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ABSTRACT OF THE DISSERTATION 
 

Intraindividual Variability as a Correlate of White Matter Decline 
 

by 
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Associate Professor Denise Head, Chair 

 

Aging and early-stage Alzheimer disease (AD) have been associated with increased reaction time 

intraindividual variability (IIV). In previous studies this age-related increase in IIV has been 

associated with white matter volumes and microstructure. However, the association between IIV 

and white matter has not been contextualized with other aspects of cognitive performance and 

neuroanatomical structure, in particular with median reaction time and estimates of gray matter. 

Using cognitive composites derived from three attentional tasks (Stroop, Simon, and CVOE 

switching), in conjunction with estimates of regional gray matter thickness and white matter 

volume, the present dissertation examined two aims on a group of cognitively normal and early-

stage AD participants. Based on previous literature, the first aim examined evidence for a double 

dissociation between aspects of cognitive performance and neuroanatomical structure, such that 

the coefficient of variation (CoV, a measure of IIV) would uniquely be associated with white 

matter while median RT associated with gray matter thickness. The second aim examined 

evidence for a mediational role of CoV, such that this variable accounted for the association 

observed between regional white matter and performance on working memory and episodic 

memory tasks. Furthermore, Aim 2 examined whether CoV mediated the relationship between 
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two genetic factors (Apolipoprotein and catechol-O-methyltransferase) and memory performance 

as well. No support was found for either aim. Discussion focuses on possible explanations for the 

lack of reliable associations. Based on observations from post-hoc analyses it is suggested that 

group differences (e.g., cognitively normal vs. early-stage AD) in the sensitivity of IIV to 

cognitive performance and white matter may be a factor in the association of IIV with 

neurocognitive measures. 
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Introduction 
 

Despite many investigations focused on human aging using structural and functional 

neuroimaging over the past quarter-century, questions abound regarding the complex 

consequences of healthy and pathological aging on neurological structure and cognition (Raz & 

Lindenberger, 2011; Salthouse, 2011). Recent advances in neuroanatomical and cognitive 

measurement have not been fully explored in concert, and a neurocognitive approach may shed 

additional light on the structure-function relationship of the human brain as it ages. For example, 

the reduced structural integrity or volume of the brain appears to be particularly related to 

reaction time intraindividual variability (IIV), over and above an association with mean or 

median reaction time (Burton et al., 2006; Jackson, Balota, Duchek, & Head, 2012). The present 

dissertation focuses on the relationship between the brain’s structural integrity and estimates of 

central tendency and IIV in reaction time in tasks of cognitive performance for cognitively 

normal older adults and individuals with early-stage Alzheimer disease (AD). Specifically, given 

that the extant literature has yoked reaction time variability with white matter integrity (Anstey et 

al., 2007; Bunce et al., 2007; Fjell, Westlye, Amlien, & Walhovd, 2011; MacDonald, Li, & 

Bäckman, 2009; Moy et al., 2011; Ullén, Forsman, Blom, Karabanov, & Madison, 2008; 

Walhovd & Fjell, 2007), two aims directly examined whether increased reaction time 

intraindividual variability in cognitive tasks is associated with white matter. The first aim 

explored whether increased intraindividual variability better reflected compromised white matter 

relative to median performance estimates in older adults. The converse of this association, that 

gray matter may more strongly associate with estimates of central tendency (i.e., median reaction 

time) likewise was tested in order to demonstrate a possible double dissociation between 

estimates of cognitive performance and neuroanatomical integrity.  Given this proposed 

dissociation, the second aim explored whether intraindividual variability mediated the 
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relationship between white matter integrity and working memory and episodic memory 

performance, as well as the relationship between genetic factors and memory performance.  

Defining Intraindividual Variability 
 

Broadly, the study of reaction time (RT) variability in cognitive tasks is a relatively 

recent development in experimental psychology (Luce, 1977, 1986), and has only lately been 

applied to cognitive aging (Hultsch, Strauss, Hunter, & MacDonald, 2008; MacDonald, Hultsch, 

& Dixon, 2003). Typically, examinations of cognitive functioning tend to rely on mean RTs, a 

measure of central tendency that assumes stability within individuals or groups. Exclusive focus 

on the mean, however, necessarily relegates RT instability to random noise, ignoring potentially 

systematic variations that may inform cognitive and neurobiological processes. Furthermore, 

qualitative differences in cognitive performance can be obscured when focusing on mean 

performance alone (Balota, Yap, Cortese, & Watson, 2008). Work by Jensen (1992) suggested 

that while there is shared variance among estimates of reaction time central tendency and 

dispersion, independent contributions of each emerge. Jensen revealed that median RTs and RT 

standard deviations were independently correlated with psychometric g as well as age, gender, 

and racial group differences, and he also reported unique sources of variance for each component 

of reaction time performance using principal components analyses. Therefore, the consideration 

of intraindividual variability—whether in concert with mean performance or in place of it—is 

critical to augment our understanding of neurocognitive changes associated with aging and 

dementia. Indeed, recent work by Garrett (Garrett, Kovacevic, McIntosh, & Grady, 2011, 2013a, 

2013b) has demonstrated that even the standard deviation of blood-oxygen-level-dependent 

(BOLD) signal in functional magnetic resonance imaging (fMRI) reflects meaningful 

development across the lifespan, and is related to task engagement and performance.   
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Reaction time variability comprises several types of cognitive performance, including 

interindividual differences (variability across individuals within a given task on a single 

measurement occasion), intraindividual differences (variability within an individual across tasks 

on a single measurement occasion), and intraindividual variability (variability within an 

individual within a given task across multiple measurement occasions). The present dissertation 

focuses on this latter measure, intraindividual variability (IIV) of reaction time, specifically in 

cognitive tasks. Studies of IIV typically find that its magnitude is fully half that of interindividual 

variability (Hultsch, Strauss, Hunter, & MacDonald, 2008; Nesselroade & Salthouse, 2004), 

suggesting that IIV is an important, informative source of variance.  

IIV itself can be multiply defined, largely with respect to the timescale over which a 

particular type of variability is investigated. Special consideration is given to inconsistency, a 

type of intraindividual variability indicating fluctuations in performance over very short 

intervals. Typically, inconsistency deals with variability on a trial-to-trial level in RT tasks, and 

in their review Hultsch and colleagues (2008) suggested that inconsistency in particular is ideally 

suited for investigation of neurobiological and endogenous sources of variability. Although an 

individual’s standard deviation (SD) is frequently employed as an index of inconsistency, SDs 

tend to show high positive correlations with mean RT (Faust, Balota, Spieler, & Ferraro, 1999; 

Myerson, Hale, Chen, & Lawrence, 1997; Wagenmakers & Brown, 2007; Wagenmakers, 

Grasman, & Molenaar, 2005), thus obscuring potentially useful distinctions within individuals 

and across groups over and above mean-level effects. IIV researchers have therefore turned to 

the coefficient of variation (CoV; SD/mean) and the intraindividual standard deviation (ISD; 

residual T scores partialed for age, gender, trial position, and their interactions), which are 

emerging as standard measures of inconsistency, due to low bias from mean RTs and high 
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association with other measures of inconsistency (Hultsch, MacDonald, Hunter, Levy-

Bencheton, & Strauss, 2000). Critically, mean-corrected measures of IIV like CoV and ISD have 

been shown to be sensitive measures of cognitive change, revealing key differences between 

younger and older adults, and between healthy and pathological aging (Dixon et al., 2007; 

Duchek et al., 2009; Hultsch et al., 2008). The dissertation first considers the utility of 

investigating IIV in aging and early-stage AD, discusses white matter declines associated with 

healthy and pathological aging, and then combines these to hypothesize potential 

neuroanatomical correlates of IIV in older adults. 

Intraindividual Variability and Aging 
 

Previous research into the effects of aging on IIV has been remarkably consistent. Older 

individuals tend to become more variable across a wide range of behaviors, most notably in 

terms of their performance on cognitive tasks (Bunce, MacDonald, & Hultsch, 2004; Duchek et 

al., 2009; Myerson, Robertson, & Hale, 2007). Hultsch et al. (2008) reported a number of studies 

that observed a positive relationship between age and reaction time IIV in cognitive tasks, both 

in cross-sectional studies (Anstey, Dear, Christensen, & Jorm, 2005; Anstey, 1999; Bunce et al., 

2004; Dixon et al., 2007; Duchek et al., 2009; Hultsch, MacDonald, & Dixon, 2002; Nesselroade 

& Salthouse, 2004; Strauss, Bielak, Bunce, Hunter, & Hultsch, 2007) as well as longitudinal 

studies (Deary & Der, 2005; Lövdén, Li, Shing, & Lindenberger, 2007; MacDonald et al., 2003).  

Myerson et al. (2007), however, argued that age-related differences in IIV might be 

accommodated using a general slowing account, which suggests that variability has little to 

contribute to our understanding of aging processes over other measures of reaction time 

performance. On the other hand, it has been shown that tasks that fail to yield an independent 

IIV-age relationship tend to be relatively low in cognitive demand (West, Murphy, Armilio, 

Craik, & Stuss, 2002), and Hultsch et al. (2008) clarified that effects of age on IIV tend to 
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increase disproportionately for older adults as task complexity increases (Bielak, Hultsch, 

Strauss, MacDonald, & Hunter, 2010a; Lövdén, Li, Shing, & Lindenberger, 2007; MacDonald et 

al., 2003).  

Others have suggested that, task complexity aside, aging is not associated with increased 

IIV (Salthouse & Nesselroade, 2010; Salthouse, Nesselroade, & Berish, 2006). These studies, 

however, tend to rely on the standard deviation, which as discussed previously is a confounded 

estimate of IIV. Further, IIV in the Salthouse and Nesselroade longitudinal studies spanned 

multiple measurement occasions, rather than variability within a single measurement occasion. 

Finally, both Salthouse and Nesselroade (2010) and Salthouse et al. (2006) focused on variability 

in accuracy rather than in reaction time, and investigations examining intraindividual variability 

in accuracy typically fail to find age effects (Hultsch et al., 2008). Given that accuracy is a single 

point-estimate of task-set maintenance, it may be a less-dynamic measure than IIV in RTs, which 

relies on multiple observations within a measurement occasion. Thus, it appears that RT IIV 

reliably increases with age, although the magnitude of this effect is dependent on task 

complexity. 

Recent work has associated increased IIV with failures of attentional control (Duchek et 

al., 2009). Bellgrove, Hester, and Garavan (2004) drew a link between RT IIV and inhibitory 

failures, which the authors likened to attentional lapses in their Go/No-Go paradigm. Bellgrove 

et al. reported a negative correlation between successful inhibition and the CoV on Go trials, 

suggesting that IIV may index attentional control. Similar associations between IIV and 

attentional control in older adults have been reported using various measures of trial-to-trial 

variability, indicating a certain robustness in the relationship between IIV and attentional lapses 
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in older adults (Bunce et al., 2004; Duchek et al., 2009; Hultsch et al., 2000; MacDonald et al., 

2003; Weissman, Roberts, Visscher, & Woldorff, 2006; West et al., 2002). 

Research has also demonstrated that increases in IIV can predict declines in cognitive 

performance in older adults (Bielak, Hultsch, Strauss, Macdonald, & Hunter, 2010b; Lövdén et 

al., 2007). Lövdén et al. (2007), in an impressive five-occasion, 13-year longitudinal study of 

over 400 older adults, reported that increased CoV and ISD in a perceptual speed task reliably 

preceded declines in verbal digit-symbol substitution and category fluency tasks. Bielak and 

colleagues (2010b) observed that increased ISD successfully predicted converters to cognitive 

impairment five years in advance. Furthermore, increased ISD also predicted those likely to drop 

out of the study by the five-year follow-up. In addition to longitudinal observations, differences 

in IIV distinguished cognitively impaired individuals from cognitively normal older adults, even 

when mean cognitive performance was taken into account (Dixon et al., 2007; Duchek et al., 

2009; Strauss et al., 2007; although see Christensen et al., 2005). Duchek et al. (2009) 

demonstrated reliable differences in IIV for early-stage AD relative to cognitively normal older 

adults. Indeed, Duchek et al. reported greater CoV in cognitively normal older adults at increased 

genetic risk for AD (i.e., carriers of the Apolipoprotein ε4 allele) relative to cognitively normal 

older adults not at risk. This finding suggests impairments in attentional control processes in 

these groups prior to an AD diagnosis, given the strong relationship between increased IIV and 

breakdowns in attentional control. Increased IIV may also be associated with the Val allele 

variant of the catechol-O-methyltransferase (COMT) gene, another potential risk factor for AD, 

particularly when it is present in conjunction with Apolipoprotein ε4 (APOE4+; Martínez et al., 

2009; Wang et al., 2005). There is some evidence that carriers of the Val polymorphism of the 

COMT gene, like young-adult APOE4+ carriers, also experience increased IIV (MacDonald, 
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Cervenka, Farde, Nyberg, & Bäckman, 2009; MacDonald, Li, & Bäckman, 2009; MacDonald, 

Nyberg, & Bäckman, 2006).  

White Matter Structural Changes in Aging and AD 
 

Structural changes in the brain are a natural consequence of aging. In gray matter, there 

appears to be disproportionate vulnerability of the prefrontal cortex, somewhat more modest 

declines in some temporal and parietal regions, and relative sparing of primary visual cortex 

(Hedden & Gabrieli, 2004; Raz et al., 1997; Raz & Rodrigue, 2006).Volumetric declines in 

cortical gray matter may tend to accelerate with age (Walhovd et al., 2005). Reduced gray matter 

volume is associated with poorer cognitive performance (Raz, 2000; Raz, Gunning-Dixon, Head, 

Dupuis, & Acker, 1998; Raz & Rodrigue, 2006; although see Van Petten et al., 2004), 

particularly at the level of accuracy in cognitive domains. In his seminal review, Raz (2000) 

noted that age-related changes in dorsolateral prefrontal cortex and parietal regions are 

associated with declines in selective and divided attention. Age-related differences in gray matter 

thickness often corroborate that of gray matter volume (Fjell, Westlye et al., 2009), although 

differences between effects on gray thickness and volume have been observed as well (Fjell, 

Westlye et al., 2009; Salat et al., 2004).  

White matter also undergoes changes with advancing age. White matter may be measured 

in a variety of ways. White matter volume may be derived from the same automated processes as 

gray matter volume and thickness (Fischl et al., 2002; Fischl et al., 2004a), and white matter 

integrity may also be quantified by measurement of white matter hyperintensities, which are 

areas of increased contrast on T2-weighted MRI images. Analysis of white matter microstructure 

includes several ways of measuring the directional diffusivity of water molecules along white 

matter tracts. Generally speaking, white matter integrity has been shown to be compromised in 

both cognitively normal aging and early-stage AD (Gunning-Dixon, Brickman, Cheng, & 
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Alexopoulos, 2009; Johnson et al., 2010), and there is emerging evidence that white matter 

changes occur independently of gray matter alterations (see Bai et al., 2009, for a review). The 

increased presence of white matter hyperintensities may reflect a number of changes associated 

with healthy and pathological aging, including changes in white matter integrity, compromised 

vasculature, changes in perivascular spaces, and even atrophy of the neuropil, a region typically 

associated with gray matter (Gunning-Dixon & Raz, 2000; Yoshita et al., 2006). In cognitively 

normal aging, there are typically greater anterior declines in white matter volume that may 

accelerate with time (e.g., Bartzokis et al., 2003; Gunning-Dixon et al., 2009; Head et al., 2004; 

Salat et al., 2009). Furthermore, white matter integrity in aging may be tied to altered regulation 

of functional activity in frontal regions more strongly than gray matter integrity (Grady, 2008). 

