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ABSTRACT OF DISSERTATION 

Characterization of ligand-induced conformational changes in the EGF receptor  

by 

Katherine S. Yang 

Doctor of Philosophy in Biochemistry 

Washington University in St. Louis, 2009 

Professor Linda Pike, Chairperson 

 

 The epidermal growth factor (EGF) receptor is a classical receptor tyrosine kinase 

that mediates cellular processes such as proliferation, migration, and differentiation in 

response to growth factor stimulation.  Crystal structures of the EGF receptor suggest that 

its activation is associated with extensive conformational changes in both the 

extracellular and intracellular domains.  However, evidence of these structural dynamics 

in intact cells has been lacking.  This thesis describes the characterization of sequential 

ligand-induced conformational changes in the EGF receptor in live cells in real time 

using luciferase fragment complementation imaging.  We find that these conformational 

changes are unique to the full-length activated EGF receptor.  These studies identified a 

novel conformational change that was dependent on MAP kinase activation and 

desensitization of the EGF receptor.  It has been unclear how MAP kinase desensitizes 

the EGF receptor following activation.  Mutational analysis was done to identify residues 

involved in the MAP kinase-mediated EGF receptor desensitization.  We use these 

analyses to provide a structural explanation for the MAP kinase-mediated desensitization 

of the EGF receptor.  The luciferase complementation assay was further utilized to test 
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the ability of different ligands for the EGF receptor family to induce dimer formation and 

intracellular domain conformational changes. 
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CHAPTER 1. Introduction to the EGF Receptor Family 

Discovery of EGF and its Receptor 

 The epidermal growth factor (EGF) was first discovered in 1962 by Professor 

Stanley Cohen.  The route to this discovery began with the discovery of nerve growth 

factor (NGF).  While working in the lab of Professor Viktor Hamburger, Dr. Rita Levi-

Montalcini observed that when a fragment of mouse tumor (Sarcoma 180) was grafted 

onto the body wall of chick embryos, both sympathetic and sensory fibers entered the 

tumor and exteneded to tissues that they normally should not reach (1).  After several 

confirmatory experiments, Dr. Levi-Montalcini and Professor Hamburger hypothesized 

that this phenomenon was due to a diffusable agent that was released from the tumor, 

resulting in the stimulation of nerve cell growth (2, 3). 

 Professor Stanley Cohen, a postdoc in the Hamburger lab at the time, further 

advanced the remarkable story when he discovered that crude extract from the mouse 

tumors could be inactivated by protease but not Dnase or RNase.  These observations led 

him to think that the disffusable agent was a protein (4), but the possibility of it being a 

virus was also raised by Professor Arthur Kornberg.  In an attempt to test the virus 

hypothesis, Professor Stanley Cohen used partially purified phosphodiesterase from 

snake venom (which would have degraded all known nucleic acids including those of 

viruses) in the absence and presence of his crude tumor extract to examine the effect on 

chick ganglions in culture.  To his surprise, partially purified phosphodiesterase alone 

resulted in a massive growth of nerve fibers in a single day.  Further experiments showed 

that this growth resulted from the presence of an additional protein in the impure 
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phosphodiesterase preparation, and that it in its purified form was much more potent in 

stimulating nerve growth.  This protein was the nerve growth factor or NGF (5).   

 Puzzled by the lack of an apparent connection between nerve growth, tumors and 

snake venom, Professor Cohen wondered about the source of the snake venom— the 

salivary glands.  He subsequently tested crude extracts of the salivary gland from male 

mice and observed that these mice-extracts were just as potent in inducing nerve 

outgrowth.  Futhermore, when these crude extracts were injected daily into newborn mice 

the sympathetic ganglion were enlarged.  Even more surprisingly, the mice opened their 

eyes 5-7 days earlier than normal and their teeth errupted earlier, a phenomenon that 

could not be induced by purified NGF.. 

 Professor Cohen went on to pursue the question why crude extracts from the male 

mouse salivary gland induced early eyelid opening in the mouse as a faculty at 

Vanderbilt.  By examining histological sections of the eyelid area from control and 

treated animals, it was clear that early eyelid opening was due to enhanced epidermal 

growth and keratinization.  The 53-amino acid disulfide linked protein responsible was 

purified from the mouse salivary gland using the eyelid-opening functional assay and was 

initially referred to as tooth-lid factor (6).  

 To address whether this tooth-lid factor was acting directly or indirectly via a 

secondary mechanism, the tooth-lid factor was added directly to organ cultures of chick 

embryonic skin.  This led to a direct effect in which there was an increase in both 

epidermal cell number and size, resulting in a renaming of tooth-lid factor to epidermal 

growth factor (EGF) (7).   
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 The prevailing theory at the time was that protein hormones do not enter cells, but 

rather bind to cell surface receptors to exert their effect and then dissociate.  The next 

major discovery was the identificaiton and isolation of the receptor for EGF.  An 

explosion of research into the EGF receptor then followed.  Among the major discoveries 

were that 1) EGF addition to A431 cell membrane preparations resulted in incorporation 

of 32P-ATP into the protein of membranes (8); 2) many proteins were phosphorylated in 

A431 membranes, particularly a protein of 170kDa (9); 3) the purified 170kDa protein 

bound EGF, had protein kinase activity that was dependent on ATP and EGF and was 

itself phosphorylated (10-15); and finally that 4) the EGF receptor was a tyrosine kinase 

(16). 

 The initial identification of EGF and its receptor won Professor Cohen the nobel 

prize in 1986.  His groundbreaking research into the field of growth factors and their 

receptors has shaped nearly 50 years of research to date, and has led to the identification 

of nearly 60 receptor tyrosine kinases.  The remainder of this introduction will focus on 

the biology of the EGF receptor.   

 

Nomenclature and Domain Organization of the EGF Receptor Family 

 The EGF receptor (ErbB1/HER1) is the founding member of the ErbB or human 

EGF receptor (HER) subfamily of receptor tyrosine kinases.  This subfamily consists of 

three additional members: ErbB2/HER2/Neu, ErbB3/HER3, and ErbB4/HER4.  The 

ErbB nomenclature derives from the high homology between the family members and the 

avian erythroblastosis virus v-erb-B transforming protein (17).  The ErbB members are 
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highly homologous (40-45% sequence identity) (18) and all share similar domain 

organizations.   

The EGF receptor consists of an extracellular ligand-binding domain, a single-

pass ɑ-helical transmembrane domain, and an intracellular domain with tyrosine kinase 

activity (19) (Figure 1.1).  Approximately half of the receptor constitutes the extracellular 

domain (amino acids 1-621).  The remainder of the EGF receptor is comprised of the 

transmembrane domain (amino acids 622-644), the intracellular juxtamembrane domain 

(amino acids 645-685), the tyrosine kinase domain (amino acids 686-960), and the C-

terminal tail (amino acids 961-1186) (Figure 1.1).   

 

Ligand-Induced EGF Receptor Dimer Formation 

 The canonical view of EGF receptor activation postulates that in the absence of 

ligand, the receptor exists as an inactive monomer in cell membranes (challenges to this 

hypothesis will be discussed later in the introduction).  Upon ligand binding to the 

extracellular domain, EGF receptor dimers are formed leading to stimulation of the 

protein tyrosine kinase activity (Figure 1.2).  Initial studies indicating that the EGF 

receptor dimerizes upon ligand binding demonstrated that addition of EGF leads to 

conversion of the receptor from a low molecular weight to a higher molecular weight 

state (20).  Additionally, covalently cross-linking 125I-EGF to its receptor results in a 

slower electrophoretic migration, which is competed by addition of unlabeled EGF (20).  

Further chemical crosslinking studies showed that EGF induces EGF receptor 

dimerization in Triton X-100-solubilized receptor preparations (21, 22), membrane 

preparations (23), and in intact cells (24-26).   
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 Dimerization of the EGF receptor stimulates the protein tyrosine kinase activity, 

which leads to an intermolecular autophosphorylation mechanism of tyrosine residues on 

the C-terminal tail of the receptor (Figure 1.2).  Several lines of evidence support the 

intermolecular phosphorylation mechanism as opposed to an intramolecular or truly self-

phosphorylation process.  First, EGF receptor cross-linking using bivalent antibodies 

stimulates receptor autophosphorylation, with no autophosphorylation observed in the 

absence of antibodies or using monovalent forms of the antibodies (27, 28).  Second, 

simply immobilizing the EGF receptor on solid matrices prevents EGF from activating 

the receptor kinase activity (27).  Finally, in experiments where cells expressed a kinase-

dead EGF receptor and a kinase-active EGF receptor that lacks the amino-terminal 63 

amino acids (and two autphosphorylation sites), the kinase-dead EGF receptor was 

observed to be in the phosphorylated state.  This phosphorylation could only result from 

an intermolecular process mediated by the truncated/kinase-active EGF receptor since the 

kinase-dead EGF receptor completely lacks catalytic activity (29, 30).  Taken together, 

these data support the ligand-induced dimerization and activation mechanism for the EGF 

receptor.  

 

Structure-Based Activation Mechanism for the EGF Receptor 

 Recent crystal structures of the EGF receptor extracellular domain have provided 

invaluable insights into the structural aspects of the activation mechanism.  The EGF 

receptor extracellular domain consists of four subdomains: I, II, III, and IV (Figure 1.3).  

Subdomains I and III are homologous and together form the primary ligand binding site 

(red in Figure 1.3).  Subdomains II and IV are homologous cysteine-rich regions (19) 
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(green in Figure 1.3).  In the absence of ligand, the EGF receptor monomer exists in a 

tethered/closed conformation (31) (Figure 1.3).  The EGF receptor monomer is held in 

this tethered conformation primarily through a β-hairpin/loop in subdomain II that 

interacts with a similar loop in subdomain IV.  One of the required residues for this 

interaction is Y246 in subdomain II (31).  This tethered conformation of the EGF 

receptor is thought to have low affinity for ligand because the ligand cannot 

simultaneously bind subdomains I and III (31). 

 Ligand binding to the EGF receptor disrupts the intramolecular tether and 

promotes a dramatic conformational change in which the EGF receptor adopts an 

open/extended conformation (31-33) (Figure 1.3).  The β-hairpin/loop from subdomain 

II, referred to as the dimerization arm, mediates formation of back-to-back EGF receptor 

dimer (32, 33) (Figure 1.3).  In the extended, dimerized conformation, Y246 is crucial to 

formation of the EGF receptor/EGF receptor intermolecular contacts in the dimer.  

Mutation of this residue to D, F, or W abolishes EGF receptor dimer formation as 

measured by chemical crosslinking (34).  Moreover, the integrity of this residue is 

required to observe EGF receptor autophosphorylation, providing a structural basis for 

the observed intermolecular phosphorylation mechanism (34). 

 Recently it has been demonstrated that the EGF receptor kinase domain can also 

form dimers (35).  X-ray crystallography work has shown that the kinase domain of the 

EGF receptor forms an asymmetric dimer in which the N-lobe of one kinase contacts the 

C-lobe of a second kinase (35) (Figure 1.4). In this configuration, one of the monomers 

(acceptor in Figure 1.4) becomes activated and is able to phosphorylate the C-terminal 

tail of the second monomer (donor in Figure 1.4).  Mutation of residues in the dimer 
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interface of either the N-lobe (eg L680N) or the C-lobe (eg V924R) block the ability of 

EGF to stimulate kinase activation (35).  Together these data imply an allosteric 

mechanism for activation of the EGF receptor kinase domain.  Through an unknown 

mechanism, these kinase domains may re-order, so that phosphorylation of the other 

kinase monomer in the dimer can occur (donor becomes acceptor and vice versa in Figure 

1.4).  

  The intracellular juxtamembrane region has also been hypothesized to play a 

critical role in activating the kinase domain (Figure 1.1).  Thiel and Carpenter first 

demonstrated the necessity for this domain by utilizing an intracellular domain (ICD) 

construct that is constitutively autophosphorylated (36).  Deletion of amino acids 645-662 

or 645-676 resulted in a dramatic reduction in EGF receptor autophosphorylation.  

Similar results were obtained when these deletion mutants were introduced into the 

ligand-regulated full-length EGF receptor that was expressed in NIH 3T3 cells. 

 Structurally, insight on the juxtamembrane region was first gained from the 

asymmetric kinase domain crystal structure of ErbB4 bound to a thienopyrimidine analog 

inhibitor, a structure that included the C-terminal portion of the juxtamembrane region of 

ErbB4 (EGF receptor amino acids 664-961) (37).  Further analysis of the asymmetric 

dimer in this structure by Jura et al. showed that the juxtamembrane region of the 

acceptor kinase forms a cradle around the C-lobe of the donor kinase in the asymmetric 

unit (Figure 1.5A) (38).  A recent crystal structure of the EGF receptor kinase domain 

where the entire juxtamembrane region (amino acids 652-994) was visible revealed a 

similar “cradling” orientation (Figure 1.5B) (39).   In both of these reports, mutagenesis 

of the ICD construct (39) or the full-length EGF receptor (38) in the C-terminal portion 
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of the juxtamembrane domain (amino acids 664-682) significantly impaired 

autophosphorylation of the EGF receptor.  In addition, Jura et al. demonstrated using 

mutagenesis that residues in the C-lobe of the donor kinase that contact the 

juxtamembrane domain of the acceptor kinase are also required for full 

autophosphorylation of the EGF receptor (38).  These findings suggest that the 

juxtamembrane region is important for formation of the asymmetric dimer interface and 

required for full activation of the EGF receptor.   

 While there is ample structural information for the extracellular and tyrosine 

kinase domains of the EGF receptor, there is little structural information for the C-

terminal tail.  This is likely due to the conformational flexibility of this region.  Indeed, 

hydrodynamic studies have shown that upon autophosphorylation of the C-terminal tail, 

the EGF receptor intracellular domain adopts a more extended conformation than in the 

absence of autphosphorylation (40).  Additional studies using FRET suggest that the C-

terminal tail and the EGF receptor tyrosine kinase domain separate to form a more 

extended molecule following autophosphorylation (41).   

 

Higher Order EGF Receptor Oligomers 

 There is evidence that the EGF receptor forms higher order oligomers both in the 

absence and presence of ligand. Using image correlation microscopy of an EGF receptor-

GFP chimera, studies have shown that the EGF receptor undergoes a dimer-tetramer 

transition upon stimulation with ligand (42). Recent studies from our lab using 

fluorescence intensity cluster analysis support the notion that the EGF receptor may exist 

in preformed dimers and higher order oligomers in the absence of ligand (43).  
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 Studies utilizing FRET microscopy with fluorescently labeled EGF demonstrated 

that the receptor bound EGF molecules are capable of significant energy transfer. 

However, these data contradicted the known structure of EGF receptor dimers (Figure 

1.3), where the two bound EGF molecules are too far apart (100Å) to undergo the 

observed significant energy transfer. Thus, the authors hypothesized that FRET occurred 

due to clustering of the EGF receptor, most likely in side-by-side tetramers (44). Other 

studies using lifetime-based FRET microscopy suggest that in the absence of ligand, the 

EGF receptor may exist in large clusters, with up to 30 receptors per cluster (45). These 

clusters may enable rapid receptor activation on ligand binding.  

 Together these studies provide evidence for the existence of a higher-order 

signaling complex within the EGF receptor system. The nature of higher order EGF 

receptor oligomers is not fully understood and the structural requirements for such an 

oligomer have not been addressed. 

 

Ligands for the EGF Receptor Family 

 In order to engage the EGF receptor in signaling inside the cell, the receptor must 

first be activated by a small, soluble growth factor outside the cell.  There are 11 known 

ligands that bind to the extracellular domains of the EGF receptor family (46, 47) (Figure 

1.6A).  These ligands can be subdivided into three groups based on their receptor 

specificity: 1) EGF, TGF-α, Amphiregulin (AR), and Epigen all bind the EGF receptor, 

2) Betacellulin (BTC), Heparin-binding EGF, and Epiregulin all bind the EGF receptor 

and ErbB4, 3) the Neuregulins (of which there are multiple isoforms) bind to ErbB3 or 
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ErbB4 (46-48).  It is interesting to note that no ligand has yet been found that binds to 

ErbB2.   

 All ligands for the EGF receptor family are synthesized as transmembrane 

precursors that are cleaved by the ADAM (A Disintegrin And Metalloproteinase) family 

of metalloproteinases (49).  This cleavage leads to release of the “mature” or soluble 

protein into the cell matrix or cell culture (Figure 1.6B).  Ligands for the EGF receptor 

family also have at least one EGF-like motif, which is defined by the presence of six 

spatially conserved cysteine residues (CX7 CX4-5 CX10-13 CXCX8 C).  These cysteines 

then form three disulifide bonds (C1-3, C2-4, C5-6) (49).   

 The ligands for the EGF receptor family have different binding affinity and 

specificity (47, 50).  They also induce different phosphorylation patterns of the signaling 

tyrosine residues which consequently leads to diversification of signaling pathways 

activated and gene expression patterns (47).  While these differential outputs are not yet 

fully understood, part of the distinction may lie in the conformation of the receptor bound 

to ligand.  The subdomain II dimerization arm in the EGF receptor extracellular domain 

adopts slightly different conformations when bound to EGF versus TGF-α, which may 

reflect differences in one of the ligand binding subdomains (III)  (32, 33, 47).  

Differences in ligand-binding to the extracellular domain my be transmitted to the 

intracellular domain, resulting in slightly different interfaces for the tyrosine kinase 

domains and eventually leading to the observed differential outputs (47). 
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Ligand-Induced EGF Receptor Signaling 

 Ligand binding to the EGF receptor promotes a conformational change in the 

extracellular domain that exposes residues essential for dimerization (31-34, 51-53).  

Formation of EGF receptor dimers brings into close proximity the tyrosine kinase 

domains so that they can form the activating asymmetric dimer interface (35, 46, 54).  

This enhances the catalytic activity of the EGF receptor kinase, resulting in 

autophosphorylation in trans on five regulatory tyrosine residues in the ~200 amino acid 

C-terminal tail (55-60) (Figure 1.7A).  In addition to autophsophorylation, the EGF 

receptor can also be transphosphorylated on its tyrosine residues by other kinases, such as 

Src (61-63) (Figure 1.7A).   

 The phosphorylated C-terminal tail tyrosine residues of the EGF receptor serve as 

association sites for signaling or adaptor proteins.  The pattern and sequence context of 

the phosphorylated tyrosine residues discriminates which Src homology 2 (SH2) and 

phosphotyrosine binding (PTB) domain-containing proteins bind to the EGF receptor (56, 

64) (Figure 1.7A).  SH2 modules are typically 100 amino acids long and recognize 

phosphorylated tyrosines in the context of the 3-6 amino acids downstream of the 

phosphorylated tyrosine.  In contrast, PTB modules are typically 150 amino acids long 

and recognize phosphorylated tyrosines by the amino acids just upstream (64, 65).  The 

SH2 and PTB domain-containing proteins that bind to the EGF receptor phosphorylated 

tyrosine residues ultimately determines which signaling pathways are activated and the 

biological outcome from the external cue (cell proliferation, survival, migration, etc.) (48, 

57, 64, 66).  The SH2 and PTB domain-containing proteins serve as adaptors, enabling 
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EGF receptor signaling inside the cell.  Association with the EGF receptor facilitates 

formation of an ordered multicomponent signaling complex (48, 56, 57, 64, 66).   

Several signaling pathways are activated by the EGF receptor, but the focus of 

this introduction will be on the Ras/mitogen activated protein (MAP) kinase pathway.  

Following autophosphorylation of the EGF receptor on tyrosine residues, growth factor 

receptor-bound protein 2 (Grb2) docks directly to tyrosines 1068 or 1086, or associates 

indirectly via Shc (56, 67-69) (Figure 1.7A and B).  Grb2 is constitutively bound to the 

guanine nucleotide exchange factor Son of Sevenless (SOS) (70) so that binding of Grb2 

to the EGF receptor relocalizes the complex to the plasma membrane.  This causes 

exchange of GDP for GTP on the membrane-bound protein Ras, thereby activating Ras 

(71-74).  Activated Ras in turn activates the serine-threonine kinase Raf (75-77), which 

phosphorylates the threonine/tyrosine kinase MEK (78, 79).  Finally, MEK activates 

MAP kinase through phosphorylation on threonine and tyrosine residues, inducing 

nuclear translocation and the phosphorylation and activation of nuclear transcription 

factors that lead to cellular proliferation (56, 69, 80). 

 

Mechanism of EGF Receptor Deactivation 

 Following activation, negative regulation of EGF receptor signaling must ensue to 

prevent “over-signaling” from the receptor.  Failure in proper EGF receptor de-regulation 

often leads to heightened oncogenic potential (81).  Long-term regulation is mediated by 

internalization and subsequent irreversible degradation of the receptor (82-84).  This 

process was first described by Carpenter and Cohen in studies demonstrating that 125I-

EGF binds to the EGF receptor and is subsequently removed from the cell surface and 
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degraded by lysosomes (85).  Long-term regulation of EGF receptor signaling, later 

termed “EGF-induced down-regulation of the EGF receptor”, serves as a major negative 

regulatory mechanism (84). 

Independent of receptor internalization and degradation, the EGF receptor also 

undergoes a rapid negative regulatory component, termed desensitization, that is 

associated with a loss of protein tyrosine kinase activity (86-88).  Desensitization can 

occur through binding of negative regulatory proteins to the EGF receptor.  The best 

characterized example is the protein MIG-6 (also known as gene 33 or receptor-

associated late transducer/RALT).  MIG-6 is transcriptionally induced by the EGF 

receptor via the Ras pathway and has been shown through crystallography work to bind 

to the C-lobe of the EGF receptor kinase domain to block formation of the activating 

asymmetric dimer (81, 89-92).  Binding of MIG-6 to the EGF receptor effectively blocks 

activation of the EGF receptor without blocking the catalytic activity. 

In addition to specific negative regulators, several proteins activated by the EGF 

receptor signaling pathways also play significant roles in the desensitization process.  

