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ABSTRACT OF THE DISSERTATION 

 
Cooperative Tumor Suppression by ARF and p53 

 
by 
 

Jason Thomas Forys 
 

Doctor of Philosophy in Molecular Cell Biology 
 

Washington University in St. Louis, 2013 
 

Professor Jason Weber, Chairperson 
 
 
 

 Cancer is a complex genetic disease characterized by the inactivation of tumor suppressor 

genes and enhanced activity of oncogenes leading to deregulated cellular proliferation.  Two 

tumor suppressor genes, p53 and Arf, play important roles in protecting cells against numerous 

biological stresses.  In response to oncogenic signals, increased ARF expression leads to the 

activation of p53, which in turn leads to the cessation of cell division or induction of an apoptotic 

response.  Interestingly, p53 coordinates repression of Arf transcription, setting up a negative 

feedback loop with currently unknown physiological significance.  Cells that lack p53 express 

elevated levels of ARF, but it has been generally accepted that these levels serve no tumor 

suppressor function.  This view has been challenged recently as numerous groups have 

demonstrated ARF can inhibit both cell growth and proliferation independently of p53.  

Additionally, co-inactivation of p53 and Arf is frequently observed in human cancers, suggesting 

they do not function in a strictly linear genetic pathway.       

 The objective of my dissertation was to examine the biological functions of ARF in the 

absence of p53.  I specifically wanted to understand why p53-deficient cells express elevated 

levels of ARF, and whether these increased levels are able to suppress tumorigenesis.  By 
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addressing these questions, I hoped to provide a mechanistic explanation for the selective 

advantage cancer cells gain by inactivating both p53 and Arf, and ultimately uncover novel 

therapeutic approaches that could be used to treat patients whose tumors exhibit these specific 

genetic abnormalities.   

 My dissertation work utilized an in vitro system to study the role of ARF in cells lacking 

p53.  I hypothesized that acute loss of p53 would lead to an upregulation of ARF which would 

exert a currently undefined tumor suppressor function.  Indeed, I have demonstrated that loss of 

p53 leads to an induction of ARF, which is able to potently suppress tumorigenesis.  Depletion of 

ARF in this genetic setting lead to the activation of a type I interferon response driven by 

interferon-beta and the STAT1 transcription factor.  I further demonstrated that ARF and p53 

cooperate to suppress the interferon response, and when both proteins are inactivated, interferon 

signaling can drive tumor cell proliferation.  Additionally, I have shown that breast cancer cell 

lines lacking ARF and p53 are sensitive to STAT1 depletion, indicating targeted disruption of 

this signaling pathway can inhibit cancer cell growth.  Finally, I identified a subtype of breast 

cancer, defined as ER-/PR-/HER2-, that exhibits activation of the interferon signaling pathway in 

the absence of p53 and ARF function.   

This work has solidified ARF’s role as a p53-independent tumor suppressor, and provides 

insight into the selective advantage cancer cells gain by co-inactivating these two tumor 

suppressor genes.  As we enter an era of personalized cancer therapy, a detailed understanding of 

cancer cell vulnerabilities is imperative.  The data presented in this dissertation has identified a 

subset of patients that would benefit from targeted inhibition of IFN-β signaling.  Equally as 

important, I have identified a novel oncogenic signaling pathway that could be promoting tumor 

growth in numerous other cancer types.     
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“For the scientist, at exactly the moment of discovery—that most unstable 
existential moment—the external world, nature itself, deeply confirms his 

innermost fantastic convictions.  Anchored abruptly in the world, Leviathan 
gasping on his hook, he is saved from extreme mental disorder by the most 

profound affirmation of the real.” 
 
 

~Richard Rhodes, The Making of the Atomic Bomb 
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In 2013, the American Cancer Society estimates that 1.6 million new cases of cancer will 

be diagnosed in the United States and approximately 580,350 people will lose their lives battling 

this disease.  While these numbers are certainly alarming, a more optimistic view indicates that 

there are over 13.7 million people alive today because of the efforts put forth by physicians and 

researchers over the past 100 years.  Thus, we have come a long way since Ancient Greece when 

physicians such as Hippocrates believed cancer was caused by an excess of black bile (55).  

Today, we understand that cancer is a complex genetic disease caused by a multistep process 

involving specific alterations to cellular DNA.  Changes to DNA that confer a proliferative 

advantage allow those cells to survive and divide in an uncontrolled manner, leading to tumor 

formation.  Over time, the cells that sustain the most advantageous traits are able to endure the 

harsh intra-tumor environment and accumulate even more DNA alterations, eventually leading to 

their dissemination from the tumor to other sites in the human body.  This process, called 

metastasis, is ultimately the point where patients lose the battle to cancer.  Highlighting the 

complexity of cancer, there are over 200 distinct types which can be further sub-classified by 

molecular signatures, encompassing an immeasurable number of possibilities.  The challenge for 

researchers today is to discover the most effective treatment options for all of these different 

types of disease.  Unfortunately, there is not one simple remedy.   

 The ultimate goal of the research described in this dissertation was to enhance our 

knowledge of the molecular changes occurring within cancer cells, and to identify novel 

therapeutic targets to treat this devastating disease.  Specifically, the work has significantly 

advanced our knowledge of the relationship between two of the most frequently mutated genes in 

human cancer—the Arf and p53 tumor suppressors.  While originally thought to function in a 

linear genetic pathway, functional disruption of these two genes frequently co-exist in human 
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tumors, indicating our knowledge of their relationship is incomplete.  This dissertation work has 

demonstrated that these two proteins cooperate to suppress a signaling pathway not normally 

considered to be oncogenic, but the experiments described here indicate otherwise.  This novel 

finding will allow the opportunity for targeted therapeutic intervention in patients harboring 

defects in Arf and p53.      

In this section I will not attempt to introduce all of the molecular intricacies of cancer 

cells.  Rather, I will introduce tumor suppressors and oncogenes, briefly describe how normal 

cells become cancerous, and discuss where the field of cancer biology is headed in the 21st 

century.  For an in depth review of the molecular characteristics that cancer cells possess, see the 

seminal work by Hanahan and Weinberg (109).  

 

Oncogenes and Tumor Suppressors 

In 1914, Theodor Boveri, a German zoologist studying the effects of abnormal mitosis in 

sea urchins, hypothesized that there are both stimulatory and inhibitory chromosomes, essentially 

predicting the existence of what are now known as oncogenes and tumor suppressors (25).  This 

was quite an astounding prediction considering that chromosomes (DNA) were not identified as 

the carrier of genetic information for 40 more years (114).  The human genome encodes 

numerous “proto-oncogenes,” that play vital roles in promoting proliferation and cell growth 

both during development and throughout our lives.  Without these genes, we would not develop 

properly and our bodies would not be capable of growing.  Specific genetic changes like gain of 

function mutations, chromosomal amplifications, or translocation events can lead to 

inappropriate activity of proto-oncogenes, establishing them as bona fide oncogenes.  Genetic 
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changes resulting in oncogenes are usually dominant in nature, meaning a change in just one 

allele is sufficient to produce the pro-tumor effect.       

Evidence for the existence of oncogenes was first demonstrated in 1960 when Nowell 

and Hungerford observed a small chromosome that was present in cells from patients with 

chronic myelogenous leukemia (CML) but absent in normal cells (206).  This piece of DNA, 

named the “Philadelphia Chromosome” after the city in which it was discovered, is the result of 

a translocation event between chromosomes 9 and 22.  The chromosomal translocation event 

resulted in a fusion protein, joining the breakpoint cluster region (Bcr) to a receptor tyrosine 

kinase called Abl.  As a result of the BCR-Abl fusion, proper regulation of Abl is lost, and 

constitutive downstream signaling occurs (146).  The BCR-Abl oncogene was demonstrated to 

be sufficient to induce CML in mice, clearly indicating this abnormal protein is the driving force 

behind CML (50).  Greater than 90% of CML patients exhibit this genetic abnormality, so a 

momentous effort was undertaken to generate BCR-Abl specific inhibitors.  The drug that was 

eventually produced was called Gleevec, the first of its kind, and it increased the five year 

survival rate for patients with CML from 30% to 90% (75). 

An equally important discovery made by Michael Bishop and Harold Varmus provided 

evidence for the existence of oncogenes.  Bishop and Varmus were studying the Rous sarcoma 

virus which can induce tumors in chickens, and demonstrated that it was not the act of viral 

infection itself that caused tumor formation, but rather a specific piece of DNA within the viral 

genome (279).  The piece of DNA, called Src, was actually a mammalian gene that the virus had 

incorporated into its own genome.  A mutation in the Src sequence led to unregulated activation 

of the receptor tyrosine kinase that it encoded (210).  Once expressed in the chicken cells, it 

initiated proliferative and survival-promoting pathways that led to tumor formation.        
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Perhaps the best example of an oncogene is RAS.  It was originally identified by Harvey 

and Kirsten as a gene utilized by a murine retrovirus to induce sarcoma formation (RAt Sarcoma 

virus).  Similar to the Src proto-oncogene, Ras has mammalian homologs, including in humans, 

which suggests the virus hijacked the sequence from the mammalian genome and a mutation led 

to its ability to induce proliferation once expressed.  This attribute is ideal for the virus, since it 

can infect rats and induce cells to divide, generating millions of new viral particles with each 

round of division (137).  Today, it is known that mutations in the Ras proto-oncogene occur in a 

wide variety of tumors (251).  As a small GTPase, RAS is active in the GTP-bound state, and 

activates downstream signaling pathways such as the mitogen-activated protein kinase pathway 

(MAPK), the RAL-guanine nucleotide dissociation stimulator pathway (RAL-GDS) and the 

phosphatidylinositol-3-kinase pathway (PI3K) (223).  Normally, RAS transduces its pro-

proliferative signal as long as a stimulating growth factor is present.  In the absence of growth 

factors, RAS hydrolyzes GTP to GDP, turning off the response.  Cancer-associated mutations of 

the Ras gene result in RAS becoming “locked” in the GTP-bound state, leading to constitutive 

signaling through the above mentioned pathways (249).  These pathways drive proliferation, 

growth, and survival, so mutant Ras is extremely beneficial to a cancer cell. 

Boveri’s prediction of inhibitory chromosomes was validated in in the 1970’s by a 

physician named Alfred Knudson.  While studying a heritable form of pediatric retinal cancer 

called Retinoblastoma, Knudson used an epidemiological approach to develop a hypothesis that 

the development of this cancer required inactivating mutations in two copies of a specific gene 

(145).  This hypothesis, called the “two-hit model,” predicted that mutations of one allele of the 

gene (which was later cloned and coined Rb (159)), would be found in the germline of families 

with hereditary retinoblastoma.  Likewise, tumors from retinoblastoma patients would exhibit 
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inactivation of the second allele.  This was exactly what Knudson observed (17).  Tumor 

suppressors such as Rb are responsible for monitoring and inhibiting the signaling pathways that 

oncogenes activate.  A proper balance between the activities of these proteins ensures regulated 

proliferation in response to the appropriate cues.  When this balance is lost, uncontrolled 

proliferation can occur. 

An exception to the two-hit model of tumor suppression is found in one of the best 

characterized tumor suppressor proteins, p53.  TP53 (Trp53 in the mouse) encodes a 53 kD 

protein that functions as a tetrameric transcription factor, and is the most frequently mutated 

gene in human cancer (162).  Evidence characterizing p53 as a tumor suppressor was initially 

unclear.  In fact, for several years researchers believed that p53 was an oncogene, due to its 

ability to interact with a viral oncoprotein (SV40 Large T-antigen) and the observation that many 

tumors had elevated levels of p53 (302).  Later, it was demonstrated that mutations in p53 lead to 

increased stability, and can impart gain of function characteristics (29).  Early experiments 

classifying p53 as an oncogene were actually using mutant forms of p53, which led to skewed 

interpretations.  Additionally, we now know that the SV40 Large T-antigen expressed by tumor-

causing polyomaviruses binds and inactivates p53, effectively ridding the cell of p53 function.  

Numerous other cancer-causing viruses inactivate p53, underscoring its important role in 

maintaining proper proliferation rates.  HPV, the cause of cervical cancer, expresses an oncogene 

called E6 that binds and targets p53 for degradation (162).  Like the tumor suppressor Rb, 

inactivating mutations in the TP53 gene are associated with a hereditary cancer syndrome.  

Mutations in p53 are the causative defect in the hereditary cancer-predisposition syndrome, 

called Li-Fraumeni (182, 277).  These patients develop multiple tumor types very early in life. 
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The p53 protein has been coined the “guardian of the genome” as it is responsible for 

maintaining genomic integrity (157).  In this capacity, p53 is activated in response to DNA 

damage and can activate transcription of anti-proliferative genes such as p21 or pro-apoptotic 

genes like Puma and Noxa (83, 195, 203, 208).  Thus, p53 is responsible for insuring proper 

genomic integrity before a cell is allowed to divide.  If the damage is too severe, p53 activates 

pro-apoptotic programs to clear the cell from the organism.  Other stresses such as hypoxia, 

reactive oxygen species, telomere shortening, or oncogenic stress, also lead to activation of p53, 

underscoring the immense selective pressure cancer cells face to mutate the TP53 gene (162). 

Mutations in p53 can lead to the formation of a dominant negative protein.  Since p53 

functions as a tetramer, having just one mutant molecule of p53 in the complex abrogates the 

wild-type transcriptional functions.  In this regard, mutating one allele is sufficient to completely 

inactivate p53’s ability to respond to cellular stress (29).  For this reason, p53 does not follow the 

classical two-hit hypothesis for tumor suppressor genes, but it is arguably our biggest asset in the 

defense against cancer.  The discovery that cancer is a genetic disease, and an improper balance 

of oncogenic and tumor suppressive signaling is the driving force behind tumor formation has 

revolutionized the field of cancer biology.  With this knowledge, researchers have been able to 

study the key requirements that make a normal cell cancerous.  

       

From Normal to Abnormal—How do cells become cancerous? 

 Human cells possess numerous defense mechanisms that protect against aberrant 

proliferation.  Over the course of many years, cells accumulate mutations, and some of these 

stochastic events can affect a gene that is important in regulating cellular proliferation, growth, 

or survival.  When this occurs, the cell gains an obvious advantage over its neighbor.  In human 
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cells, one mutation is not sufficient to induce tumor formation.  In fact, it is believed that atleast 

4-5 separate genetic events must occur to make a normal cell cancerous.  This was demonstrated 

in a landmark publication by Hahn et al., where the authors demonstrated a human cell could be 

transformed (a term used to describe a cell capable of forming a tumor) by the following genetic 

manipulations:  1) Inactivating the Rb and p53 tumor suppressor pathways 2) Inactivating the 

PP2A (protein phosphatase 2A) which negatively regulates several important proteins in 

proliferation such as c-MYC 3) Providing constitutive telomerase (hTERT) expression which 

ensures the ends of chromosomes do not shorten with each round of DNA replication and 4) 

Expressing a mutant form of the RAS proto-oncogene that imparts pro-proliferative and survival 

signals (107, 255).  Obviously, these specific genetic perturbations are not the only route to 

cancer.   

In reality, there are many ways of achieving the cancer end-point, but regardless of how 

cells accumulate the molecular changes required for tumorigenesis, cancer cells all possess the 

same general qualities.  They must be capable of sustaining proliferative signaling, be able to 

divide indefinitely, evade growth suppressors, resist cell death, maintain an adequate blood 

supply, and invade surrounding tissues to metastasize.  These “hallmarks,” as they have been 

coined by Hanahan and Weinberg,  accurately depict the remarkable capabilities of a cancer cell 

(109).  As research has continued to improve the mechanistic understanding of cancer, it is also 

now appreciated that the ability of cancer cells to avoid clearance by the immune system and to 

alter its cellular metabolism to keep up with proliferative demand are likely additional hallmarks.  

Additional tumor promoting mechanisms such as chronic inflammation, genome instability, and 

epigenetic modifications are also being actively researched (15, 104, 204). 
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If such a complicated series of genetic changes are required to induce transformation, 

then why do humans get cancer at all?  While not an overly simple question to answer, it starts 

with the fact that around half of all cancers are preventable (48).  Factors such as tobacco use, 

poor diet, obesity, and lack of exercise are all things that contribute to mutational rates and 

promote a physiological environment that are conducive to tumor growth.  Most often, a lifetime 

of stochastic genetic changes are required to create the proper cellular environment for cancer 

formation, which is why an overwhelming amount of data indicates cancer incidence rapidly 

increases with age (57).  The social and environmental factors listed above simply increase the 

chances that the harmful genetic changes will occur. 

    Our molecular understanding of cancer, elucidated over the past 50 years, is now 

allowing cancer researchers to make remarkable strides towards effectively treating the diverse 

spectrum of cancer sub-types.   In recent years, an explosion in genome sequencing technology 

has allowed rapid and affordable analysis of human tumors.  From these analyses, it is clear that 

most tumors possess targetable mutations (93).  That is, they contain known “driver” oncogenes 

that drugs could target and inactivate.  Therefore, the modern day goal for cancer therapeutics is 

personalized cancer therapy (52).  With this approach, sequencing data from a patient’s tumor 

(compared to their normal tissue) would reveal a specific course of therapeutic action.  This 

approach does not come without potential pitfalls.  Tumor heterogeneity is a major obstacle to 

personalized therapy, as treatments need to clear all the unique clonal populations within a 

tumor, and sequencing methodologies must be able to accurately detect them (187).  

Additionally, there is still an extremely limited knowledge on the functional consequence of 

mutations in the noncoding genomic regions. While there is still much to be discovered, capable 
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scientists continue to uncover and explain the complexities of cancer, with the hope that one day 

effective treatments are available for all variations of this devastating disease.   

 

THE ARF TUMOR SUPPRESSOR 

Most, perhaps all, cancer cells must navigate their way around two vital tumor suppressor 

pathways maintained by the Rb and p53 proteins.  Without functional Rb and p53 pathways, 

cells are not capable of appropriately regulating their proliferation or responding to numerous 

physiological stresses, two hallmark characteristics of cancer cells.  Interestingly, our genome 

contains a genetic locus known as CDKN2a that encodes two important regulators of the Rb and 

p53 pathways.  In this section, I will introduce this unique genetic locus and discuss the two 

tumor suppressor genes encoded by it, p16 and ARF.  The main focus of this section will be 

devoted to ARF, as my dissertation work has not concentrated on p16-mediated tumor 

suppression.     

 

The CDKN2A Tumor Suppressor Locus  

Within a 35 kilobase (kb) span on chromosome 9p21, the human genome encodes three 

tumor suppressor genes—p15INK4b (encoded by CDKN2b), p16INK4a, and p14ARF (collectively 

encoded by CDKN2a) (see Figure 1.1 for graphical depiction).  Consequently, this stretch of 

DNA is one of the most frequently mutated, deleted, or epigenetically silenced genomic loci in 

human cancers (252).  p16INK4a was the first gene in this region to be identified as a tumor 

suppressor. Serrano and colleagues identified p16 in a complex with the cyclin dependent kinase, 

CDK4, and demonstrated that p16 could inhibit the activity of this important cell cycle regulator 

(253).  P16 is a member of the INK4 (INhibitors of Cyclin Dependent Kinase 4) family of cell 
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cycle inhibitors.  This family of proteins has three other members; p15INK4b, p18INK4c, and 

p19INK4d which are located on chromosome bands 9p21, 1p32, and 19p13 respectively (243).   

The INK4 family of proteins participates in the regulation of cell cycle progression by 

binding and inhibiting the activities of cyclin D-dependent kinases, CDK4 and CDK6 (266).    

As cells progress through G1 phase of the cell cycle, cyclin D1 levels are transcriptionally 

induced and form complexes with CDK4 and CDK6 promoting their kinase activities (66).  

CDK4/6-cyclin-D1 complexes phosphorylate a tumor suppressor called the Retinoblastoma (Rb) 

protein.  In resting cells, hypophosphorylated Rb normally binds and sequesters the E2F family 

of transcription factors which are important for enhancing expression of genes required for DNA 

synthesis (212).  Therefore, Rb ensures cells do not proceed into S-phase of the cell cycle 

without the appropriate mitogenic signals.  Phosphorylation of Rb by the CDK4/6-cyclin D1 

complexes leads to the release of the E2F proteins and progression into S-phase.  The INK4 

proteins block the interaction between CDK4/6 and cyclin D1, effectively blocking entry into S-

phase (265).  Additionally, INK4-mediated disruption of the CDK4/6-cyclin D1 complexes leads 

to the release of two other CDK inhibitors, p21 and p27, which are required for proper cyclin D-

CDK complex formation (45).  Upon release, p21 and p27 inhibit the kinase activities of cyclin 

E-CDK2 and cyclin A-CDK2 complexes, thus providing complete inhibition of cell cycle 

progression (266)    The G1 cell cycle arrest that subsequently occurs requires functional Rb, 

indicating the linear nature of this pathway (106, 172, 194).  While all the members of the INK4 

family are capable of inhibiting the activity of CDK’s in vitro (265), p16 is by far the most 

commonly mutated family member, suggesting it is the most relevant tumor suppressor in vivo 

(245).  Most, if not all, cancer cells must overcome the Rb-regulated cell cycle checkpoint in 
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order to maintain their enhanced proliferative capacity.  This is most commonly achieved by 

deletion or mutation of p16 or Rb, or overexpression of the CDK’s or Cyclin D1 (264). 

The organization of the CDKN2a locus is distinctly unique.  Shortly after the discovery 

of p16, it was noted that the CDKN2a locus actually encoded two transcripts (185, 280).  This 

finding, along with a seminal paper published by Quelle and colleagues, demonstrated that the 

CDKN2a locus actually encoded two distinct proteins—p16 and ARF (228).  p16 and ARF have 

distinct first exons, designated exon-1α and exon-1β  respectively, and are regulated by 

independent promoter sequences.  Both exon-1α and exon-1β splice into shared exons 2 and 3.  

However, due to the distinct ATG translation start site in exon-1β of the ARF transcript, exon 2 

gets translated in an Alternative Reading Frame (Figure 1.1).  As a result, ARF and p16 share 

absolutely no homology at the protein level.  ARF, like p16, is able to induce cell cycle arrest, 

but does so primarily through a p53-dependent mechanism that will be discussed in a later 

section.  To demonstrate the potency of this genetic locus, a mouse carrying an extra copy of the 

entire Ink4a/Arf locus was generated, and it displayed resistance to tumor formation (190).   

The genomic organization of CDKN2a is conserved throughout mammals, but no 

examples of similarly constructed genomic loci have been found in humans.   The only known 

mammalian exception is chickens.  Chickens lack p16, and express a truncated form of ARF, 

representing only the first 60 amino acids of exon 1-β (144).  The significance of this will be 

discussed in a later section.   
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Overview of the ARF protein 

The exon-1β transcript encodes a 14 kD protein in humans (p14ARF) and a 19kD protein 

in mice (p19ARF).  The mouse and human ARF proteins share 50% homology, and possess 

unique biochemical properties (228).  ARF is a resident nucleolar protein and contains over 20% 

arginine residues.  This feature of ARF makes it highly basic and results in an isoelectric point 

above 11 (170, 228).  As a result, ARF is highly disordered at physiological pH, and is thought to 

require interaction with other proteins to neutralize its overall positive charge (261).  Indeed, 

crystal structure evidence has indicated that the 37 amino acid N-terminal peptide of ARF is 

highly unstructured in aqueous solution but is capable of forming two alpha helical domains 

upon association with its binding partners (23, 68).  As a result of ARF’s unstructured and highly 

basic nature, it is capable of interacting with a growing list of proteins (Reviewed in (261)).   

Another unusual feature of ARF is its apparent lack of lysine residues.  Mouse ARF 

contains one lysine residue at position 26, and human ARF contains none.  The half-life of ARF 

has been reported anywhere from 1-8 hours depending on the cell line studied, with ~6 hours 

being consistently found in mouse cells (43, 152, 221, 306).  Since ARF is essentially a lysine-

less protein, its turnover is regulated by a process called N-terminal polyubiquitination which is 

not dependent on lysine residues (152, 153).  Rather, the free N-terminal amino group of ARF is 

used for conjugating ubiquitin.  Yet another oddity of ARF can explain this phenomenon.  Most 

eukaryotic proteins are acetylated at their N-termini, which would not permit conjugation of 

ubiquitin (220).  ARF’s N-terminal methionine is cleaved by a methionine aminopeptidase, 

leaving valine and glycine, respectively, as the N-terminal amino acids in human and mouse 

ARF.  Valine and glycine are poor targets for acetylation.  As a result, ARF’s N-terminus is not 

acetylated and can therefore be targeted for degradation by the ubiquitin/proteasome system.     
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Until very recently, the search for an E3 ligase for ARF had been unsuccessful.  Two 

proteins have been identified to be direct E3 ligases for ARF, named ULF (Ubiquitin Ligase for 

ARF) and SIVA1 (43, 306).  Depletion of either ULF or SIVA1 in human cancer cell lines leads 

to an increase in ARF stability, and in vitro  experiments indicate that ULF and SIVA1 can 

directly coordinate the transfer of ubiquitin to ARF (43, 306).  ULF is overexpressed in several 

tumor types, indicating a possible mechanism for ARF inactivation in those cases (30, 89).  No 

such evidence has yet been found for SIVA1.  An unanswered question is whether ULF and 

SIVA1 are functionally redundant.  Based on current research, this seems unlikely since 

depletion of either ULF or SIVA1 is sufficient to increase the half-life of ARF.  The expression 

of ULF and SIVA1 may be tissue specific, or their effects could be additive.  The consequence 

of depleting both these proteins would be useful in addressing these possibilities.   

One final peculiarity of ARF structure is the presence of an internal methionine residue at 

amino acid number 48 in humans and 45 in mice.  Reef and colleagues demonstrated that 

translation can be initiated from this methionine, resulting in a smaller version of ARF 

appropriately named smARF (236).  Mouse ARF’s nucleolar localization signal resides in amino 

acid residues 26-37 (309), so smARF does not localize to the nucleous.  Rather, it localizes to 

mitochondria when overexpressed and can promote autophagy (235).  The importance of this 

finding is a subject of debate since full length ARF is also capable of inducing autophagy from 

its resident nucleolar compartment (1, 31).  In humans, two stretches of amino acid residues, 2-

14 and 82-101 are required for proper nucleolar localization (170, 308, 328), so human smARF 

retains the N-terminal nucleolar signal.  Regardless, overexpression of human smARF also 

localizes to the mitochondria (236).  Unfortunately, most studies performed to date have required 
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gross overexpression of smARF to observe measurable phenotypes.  Thus, the physiological role 

of smARF is still an area of active research. 

The odd genetic and biochemical makeup of ARF make it challenging to manipulate 

experimentally.  Great care must be taken in genetic experiments to ensure specific targeting of 

ARF or p16.  Likewise, due to the basic nature of ARF protein, gross overexpression can often 

lead to non-physiological interactions.  Regardless of these challenges, a tremendous amount of 

experimentation has established ARF’s mechanistic role in tumor suppression—that is, the 

ability to sense oncogenic stress and activate p53-dependent cell senescence or apoptosis.  I will 

first describe the experiments that led to the identification of ARF as a tumor suppressor and then 

introduce the p53-dependent functions of ARF.  

 

ARF-mediated tumor suppression via p53 

Genetic experiments in mouse model systems have generated much of the data that 

classifies ARF as a bona fide tumor suppressor protein (252).  Prior to the knowledge that ARF 

was encoded by CDKN2a, a knockout mouse was made that contained a deletion in exons 2 and 

3.  Without realizing it, Serrano and colleagues obliterated function of both ARF and p16 (254).  

The knockout mice were highly tumor prone and developed sarcomas or lymphomas by 9 

months of age.  The kinetics of tumor formation were significantly accelerated by treating the 

mice with two DNA damaging agents, UVB and 9,10-dimethyl-1,2-benzanthracene (DMBA) 

(56, 69).  Even after these treatments, though, sarcomas and lymphomas dominated the observed 

tumor spectrum (254).  Mouse embryonic fibroblasts (MEFs) harvested from these mice 

proliferated more rapidly than wild-type littermates and did not undergo culture-induced cellular 

senescence.  Furthermore, the MEFs were capable of forming tumors in mice and forming 
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colonies in soft agar upon overexpression of mutant RasV12, two defining characteristics of 

neoplastic transformation (122).   

What is the mechanism of ARF-mediated tumor suppression?  When Quelle et al. 

initially published their findings on ARF’s existence, they also noted that ARF was capable of 

inducing cell cycle arrest at both the G1/S and G2/M checkpoints without the cooperation of p16 

(228).  They further demonstrated that ARF was not a CDK inhibitor, like the INK4 family of 

proteins.  The Arf-knockout mouse cells were immortalized in cell culture even though they 

retained wild-type p53, a process that was previously considered to be dependent on p53 

disruption (111, 136).  This suggested that ARF and p53 might function in a linear genetic 

pathway.  Indeed, elegant studies have subsequently demonstrated that ARF can activate the p53 

tumor suppressor pathway (257) (Figure 1.2).  A mouse model of B-cell lymphoma 

constitutively expressing oncogenic c-MYC  was particularly useful in this discovery (2).  In this 

model, clonal B-cell proliferation and expansion is initially offset by a high degree of p53-

dependent apoptosis, before full-blown lymphoma develops (2, 250).  Eischen and colleagues 

found that lymphomas arising in these mice frequently inactivate p53 (28%) or Arf (24%) and 

others display overexpression of the E3 ubiquitin ligase for p53, MDM2 (82).  When Myc 

transgenic mice were bred to contain only one functional Arf allele, the onset of lymphoma was 

greatly accelerated (mean survival of 11 weeks compared to 30 weeks in Arf +/+ mice).  

