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ABSTRACT OF THE DISSERTATION

Learning with Single View Co-training and Marginalized Dropout

by

Minmin Chen

Doctor of Philosophy in Computer Science

Washington University in St. Louis, May 2013

Research Advisor: Kilian Q. Weinberger

The generalization properties of most existing machine learning techniques are predicated

on the assumptions that 1) a sufficiently large quantity of training data is available; 2) the

training and testing data come from some common distribution. Although these assumptions

are often met in practice, there are also many scenarios in which training data from the

relevant distribution is insufficient. We focus on making use of additional data, which is

readily available or can be obtained easily but comes from a different distribution than the

testing data, to aid learning.

We present five learning scenarios, depending on how the distribution we used to sample

the additional training data differs from the testing distribution: 1) learning with weak

supervision; 2) domain adaptation; 3) learning from multiple domains; 4) learning from

corrupted data; 5) learning with partial supervision.

We introduce two strategies and manifest them in five ways to cope with the difference

between the training and testing distribution. The first strategy, which gives rise to Pseudo

x



Multi-view Co-training (PMC) and Co-training for Domain Adaptation (CODA), is inspired

by the co-training [23] algorithm for multi-view data. PMC generalizes co-training to the

more common single view data and allows us to learn from weakly labeled data retrieved

free from the web. CODA integrates PMC with an another feature selection component

to address the feature incompatibility between domains for domain adaptation. PMC and

CODA are evaluated on a variety of real datasets, and both yield record performance.

The second strategy marginalized dropout leads to marginalized Stacked Denoising Autoen-

coders (mSDA), Marginalized Corrupted Features (MCF) and FastTag (FastTag). mSDA

diminishes the difference between distributions associated with different domains by learn-

ing a new representation through marginalized corruption and reconstruciton. MCF learns

from a known distribution which is created by corrupting a small set of training data, and im-

proves robustness of learned classifiers by training on “infinitely” many data sampled from

the distribution. FastTag applies marginalized dropout to the output of partially labeled

data to recover missing labels for multi-label tasks. These three algorithms not only achieve

the state-of-art performance in various tasks, but also deliver orders of magnitude speed up

at training and testing comparing to competing algorithms.
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Chapter 1

Introduction

Machine learning is a relatively new branch of artificial intelligence, which aims at getting

computers to act based on past experience instead of being explicitly programmed. Tom M.

Mitchell provided a widely quoted definition of learning from experience as follows:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T , as
measured by P , improves with experience E. [111]

Experience is commonly embodied in the (large amount of) external data inputted to the

computer program. Considering the task of spam filtering, where the goal is to distinguish

between spam and non-spam messages. To build such a machine, a large amount of email

messages are often provided to learn patterns or regularities that can differentiate spam and

non-spam messages. After learning, these patterns or regularities are then used to classify

new email messages into spam or non-spam folders.

Figure 1.1 illustrates another example of recognizing handwritten digits. The task is non-

trivial as handwriting varies greatly. To enable learning, we are provided with a data corpus

of handwritten digits. Each input in the corpus is a 28× 28 pixel image, which can be rep-

resented as a vector of 784 real numbers. The goal is a build a recognizer so that whenever

a new image of handwritten digit comes in, we will be able to produce the identity of the

digit 0, · · · , 9 as the output.

1



Figure 1.1: Sample images from the MNIST handwritten digit dataset.

In summary, the goal of machine learning is to automatically extract statistical regularities

and patterns presented in a data corpus, and later to act on unseen inputs with the use of

these regularities and patterns.

Note that, there is another class of important techniques in machine learning, reinforcement

learning, which has a different setup. It deals with the problem of finding suitable actions

to take in a given situation in order to maximize a reward, and studies the tradeoff between

exploration and exploitation. Instead of being provided with a data corpus beforehand, the

learner receives feedback (reward) while acting. However, we are not going to discuss it in

this thesis and would like to refer interested readers to [90, 149].

To measure the performance of different learning algorithms, the data corpus is often di-

vided into two subsets. One is called the training data, on which the learning takes places.

The remaining one is the testing data, on which the prediction and measure of quality are

performed.

Note that, a feature extraction stage that preprocess the original raw input into an input

vector is often required before any learning or testing can happen. For example, in the case

of handwritten digit recognition, typically each image is translated and rescaled so that the

digit is centered in a box of fixed size (28× 28 in the example). The gray scale at each pixel

of the box is then extracted to form an input vector. The space in which the input vectors

lie in is commonly referred to as the feature (or instance) space. Note that the preprocessing

of the training and testing inputs has to follow the same protocol. For almost all practical

2



applications, the feature extraction stage is equally important as the learning method itself.

A good feature extraction stage reduces the noisy variations in the raw input and leads to

easier pattern recognition in the learning phrase. However, we will focus on the learning

methods in this dissertation.

1.1 Supervised, Unsupervised and Semi-Supervised Learn-

ing

Based upon the types of information that are included in the training data, one can roughly

divide different learning methods into three camps: supervised, unsupervised and semi-

supervised learning.

1.1.1 Supervised Learning

Let X ∈ Rd denote the feature space of dimension d, and Y the label (or output) space.

In supervised learning, the training data is assumed to sampled i.i.d. (independently and

identically distributed) from some joint distribution D on X ×Y and comes in in pairs, i.e.,

D = {(x1, y1), · · · , (xn, yn)} ⊂ X × Y . Here xi is the input vector and yi is its associated

label (or output). In the example of handwritten digits, the input vector xi corresponds to

the 784 pixel values extracted from the 28 × 28 grid, and the label yi corresponds to the

identity of the digit, ranging from 0 to 9. It is assumed that there is an underlying target

function f which generates the labels from the inputs, i.e., yi = f(xi). However, the target

function f is usually unknown, and needs to be inferred from the training data. We can

further divide the tasks into a classification or a regression one based on the labels. In the

the handwritten digit recognition, or the spam filtering task we introduced, the goal is to

categorize each input vector into an output from a discrete and finite set. In these cases,

we have a classification problem. Examples of classification algorithms includes k-nearest

neighbors [47] and support vector machines [156, 135]. When the labels take continuous

values, it is a regression task. Examples of regression algorithms include linear regression,

kernel regression [64] and gaussian process [125]. Note that there are more complicated tasks

3



where structural dependencies exits between the inputs xi’s and the outputs yi’s. In these

cases more specialized algorithms will be required.

Generalization. The output of these learning algorithms can be expressed as a function

h(x) which takes an input vector x and output a prediction ŷ = h(x). In the case of

supervised learning, the evaluation of learning quality is well-defined since we can compare

the prediction ŷ to the ground truth y. Let us define a binary indicator function

[h(x) 6= y] =

{
0, h(x) = y

1, h(x) 6= y

We can then compute the error of a learner on the training set (the empirical risk) as

εD(h) =
1

n

n∑

i=1

[h(xi) 6= yi] (1.1)

But we are not really interested in the error on the training set, instead, we want to find a

learner which generalizes well to unseen test data. The generalization risk can be expressed

as the expected error under the underlying distribution D,

ε(h) = E(x,y)∼D[h(x) 6= y] (1.2)

However, since the distribution D is unknown, we can not explicitly compute it. Fortunately,

we can relate the generalization risk of any hypothesis h from a hypothesis class H to its

empirical risk with the help of Vapnik-Chervonenkis theory [156]. For any h ∈ H, trained

on a set of training data {(xi, yi)}ni=1 sampled i.i.d. from D, with probability 1− δ,

ε(h) ≤ εD(h) + 2

√

2
|H| log 2en

|H| + log 2
δ

n
(1.3)

where |H| denotes the Vapnik-Chervonenkis dimension [156] of the hypothesis class. We can

see that the gap between the generalization and empirical error grows inversely with the size

of the training data.

In other words, the generalization performance of supervised learning methods are predicated

on the condition that a sufficiently large quantity of training data is available for learning.
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1.1.2 Unsupervised Learning

Although extracting the input vectors can often be done very conveniently, acquiring labels

turns out to be very expensive for a many tasks. For instance, it takes 2 years to annotate

4,000 sentences in the Penn Chinese Treebank. In annotating phone conversation, 400 hours

of annotation time is required for one hour of speech.

Unsupervised learning offers possibilities to circumvent the costly manual annotation. In

unsupervised learning, the training data X = {x1, · · · ,xn} is still assumed to be drawn

i.i.d. from some underlying distribution D, however, the labels of these inputs are unknown.

Common unsupervised learning tasks include: 1) dimensionality reduction; The goal is to

project the inputs to a lower-dimensional space where a more meaningful distance interpre-

tation or visualization is possible. Examples of dimensionality reduction algorithms include

principal component analysis [89], Isomap [151], locally linear embedding [130], Laplacian

eigmenmap [8], and maximum variance unfolding [163]. 2) clustering ; The goal is to dis-

cover similarity between examples and group the inputs into clusters. Examples of clustering

algorithms include k-means, and spectral clustering [114]. 3) density estimation; The goal

is to infer the underlying distribution that have generated the training data X. Examples

of density estimation algorithms include mixture models [107].

Since the inputs given to the learner are unlabeled, generally there is no error or reward

signal that can be used to evaluate a potential solution in unsupervised learning. Though

for some tasks, such as clustering, it is possible to measure the quality of the solution if some

ground truth about the underlying clusters is available.

1.1.3 Semi-Supervised Learning

Semi-supervised learning is halfway between supervised and unsupervised learning. It does

not seek to completely eliminate the needs for labels, but resorts to unlabeled data to mini-

mize the amount of labeling effort required to achieve good performance.

In semi-supervised learning, the training data contains a relatively small set of input-output

pairs drawn from some joint distribution D, L = {(x1, y1), · · · , (xn, yn)} ⊆ X × Y , as well
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as another set of inputs U = {xn+1, · · · ,xm} drawn i.i.d. from the same distribution. The

labels of the inputs in U are unknown though. The size of the labeled data L is usually

much smaller than the unlabeled data U , that is, n � m. The goal is to find a hypothesis

h ∈ H using both the labeled inputs from L and the unlabeled inputs from U , so that it

accurately predicts the labels of test inputs sampled from the same distribution.

Semi-supervised learning algorithms can be roughly divided into four classes based on the

different assumptions made in these algorithms: 1) generative models ; These models are

based on the smoothness assumption of semi-supervised learning. Examples of algorithms

in this class include EM algorithms on mixture models [117]. 2) low density separation

models ; These models follow the assumption that the decision boundary should lie in a low-

density region. Examples of algorithms in this class include Transductive SVM [88, 38, 143],

entropy or information regularization models [150, 71] . 3) manifold-based methods ; These

models follow the assumption that high-dimensional data lie (roughly) on a low-dimensional

manifold. Dimensionality reduction algorithms [89, 151, 130, 8, 163] are performed on all

the data, labeled or unlabeled, to find a new representation, and supervised learning is then

performed on the new representation using labeled data only. 4) graph-based models ; These

models are inspired by the cluster assumption: points within the same cluster should be

of the same class. Algorithms in this class penalize non-smoothness along the edges of a

weighted graph and propagate labels along the edges. Examples of algorithms in this class

include graph mincut [24], gaussian random fields and harmonic function method [175],

graph kernels [39, 144]. Self-training [168] and co-training [23] are another two prominent

semi-supervised learning algorithms. A complete discussion on these work is beyond the

scope of this thesis. We refer the readers to [36, 174] for a detailed study on this topic.

1.2 Motivation and Overview

Machine learning has become the tool of choice for many applications. However, successful

applications of machine learning often rely on the existence of large quantities of labeled data,

which can be difficult to obtain. In recent years, the research community has delved into

crowdsourcing as a potential platform for acquiring labels cheaply and at scale [81]. However,
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crowdsourced labels are often very noisy and inconsistent, and obtaining high-quality labels

can still be expensive, especially for large-scale datasets.

Unsupervised and semi-supervised learning approaches alleviate the problem. However, most

of the algorithms we reviewed in section 1.1.2 and 1.1.3 still assume that 1) the training

data, labeled or unlabeled, comes from the same distribution as the testing data 2) the

labels are clean and complete. As technology enables data collection at ever increasing scale

and speed, nowadays we have access to an enormous amount of data. Unfortunately, not

all of these data, in fact, a majority part of these data does not necessarily follow the same

distribution as the testing data.

In this dissertation, we focus on making use of additional external data, which comes from

a slightly different distribution than the test data, to aid learning. We are concerned with

five learning scenarios that differ from classical supervised, unsupervised, or semi-supervised

learning, i.e. 1) learning with weak supervision; 2) domain adaptation; 3) learning from

multiple domains; 4) learning from dropout distribution; 5) learning with partial supervision.

In Chapter 2, we are going to cover the first two scenarios with a common strategy – single

view co-training. In Chapter 3, we are going to elaborate our second strategy – marginalized

dropout to learn in the remaining three scenarios.

1.2.1 Learning with Weak Supervision

Nowadays, it is possible to obtain large quantities of data for almost any topic or class

description with very little human intervention (e.g. through automated image search or

wikipedia lookups). For example, we can retrieve hundreds of thousands of images of dif-

ferent objects by searching on any of the search engines using the class description of these

objects as queries. Typing the keywords “eiffel tower” into Bing returns thousands of images

semantically applicable to the concept of eiffel tower. However, not all of the retrieved re-

sults are relevant to the query concept. As images are mostly indexed by surrounding texts,

the fraction of returned results which are visually relevant to the query concept is usually

small. As a result, the distribution of the retrieved images are very different from that of

the training/testing data carefully curated by human annotators.
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Figure 1.2 shows sample images from the Caltech256 object recognition benchmark dataset [73]

and the top ranked results [11] returned by BingTM image search using the class names as

queries. Each row shows images from one particular object class.

Caltech256 contains over 30,000 images of 256 object categories handpicked and annotated

by human annotators. Candidate images are collected from the web following the same

protocol we just introduced, i.e., through automated image search. What is different in this

case is that a manual cleanup process is implemented afterwards. Annotators are explicitly

asked to rule out images that are 1) very cluttered; 2) line drawings; 3) abstract or artistic;

4) not largely occupied by the object. As a result, images within each category are fairly

consistent both visually and semantically.

In contrast, the web images appear to be less homogeneous visually due to polysemy, carica-

turization, as well as variations in viewpoints. One can observe that: 1) even the top ranked

results returned still contain outliers (i.e., images unrelated to the object category visually);

For instance, the naked women in the “eiffel tower” category, and the cliff in the “hawksbill”

category. They are not completely irrelevant to the query concept itself as a word often has

multiple meanings. The image is returned probably because the caption or the text sur-

rounding the image describes it as “a women posing like the eiffel tower”. To some extent, it

is desirable for a search engine to be able to return a diverse set of results. But the diversity

also poses a great challenge for learning. 2) even relevant results in the Bing group are still

of noticeable difference to the training images from Caltech256; First, while the Caltech256

benchmark set consists of only real photographs, the Bing retrieved results include cartoon

drawings for almost all the seven categories. Second, the hand collected images contain only

object of interest, while the Bing counterpart often includes extraneous items, such as people

or faces. These image can distract the learning as “people” and “faces” are also valid object

categories in the Caltech256 set. 3) Comparing to the human curated images, where the

object of interest is in the center, the web images are often taken from very different shooting

distances or angles, causing the images to appear less common visually.

In summary, the images returned by Bing search are semantically and visually less coherent

than the images from the Caltech256 benchmark set. One can regard the Bing group as a

noisy superset of the Caltech256 training data. It contains images which are closely related
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to the object category, but also images which are only remotely connected, or even irrelevant.

In this setting, we aims at utilizing the noisy set to assist learning.

Caltech256 Bing

hot air balloon

american flag

basketball hoop

beer mug

boombox

eiffel tower

hawksbill

Figure 1.2: Sample images from the Caltech-256 object recognition benchmark set [73] and

Bing top ranked results [11].
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Notation. We define the setup of learning with weak supervision as follows: let L =

{(x1, y1), · · · , (xn, yn)} ⊆ X ×Y be a small set of input-output pairs drawn from some joint

distribution D. Let L′ = {(x1, y1), · · · , (xm, ym)},m � n be another set of labeled inputs

drawn from a different distribution D′. The support of D′ is a superset of the support of

the testing distribution D. The goal is to find a hypothesis h ∈ H using both the labeled

data from L and L′ to accurately predicts the labels of the testing data drawn from the

distribution D.

Pseudo Multi-view Co-training (PMC) [42]. Section 2.1 describes Pseudo Multi-view

Co-training (PMC), an new framework we developed to learn from weak supervision. It

is a variant of the co-training [23] algorithm for semi-supervised learning. Similar to Co-

training, it cherry-picks the examples which are close to the training data from the noisy

labeled set L′ to expand the labeled set L. Different to co-training, which is designed to

work with multi-view data, PMC works on the more common single view data. The idea

is to automatically divide the features of a single view data set into two mutually exclusive

subsets – thereby creating a pseudo-multi-view representation for co-training. Inspired by

a theoretical analysis of Balcan et al. [5], the feature division is learned explicitly to satisfy

the necessary conditions to enable successful co-training. PMC successfully exploits noisy

web search results to improve on the challenging Caltech-256 object recognition task.

1.2.2 Domain Adaptation

The second learning scenario we are interested arises when we have plenty of training data

available from some source domain, but are ultimately interested in learning a model that

generalizes well to a related target domain. Re-collecting training data for the target domain

is costly, and one often wishes to leverage the data from the source domain, and adapt the

learner trained on the source inputs to the new target domain. The challenge is that the

data distribution of the target domain often differs from that of the source domain.

The needs to adapt between domains surface everyday as personalization becomes preva-

lent, not only in web applications such as personalized news or ads, but also in education,

healthcare and television, etc. As an example, spam filters can be trained on some public

collection of spam and non-spam emails. However, when applied to an individual user’s
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I read 2-3 books a week, and this is without doubt my 
favorite of this year. A beautiful novel by Afghan-American 
Khaled Hosseini that rans among the best-written and 
provocative stories of the year so far. This unusually 
eloquent story is also about the fragile relationship …

This unit makes the best coffee I've had in a home. It is my 
favorite unit. It makes excellent and HOT coffee. The carafe 
is solidly constructed and fits securely in squared body. 
The timer is easy to program, as is the clock ... 

Figure 1.3: Sample review from the book (left) and kitchen appliance (right) domain of the
Amazon review benchmark set [19].

inbox, we may want to “personalize” the spam filter, i.e., adapt it to fit the user’s own

distribution of emails in order to achieve better performance. Shift of domain is common

in natural language processing as well. In general, labeled data for tasks like part-of-speech

tagging, parsing, or information extraction are drawn from a limited set of document types

and genres in a given language because of availability, cost, and project goals. However,

applications for the trained systems often involve somewhat different document types and

genres [52]. For example, most of the labeling were performed on text from news articles (in

particular, the Wall Street Journal), which uses a very specialized set of languages. Labeled

data from this domain can be a poor match to be used as training examples for other do-

mains, such as biomedical texts, mails or meeting transcripts, etc. Another example arises

in the vision community. The changes in camera, image resolution, lighting, background,

viewpoint, and post-processing cause substantial distribution shift for vision data [132]. For

example, there are a large number of readily categorized inventory images online (from Ama-

zon, Ebay, etc.), which can be useful for object recognition tasks. However, inventory images

are mostly captured in a much more controlled manner, and look very different from the ones

taken in real world surroundings. As a result, directly porting a learner trained on the source

domain (inventory images) to the target domain (real life images) often leads to degenerated

performance.
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If the data distribution from the source and target domain differs vastly, then it is hopeless to

generalize from one to another. Nevertheless, adaptation is possible when the two domains

are related, e.g., the two distributions share supports, or the supports of the two distributions

overlap. Figure 1.3 shows two sample reviews from the Amazon review benchmark set [19],

one from the “books” domain (left), and the other from the “kitchen appliances” domain

(right). We highlight the sentiment words that are shared across domains in green, and the

ones that are specific to different domains in blue (source) and red (target) respectively.

One can see that very different vocabularies are used to express the same kind of opinion

(in this case, positive sentiment) about different products. People use “well-written” and

“eloquent” when recommending books. On the other hand, “solidly constructed” and “easy

to program” are used as strong indicators of positive view about coffee makers. Fortunately,

there are also words shared across both products, like “best”, “favorite”. These features are

invariant across different domains, and will be used to bridge the two distributions.

Notation. We formalize the setup in domain adaptation as follows: denote as LS =

{(x1, y1), · · · , (xnS
, ynS

)} ⊆ X × Y the set of labeled data drawn from some source distri-

bution DS, LT = {(x1, y1), · · · , (xnT
, ynT

)} ⊆ X × Y a small set of labeled data sampled

from the target distribution DT . Let UT = {xnT+1, · · · ,xmT
},mT � nT be another set of

unlabeled data drawn i.i.d. from the same target distribution. Note that, LT could be empty

in some cases, i.e., we only have access to unlabeled data from the target domain. The goal

is to find a hypothesis h ∈ H using both the labeled data from LS, the labeled and data LT

and unlabeled data UT from the target domain, so that it accurately predicts the labels of

the testing data drawn from the target distribution DT .

Co-training for Domain Adaptation (CODA) [41]. Section 2.2 describes Co-training

for Domain Adaptation (CODA), an algorithm we developed to adapt from a single source

domain. CODA is a variant of the Pseudo Multi-view Co-training (PMC) algorithm we

introduced for learning with weak supervision. It slowly adapts the training set from the

source distribution to the target, both data-wise and feature-wise. To shift the distribution of

the training data from source to target, CODA gradually add inputs from the target domain

to the training set using co-training. Meanwhile, it includes a feature selection component

to shift the features used by the model from source-heavy to target-heavy. Combining these

two strategies, CODA significantly outperforms existing algorithms on a standard domain

adaptation benchmark set [19].
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1.2.3 Learning from Multiple Domains

Most existing work on domain adaptation has been focused on the one source and one target

scenario. Here we generalize to the cases when there are multiple source domains, each

associated with a different distribution. Glorot et al. [69] demonstrated that learning a

shared representation using data from all the available domains leads to better performance

than learning on a single source and target domain.

Notation. We formalize the setup in learning with multiple domains as follows: Let K

denote the number of source domains available. Each source domain is associated with a

distribution DSj
, j = 1, · · · , K, from which we can sample a set of labeled inputs LSj

=

{(x1, y1), · · · , (xnSj
, ynSj

)} and a set of unlabeled inputs USj
= {x1, · · · ,xmSj

}. Note that,

it is possible that we only have access to unlabeled data for some source domains. Same

as before, denote as LT = {(x1, y1), · · · , (xnT
, ynT

)} ⊆ X × Y a small set of labeled data

sampled from the target distribution DT . Let UT = {xnT+1, · · · ,xmT
},mT � nT be another

set of unlabeled data drawn i.i.d. from the same target distribution. Note that, LT could be

empty in some cases. Again, the goal is to find a hypothesis h ∈ H that works well for the

target domain.

marginalized Stacked Denoising Autoencoders (mSDA) [43]. Section 3.1 describes

marginalized Stacked Denoising Autoencoders (mSDA), an algorithm we developed to learn

from multiple source domains. mSDA is inspired by the Stacked Denoising Autoencoders

(SDAs) algorithm Glorot et al. [69] adopted for domain adaptation. Similar to SDAs, mSDAs

learn a general data representation through corruption and reconstruction using all the

unlabeled data from different domains, and then train a classifier using labeled data on the

new representation. Different to SDAs, which employ a nonlinear encoders and decoders

to learn the representation, mSDAs use single-layer linear denoising autoencoders as the

basic building blocks. Our new formulation has some very desirable optimization properties,

such as layer-wise closed form solution and noise marginalization. mSDAs match the record

accuracy attained by SDAs while reducing the training time by several orders of magnitude.
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1.2.4 Learning from Corrupted Data

Again here we focus on the scenario when the training data from the relevant distribution is

insufficient. However, in this case, we do not assume there is data from a different distribution

that is readily available or can be easily obtained. Training on the small set of training data

often results in degenerated performance on unseen testing data although the learner has low

empirical risk, which is commonly referred to as overfitting. The standard approach to deal

with overfitting is through regularization or learning with priors. However, these approaches

can be unintuitive for practitioners (such as biologists) as prior knowledge on the model

parameters is required to select a proper regularizer or prior. Instead, we explore using

feature dropout (or data corruption) to create a distribution with known density function

and sample from it more training data to improve the robustness of the learned classifiers.

Figure 1.4 shows some of the corrupting distributions we used to create the additional train-

ing examples. Feature dropout randomly removes some active features (in this case, pixels

or image patches of an image) from each example. Bit-swap noise randomly replaces some

active features with another ones, which is extremely useful for text document. Imagine peo-

ple switch between synonyms, such as replacing “president” with “obama” in the example.

Poisson corruption is also useful for count vectors. As shown in the figure, applying these

corruption does not change the output, but produces additional training examples that can

capture some of the distribution variation which can not be captured in the original small

set of training examples.

Marginalized Corrupted Feature (MCF) [155]. Section 3.2 describes Marginalized

Corrupted Features (MCF) regularization, an new learning framework we developed to im-

prove generalization when no additional external data is available. MCF is inspired by the

marginalized corruption employed in mSDA. It extends the training set with infinitely many

artificially generated training examples that are obtained by corrupting the original training

data. In other words, instead of approximating the exact statistics of the testing distribution

D with finite data, MCF learns from a slightly modified data distribution D′ with infinite

training data. MCF is practical and efficient for a range of predictors and corruption models.

We show empirically on a variety of data sets that MCF classifiers can be trained efficiently,

may generalize substantially better to test data, and are also more robust to feature deletion

at test time. In contrast to regularization or learning with prior method, learning with MCF
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Definitely a car

Still a car?

(a) object recognition

(b) text classification (c) sentiment analysis

keep 0

amazing 5

ideas 2

value 0

poor 0

... ...

average 1

4

Positive review

Still positive?

0
1

president 1

Obama 0

important 1

game-changing 0

... ...

bill 1

law 0
0
1

Politics

Still politics?

Figure 1.4: Examples of applying (a) feature dropout (blank-out noise); (b) Bit-swap noise;
(c) Poisson noise to create examples that look like “real” ones.

is more intuitive as the corrupting is applied to the data itself, and we provides some simple

guideline for choosing corrupting distributions.

1.2.5 Learning with Partial Supervision

The last learning scenario we are going to explore is to learn with partial supervision. Ac-

quiring clean and complete labels can be time consuming and require domain expertise that

few possess. Lately, people have been turning to crowdsourcing as a tool for obtaining labels

at scale. However, crowd sourced labels are noisy and notoriously incomplete.
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visual
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Figure 1.5: Sample image with partial tags.

We take automatic image annotation [17, 49, 57, 75, 85, 94, 104] as an example. Given an

image, the goal is to annotate it with the complete list of tags that describe all visual features

present in the image. Note that it is easy to tag an image with a few of the most prominent

visual features, but to obtain the complete list can be quite difficult. The ESP game [162]

takes the novel approach of allowing free-form input from the user, which is quick to do,

but incentivizes pairs of labelers to match their answers. This results in tag sets with high

precision, but without guarantees for high recall; that is, each image may be tagged with

only a small set of tags that describe the most obvious visual features.

Figure 1.5 shows an image with a partial list of tags, which prescribes the dominant objects

in the image, i.e., snow, lake and feet. Our goal is to infer the full list of relevant tags, which

describes all the visual features present in the image, e.g., mountain, snow, sky, lake and

water, etc. To be able to tag an image with the full list of tags is important for indexing in

searchable image databases such as Flickr, Picassa or Facebook. The full list of tags could

also serve as a starting point for image caption.

Notation. We formalize the setup of automatic image annotation with partial tags as

follows: let T = {ω1, · · · , ωT} denote the dictionary of T possible annotation tags. Let

L = {(x1,y1), · · · , (xn,yn)} ⊂ Rd × {0, 1}T denote the set of training data, where each

vector xi ∈ Rd represents the features extracted from the i-th image and each yi prescribes

the small partial subset of tags that are appropriate for the i-th image. Our goal is to learn

a linear function W : Rd→T , which maps a test image xi to its complete tag set.

FastTag. Section 3.3 describes FastTag, an algorithm we developed for image annotation

using incomplete user tags. It employs a simple yet effective strategy to cope with overly
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sparse supervision. FastTag learn two linear mappings simultaneously, one to recover the

missing labels, and the other one to project the inputs to the predicted labels. These

two mappings are co-regularized in a jointly convex loss function, which can be efficiently

optimized with closed form updates. The simplicity of the framework allows us to incorporate

a variety of image descriptors cheaply and to scale to datasets of a large number of images.

FastTag matches the current state-of-the-art in tagging quality, yet reduces the training and

testing times by several orders of magnitude on several standard real-world benchmark data

sets.

1.2.6 Discussion

Note that there are several other popular learning paradigms that share similar goals as the

ones we introduced. For example, active learning [138] seeks to reduce the overall amount

of labels required by allowing the learning algorithm to interactively query for new labels.

It is hoped that with a smart query strategy, the total number of examples required to

learn a concept can be much lower than that would have been required in normal supervised

learning.