The importance of white matter integrity is revealed in its association with reduced connectivity 

in functional networks of the brain in aging. For example, Andrews-Hanna et al. (2007) reported 

a positive association between reduced functional network connectivity and reduced white matter 

integrity, even after controlling for the influence of age. Critically, associations between white 

matter integrity and cognitive performance have also been reported in cognitively normal older 

adults (Gunning-Dixon et al., 2009; Raz et al., 2008; Raz, Rodrigue, Kennedy, & Acker, 2007). 

Hedden et al. (2011) found that white matter hyperintensities fully mediated the relationship 

between functional network activation and performance on a global-local processing task, 

suggesting that white matter integrity may play a significant role in cognitive function.  

More recently, white matter has been shown to reliably distinguish between healthy and 

pathological aging processes. Early-stage AD is marked by a differential vulnerability in more 

posterior regions in AD (Head et al., 2004; Kavcic, Ni, Zhu, Zhong, & Duffy, 2008; Salat et al., 

2009). This is also supported in recent work by Salat and colleagues (2010), who demonstrated 
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that early-stage AD was associated with reduced fractional anisotropy over and above changes 

attributable to gray matter. Further evidence demonstrates strong links between hippocampal 

atrophy, an early region of decline in AD, and atrophy of critical white matter regions (Villain et 

al., 2010; but see Bai et al., 2009). Furthermore, frontal, temporal, corpus callosal, and parietal 

white matter integrity have been associated with AD-related impairments in memory and 

executive function (Amar, Bucks, Lewis, Scott, & Wilcock, 1996; Anstey et al., 2007; Huang & 

Auchus, 2007; Kavcic et al., 2008).  

Evidence suggests that the sensitivity of white matter to cognitive aging may occur at 

least somewhat independently of gray matter contributions. Indeed, Bartzokis (2011) suggested 

that myelin integrity might uniquely index age-related changes in the brain as well as AD-related 

pathology. Based on white matter structural changes noted in his previous work (Bartzokis et al., 

2003, 2004), Bartzokis (2011) proposed a myelin model of healthy and pathological aging, in 

which breakdowns in myelin must precede other markers of brain atrophy associated with aging 

and AD. Oligodendrocytes that differentiate late in their own life cycle create thinner, more 

vulnerable myelin sheaths in temporoparietal regions of the brain, and to a lesser extent in frontal 

regions (Bartzokis et al., 2007; Bartzokis, 2011; Wood & Bunger, 1984). The reduced efficiency 

of myelin repair may trigger upregulation of BACE1 and γ-secretase to compensate (Michailov 

et al., 2004; Taveggia et al., 2008). Both of these enzymes upregulate amyloid precursor protein 

processing, which in turn results in greater deposition of β-amyloid (Bartzokis, 2011).  Increased 

β-amyloid deposition is aggravated in individuals with an APOE4 allele, and is currently thought 

to be a major component in the increased AD risk for APOE4+ individuals (Bartzokis et al., 

2003).  Ultimately, Bartzokis (2011) suggested that compromised white matter integrity may 



! 10!

underlie a host of changes in the aging brain, and may serve as an ideal early marker of structural 

and functional decline.  

In sum, the study of white matter in conjunction with gray matter estimates may provide 

additional insight into patterns of the aging brain and the role of neuroanatomy in cognitive 

decline. Previous research has made clear that using gray and white matter indices reveals a 

complex pattern of age-related change that could not be discerned examining just one of these 

measures (Abe et al., 2008; Good et al., 2002; Moy et al., 2011; Salat et al., 2010; Villain et al., 

2010; Ziegler et al., 2010); therefore, it is critical that investigations of neuroanatomical 

correlates of cognitive performance make use of both gray and white matter measures. 

Thus far, this dissertation has focused on the unique, albeit separate, association of IIV 

and white matter integrity with age-related declines in cognitive performance. There is emerging 

evidence that IIV and white matter are associated with one another, however. Attention therefore 

now turns toward surveying the evidence in support of an association between IIV and white 

matter.  

Intraindividual Variability as a Correlate of Neuroanatomical Decline 
 

Evidence has accumulated in recent years demonstrating that IIV is a correlate of age-

related neuroanatomical decline. MacDonald, Nyberg, and Bäckman (2006) noted that white 

matter volume and IIV show a similar timescale of development and decline across the lifespan. 

Specifically, both tend to yield inverted U-shaped functions. Bunce et al. (2007) reported a link 

between white matter hyperintensities and mean-corrected IIV in 60 – 64 year olds. Recent 

investigations have demonstrated a negative relationship between IIV and white matter integrity 

in older adults in wide number of regions across the brain (Anstey et al., 2007; Fjell, Westlye, 

Amlien, & Walhovd, 2011; Jackson, Balota, Duchek, & Head, 2012; Walhovd & Fjell, 2007). 

For example, Jackson, Balota, Duchek, and Head (2012) examined three tasks of cognitive 
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attention (Stroop, Simon, and a switching task) in conjunction with cerebral and regional white 

matter volume in 133 cognitively normal and 33 early-stage AD individuals. They reported that 

larger volumes in frontal and temporoparietal regions were associated with lower CoV and less 

slowing in the tail of the RT distribution, and larger total cerebral and inferior parietal white 

matter volumes were associated with faster modal reaction time. These results are consistent with 

previous research investigating prefrontal, temporal, and parietal volumes (Ullén et. al, 2008), 

the corpus callosum (Anstey et al., 2007), whole-brain volumes (Walhovd & Fjell, 2007), and 

white matter microstructure (Moy et al., 2011) and macrostructure (Bunce et al., 2007; Ota, 

Nemoto, Sato, Yamashita, & Asada, 2009). The cross-sectional association between white matter 

integrity and IIV, then, appears to be relatively robust, although the relationship between IIV and 

gray matter is less clear. 

Intraindividual variability and gray matter 

Given that increased variability may reflect breakdowns in neural fidelity (Rabbitt, 

Osman, Moore, & Stollery, 2001), increased IIV may be associated with gray matter integrity as 

well as white matter. There is, however, little research demonstrating a unique association of 

gray matter with IIV, perhaps partly because few studies have directly examined the relationship 

between gray matter and IIV.  Many studies that are often invoked in support of gray matter 

associations with variability tend to examine variability across cognitive tasks rather than within-

task IIV (Sowell et al., 2003), involve lesion studies (Stuss, Murphy, Binns, & Alexander, 2003) 

or disease states (Murtha, Cismaru, Waechter, & Chertkow, 2002) that do not selectively target 

gray matter.  

Few studies have simultaneously investigated independent associations between white 

and gray matter integrity and IIV.  Recently, Ziegler and colleagues (2010) reported that 
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attentional control (which is linked to IIV; Duchek et al., 2009, 2013) and episodic memory were 

more associated with white matter microstructure than gray matter thickness. Additionally, 

Walhovd and Fjell (2007) demonstrated a potential double dissociation in the influence of white 

and gray matter on cognitive performance. The authors collected volumetric estimates of total 

gray and white matter on 71 adults as well as cognitive performance via a visual oddball task. 

Significant correlations were reported between white matter and sdRT normalized, a CoV-like 

estimate of the reaction time standard deviation divided by the individual participant mean RT. 

These correlations persisted even after taking age and gender into consideration, but critically no 

correlation was observed between sdRT normalized and total gray matter estimates, nor did 

white matter correlate with mean RT. Gray matter correlated negatively with mean RT, although 

this became a nonsignificant trend after controlling for age. Subsequent path analyses further 

validated these independent relationships, with the constructed double-dissociation model, using 

age as an exogenous variable, providing an excellent fit to data. Walhovd and Fjell reiterated 

arguments by Jensen (1982, 1992), namely that IIV and modal performance in RT arise from 

fundamentally different processes. They suggested that IIV was particularly associated with 

white matter integrity because well-myelinated neural pathways allow for more stable signaling 

from one neuron to another. The association between gray matter volume and modal RT is less 

clear, but was informed by previous work by Haier and colleagues (2005). In Haier et al., using 

an exploratory voxel-based morphometric approach, gray matter but not white matter regions 

were correlated with mean RT in a study of healthy aging. Fjell, Walhovd, Fischl and Reinvang 

(2007) also found that P3 latency, associated with age-related changes in mean RT, was 

associated with gray matter volume, suggesting that modal RT may be particularly associated 

with gray matter integrity, although this study did not examine modal RT associations with white 
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matter. Another study found that white matter microstructure, but not gray matter density, was 

associated with ISD (Moy et al., 2011), and highlights a possible neurological basis for the 

distinction between modal RT and IIV estimates (Jensen, 1992). Thus, gray matter may underlie 

aspects of modal performance while white matter may influence the stability of a maintained task 

set. It is possible that white matter integrity may be more sensitive than gray matter integrity to 

the subtle neurobiological changes underlying performance instability (Bartzokis, 2011; 

Bartzokis et al., 2004); thus, white matter may be more likely to associate with IIV. Gray matter, 

on the other hand, may serve as a proxy for the overall efficiency of brain structure (Haier et al., 

2005), and may associate with modal estimates of RT. 

Other neuroanatomical correlates of intraindividual variability 

In spite of the number of studies that associate IIV with white matter integrity, few 

frameworks have been developed that specifically and uniquely associate IIV with white matter 

integrity or volume. It is likely that the distinction of white matter versus gray matter 

associations with IIV does not capture the totality of the brain’s relationship with RT variability. 

Across several reviews on neuroanatomical correlates of IIV (Hultsch et al., 2008; MacDonald et 

al., 2006, 2009), researchers contended that differences in IIV are multiply determined, ranging 

from fluctuations in neurotransmitter function to white matter demyelination to cortical lesions. 

Increases in IIV may occur for both adaptive as well as maladaptive purposes, suggesting that a 

constellation of neurobiological alterations may result in altered IIV. Hultsch et al. (2008, see 

Table 10.2) reported on a rich history of associations between variability and traumatic brain 

injury, lesions, dementia, and mild cognitive impairment, indicating that increased IIV may be 

associated with impairment anywhere from a molecular level up to the brain’s functional 

networks.  
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 Rabbitt, Osman, Moore, and Stollery (2001) suggested that the common link between 

IIV and attentional lapses may occur via increasingly inefficient neural and network activation, 

and this possibility is supported by neurocomputational models (Li, von Oertzen, & 

Lindenberger, 2006). Models by Li and colleagues (Li, Brehmer, Shing, Werkle-Bergner, & 

Lindenberger, 2006; Li, von Oertzen, et al., 2006) have demonstrated that increasingly 

inefficient neurons and neural networks result in increased IIV in cognitive and sensorimotor 

tasks. In particular, neural models indicate that reductions in the gain parameter on a neuronal 

level reduces the responsiveness in each node, increasing the random activation fluctuation in the 

network (Li, Lindenberger, & Sikström, 2001). This change accounted for a host of age-related 

declines, including deficits in associative binding and memory in addition to increased 

intraindividual variability in reaction time performance. Interestingly, the reduction in the gain 

parameter is thought to reflect changes in dopaminergic modulation in the brain (Li et al., 2001), 

both within and across functional networks (MacDonald, Li, & Bäckman, 2009). Experimental 

evidence further supports this relationship. For example, a recent positron emission tomography 

study (MacDonald et al., 2009) found that dopamine uptake in D2 receptors was associated with 

ISD in middle-aged adults (age range 41 – 65 years).  

The link between dopamine binding and IIV is strengthened by recent genetic work 

involving COMT, an enzyme which degrades dopamine in frontal regions (Goldberg & 

Weinberger, 2004; Weinshilboum & Otterness, 1999). Individuals, depending on genotype, will 

carry homozygous or heterozygous combinations of Val and Met alleles. There are reductions in 

dopamine levels in the synaptic cleft in Val carriers because these individuals have higher 

COMT activity than Met carriers, which is in turn associated with poorer performance in 

executive tasks (Egan et al., 2001; Goldberg & Weinberger, 2004; Parasuraman & Jiang, 2011). 
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Val carriers also exhibit increased IIV relative to Met carriers, which may be related to poorer 

dopamine binding to D2 receptors (Li et al., 2001; MacDonald et al., 2006). Therefore, if 

dopamine dysregulation underlies cognitive declines due to COMT, IIV may serve as an 

important mediator of this relationship.  

Most frequently, however, increased IIV is thought to be a consequence of a brain that 

becomes increasingly disconnected and inefficient with age and disease. Hultsch et al. (2008) 

hypothesized that this disconnection occurs via a slowdown of transmission speed between 

neurons, due to a combination of compromised white matter myelination and inefficient binding 

of dopamine to D2 receptors (MacDonald, Cervenka, Farde, Nyberg, & Bäckman, 2009). 

Ultimately, poor neuromodulation and reduced signal fidelity may result in an asynchrony of 

otherwise orchestrated brain regions. This asynchrony may not always be enough to cause overt 

failures in the execution of a given task set, but stochastic processes in the brain may 

occasionally exacerbate this inefficiency, making execution of some trials more difficult than 

others. Similar mechanisms are invoked in the cortical disconnection theory of cognitive aging 

advanced by O’Sullivan et al. (2001). It is worth noting that in the model proposed by O’Sullivan 

et al., changes in gray matter integrity are largely presumed to be independent of changes in the 

orchestration of brain regions, suggesting that IIV ought to be more associated with 

compromised white matter integrity. Alternate models of IIV, however, hypothesize an 

increasingly noisy brain, but remain agnostic with regard to whether gray or white matter is 

responsible for the change (Li & Lindenberger, 1999; Li, Lindenberger, & Sikström, 2001). 

Here, IIV could be associated with measures of either white or gray matter integrity, both 

measures, or possibly neither in favor of some other aspect of neurobiological function. In sum, 

much work remains to be done on neuroanatomical correlates of IIV, and while a host of factors 
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at multiple levels of organization may be associated with IIV, white matter integrity may be 

more likely to be correlated with variability than gray matter (Bartzokis, 2009). There is a need, 

however, to replicate the white matter observations of Walhovd & Fjell (2007) in a larger 

sample, using regional volume estimates, given that IIV typically is linked to frontal regions 

(MacDonald, Li, et al., 2009; MacDonald et al., 2006; although see Anstey et al., 2007; Jackson 

et al., 2012; Ullén et al., 2008; Ziegler et al., 2010).  

Functional neuroimaging and intraindividual variability 

Although the current dissertation focuses exclusively on the brain’s structural integrity, 

brief consideration will be given to functional neuroimaging research involving IIV. Functional 

magnetic resonance imaging (fMRI) studies may shed light on potential regions of interest in a 

structural investigation (Damoiseaux, Prater, Miller, & Greicius, 2012), and indeed have 

informed some recent research on associations between IIV and white matter (Jackson et al., 

2012). Several fMRI investigations of IIV have demonstrated an association between frontal 

activation and variability (Bellgrove, Hester, & Garavan, 2004; Duchek et al., 2013; Kelly, 

Uddin, Biswal, Castellanos, & Milham, 2008; MacDonald, Nyberg, Sandblom, Fischer, & 

Bäckman, 2008; Yarkoni et al., 2009), which corroborates structural findings (Jackson et al., 

2012; Ullén et al., 2008). Bellgrove, Hester, and Garavan (2004) reported what is regarded as the 

earliest study of IIV using functional neuroimaging (Hultsch et al., 2008). CoV on a Go/No-Go 

task was positively correlated with activation in middle frontal, right inferior frontal, right 

inferior parietal, and thalamic regions. Moreover, mean RT was not correlated with any of these 

regions or with CoV, highlighting an independent association with within-subject variability 

(Jensen, 1992). Bellgrove et al. hypothesized that the functional ROIs comprise part of a network 

of regions involved in attentional control. Positive correlations between this network and IIV 
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reflect poorer efficiency of executive control.  MacDonald et al. (2008) demonstrated a 

conceptual replication of Bellgrove et al. (2004) using response latencies in visual word 

recognition, and linked lower ISDs with bilateral activation of the supramarginal gyrus. Yarkoni 

et al. (2009) examined RT variations on a trial-by-trial level, and found strong bilateral activation 

in medial frontal and temporoparietal regions. Curiously, this latter group also reported BOLD 

signals associated with RT fluctuations in white matter, suggesting that it may be possible to 

detect functional changes in deep white matter, and that once again IIV may serve as a useful, 

sensitive measure to do so. 

