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ABSTRACT OF THE THESIS

Hidden Markov Models for Heart Rate Variability with Biometric Applications

by

Michael R. Walker II

Master of Science in Electrical Engineering

Washington University in St. Louis, May 2011

Research Advisor: Dr. Joseph A. O’Sullivan

The utility of hidden Markov models (HMM) for modeling individual heart rate vari-

ability (HRV) is presented. Starting with a physiologically based statistical model for

HRV from the literature, we justify use of HMMs and present methods for parame-

terizing the model. The forward-backward algorithm and expectation-maximization

algorithm are used to estimate the model and the hidden states for a given observa-

tion sequence of inter-beat intervals. Multiple initialization techniques are presented

to avoid local maxima. Model order is determined from the data sequence using

the Bayesian information criterion. Models are trained on twelve hour recordings.

The models are then used to discriminate the identity of an individual using data

from a separate set of testing data. For database from 52 individuals, true identity

was verified with an equal error rate of roughly 0.36. While initial results do not

demonstrate strong performance as a biometric, HMMs are able to capture some in-

dividuality in the HRV signal. Consistency in HRV over twelve hour time scales is

also demonstrated.
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Chapter 1

Introduction

Heart rate variability is affected by a variety of physiological activity from respiration

and swallowing to mental activity, even anatomical positioning. Much research has

focused on quantifying changes in inter-beat intervals (IBI) due to such activities. IBI

sequences can provide insight to the physiological state of an individual. However, it

is often difficult to identify the stimuli which effected a specific change in the IBI.

Over short time scales, few IBI observations are made. This limits the number of

meaningful statistics that can be computed. Over longer time scales, heart rate vari-

ability is non-stationary. While many approaches to heart rate variability (HRV)

analysis rely on power spectral density estimation, unbiased estimation requires the

signal is at least wide-sense-stationary. This has led to the proposal of several de-

trending methods [1, 2] mitigating the effects of state changes.

Many analytical techniques have been proposed for understanding HRV [3]. How-

ever, few of these techniques are able to reproduce or simulate new data sequences.

Modeling a process is often insightful in and of itself. Parameter estimates provide

new metrics for contrasting training data.

Of the relatively few models presented, drastically different forms are considered.

DeBoer et al. coupled blood pressure with IBI duration using a set of difference
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equations [4]. Kuusela et al. used a single difference equation, but added a stochastic

component [5]. Ivanov et al. [6] modeled IBI sequences in the context of biased

random walks.

The model presented by Ivanov et al. demonstrated an ability to capture both short-

and long-term variability in IBI duration. In this model they present competing

biased walkers which represent unique feedback control mechanisms of the cardiac

system. Parameter selection for each biased walker was physiologically justified, and

the model was demonstrated to generate normal sequences over a span of parameter

assignments. However, no method was presented to individualize parameter selection.

The model presented by Ivanov et al. [6] suggests the notion of an underlying state

that governs the statistics of short-term variability. In this way, hidden Markov

models can be considered an extension of the physiologically justified model presented

by Ivanov. Algorithms for estimating parameters of HMMs are well known [7], thus

providing an algorithmic approach to parameter selection from training data.

HMMs are perhaps best known for their application in speech and language pro-

cessing. HMMs have been used to model cardiac pulse waveforms [8, 9], but few

publications present the results of applying HMMs to IBI sequences directly, or the

results of generating IBI sequences from HMMs. Baier et al. modeled HRV, but

also included blood pressure data in their observation sequences [10]. At the time

of this writing, the only publications known to the author which present the results

of applying HMMs to IBI sequences alone are by Silipo et al., in which hour-long

segments of IBI data were used as training sequences [11, 12].

We focused on long (12-hour and 24-hour) IBI sequences, following the work of Ivanov

et al. [6]. We obtained long-term recordings of IBI data from the publicly available

archive PhysioBank [13]. Specifically, we used the “Normal Sinus Rhythm RR Interval
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Database,” which contains roughly 24 hours of intervals from 54 individuals (30 men,

aged 28.5 to 76, and 24 women, aged 58 to 73). The IBI data were originally obtained

from ECG recordings sampled at 128 Hz.

Common methods for parameterizing HMMs require the likelihood function to be con-

vex over the parameter values to ensure maximum-likelihood (ML) estimates of the

parameters. In selecting parameters to optimize the likelihood of a particular data

sequence, initial results show the likelihood function contains many local maxima

over the range of feasible parameter values. Additionally, evaluation of the likelihood

function is computationally expensive for long sequences of IBIs (>10,000). For pa-

rameterizing models of 12-hour IBI sequences, the choice of optimization algorithms

is severely limited.

It is also important to consider the number of states necessary to accurately model

a sequence of interest. A well-known tradeoff exists between (over) fitting training

data and the uncertainty of new testing data. We used a principled approximation,

the Bayesian information criterion (BIC), for optimally selecting model complexity.

To assess the utility of applying HMMs to IBI data, we consider using IBI data as

a biometric. More specifically, we consider the capability of matching an observed

sequence of IBIs with a known model. In this sense, we measure the ability of HMMs

to capture an individual’s uniqueness in IBI sequences, as well as the consistency

or similarity across IBI segments from one individual. IBI data has received little

attention as a biometric. In some cases, IBI data was explicitly removed from signals

before considering biometric capabilities [14]. Many models for HRV do not focus

on normal variations across individuals, but instead focus on recognizing abnormal

phenomenon across population groups [6, 3]. However, improving models of normal

variations could be used to improve reliability of detecting specific conditions.
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This thesis is organized as follows. In Chapter 2 we present a physiologically justified

model from the literature and identify similarities with HMMs. In Chapter 3, the

algorithm for parameterizing the HMM is presented. We discuss a constraint for

sizing the model in Chapter 4 and the results of model selection on 12- and 24-hour

data. An experiment for testing biometric capabilities of HMMs trained on HRV data

is described in Chapter 5.
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Chapter 2

A Physiologically Motivated Model

Living organisms are subject to an external environment that is ever changing. De-

spite external stimuli, it is important to maintain control of internal physiological

functions. This ability to maintain control following perturbations is commonly re-

ferred to as homeostasis. The cardiac cycle is certainly one physiological function to

which the principle of homeostasis applies. For example, while resting after moments

of physical exertion heart rate tends toward a normal resting rate.

However, homeostasis does not account for HRV while resting. Homeostasis, alone,

would suggest that heart rate would reach a steady state after long periods of resting.

This, simply, has not been observed. Balancing HRV with homeostasis lead Ivanov,

Amaral, et al. to model sequences of IBIs as biased random walks [6, 15]. The authors

first demonstrate the ability of a random walk to balance homeostasis with short term

HRV. They then expand upon a basic biased walker to accommodate variability over

many time scales.

In this chapter we take a detailed look at the model presented by Ivanov, Amaral,

Goldberger, and Stanley in [6, 15]. For simplicity, we will refer to this model as

the IAGS model. In Sec. 2.1 we will first present the IAGS model and derive a
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complementary expression for the model. We will then use this alternative expression

to reveal characteristics of the IAGS model in Sec. 2.2.