Previous work suggests that phosphorylation of the EGF receptor on two threonine 

residues within the intracellular juxtamembrane region may be involved in the rapid loss 

of tyrosine kinase activity (93, 94).  Of these two sites, the major site of threonine 

phosphorylation on the EGF receptor is Thr-669 (95).  Phosphorylation of this site is 

mediated by a feedback loop: the EGF receptor activates MAP kinase, which in turn 

directly phosphorylates the EGF receptor on Thr-669 (96-98).  Mutation of Thr-669 to 

Ala is associated enhanced EGF receptor phosphorylation (94).  These data suggest that 

phosphorylation of Thr-669 is associated with EGF receptor desensitization.  The 
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mechanism by which phosphorylated Thr-669 blocks receptor kinase activity is not 

understood.  Overall, the pathways and proteins that negatively regulate EGF receptor 

signaling are poorly understood and much work remains to understand how these 

pathways function and how they may be exploited or modified to evolve new therapies 

targeting the EGF receptor.  

The work presented in this thesis will examine several conformational changes in 

the EGF receptor, as well as the implications of these conformational changes.  Chapter 2 

will describe how a luciferase fragment complementation imaging assay was developed 

and utilized in the context of the EGF receptor system to follow ligand-induced 

conformation changes.  This type of analysis has not been possible using existing assays.  

One of the major implications of these results will be described in Chapter 3, with the 

mechanistic explanation for MAP kinase-mediated EGF receptor desensitization.  

Finally, Chapter 4 will delve into one aspect of the wide-range of utility of luciferase 

fragment complementation imaging of the EGF receptor by focusing on the effects of 

EGF-like growth factors.  A discussion of the global implications of these results and 

potential future studies based on these results will be addressed in Chapter 5.   
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Figure 1.1.  Domain organization of the EGF 
receptor.  The extracellular domain consists of four 
subdomains (I-IV).  This is followed by an ɑ-helical 
transmembrane domain and then the intracellular 
juxtamembrane domain.  The tyrosine kinase domain 
contains the catalytic activity of the receptor, while 
the C-terminal tail contains regulatory tyrosine 
residues (52). 
 
 
 
 

 

 

 

Figure 1.2. Schematic representation for the ligand-induced dimerization and 
activation of the EGF receptor.  In the absence of ligand, the EGF receptor is thought to 
exist as an inactive monomer (left panel).  Binding of ligand induces EGF receptor dimer 
formation, bringing into proximity the tyrosine kinase domains of the EGF receptor and 
resulting in enhanced kinase activity (right panel).  This results in autophosphorylation in 
trans of tyrosine residues in the C-terminal tail of the receptor, as well as phosphorylation 
of several protein substrates. 
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Figure 1.3. Schematic representation of the EGF receptor extracellular domain 
monomer and dimer. In the absence of ligand, the EGFR monomer is held in a 
tethered/closed conformation through contacts between subdomains II and IV. Ligand 
binding between subdomains I and III induces a dramatic conformational change that 
disrupts the intramolecular tether and exposes a dimerization arm in subdomain II. This 
dimerization arm mediates the formation of a back-to-back EGFR dimer. Figure adapted 
from Burgess et al. (53). 

 

Figure 1.4. Schematic representation of the EGF receptor kinase domain 
asymmetric dimer.  Upon ligand binding to the extracellular domain, the EGF receptor 
undergoes a conformational change that results in formation of an extracellular domain 
dimer.  This dimer is thought to bring into close contact the kinase domains from each 
monomer.  X-ray crystallography and mutational studies have demonstrated that the 
asymmetric dimer is required for EGF stimulation of kinase activity.  Figure adapted 
from Zhang et al. (35). 
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Figure 1.5. Crystal structure of the intracellular juxtamembrane and kinase 
domains of ErbB4 (Her4) and the EGF receptor.  A) Cartoon depiction of the ErbB4 
(Her4) asymmetric dimer including 20 amino acids from the intracellular juxtamembrane 
region.  The cradle formed by the juxtamembrane domain of the acceptor kinase is 
magnified in the right panel (38).  B) Crystal structure of the kinase-dead (K721M) EGF 
receptor juxtamembrane and kinase domains in the asymmetric dimer.  Similar to ErbB4, 
the juxtamembrane region of the acceptor kinase cradles the C-lobe of the donor kinase 
(39).
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Figure 1.6. Ligands for the EGF receptor family.  A) Ven diagram depicting the 
specifity of various EGF-like ligands for members of the EGF receptor family (47).  B) 
ADAMs (A Disintegrin Activated Metalloproteinase) are responsible for the proteolytic 
processing of the transmembrane precursors for the EGF receptor family of ligands.  This 
releases a soluble “mature” peptide growth factor that binds to members of the EGF 
receptor family (46). 
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Figure 1.7.  Ligand-induced EGF receptor autophosphorylation and downstream 
signaling.  A) Schematic of the EGF receptor C-terminal tail phosphorylation sites and 
association of SH2 and PTB domain-containing proteins.  Autophosphorylation sites are 
shown in red, while transphosphorytion sites mediated by Src are shown in blue (64).  B) 
Simplified view of the signaling pathways activated by ligand binding to the EGF 
receptor (69). 
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CHAPTER 2. Luciferase Fragment Complementation Imaging of Conformational 

Changes in the EGF Receptor 

Introduction 

Activation of the EGF receptor is thought to be associated with several dramatic 

conformational changes in the extracellular and kinase domains, as well as the C-terminal 

tail (31-33, 35, 40, 99).  While evidence from crystal structures and purified systems 

suggests that the EGF receptor undergoes several conformational changes during the 

process of activation, these changes have not been observed in intact cells.  Thus, the 

relevance of these findings to the physiological situation is not clear.  This problem was 

addressed using a luciferase fragment complementation imaging assay (100) to image 

EGF receptor dimerization and ligand induced conformational changes in real time in live 

cells.   

In the context of an EGF receptor lacking the entire cytoplasmic domain, 

luciferase fragment complementation accurately reports on the kinetics of EGF receptor 

dimerization.  When used with the full-length EGF receptor, the system reveals 

sequential conformational changes in the EGF receptor that are dependent on receptor 

autophosphorylation as well as phosphorylation of the receptor by MAP kinase.  Our data 

demonstrate the utility of the luciferase system for in vivo imaging of EGF receptor 

dimerization and intracellular domain conformational changes.  The data presented in this 

chapter suggest that phosphorylation of the receptor by MAP kinase determines the final 

conformation adopted by the activated EGF receptor. 
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Results 

EGF induces a rapid increase in luciferase complementation in ΔC-EGFR-NLuc/CLuc 

cells 

 The firefly luciferase complementation system utilizes two fragments of 

luciferase termed NLuc and CLuc.  These fragments are inactive by themselves but are 

capable of reconstituting an active luciferase if the fragments are brought into close 

proximity (100, 101).  Initially, the luciferase fragments were independently fused to the 

C-terminus of an EGF receptor lacking the entire cytoplasmic domain yielding the ΔC-

EGFR-NLuc and ΔC-EGFR-CLuc cDNA constructs.  CHO-K1 Tet-On cells were 

transfected with ΔC-EGFR-NLuc and a line that stably expressed ΔC-EGFR-NLuc in a 

doxycycline-inducible manner was selected.  Twenty four hours prior to use, these cells 

were transiently transfected with ΔC-EGFR-CLuc.  These cells are referred to as ΔC-

EGFR-NLuc/CLuc CHO cells. 

 For imaging experiments, cells were first incubated with luciferin for 20 min at 

37ºC to allow equilibration of the intracellular and extracellular pools of this substrate.  

This preincubation assures a stable baseline during the subsequent 20 min observation 

period (Figure 2.1A).  Luciferase activity was measured by monitoring the photon flux 

from ΔC-EGFR-NLuc/CLuc co-expressing CHO cells.  Readings were taken 

approximately every 30 sec, providing a continuous readout of luciferase activity through 

bioluminescence imaging of live cells.   

 Luciferase activity was detectable in cells co-expressing ΔC-EGFR-NLuc and 

ΔC-EGFR-CLuc even in the absence of added EGF (Figure 2.1A open circles).  This 

suggests the presence of receptor-receptor interactions in the basal state.  The addition of 
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10 nM EGF led to a rapid increase in light production that plateaued between 10 and 15 

min (Figure 2.1A, closed circles).  Both the rate and extent of ligand-induced dimer 

formation were dependent on the concentration of EGF (Figure 2.1B).  This increase in 

luciferase complementation following EGF stimulation is consistent with the canonical 

model of EGF-induced dimerization of its receptor (20).  Importantly, the rate of dimer 

formation detected by luciferase fragment complementation was similar to the rate of 

125I-EGF binding observed in these cells (Figure 2.1C, 1nM EGF: 0.14 ± 0.015 min-1 for 

luciferase versus 0.15 ± 0.02 min-1 for binding; 10 nM EGF: 0.30 ± 0.03 min-1 for 

luciferase versus 0.42 ± 0.13 min-1 for binding).  This indicates that this imaging 

technique accurately reflects the kinetics of ligand-induced dimerization of the EGF 

receptor.   

EGF elicits a rapid but transient decrease in luciferase activity in full-length EGFR-

NLuc/CLuc cells 

 To assess the contribution of the cytoplasmic domain of the EGF receptor to 

receptor-receptor interactions, the NLuc and CLuc fragments were independently fused 

to the C-terminus of the full-length EGF receptor.  To ensure that equal levels of the two 

chimeric receptors were expressed, a double-stable CHO-K1 Tet-On cell line was 

established that will be referred to as the EGFR-NLuc/CLuc cell line.  In this cell line, 

EGFR-CLuc was constitutively expressed while EGFR-NLuc was expressed from a 

doxycycline inducible plasmid.  This allowed adjustment of EGFR-NLuc expression 

levels to match those of EGFR-CLuc.    

 As shown in Figure 2.2A, Scatchard analysis of 125I-EGF binding to the 

uninduced EGFR-NLuc/CLuc cells indicated that EGFR-CLuc was expressed at a level 
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of ~100,000 receptors per cell.  When the cells were treated with 1 µg/ml doxycycline, 

binding experiments demonstrated the presence of ~200,000 EGF receptors per cell.  

These data suggest that under these conditions, EGFR-NLuc and EGFR-CLuc are 

expressed at roughly equivalent levels of approximately 100,000 receptors/cell.  As can 

be seen from Figure 2.2A, both Scatchard plots were curvilinear, demonstrating that these 

receptor fusion proteins retain this characteristic feature of EGF binding to the wild type 

receptor (102). 

 The effect of the luciferase fragments on the kinase activity of the EGF receptor 

was determined independently in CHO cells that expressed only the EGFR-NLuc or the 

EGFR-CLuc receptors.  The data in Figure 2.2B show that EGF stimulated the 

autophosphorylation of both EGFR-NLuc and EGFR-CLuc, indicating that both receptors 

retain kinase function. EGFR-NLuc showed two distinct bands, both of which were 

phosphorylated and both of which react with anti-luciferase antibodies (Figure 2.2C).  

This suggests that the lower molecular weight form is not the result of proteolytic 

removal of the luciferase fragment.  It is possible that differences in glycosylation may be 

responsible for the different forms.  Both NLuc- and CLuc-EGF receptors mediated the 

activation of MAP kinase (Figure 2.2B).  Thus, addition of the luciferase fragments did 

not substantially alter the biochemical behavior of the EGF receptor.   

 When EGFR-NLuc/CLuc cells were incubated with luciferin, light production 

was observed in the absence of EGF (Figure 2.3A).  At least a portion of this basal light 

production is due to receptor-receptor specific interactions, since the basal luciferase 

activity is decreased upon transient transfection of cDNA for the unlabeled EGF receptor 

(Figure 2.4).  In contrast to the results obtained with the truncated ΔC-EGF receptor, 
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addition of EGF to EGFR-NLuc/CLuc cells resulted in a rapid, but transient, decrease in 

luciferase activity (Figure 2.3B-2.3G).  The decrease was observed at the earliest time 

point following EGF addition and reached a nadir 2 to 4 min after EGF stimulation.  

Subsequently, light production recovered to essentially the same level as that observed 

prior to EGF addition.   

 Because EGF induces a variety of changes in ion transport and metabolic 

pathways, it was possible that the decrease in light production observed after the addition 

of EGF was due to changes in pH or some other metabolite within the cells.  To examine 

this possibility, HeLa cells that express endogenous EGF receptors were transfected with 

FRB-NLuc and its binding partner CLuc-FKBP (100).  Treatment of these cells with 

rapamycin induces interaction of FRB and FKBP leading to enhanced luciferase activity.  

In this system, addition of EGF failed to alter the level of complementation stimulated by 

rapamycin (Figure 2.3H).  This suggests that the EGF-induced decrease in luciferase 

activity observed in the EGFR-NLuc/CLuc cells is not due to a non-specific effect on 

luciferase fragment complementation arising from metabolic changes stimulated by the 

growth factor. 

The decrease in luciferase activity is dependent on EGF receptor kinase activity 

 Figure 2.5 compares the time course of EGF-stimulated receptor 

autophosphorylation with that of the EGF-induced decrease in luciferase activity in 

EGFR-NLuc/CLuc cells.  As can be seen from the figure, maximal autophosphorylation 

occurred within 30 sec after the addition of EGF.  By contrast, the decrease in luciferase 

activity required 2 to 4 min to reach its nadir.  Thus, receptor activation precedes the 
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agonist-induced decrease in luciferase activity.  This suggests that the decrease in 

luciferase activity might be a consequence of receptor tyrosine kinase activation. 

 To assess the involvement of receptor kinase activity in the decreased luciferase 

complementation, EGFR-NLuc/CLuc cells were incubated with 5 µM erlotinib or 10 µM 

AG1478 to inhibit receptor tyrosine kinase activity.  Inhibition of EGF receptor kinase 

activity was confirmed using Western blot analysis with an anti-phosphotyrosine 

antibody (Figure 2.6).  Treatment with erlotinib or AG1478 induced a ~3-fold increase in 

basal luciferase activity indicating that they enhanced the interaction between EGF 

receptors under resting conditions (Figure 2.7A).  This increase was specific for the EGF 

receptor, since treatment of HeLa cells expressing FRB-NLuc and CLuc-FKBP with 

erlotinib or AG1478 did not alter light production (Figure 2.7B).  As expected, 

stimulation with EGF led to a transient decrease in luciferase activity in control cells 

(Figure 2.7C and D).  However, this effect was largely eliminated in cells pre-treated 

with erlotinib or AG1478 (Figure 2.7C and D).   

To further test the hypothesis that an active EGF receptor kinase is required to 

observe the decrease in luciferase activity, EGF receptor autophosphorylation was 

indirectly blocked.  Cells were treated with inhibitors of proteins that modulate EGF 

receptor function.  12-O-tetradecanoylphorbol 13-acetate (TPA) has been reported to 

block activation of the EGF receptor kinase (103).  This was confirmed by pre-treatment 

of cells with TPA followed by addition of 10 nM EGF and Western blot with an anti-

phosphotyrosine antibody (Figure 2.8A).  When compared to control cells, TPA does not 

influence the basal light production in the luciferase complementation assay (Figure 

2.8B).  Similar to the EGF receptor-specific tyrosine kinase inhibitors, addition of TPA in 
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the luciferase complementation assay was also able to block the transient decrease and 

recovery in light production that was observed after 10 nM EGF stimulation (Figure 

2.8C).  EGF receptor autphosphorylation can also be inhibited by calmodulin antagonists 

such as calmidazolium, although the exact mechanism remains unknown (104-106).  Pre-

treatment with calmidazolium decreased EGF receptor autophosphoyrlation as measured 

by Western blot by ~50% (Figure 2.9A).  Pre-treatment with calmidazolium increased the 

basal light production in EGFR-NLuc/CLuc CHO cells by ~6-fold (Figure 2.9B).  

Calmidazolium did not affect the light production in HeLa cells expressing FRB-NLuc 

and CLuc-FKBP (Figure 2.9C).  Pre-treatment with calmidazolium, followed by addition 

of 10 nM EGF partially blocked the decrease in luciferase activity, consistent with an 

incomplete inhibition of EGF receptor autophosphorylation (Figure 2.9D).  These results 

further support the hypothesis that an active EGF receptor kinase is required to observe 

the decrease in luciferase activity.  

 Because the effect of erlotinib, AG1478, and calmidazolium on basal luciferase 

complementation complicated the interpretation of the effects on the EGF-stimulated 

decrease in luciferase activity, the requirement for EGF receptor tyrosine kinase activity 

was further examined using the K721A-EGF receptor.  The K721A mutation abolishes 

the tyrosine kinase activity of the EGF receptor (107).  The NLuc and CLuc fragments 

were fused to the C-terminus of the K721A-EGF receptor and were transiently 

transfected into CHO cells.  As was seen for the wild type EGF receptor, erlotinib 

enhanced basal luciferase activity in this kinase-dead EGF receptor mutant (Figure 

2.10A).  However, in contrast to the situation with wild type receptor, addition of EGF to 

the K721A-EGF receptor led to an increase in luciferase activity (Figure 2.10B), similar 
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to that seen in the ΔC-EGF receptor (Figure 2.1).  Erlotinib enhanced the EGF-stimulated 

increase in luciferase activity in the K721A-EGF receptor system suggesting that the 

effect of this tyrosine kinase inhibitor is independent of the effects elicited by EGF.  

These data confirm the involvement of receptor tyrosine kinase activity in the ligand-

induced decrease in luciferase complementation.   

 The observed decrease in luciferase activity is consistent with the hypothesis that 

EGF induces a conformational change in the receptor that leads to separation of the 

luciferase fragments.  To determine whether the EGF-stimulated decrease in luciferase 

complementation was due to movement of the C-terminal tails of the receptors or 

involved changes in the relative positions of the kinase domains, the luciferase fragments 

were fused to an EGF receptor truncated at residue 973 just beyond the kinase domain.  

The constructs were expressed in CHO cells.  Luciferase activity was detectable in these 

cells in the absence of EGF (Figure 2.11A).  Treatment of the c′973-EGFR-NLuc/CLuc 

cells with EGF led to a decrease in luciferase activity that was somewhat smaller than 

that observed for the wild type EGF receptor (Figure 2.11B).  While there was some 

recovery of luciferase activity over time, it was slower and less extensive than that seen 

for the wild type receptor.  Thus, while the effect of EGF was apparent in the truncated 

receptor it was significantly dampened compared to that observed with the wild type 

receptor.  These data suggest that EGF induces movement of the kinase domains relative 

to each other but in the full-length receptor, this is amplified by conformational changes 

that lead to the separation of the C-terminal tails of the receptors.  
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MAP kinase activity is required for the recovery of luciferase complementation 

 The recovery of luciferase activity after treatment of EGFR-NLuc/CLuc cells with 

EGF occurred over a time course that was similar to that of the activation of MAP kinase 

by EGF (Figure 2.12, top left).  MAP kinase is known to catalyze the phosphorylation of 

the EGF receptor on Thr-669 (108, 109) and the phosphorylation of this residue on the 

EGF receptor paralleled the activation of MAP kinase in EGFR-NLuc/CLuc cells (Figure 

2.12, top left).  

 To determine whether the activation of MAP kinase played a role in the recovery 

of luciferase complementation, EGFR-NLuc/CLuc cells were pre-treated with the MEK 

inhibitor, U0126, to block the activation of MAP kinase.  As shown in Figure 2.13, top 

right, U0126 completely prevented both the activation of MAP kinase and the 

phosphorylation of Thr-669.  When cells were pretreated with U0126 prior to assay of 

luciferase activity, U0126 had little effect on basal light production (Figure 2.12, bottom 

left).  However, this inhibitor completely blocked the recovery of luciferase activity after 

the EGF-stimulated decrease (Figure 2.12, bottom right).  The initial decrease was of a 

greater magnitude than that seen in control cells and there was no recovery toward 

baseline levels over the 20 min observation period.  These data indicate that MAP kinase 

activity is involved in the recovery phase of luciferase complementation.   

 The requirement for MAP kinase activation in the recovery of luciferase activity 

was further examined using the T669A-EGF receptor.  The T669A mutation removes the 

MAP kinase phosphorylation site from the EGF receptor (108-110).  The NLuc and CLuc 

fragments were fused to the C-terminus of the T669A-EGF receptor and the constructs 

were transiently transfected into CHO cells.  As a control, wild type NLuc and CLuc 
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EGF receptors were also transiently transfected into CHO cells.  As shown in Figure 

2.13A, the wild-type EGF receptor displayed basal luciferase activity which was 

relatively stable over the 20 min time course of the experiment.  Addition of EGF led to a 

rapid decrease followed by a slow recovery of luciferase activity (Figure 2.13B).  The 

T669A-EGF receptor also displayed basal luciferase activity (Figure 2.13C).  But in this 

mutant, treatment with EGF led to a decrease in luciferase complementation with no 

significant recovery back towards baseline levels of activity (Figure 2.13D).  

Furthermore, the decrease observed in the T669A-EGFR-NLuc/CLuc cells was greater in 

magnitude than that observed in the wild-type EGFR-NLuc/CLuc cells (Figure 2.13B and 

D).  This pattern was similar to that seen in cells expressing wild type EGFR-NLuc/CLuc 

cells but treated with U0126 (Figure 2.12).  These data suggest that the recovery in 

luciferase complementation is a result of the phosphorylation of the EGF receptor on Thr-

669 by MAP kinase. 

Discussion 

 The use of firefly luciferase for enzyme complementation has allowed continuous 

monitoring of reversible conformational changes in the EGF receptor.  When the 

luciferase fragments were fused to EGF receptors that contained only the extracellular 

and transmembrane domains of the receptor, the system permitted the direct imaging of 

EGF receptor dimerization in real time in living cells.  The observed rate of receptor 

dimerization paralleled the rate of ligand binding suggesting that the luciferase 

complementation system responds rapidly to changes in proximity of the fragments, 

allowing an accurate temporal read-out of receptor dimerization in vivo.  Previous studies 

that employed a ß-galactosidase complementation system reported dimerization rates that 
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were 5- to 10-fold slower than those observed here (111, 112).  The time lag between 

ligand binding and receptor dimerization, as measured by the ß-galactosidase assay, is 

likely due to the fact that the ß-galactosidase assay must be performed ex vivo on lysed 

cells and is susceptible to artifacts resulting from the slow, continuous accumulation of 

product over time.  Thus, the ß-galactosidase system is suboptimal for monitoring rapid 

and dynamic changes in protein-protein interactions.  

