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Many new promising X-ray-based biomedical imaging technologies have emerged over the

last two decades. Five different novel X-ray based imaging technologies are discussed in this

dissertation: differential phase-contrast tomography (DPCT), grating-based phase-contrast

tomography (GB-PCT), spectral-CT (K-edge imaging), cone-beam computed tomography

(CBCT), and in-line X-ray phase contrast (XPC) tomosynthesis. For each imaging modal-

ity, one or more specific problems prevent them being effectively or efficiently employed

in clinical applications have been discussed. Firstly, to mitigatethe long data-acquisition

times and large radiation doses associated with use of analytic reconstruction methods in

DPCT, we analyze the numerical and statistical properties of two classes of discrete imag-

ing models that form the basis for iterative image reconstruction. Secondly, to improve

image quality in grating-based phase-contrast tomography, we incorporate 2nd order statis-

tical properties of the object property sinograms, including correlations between them, into

the formulation of an advanced multi-channel (MC) image reconstruction algorithm, which
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reconstructs three object properties simultaneously. We developed an advanced algorithm

based on the proximal point algorithm and the augmented Lagrangian method to rapidly

solve the MC reconstruction problem. Thirdly, to mitigate image artifacts that arise from

reduced-view and/or noisy decomposed sinogram data in K-edge imaging, we exploited the

inherent sparseness of typical K-edge objects and incorporated the statistical properties of

the decomposed sinograms to formulate two penalized weighted least square problems with

a total variation (TV) penalty and a weighted sum of a TV penalty and an ℓ1-norm penalty

with a wavelet sparsifying transform. We employed a fast iterative shrinkage/thresholding

algorithm (FISTA) and splitting-based FISTA algorithm to solve these two PWLS problems.

Fourthly, to enable advanced iterative algorithms to obtain better diagnostic images and ac-

curate patient positioning information in image-guided radiation therapy for CBCT in a

few minutes, two accelerated variants of the FISTA for PLS-based image reconstruction are

proposed. The algorithm acceleration is obtained by replacing the original gradient-descent

step by a sub-problem that is solved by use of the ordered subset concept (OS-SART). In

addition, we also present efficient numerical implementations of the proposed algorithms that

exploit the massive data parallelism of multiple graphics processing units (GPUs). Finally,

we employed our developed accelerated version of FISTA for dealing with the incomplete

(and often noisy) data inherent to in-line XPC tomosynthesis which combines the concepts

of tomosynthesis and in-line XPC imaging to utilize the advantages of both for biological

imaging applications. We also investigate the depth resolution properties of XPC tomosyn-

thesis and demonstrate that the z-resolution properties of XPC tomosynthesis is superior to

that of conventional absorption-based tomosynthesis. To investigate all these proposed novel

strategies and new algorithms in these different imaging modalities, we conducted computer

simulation studies and real experimental data studies. The proposed reconstruction methods

will facilitate the clinical or preclinical translation of these emerging imaging methods.
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Chapter 1

Introduction

Many new promising X-ray-based imaging technologies are emerging over the last two

decades, including phase-contrast imaging technologies, spectral CT (K-edge imaging), cone-

beam computed tomography for diagnosis and other emerging X-ray technologies [8,9,188].

However, one or more specific problems prevent them being effectively or efficiently employed

in clinical applications. Five different novel X-ray based imaging technoloiges are discussed

in this dissertation, including differential phase-contrast tomography (DPCT), grating-based

phase-contrast tomography (GB-PCT), spectral-CT (K-edge imaging), cone-beam computed

tomography (CBCT) and in-line X-ray phase contrast (XPC) tomosynthesis. The goal and

purposes of this dissertation is to introduce some new approaches and strategies to enable

them to thoroughly penetrated and even directly employed for clinical applications. we will

briefly review these imaging modalities and their specific problems in the following.

1.1 Background and Motivation

1.1.1 Differential phase-contrast imaging

Differential phase-contrast tomography (DPCT) employing hard X-rays [24,107,113,114,169]

refers to a class of imaging method for reconstructing the X-ray refractive index distribution

of objects from knowledge of differential projection data. At hard X-ray energies, variations

in the real component of the refractive index distribution of a light- or medium-density mate-

rial are generally several orders of magnitude larger than are the variations in the imaginary
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component (i.e., the X-ray absorption). Consequently, DPCT may permit the visualization

and quantitation of objects that present very low or no X-ray absorption contrast. In recent

years, there have also been advancements [49,134] in implementing the method on the bench

top by use of tube-based X-ray sources. This is particular important in order for DPCT to

find widespread use in biomedical and nondestructive imaging applications.

The tomographic projection data in DPCT, from which an estimate of the refractive index

distribution is reconstructed, correspond to one-dimensional (1D) derivatives with respect to

the detector row coordinate of the two-dimensional (2D) Radon transform of the refractive

index distribution. These data can be interpreted as the angles in a plane that is perpendic-

ular to the axis of tomographic scanning by which the probing X-ray beams are deflected by

the object due to refraction. Several methods are available for implementing DPCT by use of

synchrotron- or tube-based X-ray sources. Such methods include those based on diffractive

optics [34,133] or interferometry [112]. When DPCT is implemented with optical wavefields,

which has been referred to as beam-deflection tomography [51], techniques such as moire

deflectometry [154] have been employed for measuring the beam-deflection data.

It has been demonstrated that image reconstruction in DPCT can be achieved by use of

modified filtered backprojection (FBP) algorithms [51,78,186]. An important observation by

Faris and Byer [51] was that the 1D differentiation of the projection data is prescribed by the

classic FBP algorithm. Accordingly, instead of integrating the differential projection data

explicitly and then applying the classic FBP algorithm for reconstruction, they proposed

a deflection filtered backprojection DFBP algorithm that acts directly on the differential

projection data. In order to avoid image artifacts when employing this algorithm and other

analytic reconstruction algorithms, tomographic measurements must be typically be acquired

at a large number of view angles. This is highly undesirable because it can result in long

data-acquisition times, especially in bench top applications where the X-ray tube power is

limited, and also may damage the sample due to the large radiation exposure. Iterative

image reconstruction algorithms have been widely employed in mature tomographic imaging

modalities for mitigating data-incompleteness and noise. However, there is a scarcity of

studies of iterative image reconstruction in DPCT [89,134] and there remains an important

need to develop robust iterative reconstruction methods for this modality.
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1.1.2 Grating-based phase-contrast imaging

Grating-based X-ray phase-contrast (GB-XPC) imaging and tomography [43, 109, 110, 112,

133, 169] is one type of differential phase-contrast imaging. GB-XPC imaging can produce

volumetric images that depict three different object properties: X-ray absorption, scatter-

ing, and refractive index. Medical imaging applications of GB-XPCT are limited by long

data-acquisition times and relatively high radiation doses. A natural way to mitigate these

problems is to reduce exposure times and/or the number of tomographic views at which

data are acquired. From such data, statistically-principled algorithms can be employed for

image reconstruction. Several iterative image reconstruction algorithms for GB-XPCT have

been proposed [90, 120, 121, 177]. However, to the best of our knowledge, none of the meth-

ods investigated to date take full advantage of the second order statistical properties of the

sinogram data corresponding to the three object properties.

1.1.3 Spectral CT (K-edge imaging)

The development of spectral X-ray computed tomography (CT) using binned photon-counting

detectors has received great attention in recent years and is prompting a paradigm shift in

X-ray CT imaging. These advancements are likely to benefit numerous preclinical and clin-

ical imaging applications. For example, K-edge CT has been investigated as a modality to

image contrast agents such as iodine [2, 74], gadolinium [59], bismuth [127], and gold [38].

Ytterbium was recently discussed as a contrast agent for conventional CT [98] in general and

K-edge imaging [128].

The task of image reconstruction in spectral CT can be implemented in a two-stage pro-

cessing scheme. In the first step, estimates of material-decomposed sinograms are obtained

from the measured energy-resolved photon counts. In the second step, material images are

reconstructed from knowledge of the material sinogram estimates. Statistically-principled

reconstruction algorithms have been proposed [55,144,146,158] that seek to minimize a pe-

nalized weighted least squares (PWLS) cost function. The weighting matrix employed in

the data-fidelity term, which corresponds to the inverse covariance of the computed material

sinograms, can be estimated in different ways [53, 139, 182].
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While it holds great potential for important preclinical and clinical applications, selective

imaging of K-edge materials in spectral CT faces challenges that currently limit its applicabil-

ity. Implementations of K-edge CT employ photon counting detectors to detect the energies

of individual photons. To avoid pulse-pileup in the detector, photon fluxes must be limited,

which can result in long data-acquisition times. One way to mitigate long data-acquisition

times is to develop image reconstruction algorithms that can produce useful images from

few-view and/or noisy decomposed sinogram data. While K-edge images are often sparse,

the ability of sparsity-based regularization strategies coupled with knowledge of the object-

specific noise properties of the decomposed K-edge sinogram data to improve reconstructed

image quality in K-edge CT remains largely unexplored.

1.1.4 Cone-beam computed tomography

X-ray cone-beam computed tomography (CBCT) employing a circular scanning geometry

is a widely employed three-dimensional (3D) imaging modality with numerous applications

that include image-guided radiation therapy (IGRT), micro-computed tomography (CT),

and dental imaging, to name only a few. There exist a vast literature related to the develop-

ment and application of CBCT image reconstruction methods, and we refer readers to the

recent literature for representative examples [19, 36, 72, 82, 85, 123, 130, 138]. The potential

advantages of iterative algorithms over analytical algorithms are well-known, and include the

flexibility to incorporate physical factors in the imaging model and effectively mitigate data

incompleteness and noise. The development of iterative image reconstruction algorithms that

implement non-smooth regularizers, including the TV penalty and other sparsity-promoting

forms, remains an active and important research area [149,151]. Even with hardware accel-

eration, however, the overwhelming majority of the available 3D iterative algorithms that

implement non-smooth regularizers remain computationally burdensome and have not been

translated for routine use in time-sensitive applications such as IRGT.

The fast iterative shrinkage thresholding algorithm (FISTA) [14, 15] is a state-of-the-art

optimization algorithm that possesses several characteristics that are well-suited for iterative

CBCT image reconstruction. However, it remains largely unexplored for this important

application. Because it can be employed to minimize a cost function that is specified by

the sum of a smooth and convex data fidelity term and a convex but possibly non-smooth
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penalty, the FISTA can be employed for PLS reconstruction problems in which a TV penalty

or other sparsity promoting forms are employed. The FISTA does not require approximate

computation of the discretized TV function or the gradient discretized TV term, which most

previously proposed algorithms require. The FISTA can also readily incorporate positivity

or other bound constraints. Mathematically, it has been proven that the FISTA achieves a

second-order convergence rate. It can therefore potentially reduce the number of iterations

required to produce an image of a specified image quality as compared to first-order methods

such as the steepest decent method. However, because the FISTA employs a gradient-descent

step, which is known to limit convergence rates in conventional algorithms, there remains an

opportunity to modify it and obtain an accelerated second-order algorithm that will lead to

further reductions in image reconstruction times.

1.1.5 In-line phase-contrast tomosynthesis

X-ray phase-contrast (XPC) imaging is a promising technique for visualizing soft tissue

features in many biological applications [95,113,187]. There are several XPC imaging meth-

ods including crystal-based [162] and grating-based [169] varieties. In-line (or propagation-

based) XPC is the simplest form to implement, requiring only a small X-ray focal spot, a

high resolution detector and a sufficient propagation distance between the object and detec-

tor [171]. In practice, these requirements lead to longer acquisition times than conventional

absorption-based radiography. These long acquisition times can be prohibitive for extending

XPC computerized tomography (XPC CT) to pre-clinical and clinical scenarios. To circum-

vent this, tomosynthesis methods can be employed to reconstruct volumetric images from

a relatively small number of projections at the cost of sacrificing spatial resolution in the

depth-direction [47].

Conventional X-ray tomosynthesis, which is a form of limited angle tomography that employs

only a few x-ray planar projections in a proper angular range to synthesize a collection of 2D

images, has been widely studied for breast imaging and other medical imaging applications.

There has been a high degree of research interest in tomosynthesis imaging in the past

decade [6, 46, 64, 136]. Tomosynthesis allows for some level of low-resolution discrimination

between overlaying structures along the z direction (i.e., in-depth direction perpendicular

to the in-plane images), bringing a substantial improvement in the ability to appreciate
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abnormal anatomy or disease in tomosynthesis images relative to conventional radiographs.

Besides, the resolution of the reconstructed in-plane images is often believed to be superior

to CT, at the same time tomosynthesis provides much reduced dose and faster acquisition

time than that required for full CT datasets.

In recent years, a small number of studies have explored XPC tomosynthesis imaging tech-

niques. In 2010, Zhang et al. published in-line XPC tomosynthesis experimental results

from data acquired with synchrotron radiation [181]. A phase retrieval filter was applied to

the raw in-line projections so that the reconstruction problem was converted to be the same

as conventional tomosynthesis. Hammonds et al. investigated in-line XPC tomosynthesis

using a micro-focus x-ray tube in 2011 [70] A standard shift-and-add (SAA) algorithm was

directly performed in the tomosynthesis reconstruction, and it showed that the reconstructed

in-plane images (i.e. x-y plane shown in Fig. 6.1) could retain the edge enhancement that is

observed in planar phase-contrast radiographs. Wu et al. conducted in-plane spatial reso-

lution measurements of a phase-contrast tomosynthesis prototype using standard resolution

test patterns [172], but certain details regarding the data-acquisition and reconstruction were

not reported.

1.2 Overview of the Dissertation

In Chapter 2, we analyze the numerical and statistical properties of two classes of discrete

imaging models that form the basis for iterative image reconstruction in DPCT. We also

investigate the use of one of the models with a modern image reconstruction algorithm for

performing few-view image reconstruction of a tissue specimen.

In Chapter 3, we report on the development of an advanced multi-channel (MC) image re-

construction algorithm for grating-based X-ray phase-contrast computed tomography (GB-

XPCT). The MC reconstruction method we have developed operates by concurrently, rather

than independently as is done conventionally, reconstructing tomographic images of the three

object properties (absorption, small-angle scattering, refractive index). By jointly estimat-

ing the object properties by use of an appropriately dened penalized weighted least squares

(PWLS) estimator, the 2nd order statistical properties of the object property sinograms,

including correlations between them, can be fully exploited to improve the variance vs.

6



resolution tradeo of the reconstructed images as compared to existing methods. Channel-

independent regularization strategies are proposed. To solve the MC reconstruction prob-

lem, we developed an advanced algorithm based on the proximal point algorithm and the

augmented Lagrangian method. By use of experimental and computer-simulation data,

we demonstrate that by exploiting inter-channel noise correlations, the MC reconstruction

method can improve image quality in GB-XPCT.

In Chapter 4, we describe and investigate sparsity-regularized penalized weighted least

squares-based image reconstruction algorithms for reconstructing K-edge images from few-

view decomposed K-edge sinogram data. To exploit the inherent sparseness of typical K-edge

images, we investigate use of a total variation (TV) penalty and a weighted sum of a TV

penalty and an ℓ1-norm with a wavelet sparsifying transform. Computer-simulation and

experimental phantom studies are conducted to quantitatively demonstrate the effectiveness

of the proposed reconstruction algorithms.

In Chapter 5, we propose two accelerated variants of the FISTA for PLS-based image re-

construction in CBCT. The algorithm acceleration is obtained by replacing the original

gradient-descent step by a sub-problem that is solved by use of the ordered subset simul-

taneous algebraic reconstruction technique (OS-SART). One algorithm seeks to minimize a

PLS cost function involving a TV penalty while the second assumes a penalty formed as

the sum of object TV plus a wavelet-sparsified We also present efficient numerical imple-

mentions of the proposed algorithms that exploit the massive data parallelism of multiple

graphics processings units (GPUs).

In Chapter 6 we develop an advanced iterative algorithm for reconstructing images from

incomplete (and noisy) data in XPC tomosynthesis. We also investigate the depth resolution

properties of XPC tomosynthesis and demonstrate that the z-resolution properties of XPC

tomosynthesis is superior to that of conventional absorption-based tomosynthesis. More

specifically, we find in-plane structures display strong boundary-enhancement while out-of-

plane structures do not. This effect can facilitate the identification of in-plane structures.

A summary of the dissertation and closing remarks are presented in Chapter 7.
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Chapter 2

Investigation of discrete imaging

models and iterative image

reconstruction in DPCT

2.1 Introduction

Differential phase-contrast tomography (DPCT) employing hard X-rays [24,107,113,114,169]

refers to a class of imaging method for reconstructing the X-ray refractive index distribution

of objects from knowledge of differential projection data. At hard X-ray energies, variations

in the real component of the refractive index distribution of a light- or medium-density mate-

rial are generally several orders of magnitude larger than are the variations in the imaginary

component (i.e., the X-ray absorption). Consequently, DPCT may permit the visualization

and quantitation of objects that present very low or no X-ray absorption contrast. In recent

years, there have also been advancements [49,134] in implementing the method on the bench

top by use of tube-based X-ray sources. This is particular important in order for DPCT to

find widespread use in biomedical and nondestructive imaging applications.

The tomographic projection data in DPCT, from which an estimate of the refractive index

distribution is reconstructed, correspond to one-dimensional (1D) derivatives with respect to

the detector row coordinate of the two-dimensional (2D) Radon transform of the refractive

index distribution. These data can be interpreted as the angles in a plane that is perpendic-

ular to the axis of tomographic scanning by which the probing X-ray beams are deflected by

the object due to refraction. Several methods are available for implementing DPCT by use of
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synchrotron- or tube-based X-ray sources. Such methods include those based on diffractive

optics [34,133] or interferometry [112]. When DPCT is implemented with optical wavefields,

which has been referred to as beam-deflection tomography [51], techniques such as moire

deflectometry [154] have been employed for measuring the beam-deflection data.

It has been demonstrated that image reconstruction in DPCT can be achieved by use of

modified filtered backprojection (FBP) algorithms [51,78,186]. An important observation by

Faris and Byer [51] was that the 1D differentiation of the projection data is prescribed by the

classic FBP algorithm. Accordingly, instead of integrating the differential projection data

explicitly and then applying the classic FBP algorithm for reconstruction, they proposed

a deflection filtered backprojection DFBP algorithm that acts directly on the differential

projection data. In order to avoid image artifacts when employing this algorithm and other

analytic reconstruction algorithms, tomographic measurements must be typically be acquired

at a large number of view angles. This is highly undesirable because it can result in long

data-acquisition times, especially in bench top applications where the X-ray tube power is

limited, and also may damage the sample due to the large radiation exposure. Iterative

image reconstruction algorithms have been widely employed in mature tomographic imaging

modalities for mitigating data-incompleteness and noise. However, there is a scarcity of

studies of iterative image reconstruction in DPCT [89,134] and there remains an important

need to develop robust iterative reconstruction methods for this modality.

In this chapter, we analyze the numerical and statistical properties of two classes of discrete

imaging models that form the basis for iterative image reconstruction in DPCT. The mod-

els differ in the choice of expansion functions that are employed to discretize the infinite-

dimensional refractive index distribution that one seeks to estimate. One model employs

conventional pixel expansion functions while the other employs Kaiser-Bessel window func-

tions. The latter choice is shown to have the attractive feature that the 1D derivative

operator in the DPCT imaging model can be computed analytically, thereby cirvumventing

the need to numerically approximate it. This feature has also recently been identified by

Köhler, et al. [89]. A modern iterative reconstruction algorithm that seeks to minimize total

variation (TV) -norm of the refractive index estimate is employed with a discrete imaging

model for few-view image reconstruction. The effectiveness of the reconstruction method is

demonstrated by use of experimental DPCT projection data corresponding to a biological

tissue specimen.
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2.2 Background

We will utilize the parallel-beam tomographic scanning geometry depicted in Fig. 2.1. How-

ever, the results that follow can readily be adapted to the case of spherical wave illumination

in the paraxial limit [49]. The z-axis of the reference coordinate system (x, y, z) defines the

axis of rotation of the tomographic scanning. The rotated coordinate system (xr, yr, z) is re-

lated to the reference system by by xr = x cos θ+y sin θ, yr = y cos θ−x sin θ, where θ ∈ [0, π)

is the tomographic view angle measured from the positive x-axis. A phase-amplitude ob-

ject positioned at the origin is irradiated by an X-ray plane-wave with wavelength λ, or

equivalently wavenumber k = 2π
λ
, which propagates in the direction of the positive yr-axis.

y

xx

y

z

r

r
X−ray beam

incident 

z

xr

differential phase−contrast
imaging system

detector

θ

Figure 2.1: A schematic of differential phase-contrast imaging tomography. The black box
represents the system of optical elements that is specific to the implementation.

2.2.1 Data function and imaging model in continuous form

Let δ(x, y, z) ≡ 1− n(x, y, z) denote the compactly supported and bounded object function

we seek to reconstruct, where n(x, y, z) is the real-valued refractive index distribution. We

will employ the notation δ(r2; z) ≡ δ(x, y, z), where r2 = (x, y), as a convenient description

of a transverse slice of the 3D object function.
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In DPCT employing a grating interferometer [108, 109, 112, 133, 169] or X-ray crystal optics

[34, 44, 45, 60, 92, 103, 131, 170], the wavefield transmitted through the object is perturbed

by one or more optical elements. The intensity of the perturbed wavefield at view angle

θ is measured in the (xr, z) plane located at yr = d and will be denoted by I(xr, z, θ;K).

Here K represents an integer-valued index that specifies the state of the imaging system.

For example, in crystal analyzer-based systems, distinct values of K would correspond to

different orientations of the analyzer crystal. Alternatively, in grating interferometry when a

phase-stepping procedure [133,169] is employed, distinct values of K correspond to different

translational positions of the grating that is being scanned.

From knowledge of {I(xr, z, θ; k)}NK

K=1 with NK ≥ 1, methods are available [40, 155, 169] for

computing a data function g(xr, z, θ) that, for a fixed value of z, is related to the sought-after

object function δ(r2; z) as

g(xr, θ; z) =
∂

∂xr

∫

∞

dyr δ(r2; z) ≡
∂

∂xr
Rδ(r2; z). (2.1)

Here, R denotes the 2D Radon transform operator. Equation (2.1) represents an ide-

alized imaging model for DPCT in its continuous form that assumes a geometrical optics

approximation. A discussion of the validity of this approximation is provided in Chapter 2

of reference [126]. Note that the right hand side of Eq. (2.1) corresponds to a stack, along

the z-axis, of differentiated 2D Radon transforms of δ(r2; z). The coordinate z can be inter-

preted as a parameter that specifies a transverse slice and therefore the 3D imaging model

can be described by a collection of 2D ones.

The image reconstruction task in DPCT is to determine an estimate of δ(r2; z) from knowl-

edge of g(xr, θ; z). When g(xr, θ; z) is measured at a large number of view angles θ, this can

be accomplished by use of analytic image reconstruction algorithms [4, 51]. However, in the

case of noisy and/or few-view measurement data, analytic reconstruction methods are known

to be suboptimal and the use of iterative methods is warranted. The construction and in-

vestigation of discrete imaging models that form the basis for iterative image reconstruction

in DPCT is described in the remainder of the article.
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2.2.2 General forms of discrete imaging models

A natural way to obtain a discrete imaging model is to discretize the continuous model in

Eq. (2.1). When a digital detector is employed, the measured intensity data and associated

data function correspond to an ordered collection of numbers rather than a function of a

continuous variable. We will denote the discrete data function as

g[s, t; h] ≡ g(xr, θ; z)|xr=s∆d,θ=t∆θ,z=h∆d
, (2.2)

where s and h are integer-valued detector element indices and t is the tomographic view

index. Here, ∆d = L
Q

denotes the detector element dimension in a square detector array

of dimension L × L, and Q denotes the number of samples measured in each dimension.

The quantity ∆θ denotes the angular sampling interval between the uniformly distributed

view angles. The reconstruction algorithms described below can be applied in the case of

non-uniformly sampled measurement data as well. The general forms of the reconstruction

algorithms would remain unchanged for the case of non-uniformly sampled measurement

data; However, the explicit forms of the system matrices would be changed. Although not

indicated in Eq. (2.2), the measured discrete data will also be degraded by the averaging

effects of the sampling aperture. Additionally, the effects of finite temporal and spatial

beam coherence will effectively blur the data function g[s, t; h]. These effects can limit the

attainable spatial resolution in the reconstructed DPCT images. Because the reconstruction

problem is inherently 2D, we will consider the problem of reconstructing a transverse slice

of the object function located at z = h∆d. Let the vector g ∈ R
M denote a lexicographically

ordered representation of g[s, h, t]. The dimensionM is defined by the product of the number

of detector row elements and the number of view angles.

Many iterative image reconstruction algorithms require a finite-dimensional approximate

representation of the object function. A linear N -dimensional approximation of δ(r2; z =

h∆d) can be formed as

δa(r2; z = h∆d) =
N−1
∑

n=0

bh
nφn(r2), (2.3)

where the subscript a indicates that δa(r2; z) is an approximation of δ(r2; z), {φn(r2)} are
a set of expansion functions, and {bh

n} are the corresponding expansion coefficients that

depend on the slice index h. Let the 2D function δa(r2; z = h∆d) be contained within a disk
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of radius r0. The discrete data function satisfies

g[s, t; h] ≈ ∂

∂xr
Rδa(r2; z = h∆d)

∣

∣

∣

xr=s∆d,θ=t∆θ

, (2.4)

assuming that Rδa(r2; z = h∆d) is differentiable ∀xr ∈ (−r0, r0). For certain choices of the

expansion functions, such as the pixels described below, this differentiability requirement will

not be met. Moreover, when computing Eq. (2.4), as required by iterative image reconstruc-

tion algorithms, the operator ∂
∂xr

will generally be replaced by a numerical approximation.