2.1 Model Description

Using yn to denote the nth IBI duration, consider the random walk

yn = yn−1 + wn (2.1)

where wn represents the nth observation of a random variable. If we briefly consider

a case where wn are independent and identically distributed (i.i.d.) Gaussian random

variables with mean µ and variance σ2, it is clear that yn − y0 ∼ N (nµ, nσ2). Even

for µ = 0, variance increases with n and homeostasis is not preserved. For this reason,

the authors introduce a bias to the walker. The biasing method proposed affects the

distribution for wn such that

wn =


ξ(1 + ηn) for yn−1 < τ

−ξ(1 + ηn) for yn−1 ≥ τ

. (2.2)

This approach biasses the walker toward a target mean τ , where ξ represents a weight-

ing term. Noise is introduced through the terms ηn and are assumed independent,

zero-mean, Laplace random variables with standard deviation σ. Since the Laplace

distribution is symmetric, we can separate the conditional bias from the noise term.

We can equivalently express (2.1) as

yn = yn−1 + bn + ήn. (2.3)
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Figure 2.1: Simulated IBI sequences from both unbiased and biased random walks
using (2.3). This contrasts the resulting sequences from a system which starts in a
perturbed state. The values y0 = 0.5, σ = 5 × 10−3, and ξ = 0.01 were used for
both models. For the biased walker, τ = 0.85. For the unbiased walker, bn = 0. The
biased walker drifts toward the target mean τ and the statistics of the observed IBI
sequences appear consistent over large n. For the unbiased walker, the variance of yn
increases with n.

Here, ήn represents a zero-mean Laplace random variable with standard deviation ξσ

and

bn =


ξ for yn−1 < τ

−ξ for yn−1 ≥ τ

. (2.4)

Clearly, (2.3) represents a biased walker. The walker becomes unbiased by simply

setting bn = 0, ∀n = {1, 2, . . .}. Fig. 2.1 demonstrates the effects of including the

bias term for a simulated sequence of IBIs. The sequence shown in Fig. 2.1 simulates

the response of a system which starts in a perturbed state. The initial value, y0 = 0.5,

was selected far from the desired mean τ = 0.85. Qualitatively, this demonstrates

the ability of biased walker to return to a mean value after a perturbation while

simultaneously facilitating slight variability about the target mean. Conversely, the

unbiased walker does not display either of these features.
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Fig. 2.1 also demonstrates some of the shortcomings of the model as presented thus

far. The biased walker model appears to balance homeostasis with short term vari-

ability in IBI sequences. However, over long time scales, HRV must adapt to changes

in sleep cycle, physical activity and similar changes in state. The authors modify the

biased walker model in two ways to accommodate long term variability.

In the first modification, the authors allow the desired mean τ to vary over time.

In this way, τn represents a discrete-time continuous-valued random process. In the

second modification, the authors expand the model to include K independent random

processes in the update term such that

yn = yn−1 +
K∑
k=1

wk,n, (2.5)

where wk,n represents the nth observation of the kth random process wk and

wk,n =


ξk(1 + ηk,n) for yn−1 < τk,n

−ξk(1 + ηk,n) for yn−1 ≥ τk,n

. (2.6)

It is through the random processes, wk, by which the authors model physiological

control mechanisms influencing IBI duration. τk,n represents the nth observation of

the kth random process τk. ηk,n are still assumed i.i.d. Laplace random variables with

mean 0 and standard deviation σ. The weighting terms ξk vary by process k, but are

assumed constant over all n.

It is by (2.5) and (2.6), the IAGS model is described. As mentioned previously, we

can alternatively express (2.5) as

yn = yn−1 + βn + ψn. (2.7)

8



Table 2.1: IAGS Model Parameters
SA PS SS

k 1 2 3,. . .,9
ξk 0.01 0.03 0.01
σ 0.5 0.5 0.5
τk 0.6 U(0.9, 1.5) U(0.2, 1.0)

In this case, βn represents the sum of all bias terms at the current time step

βn =
K∑
k=1

bk,n, (2.8)

where

bk,n =


ξk for yn−1 < τk,n

−ξk for yn−1 ≥ τk,n

. (2.9)

In (2.7), ψn is a random variable representing the sum of K independent, zero-mean,

Laplace random variables

ψn =
K∑
k=1

ήk,n (2.10)

where the standard deviation of ήk,n is ξkσ.

In [6], the authors present results from a model with parameter values that were

physiologically justified. K = 9 separate random processes, wk,n, were used to model

three inputs: the sinoatrial (SA) node, the parasympathetic (PS) and sympathetic

(SS) branches of the autonomic nervous system. One process each was used to model

the SA and PS inputs. Seven processes were used to model the SS inputs. For the

SA input, τk = 0.6 was held constant. For the PS and SS inputs, the values τK were

drawn from uniform distributions. Parameter values are listed in Table 2.1.

The update times for τk described in [6, 15] were ambiguous. In both publications,

update times were considered normally distributed with mean T = 1000 but without
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mention of variance. Perhaps a suitable alternative is to assume a geometric distri-

bution with mean T = 1000 intervals. The geometric distribution, along with its

continuous time analog the exponential distribution, is memoryless and is often used

in queuing theory to describe inter-arrival times. Still, other distributions may be

more appropriate for modeling these update times.

2.2 Model Properties

The expression (2.7) differs substantially from that proposed by Ivanov in [6], but

the models are the same. From this new expression, several interesting features are

apparent. In this section we identify several characteristics not previously presented

by the authors.

2.2.1 Applicability of HMMs

It is interesting to note that the statistics of the noise term ψn do not change over time

nor by outcome τk. This term follows a nonstandard distribution, but a likelihood

function, computed empirically, for ψn is shown in Fig. 2.2. Furthermore, it was

computed that |ψn| < 0.041 with probability 0.95.

The value βn is deterministic given Φn = {yn−1, τ1,n, . . . , τK,n}. If the random pro-

cesses τk are memoryless (e.g. update times are geometrically distributed), then the

likelihood function f(Φn+1 | Φn,Φn−1, . . .) = f(Φn+1 | Φn). In which case, the se-

quence Φn would represent a discrete-time infinite-state Markov process. Clearly,

many of the parameters which Φn comprises are unobservable. But, this formulation

suggests the applicability of HMMs for modeling HRV.
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Figure 2.2: Likelihood functions related to the noise term ψ. A likelihood function was
computed empirically for ψ. A zero-mean Laplace distribution was fit to the computed
likelihood function through selection of standard deviation σ. The parameter was
selected which minimized the mean squared error of the resulting likelihood function
over the domain [−0.1, 0.1]. Finally, 95% confidence interval is indicated for the
observed data.