 When the luciferase fragments were fused to the full-length EGF receptor, 

substantially different results were obtained than with the truncated EGF receptor.  A 

significant basal luciferase activity was observed, suggesting that the unstimulated EGF 

receptor exists in a conformation in which the C-terminal tails of the two monomers are 

in close proximity to each other.  This is consistent with previous reports that some 

fraction of cell-surface EGF receptors exist as pre-formed dimers (42, 113-115).  

Addition of the tyrosine kinase inhibitors erlotinib and AG1478 significantly increased 

the basal luciferase activity.  This is in agreement with the observation that the level of 

inactive, pre-formed EGF receptor dimers is increased by treatment of cells with 4-

anilinoquinazoline tyrosine kinase inhibitors (116-119).  Our finding that erlotinib also 

enhanced basal luciferase complementation in the kinase-dead K721A-EGF receptor 

system suggests that the effects of erlotinib are due solely to the binding of the inhibitor 

and do not require an active tyrosine kinase.  Calmidazolium, an antagonist of 

calmodulin, also led to a significant increase in the basal luciferase activity.  While the 

exact mechanism is not known, previous studies suggest that in addition to blocking 

calmodulin activity, these types of inhibitors can also bind to the plasma and internal 

membranes of the cell (105).  This binding may change the electrostatic surface potential, 
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disrupt EGF receptor interactions with the membrane in the basal state, and result in 

enhanced accessibility of the luciferase fragments for one another (120). 

 Addition of EGF to the EGFR-NLuc/CLuc cells resulted in a biphasic response to 

the ligand.  Initially, EGF stimulated a rapid decrease in luciferase activity.  This was 

followed by a slower recovery back to baseline levels of luciferase complementation.  

These findings are interpreted as the presence of two sequential, ligand-induced 

conformational changes in the EGF receptor. 

   For several reasons, we do not feel that the observed changes are related to 

internalization and/or degradation of the EGF receptor.  First, the initial decrease in 

luciferase activity occurs much more rapidly than the degradation of the EGF receptor.  

Thus, it seems unlikely that the loss of luciferase activity is due to the loss of receptors.  

Furthermore, the decrease in luciferase activity is reversible indicating that it cannot be 

due to an irreversible process such as preoteolysis of the receptor.  The recovery phase 

could arise from clustering of the receptors in coated pits for internalization.  However, 

both U0126 treatment and the T669A mutation lead to enhanced receptor internalization 

(121) and would thus be expected to promote the recovery phase.  However, they actually 

led to its ablation.  It therefore seems probable that the observed changes in luciferase 

activity are the result of conformational changes in the EGF receptor. 

 Treatment with EGF initially led to a rapid decrease in luciferase activity 

consistent with the hypothesis that a conformational change had occurred that resulted in 

the separation of the luciferase fragments.  The decrease in luciferase activity was 

dependent on the concentration of EGF and reached its maximum 2 to 4 min after the 

addition of EGF.  This is well after receptor autophosphorylation has peaked, suggesting 
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that this conformational change occurs as a result of receptor autophosphorylation rather 

than concomitant with kinase activation.   

 Consistent with this hypothesis, treatment of the cells with erlotinib, AG1478, 

TPA, or calmidazolium blocked the decrease in light production.  More importantly, 

mutation of the receptor to the kinase-dead K721A variant abolished the decrease in 

luciferase activity and actually led to a system in which EGF stimulated an increase in 

light production.  This demonstrates that: i) the conformational dynamics reported by the 

luciferase fragment complementation assay are the result of receptor tyrosine kinase 

activity; and, ii) EGF does induce dimer formation in the context of the full-length EGF 

receptor but its effects are masked by conformational changes within the intracellular 

domain.  The observation that tyrosine kinase inhibitors erlotinib and AG1478 blocked 

the decrease in luciferase activity but did not reveal the increase in receptor dimer 

formation in the wild type receptor may be due to the presence of residual kinase activity 

in the inhibitor-treated cells.  A low level of kinase activity would promote a decrease in 

complementation thereby offsetting the increase in luciferase activity induced by EGF 

receptor dimerization.   

 It is noteworthy that EGF stimulated dimerization of the kinase-dead EGF 

receptor in the presence of erlotinib enhanced receptor-receptor interactions.  This 

suggests that the effects of EGF and erlotinib on the formation of receptor dimers occur 

through independent mechanisms.  Presumably, EGF induces dimerization of the 

extracellular domains while erlotinib promotes kinase-kinase interactions within the 

intracellular domain (58, 122-124).  Whether these mechanisms can work additively 

within the same receptor dimer (or tetramer) is unclear.  However, the fact that EGF 
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stimulated luciferase complementation in receptors that were fully saturated with 

erlotinib suggests that this is likely the case. 

 The EGF receptor is extensively autophosphorylated on its C-terminal tail (55, 

58-60) and previous studies on the isolated cytoplasmic domain of the receptor suggested 

that the C-terminal tail adopts a more extended conformation following phosphorylation 

(40, 41, 99).  It was therefore possible that the decrease in luciferase activity was due to a 

phosphorylation-induced change in the position of the C-terminal tails within the 

activated EGF receptor dimer with no movement of the kinase domains.  Fusion of the 

luciferase fragments to a truncated EGF receptor lacking the C-terminal tail resulted in a 

system in which both the initial decrease and the subsequent recovery of luciferase 

complementation were visible but noticeably dampened.  This suggests that ligand 

binding induces a change in the relative positions of the kinase domains that separates the 

luciferase fragments.  While changes in the C-terminal tails may also contribute to this 

effect in the full-length receptor, the C-terminal tails seem to be relatively more important 

in the recovery phase of luciferase complementation.  

 Luciferase fragment complementation identified a second ligand-induced 

conformational change in the EGF receptor that followed the tyrosine phosphorylation-

dependent separation of the C-terminal tails.  This second phase was marked by the 

recovery of luciferase activity back to baseline levels.  The recovery phase occurred over 

a time course that was similar to the activation of MAP kinase, a downstream signaling 

pathway stimulated by EGF.  Inhibition of MAP kinase activation abolished the recovery 

of luciferase activity suggesting that a MAP kinase-catalyzed phosphorylation event is 

responsible for the increase in luciferase activity.    
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MAP kinase is known to phosphorylate the EGF receptor on Thr-669 (108-110).  

When the luciferase fragments were fused to the T669A-EGF receptor, EGF stimulated a 

decrease in luciferase activity but the recovery phase was completely ablated.  These data 

are consistent with the interpretation that phosphorylation of the EGF receptor on Thr-

669 by MAP kinase induces a conformational change in the receptor that allows the re-

establishment of complementation between the luciferase fragments.  

 Recent studies have demonstrated that phosphorylation of the EGF receptor on 

Thr-669 leads to desensitization of the receptor (121).  Our data suggest that this 

functional change in the EGF receptor is likely to be the result of a conformational 

change in the receptor.  We hypothesize that phosphorylation of the EGF receptor on 

Thr-669 by MAP kinase induces a re-orientation of the kinase domains that results in the 

adoption of a post-activated conformation of the receptor in which the C-terminal tails 

are once again in close proximity.  The relationship between the resting and the post-

activated conformations of the receptor is not clear.  However, because the activated 

receptor would be phosphorylated, ubiquitinated and bound to a variety of interacting 

molecules, it seems likely that the final conformation of the activated receptor would 

differ substantially from that of an unstimulated receptor.   

 The data presented here are consistent with the model shown in Figure 2.14.  A 

significant basal photon flux was observed, indicating the presence of receptor-receptor 

interactions in the inactive state (Figure 2.14A).  Following addition of ligand, a rapid 

decrease in luciferase activity was observed, indicating a separation of the luciferase 

fragments (Figure 2.14B).  This likely represents formation of the activating asymmetric 

kinase dimer, which places the luciferase fragments in a position where they cannot 
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complement.  Finally, a recovery in luciferase activity to baseline levels was observed 

that indicates the luciferase fragments can again complement (Figure 2.14C).  This 

recovery was entirely dependent on the MAP kinase-mediated phosphorylation of the 

EGF receptor on Thr-669, indicating that this modification alters the final conformation 

adopted by the EGF receptor.  

 Li et al. (125) recently reported the use of luciferase fragment complementation to 

study EGF receptor interactions.  These workers reported that EGF did not elicit any 

change in the photon flux in cells expressing NLuc and CLuc fused to the full-length 

EGF receptor.  However, their protocol involved treatment of their cells with EGF for 15 

min prior to imaging.  Thus, they only observed the system after it had recovered back to 

baseline levels of luciferase complementation and failed to see the early dynamics that 

follow ligand binding. 

 Our data demonstrate the utility of luciferase fragment complementation imaging 

for monitoring reversible conformational changes in the EGF receptor in real time in 

living cells.  Utilizing this approach, we developed an assay for assessing dimerization of 

the EGF receptor in intact cells using either C-terminally truncated or kinase-dead 

receptors.  This assay is superior to the chemical cross-linking studies normally used as it 

is more sensitive and yields accurate information on the temporal progress of the 

dimerization reaction.  The ability to generate temporal information allowed us to 

identify two sequential ligand-induced changes in the conformation of the full-length 

EGF receptor.  These observations reveal structural dynamics in the activated EGF 

receptor and provide insight into how MAP kinase may induce desensitization of the 

EGF receptor. 



 36 

Experimental Procedures 

 Reagents—Murine EGF was purchased from Biomedical Technologies, Inc. and 

was dissolved in sterile water.  U0126, AG1478, and calmidazolium were purchased 

from EMD Chemicals and were dissolved in DMSO.  Erlotinib was obtained from OSI 

Pharmaceuticals and was dissolved in DMSO. 12-O-tetradecanoylphorbol 13-acetate 

(TPA, Sigma) was dissolved in DMSO.  Rapamycin was dissolved in DMSO and was 

kindly provided by Dr. D. Piwnica-Worms (Washington University, St. Louis, MO).  

Doxycycline was purchased from Clontech and was dissolved in sterile water.  D-

Luciferin (Biosynth) was dissolved in PBS and coelenterazine (Sigma) was dissolved in 

ethanol.  The MAP kinase antibody was from Upstate and the phospho-specific MAP 

kinase and luciferase antibodies were from Promega.  The phosphotyrosine antibody 

(PY20) was from BD Biosciences.  The phospho-Tyr1173 and phospho-Thr669 specific 

antibodies were from Upstate.  The EGF receptor was detected using Erbitux (ImClone) 

or a mixture of antibodies from Cell Signaling and Santa Cruz. 

 DNA Constructs—To generate the EGFR-NLuc construct, Notch full-length-

NLuc (NFL-NLuc, kindly provided by Dr. R. Kopan Washington University, St. Louis, 

MO) was digested with BsiWI and XbaI.  A flexible Gly-Ser rich linker was generated 

(amino acid sequence WPRSYASRGGGSSGGG) (100) containing SacII, BsiWI, and 

XbaI sites.  The linker was ligated into the NFL-NLuc construct using the BsiWI and 

XbaI sites.  An EGFR-GFP construct (126) was digested with SacII and XbaI and was 

ligated into the NFL-NLuc construct to generate EGFR-NLuc in pcDNA3.1 TOPO 

(Invitrogen).  EGFR-NLuc was ligated into MCSI of the pBI-Tet vector (Clontech) using 

the NheI and EcoRV sites.  
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 EGFR-CLuc was constructed by ligating NFL-CLuc (kindly provided by Dr. R. 

Kopan Washington University, St. Louis, MO) into EGFR-NLuc using the HindIII and 

BsiWI restriction sites.  EGFR-CLuc was cloned into pcDNA6/V5-His B (Invitrogen) 

using the BstEII and EcoRV sites in the EGFR pcDNA6/V5-His B construct.  To make 

the ΔC-EGFR-NLuc and CLuc constructs, a BsiWI site was inserted in the ΔC-EGFR 

(127) (pBI-Tet) construct using QuikChange site-directed mutagenesis (Stratagene).  

EGFR-NLuc (pBI-Tet) and EGFR-CLuc (pcDNA6/V5-His B) were digested with NheI 

and BsiWI and ΔC-EGFR was ligated into these sites.  This resulted in the following 

linker DYKAYASRGGGSSGGG (100).  To make the c′973-EGFR-NLuc and CLuc 

constructs, a BsiWI site was inserted into the EGFR (pcDNA5.FRT) following amino 

acid 973 using QuikChange site-directed mutagenesis.  The DNA was digested with NheI 

and BsiWI and cloned into the EGFR-CLuc (pcDNA6/V5-His B) or EGFR-NLuc (pBI-

Tet) constructs, resulting in the following linker YASRGGGSSGGG (100).  The K721A-

EGFR-CLuc construct was made using QuikChange site-directed mutagenesis 

(Stratagene) in the EGFR-CLuc pcDNA6/V5-His B construct. The K721A-EGFR-NLuc 

construct was made by digesting EGFR-NLuc (pcDNA3.1 TOPO) with BstEII and KpnI. 

The insert was ligated into the K721A pcDNA5.FRT (Invitrogen) construct digested with 

the same enzymes.  The T669A-EGFR-CLuc construct was made using QuikChange site-

directed mutagenesis (Stratagene) in the EGFR-CLuc pcDNA6/V5-His B construct.  The 

T669A-EGFR-NLuc construct was made by digesting EGFR-NLuc (pcDNA3.1 TOPO) 

with BstEII and KpnI.  The insert was ligated into the T669A pcDNA5.FRT (Invitrogen) 

construct digested with the same enzymes.  All mutations were verified by sequencing. 
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 The FRB-NLuc and CLuc-FKBP constructs were kindly provided by Dr. D. 

Piwnica-Worms (100) (Washington University, St. Louis, MO). 

 Cell lines—CHO-K1 Tet-On cells (Clontech) were cotransfected with pTK-Hyg 

(Clontech) and EGFR-NLuc (pBI-Tet MCSI) using Lipofectamine 2000 (Invitrogen).  

Stable clones were isolated by selection in 400 µg/ml hygromycin (Invitrogen).  A 

double-stable cell line was established by transfecting EGFR-CLuc (pcDNA6/V5-HisB) 

into EGFR-NLuc cells using Lipofectamine 2000 and selecting in 10 µg/ml blasticidin-S 

(Invitrogen).  Double-stable lines were grown in DMEM containing 10% FBS, 1000 

µg/ml penicillin/streptomycin, 100 µg/ml G418, 50 µg/ml hygromycin, and 2 µg/ml 

blasticidin-S.  ΔC-EGFR-NLuc (pBI-Tet MCSI) and c′973-EGFR-NLuc (pBI-Tet MCSI) 

were stably expressed as described above for EGFR-NLuc.  Cells were maintained in 

DMEM containing 10% FBS, 1000µg/ml penicillin/streptomycin, 200µg/ml G418, and 

100µg/ml hygromycin.  ΔC-EGFR-CLuc (pcDNA6/V5-His B) and c′973-EGFR-CLuc 

(pcDNA6/V5-His B) were transiently transfected into the appropriate parental cell line 24 

hr prior to luciferase complementation imaging using Lipofectamine 2000 (Invitrogen).  

The K721A-EGFR-NLuc/K721A-EGFR-CLuc constructs and the T669A-EGFR-

NLuc/T669A-EGFR-CLuc constructs were transiently transfected into CHO-K1 Tet-On 

cells 24 hours prior to luciferase complementation imaging using Lipofectamine 2000.  

To assess the transfection efficiency, cells were co-transfected with renilla luciferase 

(pRLuc-N1, Packard Bioscience).  FI CHO cells were purchased from Invitrogen and 

were co-transfected with wild type EGFR (pcDNA5.FRT) and pOG44.  Stable clones 

were selected in F-12 media containing 10% FBS, 1000 µg/ml penicillin/streptomycin, 
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and 400 µg/ml hygromycin.  Cell lines were maintained in F-12 containing 100 µg/ml 

hygromycin.   

 Kinase activation and Western Blotting—EGFR-NLuc/CLuc or FI CHO EGFR 

cells were grown to confluence in 35 mm dishes.  Cells were serum-starved in DMEM 

containing 1 mg/ml BSA for 3 hr.  Culture medium was removed and cells were washed 

twice in ice-cold PBS and then scraped into RIPA buffer (150 mM NaCl, 10 mM Tris pH 

7.2, 0.1% sodium dodecylsulfate, 1% Triton X-100, 17 mM deoxycholate, and 2.7 mM 

EDTA) containing 20 mM p-nitrophenyl phosphate, 1 mM sodium orthovanadate, and 

protease inhibitors.  Equal amounts of protein (BCA assay, Pierce) were loaded onto a 

9% SDS-polyacrylamide gel and then transferred to PVDF (Millipore) or nitrocellulose 

(Osmonics, Inc.).  Western blots were blocked for 1 hour in TBST/10% nonfat milk.  The 

blots were incubated in primary antibody for 1 hr, washed in TBST/0.1% BSA, incubated 

in secondary antibody for 45 min and washed three times in TBST/0.1% BSA.  Western 

blots were detected using the ECL reagent from GE Healthcare.  

 125I-EGF Binding—Murine EGF was radioiodinated and ligand binding assays 

were performed as described previously (102). 

 Luciferase complementation imaging—Cells were plated 48 hr prior to use at 5 

x103 cells per well in DMEM containing doxycycline in a black-walled 96-well plate.  

On the day of the assay, cells were serum-starved for 3 hr and then incubated for 20 min 

in 175 µl DMEM without phenol red, containing 1 mg/ml BSA, 25 mM Hepes, and 0.6 

mg/ml D-luciferin at 37°C.  To establish a baseline, cell radiance (photons/second/cm2/sr) 

was measured using a cooled CCD camera and imaging system at 37°C (IVIS 50; 

Caliper) (30 sec exposure; binning, 8; no filter; f-stop, 1; field of view, 12 cm).  EGF was 
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added in a volume of 25 µl in the same media (DMEM, 1mg/ml BSA, 25mM Hepes, 

0.6mg/ml D-Luciferin).  Radiance was measured sequentially as described above.  For 

the ΔC-EGFR, c′973-EGFR, K721A-EGFR, and T669A-EGFR experiments involving 

transient transfection, the transfection efficiency was assessed by monitoring renilla 

luciferase expression.  Media was replaced on cells with DMEM (no phenol red) 

containing 1 mg/ml BSA, 25 mM Hepes, and 400 nM coelenterazine.  Radiance was 

immediately measured as described above except the filter was set to <510.  

 Data Analysis—Data was collected in quadruplicate for each condition.  A flat-

field correction was done to correct for differences in the baseline photon flux.  Light 

production expressed as photon flux (photons/sec) was determined from regions-of-

interest defined over wells using LIVINGIMAGE (Xenogen) and IGOR (Wavemetrics) 

software.  Changes in photon flux were calculated by subtracting values from untreated 

cells from those of EGF-treated cells.  Standard errors were determined using the formula 