For use in these cases, a modified version of Eq. (2.4) is given by

g[s, t; h] ≈ ∂

∂xr
SRδa(r2; z = h∆d)

∣

∣

∣

xr=s∆d,θ=t∆θ

, (2.5)

where S is a smoothing operator that acts with respect to the xr coordinate and ensures

that SRδa(r2; z = h∆d) is differentiable. The composite operator ∂
∂xr

S can be interpreted

as a regularized derivative operator.

In the special case where Rφn(r2) is differentiable ∀xr ∈ (−r0, r0), as satisfied by the Kaiser-

Bessel expansion functions investigated below, Eq. (2.4) can be expressed as

g[s, t; h] ≈
N−1
∑

n=0

bh
n

∂

∂xr

(

Rφn(r2)
)

(xr, θ)|xr=s∆d,θ=t∆θ
. (2.6)

In matrix form, each of Eqs. (2.4)-(2.6) can be expressed as

g = Hb, (2.7)

where g is a lexicographically ordered representation of the sampled data function, H is an

M × N system matrix, and b is a N × 1 vector of expansion coefficients that has an n-th

element given by bh
n.

Equations (2.5) or (2.6) describe discrete imaging models for DPCT that can be employed

with iterative image reconstruction algorithms for estimation of b from knowledge of g and

H. From the estimated b, the object function estimate - the sought after image - can be

obtained by use of Eq. (3.6). In the special case in which the expansion functions are classical
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pixels, the estimates of b and δa(r2; z = h∆d) coincide. Explicit forms for the system matrix

H are found by specifying the expansion functions φn(r2) and implementation of the operator
∂

∂xr
R or ∂

∂xr
SR.

Below, we investigate the use of two different choices of expansion functions: the pixel

basis function and Kaiser-Bessel window functions. Because the 3D reconstruction problem

corresponds to a stack of 2D ones, we will focus on the reconstruction of a transverse slice

of constant z = h∆d and the discrete index h will be suppressed hereafter. For use with

the pixel basis functions, three different discrete implementations of the operator ∂
∂xr

SR are

implemented and system matrices are established according to Eq. (2.5). For the case of

the Kaiser-Bessel window expansion functions, the operator ∂
∂xr

Rφn(r2) can be computed

analytically and system matrices are established according to Eq. (2.6).

2.3 Construction of system matrices for iterative im-

age reconstruction in DPCT

2.3.1 System matrix construction employing pixel basis functions

The classic pixel is a commonly employed expansion function and is defined as

φpixel
n (r2) = rect

(x− xn
ǫ

)

rect
(y − yn

ǫ

)

,

where rect(x) = 1 for |x| ≤ 1
2
and zero elsewhere, (xn, yn) specifies the coordinate of the

nth lattice point on a uniform Cartesian lattice, and ǫ is the spacing between those lattice

points. A description of the system matrix construction for use with pixel expansion func-

tions provided below. According to Eq. (2.5), this will require specifying methods for : (1)

numerically approximating Rδa(r2; z) and (2) computing a regularized discrete derivative

operator ∂
∂xr

S.
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Numerous standard numerical methods are available to compute approximations ofRδa(r2; z)

[86, 99, 148]. Most of these numerical methods compute the projection data as

p[s, t] ≡ (Rδa(r2))[s, t] = (Rδa(r2))(xr, θ)|xr=s∆d,θ=t∆θ
≈

N−1
∑

j=0

wstjbj , (2.8)

where wstj is the weighting factor that corresponds to the contribution of the j-th expansion

function to the projection data recorded at detector location [s, t], and bj is the j-th com-

ponent of b. By defining p ∈ R
M to be a lexicographically ordered representation of p[s, t],

Eq. (2.8) can be expressed in matrix form as

p = HRb, (2.9)

where

[HR]m=t×S+s, n = wstn, (2.10)

in which S is the total number of discrete projection data for each view and the notation

[HR]m,n denotes the element of HR corresponding to the m-th row and n-th column. In our

numerical studies, we adopted a ’ray-driven’ method to establish HR [148].

We adopted a meshfree method known as smoothed particle hydrodynamics (SPH) [33,115]

for implementing ∂
∂xr

S. Let p′ ∈ R
M denote a 1D discrete derivative of p that approximates

samples of ∂
∂xr

SRδa(r2; z = h∆d). The SPH method determines p′ as

p′k =
1

ρk

i=k+K/2
∑

i=k−K/2

(pi − pk)
∂W(di − dk, h)

∂xr
, (2.11)

where p′k is the k-th element of p′, K is the total number of neighbouring particles, pi and

pk are the i-th and k-th elements of p respectively, and W(xr, h) is a kernel function with a

smoothing length h. In our studies we employed three different kernel functions of the form:

linear, quadratic spline, and cubic spline [33,115]. Explicit forms of the kernels are provided

in the appendix. The density factor ρk is defined as

ρk =

i=k+K/2
∑

i=k−K/2

W(di − dk, h). (2.12)
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In matrix form, Eq. (2.11) is expressed as

p′ = HDp, (2.13)

where explicit forms of HD are provided in the appendix that correspond to different choices

of W(xr, h).

By use of Eqs. (2.9) and (2.13), the discrete imaging models for the case of pixel expansion

functions are obtained as

g ≈ p′ = Hpixelb, (2.14)

where

Hpixel ≡ HDHR. (2.15)

The system matrix Hpixel is generally sparse, since only a few expansion functions contribute

to one specific projection value pi.

2.3.2 System matrix construction employing generalized Kaiser-

Bessel window functions

For Kaiser-Bessel window expansion functions, referred to hereafter as “blobs” [96, 97],
∂

∂xr
Rφn(r2) is continuous and can be computed analytically. In this case, Eq. (2.6) can

be employed to establish the system matrix in which the derivative and Radon transform

operators can be computed accurately.

The blob expansion functions are defined as

φblob
n (r2;m, a, α) =







[√
1−(rb/a)2

]m

Im[α
√

1−(rb/a)2]

Im(α)
, rb ≤ a

0, otherwise,
(2.16)

where Im(·) is the m-th order modified Bessel function, rb ≡ |r2 − rn| with rn = (xn, yn)

denoting the blob center, and a and α determine the blob’s radius and specific shape.

16



Let ξ ≡ xr −xn cos θ− yn sin θ. As demonstrated by Lewitt [96], the 2D Radon transform of

one window function is given by

Rφblob
n (r2;m, a, α) =

a

Im(α)

(2π

α

)1/2[√

1− (ξ/a)2
]m+1/2

Im+1/2

(

α
√

1− (ξ/a)2
)

, (2.17)

for |ξ| ≤ a and zero otherwise.

As derived in Appendix B, the 1D derivative of this quantity is given by

∂(Rφblob
n (r2;m, a, α))

∂xr
= −(2πα)

1/2

Im(α)

ξ

a

(

√

1− (ξ/a)2
)m−1/2

Im−1/2

(

α
√

1− (ξ/a)2
)

. (2.18)

By use of Eqs. (2.18) and (2.6) the discrete imaging model is given by

g[s, t] ≈ −(2πα)
1/2

Im(α)

×
N−1
∑

n=0

bn
ξ

a

(

√

1− (ξ/a)2
)m−1/2

Im−1/2

(

α
√

1− (ξ/a)2
) ∣

∣

∣

ξ=s∆d−xncos(t∆θ)−ynsin(t∆θ)
, (2.19)

or, in matrix form,

g ≈ Hblobb, (2.20)

where

[Hblob]m′,n = [Hblob]m′=t×S+s, n = −(2πα)
1/2

Im(α)

× ξ

a

(

√

1− (ξ/a)2
)m−1/2

Im−1/2

(

α
√

1− (ξ/a)2
) ∣

∣

∣

ξ=s∆d−xncos(t∆θ)−ynsin(t∆θ)
, (2.21)

and S is the total number of discrete projection data for each view. Similar to the pixel

case, the system matrix Hblob is sparse because only a relatively few blobs contribute to

each component of g.

Note that the k -th order spatial derivative of φblob
n (r2;m, a, α) is continuous when m > k [96].

In the studies below, m = 2 was chosen. This ensured that the first-order derivatives of the

blobs were continuous.
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2.4 Comparison of numerical and statistical properties

of system matrices

2.4.1 SVD analysis of the system matrices

In order to investigate how the different expansion functions influence the numerical proper-

ties of the imaging models described in Sections 2.3.1 and 2.3.2, the singular value decompo-

sition (SVD) was employed. Specifically, the rates of decay of the singular values associated

with the different system matrices were examined to gain insights into the stability of the

associated reconstruction problems. It is well-known that the stability of a reconstruction

problem is adversely affected by a rapid decay of singular values [18]. For the pixel basis func-

tion, three system matrices Hpixel were constructed as described in Sec. 2.3.1 for the cases

where linear, quadratic spline, and cubic spline kernel functions W(xr, h) were employed

[33, 52, 115]. Explicit forms of three kernels are provided in the appendix. The scanning

configuration assumed 180 equally spaced tomographic views and 256 samples along the

detector array. The detector pixel pitch was 25 µm. The window size of h was chosen to

be two times detector pixel pitch, three times detector pixel pitch, and four times detector

pixel pitch for linear interpolation, quadratic spline and cubic spline kernel, respectively.

The object was assumed to be contained within an area of dimension 6.4 mm × 6.4 mm. For

the pixel-based studies, a 128× 128 array of 50 µm square pixels was employed to discretize

the object. Accordingly, the system matrices Hpixel were of dimension 46080 (256× 180) by

16384 (128×128). For the case of blob expansion functions, the same scanning configuration

was considered. Six system matrices Hblob were constructed as described in Sec. 2.3.2 for

the cases where the blob parameters were chosen as m = 2, radius a = 75 µm (1.5 times

sampling interval) or 100 µm (2 times sampling interval), and α = 2, 6, or 10.4. Hereafter,

we will refer to the blob radius relative to the image grid spacing. For example, we use

indicate a = 1.5 to represent a physical radius of 75 µm and a = 2 to represent a physical

radius of 100µm. The value of α = 10.4 was chosen because it results in a quasi-bandlimited

blob function that has been demonstrated to suppress artifacts in other tomographic image

reconstruction applications [97, 105].
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Similar values were employed in references [106, 125]. The distance between the centers of

two neighboring blobs was fixed at 50 µm. The dimension of Hblob is the same as that of

Hpixel. The spectrum of singular values was computed for all system matrices using the

Matlab programming environment [73].

Figures 2.2 - 2.4 display the computed normalized singular value spectra. Figure 2.2 shows

the normalized singular spectra for the different system matrices Hpixel for the three different

weighting kernels. The matrix constructed by use of the cubic spline kernel is the most ill-

conditioned, while the system matrix constructed by use of the linear kernel is the least

ill-conditioned. This behavior is expected since the cubic spline kernel imposes the most

smoothness on the data, followed by the quadratic spline and linear kernels.
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Figure 2.2: Singular value spectra associated with the system matrices Hpixel with pixel size
50µm.

The spectra for the blob system matrices are shown in Figs. 2.3 and 2.4. Figure 2.3 displays

the spectra when the blobs had a relative radius a = 1.5 and varying shape parameter α.

These results indicate that the parameter α will generally affect the stability of the system

matrix. In this case, α = 2.0 corresponds to the most poorly conditioned system matrix

while α = 10.4 corresponds to the best conditioned system matrix. The spectra for the case

when the blob relative radius a was increased to 2 (physical size 100 µm) are displayed in

Fig. 2.4. The parameter α is again observed to have a significant effect on the stability of

the system matrices. The system matrix corresponding to α = 2 is the most ill-conditioned,

while the one corresponding to α = 10.4 is the least ill-conditioned. In order to gain insight
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Figure 2.3: Singular value spectra associated with the system matrices Hblob with m = 2,
relative radius a = 1.5 (physical size 75µm).
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Figure 2.4: Singular value spectra associated with the system matrices Hblob with m = 2,
relative radius a = 2 (physical size 100µm).

into this behavior, one can examine the normalized differential projection profile of one blob

as shown in Fig. 2.5. One observes that the profile is more localized when α increases from

2 to 10.4, which results in a better conditioned system matrix.

In order to facilitate the comparison of the pixel- and blob-based results, the three highest

singular value spectra from Figs. 3-5 were re-plotted together in Fig. 2.6. Two of these

spectra correspond to different Hblob with α = 10.4. and relative radius a = 1.5 and a = 2
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Figure 2.5: Profiles of the differential projection value of one blob with m = 2, relative
radius a = 2.

and the third to Hpixel employing the linear weighting kernel. The two blob-based spectra

possess a slower rate of decay than the pixel-based spectra, indicating that that the blob-

based system matrices will yield more stable reconstruction problems than will pixel-based

ones.

2.4.2 Simulation data and image reconstruction algorithm

Computer-simulation studies were conducted to investigate the trade-offs between image

variance and spatial resolution for images reconstructed by use of the different system ma-

trices. The 2D numerical phantom displayed in Fig. 2.7 was employed to represent our object

function δ(r2; z). The physical size of the phantom was 25.6 mm × 25.6 mm. The phantom

was composed of nine uniform disks possessing different values and physical sizes, which

were blurred with a Gaussian kernel of width 0.15 mm. From knowledge of the phantom,

the elements of the differential projection data g were computed analytically. The scanning

geometry employed assumed 180 tomographic views that were uniformly spaced over a π

angular range. At each view, the detector was assumed to possess 1024 elements of pitch

25 µm.
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Figure 2.6: The three highest singular value spectra are replotted for comparison. Two of
the spectra correspond to Hblob with α = 10.4, relative radius a = 1.5 and a = 2. The third
spectra corresponds to Hpixel based on the linear weighting kernel.

There are several sources of noise in X-ray DPCT [137] that include phase stepping jitter,

quantum noise, and noise from the detection electronics. One hundred noisy data vectors

were computed as realizations of an uncorrelated zero-mean Gaussian random vector [91].

The standard deviation σn of each element of the random vector was constant and was set

according to the rule σn = 0.2|g|mean, where |g|mean = 1
M

∑M
m=1 |gm| with gm denoting the

m-th component of the noiseless data vector g.

From the 100 noisy differential projection data vectors, the penalized least-squares (PLS)

algorithm described in reference [54] was employed to reconstruct 100 noisy coefficient esti-

mates b̂. The analytic solution of the PLS algorithm with L2 regularization can be written

as a pseudo-inverse operator H+ acting on g. The pseudo-inverse operator H+ can be de-

composed as a linear combination of certain outer-product operators, whose coefficients are

the reciprocals of the singular values of the operator H [12, 18] that were analyzed in Sec.

2.4.1. The estimates b̂ represent approximate solutions of the optimization program

b̂ = argmin
b
||g−Hb||+ γL(b), (2.22)
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Figure 2.7: The numerical phantom employed in our simulation studies with an ROI indi-
cated

where γ is a regularization parameter,

L(b) =
N−1
∑

n=0

∑

k∈Nn

(

[b]n − [b]k
)2
, (2.23)

with the set Nn containing the index values of the four neighbour points of the nth value

of b. From knowledge of b̂, estimates of the object function δa(r2; z) were obtained by use

of Eq. (3.6). For the cases where blob expansion functions were employed, the estimates of

δa(r2; z) were sampled by use of a 2D Dirac delta sampling function onto a Cartesian grid

and the resulting values stored as a matrix for analysis and display.

Sets of images were reconstructed by use of different system matrices Hpixel or Hblob. For

the pixel-based studies, the object was represented by a 512 × 512 pixel array with a 50

µm pitch. Three different pixel-based matrices Hpixel were constructed corresponding to the

weighting kernel functions described in Sec. 2.3.1. For the blob-based studies, six different

system matrices were employed that corresponded to blob parameters relative radius a = 1.5

(physical size 75 µm), relative radius a = 2 (physical size 100 µm), and α = 2, 6, or 10.4. In

all cases, 512 × 512 blobs were employed to represent the object function and the distance

(sampling interval) between the blobs was 50 µm. For each system matrix, five sets of 100
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noisy images were reconstructed for distinct values of the regularization parameter specified

by γ = 10, 200, 1000, 2000, or 5000.
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Figure 2.8: Examples of reconstructed images by use of PLS algorithms based on pixel sys-
tem matrix Hpixel and blob system matrix Hblob. Regularization parameter γ = 10 for both
cases. (a) An reconstructed image produced by pixel system matrix with linear interpolation
. (b) An reconstructed image produced by blobs with relative radius a = 2 (physical size
100µm), m = 2 and α = 10.4.

Computer-simulation studies were conducted to validate our reconstruction algorithm imple-

mentations that utilized the system matrices Hpixel andHblob. Example images reconstructed

from noisy data sets by use of Hpixel and Hblob are shown in Figs. 2.8-(a) and (b). The system

matrix Hpixel utilized linear interpolation and Hblob utilized blob parameters relative radius

a = 2, m = 2, and α = 10.4. The regularization parameter was set at γ = 10 for both cases.

Horizontal profiles through the centers of the images in Figs. 2.8-(a) and (b) are shown in

Fig. 2.9. The solid blue line (pixel-based result) appears to overshoot some of the boundaries

and has more oscillations than the dashed red line (blob-based result). Note that the grey

levels of the true object were recovered with good fidelity due to the fact that the object was

contained within the field-of-view of the simulated imaging system and therefore there was

no truncation of the data function with respect to the detector coordinate.
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Figure 2.9: (Color online) Profiles through the center row of the reconstructed images in
Fig. 2.8. The solid blue line corresponds to Fig.2.8-(a). The dashed red and dashdotted
black lines correspond to Fig.2.8-(b) and the true phantom.

2.4.3 Empirical determination of image statistics and resolution

measures

For each combination of system matrix and regularization parameter, the mean image and

image variance were estimated [3] from the associated set of 100 noisy images within the

70 × 70 pixel region-of-interest (ROI) indicated by the white box in Fig. 2.7. The average

value of the image variance map was computed to establish a scalar summary measure of the

variance associated with the ROI. To quantify the spatial resolution, we fitted the profile in

the mean image corresponding to the boundary indicated in Fig. 2.7. The profile was fit to

a cumulative Gaussian function [180]:

G(x) = I1 +
I2 − I1

2

(

1 + erf
(x− µ
σ
√
2

)

)

, (2.24)

where x denotes the coordinate along the image profile, I1 and I2 indicate the image values

on the two sides of the boundary with I1 < I2, µ is the true boundary location, and erf(x) is

the error function, and σ is the associated standard deviation. We adopted the full-width at

half-maximum (FWHM) value of the fitted error function as a summary measure of spatial

resolution [180] at that location in image space, with smaller values indicating higher spatial

resolution. Repeating these procedures for different choices of the regularization parameter γ
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Figure 2.10: Variance versus resolution curves corresponding to use of the system matrices
Hpixel.

produced a collection of (variance, FWHM) pairs for each system matrix, which were plotted

to characterize the trade-offs between spatial resolution and noise levels in the reconstructed

images.

The variance-resolution curves for the pixel- and blob-based system matrices are shown in

Figs. 2.10 and 2.11, respectively. The left-most point on each curve corresponds to γ = 10,

while the right-most point on each curve corresponds to γ = 5000. As expected, when the

value of γ increases, the image variance decreases at the cost of spatial resolution.

For the pixel-based case, Fig. 2.10 reveals that the curve corresponding to the use of a linear

weighting kernel is the lowest, followed by those corresponding to the quadratic and cubic

spline kernels. Stated otherwise, the use of the linear interpolation-based system matrix

Hpixel produced images with smaller variances at any of the attained spatial resolution values

than did the other two system matrices. These observations are consistent with the singular

value spectra displayed in Fig. 2.2, where the linear and cubic spline-based system matrices

were demonstrated to yield the best and worst, respectively, conditioned system matrices for

the pixel-based studies.

For the blob-based cases shown in Fig. 2.11, the variance-resolution curves corresponding to

the shape parameter α = 10.4 were lower than those corresponding to the other α values

for both relative radius a = 1.5 [Fig. 2.11-(a)] and relative radius a = 2 [Fig. 2.11-(b)]. The
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Figure 2.11: Variance versus resolution curves corresponding to use of the system matrices
Hblob. (a) Curves are produced by blobs with relative radius a = 1.5 (physical size 75µm),
m = 2 and varying α. (b) Curves are produced by blobs with relative radius a = 2 (physical
size 100µm), m = 2 and varying α.

curves corresponding to the shape parameter α = 2.0 were higher than the others for both

values of a. These observation are consistent with the singular value spectra displayed in

Figs. 2.3 and 2.4, where the system matrices Hblob corresponding to α = 10.4 and α = 2.0

were demonstrated to yield the best and worst, respectively, conditioned system matrices for

the blob-based studies.

In order to facilitate the comparison of the pixel- and blob-based results, the three best

variance-resolution curves from Figs. 2.10 and 2.11 were superimposed and replotted in

Fig. 2.12. Two of these curves correspond to different Hblob with α = 10.4 and relative

radius a = 1.5 and relative radius a = 2 and the third to Hpixel employing the linear

weighting kernel. The two blob-based curves are everywhere lower than the pixel-based

curve, indicating images produced by use of Hblob can possess improved variance-resolution

trade offs than those produced by use of Hpixel. Below we demonstrate and investigate

the use of Hblob for reconstructing images of biological tissue from few-view experimental

differential projection data.
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Figure 2.12: The three best variance-resolution curves picked from the pixel and blob cases.

2.5 Application to few-view image reconstruction

2.5.1 Experimental data and image reconstruction algorithm

In our studies of few-view image reconstruction, we utilized experimental DPCT data that

were acquired previously [107] using a grating-based phase-contrast imaging system at the

Swiss Light Source. A tissue sample corresponding to a rat brain was the imaged object.

The tomographic scanning consisted of 720 tomographic view angles that were uniformly

distributed over a 180 degree angular range. The differential projection data contained 1621

samples at each view angle corresponding to a detector pitch of 7µm. In the studies described

below, certain subsets of these data were employed for few-view image reconstruction. A

phase-stepping procedure was employed, which utilized four steps, to compute the differential

projection data at each tomographic view angle. We refer the reader to reference [107] for

additional details regarding the data-acquisition and sample preparation.

To obtain an estimate of the object function based on Eq. (2.20), the constrained, total

variation minimization (TV) program [28, 29, 149] was employed:

b̂ = argmin
b
‖b‖TV s.t. |g−Hblobb| ≤ ǫ, (2.25)
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in which ‖b‖TV represents the TV norm of the vector b and ǫ is the specified data tolerance.

It has been demonstrated that this image reconstruction strategy can be highly effective at

mitigating data-incompleteness for certain classes of objects [71,149,151,174]. The adaptive

steepest-descent-projection onto convex sets (ASD-POCS) algorithm proposed by Sidky and

Pan [151] was employed to determine approximate solutions of Eq. (2.25). Details regarding

this algorithm and its implementation can be found in reference [151]. The system matrix

Hblob with m = 2, relative radius a = 2 (physical size 14µm, which is twice the sampling

interval 7µm) and α = 10.4 was constructed as described in Sec. 2.3.2. The values of the

data tolerance ǫ employed were 43.8 and 58.2 for the reconstruction problems involving 90

and 180 view angles, respectively. From knowledge of b̂, estimates of δa(r2; z) were obtained

by use of Eq. (3.6) and were subsequently sampled by use of a 2D Dirac delta sampling

function with a period of 7 µm onto a Cartesian grid for display. Because it is commonly

employed in current applications of DPCT, we also reconstructed images by use of a modified

FBP algorithm that acts directly on the differential projection data [51].

2.5.2 Reconstructed images

The images reconstructed by use of the FBP algorithm and the TV algorithm from 90 view

angles are displayed in Figs. 2.13-(a) and (b). The corresponding images reconstructed from

180 view angles are displayed in Fig. 2.14. All of the images are displayed in the same

grey scale window. The images reconstructed by use of the FBP algorithm [Figs. 2.13-(a)

and 2.14-(a)] have streak artifacts due to the limited number of view angles employed, while

those artifacts are suppressed in the images reconstructed by use of the ASD-POCS algorithm

[Figs. 2.13-(b) and 2.14-(b)]. Because the object was embedded in a container that did not fit

entirely in the field-of-view, there was effectively projection truncation. Therefore, we expect

that our reconstruction algorithm will reconstruct δ(r) only up to a constant. Because the

true values of δ(r) were not available, we did not investigate this. All the images presented

were normalized into the same scale.

In order to more easily visualize differences in the reconstructed images, two ROIs indicated

by black dashed boxes in Fig. 2.13-(a) were displayed. Figures 2.15-(a) and (b) display

the smaller ROIs corresponding to images in Figs. 2.13-(a) and (b), respectively, for the

90 view angle case. Subfigure (c) displays the smaller ROI extracted from an FBP image
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(a) (b)

Figure 2.13: Images reconstructed from 90 projections by use of the (a) FBP (b) ASD-POCS
algorithm. The dashed boxes indicate two ROIs chosen for comparison. All images are
displayed in the same grey scale window [0 1].

reconstructed from 720 view angles, which serves as a reference image. Figures 2.16-(a) and

(b) display the smaller ROIs corresponding to Figs. 2.14-(a) and (b), respectively, for the 180

view angle case. Figure 2.16-(c) displays the smaller ROI from the FBP reference image. As

shown in Fig. 2.15-(a) the visual appearance of the image reconstructed by use of the FBP

algorithm from 90 projections is significantly degraded by noise and other artifacts. Some

of the blood vessels (dark hole-like structures) may be difficult to detect due to the high

artifact and noise levels in these image. The images reconstructed by use of the ASD-POCS

algorithm from 90 tomographic views, shown in Figs. 2.15-(b) has significantly reduced noise

and artifact levels and possesses a visual appearance similar to the reference image that was

reconstructed from the complete data set containing 720 views. Similar observations hold

for the smaller ROI images corresponding to the 180 view angle case displayed in Fig. 2.16.

