT [104; 105], SLC45A2 [106], TYRP1 [107], 

HERC2 [107], KITLG [107], SLC24A5 [108], TYR [109], EDAR [106], PCDH15 [107] 

and LEPR [107]. Within these genes the ratio of deleterious to neutral SNPs (1.83) is 

higher than in non-hitchhiking regions (0.41) (Fisher's Exact Test P = 0.0023, Table 3.2). 

The deleterious SNPs include 5/6 nonsynonymous SNPs that are putative targets of 

selection. Within the 1 Mbp regions flanking these genes, there is also a higher ratio of 

deleterious to neutral SNPs (0.69) relative to that in non-hitchhiking regions (0.41) 

(Fisher's Exact Test P = 0.034).  

Positive selection at SLC45A2 and TYR is particularly interesting since linked 

deleterious SNPs have been associated with human disease. The putative target of 

selection on TYR is a nonsynonymous SNP (S192Y) that has an allele frequency of 42% 

in the European sample (CEU) and is associated with the absence of freckles in 

Europeans [109]. Another nonsynonymous SNP in TYR (R402Q), 106 kb away, is 

classified as deleterious, has a frequency of 21% in CEU and is associated with mild 

ocular albinism and risk for cutaneous melanoma and basal cell carcinoma [110; 111]. 

The putative target of selection on SLC24A5 is a nonsynonymous SNP (A111T) that is 

associated with skin pigmentation and is nearly fixed in European populations but is at 

low frequency in African and Asian populations [108]. Positive selection on this allele 

may have influenced the frequency of deleterious SNPs in FBN1, 265 kb downstream of 
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SLC24A5. FBN1 has five deleterious SNPs in HapMap CEU, all of which are present at 

low frequency in CEU, 0.5-1.4%, but are absent from both the African or Asian HapMap 

samples. Three of these deleterious SNPs cause Marfan syndrome [112; 113] and one has 

been found in patients with Marfan syndrome or related phenotypes [114].  

 

Disease-associated alleles within hitchhiking regions  

Hitchhiking may have also influenced SNPs that are associated with human 

disease. This might occur by increasing the frequency of rare, disease-causing mutations 

or by increasing the frequency of more common, disease-risk alleles. To investigate this 

possibility we compared the abundance of disease-associated alleles in hitchhiking and 

non-hitchhiking regions.  

 
Within known disease genes in OMIM, there are 9,481 mutations that have been 

associated with human disease, of which 1,722 were common enough to be typed in the 

HapMap project and can be considered SNPs. The ratio of all OMIM variants in 

hitchhiking relative to non-hitchhiking regions (0.053) is lower than that of the number of 

OMIM morbid genes (0.071), consistent with the elimination of variation within 

hitchhiking regions (Table S3.4). However, the ratio of common OMIM variants in 

hitchhiking to non-hitchhiking regions, 0.079, is significantly higher than that of rare 

variants, 0.047 (Fisher's Exact Test, P < 10
-5

, Figure 3.5). This difference is opposite to 

that found for neutral HapMap SNPs, which are skewed towards rare alleles in 

hitchhiking relative to non-hitchhiking regions. Furthermore, the minor allele frequencies 
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of OMIM SNPs is slightly higher in hitchhiking compared to non-hitchhiking regions 

(Wilcoxon Rank Sum Test, P = 0.03). Similar to OMIM SNPs, the ratio of disease-

associated SNPs in hitchhiking relative to non-hitchhiking is higher for common 

compared to rare alleles identified in the 1000 Genomes Project, although the difference 

is not significant (Figure 3.5, Fisher's Exact Test, P = 0.20). For the 1000 Genomes 

Project data, the mean frequency of common disease alleles in hitchhiking regions (0.25) 

is higher than that in non-hitchhiking regions (0.20), although the difference is not 

significant (Wilcoxon Rank Sum Test, P = 0.80). Thus, hitchhiking regions appear to be 

characterized by an increase in the number common disease-associated SNPs rather than 

by an increase in the number of rare, disease-associated variants.  

To examine the abundance of common, risk-associated alleles within hitchhiking 

regions, we used alleles that have been associated with human disease from genome-wide 

association studies (GWAS) [115] and from a literature survey (see Materials and 

Methods). Consistent with a previous study [115], the ratio of risk-alleles identified by 

GWAS in hitchhiking to non-hitchhiking regions, 0.059, is not greater than that expected 

based on the number of genes, 0.068 (Table S3.4). However, nonsynonymous risk alleles, 

which are likely enriched for functional variants, have a higher hitchhiking to non-

hitchhiking ratio than that of other risk-alleles (Figure 3.5, Fisher's Exact Test, P = 0.02). 

Although risk alleles in hitchhiking regions do not have significantly higher allele 

frequencies than those in nonhitchhiking regions (Wilcoxon Rank Sum Test, P = 0.63), 

the proportion of risk alleles with odds ratios over 2.0 in hitchhiking regions (18.9%) is 

significantly higher than that in non-hitchhiking regions (11.5%) (Fisher's Exact Test, P = 
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0.03). For disease-associated nonsynonymous SNPs identified in a literature survey, the 

ratio of SNPs in hitchhiking to non-hitchhiking regions is lower than that of neutral SNPs 

(Table S3.4).  

 

Disease-phenotype classification  

To identify which types of diseases hitchhiking may have influenced, we 

examined disease-associated SNPs and genes with deleterious SNPs within hitchhiking 

regions. Classification of the 126 OMIM SNPs within hitchhiking regions by phenotype 

(Table S3.5) revealed a number of SNPs involved auto-immune disorders (21 SNPs), 

energy metabolism (16 SNPs), and a variety of mental, neurological, and 

neurodevelopmental disorders (25 SNPs). Classification of the 461 genes (Table S3.6) 

within hitchhiking regions that contain deleterious SNPs by their disease association 

revealed a number that have been associated with cardiovascular (N = 21), immune (N = 

19), metabolic (N = 18), neurological (N = 12) and psychiatric disease (N = 10), and 

cancer (N = 17), according to the Genetic Association Database classification [116]. 

Classification of the 12 nonsynonymous SNPs identified by GWAS and the three 

nonsynonymous SNPs identified from the literature revealed five associated with auto-

immune disease, three associated with metabolic disease, and two associated with cancer. 

However, none of these disease classifications are significantly different from those 

outside of hitchhiking regions.  
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Genome clustering of deleterious SNPs  

Most deleterious SNPs lie outside of currently defined hitchhiking regions. 

However, this does not exclude the possibility that they were influenced by positive 

selection. The overlap among methods used to detect hitchhiking is low [98], and some 

hitchhiking events may not be detected by any of the methods. For example, a beneficial 

mutation may initially spread slowly through a population while it becomes disentangled 

from linked deleterious mutations. In this scenario, patterns of hitchhiking may be weak 

or absent, similar to those that occur when positive selection acts on standing genetic 

variation [117]. To characterize genomic regions enriched for deleterious SNPs, we split 

the genome into 1 Mbp windows and selected the top 2% of windows with the highest 

rate of deleterious SNPs per kb of coding sequence.  

Regions enriched for deleterious SNPs have a high ratio of deleterious to neutral 

nonsynonymous SNPs, 0.66, much higher than the genome average, 0.41. Together, these 

43 regions contain 7.4% of deleterious SNPs (Tables S3.7). 17 of these regions show 

evidence of hitchhiking, ten with evidence from three or more tests of selection. In 

addition, one region may have been influenced by positive selection on DARC [118], 

even though it does not overlap with hitchhiking regions defined by multiple tests of 

selection [98]. Ten of the regions contain deleterious SNPs in multiple duplicated 

olfactory receptor or keratin genes. Of the remaining 21 regions, 16 have deleterious 

SNPs in more than two genes. While loss of constraint may explain the accumulation of 

deleterious SNPs in some genes, particularly those that are duplicated, it is less likely to 

explain deleterious SNPs in multiple linked genes with disparate functions.  
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DISCUSSION  
Deleterious mutations have a significant impact on a species' ability to survive, 

reproduce and adapt to new environments [73-75]. In humans, there is an abundance of 

common nonsynonymous SNPs that disrupt sites highly conserved across species and 

likely to be deleterious [15]. By examining the genome distribution of nonsynonymous 

SNPs classified as either neutral or deleterious, we found a greater reduction in neutral 

compared to deleterious polymorphism within genomic regions likely to have been 

influenced by hitchhiking. This observation combined with hitchhiking simulations 

suggests that while many deleterious SNPs are eliminated due to hitchhiking, a 

substantial number of rare deleterious mutations must also increase to frequencies 

common enough to be considered polymorphic. Our results imply that positive selection 

is not responsible for the abundance of common deleterious SNPs across the human 

genome but is relevant to understanding the distribution and dynamics of deleterious 

mutations as well as certain disease alleles.  

Despite evidence for a hitchhiking effect, most common deleterious SNPs are 

unlikely to have been influenced by positive selection and are better explained by a 

change in selective constraint, mediated by a population bottleneck [81] or environment 

change [119]. Only 11.5% of deleterious SNPs occur in regions showing evidence of 

hitchhiking (Table S3.1). However, this does not exclude the possibility that positive 

selection has influenced the frequency of some deleterious SNPs outside of hitchhiking 

regions. Hitchhiking regions were defined by the overlap of two or more methods of 
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detecting selection and are unlikely to include all regions influenced by hitchhiking [98]. 

In support of this possibility, we identified a number of genomic regions that contain an 

exceptionally high ratio of deleterious to neutral SNPs. Although some of these regions 

include multiple duplicated genes, which could explain the large number of SNPs 

predicted to be deleterious, one of the regions includes a gene thought to have been under 

selection, DARC [118], and many of the regions contain deleterious SNPs in genes with 

disparate functions.  

Within hitchhiking regions, we found an elevated ratio of deleterious to neutral 

SNPs caused by a reduction in the number of neutral SNPs. The elevated ratio of 

deleterious to neutral SNPs is consistent with simulations of both single and recurrent 

hitchhiking events across a range of parameters (Figure 3.1 and Figure S3.1) and can be 

explained by the difference in the frequency distribution of deleterious and neutral SNPs 

prior to hitchhiking. During a hitchhiking event neutral and deleterious alleles increase or 

decrease in frequency depending on their original configuration with the advantageous 

mutation. However, rare alleles are more likely to be deleterious and common alleles are 

more likely to be neutral. Thus, positive selection removes many common alleles, which 

tend to be neutral, and increases the frequency of many rare alleles, which tend to be 

deleterious, resulting in an increase in the ratio of deleterious to neutral SNPs. However, 

the simulated hitchhiking events showed two patterns that were not observed in the 

human data. First, hitchhiking caused a reduction in the number of deleterious SNPs. 

Second, hitchhiking caused a much larger increase in the ratio of deleterious to neutral 

SNPs at high frequencies relative to that at low frequencies. The significance of these 
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differences is hard to evaluate since many factors known to influence hitchhiking were 

not examined, e.g. dominance, population structure, changes in population size and 

selection on new mutations versus standing genetic variation. Furthermore, hitchhiking 

simulations with high rates of recombination or strong selection against deleterious 

mutations tended to show patterns that are more consistent with those observed in 

humans (Figure 3.1 and Figure S3.1). Although some theory results have recently been 

obtained [84], further work will be needed to understand the effects of hitchhiking on 

deleterious mutations in humans.  