Strikingly, over 80% of these tumors exhibited loss of the remaining Arf allele.  Together, these 

data demonstrate that inactivating p53 or ARF is a pre-requisite requirement for Myc-induced 

lymphoma, and provide further evidence for ARF and p53 cooperation in tumor suppression.   

The mouse model described above provides a nice transition into the mechanistic role of 

ARF as a tumor suppressor—sensing oncogenic stress.   Numerous studies have indicated that 
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ARF lies upstream of p53, and promotes its stability by binding and sequestering the E3 ligase, 

MDM2 in the nucleolus (119, 308, 309, 328).  The cellular levels of p53 are tightly regulated to 

insure inappropriate p53 signaling does not occur.  As a result, the turnover of p53 protein is 

very rapid, with a half-life of about 20 minutes (178).  ARF expression is increased in response 

to unperturbed oncogenic signaling, including RAS (165, 213) E1A (58), v-ABL (229), c-MYC 

(334), E2F1 (70, 332), NOTCH1 (299), β-CATENIN (51), MAPK (164), and mTOR (197).  

Once induced, ARF interacts with MDM2 via amino acids encoded by exon-1β (135), which 

uncovers a cryptic nucleolar localization domain in MDM2 (170, 308).  Re-localization of 

MDM2 to the nucleolus, results in increased p53 protein stability leading to transcriptional 

activation of genes involved in cell cycle arrest or apoptosis.   Remarkably, the first 14 amino 

acids of ARF are sufficient to bind MDM2 and induce p53-dependent cell cycle arrest (198).  

This highlights the importance of exon-1β and provides an explanation for the odd architecture 

of the CDKN2a locus in chickens where the only protein product expressed is the N-terminal 

portion of ARF (generating p7ARF) (144).  

MDM2 is a proto-oncogene that is frequently amplified or overexpressed in human 

cancers (303).  Besides possessing a RING-finger domain that allows it to ubiquitinate p53 

(118), MDM2 can directly bind to p53’s DNA-binding domain, inhibiting its ability to trans-

activate target genes (199, 209).  Additionally, MDM2 can shuttle p53 from the nucleus to the 

cytoplasm where it is degraded by the proteasome (287).  Several groups have shown that ARF 

can activate p53-dependent cell cycle arrest without re-localizing MDM2 to the nucleolus (147, 

168).  In this model, ARF, a resident nucleolar protein, is capable of inhibiting MDM2’s E3 

ligase activity in the nucleus and also blocks MDM2’s ability to shuttle to the cytoplasm (288).  

This alternative model was developed using data obtained from overexpressing ARF in human 
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and mouse cell lines (NIH3T3, HELA, and U2OS) that harbor tremendous genomic complexity 

due to p53 loss of function.  Therefore, most researchers in the ARF field consider nucleolar 

sequestration of MDM2 to be the likely physiological mechanism by which ARF induces p53 

activation. 

While loss of p53 function is the most frequent event in human cancers, many have 

proposed that the selective pressure for this inactivation stems from p53’s ability to respond to 

DNA damage.  However, recent evidence indicates that oncogene sensing by the ARF-p53 

pathway is actually the most relevant tumor suppressor function of p53 (80).  First, Serrano’s 

group utilized a previously characterized mouse where they engineered an additional copy of 

p53, along with its flanking genomic DNA sequence, into the mouse genome (called p53super) 

(92).  These p53super mice had a lower incidence of tumor formation and exhibited an enhanced 

DNA damage response.  To observe whether the DNA damage or oncogenic responses were 

more important for p53-mediated tumor suppression, they monitored tumor formation in 

p53super;Arf-null and p53WT;Arf-null mice.  They hypothesized that the p53super mice that exhibit a 

more robust DNA damage response would be slightly less tumor prone.  However, both sets of 

mice succumbed to the same spectrum of tumors under the same time frame (79).  They also 

treated both sets of mice with a DNA damaging agent (3-methyl cholanthrene), and again 

observed no difference in tumor onset between cohorts.   Importantly, the mice lacking Arf 

exhibited a normal DNA damage response, in support of previous reports (134, 282).  Thus, even 

mice capable of enhanced p53 responses to DNA damage require ARF to actively suppress 

tumorigenesis, suggesting that ARF-mediated oncogenic sensing is the most relevant role of p53 

in tumor suppression. 
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Another elegant study performed by Christophorou and colleagues utilized a tamoxifen-

inducible mouse model of p53 restoration.  Here, the mice are effectively p53-null in the absence 

of drug, but upon tamoxifen treatment, the p53 protein is capable of being regulated by normal 

endogenous signals.  Six days prior to whole body γ-radiation treatment, mice were either treated 

with tamoxifen or left untreated (46).  Normally, a wild-type p53 mouse will be protected from 

lymphoma development following irradiation, but a p53-null mouse will develop lymphoma by 

24 weeks post treatment (140).  The authors observed that restoring p53 function prior to 

irradiation did not have any tumor protective effect, even though a p53-dependent DNA damage 

response was evident following the genomic insult.  Strikingly, restoring p53 function 8 days 

after whole body irradiation markedly enhanced tumor-free survival, and this effect was 

completely dependent on the presence of ARF.  Taken together, the two studies described above 

indicate that ARF is absolutely required for p53-mediated tumor suppression.  Since ARF does 

not typically respond to DNA damage, its ability to relay oncogenic signaling to p53 is likely 

playing a prominent role in vivo.  These findings are in agreement with a recent study showing a 

p53 mouse model that is defective in its ability to respond to DNA damage is still resistant to 

spontaneous tumor formation (273).  Certainly, the ability of p53 to respond to numerous 

stresses, including DNA damage, likely plays a role in suppressing tumorigenesis.  I highlighted 

the two studies described above to simply make the point that the ability of ARF to sense hyper-

proliferative and hyper-growth signals emanating from oncogenes is both an important and well-

established pathway in human cancer prevention.              
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ARF and p16 in tumor suppression: which one is more important? 

When ARF was discovered, the obvious question of which gene (p16 or ARF) was the 

more pertinent tumor suppressor was posed.     Kamijo and colleagues addressed this issue by 

creating a mouse harboring specific disruption of Arf’s unique exon-1β, leaving p16 completely 

intact.  Astonishingly, these Arf-specific knockout mice displayed all the tumorigenic qualities as 

the Ink4a-Arf knockout described in the previous section (136).  Thus, at least in mice, ARF 

appears to be the primary tumor suppressor gene in the CDKN2a locus, but this conclusion is not 

so straightforward.  Two independent groups created a p16-specific knockout (149, 258), and 

these mice did spontaneously develop tumors after a year of life, but at a much lower frequency 

than Arf-null mice.  The p16-deficient mice were more susceptible to tumor formation caused by 

DMBA treatment compared to wild-type controls.  Intriguingly, mutation of both p16 alleles in 

combination with deletion of one copy of Arf led to the formation of metastatic melanoma (149).  

CDKN2a is frequently mutated in patients with melanoma (132, 245), so this finding suggested 

that ARF and p16 might cooperate in suppressing melanoma development.   

While it is clear p16 can function as a tumor suppressor in the mouse, the two p16-

knockout models indicated that p16 was not involved in replicative senescence, as p16-deficient 

MEFs underwent senescence after several passages (263).  Furthermore, loss of p16 is not 

capable of cooperating with RasV12 overexpression in oncogenic transformation assays.  

Therefore, in mice it appears that ARF is the more potent tumor suppressor and is directly 

involved in replicative senescence (259).  Data from human cell lines, however, has added a 

layer of complexity to our understanding of tumor suppression by CDKN2a. 

In human cells, it seems p16 is more responsive to oncogenic and stress signals than 

ARF.  In response to RAS overexpression or passage in culture, a variety of human cell lines 
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upregulate p16 to induce senescence, and ARF levels remain low (28, 87, 310).  Additionally, 

p16 inactivation (as opposed to Arf-inactivation in mice) is a cooperating genetic hit in 

oncogene-induced transformation of human cells (28, 74, 301).  One caveat of these studies is 

that they all utilized human fibroblast cell lines in their experiments, so one could argue that 

human epithelial cells might behave differently.  However, mammary epithelial cells display 

increased p16 expression with increasing population doublings, leading to a growth arrest.  This 

arrest is overcome in clones that have epigenetically silenced the p16 promoter, leaving ARF 

intact (27).  Interestingly, a combination of oncogenes such as B-catenin and Ras, or E2F1 and 

Ras are sufficient to induce ARF in human cells (18, 85).  The findings described above suggest 

there are major differences between mouse and human cells in transcriptional regulation of 

CDKN2a, but this does not discredit ARF as being a potent suppressor of tumorigenesis in 

humans.  Numerous studies have indicated ARF can inhibit the growth of human cancer cells in 

various ways (8, 86, 161, 163, 211, 325).  Given that ARF activation leads to a p53-response, 

which usually leads to irreversible growth arrest or cell death, human cells might have adopted 

much tighter regulation of ARF, only allowing ARF to activate p53 in response to exceedingly 

high oncogenic signaling (i.e. the combination of oncogenic pathways mentioned above).  This 

evolutionary trade-off might allow for larger and longer-lived organisms. 

Analysis of patient tumor samples is arguably the best way to determine the relative 

importance of ARF and p16 in tumor suppression.  Point mutations in p16 were initially 

identified in familial melanoma patients (117, 123, 132).  The majority of these mutations 

occurred in exon 2 of CDKN2a which is shared between p16 and ARF.  Functional analysis of 

these mutations in mice indicated these genetic changes do not affect the ability of ARF to 

induce cell cycle arrest (227).  These studies were performed prior to the knowledge that human 
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ARF contains a second nucleolar localization domain in exon 2.  It was later found that mutation 

in exon 2 of p16 can affect the localization and function of ARF (328).  Furthermore, much of 

p16’s coding sequence in exon 2 actually overlaps with the 3’ UTR of ARF.  Given the 

importance of 3’UTR-mediated regulation of gene expression, it is conceivable that any mutation 

in exon 2 of p16 could have dramatic effects on ARF expression (192, 314)   Finally, there is 

some evidence for p14ARF-specific inactivating mutations or deletions in the germ-lines of 

familial melanoma patients (90, 232, 239). 

In recent years, The Cancer Genome Atlas initiative has allowed large scale sequencing 

efforts to identify common genetic defects in numerous human cancers.  These studies have 

found deletion of the entire CDKN2a locus in adenoid cystic carcinoma (115), bladder cancer 

(40), glioblastoma (34), head and neck squamous cell carcinoma (40), kidney renal papillary cell 

carcinoma (40), lung adenocarcinoma (71, 125), non-small cell lung carcinoma (99), sarcoma 

(14), melanoma (40), and stomach adenocarcinoma (40).  These exhaustive analyses highlight 

the tendency of cancers to simply delete the entire 9p21 chromosomal arm that contains 

CDKN2a, and are in agreement with previous reports (extensively reviewed in (245, 248).  

While examples of specific inactivation of exon-1β or hypermethylation of the CpG island found 

in Arf’s promoter have been documented (72, 84, 158, 232, 248, 269, 298), there are also plenty 

of cases where p16 is seemingly the only gene altered (99, 256).     

 The CDKN2a locus is the second most frequently inactivated locus in human cancers, 

behind only p53 (245).  This is not surprising given that inactivating this locus effectively knocks 

out the function of four tumor suppressor proteins:  p16, ARF, p53, and Rb.  Thus, answering the 

question of which tumor suppressor, p16 or ARF, is most important in human cancers seems 

futile.  Rather, the frequent occurrence of CDKN2a deletion in virtually all types of human 
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cancers indicates a role for both these proteins in tumor suppression.  Since my dissertation work 

has not provided any new insights into p16 biology, the remaining portion of this introduction 

will be dedicated to ARF.   

 

The biological role of steady-state ARF levels 

Responding to oncogenic stress is undoubtedly ARF’s most important function in tumor 

suppression.  In this section, I will discuss the role of “basal” ARF levels in the cell.  Work in 

this area of ARF biology has led to some surprising findings, and again, highlight the unique 

attributes of this protein. 

Expression of ARF is normally kept very low in the cell.  In fact, during development and 

even into adulthood, ARF levels are only detectable by sensitive methods such as quantitative 

real-time PCR in mouse tissue (335).  Two exceptions to this rule, the eye and testes, will be 

discussed in more detail (105, 336).  p16, on the other hand, is not detectably expressed during 

development and can only be found in tissues from older mice (150, 226, 335).  If the cell is 

expending energy to make ARF protein then it likely serves some function.  In the last 15 years, 

numerous functions of basal ARF have been discovered.  The first of these is ARF’s role in eye 

development.  McKeller and colleagues found that ARF was required to promote the regression 

of the hyaloid vascular system (HVS) in the developing eye (193).  In Arf-null mice, they 

observed an accumulation of endothelial and perivascular cells in the retrolental tissue.  The 

phenotype was completely penetrant, and as a result of this abnormality Arf-null mice are blind 

(105, 193)   Expression of ARF in the eye is enhanced beginning at postnatal day 1(P1) in mouse 

development and remains until postnatal day 5 (P5).  Since HVS regression occurs between P6 

and P10 (128), and ARF expression precedes this, these data suggested that ARF might be 
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directly involved in promoting HVS regression.  Interestingly, this role of ARF is completely 

p53-independent.  Mice lacking p53 do not have the HVS phenotype and are not blind (193). 

In the years that followed McKeller’s initial observation, the mechanism by which ARF 

regulates HVS regression was nicely demonstrated.  During development, TGFβ2 signaling 

induces ARF expression by promoting chromatin remodeling around the Arf promoter.  This is 

dependent on the activities of p38MAPK and SMAD2/3 (91, 330, 331).  The increased ARF 

levels inhibit PDGFRβ receptor tyrosine kinase expression, whose activity is required for 

pericyte accumulation (270, 313).  Thus, in mice lacking Arf, PDGFRβ expression and activity is 

unrestricted leading to improper HVS regression. 

As I alluded to, ARF also plays a role in the mouse testes.  Gromley and colleagues 

generated an Arf-reporter mouse that expressed Cre-recombinase driven by the endogenouse Arf 

promoter (105).  It is important to note that this mouse was generated by knocking in Cre-

recombinase to the endogenous Arf locus, so the result is an Arf-null mouse.  They bred this 

mouse with mice containing a LSL-YFP (Lox-Stop-Lox-Yellow fluorescent protein) expression 

cassette knocked-in to the Rosa-26 locus.  If Cre-recombinase is present, the stop codon before 

YFP is excised and cells will subsequently express YFP.  The authors were able to visualize YFP 

expression (a surrogate for ARF) in the testes, and noticed that the mice that were expressing 

YFP (and were therefore lacking ARF), exhibited testicular atrophy (105).  As a result, sperm 

counts in the male mice were significantly lower than wild-type controls.  Paradoxically, it was 

shown that ARF expression in the progenitor spermatogonia cells actually promoted the survival 

of the spermatocytes generated upon meiosis (47).  ARF is normally thought to growth-

inhibitory, so this finding was quite unexpected.  At the very least, it explains why ARF 
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accumulates to such high levels in the testes, and certainly highlights the tissue-specific roles of 

ARF. 

 Another physiological role for ARF that was discovered by our lab is its ability to 

regulate protein synthesis (cellular growth), by monitoring nucleolar function.    The nucleolus is 

a non-membrane bound organelle within the nucleus that forms around ribosomal DNA (rDNA) 

repeats.  This structure is the center of ribosome biogenesis in the cell, and its function is directly 

tied to proliferative status (21).  Cells that are dividing rapidly must increase rates of protein 

synthesis, which is dependent on ribosomal availability.  For many years, pathologists have used 

a measure of nucleolar function known as AgNOR staining to assess the prognosis of certain 

cancer types (218).  This staining method takes advantage of the fact that argyrophilic proteins 

(“silver-loving”) assemble around rDNA repeats, forming what are called nucleolar organizing 

regions (NORs) (176).  Utilizing this AgNOR staining method, Apicelli et al. found that loss of 

Arf, both in vitro and in vivo, leads to increased numbers of nucleoli as well as abnormal 

morphology (7).  Furthermore, cells from Arf-null mice exhibited increased rates of protein 

synthesis and accumulated more protein on a per cell basis.  These gains in protein synthesis 

were due to enhanced rDNA transcription, rRNA processing, and rRNA export from the nucleus 

into the cytoplasm.  ARF has previously been linked to all of these processes (248).  ARF’s 

ability to regulate cell growth was entirely dependent on its ability to interact with a protein 

called Nucleophosmin (NPM) that plays a well characterized role in ribosome biogenesis (175).  

To further demonstrate the physiological role of ARF-regulated cell growth, the authors 

demonstrated osteoclasts from Arf-null mice were larger and exhibited enhanced bone-resorbing 

functions.  As a result of dysfunctional osteoclasts, Arf-null mice do not properly regulate bone 

turnover ((233) and Crystal Winkeler unpublished observations).  Taken together, the findings 
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presented above indicate that low levels of endogenous ARF are necessary to maintain proper 

nucleolar function.      

 The incidence of cancer increases in  direct correlation with one’s age (57).  Thus, cancer 

is a disease that primarily affects an aging population who are in the decline of their reproductive 

potential.  As a result, it is thought that tumor suppressor genes such as ARF, did not evolve to 

protect against cancer (262).  Rather, they have adopted these secondary roles as a consequence 

of our long lifespans.  The evolutionary conserved functions of ARF, therefore, are most likely to 

be the biological roles described in this section as well as others that have yet to be identified.  

As an added bonus, the Arf promoter is sensitive to oncogenic signals which allow our cells an 

opportunity to combat mutations or amplification of proto-oncogenes.  Given these 

characteristics, the regulation of ARF expression must be complex, and I will discuss these 

intricacies in the following section.   

 

Regulation of ARF expression:  transcription, translation, and association 

 I have mentioned that ARF levels normally kept low in cells to protect against aberrant 

p53 activation.  How is this accomplished?  Furthermore, how do cells relay oncogenic signaling 

to the Arf promoter leading to its induction?  In this section I will provide answers to these 

questions.  The regulation of ARF expression is complex, involving transcriptional and 

translational control, as well as stabilizing-interactions with binding partners.  I will begin with a 

discussion of the factors involved in transcriptionally regulating the Arf promoter as well as 

those that aid in Arf mRNA translation.  
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Transcriptional and Translational regulation of Arf 

 Some researchers have argued that the unique genomic organization of CDKN2a allows 

for coordinated control.  By placing three tumor suppressor genes within a 35Kb stretch of DNA, 

this region of chromosome 9 can be blanketed with heterochromatin during development to 

insure cell cycle arrest is not induced (95).  Indeed, transcriptional repression of Arf (as well as 

Ink4a and Ink4b) is primarily mediated by the polycomb group proteins (PcG).  This group of 

histone-modifying proteins was initially characterized in Drosophila and consists of two distinct 

complexes called PRC1 and PRC2 (200).  PRC2 catalyzes the tri-methylation of H3K27, which 

is dependent on the methylation activity of EZH2 (37, 201). Other components of PRC2 are 

SUZ12, which promotes EZH2 function (214), and HDAC1/2 which de-acetylate histones (200).  

The histone modification that PRC2 catalyzes serves as a signal for PRC1 binding.  PRC1 

consists of a catalytic subunit, RNF2 (also called RING1b), BMI-1, and several CBX proteins 

(271).  RNF2 catalyzes the ubiquitination of histone H2A, and BMI-1 supports its E3-ligase 

function.  

 One interesting debate in the field of PcG proteins is how the PRC complexes get 

recruited to genomic loci.  Recently, it was demonstrated that a long non-coding RNA (lncRNA) 

called HOTAIR could recruit PRC2 to complexes to the HoxD gene cluster (238).  This is similar 

to the function of the lncRNA, Xist, which is involved in X-inactivation (329).  Intriguingly, a 

lncRNA named ANRIL was identified that overlaps with CDKN2a, but is transcribed in the 

opposite direction (215).  It was later demonstrated by Yap et al.  that ANRIL can recruit PRC2 

complexes to CDKN2a and silence the locus (4, 319).      

 The genetic evidence that implicates PCG proteins in the regulation of Arf expression is 

overwhelming.  For example, the Ring1b-knockout mouse is embryonic lethal, but this 
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phenotype can be rescued by co-inactivation of CDKN2a (300).  Likewise, cells lacking Bmi-1 

prematurely senesce in culture due to increased ARF and p16 expression (130).  BMI-1 acts as 

an oncogene by suppressing ARF expression in the mouse.  As a result, inactivation of Bmi-1 can 

cooperate with RAS or MYC overexpression to enable tumor formation (54, 116, 131).  

Overexpression of BMI-1 is commonly found in human tumors since this effectively silences the 

CDKN2a (Reviewed in (36)).   Other polycomb members including CBX7 (19), CBX8 (67), and 

EZH2 (44) both bind and repress the Arf locus.  Cells lacking any of these proteins undergo 

premature senescence in culture, due to ARF de-repression.  

 Through the activities of the PcG proteins, access to the Arf promoter is greatly limited.  

An additional layer of inhibition is provided by the fact that the Arf promoter is a CpG island 

that can be hypermethylated  (242).  Moreover, several non-PcG proteins such as E2F3b (96), 

Pokemon (173), TBX2 (129), TBX3 (321), and ATF4 (120), and TWIST (174) can directly 

inhibit ARF expression.  It is important to consider that not all of these factors are expressed in 

every given cell type at a given time.  Differences in when and where these factors are expressed, 

as well as cellular environment, likely determine to what extent the Arf promoter is accessible.  

Clearly, human and mouse cells have evolved elaborate transcriptional networks to inhibit ARF 

expression.  How, then, is ARF able to sense oncogenic signaling and become induced? 

 One way to counteract the effects of epigenetic silencing is to recruit ATP-dependent 

chromatin remodeling complexes such as SWI/SNF, and lysine demethylases to remove the 

inhibitory H3K27me3 chromatin marks.  Indeed, both SWI/SNF and a demethylase called 

JMJD3 are important for Ras-mediated ARF induction (3, 13, 143).  Using a mouse model 

expressing a mutant K-rasG12D allele as well as GFP knocked-in to exon-1β (336), Young et al. 

demonstrated that SNF5, a component of SWI/SNF was required for ARF upregulation in the 
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arising sarcomas (322).  This suggests that in muscle tissue, ARF is activated by the chromatin 

remodeling activities of SNF5.  SNF5, therefore, would be an ideal target for inactivation in 

cancer cells.  Indeed, SNF5 inactivation is a frequent genetic occurrence in malignant rhabdoid 

tumors (241)  Notably, GFP expression was not observed in the lung tumors that arose in K-

rasG12D;ArfGFP/GFP mice, indicating that ARF was not induced in this tissue in response to RAS 

(322).  These observations highlight the limited understanding that we have regarding Arf 

regulation in vivo.  Why some tissues would respond to Ras by upregulating ARF and others 

would not remains unanswered.  One possibility is that lung tissue is highly exposed to 

environmental stresses (i.e. smoke and other carcinogens), so it is possible that ARF expression 

in the lung is more tightly regulated than in muscle to prevent aberrant p53 activation.  An 

additional mechanism for relieving PcG-mediated inhibition was recently shown by Liu et al.  

They showed that the PI3K-AKT pathway, specifically AKT1, was able to phosphorylate BMI-1 

on Serine-316 which impaired its ability to associate with chromatin (167).                

 While it is necessary to evict PcG proteins from the CDKN2a locus to initiate Arf 

transcription, there must also be specific transcription factors that facilitate RNA polymerase II-

mediated transcription.  The best characterized transcription factor in this process is known as 

DMP1 (cyclin D-binding, Myb-like Protein 1).  DMP1 was demonstrated to be a haplo-

insufficient tumor suppressor, and Dmp1-null MEFs are immortalized in culture because they do 

not upregulate ARF (126, 127).  The Dmp1-null mice were highly tumor prone to carcinogen-

induced tumors and frequently retained Arf and p53, indicating loss of Dmp1 can phenocopy 

inactivation of the Arf/p53 pathway.  Moreover, Dmp1 deficiency cooperates with c-MYC 

overexpression to induce lymphoma formation in mice.  Usually, c-MYC overexpression 

initiates the ARF/p53 pathway leading to apoptosis, and tumors can only arise when this 
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pathway has been disabled (82).  In the c-MYC overexpressing Dmp1-null mice, loss of ARF or 

p53 was rarely seen indicating Dmp1 loss can substitute for Arf/p53 inactivation (127).  Finally, 

a  mouse model of breast cancer expressing the HER2 oncogene displayed enhanced tumor 

formation when Dmp1 was deleted, resulting from reduced ARF/p53 signaling (285)  These data 

placed DMP1 upstream of the ARF/p53 pathway and led to the observation that DMP1 plays a 

critical role in relaying RAS-signaling to ARF (276). 

 In response to RAS overexpression, the Dmp1 promoter is induced by activation of the 

mitogen-activated protein kinase cascade (MAPK).  Specifically, activation of the RAF-MEK-

ERK signaling cascade leads to activation of the c-Jun transcription factor which is capable of 

directly promoting Dmp1 expression (276).  DMP1 can then directly bind to the Arf promoter 

and induce its transcription.  Interestingly, it was noticed that this linear pathway could not 

completely explain ARF induction because cells lacking Dmp1 still exhibited some increases in 

ARF (276).  Miceli and colleagues investigated this phenomenon and discovered that both 

transcriptional and translational upregulation is required for a complete ARF response.  Arf 

mRNA translation was stimulated by activation of mTORC1 (197).  A very recent publication 

has provided a further examination of this signaling pathway.  Shin et al. demonstrated that it is 

ERK2 (not ERK1) downstream of MEK that is required for DMP1 upregulation.  ERK2 is also 

responsible for phosphorylating the TSC2 complex (thereby inactivating it), which normally 

inhibits mTOR (267).  Taken together, these data provide a linear model whereby RAS 

overexpression upregulates ARF by both transcriptional and translational means, leading to a 

p53 response that either halts proliferation or initiates cell death.  The fact that ARF can be 

upregulated by mTOR suggests that ARF not only responds to hyper-proliferative signals 

induced by oncogenes, but also hyper-growth signals that mTOR coordinates.  
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 Complicating this view, however, is the fact that expression of endogenous levels of 

mutant Ras does not engage the ARF/p53 pathway, most likely due to the lack of MAPK 

activation (41, 293).  These cells proliferate more rapidly and exhibit morphological changes 

associated with transformation.  Thus, it is not Ras-signaling per se that leads to ARF activation, 

but rather high RAS expression levels.  A similar situation occurs with the c-MYC oncogene.  

Chen and colleagues showed that both low and high levels of c-MYC induce Arf mRNA 

expression, but only the high levels of c-MYC were capable of inducing ARF protein.  They 

demonstrated that it was the ability of high c-MYC levels to inhibit one of ARF’s E3 ligases, 

ULF, that led to the ARF induction and subsequent p53 response  (42).   The authors that 

demonstrated a lack of ARF induction in endogenously expressing mutant Ras cells did not 

measure mRNA levels, so it is certainly possible a similar situation exists.  While it is clear there 

is much to discover in terms of understanding the physiological signals that mediate ARF 

upregulation, the frequency of CDKN2a in human cancers overwhelmingly indicates expression 

of genes at this locus are selected against during tumor progression.   

Other transcription factors can directly activate the Arf promoter, including Pit-1 (65), 

Smad2 (91), FoxO3a (24), and E2F1 (70, 332).  E2F1’s ability to activate Arf transcription 

provides a direct link between the Rb and p53 pathways.  Loss of Rb or overexpression of 

CDK4/6 would lead to increased E2F1 levels.  Sustained activation of this pathway can therefore 

lead to ARF activation, yet another means by which ARF senses inappropriate proliferative 

signals.  One final means of ARF regulation that I would like to mention was recently published 

by Kawagishi et al.  These authors found that a protein called HuR (Human antigen R) was 

capable of binding to the 5’ UTR of Arf mRNA and repressing its translation.  This affect was 

specific to Arf, and not p16, since they do not share 5’UTR sequence (138).  Very little is known 
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about regulation of Arf expression at its 3’ UTR.  Only one miRNA, miR-24, has been found to 

bind and repress translation of the Arf mRNA, but future studies will likely identify others (290).        