for the unpooled standard error.  
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Figure 2.1.  Reconstitution of luciferase activity and 125I-EGF binding in ΔC-EGFR-
NLuc/CLuc CHO cells.  ΔC-EGFR-NLuc CHO cells were plated 48 hr prior to imaging 
in DMEM containing 1 µg/ml doxycycline.  24 hrs before imaging, cells were transiently 
transfected with cDNA encoding ΔC-EGFR-CLuc.  On the day of imaging, cells were 
pre-incubated for 20 min with 0.6 mg/ml D-luciferin.  A) Photon flux (photons/sec; p/s) 
in the absence of agonist stimulation (open circles) or in the presence of 10 nM EGF 
(closed squares).  B) Change in photon flux over time in cells stimulated with 1 nM (open 
circles, association rate 0.14 ± 0.015 min-1) or 10 nM (closed circles, association rate 0.30 
± 0.03 min-1) EGF.  C) Time course of 125I-EGF binding to cells expressing ΔC-EGFR-
NLuc at 37º C using 1 nM (open circles, association rate 0.15 ± 0.02 min-1) or 10 nM 
(closed circles, association rate 0.42 ± 0.13 min-1) EGF.  Error bars represent the standard 
error of four independent measurements for each condition.  The one-phase exponential 
association was fit in B and C using non-linear least squares analysis with the GraphPad 
Prism software.    
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Figure 2.2.  Characterization of the full-length EGFR-NLuc and EGFR-CLuc.  A) 
Scatchard analysis of 125I-EGF binding to CHO cells stably expressing EGFR-CLuc (no 
doxycycline, open circles) or EGFR-NLuc/CLuc (closed circles) in which EGFR-NLuc 
expression had been induced by the addition of 1 µg/ml doxycycline for 48 hrs.  Data 
were fit to a two-site binding hyberbola using nonlinear regression from the GraphPad 
Prism software.  B) CHO cells stably expressing either EGFR-NLuc or EGFR-CLuc were 
stimulated with 10 nM EGF at 37ºC for the indicated lengths of time.  Western blot 
analysis was performed with the indicated antibodies.  C) CHO cells stably expressing 
either EGFR-NLuc (1µg/ml doxycycline for 48 hrs) or EGFR-CLuc were lysed and 
Western plot analysis was performed with an anti-luciferase antibody.  
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Figure 2.3.  Reconstitution of luciferase activity in response to EGF in EGFR-
NLuc/CLuc cells.  EGFR-NLuc/CLuc cells were plated into DMEM containing 1 µg/ml 
doxycycline 48 hr prior to imaging.  Before collecting data, cells were incubated for 20 
min with 0.6 mg/ml D-luciferin.  A) Photon flux (photons/sec; p/s) in the absence of 
ligand.  B-G) Change in photon flux following addition of varying concentrations of 
EGF.  H) HeLa cells were plated 48 hrs prior to bioluminescence imaging in DMEM.  
Cells were transiently transfected with FRB-NLuc and CLuc-FKBP (100) 24 hrs prior to 
imaging.  Cells were pre-treated with rapamycin (80 nM for 5 hrs).  Before collecting 
data, cells were incubated for 20 min with 0.6 mg/ml D-luciferin.  Photon flux was 
immediately measured over time after the addition of vehicle, 10 nM EGF, or rapamycin.  
Error bars represent the standard error of four independent measurements for each 
condition.  
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Figure 2.4. Competition of basal luciferase complementation using unlabeled wild 
type EGF receptor.  EGFR-NLuc/CLuc cells were plated in DMEM containing 1µg/ml 
doxycycline 48 hrs prior to imaging.  Cells were transiently transfected with empty vector 
(pcDNA5.FRT) or unlabeled wild type EGF receptor 24 hrs prior to imaging.  Before 
collecting data, cells were serum starved for 3 hrs and then were incubated for 20 min in 
0.6 mg/ml D-luciferin.  The maximum photon flux (photons/sec; p/s) is shown for several 
concentrations of wild type unlabeled EGF receptor or after cells were stimulated with 10 
nM EGF. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5.  Comparison of the rate of EGF receptor autophosphorylation to the 
EGF-stimulated decrease in luciferase activity.  For the EGF receptor 
autophosphorylation, EGFR-NLuc/CLuc cells were plated in 6-well dishes in DMEM 
containing 1 µg/ml doxycycline 48 hrs prior to assay.  On the day of assay, cells were 
serum starved for 3 hrs before stimulation with 10 nM EGF for the indicated lengths of 
time.  Cells were lysed and equal proteins were loaded on a 9% SDS-PAGE gel.  Proteins 
were transferred and Western blot analysis was done with a phosphotyrosine antibody 
(pY20, BD Biosciences).  Densiometric analysis was done using Image J (NIH).  For 
luciferase imaging, EGFR-NLuc/CLuc cells were plated in DMEM containing 1 µg/ml 
doxycycline 48 hrs prior to imaging.  Before collecting data, cells were incubated for 20 
min with 0.6 mg/ml D-Luciferin.  Photon flux (photons/sec; p/s) was measured after 
addition of 10 nM EGF.  Error bars represent the standard error of four independent 
measurements for each condition.  
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Figure 2.6. Inhibition of EGF receptor autophosphorylation and MAP kinase 
activation following pre-treatment with AG1478 or Erlotinib. FI CHO cells stably 
expressing the EGF receptor were plated 48 hrs prior to assay in 6-well dishes.  On the 
day of the assay, cells were serum starved 3 hrs.  Cells were pre-treated with the indicated 
concentrations of AG1478 for 20 min or with erlotinib for 1 hr.  25 nM EGF was added 
for 3 min, cells were lysed, and equal proteins were loaded on a 9% SDS-PAGE gel.  
Western blot analysis was done with the indicated antibodies.   
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Figure 2.7.  Effect of a kinase inhibitor on reconstituted luciferase activity.  A) 
EGFR-NLuc/CLuc cells were plated in DMEM containing 1 µg/ml doxycycline 48 hrs 
prior to imaging.  EGFR-NLuc/CLuc CHO cells were treated with vehicle or 5 µM 
erlotinib for 1 hr prior to imaging.  Cells were treated for 20 min with 0.6 mg/ml D-
Luciferin prior to imaging.  A) Basal luciferase activity in photon flux (photons/sec; p/s).  
Control values were corrected independently by the baseline for erlotinib or AG1478.  B) 
HeLa cells were plated 48 hrs prior to bioluminescence imaging in DMEM.  Cells were 
transiently transfected with FRB-NLuc and CLuc-FKBP (100) 24 hrs prior to imaging.  
Cells were pre-treated with rapamycin (80 nM for 5 hrs).  Before collecting data, cells 
were incubated for 20 min with 0.6 mg/ml D-luciferin.  Photon flux was immediately 
measured over time after the addition of vehicle, 5 µM erlotinib, 10 µM AG1478, or 
rapamycin.  The control in this experiment is also used in Figure 2.3H.  C and D) 
Luciferase activity in EGFR-NLuc/CLuc cells as in (A) treated with 10 nM EGF in the 
absence or presence of 10 µM AG1478 (C) or 5 µM erlotinib (D) pre-treatment.  Error 
bars represent the standard error of four independent measurements for each condition.   
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Figure 2.8. Effect of TPA treatment on EGF receptor autophosphorylation and 
luciferase activity in EGFR-NLuc/CLuc cells.  EGFR-NLuc/CLuc cells were plated in 
DMEM containing 1µg/ml doxycycline 48 hrs prior to assay or imaging.  Cells were 
serum starved 3 hrs on the day of assay, followed by pre-treatment for 20 min in vehicle 
or 100 nM TPA. A) Cells were stimulated with 10 nM EGF for the indicated lengths of 
time and were then lysed.  Equal proteins were loaded on a 9% SDS-PAGE gel and 
Western blot analysis was done with the indicated antibodies.  B and C) Prior to 
luciferase complementation imaging, cells were incubated for 20 min in DMEM 
containing 0.6 mg/ml D-luciferin and DMSO (vehicle) or 100 nM TPA.  Photon flux 
(photons/sec; p/s) was immediately measured after addition of vehicle (B) or 10 nM EGF 
(C).  
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Figure 2.9.  Effect of the protein kinase C activator, calmidazolium, on EGF 
receptor autophosphorylation and reconstituted luciferase activity.  EGFR-
NLuc/CLuc or HeLa cells were plated in DMEM containing 1µg/ml doxycycline 48 hrs 
prior to assay or imaging.  Cells were serum starved 3 hrs on the day of assay, followed 
by pre-treatment for 20 min in vehicle or 10 µM calmidazolium. A) Cells were stimulated 
with 10 nM EGF for the indicated lengths of time.  Cells were lysed, equal proteins were 
loaded on a 9% SDS-PAGE gel and Western blot analysis was done with the indicated 
antibodies.  B) Prior to luciferase complementation imaging, cells were incubated for 20 
min in DMEM containing 0.6 mg/ml D-luciferin and DMSO (vehicle) or 10 µM 
calmidazolium.  Photon flux (photons/sec; p/s) was immediately measured.  Control 
values were corrected independently by the baseline for calmidazolium.  C) He La cells 
were transiently transfected with FRB-NLuc and CLuc-FKBP (100) 24 hrs prior to 
imaging.  Cells were pre-treated with rapamycin (80 nM for 5 hrs).  Before collecting 
data, cells were incubated for 20 min with 0.6 mg/ml D-luciferin.  Photon flux was 
immediately measured over time after the addition of vehicle, 10 µM calmidazolium, or 
rapamycin.  The control in this experiment is also used in Figure 2.3H.  D) EGFR-
NLuc/CLuc cells were treated as in (B) except that photon flux was measured after 
addition of 10 nM EGF.  Error bars represent the standard error of at least four 
independent measurements.  
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Figure 2.10.  Expression of kinase-dead EGF receptor and the effect on 
reconstituted luciferase activity.  CHO-K1 Tet-On cells were plated in DMEM 48 hrs 
prior to luciferase imaging.  Cells were transiently transfected with cDNA for K721A-
EGFR-NLuc and K721A-EGFR-CLuc 24 hrs prior to imaging.  Prior to imaging, cells 
were serum starved 2 hrs, pre-treated for 1 hr in media containing vehicle or 5 µM 
erlotinib, and then treated for 20 min with 0.6 mg/ml D-Luciferin.  A) Basal photon flux 
(photons/sec; p/s).  Control values were corrected independently by the baseline for 
erlotinib.  B) Luciferase activity in cells treated with 10 nM EGF.  Error bars represent 
the standard error of four independent measurements for each condition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.11.  Effect of truncation of the C-terminal tail of the EGF receptor on 
reconstituted luciferase activity.  CHO cells stably expressing c′973-EGFR-NLuc were 
plated in DMEM containing 2 µg/ml doxycycline 48 hrs prior to luciferase imaging.  
Cells were transiently transfected with c′973-EGFR-CLuc 24 hrs prior to imaging.  Cells 
were treated for 20 min with 0.6 mg/ml D-Luciferin prior to imaging.  A) Basal photon 
flux (photons/sec; p/s).  B) Luciferase activity in cells treated with 10 nM EGF.  Error 
bars represent the standard error of four independent measurements for each condition.  
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Figure 2.12.  Contribution of MAP kinase activation to the recovery of reconstituted 
luciferase activity.  EGFR-NLuc/CLuc cells were plated 48 hrs prior to assay in DMEM 
containing 1 µg/ml doxycycline.  Cells were serum starved for 3 hrs prior to assay.  
EGFR-NLuc/CLuc cells were pre-treated with vehicle (control, top left) or 10 µM U0126 
(top right) for 20 min prior to addition of 10 nM EGF at time = 0.  Western blot analysis 
was performed with the indicated antibodies.  For the luciferase imaging, EGFR-
NLuc/CLuc cells were plated 48 hrs before imaging in DMEM containing 1 µg/ml 
doxycycline.  EGFR-NLuc/CLuc cells were pre-treated with vehicle (control) or 10 µM 
U0126 for 20 min (both in the presence of 0.6 mg/ml D-Luciferin).  The photon flux in 
the absence of ligand (bottom left) or after addition of 10 nM EGF (bottom right) was 
monitored over time.  Error bars represent the standard error of four independent 
measurements for each condition.  
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Figure 2.13.  Effect of mutation of Thr-669 of the EGF receptor on reconstituted 
luciferase activity.  Panels A-B) CHO-K1 Tet-On cells were transiently transfected with 
EGFR-NLuc and EGFR-CLuc 24 hrs prior to imaging.  Cells were treated for 20 min 
with 0.6 mg/ml D-Luciferin prior to imaging.  A) Basal photon flux (photons/sec; p/s).  
B) Luciferase activity in cells treated with 10 nM EGF. Panels C-D) CHO-K1 Tet-On 
cells were transiently transfected with T669A-EGFR-NLuc and T669A-EGFR-CLuc 24 
hrs prior to imaging.  Cells were treated for 20 min with 0.6 mg/ml D-Luciferin prior to 
imaging.  C) Photon flux (photons/sec; p/s) in the absence of ligand.  D) Change in 
photon flux following addition of 10 nM EGF.  Error bars represent the standard error of 
four independent measurements for each condition.  
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Figure 2.14.  Model for intracellular domain conformational changes observed using 
luciferase fragment complementation imaging of the full-length EGF receptor.  A) 
In the absence of ligand, a significant photon flux is observed, indicating the presence of 
basal receptor-receptor interactions.  B) Addition of ligand induces formation of the 
activating asymmetric EGF receptor kinase dimer.  Transition to this conformational state 
separates the luciferase fragments, placing them in a conformation where interaction is no 
longer possible, resulting in the observed decrease in luciferase activity.  C) Following 
the ligand-induced decrease in luciferase activity, a recovery is observed that is 
dependent on MAP kinase activity and the presence of an intact EGF receptor Thr-669 
that can be phosphorylated.  White circles represent unphosphorylated residues, while red 
circles indicate the presence of phopshorylation. 
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CHAPTER 3. MAP Kinase Desensitizes the EGF Receptor by Blocking Allosteric 

Activation of the Kinase Domain 

Introduction 

Following activation, the EGF receptor is desensitized in order to dampen 

receptor signaling.  Long-term desensitization is mediated by internalization and 

degradation of the receptor (82, 83).  In addition, there exists a more rapid desensitization 

mechanism thought to be mediated by a reduction in protein tyrosine kinase activity (86-

88).  More specifically, previous work suggests that this rapid desensitization mechanism 

relies on phosphorylation of the EGF receptor on two threonine residues (Thr-654 and 

Thr-669) within the intracellular juxtamembrane region (93, 94).  Of these two sites, Thr-

669 is the major site of threonine phosphorylation in the EGF receptor (95).  

Phosphorylation of this site is mediated by a feedback loop: the EGF receptor activates 

MAP kinase, which in turn directly phosphorylates the EGF receptor on Thr-669 (96-98).  

Mutation of Thr-669 to Ala is associated with enhanced EGF receptor phosphorylation 

(94).  Despite recognition that phosphorylation of Thr-669 is associated with EGF 

receptor desensitization, the mechanism by which phosphorylated Thr-669 blocks 

receptor kinase activity is not understood.   

Recent studies by two groups highlights the importance of the intracellular 

juxtamembrane region in activation of the EGF receptor kinase domain (36, 38, 39).  

These studies were discussed in detail earlier and so will not be repeated here.  The 

important finding of these studies was that activation of the EGF receptor kinase domain, 

through formation of the asymmetric dimer, relies on additional contacts mediated by the 
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intracellular juxtamembrane domain of the acceptor kinase and the C-lobe of the donor 

kinase. 

 In Chapter 2, luciferase fragment complementation imaging identified sequential 

ligand-induced conformational changes in the EGF receptor.  The final conformation 

adopted by the EGF receptor was dependent on MAP kinase activation.  The time course 

of this conformational change followed the time course of activation of MAP kinase and 

EGF receptor Thr-669 phosphorylation. These data suggested that desensitization of the 

EGF receptor through phosphorylation on Thr-669 may result in a re-orientation of the 

kinase domains that leads to a loss in tyrosine kinase activity.   

The aim of this chapter is to describe mechanistically how MAP kinase mediates 

desensitization of the EGF receptor.  Acidic residues were identified in the C-lobe of the 

donor kinase domain that are in proximity to Thr-669 of the activator kinase domain. We 

hypothesized that when Thr-669 is phosphorylated by MAP kinase, a charge repulsion 

exists that blocks the allosteric activation mechanism of the kinase domain, resulting in a 

loss of tyrosine kinase activity.  Mutations in the kinase domain of either Thr-669 or C-

lobe acidic residues to alanines resulted in an enhancement of EGF receptor 

autphosphorylation and reduced sensitivity to MAP kinase activation compared to the 

wild type receptor.  Luciferase fragment complementation imaging of these mutants 

showed that upon EGF stimulation, there was an initial rapid decrease in luciferase 

activity similar to the wild type receptor. However, the subsequent recovery of luciferase 

activity observed in wild type receptor was completely ablated.  

 

 



 55 

Results 

EGF induces enhanced phosphorylation and internalization of the T669A-EGF receptor 

 MAP kinase has been shown to phosphorylate the EGF receptor on Thr-669 (97, 

98).  As shown in Figure 3.1A, treatment of cells expressing the wild type EGF receptor 

with EGF leads to a dose-dependent increase in the level of receptor 

autophosphorylation.  This is associated with the activation of MAP kinase and the 

concomitant phosphorylation of the EGF receptor on Thr-669.   

 MAP kinase is also activated in response to EGF in cells expressing the T669A-

EGF receptor (Figure 3.1A).  As expected, there is no phosphorylation of this receptor on 

Thr-669.  However, there is a clear increase in the level of EGF receptor 

autophosphorylation as compared to that seen in the wild type EGF receptor.  These data 

are consistent with previous reports (94) and suggest that phosphorylation of the EGF 

receptor on Thr-669 leads to a desensitization of the tyrosine kinase activity of the EGF 

receptor. 

 The ability of the T669A-EGF receptor to mediate internalization of 125I-EGF was 

next examined.  Cells were incubated at 37°C with 1 nM 125I-EGF for varying lengths of 

time.  The amount of internalized 125I-EGF/surface 125I-EGF was plotted versus the 

length of incubation time to determine the internalization rate (Figure 3.1B).  Both the 

wild-type and T669A-EGF receptors mediated internalization of EGF, however, the rate 

of internalization of the T669A-EGF receptor was faster compared to the wild-type EGF 

receptor (0.078 ± 0.004 min-1 versus 0.052 ± 0.003 min-1, respectively).  This is 

consistent with the observation that the T669A-EGF receptor has increased 
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autophosphorylation compared to the wild-type EGF receptor and is therefore likely to 

internalize at an increased rate.  

Mutation of acidic amino acids in the C-lobe of the EGF receptor kinase domain result in 

elevated autophosphoryatlion independent of MAP kinase activity 

 Thr-669 is in the intracellular juxtamembrane domain of the EGF receptor, just 

upstream of the tyrosine kinase domain (Figure 3.2).  Several recent studies (36, 38, 39) 

have shown that the juxtamembrane domain participates in the activation of the tyrosine 

kinase.  In particular, the juxtamembrane domain of the acceptor kinase interacts with the 

C-lobe of the donor kinase to stabilize the asymmetric dimer interface.  Phosphorylation 

of Thr-669 could desensitize the EGF receptor kinase by destabilizing the activating 

asymmetric dimer interface. 

 Examination of the asymmetric dimer formed by a recent EGF receptor kinase 

domain structure (39) as well as that of the homologous ErbB4 kinase (37) showed that 

Thr-669 lies in close proximity to several acidic amino acids (Asp-950, Asp-960 and Glu-

961) in the C-lobe of the donor kinase (Figure 3.2).  The unphosphorylated Thr-669 could 

interact favorably with these residues.  When a kinase with a phosphorylated Thr-669 

attempts to adopt the acceptor position, the highly negatively-charged phosphate group 

would lead to charge repulsion and would preclude formation of the activating 

asymmetric dimer.  

 To determine whether Asp-950, Asp-960 and/or Glu-961 were involved in the 

mechanism of MAP kinase-dependent desensitization of the EGF receptor, these residues 

were mutated to alanine and their effect on EGF receptor autophosphorylation assessed.  

EGF receptors with a single-point mutation (D950A), a double mutation 
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(D960A/E961A), or a triple mutation (D950A/D960A/E961A) to the acidic residues were 

stably expressed in cells.  The results of these studies are shown in Figures 3.3-3.6. 

 Figure 3.3A compares the dose response to EGF in cells expressing the wild type 

EGF receptor, the T669A-EGF receptor and the D960A/E961A-EGF receptor. While 

EGF stimulated the phosphorylation of the receptor in all cell lines, autophosphorylation 

of the EGF receptor was substantially higher in cells expressing the T669A- and 

D960A/E961A-EGF receptors. 

 To determine whether the difference in the level of EGF receptor 

autophosphorylation in the wild type as compared to the D960A/E961A-EGF receptors 

was related to the phosphorylation of the receptor by MAP kinase, cells were treated 

without or with the MEK inhibitor, U0126, prior to stimulation by EGF.  As shown in 

Figure 3.3B, treatment of all three cell lines with EGF led to the activation of MAP 

kinase and this was completely blocked by pretreatment with U0126.  In the wild type 

EGF receptor, stimulation with EGF resulted in receptor autophosphorylation as well as 

phosphorylation of the receptor on Thr-669.  Pretreatment with U0126 abolished 

phosphorylation of the receptor on Thr-669 and was associated with an increase in EGF 

receptor autophosphorylation.  Due to the absence of the MAP kinase phosphorylation 

site, the T669A-EGF receptor was not phosphorylated at residue 669 in either the absence 

or presence of U0126.  Consistent with the lack of phosphorylation at this site, 

pretreatment of these cells with U0126 did not alter the level of EGF receptor 

autophosphorylation in the T669A-EGF receptor-expressing cells. 

 In contrast to the T669A-EGF receptor, the D960A/E961A-EGF receptor was 

extensively phosphorylated at Thr-669 and this was abolished by pretreatment with 
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U0126.  Despite the major change in the level of Thr-669 phosphorylation, there was 

only a modest increase in the level of EGF receptor autophosphorylation.  These data 

suggest that like the T669A mutation, the D960A/E961A mutation suppresses the effect 

of MAP kinase phosphorylation on the activity of the EGF receptor. 

 The wild type EGF receptor exhibited enhanced autophosphoryaltion when MAP 

kinase activation was blocked.  However, the increase in autophosphorylation did not 

reach the level of autophosphorylation observed in the T669A-EGF receptor (Figure 

3.3B), suggesting possible alternative mechanisms of wild type EGF receptor 

desensitization.  To determine if similar levels of autophosphorylation could be observed 

in the wild type EGF receptor as compared to the T669A-EGF receptor in the absence of 

MAP kinase activation, we examined the autophosphorylation after stimulation with 

higher concentrations of ligand.  As shown in Figure 3.4, when the EGF receptor was 

pre-treated with U0126 and then stimulated with 10 nM, as opposed to 1 nM EGF, an 

additional increase in autphosphorylation was observed. 

As shown previously and in Figure 3.4, the autophosphorylation of the T669A-

EGF receptor was higher than the wild type receptor when MAP kinase was active.  

However, when MAP kinase activation was blocked, the levels of autophosphorylation 

between the wild type and T669A-EGF receptor were indistinguishable after stimulation 

with 10 nM, but not 1 nM EGF (Figure 3.4).  This is similar to the results observed by Li 

et al. when wild type and T669A-EGF receptors were stimulated with 1 nM EGF for 

longer lengths of time (94).  These results suggest a possible shift of ligand-induced 

activation for the T669A-EGF receptor compared to the wild type EGF receptor. 
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T669R-, T669E-, and T669D-EGF receptor mutants display enhanced 

autophosphorylation 

Mutation of Thr-669 to Ala appears to block the MAP kinase-mediated 

desensitization mechanism of the EGF receptor.  To further test this hypothesis, 

additional mutations to the Thr-669 site were constructed.  First, Thr-669 was mutated to 

Arg, which would eliminate any charge repulsion with the acidic amino acids in the C-

lobe of the donor kinase.  Thr-669 was also mutated to Asp and Glu to attempt to mimic 

the effects of phosphorylation at this site.   

Figure 3.5 compares the dose-response to EGF in cells expressing the wild type, 

T669A-, T669R-, T669D-, and T669E-EGF receptors.  Addition of EGF to cells 

expressing the wild type EGF receptor resulted in a dose-dependent increase in 

autophosphorylation, MAP kinase activation, and EGF receptor Thr-669 

phosphorylation.  Similar to the results in Figures 3.1 and 3.3, the T669A-EGF receptor 

exhibited enhanced EGF receptor autophosphorylation and an absence of Thr-669 

phosphorylation (Figure 3.5A).  When the T669R-EGF receptor was expressed in CHO 

cells, addition of EGF resulted in enhanced autophosphorylation compared to both the 

wild type and T669A-EGF receptors, despite similar levels of receptor expression (Figure 

3.5A).  These data are consistent with MAP kinase desensitizing the EGF receptor by 

establishing a charge repulsion that makes formation of the asymmetric dimer interface 

unfavorable.   