A number of factors besides hitchhiking may contribute to the increased ratio of 

deleterious to neutral SNPs. Background selection is expected to increase the ratio of 

deleterious to neutral SNPs, particularly within regions of low recombination (Figure 3.1). 

While the rate of recombination can explain some of the difference between hitchhiking 

and non-hitchhiking regions, the ratio of deleterious to neutral SNPs is significantly 

higher in hitchhiking regions even after controlling for differences in recombination rate 

between hitchhiking and non-hitchhiking regions. Given the slightly lower rates of 

recombination in hitchhiking regions, the logistic regression model predicts hitchhiking 

regions should have a ratio of deleterious to neutral SNPs of 0.462, which is only slightly 

higher than that in non-hitchhiking regions, 0.441, and less than that observed, 0.531. It is 

conceivable that background selection may exert much weaker effects over shorter 

intervals that are not related to regional rates of recombination. However, weak 

background selection would have to exert a stronger influence within hitchhiking 
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compared to non-hitchhiking regions, making it difficult to attribute the increased ratio of 

deleterious to neutral SNPs within these regions to background selection alone.  

Another factor that complicates the analysis of differences between hitchhiking 

and non-hitchhiking regions is how hitchhiking regions were defined. Hitchhiking 

regions were defined by genome scans for patterns of variation expected to occur as a 

result of positive selection. However, some regions identified in genome scans for 

selection are likely neutral outliers that by chance show patterns of variation similar to 

those created by hitchhiking. This was one of our main motivations for using hitchhiking 

regions defined by two or more genome scans for selection. Although a contribution from 

neutral outliers cannot be excluded, the observation that the ratio of deleterious to neutral 

SNPs is 1.87-fold higher in regions identified by all nine genome scans and 1.68-fold 

higher in regions containing genes known to have been under positive selection suggests 

that hitchhiking makes a significant contribution to the elevated ratio of deleterious to 

neutral SNPs.  

Similar to deleterious SNPs, common, disease-associated SNPs are enriched in 

hitchhiking compared to non-hitchhiking regions. In contrast, the number of rare, disease-

associated mutations in hitchhiking relative to non-hitchhiking regions is lower than that 

of OMIM morbid genes. This difference can be explained by hitchhiking. Since most rare 

disease mutations occur on different chromosomes, hitchhiking will increase the 

frequency of one or a small number of disease mutations but decrease or eliminate the 

majority of rare disease mutations. However, the difference between rare and common 

disease-associated alleles is complicated by the heterogeneous evidence used to define 
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disease-associated mutations in OMIM and the fact that common mutations are more 

likely to be associated with disease than rare mutations. The effect of hitchhiking on 

GWAS SNPs is more complex since most GWAS SNPs may be neutral. The ratio of 

GWAS SNPs in hitchhiking to non-hitchhiking regions is lower than that of all genes or 

neutral SNPs (Table S3.4). The lower frequency of GWAS SNPs in hitchhiking to non-

hitchhiking regions is consistent with a previous study [115][50] and may be caused by 

the removal of common SNPs and reduced power of linkage disequilibrium-based tests of 

association. Consistent with this possibility, the hitchhiking to non-hitchhiking ratio of 

GWAS SNPs that are nonsynonymous, and thus more likely to be causative, is higher 

than that of all GWAS SNPs.  

Our results also bear on the incidence of certain human diseases [60; 120] and 

disease alleles [121], which in some cases are higher than what one might expect based 

on disease severity. While genetic drift and population bottlenecks are likely to contribute 

to common disease alleles, balancing selection has also been invoked in some instances. 

For example, the high frequency of the delta F508 mutation in CFTR has been 

hypothesized to be the result of a heterozygote advantage due to cholera resistance [122; 

123]. Mutations in G6PD and Beta-globin have been hypothesized to provide a 

heterozygote advantage due to malaria resistance [121]. Another explanation for why 

some disease alleles are so common is the ancestral-susceptibility hypothesis, under 

which derived alleles associated with human disease were advantageous to ancestral 

lifestyles and environmental conditions [119]. Similarly, under the less is more model, 

loss of function mutations that were previously disadvantageous can become 
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advantageous [124]. In support of this model, we found five out of six nonsynonymous 

SNPs that are putative targets of positive selection are highly conserved across species 

and so classified as deleterious.  

However, our results also provide evidence for an alternative explanation for the 

frequency of common disease-associated alleles: the frequency of certain disease alleles 

is increased due to hitchhiking with linked advantageous mutations. A number of 

previous observations support this explanation. The MHC locus has been associated with 

over 40 human genetic diseases [125], and multiple lines of evidence suggest long-term 

balancing selection [126]. A mutation in HFE that causes hemochromatosis is 150 kb 

away from a hitchhiking region and may have increased in frequency due to hitchhiking 

[127-129]. Hitchhiking has also been implicated in the increased frequency of a common 

risk haplotype for diabetes, hypertension and celiac disease [130] and another risk 

haplotype for Crohn's disease [131]. Intriguingly, the delta F508 mutation in CFTR is one 

of the most common disease-causing alleles in Caucasians, with an estimated allele 

frequency of 1.4% [132], and CFTR occurs within a hitchhiking region. Four of the 

HapMap nonsynonymous SNPs within CFTR are classified as deleterious, one of which 

has been associated with infertility [133]. One of the regions with the strongest evidence 

for hitchhiking (7 tests) also has one of the highest ratios of deleterious to neutral SNPs 

(16/22, Table S3.7). Within this region, 8/16 deleterious SNPs occur in BLK, NEIL2, and 

CTSB, and there are three disease alleles in the Human Gene Mutation Database [134], 

with frequencies of 0.8%, 5.3% and 44% based on the 1000 Genomes Project. The 
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frequency of these deleterious/disease alleles may have been influenced by positive 

selection in the region.  

The interaction between positive and negative selection makes it difficult to 

isolate and understand the effects of each individually. In the presence of deleterious 

mutations, the effect of hitchhiking on linked neutral variation may be reduced compared 

to that which would occur in the absence of deleterious mutations, similar to patterns 

created by soft sweeps [117]. Conversely, hitchhiking increases the frequency of some 

deleterious mutations and decreases the frequency of others such that the distribution of 

deleterious mutations is significant different from that expected in the absence of 

hitchhiking. Furthermore, the recent expansion in human population size combined with 

population subdivision may amplify or reduce the influence of hitchhiking on deleterious 

SNPs. This will make it valuable to examine the extent to which deleterious alleles are 

enriched in hitchhiking regions in other species, particularly domesticated species where 

the strength of selection was likely strong and for which targets of selection are in some 

cases known.  

 

MATERIALS AND ETHODS  
 

Computer Simulations  

The effects of hitchhiking on deleterious and neutral polymorphism were 

simulated using a Wright-Fisher model [135]. Simulated populations had a size, N, of 

1000 diploid individuals. Mutations were distributed into the population assuming an 

infinite sites model with a Poisson rate of 2Nu, where u is the mutation rate per 
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chromosome. A Poisson number of recombination events was generated in the population 

with a rate of Nr, where r is the rate of recombination per individual. Chromosomes in 

the next generation were sampled based on the fitness of the individual from which they 

were derived. Fitness was calculated by the multiplicative effects of each non-neutral 

allele, 1+hs for heterozygous sites and 1+s for homozygous sites, where s is selection 

coefficient and h is the degree of dominance. The dominance coefficient was 0.5 for all 

simulations. For each set of parameters, simulations were run for 20N generations before 

sampling. For a single hitchhiking event, an advantageous mutation was generated in the 

center of the chromosome and sampled at the end of hitchhiking conditional on its 

fixation. For multiple hitchhiking events, advantageous mutations were generated at a 

constant rate uniformly across the chromosome and samples were taken in intervals of N 

generations. θW, θπ and θH were estimated using a sample size of 100 chromosomes as 

described in [92].  

 

Classification of neutral and deleterious SNPs  

Low-coverage SNP calls for CEU, CHB+JPT, and YRI samples were 

downloaded from the 1000 Genomes Project (release 2010_07) [93], and all tri-allelic 

sites were filtered out. Coding SNPs were identified based on their genomic coordinates 

in the NCBI reference genome (build 36) and Ensembl known genes (release #49). After 

eliminating SNPs on the sex chromosomes, SNPs in known pseudogenes or gene 

fragments, and sites monomorphic across CEU, CHB+JPT and YRI samples, there were 
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47,730 synonymous and 48,558 nonsynonymous SNPs within coding regions with multi-

species alignments used by the likelihood ratio test (see below).  

Nonsynonymous SNPs were classified as neutral or deleterious using a previously 

implemented likelihood ratio test (LRT) for conservation across multiple species [15]. 

The LRT is based on 18,993 multiple sequence alignments from 32 vertebrate species. 

Positions with less than 10 aligned eutherian mammals were excluded from the analysis 

due to low power of the LRT. At each codon in the alignment, the LRT calculates the 

likelihood of the data under a neutral model, where the nonsynonymous substitution rate 

(dN) equals the synonymous substitution rate (dS), relative to a conserved model, where 

dN can deviate from dS. For these calculations, dS is set to an average rate of 12.2 

substitutions per site across the entire tree based on an estimate from gap-free 

concatenated alignments of 1,227 genes (54 kb) with data from all species. 

Nonsynonymous SNPs were predicted to be deleterious if: 1) the codon is significantly 

conserved by the LRT (P < 0.001), 2) dN is less than dS, and 3) the derived amino acid is 

not present at orthologous positions in other eutherian mammals.  

 

Correlation of SNP density with recombination rate  

The density of SNPs was measured as a function of local recombination rate using 

CEU, CHB+JPT, and YRI SNPs from the 1000 Genomes Project. Following previous 

work [136], recombination rates were estimated from non-overlapping 400 kb windows 

by dividing the genetic map distance of the two most distant SNPs by their physical 

distance. The genetic map, estimated by LDhat [137], was obtained from the 1000 
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Genomes Project. Windows that were less than 10 Mb away from the end of centromeres 

and telomeres, windows without a pair of SNPs greater than 360 kb apart, and windows 

with no aligned coding sequence were excluded. The remaining 3,666 windows were 

assigned into ten equal-sized bins by their recombination rates, and the number of 

synonymous, nonsynonymous deleterious and nonsynonymous neutral SNPs was counted 

per kb of aligned coding sequence in each bin. To account for the the proportion of 

codons that are conserved, which is correlated with both the rate of recombination and 

the number of G or C nucleotides within codon (Figure S3.2A), codons in each 

recombination bin were subdivided into four classes by the number of GC nucleotides 

within the human codon (j = 0, 1, …, 3). In cases of polymorphic codons, GC content of 

the ancestral codon were counted. A total of 6,248,078 codons were classified as 

significantly conserved or not by the LRT at a P-value cutoff of 0.001. The relationship 

between recombination and the ratio of deleterious to neutral SNPs was assessed using 

the logistic regression model:  

 

where DELi, j, and NEUi, j, are the number of deleterious and neutral nonsynonymous 

SNPs, respectively, ri is the average recombination rate of windows in bin i, and si, j 

adjusts for differences in the number of potentially deleterious sites. si, j was estimated by:  
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where fconi, j is the fraction of conserved codons out of all aligned codons with j GC 

nucleotides in bin i, fcon j is the mean of fconi, j over all i = 1, …, 10, and fdelj is the 

fraction of deleterious out of all tested nonsynonymous SNPs with the same j GC 

nucleotides.  