2.2.2 Target Mean as a Random Process

While the term target mean was precise for the single bias walker, for K > 1 the term

is ambiguous. Consider the threshold τ0,n ∈ {τ1,n, τ2,n, . . . , τK,n} where

βn < 0, for yn ≥ τ0,n (2.11)

βn > 0, for yn < τ0,n. (2.12)

By this argument, the τ0,n approximately represents the target mean of the walker. If

ξk are constant for all k, τ0,n is the is simply the median. The target mean can then

be considered a discrete time, continuous valued random process itself. Simulating an

outcome for this process using the parameters in Table 2.1, statistics on update times

and change in target mean were computed. The results are shown in Fig. 2.3 and

Fig. 2.4. These figures suggest that the target mean can be considered as a random
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Figure 2.3: Distribution on the number of intervals between updates of the target
mean τκM ,n. The process by which the target mean is determined was simulated
using K = 9 random processes τ1, . . . , τK with the parameters listed Table 2.1. The
update times for each process were geometrically distributed with mean T = 1000
intervals. A geometric distribution was fit to the simulated data using the estimated
mean p = 269.3 intervals.

walk with geometrically distributed update times, where the change in target mean

follows a zero-mean Laplace distribution.

Ranking τk,n in increasing order using the length K ordered set κ where τκ1,n ≤

τκ2,n ≤ . . . ≤ τκK ,n, we can determine the index M such that

τκM ,n = τ0,n. (2.13)

In this way, it is possible to identify the threshold value τκM+1,n and τκM−1,n which

directly exceeds and is directly less than the target mean τ0 respectively. Furthermore

it is possible to identify the corresponding weighting values ξκi
. If we consider the

stationary behavior where the K random processes τk all remain constant for many

time steps, yn is expected to fluctuate about the mean τκM ,n where ∥βn∥ = ξκM
.

However, if many thresholds are clustered about the target mean, or τκM+1,n−τκM ,n ≈
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Figure 2.4: Distribution of observed change in target mean after update: τκM ,n+1 −
τκM ,n. A zero-mean Laplace distribution was fit to the simulated data using the
estimated standard deviation σ = 0.12.

ξκM
, the expected magnitude of βn increases. In either case, the sign of βn is likely

to change with each time step. Qualitatively this suggests that if the spacing of τk,n

about τ0 are close, the energy of the high frequency content of the HRV signal will

increase. Nonsymmetric distribution of τk,n about τ0 will affect the third moment of

the observed yn. With this model it is possible that two different states with equal

target means could generate sequences with very different stationary distributions.

2.2.3 State Changes and Transition Probabilities

We conclude this chapter with a qualitative analysis of state changes of the IGAS

model. Consider the case where update times for the process τk are geometrically

distributed with mean T = 1000. Each random process τk changes after a time step

with likelihood 1× 10−3. Given K = 9 independent random processes, the likelihood

that all τk will remain constant after one time step is roughly 0.991. Furthermore, the

target mean only changes with the median value τκM ,n. This suggests that the biased
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walker will spend most of its time in one of two modes: 1, transitioning to a new

target mean; or 2, in a stationary mode varying about a target mean. Contrasting

the maximum value max(∥βn∥) = 0.11 with the standard deviation in change of

target mean σ = 0.12 demonstrated in Fig. 2.4, few time steps are generally required

to bias the walker toward the target mean. With an expected p = 262 time-steps

between update of the target mean, the process is expected to spend most of its time

in the second mode. In this mode, βn will alternate between only a few values to

counteract observations of ψn. This suggests that the distribution of observed IBI,

while the target mean remains constat, could be approximated as stationary with a

mean approximately equal to the target mean. After an update to the target mean

occurs, the stationary distribution would change. The difference between the mean of

the new stationary distribution and the mean of the previous stationary distribution

will follow the change in the target mean as demonstrated in Fig. 2.4.

Using this argument, we could define a state by the stationary distribution of observed

IBIs while the target mean remains constant. In this way, we could describe an

observed sequence of IBIs y using Markov models. The observation yn would follow

the stationary distribution of the state at time n. State transitions would likely occur

between states for which the means of the stationary distributions are similar.
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Chapter 3

HMMs and Parameter Estimation

A discrete time Markov process is a time-varying random process in which the dis-

tribution of future events depend only on the current outcome. For a discrete time

random process with realization x = (x1, . . . , xn), this principle can be stated as

p (xn+1 | xn, xn−1, xn−2, . . .) = p (xn+1 | xn) . (3.1)

In HMMs, the state of the Markov process is hidden or unknown. The observations

are, instead, random variables with distributions conditioned on the state of the

“hidden” process.

We choose to model sequences of IBI y = (y1, . . . , yN) as a discrete-time, discrete-state

HMMs. Each observation is assumed normally distributed according to

p (yn | xn = m) ∼ N
(
µm, σ

2
m

)
. (3.2)

The hidden state sequence x = (x1, . . . , xN), xn ∈ {1, . . . ,M}, is parameterized by

A, representing the transition probabilities

Ai,j = p (xn+1 = j | xn = i) (3.3)
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for i, j ∈ {1, 2, . . . ,M}. Note

M∑
j=1

Ai,j = 1, ∀ i ∈ {1, 2, . . . ,M}. (3.4)

The conditional mean µ = (µ1, . . . , µM) and variance σ2 = (σ2
1, . . . , σ

2
M) of the ob-

servations, in addition to A, represent the unknown parameters of the HMM to be

estimated. We group these parameters into the ordered set θM = {µ, σ2, A}, where

the subscript M represents the number of states. In the following, this subscript is

omitted when it is not necessary to distinguish model sizes.

In seeking a maximum likelihood (ML) estimate for θ we employ a two-step iterative

algorithm. In the first step, we use an estimate for θ, θ̂p, to compute several marginal

likelihood functions. In step two, we use these likelihood functions to compute new

estimates θ̂p+1. This structure follows directly from application of the EM algorithm

[16]. Step one can be implemented efficiently through application of the forward-

backward algorithm. In the following, we first discuss application of the forward-

backward algorithm in Sec. 3.1. In Sec. 3.2 we discuss application of the EM

algorithm. We conclude with notes on initialization and an algorithm summary in

Sec. 3.3.

3.1 Forward-Backward Algorithm

Two likelihood functions are necessary to update estimates of θ: the a posteriori prob-

ability functions of the hidden states p
(
xn = i | y; θ̂p

)
and p

(
xn = j, xn−1 = i | y; θ̂p

)
.

Evaluating these functions for all i, j, and n independently would be rather expensive

computationally for even modest values N and M . However, these functions can be

broken down to the product of several auxiliary functions which depend only on a
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subset of the dimensions of x and y. This computation was more recently covered in

terms of factor graphs in [17]. However, for brevity, we follow the method outlined

in [18].

We define the auxiliary functions

αn(k) =p(y1, . . . , yn, xn = k) (3.5)

βn(k) =p(yn+1, . . . , yN | xn = k). (3.6)

We note that αi(k) can be computed sequentially with increasing i by

αn(k) =
K∑
i=1

p(y1, . . . , yn, xn = k, xn−1 = i) (3.7)

=
K∑
i=1

p(y1, . . . , yn−1, xn−1 = i) p(yn, xn = k | xn−1 = i) (3.8)

= p(yn | xn = k)
K∑
i=1

αn−1(i) p(xn = k | xn−1 = i). (3.9)

Once the state of a Markov process is known, future events are independent of past

events. The expression (3.8) is a result of this property.