Consistent with these trends, Kelly et al. (2008) reported that IIV was associated with the 

connectivity between functional networks. Connectivity in the default network, a group of frontal 

and parietal brain regions that become active and spontaneously correlate in the absence of an 

explicit task (Buckner, Andrews-Hanna, & Schacter, 2008; Gusnard & Raichle, 2001; Raichle et 

al., 2001; Shulman et al., 1997), has been central in a number of recent studies of neurological 

decline in aging and early stage AD. Indeed, both aging and AD are associated with alterations 

of the default network (Andrews-Hanna et al., 2007; Bai et al., 2008; Buckner et al., 2009; 

Damoiseaux et al., 2008, 2012; Greicius, Srivastava, Reiss, & Menon, 2004). Typically, the 

default network is anticorrelated (that is, exhibits a strong antiphase relationship) with task-

positive attentional and executive networks; one network is suppressed while the other is active. 

Kelly et al. (2008) reported that an attenuated anticorrelation is associated with increased IIV. As 

might be expected given the structural and functional data previously reported, the strength of 

the anticorrelation was not associated with mean RT. The authors suggested that network 

dysregulation may underlie breakdowns in attentional control, particularly in clinical diseases 
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and disorders, and that IIV may serve as a useful diagnostic criterion in advance of these 

declines. 

In summary, while the neuroanatomical and functional correlates of IIV have been well 

studied in some respects, many questions remain, particularly the differences that may occur as a 

function of age. Increased IIV has been linked to changes in D2 receptor binding, head injury, 

presence of genetic risk factors for AD, and reduced structural volumes in the brain. Despite a 

paucity of research exploring the relationship between IIV and gray matter, there is a rich body 

of work that particularly links IIV with measures of white matter integrity, and it is on this 

premise that the following rationale for the dissertation is outlined.  

Rationale for the Dissertation 
 

Evidence demonstrates that a number of changes in the brain with age – ranging from 

neurotransmitters to functional networks – appear to particularly associate with reaction time 

intraindividual variability. IIV appears to be associated with brain structure and function, over 

and above associations with estimates of RT central tendency. Thus, IIV may be a sensitive 

correlate of neuroanatomy in both cognitively normal aging and early-stage AD. Although 

Jackson et al. (2012) demonstrated a reliable relationship between IIV and white matter in aging 

and AD, questions remain regarding differential associations of IIV with white and gray matter. 

Furthermore, it is unclear whether IIV can serve as a mediator of brain-behavior associations. 

The dissertation aims to extend the findings of Jackson et al. (2012) to address these issues; 

namely to clarify the relationship of IIV with neurological, genetic, and cognitive performance in 

old age. To my knowledge, no work has clearly established the differential association of IIV 

with white and gray matter (Specific Aim 1), particularly in targeted regions of interest. 

Furthermore, it is important to determine whether IIV mediates the relationship between 
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estimates of regional white matter integrity, and genetic risk factors with cognitive outcomes 

(Specific Aim 2).  

As previously mentioned, investigation of both white and gray matter estimates may 

strike the best balance of sensitivity and expedience. Gray and white matter may be differentially 

associated with certain aspects of cognitive performance; namely, gray matter may be associated 

with central tendency while white matter may be associated with cognitive variability (Jensen, 

1992; Walhovd & Fjell, 2007). Reliance on previous research has revealed several gaps in 

understanding the relationship between structural integrity and reaction time measures. Although 

there have been some trends toward a double dissociation between gray and white matter in their 

association with modal RT and IIV, this has yet to be replicated beyond the initial study, which 

made use of a relatively young, small sample (Walhovd & Fjell, 2007). Furthermore, these 

associations have not been adequately explored with respect to cognitively normal and 

pathological aging. The investigation of both gray and white matter as variables of interest 

represents a significant difference relative to the methods of Jackson et al. (2012). Because the 

dissertation attempts to fill the gaps in the understanding of the association between gray/white 

matter and IIV in older adults, path models were employed rather than hierarchical linear 

regressions used by Jackson et al. There are several advantages to using path analysis in this 

manner, namely that path analysis is the appropriate approach for examining mediation rather 

than the regression method used in Jackson et al. The methodological change allows for the 

simultaneous study of white and gray matter contributions to modal and IIV variance in RT. Path 

analyses thus provides an advantage over linear regression in determining the independent 

contribution of gray and white matter in the current study. 
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Given the constellation of neurological markers that are associated with IIV (MacDonald, 

Li et al., 2009) and the cascade of changes preceding cognitive decline in healthy and 

pathological aging, a pressing question regards the role of IIV in the broader scope of cognitive 

decline in older adulthood. It would be ideal to directly measure synaptic dopamine levels in 

vivo, along with structural, functional, and functional connectivity estimates to provide a rich, 

multimodal tapestry of upstream and downstream changes associated with IIV; however, this 

presents prohibitive challenges in time, data, and cost. The selection of a few useful correlates of 

these changes, such as COMT status as an index of dopamine regulation (MacDonald, Cervenka, 

et al., 2009) and APOE status as a genetic risk factor for cognitive decline and conversion to 

early-stage AD (Filippini et al., 2009), in concert with estimates of white matter volume, may 

allow the construction of a multilevel model of factors associated with IIV. Specifically, IIV may 

mediate the association of COMT (Bruder et al., 2005; Goldberg et al., 2003), APOE (Reinvang, 

Winjevoll, Rootwelt, & Espeseth, 2010; Rosen, Bergeson, Putnam, Harwell, & Sunderland, 

2002), and white matter (Charlton et al., 2006) with cognitive performance in particular domains, 

such as working memory and episodic memory. Thus, the APOE and COMT polymorphisms are 

included in the current study to better understand whether these may affect cognitive 

performance using increased IIV as one potential mechanism. In this way, the results of Jackson 

et al. (2012) may be contextualized with respect to additional genetic risk factors for cognitive 

decline. 

In addition to the use of path analyses, other methodological changes have been 

introduced relative to Jackson et al. (2012). These differences have been made in order to 

leverage more powerful and robust statistical methods. Notably, where Jackson et al. partialed 

covariates only from other predictor variables, here I have chosen to partial covariates from all 
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variables included in the path models. This was done in order to ensure that any relationship 

between the cognitive and neuroanatomical variables is not attributable to covariates acting on 

either predictor or outcome variables. Additionally, the current dissertation makes use of a larger 

sample size, which provides greater statistical power to detect reliable associations. 

Aims of the Dissertation 
 

The aims below follow a primary theme, namely that RT IIV may serve as a mediational 

hub in the cognitive neuroscience of aging, connecting neuroanatomy and genetic risk factors 

with cognitive differences in healthy and pathological aging. White matter in particular should be 

associated with increased IIV, although independent gray matter associations with variability 

have rarely been investigated. Both aims are concerned with understanding the relationship of 

white and gray matter to estimates of median RT and IIV, and Aim 2 investigates how these are 

affected by APOE and COMT status, and inform cognitive changes as a consequence of healthy 

aging and AD. Aim 1 tests the hypothesized double dissociation, with IIV linked to white matter 

but not gray matter, and median RT linked to gray matter but not white matter. Aim 2 determines 

whether IIV mediates the relationship between white matter and working memory / episodic 

memory, as well as between APOE/COMT and the memory measures.  

This dissertation extends the findings of Jackson, Balota, Duchek, and Head (2012) to 

investigate whether white and gray matter are differentially sensitive to measures of RT in 

cognitively normal and early-stage AD older adults. These questions are investigated using the 

coefficient of variation and median RT from tasks of cognitive performance. Although CoV is 

typically contrasted with mean RT, given that means and standard deviations are correlated in 

reaction time (e.g., Duchek et al., 2009; Faust et al., 1999), this dissertation will use median RT 

to minimize multicollinearity between the CoV measure, which contains the variance from mean 

RT, and modal RT more generally. The present dissertation explores associations in targeted 
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prefrontal and parietal white and gray matter regions. Similarities between healthy and 

pathological aging have also been considered.  

Specific Aim 1 tested the relative associations of gray and white matter estimates with 

median RT and CoV from attentional control tasks in cognitively normal older adults and early-

stage AD. Aim 1 consisted of two hypotheses: a) A double dissociation will be observed in 

frontal and default-network ROIs, such that gray matter volumes uniquely predict median RT but 

not IIV, and white matter estimates predict IIV but not median RT; and b) this double 

dissociation is observed in both cognitively normal and early-stage AD groups. 

Specific Aim 2 employed mediational analyses to examine causal relationships among 

COMT/APOE, IIV, regional white matter volume, and cognitive performance. Aim 2 

hypothesized that path analyses demonstrate that a) IIV mediates the relationship between frontal 

and default-network white matter integrity and performance on memory tasks, b) IIV also 

mediates the relationship between APOE/COMT status and memory, c) carriers of APOE4 and 

COMT Val polymorphisms demonstrate increased IIV relative to those who are not carriers, and 

d) that cognitively normal older adults demonstrate a similar structure but weaker loadings than 

early-stage AD participants.  

 
 

Method 
 

Participants.  All participants were screened for non-AD neurological, psychiatric, or 

medical disorders with the potential to cause dementia. The inclusion and exclusion criteria for 

the diagnosis of AD conformed to those outlined in the criteria of the National Institute of 

Neurological and Communications Disorders and Stroke – Alzheimer’s Disease and Related 

Disorders Association (McKhann et al., 1984).  Dementia severity for each individual was staged 

in accordance with the Washington University Clinical Dementia Rating (CDR) scale (Hughes, 
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Berg, Danziger, Coben, & Martin, 1982; Morris, 1993). The CDR staging and diagnostic 

evaluation is based on interviews with the participant and an informed collateral source. 

According to this scale, a CDR of 0 indicates no cognitive impairment, a CDR of 0.5 indicates 

very mild dementia, a CDR of 1 indicates mild dementia, a CDR of 2 indicates moderate 

dementia, and a CDR of 3 indicates severe dementia. At the Knight Alzheimer’s Disease 

Research Center (ADRC), a CDR of 0.5 has been found to accurately indicate the earliest stages 

of AD (Morris, McKeel, & Storandt, 1991). Both the reliability of the CDR and the validation of 

the diagnosis (based upon autopsy) by the research team have been excellent (93% diagnostic 

accuracy) and well-documented (e.g., Berg et al., 1998; Morris, Storandt, McKeel, et al., 1996; 

Morris, Storandt, Miller, et al., 2001; Storandt, Grant, Miller, & Morris, 2006). Based on these 

criteria, 271 cognitively normal (CDR 0) and 49 individuals with early-stage AD (CDR 0.5) 

were recruited from the Knight ADRC at Washington University.  

Participant inclusion was restricted to those individuals with cognitive testing performed 

within two years of their MRI scan. Exclusion criteria included lifetime history of neurological 

illness or injury (e.g., Parkinson’s disease, stroke, seizure, or head trauma resulting in loss of 

consciousness). Eight cognitively normal and 4 early-stage AD participants reported history of 

stroke. Six cognitively normal and 2 early-stage AD participants reported history of seizure. 

Twenty-six cognitively normal and 7 early-stage AD participants reported history of trauma 

resulting in loss of consciousness. Two early-stage AD participants reported Parkinson’s disease. 

Because some participants endorsed multiple criteria, the final sample included 229 cognitively 

normal (151 females), aged 45-86 (M = 67.3; SD = 8.9) and 33 early-stage AD (13 females) 

participants, aged 50 – 88 (M = 73.3; SD = 8.3). Demographics are summarized in Table 1. The 
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Human Research Protection Office at Washington University approved this study, and all 

participants provided their informed consent at the beginning of the study.  

Cognitive testing. Cognitive performance comprised of an arithmetically averaged 

composite of three attentional tasks. The coefficient of variation (standard deviation RT / mean 

RT) from incongruent trials in the Stroop and Simon tasks, and switch trials in the Consonant-

Vowel Odd-Even task served as the primary index of IIV. Because mean RT appears in the 

denominator of the CoV term, median RT was selected as the estimate of central tendency. Brief 

methods for each of the cognitive tasks follow. Because some participants completed slightly 

different protocols than others, only 149 participants completed the memory measures. Aim 2 

therefore focuses on this subset of participants, and demographics for this subsample are also 

summarized in Table 1.  

 Stroop task. This task involves the presentation of four color names (red, blue, green, 

and yellow) and four neutral words (bad, poor, deep, and legal). The task consisted of 36 

congruent trials, during which each word appeared in its corresponding color; 36 incongruent 

trials, during which each word appeared in a nonmatching color; and 32 neutral trials, in which 

each of the four neutral words appeared in one of the four colors. Participants were instructed to 

read aloud each word’s color. 

Simon task. Participants were presented with an arrow pointing either left or right. The 

arrow appeared on the left half, right half, or center of the screen. Participants were told to ignore 

the arrow location on the screen and respond according to its direction by pressing a key on 

either the left (q key) or right side (p key) of the keyboard when the arrow was pointing left or 

right, respectively. The task consisted of 40 congruent trials, 40 incongruent trials, and 40 neutral 

trials, during which the arrow appeared at the center of the screen.  
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Consonant-Vowel Odd-Even (CVOE) switching task. Participants engaged in two 

different tasks across trials. On each trial, a letter–number pair (e.g., A 3) appeared at the center 

of the screen with a cue appearing at the top of the screen indicating if it is a letter or number 

trial (adapted from Minear & Shah, 2008). On a letter trial, participants were told to decide 

whether the letter was a consonant or vowel (CV). On a number trial, they were told to decide 

whether the number was odd or even (OE). Participants completed a block of 60 

switch/nonswitch trials in an alternate runs sequence, CV, CV, OE, OE, CV, CV, and so forth, 

with 30 switch trials (e.g., CV trial followed by OE trial) and 30 nonswitch trials (e.g., CV trial 

followed by CV trial).  

Working memory. Participants completed four tasks of working memory, as defined via 

factor analysis in Johnson et al. (2008, 2009): 1) Digit Forward was taken from the Weschler 

Memory Scale – Revised (WMS-R; Weschler, 1987). In this task, participants recited, in 

numerical order, digits read aloud in a random order by an experimenter. The number of digits 

increased every two trials until a participant failed to correctly recite two sets of an equal number 

of digits. Scoring was calculated as a function of the digit length of the final set of correct trials. 

2) Digit Backward was also taken from the WMS-R. In this task, participants recited, in reverse 

numerical order, digits read aloud in a random order by an experimenter. The number of digits 

increased every two trials until a participant failed to correctly recite two sets of an equal number 

of digits. Scoring was calculated as a function of the digit length of the final set of correct trials. 

3) WMS-R Mental Control, which is comprised of three subtasks, a) counting backward from 20 

to 1, b) reciting the alphabet, and c) counting serially by 3s. Each subtask is scored on a scale 

from 0 to 3, and the three scores are summed. 4) Word Fluency – Letters S and P. Participants 

are asked to name as many words that start with S as possible in 60 seconds, then are asked to 
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repeat the task with the letter P. Both fluency tests are scored on an open-ended range starting 

with 0, and increasing for each nonrepeated, non-conjugated word that starts with the appropriate 

letter. Performance for each letter is summed to provide an overall score. Scores from the four 

working memory tasks were standardized and then averaged into a composite score. 