To account for biased gene conversion, which has been previously proposed to 

explain a higher rate of GC-biased disease alleles in regions of higher recombination 

[138], we re-examined the relationship between the ratio of deleterious to neutral SNPs 

and recombination after excluding 13,995 AT-to-GC mutating SNPs potentially affected 

by biased gene conversion. SNPs within codons with zero GC nucleotides were also 

eliminated due to their relatively small number (N = 335). Using the logistic regression 

model that accounts for the variation in the number of potentially deleterious sites, the 

regression coefficient β1 of recombination rate remained similar (-0.097 to -0.101) and 

highly significant (P = 9.3 x 10
-6

).  

 

SNPs in hitchhiking and non-hitchhiking regions  

Hitchhiking regions were defined by genomic intervals that were identified by 

two or more out of nine tests for hitchhiking, using intervals rounded to the nearest 

multiple of 10 kbp [98]. To compare different methods, we examined regions that were 

identified by one method and overlapped with any other method. Non-hitchhiking regions 

were defined as autosomal regions excluding hitchhiking regions as defined above. The 

density of deleterious and neutral nonsynonymous SNPs was measured relative to the 
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accessible portion of aligned coding regions used for likelihood ratio test. The accessible 

genome, which satisfies minimum read depth required for SNP calling, was obtained 

from the 1000 Genomes Project for CEU, CHB+JPT, and YRI [93], and their union was 

used for the combined analysis of all samples. The difference between the SNP density 

within hitchhiking and non-hitchhiking regions was tested by a two-proportion z-test.  

To test whether a higher ratio of deleterious to neutral SNPs in hitchhiking 

relative to non-hitchhiking regions is caused by a higher recombination rate or a larger 

number of potentially deleterious sites in hitchhiking regions, the 400-kb genomic 

windows which were already binned by the rate of recombination and the number of GC 

nucleotides in a codon were further classified into hitchhiking and non-hitchhiking 

groups. After removing windows near centromeres and telomeres, there were 388 

windows identified by three or more tests of hitchhiking that were assigned to the 

hitchhiking group (h = 1), and 2,917 windows without any hitchhiking regions that were 

assigned to the non-hitchhiking group (h = 0). The data were fit to the following logistic 

regression model:  

 

where ri is the rate of recombination, si,j,h adjusts for the density of conserved codons and 

h is an indicator variable for hitchhiking windows.  

To study the decay of the ratio of deleterious to neutral SNPs as a function of 

distance from hitchhiking regions, we used regions identified in CEU by iHS [100] and 

Rsb [101]. For iHS, the top 5% of scanned genomic windows (a total of 127.6 Mb) were 
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used as hitchhiking regions, as described below. For Rsb, we used regions identified in 

CEU in comparison to both YRI and CHB+JPT (a total of 119.7 Mb). Deleterious and 

neutral nonsynonymous SNPs outside iHS and Rsb regions were assigned into bins of 

non-overlapping 200-kb windows by their distance from the nearest hitchhiking region. 

The ratio of deleterious to neutral SNPs was modeled as a function of the distance (dk) of 

each window in bin k to the nearest hitchhiking region using logistic regression:  

 

Population specific patterns of hitchhiking were examined using regions 

identified by multiple tests of selection and by iHS alone. Regions identified by multiple 

tests of selection were not differentiated by which population showed evidence of 

selection and so represent a composite view of hitchhiking [98]. iHS regions were 

identified in CEU, CHB+JPT, and YRI, using empirical cutoffs of 0.25%, 1%, and 5%. 

To identify iHS hitchhiking regions using HapMap Phase II data, iHS scores of 

individual SNPs (HapMap Phase II) were downloaded (http://hg-

wen.uchicago.edu/selection/), and for each 100-kb non-overlapping genomic window the 

signal of selection was evaluated by the fraction of SNPs with iHS scores above +2 or 

below -2, as in Voight et al. [100]. Windows were grouped into bins by the number of 

SNPs within the window using increments of 25 SNPs. Empirical cutoffs were applied 

separately to each bin. Windows with less than 10 SNPs and bins with less than 100 

windows (less than 400 for the 0.25% cutoff) were excluded.  
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Disease-associated alleles in hitchhiking and non-hitchhiking regions  

Disease-associated alleles were obtained from OMIM 

(http://www.ncbi.nlm.nih.gov/omim), a catalog of published GWAS studies 

(http://www.genome.gov/26525384) and Google Scholar searches of the literature. For 

OMIM, dbSNP IDs (release #132) with OMIM links were downloaded 

(ftp://ftp.ncbi.nih.gov/snp/database/organism_data/human_9606/OmimVarLocusIdSNP.b

cp.gz ). Excluding InDels, unmapped variants, and variants on sex chromosomes, 10,775 

OMIM variants were re-mapped to the reference genome using UCSC's LiftOver 

program. All OMIM variants included in HapMap Phase II (release #24) were considered 

common enough to be SNPs with the exception of those with minor allele frequency of 

zero. Average minor allele frequency across CEU, CHB+JPT, and YRI was compared 

between hitchhiking and non-hitchhiking regions. For allele frequency, HapMap Phase 

II+III (release #26) data were used [139]. For disease SNPs identified in the 1000 Human 

Genomes project [93], common and rare variants were distinguished by their mean allele 

frequencies across CEU, CHB+JPT, and YRI using a 5% allele frequency cutoff. SNPs 

without allele frequencies were set to an allele frequency of zero.  

Disease-risk alleles were obtained from a catalog of published Genome-Wide 

Association Studies (GWAS) [115]. Excluding 115 regions without associated SNPs and 

10 regions with multi-SNP haplotype associations, we obtained 3,383 non-redundant 

autosomal risk alleles with the strongest trait association at each locus from a total of 585 

published studies. Allele frequencies in control population and odds ratios were available 

for 2,504 and 1,253 risk alleles, respectively. Reported risk allele frequencies were 
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averaged over control populations if the risk allele was identified in more than two 

studies. However, reported odds ratios were not pooled over different studies and traits 

even if the risk allele was reported in multiple studies.  

To examine common deleterious and neutral SNPs reported in the literature, we 

used Google Scholar (http://scholar.google.com) and the dbSNP rs number as the search 

term. The set of tested SNPs was based on 790 deleterious SNPs and 369 neutral 

nonsynonymous SNPs with an allele frequency of greater than 30% in the HapMap CEU 

panel. SNPs within known olfactory receptors were excluded. Neutral SNPs were 

matched to the frequency distribution of deleterious SNPs by acceptance-rejection 

sampling. As a result, derived allele frequencies are not significantly different between 

the two sets (Wilcoxon Rank Sum Test, P = 0.79). For each SNP, we searched for 

reported phenotype associations based on population association or cell-based functional 

assays. To minimize potential human biases, dbSNP identifiers of deleterious and neutral 

SNPs were mixed together and Google Scholar search results were manually examined 

without knowledge of SNP classification. Patents, eQTL associations, conference and 

poster abstracts, and journals without full-text access were excluded. SNP associations 

had to be significant after a multiple testing correction. SNP association studies with 

sample size less than 200 were also not included.  

 

Genome clustering of deleterious SNPs  

To identify genomic regions with exceptionally high rates of deleterious SNPs per 

coding sequence, 1-Mb sliding windows were scanned across all autosomes with a step 
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size of 0.5Mb. Assuming that the rate of deleterious SNPs per accessible coding sequence 

is constant across the genome, a Poisson distribution was used to evaluate the excess 

number of deleterious SNPs in each window. The expected number of deleterious SNPs 

per window was set to the product of the genome average (0.51 deleterious SNPs per 1kb 

accessible CDS) and the length of accessible coding sequence in the window. Out of 

3,549 windows with at least two deleterious SNPs, 70 (2%) with the highest P-value were 

selected (P < 4.5 x 10
-4

). After excluding regions that were consecutive to or overlapped 

another region with a smaller P-value, we retained 43 regions.  
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FIGURES 
 

 

Figure 3.1. The effect of hitchhiking on neutral and deleterious polymorphism as a 

function of the rate of recombination. The rate of low, intermediate and high frequency 

deleterious polymorphism measured by θW (black), θπ (red) and θH (blue), respectively, 

before (crosses) and after (squares) a single hitchhiking event (A) and in the presence 

(crosses) and absence (squares) of multiple hitchhiking events (C). Average 

heterozygosity (θπ) of neutral polymorphism is shown in gray. The ratio of deleterious to 

neutral polymorphism before (crosses) and after (squares) a single hitchhiking event (B) 

and in the absence (crosses) and presence (squares) of multiple hitchhiking events (D). 

All panels show the mean of 500 simulations for which 4Nun = 70, 4Nud = 70, 4Nsd = -10 

and 4Nsa = 100, where N is the population size, u is the mutation rate, s is the selection 

coefficient, and subscripts n, a and d refer to neutral, advantageous and deleterious 

mutations. In panel A, a single hitchhiking event occurs at the center of the chromosome. 

In panel B, 4Nua = 0.5 and multiple hitchhiking events occur across the entire 

chromosome.  
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Figure 3.1. (Continued)
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Figure 3.2. Regions of low recombination are enriched for deleterious SNPs. The 

number of synonymous (SYN) and neutral nonsynonymous (NEU) and deleterious 

(DEL) SNPs per kb of coding sequence (A) and the ratio of deleterious to synonymous or 

neutral nonsynonymous SNPs (B) as a function of the local recombination rate. The rate 

of neutral and deleterious SNPs was normalized by the number of sites that were testable 

by the likelihood ratio test. Lines show the results of logistic regression.  
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Figure 3.3. Rates of deleterious and neutral SNPs in hitchhiking and non-hitchhiking 

regions. The ratio of deleterious (DEL) to neutral (NEU) SNPs is higher in hitchhiking 

relative to non-hitchhiking regions (A). The rate of neutral SNPs is reduced (B) and the 

rate of deleterious SNPs remains relatively constant (C) in hitchhiking compared to non-

hitchhiking regions. The x-axes in panels A-C denotes the minimum number of methods 

used to define hitchhiking regions. Non-hitchhiking regions are labeled by a dash(–). The 

ratio of deleterious to neutral SNPs is higher in hitchhiking to non-hitchhiking regions for 

the majority of tests of selection (D). Tajima's D was used by two studies: [140]
1 
and 

[141]
2
. Bars show 90% confidence intervals, one, two and three stars indicate P < 0.05, P 

< 0.01, and P < 0.001 based on a one-sided Fisher's Exact Test.  
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Figure 3.3. (Continued)
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Figure 3.4. The ratio of deleterious to neutral nonsynonymous SNPs declines as a 

function of distance to the nearest hitchhiking region. Hitchhiking regions were defined 

using the European population by iHS (A) or Rsb (B). Sample size is indicated by circle 

size. Green circles represent iHS and Rsb hitchhiking regions.  
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Figure 3.5. Enrichment of disease-associated alleles in hitchhiking relative to non-

hitchhiking regions. Each category shows the number within hitchhiking to non-

hitchhiking regions, where hitchhiking regions were defined by the overlap of three or 

more tests of selection. Neutral SNPs are from HapMap Phase II. Disease alleles in1000 

Genomes columns are based on the Human Gene Mutation Database. The sample size of 

each category is shown in parentheses. Bars show one-sided Fisher's Exact test 

comparisons, not significant (ns), P < 0.05 (*), P < 0.01 (**), and P < 0.001 (***).  
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TABLES  

Table 3.1. The ratio of deleterious to neutral SNPs at low, intermediate and high 
frequencies. 