Similarly, βn(k) can be computed sequentially with decreasing i by

βn(k) =
K∑
i=1

p(yn+1, . . . , yN , xn+1 = i | xn = k) (3.10)

=
K∑
i=1

p(yn+2, . . . , yN | xn+1 = i) p(yn+1, xn+1 = i | xn = k) (3.11)

=
K∑
i=1

βn+1(k) p(yn+1 | xn+1 = i) p(xn+1 = i | xn = k). (3.12)
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Computing the product of the auxiliary functions yields

αn(k)βn(k) = p(y, xn = k). (3.13)

For any n, integrating this product over k provides the likelihood of the observation

sequence

p(y) =
K∑
i=1

αn(k)βn(k). (3.14)

This term can be used to normalize (3.13) such that

p(xn = k | y) = αn(k)βn(k)
K∑
i=1

αn(k)βn(k)

. (3.15)

In seeking an expression for the joint likelihood of sequential states, we note

αn(i) p(xn+1 = j | xn = i)βn(j) p(yn+1 | xn+1 = j) = p(y, xn = i, xn+1 = j). (3.16)

Normalizing this equation by (3.14), we obtain

p(xn = i, xn+1 = j | y) = αn(i) p(xn+1 = j | xn = i)βn(j) p(yn+1 | xn+1 = j)
K∑
i=1

αn(k)βn(k)

. (3.17)

We note that αn(k) and βn(k) depend on (3.2) and (3.3) which require values for µ,

σ2 and A. It is assumed that these values are taken from the “current” estimate for

θ, or θ̂p. In the next section, these likelihood functions are used to compute θ̂p+1.

18



3.2 EM Algorithm

It would be computationally infeasible to determine the maximum likelihood estimate

(MLE) of θM directly from y by brute-force analysis of

θ̂ML = argmax
θM

ln f (y; θM) . (3.18)

However, if the hidden state sequence x were known, finding the MLE of θ would

be straight forward. Starting with initial parameter estimates, θ̂0, we can estimate

the probability of any state sequence x. We can then use these probability esti-

mates to improve parameter estimates θ̂1. The EM algorithm [16] is an iterative

algorithm which exploits this concept to converge upon parameter estimates which

provide at least a local maximum of the log-likelihood function of incomplete data.

In the following, we derive the equations necessary to implement the EM algorithm

to parameterize the HMM through selection of θ.

For the problem at hand, we consider the “incomplete data” to include {y} and the

“complete data” to include {x, y}. We represent the log-likelihood function of the

complete data with ln p (x, y; θ), where the likelihood function is parameterized by

the values θ. In the expectation step (E-step), we determine the expected value of

the log-likelihood function of the complete data

U
(
θ, θ̂p

)
= E

[
ln p (x, y; θ) | y; θ̂p

]
. (3.19)

Due to the iterative nature of the algorithm, we use θk to represent the estimated

parameters during the kth iteration. This distinguishes the free parameters θ which

are used to select estimates for the next iteration, θk+1, through the maximization
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step (M-step)

θ̂p+1 = argmax
θ

U
(
θ, θ̂p

)
. (3.20)

In this paper, we assume (3.19) to be convex over θ for all values of interest. This

significantly reduces the complexity of the M-Step by allowing many dimensions of θ

to be optimized independently. The MLE for each µi can be obtained by setting the

partial derivative of (3.19), with respect to µi, equal to zero and solving for µi. The

values σ2
i can be found similarly, although they depend on µi. The MLE for A can

be found through the method of Lagrange multipliers under the constraint (3.4). If

(3.19) is not convex, this algorithm will still converge on estimates providing at least

a local maximum. In the following, we first express (3.19) in terms of A, µ, and σ2.

Then, we derive estimates for the parameters.

By the definition of conditional probability, we can expand (3.19) using

U
(
θ, θ̂p

)
= UA

(
θ, θ̂p

)
+ UB

(
θ, θ̂p

)
, (3.21)

where

UA

(
θ, θ̂p

)
=E

[
ln p (y | x; θ) | y; θ̂p

]
(3.22)

UB

(
θ, θ̂p

)
=E

[
ln p (x; θ) | y; θ̂p

]
. (3.23)

Noting that each observation is independent given the “hidden” state,

UA

(
θ, θ̂p

)
=

N∑
n=1

E
[
ln p (yn | xn; θ) | y; θ̂p

]
=

N∑
n=1

M∑
i=1

[
ln p (yn | xn = i; θ) p

(
xn = i | y; θ̂p

)]
. (3.24)
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Using the normal distribution for the observations given the state, we have

UA

(
θ, θ̂p

)
=

M∑
i=1

N∑
n=1

[(
−1

2
ln
(
2πσ2

i

)
− (yn − µi)

2

2σ2
i

)
p
(
xn = i | y; θ̂p

)]
. (3.25)

In this equation, µi and σ
2
i can be determined from θ. However, the expression does

not depend on A.

Before expanding (3.23), we use the properties of a Markov process to show

ln p (x; θ) = ln p (x1; θ) +
N∑

n=2

ln p (xn | xn−1; θ) , (3.26)

which leads to

UB

(
θ, θ̂p

)
= E

[
ln p (x1; θ) | y; θ̂p

]
+

N∑
n=2

E
[
ln p (xn | xn−1; θ) | y; θ̂p

]
(3.27)

and

UB

(
θ, θ̂p

)
=

M∑
i=1

ln p (x1 = i; θ) p
(
x1 = i | y; θ̂p

)
+

N∑
n=2

M∑
i=1

M∑
j=1

[
ln p (xn = j | xn−1 = i; θ)

p
(
xn = j, xn−1 = i | y; θ̂p

)]
.

(3.28)
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Combining (3.21)(3.25)(3.28), we arrive at

U
(
θ, θ̂p

)
=

M∑
i=1

N∑
n=1

[(
−1

2
ln
(
2πσ2

i

)
− (yn − µi)

2

2σ2
i

)
p
(
xn = i | y; θ̂p

)]

+
N∑

n=2

M∑
i=1

M∑
j=1

ln (Ai,j) p
(
xn = j, xn−1 = i | y; θ̂p

)
+

M∑
i=1

ln p (x1 = i; θ) p
(
x1 = i | y; θ̂p

) (3.29)

At this point we have an expression for (3.19) which depends on A, µ, σ2, the initial

conditions p(x1 = i), and the functions p
(
xn = i | y; θ̂p

)
and p

(
xn = j, xn−1 = i | y; θ̂p

)
.

It should be noted, however, that these function depend on only past estimates θ̂p,

and can be considered constant for the M-Step (3.20). We ignore the initial distri-

bution on the state sequence p(x1 = i) by assuming its contribution to the change in

U
(
θ, θ̂p

)
with respect to any element of θ is insignificant.

In seeking the MLE for µ, we differentiate (3.29) with respect to µi ∀ i ∈ {1, 2, . . . ,M}

and set the result equal to zero. Solving for µi we arrive at

µ̂p+1
i =

N∑
n=1

yn p
(
xn = i | y; θ̂p

)
N∑

n=1

p
(
xn = i | y; θ̂p

) . (3.30)

Similarly, we differentiate (3.29) with respect to σ2
i ∀ i ∈ {1, 2, . . . ,M} and set the

result equal to zero. Solving for σ2
i we arrive at

σ̂2
i

p+1
=

N∑
n=1

(
yn − µ̂i

p+1
)2

p
(
xn = i | y; θ̂p

)
N∑

n=1

p
(
xn = i | y; θ̂p

) . (3.31)
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In estimating A we are interested in maximizing (3.29) subject to the constraints (3.4).