The larger ROIs are shown in Figs. 2.17 and 2.18. Figures 2.17-(a) and (b) display the larger

ROIs corresponding to images in Figs. 2.13-(a) and (b), respectively, for the 90 view angle

case. Subfigure (c) displays the larger ROI extracted from the FBP image reconstructed

from 720 view angles, which again serves as a reference image. Figures 2.18-(a) and (b)

display the larger ROIs corresponding to images in Figs. 2.14-(a) and (b), respectively, for

the 180 view angle case. Subfigure (c) displays the larger ROI from the FBP reference image.
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(a) (b)

Figure 2.14: Images reconstructed from 180 projections by use of the (a) FBP (b) ASD-
POCS algorithm Two dashed boxes indicate two ROIs chosen for comparison. All images
are displayed in the same grey scale window [0 1].

Again, we observe that the images reconstructed by use of the ASD-POCS algorithm from 90

tomographic views, shown in Figs. 2.17-(b) has significantly reduced noise and artifact levels

and possesses a visual appearance similar to the reference image that was reconstructed from

the complete data set containing 720 views. Similar observations hold for the larger ROI

images corresponding to the 180 view angle case displayed in Fig. 2.18.

2.6 Summary

We have analyzed the numerical and statistical properties of two classes of discrete imaging

models that form the basis for iterative image reconstruction in DPCT [177]. The models dif-

fer in the choice of expansion functions that were utilized to discretize the sought-after object

function. The models based on Kaiser-Bessel window functions (“blobs”) were demonstrated

to produced images that possess more favorable variance-resolution trade-offs than images

reconstructed by use of pixel-based imaging models. This observation was consistent with

the results of an SVD analysis of the system matrices, which demonstrated that the blob-

based system matrices can yield more stable reconstruction problems than do pixel-based

ones.

31



(a) (b) (c)

Figure 2.15: Zoomed-in images of the smaller ROIs denoted in Figs. 2.13-(a) and (b),
reconstructed from 90 view angles, are displayed in subfigures (a) and (b). Subfigure (c)
displays the corresponding reference ROI corresponding to an image reconstructed from 720
projections by use of a DPCT FBP algorithm. All images are displayed in the same grey
scale window [0 1] .

(a) (b) (c)

Figure 2.16: Zoomed-in images of the smaller ROIs denoted in Figs. 2.14-(a) and (b),
reconstructed from 180 view angles, are displayed in subfigures (a) and (b). Subfigure (c)
displays the corresponding reference ROI corresponding to an image reconstructed from 720
projections by use of a DPCT FBP algorithm. All images are displayed in the same grey
scale window [0 1] .

A reconstruction algorithm that seeks solutions of a constrained TV minimization optimiza-

tion program was employed with a blob-based imaging model for few-view image reconstruc-

tion. By use of few-view experimental data, it was demonstrated that this algorithm can

produce images with significantly weaker artifacts and lower noise levels than the FBP algo-

rithm that has been utilized the majority of previously published studies. To our knowledge,
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(a) (b) (c)

Figure 2.17: Zoomed-in images of the larger ROIs denoted in Figs. 2.13-(a) and (b), recon-
structed from 90 view angles, are displayed in subfigures (a) and (b). Subfigure (c) displays
the corresponding reference ROI corresponding to an image reconstructed from 720 projec-
tions by use of a DPCT FBP algorithm. All images are displayed in the same grey scale
window [0 1] .

(a) (b) (c)

Figure 2.18: Zoomed-in images of the larger ROIs denoted in Figs. 2.14-(a) and (b), re-
constructed from 180 view angles, are displayed in subfigures (a) and (b). Subfigure (c)
displays the corresponding reference ROI corresponding to an image reconstructed from 720
projections by use of a DPCT FBP algorithm. All images are displayed in the same grey
scale window [0 1].

this was the first published application of an iterative reconstruction method in X-ray DPCT

for reconstruction of a biological specimen [177]. We expect that the findings of our study

will benefit the continued development of DPCT imaging systems by permitting reduction
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of data-acquisition times and radiation doses. Future research efforts will be required to

identify blob parameters that are optimal for specific imaging tasks.
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Chapter 3

A multi-channel image reconstruction

method for grating-based X-ray

phase-contrast computed tomography

3.1 Introduction

Grating-based X-ray phase-contrast tomography (GB-XPCT) is an emerging modality that

can produce volumetric images that depict three different object properties: X-ray absorp-

tion, scattering, and refractive index. Medical imaging applications of GB-XPCT are limited

by long data-acquisition times and relatively high radiation doses. A natural way to mitigate

these problems is to reduce exposure times and/or the number of tomographic views at which

data are acquired. From such data, statistically-principled algorithms can be employed for

image reconstruction. Several iterative image reconstruction algorithms for GB-XPCT have

been proposed [90, 120, 121, 177]. However, to the best of our knowledge, none of the meth-

ods investigated to date take full advantage of the second order statistical properties of the

sinogram data corresponding to the three object properties.

In this work, an advanced multi-channel (MC) image reconstruction algorithm for GB-XPCT

is proposed and investigated [175]. This method operates by concurrently, rather than inde-

pendently as is done conventionally, reconstructing tomographic images of the three object

properties (absorption, scattering, refractive index). In this way, the 2nd order statistical

properties of the object property sinograms, including correlations between them, can be

35



fully exploited to improve the variance vs. resolution tradeoff of the reconstructed images

as compared to existing methods.

3.2 Basic principles of GB-XPCT

The canonical GB-XPCT imaging geometry is shown in Fig. 3.1. The imaging system

assumes a coherent X-ray source and utilizes a Talbot interferometer consisting of a phase

grating G1 and an absorption grating G2. The phase grating G1 approximately splits the

incident X-ray beam into its first two diffraction orders. Based on the Talbot effect [65,156],

a periodic interference pattern will be formed in planes corresponding the Talbot distances,

one of which corresponds to the plane containing G2. An object placed in front of the phase

grating G1 will produce slight refraction and therefore distort the original wavefront. The

distortion results in variations of the locally transmitted intensity behind the absorption

grating G2. When the phase grating G1 is displaced along the transverse direction xg, the

recorded intensity for each detector pixel can be approximately described as

I(s, h, xg) ≈ A(s, h) sin
(

2π
xg
p2

+ ϕ(s, h)
)

+ Ī(s, h). (3.1)

Here, (s, h) specifies a pixel location on the 2D detector, xg is the location of the phase

grating G1, p2 is the period of the absorption grating G2, A(s, h) represents the amplitude

coefficient for the sinusoid function and relates to the scattering strength of the object,

ϕ(s, h) represents the phase coefficient and is proportional to the gradient of the projected

object phase, and Ī(s, h) represents the average intensity for the sinusoid function and can

be treated as a measurement from convertional X-ray radiography.

To obtain seperate estimates of the amplitude coefficient A(s, h), the phase coefficient ϕ(s, h)

and the average intensity Ī(s, h), a phase stepping procedure is generally conducted [169].

The phase grating G1 is scanned transversely along the direction xg to acquire projections

for evenly spaced positions to cover at least one period of the grating G2. In this case, a

series of Ī(s, h, xg) can be obtained at different locations xg. A Fourier series analysis or a

least squares algorithm can be directly employed to obtain the three different images, which

will be discussed below, by use of those projections acquired at evenly spaced steps [169].
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Figure 3.1: A schematic of grating-based phase-contrast imaging system.

The normalized average transmission image for each pixel can be formulated as

T (s, h) =
Īobj(s, h)

Īref(s, h)
, (3.2)

where the superscript obj and ref denote the values measured when the object is present and

absent, respectively. The calculated T (s, h) can be treated as the normalized measurement

conducted with conventional X-ray radiography.

The dark-field image [132] that reflects the small-angle (and ultra-small) X-ray scattering

(SAXS) property of the object can also be obtained with this grating-based setup. The

scattering information of the object is embedded in the higher orders of the oscillation

pattern. When X-rays are reflected or scattered by the inhomogeneities of the object, the

amplitude coefficient A(s, h) of the sinusoidal function will be decreased. A quantitative

expression for the normalized dark-field signal [13, 132] is given by

V (s, h) =
Vobj(s, h)

Vref(s, h)
=
Aobj(s, h)/Īobj(s, h)

Aref(s, h)/Īref(s, h)
=
Aobj(s, h)Īref(s, h)

Aref (s, h)Īobj(s, h)
. (3.3)

When the imaged object contains inhomogeneities, it will produce strong SAXS signals and

cause significant decrease of visibility. In gereral, the quantity V (s, h) can be considered as

an inverse measure for the SAXS signal strength of the object.

37



The differential phase-contrast image [112, 133], which represents the gradient of the pro-

jected phase profile Φ(s, h) of the object, can also be estimated. It is determined by the

phase coefficient of the oscillation curve at each pixel ϕ(s, h) as

λd

p2
∇xg

Φ(s, h) = ϕref(s, h)− ϕobj(s, h), (3.4)

where ∇xg
is a gradient operator along the direction xg which is perperdicular to the incident

X-ray beams and λ is the wavelength. The differential phase-contrast image permits the

visualization of objects that present very low absorption contrast.

3.3 Methods

3.3.1 Discrete imaging models for GB-XPCT

All three extracted projection images can be directly linked to three physical properties of

the object. When tomography is performed, three images that depict the object properties

can be reconstructed. We will utilize the parallel-beam tomographic scanning geometry

shown in Fig. 3.1. However, the results that follow can readily be adapted to the case of

spherical wave illumination in the paraxial limit [49]. The rotation axis of the tomographic

scanning is defined by the z-axis of the reference coordinate system (x, y, z). The rotated

coordinate system (xr, yr, z) is related to the reference system by xr = x cos θ + y sin θ, yr =

y cos θ−x sin θ, where θ ∈ [0, π) is the tomographic view angle measured from the positive x-

axis. A phase-amplitude object positioned at the origin is irradiated by an X-ray plane-wave

with wavelength λ, or equivalently wavenumber k = 2π
λ
, which propagates in the direction

of the positive yr-axis.

Let n(x, y, z) = 1 − δ(x, y, z) + iβ(x, y, z) denote the complex refractive index distribution

of the object, where δ(x, y, z) is the real-valued refractive index distribution and β(x, y, z)

is the absorption index of the object. In addtiion, let µsaxs(x, y, z) be the parameter related

to the strength of the SAXS produced by the object. It has been shown that µsaxs(x, y, z) is

directly proportional to the small-angle scattering cross section and the number density of

the small-angle scatters of the object [35]. We will employ the notation δ(r2; z) ≡ δ(x, y, z),
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β(r2; z) ≡ β(x, y, z) and µsaxs(r2; z) ≡ µsaxs(x, y, z), where r2 = (x, y), as a convenient

description of one transverse slice of the 3D object function. The discrete image model

for the projected absorption is briefly discussed first and the discrete image models for the

dark-field and the differential phase are presented subsequently.

When a digital detector is employed, the measured intensity data and associated data func-

tion correspond to an ordered collection of numbers. When a parallel-beam tomographic

geometry is adopted, the reconstructed problem is inherently 2D. We will only consider the

problem of reconstructing a transverse slice of the object function located at a fixed z = h∆d

position, where ∆d denotes the detector pixel size. The projected absorption image relates

to the Radon transform of the absorption index β(r2, z) and we will denote the discrete data

function as

g1[s, t; h] = − lnT (s, t; h) ≈ 4π

λ

(

Rβ(r2; z = h∆d)
)

(xr, θ)
∣

∣

∣

xr=s∆d,θ=t∆θ

, (3.5)

where s and h are integer-valued detector element indices and t is the tomographic view

index, T has the same meaning with the one in Eq. (3.2), R denotes the 2D Radon transform

operator, and the quantity ∆θ denotes the angular sampling interval between the uniformly

distributed view angles.

To develop iterative image reconstruction algorithms, a finite-dimensional approximate rep-

resentation of the object function is required for most cases. A general linear N -dimensional

approximation of β(r2; z = h∆d) can be formed as

βa(r2; z = h∆d) =
N−1
∑

n=0

bn1φn(r2), (3.6)

where the subscript a indicates that βa(r2; z = h∆d) is an approximation of β(r2; z =

h∆d), {φn(r2)} are a set of expansion functions, and {bn1} are the corresponding expansion

coefficients that depend on the slice index h. The discrete data function satisfies

g1[s, t; h] = − lnT (s, t; h) ≈ 4π

λ
Rβa(r2; z = h∆d) =

4π

λ

N−1
∑

n=0

bn1
(

Rφn(r2)
)

(xr, θ)
∣

∣

∣

xr=s∆d,θ=t∆θ

,

(3.7)
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Let the vector g1 ∈ R
M denote a lexicographically ordered representation of g1[s, t; h]. The

dimension M is defined by the product of the number of detector row elements and the

number of view angles. In matrix form, Eq. (3.7) can be expressed as

g1 = H1b1, (3.8)

where H1 is an M × N system matrix for the absorption model, and b1 is a N × 1 vector

of expansion coefficients whose n-th element is given by bn1 . The explicit forms for the

system matrix H1 will be determined by specifying the expansion functions φn(r2). Kaier-

Bessel window expansion functions, referred to hereafter as “blobs” [96, 97], were employed

in our study since the Radon transform operators and their derivatives [90, 177] can be

analytically computed for these blobs functions. In addition, based on previous studies in

computed tomography [96, 97] and our previous study [177] (see Chapter 2) for differential

phase contrast tomography, blobs have shown some advantages in representing the object

functions.

The blob expansion functions are defined as

φblob
n (r2;m, a, α) =







[√
1−(rb/a)2

]m

Im[α
√

1−(rb/a)2]

Im(α)
, rb ≤ a

0, otherwise,
(3.9)

where Im(·) is the m-th order modified Bessel function, rb ≡ |r2 − rn| with rn = (xn, yn)

denoting the blob center, and a and α determine the blob’s radius and specific shape. Let

ξ ≡ xr−xn cos θ− yn sin θ. As demonstrated by Lewitt [96], the 2D Radon transform of one

blob function is given by

Rφblob
n (r2;m, a, α) =

a

Im(α)

(2π

α

)1/2[√

1− (ξ/a)2
]m+1/2

Im+1/2

(

α
√

1− (ξ/a)2
)

, (3.10)
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for |ξ| ≤ a and zero otherwise. By use of Eqs. (3.7) and (3.10), the discrete imaging model

for the projected absorption property is given by

g1[s, t; h] = − lnT (s, t; h) ≈ 4π

λ
(3.11)

×
N−1
∑

n=0

bn
a

Im(α)

(2π

α

)1/2[√

1− (ξ/a)2
]m+1/2

Im+1/2

(

α
√

1− (ξ/a)2
) ∣

∣

∣

ξ=s∆d−xncos(t∆θ)−ynsin(t∆θ)
,

(3.12)

or, in the matrix-vector form,

g1 = H1b1, (3.13)

where

[H1]m′,n = [H1]m′=t×S+s, n =
4π

λ

a

Im(α)

(2π

α

)1/2

×
(

√

1− (ξ/a)2
)m+1/2

Im+1/2

(

α
√

1− (ξ/a)2
) ∣

∣

∣

ξ=s∆d−xncos(t∆θ)−ynsin(t∆θ)
, (3.14)

and S is the total number of discrete projection data.

For the projected SAXS property, similar to the above analysis, the discrete data function

is given by

g2[s, t; h] = − lnV (s, t; h) =
(

Rµsaxs(r2; z = h∆d)
)

(xr, θ)
∣

∣

∣

xr=s∆d,θ=t∆θ

, (3.15)

where V has the same meaning with the one in Eq. (3.3). The same blobs expansion functions

will be employed and the discrete image model is given in matrix form as,

g2 = H2b2, (3.16)

where b2 are the corresponding expansion coefficients and the system matrix is given by

[H2]m′,n = [H2]m′=t×S+s, n =
a

Im(α)

(2π

α

)1/2

×
(

√

1− (ξ/a)2
)m+1/2

Im+1/2

(

α
√

1− (ξ/a)2
) ∣

∣

∣

ξ=s∆d−xncos(t∆θ)−ynsin(t∆θ)
. (3.17)
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For the differential phase image, the discrete data function is given as

g3[s, t; h] = ϕref(s, t; h)−ϕobj(s, t; h) =
λd

p2

∂

∂xr

(

Rδ(r2; z = h∆d)
)

(xr, θ)
∣

∣

∣

xr=s∆d,θ=t∆θ

, (3.18)

where ϕ has the same meaning in Eq. (3.4). The same blobs expansion functions will be

employed to represent δ(r2; z = h∆d). According to our previous study (see Chapter 2) [177],

the discrete image model is given in matrix form as,

g3 = H3b3, (3.19)

where b3 are the corresponding expansion coefficients and the system matrix is given by

[H3]m′,n = [H3]m′=t×S+s, n = −λd
p2

(2πα)1/2

Im(α)

× ξ

a

(

√

1− (ξ/a)2
)m−1/2

Im−1/2

(

α
√

1− (ξ/a)2
) ∣

∣

∣

ξ=s∆d−xncos(t∆θ)−ynsin(t∆θ)
. (3.20)

Note that the k -th order spatial derivative of the Radon transform of these blobs is continuous

when m > k [96]. In our study, m = 2 was chosen and α = 10.4. This ensures that

the first-order derivatives of the blobs are continuous, and the blobs can produce a better

representation of the object.

3.3.2 Interpretation of GB-XPCT as a MC reconstruction

problem

To adopt standard image processing terminology, each of these three object properties will

be associated with a ‘channel’. The projected object properties corresponding to a collection

of tomographic view angles will be referred to as the channel sinograms. Existing XPCT

reconstruction approaches independently reconstruct each object property from knowledge of

the associated channel sinogram. Because that reconstruction process involves only a single

channel, it will be referred to as a single-channel (SC) approach. More specifically, from the

discrete image models, the absorption property information b1, the phase information b2,
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and SAXS information b3 will be independently reconstructed from their associated channel

sinograms g1, g2 and g3.

An important observation is that, because these three sinograms are computed from the same

phase-stepping data, statistical correlations exist between the channel sinograms. Because

they ignore these cross-channel statistical correlations, SC reconstructions are statistically

suboptimal. The MC approaches we describe below circumvent this limitation by jointly

reconstructing the three object properties from knowledge of the three channel sinograms.

By concurrently reconstructing the three object properties by use of an appropriately defined

penalized weighted least squares (PWLS) estimator, the 2nd order statistical properties of

the channel sinograms, including correlations between them, can be fully exploited to improve

the variance vs. resolution tradeoff of the resulting images as compared to those obtained

by use of SC methods. The advantages of MC image reconstruction and restoration are well

known in the traditional image processing community but remain entirely unexplored within

the context of XPCT imaging.

3.3.3 Description of MC image reconstruction methods

Let the lexicographically ordered vectors gl ∈ R
M×1 and bl ∈ R

N×1 represent the l-th channel

(l = 1, 2, 3) sinogram and a discrete representation of the associated object property. The

MC vectors g = (gT
1 , g

T
2 , g

T
3 )

T and b = (bT
1 ,b

T
2 ,b

T
3 )

T represent stacks of the three channel

sinograms and object properties coefficients. The MC imaging model for GB-XPCT is given

by g = Hb, where H is the MC imaging operator that is defined as

H =







H1 0 0

0 H2 0

0 0 H3






.

Here, H1, H2 and H3 are defined in Eqs. (3.14), (3.17) and (3.20) and 0 denotes the M ×N
zero matrix.

We have developed and implemented novel MC image reconstruction algorithms that fa-

cilitate accurate XPCT imaging of the three object properties. In our approach, PWLS

43



estimates of b are computed by solving the optimization problem

1

2
‖g −Hb‖2Σ−1 +R(b) → min

b∈C
, (3.21)

where the set C is a closed convex subset of R3N×1 and may include additional constraints

such as a non-negativity condition. The quantity ‖·‖2Σ−1 denotes a weighted L2-norm, where

the weight matrix Σ−1 is the inverse of the MC covariance matrix corresponding to g, which

will be estimated as described below. In GB-XPCT, Σ is a non-diagonal block matrix with

the off-diagonal block elements describing information about the noise correlations between

the different channel sinograms.

The penalty term R(b) was defined as

R(b) =
3

∑

l=1

N
∑

n=1

αlκlnψ (|[∇bl]n|ℓ2) (3.22)

where αl is the regularization parameter for the l-th channel, κln are user-provided weights [58]

that relate to the weight matrix Σ−1 in our study, [∇b]n represents the n−th component of

the discrete gradient of the vector b, and | · |ℓ2 is the Euclidean vector norm. The potential

function ψ characterizes a priori information and should be chosen such that it results in a

convex regularizer R. This form of penalty function indicates that a spatial adaptive regu-

larization energy is applied on each object property channel individually. In our preliminary

studies we considered this form of the penalty because it includes the popular non-smooth

total variation function as well as a variety of smooth edge-preserving penalties such as the

Huber penalty. For simiplicity, we adopted the total variation function as our first penalty

term to test our proposed MC methods and we referred to the MC method as PWLS-TV-MC.

To solve the MC optimization problem defined above, we developed an advanced algorithm

based on the proximal point algorithm and the augmented Lagrangian method. It can be

interpreted as a preconditioned version of the alternating direction method of multipliers

(ADMM). [23, 62] There are numerous standard algorithms available for solving PWLS op-

timization problem that could be adopted for MC reconstruction. However, they generally

converge slowly when the dynamic range of the weighting matrix in the data-fidelity term is

large, which is precisely the case in the MC problem where the weighting matrix corresponds

to the inverse covariance matrix of the MC data vector. The design of our algorithm will
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circumvent the problem of slow convergence and permit accurate image reconstruction in a

practical setting.

3.3.4 Methods for estimating the MC sinogram covariance

The MC reconstruction method requires knowledge of the covariance matrix Σ. When the

channel sinograms are formed by use of a (weighted) least square minimization problem,

which match the measured intensities for a detector pixel as a function of the phase grating

step position, the framework proposed by Fessler [56] can be employed to establish an ex-

plicit expression for Σ. When the Fourier series method is employed to compute the channel

sinograms, explicit expressions for the covariance can be established. The statistical prop-

erties of the raw measurement data, which are propagated through the sinogram estimation

process [137, 168], will be characterized experimentally by repeated physical phantom stud-

ies. The estimated full MC sinogram covariance indicated that the absorption and dark-field

channel are correlated, and the phase channel is statistically independent with the other two

channels.

3.4 Results

3.4.1 Measurement data

An experimental synchrotron-based GB-XPCT data set acquired previously at the Swiss

Light Source was utilized in this preliminary study. The imaged object corresponded to a

rat brain. The data set contained 720 tomographic views that were evenly distributed over

a 180 degree angular range. The detector pixel pitch was 7µm. At each tomographic view

angle, intensity data corresponding to 4 phase-steps were recorded. We refer the readers to

reference [107] for additional details regarding the data-acquisition and sample preparation.

From these data, a standard Fourier decomposition method was employed to estimate the

channel sinograms corresponding to the three object properties.
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Because the synchrotron-based image data contained relatively low noise levels, we regard

the data set as being effectively noise-free and refer this as “noise-free” data. The extracted

sinograms are referred as to the “noise-free” sinograms. To emulate the high-noise condi-

tion, Gaussian noise was added to the “noise-free” measured phase-stepping intensity data.

Subsequently, estimates of the channel sinograms that contained elevated noise levels were

computed from these data. The produced corresponding sinograms are refrred as to the

“noisy” sinograms. An empirical estimate of the covariance matrix Σ of the MC sinogram

vector g was computed by generating an ensemble of 500 noisy phase-stepping data sets as

described above and reconstructing noisy channel sinograms.

(a) (b) (c) MSSIM = 0.3673

Figure 3.2: Examples of reconstruced absorption images by FBP method for “noise-free“
and “noisy“ sinograms. (a) Reference image reconstructed by FBP method from noise-free
projection data; (b) Noisy image reconstructed by FBP method from noisy projection data;
(c) SSIM mapping for the noisy FBP image when compared to the reference image;

3.4.2 Absorption channel results

For the absorption channel, the FBP reconstructed image from the “noise-free” sinogram

is treated as our reference image. One region-of-interest (ROI) was selected for visual in-

spection and quantitative comparison, and it is shown in Fig. 3.2 (a). The noisy ROI image

reconstructed by FBP method is shown in Fig. 3.2 (b) and its corresponding SSIM map-

ping is shown in Fig. 3.2 (c). As can be seen, the FBP reconstructed image from “noisy”

sinograms was heavily deteriorated by high-level noise. and the MSSIM value is only 0.3673.
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Figure 3.3: Mean SSIM curves for the absorption channel: MSSIM values as a function of
regularization parameters λ. The curves are parametrized by the regularization parameter.
(a) Produced by PLS-TV (without noise property) case, (b) Produced by PWLS-TV-SC
(dashed curve) and PWLS-TV-MC (solid curve) case.