Episodic memory. Participants completed three tasks of episodic memory, also defined by 

Johnson et al. (2008, 2009): 1) Immediate recall scores were taken from WMS-R Logical 

Memory. In this task, participants recalled details from a verbally-presented story (Story A). 

Scoring comprised of the number of relevant details recalled immediately following the story’s 

presentation on a scale from 0 to 25. 2) Associate Learning was taken from the original WMS 

measure (Weschler & Stone, 1945). In this task, participants attended to a list of word pairs read 

aloud by an experimenter. Some word pairs were easy, with high lexical frequency and 

association, or hard, where pairs were comprised of infrequent, rarely-associated words. 

Participants then performed a recall test on pairs of words that were intact, recombined, or novel. 

Scoring was determined by the number of word-pairs correctly recalled. Recall of easy pairs 

received a scored of 1 point, while hard pairs received a score of 2 points. The total score was 

divided by 2 to yield a maximum of 21 across three blocks of recall. 3) Free recall performance 

from the Selective Reminding test, in which participants first identified exemplars of particular 

categories presented on a card. After identifying all exemplars on a given card, they performed 

immediate recall of the items, and moved on to the next card after 20 seconds of interference 

(i.e., counting backwards by 3s from 97). Participants later completed a free recall task, with the 

experimenter prompting additional recall via verbal presentation of categories. Scoring was 

comprised of the sum of recalled items across 3 trial blocks. 
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 MR acquisition and processing. Imaging was performed using either a Siemens Trio 3T 

or Siemens Vision 1.5T scanner (Erlangen, Germany). For all scans, cushions reduced head 

movement during scanning and a scout image was acquired first in order to center the field of 

view on the brain. For the Vision 1.5T scans, 2 to 4 T1-weighted sagittal MP-RAGE scans (TR= 

9.7 ms, TE= 4 ms, flip angle = 10º, TI = 20 ms, TD = 200 ms, 1 mm × 1 mm × 1.25 mm 

resolution) were acquired for each subject. For the Trio 3T scans, up to two T1-weighted sagittal 

MP-RAGE scans (TR = 2400 ms, TE = 3.16 ms, flip angle = 8º, TI = 1000 ms, TD = 200 ms, 1 × 

1 × 1 mm resolution) were acquired in each participant. Cortical reconstruction and volumetric 

segmentation was performed with the Freesurfer 4.0 image analysis suite, which is documented 

and freely available for download online (http://surfer.nmr.mgh.harvard.edu/). The technical 

details of these procedures are described in prior publications (Dale et al., 1999; Dale and 

Sereno, 1993; Fischl and Dale, 2000; Fischl et al., 2001; Fischl et al., 2002; Fischl et al., 1999a; 

Fischl et al., 1999b; Fischl et al., 2004). Briefly, this processing includes motion correction and 

averaging of multiple volumetric T1 weighted images, removal of non-brain tissue using a 

hybrid watershed/surface deformation procedure, automated Talairach transformation, 

segmentation of the subcortical white matter and deep gray matter volumetric structures intensity 

normalization, tessellation of the gray matter white matter boundary, automated topology 

correction, and surface deformation following intensity gradients to optimally place the 

gray/white and gray/cerebrospinal fluid borders at the location where the greatest shift in 

intensity defines the transition to the other tissue class. Once the cortical models are complete, 

the cerebral cortex is parcellated into units based on gyral and sulcal structure (Desikan et al., 

2006; Fischl et al., 2004). Neuroanatomical labels are applied to each voxel based on a 

probabilistic atlas derived from a manually labeled training set that included older adults 
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(Desikan, et al. 2006). The cortical gray matter parcellations are then used to label the associated 

underlying white matter (Fischl, et al. 2004). Regions-of-interest (ROIs) included white matter 

volume for 5 regions: superior frontal gyrus (SFG), ventral/dorsal-lateral prefrontal cortex 

(VLDLPFC, combined middle and inferior frontal gyri), posterior cingulate, precuneus, and 

inferior parietal lobule (IPL), combined across the left and right hemispheres.  

Cortical thickness measures were calculated as the closest distance from the gray/white 

boundary to the gray/CSF boundary at each vertex on the tessellated surface (Fischl and Dale, 

2000). This method uses both intensity and continuity information from the entire three- 

dimensional MR volume in segmentation and deformation procedures to produce representations 

of cortical thickness. The maps are created using spatial intensity gradients across tissue classes 

and are therefore not simply reliant on absolute signal intensity. A neuroanatomical label is 

applied to each vertex, and average cortical thickness estimates were obtained for 5 ROIS: SFG, 

VLDLFPC, posterior cingulate, precuneus, and IPL. Procedures for the measurement of cortical 

thickness have been validated against histological analysis (Rosas et al., 2002) and manual 

measurements (Kuperberg et al., 2003; Salat et al., 2004).  

The average interval between the MRI scan and the cognitive assessment was computed 

as an integer in days; that is, the interval between scan and assessment could assume negative 

values if the cognitive assessment preceded the structural MRI scan. It is possible that directional 

information about the scan and assessment may contain value that would be lost if the scan-

assessment interval were construed as an absolute value, as in Jackson et al. (2012). Thus, the 

average scan-assessment interval was +15 days (SD = 294 days). For purposes of comparison 

with Jackson et al., the average interval using absolute values was 216 days (SD = 199 days). Of 

the 262 participants, 36 were assessed using the Vision scanner, and 226 were assessed using the 
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Trio scanner. Pearson chi-square tests of independence were conducted to determine whether 

there were differences in the proportion of CDR participants or gender between scanner types. 

Both tests were nonsignificant, both χ2 < 1. Gray matter thickness and white matter volume were 

also compared between scanner types. Gray matter thickness measures from the Trio scanner 

were larger compared with the Vision scanner, t = 2.26, p = .03, but there were no scanner 

differences as a function of white matter volume, t = 1.32, p = .18. Therefore, scanner type was 

included as a covariate in all measures.  

 Regions of interest. Volumes were normalized with respect to body size differences using 

estimated total intracranial volume (ICV; Buckner et al., 2004) in an analysis of covariance. 

Here, adjusted volume = raw volume – (b × (ICV – mean ICV)), where b represents individual 

subjects’ regression slopes of the ROI volume on ICV. This approach has been used in a number 

of previous studies investigating regional volumes (e.g., Buckner et al., 2004; Head, Rodrigue, 

Kennedy, & Raz, 2008; Jackson, Balota, & Head, 2011; Jackson et al., 2012; Salat et al., 2009).  

Because predictions did not differ across regions of interest, and in order to reduce the 

number of analyses conducted on the dataset, composites were constructed for the 

neuroanatomical white and gray matter structures. For Aim 1, arithmetic sums of the five white 

matter volume measures and averages of the five gray matter thickness measures were computed 

to create composite white matter volume and gray matter thickness measures, respectively. For 

Aim 2, frontal and parietal white matter were expected to differ in their associations with the 

memory measures, so separate composites were created for these structures. This was done 

primarily because working memory measures tend to associate with frontal regions (e.g., 

Kimberg & Farah, 1993; Owen et al., 1990, 1996) while episodic memory tends to associate with 

more posterior regions, including those in the parietal lobe (e.g., Cabeza et al., 2008; Wagner et 
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al., 2005). SFG and VLDLPFC measures were summed to form a frontal composite for white 

matter volume. Posterior cingulate, precuneus, and IPL were also averaged to form a separate 

default-network composite for white matter volume.  

Analytic approach  
 

Outliers. Univariate and multivariate outliers were identified. Multivariate outliers were 

calculated using Mahalanobis D2 distance (Lattin, Carroll, & Green, 2003).  Eight individuals (3 

early-stage AD) had a significant chi-square statistic (p < .001), constituting multivariate 

outliers, and were declared missing. Univariate outliers, defined as a datapoint greater than three 

standard deviations from the group mean, were also examined. Twenty-eight datapoints were 

identified as univariate outliers, and were also declared missing. 

Missing data. The multivariate outliers constituted 136 datapoints (8 subjects multiplied 

by 17 measures), together with the 28 univariate outlier datapoints yielded a total of 164 

datapoints (representing 164/4490 or 3.7% of the total dataset) that were declared missing at 

random, and imputed using measures outlined in Schafer & Graham (2002). Missing values were 

multiply imputed (m = 20) using the Expectation-Maximization algorithm, which replaces the 

missing data point based on the values of all other variables (i.e., all attention and regional brain 

volume data). The imputations were averaged to provide final values for each missing datapoint. 

Covariates. Covariates were regressed onto each of the predictors and outcomes in the 

dataset, and the standardized residuals were obtained. Age, education, gender, depression, 

diabetes diagnosis, cardiovascular health (i.e., history of heart problems and hypertension), 

scanner type, and interval between structural MRI scan and the cognitive assessment (in days) 

were all significantly correlated with at least one of the cognitive or brain variables, and were 

therefore regressed on each of the variables of interest. Standardized residuals were then used in 
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the path model and to test for mediation.  These covariates were also correlated with one another 

to determine shared variance among these variables of non-interest. A correlation matrix was 

computed among the ordinal- and ratio-scale covariates of interest (i.e., age, years of education, 

depression scale, and scan-assessment interval). Age and years of education were negatively 

associated, r(262) = -.159, p = .010, with a nonsignificant negative association observed between 

depression and years of education, r(262) = -.118, p = .056. No other correlations were reliable, 

all rs < .07, ps > .29. 

The four covariates were also examined as a function of binary group status for the 

gender, diabetes diagnosis, cardiovascular health, and scanner type covariates. Females were 

younger, t(260) = 3.20, p = .002, and had fewer years of education, t(260) = 2.94, p = .004, 

relative to males. Individuals with a positive diabetes diagnosis were higher on the depression 

scale relative to those without a diabetes diagnosis, t(36.721) = 2.36, p = .024, after correcting 

for unequal variances. Individuals with a history of cardiovascular complaint were older than 

those without reported cardiovascular trouble, t(260) = 3.62, p < .001. Finally, individuals using 

the Vision MRI scanner had a longer interval between the MRI scan and cognitive assessment 

relative to those using the Trio scanner, t(260) = 2.73, p = .007. No other group comparisons 

were significant, all ts < 1.27, ps > .20. 

Statistical analyses – Aim 1. To verify the double dissociation between white and gray 

matter, and between median RT and IIV, a path model was constructed in Mplus 7 (Los Angeles, 

CA) to determine whether eliminating the paths between gray matter thickness and IIV, and 

between white matter volume and median RT would result in a significantly worse fit to data 

than an unconstrained model (Figure 1). Fit statistics of interest included the chi-square test of 

model fit, which compares estimated values from the model to observed data. Nonsignificant 
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chi-squares indicate model fit. The comparative fit index (CFI) and the Tucker-Lewis index 

(TLI) also measure model fit but are more robust with regard to sample size and distributional 

assumptions. Here, values above .95 indicate excellent fit, although values above .90 are 

acceptable provided satisfactory values in other fit statistics. The root mean square error of 

approximation (RMSEA), a fit index that examines model parsimony and is less susceptible to 

sample size, was also examined, using a criterion of .08 or lower as indicating good model fit. 

Finally, the standardized root mean square residual (SRMR), another measure of model 

parsimony, was assessed, with a criterion of .05 or lower. No single fit statistic can definitively 

prove adequate model fit; so all statistics were taken into consideration to evaluate the 

hypothesized models.  

Statistical analyses – Aim 2. A classic path analysis approach was employed to confirm 

whether IIV serves as a mediator between white matter integrity and cognitive performance 

(Figure 2). The goal of successful mediation as described in Baron and Kenny (1986) is to 

determine a) whether white matter integrity (predictor variable) is associated with working 

memory/episodic memory performance (outcome variable); b) whether white matter integrity is 

associated with CoV (mediator); c) whether CoV is associated with working memory/episodic 

memory performance and d) whether the white matter-working memory and the white matter-

episodic memory associations are substantially reduced with the addition of IIV in the model. 

Similarly, IIV may mediate the relationship between APOE/COMT status and working 

memory/episodic memory performance. Using Mplus, hierarchically nested models were 

constructed with increasing data constraints to determine the most parsimonious model that 

successfully accounts for the observed data. Within the models, the first tier included APOE and 

COMT statuses, as well as normalized, standardized white matter ROI volume; the second tier 
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consisted of the standardized, composite measure of CoV; the third tier consisted of the working 

memory or episodic memory composites, which served as the outcome variables. No reciprocal 

causation was assumed in the model; thus, only unidirectional effects were included. 

Results 
 
Aim 1 – A priori analyses 
 

The double-dissociation model was created by restricting two paths on the baseline 

(saturated) model. Specifically, the path between median RT and white matter volume as well as 

the one between CoV and gray matter thickness was set to zero. This model provided a poor fit 

to the data, χ2 = 8.582, df = 2, p = .014; CFI = .791; TLI = .476; SRMR = .048; RMSEA = .112. 

Follow-up analyses, summarized in Table 2, revealed that residualized CoV was uncorrelated 

with the white and gray matter variables (r(262) = -.109, and r(262) = -.053 respectively; Figure 

3), while residualized median RT was significantly correlated with the gray and white matter 

variables (r(262) = -.133, and r(262) = -.138, respectively; Figure 4).  

Aim 1 – Post-hoc analyses 
 

Given that the a priori hypotheses were unsupported in Aim 1, post-hoc analyses focused 

on possible relationships among the variables of interest within specific subgroups, in addition to 

somewhat broader investigation of the attentional measures. Post-hoc correlations for the total 

sample were explored among the individual variables comprising each of the composite 

measures. The composite measures were explored separately for several subgroups within the 

sample that may differ in the strength of the relationship among the variables. For example, 

although Jackson et al. (2012) failed to find reliable differences between cognitively normal 

older adults and individuals with early-stage AD in the relationship between neuroanatomical 

structures and cognition, there is a precedent for differences in structure-function relationships 

between cognitive groups (e.g., Anstey et al., 2007). In addition to cognitive status, correlations 
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were examined as a function of age, APOE status, COMT status, and high versus low years of 

education within the cognitively normal group. Finally, Ex-Gaussian parameters of the reaction 

time distribution were included to facilitate comparison with Jackson et al. (2012). 

Post-hoc analyses – total sample 
 
 Correlations among individual measures. Table 3 summarizes the correlation matrix of 

the individual measures for the Aim 1 sample. Simon CoV was significantly negatively 

correlated with SFG gray matter thickness and CVOE CoV was significantly negatively 

correlated with posterior cingulate white matter volume, but no other CoV measures correlated 

with regions of interest in white or gray matter. Stroop median RT was significantly negatively 

correlated with precuneus and IPL white matter volume, while Simon median RT was 

significantly negatively correlated with SFG, precuneus, and IPL gray matter thicknesses. CVOE 

median RT was uncorrelated with the structural measures. 

 Distributional analyses – composite measures. Following Jackson et al. (2012), response 

time distributional analyses were employed to further examine the relationship between 

cognitive performance and possible neuroanatomical correlates. The Ex-Gaussian model of 

reaction time distribution uses three parameters, the mean (µ) and standard deviation (σ) of a 

Gaussian distribution, along with a single parameter (τ) capturing the exponential distribution. 

Jackson et al. reported a trend whereby τ associated more strongly with white matter volume 

than CoV, although the two measures were highly correlated. Table 4 summarizes the correlation 

matrix for the µ and τ distributional parameters with respect to the composite measures. The 

modal portion of the RT distribution, µ, was significantly negatively correlated with white matter 

volume. No other correlations among the composite measures were observed.  