 

The ARF-NPM Stabilizing interaction 

Earlier in this introduction, I described the reasons for ARF’s inherent disordered 

structure.  As a result of its biochemical characteristics, ARF is thought to require interactions 

with other proteins for maintaining stability.  One of ARF’s best characterized interaction 

partners is the nucleo-cytoplasmic shuttling protein, Nucleophosmin (NPM) (22, 166).   NPM is 

essential for normal cellular function, as knockout mice are embryonic lethal (102).  It is a 

multifunctional protein, serving functions in ribosome biogenesis (175), centrosome duplication 

(305), and DNA damage (49).  As I alluded to, the ARF-NPM interaction is required for ARF 

stability (49).  ARF utilizes its N-terminal 14 amino acids to associate with NPM (20), the 

importance of which is underscored by the fact that Arf mutants lacking amino acids 1-14 exhibit 

rapid turnover (152).  Mutations in NPM affecting the C-terminus (called NPMc) are commonly 

found in acute myeloid leukemia patients (39).  These mutations result in an extra nuclear export 

signal, allowing NPM to rapidly shuttle between the nucleus and the cytosol.  As a result of this 

“super-shuttling” capability, ARF becomes de-localized from the nucleolus allowing it to be 

targeted for degradation and inhibiting its ability to bind MDM2 to activate p53 (60).     

Interestingly, it was also recently shown by Velemezi and colleagues that loss of ATM, a 

protein involved in propagating the DNA damage response pathway, leads to ARF upregulation.  

They demonstrated that ATM is able to phosphorylate protein phosphatase 1 (PP1), which results 

in inhibition of Nek-2-mediated phosphorylation of NPM.  As a result, the ARF-NPM interaction 

is disrupted and ARF is able to be ubiquitinated by ULF.  When ATM is inhibited, Nek-2 
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phosphorylates NPM and promotes the ARF-NPM interaction, offering ARF protection from 

ULF-mediated degradation.    When p53-deficient cells were treated with an ATM inhibitor or an 

ATM-spedific shRNA, the cells induced ARF and underwent a subsequent reduction in 

proliferation which was shown to be directly ARF-mediated.    Furthermore, a panel of primary 

human lung tumors with p53 mutation and low ATM expression, expressed high p14 ARF and 

exhibited lower proliferation (295).  Taken together, the studies discussed in this section 

emphasize the importance of ARF’s intracellular interactions, particularly with NPM.     

 

The p53 and ARF negative feedback loop 

A final intricacy of ARF regulation involves the p53 protein.  It has been observed since 

ARF’s discovery that cells lacking p53 contain elevated levels of ARF, suggesting a possible 

inhibitory feedback loop between p53 and ARF (228, 281, 334).  The feedback loop exists in 

both human and mouse cells (282), and has been demonstrated in vivo with mouse tumor models 

(12).  For many years, only correlative data existed to link p53 to the repression of Arf 

transcription.  Re-introduction of p53 cDNA into p53-null MEFs led to a reduction in ARF 

protein levels, and p53 was able to inhibit expression of a chloramphenicol acetyltransferase 

(CAT) reporter construct regulated by Arf promoter sequence (135, 242).  Mechanistically, it 

seems that p53 is a direct transcriptional repressor of the CDKN2a promoter.  Zeng et al. showed 

that p53 could directly bind to a stretch of DNA upstream and downstream of exon-1β (324).  No 

binding of p53 was found in or around the p16 promoter.  It was shown that histone deacetylase 

1 (HDAC1) was recruited to the Arf locus by p53 and its deacetylation of histones was required 

for p53-mediated repression.  This finding was consistent with previous work that has found 

HDACs to be major regulators of Arf transcription (189, 321).  Additionally, p53 can recruit two 
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components of the PRC2 complex, EZH2 and SUZ12, leading to the inhibitory tri-methylation of 

H3K27.    

 The negative feedback loop between p53 and ARF likely exists to allow fine-tuning of 

the p53 response.  Increased p53 stability as a result of DNA damage or oncogenic stress leads to 

an enhanced occupancy of p53 at the Arf promoter.  This would repress Arf transcription and 

thus reduce ARF’s inhibitory effects on MDM2.  With a larger pool of available MDM2, the cell 

would be capable of turning off the p53 response, assuming the stress signal was no longer 

present.  If the stress signal persists, p53 remains stabilized and can activate senescence of 

apoptosis.   

 A consequence of this negative feedback loop is that cells lacking proper p53 function 

(i.e. most human cancer cells), de-repress ARF resulting in its accumulation.  Since a large 

portion of human cancers inactivate p53, the obvious question of whether ARF becomes induced 

to provide some protective affect can be posed.  Does ARF possess p53-independent functions 

and can these functions suppress tumor growth in cancer cells that lack p53 function?   Given 

that p53-null mice succumb to tumor burden by 6 months of age, and that cells lacking p53 

proliferate rapidly, most people have assumed that ARF serves no tumor suppressor function in 

this context (73).  However, mounting evidence indicates that this conclusion may not be entirely 

accurate.  

 

ARF-mediated tumor suppression without p53? 

 Experiments performed with mouse models provided the first evidence that ARF 

possesses p53-independent tumor suppressor functions.  Eischen and colleagues compared the 

proliferation of bone marrow cells harvested from c-MYC overexpressing mice that harbored 
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deletions in Arf, p53, or Arf/p53 double knockouts.  Surprisingly, the cells lacking both Arf and 

p53 had much higher proliferation rates than cells lacking either gene alone (82).  Arf-null and 

p53-null mice both develop tumors, with sarcomas being most prevalent in Arf-null and T-cell 

lymphomas dominating in p53-null animals.  Arf-null mice live slightly longer, with a mean 

latency of survival of 32 weeks compared to 19 weeks for p53-null animals (73, 133).  Weber et 

al. generated p53/Mdm2-null (DKO), Arf/p53/Mdm2-null (TKO), and Arf/p53-null mice.  All 

three strains developed tumors with a mean latency similar to that of single p53-null mice (307).  

Notably, 50% of the TKO mice and 30% of the Arf/p53-null mice developed tumors at multiple 

sites.  Many of these tumors such as intestinal adenocarcinomas, renal cell carcinomas, and 

rhabdomyosarcomas have never been observed in p53-null mice.  Therefore, loss of Arf in a p53-

deficient mouse permits the formation of tumors that do not usually have time to surface in the 

lymphoma-prone p53-null mouse.  Additionally, the authors demonstrate that overexpressing 

ARF in the MEFs harvested from the DKO and TKO mice leads to cell cycle arrest 72 hours post 

transduction (307).  For reasons that are not yet clear, the Arf/p53-null mice were not as sensitive 

to ARF overexpression.  It is possible that the presence of MDM2 might sequester the ability of 

ARF to interact with its p53-independent targets.  This is unlikely since MDM2 expression is 

usually quite low in cells lacking p53 due to p53’s ability to positively regulate its transcription 

(184).  Regardless of these uncertainties, the studies described here clearly demonstrate that ARF 

possesses p53-independent tumor suppressor functions. 

 Further work in mouse cell lines overexpressing ARF corroborated the findings by Weber 

et al. (38).  These findings are not limited to mouse cells, as studies using human cell lines have 

also suggested ARF is capable of arresting cells that lack p53 function (76, 86, 163, 205, 320).  

From these experiments, it seems overexpression of ARF is able to arrest cells at both the G1/S 
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and G2/M cell cycle boundaries.  Muniz and colleagues have recently shown that ARF 

overexpression can inhibit the growth and metastasis of a p53-mutant human pancreatic cell line 

in the mouse (202).  Efforts to identify the important p53-independent targets of ARF have also 

been undertaken.  Kuo et al. analyzed transcriptome changes in response to ARF overexpression.  

Many p53-dependent targets were found, but they also uncovered upregulated genes such as 

Btg1 and Btg2 that were capable of inhibiting the proliferation of p53-null MEFs (155).  

However, these have not been validated or explored further in recent years.  A major caveat of 

all these studies is that they rely on gross overexpression of ARF in p53-deficient cells that 

already contain elevated ARF levels.  By overloading the cells with a “sticky” protein such as 

ARF, there is a great potential for non-specific interactions that could result in cell-cycle arrest.  

As a result, direct evidence implicating ARF as a p53-independent tumor suppressor is currently 

lacking.  

If p53 can suppress tumorigenesis independently of p53 in humans, then functional loss 

of ARF and p53 should not be mutually exclusive.  Rather, we should be able to find cases of 

human tumors where p53 is mutated and CDKN2a has been deleted or epigenetically silenced.  

This would indicate those cancer cell clones selecting against a tumor suppressive function of 

ARF that is p53-independent.  Indeed, cancers of the breast (177, 286), lung (35, 183), and 

pancreas (11, 244) as well as sarcomas (216) and glioblastomas (296) frequently harbor co-

inactivating mutations or deletions of ARF and p53.  Additionally, mouse tumor models suggest 

ARF and p53 co-inactivation occurs.  In a KrasLSL-G12D;p53Flox/Flox, model of intrahepatic 

cholangiocarcinoma, Cre-recombinase expression specifically in the liver leads to RasG12D 

expression, p53 inactivation, and results in the formation of liver cancer (207).  From the six 

tumors that were analyzed by western blot, 3 of them displayed no or low ARF expression.  In 
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summary, mounting evidence indicates ARF is capable of suppressing the proliferation of 

incipient cancer cells independently of p53.  Primary human tumor data also suggests that 

inactivation of ARF and p53 can occur within the same tumor cell.   

 

The p53-independent functions of ARF 

 A p53-independent function of ARF can be defined as any biological process in which 

ARF participates that does not require p53 activation.  By this definition, I have already 

discussed three of these roles for ARF—its role in the developing eye, testes, and regulation of 

overall cellular growth.  In this section, I will discuss other attributed p53-independent functions 

of ARF, and revisit cellular growth by offering mechanistic insights into its regulation.  The 

functions that I will discuss are considered to be the most likely means by which ARF can 

suppress tumorigenesis in the absence of p53.  For a graphical representation of the known p53-

independent functions, see Figure 1.3.          

 

Cellular growth 

 The ability of cells to generate new proteins directly influences its ability to traverse the 

cell cycle and divide.  I have already discussed the growth-inhibitory role of steady-state ARF 

levels, but I have not provided any mechanistic explanations to validate this observation.  This 

area is arguably ARF’s best studied p53-independent function in the cell, and numerous groups 

have demonstrated a variety of steps in ribosome biogenesis that ARF regulates.      

 The ability of a cell to make ribosomes and transport them to the cytosol are rate limiting 

steps in the production of protein.  Ribosome production begins in the nucleolus, a non-

membrane bound organelle centered around ribosomal DNA repeats (112).  The human genome 
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encodes approximately 400 of these rDNA repeats, organized in a head-to-tail fashion.  

Transcription of the 47S rDNA gene by RNA polymerase I generates the 47S rRNA precursor 

that is subsequently processed and chemically modified (2’O-methylation of the pentose sugar 

and pseudouridylation) to create the 18S, 5.8S, and 28S rRNA species.  Along with the 5S rRNA 

which is transcribed independently by RNA Pol III, the processed rRNAs complex with 

numerous ribosomal proteins to form the 40S and 60S ribosomal subunits in the nucleus (156).  

Once assembled, the individual subunits can be exported to the cytoplasm to participate in 

protein synthesis.  If the appropriate growth signals are present, the 40S and 60S subunits 

combine on a single mRNA to form an 80S unit that can then translate the message (169, 274).  

Multiple 80S complexes can be present on a single circularized mRNA which are then described 

as poly-ribosomes.  This over-simplified view of an extremely complex process is essential for 

understanding where ARF imposes its regulatory functions.      

 As a resident nucleolar protein, ARF is ideally situated to regulate many of the steps of 

ribosome biogenesis, and therefore cell growth.  I described in an earlier section how loss of 

ARF led to gains in rRNA transcription, rRNA processing, ribosomal export, and overall protein 

synthesis (7).  The simplest possible explanation for this phenotype would be that ARF regulates 

the most upstream component in this pathway, rRNA transcription.  Indeed, ARF can directly 

bind to rDNA promoters and inhibit the phosphorylation of the vital RNA Pol I transcription 

factor, upstream binding factor (UBF) (8, 9).   Furthermore, Lessard and colleagues have 

demonstrated that ARF can inhibit the nucleolar localization and stability of another RNA Pol I 

transcription factor, TTF-1 (Transcription termination factor-1), resulting in reduced production 

of the 47S rRNA (160, 161).  Finally, work from our lab by Saporita et al. showed that ARF can 

inhibit the nucleolar localization of an RNA helicase DDX5 which is important for rDNA 
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transcription.  DDX5 was required for Ras-mediated transformation, validating it as a p53-

independent tumor suppressor target of ARF (247).  

In addition to controlling rDNA transcription, ARF is capable of inhibiting rRNA 

synthesis at the level of processing.  This function is entirely independent of p53 and requires the 

first 14 amino acids of ARF (283).  Also dependent on ARF’s first 14 amino acids is its 

interaction with the ribosomal chaperone, NPM (20, 175).  NPM is required for proper nuclear 

export of ribosomal subunits.  Mice carrying hypomorphic Npm alleles are embryonic lethal, and 

display a striking phenotype where ribosomes are stuck at the nuclear membrane, unable to make 

it into the cytoplasm (175).  ARF is able to bind NPM in the nucleolus and inhibit its ability to 

shuttle ribosomes from the nucleus to the cytoplasm.  Interestingly, MDM2 overexpression can 

disrupt this interaction because ARF has a higher affinity for MDM2 (26).  Thus, ARF is able to 

inhibit all the major steps of ribosome biogenesis.  As a regulator of both cell growth and cell 

proliferation, ARF is positioned to coordinate these two processes.  Cancer cells are unable to 

respond to anti-proliferative signals, and as a result must increase their synthesis of proteins to 

satisfy demand.  Since ARF is a key downstream sensor of hyper-growth pathways such as 

mTOR and RAS, this provides a further selective pressure on cells to inactivate the CDKN2a 

locus.                     

                

Autophagy 

 A link between ARF and autophagy was first suggested by Reef et al. when they 

demonstrated translation initiation from an internal methionine residue within Exon 2 of ARF 

results in a smaller version of the protein called smARF.  They showed that smARF could 

localize to mitochondria, and when overexpressed, could induce autophagy (236, 260).  
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Autophagy is an evolutionarily conserved survival mechanism that cells utilize in poor nutrient 

environments.  Cells undergoing autophagy digest cytoplasmic components to generate free 

amino acids, providing a temporary supply of nutrients that allows the cell to survive (151).  It is 

now thought that both smARF and full length ARF are capable of inducing autophagy in a p53-

independent manner (31).  The involvement of this ARF function in tumor suppression is a 

subject of debate.  Achieving the ARF-mediated autophagy response requires overexpressing 

ARF, a response that usually leads to cell cycle arrest or apoptosis.  One group has shown that in 

cells lacking p53 where ARF levels are increased, autophagy is induced.  Depleting ARF 

expression in p53-null B-cell lymphoma cell lines led to a reduced ability of these cells to initiate 

tumor formation in vivo (10).  These data suggest a tumor promoting role for ARF-mediated 

autophagy, but the physiological significance of this finding will require further validation.       

 

Sumoylation 

 ARF has been reported to interact with more than 30 different proteins (261).  I have 

already discussed the importance of these interactions in maintaining ARF’s stability, but the 

functional significance of these interactions is not as one-sided as it may seem.  ARF can 

actually induce sumoylation of many proteins with which it interacts, including MDM2 (318), 

E2F1 (240), MIZ1 (113), HIF-1α (240), WRN (316), and NPM (154).  Sumoylation is a post-

translational modification of proteins that conjugates the small-ubiquitin like modifier (SUMO) 

to lysine residues.  There are 4 different members of the SUMO family, named SUMO1-4 (196).  

Conjugation of SUMO is performed by an activating enzyme (E1), a conjugating enzyme (E2), 

and an E3 ligase that provides target specificity (94).  Sumoylation of proteins has pleiotropic 

effects, ranging from disrupting protein-protein interactions, promoting new interactions, to 
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changing sub-cellular localization (94).    While many of the functional consequences associated 

with ARF-mediated sumoylation are not completely understood, progress has been made in 

mechanistically understanding how ARF promotes this modification.  Kuo and colleagues have 

shown that ARF expression leads to the destabilization of the SUMO2,3-specific protease, 

SENP3.  Similar to ARF, SENP3 protein stability depends on its ability to interact with NPM, so 

when ARF is overexpressed SENP3’s ability to interact with NPM is reduced and it is rapidly 

degraded (154).  Intriguingly, depletion of SENP3 in p53/Mdm2/Arf-null MEFs reduced 

proliferation in a manner similar to ARF overexpression.  This suggests that ARF’s ability to 

arrest p53-deficient cells might stem from its ability to inhibit expression of SENP3, leading to 

an increase in global sumoylation.  An understanding of which newly sumoylated proteins lead 

to cell cycle arrest has not been elucidated, but NPM is a likely candidate given that sumoylation 

of NPM negatively affects its ability to promote rRNA processing (108). 

 

Transcriptional and Translational Regulation  

ARF is also capable of regulating the transcriptional activities of several proteins 

involved in promoting proliferation.  Two independent groups demonstrated that ARF could 

inhibit the transcriptional activities of c-MYC (53, 225).  The direct mechanism of this inhibition 

is not completely clear, as one group found ARF sequestered MYC in the nucleolus and the other 

demonstrated ARF directly inhibited MYC at target promoters by an inhibitory association.  

Regardless of the exact mechanism,  inhibition of c-MYC is likely to affect ribosome biogenesis, 

as c-MYC can promote rRNA synthesis and overall protein synthesis, although this has not been 

experimentally tested (294).  Likewise, Mason et al. demonstrated that ARF could directly bind 

to E2F1 and inhibit its transcriptional activity (188).  Interestingly, this indicates that ARF is 
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both induced by E2F1 as I described earlier, and can directly inhibit its activities.  Aberrant 

signaling by the CyclinD-CDK4/6 complexes is therefore carefully monitored by ARF.  Finally, 

ARF can promote the transcription of TIMP3 (tissue inhibitor of metalloproteinase-3), a protein 

involved in inhibiting the migration of endothelial cells (224).  Consequently, loss of ARF can 

lead to downregulation of TIMP3 and increased angiogenesis in tumors.  This function of ARF 

was attributed to its ability to bind human MDM2 (HDM2), allowing SP1 to be released and 

activate TIMP3 transcription (325).  

 In addition to regulating gene expression, it has recently been shown that ARF can 

regulate the translation of specific mRNAs.  Kawagashi and colleagues found that ARF could 

inhibit the association of VEGF mRNA with ribosomes, leading to decreased protein VEGF 

protein.  VEGF plays an important role in stimulating angiogenesis, thereby insuring tumors 

have an adequate blood supply.   Loss of ARF led to enhanced angiogenesis in vivo, and 

immunohistochemistry analysis of human colon carcinoma samples revealed an inverse 

correlation with blood vessel density and ARF expression (139).  Our lab has demonstrated that 

ARF regulates the translation of the DROSHA and DHX33 mRNAs. DHX33 is a RNA helicase 

that promotes RNA polymerase I function, promoting the transcription of ribosomal RNAs 

(327).  DROSHA is a multifunctional RNAse III endonuclease that is best known for its 

involvement in micro-RNA (miRNA) biogenesis, but also contributes to rRNA processing (61, 

317).  Both DROSHA and DHX33 are required for RAS-mediated transformation of mouse 

cells, so in normal cells ARF would respond to RAS overexpression by reducing the expression 

of these two proteins.  ARF is able to inhibit polyribosome formation on the DHX33 and 

DROSHA mRNAs, but the exact mechanism of this process has not been determined.  Taken 

together, these studies implicate ARF in the translational regulation of select mRNAs.  How 
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ARF accomplishes this is not known, but it is tempting to speculate that ARF’s regulation of 

DROSHA might alter the cellular pool of miRNAs which would lead to changes in translation 

for many specific mRNAs.           

 

The Type I Interferon Response in Cancer 

 

 My dissertation work has steered me down an unexpected path involving several 

components of the type I interferon response pathway.  As a result, I will introduce this signaling 

pathway and describe some of the members that specifically pertain to my work.  I will detail the 

current understanding of the role these members play in cancer.     

 

Canonical Interferon Signaling 

Interferon production is an innate immune response employed by a large variety of cell 

types to inhibit viral infection.  The two most well characterized classes of interferon are type I 

(consisting of various IFN-α family members, IFN-β, IFN-ε, IFN-κ, and IFN-ω) and type II 

(IFN-γ) (219).  These cytokines activate signaling through the JAK/STAT pathway leading to the 

transcriptional upregulation of various interferon sensitive genes involved in the anti-viral 

response.   

Type I interferons, in particular, bind to a heterodimeric membrane-bound receptor 

consisting of IFNAR1 and IFNAR2.  Upon ligand binding, a conformational change allows 

autophosphorylation of receptor-bound JAK1 and TYK2.  The activation of these kinases leads 

to phosphorylation of STAT1 and STAT2.  Once phosphorylated, STAT1 and STAT2 form a 

heterodimer which further associates with IRF9 to form a complex known as IFN-stimulated 
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gene factor 3 (ISGF3).  ISGF3 enters the nucleus and initiates transcription of genes containing 

IFN-stimulated response elements (ISREs) (278) (See Figure 1.4 for graphical depiction of this 

process). 

It has been reported that more than 300 genes are stimulated by type I interferon (62).  

The function of many of these proteins is still unknown, but several well characterized proteins 

are absolutely required for an effective host-response.  The family of OAS (2’,5’-oligoadenylate 

synthetase) and OASL (OAS-Like) genes encode proteins that utilize ATP to catalyze the 

addition of adenosine to RNA molecules through a 2’,5’-phosphodiester linkage (234).  This 

specific modification is recognized by and activates RNaseL, which degrades single-stranded 

RNA molecules (246).  Another interferon-sensitive gene family are the Mx-GTPases.  The Mx 

proteins localize around the ER membrane and trap viral components as they bud off from this 

organelle (246).  Numerous other important genes are induced following type I interferon, 

including ISG15, which I will discuss in more detail in a later section.        

While activation of the STAT1/STAT2 heterodimer specifically activates ISREs, various 

other combinations of STAT proteins including STAT3 and STAT5 can promote the 

transcription of interferon response genes.  However, these STAT complexes do not associate 

with IRF9 and are thus not able to bind to ISREs.  Rather, they bind to specific promoter 

elements of interferon response genes containing an IFN-γ-activated site (GAS).  As the name 

implies, genes containing GAS elements are also the primary transcriptional target of activated 

STAT1 homodimers formed in response to type II interferon (219, 291).  While much is known 

about the signal transduction pathway leading to activation of interferon response genes, the 

biological effect of many interferon sensitive genes remains poorly understood.   
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STAT1 in cancer 

In recent years, it has become evident that JAK/STAT signaling in response to interferon 

is much more than simply an anti-viral response.  In fact, this signaling pathway plays a major 

role in the biology of various human diseases, including cancer (98).  Inflammation, for example, 

is an emerging hallmark of cancer cells, and STAT3 activation is capable of inducing 

inflammation and promoting cell proliferation (110, 323).  Numerous studies have implicated 

STAT3 as a driver of tumorigenesis, which is capable of responding to a variety of oncogenic 

stimuli, including the inflammatory promoting cytokine IL-6 (103, 323).  In contrast, STAT1 is 

typically considered to have tumor suppressive functions and can evoke an immune response 

thought to inhibit tumor growth.  More specifically, immune cells recruited to a developing 

tumor by cancer-specific antigens can secrete IFN-γ as well as type I IFN to induce an anti-

proliferative and pro-apoptotic response.  Both of these responses are mediated through STAT1 

(78).  Paradoxically, a sustained immune response can lead to chronic inflammation which can 

promote tumorigenicity (104).   Treatment of numerous types of cancers with tye I interferon has 

been approved by the FDA, and many patients see a great survival benefit (78).  Taken together, 

the data described above supports a multi-faceted and complex role for IFN in tumor 

development and progression.  While IFN might initially be capable of eliminating incipient 

cancer cells, tumors that escape this “immune-surveillance” may benefit from an active immune 

response.  This “dual” role of the immune system in cancer is similar to the roles being attributed 

to autophagy in cancer (191).                   

The response to type I interferon and STAT1 activation has been extensively 

characterized and is classically thought to induce a pro-apoptotic/anti-proliferative phenotype.  

This straightforward model has been challenged recently as mounting evidence suggests STAT1 
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activation might actually promote the progression of certain tumors (148).  STAT1 and many of 

its transcriptional targets have been found to be overexpressed in breast, lung, leukemia, and 

cervical cancers (81, 100, 101, 121, 217, 230, 231, 275).  While it could be argued that 

overexpression of STAT1 may be a “passenger” in human cancer, data from several human 

cancer studies indicate otherwise (142).  An interferon related DNA damage signature (IRDS), 

which includes STAT1, can predict chemo and radiation therapy sensitivity in breast cancer 

patients (311).  A similar signature is a predictive marker of poor survival outcome in the 

proneural subtype of glioblastoma multiforme (77).  Overexpression of STAT1 also provides 

resistance to DNA damage-inducing drugs in a variety of cancer cell lines (141, 181).  

Furthermore, phosphorylation of Serine-727 on STAT1, which is a target of multiple kinases 

(including p38 MAPK) can promote the growth of specific tumor types by inhibiting NK-cell 

cytotoxicity (59, 97, 222, 289).   

Finally, the unphosphorylated form of STAT1 was recently shown to negatively regulate 

Fas-mediated apoptosis and promote sarcoma development as a consequence (333).    Thus, the 

biological functions of STAT1 signaling may be unique to cell types as well as specific genetic 

contexts.  Understanding which of these contexts STAT1 acts in a tumor-promoting fashion 

would provide a very accessible therapeutic target in these patients, as there are already STAT1 

specific drugs as well as cell-permeable peptide inhibitors under investigation (268, 304). 

 

IFN-β in cancer 

Interferon-Beta (IFN-β) is a member of the type I interferon family that is most well-

known for its anti-viral effects.  Recognition of viral infection by virtually any nucleated cell 

results in the secretion of IFN-β.  Subsequent activation of downstream Jak-Stat signaling results 
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in transcriptional activation of anti-viral genes which aid in preventing further infection (219).  

In the context of cancer biology, high dose IFN therapy treatment has been investigated as a 

potential therapeutic and has proven beneficial in certain hematological cancers.  These clinical 

applications of IFN utilize a second member of the type I IFN family known as IFN-α (88).   In 

solid tumors such as breast and ovarian cancer, attempts to utilize IFN-β in this regard have not 

been successful (186, 237).  Ultimately, little is known about the role IFN-B might play in the 

tumor environment, and several reports actually indicate it might serve to promote survival of 

tumors.  Tumor growth has previously been shown to be enhanced in response to low-levels of 

interferon, and a recent report suggests that autocrine IFN-β signaling enhances the 

tumorigenicity of Ras-transformed cells (171, 292).  Given that many tumors display activation 

of Jak-Stat signaling and overexpression of downstream target genes, further investigation of 

interferon signaling in the context of cancer biology is warranted.      

 

 

ISG15 in cancer 

One well recognized gene activated downstream of IFN-β signaling encodes the 

ubiquitin-like protein, ISG15.  Similar to ubiquitin, ISG15 is conjugated to lysine residues in an 

enzymatic cascade involving an E1 activating enzyme (UBE1L), an E2 enzyme (UBC8), and 

finally an E3 ligase (HERC5 in humans and HERC6 in mouse) that facilitates targeting to 

specific proteins (33, 326).   There are also de-ISGylating enzymes such as UBP43 (also called 

USP18), that can modulate levels of ISGylation (179).  ISG15 has been well characterized in the 

context of innate immunity where it is conjugated to many proteins involved in the response to 

viral infection, and can promote or inhibit their function (272).  One proposed mechanism of 
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enhancing protein activity is through blocking ubiquitin conjugation resulting in protein stability, 

but the true biological consequence of ISG15 conjugation is not well defined (180).  Also, roles 

for free and secreted forms of ISG15 are now being appreciated.  Werneke and colleagues 

demonstrated that Ube1l-null mice, which are not capable of conjugating ISG15 to proteins, are 

equally sensitive to Chikungunya virus infection as wild-type mice (312).  Further studies will be 

necessary to understand how un-conjugated ISG15 functions within the cell. 