Deleterious / Neutral 
Allele frequency 

Hitchhiking Non-hitchhiking 

Fold increase in  
hitchhiking regions 
(95% CI) 

Low (0 – 0.008) 650 / 1013 (0.64) 5469 / 9109 (0.60) 1.07 (0.96 – 1.19) 

Intermediate (0.008 – 0.059) 470 / 1050 (0.45) 4241 / 10376 (0.41) 1.10 (0.97 – 1.23) 

High (0.059 – 1.0) 329 / 1206 (0.27) 2935 / 11710 (0.25) 1.09 (0.95 – 1.24) 

 
Hitchhiking regions are defined by two or more tests of selection. 
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SUPPORTING INFORMATION  

 

 

Figure S3.1. The effect of hitchhiking on neutral and deleterious polymorphism as a 

function of the rate and strength of advantageous and deleterious mutations.  
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Figure S3.1. (Continued) 
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Figure S3.2. The ratio of deleterious to neutral SNPs is associated with the rate of 

recombination. 
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Figure S3.3. Hitchhiking regions are enriched for deleterious SNPs.  
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Table S3.4. Frequency of disease-associated alleles in hitchhiking and non-hitchhiking 

regions. 

Class Hitchhiking Non-Hitchhiking Ratio 1 
All genes 2 1203 17601 0.068 
OMIM morbid genes 105 1475 0.071 
Rare neutral variants 3 285 4215 0.068 
Common neutral SNPs 3 435 7888 0.055 
OMIM rare variants 4 351 7408 0.047 
OMIM SNPs 4 126 1596 0.079 
1000 genomes rare variants 5 20 392 0.051 
1000 genomes SNPs 5 10 130 0.077 
GWAS SNPs 6 181 3069 0.059 
GWAS NSN SNPs 12 101 0.119 
Literature SNPs 7 3 103 0.029 
 

1 Ratio is the number within hitchhiking to non-hitchhiking regions, where hitchhiking 

regions are defined by the overlap of three or more tests of selection.  

2 Ensemble 49, known protein-coding genes, no pseudogene, no gene fragment, only 

autosomal genes. 

3 Neutral nonsynonymous variants in HapMap. Common SNPs are those with an allele 

frequency greater than or equal to 5%.  

4 Disease-associated variants that are rare or common enough to be typed in the HapMap 

project. 

5 1000 human genomes variants that have been associated with human disease in the 

Human Gene Mutation Database. SNPs are those with an allele frequency greater than or 

equal to 5%.  
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6 SNPs associated with human disease from genome-wide association studies (p < 1.0 x 

10-5). 

7 Nonsynonymous SNPs which have been reported in the literature to be functional by 

disease-association or a functional assay. 
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The following supplementary tables are available from the PLoS genetics website 

(http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1002240).  

 
Table S3.5. Disease or phenotype associated SNPs within hitchhiking regions. 
 
Table S3.6. Genes in hitchhiking regions with deleterious SNPs. 
 
Table S3.7. Genomic regions enriched for deleterious SNPs. 
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ABSTRACT 

Preterm birth is a complex genetic disorder of birth timing regulation, of which 

components and their interactions are not well understood. Recently, one of such 

component, FSH receptor (FSHR), was discovered by the genetic association with 

preterm birth in Finnish mothers. However, it is not clear what role FSHR plays in 

determining the timing of birth in term and risk for preterm deliveries. As a first step to 

address this question, we fine-mapped the candidate causal variants underlying the 

genetic association of FSHR by sequencing a total of 44-kb regions, including protein-

coding and conserved non-coding sequences, in 127 preterm and 135 term Finnish 

mothers. Overall, we identified 288 single nucleotide variants and 65 insertion/deletions 

of 1-2 bp across all subjects; however, no common SNP in the protein-coding region is 

associated with preterm birth. To narrow the causal variants down in non-coding regions, 

we conducted fine-mapping and haplotype analysis and determined that both protective 

(P=0.02, OR=0.48, 95% CI = 0.23-0.94) as well as risk promoting (P=0.02, OR = 1.87, 

95% CI = 1.08-3.29) haplotypes spanning intron 1 and 2 underlie the association of 

FSHR with preterm birth. In these haplotypes, two SNPs, rs12052281 and rs72822025, 

are predicted to cause risk of and protection from preterm birth by disrupting putative 

binding sites for ZEB1 and Elf3 transcription factors, respectively. These transcription 

factors have been implicated in regulatory function in human parturition, but previously 

not implicated with FSHR regulation. Although our claims need further functional 

validation, they provide a testable hypothesis on the mechanism of FSHR in regulation of 

birth timing in human.  
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INTRODUCTION 
Preterm birth is a complex genetic disorder of which mechanisms and 

pathophysiology are little understood. However recent evidence has begun to accumulate 

that some forms of preterm birth may be an extreme phenotype of heritable genetic 

variation in the length of gestation [29]. Multiple twin studies reported that the length of 

gestation is partly genetic with the maternal heritability of 15-40% [22-25]. Prior history 

of post-term as well as preterm delivery is a strong predictor of the length of gestation of 

subsequent pregnancies [30]. Moreover, preterm birth clusters among siblings [142], 

across generations in kinship [143; 144] and even by races [32; 33].  

Identifying the genes underlying the genetic risk for preterm birth has shed light 

on the components of the pathway determining the timing of human parturition [29; 145]. 

In particular, the genetic association of FSH receptor (FSHR) with preterm birth has been 

identified in Finnish and African Americans, although the details of mechanism by which 

FSHR predisposes women to preterm birth is not clear yet [29]. While the main function 

of FSHR in females is the regulation of ovarian function and follicular development, its 

expression in the uterus or cervix hints that it may have a potential function therein [146-

148]. One possibility is that FSHR may regulate the transition of the myometrium from 

the quiescent to contractile state on the onset of labor. In support of this idea, the serum 

levels of its ligand, FSH, progressively increase toward the end of pregnancy [149], and 

FSH has been shown to modify the electrical signaling property of the myometrium in 

vitro [148].  
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In order to predict causal variants underlying the association of FSHR with 

preterm birth, we sequenced coding and conserved non-coding regions in Finnish preterm 

and full-term mothers. The Finnish population were chosen over the African Americans 

for a number of reasons, such as the higher signal of association with preterm birth [29], 

the genetic homogeneity due to a founder effect [150], and lower environmental risks for 

preterm birth. In the Finnish cohort, we find that neither a common nonsynonymous SNP 

nor the aggregate burden of rare variants is associated with preterm birth. By fine-

mapping and haplotype analysis, the predicted causal non-coding variants are narrowed 

down to risk and protective haplotypes spanning intron 1 and 2. After computationally 

characterizing the effects of predicted transcription factor binding sites in these 

haplotypes, we propose that common SNPs disrupting putative binding sites for ZEB1 

and Elf3 transcriptional factors may increase or decrease the risk for preterm birth by 

affecting the differential expression of FSHR. 

 

RESULTS 

Identification of genetic variants in coding and non-coding regions  

To identify potentially causal variants underlying the genetic association of FSHR 

with preterm birth, 67 candidate regions were sequenced in 127 preterm and 135 term 

Finnish mothers (Materials and Methods), covering a total of 17 kb of sequence within 

candidate regions and an additional 27 kb of sequence flanking the candidate regions. 

The candidate regions include FSHR protein-coding regions as well as any non-coding 

regions likely to be functional. Non-coding regions were selected based on experimental 
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evidence from the literature, sequence conservation across placental mammals using 

PhastCon [151], or rapid evolution along the human lineage. Rapidly evolved sequences 

are of particular interest since they may have influenced changes in the length of 

gestation during human evolution [29]. 

Using next-generation sequencing technology, we applied a pooled high-

throughput sequencing protocol [152; 153] to sequence the target regions in equimolar 

pools of cases and controls. Although this protocol cannot assay individual genotypes, 

single nucleotide variants (SNVs) and 1 – 2 bp insertions/deletions (InDels) can be 

efficiently identified with the high sensitivity and specificity along with their allele 

frequencies.  Across both cases and controls, we identified a total of 281 high-quality 

variants and an additional 72 lower-quality variants (Table 4.1). The lower quality of 

some variants can be attributed to either their low frequencies or low read coverage. 

Nearly all of low-quality variants (98.2%) are very rare, estimating to occur in one or two 

alleles in the pool, and four lower-quality variants were detected at 0.93% of sites that 

were sequenced in less than 30 reads per allele, the read coverage needed to saturate the 

power to detect variants in pooled samples [152]. However, not all rare variants are 

lower-quality; 49.2% of singleton and doubleton variants pass our high-quality thresholds. 

The power and accuracy of variant identification were validated in three ways. 

First, we added plasmid controls to our library at a singleton allele frequency, and  

recovered all singletons with no false positive. Second, a large proportion of SNVs 

identified in our subjects are variants also known in the dbSNP database (release 135) or 

the 1000 Genomes Project [93]; the proportions of known SNVs are substantially higher 
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among both of the high- and lower-quality SNVs (93.0% and 38.1%, respectively) than 

among putative sequencing errors, which could not satisfy our variant detection criteria 

(1.0%). Third, the estimated allele frequencies were cross-checked using 24 SNPs that 

were previously genotyped with Affymetrix microarrays in partly overlapping human 

subjects [29]. The frequencies estimated by pooled sequencing agree well with those 

obtained by genotyping (Pearson's correlation coefficient = 0.99) (Figure 4.1).  

Genetic variants altering protein sequence 

Although we did not find any frame-shift, splice-site, or nonsense variants in 

FSHR, we identified four nonynonymous variants (Table 4.2). All of them were 

previously reported in dbSNP and have high variant quality scores in our data, and thus 

are unlikely to be false positives. Among them, two alleles, p.S680N and p.A307T, reach 

high enough allele frequencies to be tested for the direct allelic association with preterm 

birth. In particiular, p.S680N is potentially functional, since it was previously found to be 

associated with the the length and dynamics of menstrual cycle [34]. However, neither 

p.S680N or p.A307T show significant association with preterm birth (Methods, two-

proportion Z-test, P = 1.0 and 0.86, respectively). 

Although the sample size was too small to detect the direct association of rare 

variants, we observe two potentially functional nonsynonymous rare variants, p.A189V 

and p.R162K in our samples. p.A189V was detected as a singleton unique to the case 

pool, and based on an allele frequency of 0.4%, it is likely to be carried heterozygously in 

a single individual. The p.A189V disrupts an evolutionarily conserved amino acid (P < 

10-8 by the likelihood ratio test [15] and probably damaging by PolyPhen-2 [154]) and is 
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a well-characterized loss-of-function mutation previously reported to cause ovarian 

failure in homozygotes [155].  

Another variant p.R162K is over-represented two-fold in controls (2.6%) relative 

to cases (1.3%). Although the difference is not significant, the sequence conservation 

suggests that p.R162K may be potentially deleterious. Although PolyPhen-2 predicts it as 

benign, the mutated residue is marginally conserved evolutionarily according to the 

likelihood ratio test (P=0.0017), and despite the biochemical similarity between arginine 

and lysine, lysine was not observed at orthologous positions of any other 18 placental 

mammals aligned at this site. 