For solving this constrained optimization problem, we use the method of Lagrange

multipliers. We define the objective function 1

f(A) =
N∑

n=2

M∑
i=1

M∑
j=1

ln (Ai,j) p
(
xn = j, xn−1 = i | y; θ̂p

)
. (3.32)

We define M constraint functions

hi(A) = 1−
M∑
j=1

Ai,j (3.33)

for i = 1, 2, . . . ,M . The resulting Lagrangian function is

L(A,λ) = f(A)−
M∑
i=1

λihi(A), (3.34)

where λi represents the i
th element of theM -vector λ of Lagrange multipliers. Taking

partial derivatives of the Lagrangian function, with respect to each element of A and

λ, and setting the results equal to zero provides M2 +M equations. In solving this

system of equations, all elements of A and λ will be determined. For each element of

A,

∂L(A,λ)

∂Ai,j

=
N∑

n=2

p
(
xn = j, xn−1 = i | y; θ̂p

)
Ai,j

− λi. (3.35)

Setting this equation equal to zero, solving for Ai,j, and finding λi which satisfy the

constraints, we arrive at

Âp+1
i,j =

N∑
n=2

p
(
xn = j, xn−1 = i | y; θ̂p

)
M∑
j=1

N∑
n=2

p
(
xn = j, xn−1 = i | y; θ̂p

) . (3.36)

1The objective function used for the method of Lagrange multipliers includes only those terms
from (3.29) which depend on A. In subsequent steps, we are only interested in the partial derivative
of f(A) with respect to the elements of A. Therefore, this simplifies the expression without changing
the results.
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Equations (3.30), (3.31), and (3.36) provide rather intuitive expressions for their

parameter estimates.

3.3 Summary

We summarize the algorithm described in the previous sections in three steps: ini-

tialization, expectation, and maximization.

Initialization

The algorithm described in the previous sections require an initial estimate θ̂0M . In

applications where (3.19) is not convex over θ, results may vary significantly with

selection of the initial estimate θ̂0M . Methods for selecting these initial estimates are

contrasted in Chapter 4.

E-Step

(3.9) and (3.12) require α1(k) and βM(k) to be initialized at each iteration of the

algorithm. We set

α1(k) = p (y1 | x1 = m) (3.37)

βM(k) = 1 (3.38)

for all value k ∈ {1, . . . ,M}. After computing (3.9) and (3.12), the functions (3.14),

(3.15), and (3.17) are evaluated for all n = {1, . . . , N} and m = {1, . . . ,M}.

M-Step

New estimates θ̂p+1
M are computed by (3.30), (3.31), and (3.36). Return to E-Step.

Conclusion

The E-Step and M-Step are repeated until a specific stopping criterion is reached.
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The process could continue until the change in the score function (3.14) or change in

parameter estimates after each iteration becomes negligible.
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Chapter 4

Model Selection

How many states are necessary: a seemingly innocuous question of how to select M .

In chapter 3, algorithms were presented to improve estimates of model parameters.

However, selection ofM was not addressed. In many publications, model size selection

is paid little attention [6]. Sometimes it is selected to optimize performance related

to a particular problem[10]. In this chapter we focus on incorporating model size as

a parameter itself, determined by the data.

Using (3.14) we can compute p (y; θ) as a score function quantifying the overall fit

of model parameters θ to y. Employing slightly different notation for the parameter

estimates, we define the ML estimate

θ̂ML(y,M) = argmax
θM

ln p(y | θM). (4.1)

Using these estimates, we define

g(y,M) = ln p
(
y | θ̂ML(y,M)

)
. (4.2)
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This function is monotonically non-decreasing with M . Stated another way, it is

always possible to add a state without decreasing the score function such that

ln p(y | θM+1) ≥ ln p(y | θM). (4.3)

This reasoning would suggest that the largest model possible can best model an obser-

vation sequence. However, our interest is in modeling an underlying random process

as opposed to a specific outcome. If new data are introduced, re-parameterizing the

model on the extended observation sequence may significantly affect the parameter

estimates. In general, the expected change in θ̂, due to the inclusion of new data,

increases with M in what is often referred to as “overfitting” the data. This suggests

an optimization problem which takes into account both the score function (3.14) and

model size (or model complexity). To establish a cost function, we require a penalty

term.

4.1 Bayesian Information Criterion

One classic approximation applicable to selection of model size is

ln p (y,M) ≈ ln p
(
y | θ̂MAP(y,M)

)
− d

2
ln(N). (4.4)

Requiring optimization of this expression over M is referred to as the Bayesian In-

formation Criterion (BIC) [19]. Here N represents the number of observations in y,

and d is the model description length. In our case d = M2 +M , where the model

parameter A can be represented with M(M − 1) elements under constraint (3.4),

and the parameters µ and σ2 together require 2M elements. In this way, θM can be

represented as a vector of length d.
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Note that (4.4) assumes knowledge of maximum a posteriori estimation of the param-

eters θ̂MAP(y,M). It also requires consistency with increasing N . When considering

long IBI sequences (50,000), parameter consistency with increasing N is a reason-

able assumption. However, the proposed algorithm for parameter selection does not

guarantee ML estimates of the parameters, and no prior distribution on θ̂ has been

proposed. In the next section we contrast score functions while increasing model size.

For some initial parameter selection methods, the BIC appears applicable.

4.2 Initial Parameter Selection

In chapter 3, an algorithm was presented to improve estimates of model parameters.

The algorithm seeks to select parameters θ̂0M which optimize the score function (3.14).

However, this algorithm may provide suboptimal estimates when the score function

is not convex. In our problem convexity does not hold, making it difficult to quantify

the benefit of increasing model order M .

One difficulty in optimizing nonconvex functions is distinguishing global from local

maximums. However, in our case (4.3) can be used to identify parameter selections

which do not represent a global maximum. While a global maximum cannot be

confirmed, if a set of parameters θM−1 exist such that ln p(y | θM) ≤ ln p(y | θM−1),

θM does not represent a ML estimate.

Calculating the score function over long sequences of observations, even for models

with few states, becomes computationally expensive. For this reason, we consider

nonlinear search algorithms to be inaccessible. Instead, we focus on initial parameter

selections submitted to the EM algorithm. In the following we discuss three methods

for initial parameter selection, contrasting performance.
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4.2.1 Method 1: Basic

As a first pass at initial parameter selection, µ was selected such that its elements

were evenly spaced between the maximum and minimum values of y. The values σ̂2

were selected such that

σ2
i =

(
µ2 − µ1

8

)2

(4.5)

for all values i ∈ {1, . . . ,M}. Similarly, Ai,j = 1/M for all i, j ∈ {1, . . . ,M}. Con-

trasting initial results from this method demonstrated the susceptibility of the EM

algorithm to converge on local maximum. Scoring each set of parameters with increas-

ing M , through (4.2), revealed several local maximums for all sequences of training

data y used.