Multiple instance learning (MIL), originally introduced by Dietterich et al. [55], is highly

related to learning with weak or partial supervision. Rather than requiring each instance

to be labeled as positive or negative, MIL algorithms take a set of bags that are labeled

positive or negative as inputs. Labeling effort is reduced in this case as each bag contains

many instances and a single label is assigned to one bag of instances. A bag is labeled negative

if all the instances in it are negative, or positive if there is at least one positive instance in

the bag. Given a collection of labeled bags, MIL algorithms aim at either 1) inducing a

concept that will label individual instances correctly; or 2) labeling bags without inducing

the concept.

Multi-task learning (MTL) [30, 59, 58, 165, 37] is a learning framework closely related

to domain adaptation. Different from domain adaptation, usually there is only a sin-

gle distribution on the observations in multi-task learning. Instead, the target functions

fi(x), i = 1, · · · , K differ across tasks, where K is the number of tasks. The goal of MTL
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is to improve the performance of learning algorithms on all the tasks by learning classi-

fiers for multiple tasks jointly. It works particularly well when the tasks are related and

under-sampled.

1.3 Optimization Background

Optimization plays a very important role in machine learning. Most of the works we are

going to include in this dissertation follows a simple scheme, that is formulating the objective

as an optimization problem, and then solving with an optimization solver. In this section, we

are going to briefly review some of the general optimization techniques used in these works.

We will start with the basic first order gradient based method for unconstrained optimization

problems, followed with a discussion on the augmented Lagrangian method we employed to

solve problems with constraints. Further, we will review the analytical solution for least

square problems, and the alternating optimization (block coordinate descent) method we

applied to transform an optimization problem into two least square problems so that each

one of them can be solved analytically.

1.3.1 Gradient-based Method for Unconstrained Optimization

First, we are going to introduce several gradient-based optimization techniques for uncon-

strained problems:

min
x∈Rn

f(x) (1.4)

For most of the analysis, we assumed that f is a continuously differentiable function. Note

that in our algorithms, there are a few optimization problems which have non-differentiable

objective functions, they are either handled with a differentiable approximation or by resort-

ing to sub-gradient methods [26].

We will start with a brief discussion of the necessary and sufficient conditions for an optimal

solution, which offers important insight on several of the optimization solvers we are going

to introduce.
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Proposition 1.1. (Necessary Optimality Condition) Let x∗ be an unconstrained local

minimum of f : Rn → R, and assume that f is continuously differentiable in an open set S

containing x∗, then

∇f(x∗) = 0 (1.5)

If in addition f is twice continuously differentiable within S, then

∇2f(x∗) : positive semidefinite. (1.6)

Proposition 1.2. (Sufficient Optimality Condition) Let f : Rn → R be twice contin-

uously differentiable in an open set S. Suppose x∗ ∈ S satisfies the conditions that

∇f(x∗) = 0, ∇2f(x∗) : positive semidefinite. (1.7)

Then, x∗ is a strict unconstrained local minimum of f .

We are going to skip the proofs, and refer interested readers to [13].

The first class of methods we are going to review follow a simple iterative descent idea. In

other words, they start from some initial point x0 and successively generate x1,x2, · · · as

xk+1 = xk + αkdk, k = 0, 1, · · · (1.8)

such that the objective function f is decreased at each iteration. The process stops when

the optimality conditions are satisfied. Here the scalar αk is commonly referred to as the

stepsize and dk ∈ Rn as the descent direction.

Descent direction. The class of methods is widely referred to as gradient based method

as the descent direction is chosen to be of the opposite direction as the gradient so that the

loss can decrease at each iteration. In other words,

∇f(xk)
>dk < 0. (1.9)

There are many directions that satisfy the condition. Two widely used descent directions

lead to the two classes of popular gradient based methods, the steepest descent method,
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and the newton’s method. For steepest descent methods, the descent direction is the right

opposite of the gradient direction, that is,

dk = −∇f(xk) ⇒ xk+1 = xk − αk∇f(xk) (1.10)

For newton’s methods, the descent direction is set so that gradient of the second order taylor

expansion of f(xk+1) reaches zero, i.e.,

dk = −(∇2f(xk))
−1∇f(xk) ⇒ xk+1 = xk − αk(∇2f(xk))

−1∇f(xk) (1.11)

Stepsize. Many different strategies have been proposed to set the stepsize as well. For

example, the constant stepsize method simply sets αk = s, where s is a small constant.

Though a simple approach, it runs into problems when the constant is either too large

(leading to divergence) or too small (slow convergence). The diminishing stepsize method

starts with a relatively large step size and decreases the stepsize at each iteration. Some

special care has to be taken to ensure sufficient decrease in the loss at each iteration in this

case. The exact minimization or limited minimization rules choose the stepsize by solving

another optimization problem to minimize the loss f(xK+1) w.r.t the step size αk. Several

line search rules were also proposed, such as the Armijo rule, which finds the largest step

size possible with a sufficient decrease in the loss by successive stepsize reduction.

Convergence. If the descent direction is gradient related, then convergence to a station-

ary point (zero derivative) is guaranteed for methods using the exact minimization, limited

minimization or the Armijo line search rule for general function classes. For constant or di-

minishing stepsize method, Liptchitz continuity needs to be further enforced on the objective

function to guarantee convergence.

Conjugate Gradient Method

In this section, we are going to explain the Polack-Ribiere flavor of conjugate gradient

method [122] in more detail. It is employed in a optimization package 1 used in several

of our algorithms. Conjugate gradient methods is a a class of optimization techniques that

1http://www.gatsby.ucl.ac.uk/∼edward/code/minimize/minimize.m
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Figure 1.6: Comparison of conjugate gradient descent (red) and steepest descent with line
minimization in terms of convergence rate.

is between steepest descent, which is known to have slow convergence rate, and newton’s

method, which has a big overhead for computing and storing the hessian matrix for large

problems.

Many loss functions can be roughly approximated as a quadratic form near the local min-

ima [13],

f(x) =
1

2
x>Ax− x>b + c (1.12)

Figure 1.6 compares the convergence rate of steepest descent method (black) and conjugate

gradient method (red) when minimizing such a quadratic function. The contour of the

objective function is shown in different colors, with the minimum at the bottom center of

the narrow “valley”. The plot also depicts the gradients at different point with blue arrows.

In the two-dimensional case, one might have hoped that the gradient descent will arrive at

the minimum in two steps, where the first step takes you to the bottom of the valley, and

the second step directly down to the center. Steepest descent method instead, makes many

small steps following the gradient directions. It has a very slow convergence rate, repeatedly

searching in the same directions, even when the loss is a perfectly quadratic function. The

reason is that with the line minimization rule, the gradients at two consecutive iterations are

perpendicular to each other. In other words, you are making a right turn at each iteration,

which are not likely to take you to minimum unless matrix A is an identity matrix.
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Algorithm 1.1 Conjugate Gradient Method.

1: Initialization: x0 = 0, g0 = −∇f(x0), d0 = g0

2: for k = 0 to n− 1 do
3: αk =

g>k gk

d>i Adi

4: xk+1 = xk + αkdk
5: gk+1 = gk − αkAdk
6: βk+1 = (gk+1−gk)

>gk+1

gkgk

7: dk+1 = gk+1 + βk+1dk
8: end for

Conjugate gradient method, on the other hand, can solve the problem with at most n

iterations, where n is the number of variables in x. For the example we plot in figure 1.6, at

most 2 steps are required, as depicted in the red arrow. Given a positive definite matrix A,

a set of nonzero vectors d0, · · · ,dk is conjugate (A-orthogonal), if

d>i Adj = 0, ∀ i and j such that i 6= j. (1.13)

The conjugate directions are linearly independent, therefore a set of n conjugate directions

will span the n dimensional space where the minimum x∗ lies in. If we set the update rule

as

xk+1 = xk + αkdk

where d0 = −∇f(x0), and dk is conjugate to d0, · · · ,dk−1, and find the stepsize αk by line

minimization rule, then we can also prove that

xk+1 = arg min
x∈Mk

f(x) (1.14)

where Mk is the subspace spanned by d0, · · · ,dk. Please refer to [13] page 132 for the proof.

Therefore, at iteration n, we would have found the minimum, xn = arg minx∈Rn f(x) ≡ x∗.

Algorithm 1.1 shows the pseudocode for the conjugate gradient method.

22



1.3.2 Augmented Lagrangian Method for Constrained Optimiza-

tion

Some of our problem formulations involve constraints. In this section, we are going to

briefly review the augmented Lagrangian method for constrained optimization problem of

the following form:

min
x

f(x) (1.15)

subject to hi(x) = 0, i = 1, · · · ,m
gj(x) ≤ 0, j = 1, · · · , r

where the objective function f : Rn → R, the equality constraints hi : Rn → R, i =

1, · · · ,m, and the inequality constraints gi : Rn → R, j = 1, · · · , r are continuously differ-

entiable.

The constrained optimization problem can be well approximated with an unconstrained

optimization of the augmented lagrangian function

min
x,z

Lc(x, z, λ, µ) = f(x) +
m∑

i=1

{
λihi(x) +

c

2
h2i (x)

}
(1.16)

+
r∑

j=1

{
µj(gj(x) + z2j ) +

c

2
(gj(x) + z2j )

2
}

provided that either:

1) λ and µ are close to the Lagrangian multipliers; or

2) The penalty parameter c is large.

Here z2j , j = 1, · · · , r are the additional variables introduced to handle inequality constraints.

There are several other popular techniques for constrained optimization. For example, the

gradient projection method [127] is widely used in problems involves constraints of convex

set. It adds to the steepest descent method for unconstrained optimization an additional

projection step to project the search direction to the feasible set. However, in order for
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these methods to make practical sense, it s necessary that the projection operation is fairly

simple, which in turn means that the constraints can only take simple structure, such as

bounded or linear constraints. (In)exact Penalty method is another alternative. It follows

the same philosophy of augmented Lagrangian method, that is, to transform a constrained

problem into an unconstrained one, and then solve with techniques we introduced in previous

section. It adds any violation in the constraints as additional penalty terms to the objective

function. The problem with penalty method is that in order to recover a feasible solution

to the original constrained problem, the penalty factors c for each active constraints have to

go to infinity. As c increases, the condition number of the Hessian matrix increases as well,

causing the unconstrained formulation to become difficult to solve.

The advantage of augmented Lagrangian method lies in the fact that it is workable even if

the penalty factor c is not increased to ∞, thus alleviates the ill-conditioning problem and

is in general more reliable then penalty method.

update rule. A good heuristic for updating the penalty factor c is to start with a relatively

small value c0 and increase it slightly whenever the constraints are violated. The Lagrangin

multipliers are updated as

λk+1
i = λki + ckhi(x

k) µk+1
j = µkj + ck max(0, gj(x

k, µk, ck)) (1.17)

In our experiments, we found that it is important to roughly tune the initial penalty factor

c0 at some small values so that the augmented unconstrained problem is solvable. Starting

from a too large penalty factor often results in ill-conditioning in the later iterations.

1.3.3 Least-Squares Problem

In this section, we are going to review the least-squares problem which serves as building

blocks for a couple of our algorithms. Least-squares is arguably the most well known subclass

of convex optimization problems. A least-squares problem is unconstrained, and it take an

objective which is a sum of squared residuals of the form a>x− b,

min
x∈Rd

f(x) = ‖Ax− b‖2 =
n∑

i=1

(a>i x− bi)2 (1.18)
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where A ∈ Rn×d, and a>i corresponds to the rows of A. The vector x ∈ Rd is the variables

we optimize over.

We can rewrite the objective function in eq. (1.18) as

min
x

(Ax− b)>(Ax− b)

= x>A>Ax− 2x>A>b + b>b (1.19)

Take the derivative of (1.19) and set it to zero, we have

A>Ax = A>b (1.20)

In other words, solving the least-squares problem is equivalent to solve the system of linear

equations in (1.21), which has closed form solution

x = (A>A)−1A>b. (1.21)

Solving the least-squares problem has a time complexity of O(d2n) with a known constant.

A variety of efficient and reliable implementations, such as gaussian elimination method, for

solving the linear system of equations are available. Running a problem with d = 5, 000 and

n = 100, 000 on a desktop with dual 6 cores Intel i7 cpus with 2.66Ghz takes seconds.

The least-squares problem is the basis for regression analysis, optimal control, and many

parameter estimation and data fitting methods [25]. It can be further generalized to slightly

different formats without breaking the closed form solution. For example, we can include

different weights for different rows of A, which corresponds to having different costs for

different examples in the regression analysis or data fitting.

min
x

fω(x) =
n∑

i=1

ωi(a
>
i x− bi)2 (1.22)

where the weights ω1, · · · , ωn are non-negative. Let Ω = [ωi]ii denote a diagonal matrix with

the weights ωi’s on the diagonal, we can then rewrite the weighted version of the least-squares

problem as

min
x

fω(x) = (Ax− b)>Ω(Ax− b), (1.23)
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which has analytical solution as x = (A>ΩA)−1A>Ωb.

We can also add additional terms that regularize the variables x to the objective function.

For example, when a positive multiple of the sum of squares of the variables are added, we

have

min
x

fλ(x) =
n∑

i=1

(a>i x− bi)2 + λ‖x‖2. (1.24)

where λ is a positive factor penalizing large values in x. The new objective function is

commonly referred to as ridge regression. Different regularization reduces to Maximum

likelihood estimation of the variables x with different priors. For example, ridge regression

corresponds to estimation of x with a gaussian prior; and L1 regularization corresponds to

Laplace prior.

Note that the closed form solution no longer stands in the L1 regularization case. However,

with the introduction of some auxiliary variables, we can solve the problem within a few

iterations, where at each iteration an analytical solution is available. We refer interested

readers to [25].

1.3.4 Block Coordinate descent (Alternating Optimization)

Another optimization technique we used quite often in our algorithms is the (block) coordi-

nate descent method, also known as the alternating optimization. It partitions the variables

of the optimization problem x ∈ Rn into several exclusive subsets x = (x(1); · · · ; x(t)),

where x(i) ∈ Rni , satisfying
∑t

i=1 ni = n. It minimizes the objective function f(x) jointly

over all the variables in x by iteratively carrying out alternating restricted minimization

over each subset of variables x(1); · · · ; x(t). In other words, given the current iterate xk =

(xk(1); · · · ; xk(i−1); x
k
(i); x

k
(i+1); · · · ; xk(t)), it generates the next iterate xk+1 as

(xk(1); · · · ; xk(i−1); x
k+1
(i) ; xk(i+1); · · · ; xk(t)),

where

xk+1
(i) = arg min

z∈Rni
f(xk(1); · · · ; xk(i−1); z; xk(i+1); · · · ; xk(t)) (1.25)
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That is, the variables from all the subsets except subset i is clamped to the best values found

in previous iterations, and the cost function is minimized w.r.t each of the block coordinates

xk(i). The same process is repeated for every block in cyclic order until convergence. The

method is extremely useful if the minimization problem we have in eq. (1.25) is substantially

easier than jointly minimizing the loss over all the variables at once. Note that, this approach

can get stuck at some local minimum. But it converges to the global minima if the cost

function is jointly convex over all the coordinates.
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Chapter 2

Single View Co-training

In this chapter, we are going to explicate our first strategy, single view co-training, for

learning with weak supervision or domain adaptation. The co-training algorithm of Blum

and Mitchell [23] was originally designed for multi-view data. Section 2.1 details Pseudo

Multi-view Co-training (PMC). PMC generalizes co-training to the more common single

view data with an automatic feature decomposition scheme. The rote learning procedure

employed in co-training is a natural fit to learn from weakly labeled data, by cherry-picking

the instances that resemble the training examples. We demonstrate on challenging tasks

that PMC improves the generalization performance substantially with the help of weakly la-

beled data. Section 2.2 details Co-training for Domain Adaptation (CODA). CODA adds to

PMC another feature selection component to address the missing feature problem in domain

adaptation. Combining these two components, CODA is able to slowly adapt the training

set from source to target distribution, both data-wise and feature-wise. CODA significantly

out-performs the state-of-the-art on the 12-domain benchmark data set of Blitzer et al. [19].

Indeed, over a wide range (65 of 84 comparisons) of target supervision CODA achieves the

best performance.

2.1 Pseudo Multi-view Co-training

In this section, we present Pseudo Multi-view Co-training (PMC). PMC is a variant of the

Co-training algorithm [23] for multi-view data. In co-training, one trains two classifiers, one

on each view, that teach each other with the most confident predictions of the unlabeled data.

PMC extends co-training to learning scenarios without an explicit multi-view representation.
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Based on a theoretical analysis of Balcan et al. [5], we introduce a novel algorithm that

splits the feature space during learning, explicitly to encourage co-training to be successful.

We demonstrate the efficacy of our proposed method in a weakly-supervised setting on the

challenging Caltech-256 object recognition task, where we improve significantly over previous

results [11] in almost all training-set size settings.

The section is organized as follows. Section 2.1.2 recaps the setup in learning with weak

supervision. Section 2.1.3 describes the original co-training algorithm and explains why it

is particularly suitable for learning on weakly-labeled data. We survey several theoretical

work on relaxing the assumptions in co-training and related work on generalizing co-training

to single view data. Section 2.1.4 details the PMC algorithm itself. The algorithm is based

on the theoretical work of Balcan et al. [5]. Different from most of the previous approaches,

which decompose the feature space in a preprocessing step, we learn the feature decompo-

sition along with the two classifiers, explicitly to satisfy the conditions for co-training to

succeed. Section 2.1.5 extends the framework to multi-class settings. In Section 2.1.6, we

report the performance of PMC on the Caltech-256 object recognition task, using images

retrieved from BingTMas weakly labeled data.

2.1.1 Introduction

Co-training [23] is an approach to semi-supervised learning [36, 174] which assumes that

the available data is represented with two views. In its original formulation, these two views

must satisfy two conditions: 1) each one is sufficient to train a low-error classifier and 2) both

are class-conditionally independent. Given a datasets of two such views (representations),

co-training trains two classifiers, one on each view. It then utilizes unlabeled data by adding

the most confident predictions of each classifier to the training set of the other classifier

– effectively letting the classifiers “teach each other”. Blum and Mitchell [23] show drastic

improvements on data sets where the multi-view assumptions naturally hold. Co-training and

its variants have been applied to many applications across computer science and beyond [45,

66, 116, 98, 27, 33].

However in many learning scenarios, the available data does not originate from two explicitly

different sources. For example, in the MNIST handwritten digit dataset we introduced in
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chapter 1, pixel values extracted from each 28×28 image of digit form a single feature vector

of 784 real values. It is unclear how one can easily split the features into two subsets that

satisfies the class-conditionally independent assumption of co-training. One might also be

faced with assorted features that were obtained through various means. For example, in the

medical domain features might correspond to different examinations. It is hard to guarantee

that each one of them is sufficiently informative about the patient’s condition. Meeting the

class-conditionally independent assumption is even more unlikely.

We extend co-training to this more common single-view setting (features obtained through

various means can be combined into a single view representation). We utilize recent advances

in learning theory that have significantly weakened the strong assumptions of co-training.

Most notably, Balcan et al. [5] proved that the class-conditional independence assumption

is unnecessarily strong and that a weaker expanding condition on the underlying distribu-

tion of the multi-view data is sufficient for iterative co-training to succeed. We propose a

novel feature decomposition algorithm, which automatically divides the features of a single-

view data set into two mutually exclusive subsets – thereby creating a pseudo-multi-view

representation for co-training. This feature division is learned explicitly to satisfy the nec-

essary conditions to enable successful co-training. We derive a single optimization problem,

which divides the feature space, trains both classifiers and enforces an approximation of the

ε-expanding condition [5] through hard constraints. We refer to our algorithm as Pseudo

Multi-view Co-training (PMC).

Our broadening of the scope of co-training is particularly useful for weakly supervised learn-

ing scenarios. Through the success of web-search, it is now possible to obtain large quantities

of data for almost any topic or class description (e.g. through automated image search or

wikipedia lookups). Often, however, only a small fraction of the retrieved search results

are truly relevant to someone’s learning task. As co-training explicitly cherry-picks data

instances with similar characteristics as the labeled training data, it is naturally suited for

learning with such noisy (weak) labels. We demonstrate this capability by effectively utiliz-

ing weakly labeled image-search results to improve the classification accuracy on the Caltech

256 object recognition data set – surpassing previously published results on the same task

by Bergamo and Torresani [11].
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2.1.2 Recap of Learning with Weak Supervision

Getting a large quantity of good labels is often expensive and time-consuming. On the other

hand, obtaining weakly labeled data, a candidate pool containing both good and bad labels,

has becoming almost “cost-free” with the booming era of web search. Nowadays, we can

acquire enormous amount of data for any concept or class description by simply performing

search and crawling the returned results.

Figure 2.1 shows a Venn diagram that illustrates the setup we have in learning with weak

supervision. Let X ∈ Rd denote the feature space, and Y the output space. Let D′ denote

the joint distribution of the weakly labeled data on X × Y , D the testing distribution. As

shown in the figure, the support of the distribution D′ is a superset of that of distribution

D. In other words, examples that are in the support of the testing distribution, i.e., the

examples resembling the testing data, can be drawn from D′ as well. But D′ also generates

examples that do not follow the testing distribution, i.e., the “noisy” examples.

S(D)S(D0)

D0 6= D

Figure 2.1: Venn diagram on learning with weak supervision.

Notation. We have access to a small set of labeled examples L = {(x1, y1), · · · , (xn, yn)} ⊆
X × Y sampled i.i.d. from the testing distribution D, as well as another much larger set of

weakly labeled examples L′ = {(x1, y1), · · · , (xm, ym)},m � n sampled i.i.d. from another

distribution D′. We want to find a hypothesis h ∈ H using the labeled data from both L

and L′, so that the generalization performance improves over a hypothesis h learned on L

solely.
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2.1.3 Background and Related Work

Co-training [23] is among the first of a few successful semi-supervised learning algorithms

developed. Let X ⊆ Rd denote the feature space, and Y the output space. Recall that in

semi-supervised learning, we have a small set of labeled data i.i.d sampled from an unknown

distribution D, L = {(x1, y1), · · · , (xn, yn)} ⊆ X × Y , as well as another set of unlabeled

inputs U = {xn+1, · · · ,xn+m} drawn from the same distribution. The labels of the examples

in U are unknown though.

Co-training assumes that the feature space can be partitioned into two subspaces, i.e., X =

X 1 × X 2. X 1 and X 2 are commonly referred to as the two views of the inputs. The two

views must satisfy two conditions: 1) Both have to be sufficient within the given hypothesis

class, H1 on X 1 and H2 on X 2, for correct classifications; In other words, there exist two

hypotheses h1 ∈ H1 and h2 ∈ H2 having low error on inputs from feature space X 1 and X 2

respectively. Note that the two hypothesis classes are usually of the same type, but since

they are trained on different feature spaces, we denote them differently for clarity. 2) They

need to be class-conditionally independent, i.e., for a given input x = (x1,x2) ∈ X 1 × X 2

with label y ∈ Y , p(x1,x2|y) = p(x1|y)p(x2|y). Under these assumptions, co-training can

boost any initial weak learner to arbitrarily high accuracy using unlabeled examples only,

provided that the target class is PAC learnable from random classification noises [23].

The fundamental idea behind co-training is what Blum and Mitchell [23] describe as “rote-

learning” on the unlabeled data set. Initially, two classifiers h1, h2 are trained on the labeled

set L, both on their respective views. The two classifiers are then evaluated on the unlabeled

set U . For each classifier, the examples on which it is most confident are removed from U

and added to L to “teach” the other classifier at the next iteration. Both classifiers are

now re-trained on the expanded labeled data set and the procedure is repeated until some

stopping criterion is met. By carrying out this “rote learning” procedure, co-training can

bootstrap from a small labeled “seed” set and iteratively improve its performance with the

help of unlabeled data. Under the semi-supervised learning setting, the unlabeled data helps

as it reduces the version space size [110]. A version space refer to the subset of all hypotheses

in H that are consistent with the observed training examples. Here, the two classifiers have

to agree upon not only the small set of labeled examples in L, but also on the much larger

set of unlabeled data U .
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Figure 2.2: Conditionally-independent assumption of Co-training.

The first assumption that both views are sufficiently informative for correct classification

ensures that we can trust the “labels” automatically annotated by the two classifiers h1 and

h2. The second assumption that the two views are conditionally independent ensures that

the examples that one classifier is confident about are i.i.d sampled examples for another

classifier, as shown in figure 2.2. The examples h1 is confident about are circled in red

(positive predictions) and green (negative predictions). These confident predictions, while

concentrated in regions further away from the decision boundary in X 1 (figure 2.2 left), are

scattered in view X 2 (figure 2.2 right). Under these assumptions, provided that the target

function f 1(x1),x1 ∈ X 1 and f 2(x2),x2 ∈ X 2 are PAC learnable from random classification

noise, one can conclude that co-training can succeed with unlabeled data, given two initially

useful predictors h1(x1) and h2(x2). Please refer to [23] for the proof.

Compared to the various assumptions made in other semi-supervised learning algorithms,

such as the cluster or manifold assumptions, the multi-view assumption of co-training is less

affected by the fact that the weakly-labeled data comes from a different distribution than

the test data. Furthermore, as co-training explicitly cherry-picks data instances with similar

characteristics as the labeled training data (which comes from the same distribution as the

test inputs), it is naturally suited for learning with such noisy (weak) labels.

Unfortunately, finding two views satisfying these conditions is by no means an easy task.

As pointed out by Nigam and Ghani [116], the assumption that the two views are class

conditionally independent can easily be violated in practice. Abney [2] claims that the

assumption is unnecessarily strong and instead, a weaker rule independence assumption,

which allows the two views to deviate from fully class-conditionally independent by a certain

amount, suffices. Balcan et al. [5] further weaken this requirement. Intuitively, co-training
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expands its confidence set by letting the two classifier teach each other iteratively. For

the two classifiers to be able to teach each other, they must make confident predictions on

different subsets of the unlabeled data. Balcan et al. [5] formalize this condition as a concept

of ε-expandability, which we will explain in more detail in section 2.1.4.

Related Work

Despite advances in theoretical analyses of the algorithm, the applicability of co-training has

been largely dependent on domain experts manually creating multi-views from the data and

feeding them into the algorithm. There is some previous work on automatically decomposing

the feature space of a single view data for co-training. Broadly speaking, these approaches fall

into two categories: random feature splitting and greedy approach. Nigram and Ghani [116]

perform an extensive empirical study on co-training. For datasets without natural feature

split, they create an artificial split by randomly breaking the feature set into two subsets.

Chan et al. [33] also investigate the feasibility of random feature splitting and apply co-

training to email-spam classification. Abney [2] proposes a greedy agreement algorithm that

iteratively adds unit rules that agree on unlabeled data to build two views for co-training.

Zhang and Zheng [171] propose to decompose the feature space by first applying PCA and

then greedily dividing the orthogonal components to minimize the energy diversity of the

two feature sets.

Instead of enforcing the input to be represented in two views on which two classifiers of

the same type can be learned, Goldman and Zhou [70] take a slightly different approach:

the whole feature set is used, but instead two classifiers of different types are trained. The

high condent predictions of one classifier, identified with a set of statistical tests, are used

to teach the other classifier and vice versa. Later they generalize this framework to include

multiple learners [172], so that a democratic voting strategy among the different learners is

employed to increase the accuracy on the predictions. For methods of this kind to work, it is

essential that the different learners employed in the framework are diverse and make confident

predictions on different instances from U . However in general, predictions from classifiers on

the same feature space (e.g., support vector machines [46] and logistic regression [115]) are

usually highly correlated.
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2.1.4 Pseudo Multi-view Co-training

The algorithm we propose shares a common goal of the ones introduced in section 2.1.3, that

is, to extend co-training to the scenarios when the two views X 1,X 2 are not known. Different

from most of the previous approaches, which decompose the feature space in a preprocessing

step, we learn the feature decomposition along with the two classifiers, explicitly to satisfy

the conditions for co-training to succeed. Our algorithm is based on the theoretical analysis

of ε-expandability from Balcan et al. [5], which we briefly introduced in previous section.

In this section, we are going to first formalize this condition, and then describe the Pseudo

Multi-view Decomposition (PMD) algorithm we come up with to create pseudo multi-views

from single view data.

ε-expandability

Similar to the original theoretical analysis of co-training in [23, 2], the analysis from Balcan

et al. [5] also assumes that the inputs consist of two views, i.e., X = X 1 ×X 2. Let h1 ∈ H1

and h2 ∈ H2 be the two classifiers, trained on the two views X 1,X 2 respectively. Each input x

contains the features from both views, x = (x1,x2). The unlabeled data U sampled from the

distribution D on X can therefore be partitioned into two sets. Let U1 = {x1
n+1, · · · ,x1

n+m}
denote the set of unlabeled data from view X 1, and U2 = {x2

n+1, · · · ,x2
n+m} the correspond-

ing inputs from view X 2. Let us denote the subsets of U1, U2 on which these two classifiers

are confident as C1, C2 respectively. For any S ⊆ U , let Si denote the event that an input

x = (x1,x2) ∈ S satisfies xi ∈ Ci. We can express the probability of an instance in S to be

classified confidently by both classifiers as Pr(S1 ∧ S2), by exactly one of the two classifiers

as Pr(S1 ⊕ S2) and by none as Pr(S1 ∧ S2). The ε-expanding condition can then be stated

as follows:

Definition 2.1. [5] D is ε-expanding with respect to the hypothesis class H1×H2 if for any

S ⊆ U and any two classifiers h1 ∈ H1 and h2 ∈ H2, the following statement holds

Pr(S1 ⊕ S2) ≥ εmin[Pr(S1 ∧ S2)],Pr(S1 ∧ S2)].
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Intuitively, the condition ensures that with high probability there are data instances in the

unlabeled set for which exactly one of the two classifiers is confident. These instances can then

be added to the labeled set to teach the classifier which is uncertain about them. It is shown

that the conditional independence of [23] and the weak rule independence assumption of [2]

can be seen as extreme cases of the ε-expanding condition. In other words, ε-expandability

is a much less restrictive assumption for co-training.