While ISG15 plays a key role in the antiviral response, many reports have begun to 

uncover a role for this protein in tumorigenesis (6).  ISG15 has been found to be frequently 

overexpressed in pancreatic, bladder, breast, and oral cancers (5, 16, 124, 284, 297).  A recent 

report describes a critical role for ISG15 conjugation in the tumorigenicity of mutant Ras 

containing breast cancer cells, suggesting inhibitors interfering with this process might be 

therapeutically beneficial (32).  Indeed, Wood et al used mouse breast cancer models to 

demonstrate a vaccine against ISG15 could significantly reduce tumor burden and metastasis, 

underscoring the potential of targeted ISG15 therapy (315).   Additionally, ISG15 overexpression 

in breast cancer cells can improve cell motility (64).  How ISG15 would be able to promote 

tumor growth is unknown.  However, one study identified ISG15 overexpression in several 

breast cancer cell lines and demonstrated that this resulted in defects in polyubiquitination and 

protein turnover.  High ISG15 levels interfered with polyubiquitination and led to decreased 

protein turnover (63).  While global defects in protein turnover are detrimental to the cell, it is 

possible that specific ISGylated proteins with increased half-lives could be serving tumor 

promoting functions.  Together, these data indicate that ISG15 is tumor promoting in particular 

cancer types, but a mechanistic insight into this role is lacking.              
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Concluding thoughts and dissertation objectives 

When my dissertation work began, we did not understand how ARF expression was 

regulated by p53.  Additionally, a clear understanding of the role ARF plays in cells that lose p53 

function was lacking.  I began my dissertation work by asking two simple questions: 1) Does 

acute loss of p53 induce ARF, and 2) Do the induced ARF protein levels serve any tumor 

suppressive functions?  Since numerous types of cancers exhibit co-inactivation of Arf and p53, 

these are important questions.  Patients with tumors harboring these specific genetic defects 

would benefit from a detailed understanding of what signaling networks are dysfunctional.  

Likewise, by understanding the selective pressures that result in CDKN2a loss, we can learn a 

tremendous amount about the p53-independent functions of ARF.      

I hypothesized that acute loss of p53 would result in an upregulation of ARF, and that 

these induced protein levels would be able to inhibit proliferation and tumorigenicity by ARF’s 

well characterized role in regulating ribosome biogenesis.  Experiments described in Chapter 2 

support the hypothesis that loss of p53 leads to robust increases in ARF expression.  Moreover, 

these induced levels potently suppress the proliferation and tumorigenic potential of these cells.  

In Chapter 3, I outline experiments performed to test the hypothesis that regulation of cellular 

growth is the mechanism by which ARF suppresses the proliferation of p53-deficient cells.  The 

results of these experiments were not supportive of the cell growth hypothesis, and other 

published p53-independent functions were experimentally tested and excluded.  Chapter 4 

discusses the unbiased experimental approach that I took to uncovering the novel p53-

independent tumor suppressor function of ARF.  The results of this approach led to the discovery 

of a novel pathway co-regulated by p53 and ARF.  This pathway, the type I interferon response, 

is not widely appreciated as being pro-tumorigenic.  The data presented in Chapter 4 
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overwhelmingly supports the hypothesis that in a setting of Arf/p53-deficiency, components of 

the type I interferon response can actively promote proliferation and ultimately promote tumor 

progression.  Finally, in Chapter 5 I discuss future directions that provide an opportunity to study 

the potential therapeutic applications of my findings.   
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FIGURES 

 

 

Figure 1.1  Overview of the CDKN2a genomic locus.      

CDKN2a encodes two tumor suppressor genes, ARF (blue) and p16 (green).  The coding regions 

for each protein are indicated with the same colors.  ARF participates in a p53-mediated 

checkpoint, and p16 can block cell cycle entry by inhibiting the activities of CDK4/6.  A third 

tumor suppressor encoded by the CDKN2b gene, named p15 (pink), is located just upstream of 

ARF’s distinct first exon.      
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Figure 1.2  Graphical depiction of p53-dependent tumor suppression by ARF.       

In response to hyperproliferative signals emanating from unregulated oncogenic signaling, ARF 

transcription and translation (not shown) is induced.  Increased ARF levels function to sequester 

MDM2 in the nucleolus, thereby relieving MDM2-mediated ubiquitination of p53. This leads to 

stabilization of p53 and the activation of p53-dependent transcriptional programs that initiate cell 

cycle arrest or apoptosis  
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Figure 1.3 The p53-independent functions of ARF.      

This figure highlights the p53-independent processes that ARF inhibits (Red) or promotes 

(Green).  Pink boxes represent the specific proteins (or mRNAs in the case of translation) that 

ARF inhibits to elicit these processes.   
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Figure 1.4  Overview of the Type I Interferon response 

In response to a viral infection, cells are stimulated to secrete interferon-β (black circles).  IFN-β 

binds to the heterodimer receptor composed of IFNAR-1 and IFNAR-2.  Binding of IFN-β leads 

to activation of the associated JAK kinase function, leading to STATs recruitment and their 

subsequent phosphorylation.  Phosphorylation of STAT1 and STAT2 leads to heterodimerization 

and also recruits IRF9 to the complex.  The STAT1/STAT2/IRF9 complex is known as ISGF3, 

and it translocates to the nucleus where it activates transcription of genes containing interferon 

sensitive response elements (ISREs).     
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ABSTRACT 

The tumor suppressor, p19ARF, is classically considered to function in response to 

hyerproliferative signals by binding and sequestering MDM2 in the nucleolus, thereby activating 

p53.  Steady-state levels of ARF are kept low to prevent activation of p53 and are thought to 

monitor nucleolar function.  Interestingly, p53 itself inhibits the Arf locus by recruiting proteins 

involved in heterochromatin formation.  Cell lines that lack functional p53, therefore, accumulate 

high amounts of ARF protein but proliferate rapidly due to the absence of proper cell cycle 

checkpoints.  ARF and p53 are frequently co-inactivated in human cancers, suggesting this 

pathway is not strictly linear.  Given that ARF has been reported to have p53-independent 

functions both in vitro and in vivo, we sought to investigate the function of ARF in the setting of 

acute p53 loss.  Consistent with previous findings, we observed that acute loss of p53 leads to a 

transcriptional upregulation of ARF.  We further demonstrate that while p53-deficient cells 

proliferate more rapidly than their wild-type counterparts, the induced levels of ARF are actually 

limiting maximal proliferation rates.  By limiting the proliferation of p53-deficient cells, ARF is 

also able to suppress tumorigenicity when these cells are challenged with oncogenic RasV12. 

These findings settle a long-standing debate on whether or not ARF functions as a tumor 

suppressor in a p53-null setting, and explain why certain types of cancers preferentially 

inactivate both ARF and p53.  Upon p53-inactivation, ARF levels become induced to suppress 

tumorigenesis, which imposes a selective pressure for cancer cells to silence or delete the Arf 

locus. 
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INTRODUCTION 

The Tp53 and Cdkn2a tumor suppressor genes are two of the most frequently inactivated 

genomic loci in human cancers (39).  Tp53 encodes a transcription factor that can promote or 

inhibit the expression of genes in response to various cellular cues (19).  The p53 protein 

responds to numerous cellular stresses, including DNA damage, oncogenic activation, 

metabolism defects, hypoxia, oxidative stress, and telomere shortening (18).  Depending on the 

level of damage, p53 can orchestrate cell-cycle arrest to give cells an opportunity to repair the 

defects, or can activate permanent programs like senescence or apoptosis (12).  As a key sensor 

of stresses that cancer cells regularly face, it is not surprising that p53 is the most frequently 

mutated gene in human cancers (44).         

Cdkn2a encodes two unrelated proteins p14ARF (p19ARF in mice) and p16INK4A, both of 

which function as tumor suppressors (28).  There are two distinct first exons and promoters in 

Cdkn2a, called exon-1β and exon-1α.  Exon-1α splices into exons 2 and 3 and once translated 

this mRNA encodes a 168 amino acid protein called p16.    p16 is a well-characterized cyclin 

dependent kinase inhibitor, and functions to keep the Retinoblastoma protein (Rb) in a hypo-

phosphorylated state—effectively blocking entry into S-phase of the cell cycle (32).  Exon-1β 

splices into the identical splice acceptor sites in exons 2 and 3, but due to a frame shift in the first 

exon, this mRNA is translated in an Alternate Reading Frame, creating a 169 amino acid protein.  

Due to this unprecedented genomic organization in the mammalian genome, ARF and p16 share 

absolutely no sequence homology at the amino acid level, while sharing identical nucleotide 

sequences from exons 2 and 3 (28).    

ARF is a nucleolar protein that is capable of sequestering the E3 ubiquitin ligase for p53, 

MDM2, in the nucleolus (42, 46).  Under normal cellular conditions, ARF levels are kept low to 

prevent inappropriate activation of p53.  However, in response to oncogenic stimuli such as 
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overexpression of c-MYC, RAS, or E1A, ARF expression is upregulated by both increased 

transcription and translation (6, 10, 23, 25, 48).  Increased ARF levels promote the MDM2-ARF 

interaction, which leads to the stabilization p53 and subsequent activation of transcriptional 

programs leading to cell cycle arrest or apoptosis (29).  Thus, ARF and p53 canonically function 

in a linear genetic pathway that functions to protect cells from inappropriate oncogenic signaling 

(38).  

Since ARF’s initial discovery, it has been observed that cells lacking p53 function 

contain elevated levels of ARF, suggesting a possible inhibitory feedback loop between p53 and 

ARF (28, 40, 48).  For many years, only correlative data existed to link p53 to the repression of 

Arf transcription.  Re-introduction of p53 cDNA into p53-null MEFs led to a reduction in ARF 

protein levels, and p53 was able to inhibit expression of a chloramphenicol acetyltransferase 

(CAT) reporter construct regulated by Arf promoter sequence (13, 31).  A mechanistic 

explanation for this phenomenon surfaced when it was recently shown that p53 is a direct 

transcriptional repressor of the Cdkn2a promoter.  Recruitment of histone deacetylases and 

polycomb group proteins by p53 renders the locus inaccessible to transcription factors (47).  

Thus, in the context of p53 loss of function, ARF transcription becomes de-repressed and protein 

levels become elevated.  Given that p53-null mice succumb to tumor burden by 6 months of age, 

and that cells lacking p53 proliferate rapidly, it has been widely assumed that ARF serves no 

tumor suppressor function in this context (7).  Restated, this line of thought concludes that the 

tumor suppressor functions of ARF are entirely dependent on signaling through p53.    

 The negative feedback loop between p53 and ARF likely exists to allow for fine-tuning 

of the p53 response.  Increased p53 stability as a result of DNA damage or oncogenic stress leads 

would lead to an enhanced occupancy of p53 at the Arf promoter.  This would repress Arf 
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transcription and thus reduce ARF’s inhibitory effects on MDM2.  With a larger pool of 

available MDM2, the cell would be capable of turning off the p53 response, assuming the stress 

signal was no longer occurring.   

 An alternative hypothesis is that p53 and ARF cooperate to suppress a pro-proliferative 

signal.  Upon inactivation of p53, the cell is wired to turn on a “back-up.”  For this to be true, 

ARF must possess p53-independnet tumor suppressor functions.  Indeed, mounting evidence 

suggests ARF indeed possesses important p53-independent tumor suppressor functions.  If ARF 

and p53 solely function in a linear genetic pathway, there would be no selective pressure for 

cancer cells to inactivate both of them.  However, certain types of human cancers simultaneously 

harbor p53 mutations and deletions in the Arf locus, including pancreatic, lung, sarcomas, breast, 

and glioblastomas (4, 22, 24, 26, 33, 34, 36, 37, 43).  In agreement with these findings, mice 

lacking both p53 and Arf are extremely susceptible to lymphoma formation by 6 months of age, 

but they will also frequently harbor multiple primary tumors including carcinomas that have 

never been observed in the p53-null mouse (45).  Deleting Arf on a p53-null background, 

therefore, speeds up the formation of epithelial-cell tumors in mice that otherwise would 

succumb to lymphomas.    Furthermore, several groups have shown that p53-null cells are 

sensitive to exogenous overexpression of ARF, demonstrating that ARF can function 

independently of p53 to inhibit proliferation (37, 39, 45).  These studies, however, do not directly 

address the question of endogenous ARF function in the absence of p53.   

 We sought to address whether acute loss of p53 would lead to the upregulation of 

functional ARF.  We show that acute p53 loss results in an induction of ARF protein expression 

and that this endogenous ARF accumulation functions to limit the proliferation and 

tumorigenicity of p53-deficient cells.  Our data conclusively show that the negative feedback 
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loop between p53 and ARF has biological significance.  The widely held assumption that the 

increased endogenous levels of ARF found in p53-deficient cells are non-functional is therefore, 

incorrect.   This evidence also provides an explanation for why the inactivation of p53 and ARF 

are not mutually exclusive events in human cancers.                     
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MATERIALS AND METHODS 

 

Mice and cell culture.  p53flox/flox (FVB.129-Trp53tm1Brn) were obtained from the NCI Mouse 

Repository and have been previously described (11).  Primary mouse embryonic fibroblasts were 

isolated as previously described (14).  All cells were maintained in DMEM supplemented with 

10% fetal bovine serum, 2mM glutamine, 0.1mM nonessential amino acids, 1mM sodium 

pyruvate, and 2ug/mL gentamicin.  Unless otherwise indicated, cells were maintained in 5% CO2 

and atmospheric O2.  Rapamycin was purchased from LC Laboratories. 

 

Viral production and infections.  Adenoviruses expressing β-galactosidase (Ad-LacZ) or Cre 

recombinase (Ad-Cre) were purchased from the Gene Transfer Vector Core, University of Iowa.  

For Adenoviral infections, 1x106
 cells were plated in the presence of Ad-LacZ or Ad-Cre 

(MOI=50) and incubated for 8 hours.  For mutant RasV12 overexpression, retrovirus was 

produced by transfecting 293T cells with either MSCV-HRASV12-IRES-GFP plasmid or MSCV-

IRES-GFP control, and the helper plasmid ψ-2.  Virus-containing supernatants were harvested 

48 hr post transfection.  Collected retrovirus was used to infect 1x106 MEFs in the presence of 

10ug/mL polybrene.  For the production of Lentiviral shRNAs, 293T cells were transfected using 

Lipofectamine 2000 (Invitrogen) with pCMV-VSV-G, pCMV-ΔR8.2, and pLKO.1-puro 

constructs. Viral supernatants were harvested 48hrs post transfection.  Cells were infected with 

lentivirus for 8-12 hours in the presence of 10 ug/mL protamine sulfate.  Puromycin was added 

to cell culture media at a concentration of 2 ug/mL for selection.  The ARF (mouse specific) 

hairpin was described previously (1).  The shARF-C7 hairpin sequence is 5’- GTC TTT GTG 

TAC CGC TGG GAA-3’ and was obtained from the RNAi consortium library.   
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Western Blotting.  Cell pellets were lysed and sonicated in EBC lysis buffer (50 mM Tris-Cl, 

pH7.4, 120mM NaCl, 0.5% NP-40, 1mM EDTA) containing HALT Protease and Phosphatase 

Inhibitor cocktail (Thermo Scientific) and 1mM phenylmethylsulfonyl fluoride (PMSF).  Thirty 

µg of protein were separated on SDS-polyacrylamide gels.  Proteins were transferred to PVDF 

(Millipore) and probed with antibodies.   A comprehensive list of antibodies used in this study 

can be found in Table 2.1.  Secondary horseradish peroxidase conjugated antibodies (Jackson 

Immunoresearch) were used and ECL plus was used to visualize the bands (GE Healthcare).  

 

Proliferation, BrdU and Foci Assays.  For proliferation assays, 5-10x104 cells were plated in 6-

well plates.  Cells were lifted and counted using a hemocytometer at the indicated number of 

days post plating.  For BrdU assays, 1x104 cells were plated on glass coverslips and incubated 

overnight.  10µM BrdU-containing media was added to the cells for 4-6 hours.  Cells were fixed 

with 10% formalin/methanol and BrdU staining was performed using an Anti-BrdU antibody 

(GE Healthcare) according to the manufacturer’s instructions.  For foci assays, 3x103 cells were 

plated in 10cm dishes and cells were incubated for 10 days.  Cells were fixed with 100% 

methanol and stained with Giemsa (Sigma Aldrich). 

 

Soft Agar Assay.  Cells were lifted and suspended in DMEM containing a final concentration of 

0.4% Noble agar.  1.5x104 cells were layered in triplicate onto 0.6% noble-agar/media bottom 

layer in 60mm plates.  Plates were incubated for 20 days, feeding with media/0.4% agar mix 

every 6 days.  Macroscopic colonies were visualized by staining with 0.005% Crystal Violet 

solution and colonies ≥ 0.5mm were manually counted.   
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Tumorigenesis Assay.  1.5x106 dp53R-shSCR or dp53R-shARF MEFs were suspended in PBS 

and injected into the flanks of female homozygous euthymic nude mice (Foxn1nu/Foxn1nu) 

obtained from Jackson Laboratories.  Five mice per condition were used.  Tumor size was 

monitored over the course of 20 days using calipers to measure in two dimensions.  Tumor 

volume was calculated using the formula: Volume= [(height)2 x length]/2 in which height equals 

the smaller of the two measurements.   

 

Quantitative Real-Time PCR.  qRT-PCR was performed as previously described (23).  Fold 

change was measured using the ΔΔCT method (20).  Primer sequences used for amplification can 

be found in Table 2.2.   

 

Immunofluorescence.  Sections were deparaffinized, rehydrated, washed in PBS, and blocked 

with serum-free Protein block (Dako) for 30 min at room temperature.  Antigen retrieval which 

was performed in a food steamer using a 1x Reveal decloaker buffer (pH6.0) (Biocare Medical). 

Antibodies for the following markers were diluted in Antibody diluent (Dako) and applied 

overnight at 4°C: rat anti-p19ARF (1:400, Abcam), rabbit anti-E-cadherin (1:200, Cell Signaling 

Technology).  A secondary antibody conjugated with Alexa Fluor 488 was placed on tissue 

sections for 1 hr at room temperature (1:300, Life Technologies). Nuclei were counterstained 

using Slow Fade Gold Antifade reagent with 4′,6-diamidino-2-phenylindole (DAPI) (Life 

Technologies). 

  

Apoptosis analysis.  Equal numbers of cells were stained with FITC-Annexin V and propidium 

iodide using the Vybrant Apoptosis Assay kit according to the manufacturer’s instructions (Life 
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Technologies).  Stained cells were analyzed by flow cytometry using a FACSCalibur instrument, 

and data was analyzed using CELLQUEST analysis software (BD Biosciences).  For a positive 

control, cells were treated with 50µM Etoposide (Sigma Aldrich) for 14 hours.  

 

Statistical Analysis.  Data are presented as means ± s.d.  Statistical differences between groups 

were determined with P-values obtained using two-sided, unpaired Student’s t-test.  All data 

points represent n=3.  All images presented as “representative” were completed a minimum of 

three times. 
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RESULTS 

Acute loss of p53 leads to transcriptional upregulation of ARF 

 It has long been assumed that the high levels of ARF found in p53-deficient cells are not 

tumor suppressive.  To directly address this assumption, we utilized a previously characterized 

conditional mouse model of p53 inactivation where exons 2-10 are flanked by LoxP sites (11).  

Adenoviral (Ad) delivery of Cre-recombinase into p53flox/flox mouse embryonic fibroblasts 

(MEFs) resulted in the efficient excision of p53 by 4 days post-infection as measured by Western 

Blot and quantitative real-time PCR (Figure 2.1 A and B).  Importantly, an accumulation of ARF 

mRNA and protein by four days post-infection was observed, and these levels continued to rise 

over time and passage (Figure 2.1 A and B).  These data are in agreement with previous findings 

that p53 directly binds to and is capable of repressing the ARF promoter by recruitment of 

Polycomb-group proteins and promoting heterochromatin formation (47).  A transcriptional 

target of p53, MDM2, was reduced following excision of p53 (Figure 2.1 A).  Infection of wild-

type MEFs with Ad-LacZ or Ad-Cre did not result in upregulation of either ARF or p53, 

indicating the observed ARF induction is specific to p53 loss (Figure 2.2).  Furthermore, ARF 

induction following p53 loss is not dependent on tissue culture conditions, as performing the 

experiment in low serum or normoxic conditions had no effect on the level of induction (Figure 

2.3 A and B).   

The level of transcriptional upregulation of Arf mRNA ranged from 2-4 fold (Figure 2.1 

B), while the fold change of protein expression we observed was frequently as high as 8-fold 

(Figure 2.1 A).  These conflicting values led us to test whether there might be post-

transcriptional or post-translational regulation of ARF following p53 loss.  We tested protein 

stability by treating Ad-LacZ or Ad-Cre infected p53flox/flox MEFs with cycloheximide and 

measured the half-life of ARF protein.  In agreement with previously reported findings, the half-
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life of ARF in both Ad-LacZ and Ad-Cre conditions was 6 hours (Figure 2.4 A and B) (16).  

Thus, ARF protein stability is unchanged following p53 loss.  It has also been reported that p53 

can repress activation of the mTOR (mammalian Target Of Rapamycin) pathway by activating 

transcription of the tumor suppressors PTEN and TSC2 (9).  Additionally, our lab has previously 

shown that activation of the mTOR pathway leads to an increase in translation of the Arf mRNA, 

so we hypothesized that p53 loss would lead to increased signaling through mTOR and 

subsequent translational upregulation of ARF (23).  As seen in Figure 2.5A, loss of p53 led to 

activation of mTOR as measured by serine phosphorylation of p70 S6-kinase (a downstream 

target of mTOR) and its substrate, ribosomal protein S6.  Levels of TSC2 were decreased, 

suggesting a mechanistic explanation for mTOR activation.  Treatment of p53Δ/Δ MEFs with 

increasing concentrations of rapamycin, a pharmacological inhibitor of mTOR, did not reduce 

ARF protein expression (Figure 2.5 B).  A selective increase in mRNA translation via mTOR, 

therefore, does not contribute to the elevated levels of ARF following p53 loss.  We chose to not 

pursue additional mechanisms of ARF induction, and instead focused our attention on the 

physiological function of ARF in the absence of p53.     

We also wanted to determine whether induction of ARF in the absence of p53 would 

occur in vivo.  Under normal physiological conditions, ARF expression is maintained at very low 

levels and is difficult to detect by immunofluorescent (IF) staining.  In mice, the only tissues 

expressing detectable ARF are the developing eye and testes (49, 50).  We hypothesized that 

p53-knockout mice would have a “brake” relieved on the Arf promoter and would therefore 

express levels detectable by IF.  We isolated mammary fat pads from three month old virgin 

wild-type, Arf-null, or p53-null mice.  Immunofluorescent staining for ARF on formalin-fixed 

paraffin embedded sections showed evidence of punctate nucleolar staining only in the ductal 
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epithelial cells of p53-null mice (Figure 2.6).  Interestingly, not every mammary gland stained 

positive for ARF, suggesting that Arf de-repression in vivo requires more than simply p53 loss. 

 

Adeno-Cre mediated excision of p53 leads to increases in cell proliferation 

 It is widely appreciated that p53 is vital in maintaining proper cell cycle progression in 

response to a variety of cellular stresses (12).  Activation of p53 can lead to checkpoints at both 

the G1/S and the G2/M transitions in the cell cycle, so its inactivation leads to unregulated 

progression through these boundaries (18).  To validate our in vitro system of conditional p53 

inactivation, we monitored the proliferation of Ad-LacZ or Ad-Cre infected p53flox/flox MEFs.  As 

shown in Figure 2.7A, excision of p53 led to a marked proliferation advantage compared to the 

LacZ infected controls.  Analysis of cell cycle progression by 5-bromodeoxyuridine (BrdU) 

incorporation showed a significantly increased population of Cre-treated cells had entered S-

phase compared to controls (Figure 2.7 B).  Additionally, cells lacking p53 were able to achieve 

much higher confluent densities and were capable of forming colonies when plated at low 

density (Figure 2.7 C and D).  Together, these data validate our model of acute p53 loss, and 

support years of research that suggests p53-deficient cells proliferate rapidly even in the presence 

of elevated endogenous ARF.  

 

Endogenous ARF limits the proliferation of p53-deficient cells 

 As described above, loss of p53 leads to an increase in proliferation even though 

endogenous levels of another tumor suppressor, ARF, are robustly induced.  This system of acute 

p53 loss allowed us to test the true p53-independent tumor suppressor functions of ARF without 

having the concern of confounding genomic changes that are often an issue in established cell 
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lines.  We used an shRNA specifically targeting ARF to reduce ARF levels in these p53Δ/Δ 

MEFs, hereafter referred to as dp53 MEFs (deleted for p53).  As seen in Figure 2.8A, infection 

of dp53 MEFs with the ARF shRNA (shARF) leads to a reduction in ARF protein, but does not 

reduce p16 levels relative to the scrambled control (shSCR).  Importantly, our ARF shRNA 

reduces ARF levels in dp53 MEFs back to wild-type levels observed in our Adeno-LacZ infected 

controls (Figure 2.8 A).  This allowed us to specifically address the function of induced ARF 

levels in a p53-null setting.  Infection of dp53 MEFS with shARF led to a modest, yet 

reproducible, increase in proliferation and long term colony formation (Figure 2.8 B-D).  This 

data clearly indicates that endogenous ARF is able to limit the proliferation of cells faced with 

p53 loss.   

 

Endogenous ARF limits the tumorigenicity of p53-deficient cells 

To test the tumor suppressive functions of ARF in the context of p53 loss, we first 

transformed dp53 MEFs by overexpressing mutant H-RasV12, and then depleted ARF (Figure 2.9 

A).  RasV12-transformed dp53 MEFs (dp53R MEFs) were capable of forming colonies in soft 

agar (Figure 2.9 B, top left panel).  However, depletion of ARF in the dp53R MEFs resulted in a 

tremendous increase in the size of soft agar colonies, indicating an increase in tumorigenic 

potential (Figures 2.9 B and C).  The dp53R-shARF MEFs also exhibited higher proliferative 

rates, BrdU incorporation rates, and increased foci formation compared to dp53R-shSCR cells, 

supporting our observed tumorigenic phenotype (Figures 2.10 A-C).  The observed increases in 

cell proliferation were not attributed to increased cell death in the shSCR cells or decreased cell 

death in the shARF cells, as measured by Annexin-V staining (Figure 2.10 D).  We were unable 

to find a second shRNA that specifically targeted ARF without simultaneously depleting p16 
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levels.  To show that p16 was not playing a role in inhibiting the tumorigenicity of dp53 MEFs, 

we infected these cells with a hairpin targeting ARF and p16, called shARF-C7.  We 

hypothesized if p16 was also inhibitory, then depleting both ARF and p16 should enhance the 

transformation phenotype we observed.  However, we did not observe an enhanced transformed 

phenotype suggesting p16 is not inhibiting the growth of p53-deficient cells (Figure 2.11).           

To extend our findings in vivo, we injected the dp53R-shARF cells into the flanks of 

nude mice.   We observed a striking enhancement in the growth kinetics of dp53R-shARF 

tumors relative to tumors formed with dp53R-shSCR cells (Figures 2.12 A and B).  Taken 

together, these data demonstrate the endogenous ARF levels that accumulate following p53 loss 

function to limit the tumorigenic potential of these cells. 
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DISCUSSION 

The ARF and p53 tumor suppressors are predominantly thought to function in a linear 

genetic pathway to protect cells from oncogenic stress.  However, evidence from numerous 

cancer types, including pancreatic and lung cancers, indicates frequent co-inactivation of p53 and 

ARF suggesting the pathway may not be strictly linear (4, 33).  It is also interesting that p53 is a 

known repressor of the Arf locus, and until now no one has understood the functional 

significance of this relationship.  While numerous groups have attributed p53-independent tumor 

suppressive functions to ARF, most of these have been discovered by grossly overexpressing 

ARF in p53-deficient cells that already contain elevated levels of ARF (37).  Therefore, there are 

currently two important unanswered questions in the field of ARF biology:  1) Does loss of p53 

function lead to an increase in ARF levels capable of eliciting tumor suppressive functions, and 

2) What are these physiologically relevant p53-independent functions of ARF?  We believe these 

are important questions in the field of cancer biology as we enter an age of personalized cancer 

therapy (5).  A genetic understanding of why there would be a selective pressure to inactivate 

both ARF and p53 in human tumors would provide therapeutic strategies currently unavailable to 

these patients.   

We chose to address the first of the above-mentioned questions by using a murine tissue 

culture model of acute p53 loss.  Loss of p53 led to a robust induction of ARF.  While our 

current data suggests this induction is mostly mediated at the level of transcription, we cannot 

conclusively rule out the involvement of post-transcriptional regulation.  For instance, we were 

unable to establish a connection between the observed upregulation of the mTOR pathway 

initiated by p53 loss and increased ARF protein expression, but it is certainly possible that 

mTOR-independent increases in translation could be occurring.  Numerous RNA binding 

proteins are involved in translational regulation, and one of these called HuR (Human antigen R) 
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was recently shown to repress the translation of the ARF mRNA (15).  A scenario might exist 

where p53 promotes the transcription of HuR, and upon p53 loss HuR expression is reduced, 

leading to increased ARF translation. 

Immunofluorescent staining of mouse mammary glands from wild-type, Arf-null, and 

p53-null mice supported our in vitro observations.  The only glands where ARF was detectable 

were from p53-null mice.  Interestingly, not all glands stained positive for ARF in a p53-null 

mouse, suggesting that Arf de-repression in vivo requires more than simply p53 loss.  We 

hypothesize that a threshold of oxidative or oncogenic stress must be achieved to fully re-

organize the heterochromatin surrounding the Arf locus. From our cell culture model, it is clear 

that the stressful conditions used to maintain cells on plastic are sufficient to accomplish this re-

organization in p53-null cells, since acute loss of p53 leads to a rapid induction of ARF.       