No enrichment of rare variants in cases 

Although an individual rare variant can explain only a small fraction of the risk 

for common genetic disorder, rare variants can still make a substantial aggregate 

contribution to the risk [4; 5]. To test if rare variants in FSHR are implicated to the risk of 

preterm birth, we compared the distribution of rare SNVs, defined by minor allele 

frequency less than 1%, between cases and controls (Table 4.3).  

In the protein-coding regions, only one nonsynonymous rare SNV, p.A189V, is of 

high variant quality and unique to case individuals. In candidate non-coding regions, 

three additional high-quality rare SNVs were found at conserved nucleotides, defined by 

PhyloP (P < 0.05) [156], which are likely to be functional. In total, combining conserved 

non-coding and nonsynonymous sites within candidate regions, an equal number of rare 

high-quality SNVs are uniquely observed in cases and controls (N=2). The lack of 

enrichment of rare variants in cases cannot be attributed to the lower sensitivity of variant 
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detection or the slightly smaller sample size for the case cohort compared to the control. 

When the sensitivity for variant detection is maximized at the expense of specificity by 

lowering the cut-offs of variant quality scores, only two additional lower-quality rare 

SNVs can be identified, and all of which are unique to controls. In addition, when the 

sequences flanking candidate regions, which are likely to deplete of functional sites, are 

used to control for the differences of the sensitivity and sample size, the number of rare 

SNVs at conserved non-coding or nonsynonymous sites in candidate regions is not 

significantly different between cases and controls (Fisher’s Exact Test, P = 1.00 and 0.67 

for the variants of high-quality and of both high- and lower-quality, respectively).  

Even when the rare variant class is extended to those of minor allele frequency up 

to 5%, we cannot find any significant enrichment of rare SNVs in cases compared to 

controls (Supplementary table 3). At a minor allele frequency between 1% and 5%, there 

are three high-quality and two lower-quality SNVs at conserved non-coding sites of 

candidate regions. However, these variants are not significantly over-represented in cases 

compared to controls.  

Fine-map the association of common variants 

A previous study by Plunkett et al. identified three tag SNPs, rs11686474, 

rs11680730 and rs12473815, in linkage disequilibrium to be significantly associated with 

preterm birth with odds ratios of 1.76 – 1.82 in the Finnish cohort used in our study [29]. 

In our current study, we observe a slight decline in the odds ratios of the tag SNPs to 1.58 

– 1.59. The decrease of odds ratios is caused by subtle differences of allele frequency 

estimates between the two studies, as this study only includes a subset of subjects from 
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the earlier report. In our current study, the average minor allele frequency of the three tag 

SNPs, is estimated to be 40.1% in cases and 29.7% in controls, whereas the previous 

study reports the frequency of 41.8% in cases and 29.0% in controls.  

To fine-map the association of FSHR with preterm birth, 169 common variants in 

sequenced regions were tested for the allelic association with preterm birth (Figure 4.2). 

The common variants are defined by a minor allele frequency > 5%, and include 17 

InDels as well as 152 SNPs. The candidate regions encompass 39% (17 kb) of sequenced 

regions and harbored 30.8% (N=52) of common variants, and the flanking sequences 

contain the rest of common variants. If a potentially causal variant exists, it will associate 

with preterm birth at least as strongly as the associated tag SNPs. Of 169 tested variants, 

11 SNPs had association stronger than the three associated tag SNPs (two proportion Z-

test, P <= 0.05). All 11 associated SNPs are non-coding and localize in 103 kb region 

spanning intron 1 and 2. The SNP with the highest association (rs12052281) is located in 

a conserved non-coding element in the intron 2 (two-proportion Z-test, P=0.026).  

 To explore the linkage disequilibrium structure within the fine-mapped interval 

bounded by the 11 associated SNPs, we examined the haplotypes of 93 normal Finns 

(FIN) [93], which were computationally phased using MaCH/Thunder [157] by the 1000 

Genomes Project Consortium (Figure 4.3, Methods). Within a total of 9 kb sequenced 

region inside the 103 kb fine-mapped interval, 39 SNPs are known to segregate at a 

minor allele frequency over 5% and clustered in four major haplotypes in the 1000 

Genomes Project data (FIN). These four haplotypes constitute 77% of chromosomes in 

FIN, and the rest are either rare haplotypes below a 5% frequency or could not be directly 
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tagged by a known allele within the sequenced regions. All of the four haplotypes are in 

linkage disequilibrium with the SNPs that were originally discovered to be associated 

with preterm birth by Plunkett et al. (D' = 1.0) [29] (r2 =0.28, 0.06, 0.32 and 0.38, 

respectively).  

To estimate the frequencies of these haplotypes in cases and controls, we utilized 

21 SNPs tagging one of the four haplotypes with r2 > 0.9 in FIN (Figure 4.4, Methods). 

Based on the genetic homogeneity of the Finnish population, we assume that the linkage 

disequilibrium is consistent across FIN and our Finnish preterm and term cohorts. 

Haplotype 1 shows a significant risk promoting effect (Fisher's exact test, P = 0.0074, OR 

= 2.03, 95% CI = 1.17 – 3.53), and haplotype 2 shows a significant protective effect (P = 

0.010, OR = 0.42, 95% CI = 0.21 – 0.85). The frequencies of haplotype 3 and 4 are not 

significantly different between cases and controls. To test if the effects of haplotype 1 

and 2 are independent from each other, we re-examined the association of haplotype 1 

with preterm birth after excluding haplotype 2 from the gene pool, and vice versa. The 

odds ratios for both haplotypes (OR = 1.87 and 0.48, respectively) remain similar after 

this correction and are significantly different from 1.0 (Fisher's exact test, P = 0.020 and 

0.023, respectively). The tag SNPs previously used by Plunkett et al. (rs11686474-

rs11680730-rs12473815) [29] captures both haplotype 1 and 2 simultaneously, with one 

allele tagging the risk promoting haplotype and the other tagging the protective haplotype.  

Candidate causal variants in risk and protective haplotypes 

Assuming the simple genetic model of co-dominance and no epistasis, a 

potentially causal risk variant should be exclusively carried by the risk promoting 
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haplotype and not by other haplotypes for which we found protective or no effect. This 

criterion may not hold under more complex scenarios such that the casual risk variant is 

completely recessive, or that the risk phenotype is rescued by cis-epistatic interactions in 

the other haplotype background. In the risk promoting haplotype, six variants satisfying 

this criterion are segregating in the 9-kb sequenced regions within the fine-mapped 

interval (Figure 4.3) and thus can be examined for the potential direct causality. The p-

values of association are not highly informative for further narrowing down of the causal 

variants within the risk promoting haplotype, since all of variants within the haplotype 

are in strong linkage disequilibrium and their allele frequency estimates are inexact due 

to pooling and sampling variation. Thus, we instead screened the 9-kb sequenced regions 

in the fine-mapped interval for evolutionarily conserved sites disrupting a putative 

transcription factor binding site by utilizing databases of transcription factor binding 

motifs, TRANSFAC [158], JASPAR [159] and UniProbe [160]. Out of the six candidate 

variants, we identify two in conserved non-coding elements defined by PhastCon, and 

only one out of the two, rs12052281, is found at conserved nucleotides defined by PhyloP 

(P < 0.05).  

The risk allele of rs12052281 (G) is a derived allele and predicted to impact the 

binding for ZEB1 transcriptional repressor by 12.5% (Methods) [161]. A previous study 

identified ZEB1 as a key suppressor of the genes involved in uterine contraction in both 

humans and mice [162]. FSH, the ligand recognized by FSHR, has been known to 

modulate the electrical signaling property of the uterine muscle [148], thus the weaker 

binding for ZEB1 of the rs12052281 G allele may increase the risk for preterm birth 
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through premature de-repression of FSHR. The up-regulation of FSHR may work in 

conjunction with rising serum FSH levels toward the end of pregnancy [149].  

Similarly, the protective haplotype contains seven variants, which are not shared 

with haplotypes of risk or no effect (Figure 4.3). Although none of those variants is 

located within sequence elements or at nucleotides conserved across placental mammals, 

rs72827283 and rs72822025 are within the sequence element identified to be conserved 

across primates by PhastCon. In particular, the protective rs72822025 A allele is at an 

Elf3 binding motif characterized by protein-binding micorarray and predicted to reduce 

the binding energy by 27.1% [163]. In mice, Elf3 is known to be up-regulated during late 

pregnancy and activate prostaglandin synthesis pathway in the uterus through 

transcriptional activation of COX-1 [164]. 

 

DISCUSSION 
As a necessary first step to follow up on the previously reported genetic 

association of FSHR with preterm birth, we conducted a sequencing-based fine-mapping 

study to narrow down the candidate causal variants underlying this genetic disorder in the 

Finnish population. We rule out the possibility of causal variants in the protein-coding 

region, and map the candidate causal variants to risk promoting and protective haplotypes 

spanning intron 1 and 2. To further narrow down candidate causal variants, we scanned 

for putative binding sites for transcription factors known to be differentially regulated 

toward the end of pregnancy and computationally characterized the expected effects of 

binding site mutations. Based on these results, we predict that the timing of parturition 
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might be modulated by transcriptional regulation of FSHR by ZEB1 and Elf3 

transcription factors in human. 

In this study, we do not observe any evidence that preterm birth cases are 

enriched with rare variants in FSHR, although in the literature some evidence suggests 

otherwise. In FSHR, there are a number of well studied rare mutations causing the 

reduced fertility or ovarian hyperstimulation syndrome [165], both of which are known 

risk factors of preterm birth [166; 167]. Although the rare deleterious variant p.189V that 

is unique to our preterm subjects and known to reduce fertility may fit this category, the 

total contribution of rare variants to preterm birth seems to be very small based on the 

observation that in nonsynonymous or conserved non-coding sites the three case-specific 

high-quality rare SNVs constitute merely 3.6% of combined allele frequency in the case 

pool (Supplementary table 3 and 4). The three case-specific rare SNVs include a non-

coding variant with MAF of 0.8% located at chr2:49,202,765 in a putative binding site 

for peroxisome proliferator-activated receptor alpha (PPARA), which has been 

implicated with preterm birth complicated with infection [168] or alternatively in a 

putative binding site for vitamin D receptor (VDR), which is also known to be 

differentially expressed in preterm placental tissue [169]. Another rare variant with MAF 

of 2.4% is located at chr2:49,202,863 in a putative binding site for SOX transcription 

factors, which was observed to be differentially regulated in the uterus of mice and to a 

lesser degree in humans [164].  

To search for causal variants efficiently, we focused on protein-coding regions 

and conserved non-coding elements. Conserved intronic and intergenic regions in FSHR 
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are known to be enriched with cis-regulatory elements [170; 171]. On the other hand, 

non-conserved regions, although potentially interesting, are often repetitive sequences 

making specific PCR amplification difficult and labor-intensive. ~53% of non-conserved 

genic regions are classified as repeats by RepeatMasker [172], whereas only ~13% of 

sequenced regions are repetitive. Moreover, it is often difficult to justify the functional 

predictions made at non-conserved non-coding sequences in the absence of direct 

experimental evidence. Nonetheless, we cannot rule out the possibility that the causal 

variants might be outside of our sequenced regions, which include only conserved 

regions and their flanking sequences.  