Similar to the other Thr-669 mutations, when the T669D-EGF receptors and 

T669E-EGF receptors were expressed in CHO cells and stimulated with EGF, an increase 

in autophosphorylation was observed compared to the wild type EGF receptor (Figure 
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3.5B).  Consistent with mutation of the Thr-669 phosphorylation site, the T669D- and 

T669E-EGF receptors did not react with the phospho-Thr-669 antibody, while the wild 

type EGF receptor did.  Mutation of Thr-669 to an acidic residue was expected to lead to 

decreased autophosphorylation by mimicking the presence of Thr-669 phosphorylation.  

Instead an increase in autophosphorylation was observed that may reflect an inability of 

these amino acids to mimic a phosphorylated amino acid.  

Asp-950 is important in stabilizing the asymmetric kinase domain interface 

 Figure 3.6A compares the dose response to EGF in cells expressing the wild type, 

D950A-, or D950A/D960A/E961A- triple mutant EGF receptors.  Substitution of Asp-

950 with alanine markedly impaired the ability of EGF to stimulate autophosphorylation 

of the D950A-EGF receptor.  This result is consistent with Jura et al. who have recently 

reported that mutation of Asp-950 to Ala leads to impaired EGF receptor 

autophosphorylation (38).  This inhibition was largely overcome when the D950A 

mutation was combined with the D960A/E961A mutation in the triple mutant, resulting 

in autophosphorylation levels near the wild type EGF receptor.  

 The decrease in receptor autophosphorylation seen in the D950A-EGF receptor 

suggests that Asp-950 may actually serve to stabilize the asymmetric dimer interface and 

that its mutation destabilizes this interface.  Inspection of the EGF receptor kinase 

domain structure (39) suggests that Asp-950 of the donor kinase could form a potential 

hydrogen bond with Ser-671 in the juxtamembrane domain of the acceptor kinase.  If so, 

the D950A-EGF receptor mutant would exhibit decreased activity because of its 

compromised ability to serve as a donor kinase.  However, it could still serve as an 

acceptor kinase since its N-lobe is intact. 
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 To test this hypothesis, the D950A-EGF receptor was expressed alone or in 

combination with the L680N-EGF receptor.  The L680N mutation is in the N-lobe of the 

kinase domain and it blocks the ability of this receptor to serve as an acceptor kinase 

(35).  However, the receptor can still serve as a donor kinase.  As shown in Figure 3.6B, 

when expressed alone, the EGF-stimulated autophosphorylation of the D950A-EGF 

receptor was low.  Likewise, when expressed alone, the L680N-EGF receptor did not 

undergo significant autophosphorylation.  However, when the D950A-EGF receptor and 

the L680N-EGF receptor were expressed together, EGF stimulated a marked increase in 

the autophosphorylation of the EGF receptor.  This is consistent with the interpretation 

that the L680N-EGF receptor served as the donor kinase to activate the D950A-EGF 

receptor. 

Autophosphorylation is recovered in cells expressing the triple EGF receptor mutant, 

D950A/D960A/E961A 

 The recovery in receptor autophosphorylation in the D950A/D960A/E961A-EGF 

receptor suggests that mutation of Asp-950 to Ala is destabilizing, but mutation of Asp-

960/Glu-961 to Ala enables re-stabilization of the asymmetric dimer interface.  To 

determine if this recovery is dependent on the MAP kinase-mediated effects through 

phosphorylation on Thr-669, a double-mutant was established in which both Thr-669 and 

Asp-950 were mutated to Ala (T669A/D950A-EGF receptor).  Addition of varying 

concentrations of EGF resulted in a dose-dependent increase in autophosphorylation in 

cells expressing the wild type EGF receptor (Figure 3.7).  However, autophosphorylation 

was still severely impaired in the T669A/D950A EGF receptor double-mutant, 
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suggesting the recovery observed in the D950A/D960A/E961A-EGF receptor mutant is 

independent of the effects of MAP kinase phosphorylation on Thr-669.  

Asp-960 and Glu-961 are required to observe a recovery in luciferase activity 

 As described in Chapter 2, firefly luciferase can be divided into an N-terminal 

fragment (NLuc) and a C-terminal fragment (CLuc), each of which are inactive (100, 

101).  However, when brought into proximity, the two fragments complement each other, 

producing an active luciferase enzyme.  Thus, luciferase fragment complementation can 

be used to detect the proximity of two molecules tagged with the different luciferase 

fragments.   These studies can be done in real time in intact cells which allows for 

continuous imaging of changes in the proximity or conformation of the tagged protein. 

 Chapter 2 demonstrated that when the NLuc and CLuc fragments were fused to 

the carboxy-terminus of the full length EGF receptor this system could be used to image 

conformational changes in the EGF receptor that occur in response to EGF (128).  Figure 

3.8A and B show the results of such a control experiment using the wild type EGF 

receptor.  As previously reported, significant luciferase activity was observed in the 

absence of EGF indicating the presence of pre-formed dimers (Figure 3.8A).  Upon 

addition of 10 nM EGF (Figure 3.8B), there was a rapid decrease in luciferase activity 

followed by a somewhat slower recovery back to baseline levels.  The results in Chapter 

2 demonstrated that the initial decline in luciferase complementation occurs as a 

consequence of the autophosphorylation of the EGF receptor while the recovery phase is 

a result of the phosphorylation of the EGF receptor on Thr-669 by MAP kinase. 

 These data are recapitulated in Figure 3.8C and D which show luciferase fragment 

complementation in the T669A-EGF receptor mutant.  Like the wild type receptor, the 
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T669A-EGF receptor showed substantial basal luciferase activity (Figure 3.8C).  Also 

like the wild type receptor, addition of EGF induced a rapid decrease in luciferase 

activity (Figure 3.8D).  However, the subsequent recovery phase was absent in sharp 

contrast to wild type EGF receptor.  Luciferase activity reached a lower plateau and 

remains that way for the duration of the experiment.  This was due to the loss of the MAP 

kinase phosphorylation site in the T669A-EGF receptor. 

 As can be seen in Figures 3.8E and F, luciferase fragment complementation in the 

D960A/E961A-EGF receptor exhibited the same pattern as that seen in the T669A-EGF 

receptor—EGF stimulated a rapid decline in luciferase activity with no recovery.  These 

data indicate that the D960A/E961A-EGF receptor does not undergo the MAP kinase-

dependent conformational change that gives rise to the recovery phase in luciferase 

fragment complementation.  Thus, the data confirm that this mutant is insensitive to the 

effects of MAP kinase phosphorylation. 

Mutation of Asp-950 leads to a rapid increase in luciferase activity 

 The pattern of luciferase fragment complementation is different in cells 

expressing the K721A-kinase-dead EGF receptor (Figure 3.9A and B).  In this case, there 

is no decrease in luciferase complementation because this initial decline requires 

autophosphorylation of the receptor (Chapter 2, Figures 2.7-2.9).  Instead, there is an 

increase due to enhanced dimerization of the receptor mediated by the extracellular 

domains.  The pattern of luciferase fragment complementation in the D950A-EGF 

receptor is similar to that seen in the K721A-EGF receptor, consistent with its severely 

compromised kinase activity (Figure 3.9C and D). 
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Discussion 

 Expression of an EGF receptor mutant lacking the MAP kinase phosphorylation 

site, T669A-EGF receptor, led to enhanced autophosphorylation and internalization 

compared to the wild type receptor.  Li et al. observed a similar increase in EGF receptor 

autophosphorylation and degradation using the same mutation (94).  This is consistent 

with a role for this residue in the rapid MAP kinase-mediated desensitization mechanism.   

In Chapter 2, luciferase complementation imaging of cells pre-treated with an 

inhibitor to block MAP kinase activation or of cells expressing the T669A mutation 

displayed a decrease but no recovery in luciferase activity (Figures 2.12 and 2.13).  These 

results were interpreted as MAP kinase phosphorylation on the EGF receptor at Thr-669 

being critical for the final conformation adopted by the EGF receptor.  In this Chapter, 

the goal was to understand mechanistically how MAP kinase desensitization alters the 

conformational state of the EGF receptor.   

 Recent crystal structures of the EGF receptor provided structural insight into the 

potential mechanism for MAP kinase-mediated EGF receptor desensitization.  These 

crystal structures reveal the location of Thr-669, which lies in the intracellular 

juxtamembrane region, between the transmembrane and kinase domains (37, 39).  

Inspection of these crystal structures indicated a region of negatively charged amino acids 

(Asp-950, Asp-960, and Glu-961) in the C-lobe of the donor kinase (Figure 3.2) that 

could unfavorably interact with a phosphorylated Thr-669, leading to an inability to form 

the activating asymmetric dimer and hence a desensitization of EGF receptor kinase 

activity.    
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 When Asp-960 and Glu-961 were both mutated to Ala (D960A/E961A-EGF 

receptor), enhanced autophosphorylation was observed compared to the wild type EGF 

receptor, indicating a loss of desensitization.  Pre-treatment of cells with a MEK inhibitor 

to block MAP kinase activation resulted in an increase in wild type EGF receptor 

autophosphorylation, indicating a loss of receptor desensitization.  In contrast, T669A- 

and D960A/E961A-EGF receptor mutants were insensitive to the MEK inhibitor, 

suggesting that the receptors already lacked the desensitization mechanism.  Li et al. 

showed similar results with the wild type and T669A-EGF receptor using a different 

MEK inhibitor (94).   

 The D960A/E961A-EGF receptor did show a small increase in 

autophosphorylation in the presence of the inhibitor to block MAP kinase activation, 

albeit this increase was significantly less than that observed for the wild type EGF 

receptor under identical conditions.  This small increase may reflect the involvement of 

additional residues in the MAP kinase-mediated EGF receptor desensitization.  

Because the D960A/E961A-EGF receptor mutant exhibited increased 

autophosphorylation in comparison to the T669A-EGF receptor, it is possible that in 

addition to desensitization, these residues are important for additional regulatory 

mechanisms.  Both Asp-960 and Glu-961 are located at the junction between the EGF 

receptor kinase domain and C-terminal tail.  Further inspection of crystal structures of the 

EGF receptor kinase domain C-lobe indicate that Asp-960 may form an intramolecular 

hydrogen-bond to Ser-787 (35, 37-39, 129-131).  Thus, Asp-960 may not function in 

MAP kinase-mediated desensitization; rather it may function as a pivot point for 

movement of the C-terminal tail while it undergoes autophosphorylation.   
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 A recent study by Jura et al. determined a crystal structure of the EGF receptor 

kinase domain with a longer portion of the C-terminal tail than was previously observed 

(amino acids 960-990) (38).  The position of the C-terminal tail suggests that it may be 

autoinhibitory and requires displacement by the intracellular juxtamembrane domain 

during formation of the asymmetric dimer.  Because Asp-960 is located at the junction of 

the kinase and C-terminal tail domains, it may be the pivot point for this displacement.  

Mutation of Asp-960 so it can no longer hydrogen-bond with Ser-787 would facilitate 

displacement of the C-terminal tail, possibly leading to enhanced EGF receptor 

autophosphorylation.  If this is the case, then the D960A/E961A-EGF receptor double 

mutant would exhibit enhanced autophosphorylation compared to the wild type EGF 

receptor and the T669A-EGF receptor for two reasons: 1) an inability to undergo MAP 

kinase-mediated desensitization through charge repulsion between phospho-Thr-669 and 

Glu-961, and 2) facilitated displacement of the C-terminal tail due to mutation of the 

Asp-960/Ser-787 hydrogen-bond.  The dual effects of the D960A/E961A-EGF receptor 

would explain why autophosphorylation is enhanced compared to the T669A-EGF 

receptor and why the wild type EGF receptor with desensitization blocked cannot attain 

autophosphorylation levels comparable to the D960A/E961A-EGF receptor. 

 Luciferase complementation imaging of the full-length EGF receptor captured a 

series of ligand-induced conformational changes by the intracellular domain (Chapter 2, 

Figure 2.3).  The final conformation adopted by the EGF receptor was shown to be 

dependent on MAP kinase activity because blocking MAP kinase activation completely 

abolished the recovery in luciferase activity (Figure 2.12).  Additionally, mutation of the 

Thr-669 phosphorylation site eliminated the recovery but not the decrease in luciferase 
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activity (Figure 2.13 and 3.8).  Similar results were obtained when the D960A/E961A-

EGF receptor luciferase constructs were expressed in cells, indicating that this mutant 

behaves similarly to the Thr-669 mutant that lacks the MAP kinase phosphorylation site.  

Together these data suggest Asp-960 and/or Glu-961 play a significant role in MAP 

kinase-mediated EGF receptor desensitization, possibly by blocking formation of the 

allosteric asymmetric dimer.  

 When Thr-669 was mutated to Arg, enhanced autophosphorylation was observed 

compared to the wild-type EGF receptor.  This is consistent with a favorable interaction 

between the Arg-669 and Asp-960/Glu-961.  However, mutation of Thr-669 to Asp and 

Glu to mimic constitutive phosphorylation did not have the expected result.  Instead of 

observing the expected decrease in autophosphorylation due to charge repulsion between 

the negatively charged Asp- or Glu-669 and Asp-960/Glu-961, an increase in 

autophosphorylation compared to the wild type EGF receptor was observed.  This is 

consistent with data reported by Morrison et al. in which Thr-669 was mutated to Glu and 

an increase in autophosphorylation compared to the wild type EGF receptor was observed 

(132).  However, these data are not consistent with a recent report by Red Brewer et al., 

in which the intracellular domain of the T669D-EGF receptor showed decreased 

autophosphorylation compared to the wild type EGF receptor, whereas the T669A-EGF 

receptor exhibited enhanced autophosphorylation (39).  These observed differences may 

be due to a lack of signaling in the intracellular domain constructs utilized by Red Brewer 

et al., rendering MAP kinase inactive and therefore blocking one of the EGF receptor 

desensitization mechanisms.  Alternatively, there may be additional structural constraints 

imposed by the EGF receptor extracellular and transmembrane domains that allow the 
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receptor to overcome the negative charge imposed by the T669D- and T669E-EGF 

receptor mutations.   

 While the increased autophosphorylation observed in the T669D- and T669E-

EGF receptor mutants was unexpected, it does not necessarily contradict the hypothesis 

that Thr-669 phosphorylation by MAP kinase desensitizes the EGF receptor by blocking 

formation of the asymmetric dimer interface.  Attempts in other systems to mimic serine 

or threonine phosphorylation using either Aspartic or Glutamic acid have also generated 

mixed results (133, 134).  For example, phosphorylation of rhodopsin’s C-terminal tail is 

required for binding of and induction of a conformational change in arrestin.  Studies 

using Surface Plasmon Resonance with either a phosphorylated rhodopsin C-terminal tail 

peptide or one in which all the serine/threonine residues were substituted with Glutamic 

acid yielded opposing results in the ability to bind arrestin.  These and other studies 

indicate that the ability of Glutamic and Aspartic acid to mimic constitutive 

phopshorylation is system-dependent.   

In this system, replacement of Thr-669 with Asp or Glu does not appear to be 

enough to mimic the effects of phosphorylation.  The effects of serine/threonine 

phosphorylation may be particularly difficult to mimic because surface-exposed Glutamic 

acid side chains can occupy several positions due to the flexibility of this sidechain (134).  

The increased phosphorylation observed in the T669D- and T669E-EGF receptor mutants 

is therefore expected if the charge on these amino acids is not enough to lead to charge 

repulsion with Asp-960/Glu-961.  These mutants lack the “cue” to desensitize the 

receptor, resulting in enhanced autophosphorylaiton.   
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 The mutations described in this chapter identified Asp-950 as a residue important 

for stabilization of the asymmetric dimer interface.  When the D950A-EGF receptor was 

expressed in cells, severely impaired autophosphorylation was observed compared to the 

wild type EGF receptor.  Similar results were obtained by Jura et al. when Asp-950 was 

mutated to Ala (38).  These data are consistent with the D950A-EGF receptor being 

unable to function as a donor kinase in the asymmetric dimer.  This hypothesis is further 

supported here by demonstrating that D950A- and L680N-EGF receptors expressed 

independently had little kinase activity, but activity was restored when the receptors were 

co-expressed in the same cells.   

 A rapid increase in luciferase activity was observed both in the kinase-dead EGF 

receptor and the EGF receptor lacking the intracellular domain (Chapter 2, Figures 2.1 

and 2.10).  Similar results were observed when luciferase complementation imaging of 

the D950A-EGF receptor was examined, consistent with the lack of kinase activity in this 

mutant.  Luciferase complementation imaging further supports that the D950A-EGF 

receptor plays an important role in proper formation of the asymmetric dimer interface.   

 Surprisingly, in stark contrast to the D950A-EGF receptor, autophosphorylation 

of the D950A/D960A/E961A-EGF receptor recovered to near wild type levels.  This 

recovery was independent of the MAP kinase-mediated desensitization mechanism since 

expression of the T669A/D960A-EGF receptor retained little kinase activity.  The Asp-

950 residue is stabilizing in the context of the asymmetric dimer interface and mutation 

of this residue is destabilizing.  When mutated in conjunction with Asp-960 and Glu-961, 

the “imperfect” asymmetric dimer interface formed by the Asp-950 mutant may recover 

kinase activity because the C-terminal tail may be displaced more easily when the 
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potential “pivot” formed by the Asp-960 is loosened through mutation to Ala.  This 

scenario would allow asymmetric dimer formation and autophosphorylation to near wild 

type levels, despite a non-ideal asymmetric dimer interface.   

 The potential role of Asp-960 as a pivot point during movement of the C-terminal 

tail may explain why mutation of Ser-787 has been reported in lung cancer patients.  Na 

et al. reported mutation of Ser-787 to Phe (135), which would remove the hydrogen bond 

between this residue and Asp-960, possibly causing easier displacement of the EGF 

receptor C-terminal tail and enhanced EGF receptor kinase activation and signaling.  

However, these results are purely speculative in the absence of: 1) confirmation that 

S787F-EGF receptor displays enhanced phosphorylation and 2) this mutation has been 

identified in additional patients and/or is linked more clearly to cancer progression.   

 In a sequence alignment of the EGF receptor family members, Thr-669 and the 

MAP kinase consensus sequence for phosphorylation (P X T/S P) is conserved among all 

members, except ErbB3 (Figure 3.10).  While the significance of this is unknown, it is 

noteworthy that ErbB3 is the only intrinsically kinase-dead member of the EGF receptor 

(48, 57, 66).  This may reflect the redundant nature of the MAP kinase desensitization 

mechanism because the kinase-dead nature of ErbB3 limits the pool of kinase domains 

that can serve as an activated acceptor.  Additionally, ErbB3 signals better via the PI3-

kinase pathway due to multiple docking sites in its C-terminal tail (48), possibly reducing 

the impact of the MAP kinase pathway, as well as need for a desensitization mechanism 

via this pathway.  In addition to conservation of the Thr-669 site, the presence of 

negatively charged amino acids in the region of the EGF receptor Asp-960 and Glu-961 

is also conserved among all family members and among various species (Figure 3.10).   
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 Based on the data described in this chapter, a model for the MAP kinase-mediated 

desensitization of the EGF receptor was established.  Figure 3.11 depicts a cartoon 

representation of this model.  Ligand binding to the EGF receptor extracellular domain 

induces a large conformational change, enabling dimerization and subsequent asymmetric 

kinase domain dimerization.  The juxtamembrane domain of the acceptor kinase domain 

in the dimer may displace the C-terminal tail of the donor kinase domain to form the 

optimal asymmetric dimer interface/juxtamembrane domain cradle (Figure 3.11A to B).  

The activating asymmetric dimer leads to acceptor activation and phosphorylation of the 

C-terminal tail of the donor kinase.  This enhances signal complex formation and leads to 

activation of the MAP kinase pathway, followed by feedback signaling through MAP 

kinase phopshorylation on the EGF receptor Thr-669 (Figure 3.11 C to D).  Following 

phosphorylation of the initial donor kinase C-terminal tail, the kinase domains may 

switch roles so that the donor becomes the acceptor and vice versa (Figure 3.11D).  As 

the kinase domains switch roles, the original donor kinase with a phosphorylated Thr-669 

will try to displace the C-terminal tail of the original acceptor kinase (now adopting the 

donor position).  Because of the highly negatively charged phosphate group on Thr-669, 

a charge repulsion with Asp-960 and/or Glu-961 exists, making it difficult for the original 

donor to adopt the acceptor position/form a proper asymmetric dimer interface.  This 

leads to a dissociation of this attempted asymmetric dimer without phosphorylation of the 

original acceptor’s C-terminal tail (Figure 3.11E).  MAP kinase desensitizes the EGF 

receptor kinase activity by making the monomer with a phosphorylated Thr-669 a poor 

acceptor kinase.  This mechanism would lead to decreased autophosphorylation because 

of the limited pool of kinases that can function as acceptors.  Several questions remain to 
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be answered based on this model.  For example, it is not known which Thr-669 residue is 

phosphorlated.  Figure 3.11 depicts the phospho-Thr-669 as the original donor kinase 

simply because it seems likely that the Thr-669 phosphorylation site on the acceptor 

kinase will be less accessible to MAP kinase.  It also appears that additional residues may 

important for the MAP kinase-mediated desensitization mechanism and identification of 

these residues will be important.   

 Thr-669 in the recent crystal structure determined by Red Brewer et al. points 

away from the C-lobe of the donor kinase (Figure 3.2) (39).  This may seem 

contradictory to an interaction with Asp-960 and/or Glu-961 during MAP kinase-

mediated desensitization.  However, phosphorylated Thr-669 may negatively interact 

with Asp-960 and/or Glu-961 in a transitory state that exists as the acceptor kinase is 

forming the cradle around the C-lobe of the donor kinase.  The structure observed by Red 

Brewer et al. would then form when Thr-669 is not phosphorylated.   