On the other hand, three MSSIM curves as a function of regularization parameters produced

by PLS-TV, PWLS-TV-SC and PWLS-TV-MC for the absorption images are shown in

Fig. 3.3. The regularization parameters were selected in a proper range to control the

smoothness of the images from noisy to oversmooth. As can be seen, both SC and MC cuves

shown in Fig. 3.3 (b) can obtain higher MSSIM values range than the PLS-TV case without

incorporating noise property. In addition, the solid MC curve is above the dashed SC cure

everywhere. This indicates that the MC approach produces images that are more similar to

the reference image than those produced by the SC approach.

To visually compare the reconstructed images, four reconstructed images were selected from

each curve, and they are shown in Fig. 3.4. As can be seen, the PWLS-TV-MC image visually

seems to have stronger ability to perserve some small structures, such as blood vessels and

other edge structures, and obtain higher contrast for those structures. To quantitatively

estimate those difference, the corresponding SSIM mapping for Fig. 3.4 are shown in Fig. 3.5.

Based on those SSIM images, we could clearly see the SSIM images from MC approach

have brighter appearance for blood vessels and others small structures, which indicate the

superior similarities obtained for MC approach. These SSIM images confirm our observation

about the lower noise level and higher contrast for the small structures can be obtained in

PWLS-TV-MC. Meanwhile, the mean SSIM (MSSIM) values also quantitatively confirm our

observation and conclusion.
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PLS-TV
images

(a) λ = 0.00175 (b) λ = 0.00275 (c) λ = 0.00375 (d) λ = 0.00475

PWLS-
TV-SC
images

(e) λ = 0.013 (f) λ = 0.017 (g) λ = 0.021 (h) λ = 0.025

PWLS-
TV-MC
images

(i) λ = 0.013 (j) λ = 0.017 (k) λ = 0.021 (l) λ = 0.025

Figure 3.4: Examples of absorption images reconstructed by PLS-TV, PWLS-TV-SC and
PWLS-TV-MC method with different regularization values. First Row: Images produced by
PLS-TV method without variance; Second Row: Images produced by PWLS-TV-SC method;
Third Row: Images produced by PWLS-TV-MC method. All images are displayed in the
same window.

3.4.3 Darkfield channel

For the darkfield channel, the FBP reconstructed image from the “noise-free” sinogram is

treated as our reference image. One region-of-interest (ROI) was selected for visual inspec-

tion and quantitative comparison, and it is shown in Fig. 3.6 (a). The noisy ROI image

48



SSIM
for
PLS-TV
images

(a) MSSIM = 0.6219 (b) MSSIM = 0.6775 (c) MSSIM = 0.6959 (d) MSSIM = 0.6826

SSIM
for
PWLS-
TV-SC
images

(e) MSSIM = 0.6971 (f) MSSIM = 0.7598 (g) MSSIM = 0.7756 (h) MSSIM = 0.7639

SSIM
for
PWLS-
TV-MC
images

(i) MSSIM = 0.7320 (j) MSSIM = 0.8124 (k) MSSIM = 0.8306 (l) MSSIM = 0.8060

Figure 3.5: SSIM images and MSSIM values corresponding to the images in Fig.3.4. All
images are dispaly in the same window [0 1].

reconstructed by FBP method is shown in Fig. 3.6 (b) and its corresponding SSIM map-

ping is shown in Fig. 3.6 (c). As can be seen, the FBP reconstructed image from “noisy”

sinograms was heavily deteriorated by noise. and the MSSIM value was only 0.4378.

On the other hand, three MSSIM curves as a function of regularization parameters pro-

duced by PLS-TV, PWLS-TV-SC and PWLS-TV-MC for the scattering images are shown

in Fig. 3.7. The regularization parameters were selected in a proper range to control the

smoothness of the images from noisy to oversmooth. As can be seen, both SC and MC

curves shown in Fig. 3.7 (b) obtain higher MSSIM values than the PLS-TV case without
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(a) (b) (c) MSSIM =0.4378

Figure 3.6: Examples of reconstruced darkfield (scattering) images by FBP method for
“noise-free“ and “noisy“ sinograms. (a) Reference image reconstructed by the FBP method
from noise-free projection data; (b) Noisy image reconstructed by FBP method from noisy
projection data; (c) SSIM mapping for the noisy FBP image when compared to the reference
image;
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PWLS−TV−SC−Darkfield
PWLS−TV−MC−Darkfield

(b)

Figure 3.7: Mean SSIM curves for the darkfield channel: MSSIM values as a function of
regularization parameters λ. The curves are parametrized by the regularization parameter.
(a) Produced by PLS-TV (without noise property) case, (b) Produced by PWLS-TV-SC
(dashed curve) and PWLS-TV-MC (solid cuve) case.

incorporating noise property. In addition, the solid MC curve is above the dashed SC curve

everywhere. This indicates that the MC approach produces images that are more similar to

the reference image than those produced by the SC approach.

To visually compare the reconstructed images, four reconstructed darkfield images were

selected from each curve, and they are shown in Fig. 3.8. As can be seen, the PWLS-TV-

MC image perserves some small structures, such as blood vessels and other edge structures,

and obtain higher contrast for those structures. To quantitatively estimate those difference,
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PLS-TV
images

(a) λ = 0.00175 (b) λ = 0.00275 (c) λ = 0.00375 (d) λ = 0.00475

PWLS-
TV-SC
images

(e) λ = 0.013 (f) λ = 0.017 (g) λ = 0.021 (h) λ = 0.025

PWLS-
TV-MC
images

(i) λ = 0.013 (j) λ = 0.017 (k) λ = 0.021 (l) λ = 0.025

Figure 3.8: Examples of darkfield images reconstructed by PLS-TV, PWLS-TV-SC and
PWLS-TV-MC method with different regularization values. First Row: Images produced
by PLS-TV method without variance ; Second Row: Images produced by PWLS-TV-SC
method; Third Row: Images produced by PWLS-TV-MC method. All images are displayed
in the same window.

the corresponding SSIM mapping for Fig. 3.8 are shown in Fig. 3.9. Based on those SSIM

images, we could clearly see the SSIM images from MC approach have brighter appearances

for blood vessels and others small structures, which indicate the superior similarities obtained

for MC approach. These SSIM images confirm our observation about the lower noise level and

higher contrast for the small structures can be obtained by use of PWLS-TV-MC method.

Meanwhile, the mean SSIM (MSSIM) values also quantitatively confirm our observations

and conclusions.
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SSIM
for
PLS-TV
images

(a) MSSIM = 0.6233 (b) MSSIM = 0.7001 (c) MSSIM = 0.7264 (d) MSSIM = 0.7163

SSIM
for
PWLS-
TV-SC
images

(e) MSSIM = 0.6884 (f) MSSIM = 0.7792 (g) MSSIM = 0.7943 (h) MSSIM = 0.7646

SSIM
for
PWLS-
TV-MC
images

(i) MSSIM = 0.7131 (j) MSSIM = 0.7970 (k) MSSIM = 0.8374 (l) MSSIM = 0.8120

Figure 3.9: SSIM images and MSSIM values corresponding to the images in Fig.3.8. All
images are displayed in a window [0 1].

3.4.4 Phase channel

Similar studies were also conducted for the phase channel. The FBP image reconstructed

from the “noise-free” sinogram was treated as our reference image. One region-of-interest

(ROI) was selected for visual inspection and quantitative comparison, and it is shown in

Fig. 3.10 (a). The noisy ROI image reconstructed by FBP method is shown in Fig. 3.10 (b)

and its corresponding SSIM mapping is shown in Fig. 3.10 (c). As can be seen, the FBP

reconstructed image from “noisy” sinograms was heavily deteriorated by high-level noise. and
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(a) (b) (c) MSSIM = 0.6133

Figure 3.10: Examples of reconstruced phase images by FBP method for “noise-free“ and
“noisy“ sinograms. (a) Reference image reconstructed by FBP method from noise-free pro-
jection data; (b) Noisy image reconstructed by FBP method from noisy projection data; (c)
SSIM mapping for the noisy FBP image when compared to the reference image;
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PWLS−TV−MC−Phase

(b)

Figure 3.11: Mean SSIM curves for the phase channel: MSSIM values as a function of
regularization parameters λ. The curves are parametrized by the regularization parameter.
(a) Produced by PLS-TV (without noise property) case, (b) Produced by PWLS-TV-SC
(dashed curve) and PWLS-TV-MC (solid cuve) case.

the MSSIM value is 0.6133, which is considerable higher than the absorption and darkfield

channel.

On the other hand, three MSSIM curves as a function of regularization parameters produced

by PLS-TV, PWLS-TV-SC and PWLS-TV-MC for the phase images are shown in Fig. 3.11.

The regularization parameters were selected in a proper range to control the smoothness of

the images from noisy to oversmooth. As can be seen, As can be seen, both SC and MC

cuves shown in Fig. 3.11 (b) can obtain higher MSSIM values range than the PLS-TV case

without incorporating noise property. However, different to the absorption and dark-field
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PLS-TV
images

(a) λ = 0.0175 (b) λ = 0.0275 (c) λ = 0.0375 (d) λ = 0.0475

PWLS-
TV-SC
images

(e) λ = 0.013 (f) λ = 0.017 (g) λ = 0.021 (h) λ = 0.025

PWLS-
TV-MC
images

(i) λ = 0.013 (j) λ = 0.017 (k) λ = 0.021 (l) λ = 0.025

Figure 3.12: Examples of phase images reconstructed by PLS-TV, PWLS-TV-SC and
PWLS-TV-MC method with different regularization values. First Row: Images produced by
PLS-TV method without variance; Second Row: Images produced by PWLS-TV-SC method;
Third Row: Images produced by PWLS-TV-MC method. All images are displayed in the
same window.

channel, the two MSSIM curves from PWLS-TV-SC and PWLS-TV-MC methods are very

close to each other and have very similar value ranges in this appropriate regularization

coefficient range.

To visually compare the reconstructed images, four reconstructed phase images were selected

from each curve, and they are shown in Fig. 3.12. As can be seen, both PWLS-TV-SC and
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SSIM
for
PLS-TV
images

(a) MSSIM = 0.6616 (b) MSSIM = 0.7185 (c) MSSIM = 0.7432 (d) MSSIM = 0.7430

SSIM
for
PWLS-
TV-SC
images

(e) MSSIM= 0.7768 (f) MSSIM = 0.8330 (g) MSSIM = 0.8467 (h) MSSIM = 0.8343

SSIM
for
PWLS-
TV-MC
images

(i) MSSIM = 0.7710 (j) MSSIM = 0.8337 (k) MSSIM = 0.8495 (l) MSSIM = 0.8379

Figure 3.13: SSIM images and MSSIM values corresponding to the images in Fig.3.12. All
images are displayed in a window [0 1].

PWLS-TV-MC images perserve some small structures, such as blood vessels and other edge

structures and they visually look very similar for their appearance.

To quantitatively estimate those differences, the corresponding SSIM mapping for Fig. 3.12

are shown in Fig. 3.13. These SSIM images confirm our visual observation about PWLS-TV-

SC and PWLS-TV-MC images. Meanwhile, the MSSIM values also quantitatively confirm

our observations and conclusions.
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3.5 Summary and conclusion

For the first time, we fully exploited the 2nd order statistical properties of the measure-

ment data in GB XPCT to suppress image noise by formulating reconstruction methods in

a MC framework [175]. The computer simulation studies have confirmed our expectation

that the MC approach that exploits inter-sinogram correlations can achieve lower noise-levels

and better image quality for the absorption and dark-field channels. This observation and

conclusion can be explained by the estimated full MC covariance matrix that implies that

the absorption and dark-field channels are correlated and the phase channel is statistically

independent from the other two channels. These reconstruction methods will enable imag-

ing at reduced doses and imaging times and will accelerate the translation of this imaging

technology.
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Chapter 4

Sparsity-Regularized Image

Reconstruction of Decomposed

K-Edge Data in Spectral CT

4.1 Introduction

The development of spectral X-ray computed tomography (CT) using binned photon-counting

detectors has received great attention in recent years and is prompting a paradigm shift in

X-ray CT imaging. These advancements are likely to benefit numerous preclinical and clin-

ical imaging applications. For example, K-edge CT has been investigated as a modality to

image contrast agents such as iodine [2, 74], gadolinium [59], bismuth [127], and gold [38].

Ytterbium was recently discussed as a contrast agent for conventional CT [98] in general and

K-edge imaging [128].

The task of image reconstruction in spectral CT can be implemented in a two-stage pro-

cessing scheme. In the first step, estimates of material-decomposed sinograms are obtained

from the measured energy-resolved photon counts. In the second step, material images are

reconstructed from knowledge of the material sinogram estimates. Statistically-principled

reconstruction algorithms have been proposed [55,144,146,158] that seek to minimize a pe-

nalized weighted least squares (PWLS) cost function. The weighting matrix employed in

the data-fidelity term, which corresponds to the inverse covariance of the computed material

sinograms, can be estimated in different ways [53, 139, 182].
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While it holds great potential for important preclinical and clinical applications, selective

imaging of K-edge materials in spectral CT faces challenges that currently limit its applicabil-

ity. Implementations of K-edge CT employ photon counting detectors to detect the energies

of individual photons. To avoid pulse-pileup in the detector, photon fluxes must be limited,

which can result in long data-acquisition times. One way to mitigate long data-acquisition

times is to develop image reconstruction algorithms that can produce useful images from

few-view and/or noisy decomposed sinogram data. While K-edge images are often sparse,

the ability of sparsity-based regularization strategies coupled with knowledge of the object-

specific noise properties of the decomposed K-edge sinogram data to improve reconstructed

image quality in K-edge CT remains largely unexplored.

In this Note, sparsity-regularized PWLS methods are investigated for reconstructing K-edge

images from few-view decomposed sinogram data. Object-specific information regarding the

decomposed K-edge sinogram variance is employed to weight the data fidelity term in the

PWLS cost function. Two choices for the penalty term in the cost function are investigated:

a total variation (TV) penalty and a weighted sum of a TV penalty and an ℓ1-norm with a

wavelet sparsifying transform [48, 100]. While TV and other sparsity promoting regulariza-

tion strategies have been extensively applied for reconstruction problems that explictly or

implicitly minimize a penalized least squares (PLS) cost function [20,63,151,174,177,179], rel-

atively few works have investigated the impact of exploiting such regularization strategies in

combination with a statistically weighted data fidelity term in a PWLS framework [101,135].

Computer-simulation and experimental phantom studies are conducted to visually and quan-

titatively demonstrate the efficacy of the proposed reconstruction methods.

4.2 Materials and Methods

4.2.1 PWLS Image Reconstruction with TV and ℓ1-norm Regu-

larization

In spectral CT imaging equipped with photon-counting detectors, a set of Nb energy resolved

photon count measurements are obtained and employed to estimate a collection of Nm ≤
Nb sinograms that represent pre-determined material properties. This process is referred
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to as material sinogram decomposition. Let An denote a lexicographically ordered vector

representing the decomposed sinogram corresponding to the n-the material, and let A =

[A1; . . . ;ANm
] denote the vector formed by stacking all of the An. Maximum likelihood (ML)

estimates of A, denoted by Â, can be obtained assuming a Poisson noise model [141]. Given

the ML-estimator, the diagonal elements of the Fisher information matrix can be numerically

computed [39, 140] and used to estimate the variance of the decomposed sinograms.

We consider the problem of reconstructing an estimate of the n-th object material individ-

ually, which is assumed to be a K-edge material. Let fn denote a N -dimensional approxi-

mation of the sought-after K-edge material distribution. In this work, conventional pixels

were utilized to form fn. TheM-dimensional vector Ân representing the decomposed K-edge

sinogram estimate is related to fn by the approximate imaging model Ân = Hfn, where the

M×N matrix H represents a discrete 2D fan-beam forward projector in the two-dimensional

studies described below.

The following PWLS estimators of fn were considered [176]:

f̂n = arg min
fn ≥ 0

∥

∥Ân −Hfn
∥

∥

2

Wn
+ 2λtv‖fn‖tv , (4.1)

and

f̂n = arg min
fn ≥ 0

∥

∥Ân −Hfn
∥

∥

2

Wn
+ 2λtv‖fn‖tv + 2λl1‖Φfn‖1 , (4.2)

where λtv and λl1 are positive regularization parameters, ‖ · ‖tv and ‖ · ‖1 denote the TV

and ℓ1-norms, and Φ is a wavelet transform operator. In this work, Φ was chosen as the

Daubechies discrete wavelet transform involving three wavelet scales. The M ×M diagonal

weight matrix Wn contains elements that are specified by the inverse of the variance of each

sinogram element that, in this work, are estimated by use of the Fisher information matrix

as described previously [139]. Since the second order statistics of the decomposed sinograms

can be accurately described by Gaussian statistics [145], the above PWLS estimators can be

considered as accurate approximations of penalized maximum likelihood estimators. Our

method for solving Eq. (4.1) will be referred to as the PWLS-TV method. In the case when

the sinogram variance information is ignored and Wn is redefined as the M ×M identity

matrix, the implementation of Eq. (4.1) will be referred to as the PLS-TV method. Similarly,

our method for solving Eq. (4.2) will be referred to as the PWLS-TV-ℓ1 method. The
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PWLS-TV and PLS-TV methods were implemented by use of the fast iterative shrinkage-

thresholding algorithm (FISTA) [14]. The PWLS-TV-ℓ1 method was implemented by use

of the combination of the splitting algorithm proposed by Combettes [37] and the FISTA.

A similar strategy has also been proposed by two previous works [77, 102] for MR image

reconstruction, in which the variance Wn was an identify matrix.

It should be noted that combining the TV and ℓ1-norm penalties [30] in Eq. (4.2) is motivated

by the fact that use of a PLS-TV estimator can result in patch-like image distortions if

the chosen value of the regularization parameter λtv is too large. Combining the penalties

yields the opportunity to exploit the effective denoising properties of TV regularization while

mitigating these distortions. A previous work [63] employed a similar approach for a ‘fully-

spectral’ CT problem in which the sinogram decomposition step was avoided. That work

differs from our study in several ways. For example, it was based on a linearized imaging

model that assumed monochromatic illumination, it did not investigate the incorporation

of the second-order statistical properties of the measurement data into the reconstruction

method, and did not exploit object sparsity in the wavelet transform domain.

4.2.2 Computer-Simulation Studies

Computer-simulation studies were conducted to investigate: (1) the advantages of the PWLS-

TV method over the PLS-TV method for reduced-view K-edge image reconstruction; and (2)

the advantages of the PWLS-TV-ℓ1 method over the PWLS-TV method for the same task.

A numerical phantom was created from a representative conventional CT image dataset

that had been originally acquired with a clinical system (Brilliance iCT, Philips Healthcare,

Eindhoven, The Netherlands). The clinical CT image was segmented into ‘soft tissue’ and

‘bone’ components. In addition, objects containing ytterbium were inserted as shown in

Fig. 4.1 (left). A zoomed-in region containing the ytterbium inserts is provided in Fig. 4.1

(right). The cylinder indicated by the arrow in the upper-left region was intended to mimic

a fibrin-targeted contrast agent in a coronary artery. All material attenuation coefficients

were determined from the Photon Cross Sections Database [17].

From this numerical phantom, material-specific line integral data and variance estimates [139]

were computed for the material basis set ‘photo-electric absorption’, ‘Compton effect’, and
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Figure 4.1: The numerical phantom employed in the computer-simulation studies is shown
in the left panel and is described in the text. The right panel displays a zoomed-in image of
the ytterbium inserts contained within the white box in the left panel.

‘ytterbium’, assuming a 2D equal-angle fan-beam geometry. The source-to-rotation center

distance was 0.57 m and the distance between the source and the center of the detector was

1.04 m. The fan-angle was approximately 52 degrees and the number of detector units was

1024. An x-ray source spectrum and detector response function for a binned photon-counting

detector was employed as described in a previous study [147]. The energy thresholds of the

six energy bins were set at 25, 46, 61, 64, 76 and 91 keV, respectively. These energy bins were

determined in our previous sensitivity of photon-counting based K-edge imaging study [142].

The following scan protocol parameters were assumed: anode voltage 130 kVp, anode current

400mA, 1200 views/turn, 0.27s/turn.

By use of the estimated variance matrix and treating the noiseless ytterbium sinogram es-

timate as the mean of a Gaussian random vector, an ensemble of M = 500 noisy K-edge

sinograms was computed. The PWLS-TV and PLS-TV methods were employed to recon-

struct 500 images from the ensemble of noisy K-edge sinograms. Images were reconstructed

by use of the two reconstruction methods from reduced-view K-edge sinograms that contained

400, 200, and 100 equally spaced tomographic view angles over 360◦. Different choices of

the regularization parameter values were considered as described below. In all cases, the

reconstructed images were of dimension 1024 x 1024 with a pixel size 0.5 x 0.5 mm2. The

stopping criteria adopted in all studies was chosen such that a converged result was ensured.

Specifically, iterations were terminated when changes in the objective function occurred only

in the sixth decimal place.
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(a) Conventional CT
(FBP)

(b) K-edge sinogram (1024 x
1250)

(c) K-edge variance estimates

Figure 4.2: Physical Phantom Experiment: (a) Conventional CT reconstruction of the phys-
ical phantom using a standard filtered backprojection (FBP) algorithm. (b) Decomposed
K-edge (ytterbium) sinogram. (c) The estimated sinogram variance.

4.2.3 Assessment of spatial resolution and noise properties

From the ensemble of noisy images reconstructed by use of the PLS-TV and PWLS-TV

methods, the average empirical image variance within the region-of-interest (ROI) indicated

by the white circle in the right image shown in Fig. 4.1 was computed. To quantify the

anisotropic spatial resolution, a cumulative Gaussian function [94] was fit to two orthogonal

profiles in the mean image, respectively, whose locations are indicated in the right panel of

Fig. 4.1. The full-width at half-maximum (FWHM) value of the fitted error function served

as a summary measure of spatial resolution at that location in image space, with smaller

values indicating higher spatial resolution.

The values of the regularization parameters employed in this study were chosen in a way that

the appearance of reconstructed images varied subjectively from under-smoothed (high-level

noise) to relatively over-smoothed (low-noise level). The effects of incorporating sinogram

variance information can be easily identified in such a comparision, since the PLS-TV and

PWLS-TV method have the same TV regularization term and the only difference between

the two methods is whether the sinogram variances was incorporated or not. The PWLS-TV-

ℓ1 method was not examined in this component of our study due to the added complication

of having to systematically vary two regularization parameters.
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4.2.4 Quantitative measurement of different reconstruction algo-

rithms performance

The structural similarity index measurement (SSIM) [167] was adopted to quantify the simi-

larity between images reconstructed by use of the different methods and the original phantom

object. The absolute value of each element in an image of SSIM values is between 0 and 1,

in which the value of 1 is obtained only if the pixel values of the images being compared are

identical. A mean SSIM (MSSIM) value was computed by averaging the SSIM image.

4.2.5 Phantom Experiment with Targeted Ytterbium-Nanoparticles

To corroborate the computer-simulation results, experimental data were acquired with a

spectral CT small animal scanner prototype (Philips Research, Hamburg, Germany). Figure

4.2(a) shows a representative slice of a conventional CT reconstruction of the phantom

(PMMA, diameter 50 mm). It was composed of calcium chloride probes (3 mol/l), mimicking

the rib cage, and in its center four X-ray lucent tubes, two tubes filled with suspension of

ytterbium nanocolloids [128] diluted with water in the ratio 1:1 and 1:4, respectively, and

two probes containing human fibrin-rich clots. One of the clots was targeted with YbNC

equipped with a fibrin-specific antibody designed to bind to ruptured plaque [127] while the

other did not contain any YbNC. The following scan parameters were used: anode voltage 130

kVp, anode current 50 mA, planar detector geometry, 1250 views/turn, rotation time/turn

100 s, energy thresholds identical to the settings of the simulation. A ML estimate of the

decomposed K-edge sinogram corresponding to ‘ytterbium’ was computed along with an

estimate of the sinogram variance. The estimated K-edge sinogram and sinogram variance

are displayed in Fig. 4.2(b) and 4.2(c), respectively. Note that a high noise level in the

decomposed sinogram can be observed. Images were reconstructed by use of the different

reconstruction methods on a 256× 256 matrix with a pixel size of 0.24× 0.24 mm2.
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Figure 4.3: Computer-simulation studies: Ensemble variances as a function of spatial res-
olution (FWHM) for different undersampling factors. The curves are parametrized by the
regularization parameter. FWHM values are evaluated in horizontal (black) and vertical
(gray) orientation at positions shown in Fig. 4.1. The PWLS-TV results (solid) show an
improved noise-resolution performance compared to PLS-TV (dashed).

4.3 Computer-Simulation Studies

4.3.1 Spatial resolution and noise properties

The plots of image variance vs. spatial resolution that were created by sweeping the regular-

ization parameter and are displayed in Fig. 4.3 for cases in which 400, 200, or 100 tomographic

views were employed for image reconstruction. In all cases, the PWLS-TV method (solid

curves) shows a superior tradeoff between variance and resolution compared to the PLS-TV

method (dashed curves). This confirms the expected finding that it is advantageous to em-

ploy knowledge of the decomposed sinogram variance in the reconstruction method. This

is found to be especially important for mitigating deteroriation of the variance and resolu-

tion properties when reduced-view tomographic data are employed, as demonstrated by the

significantly improved performance of the PWLS-TV over the PLS-TV method for the 100-

and 200- view cases.
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(a) PLS-TV,
λtv = 0

(b) PLS-TV
λtv = 1 · 10−4

(c) PLS-TV
λtv = 2 · 10−4

(d) PLS-TV,
λtv = 4 · 10−4

(e) PWLS-TV,
λtv = 0.0

(f) PWLS-TV,
λtv = 0.1

(g) PWLS-TV,
λtv = 0.2

(h) PWLS-TV,
λtv = 0.3

(i) PWLS-TV-ℓ1,
λtv = 0.3, λl1 = 0.2

(j) PWLS-TV-ℓ1,
λtv = 0.3, λl1 = 0.5

(k) PWLS-TV-ℓ1,
λtv = 0.3, λl1 = 0.8

(l) PWLS-TV-ℓ1,
λtv = 0.3, λl1 = 1.0

Figure 4.4: Computer-simulation studies: Examples of reconstructed K-edge images ROIs
for the 200-view case corresponding to different regularization parameter values. All images
are cropped to size of 300 × 300 pixels and are displayed in the same grey-scale window.
Images reconstructed via PLS-TV (a-d), PWLS-TV (e-h) and PWLS-TV-ℓ1 (i-h).