We predicted that causal common SNPs might disrupt putative binding sites for 

ZEB1 and Elf3 transcription factors. The most critical piece of information supporting 

this prediction came from the observation that the effects of mutations agree with the 

direction of regulatory changes in FSHR transcription expected by risk and protective 

alleles. Given that the serum FSH levels rise toward the end of pregnancy [149], we 

hypothesized that up-regulation of FSHR predisposes to preterm birth and down-

regulation of FSHR protects from preterm birth. That being said, however, it is not clear 

yet whether FSHR expression indeed goes up toward the end of pregnancy and 

particularly in preterm labor. In the mouse myometrium, there seems to be no significant 

difference in FSHR mRNA levels throughout pregnancy [162]. However, the physiology 

of pregnancy and parturition in primates and particularly in humans is highly diverged 

from that of other mammals [173]. Moreover, the putative ZEB1 binding site in FSHR 

seems non-functional in mice, because the predicted binding energy of mice sequence is 
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only ~34% of the human wild-type. To resolve this conflict, the function and 

transcriptional regulation of FSHR will need to be studied directly in humans.  

Can the predicted causal variants explain the signal of association observed in 

other populations [29]? Although Plunkett et al. did not genotype any SNP corresponding 

to the protective haplotype in the US populations, they included rs3788982, which tags 

our candidate risk variant rs12052281 with r2 of 0.93 and 0.79 in CEU and YRI, 

respectively (SNAP, HapMap release 22)[174]. However, in the European American 

population, the risk promoting haplotype shows a slightly protective effect (OR=0.79), 

although it was not significant (P = 0.09). The lack of significant effect of the risk 

promoting haplotype in this population might be due to epistatic interactions between 

genes or gene-by-environment interaction unique to the European American population. 

Or, perhaps, the risk variant may seem as if to exert a relatively stronger effect in a 

population with a higher frequency of protective variants such as in the Finnish 

population. The Finnish population has a much higher frequency of the segregating 

protective variant rs72822025 (16.4%) than CEU (4.4%) [93]. Unlike US whites, in US 

blacks the risk promoting haplotype showed an expected risk effect (OR=1.43, P=0.17), 

although it is not significant. However, rs11686474, which has a weak r2 of 0.43 with the 

candidate risk variant rs12052281, shows a much stronger effect (OR=1.73, P=0.004) 

than rs3788982 that is expected to directly tag the causal risk variant. It is possible that 

rs12052281 might be tagging a third yet unknown causal variant segregating in US 

blacks because the protective rs72822025 is absent in Sub-Saharan Africans (YRI) and 

very rare in African Americans (~2% in ASW from the 1000 Genomes Project) [93].   
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What could have affected the frequency of the common variant predisposing to 

preterm birth? Interestingly, iHS detected a moderate signature of recent partial selective 

sweep in FSHR in YRI (top 5%) [100]. At the center of this sweep signal is the 

nonsynonymous SNP p.S680N, and the haplotype containing the derived allele S680 was 

positively selected (iHS score = -1.96). Since S680/S680 genotype is associated with a two-

day longer menstrual cycle in females but not with the fertility itself or ovarian aging, it 

has been proposed that a slightly lower lifetime reproductive output may be beneficial 

under certain environmental conditions that pregnancy itself is unfavorable [34]. 

Nonetheless, the selective sweep of S680 does not seem to have directly increased the 

frequency of adjacent preterm risk haplotype in Africans by the hitchhiking effect. In 

Africans, S680 is present in the haplotype background different from the 79-kb away 

preterm risk promoting rs12052281 G allele (Figure S4.3). The lack of linkage 

disequilibrium between S680 and the rs12052281 G allele (r2 = 0.02) may be due to 

incorrect prediction of causal variants, the decay of ancient sweep event by 

recombination, indirect effect of selective sweep, or epistasis between S680 and the 

rs12052281 G allele. Selective sweep decreases the effective population size at around 

p.S680N due to an increase in the variation of fitness, which in effect can diminish the 

strength of negative selection against preterm risk variant. The epistasis between S680 and 

the rs12052281 G allele may select against the allelic linkage of longer menstrual cycle 

and higher preterm birth risk (antagonistic epistasis), or alternatively, select for the allelic 

linkage of longer menstrual cycle and longer gestation (synergistic epistasis). Perhaps, 

when harsh environmental conditions make a higher chance of pregnancy unfavorable, 
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the combination of genetic and environmental risk factors for preterm birth might be 

much worse for the fitness of newborns than having fewer but full-term off-spring. 

Similarly, when resources are plentiful enough to allow for pregnancy at advanced 

maternal age, the gene-by-environment intersection between the rs12052281 G allele and 

the maternal age, which is a known risk factor of preterm birth by itself, will raise the risk 

for prematurity thus impact the survival of infants born to older mothers.   

To sum up, this study provides clues on the role of FSHR in regulation of the 

onset of labor in term and preterm birth in human. Although our claims need to be subject 

to functional validation, it will guide future mechanistic and population genetic studies.  

 

MATERIALS AND METHODS 

Human subjects 

The human subjects investigated in this study largely overlap with the Finnish 

mothers in which the association of FSHR was originally identified [29]. Out of 127 

preterm and 135 term mothers investigated in this work, 96 cases and 70 controls were 

shared with the previous study, and the rest were unique to this study. The human subject 

study was approved by Institutional Review Boards and Ethics Committees at all 

participating institutions, and informed consent for the genetics research was obtained 

properly. The inclusion criteria for preterm mothers was the non-atrogenic singleton 

pregnancy with less than 37 completed weeks of gestation without a sign of trauma, 

infection, or drug abuse. The term mothers who delivered at least two children 

spontaneously after 37 gestational weeks were recruited as controls. There was no 
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difference in the average maternal age between cases (30.6 years) and controls (31.4 

years) (Wilcoxon test, P=0.17). The sample genomic DNA was collected from peripheral 

bloods or saliva using standard methods.  

Candidate regions 

The following regions, a total of 17 kb, were selected as candidate regions to 

identify causal variants: all exons (NM_000145), 50-bp exon-intron junctions, core 

promoter region (-1 to -225 relative to the translational start site) [175], 3 SNPs found 

significantly associated with preterm birth in African Americans (rs11686474, 

rs11680730 and rs12473815) [29], 15 non-coding elements rapidly evolved along the 

human lineage [29] and conserved non-coding elements (Supplementary table 1). 

Conserved non-coding elements, a total of 8.6 kb (N=269), were identified within the 

transcribed region and 5 kb upstream and downstream, based on the sequence 

conservation across 32 placental mammals using PhastCon [151]. A PhastCon element 

was selected as a candidate if it is longer than 50 bp by itself or a part of a cluster of 

PhastCon elements which are separated by less than 200 bp and together span more than 

50 bp. In addition to PhastCon regions, we also included conserved functional non-

coding elements from the literature. One transcriptional silencer [171] and seven distal 

transcriptional regulatory elements [170] were previously identified in rat, and their 

sequences are well conserved to human. The genomic coordinates of the rat non-coding 

elements were transferred to the human genome with UCSC LiftOver 

(http://genome.ucsc.edu/cgibin/hgLiftOver).  
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The candidate regions were amplified in 67 PCR amplicons (44 kb). PCR primers 

were designed using Primer 3 (http://frodo.wi.mit.edu/primer3/input.htm) with the 

minimum amplicon size of 300 bp and other parameters previously described [176; 177]. 

To avoid allele-specific PCR failure, PCR primers were selected within polymorphism-

free segments utilizing the 1000 Genomes Project pilot data [93]. 

Pooled high-throughput sequencing 

Human subjects were assorted into four groups by case/control status and by 

whether an individual is shared with [29] or exclusive to this study. For each group, 

Illumina sequencing library was prepared following the pooled high-throughput 

sequencing protocol [152; 153]. Briefly, genomic DNA samples in each group were 

fluorescently quantified using SYBR Gold (Invitrogen) staining technique [153], and 

mixed to an equimolar pool. To average out stochastic noise, we prepared two technical 

replicates of pooled genomic samples and repeated all the following steps.   

In each pool, the candidate regions were amplified by PCR with PfuUltra High-

Fidelity DNA polymerase (Stratagene) in presence of 1M betaine (Sigma-Aldrich). In 

each PCR reaction, 0.3N ng of pooled genomic DNA was added as templates, where N is 

the number of pooled individuals. While the number of PCR cycles was fixed to 28, other 

PCR parameters were optimized for each amplicon (Supplementary table 2). All PCR 

products were purified on QIAquick spin columns (Qiagen), validated on agarose gel and 

then quantified again by SYBR Gold staining.  

To control for the sensitivity and specificity of pooled sequencing, we prepared 

positive and negative controls as described previously [152]. The negative control was 
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1.9 kb region of M13mp18 plasmid (NEB), and the positive controls were 335-bp 

synthetic sequences derived from TP53 (shared by F. L. M. Vallania). Seven positive 

control plasmids carrying a total of 13 known mutations were spiked into unmutated 

plasmid DNA at the lowest allele frequency of each pool (1/2N). Both positive and 

negative controls were PCR-amplified similarly as candidate regions.  

Next, amplicons of candidate regions and controls were pooled in an equimolar 

ratio so that all regions were sequenced at an even read coverage. The pooled amplicons 

were randomly ligated into >10 kb concatemers and then sonicated into 100-500 bp 

fragments with Bioruptor XL (Diagenode) following [153]. From the sonicated fragments, 

Illumina sequencing library was generated using the Genomic DNA Sample Prep Kit 

(Illumina). Each library was tagged with an index unique to each subject group. To 

minimize run-specific variation in error rates, all four sequencing libraries were 

multiplexed and sequenced on a single Illumina HiSeq lane in a single-read 42-cycle 

mode.  

Identification of single nucleotide variants 

For each pool, 42-bp sequence reads were mapped, aligned, calibrated and then 

scanned for single nucleotide variants (SNVs) and 1-2 bp insertions/deletions (InDels) 

using SPLINTER (version 6t) [152]. Specifically, out of 35.8 – 40.4 million reads, 30.0 – 

35.2 miilion (84 – 88%) were aligned to the reference sequence (hg18) allowing two or 

less edits per read in the alignment. Then, to calibrate sequencing error rates, a second-

order SPLINTER error model was generated from the reads aligned to the negative 

control sequence. Overall, the sequencing error rates were higher for the last 19 
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sequencing cycles than for the initial 23 cycles and spike up also for 4 intermittent 

sequencing cycles. After masking out all such error-prone cycles, only high-quality 

basecalls (19 nt per read) were utilized to identify SNVs.  

The power to detect SNVs goes up with an increasing read coverage but saturates 

above ~30 reads per site per allele [152]. We obtained 74.7 – 198.7 reads per site per 

allele on average for each pool, which is well above the saturation point. However, the 

read coverage can still be under 30 reads per site per allele at a subset of sequenced sites. 

In sequenced regions, only 2.1% of sites were covered by less than 30 reads in at least 

one of four pools. This could be due to random sampling variation or difficulty in 

alignment. These regions are located in two rapidly evolving elements, a rat distal cis-

regulatory element (ECR6) and variable poly-dA region (11-17 bp) in core promoter. 