Let h10 and h20 denote the two initial classifiers trained on the small set of labeled data L.

Let ρ0 = Pr(S1
0 ⊕ S2

0) denote the probability of an instance drawn from D to be classified

confidently by either of the the two classifiers.

Proposition 2.1. Let εN and δN be the final desired accuracy and confidence parameters.

Given that the data distribution D satisfies the ε-expanding condition, running co-training for

N = O(1
ε

log 1
εN

+ 1
ε
· 1
ρ0

) rounds, each time learning two hypothesis classifiers with accuracy

and confidence parameters set to ε·εN
8

and δN
2N

, achieves error rate εN with probability 1− δN .

Intuitively, given the ε-expanding condition, the set of examples on which at least one of the

two classifiers is confident grows by a factor proportional to ε after each iteration. Please

refer to [5] for a proof sketch.

Pseudo Multi-view Decomposition

Based on the analysis, we can conclude that if the distribution D is ε-expanding, and the

two classifiers are never “confident but wrong”, co-training will succeed. We translate the

conclusion into three conditions: 1) both classifiers must perform well on the labeled data;

2) they must be trained on strictly different features; 3) together they are likely to sat-

isfy Balcan et al. [5]’s condition of ε-expandability. In this section, we describe how to learn

two classifiers on a single view X to satisfy these three conditions. For now we focus on

binary problems and set Y = {+1,−1}. We extend to multi-class problems in section 2.1.5.

Loss function. Co-training itself makes no assumption on the exact type of classifiers used

during the “rote-learning” procedure. For now we only consider linear classifiers, hu(x) =

sign(u>x + b) with weight vector u and bias b. To simplify notation we drop the bias b and
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assume that a constant 1 is attached as an additional dimension to each input xi, which is

not split between the two classifiers. A classifier hu is trained by minimizing the log-loss

over the data set L:

`(u;L) =
∑

(x,y)∈L

log
(

1 + e−u
Txy
)
. (2.1)

Our framework is agnostic to the specific choice of loss-function, however we choose logistic

regression [115] as it explicitly models the probability of labels y conditioned on the input

x, which provides a natural measure of classifier-confidence. This is mostly a matter of

convenience and not a requirement — alternative loss functions such as support vector

machines [46] would be equally applicable.

For co-training to work we need two classifiers, whose weight vectors we denote by u and v.

To meet the first condition that “both classifiers must perform well on the labeled set”, we

train these two jointly, and make sure that both suffer low loss by minimizing the maximum

of the two,

min
u,v

max [`(u;L), `(v;L)] . (2.2)

As eq. (2.18) is non-differentiable we introduce a slight relaxation and replace the max term

with a more manageable softmax. The optimization then becomes

min
u,v

log
(
e`(u;L) + e`(v;L)

)
, (2.3)

which is continuous and differentiable.

Feature Decomposition. A crucial aspect of co-training is that the two classifiers are

trained on different views of the data set. Unconstrained, the minimization problem in (2.3)

would result in two identical weight vectors u = v, both using up all the features. Instead,

we want the two classifiers to divide up the feature space so that each feature can only be

used by one of the two. For linear classifiers parameterized by a weight vector u, dropping a

feature i is equivalent to set the corresponding weight ui to zero. Therefore, we can fulfill the

second requirement that “both must be trained on strictly different features” by constraining

that for each feature i, at least one of the two classifiers must have a zero weight in the ith
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dimension. We can write this constraint as

∀i, 1 ≤ i ≤ d, uivi = 0. (2.4)

For a feature space X ∈ Rd, d constraints should be enforced. Although correct, this for-

mulation is unnecessarily hard to optimize and can result in numerical instabilities. Instead,

we square both sides and sum over all features to obtain the following constraint:

d∑

i=1

u2
iv

2
i = 0. (2.5)

It is important to point out that any solution to (2.5) strictly implies (2.4).

ε-Expandability. The final condition is that the two classifiers must make confident pre-

dictions on different inputs from the unlabeled set U . For classifier hu, let ŷ = sign(u>x) ∈ {±1}
denote the class prediction and p(ŷ|x; u) = (1+e−u

>xŷ)−1 its confidence. We define a binary

confidence indicator function2 as

cu(x) =

{
1 if p(ŷ|x; u) > τ

0 otherwise
(2.6)

where τ is a predefined confidence threshold.3 Let us define the subset of inputs on which

classifier hu is confident as Cu = {x ∈ X | cu(x) = 1}, and Cv respectively. For any S ⊆ X,

let Su denote the event that an input x in S belongs to the confident set of hu, that is,

x ∈ S ∩ Cu. Sv is defined analogously.

The ε-expanding condition from section 2.1.4 becomes

Pr(Su ⊕ Sv) ≥ εmin[Pr(Su ∧ Sv),Pr(Su ∧ Sv)]. (2.7)

As pointed out in [5], requiring that the ε-expanding condition holds for every pair of Cu and

Cv might still be unnecessarily strict in practice. For our optimization, we relax it and only

require that the expanding condition holds on average for the confident sets of the solution

2In our implementation, the 0-1 indicator was replaced by a very steep differentiable sigmoid function.
3In our implementation, τ was set to 0.8 across different experiments.
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hu, hv ∈ H. More explicitly we add the following constraint to our optimization:

∑

x∈U

[cu(x)c̄v(x) + c̄u(x)cv(x)] ≥ εmin

[∑

x∈U

cu(x)cv(x),
∑

x∈U

c̄u(x)c̄v(x)

]
(2.8)

Here, cu(x) = 1−cu(x) indicates that classifier hu is not confident about input x. Intuitively,

the constraint in eq. (2.8) ensures that the total number of inputs in U that can be used

for rote-learning as exactly one classifier is confident (LHS), is larger than the set of inputs

which can not as both classifiers are already confident or both are not confident (RHS).

In summary, we want to learn two logistic regression classifiers, both with small loss on

the labeled data set, while satisfying two constraints to ensure feature decomposition and

ε-expandability. We combine eqs (2.3-2.8) as the following optimization problem, which we

will later refer to as Pseudo Multi-view Decomposition (PMD):

min
u,v

(
e`(u;L) + e`(v;L)

)

subject to:

(1)
∑d

i=1 u2
iv

2
i = 0

(2)
∑

x∈U [cu(x)c̄v(x) + c̄u(x)cv(x)] ≥ εmin
[∑

x∈U cu(x)cv(x),
∑

x∈U c̄u(x)c̄v(x)
]

The objective guarantees that none of the loss functions is too high. The first constraint

enforces that no feature is used with both classifiers. The last constraint explicitly models

the ε-expandability condition. We optimize this constrained optimization problem with the

augmented Lagrangian method [13] introduced in section 1.3.2.

Pseudo Multi-view Co-training

Finally, we use our feature decomposition method to apply iterative co-training on single-

view data. We refer to the resulting algorithm as Pseudo Multi-view Co-training (PMC). A

detailed pseudo-code implementation is presented in Algorithm 2.1.

At each iteration of PMC, we find the two linear classifiers parameterized by u∗ and v∗

by solving the PMD problem introduced in previous section. The two classifiers hu and
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Algorithm 2.1 Pseudo Multi-view Co-training.

1: Inputs: L and U .
2: Initialize u, v and l.
3: repeat
4: Find u∗,v∗ by optimizing PMD on L and U .
5: Apply hu∗ and hv∗ on all elements of U .
6: Move up-to l confident inputs from U to L.
7: until No more predictions are confident
8: Train final classifier h on L with all features X .
9: Return h

hv “label” the unlabeled examples in U , and the confident predictions are moved from U

to expand the label set L. The process continues until we can no longer find confident

predictions.

Please note that there is another interesting difference between PMC and traditional co-

training. Not only is there no pre-defined split of the features but the automatically-found

split can vary between iterations.

2.1.5 Extension

So far, we restrict ourselves to binary problems. One way to extend PMC to multiclass

problems is by training multiple binary classifiers, one for each class, using the one-versus-the-

rest scheme. However, such an approach cannot capture the correlations between different

classes. A more natural and efficient way is to construct a hypothesis considering all the

classes at once.

Let us denote the label space as Y = {1, 2, · · · , K}. Let U = [u1, . . . ,uK ] ∈ Rd×K and

V = [v1, . . . ,vK ] ∈ Rd×K denote the parameters of the two classifiers. Then the log-loss of

a classifier hU over the data set L is defined as:

`(U;L) = −
∑

(x,y)∈L

log
ex
>uy

∑
k e

x>uk . (2.9)
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The confidence indictor function cU(x), cV(x) are defined as in (2.20) with the class predic-

tion computed as

ŷ = max
k

(x>uk), (2.10)

and the confidence as

p(ŷ|x; U) =
ex
>uŷ

∑
k e

x>uk . (2.11)

We can also decompose the instance space by constraining that eq. (2.5) holds for all classes,

that is,
K∑

k=1

d∑

i=1

(uki )
2(vki )

2 = 0. (2.12)

However, without additional regularization, eq. (2.12) would result in K different decompo-

sitions, one for each class. For the classifiers to be compatible, we want to ensure a consistent

partition of the instance space X = X 1×X 2 across different classes. More precisely, for each

feature i, at least one of the two classifiers must have zero weights across all classes.

A similar problem emerges in the context of feature selection in multi-task settings [4, 118],

when similar parameter sparsity patterns across different tasks needs to be imposed. An

effective regularization is the group lasso, defined over a matrix U as

‖U‖2,1 =
d∑

i=1

√√√√
K∑

k=1

(Uik)2. (2.13)

Intuitively, eq. (2.13) enforces the l1 norm on the l2-norms of all rows in U, enforcing sparsity

on a per-row level – effectively forcing hU to pick a feature for all classes or none. We encour-

age readers to refer to [118] for an intuitive geometric interpretation of the regularization

in (2.13).

We then combine the other two constraints with the regularized objective into the following

optimization problem:
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min
U,V

log
(
e`(U;L) + e`(V;L)

)
+ λ(‖U‖2,1 + ‖V‖2,1)

subject to:

(1)
∑K

k=1

∑d
i=1(u

k
i )

2(vki )
2 = 0

(2)
∑

x∈U [cU(x)c̄V(x) + c̄U(x)cV(x)] ≥ εmin
[∑

x∈U cU(x)cV(x),
∑

x∈U c̄U(x)c̄V(x)
]

Again, we solve this problem using augmented Lagrangian method.

2.1.6 Experimental Results

In this section we evaluate PMC empirically on an artificially created dataset for sanity check

and a real-world dataset to showcase that PMC enables learning from weakly labeled data.

Paired Handwritten Digits

As a first test, we construct a data set with binary class labels for which a class-conditionally

independent feature split exists, but is unknown to the algorithm. Each instance in the set

is a pair of digits sampled from the USPS handwritten digits set. As shown in figure 2.3,

if the class label is +1 (upper row), the left digit is uniformly picked from the set of ones

and twos and the right digit is picked from the set of fives or sixes. For the negative class

−1(lower row), the left digit is a three or four and the right digit a seven or eight. Given the

class-label, the identities of the two digits in the image are class-conditionally independent.

For example, given that the label of an instance is positive, the probability of the left digit

being 1 is 1
2
, no matter what the right digit is. We construct m = 6000 such instances. By

design, a natural decomposition is to split the feature space into two views such that one

covers the left digit and the other covers the right digit.

Feature Decomposition. In the first experiment, we test our feature decomposition frame-

work, Pseudo Multi-view Decomposition (PMD) when a sufficient amount of labels are pro-

vided. Among the 6000 instances created, 2000 are labeled. In other words, |L| = 2000, |U | =
4000. We solve PMD loss for u and v, starting with a random initialization. Figure 2.4 shows

the heat maps of u and v before and after training. We also report the log-loss of the two
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Figure 2.3: Sample images from the paired handwritten digit dataset. Upper row: positive
examples; lower row: negative examples.

classifiers hu and hv on the labeled set L before and after training on the top of the heatmaps.

The top two images show the heatmaps of randomly initialized u and v. Both weight vectors

span over the entire image. Meanwhile, both suffer from high losses on the labeled data.

The bottom two images in the figure show that once u,v are trained to minimize the loss

function, constraining on (2.5) and (2.8), their non-zero weights are divided almost exactly

into the two class-conditionally independent feature sets. In particular, classifier hu takes

the pixels of the left digit as its features, while classifier hv uses only the right digit.

Co-Training. In the second experiment, we test our Pseudo Multi-view Co-training (PMC)

algorithm on this multi-view data. Note that the algorithm itself is not aware of the existence

of the two views. Only two labeled examples, one from each class, are given to the algorithm,

i.e., |L| = 2 and |U | = 5998. We run 12 sets of identical experiments with different labeled

images and random initializations. In this setup we use the transductive setting. In other

words, the test set coincides with the unlabeled set.

Table 2.1: Comparison of PMC and existing work on the paired handwritten digit dataset.

Test Err(%) Baseline RFS ICA-RFS PMC
Mean 18.64 13.78 12.22 3.99
STD 8.86 14.24 13.59 3.24

Table 2.1 summarizes the mean classification error and standard deviation of various algo-

rithms on the paired digits dataset. We compare against three alternative methods: 1) the
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Figure 2.4: The heatmap of two randomly initialized weight vectors u,v (upper row) and
u∗,v∗ learned with PMD (lower row) on the input space.

baseline, which trains logistic regression exclusively with the labeled instances; 2) co-training

on two views obtained by random feature splitting (RFS); 3) co-training with random feature

splitting where the features are pre-processed with Independent Component Analysis4 [84]

(ICA-RFS ). For RFS and ICA-RFS, 10 different random feature decompositions are con-

sidered for each run, and the average performance and the standard deviation across 120

runs are reported. As shown in Table 2.1, PMC achieves by far the lowest error with very

small standard deviation. Random splitting method on the other hand, are very unreli-

able. We can observe a large fluctuation in accuracies at different runs. ICA is common

technique to de-correlates non-gaussian data. However, we can see that it is not helpful in

this case as independent is not equivalent to class-conditionally independent. Although the

left and right digit is independent given the label, they are dependent when the labels are

unknown. In other words, for a given input x = (x1,x2) ∈ X 1 × X 2 with label y ∈ Y ,

p(x1,x2|y) = p(x1|y)p(x2|y), however, p(x1,x2) 6= p(x1)p(x2). For example, knowing the

left digit is a one brings up the probability of the right digit being a five or six to half, and

brings down the probability of the right digit being a seven or eight to zero.

4We used the open-source implementation from http://cs.nyu.edu/~roweis/kica.html.
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Figure 2.5 shows the heatmaps of the two weight vectors u and v in different PMC iterations.

Confident predictions are moved from the unlabeled set U to the labeled set L in each PMC

iteration, causing the loss function (2.3) and the constraint (2.8) to change between iterations.

As a result, the automatically discovered feature splits vary between iterations. As more

confident predictions were added to L, PMC gradually approximates the class-conditionally

independent feature split from figure 2.4.
1

u v

5
10

20

Figure 2.5: The heatmaps of u,v in 20 PMC iterations (1st iteration on top).

Figure 2.6 depicts the progress of the two classifiers hu, hv in one run of the experiments.

The magenta line indicates the test error of the baseline, a logistic regression model trained

on the labeled data L only. The blue and green curves plot the errors of the two classifiers

between iterations. During the “rote-learning” procedure, the two classifiers “learn” from

each other, and finally converge to a almost perfect predictor. The red curve shows the test

error of a classifier that combines the two weight vectors learned at each iteration hu+v.

As the two classifiers are confident on different instances, the combined classifiers has lower

error in all iterations. Similar trends were observed in the other 11 runs.
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Figure 2.6: The progress made by the two classifiers hu, hv in different PMC iterations.

Caltech-256 with weakly labeled web images

We test the multi-class version of PMC on the challenging Caltech-256 object recognition

task [73]. The dataset consists of images of objects from a set of 256 object categories. The

task is to classify a new image into its object category. Additional images are retrieved from

the BingTMimage search engine using the category names as search queries, and used to help

learning. These additional images are referred to as weakly-labeled, as the quality of the

retrieved images is far from the original training data. As illustrated in figure 1.2, a large

fraction of the retrieved images do not contain the correct object.

A recent work by Bergamo and Torresani [11] is able to utilize these additional data to

improve learning by carefully down-weighing the web images and employing adequate regu-

larization to suppress the noises introduced by irrelevant and low-quality images. As features,

they use classemes [101], where each image is represented by a 2625 dimensional vector of

predictions from various visual concept classifiers – including predictions on topics as diverse

as “wetlands”, “ballistic missile” or “zoo”5. They achieved an improvement of 65% (27.1%

5A detailed list of the categories is available at http://www.cs.dartmouth.edu/~lorenzo/projects/

classemes/classeme_keywords.txt.
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Figure 2.7: Refining image search ranking with Multi-class PMC.

compared to 16.7%) over the previously best published result on the set with 5 labeled

training examples per class using these weakly-labeled data.

In this experiment, we apply PMC to the same dataset from [11] as a showcase for learning

from weak supervision. We use images from Caltech-256 as labeled data L sampled from the

testing distribution D, and images retrieved from Bing as the “unlabeled” (weakly-labeled)

data U sampled from a different distribution D′. Different from classical semi-supervised

learning settings, we are not fully blind about the labels of the unlabeled data in this case.

Therefore in each PMC iteration, only the images obtained with the matching search query

are used as the “unlabeled” set for each class to search for confident predictions (algorithm 2.1

line 6).

We argue that PMC is particularly well suited for this task for two reasons: 1) The “rote-

learning” procedure of co-training adds confident instances iteratively. As a result, images

that possess similar characteristics as the original training images will be picked as the

confident instances, naturally ruling out irrelevant and low-quality images in the unlabeled

set. 2) Classemes features are a natural fit for PMC as they consist of the predictions of
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Figure 2.8: Comparison of PMC and existing works on recognition accuracy obtained with
300 web images and a varying number of Caltech-256 training examples.

many (2625) different visual concepts. It is highly likely that there exists two mutually

exclusive subsets of visual concepts that satisfy the conditions for co-training.

Figure 2.7 shows example images of the Caltech-256 training set (left three columns), positive

examples that PMC picks out from the “unlabeled” set to use as additional labeled images

(middle three columns) and negative examples which PMC chooses to ignore (right three

columns). The number below the images indicates its rank of the BingTMsearch engine

(out of 300). For this figure, we selected the highest ranked negative and lowest ranked

positive images. The results are obtained using 5 training images from Caltech-256, and

300 weakly-labeled web images for each class. The figure showcases how PMC effectively

identifies relevant images that are similar in style to the training set for rote-learning. Also,

it showcases that PMC can potentially be used for image re-ranking of search engines, which

is particularly visible in the middle row where it ignores completely irrelevant images to the

category “Eiffel Tower”, which are ranked second to fourth on BingTM.

Baselines. Figure 2.8 provides a quantitive analysis of the performance of PMC. The graph

shows the accuracy achieved by different algorithms under a varying number of training
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examples from Caltech-256 and 300 weakly-labeled BingTMimage-search results. The meta-

parameters of all algorithms were set by 5-fold cross-validation on the small labeled set

(except for the group-lasso trade-off λ of PMC, which was set to λ = .1).

We train our algorithm with the multi-class loss and compare it against three baselines and

three previously published results in the literature. The three baselines are: 1) multi-class

logistic regression trained only on the original labeled training examples from Caltech-256

(LRt); 2) the same model trained with both the original training images and web images

(LRt∪s); 3) co-training with random feature splits on the labeled and weakly-labeled data

(RFS ).

The three previously published algorithms are: 1) linear support vector machines trained

on the labeled Caltech-256 images (SVM t) only; 2) the algorithm proposed in [11], which

weighs the loss over the weakly labeled data less than over the original data (DWSVM );

3) transductive-SVM as introduced in [88] (TSVM ). All previously published results are

taken from [11]. All algorithms, including PMC, are linear and make no particular assump-

tions on the data.

General Trends. As a first observation, LRt∪s performs drastically worse than the baseline

trained on the Caltech-256 data LRt only. This indicates that the weakly-labeled images

are noisy enough to be harmful when they are not filtered or down-weighted. However, if

the weakly labeled images are incorporated with specialized algorithms, the performance

improves as can be seen by the clear gap between the purely supervised (SVM t and LRt)

and the adaptive semi-supervised algorithms. The result of co-training with random split-

ting (RSF) is surprisingly good, which could potentially be attributed to the highly diverse

classemes features. Finally PMC outperforms all other algorithms by a visible margin across

all training set sizes. PMC achieved an accuracy of 29.2% when only 5 training images per

class from Caltech-256 are used, comparing to 27.1% as reported in [11]. In terms of compu-

tational time, for a total of around 80,000 labeled and unlabeled images, PMC took around

12 hours to finish the entire training phase (Testing time is in the order of milliseconds).

49



2.1.7 Conclusion

In this chapter, we have introduced Pseudo Multi-view Co-training (PMC), a new frame-

work to take advantage of weakly labeled data readily available on the web (e.g., through

web search) to aid learning. PMC extends co-training to single-view data by automati-

cally decomposes the feature space and creates a pseudo-multi-view representation explicitly

designed for co-training to succeed. It involves a single optimization problem, which simul-

taneously divides the feature space, trains two classifiers, and enforces an approximation

of Balcan et al. [5]’s ε-expanding property. We further extend PMC to multi-class settings.

We demonstrate empirically that PMC is able to automatically discover the class-conditionally

independent views of multi-view data when they exist, and it is able to create pseudo-multi-

views from single view data to enable successful co-training. Although random feature

splitting could serve as a good alternative for datasets with a diverse and redundant set of

features, it is very unreliable otherwise, resulting in drastically degenerated performance.

We showcase PMC’s efficacy on the challenging Caltech256 object recognition task, using

web retrieved images as weakly labeled data. It achieves record performance on this dataset

using simple features and linear classifiers6.

The ability of PMC to effectively select high quality instances from large collections of weakly

labeled search results opens the door to future work on diverse sets of web-specific applica-

tions across very diverse domains – including web-spam classification, sentiment analysis or

information retrieval.

2.2 Co-training for Domain Adaptation

In this section, we present Co-training for Domain Adaptation (CODA). CODA bridges the

gap between source and target domains by slowly adding to the training set both the target

features and instances in which the current algorithm is the most confident. CODA is a

variant of the PMC algorithm we introduced in section 2.1. While PMC is developed in

the context of semi-supervised or weakly-supervised learning, we show that with a small

6The performance is comparable to works which employ much more sophisticated features and classifiers,
such as convolutional neural networks [146] and multiple kernel combiners [65].
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modification, it works surprisingly well for domain adaptation as well. In each iteration of

CODA, we formulate a single optimization problem which simultaneously learns a target

predictor, a split of the feature space into views, and a subset of source and target features

to include in the predictor. CODA significantly out-performs the state-of-the-art on the

12-domain benchmark data set [19].

The section is organized as follows. Section 2.2.2 recaps the setup in domain adaptation.

Section 2.2.3 briefly reviews several existing domain adaptation methods that are closely

related to ours. We start with a semi-supervised approach and describe a rote-learning pro-

cedure used to automatically annotate target domain inputs in section 2.2.4. The algorithm

maintains and grows a training set that is iteratively adapted to the target domain. Sec-

tion 2.2.5 adds an additional feature selection component to address the different features

used in source and target domain. Finally, we replace the rote-learning procedure with

the PMC algorithm to utilize the unlabeled data more efficiently in section 2.2.6. Experi-

mental results comparing CODA to the state-of-the-art domain adaptation algorithms are

summarized in section 2.2.7.

2.2.1 Introduction

We focus primarily on domain adaptation problems that are characterized by missing fea-

tures. This is often the case in natural language processing, where different genres often

use very different vocabulary to describe similar concepts. For example, in our experiments

we use the sentiment data of Blitzer et al. [19], where “a breeze to use” is a way to ex-

press positive sentiment for kitchen appliances, but not for books. In this situation, most

domain adaptation algorithms seek to eliminate the difference between source and target

distributions, either by re-weighting source instances [82, 105] or by learning a new feature

representation [21, 167].

We present an algorithm that differs from both of these approaches. Our method seeks

to slowly adapt its training set from the source to the target domain, using ideas from co-

training. We accomplish this in two ways: First, we train on our own output in rounds, where

in each round, we expand our training data with the target instances we are most confident

of in our prediction. Second, we select a subset of shared source and target features based
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on their compatibility. Different from most previous work on selecting features for domain

adaptation, the compatibility is measured across the training set and the unlabeled set,

instead of across the two domains. As more target instances are added to the training set,

target specific features become compatible across the two sets, therefore are included in the

predictor. Finally, we exploit the PMC algorithm [42] introduced in previous chapter to

exploit the unlabeled data more efficiently. These three intuitive ideas can be combined in

a single optimization problem. We name our algorithm Co-Training for Domain Adaptation

(CODA).

By allowing us to slowly change our training data from source to target, CODA has an ad-

vantage over instance weighing approaches [82, 105] , which can not handle missing features,

as well as representation-learning algorithms [21, 167], since they must decide a priori what

the best representation is. In contrast, each iteration of CODA can choose exactly those

few target features which can be related to the current (source and pseudo-labeled target)

training set. We find that in the sentiment prediction data set of Blitzer et al. [19] CODA

improves the state-of-the-art cross widely varying amounts of target labeled data in 65 out

of 84 settings.

2.2.2 Recap of Domain Adaptation

Domain adaptation addresses the problem of generalizing from a source distribution for

which we have ample labeled training data to a target distribution for which we have only a

few or no labels [82, 167, 10]. It is of practical importance in many areas of applied machine

learning, ranging from computational biology [123] to natural language processing [51, 106]

to computer vision [132]. The major obstacle for porting a learner trained on a source domain

to a target one is the difference between the distributions of the two domains.

Figure 2.9 shows a Venn diagram that illustrates the setup we have in domain adaptation.

Let X ∈ Rd denote the feature space, and Y the output space. Let DT denote the target

distribution on X×Y . LetDS denote the distribution of the source domain. IfDS andDT can

be any arbitrary distributions, then we cannot expect to learn model that generalizes to the

target distribution using the source data only. One way to constrain these two distributions

is to assume that the supports of the two distribution DS and DT intersect, as shown in
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figure 2.9. In other words, there are examples that can be generated from both distributions,

i.e., the ones that are invariant across domains. But domain specific examples also exist.

Most domain adaptation algorithms use the invariance to bridge these two distributions. In

general, the smaller the intersection is, the more difficult it is to generalize across domains.

Ben-David et al. [9] presented a theoretical analysis on generalizing across domains by con-

straining that there exists some classifier h∗ ∈ H which has low error on both DS and DT ,

i.e., κ = minh∈H εDS
(h) + εDT

(h) is small. Then a bound on the target error of the following

form [20]

εDT
(h) ≤ εDS

(h) + κ+ div(DS,DT )

can be obtained. Here, div(DS,DT ) denotes the divergence between the source and target

marginal distributions. In other words, the proximity of the two distributions dictates the

difficulty to adapt from the source distribution to the target.

S(DT )S(DS)

DS 6= DT

Figure 2.9: Venn diagram on domain adaptation.

Notation. In this chapter, we focus on the scenario where we have access to a sufficiently

large amount of labeled data LS = {(x1, y1), · · · , (xnS
, ynS

)} ⊆ X × Y sampled i.i.d. from

the source distribution DS, as well as a small (or empty) set of labeled examples LT =

{(x1, y1), · · · , (xnT
, ynT

)} ⊆ X × Y sampled i.i.d. from the target distribution DT , and

another set of unlabeled data UT = {xnT+1, · · · ,xmT
},mT � nT drawn i.i.d. from the same

target distribution. We want to find a hypothesis h ∈ H that achieves good generalization

performance on the target distribution using LS, UT and LT if not empty.
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2.2.3 Background and Related Work

The major obstacle to generalize from a source domain to a target one is the difference

between the distributions of the two domains. Most domain adaptation algorithms seek to

eliminate the difference, either by re-weighting source instances [82, 105] or learning a new

feature representation [167, 21].