While acute p53 loss led to an induction of ARF, it also vastly enhanced the proliferation 

rate of the cells.  At face value, this data would seem to indicate that ARF does not suppress the 

proliferation of these cells and, therefore, does not have p53-independent tumor suppressive 

functions.  However, depletion of ARF in the dp53 MEFs using an ARF specific shRNA led to 

an even greater enhancement of both short and long-term proliferation.  We further showed that 

dp53 MEFs transformed with mutant RasV12 are also being inhibited by the high levels of 

endogenous ARF.  Lowering these high ARF levels with shRNAs resulted in dramatic increases 

both in vitro in soft-agar colony formation and in vivo in a mouse xenograft model.  These 

effects were likely due to enhanced proliferation rates, as we were not able to detect any changes 

in cell death.   

Mechanistically, ARF could be limiting the proliferation and tumorigenicity of p53-

deficient cells in numerous ways.  Our lab and others have shown that ARF is a key player in 
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ribosome biogenesis and mRNA translation (1-3, 17, 21, 30, 35, 41).  As efficient protein 

synthesis is vital to maintain high proliferation rates, analysis of overall cellular growth in these 

cells is warranted.  Alternatively, ARF has been shown to inhibit the activity of numerous cell 

cycle promoting transcription factors such as c-Myc and E2Fs (8, 27).  Other previously reported 

p53-independent functions of ARF could be playing a role here as well, and these, along with the 

above-mentioned possibilities will be examined in Chapter 3.   

Our findings support a model whereby induction of ARF following p53 loss acts to 

prevent aberrant proliferation in the face of oncogenic stress. Thus, the functional links between 

p53 and ARF are far more important than anticipated.  The p53-ARF network that we have 

identified provides tumor suppressive redundancy where none was thought to exist in cells.  The 

question of why one tumor suppressor, p53, would inhibit the expression of another, ARF, has 

now been answered.  As p53 loss of function is one of the most frequent events in human 

cancers, it would be advantageous for a cell to have an inhibitory signal propagated following 

this genetic event.  Future work identifying ARF’s relevant p53-independent targets using our 

cell culture system will provide potential therapeutic strategies for the aggressive tumors 

harboring p53 and ARF co-inactivation.              

     

 

 

 

 

 

 

 



89 
 

FIGURES 

 

Figure 2.1  Acute loss of p53 induces ARF.  (A) Western blot analysis of cell lysates from 

p53flox/flox MEFS infected with Ad-LacZ (L) or Ad-Cre (C) harvested at the indicated time points.  

Fold change of ARF levels are relative to Ad-LacZ control. (B)  qRT-PCR analysis of p53 and 

ARF mRNA levels from p53flox/flox MEFs infected with Ad-LacZ or Ad-Cre.  mRNA levels were 

normalized to β-Actin and fold changes are relative to Ad-LacZ controls.  Error bars represent 

s.d. for n=3 from three independent experiments. 
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Figure 2.2  Adenoviral infection does not induce ARF or p53 expression.  Low passage 

Wild-type MEFs were either mock infected (no virus) or infected with Adeno-LacZ or Adeno-

Cre (MOI=50).  Four days post-infection, cells were harvested and Western blots were 

performed for the indicated antibodies.   
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Figure 2.3  ARF induction following p53 loss does not require high serum and high oxygen 

conditions.  (A) Light microscopy images of Ad-LacZ or Ad-Cre infected p53flox/flox MEFs 

grown in the indicated tissue culture conditions.  Images were taken six days post-infection.   

“High” O2 indicates atmospheric oxygen concentrations (~21%) typically used for tissue culture 

and “Low” O2 indicates a more physiologically relevant concentration of ~4%.    (B)  Western 

blot analysis of cells described in (A) at six days post-infection.   
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Figure 2.4  ARF protein stability does not change following p53 loss.  (A)  Ad-LacZ or Ad-

Cre infected p53flox/flox MEFs were treated with 25 µg/mL cycloheximide for the indicated 

amounts of time.  Western blot analysis was performed for ARF and Actin was used as a loading 

control.  Representative immunoblots are shown.   (B)  Determination of half-life was 

determined by using densitometry to quantify Actin-normalized ARF band intensities.  Values 

are depicted as percent ARF remaining relative to the 0-hr time point.  The graph is 

representative of three independent measurements.   
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Figure 2.5  Loss of p53 leads to mTOR activation but mTOR is not required for the 

observed ARF induction.  (A)  Ad-LacZ or Ad-Cre infected p53flox/flox MEFs were analyzed by 

Western blot for the indicated antibodies.  Representative immunoblots of three independent 

experiments are shown.   (B)  Ad-Cre infected p53flox/flox MEFs were treated with vehicle (V-

Ethanol) or the indicated concentrations of Rapamycin for 14 hours.  Western blot analysis was 

performed for ARF and phosphorylation of S6 was used to monitor the efficiency of Rapamycin 

treatment.    
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Figure 2.6  Mammary glands from p53-deficient mice display increased ARF.     

Immunofluorescence was performed on age-matched, virgin murine mammary fat pads.  ARF 

(green), E-Cadherin (Red), and Dapi (Blue).  Representative mammary glands are shown.   
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Figure 2.7  Loss of p53 leads to increased cell proliferation 

 (A)  Equal numbers of p53flox/flox MEFs infected with Ad-LacZ or Ad-Cre were plated in six-

well dishes and cell number was counted on the indicated number of days using a 

hemocytometer.  Graph is representative of three independent experiments.   (B)  Ad-LacZ or 

Ad-Cre infected p53flox/flox MEFs pulsed with BrdU for 4 hours.  BrdU and DAPI positive nuclei 

were visualized using immunofluorescence, and data represents percent BrdU positive nuclei 

from three independent experiments.  (C)  Light microscopy image (4X objective) of confluent 

dishes containing cells described in (A) and (B).   (D) Representative image of foci assay with 

Ad-LacZ or Ad-Cre infected p53flox/flox MEFs.   
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Figure 2.8  Endogenous ARF limits the proliferation of p53-deficient cells.  

 (A)  Western blot analysis of Ad-LacZ (L) or Ad-Cre (C) infected p53flox/flox MEFs  

subsequently infected with an shRNA targeting ARF (+) or a scrambled control (-).  (B)  

Western blot analysis of dp53 MEFs infected with shSCR or shARF.  (C)  Equal numbers of 

dp53 MEFs infected with shSCR or shARF were plated and manually counted on the indicated 

days.   (D)  Representative image of foci assay performed with dp53 MEFs expressing shSCR or 

shARF. 
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Figure 2.9  Endogenous ARF limits the tumorigenicity of p53-deficient cells.   

(A) Western blot analysis of dp53 MEFs expressing RasV12 (dp53R), and infected with shSCR or 

shARF.  (B)  Representative images of dp53R-shSCR or dp53R-shARF MEFs growing in soft 

agar.  Macroscopic colonies were quantified in (C).  Error bars represent s.d. of n=3. 
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Figure 2.10  ARF limits the proliferation of Ras-transformed p53-deficient cells.   

(A)  Proliferation assay of dp53 MEFs expressing empty vector or RasV12 and infected with 

shARF or shSCR control.  Graph is representative of three independent experiments.  (B)   

Percent BrdU positive nuclei of cells described in (A) following 4-hour pulse with BrdU.  Error 

bars represent s.d. from three independent measurements of 100 nuclei.  (C) Representative 

image of foci assay performed with dp53R MEFs expressing shSCR or shARF.  (D)  Annexin V 

staining was performed with the indicated genotypes using flow cytometry.  Etoposide treated 

(50µM) dp53 MEFs were used as a positive control for apoptosis.  Error bars represent the s.d. of 

three biological replicates.   
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Figure 2.11  p16 does not inhibit tumorigenicity of p53-deficient cells  (A)  dp53 MEFs 

overexpressing RasV12 were infected with shSCR, shARF or an shRNA targeting both p16 and 

ARF (C7).  Western blot analysis was performed 96 hours post-infection to observe knockdown 

efficiency.  (B)  Cells described in (A) were plated in soft agar and incubated for 21 days.  

Macroscopic colony number was quantified.  Error bars represent s.d. of three independent 

measurements.   
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Figure 2.12  dp53R MEFs depleted of ARF form larger tumors in mice.  (A)  dp53R MEFs 

infected with shSCR or shARF were injected into the flanks of nude mice and incubated for 21 

days.    Images of tumor-bearing mice and excised tumors from allograft experiments using 

dp53R-shARF or shSCR MEFs are shown.    (B) Tumor size was measured using calipers on the 

indicated days post-injection.  Tumor size (volume) was calculated as described in the Methods 

section.  Error bars represent s.d. of n=5. 
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Gene  Company Catalogue # Dilution 

p19ARF (mouse) Santa Cruz sc-32748 1:1000 

p53 (mouse) Cell Signaling 2524 1:1000 

MDM2 Millipore OP115 1:500 

Actin Santa Cruz sc-8432 1:500 

Gamma tubulin Santa Cruz sc-7396 1:1000 

H-Ras Santa Cruz sc-520 1:2000 

Gapdh Bethyl A300-641A 1:10000 

Snf5 Bethyl A301-087A-1 1:2000 

p16Ink4a Santa Cruz SC-1207 1:1000 

rpS6 Cell Signaling 2317S 1:1000 

(P) S6 Ser240/244 Cell Signaling 2215S 1:5000 

(P) S6K1 Thr 389 Cell Signaline 9205S 1:1000 

 

Table 2.1.  List of primary antibodies 
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ARF FWD 5’-GAG TAC AGC AGC GGG AGC AT-3’ 

 REV ATC ATC ATC ACC TGG TCC AGG ATT CC 

p53 FWD CAT CAC CTC ACT GCA TGG AC 

 REV AAA AGA TGA CAG GGG CCA TG 

Actin FWD TCA CCC ACA CTG TGC CCA TCT A 

 REV TAC TCC TGC TTG CTG ATC CAC A 

Histone 3.3 FWD CGT GAA ATC AGA CGC TAG CAG AA 

 REV TCG CAC CAG ACG CTG AAA G 

 

Table 2.2.  List of qRT-PCR primers 
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ABSTRACT 

 The ARF tumor suppressor functions to protect cells from hyper-proliferative and hyper-

growth signals by activating p53-mediated cell cycle arrest or apoptosis.  Genetic models in mice 

have indicated that ARF also possesses important p53-independent tumor suppressor functions, 

and these findings are supported by frequent co-inactivation of p53 and ARF in human tumors.  

While numerous p53-independent functions of ARF have been identified, the physiological 

relevance of these is not well understood.  In Chapter 2 of this dissertation, we created and 

validated an in vitro system of acute p53 loss to monitor the functions of ARF.  In this system, 

ARF became induced following p53 loss and potently inhibited tumorigenesis.  In an effort to 

understand how ARF might be limiting tumorigenesis in the setting of p53-deficiency, we 

analyzed previously reported p53-independent function of ARF.  We show that ARF does not 

affect rRNA transcription, protein synthesis, SENP3 stabilization, c-MYC driven transcription, 

or migration and invasion in cells faced with acute p53 loss.  Many of these p53-independent 

functions were discovered using ARF overexpression models, so our findings highlight the 

difficulties in interpreting these types of experimental systems.  Our model uses acute loss of p53 

as the catalyst for ARF induction, allowing us to interrogate the importance of endogenous ARF 

in this genetic context.  As such, we believe our system will allow us to confidently identify 

novel p53-independent targets of ARF that are required for tumor suppression in p53-deficient 

tumors.          
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INTRODUCTION 

 The CDKN2A locus on human chromosome 9p21 encodes two tumor suppressor genes 

tasked with the job of maintaining appropriate rates of cellular proliferation (45).  Deletion, 

mutation, or epigenetic silencing of CDKN2A is therefore a very common occurrence in human 

tumors (43).  In fact, mutation of the well-known tumor suppressor, p53, is the only genetic 

abnormality that occurs more frequently (29).  The two genes encoded by CDKN2A are p16Ink4a 

and p19ARF.  Due to a unique genomic organization whereby p16Ink4a and p19ARF have distinct 

promoters and first exons (designated exon-1α and exon 1-β respectively), the encoded p16 and 

ARF proteins share no homology at the amino acid level.  This is due to a frameshift in exon-1β 

of ARF that causes exon 2 to be translated in an alternate reading frame (40).  As distinct 

proteins, ARF and p16 have very different tumor suppressor roles in the cell.  p16, which is a 

member of the INK4 family of cell cycle inhibitors (p15INK4b, p18INK4c, p19INK4d are the 

other family members), is a cyclin-dependent kinase inhibitor that inhibits the association of 

CDK4/6 with Cyclin D (42).  By inhibiting the formation of this complex, p16 is able to 

maintain the Retinoblastoma protein (Rb) in a hypo-phosphorylated state, thus keeping the cell 

cycle stuck in G1.     

 ARF is not a member of any known family of proteins, and it’s peculiarity at the 

genomic level is carried over to the amino acid level as well.  The 169 amino acid protein 

contains 20% arginine residues, and as a result, has a pI around 12 (40).  At physiological pH, 

therefore, ARF is highly disordered. However, upon association with binding partners, ARF can 

adopt alpha helical structures (13).  Mouse ARF (p19) contains only one lysine residue, and 

human ARF (p14) contains none.  As a result, the turnover of ARF protein (t1/2= 6 hours) is 

maintained by a proteosome-targeting process that does not require lysine residues, called N-
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terminal polyubiquitination (27).  Finally, ARF is a resident of the nucleolus, a non-membrane 

bound organelle formed around actively transcribed ribosomal DNA (rDNA) loci (6, 46).   

The canonical tumor suppressor function of ARF is the activation of p53-dependent cell 

cycle arrest in response to sustained oncogenic signaling.  Increased levels or activity of 

oncogenes such as Ras, c-MYC, E1A, and E2F-1 lead to gains in both transcription and 

translation of Arf (4, 12, 34, 37, 65).  Induced levels of ARF bind and sequester the E3 ubiquitin 

ligase for p53, MDM2, in the nucleolus (53, 58).  p53 has a very short half-life (~20 minutes), so 

relief of ubiquitin-mediated degradation by the proteasome stabilizes p53 protein levels and 

allows it to participate in the transcriptional regulation of cell cycle inhibitory genes such as p21 

(33).  In this manner, ARF is able to protect cells from oncogenic transformation by activating 

p53-mediated arrest or apoptosis.  In support of this model, Arf-deficient fibroblasts can be 

transformed by overexpression of RAS or c-MYC alone (30, 37, 65).  Furthermore, in an Eµ-

Myc-driven model of lymphoma, spontaneous inactivation of ARF or p53 occurred in 50% of the 

tumors and Arf +/-; Eµ-Myc exhibited increased rates of lymphoma development with the vast 

majority of these tumors inactivating the remaining Arf allele (14). 

ARF also possesses p53-independent functions, but the physiological importance of these 

are not well understood (44).  Evidence for the existence of p53-independent functions first 

surfaced when it was shown that enforced expression of ARF in p53-deficient cells can lead to 

cell cycle arrest, albeit with slower kinetics than wild-type cells (44, 57).  Furthermore, mice 

lacking both p53 and Arf develop multiple tumor types in addition to the typical lymphomas that 

arise as a result of p53 loss alone (57).  These findings have motivated researchers to find p53-

independent targets of ARF, and in the last ten years, promising progress has been made.  For 

instance, ARF can directly inhibit the transcriptional activities of c-MYC and E2F-1, limiting the 
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pro-proliferative gene expression programs that these factors promote (15, 39).  ARF has also 

been shown to inhibit both the motility and invasiveness of cancer cells (9, 19, 35, 62).  Finally, 

ARF can promote the conjugation of a ubiquitin-like moiety, SUMO, to many of its binding 

partners (52).  Promotion of sumoylation is achieved by initiating the degradation of the SUMO-

specific protease, SENP3 (28).  The functional significance of these p53-independent functions 

(and others reviewed in (44)) in tumor suppression remain a subject of debate because the 

majority of these studies were performed by grossly overexpressing ARF, potentially leading to 

non-physiological interactions. 

Arguably the most well-characterized p53-independent function of ARF is its ability to 

regulate ribosomal biogenesis and overall cellular growth (protein synthesis).  This function was 

first reported by Sugimoto and colleagues, when they found ARF could inhibit the processing 

ribosomal RNA species in cells lacking functional p53 (49).  Shortly thereafter, it was discovered 

that ARF could physically interact with the ribosomal chaperone, Nucleophosmin (NPM) (5, 32).  

Similar to its inhibition of MDM2, ARF sequesters NPM in the nucleolus, thus limiting NPM’s 

ability to shuttle ribosomes to the cytosol (8).  Our lab established that basal ARF levels are 

important in maintaining nucleolar integrity and function.  Loss of ARF leads to gains in 

nucleolar size, rDNA transcription, rRNA processing, and ribosomal export.  This led to the 

enhancement of overall protein synthesis and cell size ((2) and Crystal Winkeler unpublished 

data).    Over the last 5 years, we and others have also shown ARF can regulate translation of 

specific mRNAs—namely Vegf-A, Pdgfr-β, Drosha, and Dhx33 (24, 26, 59, 64).  ARF, 

therefore, can affect multiple signaling pathways through general as well as selective 

translational control.      
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An interesting wrinkle in the ARF/p53 pathway is that a negative feedback loop exists 

between p53 and ARF, whereby p53 is capable of repressing transcription of Arf (61).  Why 

would one tumor suppressor inhibit the expression of another?  The most likely possibility is that 

this regulatory loop allows fine-tuning of the ARF-p53 response.  By inducing expression of an 

inhibitor (MDM2), and suppressing expression of an activator (ARF), p53 can discriminate 

against normal physiological growth signals and oncogenic stress.  If ARF gets induced in 

response to normal growth signals, a pulse in p53 activation would be allowed.  However, the 

inducing signal would not be sustained long-term, so eventually ARF levels would become 

suppressed and MDM2 would be induced by p53 to return p53 back to steady-state levels.   In 

response to sustained oncogenic activation, ARF would be constitutively transcribed and p53 

would be outcompeted at the Arf promoter, leading to a durable p53 response.  Of course, 

possessing this regulatory might also mean that upon p53 loss, ARF expression is unleashed and 

could function to limit oncogenic damage.  In support of this possibility, we previously showed 

that acute loss of p53 led to a robust induction of ARF (Chapter 2).  The increased ARF levels 

were capable of limiting both the proliferation and the tumorigenicity of these cells.   

In this chapter, we tested whether the induced levels of ARF that occur following p53 

loss are limiting proliferation and tumorigenicity through previously reported p53-independent 

tumor suppressive mechanisms.  Endogenous ARF levels had no effect on rRNA transcription or 

overall protein synthesis in p53-null cells.   Furthermore, ARF’s involvement in sumoylation, 

invasion, and c-MYC-induced transcription did not appear to be important regulators of tumor 

suppression in the absence of p53.  While we were unable to mechanistically explain ARF’s 

ability to suppress tumorigenesis in cells facing acute p53 loss of function, our data indicates that 

ARF is likely involved in novel tumor suppressor pathways that will necessitate further studies.   



114 
 

METHODS 

Cytosolic Ribosome Fractionation.  Cells were treated with 10 µg/mL cycloheximide for 5 

minutes before harvesting by trypsinization.  Cell number was obtained using trypan-blue 

exclusion and a hemocytometer.  For each condition, 3 x 106 cells were pelleted and lysed.  

Cytosolic fractions were layered over 7%-47% sucrose gradients and ribosome fractionation and 

measurement was performed as previously described (36, 48)   

 

[35S]-Incorporation measurement of protein synthesis.  Cells (1x105) were plated in triplicate 

in 6-well dishes and starved of cysteine and methionine for 30 minutes.  Cells were then pulsed 

with 150 µCi [35S]-protein labeling mix (Perkin Elmer) for various amounts of time.  After 

pulsing, the cells were harvested by scraping in RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mM 

NaCl, 1% Triton X-100, 0.1% SDS, 0.5% deoxycholic acid) containing 1X Halt Protease 

inhibitor cocktail (Thermo Scientific), and incubated on ice for 15 min.  After sonication, 

supernatants were cleared by centrifugation at 14,000 x g for 5 minutes.  Protein was precipitated 

with 10% trichloroacetic acid, and pellets were subjected to liquid scintillation counting to 

measure incorporated counts per minute (cpm).    

 

Immunofluorescence.  Cells (1x105) were seeded overnight on glass coverslips (Corning).  

Cells were fixed for 15 minutes at room temperature with 10% Methanol in Formalin.  

Membrane permeabilization was performed with 5 minute incubation in 1% NP-40.  Cells were 

then blocked for 30 minutes with Dako serum-free protein block.  Primary antibodies for ARF 

(1:400, Santa Cruz) were applied for 1 hour.  A secondary antibody conjugated with Alexa Fluor 

488 was placed on tissue sections for 1 hr at room temperature (1:300, Life Technologies). 
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Nuclei were counterstained using Slow Fade Gold Antifade reagent with 4′,6-diamidino-2-

phenylindole (DAPI) (Life Technologies). 

 

Immunoprecipitation and Western blotting.  Cell pellets were lysed in EBC lysis buffer (50 

mM Tris-Cl, pH7.4, 120mM NaCl, 0.5% NP-40, 1mM EDTA) containing HALT Protease and 

Phosphatase Inhibitor cocktail (Thermo Scientific) and 1mM phenylmethylsulfonyl fluoride 

(PMSF).  For immunoprecipitations, 400 µg of protein was incubated overnight with rabbit anti-

p19ARF antibody in EBC.  Immunocomplexes were precipitated with Protein-A Sepharose for 2 

hours.  Sepharose beads were washed three times with RIPA buffer (50 mM Tris-HCl, pH 7.4, 

150 mM NaCl, 1% Triton X-100, 0.1% SDS, 0.5% deoxycholic acid).  Protein was eluted using 

1X SDS loading buffer and resolved on SDS polyacrylamide gels.  Following transfer to PVDF 

(Millipore), the primary antibodies listed in Table 3.1 were applied.  Secondary horseradish 

peroxidase conjugated antibodies (Jackson Immunoresearch) were used and ECL plus was used 

to visualize the bands (GE Healthcare).    

 

Cell Culture and Reagents.  p53flox/flox (FVB.129-Trp53tm1Brn) were obtained from the NCI 

Mouse Repository and have been previously described (21).  Primary mouse embryonic 

fibroblasts were isolated as previously described (23).  All cells were maintained in DMEM 

supplemented with 10% fetal bovine serum, 2mM glutamine, 0.1mM nonessential amino acids, 

1mM sodium pyruvate, and 2ug/mL gentamicin.  Unless otherwise indicated, cells were 

maintained in 5% CO2 and atmospheric O2.   
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AgNOR Staining.  AgNOR staining was performed exactly as described previously (2).  

Quantification of AgNOR/nucleus and %AgNOR Area/Nucleus was performed manually using 

Metamorph software (Molecular Devices).  For each measurement, 100 nuclei were scored from 

three independent slides to obtain averages and standard deviations.   

 

47S rRNA transcription.  Analysis of 47S rRNA transcription was performed exactly as 

described previously (32).  Briefly, 1.5x106 cells were harvested and total RNA was isolated 

using a Nucleospin RNA II Kit (Machery-Nagel).  Production of cDNA was performed using a 

Superscript III Kit (Invitrogen) and a mouse 47S specific primer.  qRT-PCR was performed 

using 2X SYBR-Green mix (BioRad) and 47S rRNA specific primes.  Amplification was 

performed on a BioRad CFX96 Real-Time System.   

 

Soft Agar.  Cells were lifted and suspended in DMEM containing a final concentration of 0.4% 

Noble agar.  1.5x104 cells were layered in triplicate onto 0.6% noble-agar/media bottom layer in 

60mm plates.  Plates were incubated for 20 days, feeding with media/0.4% agar mix every 6 

days.  Macroscopic colonies were visualized by staining with 0.005% Crystal Violet solution and 

colonies ≥ 0.5mm were manually counted. 

 

Scratch Assay.  Cells (8x105) were seeded overnight onto 60mm tissue culture dishes.  A 

“scratch” was made down the center of the plate using a p200 pipette tip.  Plates were then 

washed once with PBS to remove lifted cells and replenished with fresh media.  Imaging was 

performed at t=0 and t=8 hrs post scratching, at three independent locations on the plate.   
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Collagen Invasion Assay.  This assay was performed exactly as described previously (63).  

Briefly, 1x105 cells were embedded in type I collagen (2 mg/mL) gel isolated from rat tail (BD 

Biosciences).  Following incubation at 37°C to gel the collagen, the plug was suspended in 2 

mg/mL collagen in a 24 well plate.  Invasion into the collagen matrix was visualized 48 hours 

later with an inverted light microscope (4X Objective).  

 

Viral production and infections.  Adenoviruses expressing β-galactosidase (Ad-LacZ) or Cre 

recombinase (Ad-Cre) were purchased from the Gene Transfer Vector Core, University of Iowa.  

For Adenoviral infections, 1x106
 cells were plated in the presence of Ad-LacZ or Ad-Cre 

(MOI=50) and incubated for 8 hours.  For mutant RasV12 overexpression, retrovirus was 

produced by transfecting 293T cells with either MSCV-HRASV12-IRES-GFP plasmid or MSCV-

IRES-GFP control, and the helper plasmid ψ-2.  Virus-containing supernatants were harvested 

48 hr post transfection.  Collected retrovirus was used to infect 1x106 MEFs in the presence of 

10ug/mL polybrene.  For the production of Lentiviral shRNAs, 293T cells were transfected using 

Lipofectamine 2000 (Invitrogen) with pCMV-VSV-G, pCMV-ΔR8.2, and pLKO.1-puro 

constructs. Viral supernatants were harvested 48hrs post transfection.  Cells were infected with 

lentivirus for 8-12 hours in the presence of 10 ug/mL protamine sulfate.  Puromycin was added 

to cell culture media at a concentration of 2 ug/mL for selection.  The ARF (mouse specific) 

hairpin was described previously (2).   

 

qRT-PCR.  qRT-PCR was performed as previously described (34).  Fold change was measured 

using the ΔΔCT method (31).  Mouse-specific primer sequences used for amplification can be 

found in Table 3.2.  
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Statistics.  Data are presented as means ± s.d.  Statistical differences between groups were 

determined with P-values obtained using two-sided, unpaired Student’s t-test.  All data points 

represent n=3.  All images presented as “representative” were completed a minimum of three 

times.  
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RESULTS 

ARF localizes to nucleoli and interacts with NPM in p53-deficient cells 

Our results described in Chapter 2 of this dissertation demonstrated that endogenous ARF 

levels have a p53-independent tumor suppressor function.  While numerous p53-independent 

functions have been attributed to ARF, only its regulation of cellular growth (i.e. 

macromolecular synthesis) has been demonstrated to be physiologically relevant.  Thus, we 

hypothesized that p53 loss leads to an induction of ARF protein which functions to limit overall 

protein synthesis in the cell, limiting proliferative capacity.  

To test this hypothesis, we first wanted to ensure ARF subcellular localization remained 

nucleolar in the absence of p53.  Utilizing the mouse model of p53-inactivation we described in 

Chapter 2, we infected p53flox/flox MEFs with Adeno-LacZ or Adeno-Cre-recombinase.  Six days 

post-infection, cells were stained for ARF.  Both LacZ and Cre treated cells displayed punctate 

nuclear staining indicative of nucleolar structures, suggesting loss of p53 does not affect the 

localization of ARF (Figure 3.1 A).  Having demonstrated that ARF remains nucleolar in the 

absence of p53, we next wanted to test whether ARF was interacting with NPM in our system.  

As mentioned, ARF can sequester NPM in the nucleolus, leading to decreased ribosomal 

shuttling and cell growth (7, 32).  We immunoprecipitated ARF complexes from day 6 Ad-LacZ 

or Ad-Cre infected p53flox/flox MEFs.  Our inputs indicated that NPM expression does not change 

following p53 loss, but as expected, MDM2 levels are greatly diminished due to p53 being a 

positive transcriptional regulator of its expression (Figure 3.1 B) (3, 22).  Markedly, in LacZ 

treated cells, ARF has a much greater affinity for associating with MDM2 than NPM, consistent 

with previous findings (7).  In the Cre-treated MEFs, MDM2 levels are depleted and ARF 

appears to form more abundant complexes with NPM.  Taken together, these data suggest ARF 
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can interact with NPM in the absence of p53, and are in support of the hypothesis that ARF 

might be inhibiting overall cellular growth to inhibit p53-null cell proliferation.  