4.2.2 Method 2: Increase

In an effort to reliably increase model score with model size, a method was devised in

which states would be added to the models incrementally. This method starts with

parameterizing a single state model. Increasing model size then included selection of

parameters µM+1 and σ2
M+1 and expanding the transition matrix A. Qualitatively,

this approach seeks to identify µM+1 which is most likely to increase (3.14). Adding

nontrivial values to A can decrease (3.14). However, if the initial value A suggests

that it is unlikely to enter the new state, the EM algorithm will largely ignore the

new state parameters. Therefore, the values σ2
M+1 and updates to A must be selected

to minimize a reduction in (3.14), without driving the likelihood of entering the new

state to zero.
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Consider the stationary distribution of one IBI, y0, for the current model

p (y0; θM) =
M∑

m=1

p (x0 = m) p (y0 | x0 = m) , (4.6)

where p (x0 = m) represents the stationary distribution of the states. This stationary

distribution on the states can be determined from the eigenvector of A with the

corresponding eigenvalue 1. Seeking to minimize the difference between the stationary

distribution and the distribution of the data, fY (y), we select

µM+1 = max
y0

fY (y0)− p (y0; θM) . (4.7)

The value σ2
M+1 = (3/128)2 was selected as the original ECG recording was sampled

at 128 Hz. The transition matrix A was updated such that

p (xn+1 = m | xn = i) ≈ 1× 10−4 for i = 1, . . . ,M + 1 (4.8)

p (xn+1 = i | xn = m) ≈ 1

M + 1
for i = 1, . . . ,M. (4.9)

In this case, the approximations are due to the necessary normalization of A under

constraint (3.4) For some IBI sequences, this approach significantly improved the score

function (4.2). However, this method would enter conditions in which it would assign

sequential states similar means. While designed to match the stationary distribution

of the model to the distribution of the observations, it proved counterproductive as

demonstrated in Fig. 4.3.

4.2.3 Method 3: Distribute

In method 2, many states would be assigned to a small range of IBI. While this

increased the overall score function in some cases, the resulting stationary distribution
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did not match the distribution of the data. In method 1, the spacing of the initial

means changes significantly with increasing model size. For many observed sequences,

the distribution is peaked. It is critical that the trained model place states with target

means near the the peaks of the distribution. By uniformly distributing the state

means, Method 1 did not provide consistency with increasing model size.

As a third method for assigning initial parameter values, we distribute the means

according to the distribution of the data. Using FY (y0) to denote the cumulative

distribution of the data, we select values for µ such that

FY (µi) =
i

M + 1
(4.10)

for i = 1, . . . ,M . Variance parameters were selected such that

σ2
i = (max (µi − µi−1, µi+1 − µi))

2 . (4.11)

The transition matrix was initialized to a constant A = 1
M
.

This method consistently resulted in models yielding higher scores compared with

methods 1 and 2. Additionally, this method significantly reduced the variance be-

tween the stationary distribution of the resulting models represented the distribution

of the observed data when contrasted with the resulting models using Method 2. In

the few cases method 2 yielded models which exceeded the score of the model trained

using method 3, the stationary distribution of the method 2 model varied significantly

from the distribution of the data. These results are demonstrated in Fig. 4.1 con-

trasting results for two separate individuals. Resulting parameters for model size 24

are shown for the two individuals in Fig. 4.2 and Fig. 4.3
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4.3 Results

Using training data obtained from the “Normal Sinus Rhythm RR Interval Database”

with PhysioBank [13], we sought to find the optimal model size satisfying (4.4). For

each individual, we first removed intervals less than 0.2s which were assumed double-

counted beats. We also segmented the data at missed beats, where the interval

duration exceeded the moving average by a factor of 1.6. For each segment (3.15),

(3.17) and (3.14) were computed independently. However, for (3.30), (3.31), and

(3.36), the summations were performed over all sets. After removing ectopic beats,

the average number of IBIs used for training was 53,667 with a standard deviation of

5,445 intervals. Training each model, for each size, 400 iterations of the EM algorithm

were computed to establish θ̂M for each sequence.

We estimated model parameters for each individual using three methods proposed in

this chapter. If the identified model parameters represented the ML estimates,(4.3)

would hold true for each neighboring model size. In application, many models did

not follow this inequality, demonstrating ML estimates were not identified. Focusing

on model sizes 19-25, we contrasted the parameters selected using each of the three

initialization methods over the entire sample population of 54 sequences. For each

initialization method, it was possible to identify up to 324 degenerate models which

did not satisfy (4.3). The percentage of degenerate models identified in this range

are listed as a percentage by initialization method in Table 4.1. For each model size

and each individual, we also determined the initialization method which identified

parameters yielding the highest score using (3.14). Out of the 378 models trained,

the percentage of highest-scoring models determined by each initialization method

are also listed in Table 4.1. Note that this column sums to 1 as the initialization

methods are only contrasted with each other. It is possible that no method identified

the ML estimate.
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Table 4.1: Model Performance by Initialization Method
Degenerate Models with
Models Highest Score

Method 1: Basic 25.0% 0.0%
Method 2: Increase 35.5% 13.8%
Method 3: Distribute 3.1% 86.2%

In general, the g(y,M) increased monotonically with M , using method 3, suggesting

the BIC is meaningful. Using the BIC to determine optimal model size, a histogram

demonstrating the relative frequency of model size is shown in Fig. 4.4. Overall, the

sample mean for all model sizes is 25.64, but Fig. 4.4 demonstrates an appreciable

difference in model complexity from one individual to another.

We provided a method for quantitatively measuring the fitness of the model to the

observed sequence Fig. 4.2(c) and Fig. 4.3(c) by contrasting the distribution of the

data with the stationary distribution of the model. As these models are capable

of generating IBI sequences, we can also contrast simulated data with the original

training data. We trained 26-state models on full 24-hour recordings to capture one

cycle of the circadian rhythm. Using these models, we simulated one IBI sequence for

every trained model. In Fig. 4.5, we show IBI sequences from the training data and

the resulting simulated sequence over different timescales. For comparison, we also

included simulated data generated by the IAGS model. However, the IAGS model

was parameterized using the values in Table 2.1. Parameters were not specifically

selected to match the training data.

Fig. 4.5 qualitatively demonstrates the ability of the model to capture variability

observed in the training data. The simulated data appears to both capture HRV and

preserve Homeostasis, as does the IAGS model. Unfortunately, many extremely low

IBI durations are encountered in the training data. These IBIs are physiologically

unlikely and suggests problems with the original data set. While the simulated data

suggests that the models capture these pathologies in the training data, it is likely
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that these features are characteristics of the data capture and processing methods

rather than an underlying physiological process.

As a quantitative comparison of the data, we estimate the autocorrelation function

and autocorrelation coefficients of IBI sequences over time. Estimates are shown

for individuals 30 and 19 in Fig.4.6 and Fig.4.7, respectively. Plots are shown for

training data, simulated data (parameters estimated from the training data), and

data generated using the IAGS model.