4.3.2 Qualitatively assesments

To visually examine the effects of incorporating the decomposed sinogram variance in the

reconstruction method, examples of images reconstructed by use of the PLS-TV and PWLS-

TV methods for the 200-view case are shown in Figure 4.4(a)-(d), (e)-(h). In the first and

second rows, from left-to-right, the TV regularization parameter λtv was increased from
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True
image

PWLS-
TV,

λtv = 0.3

PWLS-
TV-ℓ1,
λtv = 0.3,
λl1 = 0.2

PWLS-
TV-ℓ1,
λtv = 0.3,
λl1 = 0.5

PWLS-
TV-ℓ1,
λtv = 0.3,
λl1 = 0.8

PWLS-
TV-ℓ1,
λtv = 0.3,
λl1 = 1.0

ROI-1

ROI-2

ROI-3

Figure 4.5: Three zoomed-in ROIs of true phantom and corresponding reconstructed images
from Fig. 4.4. Each column was obtained from the oringial phantom or one particular
reconstructed image, which is indicated by the name shown in first row. All images were
displayed in the same grey-scale window.

zero to some positive value. When no TV penalty was added (λtv = 0), the impact of

incorporating the sinogram variance can be observed readily. In particular, the PWLS

estimate in Fig. 4.4(e) contains structures whose shapes are better preserved than those in
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the PLS estimate in Fig. 4.4(a). For the case when TV regularization was employed, the

PLS-TV estimates in Figs. 4.4(c) and (d) contained lower noise levels but some of the small

object structures were lost. On the other hand, the structures in Fig. 4.4(h) reconstructed

by the PWLS-TV method are perserved with better appearance with less shape distortion,

especially for small structures.

Note that the images in Figs. 4.4(g) and (h) reconstructed by use of the PWLS-TV method

contain a noise contribution that is comprised of isolated pixels having large values. This

noise can be effectively suppressed by use of the PWLS-TV-ℓ1 reconstruction method. Fig-

ures 4.4(i)-(l) display the images reconstructed by use of the PWLS-TV-ℓ1 method, where

the value of λtv was fixed and the value of λl1 was increased from left to right. To more

clearly see the effects of including the ℓ1 regularization term, zoomed-in ROIs of Fig. 4.4(h)

and Figs. 4.4(i)-(l). are shown in Fig. 4.5. The first column of images shows the ROIs

from the true phantom. The second column shows ROIs from the image in Fig. 4.4(h) that

reconstructed by use of the PWLS-TV method. The remaining columns show ROIs from

the images in Figs. 4.4(i)-(l) that reconstructed by use of the PWLS-TV-ℓ1 method. As the

value of λl1 is increased, the ROI-I images become more sharp and compact due to the ℓ1

sparsity constraint. The ROI-2 and ROI-3 images also display the same tendency.

4.3.3 SSIM comparison between PWLS-TV and PWLS-TV-ℓ1

In order to quantitatively measure the difference between reconstructed PWLS-TV and

PWLS-TV-ℓ1 images, the SSIM images and MSSIM values corresponding to the images in

Fig. 4.4 (e-l) are displayed in Fig. 4.6. The MSSIM values corresponding to the PWLS-

TV-ℓ1 method are higher than those corresponding to the PWLS-TV method. Moreover,

the backgrounds of the SSIM images are much more uniform and have a majority of pixel

values close to one; this reflects the fact that the PWLS-TV-ℓ1 method was able to remove

the isolated noisy pixels that were produced by the PWLS-TV method These quantitative

results are consistent with the qualitative observations described above.
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(a) PWLS-TV, λtv = 0,
MSSIM=0.491

(b) PWLS-TV, λtv =
0.1, MSSIM=0.603

(c) PWLS-TV, λtv =
0.2, MSSIM=0.703

(d) PWLS-TV, λtv =
0.3, MSSIM=0.776

(e) PWLS-TV-ℓ1,
λtv = 0.3, λl1 = 0.2,
MSSIM=0.904

(f) PWLS-TV-ℓ1,
λtv = 0.3, λl1 = 0.5,
MSSIM=0.917

(g) PWLS-TV-ℓ1,
λtv = 0.3, λl1 = 0.8,
MSSIM=0.930

(h) PWLS-TV-ℓ1,
λtv = 0.3, λl1 = 1.0,
MSSIM=0.952

Figure 4.6: SSIM images and MSSIM values corresponding to the images in Fig.4.4 (e)-(h)
reconstructed by use of the PWLS-TV method are shown in subfigures (a)-(d), respectively.
SSIM images and MSSIM values corresponding to the images in Fig.4.4 (i)-(l) reconstructed
by use of the PWLS-TV-ℓ1 method are shown in subfigures (e)-(h), respectively. All images
are displayed in the same window [0 1].

4.3.4 Different number of views results for FBP and proposed

PWLS-TV-ℓ1

The performance of the PWLS-TV-ℓ1 method was compared to that of the filtered back-

projection (FBP) algorithm. Images reconstructed by use of the FBP algorithm by use of

100, 200, 400 and 1200 views (full-view) are shown in Fig. 4.7(a)-(d). Images reconstructed

by use of the PWLS-TV-ℓ1 method, corresponding to different regularization parameters,

from 100, 200 and 400 views are shown in Figs. 4.7(e)-(h), (i)-(l) and Figs. 4.7(m)-(p). As

expected, the images reconstructed by use of the FBP algorithm contain significantly ele-

vanted noise levels. The structures in the 100-view FBP image are difficult to identify due to

the high noise levels in the image. Conversely, the performance of the PWLS-TV-ℓ1 method

degraded much more slowly than the FBP algorithm as the number of tomographic views
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(a) FBP, 100views (b) FBP, 200views (c) FBP, 400views (d) FBP, 1200views

(e) PWLS-TV-ℓ1,100,
λtv = 0.2, λl1 = 0.2

(f) PWLS-TV-ℓ1,100,
λtv = 0.2, λl1 = 0.5

(g) PWLS-TV-ℓ1,100,
λtv = 0.2, λl1 = 0.8

(h) PWLS-TV-ℓ1,100,
λtv = 0.2, λl1 = 1.0

(i) PWLS-TV-ℓ1,200,
λtv = 0.3, λl1 = 0.2

(j) PWLS-TV-ℓ1,200,
λtv = 0.3, λl1 = 0.5

(k) PWLS-TV-ℓ1,200,
λtv = 0.3, λl1 = 0.8

(l) PWLS-TV-ℓ1,200,
λtv = 0.3, λl1 = 1.0

(m) PWLS-TV-ℓ1,400,
λtv = 0.4, λl1 = 0.2

(n) PWLS-TV-ℓ1,400,
λtv = 0.4, λl1 = 0.5

(o) PWLS-TV-ℓ1,400,
λtv = 0.4, λl1 = 0.8

(p) PWLS-TV-ℓ1,400,
λtv = 0.4, λl1 = 1.0

Figure 4.7: Examples of reconstructed K-edge images via FBP algorithm (a-d) and PWLS-
TV-ℓ1 algorithm by use of 100 views (e-h), 200 views (i-l) and 400 views (m-p). All images
are displayed in the same window.

was reduced. Even in the few-view cases, the PWLS-TV-ℓ1 method produced images that

possess relatively clean backgrounds.
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(a) PWLS-TV-ℓ1,100,
λtv = 0.2, λl1 = 0.2
MSSIM =0.818

(b) PWLS-TV-ℓ1,100,
λtv = 0.2, λl1 = 0.5
MSSIM =0.868

(c) PWLS-TV-ℓ1,100,
λtv = 0.2, λl1 = 0.8
MSSIM =0.904

(d) PWLS-TV-ℓ1,100,
λtv = 0.2, λl1 = 1.0
MSSIM =0.910

(e) PWLS-TV-ℓ1,200,
λtv = 0.3, λl1 = 0.2,
MSSIM=0.904

(f) PWLS-TV-ℓ1,200,
λtv = 0.3, λl1 = 0.5,
MSSIM=0.917

(g) PWLS-TV-ℓ1,200,
λtv = 0.3, λl1 = 0.8,
MSSIM=0.930

(h) PWLS-TV-ℓ1,200,
λtv = 0.3, λl1 = 1.0,
MSSIM=0.952

(i) PWLS-TV-ℓ1,400
λtv = 0.4, λl1 = 0.2
MSSIm =0.916

(j) PWLS-TV-ℓ1,400
λtv = 0.4, λl1 = 0.5
MSSIM =0.936

(k) PWLS-TV-ℓ1,400
λtv = 0.4, λl1 = 0.8
MSSIM =0.957

(l) PWLS-TV-ℓ1,400
λtv = 0.4, λl1 = 1.0
MSSIM =0.951

Figure 4.8: SSIM images and MSSIM values corresponding to the images in Fig.4.7 (e)-(h)
reconstructed by use of the PWLS-TV-ℓ1 method with 100 views, are shown in subfigures
(a)-(d); SSIM images and MSSIM values corresponding to the images in Fig.4.7 (i)-(l) re-
constructed by use of the PWLS-TV-ℓ1 method with 200 views, are shown in subfigures
(e)-(h); SSIM images and MSSIM values corresponding to the images in Fig.4.7 (m)-(p)
reconstructed by use of the PWLS-TV-ℓ1 method with 400 views, are shown in subfigures
(i)-(l). All images are displayed in the same window [0 1].

SSIM images and MSSIM values corresponding to the PWLS-TV-ℓ1 images in Fig. 4.7 are

displayed in Fig. 4.8. The SSIM images corresponding to the PWLS-TV-ℓ1 method possess
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(a) FBP, 125 views (b) FBP, 625 views (c) FBP, 1250 views

Figure 4.9: Physical Phantom Experiment: Reconstructed images of the K-edge material by
use of FBP algorithm for 125, 625 and 1250 projection views, respectively. All images are
displayed in the same grey-scale window.

a bright background with a majority of pixel values close to 1, indicating high similarity to

the reference image, for all cases. The major difference between the SSIM images for three

reduced-view cases is that the intensity values become slightly larger as the view number

increases from 100 to 400. This reflects that reconstructed image bias is reduced as the

number of view angles utilized is increased. The MSSIM values for the images confirm these

findings.

4.4 Phantom Experiment with Targeted Ytterbium-

Nanoparticles

Images reconstructed by use of the FBP algorithm from the few-view experimental data sets

are displayed in Fig. 4.9. As can be seen, it is difficult to visually identify the structures in

the image reconstructed from 125 views. Even in the images reconstructed from 625 and 1250

views, the noise level appears high. The images reconstructed by use of the PLS-TV, PWLS-

TV, and PWLS-TV-ℓ1 methods from 125 views and 625 views are displayed in Fig. 4.10

and Fig. 4.11, respectively. The 125-view results (Fig. 4.10) indicate that the use of the

estimated variances increases conspicuity of the low-contrast ytterbium probe (Fig. 4.10(b)).

In addition, the positive impact of TV-regularization can be readily observed. A comparison

between Fig. 4.10(d-f) and (g-i) demonstrates that the additional ℓ1-norm regularization can

suppress spurious background noise and preserves structural accuracy. Similar conclusions

follow from the 625-view results (Fig. 4.11). Both the 125-view PWLS-TV-ℓ1 and 625-view
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(a) PLS-TV, λtv = 2.5 ·
10−4

(b) PLS-TV, λtv = 3 ·
10−4

(c) PLS-TV, λtv = 3.5 ·
10−4

(d) PWLS-TV, λtv =
1.5

(e) PWLS-TV, λtv = 2(f) PWLS-TV, λtv = 3

(g) PWLS-TV-ℓ1,
λtv = 2, λl1 = 0.1

(h) PWLS-TV-ℓ1,
λtv = 2, λl1 = 0.3

(i) PWLS-TV-ℓ1,
λtv = 2, λl1 = 0.45

Figure 4.10: Physical Phantom Experiment: Reconstructed images of the K-edge material
from 125 projection views. Image reconstructed by use of the PLS-TV method (a-c), PWLS-
TV method (d-f), and PWLS-TV-ℓ1 method (g-i). The arrow in subfigure (b) indicates the
tube containing the low-concentration, ytterbium dilution, which becomes more visible in
the images estimated by use of the PWLS methods. All images are displayed in the same
grey-scale window.

PWLS-TV-ℓ1 images possess a relatively clean background and reveal the third low-contrast

ytterbium probe.
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(a) PLS-TV, λtv = 3.0 ·
10−4

(b) PLS-TV, λtv = 4.0 ·
10−4

(c) PLS-TV, λtv = 4.5 ·
10−4

(d) PWLS-TV, λtv =
2.5

(e) PWLS-TV, λtv =
3.5

(f) PWLS-TV, λtv =
4.0

(g) PWLS-TV-ℓ1,
λtv = 3.5, λl1 = 0.1

(h) PWLS-TV-ℓ1,
λtv = 3.5, λl1 = 0.3

(i) PWLS-TV-ℓ1,
λtv = 3.5, λl1 = 0.45

Figure 4.11: Physical Phantom Experiment: Reconstructed images of the K-edge material
from 625 projection views. Image reconstructed by use of the PLS-TV method (a-c), PWLS-
TV method (d-f), and PWLS-TV-ℓ1 method (g-i). The arrow in subfigure (b) indicates the
tube containing the low-concentration, ytterbium dilution, which becomes more visible in
the images estimated by use of the PWLS methods. All images are displayed in the same
grey-scale window.

4.5 Summary

We have proposed and investigated PWLS-TV and PWLS-TV-ℓl methods for reconstruct-

ing distributions of K-edge materials from reduced-view data in spectral CT [176]. It was
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demonstrated that, by incorporating the variance information of the decomposed sinograms

in the reconstruction method, the PWLS-TV method possessed a noise-to-spatial-resolution

trade-off that was superior to a PLS-TV method that ignored the variance information. It

was also demonstrated that, by promoting object sparsity in a wavelet transfrom domain,

the PWLS-TV-ℓl method could improve the fidelity of small structures and remove isolated

noises from images reconstructed from reduced-view datasets. This can be particularly use-

ful for preclinical in-vivo applications of K-edge imaging, which are currently limited by long

scan-times. It is worthwhile to mention that in this study, statistical correlations between

decomposed sinograms were not exploited. However, this allows to reconstruct K-edge im-

ages individualy, which minimizes the computational burden and yields short computation

times. The incorporation of the full covariance matrix in the reconstruction process can

potentially reduce noise levels further but presents computationally challenges [135] that are

a topic of current investigation.
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Chapter 5

Accelerated fast iterative shrinkage

thresholding algorithms for

sparsity-regularized cone-beam CT

image reconstruction with ordered

subsets

5.1 Introduction

X-ray cone-beam computed tomography (CBCT) employing a circular scanning geometry

is a widely employed three-dimensional (3D) imaging modality with numerous applications

that include image-guided radiation therapy (IGRT), micro-computed tomography (CT),

and dental imaging, to name only a few. There exist a vast literature related to the develop-

ment and application of CBCT image reconstruction methods, and we refer readers to the

recent literature for representative examples [19, 36, 72, 82, 85, 123, 130, 138]. The potential

advantages of iterative algorithms over analytical algorithms are well-known, and include the

flexibility to incorporate physical factors in the imaging model and effectively mitigate data

incompleteness and noise. The development of iterative image reconstruction algorithms that

implement non-smooth regularizers, including the TV penalty and other sparsity-promoting

forms, remains an active and important research area [149,151]. Even with hardware accel-

eration, however, the overwhelming majority of the available 3D iterative algorithms that
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implement non-smooth regularizers remain computationally burdensome and have not been

translated for routine use in time-sensitive applications such as IRGT.

The fast iterative shrinkage thresholding algorithm (FISTA) [14, 15] is a state-of-the-art

optimization algorithm that possesses several characteristics that are well-suited for iterative

CBCT image reconstruction. However, it remains largely unexplored for this important

application. Because it can be employed to minimize a cost function that is specified by the

sum of a smooth and convex data fidelity term and a convex but possibly non-smooth penalty,

the FISTA can be employed for PLS reconstruction problems in which a TV penalty or other

sparsity promoting forms are employed. Because it is based on a dual approach, the FISTA

does not require approximate computation of the discretized TV function or the gradient

discretized TV term, which most previously proposed algorithms require. The FISTA can

also readily incorporate positivity or other bound constraints. Mathematically, it has been

proven that the FISTA achieves a second-order convergence rate. It can therefore potentially

reduce the number of iterations required to produce an image of a specified image quality

as compared to first-order methods such as the steepest decent method. However, because

the FISTA employs a gradient-descent step, which is known to limit convergence rates in

conventional algorithms, there remains an opportunity to modify it and obtain an accelerated

second-order algorithm that will lead to further reductions in image reconstruction times.

In this work, two accelerated variants of the FISTA for PLS-based image reconstruction

in CBCT are proposed. The algorithm acceleration is obtained by replacing the original

gradient-descent step by a sub-problem that is solved by use of the ordered subset simul-

taneous algebraic reconstruction technique (OS-SART). One algorithm seeks to minimizes

a PLS cost function involving a TV penalty while the second assumes a penalty formed

as the sum of object TV plus a wavelet-sparsified ℓ1 norm of the object. We also present

efficient numerical implementions of the proposed algorithms that exploit the massive data

parallelism of multiple graphics processings units (GPUs).

The remainder of the Chapter is organized as follows. In Section 2, the discrete CBCT image

model and the formulation of the sparsity-regularized PLS reconstruction problems are re-

viewed. The standard FISTAs for solving these problems is also reviewed. Section 3 contains

a detailed description the proposed accelerated forms of the FISTAs, which represents the

primary contribution of this work. The improved convergence rates of the algorithms are
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demonstrated and quantified by use of computer-simulated and clinical data sets in Sections

4 and 5, respectively. The article concludes with a discussion of the work in Section 6.

5.2 Background

5.2.1 Discrete imaging model for CBCT

We consider a discrete CBCT imaging model

b = Hf , (5.1)

where b ∈ R
M represents a lexicographically ordered vector describing the cone-beam pro-

jection data withM defined by the product of detector elements and number of tomographic

views acquired. The vector f ∈ R
N is a finite-dimensional approximation of the sought-after

object function f(r). In the algorithms described below, we assume without loss of gen-

erality that f is formed by use of voxel expansion functions. The M × N system matrix

H represents a discrete approximation of the continuous-to-discrete imaging operator that

maps f(r) to b. Accordingly, the system matrix H can incorporate physical factors such

as the detector reponse, X-ray beam polychromaticity, and the effects of scattering. In this

work, as described later, we will assume that H is simply defined as a discrete approximation

of a divergent beam X-ray transform. However, the presented algorithms are applicable for

inversion of any linear imaging equation of the form of Eq. (5.1).

5.2.2 PLS image reconstruction using sparsity-promoting

penalties

We consider two PLS estimators [176] for CBCT image reconstruction. The first estimator,

hereafter referred to as the PLS-TV estimator, is defined as

f̂ = argmin
f ≥ 0

∥

∥b−Hf
∥

∥

2

2
+ 2λtv‖f‖TV , (5.2)
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where ‖ · ‖TV = ‖∇(·)‖1 and ‖ · ‖1 denote the TV and ℓ1 norms, and ∇ is a discrete 3D

gradient. The second estimator, hereafter referred to as the PLS-TV-ℓ1 estimator, is defined

as

f̂ = argmin
f ≥ 0

∥

∥b−Hf
∥

∥

2

2
+ 2λtv‖f‖TV + 2λℓ1‖Φf‖1, (5.3)

where Φ is a sparsifying transform. Inclusion of the ℓ1 norm in the penalty provides the

opportunity to improve image quality over use of the TV norm alone, particularly with

respect to preservation of fine structures [30, 48]. In the numerical studies below, Φ was

defined as a discrete Daubechies wavelet transform that involved three wavelet scales. The

real-valued scalar quantities λtv and λℓ1 are user-defined regularization parameters.

5.2.3 FISTA for solving the PLS-TV problem

Let

d(f) ≡ ‖b̂−Hf‖22, (5.4)

and

gtv(f) ≡ 2λtv‖f‖TV + δC(f), (5.5)

where δC is the indicator function that can be defined as

δC(f) =

{

0 if f ∈ C,
+∞ elsewhere.

A simple flowchart of standard FISTA [14] to solve the optimization problem Eq. (5.2) is pro-

vided in Algorithm 1, and its basic steps are summarized as follows. First, a gradient descent

step is applied to the data fidelity d(f) to obtain an intermediate image denoted as xg as

indicated by Eq (5.6). Second, Eq (5.7) represents a TV-proximal problem prox1/L(gtv)
(

xg
)

that can be efficiently solved by the fast gradient projection algorithm (FGP) as an imi-

age denoising step [14]. We extended the original FGP algorithm for solving 2D proximal

problem to our 3D CBCT circumstance and a description of this extension is provided in

Appendix C. Finally, the solution of the proximal problem is employed to define a new

image estimate that is substituted into the first step and the procedure is repeated until a

convergence criteria is met.
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Algorithm 1 FISTA-TV

Input: L ≥ L(d(f))– An upper bound on the Lipschitz constant of ∇d(f)
Initial Step: Take e1 = f0 = 0, t1 = 1
for k ← 1, n do

xg = ek −
1

L
∇d(ek) = ek −

2

L
HT (Hek − b) (5.6)

fk = prox1/L(gtv)(xg) = prox1/L(2λtv‖f‖TV )(xg) (5.7)

tk+1 =
1 +

√

1 + 4t2k
2

(5.8)

ek+1 = fk +
tk − 1

tk+1

(fk − fk−1) (5.9)

end for
Output: fn

5.2.4 Splitting-based FISTA for solving the PLS-TV-ℓ1 problem

The FISTA for solving the PLS-TV problem Eq. (5.2) cannot be applied directly for solving

the PLS-TV-ℓ1 problem (Eq. (5.3)) because no efficient algorithms are currently available

to directly solve the corresponding composite proximal problem.

To circumvent this difficulty, the composite splitting algorithm proposed by Combetters [37]

can be employed to decompose the associated composite proximal problem into two sub-

proximal problems. One is associated with the TV-penalty, which can be readily solved

by the FGP algorithm. The other is associated with the ℓ1 penalty involving the sparsi-

fying transform Φ. Fortunately, when Φ corresponds to an orthogonal wavelet transform,

the iterative shrinkage thresholding algorithm (ISTA) algorithm can efficiently solve this

problem [15, 42]. According to Theorem 3.4 in reference [37]), the sequence generated by

the average of the solutions of the two sub-proximal problems will converge to the solution

of the original composite proximal problem. A flowchart of the splitting-based FISTA to

solve the PLS-TV-ℓ1 optimization problem in Eq. (5.3) is shown in Algorithm 2. Some de-

tails for efficiently solving the ℓ1-proximal problem prox1/L(4λℓ1‖Φf‖ℓ1)(xg) in Eq. (5.12)

by ISTA/FISTA algorithm can be founed in Appendix D. Equation (5.14) describes an

operator that projects fk into a feasible set with value range of [0 max].
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Algorithm 2 FISTA-TV-ℓ1

Input: L ≥ L(d(f))– An upper bound on the Lipschitz constant of ∇d(f)
Initial Step: Take e1 = f0 = 0, t1 = 1
for k ← 1, n do

xg = ek −
1

L
∇d(ek) = ek −

2

L
HT (Hek − b) (5.10)

f1k = prox1/L(2λtv‖f‖TV × 2)(xg) = prox1/L(4λtv‖f‖TV )(xg) (5.11)

f2k = prox1/L(2λℓ1‖Φf‖ℓ1 × 2)(xg) = prox1/L(4λℓ1‖Φf‖ℓ1)(xg) (5.12)

fk = (f1k + f2k )/2; (5.13)

fk = project(fk, [0 max]); (5.14)

tk+1 =
1 +

√

1 + 4t2k
2

(5.15)

ek+1 = fk +
tk − 1

tk+1

(fk − fk−1) (5.16)

end for
Output: fn

In the following section, the above algorithms are modified to form accelerated FISTAs that

can benefit CBCT applications.

5.3 Accelerated FISTAs for image reconstruction in

CBCT

5.3.1 Motivation and preconditioned ordered subsets acceleration

strategies

The standard FISTA employs a basic gradient-descent step update [14],

1

L
∇d(f) = 2

L
HT (Hf − b) (5.17)

to minimize d(f), where L is the Lipschitz constant of HTH that is equal to the maximum

of the eigenvalue of HTH. Theoretically, for the standard FISTA algorithm, the achieved
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second order convergence speed can be described as

F (fk)− F (f ∗) ≤ 2L‖fk − f ∗‖2
(k + 1)2

, (5.18)

where F (·) is the object function, k is the iteration number, fk is object (image) at the

k-th iteration and f ∗ is the optimization point. Eq. (5.18) is simply Theorem 3.1 in refer-

ence [14]. The efficiency of the standard FISTA simply relies on being able to rapidly solve

the second step, which is either TV-proximal problem or ℓ1-proximal problem. However, for

many medical image reconstruction problems, the basic gradient update step in Eq. (5.17)

performed before solving proximal problems is the most time consuming part and limits the

overall convergence speed. The simple reason is that it requires computation of the complete

forward operator H and the backprojection operator HT for each single update of the object

function estimate. This can be computationally burdensome in CBCT due to the the large

amount of projection data and the large dimensions of the 3D reconstructed volume. In ad-

dition, when the Lipschitz constant L is large, the update step size 1/L is small in the basic

gradient step, which also indicates that more iterations need to be performed. Therefore, the

gradient descent step will generally limit the computational efficiency of the FISTA when

applied to CBCT image reconstruction.