 

Dp53 MEFs display evidence of reduced overall cellular growth 

To test whether endogenous ARF was inhibiting cellular growth in p53-deficient cells, 

we first assessed the total amount of protein present in these cells.  As shown in Figure 3.2A, 

Cre-treated p53flox/flox MEFs (hereafter referred to as dp53 MEFs—deleted for p53) had 

significantly lower amounts of total protein/cell both 4 days and 6 days post-infection.  At these 

time points, ARF is robustly induced (Figure 3.2 E).  Additionally, we assessed the level of 

active translation by monitoring cytosolic ribosome profiles in LacZ or Cre treated p53flox/flox 

MEFs.  Cytosolic ribosome complexes were fractionated from sucrose gradients and rRNA was 

monitored using UV absorbance, allowing us to quantify the amount of 40S, 60S, 80S, and 

actively translating polyribosomes in the cells.  In support of our protein/cell findings, we 

observed lower amounts of the 40S, 60S, 80S subunits, and actively translating polyribosomes in 

the dp53 cells (Figure 3.2 B).  Lower amounts of 40S and 60S subunits could be due to a defect 

at any step in ribosome biogenesis:  rRNA transcription, rRNA processing, assembly, or export 

of subunits into the cytosol.  Having previously shown that ARF’s basal role in the cell is 

maintaining proper rRNA synthesis and processing rates, we hypothesized that rRNA 

transcription was being affected by increased ARF levels (2).  Using a quantitative real-time 

PCR method to detect the 47S precursor rRNA species, we found that dp53 cells with elevated 

ARF levels contained fewer copies of the 47S precursor rRNA, suggesting there are defects in 

rRNA transcription (Figure 3.2 C).  Taken together, these data suggest that dp53 MEFs contain 
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less protein on a per cell basis and this could be due to a reduction in available ribosomal 

subunits as a result of decreased rRNA transcription.    

Since rRNA transcription takes place in the nucleolus, we next wanted to assess the 

morphology of nucleoli since this can be a direct means of assessing nucleolar function.  For 

many years, pathologists have analyzed the silver-staining nucleloar organizing regions 

(AgNORs) for readout of nucleolar function in human cancers.  Higher AgNOR scores often 

correlate with increased aggressiveness of tumors (38).  We performed AgNOR staining on LacZ 

or Cre treated p53flox/flox MEFs 6 days post-infection.  We did not detect any changes in gross 

morphology of the NORs, but surprisingly, we did observe small but significant increases in the 

number of NORs/nucleus and the amount of nuclear area occupied by the NORs in dp53 MEFs 

(Figure 3.2 D).  At face value, these findings are inconsistent with our previous cell growth 

measurements.  However, the increase in AgNOR area/nucleus is likely explained by the fact 

that dp53 MEFs are smaller than their wild-type counterparts and, accordingly, their nuclei are 

smaller (Figure 3.2 D and data not shown).  Since we did not normalize to nuclear size, the 

AgNOR area/nucleus is artificially increased due to smaller nuclei in dp53 MEFs.  This does not, 

however, explain the increase in the number of AgNORs per nucleus, a finding that we will re-

visit in the discussion section. 

 

 

Increased ARF levels in p53-deficient cells do not inhibit cellular growth 

 Thus far, we have shown that p53-deficient cells display evidence of reduced protein 

synthesis as a result of rRNA transcription defects. In chapter 2, we showed that knocking down 

ARF in p53-deficient cells led to an increase in proliferation and an increase in tumorigenic 
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growth.  Therefore, our hypothesis to explain this phenomenon is that loss of p53 leads to the 

induction of ARF, and the increased ARF levels are capable of inhibiting overall cellular growth, 

thus limiting proliferation and tumorigenicity.  To directly test this hypothesis, we asked what 

effect depleting ARF from dp53 MEFs would have on cellular growth.   

 Knockdown of ARF in dp53 MEFs did not rescue the 47S rRNA levels or the reduced 

polyribosome formation (Figure 3.3 A-C).  Likewise, in Rasv12-transformed dp53 MEFs 

(dp53R), ARF depletion had no effect on polyribosome formation or protein/cell (Figure 3.3 E 

and F).  Additionally, we tested whether NPM function was specifically required for the 

increased tumorigenicity seen in RasV12-transformed dp53 MEFs depleted for ARF (Chapter 2, 

Figure 2.9 B and C).  As shown in Figure 3.4, these dp53R-shARF cells are equally sensitive to 

NPM depletion as the dp53R-shSCR controls (Figure 3.4 A-C).  Together, these data indicate 

ARF does not limit the proliferation and tumorigenicity of p53-deficient cells through the 

regulation of overall cellular growth.  In fact, when we performed a more quantitative 

measurement of active protein synthesis (35S-incorporation into newly made proteins), we 

observed significantly enhanced incorporation of 35S in dp53 MEFs, regardless of high or low 

ARF expression (Figure 3.3 D). 

 To truly rule out ARF’s regulation of cell growth in a p53-indepenent setting, we would 

need to utilize a post-mitotic cell system where cell-cycle differences would not affect our 

interpretation of experiments (e.g. p53-null osteoclasts) (54).  We took an alternative approach 

by analyzing the effects of ARF knockdown prior to any increase in proliferation in dp53 MEFs.  

At 48 hours post shARF infection, we observed no increase in protein per cell or steady state 

levels of 47S rRNA even though ARF was significantly depleted (Figure 3.5 B-D).  At this time 
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point, there are not yet proliferation differences between the shSCR and shARF cells (Figure 3.5 

A, Day 2 time point).    

 

Increased ARF levels do not dictate expression of the de-sumoylating enzyme SENP3 in 

dp53 MEFs. 

 Having demonstrated that enhanced ARF levels were not regulating cellular growth in the 

absence of p53, we chose to examine other established p53-independent functions of ARF.  

Sumoylation is the process by which the small ubiquitin-related modifier (SUMO) is conjugated 

to lysine residues in target proteins (17).  Sumoylation can affect cellular localization, enzymatic 

activity, or protein stability.  Intriguingly, ARF can promote the sumoylation many proteins, 

including NPM, E2F-1, and HIF-1α by inhibiting a de-sumoylating enzyme called SENP3 (28, 

41, 51).  Increased ARF expression leads to the decreased stability of the SENP3 protein (28).  

As sumoylation of NPM has been reported to inhibit its pro-proliferative functions, including 

rRNA processing, we hypothesized that increased ARF might be promoting an anti-proliferative 

effect in p53-deficient cells by promoting sumoylation as a result of SENP3 degradation (20).  

We monitored SENP3 expression levels during a time course of an Adeno-LacZ or Adeno-Cre 

infection of p53flox/flox MEFs.  As seen in Figure 3.6A, loss of p53 and the subsequent ARF 

induction has no effect on SENP3 levels.  Moreover, depleting ARF in p53-deficient cells (with 

or without RasV12) did not significantly alter SENP3 expression (Figure 3.6 B).  These results 

indicate that endogenous ARF in p53-deficient cells does not affect SENP3 protein stability, and 

is therefore, not likely to affect sumoylation. 
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ARF does not inhibit c-MYC transcriptional activity in dp53 MEFs 

 As previously mentioned, ARF has been reported to interact with and inhibit the 

transcriptional activity of the proto-oncogene c-MYC (39).  Amplification of the c-MYC gene is 

frequently found in human cancers, and overexpression of c-MYC in mice is sufficient to induce 

lymphoma formation (1, 11).  Reportedly, ARF’s inhibition of c-MYC does not require p53, so 

we asked whether the well-characterized c-MYC transcriptional targets ornithine decarboxylase 

(ODC) and nucleolin (NCL) are inhibited by endogenous ARF in dp53 MEFs (18, 56). Dp53 

MEFs infected with an shRNA targeted against ARF did not display significant increases of 

ODC or NCL, while ARF mRNA levels were reduced by 40% (Figure 3.7).  Thus, ARF does not 

inhibit c-MYC transcription in p53-deficient cells. 

 

ARF does not inhibit the motility or invasiveness of p53-deficient cells 

 Thus far, we have shown that ARF is not able to limit tumorigenicity of p53-deficient 

cells by inhibiting cellular growth, sumoylation, or c-MYC transcriptional inhibition.  Lastly, we 

wanted to examine the role of ARF in motility and invasion, both of which have been described 

to be regulated by ARF in a p53-independent manner (9, 19, 35).  We measured the motility of 

dp53R-shSCR (MEFs deleted for p53 expressing RasV12 and shSCR) or dp53R-shARF MEFS 

(MEFs deleted for p53 expressing RasV12 and shARF) with a classic “scratch assay,” and 

observed no change in the cells ability to migrate into the scratched area (Figure 3.8 A).  To 

directly measure invasiveness, we used a collagen invasion assay that has been previously 

described (63).  No differences were observed in the ability of dp53R-shSCR or dp53R-shARF 

cells to invade through the collagen matrix (Figure 3.8 B).  Finally, it was recently shown that 

ARF could inhibit angiogenesis and tumor cell invasiveness by upregulating the mRNA 
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expression of the tissue inhibitor of metalloproteinase-3 (TIMP3) protein (62).  When we 

depleted dp53R cells of ARF, we did not observe an appreciable decrease in TIMP3 expression, 

indicating it is unlikely ARF is functioning to promote TIMP3 mRNA expression in our system 

(Figure 3.8 C).   

       

 

DISCUSSION 

 In recent years, a much greater appreciation has been given to ARF’s p53-independent 

functions in the cell.  These are essentially defined as signaling networks ARF participates in that 

do not require p53.  Extensive work has uncovered a role for ARF in regulating ribosome 

biogenesis, sumoylation, transcription, and even the metabolic stress response called autophagy 

(44).  Many of these functions have been experimentally determined by overexpressing ARF in 

p53-defienct cells that already contain high ARF levels.  ARF is fairly promiscuous with its 

interaction partners due to its high arginine content and a pI above 11 (44).  Achieving non-

physiological levels of ARF by exogenous overexpression may not be an accurate assessment of 

endogenous ARF functions.  While much attention has been given to uncovering ARF-regulated 

processes that do not depend on p53, relatively little has been done to directly examine the tumor 

suppressor role (if any) in cells facing acute p53 loss.  In this study, we wanted to uncover the 

p53-independent function that endogenous ARF was employing to limit the proliferation and 

tumorigenicity of cells encountering acute p53 loss, as described in Chapter 2.  We were 

primarily focused on ARF’s well characterized role in regulating ribosome biogenesis and 

mRNA translation (43).  These functions have been demonstrated to be p53-independent 

processes that endogenous ARF regulates (2, 50). 
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 We found that the induced levels of ARF following p53 loss were appropriately 

localizing to nucleolar regions, and they were interacting with NPM.  ARF’s interaction with 

NPM has been reported to promote its stability, so it is tempting to speculate that this interaction 

might be contributing to the induced levels of ARF seen in p53-deficient cells (10).  However, 

we observed no change in ARF’s protein stability following p53 loss in our system (Chapter 2, 

Figure 2.4).  NPM is a ribosomal chaperone that actively shuttles between the nucleus and 

cytoplasm (32, 60).  NPM, therefore, is required to ensure cytosolic ribosome levels remain 

sufficient to meet the translational demands of the cell.  ARF can inhibit NPM function by 

sequestering it in the nucleolus, so observing a NPM-ARF interaction was in support of our 

hypothesis that ARF is limiting the tumorigenicity of p53-deficient cells by suppressing overall 

cellular growth.   

 Our initial cell growth measurements were also in support of this hypothesis.  We 

observed a decrease in protein per cell, cytosolic ribosome content, and transcription of the 47S 

rRNA precursor following p53 loss and subsequent ARF induction.  These are in agreement with 

previous findings that identified ARF as being an important regulator of rRNA transcription, 

processing, and ribosome export (Reviewed in (43)).  However, depletion of ARF in these p53-

deficient cells did not rescue any of the above mentioned phenotypes, so the induced levels of 

ARF do not explain our observed reduction in cellular growth.  In addition, NPM depletion 

significantly affected the proliferation and tumorigenicity of both shSCR and shARF expressing 

dp53 MEFs, suggesting enhanced NPM function was not specifically promoting the proliferation 

of cells depleted for ARF.  Further experimentation actually revealed a flaw in our interpretation 

of the assays used to measure cell growth.  Measurement of protein synthesis kinetics by pulsing 

cells with 35S-methionine indicated cells that had lost p53 were actually making protein at a 
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much faster rate than the wild-type controls.  This finding was in agreement with our AgNOR 

staining that showed the dp53 cells had more AgNORs per nucleus.   

How can cells that are making proteins at a faster rate have less protein per cell and fewer 

copies of the 47S rRNA precursor?  We believe this phenomenon can be explained by 

proliferation differences between dp53 MEFs and wild-type controls.  Under normal 

circumstances, cell proliferation (cell number) and cell growth (cell size) are tightly coupled such 

that cells appropriately accumulate enough protein to ensure daughter cells are roughly the same 

size (55).  dp53 MEFs rapidly transit the cell cycle which means they spend shorter amounts of 

time in the growth phases (periods of macromolecular synthesis, G1 and G2) than their wild-type 

counterparts (see Chapter 2, Figure 2.7 A-C).  Thus, when a “snap-shot” experiment is 

performed (i.e. protein/cell, 47S rRNA levels, ribosome profiling), we observe a decrease in 

these readouts.  Like ARF, p53 can reportedly inhibit rRNA transcription   Furthermore, since 

p53-null so rapidly navigate the cell cycle, their nuclear envelope would be broken down much 

more frequently than wild-type cells.  This would allow nuclear ribosomes to enter the cytoplasm 

without the chaperone function of NPM, and explains why the enhanced ARF-NPM interaction 

in this context does not seem to have a functional consequence. These assays are essentially 

“snap-shots” of an asynchronous population of cells.  Cells that have lost important cell cycle 

checkpoints (e.g. p53) are able to navigate the cell cycle very rapidly compared to wild-type 

cells.  Therefore, p53-deficient cells must ramp up protein synthesis to keep up with proliferative 

demands, but do not accumulate as much protein as wild-type cells.  As a result, dp53 MEFs are 

smaller in size (Jason Forys unpublished observation).  In summary, while maintaining nucleolar 

function and protein synthesis are basal functions of ARF, the dramatic consequences of p53 loss 



128 
 

on cell cycle regulation appear to trump any anti-growth efforts stimulated by the induced ARF 

levels. 

Having ruled out inhibition of cell growth as ARF’s important p53-independent tumor 

suppressor function in our system, we tested other previously published roles of ARF.  We 

showed that increased ARF levels as a result of p53 loss do not destabilize the de-sumoylating 

enzyme SENP3.  It is believed that ARF and SENP3 compete for NPM binding, which promotes 

each of their stabilities.  When ARF is overexpressed, it out-competes SENP3 for NPM binding, 

leading to the de-stabilization and subsequent reduction in SENP3 half-life (28).  NPM is an 

extremely abundant protein, so even in p53-deficient cells that have increased endogenous ARF 

levels, the SENP3-NPM interaction must be sufficient to maintain steady-state levels of SENP3.  

We were also unable to validate the finding that ARF inhibits c-MYC transcriptional activation.  

We only analyzed two validated c-MYC target proteins, Nucleolin and Ornithine Decarboxylase, 

both of which are important for cellular growth and proliferation (16, 47).  As c-MYC can 

reportedly trans-activate over 1000 genes, we cannot conclusively rule out an involvement of 

enhanced c-MYC function in the pro-tumorigenic phenotype of dp53 MEFs depleted for ARF 

(25).  Finally, we observed no change in motility or invasiveness in the dp53R-shARF MEFs, 

indicating no role for these processes in the enhanced ability of these cells to grow in soft-agar 

and mice.            

 How is ARF able to inhibit proliferation/tumorigenicity of p53-deficient cells if not 

through the conventional p53-independent pathways?  Our experimental efforts outlined in this 

chapter indicate that ARF is employing a novel p53-independent tumor suppressor function to 

limit the tumorigenicity of p53-deficient cells.  We were able to show that many of the 

previously reported p53-independent functions of ARF are unlikely to suppress proliferation in a 
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p53-null setting.  Cautious interpretations should therefore be made in experiments utilizing 

gross overexpression of ARF.  The model of acute p53 loss that we have characterized will allow 

us to examine novel functions of ARF in a cell devoid of p53.  As hypotheses based on previous 

findings have not proven fruitful, our future studies will utilize unbiased approaches to identify 

the role of ARF in the absence of p53.  These analyses will ultimately provide insight into the 

selective pressures that p53-null cells face, and should help explain the perplexing observation of 

p53 and ARF co-inactivation in human tumors.        
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FIGURES 

 

Figure 3.1  ARF localizes to nucleoli and interacts with NPM in dp53 MEFs 

 (A)  Equal numbers of Arf-null or p53flox/flox MEFs infected with Ad-LacZ or Ad-Cre were 

plated on coverslips and allowed to adhere overnight.  Following MeOH/Formalin fixation, cells 

were stained for ARF (Green) or DAPI (Blue) to label nuclei.  White arrows are indicating 

examples of cells exhibiting nucleolar localization of ARF.  (B)  Immunopreciptation performed 

with Ad-LacZ or Ad-Cre infected p53flox/flox MEF whole cell lysate at t=6 days post infection.  A 

rabbit polyclonal antibody against ARF was used for the IP, and normal Rabbit IgG was used as 

a control.  10% of the total protein used in the IP’s was loaded as positive controls for Western 

blotting.   
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Figure 3.2  dp53 MEFS display reduced readouts of overall cellular growth. 

 (A)  Equal numbers of p53flox/flox MEFs infected with Ad-LacZ or Ad-Cre were lysed and total 

protein was quantified using a BioRad DC protein assay.  Data was plotted as pg protein per cell 

and error bars represent s.d. of three independent measurements.   (B)  Ad-LacZ (Grey) or Ad-

Cre (Black) infected p53flox/flox MEF cytosolic ribosome content was analyzed by 

ultracentrifugation of cytoplasmic lysates in a sucrose gradient.  Gradients were fractionated and 

RNA absorbance was measured at 254 nM.  Plot is representative of three independent 

experiments.  (C)  Total RNA isolated from equal numbers of Ad-LacZ or Ad-Cre infected 

p53flox/flox MEFs was analyzed by SYBR-green qRT-PCR for expression of the precursor rRNA 

47S transcript.  Results are plotted as the mean copy number of 47S per cell for n=3.   (D)  
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Nucleolar morphology and number were measured by AgNOR staining.  All values represent s.d. 

of means from three independent measurements of >100 nuclei.  (E)  Western blotting of LacZ 

or Cre infected p53flox/flox MEFs for the indicated proteins.  Whole cell lysates were obtained 4 or 

6 days post Adenoviral infection.      
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Figure 3.3  Induced endogenous ARF levels in dp53 MEFs do not inhibit cellular growth.  

(A)  Equal numbers (1.5x106) of LacZ or Cre treated p53flox/flox MEFs infected with shRNAs 

targeting ARF (shARF) or a scrambled control (shSCR) were harvested and total RNA was 

extracted.  Analysis of 47S precursor rRNA levels was performed using SYBR-green qRT-PCR.  

Results of copy number/cell are shown as means ± s.d. for three independent measurements.  (B)  

Western blot analysis of the cells described in (A) showing efficient excision of p53 and ARF 

knockdown.  (C)  Cytosolic ribosome fractionation was performed on dp53 MEFs expressing 

shSCR (Black) or shARF (Red) 4 days post infection.  The trace is representative of three 
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independent experiments.  (D)  Cells with the indicated treatments were pulsed with 35S-

Methionine for various amounts of time to monitor newly synthesized proteins.  Equal numbers 

were lysed, protein was precipitated with Trichloroacetic acid, and counts per minute were 

obtained by liquid scintillation counting.  Error bars represent s.d. of n=3. (E)  dp53 MEFs 

expressing empty-vector or oncogenic RasV12 (dp53R) were infected with shSCR or shARF.  

Whole cell lysates from equal numbers of cells were obtained 4 days post-infection and total 

protein was analyzed using a BioRad DC Protein Assay.  Results are displayed as pg/cell and 

error bars represent s.d. of n=3.   (F)  Cytosolic ribosome fractionation of the cells described in 

(E).  The trace is representative of fractionations from three independent experiments.       
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Figure 3.4  dp53R-shARF MEFs are not uniquely dependent on NPM function for their 

enhanced tumorigenic phenotype.  (A)  dp53R MEFs were first infected with shSCR or 

shARF.  Following selection for the expression of these hairpins, the cells were infected with 

shLUC or shNPM.  Western blot analysis from whole cell lysates was performed 4 days post-

infection.  (B)  Long-term proliferation analysis was performed with cells described in (A).  

3x103 cells were plated in 100mm tissue culture dishes and grown for 10 days.  Colonies were 

stained with Giemsa.  Pictures are representative of three independent experiments.  (C)   Cells 

(1.5x104) described in (A) were plated in soft agar and incubated for three weeks.  Colonies were 

stained with crystal violet and quantified manually.  Data represents mean ± s.d. of three 

independent experiments. 
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Figure 3.5  ARF does not inhibit cellular growth of dp53 MEFs prior to their enhanced 

proliferation. (A)  Equal numbers of dp53 MEFs expressing shSCR or shARF were plated on 6-

well dishes in triplicate and counted on the indicated days post infection.  Counts were 

performed using a hemocytometer and trypan blue exclusion.  Error bars represent s.d. of n=3.  

(B)  Western blot analysis of cells described in (A) at t=48 hours (2 days) post-infection.  (C)  

Equal numbers of dp53 MEFs expressing shSCR or shARF were harvested and lysed 2 days 

post-infection.  At this time point, no increase in proliferation is evident.  Protein in whole cell 

lysates was quantified using a DC protein assay.  Data is plotted as relative protein per cell with 

the shSCR cells set to 1.  Error bars represent s.d. of n=2.   (D)  Cells were treated and harvested 

exactly as described in (C).  Total RNA was harvested from equal numbers of cells and 47S 

rRNA levels were quantified using SYBR-green qRT-PCR.  Error bars represent s.d. of n=2.     
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Figure 3.6  Increased ARF levels do not dictate expression of the de-sumoylating enzyme 

SENP3 in dp53 MEFs.  (A)  Western blot analysis of p53flox/flox MEFs infected with Ad-LacZ or 

Ad-Cre for the indicated number of days.  (B)  Western blot analysis of dp53 MEFS expressing 

empty-vector or RasV12 infected with shSCR or shARF.    
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Figure 3.7  ARF does not inhibit c-MYC transcriptional activity in dp53 MEFs. 

Quantitative real-time PCR analysis of known c-MYC transcriptional targets was performed on 

total RNA extracted from dp53R-shSCR or dp53R-shARF MEFs 4 days after shRNA infection.  

Expression was normalized to β-Actin mRNA levels and is relative to shSCR expressing 

controls.     
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Figure 3.8  ARF does not inhibit the motility or invasiveness of p53-deficient cells. 

 (A)  dp53 MEFs expressing empty-vector or RasV12 were infected with shRNAs targeting ARF 

or a scrambled control.  Cells (8x105) were plated in 60mm dishes and allowed to adhere 

overnight.  A scratch was made down the center of the dish with a p200 pipette tip and images 

were analyzed immediately following scratching or 8 hours later to observe cell motility.  Light 

microscopy images are representative of three independent experiments.    (B)  Cells (1x105) 

described in (A) were embedded in type I collagen and invasion was monitored using light 

microscopy.  An image was taken at t=0hr and 24 hr later to observe the movement of cells away 

from the cell “sphere.”    (C)  qRT-PCR analysis was performed to observe TIMP3 expression 

levels in dp53R-shSCR and dp53R-shARF MEFs.  Expression was normalized to histone 3.3 

mRNA and relative to shSCR controls.   
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Gene  Company Catalogue # Dilution 

p19ARF (mouse) Santa Cruz sc-32748 1:1000 

p53 (mouse) Cell Signaling 2524 1:1000 

MDM2 Millipore OP115 1:500 

Actin Santa Cruz sc-8432 1:500 

Gamma tubulin Santa Cruz sc-7396 1:1000 

H-Ras Santa Cruz sc-520 1:2000 

NPM Invitrogen 325200 1:10000 

SENP3 Cell Signaling 5591 1:1000 

 

Table 3.1.  List of primary antibodies used for Western blot 
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ARF FWD 5’-GAG TAC AGC AGC GGG AGC AT-3’ 

 REV ATC ATC ATC ACC TGG TCC AGG ATT CC 

ODC FWD GGG TGA TTG GAT GCT GTT TG 

 REV TCT GGA TCT GCT TCA TGA GTT G 

Nucleolin FWD GAG GTG GAA GAG GTG GAT TTG 

 REV AGG GAA AGA ATG GGA TGG AAG 

TIMP3 FWD TGA AGG CAA GAT GTA CAC AGG 

 REV GAG GTC ACA AAA CAA GGC AAG 

 

 

Table 3.2.  List of mouse specific primers used for qRT-PCR 
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ABSTRACT 

The ARF and p53 tumor suppressors function in a linear genetic pathway to provide 

defense against oncogenic signaling.  In Chapter 2 of this dissertation, we uncovered a novel role 

for the ARF tumor suppressor in limiting tumorigenic potential of cells that have lost p53-

function.  We proceeded to demonstrate, in Chapter 3, that the previously characterized p53-

independent functions of ARF could not explain our observed increase in tumorigenicity in p53-

deficient cells that were depleted of ARF.  Here, we uncover mechanistic details on how ARF 

suppresses tumorigenesis in a completely p53-independent manner.  As a result of p53 loss, cells 

activate a type I interferon response pathway mediated by interferon-beta and the STAT1 

transcription factor.  ARF protein levels accumulate following p53 loss and potently inhibit the 

interferon response.  Depleting ARF leads to uncontrolled signaling through STAT1 which 

directly promotes an increase in proliferation.  We further show that a downstream target of 

STAT1, the ubiquitin like protein ISG15, is absolutely required for these gains in proliferation.  

As proof of principle, human triple-negative breast cancer (TNBC) tumor samples with co-

inactivation of p53 and ARF exhibit high expression of both STAT1 and ISG15, and TNBC cell 

lines are sensitive to STAT1 depletion.  We propose that loss of p53 function and subsequent 

ARF induction creates a selective pressure to inactivate ARF, and propose that tumors harboring 

co-inactivation of ARF and p53 would benefit from therapies targeted against STAT1 and ISG15 

activation.      
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INTRODUCTION 

 A hallmark of cancer cell growth is their ability to traverse the cell cycle in an 

unregulated manner (23).  To accomplish this feat, cancer cells must inactivate two tumor 

suppressor pathways mediated by p53 and the Retinoblastoma protein (Rb).  The p53 tumor 

suppressor protein, coined as the “guardian of the genome” ten years ago, is responsible for 

maintaining genomic integrity (29).  In this role, p53 responds to DNA damage that is sensed by 

upstream protein kinases named ataxia–telangiectasia mutated (ATM) and ataxia–telangiectasia 

and Rad3-related (ATR) (36).  ATM/ATR dependent phosphorylation of the E3 ubiquitin ligase 

for p53, MDM2, leads to degradation of MDM2 and subsequent stabilization of p53 (58).  

Release of proteasome-mediated decay allows p53 to activate transcription of cell cycle 

inhibitors like p21 or pro-apoptotic proteins such as Puma and Noxa (17, 38, 41).  Thus, p53 

insures proper genomic integrity before allowing a cell to transit the cell cycle.  If the damage is 

too severe, p53 activates pro-apoptotic programs to clear the cell from the organism.  Other 

forms of cellular stress such as hypoxia, reactive oxygen species, telomere shortening, or 

oncogenic stress, also lead to activation of p53, underscoring the immense selective pressure 

cancer cells face to mutate the TP53 gene (30). 

 Rb, on the other hand, directly influences the cells ability to enter the cell cycle by 

sequestering the E2F-DP transcription factor complex.  The E2F-DP complex is required for 

activation of genes involved in DNA replication and cell cycle promotion, so by inhibiting this 

complex, Rb effectively decides when a call can begin traversing the cell cycle (21).  When 

appropriate growth factor signals are present, the CyclinD/CDK4/CDK6 complexes 

phosphorylate Rb leading to the release of E2F-DP (20). 
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 Interestingly, two important regulators of p53 and Rb are encoded by a single genomic 

locus, CDKN2A.  The CDKN2A locus, located on the short arm of chromosome 9 (9p21), was 

initially studied because it encodes a cyclin dependent kinase inhibitor, p16Ink4a (54). p16 can 

inhibit the interaction between CDK4/6 and Cyclin D, thus maintaining Rb in a hypo-

phosphorylated state (50).  A second protein product was discovered by Quelle et al, when they 

observed an alternate transcript with a distinct first exon and promoter, splicing into exon 2 of 

p16 (47).  This transcript encodes a 169 amino acid nucleolar protein with absolutely no 

similarity to p16 because exon 2 is translated in an alternate reading frame.  ARF, as it was aptly 

named, was also shown to possess potent cell cycle inhibitory functions, but these did not require 

Rb.  Rather, ARF-mediated  cell cycle arrest is dependent on the sequestration of MDM2 in the 

nucleolus, which stabilizes the short-lived p53 protein and its downstream transcriptional activity 

(61, 67).   