 The data presented in this Chapter describe, for the first time, the mechanism that 

MAP kinase utilizes to desensitize the EGF receptor through phosphorylation on Thr-

669.  This mechanism of blocking asymmetric dimer formation is not unique, since Mig6, 

a protein transcriptionally activated by the EGF receptor, has also been reported to block 

EGF receptor activation by blocking asymmetric dimer formation (89).  It will be 

interesting to see if additional modulators of EGF receptor activity function through a 

similar mechanism of blocking asymmetric dimer formation.   

Experimental Procedures 

Reagents—Murine EGF was purchased from Biomedical Technologies, Inc. and 

was dissolved in sterile water.  U0126 (EMD Chemicals) was dissolved in DMSO.  
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Doxycycline was from Clontech and was dissolved in sterile water.  D-Luciferin 

(Biosynth) was dissolved in PBS and coelenterizine (Sigma) was dissolved in ethanol.  

The MAP kinase and phospho-specific Thr-669 antibodies were from Upstate.  The 

phospho-specific MAP kinase antibody was from Promega and the phosphotyrosine 

(PY20) antibody was from BD Biosciences.  A mixture of EGF receptor antibodies from 

Cell signaling and Santa Cruz were used to detect the EGF receptor.   

DNA Constructs—The wild type EGF receptor construct (127) was subcloned 

from pcDNA3.1(-) (Invitrogen) into pcDNA5/FRT (Invitrogen) using the NheI and 

HindIII restriction enzyme sites.  Using the wild type EGF receptor (pcDNA3.1(-)) as the 

template, QuikChange site-directed mutagenesis (Stratagene) was used to generate the 

D950A and D960A/E961A mutants.  Mutants were digested with the BstEII and HindIII 

restriction enzyme sites and were ligated into the wild type EGF receptor construct 

(pcDNA5/FRT) cut with the same enzymes.  All mutants were sequenced in their 

entirety. 

 The D950A/D960A/E961A mutant was generated using QuikChange site-directed 

mutagenesis with the D960A/E961A-EGF receptor mutant (pcDNA3.1(-)) as the 

template.  The D950A/D960A/E961A-EGF receptor pcDNA5/FRT construct was 

subcloned into the wild type pcDNA5/FRT construct using the BstEII and HindIII 

restriction sites and was sequenced.   

 The T669A-CLuc construct was made using QuikChange site-directed 

mutagenesis of the EGFR-CLuc (pcDNA6/V5-HisB) construct (Chapter 2).  The product 

was re-ligated into the same vector using the NheI and BsiWI restriction enzyme sites.  

The T669A-EGF receptor (pcDNA5/FRT) construct was subsequently generated by 
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digesting the T669A-CLuc (pcDNA6/V5-HisB) and wild type EGF receptors 

(pcDNA5/FRT) with NheI and BstEII.  The product was sequenced to verify the 

mutation. 

 QuikChange site-directed mutagenesis was used to make the T669A/D950A-EGF 

receptor mutation, with the T669A-EGF receptor (pcDNA5/FRT) construct as the 

template.  Following mutagenesis, the construct was re-ligated into the T669A-EGF 

receptor construct using the NheI and NotI restriction enzyme sites.  Sequencing 

confirmed the mutation.   

  The L680N-EGF receptor mutant was made using QuikChange site-directed 

mutagenesis in the wild type EGF receptor pcDNA5/FRT construct as described 

previously (136).  The mutant was sequenced and then digested with NheI and EcoRV 

and ligated into MCSI of the pBI-Tet vector (Clontech).   

 QuikChange site-directed mutagenesis was used to make the T669E-, T669R-, 

and T669D-EGF receptor constructs with the wild type EGF receptor (pcDNA5/FRT) as 

the template.  Mutants were digested with NheI and BstEII and were ligated into the wild 

type EGF receptor pcDNA5/FRT plasmid cut with the same enzymes.  Mutations were 

verified by sequencing.   

The D950A-CLuc and D960A/E961A-CLuc mutants were made by QuikChange 

site directed mutagenesis of the EGFR-CLuc pcDNA6/V5-HisB construct.  Mutants were 

digested with BstEII and BsiWI and were re-ligated into the EGFR-CLuc pcDNA6/V5-

HisB construct.  The D950A-NLuc and D960A/E961A-NLuc constructs were first made 

by digesting the D950A-CLuc and D960A/E961A-CLuc constructs with NheI and 

BsiWI, followed by ligation into the EGFR-NLuc pBI-Tet construct.  These NLuc 
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mutants were later subcloned into the pcDNA5/FRT vector using the BstEII and EcoRV 

restriction enzyme sites in the mutants and the BstEII and KpnI sites in the wild type 

EGF receptor pcDNA5/FRT construct.   

T669A-NLuc in pcDNA5FRT was generated by restriction enzyme digest of the 

EGFR-NLuc pcDNA3.1TOPO plasmid with BstEII and KpnI, followed by ligation into 

T669A-EGF receptor pcDNA5/FRT.   

The K721A-EGFR-CLuc construct was made using QuikChange site-directed 

mutagenesis (Stratagene) in the EGFR-CLuc pcDNA6/V5-His B construct. The K721A-

EGFR-NLuc construct was made by digesting EGFR-NLuc (pcDNA3.1 TOPO) with 

BstEII and KpnI. The insert was ligated into the K721A pcDNA5.FRT (Invitrogen) 

construct digested with the same enzymes.   

Cell Lines—FI CHO cells (Invitrogen) were co-transfected with pOG44 

(Invitrogen) and the wild type or mutant EGF receptors (pcDNA5/FRT) using 

Lipofectamine 2000 (Invitrogen).  Stable clones were isolated by selection in 600 µg/ml 

hygromycin (InvivoGen).  Cells were maintained in F-12 containing 10% FetalPlex, 1000 

µg/ml penicllin/streptomycin, and 100 µg/ml hygromycin.  CHO-K1 Tet-On cells were 

grown in DMEM containing 10% FetalPlex, 1000 µg/ml penicllin/streptomycin, and 200 

µg/ml G418.  The EGFR-NLuc/EGFR-CLuc, T669A-NLuc/T669A-CLuc, D950A-

NLuc/D950A-CLuc, D960A/E961A-NLuc/D960A/E961A-CLuc, and K721A-

NLuc/K721A-CLuc constructs were transiently transfected into CHO-K1 Tet-On cells 24 

hrs prior to luciferase fragment complementation imaging using Lipofectamine 2000.  

Transfection efficiency was determined by co-transfection of renilla luciferase (pRLuc-

N1, Packard Bioscience).   
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Kinase activation and Western Blotting—FI CHO EGF receptor wild type or 

mutant cells were grown to confluence in 35 mm dishes.  Cells were serum-starved in F-

12 containing 1 mg/ml BSA for 2 hr.  Cells were washed twice in ice-cold PBS and were 

then scraped into RIPA buffer (150 mM NaCl, 10 mM Tris pH 7.2, 0.1% sodium 

dodecylsulfate, 1% Triton X-100, 17 mM deoxycholate, and 2.7 mM EDTA) containing 

20 mM p-nitrophenyl phosphate, 1 mM sodium orthovanadate, and protease inhibitors.  

Equal amounts of protein (BCA assay, Pierce) were loaded onto a 9% SDS-

polyacrylamide gel and then transferred to PVDF (Millipore).  Western blots were 

blocked for 1 hour in TBST/10% nonfat milk.  The blots were incubated in primary 

antibody for 1 hr (overnight at 4°C for EGF receptor and phospho-Thr-669 antibodies), 

washed in TBST/0.1% BSA, incubated in secondary antibody for 45 min and washed 

three times in TBST/0.1% BSA.  Western blots were detected using the ECL reagent 

from GE Healthcare.  

 125I-EGF Internalization—Murine EGF was radioiodinated as described 

previously (102).  Cells were plated 48 hrs prior to assay in six-well dishes.  Cells were 

washed twice in HBSS (37°C) and were then incubated for the indicated lengths of time 

in 1 nM 125I-EGF at 37°C in F-12 media containing 40 mM Hepes and 0.1% bovine 

serum albumin.  Nonspecific binding was determined by addition of 100 nM unlabeled 

EGF.  At each time point, half of the cultures were washed three times in HBSS, the 

monolayers were dissolved in 1N NaOH, and the radioactivity was determined by γ-

counting.  This yields the total cell-associated 125I-EGF.  The other half of the cultures 

were washed twice (2 min each) in acid wash buffer (50 mM glycine, 100 mM NaCl, 

pH3) to remove any cell-surface 125I-EGF (137).  Monolayers were then dissolved in 1N 
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NaOH and were counted in a γ-counter.  This yields the internalized 125I-EGF and 

subtraction from the total 125I-EGF yields the amount of surface 125I-EGF. 

 Luciferase complementation imaging—Cells were plated 48 hr prior to use at 5 

x103 cells per well in DMEM in a black-wall 96-well plate.  On the day of the assay, cells 

were serum-starved for 2 hr and then incubated for 20 min in 175 µl DMEM without 

phenol red, containing 1 mg/ml BSA, 25 mM Hepes, and 0.6 mg/ml D-luciferin at 37°C.  

To establish a baseline, cell radiance (photons/second/cm2/sr) was measured using a 

cooled CCD camera and imaging system at 37°C (IVIS 50; Caliper) (30 sec exposure; 

binning, 8; no filter; f-stop, 1; field of view, 12 cm).  EGF was added in a volume of 25 

µl in the same media (DMEM, 1mg/ml BSA, 25mM Hepes, 0.6mg/ml D-Luciferin).  

Radiance was measured sequentially as described above.  Transfection efficiency was 

assessed by monitoring renilla luciferase expression.  Media was replaced on cells with 

DMEM (no phenol red) containing 1 mg/ml BSA, 25 mM Hepes, and 400 nM 

coelenterazine.  Radiance was immediately measured as described above except the filter 

was set to <510.  

 Data Analysis—Data was collected in quadruplicate for each condition.  A flat-

field correction was done to correct for differences in the baseline photon flux.  Light 

production expressed as photon flux (photons/sec) was determined from regions-of-

interest defined over wells using LIVINGIMAGE (Xenogen) and IGOR (Wavemetrics) 

software.  Changes in photon flux were calculated by subtracting values from untreated 

cells from those of EGF-treated cells.  Standard errors were determined using the formula 

for the unpooled standard error.  
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Figure 3.1.  Effect of Thr-669 mutation on EGF receptor autophosphorylation and 
internalization.  FI CHO cells expressing the wild type or T669A-EGF receptor were 
plated 48 hr prior to assay in six-well dishes.  Cells were serum-starved prior to assay.  
A) Cells were stimulated with the indicated concentrations of EGF for 5 min at 37°C.  
Cells were lysed, run on an SDS-PAGE gel, and Western blot analysis was done with the 
indicated antibodies.  B) Cultures were incubated for the indicated lengths of time in 1 
nM 125I-EGF.  Total 125I-EGF was determined by washing cultures three times in HBSS, 
while internalized 125I-EGF was determined by washing cultures twice in acid wash.  
Monolayers were dissolved in 1N NaOH followed by γ-counting.  Surface 125I-EGF was 
determined by substraction of total and internalized 125I-EGF.  Internalized/surface 125I-
EGF was plotted as a function of time to determine the internalization rate for the wild 
type (closed circles, 0.052 ± 0.003 min-1) and T669A-EGF receptors (open circles, 0.078 
± 0.004 min -1).    
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Figure 3.2.  Crystal structure of the EGF receptor juxtamembrane and kinase 
domain asymmetric dimer interface, highlighting the residues surrounding Thr-669.  
The acceptor EGF receptor kinase monomer is shown in blue and the donor kinase is 
shown in yellow.  The juxtamembrane region of the acceptor/blue kinase monomer is 
shown forming a cradle around the C-lobe of the donor/yellow kinase monomer in the 
asymmetric dimer.  Shown magnified is the position of the Thr-669 residue in the 
juxtamembrane domain of the acceptor/blue monomer.  Highlighted in the C-lobe of the 
donor/yellow monomer are acidic residues (Asp-950, Asp-960, Glu-961) that lie in close 
proximity to Thr-669.  The PDB coordinates for this structure are 3GOP (39). 
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Figure 3.3. EGF receptor autophosphorylation in wild type, T669A, and 
D960A/E961A mutants.  FI CHO cells stably expressing the wild type, T669A, or 
D960A/E961A-EGF receptor were plated 48 hrs prior to assay in six-well dishes.  Cells 
were serum-starved 2 hrs prior to assay.  A) The indicated concentrations of EGF were 
added to cells for 5 min at 37°C.  Cells were lysed, loaded for equal EGF receptor 
expression, and were run on a 9% SDS-PAGE gel.  Western blot analysis was performed 
with the indicated antibodies.  B) Cells were incubated for 20 min at 37°C without or 
with 10 µM U0126, followed by stimulation with 1 nM EGF for 5 min.  Cells were 
immediately lysed, equal EGF receptor levels were run on an SDS-PAGE gel and 
Western blotting was done with the indicated antibodies.   
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Figure 3.4. Effect of blocking MAP kinase activation on wild type or T669A-EGF 
receptor autophosphorylation.  FI CHO cells stably expressing the wild type or T669A-
EGF receptor were plated 48 hrs before assaying in six-well plates.  On the day of the 
assay, cells were serum-starved for 2 hrs.  Cells were pre-incubated in the absence or 
presence of 10 µM U0126 for 20 min at 37°C, followed by stimulation for 5 min with 1 
or 10 nM EGF.  Lysates were immediately made of the cells and equal proteins were 
loaded on an SDS-PAGE gel.  Western blots were analyzed with the indicated antibodies.  
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Figure 3.5. Dose-response to EGF in cells expressing wild type, T669A, T669R, 
T669D, and T669E-EGF receptor mutants.  Cells stably expressing the wild type or 
EGF receptor mutants were plated 48 hrs prior to assay in six-well dishes.  Cells were 
serum-starved 2 hr prior to assay.  The indicated concentrations of EGF were added to 
cells for 5 min at 37°C.  Cells were immediately lysed, equal proteins were loaded on a 
9% SDS-PAGE gel and Western blot analysis was performed with the indicated 
antibodies.  A) Wild type, T669A, and T669R-EGF receptors.  B) Wild type, T669D, and 
T669E-EGF receptors.  
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Figure 3.6.  EGF receptor autophosphorylation in cells expressing wild type, D950A, 
D950A/D960A/E961A, L680N, or D950A/L680N mutations.  A) FI CHO cells that 
stably express the wild type, D950A, or D950A/D960A/E961A-EGF receptor were 
plated 48 hrs before assaying in six-well dishes.  Cells were serum-starved 2 hrs before 
assay.  Cells were treated with the indicated concentrations of EGF for 5 min at 37°C and 
were immediately lysed.  Lysates were loaded for equal EGF receptor expression and 
were run on an SDS-PAGE gel.  Western blot analysis was done with the indicated 
antibodies.  B) CHO-K1 Tet-On cells stably expressing the L680N-EGF receptor were 
plated 48 hrs prior to assay in the absence (D950A) or presence (L680N and 
D950A/L680N) of 500 ng/ml doxycycline to induce L680N-EGF receptor expression 
(pBI-Tet vector).  24 hrs prior to assay cells were transiently transfected with cDNA for 
the D950A-EGF receptor.  Cells were serum-starved for 2 hrs and were then stimulated 
with 25 nM EGF for 5 min at 37°C.  Cells were immediately lysed and equal proteins 
loaded on an SDS-PAGE gel.  Western blotting was performed with the indicated 
antibodies.   
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Figure 3.7.  EGF dose response in cells expressing wild type or T669A/D950A EGF 
receptors.  FI CHO cells stably expressing the wild type or T669A/D950A-EGF receptor 
were plated in six-well dishes 48 hrs prior to assay.  Cells were serum-starved 2 hr prior 
to assay, followed by stimulation for 5 min at 37°C with the indicated concentrations of 
EGF.  Cells were lysed and equal proteins were loaded on an SDS-PAGE gel.  Western 
blot analysis was done with the indicated antibodies.   
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Figure 3.8. Reconstitution of luciferase activity in cells expressing wild type, T669A, 
or D960A/E961A luciferase constructs.  CHO-K1 Tet-On cells were plated in 96-well 
plates 48 hrs prior to luciferase complementation imaging.  24 hrs prior to imaging, cells 
were transiently transfected with the cDNA encoding the wild type, T669A, or 
D960A/E961A-EGF receptor NLuc and CLuc luciferase constructs.  On the day of 
imaging, cells were serum-starved for 2 hrs followed by pre-incubation in 0.6 mg/ml D-
luciferin for 20 min.  A, C, E) Photon flux (photons/sec; p/s) in the absence of EGF.  B, 
D, F) Change in photon flux following addition of 10 nM EGF.  Data represent the 
average of four independent replicates and standard error is shown.   
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Figure 3.9.  Reconstitution of luciferase activity in cells expressing D950A and 
K721A EGF receptor luciferase constructs.  CHO-K1 Tet-On cells were plated in a 96-
well plate 48 hrs prior to imaging.  Cells were transiently transfected with the cDNA 
encoding the K721A-EGF receptor or D950A-EGF receptor NLuc and CLuc constructs 
24 hrs prior to imaging.  On the day of imaging, cells were serum-starved for 2 hrs, 
followed by a 20 min incubation with 0.6 mg/ml D-luciferin.  A and C) Photon flux 
(photons/sec; p/s) in the absence of ligand.  B and D) Change in photon flux following 
addition of 1 (open circles) or 10 nM EGF (closed circles).   
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Figure 3.10.  Sequence alignment of the region surrounding EGF receptor Thr-669 
and the acidic amino acids Asp-950, Asp-960, and Glu-961.  The top panels show the 
sequence alignment of the human EGF receptor family members (EGFR, ErbB2, ErbB3, 
ErbB4), while the bottom panel shows the sequence alignment of the EGF receptor in 
various species.  The left panels show the residues surrounding Thr-669, while the right 
panels show the residues surrounding Asp-950 and Asp-960/Glu-961 on the EGF 
receptor.  Highlighted in pink are residues that are conserved among family 
members/species.  Turquoise shows residues that are not conserved compared to the other 
family members/species, while blue shows residues that are not conserved, but carry the 
same charge compared to other family members/species.   
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Figure 3.11.  Model for the mechanism of MAP kinase-mediated EGF receptor 
desensitization.  A) Conformation of the EGF receptor in the absence of ligand with the 
extracellular domain held in the tethered conformation.  B) Ligand binding induces a 
dramatic extracellular domain conformational change, facilitating EGF receptor 
dimerization, and bringing into proximity the kinase domains to form the activating 
asymmetric dimer (yellow = donor kinase, blue = acceptor kinase).  Formation of the 
juxtamembrane domain cradle by the blue/acceptor kinase may displace the C-terminal 
tail of the yellow/donor kinase so that it can be phosphorylated.  C) Phosphorylation of 
the C-terminal tail of the yellow/donor kinase provides a scaffold for activation of 
downstream signaling pathways, particularly the MAP kinase pathway.  MAP kinase is 
engaged in a feedback loop with the EGF receptor through phosphorylation on Thr-669.  
D) Following phosphorylation of the donor/yellow kinase C-terminal tail, the kinase 
domains may attempt to switch roles so the donor becomes the acceptor and vice versa.  
When the yellow kinase tries to engage the acceptor kinase role, the phosphorylated Thr-
669 interacts unfavorably with negatively charged residues (Asp-960 and/or Glu-961), 
resulting in a charge repulsion.  E) Because of the charge repulsion, the yellow kinase 
could not adopt the acceptor role and therefore could not become activated via the 
allosteric asymmetric dimer mechanism.   
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CHAPTER 4.  Examining the Differential Effects of the EGF Family of Growth 

Factors using the Luciferase Fragment Complementation Imaging Assay 

Introduction 

 Signaling from the EGF receptor family members is first initiated by binding of 

the EGF-like family of growth factor ligands.  There are 11 known ligands that bind to 

the EGF receptor family.  These ligands are synthesized as transmembrane precursors 

that can mediate either juxtacrine effects and/or both autocrine and paracrine effects upon 

ectodomain shedding (47, 138, 139).  The soluble growth factors subsequently bind to 

and initiate the formation of both homo- and hetero-dimeric receptor complexes as 

depicted in Figure 4.1 (47, 140).   

 The number of possible ligand and receptor combinations suggests a layer of 

complexity in the initialization of the signaling network (48, 66, 140).  It was originally 

thought that different ligands induce different combinations of ErbB receptor 

dimerization. However, the discoveries that EGF receptor or ErbB4 homodimers can 

initiate different cellular responses upon binding to different ligands (141, 142) suggested 

that signal diversification is not achieved simply by ligand-induced dimer combination, 

but rather additionally regulated by subtle differences in the transmission of signals from 

ligands to receptor activation.  

In addition to EGF, the ligand amphiregulin (AR) is specific for the EGF receptor 

and can induce tyrosine phosphorylation of the receptor (143, 144).  AR was first 

discovered in 1988 in the media of MCF7 breast cancer cells treated with 12-O-

tetradecanoylphorbol 13-acetate (143).  Shoyab et al. termed the new growth factor 

“amphi”-regulin because of its ability to be stimulating in some cells, while inhibitory in 
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others.  However, these inhibitory properties of AR have not yet been validated.  

Amphiregulin exhibits significantly lower affinity for the EGF receptor compared to 

EGF— AR can only compete 50-75% of the 125I-EGF (143).  Studies have indicated that 

the decreased affinity of AR may be due to the absence of a critical Leu reside in the C-

terminal region of the growth factor that is important for high affinity binding in both 

EGF and TGF-α (145).   