Instead of employing all of the projection data at once to compute a gradient descent step,

it is well known that an intermediate solution to a least squares minimization problem can

be obtained more efficiently by employing a strategy in which the estimate of the object

function is updated frequently by use of ordered subsets of the projection data sequen-

tially [79]. Such approaches can dramatically improve the convergence rate of an iterative

method over classic gradient descent methods. Therefore, many advanced iterative methods

that solve the least square problem can be combined with the ordered subsets concept to

accelerate the reconstruction progress. The simultaneous algebraic reconstruction technique

(SART) [10], which is one type of block-iterative algorithms [31], has been considered as

a very efficient converged method for CT reconstruction [31, 84]. Therefore, we chose the

ordered subsets version of SART (OS-SART) [164] as one exmaple to accelerate 3D CBCT

image reconstruction.
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The type of OS-SART algorithm adopted in this work is now briefly explained. A ray model

can be easily written as
N
∑

j=1

hijfj = bi, i = 1, 2, · · · ,M, (5.19)

where fj is jth element of the vector f , N is the total number of voxels, M is the number

of total rays from all projection data, and hij is one weight element that represents the

contribution of the jth voxel to the ith ray integral. For the ordered subsets version, we can

rewrite Eq. (5.19) as

N
∑

j=1

hij,vfj = bi,v, i = 1, 2, · · · ,Mv, v = 1, 2, · · ·T, (5.20)

where v represents one specific v-th subset, Mv is the total number of rays in v-th subset, T

indicates the total number of subsets.

The OS-SART algorithm is composed of two sub-steps, a forward-correction step and a

backprojection-update step. These two steps were carried out, respectively, by adopting the

following two specific formulae:

ci,v =
bdatai,v −

∑N
j=1 hij,vf

k
j,v−1

∑N
j=1 hij,v

, (5.21)

fk
j,v = fk

j,v−1 + γv

∑Mv

i ci,vhij,v
∑Mv

i hij,v
, (5.22)

where bdatai,v represents the ith ray projection data in the v-th subset, fk
j,v−1 and fk

j,v are the

jth voxel value updated by use of the (v − 1)-th and the v-th subset, respectively.

Eq. (5.21) and Eq. (5.22) can be combined to write as a matrix-vector form [31],

fkv = fkv−1 − γvDvH
T
vUv(Hvf

k
v−1 − bv), (5.23)
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where Hv is the v-th partition of the complete H, D and M are two diagonal matrices.

Matrix Uv is a weighte matrix given by

Uv = diag
{

1/

N
∑

j=1

hij,v+1 | i = 1, 2, · · · ,Mv

}

. (5.24)

Each element of matrix Uv is nothing but the reciprocal of the i-th ray length, which can

be treated as a weight when other noise properties are not available. Matrix Dv is a precon-

ditioned matrix given by

Dv = diag
{

1/

Mv
∑

i=1

hij,v | j = 1, 2, · · · , N
}

. (5.25)

Each element of matrix Dv is reciprocal of the sum of intersection lengths of rays which

intersect with j-th voxel in the v + 1-th subset. The two diagonal matrices Uv and Dv

are automatically obtained without any extra computation when computing operators Hv

and HT
v . Therefore, Eq. (5.23) can be reviewed as a pre-conditioned gradient based scheme

with sequential update strategy. This form of matrix Dv+1 has been proved to be a good

pre-conditioned matrix to accelerate the convergence speed of a simple gradient step. One

good property for this update strategy is that the spectrum ρ
(

DvH
T
vUvHv

)

≤ 1 [31, 84].

Therefore, a relative large relaxation parameter γv (step size) can be used for early iterations

to rapidly obtain a very good approximation to the solution of the least square problem.

Motivated by the above observations, we propose accelerated versions of the FISTAs in

which the gradient descent step is replaced by an OS-SART subproblem. More specifically,

Eq. (5.6) and Eq. (5.7) in Algorithm 1 will be replaced by an inner loop given by































for v = 0, · · · , T − 1

ekv = ekv−1 − γvDvH
′T
v (H′

ve
k
v − b′

v)

fk = proxD
−1
v

γv (gtv/T )(e
k
v)

end
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Here, H′ ← U
1/2
v Hv and b′

v = U
1/2
v bv. In addition, we have a new proximal problem

proxD
−1
v

γ (gtv/T )(e
k
v) given by

proxD
−1
v

γ (gtv/T )(e
k
v) = argmin

u

{gtv(u)

T
+

1

2γ
‖u− ekv+1‖2D−1

v

}

(5.26)

Here, the original penalty term gtv(u) was scaled by T , which is the total number of subsets,

becuase of the subset update strategy. The proximal problem with weighted normed can

also be efficiently solved by FGP algorithm since the matrix Dv is only a diagonal matrix. In

a similar way, Eq. (5.10), Eq. (5.11) and Eq. (5.12) in Algorithm 2 can also be replaced by

this order subsets strategy. Hereafter, the notation OS-SART-FISTA-TV (OSSF-TV) and

OS-SART-FISTA-TV-ℓ1 (OSSF-TV-ℓ1) will be used to denote these two algorithms with

OS-SART update strategy.

5.3.2 Some technical implementaion details

Number of subsets and data accessing order

In general, the achieved acceleration factor is approximately proportional to the number of

subsets in which the entire projection data are divided [16] for early iterations. In this work,

we considered each view of the projection data to be a subset, and the number of subsets

was equal to the number of projection views. However, to treat each projection data as

one subset in this ray-based model, some conditions must be met. Otherwise, numerical

artifacts can be produced. This condition is that each voxel in our reconstructed area must

be intersected with at least one ray in every subset. When no ray intersects with a specific

voxel, the corresponding element of matrix Dv will be zero. Therefore, this specific voxel

will not be updated at this subset, which may cause inaccuracy and artifacts. To circumvent

this circumstance, we can either adjust the voxel size (pixel size in 2D) or employ more than

one projection view as a subset in our proposed new algorithms.

Besides the number of subsets, the data-access ordering strategy will also affect the con-

vergence speed for most cases. Several different strategies were proposed and investigated

in previous works, which included the ordering methods of sequential access (SAS), fixed

angles, random access [160], prime number decomposition [75], multilevel [67] and weighted
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distance [116]. For the sake of simplicity, we empolyed two different strategies, sequential

access and fixed angles, in this work. Additionally, different suffixes will be appended to

the algorithm names to denote the different data access strategies employed in the OS-SART

subproblem. Specifically, the first number will represent how many projections are included

in one subset and the second number will denote the accessing order of subsets. For example,

the OS-SART subproblem in an OSSF-TV-1-1 algorithm treats each projection as one subset

and the subsets are accessed sequentially. The OS-SART subproblem in an OSSF-TV-1-4

algorithm still treats each projection as one subset but the access order of subsets is to jump

every four sequential projection views (subsets), i.e., the view angle access order will look

like 1,5, · · · , (T); 2,6,· · · , (T); 3,7,· · · , (T), 4,8, · · · , (T), where T denotes the total num-

ber of subsets. In the numerical studies below, an improved version of Siddon’s ray-tracing

model [81] was employed to calculate the system matrix weights.

Number of iterations to solve TV-proximal problem

After performing one full gradient step in standard FISTA-TV or FISTA-TV-ℓ1 algorithms,

only 20 iterations are generally enough for FGP algorithm to solve the TV-proximal prob-

lem with a good precision [14]. Additionally, this computation time to solve TV-proximal

problem by use of GPU is negligible when compared to the previous gradient step since the

computation complexity for FGP algorithm is only with cost O(N) [14]. On the other hand,

in our proposed OSSF-TV algorithm or OSSF-TV-ℓ1, only 1-2 iterations are enough for each

subset. The simple reason is that the TV regularization term gtv(f) with the parameter λtv

has been rescaled by the total number of subsets T . Therefore, FGP algorithm requires

much fewer iterations to solve the corresponding TV-proximal problem with a much smaller

regularization term. In this work, 20 iterations of FGP algorithm were employed in standard

FISTA-TV and FISTA-TV-ℓ1 algorithm and only 1 iteration was employed for each subset

in our proposed OSSF-TV and OSSF-TV-ℓ1 algorithms.

Preconditioned matrix and step size γ

It is well known that a good precondtioned matrix can accelerate the convergence speed [57].

In our case, the OS-SART algorithm implicitly incorporates a preconditioned matrix Dv.
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Better preconditioned matrices can be employed for this purpose. However, to do so may

require addtional computing products with operator HT
v and HT

v .

Mathematically, the step size γv should satisfy the condition 0 ≤ γv ≤ 2/ρ(
(

DvH
T
vUvHv)

to control the convergence. As mentioned in previous section, the spectrum for each subset

update satisfies ρ
(

DvH
T
vUvHv

)

≤ 1. Therefore, a general choice for γv+1 will be 0 < γv+1 <

2. However, the step size γv can also be optimized to achieve the maximum decrease for each

subset. For example, we could solve another optimization problem for each subset as

γv = argmin
γv≥0
‖Hvf

k
v − bv‖22

= arg min
γv≥0)

‖Hv

(

fkv−1 − γvDvH
T
vUv(Hvf

k
v−1 − b(v))

)

− bv‖22 (5.27)

We could take the first order derivative of the above least square expression with respect to

γv, and set it to be zero. Therefore, an analytic expression will be obtained for γv. However,

this also involves at least one time additional computing products with operator Hv and

HT
v Although the iteration number can be reduced, the reconstruction time will actually be

doubled.

Basic schemes of GPU implementation

Highly efficient parallel implementations of the OSSF-TV and OSSF-TV-ℓ1 algorithms that

can utilize a single or multiple GPUs are presented in Appendix D. Below, the rapid conver-

gence rates of the OSSF-TV and OSSF-TV-ℓ1 algorithms are demonstrated and quantified.

5.4 Computer-simulation studies

Computer-simulation studies were conducted to validate the proposed reconstruction algo-

rithms and quantify their improvements in convergence rates over to the standard FISTAs

described in Sections 2.3 and 2.4. Experimental data studies are described in Section 5.5.
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Figure 5.1: NCAT numerical phantom study for the full-view (360-view) case. Examples
of images reconstructed by use of the FISTA-TV (top row), OSSF-TV-1-1 (middle row)
and OSSF-TV-1-4 (bottom row) algorithms are displayed. Ten algorithm iterations were
employed in all cases.

5.4.1 Numerical phantom and simulated projection data

A NCAT phantom [161] was adopted to represent the object function. The discrete phantom

was represented by 256 × 256 × 256 voxels of dimension 0.5 mm. We employed a circular
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Figure 5.2: Error maps corresponding to the images displayed in Fig. 5.1.

CBCT imaging geometry with a source-to-rotation center distance of 50 cm and source-

to-detector distance of 150 cm. The scanning geometry employed 360 tomographic views

that were uniformly spaced over a 2π angular range. At each view, a flat detector with a

physical size 20 cm × 20 cm was assumed that possessed 512 × 512 elements. The CBCT

projection data were computed numerically by use of the system matrix described below

and were contaminated by a 2% Gaussian noise. The complete set of projection containing

all 360 views will be referred to as the ‘full-view’ data, while while an angularly subsampled

version containing 45 equally spaced views will be referred to as the ‘sparse-view’ data. The

reconstructed volumn has the same voxel number and size with the original phantom.
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5.4.2 Full-view (360-view) case: Example images and correspond-

ing error maps

Images reconstructed from the full-view noisy projection data by use of the standard FISTA-

TV and the proposed OSSF-TV-1-1 and OSSF-TV-1-4 algorithms are shown in Fig. 5.1. All

algorithms were terminated after 10 iterations. Images reconstructed by use of the FISTA-

TV algorithm (first row in Fig. 5.1) have a signficantly blurred apperance, indicating that

additional algorithm iterations are required to recover sharp boundaries and accurate pixel

values. On the other hand, images reconstructed by use of the OSSF-TV-1-1 and OSSF-

TV-1-4 algorithms contain accurate structures with high contrast, despite the use of only

10 iterations in the algorithms. To quantitatively examine the reconstructed images, error

maps produced by substracting the reconstructed images from the true phantom, are shown

in Fig. 5.2. The maximum magnitudes of the error maps obtained by the standard FISTA-

TV algorithm are nearly two orders larger than those obtained from the proposed OSSF-

TV algorithms. Moreover, the error maps reveal that the OSSF-TV-1-4 algorithm is more

accurate thatn the OSSF-TV-1-1 algorithm, indicating that the data accessing strategy in

the former algorithm is more effective.

5.4.3 Sparse-view (45-view) case: Example images and correspond-

ing error maps

Images reconstructed from the sparse-view noisy projection data by use of the standard

FISTA-TV and the proposed OSSF-TV-1-1 and OSSF-TV-1-4 algorithms and the associated

error maps are shown in Figs. 5.3 and 5.4. All algorithms were terminated after 30 iterations.

As in the full-view case, images reconstructed by use of the OSSF-TV-1-1 and OSSF-TV-

1-4 algorithms both display sharper boundaries and higher contrast compared to the image

reconstructed by use of the FISTA-TV algorithm. The maximum magnitude of the error

map corresponding to the standard FISTA-TV algorithm is an order of magnitude larger

than those corresponding to the OSSF-TV algorithms. Unlike in the full-view case, the

OSSF-TV-1-4 algorithm shows a similar performance to the OSSF-TV-1-1 algorithm in this

sparse-view case. This observation can be explained by the fact that the angular sampling

is inherently sparse.
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Figure 5.3: NCAT numerical phantom study for the sparse-view (45 view) case. Examples
of images reconstructed by use of the FISTA-TV (top row), OSSF-TV-1-1 (middle row)
and OSSF-TV-1-4 (bottom row) algorithms are displayed. Thirty algorithm iterations were
employed in all cases.

5.4.4 Convergence and accuracy curves

To quantify the improvement in convergence rate yielded by the OSSF-TV algorithm, the

objective function values F (f) = ||b−Hfrecon||2+2λtv||frecon||TV were plotted as a function of
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Figure 5.4: Error maps corresponding to the images displayed in Fig. 5.3.

algorithm iteration. The curves corresponding to the FISTA-TV OSSF-TV-1-1 and OSSF-

TV-1-4 algorithms are displayed in Fig. 5.5 for both the full- and sparse-view cases. For

the full-view case (Fig. 5.5-(a)), both the OSSF-TV-1-4 and the OSSF-TV-1-1 algorithms

produce a more rapid decay in the objective function values than the FISTA-TV algorithm,

reflecting that they possess improved convergence rates. Specifically, the OSSF-TV-1-4 curve

indicates that the convergence has been approximately achieved by the 6th iteration in the

full-view case. Even for the OSSF-TV-1-1 curve, only 16 iterations were required to achieve

this. On the other hand, the curve corresponding to the FISTA-TV algorithm indicates that

the algorithm requires more than one hundred iterations to achieve approximate convergence
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Figure 5.5: Convergence analysis: Plots of the objective function value as a function of
iteration number for the FISTA-TV and OSSF-TV algorithms for the (a) full-view (360-
view) case and (b) few-view (45-view) case.
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Figure 5.6: Accuracy analysis: Plots of the image RE as a function of iteration number for
the FISTA-TV and OSSF-TV algorithms for the (a) full-view case and (b) few-view case.

for the full-view case. (Note: for display purposes we truncated the curve at the 50th

iteration.) Similar observations regarding the relative convergence rates of the algorithms

are obtained for the sparse-view case shown in Fig. 5.5-(b).

The relative error (RE) defined by E(f) = ‖f recon−f true‖2/‖f true‖2, where f recon represents

the reconstructed images and f ture represents the true phantom image, was also computed

and plotted as a function of iteration number for the three algorithms and are displayed

in Fig. 5.6 for the full- and sparse-view cases. The relative behavior of the RE curves is

similar to that of the convergence rate curves described above. The values of REs indicates

that the solution of the optimization problem indeed matches well with the true phantom.
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The above results corroborate our claim that the OSSF-TV algorithms possess superior

convergence rates as compared to the standard FISTA-TV algorithm while maintaining

reconstruction accuracy. We have also verified that the OSSF-TV-ℓ1 algorithm outperforms

the FISTA-TV-ℓ1 algorithm in a similar way.

5.4.5 Reconstruction time by using GPUs

Additional studies were conducted to quantify image reconstruction times that can be

achieved when the proposed algorithms are implemented on currently available hardware.

RE curves as a function of reconstruction time are plotted in Fig. 5.7 for the case when a

single GPU (Figs. 5.7-(a) and (b)) or four GPUs (Figs. 5.7-(c) and (d)) were employed in the

implementation. For the single-GPU case with full-view data (Fig. 5.7-(a)), the OSSF-TV-

1-4 algorithm requires only 35 seconds to reach the approximate convergence point. With

the sparse-view data, it requires approximatley 50 seconds. However, it should be noted that

diagnostically useful images may be produced by the algorithm before this degree of conver-

gence is obtained. With the four-GPU implementation, the OSSF-TV-1-4 algorithm required

10 seconds to converge with the full-view data and 15 seconds for the sparse-view case. These

results are consistent with the claim in Appendix D that the multi-GPU implementations of

the OSSF-TV algorithm will provide a speed-up over the single-GPU implementation that

is approximately proportional to the number of GPUs employed.

5.5 Confirmation of algorithm performance using

clinical data

The rapid convergence rates of the OSSF-TV and OSSF-TV-ℓ1 algorithms were corrobo-

rated by use of clinical CBCT projection data. Because the OSSF-TV and OSSF-TV-ℓ1

algorithms both employed the -1-4 data accessing strategy in these studies, the suffix -1-4

to the algorithm names is omitted below.
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Figure 5.7: Plots of image RE as a function of reconstruction time for (a) full-view case
with one GPU, (b) few-view case with one GPU; (c) full-view case with four GPUs, and (d)
few-view case with four GPUs;

5.5.1 Experimental data and image reconstruction

Previously acquired circular CBCT projection data corresponding to a head-and-neck cancer

patient were obtained under an IRB approved study. The data were acquired by use of a

kilovoltage (kV) On-Board Imager (OBI) on a Varian TrueBeam radiation therapy treatment

machine (Varian Medical System, USA). The source-to-axis distance (SAD) and detector-

to-axis distances were 100 cm and 50 cm, respectively. A flat panel detector of size 30cm

(768 rows) × 40cm (1024 columns) was employed. Additional details regarding the imaging

hardware are described elsewhere [157]. The data were originally collected for IGRT purposes

and contained 364 uniformly spaced tomographic views that spanned an angular range of

approximately 200 degrees.

The acquired raw projection data were subjected to 5 pre-processing steps: scattering cor-

rection, air normalization, bow-tie filtration and beam-hardening correction and logarithm

transformation, as described in a previous study [157]. From the processed projection data,
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Figure 5.8: Example images corresponding to three orthogonal planes reconstructed by a
Varian imager system and in-house FDK algorithm. First row: image reconstructed by
Varian imager system, Second row: image reconstructed by our in-house FDK algorithm
with a simple ramp filter. The transverse images are shown in a soft-tissue window [-300
200]HU. The sagittal and frontal images are shown in a display window [-500 800]HU.

the images reconstructed from the commerical software package in the Varian Imager system

and our in-house FDK algorithm with a simple ramp filter, are shown in Fig. 5.8. With the

same projection data, we obtained our reference images shown in Fig. 5.9 by running the

standard FISTA-TV and FISTA-TV-ℓ1 algorithms until convergence. They are employed

to evaluate the convergence speed of our proposed OSSF-TV and OSSF-TV-ℓ1 algorithms,

respectively. For our proposed OSSF-TV and OSSF-TV-ℓ1 algorithms, the proposed multi-

GPU scheme with four K20x GPUs was employed for this reconstruction. All reconstructed

images were of dimension 512× 512×379 (slices) with a voxel size of 0.512 mm.
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Figure 5.9: Reference images reconstructed by the standard FISTA-TV (converged) and
FISTA-TV-ℓ1 (converged). First row: reconstructed by standard FISTA-TV algorithm.
Second row: reconstructed by the standard FISTA-TV-ℓ1 algorithm.

5.5.2 Demonstration of rapid convergence rate with experimental

data

A series of images corresponding to three orthogonal planes through the volumetric images

produced by the OSSF-TV algorithm at iteration numbers K = 1, 5, 10, and 20 are shown

in Figure 5.10. These images reveal that the visual appearances of the images after the 5th

iteration do not considerably vary. This observation is consistent with the behavior of the

error maps corresponding to the three planes that are displayed in the Figs. 5.11. Those

error images were produced by subtracting the OSSF-TV reconstructed images from the

reference image produced by the standard FISTA-TV algorithm. The error maps reveal

that homogeneous tissue regions have been accurately recovered by the 5th iteration. The

tissue interfaces and small bone features have been accurately recovered by the 10th iteration.

By the 20th iteration, the values of the error maps were approximately zero reflecting that

the image is nearly identical to the reference image.

96



Iteration
number

Transverse
plane

Sagittal plane Frontal plane

K = 1

K = 5

K = 10

K = 20

Figure 5.10: Example images corresponding to different iteration numbers (K) for the OSSF-
TV algorithm. First Column: the selected transverse slice with soft-tissue display window
[-300 200]HU, Second column:the selected sagittal plane with display window [-500 800]HU,
Third column: the chosen frontal plane with display window [-500 800]HU.

The same image planes reconstructed by use of the OSSF-TV-ℓ1 algorithm at iteration

numbers K = 1, 5, 10, and 20 are shown in Figure. 5.12. The corresponding error maps are

displayed in Figure 5.13. The observations described above regarding the rapid convergence

rate of the OSSF-TV algorithm are found to also describe the behavior of the OSSF-TV-ℓ1

algorithm.
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Figure 5.11: Error maps corresponding to different iteration numbers (K) for the OSSF-TV
algorithm. The display window was [-50 50]HU. First Column: error maps for the selected
transverse slice, Second column: error maps for the selected sagittal plane, Third column:
error maps for the selected frontal plane. The reference image was produced by running the
standard FISTA-TV until convergence.

5.6 Discussion

5.6.1 Convergence rate compared to some previous works

To better understand these achieved convergence rates, we chose several recent published

works, which solve the same PLS-TV optimization problem, to do some brief comparison.
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Figure 5.12: Example images corresponding to different iteration numbers (K) for the OSSF-
TV-ℓ1 algorithm. First Column: the selected transverse slice with soft-tissue display window
[-300 200]HU, Second column:the selected sagittal plane with display window [-500 800]HU,
Third column: the chosen frontal plane with display window [-500 800]HU.

The first example is that a previous work named gradient projection barzilai-borwein (GP-

BB) proposed by Park [130] shows a RE curve for a 2D Shepp-Logan phantom in a fan-beam

geometry by using only 40 uniform projection views. The proposed GP-BB algorithm in that

work requires approximatelyl 20 iterations for the RE to decrease to 10%. We refer readers

to see Fig. 5 in that work [130]. Another recent work by Niu et al [122] employed an

unknown-parameter Nesterov (UPN) method, which is treated as an improved version of his
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Figure 5.13: Error maps corresponding to different iteration numbers (K) for the OSSF-
TV-ell1 algorithm. The display window was [-50 50]HU. First Column: error maps for the
selected transverse slice, Second column: error maps for the selected sagittal plane, Third
column: error maps for the selected frontal plane. The reference image was produced by
running the FISTA-TV-ℓ1 algorithm until convergence.

previous gradient projection barzilai-borwein (GP-BB) method [123] for a 2D Shepp-Logan

reconstruction by employing 66 projections. In this improved version, it still requires more

than 60 iterations for the RE to decrease to 10%. We refer readers to Fig. 2 in that work [122].

The third example is that a previous work proposed by Jia [82] also shows a RE curve for

a similar NCAT phantom reconstruction in the same CBCT geometry by employing only
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40 envely distributed projection views. It takes approximately 50 iterations for the above

proposed algorithm to achieve a RE value of 10%. We refer readers to Fig. 6 in that work [82].

On the other hand, the 45-view RE curve produced by our proposed OSSF-TV or OSSF-

TV-ℓ1 algorithm with a similar 3D NCAT phantom in the same CBCT geometry, is shown

in Fig. 5.6(b) with a log-scale. As we can see, after only 3 iterations, the RE value of images

reconstructed by the proposed OSSF-TV algorithms has decreased to 10%, and the RE values

continue to decrease to 1% after only 25 iterations. In addition, even the standard FISTA-

TV method only takes 22 iterations to reach the RE value of 10%. Based on the above

comparison, we could clearly see and understand how superior the convergence rate can be

achieved for our proposed algorithms. Mathamatically speaking, for the above exmaples,

and other recently proposed algorithms [36,85] that did not explicitly show RE curves to the

gound truth, they all belong to the first-order type or Nesterov-type method. Therefore, their

convergence rates will be slower than the standard FISTA-TV method with the second-order

covnergence rate at the denoising step to solve the TV-proximal problem [14], and therefore

slower than our proposed OSSF-TV or OSSF-TV-ℓ1 algorithms.