In estimating autocorrelation functions, IBI signals were divided into segments of 400

sample windows with a 50% overlap. The middle 200 samples were then time shifted

for τ ∈ [−100, . . . , 100] samples. Each point of the autocorrelation function was

determined by averaging the results over the 200 samples. Each column represents

one estimated autocorrelation function from one window. The x-axis demonstrates

change in the autocorrelation function over time. Note, the color scale is consistent

across (a), (c), and (e) in Fig. 4.6.

The estimated autocorrelation functions of the training data for individuals 30 and

19, shown in Fig. 4.6 (a) and Fig. 4.7 (a), respectively, both demonstrates a vertical

striping pattern. More specifically, a wide red stripe toward the center of the auto-

correlation plots demonstrate a long period of highly correlated IBIs in the middle of

the training data. This likely corresponds to the sleep cycle of the individual. This

dramatic, yet sustained, change in correlation is not exhibited by the simulated data.

Autocorrelation coefficients were estimated using the same windowing method used

for estimating the autocorrelation functions. The mean and variance were assumed

consistent across the entire 400 sample window, although they were allowed to change

between windows. Average correlation coefficients across all time windows are shown

in Fig. 4.8 and Fig. 4.9, for individuals 30 and 19 respectively.
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Contrasting the autocorrelation coefficients in both Fig. 4.6 and Fig. 4.7, all plots

exhibit similar variability over time. Again, the estimates in the 30,000 - 60,000

interval range for the training data exhibit a slightly different pattern than those ob-

served in the simulated data. In this case, a patterns of negative coefficients emerges.

Contrasting the average autocorrelation coefficients in Fig. 4.8 and Fig. 4.9, the

simulated data using HMM shows an increased autocorrelation for 5 < |τ | < 65

compared with the original data sequence. Conversely, the IAGS model exhibits a

decreased correlation over these time shifts τ .

In medical applications, the power spectral density (PSD) of IBI sequences is often

estimated. Variability over different frequency bands has been linked to specific phys-

iological functions and influences [20]. We contrast the estimated PSD of the training

data with simulated sequences in Fig. 4.10 and Fig. 4.11 for individuals 30 and 19,

respectively.

Computing the DFT of a sequence of IBI will estimate signal energy at frequencies

of biological time. However, many influences of HRV such as 0.25 Hz respiratory

influences and the so-called 10s rhythm are not expressed in biological time. One

method from converting the DFT of an IBI sequence to Hz is interpret the sampling

rate as the average IBI duration [21]. In this way, the normalized frequencies at which

the DFT is computed can be divided by the average IBI duration. When estimating

the PSD of sequences of IBI over long time periods, the average IBI duration is likely

to change. To estimate the PSD in Hz, we divided each signal into non-overlapping

segments of 2048 samples. Following Barlett’s method, we computed the periodogram

over each window. We also computed the average IBI duration over each window.

This allowed scaling of the frequency range of each periodogram in Hz. An estimated

PSD in Hz was obtained by averaging these values using a simple binning method

with 1024 frequencies from 0 to 0.5 Hz.
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The estimated PSD of the simulated data for individual 30 appears to capture the

PSD of the training data as demonstrated by Fig. 4.10. However, for individual 19,

the PSD estimates are very different for the training data and simulated data. The

training data exhibits strong respiratory influences at approximately 0.25 Hz. Also,

there is a significant change in PSD at approximately 0.1 Hz. While both of these

features are relatively common across subjects, these models simply do not capture

these features.

4.4 Discussion

In this chapter we presented initialization methods and a model sizing criterion which

can be used to select a model for a particular sequence of IBIs. Model fitness was

demonstrated in Fig. 4.1(b) and Fig. 4.1(d) through similarities in the distribution

of the training data and the stationary distribution of the respective models. Quali-

tatively, these models are capable of generating IBI sequences that exhibit HRV while

preserving homeostasis as demonstrated by Fig. 4.5. These models also demonstrate

the 1/f power spectrum which is characteristic of IBI sequences. These properties,

which were used to validate the IAGS model initially, are satisfied.

We have also exposed several features of the training data which were not captured

in the model. In particular, the 10s rhythm and 0.25 Hz effects due to respiration are

not present in the simulated data as shown in Fig. 4.11. Both the HMMs and IAGS

models have no reference to absolute time; all state transitions occur in biological

time. In Fig. 4.10, the models demonstrate some capacity to fit the contour of the

PSD of the data sequence. However, when a strong 0.25 Hz component is present in

the training data, overall performance of the model suffers as demonstrated in Fig.

4.11. Performance may be improved by modeling 0.25 Hz influences separately.
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In estimating model parameters, Fig. 4.8 and Fig. 4.9 demonstrate the inability to

accurately model correlations over 5 < |τ | < 65. Note that neither the simulated data

from the HMMs nor the IAGS model appear to represent the correlation coefficients

faithfully. Simulated data generally demonstrated increased variability at frequencies

below 0.03 Hz. This is evident in Fig.4.10 and Fig. 4.11. Plots of the autocorrelation

function in Fig.4.6 (c) and Fig. 4.7 (c) do not demonstrate long-range correlations

exhibited by the training data. However, periodic state changes due to, for example,

the circadian rhythm may require a deterministic component.
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Figure 4.1: Performance of initial parameter selection methods. (a) and (c) show
the resulting score function 4.2 for individuals 38 and 33 respectively. Scores are
computed for many model sizes using the three proposed initialization techniques.
(b) and (d) show the stationary distributions for the 24 state models estimated us-
ing each of the three initialization methods for individuals 38 and 33 respectively.
Stationary distributions are contrasted with the distribution of the data. For each
model, the mean squared error was estimated contrasting the stationary distribution
from the parameters and the distribution of the data. These estimates are shown
in the legends of (b) and (d). The mean squared error was consistently larger for
initialization method 2. For most individuals, and most model sizes, initialization
method 3 provided the highest score g(y,M). However, (c) demonstrates that for
some model sizes, for individual 38, the score for the models resulting from method
2 exceed those of the others.
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Figure 4.2: Effects of initial parameter selection methods on a 24-state model for
individual 38. Posterior distributions for IBI duration given state information are
shown for method 2 and method 3 in (a) and (c) respectively. Transition matrices
are shown for method 2 and method 3 in (b) and (d) respectively.
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Figure 4.3: Effects of initial parameter selection methods on a 24-state model for
individual 33. Posterior distributions for IBI duration given state information are
shown for method 2 and method 3 in (a) and (c) respectively. Transition matrices
are shown for method 2 and method 3 in (b) and (d) respectively.
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Figure 4.5: IBI sequences over different time scales based on training data from in-
dividual 30. Three sequences are plotted consecutively: the training data, simulated
data generated using model parameters estimated from the training data, and simu-
lated data from the IAGS model using parameters found in Table 2.1.
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Figure 4.6: Estimated autocorrelation functions and autocorrelation coefficients for
sequences of IBIs. Estimated autocorrelation functions for training data, simulated
data and data generated using the IAGS model are shown in (a), (c), and (e) re-
spectively. In each plots, each column represents an autocorrelation function, where
τ represents the time shift. The x-axis demonstrates the change in the autocorre-
lation function over time. Similarly, (b), (d), and (f) show the change in estimated
autocorrelation coefficients over time.
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Figure 4.7: Autocorrelation function and autocorrelation coefficients of IBI sequences
from individual 19
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Figure 4.8: Average correlation coefficients for individual 30.
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Figure 4.9: Average correlation coefficients for individual 19.
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Figure 4.10: Estimated PSD of IBI sequences. Estimates were obtained by computing
length 2048 periodograms. Estimates were obtained in Hz by scaling the frequency
range by the average IBI duration for each periodogram. Dotted lines indicate 0.1 Hz
and 0.25 Hz. Average heart rates are shown in the legend for each sequence.
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Figure 4.11: Power spectral density of IBI sequences from individual 19