 Both EGF and AR are specific for the EGF receptor, while the growth factor 

betacellulin (BTC) and neuregulin2β are considered as pan-ErbB ligands because they 

can induce all combinations of receptors through binding to either the EGF receptor or 

ErbB4  (146).  Unlike AR, BTC has comparable ability to compete for 125I-EGF binding 

as EGF itself (IC50 ~ 1.4 nM for BTC versus ~ 1.9 nM for EGF) (50).  The observations 

that  these distinct ligands are able to induce different tyrosine phosphorylation patterns 

on either the EGF receptor or ErbB4 (141, 142) suggests a plausible mechanism for the 

initiation of distinct signaling pathways which ultimately lead to distinct cellular 

outcomes.  

 Clearly the ligands for the EGF receptor, while structurally similar, are able to 

mediate a distinct and complex set of signaling outputs.  However, there have been few 

studies capturing the differences in their abilities to induce homo- and hetero-

dimerization due to lack of an appropriate assay.  This Chapter examines the dimerization 

potential of these EGF-like ligands and the consequential impact on the intracellular 

domain conformational changes in the full length EGF receptor.  By utilizing the 

luciferase imaging assay, we focus on comparing the hierarchy of these ligands by 
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measuring both the magnitudes and rates of extracellular-mediated dimer formation and 

the intracellular domain conformational changes.   

Results 

Identification of the saturation point in luciferase activity following stimulation with 

EGF, BTC, or AR in ΔC-EGF receptor cells 

 In order to compare the dimerization potential of ligands, we first determined the 

concentration at which each ligand is saturating to dimerization by measuring the 

luciferase activity dose-response to EGF, BTC, or AR in cells stably expressing the 

intracellular-domain-lacking EGF receptor (ΔC-EGFR-NLuc/CLuc cell line).  As with 

data presented in Chapter 2 (Figure 2.1), a baseline level of luciferase activity was 

observed in these cells in the absence of ligands (Figure 4.2A, C, E) consistent with the 

notion of pre-formed dimers (42, 114, 115).   

 When increasing concentrations of EGF were added to ΔC-EGFR-NLuc/CLuc 

cells, a rapid increase in luciferase activity was observed (Figure 4.2B).  Luciferase 

activity reached a plateau 10-15 min after addition of 10 or 25 nM EGF, while no plateau 

was observed during the observation period after addition of lower concentrations of EGF 

(<2 nM).  Qualitatively 10 nM EGF appears to be sufficient to induce maximal luciferase 

activity (Figure 4.2B).  This is confirmed by comparing the Ymax values for a one-phase 

exponential association curve fit to these data with GraphPad Prism (p-value > 0.05, 

Table 4.1).   

 Similarly, when ΔC-EGFR-NLuc/CLuc cells were stimulated with increasing 

concentrations of BTC, a rapid increase in luciferase activity was observed (Figure 4.2D).  

In this experiment, luciferase activity appeared to reach a plateau 15-20 min after 
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addition of 25 nM BTC, with no plateau observed during this time in cells treated with 

less than 2 nM BTC.  Again, the one-phase exponential association curve fit to the 10 and 

25 nM BTC data indicated that the Ymax values were not significantly different for these 

two concentrations of ligand (p-value > 0.05, Table 4.1), suggesting that these 

concentrations of ligand represent a saturation point in luciferase activity.   

 ΔC-EGFR-NLuc/CLuc cells treated with increasing concentrations of AR also 

exhibited a rapid increase in luciferase activity (Figure 4.2E).  Because of the decreased 

affinity of the EGF receptor for AR, higher concentrations of ligand were used to observe 

the changes in luciferase activity (143).  Addition of high concentrations of AR (100 and 

250 nM) led to a rapid plateau in luciferase activity (5-10 min).  However, in stark 

contrast to the results obtained with EGF and BTC, addition of increasing concentrations 

of AR resulted in an initial increase in luciferase activity, followed by a decrease.  This 

unexpected result made it impossible to determine the saturating concentration of AR 

since it is unclear where, if any, saturation point exists.   

 From these dose-response data on ΔC-EGFR-NLuc/CLuc cells treated with EGF, 

BTC, or AR, a dose-response curve was generated by plotting the concentration of ligand 

versus the change in photon flux after 20 min of imaging (Figure 4.3).  An estimate of the 

EC50 values for EGF and BTC was obtained by fitting the data to a sigmoidal dose-

response curve using GraphPad Prism, yielding an EC50 of 1.8 nM and 0.8 nM for EGF 

and BTC, respectively (Figure 4.3A and B).  The unique dose-response of ΔC-EGFR-

NLuc/CLuc cells to AR exhibited a bell-shaped dose-response curve (Figure 4.3C).  It is 

difficult to obtain EC50 values from a bell-shaped dose-response curve without a large 
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number of data points, so no values were obtained for AR.  However, qualitatively the 

peak in luciferase activity occurs near 25 nM AR. 

Ability of EGF, BTC, and AR to saturate ΔC-EGF receptor/ΔC-ErbB2 hetero-

dimerization 

 The effect of EGF, BTC, and AR was also examined in cells expressing the EGF 

receptor and ErbB2, both lacking the intracellular domains.  Similar to the EGFR, ErbB2 

consists of an extracellular domain with four subdomains, a single-pass α-helical region, 

and an intracellular domain (147).  Unlike the EGFR, ErbB2 has no known high-affinity 

ligand and thus cannot undergo a ligand-induced conformational change. Instead, ErbB2 

is thought to constitutively adopts an open/extended receptor conformation that is capable 

of undergoing dimerization (148-150).  Heterodimers of EGFR and ErbB2 have been 

reported to exhibit more potent signaling than EGFR/EGFR homodimers and as a result 

are implicated in cancer progression (57, 66, 140, 151).  It is therefore interesting to 

examine the hetero-dimerization induced by different EGF-like ligands, particularly 

because EGF receptor homodimers are capable of binding two ligands, while EGF 

receptor-ErbB2 hetero-dimers will have only one ligand bound in the dimer.   

 Because the luciferase fragment complementation imaging system utilizes two 

fragments of luciferase, we first wanted to determine if luciferase activity depended on 

which fragments were fused to the EGF receptor or ErbB2.  The NLuc fragment was 

fused to either the EGF receptor or ErbB2 to produce ΔC-EGFR-NLuc or ΔC-ErbB2-

NLuc.  Similar constructs were made using the CLuc fragment.  The following 

combinations of NLuc and CLuc fusion proteins were transiently transfected into CHO 

cells: ΔC-EGFR-NLuc/ΔC-EGFR-CLuc, ΔC-ErbB2-NLuc/ΔC-EGFR-CLuc, ΔC-EGFR-
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NLuc/ΔC-ErbB2-CLuc, and ΔC-ErbB2-NLuc/ΔC-ErbB2-CLuc.  The luciferase activity 

in the absence and presence of EGF was determined for each of these combinations and 

is shown in Figure 4.4.   

 For comparison, CHO cells were transiently transfected with the cDNA for ΔC-

EGFR-NLuc and ΔC-EGFR-CLuc.  Figure 4.4A shows the baseline photon flux in these 

cells.  Similar to the results obtained in the cell line stably expressing ΔC-EGFR-

NLuc/CLuc (Figure 4.2), this basal photon flux was not zero.  Addition of EGF led to a 

rapid increase in luciferase activity that plateaued 10-15 min after stimulation (Figure 

4.4B), comparable to earlier results (Figure 4.2 and Chapter 2, Figure 2.1).   

 When cells were transiently transfected with the ΔC-ErbB2-NLuc/ΔC-EGFR-

CLuc constructs, a basal luciferase activity was again observed (Figure 4.4C).  This basal 

activity was somewhat higher than that observed in cells expressing just the ΔC-EGF 

receptor luciferase constructs, which may simply represent a difference in expression 

level of these constructs.  EGF treatment led to a rapid increase in luciferase activity, 

with a plateau 10-15 min after addition of ligand (Figure 4.4D).  While the maximum 

change in luciferase activity appears greater in the ΔC-ErbB2-NLuc/ΔC-EGFR-CLuc 

cells compared to the ΔC-EGFR-NLuc/CLuc cells, the difference may again be due to 

variation in receptor expression levels.   

 Cells expressing the ΔC-EGFR-NLuc/ΔC-ErbB2-CLuc constructs also displayed 

a baseline luciferase activity (Figure 4.4E).  This baseline level was lower than that 

observed in the ΔC-ErbB2-NLuc/ΔC-EGFR-CLuc constructs (Figure 4.4C), which may 

indicate a difference in expression level of the NLuc and CLuc constructs.  Because the 

difference in baseline photon flux could affect interpretation of the ligand-induced 
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changes in photon flux, the baseline ΔC-EGFR-NLuc/ΔC-ErbB2-CLuc photon flux was 

corrected to match that of cells expressing the ΔC-ErbB2-NLuc/ΔC-EGFR-CLuc 

constructs.  Stimulation with EGF again led to a rapid increase in luciferase activity 

(Figure 4.4F).  Luciferase activity plateaued 10-15 min after addition of ligand.  When 

the data was fit to a one-phase exponential association curve and compared to the ΔC-

ErbB2-NLuc/ΔC-EGFR-CLuc cells analyzed the same way, a small but statistically 

significant change in the Ymax was observed (9.62 ± 0.07 x105 p/s vs 1.12 ± 0.01 x106 p/s, 

respectively).  This may reflect a difference in the ability of the NLuc and CLuc 

fragments to complement when fused to the EGF receptor versus ErbB2.  However, 

additional experiments using equal expression levels of all the EGF receptor and ErbB2 

fusion proteins are necessary to properly assess the potential differences.   

 The ΔC-ErbB2-NLuc and ΔC-ErbB2-CLuc fusion proteins were expressed in 

cells in the absence of any EGF receptor.  These cells also exhibited a baseline photon 

flux (Figure 4.4G).  This is consistent with other reports that ErbB2 can homodimerize in 

the absence of ligand (152, 153).  However, in contrast to both the homo- and hetero-

dimerization examined here, the ΔC-ErbB2-NLuc/CLuc cells did not display any ligand-

induced increase in luciferase activity when treated with EGF (Figure 4.4H).  This result 

is entirely consistent with an inability of EGF to bind to ErbB2 and elicit any changes in 

dimerization (148-150).   

 To examine changes in hetero-dimerization mediated by EGF, BTC, or AR, a 

stable cell line was established that expressed ΔC-EGFR-NLuc and ΔC-ErbB2-CLuc.  

Similar to the experiments done in the cell line expressing ΔC-EGFR-NLuc/CLuc, the 

concentration of EGF, BTC, or AR needed to saturate luciferase activity was first 
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examined (Figure 4.5).  Luciferase activity was detectable in the absence of ligand 

stimulation as previously demonstrated (Figure 4.5A, C, and E).  Addition of increasing 

concentrations of EGF resulted in a dose-dependent increase in luciferase activity in the 

ΔC-EGFR-NLuc/ΔC-ErbB2-CLuc cell line (Figure 4.5B).  Luciferase activity increased 

with increasing concentration of ligand until ~3-10 nM EGF.  This was confirmed by 

comparing the Ymax from a one-phase exponential association curve fit at 10 and 25 nM 

EGF, yielding no significant difference in these values (Table 4.1, p-value >0.05).   

 The increase in luciferase activity following stimulation with BTC was also 

evaluated in cells expressing ΔC-EGFR-NLuc/ΔC-ErbB2-CLuc.  Saturation of luciferase 

activity occurred near 10 nM BTC, similar to cells expressing ΔC-EGFR-NLuc/CLuc 

(Figure 4.5D).  Again, curve-fitting to a one-phase exponential association equation 

confirmed no detectable change in Ymax upon addition of increasing concentrations of 

BTC (Table 4.1, p-value > 0.05).   

 When ΔC-EGFR-NLuc/ΔC-ErbB2-CLuc cells were stimulated with AR, a 

different dose-dependent increase in luciferase activity was observed compared to the 

ΔC-EGFR-NLuc/CLuc cells (Figure 4.5F).  In these cells addition of high ligand 

concentrations did not induce the same dramatic decrease in luciferase activity observed 

in the ΔC-EGFR-NLuc/CLuc cells.  However, there were small differences in the 

maximum change in luciferase activity observed with the concentrations of AR above 1 

nM, making assessment of the luciferase activity saturation point difficult.   

 Dose-response curves were generated for ΔC-EGFR-NLuc/ΔC-ErbB2-CLuc cells 

stimulated with EGF and BTC (Figure 4.6).  The data were fit to a sigmoidal dose-

response curve to determine the EC50 after 20 min of stimulation with ligand.  The EC50 
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for EGF and BTC were very similar (0.7 nM and 1nM, respectively, Table 4.1), 

indicating these ligands elicited similar changes in lucifease activity in cells expressing 

EGF receptor/ErbB2 heterodimers.  Similar to cells expressing only the EGF receptor, no 

EC50 was determined for ΔC-EGFR-NLuc/ΔC-ErbB2-CLuc cells stimulated with AR.  

While a bell-shaped dose-response curve was not obtained in these cells, there were 

decreases in luciferase activity with mid-range concentrations of AR (~50 nM).  

Additional concentrations of AR will need to be examined before a well-defined dose-

response curve can be generated.   

Ability of EGF, BTC, and AR to induce homo- and hetero-dimerization 

 Based on the Ymax and EC50 values for the ΔC-EGFR-NLuc/CLuc and ΔC-EGFR-

NLuc/ΔC-ErbB2-CLuc cells, 10 and 25 nM were the saturating concentrations of ligand 

used in experiments to determine the ability of EGF, BTC, and AR to induce dimer 

formation.  Consistent with other results, both the ΔC-EGFR-NLuc/CLuc and the ΔC-

EGFR-NLuc/ΔC-ErbB2-CLuc cell lines exhibited a non-zero baseline luciferase activity 

(Figure 4.7A and D).  ΔC-EGFR-NLuc/CLuc and ΔC-EGFR-NLuc/ΔC-ErbB2-CLuc 

cells were first stimulated with 10 nM EGF or BTC and the change in photon flux was 

assessed (Figure 4.7B and E).  EGF stimulation yielded a greater change in photon flux 

than BTC in both ΔC-EGFR-NLuc/CLuc and ΔC-EGFR-NLuc/ΔC-ErbB2-CLuc cells 

(compare Ymax in Table 4.2).  The rate of change in luciferase activity was also lower in 

EGF-treated cells (Table 4.2).  These differences were slightly smaller in the ΔC-EGFR-

NLuc/ΔC-ErbB2-CLuc cell line.   

 Luciferase activity in ΔC-EGFR-NLuc/CLuc and the ΔC-EGFR-NLuc/ΔC-

ErbB2-CLuc cells stimulated with 25 nM EGF, BTC, or AR was also examined (Figure 
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4.7C and F).  Consistent with the 10 nM dose of EGF and BTC, EGF was able to induce 

the largest change in luciferase activity in both cell lines (Ymax values, Table 4.2).  AR 

was the least effective ligand in inducing an increase in luciferase activity in both cell 

lines (Table 4.2).  The rate of change in luciferase activity was greatest in AR-treated 

cells (Table 4.2).   

BTC enhances the recovery in luciferase activity in the full-length EGF receptor 

 In Chapter 2, luciferase fragment complementation imaging of the full-length 

EGF receptor revealed a series of ligand-induced conformational changes in the 

intracellular domain.  The ability of EGF and BTC to induce these conformational 

changes was examined in CHO cells expressing the full-length EGFR-NLuc and EGFR-

CLuc constructs (Figure 4.8).  As expected, no difference in the basal photon flux was 

observed in these cells prior to ligand stimulation (Figure 4.8A).  Increasing 

concentrations of EGF or BTC were added to cells and the change in photon flux over 

time was observed (Figure 4.8B-F).  EGF was able to induce a decrease and recovery in 

luciferase complementation similar to what was previously observed (Chapter 2, Figure 

2.3).  At low concentrations of ligand (0.1 and 1 nM) little change in photon flux was 

observed (Figure 4.8B and C).  Addition of higher concentrations of EGF or BTC 

resulted in both a decrease and recovery in luciferase activity (Figure 4.8D-F).  The 

decrease in luciferase activity was essentially indistinguishable in cells treated with EGF 

or BTC.  However, the magnitude of the recovery in luciferase activity was higher in 

cells treated with BTC, reflecting differences in the ability of these ligands to induce EGF 

receptor intracellular domain conformational changes. 

 



 100 

Discussion 

 Luciferase fragment complementation imaging enabled characterization of ligand-

induced conformational changes in both the extracelullar and intracellular domains of the 

EGF receptor in response to different ligands of the EGF-like family.  These ligands were 

able to induce dimerization to differing extents in the context of both homo- and hetero-

dimerization of the EGF receptor extracellular domains.   

 Initially, dose-response curves were generated for cells expressing the luciferase 

fragments fused to either the EGF receptor alone or both the EGF receptor and ErbB2 

truncated just beyond the transmembrane domain (ΔC-EGF receptor and ΔC-ErbB2).  

The EC50 for EGF and BTC were similar in both EGF receptor homo-dimerization and 

EGF receptor/ErbB2 hetero-dimerization.  These values are similar to the IC50 values in 

experiments where these ligands competed with 125I-EGF binding (50).  This indicates 

that these receptors have similar responses to ligand in terms of both binding and 

dimerization.  Unfortunately, without carefully matched receptor levels, the ability of 

EGF and BTC to induce homo- versus hetero-dimerization cannot be directly compared.  

Additional studies in which known amounts of receptors are expressed will be required to 

quantitatively compare the ability of these ligands to induce homo- and hetero-

dimerization. 

 AR exhibited a unique bell-shaped dose-response curve in ΔC-EGF receptor cells.  

These data suggest that in the same cell, AR can function both as an agonist and 

antagonist to EGF receptor dimer formation.  AR has previously been reported to be both 

stimulatory and inhibitory, but these functions were ascribed to its effect on different cell 

lines (143).  Our findings that AR can be both stimulatory and inhibitory in the same cell 
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line suggest a possible unique self-regulatory role for this ligand.  It is interesting to note 

that such a phenomenon has not been reported for AR-stimulated phosphorylation of the 

EGF receptor, indicating that this dose-response curve is unique to EGF receptor 

dimerization.  The bell-shaped dose-response curve that is observed may indicate 

differential modes of binding to the EGF receptor, perhaps through additional binding 

sites other than the traditional subdomain I and III sites.  Alternatively, additional ligand 

may bind between subdomains I and III making the binding site more open than normal 

and likely affecting subdomain II/dimerization arm interactions.  This would then 

manifest as a decrease in dimerization upon addition of higher concentrations of ligand.  

It will be interesting to see if other EGF-like ligands exhibit similar bell-shaped dose-

response curves.  

 The data presented here demonstrate that EGF, BTC, and AR exhibit a hierarchy 

in their ability to stimulate dimer formation, as measured by the maximum change in 

photon flux. In the context of both homo- and hetero-dimerization the order is EGF > 

BTC > AR in stimulating dimer formation.  BTC may be slightly more effective in 

inducing dimer formation in cells expressing ΔC-EGF receptor and ΔC-ErbB2.  In these 

cells, the percentage change in luciferase activity compared to EGF was ~30%, while 

there was a nearly 50% change in luciferase activity in cells expressing only the EGF 

receptor.  These results are similar to a study by Wehrman et al. using a β-galactosidase 

enzyme complementation assay with a truncated EGF receptor and ErbB2 (152).  In these 

studies BTC stimulated a lower level of dimer formation compared to EGF.  Conversely, 

AR may be better at inducing dimer formation in cells expressing only the EGF receptor, 
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since the percentage change compared to EGF was ~55% in these cells compared to 

~70% in cells expressing the ΔC-EGF receptor and ΔC-ErbB2.   

 In contrast to the ligand ranking for inducing EGF receptor dimerization, this 

hierarchy is switched when comparing the rate of ligand-induced dimerization.  AR 

induces a faster rate of dimerization compared to BTC and EGF in cells expressing just 

the ΔC-EGF receptor or in combination with ΔC-ErbB2.  This order for the rate of 

ligand-induced dimerization is consistent with the notion that AR induces a smaller 

number of homo- or hetero-dimers.   

 These data using the ΔC-EGF receptor and ΔC-ErbB2 indicate that there is a clear 

difference in the ability of a particular ligand to induce homo- or hetero-dimerization.  

Future studies correlating this with changes in the phosphorylation of specific tyrosine 

residues on the EGF receptor will be required to determine the ability of these ligands to 

initiate a particular signaling pathway.  Previous studies indicate that AR may not 

stimulate the phosphorylation of the EGF receptor on Y1045 as well as EGF, possibly 

linking this ligand to reduced downregulation of the EGF receptor (154).  It has been 

previously proposed that the differential phosphorylation patterns stimulated by a 

particular ligand may reflect subtle differences in the extracellular and intracellular 

domain interface upon binding of different ligands (Figure 4.9) (47, 138).  Such subtle 

differences in the dimerization arm have been observed in crystal structures of the EGF 

receptor extracellular domain bound to EGF or TGF-α (32, 33).  The data presented here 

are consistent with such a model in which ligand-induced dimerization is altered first on 

the extracellular domain interface.  In addition to different EGF-like ligands initiating 

differences in the dimerization interfaces, the ligands may also selectively induce 
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formation of dimers or higher-order oligomers (138).  This could conceivably alter the 

ability of the luciferase complementation assay to report on ligand-induced dimerization 

and could indicate the predominance of higher-order oligomers on stimulation with 

ligands other than EGF.   

 Conformational changes in the intracellular domain of the EGF receptor were also 

analyzed following addition of either EGF or BTC using the luciferase assay.  The 

decrease in luciferase activity was very similar in cells treated with either EGF or BTC.  

However, cells treated with BTC displayed a clear enhancement in the magnitude of the 

recovery of luciferase activity.  In Chapters 2 and 3 this recovery was shown to be 

dependent on MAP kinase activity (Figures 2.12, 2.13, and 3.8).  Loss of MAP kinase 

activity completely ablated the recovery in luciferase activity.  BTC has been reported to 

stimulate enhanced MAP kinase phosphorylation in cells compared EGF (142).  This 

enhanced phosphorylation was mediated by enhanced phosphorylation of the EGF 

receptor on Y1068 and ultimately resulted in an inhibition of apoptosis in cells stimulated 

with BTC.  The finding that BTC enhances MAP kinase phosphorylation is entirely 

consistent with the data presented here in which an enhanced recovery was observed 

compared to cells treated with EGF.  It will be interesting to determine if BTC also 

enhances phosphorylation of the EGF receptor on Thr-669 and causes increased 

desensitization of the tyrosine kinase activity of the EGF receptor.   