 ARF‘s canonical role as a tumor suppressor is to act as an intracellular sensor of 

oncogenic stress.  Oncogenic stimuli such as RAS, c-MYC, v-ABL, or E1A overexpression leads 

to an induction of ARF, increased p53 stability, and subsequent activation of an irreversible exit 

from the cell cycle known as oncogene-induced senescence (8, 11, 12, 43, 71).  This response 

requires ARF’s ability to interact with MDM2.   Increased activity of the E2F-DP complex can 

also induce ARF by binding to canonical E2F binding sites in the ARF promoter, thus providing 

a functional link between Rb and p53 (4). Therefore, ARF functions as a deterrent against hyper-

proliferative signals, and initiates permanent cell cycle arrest in cells harboring these 

abnormalities.   

 In the years that followed ARF’s initial discovery, it became evident that the ARF-p53 

pathway is more complex than described above.  Cells lacking p53 contain elevated levels of 
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ARF, and this is due to p53-mediated repression of the Arf locus (47, 59, 71).  p53 first recruits 

the histone deacetylase, HDAC1, whose activity leads to the further recruitment of polycome 

repressive complex 2 (PRC2).  PRC2 members, SUZ12 and EZH2, promote the tri-methylation 

of H3K27, shutting down access of transcription factors to the region (69).  Why would p53 

inhibit expression of ARF?  One explanation is that this feedback loop helps a cell turn off a p53 

response if, for instance, a pulse in oncogenic activity has subsided.  By lowering ARF levels, 

p53 would be able to free up its own negative regulator, MDM2, thus turning off the pathway.  

Alternatively, ARF and p53 might cooperate to promote some important tumor suppressor 

function, such that loss of p53 would lead to an induction of the “backup,” ARF.  For this 

hypothesis to be true, ARF would need to possess tumor suppressor functions independent of 

p53. 

 Indeed, mouse models have provided direct evidence that ARF possesses important p53-

independent functions.  Mice lacking p53 develop primarily lymphomas by 6 months of age (13).  

Mice deficient for both p53 and Arf are also susceptible to lymphoma development on the same 

time scale, but these mice frequently develop multiple primary tumors, including carcinomas that 

have never been observed in p53-null mice (66).  This phenotype suggests loss of Arf in a p53--

null background drives the formation of malignant tumors that normally do not have sufficient 

time to develop in a pure p53-null mouse.   

 Numerous groups have published p53-independent functions of ARF, primarily utilizing 

genetically unstable cell lines and enforced expression of ARF (55, 56).  It is still unclear which 

reported functions of ARF are physiologically relevant.  ARF is a “sticky” protein, containing 

20% arginine residues and an isoelectric point above 12 (55).  Gross overexpression often leads 

to misleading interactions that might not normally occur in vivo, making interpretation of these 
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studies difficult.  Thus, there is an ongoing debate in the field of ARF biology over which, if any, 

reported p53-independent functions of ARF are relevant to human cancers.  ARF and p53 co-

inactivation in human tumors is frequently observed, which suggests a selective pressure to 

silence both ARF and p53 exists in cancer cells (3, 44, 53, 64).  Therefore, a detailed 

understanding of this genetic abnormality would provide new therapeutic options to patients 

harboring these defects.   

We previously showed that a cell culture model of acute p53 loss led to a robust 

induction of ARF protein capable of limiting the proliferation and tumorigenicity of these cells 

(Chapter 2).  While this data convincingly showed ARF possesses p53-independent tumor 

suppressive functions, we were unable to mechanistically explain this observation based on 

previous literature (Chapter 3).  Here we show that a key p53-independent function of ARF is the 

inhibition of a pro-tumorigenic type I interferon response pathway.  This pathway is induced by 

the secretion of interferon-beta and propagated by the STAT1 transcription factor.  We extended 

these findings to human cancer samples, and show that triple-negative breast cancers are also 

under a selective pressure to inactivate both p53 and ARF, leading to an upregulation of the 

interferon response pathway.  The identification of tumor promoting activities within this 

pathway provides a novel therapeutic avenue for treating patients harboring ARF and p53 

genetic abnormalities.        
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MATERIALS AND METHODS 

 

Mice and cell culture.  p53flox/flox (FVB.129-Trp53tm1Brn) were obtained from the NCI Mouse 

Repository and have been previously described (25).  Primary mouse embryonic fibroblasts were 

isolated as previously described (26).  All cells were maintained in DMEM supplemented with 

10% fetal bovine serum, 2mM glutamine, 0.1mM nonessential amino acids, 1mM sodium 

pyruvate, and 2ug/mL gentamicin.  Recombinant IFN-β was obtained from PBL Interferon 

Source and used at the indicated concentrations. 

 

Viral production and infections.  Adenoviruses expressing β-galactosidase (Ad-LacZ) or Cre 

recombinase (Ad-Cre) were purchased from the Gene Transfer Vector Core, University of Iowa.  

For Adenoviral infections, 1x106
 cells were plated in the presence of Ad-LacZ or Ad-Cre 

(MOI=50) and incubated for 8 hours.  For mutant RasV12 overexpression, retrovirus was 

produced by transfecting 293T cells with either MSCV-HRASV12-IRES-GFP plasmid or MSCV-

IRES-GFP control, and the helper plasmid ψ-2.  Virus-containing supernatants were harvested 

48 hr post transfection.  Collected retrovirus was used to infect 1x106 MEFs in the presence of 

10ug/mL polybrene.  The pBabe-Myr-Akt1 plasmid was obtained from Dr. Loren Michel at 

Washington University in St. Louis.  For the production of Lentiviral shRNAs, 293T cells were 

transfected using Lipofectamine 2000 (Invitrogen) with pCMV-VSV-G, pCMV-ΔR8.2, and 

pLKO.1-puro constructs. Viral supernatants were harvested 48hrs post transfection.  Cells were 

infected with lentivirus for 8-12 hours in the presence of 10 ug/mL protamine sulfate.  

Puromycin was added to cell culture media at a concentration of 2 ug/mL for selection.  The 
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sequences of shRNAs are found in Table 4.1.   The ARF (mouse specific) hairpin was described 

previously (2). 

 

Western Blotting.  Cell pellets were lysed and sonicated in EBC lysis buffer (50 mM Tris-Cl, 

pH7.4, 120mM NaCl, 0.5% NP-40, 1mM EDTA) containing HALT Protease and Phosphatase 

Inhibitor cocktail (Thermo Scientific) and 1mM phenylmethylsulfonyl fluoride (PMSF).  Thirty 

µg of protein were separated on SDS-polyacrylamide gels.  Proteins were transferred to PVDF 

(Millipore) and probed with antibodies.  Primary antibodies used in this study can be found in 

Table 4.2.  The mouse ISG15 antibody was a gift from Dr. Deborah Lenschow. Secondary 

horseradish peroxidase conjugated antibodies (Jackson Immunoresearch) were used and ECL 

plus was used to visualize the bands (GE Healthcare).  

 

Proliferation, BrdU and Foci Assays.  For proliferation assays, 5-10x104 cells were plated in 6-

well plates.  Cells were lifted and counted using a hemocytometer at the indicated number of 

days post plating.  For BrdU assays, 1x104 cells were plated on glass coverslips and incubated 

overnight.  10µM BrdU-containing media was added to the cells for 4-6 hours.  Cells were fixed 

with 10% formalin/methanol and BrdU staining was performed using an Anti-BrdU antibody 

(GE Healthcare) according to the manufacturer’s instructions.  For foci assays, 3x103 cells were 

plated in 10cm dishes and cells were incubated for 10 days.  Cells were fixed with 100% 

methanol and stained with Giemsa (Sigma Aldrich). 

 

Soft Agar Assay.  Cells were lifted and suspended in DMEM containing a final concentration of 

0.4% Noble agar.  1.5x104 cells were layered in triplicate onto 0.6% noble-agar/media bottom 
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layer in 60mm plates.  Plates were incubated for 20 days, feeding with media/0.4% agar mix 

every 6 days.  Macroscopic colonies were visualized by staining with 0.005% Crystal Violet 

solution and colonies ≥ 0.5mm were manually counted.   

 

Microarray analysis.  RNA was isolated from dp53R-shSCR or dp53R-shARF MEFs using a 

Nucleospin RNA II Kit (Clonetech).  RNA samples from three independent experiments were 

submitted to the Genome Technology Access Center at Washington University School of 

Medicine for microarray analysis.  Affymetrix Gene 1.0ST Arrays were used and data was 

processed in Affymetrix Expression Console (Affymetrix version) using RMA(Robust Multi-

chip Average) algorithm.  Differential expression analysis was performed using Significant 

Analysis of Microarrays (SAM) and a list of differentially expressed genes exhibiting fold 

changes greater than 2 was generated.  Pathway analysis was performed using MetaCore 

software (Thomson Reuters).  The NCBI Gene Expression Omnibus accession number for the 

microarray data reported in this chapter is GSE48315. 

 

Quantitative Real-Time PCR.  qRT-PCR was performed as previously described (37).  Fold 

change was measured using the ΔΔCT method.  Primer sequences used for amplification are 

listed in Table 4.3. 

 

IFN- ELISA.  Cell culture supernatants were concentrated using Vivaspin columns (GE 

Healthcare) according to manufacturer’s instructions.  Mouse IFN- levels were measured using 

the Verikine Mouse Interferon Beta ELISA Kit (PBL Interferon Source) according to the 

manufacturer’s instructions. 
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Immunohistochemistry.  Annotated breast cancer tissue arrays were obtained from US Biomax 

Inc (Cat#BR1503a).  Staining was performed using the Dako EnVision+ System-HRP (DAB) 

according to the manufacturer’s instructions.  Rabbit anti-p14ARF (Bethyl) and Mouse anti-

ISG15 (Santa Cruz) were used at a 1:200 dilution.  Quantification was performed by two 

separate individuals by blindly scoring staining intensity on a 0-3 scale, with 0 being no staining 

and 3 being strong widespread staining.  A score of 0-1 was considered “low/no” staining and a 

score of 2-3 was considered “high.”    

 

Statistical Analysis.  Data are presented as means ± s.d.  Statistical differences between groups 

were determined with P-values obtained using two-sided, unpaired Student’s t-test.  All data 

points represent n=3.  All images presented as “representative” were completed a minimum of 

three times. 
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RESULTS 

ARF inhibits an interferon-sensitive gene signature induced upon p53-loss 

 Having demonstrated that the induced levels of ARF in p53-deficient cells serve a tumor 

suppressive function (Chapter 2), and that many of the previously described p53-independent 

functions of ARF cannot explain this observation (Chapter 3), we decided to take an unbiased 

approach to identify changes in global mRNA expression between dp53R-shSCR (MEFs deleted 

for p53 expressing RasV12 and shSCR) and dp53R-shARF (MEFs deleted for p53 expressing 

RasV12 and shARF) cells.  Comparative microarray analysis yielded numerous upregulated 

immune response genes in the dp53R-shARF cells, including Irf7, Oasl2, Ifit3, Usp18, Mx2, and 

Isg15 (Figure 4.1 A and B).  Similar results were obtained when we overexpressed a 

constitutively active form of AKT1 in dp53 MEFs and depleted ARF (Figure 4.2 A, E-F).  AKT 

overexpression was not sufficient to transform the dp53 MEFs, but similar to dp53R MEFs, 

depleting ARF significantly enhanced short and long-term proliferation (Figure 4.2 B-D).  

Pathway analysis indicated that the gene signature was most strongly associated with the innate 

immune response or type I interferon (IFN) response (Figure 4.1 C).  The interferon sensitive 

gene (ISG) expression changes were independently validated by qRT-PCR (Figure 4.1 D).  A 

second shRNA targeting ARF also resulted in upregulation of the ISGs (Figure 4.3 A and B).     

As an important control, we analyzed ISG expression in our cell lines following infection 

with the various viral constructs used in our experiments and compared to mRNA levels in 

“mock” infected cells (no virus).  Retroviral infection with empty vector or RasV12 did not induce 

ISG’s, and lentiviral infection of Arf-null MEFs with shSCR or shARF also had no effect on ISG 

mRNA levels, ruling out an off-target effect of the short hairpin (Figure 4.4 A and B).  The only 

genetic setting where ARF depletion induced ISGs was in the context of p53-deficiency (Figure 
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4.4 C).  Furthermore, a comparison of three different low passage (< passage 6) wild-type and 

Arf-null MEF lines showed no increase in ISG expression (Figure 4.4 D).  Finally, we used a 

different control hairpin targeting red fluorescent protein (shRFP) to show that our scrambled 

control was appropriate for these experiments (Figure 4.4 E).   Taken together, these data show 

the infections performed on our cells cannot explain the observed ISG response following ARF 

knockdown.  Rather, ARF is specifically inhibiting ISG expression and this effect is entirely 

dependent on a p53-deficient genetic setting.   

Given ARF’s ability to inhibit ISG expression exclusively in the context of p53-

deficiency, we hypothesized that loss of p53 might be the driving force behind upregulation of 

the ISGs, and the induction of ARF would then serve as a biological “brake” to suppress the 

response.  To test this hypothesis, we analyzed ISG mRNA expression following infection of 

p53flox/flox MEFs with Ad-Cre or –LacZ control.  As shown in Figure 4.5A, expression of ISG15 

and OASL2 are induced at 4 and 6 days post p53-loss.  The ISG induction was specific to loss of 

p53 and not due to Adeno-Cre expression (Figure 4.6).  Consistent with our hypothesis, at 8 days 

post p53-loss when ARF protein levels are maximally induced, we no longer observed a 

significant induction of the ISGs (Figure 4.5 A and B).  The suppression of ISG15 and OASL2 

expression 8 days post p53-loss was completely relieved when ARF-specific shRNA was 

introduced.  Therefore, the negative feedback p53 imposes on ARF exists to allow ARF to 

respond to acute p53 loss by inhibiting an induction of ISGs. 

 

IFN- is necessary and sufficient for increased tumorigenicity in dp53R-shARF MEFs 

Our microarray data and pathway analysis indicated an activation of the type I interferon 

response, or more specifically, response to interferon-beta (IFN-.  Interferon-Beta (IFN-β) is a 
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member of the type I interferon family that is most well-known for its anti-viral effects.  

Recognition of viral infection by virtually any nucleated cell results in the secretion of IFN-β.  

Subsequent activation of downstream Jak-Stat signaling results in transcriptional activation of 

anti-viral genes which aid in preventing further infection(46). 

 We analyzed IFN- mRNA expression using qRT-PCR in our dp53R-shARF MEFs and 

consistently observed a 2-3 fold induction (Figure 4.7 A).  Additionally, this 3-fold induction of 

IFN- mRNA resulted in a nearly 11-fold increase in IFN- secretion in the media containing 

dp53R-shARF cells as measured by ELISA (Figure 4.7 B).  Another member of the type I 

interferon family, IFN-α was not induced in our samples (Figure 4.7 C).  To determine the 

requirement of secreted IFN- for cell proliferation, we knocked down IFN- in dp53R-shARF 

cells.  This resulted in a significant decrease in IFN- expression, phosphorylated STAT1, and 

mRNA expression of an ISG called ISG15 (Figure 4.8 A and B).  Long-term proliferation was 

significantly impaired in cells with reduced IFN- (Figure 4.8 C and D), indicating a requirement 

for IFN- production in dp53R-shARF cells.   

Next, we sought to determine if enhanced production of IFN- was sufficient to promote 

the aberrant proliferation of dp53R cells in the presence of high ARF levels.  Using 

concentrations of recombinant IFN- that matched the concentration range detected in the media 

of dp53R-shARF cells, we were able to stimulate ISG expression to the same level seen in 

dp53R-shARF cells (Figure 4.9 A).  Markedly, we observed a significant increase in long-term 

proliferation of dp53R cells that was comparable to that seen in dp53R-shARF cells (Figure 4.9 

B and C).  An increase in short-term proliferation was also observed (Figure 4.9 D).  Therefore, 

IFN- production alone is sufficient to phenocopy activation of this signaling pathway and the 

proliferative gains associated with ARF knockdown in dp53R cells.  
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ARF represses a pro-tumorigenic STAT1-ISG15 signaling cascade 

Canonical IFN- signaling occurs upon ligand binding to the membrane receptors 

IFNAR1/2.  Upon ligand binding, a conformational change allows autophosphorylation of 

receptor-bound JAK1 and TYK2 (40).  The activation of these kinases leads to phosphorylation 

of STAT1 and STAT2 proteins, which enables them to enter the nucleus.  Once inside the 

nucleus, the STAT1/STAT2 heterodimer associates with IRF9 to form a complex known as IFN-

stimulated gene factor 3 (ISGF3) which is fully capable of initiating transcription of genes 

containing IFN-stimulated response elements (ISREs) (46).  Many of the genes in our ISG 

signature contain interferon response elements (ISRE) in their promoters (52), and it is well 

established that activation of the STAT1 transcription factor is required for upregulation of 

ISRE-containing genes (48).  Therefore, we analyzed STAT1 status in dp53R-shARF cells and 

observed increases in the phosphorylation of both Tyrosine-701 and Serine-727 activation sites 

as well as an accumulation of total STAT1 levels (Figure 4.10 A). Neither STAT3 activation nor 

increased expression of its upstream cytokine, IL-6, were observed in the same genetic context 

(Figure 4.10 C and D).  The increase in total STAT1 was due to an increase in mRNA levels, 

consistent with the observation that the STAT1 promoter contains an ISRE (Figure 4.10 B) (70).   

To test whether STAT1-mediated signaling was required for the enhanced tumorigenicity 

of dp53R-shARF MEFs, we used shRNAs to deplete STAT1.  Reducing total STAT1 protein 

levels led to a concomitant decrease in phosphorylation in dp53R-shARF MEFs (Figure 4.11 A).   

As shown in Figure 4.11B, mRNA expression of select ISGs was also reduced following STAT1 

knockdown.  Short and long-term proliferation of dp53R-shARF MEFs was inhibited and colony 

growth in soft agar was reduced (Figure 4.11 C-E).  Taken together, these data indicate that ARF 
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protects p53-deficient cells from inappropriate STAT1 activation, and left unchecked, signaling 

through STAT1 can lead to increased tumorigenicity.                

 Interestingly, one of the IFN responsive genes upregulated following ARF depletion, 

Isg15, encodes a ubiquitin like protein that is conjugated to lysine residues and has recently been 

shown to be required for the tumorigenicity of select breast cancer cell lines (7).  Increased 

ISG15 expression in dp53R-shARF MEFs is dependent upon STAT1 (Figure 4.11 B), so we 

hypothesized ISG15 might represent one of the pro-tumorigenic targets activated downstream of 

STAT1.  Western blot analysis confirmed upregulation of both free and conjugated species of 

ISG15 in dp53R-shARF cells (Figure 4.12).  Using an shRNA specific to ISG15, we observed a 

significant reduction in soft agar growth, foci formation, and proliferation in the dp53R-shARF 

MEFs upon ISG15 knockdown (Figure 4.13 A-E), indicating that elevated ISG15 is required for 

the tumorigenesis of dp53R-shARF cells.  Depletion of ISG15 with the shRNA in non-

transformed dp53 MEFs had no effect on proliferation, ruling out the possibility of off-target 

effects (Figure 4.14 A-C).   

 

Analysis of TNBC patient samples and cell lines 

We have demonstrated that ARF protein induced by p53 loss protects against the 

tumorigenic accumulation of an IFN-sensitive gene signature in a mouse model system.  To 

investigate whether this pattern of regulation was conserved in human cells, we focused on triple 

negative breast cancer because over 80% of these patients harbor p53 mutations (18).  We 

performed immunohistochemical analysis on an annotated breast cancer tissue array and scored 

the triple-negative cores.  Whereas elevated expression of ARF would be expected in the 

presence of p53 mutation, we observed that eleven of the thirteen samples with p53 mutation 
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exhibited low or no ARF staining, suggesting co-inactivation of both ARF and p53. Further, six 

of eleven tissues with both ARF and p53 loss of function displayed intense staining of STAT1 

and ISG15 (Figure 4.15 A and B).    

Finally, we analyzed a panel of five triple-negative breast cancer cell lines.  The HCC70 

cell line, which displayed high ARF protein expression, was resistant to STAT1 depletion 

(Figure 4.16 A-C).  The other four cell lines, which did not express ARF, were all extremely 

sensitive to STAT1 depletion, displaying signs of cytotoxicity (Figure 4.16 A-D).  The short 

hairpins targeting STAT1 did not reduce STAT3, a known promoter of breast cancer 

tumorigenesis (35) (Figure 4.16 E), confirming the selective requirement of STAT1 activation in 

controlling the proliferation of these cells. 
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DISCUSSION 

Since its discovery nearly 20 years ago, numerous studies have reported p53-independent 

functions of the ARF tumor suppressor protein (55).  These mechanistic insights have helped 

shape our current understanding of a common genetic occurrence in human cancers—co-

inactivation of ARF and p53.  Unfortunately, due to the heterogeneous nature of cultured cell 

lines, many of these findings have been difficult to reproduce, prompting the question:  what are 

the true p53-independent functions of ARF?  By using a murine model of acute p53 inactivation, 

we sought to identify bona fide ARF functions that limit proliferation and tumorigenicity of p53-

deficient cells.    

Previous results discussed in Chapter 2 indicated that p53 loss leads to the upregulation 

of ARF, and this large pool of protein is able to limit Ras-mediated transformation.  By depleting 

ARF with an shRNA, we hoped to gain insight into the mechanism of tumorigenic suppression.  

We performed gene expression analysis and to our surprise, depletion of ARF in p53-deficient 

cells led to an induction of interferon sensitive genes (ISGs).  Our observed ISG induction was 

highly reproducible and was not a consequence of viral transduction.  Further analysis revealed 

the ISG response was being activated by increased Interferon-β expression and secretion.   

 Interferon signaling is predominantly considered to be tumor suppressive, so these 

results were initially puzzling. For instance, high dose IFN therapy treatment has been 

investigated as a potential therapeutic and has proven beneficial in certain hematological cancers.  

However, these clinical applications of IFN utilize a second member of the type I IFN family 

known as IFN-α (19).   In solid tumors such as breast and ovarian cancer, attempts to utilize IFN-

β in this regard have not been successful (34, 49).  Ultimately, little is known about the role IFN-

β might play in the tumor environment, and several reports actually indicate it might serve to 
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promote survival of tumors.  Tumor growth has previously been shown to be enhanced in 

response to low-levels of interferon, and a recent report suggests that autocrine IFN-β signaling 

enhances the tumorigenicity of Ras-transformed cells (31, 63).  Given that many tumors display 

activation of Jak-Stat signaling and overexpression of downstream target genes, it is certainly 

possible that interferon signaling may play dual roles depending on genetic context (6, 14, 45, 

70).   

In agreement with this hypothesis, we were able to show that IFN-β was necessary to 

maintain the tumorigenic phenotype of dp53R-shARF cells and sufficient to promote the 

proliferation of dp53R cells that contain high levels of ARF.  Treatment of dp53 cells with 

exogenous IFN-β, therefore, phenocopied depletion of ARF.  Downstream of IFN-β, the STAT1 

transcription factor appeared to be absolutely required for both the enhanced transcription of 

ISGs and the tumorigenic phenotype of dp53R-shARF cells.  Similar to interferons, STAT1 is 

considered to be tumor suppressive (10, 27).  It is involved in a cancer immunesurveillance 

pathway that protects against neoplastic growth (15).  However, these effects are mediated by a 

member of the type II interferon family of cytokines, interferon-gamma (IFN-γ).  IFN-γ-STAT1 

signaling activates gene sets which contain GAS (IFN-gamma activation sites) elements in their 

promoters. These are distinct binding sites from the interferon sensitive response elements 

(ISREs) that type I interferon inducible genes harbor (46).  Paradoxically, STAT1 is frequently 

found to be overexpressed in human cancers (6, 14, 45).  In support of this observation, several 

groups have recently shown that STAT1 can be tumor promoting (28, 33, 62, 68, 70).  These 

contradictory findings may suggest a dual role for STAT1 in cancer cells.  Perhaps initial 

progress to a cancer phenotype is subdued by the IFN-γ-STAT1 signaling axis, but prolonged 
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signaling stimulates inflammation, a process that is now widely accepted to be tumor promoting 

(22). 

We were also able to identify an important STAT1 transcriptional target that is required 

for the increased tumorigenicity in dp53R-shARF cells—the ubiquitin like protein, ISG15.  

ISG15 has been well characterized in the context of innate immunity.  It is conjugated to lysine 

residues in target proteins, many of which are involved in the type I Interferon response to viral 

infection and can promote or inhibit their function (57).  One proposed mechanism of enhancing 

protein activity is through blocking ubiquitin conjugation resulting in protein stability, but the 

true biological consequence of ISG15 conjugation is not well defined (32).    Interestingly, 

ISG15 has been found to be frequently overexpressed in pancreatic, bladder, breast, and oral 

cancers (1, 5, 24, 60, 65).  A recent report defines a critical role for ISG15 conjugation in the 

tumorigenicity of mutant Ras-containing breast cancer cells, suggesting inhibitors interfering 

with this process might be therapeutically beneficial (7).           

Our data further demonstrated a novel collaboration of p53 and ARF in suppressing 

STAT1 signaling activation and subsequent ISG transcriptional activation.  Therefore, we 

propose that loss of p53 leads to two important events; induction of ISG’s and the induction of 

ARF protein levels.  Once ARF protein levels reach maximal expression, the transcription of 

ISG’s is inhibited. In these cells, deletion or mutation of the Arf locus would predict an 

upregulation of the IFN gene signature and a subsequent growth advantage.   Therefore, our 

results suggest a selective pressure does exist to co-inactivate both ARF and p53, a phenomenon 

that occurs in numerous cancer types (9, 39, 51, 53). 

 Finally, we identified a subset of triple negative breast cancer patients harboring co-

inactivation of ARF and p53 alongside overexpression of STAT1 and ISG15.  Additionally, 



169 
 

STAT1 depletion in a panel of p53-mutant TNBC cell lines showed that only cells lacking ARF 

expression were sensitive to the STAT1 shRNAs.   Because existing mouse knockout models 

suggest that normal cells do not require the activity of STAT1 and ISG15 for viability (16, 42), 

targeted therapy of this pathway should be considered ideal for tumor reduction.  Moreover, this 

IFN signaling axis need not be limited to triple negative breast cancer as numerous other cancers 

exhibit concomitant loss of function p53 and ARF. 

The crosstalk between p53 and ARF has proven to be a multifaceted affair.  ARF is 

induced in response to oncogenic signals to activate p53; ARF is also induced by loss of p53 to 

suppress STAT1 signaling. Our findings support a model whereby induction of ARF following 

p53 loss acts to prevent aberrant IFN- production and signaling to crucial downstream effectors. 

Thus, the functional links between p53 and ARF are far more imperative than anticipated.  The 

complex p53-ARF network that we have identified provides tumor suppressive redundancy 

where none was thought to exist in cells.   

We believe our study, combined with several recent reports, indicate a need to more 

carefully examine the functional importance of interferon signaling in cancer cells to ensure the 

use of IFN as a treatment option does not produce an undesirable outcome (7, 63, 70).  

Moreover, our work suggests a subset of human cancer patients, those containing p53 and ARF 

mutations, might benefit from targeted inhibition of STAT1 or ISG15 activation. 
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FIGURES 
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Figure 4.1  Depletion of ARF in dp53R MEFs leads to increased ISG expression.  

 (A)  Western blot verifying overexpression of RasV12 and knockdown of ARF in dp53 MEFs.  

RNA from three independent experiments was submitted for microarray analysis.  (B)  Heat map 

showing significantly altered genes (>2-fold change).   (C)  Analysis showing significantly 

altered signaling pathways.   (D)  Validation of ISGs with qRT-PCR.  Levels were normalized to 

Histone 3.3 mRNA and are relative to shSCR controls.  Error bars represent s.d. from three 

independent experiments. 
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Figure 4.2 dp53 MEFs overexpressing AKT1 and depleted for ARF exhibit a proliferation 

advantage and induce ISG expression.  

 (A)  Western blot analysis of dp53 MEFs expressing myristoylated-AKT1 and short hairpin 

RNAs targeting ARF or a scrambled control.  (B)  Proliferation assay from cells described in 

(A).  This graph is representative of three independent experiments.  (C)     Representative image 

of foci assay performed with cells described in (A).  The image is representative of three 

independent experiments (D)  Light microscopy (4X objective) images of dp53 MEFs 

overexpressing the indicated constructs growing in soft agar.  (E)  Heat map showing 

significantly increased (green) or decreased (red) genes in dp53-AKT-shARF MEFs.  Data is the 

average of three independent samples submitted for microarray analysis.  (F)  Pathway analysis 

was performed using the list of significantly altered genes.         
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Figure 4.3  dp53R MEFS expressing a second unique ARF shRNA induce ISGs.  