Instance Weighting

Instance weighting aims at eliminating the difference between the two distributions by as-

signing instance-dependent weights to the loss function when minimizing the expected loss

over the training data, that is

min
h∈H

∑

i

αi`(h(xi), yi)

where αi’s are the instance-dependent weights. As derived in [86], weighting each instance

(xi, yi), randomly sampled from the source distribution, by PT (xi,yi)
PS(xi,yi)

provides a well-justified

solution to the problem. However, it is not possible to compute the exact value of PT (xi,yi)
PS(xi,yi)

for each instance, as for domain adaptation there are not enough labeled instances in the

target domain to evaluate the target distribution. In most previous works, it is either

assumed that the conditional distribution of X is the same across the two domains, i.e.,

PS(X|y) = PT (X|y) [99, 93]; or given the same observation x, the class distribution is

the same across the two domains, i.e., PS(y|x) = PT (y|x), but the marginal distributions

are different, i.e., PS(x) 6= PT (x). The latter case is closely related to the problem of

covariate shift [141, 147, 170, 15, 83], also known as sample selecting bias. In this case,

αi should approximate the posterior distribution of a source example being drawn from

the target distribution. The posterior distribution is often estimated using kernel density

estimators. However, instance weighting strategy is mostly used for low-dimensional, dense

and continuous features. It is less effective for high-dimensional, sparse features spaces such

as those for texts. It is also known to perform poorly in situations where target-specific

features are important for good performance [87].
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Change of Feature Representation

The second family of algorithms learns a new shared representation Z for the source and

target domain, in which PS(Z, y) = PT (Z, y). These algorithms are designed for highly

divergent domains, which can contain completely different features, and are more closely

related to our work. Ben-David et al. [9] formally analyzed the effect of representation

change for domain adaptation. They proved a generalization bound for domain adaptation

that is dependent on the distance between the induced PS(Z, y) and PT (Z, y).

Structural Correspondence Learning. Blitzer et al. [21] proposed Structural Cor-

respondence Learning (SCL) to find a low-rank representation that is suitable for domain

adaptation using unlabeled data from both domains. The main idea is to use pivot features,

which appear frequently in both domain and behave similarly, to put domain specific words

in correspondence. The original feature space is augmented by the new representation which

encodes the correspondence of domain-specific features to the pivot features, and a model is

then trained on the augmented feature space.

Note that, SCL operates in an unsupervised setting, without using the class labels of training

inputs to derive a more informative transformation. Nevertheless, this property also guaran-

tees that SCL can be broadly applied as a preprocessing technique for domain adaptation,

regardless of the number of labeled instances available for the target domain. It has been

empirically shown [21] that the low-rank representation found by SCL indeed decreases the

distance between the distributions of the two domains.

Coupled Subspace. Blitzer et al. [22] later proposed another algorithm that follows

the same line of thinking, named Coupled Subspace. Coupled subspace targets at utilizing

target-specific features, which are important for natural language processing tasks, more

effectively. While SCL finds a single projection that maps domain-specific features to the

shared ones and learns a hypothesis on the shared subspace only, coupled subspace learns two

projections, one for each domain, to couple shared features with the domain-specific ones.

Two hypotheses are learned, one on the source specific subspace and one on the target. They

are coupled to form the target predictor.
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At a high level, SCL works better in the cases where the shared space is large. Coupled

subspace on the other hand performs better when the shared space is small, then the model

has the advantage of modeling the domain-specific subspaces more accurately.

Feature subsetting. Selecting a subset of features shared by the two domains is an-

other option. Satpal and Sarawagi [134] proposed a feature selection method for domain

adaptation, where the criterion is to select features whose expected values differs the least

across these two distributions. A model is then learned to minimize the loss on the available

training data, with an additional weighted L1 regularization for feature selection.

We used a similar rationale in CODA. But different from this work, where the feature

selection is done only once to select features shared across domain, we perform the feature

selection multiple times, promoting target domain specific features to be gradually added to

the learner for better target performance.

Feature Augmentation

Daume III [51] proposed EasyAdapt (EA) to learn a general, a source specific and a target

specific hypothesis simultaneously through feature augmentation. They define an augmented

input space, in which each feature from the original space is made three version of, a general

version, a source specific version, and a target specific version. The source and the target

data are mapped to the augmented space respectively by

ΦS(x) = 〈x,x,0〉, ΦT (x) = 〈x,0,x〉.

Finally, a linear hypothesis h = 〈gC , gS, gT 〉 ∈ R3d is trained in the augmented space with

the labeled instances from both domains. One particularly nice property of EA lies in its

simplicity. It is incredibly easy to implement as a preprocessing step and it is agnostic to

the classifiers used. However, EA requires labeled data in both source and target, and hence

applies to fully supervised domain adaptation settings only. To overcome the limitation,

Daume III et al. [50] generalize this work to a semi-supervised setting so that they can

leverage unlabeled instances from the target domain by simply adding a new feature mapping

for unlabeled instances.

ΦU(x) = 〈0,x,−x〉
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The extension is called EasyAdapt++ (EA++).

2.2.4 Self-training

The first component of our algorithm, a rote learning procedure, gradually shifts the distri-

bution of the training set from source to target by “labeling” the target inputs in UT and

adding the confident predictions to the training set.

For now, we focus on binary problems. First, we assume the existence of a base classifier that

provides some estimate of confidence in its prediction. Throughout this section we simply

use logistic regression. That is, our classifier hw(x) = sign(w>x + b) is parameterized by

a weight-vector w ∈ Rd and a bias b. To simplify notation we drop the bias b and assume

that a constant 1 is attached as an additional dimension to each input. The weight vector

w ∈ Rd+1 is then set to minimizes the logistic loss function

`(w;L) =
1

|L|
∑

(x,y)∈L

log
(

1 + e−yw
>x
)
, (2.14)

where L is the training set. Let ŷ = sign(w>x) denote the prediction of hw on an input

x, the probability Ph(ŷ|x; w) =
(

1 + e−w
>xŷ
)−1

is a natural metric of certainty. But other

methods [121] can be used as well.

Self-training [106] is a simple and intuitive iterative algorithm to leverage unlabeled data.

During training one maintains a labeled training set L and an unlabeled testing set U ,

initialized as L = LS ∪ LT and U = UT . In each iteration, a classifier hw is trained to

minimize the loss function ` over L and is evaluated on all elements of U . The l most confident

predictions on U are moved to L for the next iteration, labeled as hw(xi) = sign(w>x). The

algorithm terminates when U is empty or all predictions are below a pre-defined confidence

threshold (and considered unreliable). Algorithm 2.2 summarizes self-training in pseudo-

code.
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Algorithm 2.2 Self-training.

1: Inputs: labeled set L = LS ∪ LT , unlabeled set U = UT .
2: Initialize w and l.
3: repeat
4: w∗ = argminw `(w;L)
5: Apply hw∗ on all elements of U .
6: Move up-to l confident inputs xi from U to L, labeled as hw∗(xi).
7: until No more predictions are confident
8: Return hw∗

2.2.5 Feature Selection

So far, we have not addressed the missing feature problem, e.g., different vocabularies are

used to express similar concept in different domains. For illustration, consider the sentiment

analysis problem in section 2.2.7, where each input consists of unigram and bigram bag-of-

words features and the task is to classify if a book-review (source domain) or dvd-review

(target domain) is positive or negative. Here, the bigram feature “must read” is indicative

of a positive opinion within the source (“books”) domain, but rarely appears in the target

(“dvd”) domain. A classifier, trained on the source-dominated set L, that relies too heavily

on such features will not make enough high-confidence predictions on the set U = UT .

The second component of our algorithm, a feature selection component, addresses the prob-

lem by adding a weighted l1 regularization to encourage the classifier to only use features

that behave similar in both L and U .

Different from previous work on feature selection for domain adaptation [134], where the

goal is to find a new representation to minimize the difference between the distributions of

the source and target domain, what we are proposing is to minimize the difference between

the distributions of the labeled training set L and the unlabeled set U (which coincides

with the testing set in our setting). This difference is crucial, as it makes the empirical

distributions of L and U align gradually. For example, after some iterations, the classifier

can pick features that are never present in the source domain, but which have entered L

through the rote-learning procedure.
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We perform the feature selection implicitly through regularization on w. For a feature α,

let us denote the Pearson correlation coefficient (PCC)7 between feature value xα and the

label y for all pairs (x, y) ∈ L as ρL(xα, y). It can be shown that ρL(xα, y) ∈ [−1, 1] with

a value of +1 if a feature is perfectly aligned with the label (i.e., the feature is the label),

0 if it has no correlation, and −1 if it is of opposite polarity (i.e., the inverted label).

Similarly, let us define the PCC for all pairs in U as ρU ;w(xα, Y ), where the unknown label

Y is a random variable drawn from the conditional probability Ph(Y |x; w). The two PCC

values indicate how predictive a feature is of the (estimated) class label in the two respective

data sets. Ideally, we would like to choose features that are similarly predictive across the

two sets. We measure how similarly a feature behaves across L and U with the product

ρL(xα, y)ρU ;w(xα, Y ). With this notation, we define the feature weight that reflects the

cross-domain incompatibility of a feature as

∆w;L,U(α) = (1− ρL(xα, y)ρU ;w(xα, Y )). (2.15)

It is straight-forward to show that ∆w;L,U ∈ [0, 2]. Intuitively, ∆w;L,U expresses to what

degree we would like to remove a feature. A perfect feature, that is the label itself (and the

prediction in U), results in a score of 0. A feature that is not correlated with the class label

in at least one of the two domains (and therefore is too domain-specific) obtains a score of

1. A feature that switches polarization across domains (and therefore is “malicious”) has a

score ∆w;L,U(α) > 1 (in the extreme case if it is the label in L and the inverted label in U ,

its score would be 2).

We incorporate (2.15) into a weighted `1 regularization

s(w;L,U) =
d∑

α=1

∆w;L,U(α)|wα|. (2.16)

Intuitively (2.16) encourages feature sparsity with a strong emphasis on features with lit-

tle or opposite correlation across the domains, whereas good features that are consistently

predictive in both domains become cheap.

7The PCC for two random variables X,Y is defined as ρ = E[(X−µX)(Y−µY )]
σXσY

, where µX denotes the mean
and σX the standard deviation of X.
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Algorithm 2.3 Self-training for Domain Adaptation (SEDA).

1: Inputs: labeled set L = LS ∪ LT , unlabeled set U = UT .
2: Initialize γ = γ0, 0 < η < 1 and l.
3: repeat
4: w∗ = argminw `(w;L) + γs(w;L,U)
5: γ = γ

1+η
.

6: Apply hw∗ on all elements of U .
7: Move up-to l confident inputs xi from U to L, labeled as hw∗(xi).
8: until No more predictions are confident
9: Return hw∗

Combining the feature selection component with the self-training component in previous

section, we have an algorithm which shifts the distribution of the training data from source

to target both data-wise and feature-wise. We refer to this version of the algorithm as Self-

training for Domain Adaptation (SEDA). Algorithm 2.3 describes SEDA in pseudo-code. it

is very similar to the Self-training algorithm we described in algorithm 2.2, except a different

loss function is solved for the weight vector. SEDA finds a weight vector w that minimizes

a weighted L1 regularized logistic loss as follows:

w = argmin
w

`(w;L) + γs(w;L,U). (2.17)

Here, γ ≥ 0 denotes the loss-regularization trade-off parameter. As we have very few labeled

inputs from the target domain in the early iterations, stronger regularization is imposed so

that only features shared across the two domains are used. When more and more inputs from

the target domain are included in the training set, we gradually decrease the regularization

to accommodate target specific features. The algorithm is very insensitive to the exact initial

choice of γ. The guideline is to start with a relatively large number, and decrease it until

the selected feature set is not empty. In our implementation, we start with γ0 = 0.1, and we

divide it by a factor of 1.1 after each iteration.

2.2.6 Co-training for Domain Adaptation

For rote-learning to be effective, we need to move inputs from U to L that are 1) correctly

classified (with high probability) and 2) useful to improve the classifier in future iterations.
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The former is addressed by the feature selecting regularization from the previous section –

restricting the classifier to a subset of features that are known to be cross-data set compatible

reduces the generalization error on U . In this section we fulfill the second requirement. In

other words, we want to add inputs xi that contain additional information, which was not

used to obtain the prediction hw(xi) and would enrich the training set L.

If the exact labels of the inputs in U were known, a good active learning [137] strategy

would be to move inputs to L on which the current classifier hw is most uncertain. In our

setting, this would be clearly ill advised as the uncertain prediction is going to be used as

the label in the next iteration. A natural solution to this dilemma is the co-training [23]

algorithm we introduced in previous chapter. Co-training assumes the data set is presented

in two separate views and two classifiers are trained, one on each view. In each iteration,

only inputs that are confident according to exactly one of the two classifiers are moved to

the training set. This way, one classifier provides the (estimated) labels to the inputs which

the other classifier is uncertain about.

Same here we do not have multiple views. Moreover, the features selected vary in each

iteration. Hence, co-training does not apply out-of-the-box. We can, however, split the

selected features into two mutually exclusive views in each iteration, such that co-training

is effective. To this end we follow the Pseudo Multiview Co-training (PMC) [42] introduced

in section 2.1.

Recall that we want to train two classifiers on a single view X such that: 1) both perform well

on the labeled data; 2) both are trained on strictly different features; 3) together they are

likely to satisfy Balcan et al. [5]’s condition of ε-expandability [5], a necessary and sufficient

pre-condition for co-training to work8. These three aspects can be formulated explicitly as

three modifications of our optimization problem (2.17).

Loss. Two classifiers are required for co-training, whose weight vectors we denote by u

and v. The performance of each classifier is measured by the log-loss `(·;L) in eq. (2.14).

To ensure that both classifiers perform well on the training set L, i.e., both having a small

8Provided that the classifiers are never confident but wrong — which can be violated in practice.
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training loss, we train them jointly while minimizing the soft-maximum9 of the two losses,

log
(
e`(u;L) + e`(v;L)

)
. (2.18)

Feature Decomposition. Co-training requires the two classifiers to be trained on different

views. We create them for single view data by splitting the feature-space into two mutually

exclusive subsets. More precisely, for each feature α, at least one of the two classifiers must

have a zero weight in the αth dimension. We can enforce this across all features with the

equality constraint
d∑

α=1

u2
αv

2
α = 0. (2.19)

ε-Expandability. In the original co-training formulation [23], it is assumed that the two

views of the data are class conditionally independent. This assumption is very strong and can

easily be violated in practice [116]. Recent work [5] weakens this requirement significantly

to a condition of ε-expandability. Loosely phrased, for the two classifiers to be able to teach

each other, they must make confident predictions on different subsets of the unlabeled set

U .

For the classifier hu, let ŷ = sign(u>x) ∈ {±1} denote the class prediction and Ph(ŷ|x; u) its

confidence. Define cu(x) as a confidence indicator function (for some confidence threshold

τ > 0)10

cu(x) =

{
1 if p(ŷ|x; u) > τ

0 otherwise,
(2.20)

and cv respectively. Then the ε-expanding condition translates to

∑

x∈U

[cu(x)c̄v(x) + c̄u(x)cv(x)] ≥ εmin

[∑

x∈U

cu(x)cv(x),
∑

x∈U

c̄u(x)c̄v(x)

]
, (2.21)

for some ε > 0. Here, cu(x) = 1 − cu(x) indicates that classifier hu is not confident about

input x. Intuitively, the constraint in eq. (2.21) ensures that the total number of inputs in U

9The soft-max of a set of elements S is a differentiable approximation of max(S) ≈ log(
∑
s∈S e

s).
10In our implementation, the 0-1 indicator was replaced by a very steep differentiable sigmoid function,

and τ was set to 0.8 across different experiments.
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that can be used for rote-learning because exactly one classifier is confident (LHS), is larger

than the set of inputs which cannot be used because both classifiers are already confident or

both are not confident (RHS).

In summary, the framework splits the feature space into two mutually exclusive subsets, on

which two logistic regression classifiers can be trained, both with small loss on the labeled

data set, while satisfying the ε-expandability [5]. Our final classifier has the weight vector

w = u + v. To address the missing feature problem, we add the weighted L1 regularization

s(w;L,U) as defined in (2.16) to the optimization. We refer to the resulting algorithm as Co-

training for Domain Adaptation (CODA), which can be stated concisely with the following

optimization problem:

min
w,u,v

log
(
e`(u;L) + e`(v;L)

)
+ γs(w;L,U)

subject to:

(1)
∑d

i=1 u2
iv

2
i = 0

(2)
∑

x∈U [cu(x)c̄v(x) + c̄u(x)cv(x)] ≥ εmin
[∑

x∈U cu(x)cv(x),
∑

x∈U c̄u(x)c̄v(x)
]

(3) w = u + v

The optimization is non-convex. However, as it is not particularly sensitive to initialization,

we initialize u,v randomly and solve them using the augmented lagrangian method intro-

duced in section 1.3.2. Algorithm 2.4 shows a pseudo-code of CODA. The implementation is

essentially identical to that of SEDA (algorithm 2.3) where the above optimization problem

is solved instead of eq. (2.17). We move inputs that one classifier is confident about while

the other one is uncertain to the training set L to improve the classifiers in future iterations.

2.2.7 Experimental Results

We evaluate our algorithm together with several other domain adaptation algorithms on the

“Amazon reviews” benchmark data sets [19].
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Algorithm 2.4 Co-training for Domain Adaptation.

1: Inputs: labeled set L = LS ∪ LT , unlabeled set U = UT .
2: Initialize u, v.
3: Initialize γ = γ0, 0 < η < 1 and l.
4: repeat
5: Solve the constrained optimization problem on L, U and γ for u∗, v∗ and w∗.
6: γ = γ

1+η

7: Apply hu∗ and hv∗ on all elements of U .
8: Move up-to l inputs xi from U to L, on which hu∗ is confident and hv∗ is not, labeled

as hu∗(xi).
9: Move up-to l inputs xi from U to L, on which hv∗ is confident and hu∗ is not, labeled

as hv∗(xi).
10: until No more predictions are confident
11: Return hw∗

Dataset. The data set contains reviews of four different types of products: books, dvds,

electronics, and kitchen appliances from Amazon.com. In the original dataset, each review is

associated with a rating of 1-5 stars. For simplicity, we are only concerned about whether a

review is positive (higher than 3 stars) or negative (3 stars or lower). That is, yi ∈ {+1,−1},
where yi = 1 indicates that it is a positive review, and −1 otherwise. The data from

four domains results in 12 directed adaptation tasks (e.g. books → dvds). Each domain

adaptation task consists of 2, 000 labeled source inputs and around 4, 000 unlabeled target

test inputs (varying slightly between domains). Table 2.2 shows the statistics of each domain,

including the number of labeled, unlabeled examples, as well as the portion of the negative

examples. It is a balanced dataset.

Table 2.2: Statistics of the Amazon review dataset [19].
.

Domain Labeled Unlabeled (Test) Neg. inputs
Books 2000 4465 50%
Dvds 2000 3586 50%
Electronics 2000 5681 50%
Kitchen 2000 5945 50%

The original feature space of unigrams and bigrams is of approximately 100, 000 dimensions

across different domains. To reduce the dimensionality, we only use features that appear
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at least 10 times in a particular domain adaptation task (with approximately 40, 000 fea-

tures remaining). Further, we pre-process the data set with standard tf-idf [133] feature

re-weighting.

Methods. We compare the three algorithms we introduced in 2.2.4, 2.2.5 and 2.2.6 respec-

tively with one baseline method and three state-of-the-art domain adaptation algorithms.

1) logistic regression (Logistic Regression), a baseline model that ignores the difference be-

tween source and target distribution, and train a classifier on the union of both labeled data

sets; 2) Coupled Subspace (Coupled) [22], a representation change approach that couples

a source specific and a target specific subspace together to utilize domain specific features;

3) EasyAdapt [51], learns a general, a source specific and a target specific hypothesis simul-

taneously through feature augmentation ; 4) EasyAdapt++ [50], extends EasyAdapt with

the help of unlabeled target data; Section 2.2.3 contains more detailed descriptions of these

algorithms. 5) Self-training, which adds the semi-supervised learning approach to label and

gradually add target inputs to the training set, as described in section 2.2.4; 6) SEDA, in-

cludes a feature selection component to address the missing feature problem, as described

in section 2.2.5. We optimize over 100 iterations of self-training, at which stage the regu-

larization was effectively zero and the classifier converged. ; 7) CODA, replaces self-training

with pseudo-multi-view co-training algorithm to better utilize new predictions, as described

in section 2.2.6.;

We compare the various algorithms under different level of target supervision by varing

the amount of labeled target data from 0 to 1600. For each setting when target labels are

available, we ran 10 experiments with different, randomly chosen, labeled instances.

Figure 2.10 summarizes a comparison of the three algorithms we introduced, self-training,

SEDA and CODA to the logistic regression baseline. As the 12 adaptation tasks vary in

difficulties, before averaging we divide the test error of the new method by the test error

of the baseline. The relative test-error reduction averaged over all 12 adaptation tasks is

plotted as a function of the number of target labeled data. We observe two trends: 1) there

are clear gaps between logistic regression, self-training, SEDA, and CODA; One can conclude

that self-training, feature-selection and co-training each lead to substantial improvements in

classification error. 2) the relative improvement over logistic regression reduces as more

labeled target data becomes available. This is not surprising, as with sufficient target labels
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Figure 2.10: Comparison of self-training, SEDA and CODA on the relative test-error reduc-
tion over logistic regression, averaged across all 12 domain adaptation tasks.

the task turns into a classical supervised learning problem and the source data becomes

irrelevant.

Figure 2.11 summarizes a comparison of CODA against three state-of-the-art domain adap-

tation algorithms, i.e., coupled subspace (Coupled), EasyAdapt and EasyAdapt++. Again

we plot the relative test error reduction over the logistic regression baseline, averaged across

12 adaptation tasks. Since coupled subspace method does not utilize labeled target data, its

result is depicted as a single point. Coupled subspace improves over the logistic regression

baseline, however, since it does not utilize the available target supervision, the improvement

is not substantial. Both EasyAdapt and EasyAdapt++ require sufficient target supervision

in order to be effective. We can see that CODA outperforms the other methods significantly

across all target supervision levels. In particular, the performance is much improved when

the number of target labels is small.
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Figure 2.11: Comparison of CODA and existing work on the relative test-error reduction
over logistic regression, averaged across all 12 domain adaptation tasks.
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Figure 2.13: The ratio of the average number of used features between source and target

inputs (2.22), tracked throughout the CODA optimization. The three plots show the same

statistic at different amounts of target labels.

Figure 2.12 shows individual results on all the 12 adaptation tasks with absolute classification

error rates. The error bars show the standard deviation across the 10 runs with different

labeled instances. EasyAdapt and EasyAdapt++, both consistently improve over logistic

regression once sufficient target data is available. It is noteworthy that, on average, CODA
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outperforms the other algorithms in almost all settings when 800 labeled target points or less

are present. With 1600 labeled target points all algorithms perform similar to the baseline

and additional source data is irrelevant. All hyper-parameters of competing algorithms were

carefully set by 5-fold cross validation.

Finally, we investigate the feature-selection process during CODA training. In each itera-

tion of CODA, only a subset of features are used in the classifiers due to the weighted L1

regularization. Let us define an indicator function δ(a) ∈ {0, 1} to be δ(a) = 0 if and only

if a = 0, which operates element-wise on vectors. The vector δ(w) ∈ {0, 1}d indicates which

features are used in the classifier and δ(xi) ∈ {0, 1}d indicates which features are present in

input xi. For a classifier w, δ(w)>δ(xi) counts the number of used features that are active

in input xi. We can then denote the ratio between the average number of used features in

labeled source inputs over those in unlabeled target inputs in each CODA iteration as

r(w) =

1
|LS |

∑
xs∈LS

δ(w)>δ(xs)
1
|UT |

∑
xt∈UT

δ(w)>δ(xt)
. (2.22)

Figure 2.13 shows the plot of r(w) for all weight vectors during the 100 iterations of CODA,

averaged (geometric mean) across all 12 adaptation tasks. The three plots show the same

statistic under varying amounts of target labels. Two trends can be observed: 1) during

CODA training, the classifier initially selects more source-specific features. For example

when there are zero labeled target data (left plot), during early iterations the source inputs

contain on average 20 − 35% more used features compared to target inputs. However, this

source-heavy feature distribution changes and eventually turns into target-heavy distribution

as the classifier adapts to the target domain. 2) we observe that with more target labels

(right plot), this spike in source features is much less pronounced whereas the final target-

heavy ratio is unchanged but starts earlier. This indicates that as the target labels increase,

the classifier makes less use of the source data and relies sooner and more directly on the

target signal.

Computational Time. Concerning computational requirements, it is fair to say that

CODA is significantly slower than the other algorithms, as each iteration is of comparable

complexity as logistic regression or EasyAdapt. In typical domain adaptation settings this
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is generally not a problem, as training sets tend to be small. In our experiments, the average

training time for CODA11 was about 20 minutes.

2.2.8 Conclusion

In this chapter, we have introduced Co-training for Domain Adaptation (CODA), an intuitive

and effective algorithm for domain adaptation. The algorithm combines three core compo-

nents: rote-learning, feature selection and pseudo-multiview feature splitting. In particular,

the rote-learning gradually shifts the distribution of the training data from source to target,

the new feature selection component slowly shifts its active feature distribution from source

to target, and the pseudo-multiview feature splitting helps better utilize the new predictions.

In our empirical evaluation we demonstrated that each one of these components contributes

substantially to CODA’s strong performance. CODA achieves state-of-the-art classification

results with impressive consistency across a wide range of available target labels.

11We used a straight-forward MatlabTM implementation.
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Figure 2.12: Comparison of CODA and existing work on the absolute test error under varying
amounts of labeled target data on 12 adaptation tasks.
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Chapter 3

Marginalized Dropout

In this chapter, we manifest our second strategy, marginalized dropout, in three different

ways for learning from multiple domains, learning from corrupted distribution and learning

with partial supervision. Section 3.1 details marginalized Stacked Denoising Autoencoders

(mSDA). mSDA exploits marginalized dropout in learning a new feature representation for

learning from multiple domains. By marginalizing out the corrupting distribution applied on

the examples, mSDA is able to take into consideration all possible corruptions when learning

the new representation. It achieves state-of-the-art performance and orders of magnitude

speedup in training comparing to competing algorithms. Section 3.2 details learning with

Marginalized Corrupted Features (MCF). Instead of learning on the small set of training

examples generated from the testing distribution, MCF learns on “infinitely many” examples

sampled from a corrupted distribution. By marginalizing out the corrupting distribution

applied on the examples, MCF is able to train classifiers on infinitely many examples without

increasing computational cost. It can be used as an alternative to regularizations or learning

with prior methods to improve robustness of trained classifiers. Section 3.3 details FastTag

(FastTag). FastTag utilizes marginalized dropout to recover missing labels for learning with

partial supervision. We take the task of image annotation with incomplete user tags as an

example. By marginalizing out the corrupting distribution applied on the tags, FastTag is

able to recover the correlation between tags considering all possible random tag removal.

FastTag gives rise to a jointly convex loss function, which can be efficiently optimized with

closed form updates. It achieves the state-of-the-art tagging quality, and orders of magnitude

speedup in both training and testing.
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3.1 Marginalized Corrupted Feature Learning

In this section, we present marginalized Stacked Denoising Autoencoders (mSDA). mSDA is

inspired by the Stacked Denoising Autoencoders (SDAs) algorithm [69] successfully applied

to domain adaptation. Robust data representation is learnt by reconstruction, recovering

original features from data that are artificially corrupted with noise. SDAs have attained

record accuracy on standard benchmark tasks of sentiment analysis across different text

domains. mSDA addresses two crucial limitations of SDAs: high computational cost and

lack of scalability to high-dimensional features. In contrast to SDAs, our approach of mSDA

marginalizes noise and employes a linear model as the basic building block, and thus does

not require stochastic gradient descent or other optimization algorithms to learn parameters

in fact, they are computed in closed-form. Consequently, mSDA, which can be implemented

in only 20 lines of MATLABTM, significantly speeds up SDAs by two orders of magnitude.

Furthermore, the representations learnt by mSDA are as effective as the traditional SDAs,

attaining almost identical accuracies in benchmark tasks.

The section is organized as follows. Section 3.1.2 recaps the setup in learning from multiple

domains. Section 3.1.3 reviews the two existing works that are closely related to mSDA, the

Structural Correspondence Learning and the Stacked Denoising Autoencoders algorithm.

Section 3.1.4 details our modified version of SDA, marginalized SDAs. Section 3.1.6 presents

the experimental results comparing mSDA to state-of-the-art domain adaptation algorithms,

in particular SDA on a domain adaptation benchmark dataset for sentiment analysis.

3.1.1 Introduction

Recall the goal in domain adaptation [10, 82, 165, 167] is to generalize a classifier that

is trained on a source domain, for which typically plenty of training data is available, to

a target domain, for which data is scarce. Cross-domain generalization is important in

many application areas of machine learning, where such an imbalance of training data may

occur. Examples are computational biology [123], natural language processing [51, 106] and

computer vision [132].
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However, data in the source and the target are often distributed differently. This presents

a major obstacle in adapting predictive models. Recent work has investigated several tech-

niques for alleviating the difference: instance reweighting [82, 105], sub-sampling from both

domains [42] and learning joint source and target feature representations [21, 69, 167].