 Distributional analyses – individual measures. Table 5 summarizes the correlation matrix 
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for the distributional parameters with respect to the individual measures. Simon µ was 

significantly negatively correlated with precuneus and IPL gray matter thickness, and CVOE µ 

was significantly negatively correlated with posterior cingulate gray matter thickness. No other 

correlations among the individual measures were observed. 

Post-hoc analyses – examination of subgroups 
 

Cognitive status. Tables 6 and 7 summarize the correlation matrices of composite 

measures for the cognitively normal group (n = 229) and the early-stage AD group (n = 33), 

respectively. Within the cognitively normal group, a significant negative correlation between 

median RT and white matter volume was observed. A significant negative correlation was 

observed between median RT and gray matter thickness as well. Within the early-stage AD 

group, CoV was significantly negatively correlated with white matter volume. No other 

significant correlations were observed in either group. 

Age. It is possible that age may modulate the observed relationship between the 

neuroanatomical measures and the cognitive measures. Tables 8 and 9 summarize the correlation 

matrices of composite measures for the younger (n = 121) and older (n = 108) halves of the 

cognitively normal sample, based on a median split. In the younger subsample, white matter 

volume was negatively associated with CoV. In the older subsample, however, median RT was 

significantly negatively associated with both white matter volume and gray matter thickness. No 

other significant correlations were observed in either group.  

APOE status. APOE status may affect the relationship between the neuroanatomical 

measures and the cognitive measures in the cognitively normal sample. Given APOE’s effects on 

white matter integrity (Bartzokis, 2011), it is possible that white matter volume may become 

more strongly correlated with attentional or memory performance in the APOE4+ group. Tables 
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10 and 11 summarize the correlation matrices of the composite measures as a function of APOE 

status for the cognitively normal group. Within the APOE4- group (n = 151; Table 10) median 

RT and gray matter thickness were significantly negatively correlated. No significant 

correlations were observed for the APOE4+ group (n = 76; Table 11). No correlations with white 

matter were observed in either group. 

COMT status. Given the effects of COMT status on IIV it is possible that genetic group 

membership may influence the relationship between white matter volume and IIV. Tables 12 and 

13 summarize the correlation matrices of the composite measures as a function of COMT status 

for the cognitively normal group. No significant correlations were observed in the Val- group (n 

= 50; Table 12), but median RT was significantly negatively correlated with white matter volume 

in the Val+ group (n = 130; Table 13). No other significant correlations were observed in the 

Val+ group. 

Education. It is possible that differences in estimates of cognitive reserve such as years of 

education may moderate the relationship between neuroanatomical structures and cognitive 

function (Stern, 2003, 2009). Correlations among the variables of interest were examined 

separately as a function of lower and higher education within the cognitively normal group. 

Given that education was a covariate on which the variables of interest were originally 

residualized, the dataset was re-residualized to exclude education. Instead, a median split was 

performed on years of education within the cognitively normal group. Sixteen years of education 

and above were categorized as the high-education group, while 15 years of education or fewer 

were categorized as low education.  

Table 14 summarizes the correlation matrix for the low education group (n = 92). There 

was a significant negative correlation between median RT and gray matter thickness. No other 
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significant correlations were observed. Table 15 summarizes the correlation matrix for the high 

education group (n = 137). None of the composite measures significantly correlated with any 

other in this group. 

Post-hoc analyses – comparison with Jackson, Balota, Duchek, and Head (2012) 
 

Jackson, Balota, Duchek, and Head (2012) reported several strong associations between 

white matter volume and CoV, using the same covariates on the same pool of participants from 

Knight ADRC. The fact that the current results did not conceptually replicate Jackson et al. may 

raise serious concerns about the robustness of the relationship between IIV and white matter 

volume. In order to examine this further, a direct replication of the Jackson et al. design was 

conducted on the current sample in order to compare results between the two studies. That is, a 

regression model was constructed with standardized, but unpartialed measures with overall, not 

incongruent, CoV as the dependent variable. In the first step, gender, depression scores, history 

of cardiovascular disease, years of education, scanner type, and the interval between scan and 

cognitive assessment were entered, representing the covariates from Jackson et al. In the next 

step, standardized age was entered, followed by CDR in the third step, the individual white 

matter region in the fourth step, the region-by-CDR interaction in the fifth step, and all other 

two-way interactions in the sixth step. Thus, it is possible to compare the relative contribution of 

white matter volume to CoV in both studies to determine whether there is consistency in the 

robustness of the association between white matter volume and CoV. Zero-order correlations 

were calculated for both studies, examining the association between CoV and the five common 

white matter ROIs. Table 16 summarizes the comparison between the two studies, which shows 

somewhat larger correlations in Jackson et al. (2012) relative to the present analyses. Five linear 

regression models were constructed for each of the five white matter volume ROIs. SFG (ΔR2 = 
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.02, F(1, 251) = 4.81, p = .029), VLDLPFC (ΔR2 = .02, F(1, 251) = 6.26, p = .013), and posterior 

cingulate (ΔR2 = .02, F(1, 251) = 5.29, p = .022) contributed significant variance to CoV. IPL 

and precuneus white matter volume (both ps > .12) did not contribute significant variance to 

CoV, largely replicating Jackson et al. (2012). The size of the association between CoV and 

white matter volume was similar across studies, but approximately 1% smaller in the current 

study. By way of contrast, none of the five gray matter thickness measures from the current study 

contributed significant variance to CoV in the regression models (all ps > .075), with the 

exception of IPL (ΔR2 = .02, F(1, 251) = 6.62, p = .011), which was negatively associated with 

CoV.  

Post-hoc comparisons with Jackson et al. (2012) were also conducted with respect to τ, 

the skewing parameter of Ex-Gaussian distributional analysis. Zero-order correlation 

comparisons between the current study and Jackson et al. are again summarized in Table 14. As 

in Jackson et al. (2012), τ was significantly negatively correlated with white matter volume in all 

overlapping regions of interest, though the correlations were attenuated in the current study. 

VLDLPFC (ΔR2 = .01, F(1, 251) = 3.80, p = .052) and precuneus (ΔR2 = .01, F(1, 251) = 3.46, p 

= .064) contributed nonsignificant trends towards association with τ. SFG, posterior cingulate, 

and IPL did not contribute significant variance to τ in the regression models (all ps > .12). Using 

gray matter thickness as a predictor, both precuneus (ΔR2 = .02, F(1, 251) = 5.49, p = .020) and 

IPL (ΔR2 = .02, F(1, 251) = 4.50, p = .035) were associated with τ. IPL interacted with CDR 

(ΔR2 = .02, F(1, 250) = 4.52, p = .034), such that thickness modulated τ in the CDR 0 group, but 

not in the CDR 0.5 group. No other regions contributed significant variance, ps > .38. 

Aim 2 – A priori analyses 
 

Working memory. Prior to examining mediation, tests of requisite associations among the 



! 39!

variables of interest were conducted. In particular, correlations were computed to determine 

whether there were significant associations between frontal white matter volume and CoV, 

default white matter volume and CoV, frontal white matter volume and working memory, default 

white matter volume and working memory, and between CoV and working memory. An 

abbreviated correlation matrix is summarized in Table 17. Frontal white matter was significantly 

negatively correlated with CoV (r(149) = -.187, p = .023, Figure 5a), but default white matter 

was not significantly correlated with CoV (r = -.12, Figure 5b). Neither frontal nor default white 

matter volume was correlated with working memory (both rs < .05, Figure 6). CoV was 

significantly negatively correlated with working memory (r(149) = -.235, p = .004, Figure 7a). 

Independent-samples t tests were also conducted to test for differences in CoV and working 

memory as a function of COMT status or APOE status. Neither CoV nor working memory 

differed as a function of APOE status (both ts < 1.3). Neither CoV nor working memory differed 

as a function of COMT status (both ts < 1). Because COMT, APOE, and white matter volumes 

were uncorrelated with working memory and CoV, mediation was not possible (Baron & Kenny, 

1986). 

 Episodic memory. Once again, prior to examining mediation, tests of requisite 

associations among the variables of interest were conducted. In particular, correlations were 

computed to determine the correlations between frontal white matter volume and CoV, default 

white matter volume and CoV, frontal white matter volume and episodic memory, default white 

matter volume and episodic memory, and between CoV and episodic memory. These 

correlations are summarized in Table 17. As before, frontal white matter was significantly 

negatively correlated with CoV (r(149) = -.187, p = .023, Figure 5a), but default white matter 

was not significantly correlated with CoV (r = -.12, Figure 5b). Neither frontal nor default white 
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matter volume was correlated with episodic memory (both rs < .07, Figure 8). CoV was 

significantly negatively correlated with episodic memory (r(149) = -.308, p < .001, Figure 7b). 

Independent-samples t tests were also conducted to test for differences in CoV and episodic 

memory as a function of COMT status or APOE status. CoV did not differ as a function of 

APOE status (t < 1), but episodic memory performance was higher in the APOE4- group, t = 

2.35, p = .020. Neither CoV nor episodic memory differed as a function of COMT status (both ts 

< 1). Because COMT, APOE, and white matter volumes were largely uncorrelated with episodic 

memory and CoV, mediation was not possible (Baron & Kenny, 1986). 

Aim 2 – Post-hoc analyses 
 

As in Aim 1, exploratory correlations of individual measures were examined in the full 

sample. Additionally, post-hoc testing focused on possible differences between groups in the 

sample to determine whether conditions for mediation might be met in a subsample of the 

collected data. Specifically, correlations among the composites for CoV, median RT, white 

matter volume, and gray matter thickness were explored separately for cognitively normal and 

early-stage AD groups. Correlations were also examined as a function of APOE status, COMT 

status, and high versus low years of education within the cognitively normal group. Estimates of 

the Ex-Gaussian skewing parameter, τ, were again included to facilitate comparison with 

Jackson et al. (2012). 

Post-hoc analyses – total sample 
 
 Individual correlations. Table 18 summarizes the correlation matrix of the individual 

measures for the Aim 2 sample. Of the working memory measures, Digit Backward and Mental 

Control were both significantly negatively correlated with CVOE CoV. Word Fluency was 

significantly negatively correlated with Simon CoV, and was significantly positively correlated 

with posterior cingulate white matter volume. There was no correlation pattern consistent with 
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the mediation hypothesis. 

 Of the episodic memory measures, Associate Memory was significantly negatively 

correlated with CVOE CoV. Selective Reminding performance was significantly negatively 

correlated with Stroop CoV, Simon CoV, and CVOE CoV. Again, there was no correlation 

pattern consistent with the mediation hypothesis. 

 Distributional analyses – composite measures. Table 17 summarizes the correlations of 

the RT distributional skewing parameter, τ, with episodic and working memory. Neither episodic 

nor working memory was significantly correlated with τ. 

 Distributional analyses – individual measures. Table 18 summarizes the correlations of τ 

in each of the attentional tasks with individual measures of working and episodic memory. Of the 

working memory measures, Word Fluency was significantly negatively correlated with Stroop τ.  

 Of the episodic memory measures, Associate Memory was significantly positively 

correlated with CVOE τ. Selective Reminding performance was significantly negatively 

correlated with Stroop τ. Again, there was no correlation pattern consistent with the mediation 

hypothesis for the τ measures. 

 Covariate control. In order to examine the possible contribution of removing variance 

associated with covariates, correlations among the unstandardized variables of interest were 

investigated for Aim 2. Using these measures, CoV was significantly associated with frontal 

white matter volume (r(153) = -.232, p = .004), and trended toward an association with default 

white matter volume (r(153) = -.158, p = .051). CoV was also associated with episodic memory 

(r(153) = -.451, p < .001) and working memory (r(153) = -.271, p = .001). However, the white 

matter regions remained uncorrelated with the memory measures, all rs < .11. 

Post-hoc analyses – examination of subgroups 
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Cognitive status. Tables 19 and 20 summarize the correlation matrices of composite 

measures for the cognitively normal group (n = 126) and the early-stage AD group (n = 23), 

respectively. Within the cognitively normal group, both working memory and episodic memory 

were significantly negatively correlated with CoV. No other correlations reached significance for 

this group, however. No significant correlations were observed for the early-stage AD group.  

Age. Tables 21 and 22 summarize the correlation matrices of the composite measures in 

the younger (n = 66) and older (n = 65) half of the cognitively normal sample. In the younger 

group, both episodic and working memory was negatively correlated with CoV. No other 

significant correlations were observed for this group. In the older group, episodic memory was 

strongly negatively correlated with CoV, while a more modest negative association was observed 

between working memory and CoV. No additional significant correlations were observed for this 

group.  

APOE status. Tables 23 and 24 summarize the correlation matrices of the composite 

measures as a function of APOE status for the cognitively normal group. Within the APOE4- 

group (n = 83; Table 23), episodic memory was significantly negatively correlated with CoV. No 

other significant correlations were observed for this group. In the APOE4+ group (n = 42; Table 

24), working memory was significantly negatively correlated with CoV, and was significantly 

positively correlated with default white matter volume. No correlations involving episodic 

memory were significant for the APOE4+ group. 

COMT status. Tables 25 and 26 summarize the correlation matrices of the composite 

measures as a function of COMT status for the cognitively normal group. Within the Val- group 

(n = 30; Table 25), no significant correlations were observed. In the Val+ group (n = 70; Table 

26), both working memory and episodic memory were significantly negatively correlated with 
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CoV. No other correlations reached significance for Val+ group. 

Education. Tables 27 and 28 summarize the correlation matrices of the composite 

measures within the cognitively normal group as a function of low or high years of education, 

respectively. As before, 16+ years of education was considered high education, and <16 years of 

education was considered low education. Within the low education group (n = 57), working 

memory was significantly negatively correlated with CoV. No other significant correlations were 

observed for this group. In the high education group (n = 69), episodic memory was significantly 

negatively correlated with CoV. No other correlations reached significance for the high 

education group, however. As in the overall sample, there were no patterns of correlation 

consistent with possible mediation observed in any of the examined subgroups.  

Discussion 
 

Recent literature has focused on white matter integrity in frontal and temporoparietal 

areas as a possible neuroanatomical correlate of reaction time intraindividual variability, and a 

focus of this literature has been on older adults (Anstey et al., 2007; Jackson et al., 2012; 

MacDonald, Li, & Bäckman, 2009; Walhovd & Fjell, 2007; Ziegler et al., 2010).  The primary 

aims of this study were to examine whether 1) intraindividual variability uniquely associated 

with white matter volume, and 2) IIV may serve as a mediator between neurobiological factors 

and episodic and working memory in older adults. Neither of these aims was supported by the 

results. Although this was unexpected given the depth of prior work, post-hoc analyses yielded 

some insights on the relationship between IIV and the brain in healthy and pathological aging. 

Discussion focuses on each aim separately. 

Aim 1 – Double dissociation 
 

The first aim hypothesized that IIV, measured by the coefficient of variation, would be 

uniquely associated with white matter volume and a measure of central tendency, median RT, 



! 44!

would uniquely associate with gray matter thickness. Results revealed that CoV was not 

correlated with either white or gray matter while median RT was negatively correlated with both 

white and gray matter. The present data therefore revealed a single dissociation – that median RT 

was associated with gray and white matter, while CoV was not associated with either 

neuroanatomical measure. The lack of association between CoV and white matter contradicts 

several other reports of a robust correlation between these measures (Anstey et al., 2007; Fjell et 

al., 2011; Jackson et al., 2012; MacDonald, Li, & Bäckman, 2009; Ullén et al., 2008; Walhovd & 

Fjell, 2007; Ziegler et al., 2010). It is not clear why the data do not replicate prior work, although 

differences in methodology between previous experiments and the current study merit 

consideration. 