45



Chapter 5

Biometric Capability

As a use-case for modeling HRV, we consider confirming the identity of an individual

based on a brief observation sequence. We focus strictly on the confirmation or

rejection of a presented identity. In this case, there are two types of errors: failing to

authenticate the correct individual and incorrectly authenticating an impostor. The

likelihood of each of these outcomes is commonly abbreviated false non-match rate

(FNMR) and false match rate (FMR) respectively. We first present two criterion for

matching a model to a sequence in Sec. 5.1. Results of applying these criteria are

presented in Sec. 5.2.

5.1 Recognition Algorithm

We use two separate methods for matching an identity to a testing sequence. In the

first case, individual scores are contrasted against a single, generic, model H0. In

our case, the H0 model was trained using approximately 50,000 IBIs each, from 52

individuals. We denote the score of a testing sequence y using (3.14) and the trained

model H0 as

sH0 = ln p (y; θH0) . (5.1)
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We similarly score the testing sequence using the asserted identify, l, such that

sl = ln p (y; θl) . (5.2)

We then choose to match the lth model, θl to the observation sequence y if the

inequality

sl − sH0 > T (5.3)

is true for a predetermined threshold T . This tunable threshold can be used to balance

FMR with FNMR.

For the second test, we assume a library of L models representing unique individuals

θ = {θ1, . . . , θL}, where θl represents the model for the lth individual. Over the entire

library, we define the sample mean and variance as

µs =
1

L

L∑
l=1

sl (5.4)

σ2
s =

1

L− 1

L∑
l=1

(sl − µs)
2 . (5.5)

We then choose to match the lth model, θl to the observation sequence y if the

inequality

sl − µs

σs
> γ (5.6)

is satisfied, which is commonly referred to as a χ2 test.

5.2 Results

Using data obtained from the “Normal Sinus Rhythm RR Interval Database” with

PhysioBank [13], we parameterized a 26-state model for each individual. For each
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Figure 5.1: Measured equal error rates as a function of test sequence duration for both
decision criteria. The χ2 test clearly out-performs the H0 test for testing segments
of all sizes. In the legend, * indicate results where testing data was drawn from
the training data, or intra-session testing. Legend entries without a * indicate that
models were not trained on the testing data, or cross-session testing.

individual, approximately 24 hours of IBI data were recorded. The first half (approx-

imately 12 hours) was used for training. Testing sequences were then drawn from

the 24 hour data. A set of libraries of testing data were established, each containing

sequences of different length. For each library, 30 equally-spaced, equal-duration, test-

ing segments of IBI data were identified for each individual. The lengths of training

sequences identified ranged from 10 - 1000 IBIs.

Each testing sequence was scored by each model and an identity confirmation decision

was made according to (5.3) and (5.6). For each decision criteria, the threshold

yielding an equal error rate was computed. The resulting equal error rates are shown

in Fig. 5.1 and plotted for various lengths of testing data.

Focusing on the χ2 decision metric, Fig. 5.2 shows the error rate performances for

FMR and FNMR as a function of the threshold γ. Testing data was reliably matched
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Figure 5.2: Measured error rates as a function of threshold γ. In testing, models could
be matched to segments of 300 IBIs with an equal error rate below 0.37. However,
for FMR below 0.01, FNMR exceeds 0.93. In the legend, * indicate results where
testing data was drawn from the training data. Legend entries without a * indicate
that models were not trained on the testing data.

to its corresponding model with an equal error rate of roughly 0.37. Enforcing a FMR

below 0.01, the FNMR increases to roughly 0.93.

5.3 Discussion

The results in this chapter do not present a compelling argument for the use of HRV

as a biometric. While some individuality was captured, the reliability is far below

the minimum requirements for even a screening application. The data used in this

application lacked many desirable features. It is possible that performance would

improve with new data.
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In the previous chapter, abnormally brief IBI sequences were identified in the training

data (see Fig. 4.5). While these beats were likely an artifact of the data acquisition or

processing methods, they were captured by the models. It is unclear whether these

features added to the individuality of the models. However, their presence likely

affected performance.

The data from PhysioBank did not contain any time reference. For this reason,

we trained models on long sequences (12 hours) of IBI data. Using the Markovian

assumption we considered each individual would enter, and return to, specific states

throughout a day. Over long time scales, we could train over a larger sampling of

the possible states to which an individual is likely to return. In this way, the models

would become more robust to new testing data. However, HRV is highly susceptible

to external influence. Physical activity, positioning, and stress can all greatly affect

both mean IBI duration and variability. Without information as to these external

influences, we could not account for them while training models. It is likely that

our models captured environmental influences as much as individual physiological

differences between training sequences.

In application of an identity confirmation system, there is likely consistency of envi-

ronmental influence. Not only would the acquisition of 12-hour recordings of IBI data

be impractical, it’s utility is questionable for such application. A future test could be

designed where each subject is conditioned by similar environmental influence during

the acquisition of both testing and training data.
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Chapter 6

Conclusion

HRV is susceptible to many influences. With the relatively low frequency of observa-

tions, IBI sequences represent a challenging signal to model. In fact, few beat-to-beat

models are presented in the literature.

In this thesis, we built upon physiologically justified models to demonstrate the ap-

plicability of HMMs for modeling HRV. Using this form, we were able to represent

specific observation sequences, selecting parameters on an individualistic basis. These

models were then able to generate data statistically similar to the original data.

Additionally, we explored methods for initial parameter selection and model complex-

ity. One method reliably performed better than the others across all individuals and

model sizes. However, it did not identify ML estimates of the parameters without

exception. One area for additional research is optimization techniques for ensuring

ML estimates of the parameters.

The models presented are applicable for both analyzing and generating IBI sequences.

We contrasted simulated IBI sequences with their original training sequences to mea-

sure model performance. In doing so, we identified several features of the training

sequences which were not reproduced in the simulated data. Most notably, the 0.25

Hz respiratory influences and 10s rhythm were not present in the simulated data.
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We evaluated the utility of HMM trained on HRV for use as a biometric. Admittedly,

this is a rather lofty goal given the nature of HRV. However, these models could easily

be applied in other test scenarios. These models could be applied to other detection

and inference problems where HRV signals are available.

The data used in this study lacked many desirable features. The sampling rate for

the original ECG was only 128 Hz. Higher resolution of IBI data might improve

individuality in the models. Additionally, no time reference was provided with the

data. It would be interesting to contrast results training and testing on similar phases

of the sleep cycle. Also, it would be interesting to note consistency in HRV over longer

periods between training and testing.
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