Recently, Glorot et al. [69] proposed a new approach that falls into the third category. The

authors propose to learn robust feature representations with stacked denoising autoencoders

(SDA) [159]. Denoising autoencoders are one-layer neural networks that are optimized to

reconstruct input data from partial and random corruption. These denoisers can be stacked

into deep learning architectures. The outputs of their intermediate layers are then used as

input features for SVMs [97]. Glorot et al. [69] demonstrate in their work that using SDA-

learned features in conjunction with linear SVM classifiers yields record performance on the

benchmark tasks of sentiment analysis across different product domains [21].

Despite their remarkable and promising results, SDAs are limited by their high computa-

tional cost. They are significantly slower to train than competing algorithms [21, 41, 167],

primarily because of their reliance on iterative and numerical optimization to learn model

parameters. The challenge is further compounded by the dimensionality of the input data

and the need for computationally intensive model selection procedures to tune hyperparam-

eters. Consequently, even a highly optimized implementation [12] may require hours (even

days) of training time.

We address this challenge with a variant of SDA. The proposed method, which we refer to

as marginalized Stacked Denoising Autoencoder (mSDA), adopts the greedy layer-by-layer

training of SDAs. However, a crucial difference is that we use linear denoisers as the basic

building blocks. The key observation is that, in this setting, the random feature corruption

can be marginalized out. Conceptually, this is equivalent to training the models with an

infinitely large number of corrupted input data. Fitting models on such a scale would be

impossible for the conventional SDAs, which often rely on stochastic gradient descent, and

need to sweep through all the training data.

Our contributions are summarized as follows: 1) we contribute to deep learning by demon-

strating that linear denoisers can be used as building blocks for learning feature represen-

tations. 2) we show that linearity can significantly simplify parameter estimation — our
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approach results in closed-form solutions for the optimal parameters. 3) we evaluate our ap-

proach rigorously on established domain adaptation benchmark data sets and compare with

several competing state-of-the-art algorithms. We show that the classification performance

of mSDA matches that of SDA across our benchmark data sets, while achieving tremendous

speedups during training time (reducing training from up to 2 days for SDA to a few minutes

with mSDA).

3.1.2 Recap of Learning from Multiple Domains

Similar to the setup we introduced in section 2.2.2, we are still aiming at generalizing to a

target distribution for which we have few or no labels. However, in this case, we assume

there are multiple source domains, and each is associated with a distinct distribution.

Figure 3.1 shows a Venn diagram that illustrates the setup we have in learning from multiple

source domains. Let X ∈ Rd denote the feature space, and Y the output space. Let DT
denote a joint distribution on X ×Y . It is the target distribution we are ultimately interested

in. We assume there are N distinct source domains. Each source domain Sj, j = 1, · · · , N is

associated with an unknown underlying distribution DSj
. In the example of figure 3.1, two

source domains are available.

S(DT )

DS1
6= DS2

6= DT

S(DS1
)

S(DS2
)

Figure 3.1: Venn diagram on learning from multiple source domains.

Ben-David et al. [10] extends their theory to the case of multiple source domains, in which

the labeled data do not have to come from a single source domain, but multiple domains of
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different distribution. A similar bound can be reached, however, the assumption needs to

be strengthened. In this case, they assume there exists a hypothesis h∗ which has low error

on both α-weighted combination of sources and the target domain. The bound obtained is

depending on the divergence of the target distribution and the mixture of sources.

Notation. Each source domain Sj, j = 1, · · · , N is associated with a distinct underly-

ing distribution DSj
on X × Y , from which we can sample i.i.d a set of labeled data

LSj
= {(x1, y1), · · · , (xnSj

, ynSj
)} as well as a much larger set of unlabeled data USj

=

{xnSj
+1, · · · ,xmSj

}. Note that the labeled set might be empty for some source domains.

From the target distribution DT , we can sample a small (or empty) set of labeled examples

LT = {(x1, y1), · · · , (xnT
, ynT

)} , and another set of unlabeled data UT = {xnT+1, · · · ,xmT
}

with mT � nT .

3.1.3 Background and Related Work

We assume that our data originates from N source domains S1, · · · , SN and one target

domain T . From each source domains, we sample unlabeled data USj
= {x1, · · · ,xmSj

} ⊂
Rd, j = 1, · · · , N . We follow the setup in [69] and assume that part of the data from one

source domain, w.l.o.g., S1, come with labels LS1 = {y1, · · · , ynS1
}. Whereas from the target

domain we are only able to sample data without labels UT = {x1, · · · ,xmT
} ⊂ Rd. We do

not assume that these domains use identical features and we pad all input vectors with zeros

to make both domains be of equal dimensionality d. Our goal is to learn a classifier h ∈ H
that accurately predicts the labels of the data from the target domain T .

Structural Correspondence Learning

The first class of methods that is closely related to ours are the domain adaptation algo-

rithms we discussed in section 2.2.3, in particular the Structural Correspondence Learning

(SCL) method of Blitzer et al. [21]. SCL also learns a joint source/target representation

for domain adaptation in an unsupervised fashion. The difference is that SCL requires the
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identification of pivot features, which appears frequently in both domains and behave simi-

larly, to put domain specific words in correspondence. The low-rank representation learned

in SCL essentially encodes the covariance between non-pivot features and the pivot features.

As we are going to detail later that single-layer mSDA also learns the correlations between

all the features. In other words, mSDA no longer uses pivot features, which can be hard

to identify as pointed out the authors [21]. We learn more robust and powerful features by

introducing corruption and by stacking multiple layers. Meanwhile, we are able to keep the

computational time comparable to SCL with our new framework.

Stacked Denoising Autoencoder

The second class of methods that are closely related is the autoencoders, which motivates

our algorithm. Various forms of autoencoders have been developed in the deep learning

literature [131, 6, 91, 97, 159, 126]. In its simplest form, an autoencoder has two components,

an encoder h(·) maps an input x ∈ Rd to some hidden representation h(x) ∈ Rdh , and a

decoder g(·) maps this hidden representation back to a reconstructed version of x, such that

g(h(x))≈x. The parameters of the autoencoders are learned to minimize the reconstruction

error, measured by some loss `(x, g(h(x))). Choices for the loss include squared error or

Kullback-Leibler divergence when the feature values are in [0, 1].

Denoising Autoencoders (DAs) incorporate a slight modification to this setup and corrupt the

inputs before mapping them into the hidden representation. They are trained to reconstruct

(or denoise) the original input x from its corrupted version x̃ by minimizing `(x, g(h(x̃))).

Typical choices of corruption include additive isotropic Gaussian noise or binary masking

noise. As in [159], we use the latter and set a fraction of the features of each input to zero.

This is a natural choice for bag-of-word representations of texts, where typical class-specific

words can be missing due to the writing style of the author or differences between train and

test domains.

The stacked denoising autoencoder (SDA) of [159] stacks several DAs together to create

higher-level representations, by feeding the hidden representation of the tth DA as input into

the (t+ 1)th DA. The training is performed greedily, layer by layer.
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Feature Generation. Many researchers have seen autoencoders as a powerful tool for au-

tomatic discovery and extraction of nonlinear features. For example, Lee et al. [97] demon-

strate that the hidden representations computed by either all or partial layers of a convo-

lutional neural network (CNN) make excellent features for classification with SVMs. The

pre-processing with a CNN improves the generalization by increasing robustness against

noise and label-invariant transformations.

Glorot et al. [69] successfully apply SDAs to extract features for domain adaptation in

document sentiment analysis. The authors train an SDA to reconstruct the input vectors

(ignoring the labels) on the union of the source and target data. A classifier (e.g. a linear

SVM) trained on the resulting feature representation h(x) transfers significantly better from

source to target than one trained on x directly. Similar to CNNs, SDAs also combine

correlated input dimensions, as they reconstruct removed feature values from uncorrupted

features. It is shown that SDAs are able to disentangle hidden factors which explain the

variations in the input data, and automatically group features in accordance with their

relatedness to these factors [69]. This helps transfer across domains as these generic concepts

are invariant to domain-specific vocabularies.

As an intuitive example, imagine that we classify product reviews according to their senti-

ments. The source data consists of book reviews, the target of kitchen appliances. A classifier

trained on the original source never encounters the bigram “energy efficient” during train-

ing and therefore assigns zero weight to it. In the learned SDA representation, the bigram

“energy efficient” would tend to reconstruct, and be reconstructed by, co-occurring features,

typically of similar sentiment (e.g. “good” or “love”). Hence, the source-trained classifier

can assign weights even to features that never occur in its original domain representation,

which are “re-constructed” by the SDA.

Although SDAs generate excellent features for domain adaptation, they have several draw-

backs: 1) Training with (stochastic) gradient descent is slow and hard to parallelize (although

a dense-matrix GPU implementation exists [12] and an implementation based on reconstruc-

tion sampling exists [53] for sparse inputs); 2) There are several hyper-parameters (learning

rate, number of epochs, noise ratio, mini-batch size and network structure), which need to be

set by cross validation — this is particularly expensive as each individual run can take several

hours; 3) The optimization is inherently non-convex and dependent on its initialization.
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3.1.4 marginalized Stacked Denoising Autoencoders

In this section we introduce a modified version of SDA, which preserves its strong fea-

ture learning capabilities, and alleviates the concerns mentioned above through speedups of

several orders of magnitudes, fewer meta-parameters, faster model-selection and layer-wise

convexity.

Single-layer Denoiser

The basic building block of our framework is a one-layer denoising autoencoder. We take the

unlabeled inputs x1, . . . ,xn from U = US1 ∪ · · · ∪US1 ∪UT (n = mS1 + · · ·+mSN
+mT ) and

corrupt them by random feature removal — each feature is set to 0 with probability p≥0.

Let us denote the corrupted version of xi as x̃i. As opposed to the two-level encoder and

decoder in SDA, we reconstruct the corrupted inputs with a single mapping W : Rd→Rd,

that minimizes the squared reconstruction loss

1

2n

n∑

i=1

‖xi −Wx̃i‖2. (3.1)

To simplify notation, we assume that a constant feature is added to the input, xi = [xi; 1],

and an appropriate bias is incorporated within the mapping W = [W,b]. The constant

feature is never corrupted.

The solution to (3.1) depends on which features of each input are randomly corrupted. To

lower the variance, we perform multiple passes over the training set, each time with different

corruption. We solve for the W that minimizes the overall squared loss

Lsq(W) =
1

2mn

m∑

j=1

n∑

i=1

‖xi −Wx̃i,j‖2, (3.2)

where x̃i,j represents the jth corrupted version of the original input xi.

Let us define the design matrix X=[x1, . . . ,xn]∈Rd×n and its m-times repeated version as

X = [X, . . . ,X]. Further, we denote the corrupted version of X as X̃. With this notation,
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Algorithm 3.1 mDA in MATLABTM.
function [W,h]=mDA(X,p);

X=[X;ones(1,size(X,2))];

d=size(X,1);

q=[ones(d-1,1).*(1-p); 1];

S=X*X’;

Q=S.*(q*q’);

Q(1:d+1:end)=q.*diag(S);

P=S.*repmat(q’,d,1);

W=P(1:end-1,:)/(Q+1e-5*eye(d));

h=tanh(W*X);

the loss in eq. (3.1) reduces to

Lsq(W)=
1

2nm
tr

[(
X−WX̃

)> (
X−WX̃

)]
. (3.3)

The solution to (3.3) can be expressed as the well-known closed-form solution for ordinary

least squares [16]:

W = PQ−1 with Q = X̃X̃> and P = XX̃>. (3.4)

In practice this can be computed as a system of linear equations, without the costly matrix

inversion. Please refer to section 1.3.3 for a brief introduction to least square problems.

Marginalized Denoising Autoencoder

The larger m is, the more corruptions we average over. Ideally we would like m → ∞,

effectively using infinitely many copies of noisy data to compute the denoising transformation

W.

By the weak law of large numbers, the matrices P and Q, as defined in (3.3), converge to

their expected values as m becomes very large. If we are interested in the limit case, where

m→∞, we can derive the expectations of Q and P, and express the corresponding mapping

W as

W = E[P]E[Q]−1. (3.5)
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In the remainder of this section, we compute the expectations of these two matrices. For

now, let us focus on

E[Q] =
n∑

i=1

E
[
x̃ix̃

>
i

]
. (3.6)

An off-diagonal entry in the matrix x̃ix̃
>
i is uncorrupted if the two features α and β both

“survived” the corruption, which happens with probability (1−p)2. For the diagonal entries,

this holds with probability 1 − p. Let us define a vector q = [1 − p, . . . , 1 − p, 1]> ∈Rd+1,

where qα represents the probability of a feature α “surviving” the corruption. As the constant

feature is never corrupted, we have qd+1 = 1. If we further define the scatter matrix of the

original uncorrupted input as S = XX>, we can express the expectation of the matrix Q as

E[Q]α,β =

{
Sαβqαqβ if α 6= β

Sαβqα if α = β
. (3.7)

Similarly, we obtain the expectation of P in closed-form as E[P]αβ = Sαβqβ.

With the help of these expected matrices, we can compute the reconstructive mapping W

directly in closed-form without ever explicitly constructing a single corrupted input x̃i. We

refer to this algorithm as marginalized Denoising Autoencoder (mDA). Algorithm 3.1 shows

a 10-line MATLABTM implementation. The mDA has several advantages over traditional

denoisers: 1) It requires only a single sweep through the data to compute the matrices

E[Q], E[P]; 2) Training is convex and a globally optimal solution is guaranteed; 3) The

optimization is performed in non-iterative closed-form.

Nonlinear feature generation and stacking

Arguably two of the key contributors to the success of the SDA are its nonlinearity and the

stacking of multiple layers of denoising autoencoders to create a “deep” learning architecture.

Our framework has the same capabilities.

In SDAs, the nonlinearity is injected through the nonlinear encoder function h(·), which is

learned together with the reconstruction weights W. Such an approach makes the training

procedure highly non-convex and requires iterative procedures to learn the model parame-

ters. To preserve the closed-form solution from the linear mapping in equation (3.3) we insert
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Algorithm 3.2 mSDA in MATLABTM.
function [Ws,hs]=mSDA(X,p,l);

[d,n]=size(X);

Ws=zeros(d,d+1,l);

hs=zeros(d,n,l+1);

hs(:,:,1)=X;

for t=1:l

[Ws(:,:,t), hs(:,:,t+1)]=mDA(hs(:,:,t),p);

end;

nonlinearity into our learned representation after the weights W are computed. A nonlinear

squashing-function is applied on the output of each mDA. Several choices are possible, in-

cluding sigmoid, hyperbolic tangent, tanh(), or the rectifier function [113]. Throughout this

work, we use the tanh() function.

Inspired by the layer-wise stacking of SDA, we stack several mDA layers by feeding the

output of the (t−1)th mDA (after the squashing function) as the input into the tth mDA.

Let us denote the output of the tth mDA as ht and the original input as h0 = x. The

training is performed greedily layer by layer: each map Wt is learned (in closed-form) to

reconstruct the previous mDA output ht−1 from all possible corruptions and the output of

the tth layer becomes ht = tanh(Wtht−1). In our experiments, we found that even without

the nonlinear squashing function, stacking still improves the performance. However, the

nonlinearity improves over the linear stacking significantly. We refer to the stacked denoising

algorithm as marginalized Stacked Denoising Autoencoders (mSDA). Algorithm 3.2 shows a

8-lines MATLABTM implementation of mSDA.

mSDA for Domain Adaptation

We apply mSDA to domain adaptation by first learning features in an unsupervised fashion

on the union of the source and target data sets. One observation reported in [69] is that

if multiple domains are available, sharing the unsupervised pre-training of SDA across all

domains is beneficial compared to pre-training on the source and target only. We observe a

similar trend with our approach. The results reported in section 3.1.6 are based on features

learned on data from all available domains. Once a mSDA is trained, the output of all layers,
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after squashing, tanh(Wtht−1), combined with the original features h0, are concatenated and

form the new representation. All inputs are transformed into the new feature space. A linear

Support Vector Machine (SVM) [34] is then trained on the transformed source inputs and

tested on the target domain. There are two meta-parameters in mSDA: the corruption

probability p and the number of layers l. In our experiments, both are set with 5-fold cross

validation on the labeled data from the source domain. As the mSDA training is almost

instantaneous, this grid search is almost entirely dominated by the SVM training time.

3.1.5 Extension to High Dimensional Data

Many data sets (e.g. bag-of-words text documents) are naturally high dimensional. As the

dimensionality increases, hill-climbing approaches used in SDAs can become prohibitively

expensive. In practice, a work-around is to truncate the input data to the r�d most com-

mon features [69]. Unfortunately, this prevents SDAs from utilizing important information

found in rarer features. (As we show in section 3.1.6, including these rarer features leads

to significantly better results.) High dimensionality also poses a challenge to mSDA, as the

system of linear equations in (3.5) of complexity O(d3) becomes too costly. In this section

we describe how to approximate this calculation with a simple division into d
r

sub-problems

of O(r3).

We combine the concept of “pivot features” from [21] and the use of most-frequent features

from [69]. Instead of learning a single mapping W ∈ Rd×(d+1) to reconstruct all corrupted

features, we learn multiple mappings but only reconstruct the r�d most frequent features

(here, r = 5000). For an input xi we denote the shortened r-dimensional vector of only

the r most-frequent features as zi ∈ Rr. We perform this reconstruction with S random

non-overlapping sub-sets of input features. Without loss of generality, we assume that the

feature-dimensions in the input space are in random order and divide-up the input vectors

as xi =
[
x1
i
>
, . . . ,xSi

>
]>

. For each one of these sub-spaces we learn an independent mapping

Ws which minimizes

Ls(Ws) =
1

2n

n∑

i=1

S∑

s=1

‖zi −Wsx̃si‖2. (3.8)

Each mapping Ws can be solved in closed-form as in (3.5), following the method described

in section 3.1.4. We define the output of the first layer in the resulting mSDA as the average
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of all reconstructions,

h1 = tanh

(
1

S

S∑

s=1

Wsxs

)
. (3.9)

Once the first layer, of dimension r� d, is built, we can stack multiple layers on top of it

using the regular mSDA as described in section 3.1.4 and Algorithm 3.2. It is worth pointing

out that, although features might be separated in different sub-sets within the first layer,

they can still be combined in subsequent layers of the mSDA.

3.1.6 Experimental Results

In this section, we evaluate mSDA on the Amazon reviews benchmark data sets [21] together

with several other algorithms for representation learning and domain adaptation.

Dataset. The dataset contains more than 340, 000 reviews from 25 different types of

products from Amazon.com. For simplicity (and comparability), we follow the convention

of [42, 69] and only consider the binary classification problem whether a review is positive

(higher than 3 stars) or negative (3 stars or lower). As mSDA and SDA focus on feature

learning, we use the raw bag-of-words (bow) unigram/bigram features as their input. To be

fair to other algorithms that we compare to, we also pre-process with tf-idf [133] and use the

transformed feature vectors as their input if that leads to better results. Finally, we remove

five domains which contain less than 1, 000 reviews.

Different domains in the complete set vary substantially in terms of number of instances

and class distribution. Some domains (books and music) have hundreds of thousands of

reviews, while others (food and outdoor) have only a few hundred. There are a total of

380 possible transfer tasks (e.g. Apparel→Baby). The proportion of negative examples in

different domains also differs greatly. To counter the effect of class- and size-imbalance, a

more controlled smaller dataset was created by Blitzer et al. [19], which contains reviews

of four types of products: books, DVDs, electronics, and kitchen appliances. Here, each

domain consists of 2, 000 labeled inputs and approximately 4, 000 unlabeled ones (varying

slightly between domains) and the two classes are exactly balanced. Table 3.1 contains the

statistics on the complete set as well as the control set. Almost all prior work provides results
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only on this smaller set with its more manageable twelve transfer tasks. We focus most of

our comparative analysis on this smaller set but also provide results on the entire data for

completeness.

Table 3.1: Statistics of the large and small set of the Amazon review dataset [19].

.

Domain Labeled Unlabeled (Test) Neg. inputs

Complete (large) set

Apparel 4470 4470 14.52%

Baby 2046 2045 21.46%

Beauty 1314 1314 15.94%

Books 27169 27168 12.09%

Camera 2652 2652 16.35%

DVDs 23044 23044 14.16%

Electronics 10197 10196 21.94%

Food 692 691 13.02%

Grocery 1238 1238 13.57%

Health 3254 3253 21.25%

Jewelry 982 982 14.82%

Kitchen 9233 9233 20.96%

Magazines 1195 1195 22.64%

Music 62181 62181 8.33%

Outdoor 729 729 20.71%

Software 1033 1032 37.72%

Sports 2679 2679 18.78%

Toys 6318 6318 19.67%

Video 8695 8694 13.64%

Videogame 720 720 17.15%

Controlled (small) set

Books 2000 4465 50%

DVDs 2000 3586 50%

Electronics 2000 5681 50%

Kitchen 2000 5945 50%
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Methods. As baseline, we train a linear SVM on the raw bag-of-words representation of the

labeled source and test it on target. We also include the results of the same setup with dense

features obtained by projecting the entire data set (labeled and unlabeled source+target) onto

a low-dimensional sub-space with PCA (we refer to this setting as PCA). Besides these two

baselines, we evaluate the efficacy of a linear SVM trained on features learned by mSDA and

two alternative feature learning algorithms, Structural Correspondence Learning (SCL) [21]

and 1-layer12 SDA [69]. Finally, we also compare against CODA [42], a state-of-the-art

domain adaptation algorithm which is based on sample- and feature-selection, applied to

tf-idf features. For CODA, SDA and SCL we use implementations provided by the authors.

All hyper-parameters are set by 5-fold cross validation on the source training set13.

Metrics. Following Glorot et al. [69], we evaluate our results with the transfer error e(S, T )

and the in-domain error e(T, T ). The transfer error e(S, T ) denotes the classification error

of a classifier trained on the labeled source data and tested on the unlabeled target data.

The in-domain error e(T, T ) denotes the classification error of a classifier that is trained on

the labeled target data and tested on the unlabeled target data. Similar to Glorot et al. [69]

we measure the performance of a domain adaptation algorithm in terms of the transfer loss,

defined as e(S, T )−eb(T, T ), where eb(T, T ) defines the in-domain error of the baseline. In

other words, the transfer loss measures how much higher the error of an adapted classifier is

in comparison to a linear SVM that is trained on actual labeled target bow data.

The various domain-adaptation tasks vary substantially in difficulty, which is why we do

not average the transfer losses (which would be dominated by a few most difficult tasks).

Instead, we average the transfer ratio, e(S, T )/eb(T, T ), the ratio of the transfer error over

the in-domain error. As with the transfer loss, a lower transfer ratio implies better domain

adaptation.

Timing. For timing purposes, we ignore the time of the SVM training and only report the

mSDA or SDA training time. As both algorithms are unsupervised, we do not re-train for

12We were only able to obtain the 1-layer implementation from the authors. Anecdotally, multiple-layer
SDA only leads to small improvements on this benchmark set but increases the training time drastically.

13We keep the default values of some of the parameters in SCL, e.g. the number of stop-words removed
and stemming parameters — as they were already tuned for this benchmark set by the authors.
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different transfer tasks within a benchmark set — instead we learn one representation on the

union of all domains. CODA [41] does not take advantage of data besides source and target

and we report the average training time per transfer task.14 All experiments were conducted

on an off-the-shelf desktop with dual 6-core Intel i7 CPUs clocked at 2.66Ghz.

Comparison with Related Work

In the first set of experiments, we use the setting from [69] on the small Amazon benchmark

set. The input data is reduced to only the 5, 000 most frequent terms of unigrams and

bigrams as features.

Comparison per task. Figure 3.2 presents a detailed comparison of the transfer loss

across the twelve domain adaptation tasks using the various methods mentioned. The reviews

are from the domains Books, Kitchen appliances, Electronics, DVDs. A linear SVM trained

on the features generated by SDA and mSDA clearly outperform all the other methods.

mSDA and SDA have the advantage over the CODA algorithm we introduced in section 2.2

as they make use of the unlabeled data from multiple source domains. For several tasks, the

transfer loss goes to negative — in other words, a SVM trained on the transformed source

data has higher accuracy than one trained on the original target data. This is a strong

indication that the learned new representation bridges the gap between domains. It is worth

pointing out that in ten out of the twelve tasks mSDA achieves a lower transfer-loss than

SDA.

Timing. Figure 3.3 (left) depicts the transfer ratio as a function of training time required

for different algorithms, averaged over 12 tasks. It compare the results of mSDA with

baseline, PCA, SCL, CODA and SDA. The time is plotted in log scale. We can make

three observations: 1) SDA outperforms all other related work in terms of transfer-ratio,

but is also the slowest to train (more than 5 hours of training time). 2) SCL and PCA are

relatively fast, but their features cannot compete in terms of transfer performance. 3) The

training time of mSDA is two orders of magnitude faster that of SDAs (180× speedup), with

14In CODA, the feature splitting and classifier training are inseparable and we necessarily include both in
our timing.
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Figure 3.2: Comparison of mSDA and existing works across all twelve domain adaptation
task in the small Amazon review dataset.

comparable transfer ratio. Training one layer of mDA on all 27, 677 documents from the

small set requires less than 25 seconds. A 5-layer mSDA requires less than 2 minutes to

train, and the resulting feature transformation achieves slightly better transfer ratio than

SDAs.
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Figure 3.3: Transfer ratio and training times on the small (left) and full (right) Amazon
Benchmark data. Results are averaged across the twelve and 380 domain adaptation tasks
in the respective data sets (5, 000 features).
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Figure 3.4: Left: Transfer ratio as a function of the input dimensionality (terms are picked
in decreasing order of their frequency). Right: Besides domain adaptation, mSDA also helps
in domain recognition tasks.

Large scale results. To demonstrate the capabilities of mSDA to scale to large data sets,

we also evaluate it on the complete set with n=340, 000 reviews from 20 domains and a total

of 380 domain adaptation tasks (see right plot in Figure 3.3). We compare mSDA to SDA

(1-layer). The large set is more heterogenous in terms of the number of domains, domain

size and class distribution than the small set and both the transfer error and transfer ratio

are averaged across 380 tasks. Nonetheless, a similar trend can be observed. The transfer

ratio reported in Figure 3.15 (right) corresponds to averaged transfer errors of (baseline)

13.93%, ( one-layer SDA) 10.50%, (mSDA, l= 1) 11.50%, (mSDA, l= 3) 10.47%, (mSDA,

l = 5) 10.33%. With only one layer, mSDA performs a little worse than SDA but reduces

the training time from over two days to about five minutes (700× speedup). With three

layers, mSDA matches the transfer-error and transfer-ratio of SDA and still only requires 14

minutes of training time (230× speedup).

Further Analysis

In addition to comparison with prior work, we also analyze various other aspects of mSDA.
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Low-frequency features. Prior work often limits the input data to the most frequent

features [69]. We use the modification from section 3.1.5 to scale mSDA (5-layers) up to high

dimensions and include less-frequent uni-grams and bi-grams in the input (small Amazon

set). In the case of SDA we make the first layer a dimensionality reducing transformation

from d dimensions to 5000. The left plot in Figure 3.4 shows the performance of mSDA

and SDA as the input dimensionality increases (words are picked in decreasing order of their

frequency). The transfer ratio is computed relative to the baseline with d= 5000 feature.

Clearly, both algorithms benefit from having more features up to 30, 000. mSDA matches

the transfer-ratio of SDA consistently and, as the dimensionality increases, gains even higher

speed-up. With 30, 000 input features, SDA requires over one day and mSDA only 3 minutes

(458× speedup).

Transfer distance. Ben-David et al. [9] suggest the Proxy-A-distance (PAD) as a measure

of how different two domains are from each other. The metric is defined as 2(1− 2ε), where

ε is the generalization error of a classifier (a linear SVM in our case) trained on the binary

classification problem to distinguish inputs between the two domains. The right plot in

Figure 3.4 shows the PAD before and after mSDA is applied. Surprisingly, the distance

increases in the new representation — i.e. distinguishing between two domains becomes

easier with the mSDA features. We explain this effect through the fact that mSDA is

unsupervised and learns a generally better representation for the input data. This helps

both tasks, distinguishing between domains and sentiment analysis (e.g. in the electronic-

domain mSDA might interpolate the feature “dvd player” from “blue ray”, both are not

particularly relevant for sentiment analysis but might help distinguish the review from the

book domain.). Glorot et al. [69] observe a similar effect with the representations learned

with SDA.

General Trends

In summary, we observe a few general trends across all experiments: 1) With one layer, mSDA

is up to three orders of magnitudes faster but slightly less expressive than the original SDA.

This can be attributed to the fact that mSDA has no hidden layer. 2) There is a clear trend

that additional “deep” layers improve the results significantly (here, up to five layers). With

additional layers, the mSDA features reach (and surpass) the accuracy of 1-layer SDA and
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still obtain a several hundred-fold speedup. 3) The mSDA features help diverse classification

tasks, domain classification and sentiment analysis, and can be trained very efficiently on

high-dimensional data.

3.1.7 Conclusion

Although mSDA first and foremost marginalizes out the corruption in SDA training, the two

algorithms differ in several profound ways: First, the mDA layers do not have hidden nodes —

this allows a closed-form solution with substantial speed-ups but might entail limitations that

still need to be investigated. Second, mSDA only has two free meta-parameters, controlling

the amount of noise as well as the number of layers to be stacked, which greatly simplifies

the model selection. Finally, leveraging on the analytic tractability of linear regression, the

parameters of an DA are trained to optimally denoise all possible corrupted training inputs

— arguably “infinitely many”. This is practically infeasible for SDAs.