The optimal cut-offs for SNV calls were determined by positive and negative 

controls spiked into sequencing library. In all pools, SNV quality scores of positive 

controls were well separated from those of negative controls, thus there exist a range of 

score cut-offs discriminating positive from negative controls with 100%  accuracy. We 

defined SNV sets at high and lower variant quality thresholds to maximize the specificity 

and the sensitivity, respectively. For each pool, the high quality cut-off was defined by 

the lowest variant quality score of positive controls whereas the lower quality cut-off was 

defined by the highest variant quality score of negative controls. After excluding a tri-

allelic variant, we obtained a total of 281 high-quality SNVs and 72 lower-quality SNVs 

across all pools. The allele frequency estimated by SPLINTER was rounded off to the 

nearest multiple of singleton allele frequency in each pool. As a quality control, the 
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proportion of known SNVs was evaluated using the combined dataset of dbSNP (release 

135) and the 1000 Genomes Project pilot [93].  

Comparison of allele frequencies between cases and controls 

The significant difference of allele frequency between cases and controls were 

tested for all common variants of minor allele frequency over 5% by using two-

proportion Z-test:  

control
e

case
es

BA

ss

pp
z







 

BA

BBAA

NN

pNpN
p




0  

)
11

()1( 00
BA

s NN
pp   

 

where pA and pB are the allele frequencies in cases and controls, respectively, NA and NB 

are the number of alleles in case and control pools, respectively, p0 is the pooled allele 

frequency over pA and pB, σs is the variance component due to random sampling, and the 

statistic z follows the standard normal distribution. To account for the error of allele 

frequency estimation as an additional source of variation independently of random 

sampling, we inferred the error of allele frequency estimation se from the mean squared 

error of observed allele frequencies compared to the expected values by using 24 SNPs 

genotyped in Finnish cohorts with Affymetrix arrays [29]:   
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where fo,i and fe,i are the observed and expected allele frequencies of SNP i, respectively. 

The se was estimated to be 0.00081 for cases and 0.00032 for controls.  

Haplotype analysis 

The haplotype structure of the Finnish population was obtained from the 1000 

Genomes Project (release 20120316) [93], in which genotypes of 93 individuals (FIN) 

were phased across the genome using MaCH/Thunder [157]. Ancestral alleles inferred 

from three sister primate genomes were also obtained from the 1000 Genomes Project. 

Conserved sites were identified using PhyloP scores across placental mammals [156], 

which were downloaded from UCSC genome browser.  

The haplotype frequencies were estimated in our case and control subjects by 

averaging the allele frequencies of multiple tag SNPs, which were selected by the tight 

linkage disequilibrium between the SNP and the haplotype. Specifically, we looked for 

the SNPs with r2 greater than 0.9 in normal Finns from the 1000 Genomes Project (FIN). 

For the haplotype 1, excluding one outlier, nine tag SNPs were utilized to quantify the 

haplotype frequency. The frequencies of haplotype 2, 3 and 4 were estimated using six, 

three and three tag SNPs, respectively.  

Computational prediction of transcription factor binding sites 

We examined three databases of transcription factor (TF) binding profiles: 

TRANSFAC [158], JASPAR [159] and UniProbe [160]. TRANSFAC contains the most 
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comprehensive collection of TF binding profiles whereas JASPAR has fewer but higher-

quality profiles, and UniProbe encompasses mostly zinc finger TF binding motifs, which 

were derived from in vitro protein-binding microarray experiments. In TRANSFAC 

(version 10.2), the human reference sequences with ancestral alleles were scanned for 

binding sites of vertebrate TFs by using ECR browser (http://ecrbrowser.dcode.org/) 

[178]. In JASPAR, CORE Vertebrata collection of binding matrices was examined using 

their web server (http://jaspar.cgb.ki.se/) with the default parameters. In UniProbe, 

human and mouse TFs were scanned with the default setting 

(http://the_brain.bwh.harvard.edu/uniprobe/), but SNPs with more than 20 hits of 

predicted binding sites were filtered out for potential non-specificity. For JASPAR and 

UniProbe, the reference sequences were examined with both derived as well as ancestral 

alleles in order to explore the gain as well as loss of binding sites. The binding sites 

predicted with the equivalent score for both ancestral and derived alleles were excluded. 

The binding energy for ZEB1 and Elf3 was calculated for each allele using ConSite [179] 

with the default parameter values and published binding site profiles [161; 163] 
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FIGURES 
 

 

Figure 4.1. Comparison of allele frequencies between pooled sequencing and Affymetrix 

genotyping. The allele frequencies in case and control pools are indicated by red triangles 

and blue circles, respectively, for 24 SNPs shared between the two assays. The allele 

frequencies estimated by Affymetrix genotyping were obtained from [29].  
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Figure 4.2. Fine-map of the association of common variants. Each of 169 variants with a 

minor allele frequency greater than 5% was tested for the allelic association with pre-

term birth by two-proportion Z-test. Candidate regions and 52 SNPs therein are marked 

in red. SNPs in flanking regions are shown in gray. The dashed horizontal line indicates 

the least significant P value of the three tag SNPs (blue) found significant in [29].  
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Figure 4.3. Haplotype structure of common SNPs within the fine-mapped interval in 

normal Finns. Each row corresponds to a phased chromosome in 93 normal Finnish 

individuals from the 1000 Genomes Project (FIN). Each column represents one of the 39 

SNPs that are segregating in the sequenced regions and also in the fine-mapped interval 

spanning intron 1 and 2. Derived alleles at conserved sites are marked in a gray scale 

(black being the most highly conserved site by PhyloP). The ancestral alleles are shown 

in white. The four major haplotypes are numbered and color-tagged on the right. The 

SNPs carried exclusively by one of the four haplotypes are also highlighted in the color 

of the haplotype on the bottom. The three tag SNPs evaluated in [29] (rs11686474, 

rs11680730 and rs12473815) are marked in dark blue.  
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Figure 4.4. Haplotype frequencies in case and control pools. The haplotype frequencies 

were estimated from allele frequencies of tag SNPs with r2 > 0.9 (N=9, 6, 3 and 3 for 

haplotype 1, 2, 3 and 4, respectively). The horizontal lines indicate the average allele 

frequencies among tag SNPs. The difference in allele frequency between cases and 

controls was tested by Fisher's Exact Test. NS denotes “not significant.”  
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TABLES 

Table 4.1. Summary statistics of sequencing and identified genetic variants. 

    
High-quality 

variants1 
 

Low-quality 
variants1 

Pool 
Alleles 
(2N) 

Reads Coverage2 SNV InDel All 3  SNV InDel All 3

Case #1 192 34,940,358 74.7 198 42 
240 
(30) 

 29 16 
45  

(44)

Case #2 62 30,017,566 198.7 191 38 
229 
(60) 

 19 16 
35  

(34)

Control #1 150 32,513,156 89.0 202 41 
243 
(38) 

 30 13 
43  

(42)

Control #2 120 35,190,219 120.4 197 36 
233 
(33) 

 27 16 
43  

(43)
Total 524 132,661,299 103.9 236 45 281  52 20 72 

 

1 The number includes single nucleotide variants found in flanking regions as well as in 

candidate regions.  

2 Reads per site per allele. 

3 In parenthesis is the number of variants with the estimated allele count less than or 

equal to 2 in a pool.  
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Table 4.2. Nonsynonymous SNVs identified in subjects. 

Minor allele frequency (%) 
Variant 

Variant 
quality 

Amino acid 
change 

Functional
Prediction 1 Case Control 

OR P allelic 2

rs6166 High S680N Neutral 48.0 48.0 1.00 1.00 
rs6165 High A307T Neutral 50.2 51.2 0.96 0.86 
rs121909658 High A189V Deleterious 0.4 0.0 n.a. not tested
rs111883853 High R162K Marginal 1.3 2.6 0.49 not tested
 

1 Functional predictions were made using a likelihood ratio test and PolyPhen-2. All 

predictions agreed between two methods except R162K, which was classified as 

marginally deleterious by the likelihood ratio test but as neutral by PolyPhen-2.  

2 P-values were calculated by two-proportion Z-test. Rare variants with minor allele 

frequency < 5% were not tested for the lack of statistical power.  
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Table 4.3. Rare SNVs observed in either cases or controls, exclusively.  

Variant quality Region 1 Case Control P 2 

high conserved or NSN  2 2 1.00 
 flanking 13 11  

high + low conserved or NSN  2 4 0.67 
 flanking 23 21  

 

The rare variants are defined by minor allele frequency below 1% and exclusivity 

to either cases or controls.  

1 Rare variants were counted in “conserved or NSN (nonsynonymous)” sites  

within candidate regions or in “flanking” regions around the candidate regions.  

Conserved sites were defined by PhyloP (P < 0.05). 

2 The number of rare variants in cases vs. controls was compared between  

conserved or nonsynonymous sites in candidate regions and flanking regions 

by Fisher's Exact Test.  
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SUPPORTING INFORMATION 

Table S4.1. Genomic regions selected for sequencing. 
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Coordinates are relative to the NCBI reference genome build 36. 

1 Non-coding element conserved across placental mammals defined by PhastCon.  

2 Plunkett et al. (2011) PLoS Genetics.  

3 Distal regulatory element identified in rat (Hermann et al. (2007) Molecular and 

Cellular Endocrinology). 

4 Transcriptional silencer element (DHS3) identified in rat (Hermann and Heckert (2005) 

Molecular Endocrinology).  
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5 The region from -225 to -1 relative to the translational start site (Gromoll et al. (1994) 

Molecular and Cellular Endocrinology). 

+ SNPs found significant in US replicate populations in Plunkett et al. (2011) PLoS 

Genetics. 
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Table S4.2. PCR parameters used to amplify candidate regions. 
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1 To remove non-specific bands, PCR products of correct size were extracted from agarose gel.  
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Table S4.3. Rare SNVs observed in either cases or controls, exclusively, defined by 

minor allele frequency < 5%.  

Variant quality Region 1 Case Control P 2 

high conserved or NSN  3 4 1.00 
 flanking 15 16  

high + low conserved or NSN  2 6 0.28 
 flanking 23 25  

 

The rare variants are defined by minor allele frequency below 5% and exclusivity 

to either cases or controls.  

1 Rare variants were counted in “conserved or NSN (nonsynonymous)” sites  

within candidate regions or in “flanking” regions around the candidate regions.  

Conserved sites were defined by PhyloP (P < 0.05). 

2 The number of rare variants in cases vs. controls was compared between  

conserved or nonsynonymous sites in candidate regions and flanking regions 

by Fisher's Exact Test.  
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Table S4.4. Rare SNVs exclusively found in cases and located at conserved or 

nonsynonymous sites.  

Genomic 
coordinate 1 

Major 
allele 

Minor 
allele 

Case 
AF 

Region Predicted Function 

chr2:49,063,768 G A 0.4%
Protein-
coding 

Deleterious nonsynonymous 
p.A189V 

chr2:49,202,765 G A 0.8%
Conserved 
non-coding

Putative binding site of 
PPARA and VDR  

chr2:49,202,863 G C 2.4%
Conserved 
non-coding

Putative binding site of SOX 
 

 

Conserved sites were defined by PhyloP (P < 0.05).  