 The results described in this chapter show that EGF-like ligands exhibit 

differences in the ability to induce EGF receptor homo- and hetero-dimerization and in 

the ability to induce intracellular domain conformational changes.  This assay could be 

used in future studies to further examine the dimerization potential of additional EGF-like 
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ligands, as well as the ability of other ligands to affect changes in the EGF receptor 

intracellular domain, particularly through modulation of the MAP kinase pathway.   

Experimental Procedures 

 Reagents—Murine EGF (Biomedical Technologies, Inc.), murine amphiregulin 

(Leinco Technolgies, Inc.), and human betacellulin (Sigma) were dissolved in sterile 

water.  Doxycycline was purchased from Clontech and was dissolved in sterile water.  D-

luciferin was from BioSynth and was dissolved in PBS.  Coelenterazine was from Sigma 

and was dissolved in ethanol.   

DNA constructs—The ΔC-EGFR-NLuc and ΔC-EGFR-CLuc and full-length 

EGFR-NLuc and EGFR-CLuc constructs were described previously in Chapter 2 (128).  

ΔC-ErbB2-CLuc (pcDNA6/V5-His B, Invitrogen) was made by inserting a BsiWI site 

just beyond the transmembrane domain in the ErbB2 pcDNA3.1 (+) construct (kind gift 

from Dr. G. Carpenter, Vanderbilt University) using QuikChange site-directed 

mutagenesis.  The mutant was digested with the NheI and BsiWI restriction enzymes and 

was ligated into the ΔC-EGFR-CLuc (pcDNA6/V5-His B) construct digested with the 

same enzymes.  This resulted in the following linker between the transmembrane domain 

and CLuc fragment: QQKTYASRGGGSSGGG (100, 101).  The construct was verified 

by sequencing. 

 The ΔC-ErbB2-NLuc (pBI-Tet MCSI, Clontech) construct was generated by 

digesting the ΔC-ErbB2-CLuc (pcDNA6/V5-His B) construct with NheI and BsiWI.  The 

insert was ligated into the ErbB2-NLuc pBI-Tet construct digested with the same 

enzymes.  The truncation was verified by sequencing.  
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 Cell Lines—CHO-K1 Tet-On cells (Clontech) were stably co-transfected with 

ΔC-EGFR-NLuc and pTK-Hyg (Clontech) using Lipofectamine 2000 (Invitrogen).  

Stable clones were isolated by selection in DMEM containing 600 µg/ml hygromycin 

(InvivoGen).  Double-stable cell lines were established by stably transfecting the ΔC-

EGFR-NLuc cells with either ΔC-EGFR-CLuc or ΔC-ErbB2-CLuc.  Clones stably 

expressing ΔC-EGFR-CLuc were selected in DMEM containing 400 µg/ml Zeocin 

(Invitrogen).  The ΔC-EGFR-NLuc/CLuc cells were grown in DMEM containing 10% 

FetalPlex, 1000 µg/ml penicllin/streptomycin, 100 µg/ml G418, 50 µg/ml hygromycin, 

and 100 µg/ml Zeocin.  Clones stably expressing ΔC-ErbB2-CLuc were selected in 

DMEM containing 10 µg/ml Blasticidin (InvivoGen).  Cells were grown in DMEM with 

1000 µg/ml penicllin/streptomycin, 100 µg/ml G418, 50 µg/ml hygromycin, and 2 µg/ml 

Blasticidin.  For the transient transfection experiments with the ΔC-EGFR-NLuc, ΔC-

EGFR-CLuc, ΔC-ErbB2-NLuc, and ΔC-ErbB2-CLuc constructs, cells were transfected 

24 hrs prior to imaging using Lipofectamine 2000.  Transfection efficiency was assessed 

by co-transfecting renilla luciferase (pRLuc-N1, Packard Bioscience).   

 Luciferase complementation imaging—48 hr prior to use cells were plated at 5 

x103 cells per well in DMEM containing doxycycline in a black-walled 96-well plate.  

On the day of the assay, cells were serum-starved for 2 hr and then incubated for 20 min 

in 175 µl DMEM without phenol red, containing 1 mg/ml BSA, 25 mM Hepes, and 0.6 

mg/ml D-luciferin at 37°C.  To establish a baseline, cell radiance (photons/second/cm2/sr) 

was measured using a cooled CCD camera and imaging system at 37°C (IVIS 50; 

Caliper) (30 sec exposure; binning, 8; no filter; f-stop, 1; field of view, 12 cm).  EGF was 

added in a volume of 25 µl in the same media (DMEM, 1mg/ml BSA, 25mM Hepes, 
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0.6mg/ml D-Luciferin).  Radiance was measured sequentially as described above.  For 

experiments involving transient transfection, the transfection efficiency was assessed by 

monitoring renilla luciferase expression.  Media was replaced on cells with DMEM (no 

phenol red) containing 1 mg/ml BSA, 25 mM Hepes, and 400 nM coelenterazine.  

Radiance was immediately measured as described above except the filter was set to <510.  

 Data Analysis—Data was collected in quadruplicate for each condition.  A flat-

field correction was done to correct for differences in the baseline photon flux.  Light 

production expressed as photon flux (photons/sec) was determined from regions-of-

interest defined over wells using LIVINGIMAGE (Xenogen) and IGOR (Wavemetrics) 

software.  Changes in photon flux were calculated by subtracting values from untreated 

cells from those of EGF-treated cells.  Standard errors were determined using the formula 

for the unpooled standard error.  
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Table 4.1.  Comparison of the Ymax and EC50 values following stimulation with EGF or 
BTC in cells expressing ΔC-EGFR-NLuc/CLuc or ΔC-EGFR-NLuc/ΔC-ErbB2-CLuc.  
The Ymax values were compared using GraphPad Prism and there was no difference 
between 10 nM and 25 nM for each ligand (p-value > 0.05). 
 

  ΔC-EGFR-NLuc/CLuc ΔC-EGFR-NLuc/ ΔC-ErbB2-CLuc 
  EGF BTC EGF BTC 

10 nM 2.50 ± 0.02 x106 1.45 ± 0.01 x106 1.39 ± 0.11 x105 1.07 ± 0.04 x105 Ymax  
(p/s) 

25 nM 2.54 ± 0.01 x106 1.47 ± 0.03 x106 1.50 ± 0.04 x105 1.00 ± 0.02 x105 

 EC50 
1.8 nM (95% CI 

1.5-2.1 nM) 
0.8 nM (95% CI 

0.5-1.2 nM) 
0.7 nM (95% CI 

0.2-2 nM) 
1 nM (95% CI 

0.3-2.8 nM) 
 

 

 

Table 4.2.  Comparison of the effects of EGF, BTC, and AR on cells expressing ΔC-
EGFR-NLuc/CLuc or ΔC-EGFR-NLuc/ΔC-ErbB2-CLuc.  Curves were fit to a one-phase 
exponential association curve using GraphPad Prism and the resulting parameters for 
Ymax, rate (k), and t1/2 are reported below.   

  ΔC-EGFR-NLuc/CLuc ΔC-EGFR-NLuc/ ΔC-ErbB2-CLuc 
  EGF BTC AR EGF BTC AR 

Ymax (p/s) 1.36 ± 
0.01 x106 

7.48 ± 
0.06 x105 ND 2.04 ± 

0.01 x105 
1.51 ± 

0.01 x105 ND 

Rate (k, 
min-1) 

0.161 ± 
0.004 

0.188 ± 
0.004 ND 0.263 ± 

0.006 0.29 ±0.01 ND 
10 
nM 

t1/2 (min) 4.32 3.69 ND 2.64 2.43 ND 

Ymax (p/s) 1.23 ± 
0.01 x106 

7.00 ± 
0.04 x105 

5.50 ± 
0.04 x105 

2.00 ± 
0.01 x105 

1.47 ± 
0.01 x105 

6.62 ± 
0.10 x104 

Rate (k, 
min-1) 

0.259 ± 
0.006 

0.316 ± 
0.007 

0.334 ± 
0.012 

0.360 ± 
0.012 

0.444 ± 
0.021 

0.636 ± 
0.068 

25 
nM 

t1/2 (min) 2.67 2.19 2.08 1.93 1.56 1.09 
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Figure 4.1.  Complexity of the EGF receptor family signaling network. Schematic 
representation of the ligands belonging to the EGF-like growth factor family, as well as 
the possible combinations of EGF receptor family homo- and hetero-dimerization 
partners.  The complexity of this signaling network is exemplified by the activation of 
diverse signaling pathways that ultimately lead to diverse biological outcomes (Figure 
from (140)).   
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Figure 4.2.  Ability of EGF, BTC, and AR to induce an increase in luciferase activity 
in ΔC-EGF receptor cells.  CHO-K1 Tet-On cells stably expressing the ΔC-EGFR-
NLuc and ΔC-EGFR-CLuc constructs were plated at 5x103 cells/well 48 hrs prior to 
imaging in 96-well plates containing 1 µg/ml doxycycline.  On the day of imaging, cells 
were serum-starved for 2 hrs followed by pre-treatment with 0.6 mg/ml D-Luciferin.  A, 
C, E) Photon flux (photons/sec; p/s) in the absence of ligand. B, D, E) Change in photon 
flux (photons/sec; p/s) following addition of increasing concentrations of EGF, BTC, or 
AR, respectively.  Error bars represent the standard error of data collected in 
quadruplicate. 
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Figure 4.3.  Dose-response to EGF, BTC, and AR in ΔC-EGF receptor cells.  CHO-
K1 Tet-On cells stably expressing ΔEGFR-NLuc and ΔEGFR-CLuc were plated at 5x103 
cells per well in a 96-well plate 48 hrs prior to imaging in media containing 1 µg/ml 
doxycycline.  Cells were serum-starved 2 hr prior to imaging.  0.6 mg/ml D-luciferin was 
added to cells 20 min before imaging.  These data represent the change in photon flux 
(photons/sec; p/s) at the 20 min imaging time point (Figure 4.2) after stimulation with 
increasing concentrations of EGF (A), BTC (B), or AR (C).  The EGF (A) and BTC (B) 
data were fit to a sigmoidal dose-response curve using the GraphPad Prism software 
(EC50 values reported in Table 4.1).  The curve through the AR data points (C) represents 
the data fit to a guassian distribution, with no quantitative measurements taken from this 
curve fit.  Error bars represent the standard error of data collected in quadruplicate.  

A 

B 

C 
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Figure 4.4.  Characterization of ΔC-ErbB2-NLuc and ΔC-ErbB2-CLuc constructs. 
CHO-K1 Tet-On cells were plated at 5x103 cells/well in a 96-well plate 48 hrs before 
imaging in DMEM containing 1 µg/ml doxycycline.  24 hrs prior to imaging, cells were 
transiently transfected with the cDNA encoding ΔC-EGFR-NLuc, ΔC-EGFR-CLuc, ΔC-
ErbB2-NLuc, and ΔC-ErbB2-CLuc in the specified combinations.  On the day of 
imaging, cells were serum-starved for 2 hrs, followed by a 20 min pre-treatment with 0.6 
mg/ml D-Luciferin.  A, C, E, G) Basal photon flux (photons/sec; p/s) for the indicated 
combinations of receptors.  B, D, F, H) Change in photon flux (photons/sec; p/s) 
following addition of 10 nM EGF for the indicated receptor combinations.  Error bars 
represent standard error of quadruplicate samples.     
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Figure 4.5.  Ligand-induced increase in luciferase activity in ΔC-EGF receptor/ΔC-
ErbB2 cells. CHO-K1 Tet-On cells stably transfected with ΔC-EGFR-NLuc/ΔC-ErbB2-
CLuc were plated at 5x103 cells/well in DMEM containing 1 µg/ml doxycycline 48 hrs 
prior to imaging.  On the day of imaging cells were serum-starved 2 hrs and were pre-
treated for 20 min with 0.6 mg/ml D-luciferin.  A, C, E) Photon flux (photons/sec; p/s) in 
the absence of ligand.  B, D, F) Change in photon flux (photons/sec; p/s) upon addition of 
increasing concentrations of EGF (B), BTC (D), or AR (F).  Error bars represent the 
standard error of four measurements.  
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Figure 4.6.  Dose-response to EGF and BTC in ΔC-EGF receptor/ΔC-ErbB2 cells. 
CHO-K1 Tet-On cells stably expressing ΔC-EGFR-NLuc/ΔC-ErbB2-CLuc were plated 
48 hrs prior to imaging at 5x103 cells/well in DMEM containing 1 µg/ml doxycycline.  
On the day of imaging, cells were serum-starved for 2 hrs, followed by a 20 min pre-
incubation with 0.6 mg/ml D-luciferin.  Data presented here (from Figure 4.5) represent 
the change in photon flux (photons/sec; p/s) at the 20 min imaging point following 
addition of varying concentrations of EGF (A) or BTC (B).  Data were fit to a sigmoidal 
dose-response curve using GraphPad Prism, with the EC50 values listed in Table 4.1.  
Error bars represent the standard error from quadruplicate measurements.       
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Figure 4.7.  Ligand-induced changes in luciferase activity in cells expressing ΔC-
EGF receptor alone or in addition to ΔC-ErbB2. CHO-K1 Tet-On cells stably 
expressing either ΔC-EGFR-NLuc/ΔC-EGFR-CLuc or ΔC-EGFR-NLuc/ΔC-ErbB2-
CLuc were plated at 5x103 cells/well in 96-well plates containing 1 µg/ml doxycycline 48 
hrs prior to imaging.  Cells were serum-starved 2 hrs on the day of the assay, followed by 
a 20 min pre-incubation period with 0.6 mg/ml D-luciferin.  A, D) Photon flux 
(photons/sec; p/s) in the absence of ligand.  B, C) Change in photon flux (photons/sec; 
p/s) in ΔC-EGFR-NLuc/ΔC-EGFR-CLuc cells following addition of 10 nM EGF or BTC 
or 25 nM EGF, BTC, or AR.  D, F) Change in photon flux (photons/sec; p/s) in ΔC-
EGFR-NLuc/ΔC-ErbB2-CLuc cells after addition of 10 nM EGF or BTC or 25 nM EGF, 
BTC, or AR.  Standard error was determined based on quadruplicate measurements.  
Ligand-treated data were fit to a one-phase exponential association curve using GraphPad 
Prism.  Results are listed in Table 4.2.   
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Figure 4.8.  Effect of EGF and BTC on the ligand-induced conformational changes 
in the full-length EGF receptor.   
CHO-K1 Tet-On cells stably expressing EGFR-NLuc and EGFR-CLuc were plated at 
5x103 cells/well in a 96-well plate 48 hrs prior to imaging in DMEM containing 1 µg/ml 
doxycycline.  2 hrs prior to imaging cells were serum-starved and 20 min prior to 
imaging cells were treated with 0.6 mg/ml D-luciferin.  A) Basal photon flux 
(photons/sec; p/s).  B-F) Change in photon flux (photons/sec; p/s) after addition of 
increasing concentrations of either EGF (open circles) or BTC (closed circles).  Error 
bars represent the standard error of measurements made in quadruplicate. 
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Figure 4.9. Model for differential regulation of EGF receptor dimerization, 
signaling, and biological effect mediated by different ligands.  Schematic diagram 
indicating potential differences in ligand binding conformations to the extracellular 
domain of the EGF receptor (A and B).  This extracellular difference in ligand binding 
may be propagated through the transmembrane region to the intracellular domain, 
mediating additional subtle differences in the binding interface.  This could lead to 
phosphorylation of different tyrosine resides on the C-terminal tail of the EGF receptor, 
as well as recruitment of different downstream signaling proteins.  Ultimately, the 
differences in ligand-receptor conformation at the cell surface could be propagated to 
elicit differences in the biological outcome of the cell (e.g. proliferation versus invasion) 
(From (47)).   
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CHAPTER 5.  Discussion and Future Directions 

Contributions to the EGF receptor field 

In this thesis, I have described the development and utilization of a firefly 

luciferase fragment complementation imaging assay to examine the dynamics of the EGF 

receptor.  This assay was used in two major ways: measuring the extracellular-domain-

mediated dimerization and the conformational changes of the intracellular domains.  

Imaging an EGF receptor truncated just beyond the transmembrane domain followed 

ligand-induced EGF receptor dimerization.  The ability of this assay to accurately follow 

the kinetics of ligand-induced dimerization in live cells is an improvement over existing 

assays that are performed under sub-optimal conditions and are unable to recapitulate the 

kinetics of ligand binding and dimerization.   

Imaging the truncated EGF receptor in the context of homo- and hetero-

dimerization with ErbB2 allowed detection of the differences in dimerization rate and 

extent of dimerization following stimulation with different EGF-like growth factors.  

These data compared the ability of these ligands to induce EGF receptor homo- and 

hetero-dimerization.  In addition, amphiregulin was identified to have an unique ability to 

function as both an agonist and antagonist of dimerization.  

Lucifease complementation imaging of the full-length EGF receptor identified 

sequential ligand-induced conformational changes that required kinase activity— a 

ligand-induced decrease followed by a recovery in luciferase activity.  Several EGF 

receptor mutants were characterized to demonstrate that the decrease in luciferase activity 

involved re-arrangement of the kinase domains of the EGF receptor, while the recovery 

in luciferase activity was completely dependent on MAP kinase activity. 
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The intriguing dependence of the recovery in luciferase activity on MAP kinase 

activity is consistent with the previous reports that MAP kinase phosphorylation of the 

EGF receptor on Thr-669 results in desensitization of the kinase activity of the receptor.  

However, the mechanistic basis for the MAP kinase-dependent desensitization was 

unknown.  In this thesis, I have established a model to explain how phosphorylation of 

the EGF receptor on Thr-669 results in desensitized kinase activity.  Acidic amino acids 

in the C-lobe of the kinase domain were identified that lie in close proximity to the Thr-

669 phosphorylation site on the juxtamembrane domain of the other kinase domain in an 

asymmetric dimer.  The data presented here strongly suggest that these residues mediate a 

charge repulsion event with a phosphorylated Thr-669, resulting in a block in the 

allosteric asymmetric dimer that is required for kinase activation.  This discovery 

underscores the critical role that the asymmetric dimer plays in mediating the kinase 

activity of the receptor and how this step in the receptor activation mechanism likely 

serves as an extremely important regulatory node in the EGF receptor signaling network. 

Future Directions 

The luciferase complementation imaging EGF receptor system provides a myriad 

of avenues for future research into the biology of the EGF receptor family.  I will try and 

highlight a few of the ideas that I have regarding future studies with this assay.  Given 

that the ErbB family members are validated cancer targets (48, 57, 66, 140, 151), one 

immediate application that carries promising clinical relevance would be its utility as a 

high-throughput screening assay to search for novel inhibitors of the EGF receptor with 

potential to expand current therapeutic strategies. For example, the luciferase 

complementation imaging assay with the truncated EGF receptor provides an excellent 
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opportunity to identify novel small molecule therapeutics targeting EGF receptor 

dimerization (R. Yang et al., manuscript submitted). 

Small molecule inhibitors of EGF receptor family dimerization could also serve 

as chemical probes to further understand the biology of these receptors.  For instance, it 

has been suggested that the EGF receptor and its family members not only exist as 

dimers, but also as higher-order oligomers.  Inhibitors that target the “traditional” 

dimerization arm/interface could be used to examine alternative interfaces that may 

mediate higher-order oligomer formation.  The luciferase complementation imaging 

assay is an excellent platform in which to identify small molecules targeting specific 

pairs of EGF receptor family homo- and hetero-dimers.   

Lucifease complementation imaging with the full-length EGF receptor provides 

an opportunity to investigate the intracellular domain conformational changes that take 

place following ligand binding.  The comparative analysis of the MAP kinase-mediated 

recovery in lucifease activity upon stimulation with EGF and betacellulin could lead to 

further characterization of other ligands in the same context. 

I have demonstrated that MAP kinase is able to modulate the final conformation 

adopted by the EGF receptor, with the read-out being a recovery in luciferase activity.  

This recovery represents a dissociation of the asymmetric kinase dimer.  I feel it would 

particularly interesting to apply a data-driven approach to this system to try and identify 

additional modulators of the recovery in luciferase activity.  RNAi screening could be 

used with the full-length EGF receptor cells to identify proteins that are required for the 

recovery in luciferase activity.  Besides MAP kinase, the MIG6 protein is likely a 

modulator of the recovery in lucifease activity, since it has been shown to block 
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formation of the asymmetric dimer interface (89, 90, 92).  It appears that blocking 

asymmetric dimer formation may be a common mechanism to desensitize the kinase 

activity of the EGF receptor.  Therefore, identification of additional asymmetric dimer 

interface modulators may provide additional insight into not only the biology of the ErbB 

receptors, but also expansion of therapeutic strategies.  

Finally, the luciferase complementation imaging assay could be used to study the 

conformational changes in the intracellular domain of EGF receptor family heterodimers.  

Preliminary data not discussed here suggest that the luciferase activity of an EGF 

receptor/ErbB2 full-length hetero-dimer exhibits a similar pattern of a decrease and 

recovery in luciferase activity.  It will be of interest to determine if there are receptor 

combinations that do not exhibit these characteristics.  Particularly interesting may be the 

ErbB2/ErbB3 heterodimer in which ErbB2 lacks a known ligand and ErbB3 is 

intrinsically kinase-dead.  This heterodimer may exhibit differences in the intracellular 

domain conformational changes, particularly because this complex signals more readily 

via the PI3-kinase pathway due to the presence of multiple phospho-tyrosine sites on 

ErB3 that couple to this pathway. 

I hope that I have highlighted not only the contributions this work has made to the 

EGF receptor field, but also the potential future contributions through the use of 

luciferase complementation imaging.  This assay has provided a powerful tool to study 

the unique and complex protein-protein interactions that occur in the EGF receptor. 
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