During our experimentation, we found that the sparsity in the raw feature representation

is important for successful application of mSDA. For text data, it is natural to start from

the sparse bag-of-word representation. For dense inputs, such as vision data, it is wise to

first transform the original input to some sparse representation, e.g., bag-of-visual-word, and

then apply mSDA.

We hope that our work on mSDA will inspire future research on efficient training of SDA,

beyond domain adaptation, and impact a variety of research problems. The fast training

time, the capability to scale to large and high-dimensional data and implementation sim-

plicity make mSDA a promising method with appeal to a large audience within and beyond

machine learning.

3.2 Marginalized Corrupted Regularization

The goal of machine learning is to develop predictors that generalize well to test data. Ide-

ally, this is achieved by training on an almost infinitely large training data set that captures

all variations in the data distribution. In practical learning settings, however, we do not have
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infinite data and our predictors may overfit. Common strategies to deal with overfitting in-

clude adding a regularizer to the training objective or by defining a prior over the model

parameters and performing Bayesian inference. We propose a third, alternative approach:

we extend the training set with infinitely many artificial generated training examples that are

obtained by corrupting the original training data. We show that this approach is practical

and efficient for a range of predictors and corruption models. We refer to our new approach

as Marginalized Corrupted Features (MCF). It trains robust predictors by minimizing the

expected value of the loss function under the corruption model. We show empirically on a va-

riety of data sets that MCF classifiers can be trained efficiently, may generalize substantially

better to test data, and are also more robust to feature deletion at test time.

The section is organized as follows. Section 3.2.2 recaps the setup in learning from corrupted

distribution. Section 3.2.3 reviews several existing works on corrupting training data to deal

with overfitting or corruption at test time, i.e., some feature values are missing at test

time due to sensor failure or computation constraints. Section 3.2.4 introduces Marginalized

Corrupted Features (MCF) regularization. Section 3.2.5 presents an extensive experimental

evaluation in which we compare MCF-regularized predictors with standard predictors on

various document-classification problems, and in the “nightmare at test time scenario”. In

Section 3.2.6, the results of our experiments are discussed in more detail.

3.2.1 Introduction

Dealing with overfitting is one of the key problems one encounters when training machine-

learning models, especially when the number of training examples is small. An algorithm

overfits if it performs substantially better on its training data than on held-out data. The

classifier relates the label with patterns within the noise instead of within the data dis-

tribution. Three approaches are commonly used to combat overfitting: 1) early-stopping

techniques monitor the performance of the model on a validation set during training, and

stop the learning as soon as the validation performance deteriorates; 2) regularization tech-

niques encourage the learning to find “simple” models by penalizing “complex” models, e.g.,

models with large parameter values; and 3) Bayesian techniques define a prior distribution

over models that favor simple models, and perform predictions by averaging over the model
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posterior. Regularization and Bayesian techniques are often intimately related, in particu-

lar, because regularization techniques can sometimes be viewed as introducing a prior over

models and performing maximum-likelihood estimation.

We propose a new alternative to counter overfitting. Instead of requiring the user to define

prior distributions or regularizers over model parameters, which can be very counter intu-

itive, we focus on corruptions of the data. Our approach is based on the observation that

overfitting would completely disappear if we were to train our models on infinite data drawn

from the data distribution D. In such a hypothetical scenario, it is impossible to overfit

models; and even high-variance models, such as the nearest neighbor classifier [47], become

close to optimal (viz. the error of a nearest neighbor classifier is twice the Bayes error). Un-

fortunately, a learning scenario in which we only obtain a finite training set is more realistic;

here, some variations in the data distribution will not be captured and the learned model

performs worse at test time than during training.

In many learning scenarios, we may however have some additional knowledge about the data

distribution: we might know that certain corruptions of data instances do not affect their

conditional label distributions. As an example, deleting a few words in a text document rarely

changes its topic. With this prior knowledge, we can corrupt existing data to generate new

artificial instances that resemble those sampled from the actual data distribution. In fact,

we will corrupt the existing finite training examples with a fixed corrupting distribution to

construct an infinite training set. Further, we show that for a wide range of learning models

and noise distributions, it is practical to train models on such an infinite, augmented training

set. We refer to the resulting framework as learning with marginalized corrupted features

(MCF). So instead of approximating the exact statistics of D with finite data, MCF learns

from a slightly modified data distribution D′ with infinite data.

Burges and Schölkopf [28] explicitly augment the training set with additional examples that

are corrupted through similar transformations. Although the simplicity of such an approach

is appealing, it lacks elegance and the computational cost of processing the additional cor-

rupted training examples is prohibitive for most real-world problems. In contrast, we show

that it is efficient to train predictors on an infinite amount of corrupted copies of the training

data by marginalizing out the corrupting distribution. In particular, we focus on empirical

risk minimization and derive analytical solutions for the expected loss under a large family
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of corrupting distributions for quadratic and exponential loss functions. This allows us to

minimize the expected loss in computational time linear in the number of training examples.

For logistic loss functions, which are used in many probabilistic models, we derive practical

upper bounds on the expected value of the loss under the corrupting distribution.

Our augmented data distribution D′ is constructed using a simple stochastic rule: pick one

of the finite training examples uniformly at random and transform it with some pre-defined

corrupting distribution. Many corrupting distributions are possible, but in this work we focus

on 1) Gaussian corruption, 2) Poisson corruption, and 3) (unbiased) blankout corruption

(random deletion of features). The Gaussian corruption model is mainly of interest for

continuous-valued data sets; special cases of MCF with Gaussian corruption have already

been studied in the context of Parzen density estimation [120] and in the context of vicinal

risk minimization [35]. The Poisson corruption model is of interest when the data comprises

count vectors, e.g., in document classification. Poisson corruption is particularly appealing as

it introduces no additional hyper-parameters and, in our results, improves the test accuracy

on almost all data sets that comprise count data. The blankout corruption model is of

interest in data sets with heavy-tailed feature distributions, such as filter responses, and in

settings where blankout noise is a known source of variance in the original data distribution

P—possibly unobserved in the training data. This happens, e.g., in document classification

from term-frequency vectors: a big portion of each document (especially after stop-word

removal) is sampled from the tail of the power-law distribution, for which the blankout noise

model is a surprisingly good approximation: it models the common case that some of the

words related to the class of the document are missing, e.g. because the author used other

synonyms. Blankout corruption is also of interest in the “nightmare at test time” scenario

[67] in which some of the features are deleted during testing, e.g., due to sensors failures or

because the feature computation exceeds a time budget, and we wish to make predictions

that are robust to this blankout noise. Different from previous work [14, 67, 142, 154], our

setting focuses on random feature removal and not on the (in practice much rarer) worst-case

adversarial setting.

In summary, we make the following contributions: 1) we introduce learning with marginalized

corrupted features, a framework that trains robust classifiers by marginalizing out all possible

feature corruptions from a pre-defined distribution; 2) we derive plug-in solutions for the

quadratic, exponential, and logistic loss functions for a range of corrupting distributions,

93



which can be incorporated into learning algorithms out-of-the-box; and 3) on several real-

world data sets, we show that training with MCF may lead to more robust classifiers and may

substantially decrease generalization errors in various learning settings. Given the simplicity

and elegance of MCF, it could become a valuable alternative to the common l1 or l2-norm

regularizers.

3.2.2 Recap of Learning from Corrupted Data

Again here we focus on scenarios when the training data from the relevant distribution is

insufficient. In learning with corrupted distribution, we create additional training examples

by applying feature dropout or corruption to the small set of training examples. The hope

is that with properly chosen corrupting distributions, the artificially created examples will

resemble real ones and can capture some variation in the testing distribution which was not

captured in the small set of training examples. The artificially created examples can later

be used as additional training examples to improve robustness.

Figure 3.5 shows a Venn diagram that illustrates the setup we have in learning from corrupted

data. Let D denote the testing distribution, from which we sampled the original small

set of training examples. Let D′ denote the distribution of the corrupted data, which is

created from the training examples by applying some corrupting distribution on each example

independently. We assume that the support of the distribution of D′ and that of the testing

distribution D is the same. As D′ is created by applying a known corrupting distribution on

each training example independently, the density function of D′ is known as well.

S(D)

S(D0)

D0 6= D, D0 known

Figure 3.5: Venn diagram on learning from corrupted data.
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Notation. Let X ∈ Rd denote the feature space, and Y the output space. Let D denote

the testing distribution on X × Y . Let L = {(x1, y1), · · · , (xn, yn)} ⊆ X × Y be a small set

of training examples sampled i.i.d. from D. Let p(x̃|x) denote the corrupting distribution

we used to create the corrupted data. It generates another set of training examples L′ =

{(x̃i1, yi), · · · , (x̃im, yi), i = 1, · · · , n} ⊆ X ×Y where each example x̃im ∼ p(x̃im|xi). We are

going to introduce a new learning framework which learns on infinitely many such corrupted

data, i.e., m → ∞ to find a classifier that predict accurately on testing data sampled from

D.

3.2.3 Background and Related work

There are two motivations for training a classifier with MCF: 1. to reduce the effects of

overfitting during training ; and 2. to combat the effect of data corruption during testing.

Both motivations connect with different lines of prior work, and in this section we discuss

both of them.

Corruption during training

The initial publication by [28] has inspired various lines of work that explicitly corrupt train-

ing data during training. Most prominently, Vincent et al. [160, 161] propose to randomly

blank out features in the training data that is used as input to autoencoders, whilst leaving

the desired output (the original training data) unaltered. The resulting denoising autoen-

coder model is now commonly used as a building block in deep learning [103, 68, 108], and

blankout corruption is also increasingly applied on the hidden units of neural networks as a

form of regularization [79]. Since autoencoders are non-linear, the marginalization over the

corrupting distribution cannot be performed analytically in such models. Linear denoising

autoencoders [43] can be viewed as a special case of MCF that aim to minimize the ex-

pected value of the reconstruction error under blankout corruption—and which are stacked

in multiple layers. Herbrich and Graepel [77] propose an elegant generalization of SVMs that

learns to be invariant to polynomial input transformations via a semi-definite programming

formulation.
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In online learning and bandit problems, various studies have shown that it is possible to learn

from data that are subject to a (possibly unknown) corrupting distribution [62, 1, 31]. For

instance, Cesa-Bianchi et al. [32] show that noise in the data does not affect the convergence

rate of online learners. A similar regret bound is proven by Rostamizadeh et al. [129] for

online learning under the presence of randomly missing features (i.e. blankout corruption).

These studies differ from our work in that they show that (unknown) corruptions in the data

do not impair learning performance too much. By contrast, our work shows that adding

corruptions to the data can actually improve learning performance.

Corruption during testing

Several prior studies consider implicit approaches for data sets that are subject to corruptions

during test time (this is also known as “the nightmare at test-time” scenario). Most of these

studies propose to minimize the loss under an adversarial worst-case scenario. In particular,

Globerson and Roweis [67] propose a minimax-formulation in which the loss is minimized

assuming maximum “damage” through corruption. By contrast, Dekel and Shamir [54]

propose a linear-programming formulation that minimizes an approximation to the same

quantity for margin-based predictors. Other studies [14, 142, 154, 166] also use minimax

approaches that minimize losses under a worst-case scenario, but they focus on a somewhat

different corruption model that adds a uniformly drawn constant, within a fixed interval, to

each feature.

Chechik et al. [40] propose an algorithm that maximizes the margin in the subspace of the

observed features for each training instance to be robust against random feature deletion.

Teo et al. [152] generalize the worst-case scenario from simple feature corruption to obtain

invariances to transformations such as image rotations or translations. Their framework

incorporates several prior formulations on learning with invariants as special cases, most

prominently Herbrich and Graepel [77].

Such previous work differs from our approach in that it focuses on adversarial scenarios and

does not consider the corruption analytically in expectation. Further, they mostly focus on

a very specific corruption model. In particular, existing approaches suffer from three main

disadvantages: 1) they are complex and computationally expensive, 2) they minimize the
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loss of a worst-case scenario that is very unlikely to be encountered in practice, and 3) they

do not provide a flexible framework that can be used with a variety of models and corrupting

distributions. By contrast, we propose a much simpler approach that scales linearly in the

number of training samples, that considers an average-case instead of a worst-case scenario,

and that can readily be used with a variety of loss functions and a large family of corruption

models.

3.2.4 Learning with Marginalized Corrupted Features

To derive the marginalized corrupted features (MCF) framework, we start by defining a cor-

rupting distribution that specifies how training observations x are transformed into corrupted

versions x̃. Throughout this work, we assume that the corrupting distribution factorizes over

dimensions and that each individual distribution PE is a member of the natural exponential

family. (We will see later that for MCF with quadratic loss functions, these assumptions

may be relaxed.) Specifically, we assume a corrupting distribution of the form:

p(x̃|x) =
D∏

d=1

PE(x̃d|xd; ηd), (3.10)

where ηd represents user-defined hyperparameters of the corrupting distribution on dimension

d. Corrupting distributions of interest, for PE, include: 1. independent salt or “blankout”

noise in which the d-th feature is randomly set to zero with probability qd; 2. bit-swap noise

in which the value of the d-th bit is randomly swapped with probability qd; 3. independent

Gaussian noise on the d-th feature with variance σ2
d; 4. independent Laplace noise on the

d-th feature with variance 2λ2d; and 5. independent Poisson corruptions in which the d-th

feature is used as the rate of the distribution. Note that the definition in (3.10) allows for

different features to use arbitrary different corrupting distributions. In the remainder of this

section, we propose an efficient way to train a classifier on corrupted inputs x̃, sampled from

the distribution p(x̃|x)P(x). There are at least two motivations for doing so:

1. Nightmare at test-time. In the nightmare at test-time scenario, introduced by [67],

there is an expectation that corruption will appear during test-time. Although the training
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data is sampled from P(x), the test data will be sampled from the distribution p(x̃|x)P(x).

Training the classifier on the corrupted data corrects this distribution drift. This scenario

appears, for example, in the context of search engines. A feature can be reliably collected

for the training set, but during testing it is dropped if its computation time exceeds a

pre-specified time limit. The frequency of these feature drop outs can be measured and

incorporated into training with the appropriate drop out distribution. Similarly, one can

imagine scenarios (e.g. in robotics) where features correspond to unreliable sensor readings.

2. Regularization. The more common motivation is improved generalization. Here, the

corrupting distribution is meant to capture some of the variance inherent in P(x). In this

setting, one must guarantee that the classifier is still applicable for the test case, where data

is sampled directly from P . More precisely, it must be unbiased. Let h(x) be the classification

function, we therefore require of the corrupting distribution that

E[h(x̃)]p(x̃|x) = h(x). (3.11)

In other words, corrupting an input should not change its expected prediction and a test

input obtains the expected prediction that the same input would obtain during training. In

the linear case, the classifier is parameterized by a vector w. For regression, the prediction

function is defined as h(x) = w>x and we require E[x̃] = x. For classification it is h(x) =

sign(w>x), which necessitates the slightly weaker condition E[x̃] = s(x)x for any bounded

s(x) > 0. Table 3.2 showcases several biased and unbiased distributions.

3. Explicit corruption. Assume we are provided with a training data setD = {(xn, yn)}Nn=1

and a loss function L(x, y; Θ), with model parameters Θ. A simple approach to approxi-

mately learn from the distribution p(x̃|x)P(x), is to follow the spirit of Burges and Schölkopf

[28] and corrupt each training sample M times, following (3.10). For each xn ∈ D, this results

in corresponding corrupted observations x̃nm (with m = 1, . . . ,M) and leads to the construc-

tion of a new data set D̃ of size |D̃| = MN . This new data set can be used for training in

an empirical risk minimization framework, by minimizing the surrogate loss function:

L(D̃; Θ) =
N∑

n=1

1

M

M∑

m=1

L(x̃nm, yn; Θ), (3.12)
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with x̃nm ∼ p(x̃nm|xn). Such approaches have recently become popular, in particular, in the

deep-learning community as a way to regularize deep neural networks [79].

4. Marginalized Corrupted Feature. Although approaches that explicitly corrupt the

training data are effective, they lack elegance and come with high computational costs: the

minimization of L(D̃; Θ) scales linearly in the number of corrupted observations, i.e. it scales

as O(NM). It is, however, of interest to consider the limiting case in which M → ∞. In

this case, we can apply the weak law of large numbers and rewrite 1
M

∑M
m=1 L(x̃m, ym; Θ) as

its expectation [56, §2.10.2] to obtain the following surrogate loss:

L(D; Θ) =
N∑

n=1

E[L(x̃n, yn; Θ)]p(x̃n|xn). (3.13)

Minimizing the expected value of the loss under the corruption model leads to a new approach

for training predictors that we refer to as learning with marginalized corrupted features

(MCF). MCF may lead to algorithms with an O(N) training complexity in situations in

which the expectation in (3.13) is tractable, which is indeed the case for commonly used loss

functions L(x̃n, yn; Θ).

In the following, we show that for linear predictors that employ a quadratic or exponential

loss function, the required expectations under p(x̃|x) in (3.13) can be computed analytically

for all corrupting distributions in the natural exponential family. For linear predictors with

logistic loss we derive a practical upper bound on the expected loss under p(x̃|x), which

serves as surrogate loss.

Quadratic loss

Assuming a linear model parametrized by vector w and a target variable y (for regression,

y is continuous; for binary classification, y ∈ {−1,+1}), the expected value of the quadratic
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loss under corrupting distribution p(x̃|x) is given by:

L(D; w) =
N∑

n=1

E

[(
wTx̃n − yn

)2
]

p(x̃n|xn)

=
N∑

n=1

E
[
wTx̃nx̃

T
nw − 2ynw

Tx̃n + y2n
]
p(x̃n|xn)

= wT

( N∑

n=1

E[x̃n]E[x̃n]T + V [x̃n]

)
w − 2

( N∑

n=1

ynE [x̃n]

)T

w +N. (3.14)

Herein, V [x] denotes the variance of x, and all expectations are under p(x̃n|xn). Note that

irrespective of what corruption model is used, (3.14) is quadratic in w, and hence convex.

The optimal solution w∗ can be computed with a variation of the ordinary least squares

closed form:

w∗ =

( N∑

n=1

E[x̃n]E[x̃n]T + V [x̃n]

)−1( N∑

n=1

ynE [x̃n]

)
. (3.15)

Hence, to minimize the expected quadratic loss under the corruption model, we only need

to compute the mean and variance of the corrupting distribution, which is practical for all

exponential-family distributions.

Table 3.2 gives an overview of the probability density function (PDF), mean, and variance

of five corrupting distributions of interest. These quantities can be plugged into eq. (3.14) to

obtain the expected value under the corrupting distribution of the quadratic loss. For dis-

ambiguation, we refer to the unbiased version of the feature dropout as blankout corruption.

Special case. An interesting setting of MCF with quadratic loss occurs when the corrupt-

ing distribution p(x̃|x) is an isotropic Gaussian distribution with mean x and variance σ2I.

For such a Gaussian corruption model, we obtain the standard l2-regularized quadratic loss

with regularization parameter σ2N that is used in ridge regression as special case [35]:

L(D; w) = wT

( N∑

n=1

xnx
T
n

)
w − 2

( N∑

n=1

ynxn

)T

w + σ2NwTw +N. (3.16)
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Table 3.2: The probability density function (PDF), mean and variance of corrupting distri-
butions of interest.

Name PDF E[x̃nd]p(x̃nd|xnd) V [x̃nd]p(x̃nd|xnd)

Dropout
p(x̃nd = 0) = qd

p(x̃nd = xnd) = 1 � qd
(1 � qd)xnd qd(1 � qd)x2

nd

Bit-swap
p(x̃nd = 1�xnd) = qd

p(x̃nd = xnd) = 1� qd
q(1�xnd)(1 � q)xnd

⇣
1 � q(1�xnd)(1 � q)xnd

⌘

q(1�xnd)(1� q)xnd

Blankout
p(x̃nd = 0) = qd

p(x̃nd = 1
1�qd

xnd) = 1 � qd
xnd

qd
1�qd

x2
nd

Gaussian p(x̃nd|xnd) = N (x̃nd|xnd,�2) xnd �2

Laplace p(x̃nd|xnd) = Lap(x̃nd|xnd,�) xnd 2�2

Poisson p(x̃nd|xnd) = Poisson(x̃nd|xnd) xnd xnd

bi
as
ed

un
bi
as
ed

Perhaps surprisingly, using MCF with Laplace corruption also leads to ridge regression with

the regularization parameter taking value 2λ2N . Indeed, ridge regression arises for every

unbiased corrupting distribution whose variance is not data-dependent.

Leave-one-out errors. A nice property of linear models employing quadratic loss is that

they allow us to compute the leave-one-out error of the model from only the training pre-

dictions ŷn [3]. We show that this property still holds for MCF quadratic losses, irrespective

of the corrupting distribution that is used. Defining the target vector y = [y1, . . . , yN ]T and

the data matrix X = [x1, . . . ,xN ], we can rewrite the prediction vector ŷ = [ŷ1, . . . , ŷN ] as:

ŷ = XTw∗ = XT

( N∑

n=1

E[x̃n]E[x̃n]T + V [x̃n]

)−1( N∑

n=1

E [x̃n] yn

)
= Hy, (3.17)

where H is often referred to as the hat matrix. If a single target value yn is replaced by ŷ−nn ,

the prediction made by the model trained on all data except example n, the hat matrix H

does not change because it does not depend on y. If we construct a new target vector z

with this replacement in it, z = [y1, . . . , yn−1, ŷ
−n
n , yn+1, . . . , yN ], and use the simple fact that

ŷ−nn =
∑N

m=1Hnmzm (see Allen [3] for details) we obtain:

ŷn − ŷ−nn =
N∑

m=1

Hnmym −
N∑

m=1

Hnmzm = Hnnyn −Hnnŷ
−n
n . (3.18)
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Using this equality, we can compute ŷ−nn without performing the minimization of the MCF

quadratic loss – with example n left out – over w:

ŷ−nn =
Hnnyn − ŷn
Hnn − 1

. (3.19)

This allows us to express the leave-one-out error LOO of the MCF quadratic loss model as:

LOO =
N∑

n=1

(
yn − ŷ−nn

)2
=

N∑

n=1

(
yn − ŷn
1−Hnn

)2

. (3.20)

Blankout corruption. We study the use blankout in MCF quadratic loss in more detail

here to show what kind of regularizers it produces. By plugging the relevant quantities from

Table 3.2 into (3.15), we obtain the following solution for w∗ with MCF blankout (assuming

∀d : qd = q):

w∗ =

(
N∑

n=1

xnx
T
n + q(1− q)S

)−1( N∑

n=1

xnyn

)
, where: S =

(
N∑

n=1

xnx
>
n

)
◦ I (3.21)

where ◦ denotes an element-wise Hadamard product. In words, the matrix S consists of

only the diagonal of the scatter matrix. Consequently, MCF blankout corruption has the

effect of multiplying the diagonal of the scatter matrix by a factor (1 + q − q2). This makes

the MCF regularizer data-dependent : the regularization is stronger on dimensions that on

average have a larger norm. This may be desirable in situations in which the data dimensions

live on different scales as happens, for example, in word-count features. This is in contrast

to the data independent l2-regularizer, that simply adds a fixed value λ to the diagonal of

the scatter matrix—treating all features alike.

Poisson corruption. Using Poisson corruption in MCF quadratic loss leads to:

w∗ =

(
N∑

n=1

xnx
T
n +

N∑

n=1

xn

)−1( N∑

n=1

xnyn

)
. (3.22)

Poisson corruption thus leads to a parameterless, additive, data-dependent regularizer that

adds larger values to the diagonal of the Gram matrix for features that occur more on average.
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Table 3.3: Moment-generating functions (MGFs) of corrupting distributions of interest.

Distribution E[exp(−ynwdx̃nd)]p(x̃nd|xnd)

Blankout noise qd + (1− qd) exp(−ynwd 1
1−qd

xnd)

Gaussian noise exp(−ynwdxnd + 1
2
σ2y2nw

2
d)

Laplace noise (1− λ2y2nw2
d)
−1 exp(−ynwdxnd)

Poisson noise exp(xnd(exp(−ynwd)− 1))

(Note that Poisson corruption can only be used on non-negative data, ∀n, d : xnd ≥ 0, so

the contribution of the regularizer is always non-negative.) The main difference between

blankout and Poisson corruption is in how strongly features with large values are regularized;

the multiplicative blankout corruption regularizes common features more than the additive

Poisson corruption.

Exponential loss

Whilst quadratic losses are of interest to regression problems, they seem less appropriate for

use in classification. Exponential loss is a loss function that is commonly used for classifica-

tion, e.g., in AdaBoost [63]. Assuming a label variable y ∈ {0, 1}, the expected value of the

exponential loss under corruption model p(x̃|x) is given by:

L(D; w) =
N∑

n=1

E
[
exp

(
−ynwTx̃n

)]
p(x̃n|xn)

=
N∑

n=1

D∏

d=1

E [exp (−ynwdx̃nd)]p(x̃nd|xnd)
, (3.23)

which we refer to as MCF exponential loss. Note that in the derivation, we used the as-

sumption that the corruption is independent across features. The above equation can be

recognized as a product of moment-generating functions E[exp(tndx̃nd)] with tnd = −ynwd.
By definition, the moment-generating function (MGF) can be computed for all corrupting

distributions that are member of the natural exponential family. An overview of the moment-

generating functions for some corrupting distributions of interest is given in Table 3.3. These

quantities can be plugged into equations (3.23) and (3.26) to obtain the expected value of
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the loss (or surrogate) under the corrupting distribution of the exponential and logistic loss

functions, respectively.

The derivation above can readily be extended to a multi-class exponential loss with K classes

by replacing the weight vector w by a D×K weight matrix W, and by replacing the labels

y by label vectors y = {1,− 1
K−1}K with

∑K
k=1 yk = 0 [173].

The MCF exponential loss remains convex for many (but not all) corrupting distributions.

Noting that f(x) is convex iff ∀x : ∂2f(x)
∂x2

≥ 0 and noting that sums of convex functions are

themselves convex, it is straightforward to verify that MCF exponential loss is convex for

blankout corruption, bit-swap corruption, and Gaussian corruption. MCF exponential loss

is non-convex for Laplace corruption and Poisson corruption. Unlike the minimization of

MCF quadratic loss, the minimization of MCF exponential losses cannot be done in closed

form and needs to be performed using gradient-descent techniques. Motivated by Sha and

Pereira [139], we used an conjugate gradient based optimizer (as introduced in section 1.3.1)

to minimize MCF exponential loss in this study.

Blankout corruption. As an illustrative example, we work out MCF exponential loss

with blankout corruption:

L(D; w) =
N∑

n=1

D∏

d=1

(qd + (1− qd) exp(−ynwdxnd)) . (3.24)

The gradient of this loss function is given by:

∂L
∂wd

= −
N∑

n=1

(1− qd) exp(−ynwdxnd)ynxnd
∏

d′ 6=d

(qd′ + (1− qd′) exp(−ynwd′xnd′)) . (3.25)

Although the complexity of training with MCF remains O(N), evaluating this gradient

requires more computation than evaluating the gradient of a standard exponential loss: in

practice, the computation of the MCF exponential loss gradient is about twice as expensive

when computation from the loss (3.24) is reused efficiently.
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Logistic loss

In the case of the logistic loss, the solution to (3.13) cannot be computed in closed form.

Instead, we derive an upper bound, which can be minimized as a surrogate loss:

L(D; w) =
N∑

n=1

E
[
log

(
1 + exp

(
−ynwTx̃n

))]

p(x̃n|xn)

≤
N∑

n=1

log

(
1 +

D∏

d=1

E [exp (−ynwdx̃nd)]p(x̃nd|xnd)

)
. (3.26)

Herein, we have made use of Jensen’s inequality to upper-bound E[log(z)]. We again recog-

nize a product of MGFs, which can be computed in closed-form for corrupting distributions

in the natural exponential family (see Table 3.3). The upper bound on the expected logistic

loss (3.26) is convex whenever the moment-generating function is log-linear in wd and an

exponentiated affine function, e.g. for blankout and bit-swap corruption.

As before, the above derivation can readily be extended to multi-class logistic loss. (This

is achieved by redefining the labels y to be label vectors of the form y ∈ {0, 1}K with∑K
k=1 yk = 1; and by defining the loss as the logarithm of the softmax probability of the

correct prediction.)

Poisson corruption. As an illustrative example, we show the upper bound of the logistic

loss (3.26), where inputs are corrupted with the Poisson distribution:

L(D; w) ≤
N∑

n=1

log

(
1 + exp

( D∑

d=1

xnd(exp(−ynwd)− 1)

))
. (3.27)

As with all MCF losses that use Poisson corruption, this regularized loss does not have any

additional hyper-parameters. Further, the sum over all features can still be computed effi-

ciently for sparse data by summing only over non-zero entries in xn. As for MCF exponential

loss, we perform the minimization of this surrogate loss with an conjugate gradient based
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Figure 3.6: Graphical model interpretation of marginalized corrupted features.

optimizer. The gradient of (3.27) is given by:

∂L
∂wd

= −
exp

(∑
d′ 6=d xnd′(exp(−ynwd′)− 1)

)

1 + exp
(∑D

d=1 xnd(exp(−ynwd)− 1)
) exp(ynwd)ynxnd. (3.28)

It is fair to say that in practice, the computation of the gradient of this MCF logistic loss

takes approximately 10× longer than the computation of a regular logistic loss gradient (due

to extra exponentiations and multiplications in the gradient computation).