Previous studies have tended to adopt less conservative approaches with regard to 

covariates than those employed here. Typically, studies of white matter structure-function 

relationships will control for age and gender and little else (Anstey et al., 2007; Breteler et al., 

1994a,b; Bunce et al., 2007, 2010; Charlton et al., 2006; Duan et al., 2006; Fjell et al., 2011; 

Stuss et al., 2003; Vernooij et al., 2009; Walhovd & Fjell, 2007; Ziegler et al., 2010). Exceptions 

to this trend, such as Bunce et al. (2007, 2010), have also controlled for cardiovascular health, 

diabetes, and depression, but these variables’ impact on results were examined singly rather than 

in concert. In addition, few studies have controlled for years of education. Therefore, the 

adoption of relatively conservative treatment of covariates may partially account for the 

discrepant findings observed here. Although some of the covariates were associated with one 

another, these associations were modest, and the contributed variance from each covariate was 

largely independent. Post-hoc analyses using unstandardized data revealed that covariate control 

may account for the weak associations among the variables of interest.  
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In order to further examine possible moderating effects of the selected covariates, zero-

order correlations were investigated in the total sample. White matter volume (r(262) = -.21, p = 

.001) and gray matter thickness (r(262) = -.18, p = .003) were significantly correlated with CoV. 

White matter volume (r(262) = -.29, p < .001) and gray matter thickness (r(262) = -.29, p < .001) 

were also significantly correlated with median RT. The Aim 1 double-dissociation model was 

examined using the unpartialed variables, but this model still provided a poor fit to the data, χ2 = 

35.906, df = 2, p < .001; CFI = .587; TLI = .000; SRMR = .099; RMSEA = .254. Therefore, it 

appears that although zero-order correlations among the variables of interest were larger than 

partial correlations with covariates controlled, these associations were still weak and the 

proposed double-dissociation did not fit the data.  

Covariate influence on the data was also examined in a manner more consistent with 

previous literature (e.g., Bunce et al., 2007, 2010). That is, rather than examining covariate 

influence in concert, each covariate, along with age, was singly controlled for in both aims. All 

Aim 1 models, controlling for age along with education, gender, depression, diabetes diagnosis, 

cardiovascular health, scanner type, and scan-assessment interval, respectively, provided poor 

fits to data, all χ2 > 10.04, df = 2, all ps < .007; all CFIs < .723; all TLIs < .308; all SRMRs > 

.050; all RMSEAs > .124. Aim 2 covariates, along with age, were also individually partialed 

from the predictor variables. The partialed predictor variables for each covariate were correlated 

with one another to determine whether Baron and Kenny’s (1986) requirements for mediation 

were met. As in the Aim 2 a priori hypotheses, COMT, APOE, and white matter volumes were 

largely uncorrelated with episodic memory and CoV. Thus, mediation was again not possible. 

Ultimately, the selected covariates may have slightly influenced the variables of interest, but the 

proposed models were not a good fit for the data. 
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Even with the aforementioned caveats, Jackson et al. (2012) was performed using the 

same measures of IIV and white matter, participants were sampled from the same pool, and the 

authors used the same covariates as those reported here. Post-hoc results demonstrated that 

although the association between CoV and white matter volume was smaller in the present 

analyses, similar relationships to Jackson et al. (2012) were observed. Indeed, when analyses 

were conducted in the same manner as Jackson et al. (2012), white matter volume contributed 

significant variance to CoV in the same regions as the prior study, with the exception of the 

precuneus. Furthermore, gray matter thickness in the same regions was largely unassociated with 

CoV. The IPL provided an exception to this trend, given that it did not contribute significant 

variance using white matter measures in the previous study or in Jackson et al. (2012). For τ, the 

replication was less clear, with only two white matter volumes, VLDLPFC and precuneus, 

contributing significant variance to this parameter. Gray matter thickness in precuneus 

contributed significant variance to τ as well, and IPL gray matter thickness was associated with τ 

in the CDR 0 group, but not the CDR 0.5 group.  

A difference in the handling of covariates may account for the discrepant findings 

between the linear regressions of Jackson et al. (2012) and the current study. In Jackson et al. 

(2012), the authors made use of a hierarchical linear regression to analyze the data, and 

covariates were addressed by entering them in the first step of the model. This allowed variance 

associated with those covariates to be partialed from subsequently-entered predictors, which 

included measures of white matter volume, but not from the dependent variable, CoV. In the 

present study, covariates were partialed from the dependent and predictor variables before 

correlations were examined, an approach that may have mitigated previously observed 

associations. Given the similarity between the two studies when using the same analyses, it 
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appears as though the handling of covariates as well as the general analytic approach may play a 

vital role in understanding structure-function relationships in the brain. Even where the same 

covariates are measured, differences in partialing procedures may influence research findings.  

Trends using RT distributional parameters were difficult to discern, however. It is 

unusual that CoV and τ, which tend to highly correlate, associated somewhat differently with 

white and gray matter in the present study. Given the strong correlation between τ and CoV 

reported in Jackson et al. (r(166) = .702, p < .001) as well as within the current study (r(262) = 

.504, p < .001), it is not apparent why τ did not associate with white matter volume in the post-

hoc analyses of the current report, but associated with white and gray matter measures in the 

Jackson et al. (2012) replication analyses. It is possible that the sensitivity of τ was limited in the 

present study because only incongruent or switch trials were used to compute the distributional 

parameters, where Jackson et al. used congruent and nonswitch conditions as well. The greater 

diversity of trial types for τ, though apparently not CoV, may yield stronger associations to white 

matter volume as observed in Jackson et al (2012). While studies that simultaneously examine τ 

and CoV are relatively rare, Balota et al. (2010) found reliable relationships using the τ measure, 

but not with the CoV measure (Balota, personal communication), although it is important to note 

that Balota et al. used all trials from the attentional tasks, rather than the incongruent trials alone. 

Differences between the present study and other research may not only involve cognitive 

measures, however. The type of white matter measurement may also serve as an important factor 

in understanding brain-behavior associations. Measures of white matter macrostructure typically 

include volumetric estimates of white matter regions or white matter hyperintensities, areas of 

increased signal intensity observed in structural magnetic resonance imaging. White matter 

microstructure is typically examined using diffusion tensor imaging estimates of mean 
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diffusivity, which examines the rate of water diffusivity, and also fractional anisotropy, which is 

a measure of the strength of the directionality of water molecule movement. Healthy white 

matter tracts tend to constrain water so that it moves primarily along the tract in a parallel 

direction to the cellular boundaries, whereas damaged tracts allow more increased perpendicular 

and off-parallel movement (Basser & Pierpaoli, 1996). Recent research suggests that white 

matter microstructure and macrostructure are complementary, but not necessarily isomorphic, 

measures of white matter (Abe et al., 2008; Fjell, Westlye, Greve, Fischl, & Benner, 2008; 

Gunning-Dixon et al., 2009). In particular, alterations in white matter microstructure may 

precede age-related changes in white matter macrostructure (Fjell et al., 2008; Gunning-Dixon et 

al., 2009). Given that the current literature often studies either microstructure or macrostructure 

in isolation (Bunce et al., 2007; Fjell et al., 2011; Jackson et al., 2012; Moy et al., 2011; Ullén et 

al., 2008; Walhovd & Fjell, 2007), investigation of white matter microstructure and 

macrostructure may reveal different associations with cognitive and behavioral performance. 

Because of its sensitivity to homeostatic disturbances (Bartzokis, 2011), white matter 

microstructure may be more strongly associated with CoV, and perhaps less with median RT 

(Haier et al., 2005; Jensen 1992; Walhovd & Fjell, 2007). Although there may be convergence 

between the two measures, it is important to carefully differentiate the contributions from each 

broad measure of white matter to better understand the neuroanatomical correlates of IIV 

(Vernooij et al., 2009). This dissertation focused on white matter macrostructure, particularly 

white matter volume; however, further study of white matter microstructure may reveal the 

associations that were not found here.  

In general, post-hoc analyses for Aim 1 did not result in any correlational patterns 

consistent with the hypothesized double dissociation. No consistent differences in associations 
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between cognitive and brain variables were observed as a function of genetic status or years of 

education. The examination of Aim 1 correlations within cognitive subgroups, however, may 

shed further light on possible group differences in the association of IIV to brain regions. The 

cognitively normal group had modest negative correlations between median RT and both gray 

matter thickness and white matter volume. In the early-stage AD group, on the other hand, CoV 

was correlated negatively with white matter volume. However, the post-hoc analyses examining 

younger and older subsamples revealed trends suggesting a different pattern. The younger 

subsample yielded an association between white matter and CoV, but median RT was associated 

with white and gray matter in the older group. That CoV was associated with white matter in 

younger groups while median RT was associated with white and gray matter in older groups is 

contrary to the trends observed in the other subgroups, although this pattern has been observed in 

other laboratories (e.g., Anstey et al., 2007). It is possible that in cognitively normal aging, 

estimates of central tendency and variability in attentional tasks are modestly contingent on 

overall brain integrity in frontal and parietal areas, although associations with variability were 

observed in the younger, but not older, sample in the cognitively normal group in the current 

study. In healthy aging, both white matter and gray matter may be important for overall task 

execution, as measured by median RT rather than CoV. As individuals convert to the earliest 

stages of AD, however, white matter integrity may play an increasingly important role as 

synchrony between orchestrated networks becomes compromised (O’Sullivan et al., 2001), 

making consistent execution of cognitive tasks difficult.  

Other studies that have found trends toward a double dissociation (e.g., Walhovd & Fjell, 

2007) may therefore have conflated healthy aging with the earliest stages of pathological aging. 

It is possible that white matter microstructure, rather than white matter volume, is more strongly 
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associated with IIV as individuals progress to later stages of dementia. Jackson et al. (2012), with 

its smaller sample, failed to find a difference in the association between IIV and white matter 

macrostructure in CDR 0.5 and CDR 1 individuals relative to CDR 0, but did find trends toward 

an interaction between the white matter volume ROI and CDR status in superior frontal gyrus 

(ΔR2 = .012, p = .086), the precuneus (ΔR2 = .010, p = .118), and ventral/dorsolateral prefrontal 

cortex (ΔR2 = .008, p = .151). An investigation of white matter microstructure in comparable 

regions may show differences in sensitivity to CoV as a function of cognitive status. 

Aim 2 – Mediation by IIV 
 

The second aim examined whether the relationship between neurobiological factors and 

episodic and working memory might be mediated by IIV. Unfortunately of the predictor 

variables of interest (i.e., COMT, APOE, frontal and default white matter), none were 

significantly associated with either of the memory measures in the full sample, which rendered 

moot any possibility of mediation. Removing covariates from consideration strengthened the 

associations among the measures, but did not yield significant associations between white matter 

and episodic or working memory. Although some treatment of the lack of expected associations 

was discussed in the previous section, attention will be given to each of the predicted 

relationships in the mediational model.  

White matter and memory performance. The core of Aim 2’s mediational model was the 

association between white matter volume in frontal and default-network regions with episodic 

and working memory measures. In Aim 2, volumetric composites of white matter were divided 

into frontal regions (i.e., superior frontal gyral and ventral/dorsol.ateral prefrontal cortical 

volumes) and regions implicated in the default network (i.e, posterior cingulate, precuneus, and 

inferior parietal lobule volumes). This division was proposed because it was hypothesized that 
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the frontal composite would be more likely to associate with working memory measures (e.g., 

Raz & Rodrigue, 2006), while default-network regions would associate with episodic memory 

(e.g., Andrews-Hanna et al., 2010). No correlations supporting this association were found, 

however, which indicated that any mediation by IIV measures would not be possible. The 

relationship between white matter and working memory may not be as clear as was assumed in 

the Introduction, however. Although several studies have found associations between white 

matter and working or episodic memory in older adults (Bucur et al., 2008; Burton et al., 2004; 

Brickman et al., 2006; Charlton, Barrick, Lawes, Markus, & Morris, 2010; Gunning-Dixon, 

Brickman, Cheng, & Alexopoulos, 2009; Gunning-Dixon & Raz, 2000; Kennedy & Raz, 2009; 

Madden, Bennett, & Song, 2009; Nordahl et al., 2006), the majority of these investigations focus 

on cognitive associations with white matter microstructure rather than white matter volume. As 

noted earlier, white matter microstructure and macrostructure are not necessarily isomorphic 

(Abe et al., 2008; Fjell, Westlye, Greve, Fischl, & Benner, 2008; Gunning-Dixon et al., 2009). 

This possibility suggests that white matter volume in these regions of interest may be less likely 

to be associated with memory measures than estimates of white matter microstructure or 

tractography obtained via diffusion tensor imaging. Brickman et al. (2006), however, reported an 

association between frontal and temporal white matter volume and episodic memory 

performance, raising the possibility that white matter macrostructure may indeed be related to 

memory measures. The significance of this observation may be tempered somewhat given 

Brickman et al. controlled only for age, which may not be adequate covariate control (see 

Jackson et al., 2012). 

As a manipulation check to determine whether covariate control may have played a 

substantive role in the present set of analyses, 3 medial temporal gray matter volumes, often 
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implicated in episodic memory (e.g., Squire & Zola-Morgan, 1991; Zola-Morgan & Squire, 

1986) were correlated with the residualized episodic and working memory measures. 

Residualized measures of hippocampal gray matter, as well as parahippocampal gray matter 

volume and thickness, were obtained for the Aim 2 subsample. None of the measures were 

correlated with either episodic or working memory, all rs < .095. By way of comparison, there 

were modest zero-order correlations of episodic memory with hippocampal (r(149) = .304, p < 

.001) and parahippocampal gray matter volume (r(149) = .313, p < .001). No other associations 

were reliable and all rs were less than .12. These results suggest that covariate control may mask 

even commonly-reported associations, and so may have prevented predicted associations from 

being observed. Another possibility, of course, is that these associations are spurious because the 

variables are modulated by age or CDR status.  

Genetic factors and memory performance. APOE has been a key factor in recent 

explorations of genetic influences on cognition in healthy and pathological aging. A priori 

analyses showed only an episodic memory advantage for the APOE4- group. The negative 

influence of the APOE4 polymorphism on working memory is fairly well-defined (Greenwood, 

Lambert, Sunderland, & Parasuraman, 2005; Reinvang, Winjevoll, Rootwell, & Espeseth, 2010; 

Rosen, Bergeson, Putnam, Harwell, & Sunderland, 2002), as is the negative role of APOE4 in 

episodic memory (see Wisdom, Callahan, & Hawkins, 2011, and Small, Rosnick, Fratiglioni, & 

Bäckman, 2004, for meta-analyses regarding APOE and episodic memory). As in Jackson et al. 

(2012) and other studies drawing from similar samples as the current study (Balota et al., 2010; 

Duchek et al., 2009; Tse et al., 2010), it is possible that the participants were particularly high-

functioning, limiting performance variability in the working and episodic memory tasks that 

comprised the composite measures. To test for evidence of skewness in performance, a 
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Kolmogorov-Smirnov test was conducted on the overall sample for both memory measures. 

There was no evidence of skewing for either episodic memory or working memory, however (K-

S zs < 1, ps > .57), so it does not appear that the sample was subject to ceiling effects in 

performance. Another possibility for the lack of association between memory performance and 

genetic factors is that the working memory composite used in the current study included simple 

span tasks which may be less sensitive than complex working memory tasks to the kinds of 

differences explored here (e.g., Reinvang et al., 2010). Therefore, the obtained working memory 

measures were not able to distinguish between APOE groups. It is possible that with more 

complex working memory tasks, APOE effects may emerge. 