1 Coordinates are relative to the NCBI reference genome build 36. 
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Figure S4.1. Sequence context of candidate causal variant, rs12052281. Conserved non-

coding elements around the SNP are indicated by black bars, and the location of 

candidate causal variant is marked in red. In the center, the DNA-binding site profile of 

ZEB1 transcription factor is represented as a sequence logo. The derived allele at 

rs12052281 mutates C at the position 01 to G. The genetic model on the bottom depicts 

the predicted direction of transcriptional change toward the end of pregnancy.
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Figure S4.2. Sequence context of candidate causal variant, rs72822025. Conserved and 

rapidly evolving non-coding elements around the SNP are indicated by black bars, and 

the location of candidate causal variant is marked in red. In the center, the DNA-binding 

site profile of Elf3 transcription factor is represented as a sequence logo. The derived 

allele at rs72822025 mutates C at the position 10 to T. The genetic model on the bottom 

depicts the predicted direction of transcriptional change toward the end of pregnancy.



 143

 

 
Figure S4.3. Linkage disequilibrium between risk haplotype and positively selected 

p.S680N in Sub-Saharan Africans (YRI). Each row corresponds to a phased chromosome 

in 83 normal individuals from the 1000 Genomes Project (YRI). Each column represents 

one of the 10 SNPs included in the risk haplotype of preterm birth or the positively 

selected p.S680N. Derived alleles at conserved sites are marked in a gray scale (black 

being the most highly conserved site by PhyloP). The ancestral alleles are shown in white. 

The risk haplotype is marked in red on the right. The positively selected allele at p.S680N 

is the derived allele S680. The rs12052281 is the candidate causal risk variant disrupting a 

putative ZEB1 binding site.   
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CHAPTER 5: Progress and future directions 
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In this thesis, new comparative genomics software called a likelihood ratio test 

(LRT) was developed to predict deleterious nonsynonymous variants within the human 

genome. The LRT was a useful analytical framework to systematically investigate the 

selective constraints in protein-coding regions. Based on a long-studied generative 

probabilistic model with explicitly defined modeling assumptions, the LRT directly 

accounts for the protein-sequence evolution similarly to heuristic methods such as SIFT 

and PolyPhen, but at the same time, it can provide the interpretive simplicity of 

nucleotide-based phylogenetic tests mainly used for non-coding regions. Taking 

advantage of the LRT, this thesis provided systematic accounts on the functional 

constraints imposed in protein-coding regions from the method development as well as 

evolutionary perspectives.  

In terms of future method development, an important but often neglected issue is 

the frequent disagreement of predictions made by distinct algorithms. For instance, when 

the LRT and two pre-existing methods, SIFT and PolyPhen-2 [154], were applied to the 

same personal genome, out of all deleterious variants predicted in the person, less than 

~50% could be identified by an individual method, and only 5-7% could be identified by 

all three methods (chapter 2). One practical solution to this issue is to take the consensus 

among multiple methods, as recently approached by CONDEL algorithm [180]. However, 

the consensus approach does not circumvent the necessity of good understanding on the 

features of hard-to-predict cases. Rather, it is exactly the opposite; the merit of consensus 

methods is limited by how well the consensus priors can be fine-tuned depending on 

queries. In this respect, addressing why distinct algorithms give distinct predictions, as 
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studied in chapter 2, can be a good starting point to improve the consensus priors. For 

example, for methods that does not distinguish orthologs from paralogs (e.g. SIFT), it 

may be difficult to identify functional constraints in a large gene family that acquired 

numerous functionally diverged paralogs through multiple rounds of gene duplication. 

Also, it will be interesting to examine which of the protein sequence similarity and the 

taxonomic relationship of species is a better proxy for the conservation of functional 

constraints on protein sequences. Many methods, such as SIFT and PolyPhen, identify 

homologous proteins by protein sequence similarity, but the rate of protein sequence 

evolution can vary widely by proteins (see discussion section of chapter 2 for more 

details).  

The other areas of particular interests in terms of method improvement are the 

lineage-specific loss of constraints and the inference of functionally equivalent amino 

acid changes from closely related species. First, while comparative genomics methods 

can accommodate the loss of functional constraints in non-ancestral species albeit with 

reduced statistical power, they often find it difficult to handle the loss of constraints 

occurred along the ancestral lineage leading to the human. An example of this is the 

olfactory receptors, of which selective constraints were relaxed after the divergence 

between human and chimpanzee [181]. The majority of polymorphisms found in these 

genes are selectively neutral in humans even if they seem to disrupt sequences strongly 

conserved across mammals. Contrary to olfactory receptors, however, it is often 

challenging to identify ancient or subtle loss of constraints such as the losses shared 

across primates, in a subset of genes in a pathway or in only a part of gene. Second, while 
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evidence suggests that distant orthologs often mislead the inference of functionally 

equivalent changes of amino acids due to functional divergence (see [182] for MTHFR 

complementation assay), many existing algorithms put higher weights on distantly related 

sequences than on closely related ones. Although this approach is optimal for identifying 

sequence conservation, functionally equivalent amino acids need to be inferred with the 

opposite weighting scheme, namely that closely related species should receive a higher 

weight than distant one. To this end, the LRT separates the test for significant sequence 

conservation from the subsequent step to filter out amino acid changes observed in any of 

23 placental mammals as being functionally equivalent. Although only ~10% of variants 

at significantly conserved sites were affected by this filter, it is important to note the 

current strategy may be too aggressive for a number of reasons: 1) it does not account for 

frequent sequencing errors found in draft genomes, 2) distantly related mammals get the 

same weight as the closely related primates, 3) the depth of aligned mammalian 

sequences differs by genes and by sites, and 4) as more diverse mammalian genomes 

become sequenced in near future, more codons are expected to have experienced 

functional divergence in at least one species. The necessity and opportunity to address the 

above mentioned challenges will continue to rise with the advances of genome 

sequencing technology.  

The LRT was also conducive to the evolutionary analysis of why human 

population has an abundant number of common SNPs that disrupt strong sequence 

conservation thus highly likely to be deleterious (chapter 2). Why so many human SNPs 

could escape the strong negative selection maintained sequence conservation in other 
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vertebrates? Interestingly, only a small fraction of these common deleterious SNPs 

(~10%) can be explained by false positives due to multiple hypothesis testing, violation 

of model assumptions, recent gene duplication, or relaxation of selective constraints on 

specific category of genes. One of the violated model assumptions worth mentioning is 

the uniformity of synonymous substitution rate across the genome. In chapter 2, in order 

to examine the effect of relaxing this assumption, the genome-wide synonymous rate was 

reduced by two standard deviations as expected for less than 2.5% of genome. This 

reduction made LRT to predict 22% fewer deleterious SNPs, which could be enriched 

with false positives caused by the assumption of uniform synonymous rate. Interestingly, 

the deleterious SNPs corresponding to the 22% were only slightly enriched with common 

deleterious SNPs (not significant, odds ratios = 1.06 and 1.16 for common deleterious 

SNPs of derived allele frequency > 5% and > 30%, respectively). This enrichment can 

only explain 7-12 out of 1,121 common deleterious SNPs, defined by derived allele 

frequency > 5%, within three personal genomes examined in chapter 2. The largest 

source of probable false positives was the olfactory receptors (N=80), which is explained 

by the relaxation of selective constraints. 80 out of 85 deleterious SNPs predicted in 

olfactory receptors have allele frequency > 5%. However, genes with common 

deleterious SNPs were not enriched in any other functional categories.  

What can explain the rest of common deleterious SNPs? One possibility is the 

genome-wide relaxation of negative selection due to the reduction of effective population 

size during the human evolution. The long-term effective population size of human-

chimpanzee common ancestor is estimated to be 5-9 times higher than that of the human 
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[183]. Our empirical data also support this possibility. The substitutions of deleterious 

changes are twice as frequent along the human lineage (deleterious-to-neutral 

nonsynonymous ratio, DEL/NEU = 0.14) as they are along the human-chimpanzee 

common ancestor lineage (DEL/NEU = 0.07). Based on that the DEL/NEU ratio among 

common SNPs, defined by derived allele frequency > 5%, is ~0.24 for both CEU and 

YRI [93], ~30% common deleterious SNPs are expected to have fitness impact small 

enough to allow them to be fixed along the human lineage. It could be potentially 

interesting to compare the patterns of deleterious substitutions along the lineages of small 

effective population sizes, such as orangutan and domesticated species [184], with those 

along the other lineages. That being said, however, the small fitness consequence of some 

common deleterious SNPs does not necessarily imply that they are unlikely to be 

interesting in terms of phenotype. Many genetic changes of medical importance were 

fixed along the human lineage [120].  

Another model that can explain common deleterious SNPs is the hitchhiking 

effect (chapter 3). Because of genetic linkage, the apparent fitness of a deleterious allele 

is determined not only by its own fitness but also by the combined fitness of all linked 

alleles. As expected by the hitchhiking effect, the genome-wide distribution of positively 

selected alleles and deleterious polymorphisms suggests that positive selection on 

beneficial allele can mitigate the fitness deficit of linked deleterious alleles and drag them 

along to higher-than-expected allele frequencies in humans. However, the hitchhiking 

effect does not seem to increase the overall abundance of deleterious polymorphisms 
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since it also eliminates many deleterious variants that are not linked with beneficial 

alleles.  

In this study, the hitchhiking effect was indirectly analyzed by using the close 

physical distance within the genome as a proxy for the genetic linkage. Ideally, direct 

examination of whether deleterious alleles are carried in positively selected haplotypes or 

not can establish stronger support for the hitchhiking hypothesis, and furthermore 

distinguish the primary effect of hitchhiking from the secondary effect caused by a 

reduced effective population size due to positive selection. Although currently available 

data have limited confidence on long-range haplotype phases especially for low-

frequency variants, in near future, trio sequencing will provide more reliable phase 

information for both rare and common variants so that the hitchhiking effect can be 

directly evaluated in a haplotype level. In the meanwhile, further work will have to rely 

on population simulation.  

 In chapter 4, the known genetic association of FSH receptor (FSHR) with 

preterm birth was fine-mapped in a non-coding region in the Finnish population, and 

candidate causal variants were predicted therein by computationally scanning for 

transcription factor (TF) binding sites. While sequence conservation was useful in 

identifying functional non-coding elements, most valuable clues to pin-point candidate 

causal variants came from the prior knowledge of TFs differentially regulated in 

presumable target tissue toward the end of pregnancy, DNA-binding profiles of these TFs 

and which direction of expression change of these TFs and FSHR would 

increase/decrease the risk for preterm birth. By combining all these information, causal 
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variants were predicted to be common SNPs disrupting putative ZEB1 and Elf3 binding 

sites in FSHR, although functional studies will be needed to establish this claim.  

Further studies may find it very interesting to sequence African Americans and 

patients received assisted reproductive technology due to subfertility. The candidate 

causal variants predicted in this work in the Finnish population do not agree well with the 

signal of association observed previously in African Americans [29]. In addition, because 

the patients with reduced fertility have a higher risk for preterm birth [167; 185], these 

individuals may reveal the rare variants association, which could not be detected in the 

Finnish preterm mothers conceived normally. A previous sequencing study on body mass 

suggested that the subjects with extreme phenotypes are enriched rare causal variants, 

thus can provide higher statistical power to detect rare variant association [6; 186].  

The recent advances of sequencing technology have unlocked the ability to 

identify the selective constraints in an increasingly high resolution. As repeatedly shown 

by multiple studies, each human carries a large number of deleterious variants in an 

individual genome, and at the same time, a large fraction of human genome evolved 

under the influence of recent positive selection. This will provide the unprecedented 

challenges and opportunities to explore the dependence between natural selection acting 

at nearby sites and to inquire why certain disease alleles have reached higher-than-

expected frequencies in human population.  
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