Alternative upper bound. Indeed, Jensen’s inequality is not the only bound that may

be used to derive an upper bound on MCF logistic loss; in preliminary experiments, we also

considered bounds of the form:

L(D; w) =
N∑

n=1

E
[
log(1 + exp(−ynwTx̃n))

]

=
N∑

n=1

E[−λynwTx̃n] + E[log(exp(λynw
Tx̃n)(1 + exp(−ynwTx̃n)))]

≤
N∑

n=1

log
(
E[(exp(λynw

Tx̃n)] + E[exp((λ− 1)ynw
Tx̃n)]

)
− λynwTE[x̃n], (3.29)

which contains two moment-generating functions (with t = λynw and t = (λ − 1)ynw,

respectively). Minimizing (3.29) over the hyper parameter λ ∈ [0, 1], using a grid or gradient

search, leads to a potentially tighter bound than that in (3.26) (note that the special case

λ = 0 equals (3.26), as a result of which the alternative bound is always at least as tight).
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Graphical model interpretation. Figure 3.6 shows a simple Bayesian network that

interprets minimizing MCF logistic loss as maximum likelihood estimation of the parameters.

Shaded circles represent observed variables; non-shaded circles represent latent variables; and

plates denote independent repetitions. The arrow from xnd to x̃nd represents the corrupting

distribution and the arrow from represents the logistic regression model. In this network,

p(x̃d|xd) denotes the corrupting distributions, and p(y|x̃) is given by a simple linear logistic

regressor: p(y|x̃) = 1/(1+exp(−ywTx̃)). Marginalizing out the corrupted data x̃, we obtain:

p(yn|xn) = E
[

1

1 + exp(−ynwTx̃n)

]

p(x̃n|xn)

≥ 1

1 + E [exp(−ynwTx̃n)]p(x̃n|xn)

, (3.30)

where we have used the fact that 1
1+z

is convex on [0,∞) and that ∀z : 1 + exp(z) > 1 to

lower bound p(y|x) using Jensen’s inequality.

Because the corrupting distribution p(x̃|x) factorizes over dimensions, the log-likelihood ` of

data D can thus be lower bounded by:

`(D; w) ≥ −
N∑

n=1

log

(
1 +

D∏

d=1

E [exp(−ynwdx̃nd)]p(x̃nd|xnd)

)
. (3.31)

It is straightforward to verify that maximizing this lower bound on the log-likelihood is

indeed identical to minimizing (3.26). Further, it it possible to develop a similar graphical

model for MCF-quadratic loss by setting p(yn|x̃n) = N (yn|wTx̃, σ2).

The graphical model interpretation of MCF also suggests an alternative way to make predic-

tions with models trained using MCF, viz. by evaluating (3.30). In practice, this amounts

to generating infinitely many corrupted copies of the test data using p(x̃|x) and averaging

the over the predictions for all corrupted test points. While corrupting test data during

prediction may sound counterintuitive at first, it does provide an elegant way to remove

the restriction for MCF corruption distributions to be unbiased (especially in the case of

regression). In classification, corrupting test data provides a natural way to measure the

uncertainty of a prediction, even when the original predictor was non-probabilistic (much

like conformal prediction; Shafer and Vovk [140]).
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3.2.5 Experiments

We evaluate MCF predictors on three tasks: 1) document classification based on word-

count features using MCF with blankout and Poisson corruption; 2) image classification

based on bag-of-visual-word features using MCF with blankout and Poisson corruption; and

3) classification of objects in the “nightmare at test time” scenario using MCF with blankout

corruption. The three sets of experiments are described separately below. Code to reproduce

the results of our experiments is available online15.

Document classification

We first test MCF predictors with blankout and Poisson corruption on document classifica-

tion tasks. Specifically, we focus on three data sets: the Dmoz data set, the Reuters data

set, and the Amazon review benchmark set [19].

Data sets. The Dmoz open directory (http://www.dmoz.org) contains a large collection

of webpages arranged into a tree hierarchy. We use a subset consisting of N = 8, 980

webpages from the K = 16 categories in the top level of the hierarchy. Each webpage is

represented by a bag-of-words representation withD = 16, 498 words. The Reuters document

classification data set consists of N = 8, 293 news articles that appeared on the Reuters

newswire in 1987 belonging to K = 65 topics (documents corresponding to multiple topics

were removed from the data). The bag-of-words representation contains D = 18, 933 words

for each document. The four Amazon data sets consist of approximately N = 6, 000 reviews

of four types of products: books, DVDs, electronics, and kitchen appliances. Each review

is represented by a bag-of-words representation of the D = 20, 000 most common words.

On the Dmoz and Reuters data sets, the task is to classify the documents into one of the

predefined categories. On the Amazon data set, the task is to decide whether a review is

positive or negative.

15A Matlab implementation is available at http://bit.ly/11bn2GG.
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Setup. On the Dmoz and Reuters data sets, we use fixed 75/25 training/test splits. On

the Amazon data set, we follow the experimental setup of Blitzer et al. [19] by using a

predefined division of the data into approximately 2, 000 training examples and about 4, 000

test examples (the exact numbers vary slightly between tasks). We perform experiments

with linear classifiers that are trained using l2-regularized quadratic, exponential, and logistic

loss functions. In all experiments, the amount of l2-regularization is determined via cross-

validation. The minimization of the (expected) exponential and logistic losses is performed

by running Mark Schmidt’s minFunc-implementation of L-BFGS until convergence or until

a predefined maximum number of iterations is reached.

All our predictors included a bias term that is neither regularized nor corrupted. In our

experiments with MCF using blankout corruption, we use the same noise level for each

feature, i.e. we assume that ∀d : qd = q. On all data sets, we first investigate the performance

of MCF as a function of the corruption level q (but we still cross-validate over the l2-

regularizer). In a second set of experiments, we cross-validate over the blankout corruption

parameter q and study to what extent the performance (improvements) of MCF depend on

the amount of available training data. (MCF with Poisson corruption has no additional

hyper-parameters, as a result of which it requires no extra cross-validations.)

Results. Figure 3.7 shows the test error of our MCF predictors on all data sets as a

function of the blankout corruption level q. Herein, corruption level q = 0 corresponds to

the baseline predictors, i.e. to predictors that do not employ MCF at all. The results show:

i) that MCF consistently improves over standard predictors for both blankout corruption (for

all corruption levels q) and Poisson corruption on five out of six tasks; ii) that MCF with

Poisson corruption leads to significant performance improvements over standard classifiers

whilst introducing no additional hyperparamaters; and iii) that the best performance tends

to be achieved by MCF with blankout corruption with relatively high corruption levels are

used, i.e. when q is in the order of 0.8 or 0.9.

The best-performing MCF classifiers reduce the test errors by up to 22% on the Amazon

data if q is properly set. In many of the experiments with MCF-trained losses (in particular,

when blankout corruption is used), we observe that the optimal level of l2-regularization is
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Figure 3.7: Classification errors of MCF predictors using blankout corruption – as a function
of the blankout corruption level q – on all data sets for l2-regularized quadratic, exponen-
tial, and quadratic loss functions. The case of MCF with blankout corruption and q = 0
corresponds to a standard l2-regularized classifier. Figure best viewed in color.
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0. This showcases the regularizing effect of MCF, which can render additional regularization

superfluous.

Figure 3.8 presents the results of a second set of experiments on Dmoz and Reuters, in which

we study how the performance of MCF depends on the amount of training data. For each

training set size, we repeat the experiment five times with randomly sub-sampled training

sets; the figure reports the mean test errors and the corresponding standard deviations. The

results show that classifiers trained with MCF (solid curves) significantly outperform their

counterparts without MCF (dashed curves). The performance improvement is consistent

irrespective of the training set size, viz. up to 25% on the Dmoz data set.

Explicit vs. implicit feature corruption. Figure 3.9 shows the classification error on

Amazon (books) when a classifier without MCF is trained on the data set with additional ex-

plicitly corrupted samples, as formulated in equation (3.12). Specifically, we use the blankout

corruption model with q set by cross-validation for each setting, and we train the classifiers

with quadratic loss and l2-regularization. The graph shows a clear trend that the error de-

creases when the training set contains more corrupted versions of the original training data,

i.e. with higher M in equation (3.12). The graph illustrates that the best performance is

obtained as M approaches infinity, which is equivalent to MCF with blankout corruption

(big marker in the bottom right, with q = 0.9).

Image classification

We perform image-classification experiments with MCF on the CIFAR-10 data set [92], which

is a subset of the 80 million tiny images [153]. The data set contains RGB images with 10

classes of size 32× 32, and consists of a fixed training set of 50, 000 images and a fixed test

set of 10, 000 images.

Setup. We follow the experimental setup of Coates et al. [44]: we whiten the training

images and extract a set of 7× 7 image patches on which we apply k-means clustering (with

k = 2048) to construct a codebook. Next, we slide a 7×7 pixel window over each image and

identify the nearest prototype in the codebook for each window location. We construct an
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Figure 3.8: The performance of standard and MCF classifiers with blankout and Poisson
corruption models as a function of training set size on the Dmoz and Reuters data sets.
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color.
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Figure 3.9: Comparison between MCF and explicitly adding corrupted examples to the
training set (for quadratic loss) on the Amazon (books) data using blankout corruption.
Training with MCF is equivalent to using infinitely many corrupted copies of the training
data.

image descriptor16 by subdividing the image into four equally sized quadrants and counting

the number of times each prototype occurs in each quadrant. This leads to a descriptor of

dimensionality D = 4× 2048. We do not normalize the descriptors, because all images have

the same size. We train MCF predictors with blankout and Poisson corruption on the full

set of training images, cross-validating over a range of l2-regularization parameters. The

generalization error is evaluated on the test set.

Results. The results are reported in Table 3.4. The baseline classifiers (without MCF)

are comparable to the 68.8% accuracy reported by Coates et al. [44] with exactly the same

experimental setup (except for exponential loss). The results illustrate the potential of

MCF classifiers to improve the prediction performance on bag-of-visual-words features, in

particular, when using quadratic or logistic loss in combination with a Poisson corruption

model.

Although our focus in this section is to merely illustrate the potential of MCF on image

classification tasks, it is worth noting that the best results in Table 3.4 match those of a

16This way of extracting the image features is referred to by Coates et al. [44] as k-means with hard
assignment, average pooling, patch size 7× 7, and stride 1.
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Table 3.4: Comparison of MCF and l2-regularization on classification errors obtained on the
CIFAR-10 data set with simple spatial-pyramid bag-of-visual-word features.

Quadr. Expon. Logist.
No MCF 32.6% 39.7% 32.5%
Poisson MCF 29.1% 39.5% 30.0%
Blankout MCF 32.3% 37.9% 29.4%

highly non-linear mean-covariance RBMs trained on the same data [124], despite our use of

very simple visual features and of linear classifiers.

Nightmare at test time

To test the performance of our MCF predictors with blankout corruption under the “night-

mare at test time” scenario, we perform experiments on the MNIST data set of handwritten

digit images. The MNIST data set contains N = 60, 000 training and 10, 000 test images of

size D = 28× 28 = 784 pixels, and comprises K = 10 classes.

Setup. We train our predictors on the full training set, and evaluate their performance on

versions of the test set in which a certain percentage of the pixels are randomly blanked out,

i.e. set to zero. We compare the performance of our MCF-predictors (using blankout cor-

ruption) with that of standard predictors that use l1 or l2-regularized quadratic, exponential,

logistic, and hinge loss. As before, we use cross-validation to determine the optimal value of

the regularization parameter. For MCF predictors, we also cross-validate over the blankout

corruption level q (again, we use the same noise level for each feature, i.e. ∀d : qd = q).

In addition to the comparisons with standard predictors, we also compare the performance

of MCF with that of FDROP [67], which is a state-of-the-art algorithm for the “nightmare

at test time” setting that minimizes the hinge loss under an adversarial worst-case scenario

(see section 3.2.3).

The performances are reported as a function of the feature-deletion percentage in the test set,

i.e. as a function of the probability with which a pixel in the test set is switched off. Following

the experimental setting of Globerson and Roweis [67], we perform the cross-validation for
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Figure 3.10: Evaluation on the “Nightmare at test-time” scenario. Classification errors
of standard and MCF predictors with a blankout corruption model – trained using three
different losses – and of FDROP [67] on the MNIST data set using the “nightmare at test
time” scenario. Classification errors are represented on the y-axis, whereas the amount of
features that are deleted out at test time is represented on the x-axis. The images of the
digit illustrate the amount of feature deletions applied on the digit images that are used as
test data. Figure best viewed in color.

each deletion percentage independently, i.e. we create a small validation set with the same

feature-deletion level and use it to determine the best regularization parameters and blankout

corruption level q for that percentage of feature deletions.

Results. Figure 3.10 shows the performance of our predictors as a function of the per-

centage of deletions in the test images. The figure shows the performance for all three loss

functions with MCF (solid lines) and without MCF (dashed lines). The performance of a

standard predictor using hinge loss is shown as a red dashed line; the performance of FDROP

(a state-of-the-art method for this learning setting) is shown as a black dashed line. The re-

sults presented in Figure 3.10 clearly illustrate the ability of MCF with blankout corruption
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to produce predictors that are more robust to the “nightmare at test time” scenario: MCF

improves the performance substantially for all three loss functions considered. For instance,

in the case in which 50% of the pixels in the test images is deleted, the performance im-

provements obtained using MCF for quadratic, exponential, and logistic loss are 40%, 47%,

and 60%, respectively. Further, the results also indicate that MCF-losses may outperform

FDROP; in particular, our average-case logistic loss outperforms FDROP’s worst-case hinge

loss across the board17. This is particularly impressive as FDROP uses the hinge loss, which

performs surprisingly better than the alternative losses on this data set (the improvement of

FDROP over the generic hinge-loss is in fact relatively modest). This result suggests that it

is better to consider an average-case scenario than a worst-case scenario in the “nightmare

at test time” setting.

3.2.6 Conclusion

We presented an approach to learn classifiers by marginalizing corrupted features (MCF).

Specifically, MCF trains predictors by introducing corruption on the training examples,

which is marginalized out in the expectation of the loss function. We minimize the expected

loss with respect to the model parameters. Our experimental results show that MCF predic-

tors with blankout and Poisson corruption perform very well in the context of bag-of-words

features. MCF with Poisson corruption is particularly interesting for such count features, as

it improves classification performances without introducing any additional hyper-parameters.

As a disclaimer, care must be taken when applying MCF with Poisson corruption on data

sets with outliers. The Poisson corruption may strongly emphasize outliers in the expected

loss because the variance of a Poisson distribution is identical to its mean, and because we

use loss functions that are not robust to outliers. A simple solution to this problem may be

to redefine the corruption distribution to p(x̃d|xd) = Pois(x̃nd|min{xnd, u}) for some cutoff

parameter u ≥ 0.

Throughout our experiments with MCF on exponential and logistic losses, the weight of the

l2-regularization term, which was set by cross-validation, typically ended up very close to

zero. This implies that the regularizing effect of MCF corruption is sufficient even for high

17Quadratic and exponential losses perform somewhat worse because they are less appropriate for linear
classifiers, but even they outperform FDROP for large numbers of feature deletions in the test data.
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dimensional data. In comparison with traditional regularization, MCF corruption shines

in two ways: i) it often yields superior classification performance and ii) it can be much

more intuitive to set parameters about data corruption than about model hyper parameters.

Further, MCF with blankout corruption also appears to prevent weight undertraining [148]:

it encourages the weight on each feature to be non-zero, in case this particular feature

survives the corruption.

The resulting redundancy is one of the key factors why MCF corruption makes classifiers so

effective against the “nightmare at test-time” scenario. Consequently, MCF classifiers are

particularly useful in learning settings in which features in the test data may be missing (e.g.,

because sensors that were measuring these features temporarily broke down). Learning with

MCF is quite different from previous approaches for this setting [54, 67]. In particular, prior

work focuses on the worst-case scenario whereas we explicitly consider the (arguably) more

common average-case scenario by considering all possible corrupted observations. This has

the advantage that it is computationally much cheaper and that it allows for incorporating

prior knowledge in the learning. For instance, if the data is generated by a collection of unre-

liable sensors, knowledge on the reliability of a sensor may be used to set the corresponding

qd-parameter.

An interesting direction for future work is to investigate extensions of MCF to structured

prediction, as well as to investigate if MCF can be employed for kernel machines. We also

plan to explore in more detail what corruption models p(x̃|x) are useful for what types of

data. Further, MCF could be used in the training of neural networks with a single layer

of hidden units: blankout noise on the hidden nodes can improve the performance of the

networks [96, 79] and can be marginalized out analytically. A final interesting direction

would be to investigate the effect of marginalizing corrupted labels or target values [95].

3.3 Marginalized Corrupted Labels

In this work, we focus on image annotation using partial tags. Automatic image annotation

is a difficult and highly relevant machine learning task. Recent advances have significantly

improved the state-of-the-art in retrieval accuracy with algorithms based on nearest neighbor
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classification in carefully learned metric spaces. But this comes at a price of increased com-

putational complexity during training and testing. We propose FastTag, a novel algorithm

that achieves comparable results with two simple linear mappings that are co-regularized in

a joint convex loss function. The loss function can be efficiently optimized in closed form up-

dates, which allows us we to incorporate a variety of image descriptors and scale to datasets

with large number of images cheaply. On several standard real-world benchmark data sets,

we demonstrate that FastTag matches the current state-of-the-art in tagging quality, yet

reduces the training and testing times by several orders of magnitude.

The section is organized as follows. Section 3.3.3 reviews several image annotation tech-

niques, in particular, the metric learning for local nearest neighbor based tag transfer ap-

proach. Section 3.3.4 details our FastTag approach to image annotation, which exploits the

multi-modality of the data: images with keywords. We compare FastTag to the state-of-the-

art on three standard image annotation datasets in section 3.3.5.

3.3.1 Recap of Learning with Partial Supervision

Obtaining the complete list of labels is often much more expensive than getting a partial list

for many tasks. For example, in document classification tasks, finding all the categories that

apply to the document in a taxonomy of thousands of nodes is much harder than pinpointing

a single one. In image annotation, it is easy to tag an image with a few of the most prominent

visual features, but to obtain the complete list can be quite difficult. Lately, the research

community has been turning to crowdsourcing as a tool for obtaining labels cheaply and at

scale. However, crowd sourced labels are noisy and notoriously incomplete.

Figure 3.11 shows a Venn diagram that illustrates the setup we have in learning with partial

supervision. Let X ∈ Rd denote the feature space, and Y ∈ {+1,−1}T the output space.

Let D denote a joint distribution on X × Y . It is the testing distribution we are ultimately

interested in. Let D′ denote the distribution of the partially labeled data. As shown in the

figure, the two marginal distributions match. But since D′ only contains part of the labels,

the joint distributions differ.
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Figure 3.11: Venn diagram on learning with partial supervision.

Notation. Let T = {ω1, · · · , ωT} denote the dictionary of T possible annotation tags. We

have access to a set of training data L = {(x1,y1), · · · , (xn,yn)} ⊂ Rd × {0, 1}T sampled

i.i.d from D′, where yi contains the incomplete tags for instance xi. In other words, if the tth

entry of yi is positive, then the tag ωt applies to example xi, but not necessarily the other

way around. Our goal is to find a hypothesis h ∈ H to accurately predict the complete list

of tags using the incompletely labeled set L.

3.3.2 Introduction

Image tag annotations are an important component of searchable image databases such as

FlickrTM , PicassaTM or FacebookTM . However, a large fraction (over 50% in Flickr) of

images have no tags at all and are hence never retrieved for text queries. Automatic image

annotation is an essential tool towards surfacing this “dark content”. A working image

annotation engine can suggest tags to users [164] and thus increase the number of tagged

images, or generate relevant tags for image retrieval directly.

Automatic image annotation is a difficult machine learning task. Different type of ob-

jects require different image descriptors, e.g. rainbows can be identified through color his-

tograms [76], whereas insects can be best identified through local image descriptors [102].

Similar objects can look very different across images and may only be partially visible, thus

necessitating large training data sets. Training labels are typically obtained through crowd-

sourcing and are noisy and notoriously incomplete. The ESP game [162] proposes a solution
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to improve label quality by incentivizing pairs of labelers to match their answers. This re-

sults in tag sets with high precision but with no guarantees for high recall: each image may

be tagged with only a small subset of tags that describe the most obvious visual features.

As shown in figure 3.12, the annotation does not necessarily include all the relevant tags,

for example, “fence” and “hand” are missing in the annotation of the leftmost image of the

first row.

animal, ear

people, pink, flower face, manfilm, smoke, women

logo, greenbook, army cloud, sky, gray

white

Figure 3.12: Sample images with associated tags from the Espgame dataset.

Recently, Makadia et al. [104], Guillaumin et al. [75] proposed new algorithms for automatic

image annotation based on nearest neighbor methods. Guillaumin et al. [75] carefully learn

embeddings into metric spaces that combine a diverse set of image descriptors and assign tag-

specific weights to overcome label sparsity. The resulting algorithm significantly improves

over the prior state-of-the-art in both precision and recall. Although these approaches yield

impressive results, they are impractical for large image databases with n�0 images. Their

training procedures scale on the order of O(n2). Moreover, the task of tagging a single test

image is O(n), linear with the training set size.
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In real world applications, the number of images can be very large. Many million images are

added every day (e.g. 300 Million images are uploaded to Facebook per day, with a total

of 100 Billion images18), rendering these approaches impractical even to index the daily

uploads.

We present a novel learning algorithm for image tag annotation that achieves comparable

accuracy to Guillaumin et al. [75], but can be trained in O(n) time and applied during testing

in constant time w.r.t. the training set size. Our proposed algorithm, FastTag, can naturally

incorporate many image descriptors and address the difficulties of label sparsity with a novel

approach. It interprets its training data (images with partial tags) as unlabeled multi-view

data and learns two classifiers to predict tag annotations: one attempts to reconstruct the

(unknown) complete tag set from the few tags available during training; the other learns a

mapping from image features to this reconstructed tag set. We propose a joint convex loss

function that combines both classifiers via co-regularization and coerces them into agreement.

Our loss function can be trained efficiently through alternating optimization with simple

closed-form updates. We demonstrate on real world data sets that FastTag matches the

highly competitive state-of-the-art in terms of precision and recall, but is several orders of

magnitude faster during training and almost instantaneous during testing.

3.3.3 Related Work

In this section, we review some of the popular methods for automatic image annotation.

We roughly divide them into four groups: parametric topic models, nonparametric mixture

models, discriminative models and local nearest neighborhood based models.

Parametric Topic Models

The first group of models are based on topic models. Monay and Gatica-Perez [112] extend

the probabilistic latent semantic analysis model [80], and Barnard et al. [7] extend the latent

dirichlet allocation model [18] to the multi-modal data respectively.

18CNET 08/2012, http://tinyurl.com/9jfs7ut
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Different from the traditional topic models, special treatment is required to model the co-

occurrence of image features and tags. It is often assumed that the latent space is shared

by the two modalities. In other words, same mixture of topics is shared by both image

features and text features. Each annotated image is modeled as a mixture of topics, and

each topic has a distinct distribution over the visual features and the tags. Often the case, a

multinomial distribution over the tag dictionary and Gaussian distributions over the visual

features are employed. where each topic generates the corresponding image features and

tags. The mixture of topics, the distribution of text and the visual features given the hidden

topics are the parameters that needed to be inferred.

Duygulu et al. [57] introduced a machine translation based method to automatic image

annotation. The idea is to treat annotation as a translation process that translates image

regions into annotation vocabulary. It can also be understood as a topic model that has one

hidden topic for every annotation tag.

Although topic models offers strong explanatory power, the predictive power of these models

is limited by the number of topics that could be included in the modeling. The complex

parameter estimation process often limits the number of topics to be within hundreds. Also

since the number of parameters grows linearly with the number of topics, the models run

into overfitting problem easily as more topics are used, and Bayesian parameter estimation

or other form of regularization need to be enforced.

Nonparametric Mixture Models

The second group of methods models the joint distribution of the image features and the tags

with mixture models. Examples of models in this class include Continuous-space Relevance

Model [85], Cross-Media Relevance Model [94], and Multiple Bernoulli Relevance Models [60].

Carneiro et al. [29] model the distribution over the image features of the entire image using

gaussian mixture models with a fixed number of mixture components per keyword. Other

methods [85, 94, 60] model the distribution over image patches or segmented image regions.

The distribution is approximated using kernel density estimation [128]. After the model

is trained, the conditional probability of the keyword given the visual features is used to

annotate new images.

122



Discriminative Models

In generative models, the parameters are estimated to maximize the likelihood of generating

the training data, which is not necessarily good for predictive performance. The third groups

of methods instead train discriminative models, such as SVM [48], ranking SVM [72] and

boosting [78] to predict tags from image features.

Local Nearest Neighborhood Based Models

The methods we introduced above have achieved promising annotation results. However,

their complex training processes limits the number of descriptors that can be incorporated.

Recently proposed models such as the Joint Equal Contribution model of Makadia et al. [104]

and the TagProp model of Guillaumin et al. [75] rely on local nearest neighborhoods and

work surprisingly well despite their simplicity. JEC assign equal weight to different visual

descriptors when computing the distances between data points, while TagProp carefully

learns the weights for different visual descriptors to maximize the predictive performance.

TagProp is the current state-of-the-art method for image annotation. Its success can be

attributed to three elements: 1) the ability to incorporate a large number of different visual

descriptors; 2) the model grows in capacity as training data increases, alleviating the effect

of sparse training tags; 3) its special treatment of rare tags.

Although Tagprop achieves superior performance on several benchmark datasets, the O(n2)

training and O(n) test complexity, where n is the number of examples in the training set,

hinder its applicability to large scale datasets. In this work, we introduce a new model that

incorporates the three elements for successful annotation much more cheaply. Our model

matches the performance of TagProp in term of annotation precision and recall, but is much

faster to train and test.

Most existing models assume that a complete list of relevant tags for each image is available

at training time. However, in practice, this is either impractical or impossible for a large

training set. It is much easier to tag an image with a few of the most prominent visual features

than to obtain the complete list from a tag dictionary. To alleviate the need for complete

labeling, several existing approaches [61, 136, 145] resort to semi-supervised approaches to
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⇤
p(ỹi)

sky, clouds,
lake, water,

feet, legs,
boat, trees

Wx

W

kWk2
2

Figure 3.13: Schematic illustration of FastTag. During training two linear mappings B and
W are learned and co-regularized to predict similar results. At testing time, a simple linear
mapping x→Wx predicts tags from image features.

leverage unlabeled or weakly labeled data from the web. We adopt the same assumption of

sparse training tags and incorporate partial supervision in our work.

3.3.4 Method

We assume that only a few relevant tags are provided for each image during training. Given

the training images annotated with incomplete tags, our goal is to learn a model that can

infer the full list of tags from image features at test time. Our proposed algorithm is fast

in training and almost instant prediction during testing (only a linear transformation is

required). Thus we refer to our algorithm as FastTag.

Notation. Let T = {ω1, · · · , ωT} denote the dictionary of T possible annotation tags. Let

the training data be denoted by D = {(x1,y1), · · · , (xn,yn)} ⊂ Rd × {0, 1}T , where each

vector xi ∈ Rd represents the features extracted from the i-th image and each yi is a small

partial subset of tags that are appropriate for the i-th image. Our goal is to learn a linear

function W : Rd→T , which maps a test image xi to its complete tag set.

Duo Classifier Formulation

In this section we introduce a new model for automatic image annotation from incomplete

user tags. It jointly learns two classifiers on two sources, i.e., image and text, to agree upon
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the list of tags predicted for each image. It leads to an optimization problem which is jointly

convex and has closed form solutions in each iteration of the optimization.

Co-regularized learning. As we are only provided with an incomplete set of tags, we create

an additional auxiliary problem and obtain two sub-tasks: 1 training an image classifier

xi →Wxi that predicts the complete tag set from image features, and 2 training a mapping

yi → Byi to enrich the existing sparse tag vector yi by estimating which tags are likely to

co-occur with those already in yi. We train both classifiers simultaneously and force their

output to agree by minimizing

1

n

n∑

i=1

‖Byi −Wxi‖2. (3.32)

Here, Byi is the enriched tag set for the i-th training image, and each row of W contains

the weights of a linear classifier that tries to predict the corresponding (enriched) tag based

on image features.

The loss function as currently written has a trivial solution at B = 0 = W, suggesting that

the current formulation is underconstrained. We next describe additional regularizations on

B that guides the solution toward something more useful.