COMT, like APOE, has been associated with risk for AD, particularly in conjunction 

with APOE (Martínez et al., 2009; Wang et al., 2005), but any link with working and episodic 

memory is not well-understood (de Frias et al., 2004; Egan et al., 2001; MacDonald et al., 2009). 

A priori analyses revealed that neither working memory nor episodic memory differed with 

respect to COMT group status; however, the Val+ group performed numerically worse on both 

memory measures relative to the Val- group. Although presence of the Val allele has been 

associated with increased IIV in cognitively normal populations (MacDonald, Cervenka et al., 

2009), evidence supporting direct links between COMT status and working and episodic 

memory are much more difficult to pinpoint. Presence of the Val allele on the COMT gene is 

inconsistently associated with working memory, which is sometimes conflated with executive 

function more generally (Bäckman, Nyberg, Lindenberger, Li, & Farde, 2006; Bruder et al., 

2005; Egan et al., 2001; Goldberg et al., 2003; Goldberg & Weinberger, 2004; Parasuraman & 

Jiang, 2011). Although group differences in COMT have emerged in episodic memory 

performance (de Frias et al., 2004; Gibbs, Naudts, Azevedo, & David, 2010), COMT’s 
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association with episodic memory may be somewhat indirect. Examinations of the association 

between COMT and memory have typically made use of larger samples (ns > 250) than the 

COMT sample available for Aim 2 (n = 100), which may suggest a lack of power to detect 

associations involving COMT in the present study. This association may also be perhaps 

mediated by extracellular dopamine in frontal regions (de Frias et al., 2004; Gibbs et al., 2010; 

Savitz, Solms, & Ramesar, 2006; Wimber et al., 2011), rather than the temporal regions typically 

associated with binding in episodic memory. Thus, COMT’s effect in frontal regions of the brain 

may influence executive function, which in turn may influence episodic memory. Ultimately, 

however, it is not entirely clear why genetic-memory observations consistent with the extant 

literature were not observed. 

White matter and CoV. Consideration of the lack of association between white matter and 

CoV was discussed in Aim 1, but the use of frontal and default-network composites in Aim 2 

warrants additional discussion. Studies investigating the relationship between white matter and 

IIV typically have focused on frontal regions, given that damage to these areas historically has 

been associated with increased IIV (Bellgrove et al., 2004; Bunce et al., 2013; Goldstein, 1942; 

Head, 1926; MacDonald et al., 2006, 2009; Murtha et al., 2002; Stuss et al., 2003; Ullén et al., 

2008). Given the variety of methods employed in examination of the association of frontal 

damage with IIV, particularly those involving white matter (Bunce et al., 2010; Jackson et al., 

2012; Moy et al., 2011; Ullén et al., 2008), it is surprising that the frontal white matter composite 

in the present study was not more strongly associated with CoV. Although the correlation (r = -

.187) was significant, it was somewhat weaker than anticipated. As noted above, it is possible 

that the method of covariate control employed in the current study prevented the observation of a 
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stronger association between CoV and white matter (zero-order r = -.239). As noted above, the 

use of white matter microstructure may also yield stronger associations with CoV.  

Another plausible explanation, supported by the single dissociation observed in Aim 1, is 

that in some regions, IIV may indeed be associated with gray matter rather than white matter. 

Indeed, the Jackson et al. (2012) replication analyses in Aim 1 suggested an association with the 

precuneus and IPL, particularly using the τ measure. Although gray matter was not tested in Aim 

2, the moderate correlations observed in Aim 1 between gray matter and the CoV and median RT 

measures highlights the importance of considering multiple candidates for neural correlates of 

IIV. Although many studies have investigated the relationship between white matter and IIV, no 

studies to date, including the present study, have examined this association independently over 

and above an IIV-gray matter correlation. Indeed, even the simultaneous examination of gray 

and white matter measures in relation to IIV has only rarely been explored (Walhovd & Fjell, 

2007). To justify an exclusive focus on white matter, previous studies have suggested that better-

myelinated connections between neurons yields tighter cognitive control and better task 

execution, thus reducing IIV (e.g., Walhovd & Fjell, 2007), or that white matter lesions are 

associated with cognitive impairment (e.g., Bunce et al., 2010). This focus may stem from 

computational models of IIV that implicate noisy information processing as a potential cause or 

correlate (Li et al., 2001), or the similar trajectory noted between white matter and IIV in 

development and decline across the lifespan (MacDonald et al., 2006). Indeed, while there is 

strong theoretical basis for the association of white matter with IIV (MacDonald et al., 2006, 

2009), there have been no attempts to theoretically distinguish independent contributions of 

white and gray matter on IIV. This, coupled with a tendency to consider white matter 

hyperintensities, volume, microstructure, and functional connectivity as an isomorphic white 
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matter construct, may have resulted in a prevailing view that IIV is primarily associated with 

white matter, with some potential association with prefrontal gray matter as well (MacDonald et 

al., 2006). Of course, a more plausible conceptualization is that IIV is associated with multiple 

aspects of neuronal structure, and may be also associated with gray matter than white matter. Yet 

despite a single study demonstrating a double dissociation similar to the one hypothesized in 

Aim 1 (Walhovd & Fjell, 2007), whether IIV may be associated with both gray and white matter 

remains an open question.  

Genetic factors and CoV.  IIV has been associated with both APOE (Duchek et al., 2009) 

as well as COMT (Egan et al., 2001; Li et al., 2001; MacDonald et al., 2009), but CoV was not 

sensitive to group differences for either genotype in the present study. CoV’s lack of genetic 

sensitivity in the present study is unclear, as noted above; however, an assocation between CoV 

and APOE was observed in a study that drew from the same sample as the present investigation 

(Duchek et al., 2009). Post-hoc explorations of the relationship between genetic factors and CoV, 

discussed below, may shed some light on why group differences were not observed for APOE 

and COMT genotypes. 

CoV and memory performance. Although many predicted associations in Aim 2’s 

mediational model were not observed, the predicted negative association between CoV and 

memory performance was observed in the full sample of participants. These results are in line 

with previous literature. The negative association between working memory and a lack of RT 

stability has been noted in other studies (Lewis & Miall, 2006; Ullén et al., 2008), and the 

present results reinforce the observation that IIV is strongly associated with other indices of 

cognitive functioning. Indeed, although fewer studies have reported a direct association between 

IIV and episodic memory (Hultsch et al., 2002; MacDonald, Cervenka et al., 2009; MacDonald, 
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Nyberg et al., 2008), the current results were able to replicate and extend this association as well. 

Thus, as suggested in previous literature (MacDonald et al., 2006, 2009), IIV may indeed be a 

proxy for broader cognitive changes, particularly in older adults.  

Post-hoc analyses  
 

The majority of predicted findings in Aim 2 were not supported, and post-hoc analysis of 

individual measures in place of composites did not result in a coherent pattern of results. Post-

hoc analyses of the subgroups yielded potentially interesting, though small and not expected, 

trends in associations among structural, genetic, aging, and cognitive variables. Somewhat 

similar trends were observed in the post-hoc analyses as a function of age, education, genetic 

polymorphisms, and cognitive status. In particular, the group at greater risk for cognitive decline 

(e.g., the early-stage AD group, COMT Val+ carriers, APOE4+ carriers, low education 

individuals), tended to demonstrate a significant correlation between CoV and working memory, 

though this was only an admittedly weak trend in the AD group and the older adult subsample 

had a much stronger association between CoV and episodic memory.  

It is unclear why this pattern was observed, but one post-hoc speculation is that at-risk 

groups may have a robust link between IIV and dynamic task performance, or indeed, dynamic 

maintenance of an ongoing task set (Spieler, Balota, & Faust, 1996; Tse et al., 2010). On the 

other hand, the group at lower risk (e.g., the cognitively normal group, Val- carriers, APOE4- 

carriers, high education individuals) tended to have a stronger (though not consistently 

significant) association between CoV and episodic memory. The low-risk groups may instead 

see a connection between IIV and relatively less executive-dependent measures of cognitive 

performance, such as episodic memory recall. CoV, then, may prove to be a dynamically 

sensitive measure, indexing those tasks that are relatively more variable across persons within a 
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group of a given risk for dementia. Comparing the group-level standard deviations of 

residualized working and episodic memory across low- and high-risk groups, the high-risk 

groups for cognitive status, education and APOE group had slightly- to moderately-higher SDs 

for working memory measures relative to episodic memory measures. The low-risk groups for 

education and COMT group tended to have higher SDs for episodic memory measures relative to 

working memory. 

This speculation did not appear to hold for the younger and older subsamples, however. 

Both memory mesures were associated with CoV in the younger and older groups; however 

episodic memory was very strongly associated with CoV in the older group. Additionally, both 

of the age subgroups tended to have larger SDs for the episodic memory measure relative to the 

working memory measure, however. This pattern represents, if anything, the opposite of what 

might be expected, assuming that the older group represents the higher risk. Consideration of 

other risk factors may suggest that this assumption is problematic, on the other hand. The older 

sample had a lower proportion of Val+ (59% vs. 82%) and APOE4+ (25% vs. 44%) individuals. 

It may be difficult, then, to compare risk as a function of age group, given how other risk factors 

are represented in each age subsample.  

The speculative approach may not be a definitive examination of variability between risk 

groups, but it suggests the possibility that cognitive associations with CoV are flexible based on 

other factors. MacDonald and colleagues (2006, 2009; Hultsch et al., 2008) have argued that IIV 

is sensitive to cognitive impairment, particularly in older adults. The current results may indicate 

that IIV may be sensitive to different aspects of cognitive performance across cognitively 

normal, AD-risk, and AD groups. Those at higher risk of dementia may have more variable 

performance in tasks of working memory, because these groups may have relative difficulty in 
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maintaining task set consistently across repeated-measures designs relative to tasks tapping 

episodic memory, which are typically single point-estimates. Such a suggestion may help 

reconcile seemingly contradictory reports of the sensitivity of IIV to other neurocognitive 

measures in various cognitive and age groups (e.g., Christensen et al., 2005; Dixon et al., 2007), 

or even whether different types of IIV may differentiate between age and cognitive groups 

(Hultsch et al., 2008). On the other hand, those groups at lower risk for dementia may see more 

group-level variability in these single-measure designs because there is relatively less signal 

variability on a moment-to-moment basis, which may reduce variability in repeated-measures 

designs (Li et al., 2000; Tse et al., 2010). Group-level variability in low-risk groups therefore 

may be observed in single-measures tasks like those tapping episodic memory. Ultimately, this 

may indicate that groups at risk for AD may have different underlying biobehavioral 

associations. However, a much larger sample and clearer, a priori hypotheses are needed to 

examine this post-hoc speculation in more detail.  

Limitations and future directions 
 

There are several limitations to the current experiment. First, although the mean delay 

between the cognitive assessment and structural scan using absolute values was 216 days, some 

participants had a delay of up to two years between the measures. Although the design reported 

here statistically controlled for this interval, no delay between assessments would be ideal to 

better understand the association between cognitive measure and the integrity of brain regions. 

Second, given the impact of covariate selection and control (see Aim 1 Discussion), careful 

consideration is needed of whether to partial covariates from all measures or only predictor 

variables. Third, the cross-sectional nature of the design necessarily limits the generalizability of 

any associations reported here. Longitudinal follow-up is needed in order to draw firmer 
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conclusions regarding causal directions between cognitive and neuroanatomical correlates. 

Fourth, in the case of Aim 2, the selection of measures that accurately represent episodic and 

working memory constructs may merit further consideration. Although the current study used 

memory constructs defined in previous studies (Johnson et al., 2008; 2009), other studies have 

used different measures to represent working memory in particular (e.g., Tse et al., 2010). It is 

possible that these measures may highlight different aspects of working memory, and should be 

compared to determine how these constructs are associated.  Finally, white matter is but one 

factor that is implicated in IIV, with a host of others ranging from neurotransmitter dysfunction 

to frontal lesions and brain injury (Stuss et al., 2003; MacDonald, Cervenka et al., 2009; 

MacDonald, Li et al., 2009; MacDonald, Nyberg et al., 2006; Murtha et al., 2002). The relative 

contributions of each of these factors remains unknown, so even the few significant relationships 

reported here require contextualization in order to understand the broader association between 

IIV and the brain. 

Future work may incorporate longitudinal designs to investigate the predictive utility of 

IIV. Although there has been some work in this area (Balota et al., 2010; Bielak et al., 2010b, 

2013; Lövdén, Li, Shing, & Lindenberger, 2007; MacDonald, Hultsch, & Dixon, 2003), 

substantial research is lacking, particularly with respect to the anticipation of future cognitive 

decline as well as conversion to early-stage AD. Predictive analyses, such as Cox hazard models, 

could conceptually replicate and extend the findings of Balota et al. (2010), MacDonald et al. 

(2003), and Bielak et al. (2010b) who demonstrated that changes in variability may serve as a 

useful marker of future cognitive decline and conversion to early-stage AD. Additionally, the 

examination of white matter microstructure via DTI may yield significant associations between 

white matter and IIV, as observed in other laboratories (MacDonald, Li, & Bäckman, 2009; Moy 
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et al., 2011; Walhovd & Fjell, 2007; Ziegler et al., 2010). Once established, it is possible that a 

mediation model involving CoV may be revisited. 

In summary, although the present results replicated and extended the findings of Jackson 

et al. (2012) to gray matter, the present results largely failed to find evidence uniquely 

associating white matter volume with CoV, or evidence supporting CoV as a mediator in brain-

behavior relationships. Intriguing patterns emerged, however, involving the role of cognitive 

status and genetic markers such as APOE and COMT. In particular, it is possible that groups at 

higher risk of dementia may have stronger associations between CoV and cognitive measures of 

attentional control than individuals not at risk for AD.  
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Tables 
 
Table 1. Demographic characteristics of the sample. 