5.6.2 Computation complexity and reconstruction time

In general, it is relatively hard to compare the reconstruction times for previous different

algorithms, since different hardward and different implementations will make the compar-

sion unfair or unreliable. However, we can simply calculate the computation complexity

to estimate the relative time difference between them. For most aglorithms, the compu-

tation of products with H and HT are very intensive in CT reconstruction and dominates

the overall computation load [100]. In addtion, during one full iteration, at least one time

product with H and HT have to be performed for most all algorithms. For example, a

basic gradient step includes only one time product with H and HT to calculate the gradient

∇d(f) = 2HT(Hf − b) in one iteration. Our proposed OSSF-TV and OSSF-TV-ℓ1 methods

decouple the least square problems and TV regularization penalty or other sparsity penalties.

This stragety avoids recalculating the gradient of the regularization terms in each subset.

The adopted OS-SART breaks products with H and HT in terms of block-rows of H and

block-subcolumns of HT in each subset. So effectively, similar to the basic gradient step,

the adopted OS-SART only empolys one time product with H and HT in one-full iteration,
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which indicates that the computation time for the basic gradient step and one-full itera-

tion of the OS-SART is nearly the same. In addition, the computation time of solving the

TV-proximal or other proximal problems in our proposed can be negligible when compared

to the computation burden of performing one-full iteration of OS-SART. Moreover, this

decoupled two-step structure, which includes solving the least square problem and solving

the TV-proximal or other proximal problems, is extremely suitable to exploit the parallel

computation power.

5.6.3 Other recently published OS-type accelerating iterative al-

gorithms with regularizations

Our original idea regarding use of the ordered subsets to accelerate the standard FISTA

was first presented at 2012 AAPM John R. Cameron Young Investigator symposium [174].

During the preparation of our current draft, Fessler’s group have also proposed several types

of OS-type acceleration algorithms [87,119] for helical CT. The former one combines a Aug-

mented Lagrangian method with ordered subsets to solve a penalized weighted least square

(PWLS) problem with Tikhonov regularization, the later one employs the ordered subsets

to accelerate a nonuniform separable quadratic surrogate algorithm (NU-SQS) to solve the

PWLS problem with Tikhonov regularization. Both works have very good performance to

solve PWLS problems with Tikhonov regularization for helical CT. However, the structures

and algorithms of both works are very different with our proposed methods. First, in both

works, the employed ordered subsets [50] were performed for data fidelity term (least squares

problem) and the regularization terms together. Therefore, unlike the decoupled structure in

our proposed algorithm, this requires additional calculation of the gradient of the regulariza-

tion terms (Tikhonov terms) in each subset besides the gradient of data fidelity term under

the subset balance condition [50]. The total number of subsets could not be very large since

having less measured data in each subset will likely break the subset balance condition [119].

In their second work [87], the nonuniform optimization transfer and averaging strategies

were proposed mitigate the instability and convergence issue of the original OS algorithm.

Second, the above OS-type algorithms may not be convenient to calculate the gradient of

non-smooth and nondifferentialbe regularization terms, since they require calculation of the

gradient of the regularization terms which our proposed algorithms do not. In addition,
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before we submitted the current draft, another OS-momentum based algorithm [88] was also

proposed to accelerate the standard FISTA algorithm by Fessler’s group. To our best knowl-

edge, the theoretical behavior of the OS-momentum algorithm is still under investigation.

5.7 Summary and conclusion

The FISTA is a state-of-the-art optimization algorithm that possesses a secord-order con-

vergence rate and is suitable for minimizing PLS cost functions that contain non-smooth

penalties. In this work, accelerated variants of the FISTA were proposed and investigated for

CBCT image reconstruction. Algorithm acceleration was achieved by replacing the gradient-

descent step in the standard FISTAs by an OS-SART subproblem. The proposed OSSF-TV

and OSSF-TV-ℓ1 algorithms solved PLS image reconstruction problems that utilized a TV

penalty and the sum of a TV penalty and a wavelet-sparsified ℓ1 norm penalty, respectively.

However, the proposed approach to accelerating the FISTA can be applied readily to solve

PLS reconstruction problems that utlize other sparsity-promoting penalty forms. By use

of computer-simulated CBCT data, it was verified that the OSSF-TV and OSSF-TV-ℓ1 al-

gorithms possessed significantly greater convergence rates than the corresponding standard

FISTAs. The rapid convergence properties of the algorithms were verified further by use of

clincal CBCT data.

A reconstruction algorithm that possesses a rapid convergent rate can potentially produce

a diagnostically useful image in fewer iterations than an algorithm that possesses a slower

convergence rate. However, a rapid convergence rate does not necessarily translate into short-

ened reconstruction times. This depends on how efficiently each iteration can be computed.

In order to reduce image reconstruction times in practice, we developed efficient GPU imple-

mentations of the proposed algorithms that utlize either a single or multiple GPUs. When

multiple GPUs are employed, we demonstrated that the reduction in reconstruction time over

the single GPU implemenation is approximately linear with the number of GPUs employed.

The rapid convergence rates of the extremely simple structured algorithms coupled with

efficient GPU implementations may make them suitable for certain timie-sensitive clinical

applications.
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The topic of optimizing image quality has intentionally not been addressed in this chapter,

as our main focus has been on the development of accelerated iterative image reconstruction

algorithms for CBCT. In our opinion, specification of the penalty form and regularization

parameters in a PLS estimator that are most appropriate for a particular diagnostic task is a

complicated undertaking. However, because the developed algorithms can drastically reduce

image reconstruction times they can facilitate the systematic investigation of such issues.

The formulation of the reconstruction problems in this work have not explicitly exploited

information regarding the statistical propertes of the projection data. Incorporating statis-

tical formulation can potentially improve image quality in, for example, low-dose imaging

applications. However, the proposed OSSF-TV and OSSF-TV-ℓ1 algorithms can be general-

ized readily to exploit such statistical information. Specifically, the OS-SART subproblem in

the accelerated algorithms can be modified to naturally incorporate information about the

noise statistics in the projection data to formulate new system equations [41] and the rest

of parts in our proposed algorithms remain the same. Additionally, the proposed algorithms

can be explored for other CT imaging applications such as helical CBCT. The investigation

of these topics can be pursued in future studies.

104



Chapter 6

Investigation of in-line X-ray

phase-contrast tomosynthesis using an

advanced iterative algorithm

6.1 Introduction

X-ray phase-contrast (XPC) imaging is a promising technique for visualizing soft tissue fea-

tures in many biological applications [95,113,187,189]. There are several XPC imaging meth-

ods including crystal-based [162] and grating-based [169] varieties. In-line (or propagation-

based) XPC is the simplest form to implement, requiring only a small X-ray focal spot, a

high resolution detector and a sufficient propagation distance between the object and detec-

tor [171]. In practice, these requirements lead to longer acquisition times than conventional

absorption-based radiography. These long acquisition times can be prohibitive for extending

XPC computerized tomography (XPC CT) to pre-clinical and clinical scenarios. To circum-

vent this, tomosynthesis methods can be employed to reconstruct volumetric images from

a relatively small number of projections at the cost of sacrificing spatial resolution in the

depth-direction [47].

Conventional X-ray tomosynthesis, which is a form of limited angle tomography that employs

only a few x-ray planar projections in a proper angular range to synthesize a collection of 2D

images, has been widely studied for breast imaging and other medical imaging applications.

There has been a high degree of research interest in tomosynthesis imaging in the past

decade [6, 46, 64, 136]. Tomosynthesis allows for some level of low-resolution discrimination
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between overlaying structures along the z direction (i.e., in-depth direction perpendicular

to the in-plane images), bringing a substantial improvement in the ability to appreciate

abnormal anatomy or disease in tomosynthesis images relative to conventional radiographs.

Besides, the resolution of the reconstructed in-plane images is often believed to be superior

to CT, at the same time tomosynthesis provides much reduced dose and faster acquisition

time than that required for full CT datasets.

In recent years, a small number of studies [68] have explored XPC tomosynthesis imaging

techniques. In 2010, Zhang et al. published in-line XPC tomosynthesis experimental results

from data acquired with synchrotron radiation [181]. A phase retrieval filter was applied to

the raw in-line projections so that the reconstruction problem was converted to be the same

as conventional tomosynthesis. Hammonds et al. investigated in-line XPC tomosynthesis

using a micro-focus x-ray tube in 2011 [70] A standard shift-and-add (SAA) algorithm was

directly performed in the tomosynthesis reconstruction, and it showed that the reconstructed

in-plane images (i.e. x-y plane shown in Fig. 6.1). could retain the edge enhancement that

is observed in planar phase-contrast radiographs. Wu et al. conducted in-plane spatial reso-

lution measurements of a phase-contrast tomosynthesis prototype using standard resolution

test patterns [172], but certain details regarding the data-acquisition and reconstruction were

not reported.

While the studies above show XPC tomosynthesis can provide boundary-enchanced in-plane

images with better conspicuity than conventional tomosynthesis, there is a lack of studies

that investigate the depth resolution (i.e. z-direction shown in Fig. 6.1) properties. In this

contribution, we present a numerical investigation that compares the ability of conventional

tomosynthesis and XPC tomosynthesis to distinguish depth positions of features in recon-

structed images of a soft tissue phantom. We demonstrate that, for XPC tomosynthesis,

the phase-contrast-induced features can help discriminate in-plane structures from out-of-

plane structures, thus providing better z-resolution than conventional tomosynthesis. In

addition, because previous XPC tomosynthesis studies employed simple reconstruction al-

gorithms (e.g. SAA, FBP) that are susceptible to the incomplete and/or noisy data, we

propose an advanced iterative algorithm that can better mitigate these factors.

The chapter is organized as follows. In Section 6.2, the in-line phase-contrast imaging model

is briefly reviewed. We then propose an advanced iterative algorithm (OS-SART-FISTA) for

106



Figure 6.1: A schematic of the XPC imag-
ing geometry is shown in which the object
is fixed in a reference coordinate system
(x, y, z). The source (not shown) and de-
tector rotate about the y-axis.

Figure 6.2: A frequency domain interpre-
tation of tomosynthesis illustrates the re-
duced spatial resolution in the z-direction
of reconstructed images. The shaded region
indicates spectral information content of to-
mosynthesis measurements in the kx and kz
plane. Region A indicates the (low) fre-
quency information in kz that is not con-
tained in the measured data. Region B il-
lustrates the preservation of some high fre-
quency components in kz.

XPC tomosynthesis reconstruction. Section 6.3 describes the computer-simulation studies

and experimental studies, including imaging model validation, investigating different factors

to affect the reconstructed image quality and depth resolution properties of XPC tomosyn-

thesis. The corresponding results are shown in Section 6.4. In addition. some experimental

results are present in Section 6.5. This chapter concludes with a summary in Section 6.6.

6.2 Background

6.2.1 XPC imaging model

The imaging geometry is depicted in Fig 6.1 in which a detector and source rotate about a

fixed object. An object is irradiated by a monochromatic point X-ray source with wavelength

λ in the direction of the positive zr-axis. The y-axis of the fixed reference coordinate system

(x, y, z) defines the rotation axis for tomographic scanning. The rotated coordinate system
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(xr, y, zr) is related to the reference system by xr = xcosθ + zsinθ and zr = zcosθ − xsinθ,
where the tomographic view angle θ is calculated with respect to the positive x-axis. The

x-ray wave field intensity incident on the object is given by I0(xr, y, θ). The transmitted

wave field propagates a distance zr = R2 to a detector and the detected intensity is denoted

by Id(xr, y, θ). [7]

The object can be characterized by its complex-valued refractive index distribution

n(r) = 1− δ(r) + jβ(r), (6.1)

where r = (x, y, z). We define the total attenuation A(xr, y, θ) and the total phase shift

φ(xr, y, θ) as

A(xr, y, θ) = exp(−k
∫

dzrβ(r)) (6.2)

φ(xr, y, θ) = −k
∫

dzrδ(r), (6.3)

where k = 2π/λ. A(xr, y, θ) and φ(xr, y, θ) are calculated as integrals through the object

along the X-ray beam path. This is approximately the zr direction when we assume a small

cone-beam angle approximation.

With the assumption that the object is weakly absorbing, the measured intensity approxi-

mately satisfies [173]

Id(xr, y, θ) = I0(xr, y, θ){A2(xr, y, θ)−
λR2

2πM
∇2

xr,y[A
2(xr, y, θ)φ(xr, y, θ)]}, (6.4)

where the magnification factor M = (R1 + R2)/R1 and ∇2
xr,y is the 2D Laplacian operator

acting on the (xr, y) plane. Under certain approximations, we define a data function g as [26]

g(xr, y, θ) = −log{
Id(xr, y, θ)

I0(xr, y, θ)
}

≈ A(xr, y, θ) +
λR2

2π
∇2

xr,yφ(xr, y, θ)

(6.5)

Eq. (6.5) shows that the measured data should contain edge-enhancement at the bound-

aries between different projected refractive properties. It also reveals that the diffraction

phenomenon is easier to observe with increasing propagation distance R2.
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Under the paraxial approximation (i.e., a small cone angle), it has been demonstrated that

the application of a 3D reconstruction operator R−1 (e.g. FDK algorithm) to this data

function yields the object function [26]

f(r) = R−1{g}

= 2kβ(r) +
R2

M
∇2

xyzδ(r)
(6.6)

where ∇2
xyz denotes a 3D Laplacian operator. Eq. (6.6) is called the object function for

boundary-enhanced tomography. It contains mixed contrast regarding β and δ and mathe-

matically explains why in-line XPC tomography enables the reconstructed object to retain

the features of edge-enhancement that are observed in the measured projections.

6.2.2 OS-SART-FISTA-TV (OSSF-TV) iterative algorithm

In development of an iterative tomosynthesis algorithm, we employ a discrete imaging model.

A vector gM×1 is used to represent the continuous data function (Eq. 6.5) in a discrete

form. A vector fN×1 is used to represent the 3D discrete object using voxels. The size

of N corresponds to the number of voxels that make up the reconstruction region. The

relationship between the acquired data gM×1 and the discrete object fN×1 can be formed as

g = Hf (6.7)

where H is an M × N system matrix that can be interpreted as an operator representing

a cone-beam projection transformation. In this work, for the sake of simplicity, the system

matrix H only represents the discrete ray-tracing projector in tomosynthesis.

A wide variety of iterative image reconstruction algorithms can be employed for determining

estimates of f [152,183]. In this work, we seek solutions of a total-variation (TV) regularized

least square optimization problem [151, 177]

f̂ = arg min‖g −Hf‖22 + 2ζ‖f‖TV (6.8)

where ζ is a regularization parameter whose value is empirically chosen to be 0.5.
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A modified version of fast iterative shrinkage/thresholding algorithm (FISTA) was employed

to solve Eq. (6.8). The employed OSSF-TV algorithm has been proposed and discussed in

Chapter 5.

6.2.3 Fourier analysis of XPC tomosynthesis

The well-known Fourier slice theorem states that a projection along a direction θ in space

(e.g. x, y, z) corresponds to a plane along θ in the frequency domain (i.e. kx, ky, kz). When

projection views are acquired along a limited scan range, a wedge in the Fourier domain is

covered where the opening angle of the wedge is equal to the arc of the tomosynthesis scan.

[136] Figure 6.2 depicts this relationship by showing the (kx, kz) plane with a shaded region

corresponding to frequency components of measured data from a tomosynthesis scan. The

figure explains why tomosynthesis produces limited z resolution: the acquired information

along the kz direction in region A is limited due to the angular range of the tomosynthesis

scan, especially at low frequencies near the origin. It also explains why small objects are

better resolved along the z direction than large objects as there resides a significant amount of

high frequency information (corresponding to larger values of kz) in region B of the measured

data.

A similar analysis can be applied to interpreting frequency domain characteristics of XPC

tomosynthesis signals. Due to the action of the Laplacian operator ∇2 in Eq. (6.5), the high

frequency components of the second term are significantly amplified, and the corresponding

region in Fourier domain along kz direction is thus enhanced. Based on the previous anal-

ysis, the phase-contrast-induced fringes associated with the ∇2φ term should have better

z resolution because they are able to cover a wider range along kz direction. This idea is

validated in the following simulation studies.
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6.3 Descriptions of numerical and experimental

studies

6.3.1 Computer-Simulation Studies Descriptions

In this section, we describe the way that we conducted computer simulations to evaluate

reconstructed tomosynthesis in-plane images and depth resolution.

Phantom design: Figure 6.3 shows the spherical phantom we employed to investigate the

depth resolution properties of XPC tomosynthesis. Eight spheres were placed in a row in the

x-direction with their z positions slightly offset from one another. The spherical volumes were

assigned realistic tissue properties (i.e. breast tissue, adipose and tumor), whose refractive

index values were calculated [178] based on the element composition1 and atomic scattering

factors2. The diameters of the spheres ranged between 80 µm to 160 µm, and the diameter

of the entire phantom is around 4mm. To simulate a realistic model of tissue boundaries and

to avoid difficulties in applying the Laplacian operator in Eq. 6.6, we applied a 3D Gaussian

blurring kernel to smooth each sphere, making sure that the boundaries between different

tissues are differentiable.

Scanning geometries: The geometry of the simulated tomosynthesis imaging system is illus-

trated in Fig 6.4. The source and the flat-panel detector simultaneously rotate around the

isocenter with a specified angular step (2◦) and scan range (±20◦). The source-to-isocenter

distance R1 and the isocenter-to-detector distance R2 were both set to be 50cm corresponding

to a geometric magnification of two. The measurement data is a set of 1024 × 1024 pro-

jections with a pixel size of 8 µm. We included realistic physical blurring factors (e.g. the

finite source spot size, and the limited detector resolving power) by applying an additional

2D Gaussian blurring kernel (FWHM=40µm) to the simulated projections.

Chromatic coherence: In order to simulate the performance of a realistic benchtop x-ray

tube, we considered a polychromatic source with a wide bandwidth ranging from 5-55keV

(Fig 6.5). The spectrum was obtained from on-line software developed by Siemens assuming

1http://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html
2http://physics.nist.gov/PhysRefData/FFast/html/form.html
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Figure 6.3: The numeri-
cal phantom we employed
to investigate XPC to-
mosynthesis is shown (top
view). Diameters of in-
ternal spheres range from
80µm to 160µm.

Figure 6.4: This figure il-
lustrates the tomosynthesis
scanning configuration used
in the study. The detec-
tor and source rotate about
the fixed phantom covering
a limited angular range.
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Figure 6.5: The polychro-
matic spectrum used as in-
put in the tomosynthesis
simulations is shown. The
y-axis gives the normalized
weight for each energy bin.

a solid tungsten anode.3 The simulated polychromatic projections are calculated as the

weighted sum of the intensity associated with each energy component of the spectrum.

In the numerical simulation studies, we analytically generated two sets of projection data

based on the conventional absorption-based Radon transform and the XPC imaging model

described in Section 6.2.1. The effects of physical blur and polychromaticity were taken into

consideration as specified above. In addition, 1% (with respect to the local pixel value) un-

correlated Gaussian noise was added to the projection data. We then employed the proposed

advanced iterative algorithm for tomosynthesis reconstruction. The result for each dataset

is a 512×512×512 matrix with a voxel size of 8µm. As described in the next section, we

analyzed reconstructed images from these conventional and XPC tomosynthesis datasets to

compare and contrast their respective z resolution properties.

6.3.2 Experimental Studies Descriptions

Imaging system: The XPC imaging system was supported on an optical table and utilized

high-precision rails to allow the sample and the detector to be positioned at distances from

3https://w9.siemens.com/cms/oemproducts/Home/X-rayToolbox/spektrum/Pages/radIn.aspx
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Figure 6.6: Comparison of reconstructed in-plane images (top row) and associated profiles
(bottom row). (a)The line profiles from conventional tomosynthesis result show similar sig-
nals from all internal spheres. (b) The XPC tomosynthesis result reveals edge-enhancement
for some of the internal spheres. (c) The true in-plane phantom structure shows that only
the edge-enhanced spheres in (b) are actually located in that plane.

the x-ray source ranging from 20 cm to 2 m. X-ray generation was provided by a Kevex

PSX10-65W microfocus source (Thermosher) which has a variable spot size ranging from

7 to 100 µm and can operate at tube voltages between 45 and 130 kV. For this x-ray

source, the beam current setting determines the spot size for a given tube voltage setting

with larger currents corresponding to larger spot sizes. The x-ray camera is a super-cooled

QuadRO: 4096 (Princeton Instruments) which uses a 4096 × 4096 pixelated Si-based CCD

detector with 15 µm pixel pitch, 33 micron effective FWHM resolution, and 36 cm2 detection

area. The CCD is illuminated by a Gd2O2S:Tb phosphor screen optimized for 17.5 keV x-

rays which is coupled directly to the CCD via optical bers with a 1:1 taper ratio. During

image acquisition, samples were placed on computer-controlled X,Y linear translation stages

(Thorlabs LTS150).
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6.4 Computer simulation results

6.4.1 In-plane image evaluation

In Fig. 6.6, the top row shows the reconstructed in-plane images (x-y plane) at the central

depth position (z = 256); the associated profiles are shown in the bottom row. For the

conventional tomosynthesis results (Fig.6.6-a), all of the spheres appeared in this plane and

it is not possible to determine which spheres are actually located at this depth position. For

XPC tomosynthesis (Fig.6.6-b), again all spheres are present in the reconstructed images,

however, four of them exhibit fringes. Based on the previous observation, only these four

spheres should be in-plane structures, and the other spheres are contaminations from out-

of-plane. The corresponding slice of the true phantom (Fig.6.6-c) verifies this interpretation

and demonstrates that only the structures with fringes are truly located in this plane and

the others actually do not exist in this plane.

6.4.2 In-depth image evaluation

The reconstructed in-depth images (x-z plane) from conventional tomosynthesis and XPC

tomosynthesis are shown in Fig. 6.7. A zoomed-in area for a central sphere (highlighted as

dotted blue rectangular region) is also displayed. For conventional tomosynthesis (Fig. 6.7-

a,b), the spatial distribution of the reconstructed attenuation coefficient is strongly blurred

along the z direction. For the XPC tomosynthesis case (Fig. 6.7-c,d) the reconstructed

attenuation coefficient is also blurred, however the fringes at boundaries exhibit less blurring

and are contained in a z-axis range near to the center of the sphere. This indicates that the

edge-enhanced features in XPC tomosynthesis can possibly provide improved depth position

determination of reconstructed structures compared to that from conventional tomosynthesis.
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Figure 6.7: The reconstructed in-depth images are given for conventional (panel a) and
XPC (panel c) tomosynthesis scans of the phantom shown in Fig 6.3. The dotted regions
in (a) and (c) are shown with a close-up view in panels (b) and (d), respectively.The arrows
indicate the extent of blur from image features for each case.

6.5 Experimental studies

6.5.1 In-plane image evaluation

We acquired extracted mouse lung using a benchtop x-ray imaging system in our lab. The

tomosynthesis images reconstructed from the experimental data are shown in Fig. 6.8. Both

FDK and iterative algorithm were employed for comparison purpose and the full-view CT

result was taken as the reference. Three different depth positions were investigated. Fig. 6.9

shows the corresonding SSIM map for each case. We see iterative algorithm generally pro-

vides much more accurate structure than FDK in terms of in-plane image evaluation.

6.5.2 Z-resolution property of XPC tomosynthesis

An experimental study was also conducted to demonstrate the Z-resolution property of XPC

tomosynthesis. We imaged extracted mouse lung and two branch airways were specified in

the study. For XPC tomosynthesis, the projections were acquired with a long propagation

distance R2 = 74cm; for absorption-based tomosyntesis, we set the propagation distance
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Figure 6.8: Reconstruction for experimental data: extracted mouse lung. CT reconstruction
used 200 projections with the angular step of 1 degree; tomosynthesis reconstruction used
40 projections with the angular step of 1 degree. Voxel size: 28 µm

R2 = 13cm only. Fig. 6.10 compares the reconstructed in-planes images between the two

types of tomosynthesis in terms of depth resolution. We take the CT result as the refer-

ence. In the top row, the left branch airway was real at this position but the right branch

airway was actually false structure brought by tomosynthesis. As expected, XPC tomosyn-

thesis produced significant fringes at the left airway boudaries (shown in red line) but no

edge enhancement observed for the right airway (shown in blue line); while conventional

tomosynthesis was not able to provide any evidence to tell the structures true or false. The
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Figure 6.9: SSIM map for the reconstructed tomosynthesis images.

same condition occurred for the another depth position (shown in the bottom row), where

only the right brach was real. Again, XPC tomosynthesis was able to take advantage of the

fringes to judge, but conventional tomosynthesis failed to do so.