Marginalized blank-out regularization. We take inspiration from the idea of marginal-

ized stacked denoising autoencoders [43] in formulating the tag enrichment mapping B :

{0, 1}T →RT . Our intention is to enrich the incomplete user tags by turning on relevant

keywords that should have been tagged but were not. Imagine that the observed tags y are

randomly sampled from the complete set of tags: it is a “corrupted” version of the original

set. We leverage this insight and train the enrichment mapping B to reverse the corruption

process. To this end, we construct a further corrupted version of the observed tags ỹ and

train B to reconstruct y from ỹ. If this secondary corruption mechanism matches the origi-

nal corruption mechanism, then re-applying B to y would recover the likely original pristine

tag set.

More formally, for each y, a corrupted version ỹ is created by randomly removing (i.e.,

setting to zero) each entry in y with some probability p ≥ 0 and therefore, for each user tag
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vector y and dimensions t, p(ỹt = 0)=p and p(ỹt = yt)=1− p. We train B to optimize

B = argmin
B

1

n

n∑

i=1

‖yi −Bỹi‖2.

Here, each row of B is an ordinary least squares regressor that predicts the presence of a tag

given all existing tags in ỹ. To reduce variance in B, we take repeated samples of ỹ. In the

limit (with infinitely many corrupted versions of y), the expected reconstruction error under

the corrupting distribution can be expressed as

r(B) =
1

n

n∑

i=1

E
[
‖yi −Bỹi‖2

]
p(ỹi|y)

. (3.33)

Let us denote as Y ≡ [y1, · · · ,yn] the matrix containing the partial labels for each image

in each column. Define P ≡∑n
i=1 yiE[ỹi]

> and Q ≡∑n
i=1 E[ỹiỹ

>
i ], then we can rewrite the

loss in (3.33) as

r(B) =
1

n
trace(BQB> − 2PB> + YY>) (3.34)

For the uniform “blank-out” noise introduced above, we have the expected value of the

corruptions E[ỹ]p(ỹ|y) = (1− p)y, and the variance matrix V[ỹ]p(ỹ|y) = p(1− p)δ(yy>). Note

that, as we corrupt each tag independently, the variance matrix has non-zeros entries only on

the diagonal. Here δ(·) stands for an operation that sets all the entries except the diagonal

to zero. We can then compute the two matrices as

P = (1− p)YY> (3.35)

Q = (1− p)2YY> + p(1− p)δ(YY>)

Eq. (3.34) is the regularization function for B.

Joint loss function. Combining the squared loss in Eq. (3.32) with the marginalized blank-

out regularization term r(B) in Eq. (3.34) and the standard ridge regression l2 regularizer
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for W, the joint loss function can be written as

`(B,W; x,y) =
1

n

n∑

i=1

‖Byi −Wxi‖2

︸ ︷︷ ︸
Co-regularization

+λ‖W‖22

+ γr(B).︸ ︷︷ ︸
Marginalized blank-out

(3.36)

The first term enforces that the tags enriched through co-occurrence with existing labels

agree with the tags predicted by the content of the image. A regularizer on W is included to

reduce complexity and avoid overfitting. The last term ensures that the enrichment mapping

B reliably predicts tags if they were to be removed from the training label set.

Optimization and Extensions

The loss in Eq. (3.36) can be efficiently optimized using block-coordinate descent. When B

is fixed, the mapping W reduces to standard ridge-regression and can be solved for in closed

form:

W = BYXT (XXT + nλI)−1, (3.37)

where X and Y respectively contain the training image features and labels in columns.

Similarly, when W is fixed, the solution to Eq. (3.36) can be expressed as the well-known

closed-form solution for ordinary least squares [43]:

B =
(
γP+WXY>

) (
γQ + YY>

)−1
.

where P and Q can be computed analytically following eq. (3.35). In other words, we can

derive the optimal mapping B under closed form without explicitly creating any corruptions.

The conclusion holds for any corrupting models of which the expected value and variance

can be computed analytically. The loss is jointly convex with respect to B and W and

consequently coordinate descent converges to the global minimum. Fig. 3.13 contains a

depiction of this algorithm.
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Tag bootstrapping. The enrichment mapping B is trained to predict missing tags based

on pairwise co-occurrence patterns. We would like to also reconstruct tags that do not co-

occur together but tend to appear within similar contexts. As an example, the tag “pond”

might rarely co-occur with “lake”, as both describe similar things and annotators tend to

use one or the other. However, it would be good to give the predictor W the flexibility to

predict both from similar image features. We can achieve this via stacking: starting with the

enriched vector Byi as the tag representation for the i-th image19, we optimize another layer

of `(B′,W′; x,By) to obtain new mappings B′,W′. We can have an arbitrary number of

layers, each resulting in a new linear mapping Wt from image features to tags. To find the

right trade-off between two much bootstrapping and too little, we perform model selection

on a hold-out set, adding layers until it no longer improves the F1 measure.

Rare tags. Eq. (3.36) solves for the linear predictors W for all T tags simultaneously.

This is computationally efficient in that it requires only one matrix inversion per iteration.

However, it has the disadvantage that the prediction loss for each tag is weighed equally,

which leads to the overall loss to be dominated by contributions from more frequent tags,

sacrificing the prediction accuracy of rare tags. This is a known problem in tag prediction.

Other approaches also find that dealing with rare tags is the key to improving tagging

performance [75]. We introduce several re-optimization stages, where at each stage we solve

a sub-problem of Eq. (3.36). That is, we identify a subset of tags with a recall below a

certain threshold (in our experiments we choose the ones with zero recall). We re-optimize

(3.36) restricted to only the rows of B and W corresponding to such tags. We iterate until

we no longer improve the F1 measure on a hold-out set.

In addition, we weigh each example in a tf-idf-like fashion so that losses from rare tags are

given more weight during training. Specifically, each tag ω is assigned a cost cω = 1
nω

, where

nω is the number of times tag ω appears in the training set. Thus, rarer tags are given a higher

cost than the more frequent ones. We then assign each example an weight by simply summing

over the costs of its active tags, so that examples with rarer tags contribute more to the loss

in eq. (3.36). Let Λ denote an n×n diagonal matrix containing the weight for each training

example, we can then solve for the optimal mapping as W = BYΛXT (XΛXT +nλI)−1. The

tag enrichment mapping B can be generalized to the weighted version in the same fashion.

19The enriched tags Byi are real numbers. When stacking, we truncate Byi to be within [0, 1]T .
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Figure 3.14: Predicted keywords using FastTag for sample images in the Espgame dataset.

Test time. At test time, given an image x, the final mapping W∗ is used to score the

dictionary of tags.

Homogeneous feature mapping

Local kNN methods [75, 104] enjoy the advantage of naturally identifying non-linear de-

cision boundaries based on multiple feature spaces from different image features. In our

work, we adopt linear image feature classifiers for their simplicity and speed, and instead

incorporate non-linearity into the feature space as a pre-processing step. To this end, we

adopt the homogeneous feature mapping method of Vedaldi and Zisserman [157]. For each

visual descriptor fm(x) ∈ Rdm extracted from the input image, it uses an explicit fea-

ture mapping Ψm : Rdm → Rdm(2r+1) to project it to a slightly higher-dimensional feature

space, in which the inner product approximates the kernel distance well. In other words,

〈Ψm(fm(x),Ψm(fm(x′))〉 ≈ Km(fm(x), fm(x′)). For the family of additive kernels, such as

the l1-distance and χ2-distance used in our experiments, the mapping Ψ(·) can be computed

analytically and approximates the kernel well even with small r (in our experiment, we set
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r = 1). After projecting each visual descriptor independently, we further apply random

projection [158] to reduce the dimensionality20.

3.3.5 Experimental Results

We evaluate FastTag on three image annotation benchmark datasets. All data sets (with pre-

extracted features) were obtained from http://lear.inrialpes.fr/people/guillaumin/

data.php.

Experimental Setup

We begin with a detailed description of the data sets, the visual feature descriptors and the

evaluation metrics.

Corel5K. The dataset was first introduced in [57], and has thereafter become a staple bench-

mark set for evaluating keyword based image retrieval and image annotation. It contains

5,000 images collected from the larger Corel CD set. Each image is manually annotated with

keywords from a dictionary of 260 distinct terms. On average, each image was annotated

with 3.5 tags.

ESP game. The dataset consists of 20,770 images21 of a wide variety, such as logos, drawings,

and personal photos, collected for the ESP collaborative image labeling task [162]. Overall,

the images are annotated with a total of 268 tags. Each image is associated with a maximum

of 15 and on average 4.6 tags.

IAPRTC-12.22. The dataset consists of 19,627 images of sports, actions, people, animals,

cities, landscapes and many other aspects of contemporary life [74]. Tags are extracted from

the free-flowing text captions accompanying each image. Overall, 291 tags are used.

20The dimension k is roughly cross-validated using a least squares baseline.
21To be comparable to prior work, we use the same subset (out of the total 60,000 images) selected

by Guillaumin et al. [75], Makadia et al. [104], available at http://hunch.net/?p=23.
22We used the same annotations as in [75, 104]
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Table 3.5: Comparison of FastTag and existing work on the Corel5K dataset.

Name P R F1 N+

leastSquares 29 32 30 125
CRM [94] 16 19 17 107

InfNet [109] 17 24 20 112
NPDE [169] 18 21 19 114

SML [29] 23 29 26 137
MBRM [60] 24 25 24 122
TGLM [100] 25 29 27 131

JEC [104] 27 32 29 139
TagProp [75] 33 42 37 160

FastTag 32 43 37 166

For all these datasets, we follow the training/test split used in previous work [75, 104]. Please

refer to Guillaumin et al. [75] for more detailed statistics on the datasets.

Feature extraction. We use the 15 different visual descriptors, extracted by Guillau-

min et al. [75] for each dataset. These include one Gist descriptor [119], six global color

histograms, and eight local bag-of-visual-words features. As described in section 3.3.4, we

adopt the explicit feature mapping of Vedaldi and Zisserman [157] to obtain a non-linear

feature transformation. Here we use the l1 approximation (i.e. the Euclidean distance after

the mapping approximates the l1 distance) for the global color descriptors, and the approx-

imated χ2 distance for the local bag-of-visual-words features. Finally, we apply random

projection after each feature mapping to reduce the dimensionality.

Evaluation metric. For full comparability, we adopt the same evaluation metrics as

in Guillaumin et al. [75]. First, all image are annotated with the five most relevant tags

(i.e. tags that have the highest prediction value). Second, precision (P) and recall (R) are

computed for each tag. The reported measurements are averaged across all tags. For easier

comparability, both factors are combined in the F1-score (F1 = 2 P∗Q
P+Q

), which is reported

separately. We also report the number of keywords with non-zero recall value (N+). In all

metrics a higher value indicates better performance.
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Figure 3.15: Comparison of FastTag and existing work in terms of F1 score vs. training time
on the Corel5K, Espgame and IAPRTC-12 dataset.

Table 3.6: Comparison of FastTag and existing work on the Espgame and IAPRTC-12
dataset.

Espgame IAPR
P R F1 N+ P R F1 N+

leastSquares 35 19 25 215 40 19 26 198
MBRM 18 19 18 209 24 23 23 223

JEC 24 19 21 222 29 19 23 211
TagProp 39 27 32 238 45 34 39 260
FastTag 46 22 30 247 47 26 34 280

Baselines. We compare against leastSquares, a ridge regression model which uses the partial

subset of tags y1, . . . ,yn as labels to learn W, i.e., FastTag without tag enrichment. We

also compare against the TagProp algorithm [75], a local kNN method combining different

distance metrics through metric learning. It is the current best performer on these benchmark

sets. Most existing work do not provide publicly available implementations. As a result, we

include their previously reported results for reference [94, 109, 169, 29, 60, 100, 104] .

Comparison with related work

Table 3.5 shows a detailed comparison of FastTag to the leastSquares baseline and eight pub-

lished results on the Corel5K dataset. We can make three observations: 1. The performance

of FastTag aligns with that of TagProp (so far the best algorithm in terms of accuracy on
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this dataset), and significantly outperforms the other methods; 2. The leastSquares baseline,

which corresponds to FastTag without the tag enricher, performs surprisingly well compared

to existing approaches, which suggests the advantage of a simple model that can extend to

a large number of visual descriptor, as opposed to a complex model that can afford fewer

descriptors. One may instead more cheaply glean the benefits of a complex model via non-

linear transformation of the features. 3. The duo classifier formulation of FastTag, which

adds the tag enricher, alleviates the intrinsic label sparsity problem of image annotation. It

leads to a 10% improvement on precision, 28% on recall, and an overall 20% improvement on

F1 score over the leastSquares baseline. We also increase the number of tags with positive

recall by 34.

Table 3.6 compares the performance of FastTag over leastSquares and three existing methods

on the Espgame and IAPRTC-12 datasets. Similar trends can be observed. First, FastTag

significantly outperforms the baseline, MBRM (a generative mixture model) of Feng et al.

[60], and JEC (a local NN method) of Makadia et al. [104] on both datasets. FastTag

performs slightly worse than TagProp on these datasets. However, as we next demonstrate,

FastTag achieves enormous speedup over TagProp during both training and testing.

Computational time. All experiments were conducted on a desktop with dual 6-core Intel

i7 cpus with 2.66Ghz.

Figure 3.15 shows the F1 score vs. the training time required for different methods on these

three datasets. The time is plotted in log scale. We can make three observations: 1. TagProp

outperforms all other related work in terms of F1 measure, but is also the slowest to train.

It takes close to one hour to train on the relatively small Corel5K dataset, which has around

4,500 training examples. For the larger datasets (ESPgame and IAPRTC-12) with close to

17,000 examples, the training time blows up to 16 hours. 2. The JEC method of [104] falls

into the same category of local NN method as TagProp, with the difference that it uses the

simple average of the 15 distance metrics to define neighbors. JEC does not require training.

However, we can see that it cannot compete in terms of accuracy performance. Note that, it

still has O(n) test-time complexity, where n is the number of training examples, because each

query example requires a neighbor-lookup during testing. 3. The training time of FastTag

is over 50x faster than that of TagProp. Note the time reported in the figure for FastTag

also includes the feature preprocessing time, i.e, performing homogeneous feature mapping
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Figure 3.16: Comparison of FastTag and existing work at different levels of tag sparsity.

and random projection, which takes up the majority of the computation time. For a total

of 16,748 training examples (dimensionality d = 15, 000) and 268 tags, FastTag takes on

average 34 seconds to train for one bootstrap iteration. The optimal number of bootstrap

iterations ranges from 1 to 8 in different re-optimization iterations (The number of iterations

is usually very small at the beginning, but gradually increases in the later re-optimization

stages as it needs bootstrapping to recover rare tags.). The algorithm converges within a

few re-optimization stages.
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Sample annotations

Figure 3.14 shows example images from the ESP game data set and their tag annotations

obtained with FastTag. The figure shows three rows of results. The top row consists of

images with high F1 score, i.e. these are images on which FastTag reliably retrieves relevant

tags. The middle row shows images that are picked uniformly at random. Although not

perfect, the vast majority of tags are relevant to the particular image. The bottom images

have low F1 score, and represent examples where FastTag fails to retrieve relevant tags.

Note that, even among the ones with low F1 score, we can find some very relevant tags.

Further analysis

The graphs compare the results of FastTag with the TagProp algorithm at different levels of

tag sparsity.

While these benchmark data sets are appropriate for algorithm comparisons, they may not

be representative of the quality of training image tags found in the wild. In practice, most

of the images are annotated with far fewer tags. We run the algorithms on images with

down-sampled sparse tags in order to gauge their performance in this more realistic setting.

Figure 3.16 depicts the comparison of FastTag and TagProp at different levels of training set

tag sparsity. We “stage” the training data into successively larger tag sets, starting by giving

each image only one tag (down sampled from the full set if more tags are available), then up

to two tags, and so on. Performance in terms of Precision (P), Recall (R) and F1 score (F1)

is plotted as a function of the maximum number of tags provided for each training image

on the three benchmark datasets. We can see that FastTag out-performs TagProp when the

maximum number of provided tags is small. In general, FastTag performs comparably to

Tagprop across different tag sparsity levels. In other words, the tag enrichment mapping of

FastTag indeed helps to alleviate the intrinsic tag sparsity problem.
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3.3.6 Conclusion

We present an automatic image tagging method, FastTag, that performs on-par with current

state-of-the-art algorithms, at a fraction of the computation cost. We recast a supervised

multi-label classification problem as unlabeled multi-view learning. We define two classifiers,

one for each view of the data, and coerce them into agreement via co-regularization in

a joint loss function. We trade off complexity in the classifiers with non-linear mapping

of the features and demonstrate that such a choice pays off. FastTag is computationally

efficient during training and testing yet maintains tagging accuracy. It can effectively deal

with sparsely tagged training data and rare tags that are often obstacles in such large-scale

learning problems. We hope our research will lead to interesting future work in many related

learning scenarios.
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Chapter 4

Conclusion and Future Directions

Most canonical machine learning algorithms assume that: 1) a sufficiently large quantity

of training data is available; 2) the training and testing data come from some common

distribution. Although these assumptions are often met in practice, there are also many

tasks for which obtaining a large amount of high quality labels (training data) is hard and the

first assumption is violated. In this dissertation, we focus on the scenarios in which training

data from the relevant distribution is scarce and exert trading off the second assumption

to compensate for the first one. In other words, we utilize additional data, which is readily

available or can be obtained easily but comes from a different distribution than the testing

data. Generalizing to the testing distribution is hopeless if the data we used for training

follows any arbitrary distribution. We have to enforce certain constraints on the distribution

of the external data to enable learning.

We present five learning scenarios based on the kinds of constraints we imposed on the

distribution that is used to sample the additional training data and the testing distribution:

1) learning with weak supervision; 2) domain adaptation; 3) learning from multiple domains;

4) learning from corrupted data; 5) learning with partial supervision. For learning with weak

supervision, we assume the support of the data distribution is a superset of the support of

the testing distribution. We proposed Pseudo Multi-view Co-training (PMC), an algorithm

to cherry pick the instances that belong to the overlapped support from the noisy set to help

learning. For domain adaptation and learning from multiple domains, we assume the support

of the data (source) distribution(s) overlaps with that of the testing (target) distribution.

we proposed Co-training for Domain Adaptation (CODA), an algorithm to slowly adapt

the training data from source to target; and marginalized Stacked Denoising Autoencoders
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(mSDA), an algorithm to reduce the difference between distributions of different domains via

unsupervised feature learning. For learning from corrupted data, we introduced Marginalized

Corrupted Features (MCF), an algorithm that learns more robust classifiers implicitly on

“infinitely many” data created by corrupting the original small set of training data. For

learning with partial supervision, we assume that only a subset of the labels is available

for multi-label tasks. We proposed FastTag, an automatic image annotation algorithm that

recovers missing labels by corrupting the labels. We demonstrated the applicability of these

algorithms on many real datasets.

The proposed algorithms can be divided into two groups based on the basic building blocks.

Single View Co-training. The first two algorithms, PMC and CODA, are inspired by

the co-training algorithms of Blum and Mitchell [23]. While Co-training itself is restricted

to multi-view data, the automatic feature decomposition proposed in PMC generalizes co-

training to the more common single view cases, making it applicable to most real datasets.

In contrast to previous works [116, 171, 2, 33], which decompose the feature space either in a

preprocessing step or greedily, PMC explicitly models the necessary conditions for successful

co-training. It decomposes the feature space along with training the classifiers to satisfy these

condition and the decomposition is adapted to the distribution of the training data in each

PMC iteration, making it more powerful and reliable. PMC achieves record performance on

the challenging Caltech-256 object recognition task, using web retrieved images as weakly

labeled data. Comparable performance has been achieved before [65, 146], but much more

sophisticated features and classifiers have to be employed. The ability of PMC to effectively

select high quality examples from large collection of noisy search results opens the door to

future work on diverse sets of web-specific applications across different domains, such as

web-spam filtering, sentiment analysis or information retrieval.

CODA adds to PMC another feature selection component. While PMC shifts the distribution

of the training data from source to target, the new feature selection component slowly shifts

the active feature distribution from source to target, which address the problem of incompat-

ible features used in different domains. In contrast to previous works [82, 105, 167, 21, 22],

which either weighs the source instances, or learns a new feature representation as a prepro-

cessing step, CODA changes the weights for source and target instances in each iteration, as
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well as the features employed in the classifiers for best performance on the target domain.

CODA achieves state-of-the-art classification results with impressive consistency across a

wide range of available target labels. As CODA does not make any explicit assumption on

the features or classifiers, it opens up opportunities for future work on domain adaptation

in many different areas, such as natural language processing, speech and vision.

Marginalized Dropout. The second group of algorithms, mSDA, MCF and FastTag,

all incorporate marginalized dropout into learning. Another common point of these three

algorithms is that they all achieve state-of-the-art performance with orders of magnitude

speedup at training and testing. mSDA is inspired by the Stacked Denoising Autoencoders

(SDA) [161, 69], which learn hidden representation to reconstruct clean inputs from corrup-

tion. In contrast to SDA, mSDA: 1) does not have hidden nodes in each layer – this allows

a closed-form solution with substantial speed-ups but might entail limitations; 2) only has

two free meta-parameters, which greatly simplifies the model selection. 3) trains the pa-

rameters in each layer to optimally denoise all possible corrupted training inputs – arguably

infinitely many by leveraging the analytic tractability of linear regression and marginalizing

out corruption. This is practically infeasible for SDAs. mSDA achieves state-of-the-art per-

formance. The fast training time, the capability to scale to large and high-dimensional data

and implementation simplicity make it a promising method with appeal to a large audience

within and beyond machine learning. As for its limitation, we found that sparsity in the

original inputs is important for successful application of mSDA. For text data, it is natural

to start from the sparse bag-of-word representation or its variant. For dense input, such

as vision data, it would help to first transform the original input into some sparse repre-

sentation, e.g., bag-of-visual-word before applying mSDA. In future work, we would like to

investigate whether we can relax this requirement while still preserving the computational

efficiency.

MCF deals with overfitting when training data is insufficeint. It offers an effective and

efficient alternative to regularization or learning with priors. Specifically, MCF trains pre-

dictors by introducing corruption on the training examples, which is marginalized out in the

expectation of the loss function. In comparison with traditional regularization approaches,

MCF corruption shines in three ways: 1) it often yields superior classification performance

and 2) it can be much more intuitive to set parameters about data corruption than about
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model hyper parameters; 3) while regularization encourages sparsity, MCF with blank-out

corruption appears to prevent weight under-training [158], encouraging the weight on each

feature to be non-zero, in case this particular feature survives the corruption. The result-

ing redundancy is one of the key factors why MCF corruption makes classifiers so effective

against the nightmare at test-time scenario. In comparison with previous work on incorpo-

rating corruption for better generalization [28, 35, 67], which either uses explicit corruption

or focus on worst-case scenarios, MCF has several advantages: 1) it considers the (arguably)

more common average-case scenario by training on all possible corrupted observations, which

results in more robust classifiers; 2) it is computationally much cheaper; we can derive plug

in solutions for a wide range of loss functions and corrupting distributions by marginalizing

out the corruption. The training and testing cost of MCF is equivalent to learning with

regularizations; 3) it is easy to incorporate prior knowledge of the data variance by setting

the parameters in the corrupting distributions. We test MCF on a variety of tasks, includ-

ing text and image classifications, and the “nightmare at test-time” scenario, and achieve

promising results. We investigated blank-out, Poisson and Gaussian corruption in our exper-

iments. As future work, we plan to explore in more detail what corrupting distributions is

useful for what types of data. Another interesting direction is to extend MCF to structured

prediction, kernel machines, as well as different learning scenarios, such as the learning with

weak supervision, or cross-domain generalization.

FastTag is an image tagging method we introduced to learn from overly-sparse supervision,

i.e., incomplete user tags. Different from mSDA and MCF, in which the corruption is applied

to the inputs, FastTag corrupt the partial list of labels in order to recover missing labels.

Similarly, we consider all possible corrupted labels and marginalize out the corruption. In

comparison with previous work on automatic image annotation [112, 7, 57, 85, 94, 60, 48,

72, 104, 75], FastTag employes a much simpler model. In particular, it finds two mappings,

one from the visual descriptors to the complete list of tags, and one from the partial tags to

the complete ones using the corrupted labels, by coercing them into agreement. The jointly

convex loss function of FastTag can be efficiently optimized with closed form updates – this

allows for including a diverse set of visual descriptors as well as non-linear feature mappings.

The tradeoff of model complexity with feature expressiveness pays off as FastTag performs on-

par with current state-of- the-art algorithms, at a fraction of the computation cost. Sparsely

tagged training data and rare tags, which are prevalent in large scale problems, are often

obstacles for learning. We have demonstrate a way to deal with such partial supervision for
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image annotation. As future works, we would like to explore the work in many related tasks,

such as multi-label text classification, and biology-related problems, e.g., protein and gene

function classifications.
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multiple instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1):
31–71, 1997.

[56] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley Interscience Inc.,
2001.

[57] P. Duygulu, K. Barnard, J. De Freitas, and D. Forsyth. Object recognition as machine
translation: Learning a lexicon for a fixed image vocabulary. Computer VisionECCV
2002, pages 349–354, 2006.

[58] Andreas Argyriou Theodoros Evgeniou and Massimiliano Pontil. Multi-task feature
learning. In Advances in Neural Information Processing Systems 19: Proceedings of
the 2006 Conference, volume 19, page 41. MIT Press, 2007.

[59] Theodoros Evgeniou and Massimiliano Pontil. Regularized multi–task learning. In Pro-
ceedings of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 109–117. ACM, 2004.

[60] SL Feng, R. Manmatha, and V. Lavrenko. Multiple bernoulli relevance models for
image and video annotation. In Computer Vision and Pattern Recognition, 2004.
CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, volume 2,
pages II–1002. IEEE, 2004.

[61] R. Fergus, Y. Weiss, and A. Torralba. Semi-supervised learning in gigantic image
collections. 2009.

[62] A. Flaxman, A. Kalai, and H. McMahan. Online convex optimization in the ban-
dit setting: Gradient descent without a gradient. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, pages 385–394, 2005.

[63] Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. In Proceedings of the Second European Conference on
Computational Learning Theory, pages 23–37, 1995.

[64] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical
learning, volume 1. Springer Series in Statistics, 2001.

[65] Peter Gehler and Sebastian Nowozin. On feature combination for multiclass object
classification. In Computer Vision, 2009 IEEE 12th International Conference on, pages
221–228. IEEE, 2009.

[66] R. Ghani. Combining labeled and unlabeled data for text classification with a large
number of categories. In Proceedings of the IEEE International Conference on Data
Mining, 2001.

146



[67] Amir Globerson and Sam Roweis. Nightmare at test time: robust learning by feature
deletion. In Proceedings of the 23rd international conference on Machine learning,
pages 353–360. ACM, 2006.

[68] X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Proceedings of the International Conference
on Machine Learning, pages 513–520, 2011.

[69] X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale sentiment clas-
sification: A deep learning approach. In Proceedings of the Twenty-eight International
Conference on Machine Learning, ICML, 2011.

[70] Sally Goldman and Yan Zhou. Enhancing supervised learning with unlabeled data. In
MACHINE LEARNING-INTERNATIONAL WORKSHOP THEN CONFERENCE-,
pages 327–334, 2000.

[71] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy minimiza-
tion. 2005.

[72] David Grangier and Samy Bengio. A discriminative kernel-based approach to rank im-
ages from text queries. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 30(8):1371–1384, 2008.

[73] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. 2007.

[74] M. Grubinger, P. Clough, H. Müller, and T. Deselaers. The iapr tc-12 benchmark:
A new evaluation resource for visual information systems. In International Workshop
OntoImage, pages 13–23, 2006.

[75] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. Tagprop: Discriminative
metric learning in nearest neighbor models for image auto-annotation. In Computer
Vision, 2009 IEEE 12th International Conference on, pages 309–316. Ieee, 2009.

[76] J. Hafner, H.S. Sawhney, W. Equitz, M. Flickner, and W. Niblack. Efficient color his-
togram indexing for quadratic form distance functions. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 17(7):729–736, 1995.

[77] R. Herbrich and T. Graepel. Invariant pattern recognition by semidefinite program-
ming machines. In Advances in Neural Information Processing Systems, volume 16,
page 33, 2004.

[78] Tomer Hertz, Aharon Bar-Hillel, and Daphna Weinshall. Learning distance functions
for image retrieval. In Computer Vision and Pattern Recognition, 2004. CVPR 2004.
Proceedings of the 2004 IEEE Computer Society Conference on, volume 2, pages II–
570. IEEE, 2004.

147

http://www.icml-2011.org/papers/342_icmlpaper.pdf
http://www.icml-2011.org/papers/342_icmlpaper.pdf


[79] G.E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R.R. Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature detectors, 2012.

[80] T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 50–57. ACM, 1999.

[81] J. Howe. The rise of crowdsourcing. Wired magazine, 14(6):1–4, 2006.

[82] J. Huang, A.J. Smola, A. Gretton, K. M. Borgwardt, and B. Scholkopf. Correcting
Sample Selection Bias by Unlabeled Data. In NIPS 19, pages 601–608. MIT Press,
2007.

[83] J. Huang, A.J. Smola, A. Gretton, K.M. Borgwardt, and B. Scholkopf. Correcting
sample selection bias by unlabeled data. Advances in neural information processing
systems, 19:601, 2007.
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