Variable 
Aim 1 Sample Aim 2 Subsample 

Cognitively Normal 
(Mean (SD)) 

Early-stage AD 
(Mean (SD)) 

Cognitively Normal 
(Mean (SD)) 

Early-stage AD 
(Mean (SD)) 

N 229 33 126 23 
Age in years* 67.3 (8.9) 73.3 (8.3) 71.4 (6.7) 73.4 (7.7) 
Gender (F/M) 151/78 13/20 74/52 10/13 
Education in years 15.6 (2.6) 15.2 (2.3) 15.5 (2.6) 15.1 (1.9) 

 
Apolipoprotein ε4 allele N   42 13 

Catechol-O-methyltransferase Val allele N   70 12 

* p < .05 for the Aim 1 sample. 
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Table 2. Correlation matrix of composite measures in Aim 1. 
 n = 262 Coefficient of variation Median reaction time 
White matter volume -.11 -.13 
Gray matter thickness -.05 -.14 
Note: Correlations in bold reflect p < .05. 
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Table 3. Correlation matrix of individual measures in Aim 1. 

n = 262 Coefficient of variation Median reaction time 
Stroop Simon CVOE Stroop Simon CVOE 

White 
matter 
volume 

SFG -.07 -.06 -.07 -.10 -.07 .00 
VLDLPFC -.02 -.09 -.09 -.09 -.08 -.06 
P. Cingulate -.07 -.02 -.15 -.12 -.05 -.07 
Precuneus -.05 -.02 -.05 -.12 -.09 -.06 
IPL -.06 -.02 -.07 -.14 -.05 -.07 

Gray 
matter 

thickness 

SFG -.01 -.13 -.02 -.05 -.14 -.05 
VLDLPFC .05 -.12 .00 .07 -.10 -.06 
P. Cingulate -.05 -.04 -.05 .02 -.09 -.04 
Precuneus .03 -.02 .00 -.06 -.16 -.09 
IPL .03 -.09 -.05 -.11 -.20 -.11 

Note: SFG = superior frontal gyrus, VLDLPFC = ventral/dorsal-lateral prefrontal cortex, P. Cingulate = posterior cingulate, IPL = 
inferior parietal lobule, CVOE = Consonant-Vowel Odd-Even task. 
Note: Correlations in bold reflect p < .05. 
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Table 4. Correlation matrix of composite reaction time distributional measures in Aim 1. 
n = 262 τ µ 
White matter volume -.01 -.15 
Gray matter thickness -.10 -.09 

Note: Correlations in bold reflect p < .05. 
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Table 5. Correlation matrix of individual reaction time distributional measures in Aim 1. 

n = 262 τ µ 
Stroop Simon CVOE Stroop Simon CVOE 

White 
matter 
volume 

SFG -.01 -.05 .05 -.10 -.03 -.10 
VLDLPFC .01 -.06 .04 -.10 -.07 -.13 
P. Cingulate -.05 -.01 .02 -.09 -.04 -.11 
Precuneus .03 -.05 .05 -.11 -.08 -.10 
IPL -.04 -.02 -.01 -.12 -.05 -.07 

Gray 
matter 

thickness 

SFG -.03 -.11 -.03 -.01 -.09 -.04 
VLDLPFC -.01 -.09 -.04 .08 -.06 -.01 
P. Cingulate -.06 -.01 -.12 .04 -.05 .12 
Precuneus -.05 -.03 -.02 -.06 -.18 -.05 
IPL -.05 -.10 .03 -.08 -.20 -.09 

Note: SFG = superior frontal gyrus, VLDLPFC = ventral/dorsal-lateral prefrontal cortex, P. Cingulate = posterior cingulate, IPL = 
inferior parietal lobule, CVOE = Consonant-Vowel Odd-Even task. 
Note: Correlations in bold reflect p < .05. 
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Table 6. Correlation matrix of composite measures in Aim 1 for the cognitively normal group. 
Cognitively normal (n = 229) Coefficient of variation Median reaction time 
White matter volume -.07 -.16 
Gray matter thickness -.07 -.15 
Note: Correlations in bold reflect p < .05. 
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Table 7. Correlation matrix of composite measures in Aim 1 for the early-stage Alzheimer disease group. 
Early-stage Alzheimer 

disease (n = 33) Coefficient of variation Median reaction time 

White matter volume -.40 .07 
Gray matter thickness .15 .01 

Note: Correlations in bold reflect p < .05. 
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Table 8. Correlation matrix of composite measures in Aim 1 in the younger half of the sample. 
Younger sample (n = 121) Coefficient of variation Median reaction time 
White matter volume -.20 -.16 
Gray matter thickness -.09 -.10 

Note: Correlations in bold reflect p < .05. 
  



! 98!

Table 9. Correlation matrix of composite measures in Aim 1 in the older half of the sample. 
Older sample (n = 108) Coefficient of variation Median reaction time 
White matter volume -.07 -.32 
Gray matter thickness -.16 -.40 

Note: Correlations in bold reflect p < .05. 
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Table 10. Correlation matrix of composite measures in Aim 1 for the APOE4- group in the cognitively normal sample. 
APOE4- (n = 151) Coefficient of variation Median reaction time 
White matter volume -.05 -.13 
Gray matter thickness -.04 -.19 

Note: APOE4- = noncarriers of the Apolipoprotein ε4 allele. 
Note: Correlations in bold reflect p < .05. 
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Table 11. Correlation matrix of composite measures in Aim 1 for the APOE4+ group in the cognitively normal sample. 
APOE4+ (n = 76) Coefficient of variation Median reaction time 
White matter volume -.13 -.20 
Gray matter thickness -.13 -.06 

Note: APOE4+ = carriers of the Apolipoprotein ε4 allele. 
Note: Correlations in bold reflect p < .05. 
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Table 12. Correlation matrix of composite measures in Aim 1 for the Val- group in the cognitively normal sample. 
Val- (n = 50) Coefficient of variation Median reaction time 
White matter volume .03 .04 
Gray matter thickness -.15 -.19 

Note: Val- = noncarriers of the catchol-O-methyltransferase Val allele. 
Note: Correlations in bold reflect p < .05. 
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Table 13. Correlation matrix of composite measures in Aim 1 for the Val+ group in the cognitively normal sample. 
Val+ (n = 130) Coefficient of variation Median reaction time 
White matter volume -.11 -.24 
Gray matter thickness .00 -.07 

Note: Val+ = carriers of the catchol-O-methyltransferase Val allele. 
Note: Correlations in bold reflect p < .05. 
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Table 14. Correlation matrix of composite measures in Aim 1 for the low education group in the cognitively normal sample. 
Low education (n = 92) Coefficient of variation Median reaction time 
White matter volume -.03 -.15 
Gray matter thickness -.14 -.26 

Note: Correlations in bold reflect p < .05. 
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Table 15. Correlation matrix of composite measures in Aim 1 for the high education group in the cognitively normal sample. 
High education (n = 137) Coefficient of variation Median reaction time 
White matter volume -.10 -.16 
Gray matter thickness -.02 -.07 

Note: Correlations in bold reflect p < .05. 
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Table 16. Zero-order correlation matrices for the current study and Jackson, Balota, Duchek, and Head (2012). 
 
 
 
 
 
 
 
 
 

Note: SFG = superior frontal gyrus, VLDLPFC = ventral/dorsal-lateral prefrontal cortex, P. Cingulate = posterior cingulate, IPL = 
inferior parietal lobule, CoV = coefficient of variation. All regions of interest reflect white matter volumes. 
Note: Correlations in bold reflect p < .05. 
  

 Current study  
(n = 262) 

Jackson et al. (2012) 
(n = 166) 

 CoV τ CoV τ 
SFG -.26 -.21 -.36 -.40 
VLDLPFC -.28 -.24 -.39 -.40 
P. Cingulate -.26 -.19 -.31 -.30 
Precuneus -.18 -.18 -.29 -.36 
IPL -.17 -.16 -.21 -.30 
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Table 17. Correlation matrix of composite measures in Aim 2. 
n = 149 Working memory Episodic memory 

Coefficient of variation -.31 -.24 

τ -.14 -.03 

Frontal white matter .05 .05 

Default white matter .07 .04 
Note: Correlations in bold reflect p < .05. 
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Table 18. Correlation matrix of individual measures in Aim 2. 

n = 149 
Working memory Episodic memory 

Digit 
Forward 

Digit 
Backward 

Mental 
Control 

Word 
Fluency 

Logical 
Memory 

Associate 
Memory 

Selective 
Reminding - Free 

Stroop CoV .00 .00 -.05 -.12 -.08 -.03 -.19 

Simon CoV -.03 -.13 -.15 -.25 -.12 -.11 -.27 

CVOE CoV -.02 -.17 -.18 -.12 .01 -.20 -.19 

Stroop τ .03 -.03 -.02 -.20 -.10 -.02 -.22 

Simon τ -.12 -.12 -.09 -.16 -.01 -.04 -.13 

CVOE τ .14 .10 -.07 -.05 .03 .17 .14 

SFG .07 .00 .00 .12 -.05 -.08 .08 

VLDLPFC .08 .11 .05 .12 .06 -.04 .10 

P. Cingulate .03 .00 .12 .18 .04 .02 .12 

Precuneus -.03 -.01 .02 .15 -.14 -.02 .02 

IPL .10 .11 .05 .10 .09 -.03 .04 
Note: CoV = coefficient of variation, CVOE = Consonant-Vowel Odd-Even task, SFG = superior frontal gyrus, VLDLPFC = 
ventral/dorsal-lateral prefrontal cortex, P. Cingulate = posterior cingulate, IPL = inferior parietal lobule. All regions of interest reflect 
white matter volumes. 
Note: Correlations in bold reflect p < .05. 
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Table 19. Correlation matrix of composite measures in Aim 2 for the cognitively normal group. 
Cognitively normal (n = 126) Working memory Episodic memory 

Coefficient of variation -.24 -.33 

Frontal white matter .02 .04 

Default white matter .04 .00 
Note: Correlations in bold reflect p < .05. 
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Table 20. Correlation matrix of composite measures in Aim 2 for the early-stage Alzheimer disease group. 
Early-stage Alzheimer disease 

(n = 23) Working memory Episodic memory 

Coefficient of variation -.18 -.02 

Frontal white matter .16 .09 

Default white matter .01 .27 
Note: Correlations in bold reflect p < .05. 
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Table 21. Correlation matrix of composite measures in Aim 2 for the younger half of the sample. 
Younger sample (n = 66) Working memory Episodic memory 

Coefficient of variation -.29 -.28 

Frontal white matter -.09 .01 

Default white matter .16 .03 
Note: APOE4- = noncarriers of the Apolipoprotein ε4 allele. 
Note: Correlations in bold reflect p < .05. 
  



! 111!

Table 22. Correlation matrix of composite measures in Aim 2 for the older half of the sample. 
Older sample (n = 65) Working memory Episodic memory 

Coefficient of variation -.28 -.54 

Frontal white matter -.12 .21 

Default white matter -.18 .13 
Note: APOE4- = noncarriers of the Apolipoprotein ε4 allele. 
Note: Correlations in bold reflect p < .05. 
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Table 23. Correlation matrix of composite measures in Aim 2 for the APOE4- group in the cognitively normal sample. 

APOE4- (n = 83) Working memory Episodic memory 

Coefficient of variation -.21 -.36 

Frontal white matter -.08 .01 

Default white matter -.08 -.01 
Note: APOE4- = noncarriers of the Apolipoprotein ε4 allele. 
Note: Correlations in bold reflect p < .05. 
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Table 24. Correlation matrix of composite measures in Aim 2 for the APOE4+ group in the cognitively normal sample. 
APOE4+ (n = 42) Working memory Episodic memory 

Coefficient of variation -.35 -.25 

Frontal white matter .24 .09 

Default white matter .32 -.02 
Note: APOE4+ = carriers of the Apolipoprotein ε4 allele. 
Note: Correlations in bold reflect p < .05. 
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Table 25. Correlation matrix of composite measures in Aim 2 for the Val- group in the cognitively normal sample. 
Val- (n = 30) Working memory Episodic memory 

Coefficient of variation -.11 -.36 

Frontal white matter -.10 .06 

Default white matter -.07 -.14 
Note: Val- = noncarriers of the catechol-O-methyltransferase Val allele. 
Note: Correlations in bold reflect p < .05. 
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Table 26. Correlation matrix of composite measures in Aim 2 for the Val+ group in the cognitively normal sample. 
Val+ (n = 70) Working memory Episodic memory 

Coefficient of variation -.28 -.38 

Frontal white matter .07 .03 

Default white matter .01 .04 
Note: Val+ = carriers of the catechol-O-methyltransferase Val allele. 
Note: Correlations in bold reflect p < .05. 
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Table 27. Correlation matrix of composite measures in Aim 2 for the low education group in the cognitively normal sample. 
Low education (n = 57) Working memory Episodic memory 

Coefficient of variation -.31 -.21 

Frontal white matter -.09 .07 

Default white matter -.11 -.04 
Note: Correlations in bold reflect p < .05. 
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Table 28. Correlation matrix of composite measures in Aim 2 for the high education group in the cognitively normal sample. 
High education (n = 69) Working memory Episodic memory 

Coefficient of variation -.18 -.39 

Frontal white matter .10 .02 

Default white matter .14 .03 
Note: Correlations in bold reflect p < .05. 
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Figures 
 
 

  

 
 
Figure 1. Hypothesized path models to establish the double dissociation in Aim 1. A) A fully unconstrained model, in which both 
predictor variables are permitted to correlate with each outcome measure. B) A double-dissociation model, in which white matter may 
only correlate with intraindividual variability, and gray matter with median reaction time. 
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Figure 2. Hypothesized nested models to evaluate Aim 2. A) A theoretically unconstrained 
model, in which all variables influence working memory directly or via intraindividual 
variability (IIV). B) A partially constrained model, examining whether IIV mediates the 
relationship between white matter and working memory C) A model examining additional 
mediation of the relationship between APOE/COMT and working memory by IIV. Note: Models 
were also hypothesized testing episodic memory in the place of working memory. 
! !
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!

!
Figure!3.!Aim!1!association!between!white!matter!volume!and!the!coefficient!of!variation.!
A)!White!matter!volume,!B)!gray!matter!thickness.!Red!triangles!indicate!participants!with!
earlyCstage!Alzheimer!disease!and!blue!circles!indicate!cognitively!normal!older!adults.!
Data!are!standardized!residuals!controlling!for!age,!education,!gender,!scanner!type,!
cardiovascular!health,!depression,!diabetes!diagnosis,!and!the!interval!between!the!date!of!
scan!and!the!date!of!the!cognitive!assessment.!
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 !
!

!
Figure!4.!Aim!1!association!between!gray!matter!thickness!and!median!reaction!time.!A)!
White!matter!volume,!B)!gray!matter!thickness.!Red!triangles!indicate!participants!with!
earlyCstage!Alzheimer!disease!and!blue!circles!indicate!cognitively!normal!older!adults.!
Data!are!standardized!residuals!controlling!for!age,!education,!gender,!scanner!type,!
cardiovascular!health,!depression,!diabetes!diagnosis,!and!the!interval!between!the!date!of!
scan!and!the!date!of!the!cognitive!assessment.!
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!
!
Figure!5.!Aim!2!associations!between!regional!white!matter!volume!and!the!coefficient!of!
variation.!A)!Frontal!white!matter!volume,!B)!default!white!matter!volume.!Red!triangles!
indicate!participants!with!earlyCstage!Alzheimer!disease!and!blue!circles!indicate!
cognitively!normal!older!adults.!Data!are!standardized!residuals!controlling!for!age,!
education,!gender,!scanner!type,!cardiovascular!health,!depression,!diabetes!diagnosis,!and!
the!interval!between!the!date!of!scan!and!the!date!of!the!cognitive!assessment.!
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!

!
!
Figure!6.!Aim!2!associations!between!regional!white!matter!volume!and!working!memory.!
A)!Frontal!white!matter!volume,!B)!default!white!matter!volume.!Red!triangles!indicate!
participants!with!earlyCstage!Alzheimer!disease!and!blue!circles!indicate!cognitively!
normal!older!adults.!Data!are!standardized!residuals!controlling!for!age,!education,!gender,!
scanner!type,!cardiovascular!health,!depression,!diabetes!diagnosis,!and!the!interval!
between!the!date!of!scan!and!the!date!of!the!cognitive!assessment.!
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!
!

!
!
Figure!7.!Aim!2!associations!between!the!coefficient!of!variation!and!memory!
performance.!A)!Working!memory,!B)!episodic!memory.!Red!triangles!indicate!participants!
with!earlyCstage!Alzheimer!disease!and!blue!circles!indicate!cognitively!normal!older!
adults.!Data!are!standardized!residuals!controlling!for!age,!education,!gender,!scanner!type,!
cardiovascular!health,!depression,!diabetes!diagnosis,!and!the!interval!between!the!date!of!
scan!and!the!date!of!the!cognitive!assessment.!
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!
!
Figure!8.!Aim!2!associations!between!regional!white!matter!volume!and!episodic!memory.!
A)!Frontal!white!matter!volume,!B)!default!white!matter!volume.!Red!triangles!indicate!
participants!with!earlyCstage!Alzheimer!disease!and!blue!circles!indicate!cognitively!
normal!older!adults.!Data!are!standardized!residuals!controlling!for!age,!education,!gender,!
scanner!type,!cardiovascular!health,!depression,!diabetes!diagnosis,!and!the!interval!
between!the!date!of!scan!and!the!date!of!the!cognitive!assessment.8!
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