6.6 Conclusion and discussion

In this study [68], we have implemented an advanced iterative algorithm and investigated the

depth resolution properties of XPC tomosynthesis. We observed that XPC tomosynthesis

has better z resolution compared with conventional absorption-based tomosynthesis. More

specifically, the simulation results show that in-plane structures display strong boundary-

enhancement while out-of-plane structures do not. This effect can faciliate the identification

of in-plane structures. Future studies will include a quantitative investigation based on
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Figure 6.10: Experimental studies: comparison of the reconstructed in-planes images be-
tween the two types of tomosynthesis in terms of depth resolution. Two branch airways were
specified and profiles are ploted to show the presence of edge enhancment. CT reconstruction
used 100 projections with the angular step of 2 degrees; tomosynthesis reconstruction used
20 projections with the angular step of 3 degrees. Voxel size: 28 µm

simulated and experimental data to characterize the peformance of XPC tomosynthesis in

identifying and locating features.
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Chapter 7

Summary

In this dissertation, we have reviewed five different X-ray based imaging technologies, includ-

ing differential phase-contrast tomography (DPCT), grating-based phase-contrast tomogra-

phy (GB-PCT), spectral-CT (K-edge imaging), cone-beam computed tomography (CBCT)

and in-line X-ray phase contrast (XPC) tomosynthesis. For each imaging modality, we pro-

posed new approaches, strategies and/or fast convergent iterative algorithms to mitigate one

or more specific problems, related to the issues of dose, long data-acquisition time, or image

quality that prevent them being effectively or efficiently employed in clinical applications. To

investigate all these proposed novel strategies and new algorithms in these different imaging

modalities, we conduct computer simulation studies and/or real experimental data studies.

7.1 Differential phase-contrast imaging

We have analyzed the numerical and statistical properties of two classes of discrete imaging

models that form the basis for iterative image reconstruction in DPCT. The models differ

in the choice of expansion functions that were utilized to discretize the sought-after object

function. The models based on Kaiser-Bessel window functions (“blobs”) were demonstrated

to produced images that possess more favorable variance-resolution trade-offs than images

reconstructed by use of pixel-based imaging models. This observation was consistent with

the results of an SVD analysis of the system matrices, which demonstrated that the blob-

based system matrices can yield more stable reconstruction problems than do pixel-based

ones.
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A reconstruction algorithm that seeks solutions of a constrained TV minimization optimiza-

tion program was employed with a blob-based imaging model for few-view image recon-

struction. By use of few-view experimental data, it was demonstrated that this algorithm

can produce images with significantly weaker artifacts and lower noise levels than the FBP

algorithm that has been utilized the majority of previously published studies. To our knowl-

edge, this was the first published application of an iterative reconstruction method in X-ray

DPCT for reconstruction of a biological specimen. We expect that the findings of our study

will benefit the continued development of DPCT imaging systems by permitting reduction

of data-acquisition times and radiation doses. Future research efforts will be required to

identify blob parameters that are optimal for specific imaging tasks.

7.2 Grating-based phase-contrast imaging

For the first time, we fully exploited the 2nd order statistical properties of the measurement

data in GB XPCT to suppress image noise by formulating reconstruction methods in a MC

framework. The computer simulation studies have confirmed our expectation that the MC

approach that exploits inter-sinogram correlations can achieve lower noise-levels and better

image quality for the absorption and dark-field channels. This observation and conclusion

can be explained by the estimated full MC covariance matrix that implies that the absorption

and dark-field channels are correlated and the phase channel is statistically independent from

the other two channels. These reconstruction methods will enable imaging at reduced doses

and imaging times and will accelerate the translation of this imaging technology.

7.3 Spectral-CT (K-edge imaging)

We have proposed and investigated PWLS-TV and PWLS-TV-ℓl methods for reconstructing

distributions of K-edge materials from reduced-view data in spectral CT. It was demon-

strated that, by incorporating the variance information of the decomposed sinograms in

the reconstruction method, the PWLS-TV method possessed a noise-to-spatial-resolution

trade-off that was superior to a PLS-TV method that ignored the variance information. It
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was also demonstrated that, by promoting object sparsity in a wavelet transfrom domain,

the PWLS-TV-ℓl method could improve the fidelity of small structures and remove isolated

noises from images reconstructed from reduced-view datasets. This can be particularly use-

ful for preclinical in-vivo applications of K-edge imaging, which are currently limited by long

scan-times. It is worthwhile to mention that in this study, statistical correlations between

decomposed sinograms were not exploited. However, this allows to reconstruct K-edge im-

ages individualy, which minimizes the computational burden and yields short computation

times. The incorporation of the full covariance matrix in the reconstruction process can

potentially reduce noise levels further but presents computationally challenges [135] that are

a topic of current investigation.

7.4 Cone-beam computed tomography

The FISTA is a state-of-the-art optimization algorithm that possesses a secord-order con-

vergence rate and is suitable for minimizing PLS cost functions that contain non-smooth

penalties. In this work, accelerated variants of the FISTA were proposed and investigated for

CBCT image reconstruction. Algorithm acceleration was achieved by replacing the gradient-

descent step in the standard FISTAs by an OS-SART subproblem. The proposed OSSF-TV

and OSSF-TV-ℓ1 algorithms solved PLS image reconstruction problems that utilized a TV

penalty and the sum of a TV penalty and a wavelet-sparsified ℓ1 norm penalty, respectively.

However, the proposed approach to accelerating the FISTA can be applied readily to solve

PLS reconstruction problems that utlize other sparsity-promoting penalty forms. By use

of computer-simulated CBCT data, it was verified that the OSSF-TV and OSSF-TV-ℓ1 al-

gorithms possessed significantly greater convergence rates than the corresponding standard

FISTAs. The rapid convergence properties of the algorithms were verified further by use of

clincal CBCT data.

A reconstruction algorithm that possesses a rapid convergent rate can potentially produce

a diagnostically useful image in fewer iterations than an algorithm that possesses a slower

convergence rate. However, a rapid convergence rate does not necessarily translate into short-

ened reconstruction times. This depends on how efficiently each iteration can be computed.
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In order to reduce image reconstruction times in practice, we developed efficient GPU imple-

mentations of the proposed algorithms that utlize either a single or multiple GPUs. When

multiple GPUs are employed, we demonstrated that the reduction in reconstruction time over

the single GPU implemenation is approximately linear with the number of GPUs employed.

The rapid convergence rates of the extremely simple structured algorithms coupled with

efficient GPU implementations may make them suitable for certain timie-sensitive clinical

applications.

7.5 In-line phase-contrast tomosynthesis

We have implemented an advanced iterative algorithm and investigated the depth resolution

properties of XPC tomosynthesis. We find XPC tomosynthesis has better z resolution com-

pared with conventional absorption-based tomosynthesis. More specifically, the simulation

results show that in-plane structures display strong boundary-enhancement while out-of-

plane structures do not. This effect can faciliate the identification of in-plane structures.

Future studies will include a quantitative investigation based on simulated and experimen-

tal data to characterize the peformance of XPC tomosynthesis in identifying and locating

features.
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Appendix A

Explicit construction of the

pixel-based system matrices

Below we describe how the matrices Hpixel employed in our numerical studies were con-

structed by use of Eq. (2.15). Specifically, because HR is defined by Eq. (2.10) with the

elements provided in reference [148], we need to specify the explicit forms of discrete deriva-

tive operator HD for the three kernel functions W(xr, d) employed.

A general form of the matrix HD can be expressed as follows

HD =

























H11 0 0 · · · · · · 0

0 H22 0 · · · · · · 0

0 0
. . . · · · · · · 0

... · · · Htt ... 0

... · · · . . . 0

0 0 · · · 0 0 HTT

























,

where Htt(t = 1, 2, · · · , T ) is a S × S matrix, T is the total number of projection views

and S is the number of sampled projection data at each view. Explicit forms of Htt are

determined by different interpolation kernels W(xr, h). Three types of H
tt corresponding to

three different kernels W(xr, h) adopted in the paper are provided as follows:
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Linear interpolation kernel

W1(d, h) = nd

{

1− s 0 ≤ s < 1, s = |d|
h
,

0 s ≥ 1,

where nd is a normalization constant which is determined by the dimensionality and the

smoothing length h. The value of h was set to 2 times the projection sampling interval, and

nd is equal to
1
h
. The explicit form of Htt corresponding to use of W1(xr, d) can be expressed

as

Htt =























· · · · · · boundary condition · · · · · ·
−1/2 0 1/2 0 0 · · ·
0 −1/2 0 1/2 0 · · ·
· · · . . .

. . . · · · . . .
...

· · · · · · 0 −1/2 0 1/2

· · · · · · boundary condition · · · · · ·























S×S

,

where the the boundary condition elements are appropriately defined. In our studies, the

projection data were not truncated and the object was embedded in uniform background

medium. In this case, the boundary condition elements were set to zero.

Quadratic spline

W2(d, h) = nd











3
4
− s2 0 ≤ s < 1

2
, s = |d|

h
,

9
8
− 3

2
s+ s2

2
1
2
≤ s < 3

2
,

0 s ≥ 3
2
,
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where h was set to 2 times the projection sampling interval, and nd is equal to 1
h
. The

explicit form of Htt corresponding to use of W2(xr, d) can be expressed as

Htt =

























· · · · · · · · · boundary condition · · · · · · · · ·
−1/8 −1/4 0 1/4 1/8 0 · · · · · ·
0 −1/8 −1/4 0 1/4 1/8 0 · · ·
· · · . . .

. . .
. . .

. . .
. . .

... 0
... · · · 0 −1/8 −1/4 0 1/4 1/8

· · · · · · · · · boundary condition · · · · · · · · ·

























S×S

.

Cubic spline

W3(d, h) = nd











2
3
− s2 + s3

2
0 ≤ s < 1, s = |d|

h
,

4
3
− 2s+ s2 − s3

6
1 ≤ s < 2,

0 s ≥ 2,

where h was set to 2 times the sampling interval with linear interpolation case, and nd is

equal to 1
h
. The explicit form of Htt corresponding to use of W3(xr, d) can be expressed as

Htt =























· · · · · · · · · · · · boundary condition · · · · · · · · · · · ·
−1/32 −1/8 −5/32 0 5/32 1/8 1/32 0 · · · · · ·

0 −1/32 −1/8 −5/32 0 5/32 1/8 1/32 0 · · ·
...

. . .
. . .

. . .
. . .

. . .
. . .

. . . · · · ...

0 · · · 0 −1/32 −1/8 −5/32 0 5/32 1/8 1/32

· · · · · · · · · · · · boundary condition · · · · · · · · · · · ·























S×S

.
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Appendix B

The derivation of Eq.(2.18) in

Sec. 2.3.2

Let ξ ≡ xr − xn cos θ − yn sin θ. As demonstrated by Lewitt [96], The 2D Radon transform

of one window function is given by

Rφblob
n (r2;m, a, α) =

a

Im(α)

(2π

α

)1/2[√

1− (ξ/a)2
]m+1/2

Im+1/2

(

α
√

1− (ξ/a)2
)

, (B.1)

for |ξ| ≤ a and zero otherwise. The gradient of the modified bessel function has the following

relationship as [1]
d

dz
{z±mIm(z)} = z±mIm∓1(z), (B.2)

where z is the distance to the center of the blob and m is a real number. Let z =

α
√

1− (ξ/a)2. Note that Eqn. (B.1) can be re-expressed as

Rφblob
n (r2;m, a, α) =

a

Im(α)

(2π

α

)1/2
(
1

α
)m+1/2zm+1/2Im+1/2(z). (B.3)

By use of Eq. (B.2) and Eq. (B.3), along with the chain rule, it can be verified readily that

∂(Rφblob
n (m, a, α, r))

∂xr
=
∂(Rφblob

n (m, a, α, r))

∂z

∂z

∂ξ

∂ξ

∂xr

=
a

Im[α]
(
2π

α
)1/2(

1

α
)m+1/2zm+1/2Im−1/2(z)× (

α

a
)2(−ξ

z
)

= − (2πα)1/2

Im(α)

ξ

a

(

√

1− (ξ/a)2
)m−1/2

Im−1/2

(

α
√

1− (ξ/a)2
)

. (B.4)
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Appendix C

Desription of the FGP algorithm for

the 3D case in Sec. 5.2.3

Below, the 3D FGP algorithm for solving the proximal problem contained in the FISTA is

described. Without loss of generality, we assume that gtv(u) = c1λtv‖u‖TV , where c1 is a

positive constant. Therefore,

prox1/L(gtv)(xg) = prox1/L(gtv)(ek −
1

L
∇d(ek)) := argmin

u

{

c1λtv‖u‖TV +
L

2
‖u− xg‖2

}

,

(C.1)

which is equivalent to the minimization problem

û := argmin
u

{

‖u− xg‖2 + 2α‖u‖TV

}

, (C.2)

where α = c1λtv/L. It has been demonstrated [14] that the FGP method can efficiently solve

the above problem in 2D case. Algorithm 3 describes the extension of the 2D FGP algorithm

to 3D, for use with CBCT image reconstruction.

The relevant operators are explicitly defined as follows:

• The linear operator L : R(m−1)×n ×l × R
m×(n−1)×l × R

m×n×(l−1) → R
m×n ×l is defined

by the following expression

L(r, s, t))i,j,h = [r]i,j,h − [r]i−1,j,h + [s]i,j,h − [s]i,j−1,h + [t]i,j,h − [t]i,j,h−1,

i = 1, · · · , m, j = 1, · · · , n, h = 1, · · · , l
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Algorithm 3 FGP algorithm to solve the TV-proximal problem in Eq. (C.2)

Input: xg,
Output: û – An optimal solution of Eq. (C.1) (up to a tolerance).
Step 0. Take (r1, s1, t1) = (o0,p0,q0) = [0(m−1)×n×l, 0m×(n−1)×l, 0m×n×(l−1)]
for k ← 1, K do

(ok,pk,qk) = PP

[

(rk, sk, tk) +
1

12α
LT (PC [xg − αL(rk, sk, tk)])

]

(C.3)

tk+1 =
1 +

√

1 + 4t2k
2

(C.4)

(rk+1, sk+1, tk+1) = (ok,pk,qk) +
(tk − 1

tk+1

)

(ok − ok−1,pk − pk−1,qk − qk−1) (C.5)

end for
Set fK = PC [xg − αL(oK ,pK ,qK)]

where we assume that [r]0,j,h = [r]m,j,h = [s]i,0,h = [s]i,n,h = [t]i,j,0 = [t]i,j,l ≡ 0,for every

i = 1, · · · , m and j = 1, · · · , n and h = 1, · · · , l. In our CBCT case, the values of m,

n and l represent the dimensions of the 3D discrete object.

• PC is an orthogonal projection operator onto the convex feasible set C. In our CBCT

case, we consider the operator PC is a positivity constraint:

PC [x] = max
{

0,x
}

,

where x is a arbitrary input matrix and max applies on the vector or matrix x in a

element-wise way.

• The operator LT : R
m×n ×l → R

(m−1)×n ×l × R
m×(n−1)×l × R

m×n×(l−1), which is the

adjoint of L is given by

LT (x) = (r, s, t)

where r ∈ R
(m−1)×n ×l, s ∈ R

m×(n−1)×l, and t ∈ R
m×n×(l−1) are the matrices defined by

[r]i,j,h = [x]i,j,h − [x]i+1,j,h, i = 1, · · · , m− 1, j = 1, · · · , n, h = 1, · · · , l
[s]i,j,h = [x]i,j,h − [x]i,j+1,h, i = 1, · · · , m, j = 1, · · · , n− 1, h = 1, · · · , l
[t]i,j,h = [x]i,j,h − [x]i,j,h+1, i = 1, · · · , m, j = 1, · · · , n, h = 1, · · · , l − 1.
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• The operator PP : R
(m−1)×n×l×R

m×(n−1)×l×R
m×n×(l−1) → R

(m−1)×n×l×R
m×(n−1)×l ×

R
m×n×(l−1), which is a projection operator onto the set P such as

LT (r, s, t) = (o,p,q)

where r, s, t and o,p,q denote the input and output matrices respectively are the

matrices defined by

[o]i,j,h =
ri,j,h

max{1,
√

[r]2i,j,h + [s]2i,j,h + [t]2i,j,h}
, i = 1, · · · , m− 1, j = 1, · · · , n, h = 1, · · · , l

[p]i,j,h =
si,j,h

max{1,
√

[r]2i,j,h + [s]2i,j,h + [t]2i,j,h}
, i = 1, · · · , m, j = 1, · · · , n− 1, h = 1, · · · , l

[q]i,j,h =
ti,j,h

max{1,
√

[r]2i,j,h + [s]2i,j,h + [t]2i,j,h}
, i = 1, · · · , m, j = 1, · · · , n, h = 1, · · · , l − 1,

where we define [r]m,j,h = [s]i,n,h = [t]i,j,l ≡ 0.
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Appendix D

Description of FISTA-ℓ1 algorithm for

wavelet-ℓ1 penalty in Sec. 5.2.4

Without loss of generality, consider that gl1(u) = c2λl1‖Φu‖1, in which c2 is a positive

constant and Φ is a 3D discrete Daubechies wavelet transform operator. Accordingly, we

can have

prox1/L(gℓ1)(xg) := argmin
u

{

c2λℓ1‖Φu‖1 +
L

2
‖u− xg‖2

}

, (D.1)

which is equivalent to the minimization poblem

û := argmin
u

{

‖u− xg‖2 + β‖Φu‖1
}

, (D.2)

where β = 2c2λℓ1/L. Since the Daubechies wavelets are orthogonal, ΦTΦ = I. Hence,

Eq. (D.2) is equivalent to the following minimization problem:

û := argmin
u

{

‖Φu− Φxg‖2 + β‖Φu‖1
}

, (D.3)

or
ˆ̃u := argmin

ũ

{

‖ũ− x̃g‖2 + β‖ũ‖1
}

, (D.4)

where ũ and x̃g represent the wavelet coefficients of u and xg, respectively. It has been

demonstrated [15,42] that the iterative shrinkage thresholding algorithm (ISTA) can readily

solve this problem by employing an operator

ˆ̃u = Tβ(x̃g),
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where Tα is defined as

Tβ(x̃g) = (‖x̃g‖ − β)+sgn(x̃g),

where (·)+ returns the argument if it is positive and returns zero otherwise, and the func-

tion sgn returns the sign of (·). The ISTA requires only one computation of the discrete

wavelet transform of xg to obtain the wavelet coefficients x̃g, followed by application of a

shrinkage-thresholding operator to get the solution. Both of these operations can be com-

puted efficiently.
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Appendix E

Hardware acceleration employing

single and multiple GPUs in Sec. 5.3.2

Single- and multi-GPU implemenations of the OSSF-TV algorithm are described below.

Although not presented, the implementations for the OSSF-TV-ℓ1 algorithm are essential

similar to those of the OSSF-TV algorithm.

E.1 Single GPU implementation of the OSSF-TV al-

gorithm for CBCT

All implementation in this work were based on NVIDIA Tesla K20 GPUs, each of which

has 2496 processing cores and 5GB of RAM. Figure E.1 describes the basic structure of the

single-GPU implementation of the OSSF-TV algorithm.

Specific details are as follows:

• Projection data bdata: The projection data bdata are transferred into the GPU global

memory from the host memory. If the GPU global memory allows, the projection data

should be transferred into GPUs at one time instead of multiple transfers.

• OS-SART

– Projection-correction step (One kernel function in GPU): For the vth

subset, each thread distributed by the GPU is employed to compute one element
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Figure E.1: A simple flowchart of the OSSF-TV algorithm with single GPU approach

of the corrective matrix ci,v according to the Eq.(5.21). In order to accelerate

this step, the 3D discrete object matrix f was stored in texture memory. The

correspondent values of hij,v was calculated independently by use of a previous

proposed method [81] in each thread. The calculated 2D corrective matrix ci,v for

the vth subset was located in GPU global memory, which will be employed in the

following backprojection-update step.

– Backprojection-update step (One kernel function in GPU): For the vth

projection data subset, each thread independently updates one specific voxel of

the 3D volume f from the previous obtained 2D corrective matrix ci,v according

to the Eq. (5.22). To update each element fj independently, a key step is to find

the indices of the ray that intersects the jth voxel. This can be accomplished by

projecting the eight vertexes of the jth voxel onto the detector plane to find the

ray indices range.

For each subset, the object matrix f was updated once, which would be used in
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next subset update. One full iteration of the OS-SART algorithm is performed

before solving the TV-proximal problem by the FGP method.

• TV-proximal problem (One kernel function in GPU): As described previously,

the four operators L, PC , PP , and LT operate in a element-wise manner in Eq. (C.3).

This indicates that each element of (r, s, t) and (o,p,q) can be updated independently

by use a GPU thread. Accordingly, implemenations of Eqs. (C.3) (C.5) can efficiently

exploit GPU parallelism because only simple and independent arithmetic operations

are required by each thread that generally cause few memory conflicts.

Note that the nine auxillary vectors rk, sk, tk, ok−1, pk−1, qk−1, ok, pk, and qk need

to be stored in the GPU memory as well. Each vector approximately had the same

size with the 3D matrix f . Fortunately, when each of these vectors has fewer than 5123

elements, the NVIDIA K20 has enough global memory to store all of them simulta-

neouly. For vectors larger than 5123, the memory bottleneck can be mitigated by the

following multi-GPU scheme.

E.2 Multi-GPU implementation of the OSSF-TV algo-

rithm for CBCT

To further reduce the computation time, a multi-GPU scheme is proposed in this section.

We assume four NVIDIA K20s are employed and demonstrate some basic rules and possible

arrangements. A flowchart is shown in Fig. E.2. The original 3D vector f is divided into

four equal sub-volumes that are distributed among four GPUs (id = 0, 1, 2, 3) respectively.

Details regarding the multi-GPU implemenation are as follows:

• Projection data bdata: The projection data bdata are transfered to the global mem-

ories of the four GPUs.

• OS-SART: The projection-correction step is divided into two individual sub-steps:

– Projection step (One kernel function in GPUs): Each thread launched by

the id-th GPU (id=0,1,2,3) simultaneously computes one ray integral through the
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Figure E.2: One simple scheme of four GPUs implementation for OS-SART part in porposed
OSSF-TV and/or OSSF-TV-ℓ1 algorithms

id-th sub-volume as

bidi,v =

N/4
∑

j=1

hidij,vf
id
j,v−1, ı = 1, 2, · · · ,M/T ; id = 0, 1, 2, 3,

rlidi,v =

N/4
∑

j=1

hidij,v, ı = 1, 2, · · · ,M/T ; id = 0, 1, 2, 3,

where the superscript id indicates the sub-volume, hidij,v represents the contribution

from the jth voxel in the idth sub-volume to the ith ray, and bidi,v represents the ith
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ray integral through the idth sub-volume. The notation f id,v−1
j specifies the jth

voxel value in the id-th sub-volume at the (v− 1)-th update in one full OS-SART

iteration, and rlidi,v represents the length of the i-th ray that intersected the id-th

sub-volume.

– Correction step (One kernel in GPUs ): In order to calculate the 2D correc-

tive matrix ci,v, the ray integrals and ray lengths calculated from all sub-volumes

are summed to obtain the values for the full volume as follows:

bi,v = b0i,v + b1i,v + b2i,v + b3i,v,

rli,v = rl0i,v + rl1i,v + rl2i,v + rl3i,v, i = 1, 2, · · · ,M/T ;

Therefore, the 2D corrective matrix ci,v is computed as

ci,v =
bdatai,v − bi,v

rli,v
, ı = 1, 2, · · · ,M/T.

Next, the ci,v are copied to the global memory of all GPUs to prepare the last

backprojection-update step.

– Backprojection-update step (One kernel in GPUs): Similar rules and

strategies described in the single GPU implementation are also applicable here.

Each thread launched by the id-th GPU is employed to independently update one

voxel in the id-th sub-volume as

f id,k
j,v = f id,k

j,v−1 + γ

∑

i∈φid(ci,v−1)h
id
ij,v

∑

i∈φid hidij,v
, j = 1, 2, · · · , N/4;

The above equation was essential the same with the Eq. (5.22), but it was per-

formed in each sub-volume by each corresponding GPU.

During each view-update circle, four GPUs are synchronized for the projection step

since all four ray integrals bidi,v are required in the corection step. Four sub-volumes are

updated once in their respective GPUs for each subset. Similar to the single GPU case,

a full iteration for the OS-SART algorithm is performed before solving the TV-proximal

problem.
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• TV-proximal problem: In the OS-SART computation, an intermediate solution

xg to minimization problem d(f) was obtained and stored as four sub-volumes x0
g,

x1
g, x

2
g, x

3
g in four GPUs. Becuase of the element-wise property of four operators in

Eq. (C.3), Algorithm 3 was independently executed for each sub-volume in each GPU

concurrently. Except when the operators L and LT act on elements of (r, s, t) and xg

located at the boundaries between two sub-volumes, each GPU only needs to access

its own memory. However, the number of such elements is small when compared to

the number elements inside each sub-volume.

The computation time for the projection operation in the OS-SART step when four GPUs is

employed is approximately one quarter of the time required by single GPU implemenation.

This is because both the calculation time for ray integrals through one sub-volume in each

thread and the number of nonzero ray integral threads in each GPU would be approximately

one half of those in single GPU case. The computation time for the backprojection-update

step with four GPUs would also be approximately one quarter of the time required by one

single GPU, since each GPU only updated one sub-volume data, whose size was only one

quarter of the original volume. Moreover, the computation time for the correction step is

negligible, since only simple arithmetic operations are involved for small 2D matrices.

In addition, during one full OS-SART iteration, the id-th sub-volume always remains in the

memory of the id-th GPU. There is no need to frequently transfer large vectors between

GPUs, which minimizes communcation times. Moreover, when solving the TV-proximal

problem, since each GPU executed Algorithm 3 for one quarter of the data, the computation

time required by four GPUs is approximately one quarter of the time required by a single

GPU. The overhead and communication time between GPUs in this operation is minimal.

Accordingly, the time reduction factor by adopting a multi-GPU scheme to solve the proposed

OSSF-TV algorithm (and OSSF-TV-ℓ1 algorithm) is approximately equal to the number

of GPUs employed. The above observations and conclusions generalize to the case where

more than four GPUs are employed. This feature is highly attractive and suggests that

reconstruction times can be readily reduced by using additional GPUs.
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