 (A)  Western blot analysis of dp53 MEFs expressing RasV12 and two unique ARF shRNAs.  (B)  

qRT-PCR analysis of cells described in (A) 5 days post-infection.  mRNA levels were 

normalized to Histone 3.3 and relative to shSCR controls.     
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Figure 4.4  ISG induction following ARF depletion is specific to p53-deficient setting. (A)  

mRNA from dp53 MEFs infected with mock (no virus), empty vector, or RasV12 expressing 

retrovirus was analyzed by qRT-PCR.  Relative mRNA expression levels were obtained by 

normalizing to Histone 3.3 mRNA.  Fold changes are relative to mock-infected control.  (B)  

mRNA from Arf-null MEFs infected with mock, shSCR, or shARF lentivirus was analyzed by 

qRT-PCR.  Relative mRNA expression levels were obtained as described in (A). (C)  mRNA 

from dp53 MEFs infected with mock (no virus), shSCR, or shARF lentivirus was analyzed by 

qRT-PCR.  Relative mRNA expression levels were obtained as described in (A).    (D) mRNA 

from three independent sets of low passage (<P6) Wild type or Arf-null MEFs was analyzed by 

qRT-PCR for the indicated genes.  Relative mRNA expression was obtained as described in (A).  

(E)  qRT-PCR analysis was performed on dp53R MEFs expressing shSCR, shRFP, or shARF.  

Cells were harvested 4 days post-infection and mRNA was normalized to Histone 3.3 and plotted 

relative to shSCR controls.    All error bars represent s.d. of n=3. 
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Figure 4.5  p53 and ARF cooperate to suppress ISG expression.  

 (A)  qRT-PCR analysis of p53flox/flox MEFs infected with Ad-LacZ or Ad-Cre from the indicated 

time points post-infection.  Cells were all infected with shSCR(-) or shARF(+) 1 day post Cre-

infection as indicated.  mRNA levels are relative to Ad-LacZ-shSCR controls and error bars 

represent s.d. of three independent experiments. (B)  Representative western blot analysis of cells 

described in (A).     
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Figure 4.6  Adenoviral infection does not induce ISGs.  

Low passage (<P4) wild-type MEFs were either mock (no virus) infected or infected with 

Adeno-LacZ or Adeno-Cre (MOI=50). Four days post-infection, cells were harvested and RNA 

was extracted.  qRT-PCR analysis was performed and mRNA levels of the indicated genes were 

normalized to Histone 3.3 mRNA and are plotted relative to mock-infected controls.   
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Figure 4.7  Interferon-Beta expression and secretion is upregulated in dp53R-shARF 

MEFs. (A)  qRT-PCR analysis of IFN-β mRNA levels in dp53R-shARF MEFs.  Levels are 

normalized to histone 3.3 mRNA and relative to shSCR controls. (B)  Extracellular IFN-β 

concentration measured by ELISA in dp53R-shARF MEF cell culture media.  Values are fold 

changes relative to shSCR control.  (C)  qRT-PCR analysis performed with pan-IFN-α primers.  

All error bars represent s.d. of three independent experiments.   
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Figure 4.8  IFN-β signaling is necessary for the enhanced tumorigenicity of dp53R-shARF 

MEFs.  (A)  Western blot analysis of dp53R-shSCR or –shARF MEFs expressing two 

independent IFN-β shRNAs.  (B)  qRT-PCR analysis of dp53R-shSCR or -shARF MEFs 

infected with two specific shRNAs targeting IFN-β.  Relative mRNA expression of ISG15 and 

IFN-β was obtained by normalizing to Histone 3.3 mRNA.  Error bars represent s.d. of three 

independent measurements.  (C)  Representative image of foci assay performed with dp53R-

shARF or shSCR MEFs infected with two IFN-β-specific shRNAs.  Quantification of three 

independent measurements is shown in (D). *=P<0.01     
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Figure 4.9  Increased IFN-β is sufficient to enhance proliferation in dp53R MEFs.    

 (A)  qRT-PCR analysis of ISG15 mRNA in dp53R-shSCR or –shARF cells treated with the 

indicated concentration of IFN-β.  Error bars represent s.d. of values from three independent 

measurements. (B)  Representative image of foci assay performed with dp53R-shARF or shSCR 

MEFs treated with the indicated concentration of recombinant IFN-β.   Quantification of colony 

number from three independent measurements is shown in (C)  *=P<0.01.  (D)  Equal numbers 

of dp53R MEFs expressing shSCR or shARF were plated and treated with the indicated amounts 

of IFN-β.  Three days after treatment, the cells were trypsinized and cell number was obtained 

using trypan-blue exclusion.  Error bars represent s.d. of three independent measurements.     
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Figure 4.10 Depletion of ARF in dp53 MEFs results in increased STAT1 phosphorylation.  

(A)  Western blot analysis of dp53R-shARF or shSCR MEFs showing STAT1 activation. (B)  

qRT-PCR analysis of total STAT1 mRNA levels in dp53R-shARF MEFs.  mRNA levels are 

relative to shSCR controls and normalized to Histone 3.3. (C)  Western blot analysis of dp53R-

shSCR or shARF MEFs for evidence of STAT3 activation.  (D)  qRT-PCR analysis of cells from 

(C) for expression of the cytokine, IL-6 normalized to Histone 3.3.  Error bars represent s.d. of 

three independent measurements. 
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Figure 4.11  STAT1 activation is required for increased tumorigenicity of dp53R-shARF 

MEFs.  (A)  Western blot analysis of dp53R-shSCR or shARF MEFs infected with two different 

STAT1 shRNAs.  (B)  qRT-PCR analysis of various ISG mRNA levels in dp53R-shSCR or 

shARF MEFs infected with control or two different STAT1 shRNAs.  (C)  Proliferation assay of 

dp53R MEFs expressing the indicated shRNAs.  Error bars represent s.d. of three independent 

measurements.  (D)  Representative images of foci assays with dp53R MEFs expressing 

indicated shRNAs.  Images are representative of three independent experiments.  (E)  Soft agar 

quantification of STAT1 depleted dp53R-shARF MEFs.  All error bars represent s.d. for n=3.  

*=P<0.0004, **=P<0.009. 
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Figure 4.12  Both free and conjugated forms of the ubiquitin-like protein, ISG15, are 

upregulated in dp53R-shARF cells. Western blot analysis of dp53R-shSCR or shARF MEFs 

performed with the indicated antibodies.  Free and conjugated forms of ISG15 are indicated with 

an arrow and brackets, respectively.   
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Figure 4.13  ISG15 is required for increased tumorigenicity in dp53R-shARF MEFs. 

 (A)  Western blot analysis of dp53R-shSCR or shARF MEFs expressing an shRNA specifically 

targeting ISG15.  (B)  Quantification of macroscopic soft agar colony number with cells 

described in (B).  (C)  Representative image of foci experiment from dp53R MEFs infected with 

the indicated shRNAs.  (D)  Proliferation assay for dp53R MEFs infected with the indicated 

shRNAs.  All error bars represent s.d. of n=3      
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Figure 4.14  Knockdown of ISG15 does not affect dp53 MEF proliferation.  

 (A)  dp53 MEFs were infected with shSCR or shISG15.  Four days post infection, equal 

numbers of cells were plated and proliferation was measured on the days indicated by counting 

with a hemacytometer. (B)  Representative image of foci assay performed with cells described in 

(A).  (C)  Quantification of foci assay.  Error bars represent s.d. of n=3.      
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Figure 4.15  Immunohistochemistry analysis of TNBC samples  

(A)  Statistics from immunohistochemistry staining of human breast cancer tissue array. (B)  

Representative images from IHC displaying a section with high ARF staining (TNBC-1) and a 

section with low/no ARF and high ISG15/STAT1 (TNBC-2).  
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Figure 4.16  Reducing STAT1 levels in ARF-deficient TNBC cell lines leads to proliferation 

defects.  (A)  Western blot analysis of a panel of triple negative breast cancer cell lines blotted 

with indicated antibodies.  Human mammary epithelial cells (HMECs) were used as a normal 

control.  (B)  Proliferation assays of the indicated triple negative breast cancer cell lines infected 

with two different STAT1 shRNAs.   (C)  Western blot analysis showing STAT1 depletion with 

shRNAs in various TNBC lines.  Fold changes were calculated by normalizing to the tubulin 

loading control and are relative to shSCR controls.  (D)  Light microscopy images of HCC1806 

cells infected with STAT1 hairpins displaying morphological evidence of apoptosis/necrosis.  

(E)  Western blot in MB-231 cells depleted of STAT1 showing STAT3 levels are unaffected by 

the shRNAs.   
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Figure 4.17  Working model 

ARF promotes p53 stability and p53 inhibits ARF mRNA expression.  ARF and p53 

cooperatively suppress IFN-β production.  Loss of p53 initially leads to an upregulation of IFN 

signaling through STAT1, but the subsequent ARF induction functions to inhibit this response.  

Depleting ARF leads to unregulated IFN-β production, STAT1 activation, and increased ISG15 

expression.  In the absence of p53, this signaling pathway can induce proliferation and promote 

tumorigenicity.     

 

 



196 
 

Name Species Sequence 

STAT1-B4 mouse GCCGAGAACATACCAGAGAAT 

STAT1-B7 mouse GCTGTTACTTTCCCAGATATT

STAT1-A6 human GAACAGAAATACACCTACGAA 

STAT1-A9 human CTGGAAGATTTACAAGATGAA 

ISG15 mouse AGCACAGTGATGCTAGTGGTA 

IFNβ-1 mouse GCAGAAGAGTTACACTGCCTT 

IFNβ-2 mouse GCAGAGATCTTCAGGAACTTT 

 

Table 4.1  shRNA sequences used in these studies.  
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Gene  Company Catalogue # Dilution 

p19ARF (mouse) Santa Cruz sc-32748 1:1000 

p14ARF (human) Bethyl A300-340A 1:500 

p53 (mouse) Cell Signaling 2524 1:1000 

MDM2 Millipore OP115 1:500 

Actin Santa Cruz sc-8432 1:500 

p53 (human) Santa Cruz sc-126 1:1000 

Gamma tubulin Santa Cruz sc-7396 1:1000 

H-Ras Santa Cruz sc-520 1:2000 

Isg15 (human) Santa Cruz sc-166755 1:1000 

Gapdh Bethyl A300-641A 1:10000 

pStat1 Tyr 701 Cell Signaling 9167 1:500 

pStat1 Ser727 Cell Signaling 8826 1:1000 

Stat1 Santa Cruz sc-346 1:1000 

Stat3 Cell Signaling 9139 1:1000 

 

Table 4.2  Primary antibodies used for Western blot.  
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GENE NAME  SEQUENCE 

ARF FWD 5’-GAG TAC AGC AGC GGG AGC AT-3’ 

REV ATC ATC ATC ACC TGG TCC AGG ATT CC 

p53 FWD CAT CAC CTC ACT GCA TGG AC 

REV AAA AGA TGA CAG GGG CCA TG 

Actin FWD TCA CCC ACA CTG TGC CCA TCT A 

REV TAC TCC TGC TTG CTG ATC CAC A 

Histone 3.3 FWD CGT GAA ATC AGA CGC TAG CAG AA 

REV TCG CAC CAG ACG CTG AAA G 

OASL2 FWD ATC ATT GTC CTT ACC CAC AGA G 

REV TGC TGG TTT TGA GTC TCT GG 

ISG15 FWD CTG ACT GTG AGA GCA AGC AGC 

REV ACC AAT CTT CTG GGC AAT CTG 

IFIT3 FWD AGC ACA GAA ACA GAT CAC CAT 

REV CAC CCT GTC TTC CAT ATG ACT G 

USP18 FWD TTC CCT CAG AGC TTG GAT TTC 

REV CCG GAT GTA GGC ACA GTA ATG 

IRF7 FWD TTG ATC CGC ATA AGG TGT ACG 

REV TTC CCT ATT TTC CGT GGC TG 

SFRP2 FWD GCC TGC AAA ACC AAG AAT GAG 

REV GTC TTG CTC TTT GTC TCC AGG 

STAT1 FWD GCC GAG AAC ATA CCA GAG AAT C 

REV GAT GTA TCC AGT TCG CTT AGG G 

IFNB1 FWD CCA CCA CAG CCC TCT CCA TCA ACT AT 

REV CAA GTG GAG AGC AGT TGA GGA CAT C 

IL-6 FWD CAA AGC CAG AGT CCT TCA GAG 

REV GTC CTT AGC CAC TCC TTC TG 

TGTP1 FWD CGA GTA CTG GGA AGC TTG AAA 

REV ATC AGG AGA AGG GAA AGC ATG 

IFN-alpha FWD CTT CCA CAG GAT CAC TGT GTA CCT 

 REV TTC TGC TCT GAC CAC CTC CC 

Figure 4.3  Primer sequences used for qRT-PCR.  
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SUMMARY 

 One of the challenges to personalized cancer treatment is knowledge of the molecular 

vulnerabilities based on the specific genetic alterations within a given tumor.  With the explosion 

of efforts to generate genomic sequencing data for many human cancer types, cancer researchers 

now have the information at hand to directly address this challenge.  My dissertation work has 

focused on understanding the selective advantage gained by cancer cells harboring co-

inactivation of two tumor suppressor genes, ARF and p53.  These two genes encode proteins that 

are canonically thought to function in a linear genetic pathway, where oncogenic signaling 

activates ARF which subsequently increases p53 stability by sequestering its E3-ligase, MDM2.  

The activity of this signaling pathway is absolutely vital in ensuring our cells do not 

inappropriately activate oncogenic signaling networks that could lead to aberrant proliferation.  

In recent years, it has become clear that ARF possesses p53-independent functions.  Moreover, 

cells lacking p53 express high levels of ARF due to p53’s ability to directly repress the Arf 

promoter.  It is unclear why cells possess this negative feedback loop.  Since many human 

cancers inactivate both p53 and ARF, I hypothesized that loss of p53 leads to the induction of 

ARF which then elicits one of its p53-independent tumor suppressor functions.  A selective 

pressure, therefore, exists to co-inactivate ARF.  My work sought to address this hypothesis, and 

to identify the pertinent tumor suppressor role that ARF plays in p53-deficient cells. 

 The data presented in Chapter 2 of this dissertation provides clear evidence that acute loss 

of p53 leads to a robust upregulation of ARF at both the mRNA and protein level.  The cells 

lacking p53 proliferated more rapidly than their wild-type counterparts, but shRNA-mediated 

depletion of ARF led to a further enhancement of proliferation.  Furthermore, the tumorigenicity 

of RasV12-transformed p53-null cells was greatly enhanced when ARF was knocked down.  This 

observation was made in both soft agar assays as well as in vivo tumor allograft studies.  
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Mechanistically, increased proliferation, rather than lower rates of cell death, was likely the 

contributing factor in the enhanced tumorigenic potential of ARF-depleted cells.  Taken together, 

the data presented in Chapter 2 support the hypothesis that loss of p53 leads to increased ARF 

expression that is capable of suppressing tumorigenic potential.   

 In Chapter 3, I tested the hypothesis that ARF was utilizing its previously established role 

in regulating cell growth as the mechanism of tumor suppression in p53-null cells.  In support of 

this hypothesis, p53-null cells displayed evidence of decreased cell growth.  However, upon 

further interrogation, I was able to demonstrate that the observed defects were likely due to an 

abbreviated cell cycle in p53-null cells.  The kinetics of overall protein synthesis was actually 

much faster in cells lacking p53, regardless of ARF status.  Having ruled out enhanced cell 

growth as the mechanism for increased tumorigenicity, I examined other reported p53-

independent functions of ARF such as sumoylation, inhibiting c-MYC transcription, and cell 

motility/invasion.  I was unable to provide experimental evidence linking any of these functions 

to my observed phenotype, indicating ARF was likely performing a novel p53-independent 

tumor suppressor function. 

 Chapter 4 describes my effort to identify this novel p53-independent function of ARF, by 

performing an unbiased gene expression analysis of p53-null cells with or without ARF.  To our 

surprise, the results of this experiment indicated ARF depleted cells were upregulating a type I 

interferon response pathway.  I went on to show that ARF and p53 cooperate to suppress the IFN 

response.  Acute loss of p53 induces the IFN signaling pathway, but the subsequent ARF 

induction acts to suppress it.  Therefore, only upon inactivation of p53 and ARF was the IFN 

response potently induced.  My work further demonstrated that interferon-beta, STAT1, and the 

interferon-sensitive gene ISG15, are all required for the tumorigenic phenotype observed in p53-
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deficient cells depleted of ARF.  As direct evidence that interferon-beta signaling can promote 

cell proliferation, supplementing p53-deficient cell culture media with low levels of interferon-

beta significantly induced proliferation even though they contained elevated ARF levels.  I 

validated the physiological relevance of this signaling pathway by showing elevated expression 

of STAT1 and ISG15 in triple-negative breast cancer patients that harbored co-inactivation of 

p53 and ARF.  Furthermore, I showed that triple-negative breast cancer cell lines that lacked 

ARF and p53 function were sensitive to STAT1 depletion.  The data described in Chapter 4, 

therefore, identified the important p53-independent function of ARF that cancer cells overcome 

by deleting or silencing the CDKN2a locus. 

 The work described in this dissertation has uncovered a novel cooperation between ARF 

and p53.  Cancer cells that inactivate both these genes gain a proliferative advantage due to an 

oncogenic IFN--STAT1-ISG15 signaling axis.  While I believe this finding defines targeted 

inhibition of this signaling pathway as a potential therapeutic option, future experiments are 

needed to address numerous questions that are raised by my findings.  This chapter will address 

some of these questions, and explore future experimental directions that my work should 

catalyze. 
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FUTURE DIRECTIONS 

Identify activators of Arf expression in response to p53 loss. 

 I have demonstrated that acute loss of p53 leads to an upregulation of ARF by 4 days post 

p53 excision.  Since we now know that p53 represses Arf transcription by promoting 

heterochromatin formation (50), why is there a delayed Arf response to p53 loss?  Moreover, 

what are the transcription factors that promote Arf transcription when p53 is lost?  I initially 

hypothesized that chromatin remodeling complexes such as SWI/SNF would be required to open 

the Arf promoter up to transcription factors.  An obvious candidate for this process is SNF5, 

which is a subunit of the ATP-dependent SWI/SNF complex that has been shown to be important 

for ARF induction in mouse muscle tissue as well as cultured human cells (20, 49).  

Additionally, loss of SNF5 function is a common event in malignant rhabdoid tumors (MRT), 

and this genetic event can cooperate with p53 loss to promote MRT formation in the mouse (18).  

To test whether SNF5 activity was required for ARF induction in my system, I treated p53Flox/Flox 

MEFs with Adeno-Cre and then infected with shRNAs targeting SNF5.  I analyzed ARF protein 

expression 6 days post Cre-infection.  Depletion of SNF5 had no effect on ARF protein 

accumulation, suggesting chromatin remodeling may not be necessary in MEFs (Figure 5.1).  

One potential explanation for this result is that p53 seems to be required to physically recruit the 

PcG proteins to the Arf promoter.  Once p53 is lost, these proteins would no longer be localized 

to this region.  Since the repressive chromatin marks would not be maintained, several rounds of 

cell division would result in reduced heterochromatin formation.  

 Transcription of Arf mRNA is enhanced following p53 loss, so what transcription factors 

mediate this response?  Likely candidates would be known activators of Arf, such as DMP1, 

E2F1, SMAD2, and FOXO3a.  Analysis of the requirement for each of these in Arf induction 
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following p53 loss could be tested with the shRNA approach I described above.  If these 

experiments do not identify key regulators, then a large scale shRNA approach could be utilized.  

Our current in vitro system would not be amenable to such a screen since our cells do not carry a 

detectable marker for ARF expression.  For this experiment, p53Flox/Flox mice could be bred with 

the ArfGFP mouse that contains a knocked-in Gfp allele to exon-1β of ARF (55).  MEFs obtained 

from p53Flox/Flox ;Arf GFP/+  would be subjected to Cre-mediated excision of p53 followed by 

addition of a transcription factor shRNA library available from the RNAi Consortium.  This 

experiment would allow GFP expression to be measured as readout for ARF transcription.   

A more challenging question is how ARF is regulated in vivo.  As I mentioned in Chapter 

2, mouse mammary glands did not all stain positive for ARF in p53-null mice (Figure 2.6).  

Thus, inducing Arf in vivo requires more than simply p53 loss.  Cells grown on plastic are 

subjected to various stresses as a result of hyperoxic conditions and constant activation of growth 

factor pathways due to serum supplementation (21).  As a result, ARF is induced after several 

passages and continues to rise until the cells undergo senescence.  Being a key negative regulator 

of Arf, p53 loss simply leads to a faster transcriptional induction.  It is currently unknown which 

of the non-physiological conditions utilized in tissue culture directly induce ARF.  Constitutive 

signaling through RAS as a result of high growth factor concentrations is certainly one 

possibility.  Is oncogenic activation, such as Ras mutation, the inducing signal in ARF-positive 

mammary epithelial cells?  This could be tested by co-staining the mammary glands with 

phospho-ERK or phospho-AKT antibodies.  If activation of ERK or AKT is occurring in the 

same cells as those with induced ARF, then this suggests oncogenic signaling is initiating ARF 

transcription.  To further validate this finding, a Blg-Cre;p53Flox/Flox ;LSL-KrasG12D mouse could 

be generated to see whether, in the presence of activated RAS, all the mammary epithelial cells 
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would stain positively for ARF.  If oncogenic signaling is not the physiological activator of ARF 

in epithelial cells, then ROS and DNA damage could also be measured using previously 

characterized staining techniques (29, 35).               

While these experiments would certainly be informative for the regulation of mouse 

ARF, it would be beneficial to perform similar experiments in human cells.  Very little is known 

about the physiological activators of Arf transcription in human cells and insight in this area 

would help explain the differential regulation of Arf in human and mouse cells.  To uncover 

regulators of Arf transcription in human epithelial cells, I propose to use TL-HMECS, which are 

immortal human mammary epithelial cells expressing telomerase and Large T-antigen.  These 

cells have been used extensively in large scale shRNA and cDNA overexpression screens (30, 

42).  With the help of new genome editing technologies, such as CRISPRs (7) or TALENS (4), a 

TL-HMEC line could be made where exon-1β is replaced by firefly luciferase.  The TL-

HMECArf-Luc cell line could be used for high throughput screens to identify activators or 

repressors of ARF transcription.   

The experiments proposed in this section are intended to enhance our knowledge of Arf 

transcriptional regulation.  A more detailed understanding of this process would help us explain 

the biological significance of the p53-Arf negative feedback loop.  Furthermore, many p53 

mutant tumors do not delete CDKN2a or exhibit overexpression of ARF.  If we understood how 

Arf is induced in the absence of p53, perhaps we could identify a pharmacological approach to 

activating ARF and reducing tumor growth.  Finally, analysis of Arf regulation in human cells 

would provide insight into the observation that p16 is the more responsive tumor suppressor at 

this genomic locus in humans.  If ARF expression is kept under tight control in humans to allow 
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for increased growth, then finding ways to activate ARF might lead to potent inhibition of 

tumorigenesis.      

 

Determine whether overexpressing transcriptional inhibitors of Arf can phenocopy 

CDKN2a deletion.   

In human tumors, ARF and p53 co-inactivation is primarily thought to occur by mutating 

p53 and deleting the entire CDKN2a locus.  However, if de-repressed ARF levels serve p53-

independent tumor suppressor functions, then p53-mutant tumors might utilize mechanisms 

besides CDKN2a deletion to evade those functions.  For instance, overexpressing any of the PcG 

proteins, such as EZH2, BMI1, SUZ12, or RING1b might be able to re-silence the Arf promoter.  

This possibility is often overlooked since CDKN2a deletion is so common.  However, in Figure 

5.2 I have mined the TCGA database and found numerous cases in lung squamous cell 

carcinoma that overexpress these proteins without CDKN2a deletion.  In fact, 20 additional p53-

mutant tumors exhibit overexpression of one or more known Arf transcriptional inhibitors.   I 

hypothesize that the combination of p53 mutation with either CDKN2a deletion or unchanged 

Arf mRNA levels, indicate negative selection against ARF.   

To test this hypothesis in vitro, I would overexpress Arf’s negative regulators 

immediately following p53-inactivation.  I would predict that ARF levels would not become 

induced, and that if these cells were transformed by RasV12, they would grow in soft agar similar 

to the dp53R-shARF MEFs.  Of course, it is possible that p53 is absolutely required for 

recruiting these proteins to the Arf locus, and that their overexpression will not have an effect on 

ARF levels.  If this is the case, I would overexpress more direct repressors of Arf transcription 

such as E2F3b (13) and ATF4 (17).     
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Determine how loss of p53 induces the IFN response. 

 In Chapter 4, I demonstrated that loss of p53 leads to an induction of the IFN response, 

followed by an ARF induction that suppresses IFN signaling (Figure 4.5).  I have also shown that 

the IFN response is dependent upon complete loss of p53 function, as p53-heterozygous MEFs 

(p53+/-) infected with shARF do not exhibit increased IFN signaling (Figure 5.3 A).  I have 

developed three testable hypotheses to explain how p53 loss can lead to an induction of the IFN 

response.  The first of which has to do with the intriguing fact that the IFN-α and IFN-β genes 

are located on chromosome 9p21, just 650 kilobases away from CDKN2a (37).  Given that p53 

represses Arf by promoting heterochromatin formation, it is possible that this heterochromatin 

spreads far enough to affect interferon transcription (45). To test this possibility, chromatin 

immunoprecipitation experiments could be performed in Adeno-LacZ or Adeno-Cre infected 

p53Flox/Flox MEFs using antibodies specific for the inhibitory H3K27me3 chromatin modification.  

RT-PCR analysis of several regions within the IFN gene cluster would identify whether the 

inhibitory mark is differentially expressed in Lac or Cre-treated cells.  My hypothesis would be 

that Cre-treated cells would have fewer regions marked by the H3K27me3 modification.  

Alternatively, p53 could directly inhibit transcription of IFNβ or other genes involved in the IFN 

response.  However, this possibility seems unlikely since restoring p53 function in a temperature 

sensitive p53-mutant cell line did not reduce expression of STAT1 or ISG15 in a 16 hour time 

period (Figure 5.3 B). 

 The second possibility is that defects in microRNA processing as a result of p53 loss 

leads to activation of the dsRNA response, leading to IFN signaling.  Previous work has 

identified numerous roles for p53 in miRNA biogenesis, at both the transcriptional level and 
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processing steps (43).  If deregulated p53 function leads to inappropriate levels of pre-miRNAs 

in the cytoplasm, this could lead to the activation of a dsRNA response as demonstrated by 

Chiappinelli et al. (6).  Cytosolic sensors such as RIG-1 and MDA-5 respond to dsRNA by 

signaling to downstream transcription factors that promote the expression of type I interferon 

(24).  To test this hypothesis, miRNA expression arrays could be performed in Adeno-LacZ or –

Cre treated p53Flox/Flox MEFs to identify changes in levels of mature miRNAs.  If a global or 

selective decrease in mature miRNAs is observed, then these miRNAs would have to be 

individually tested to see if the decreases are due to transcriptional or processing defects.  

Transcription would be tested by analyzing levels of the pri-miRNA.  If levels of pri-miRNA are 

decreased in p53-deficient cells, then p53 is likely a transcriptional regulator.  For miRNAs 

whose pri-miRNA levels either increase or do not change, pre-miRNA levels would be measured 

to assess if there are any processing defects.  An increase of pre-miRNA levels in p53-deficient 

cells would suggest that a processing defect has occurred between the pre- and mature miRNA.  

These affects would presumably be rescued by Dicer1 overexpression, which is the key pre-

miRNA processing enzyme (31).  A decrease in pre-miRNA could also be due to a defect in 

export.  However, a buildup of pre-miRNA in the nucleus would not be expected to initiate a 

dsRNA response.               

 More recently, it was shown by Schwitalla et al. that loss of p53 leads to NF-kB-

mediated inflammation which promotes late-stage colorectal carcinogenesis (39).  Several other 

studies have suggested a role for p53 in suppressing an inflammatory tumor microenvironment 

and inhibiting immune cell recruitment (15, 53).  Additionally, the initial paper describing the 

creation of a p53-knockout mouse indicates that several mice lacking p53 died from non-tumor 

associated causes.  Upon examination, it was concluded that these mice died from unresolved 
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inflammatory reactions (10).  Thus, a link between p53 and pro-tumorigenic inflammation is 

widely appreciated.  One of the key mediators of inflammatory signaling is NF-kB (2, 19).  

Interestingly, p53 has been shown to inhibit NF-kB signaling (8, 40).  Therefore, another 

hypothesis to explain IFN signaling in response to p53 loss is the activation of NF-kB since it is 

a known activator of IFN-β transcription (23).  To examine this possibility, I would simply probe 

NF-kB activation in Cre-treated p53Flox/Flox MEFs by performing western blots for 

phosphorylation of p65 or IkBα.  If evidence of NF-kB activation is observed, then shRNAs 

targeting p65 could be employed prior to Cre-mediated excision of p53.  This would be predicted 

to completely protect p53-null cells from IFN-signaling.  Pharmacological inhibition of NF-kB 

could also be employed.                   

 

Determine the mechanism by which ARF inhibits the IFN response. 

 My experimental data has indicated that ARF is able to suppress the IFN response 

induced by p53-loss.  Since ARF is not an enzyme, the only known mechanism by which ARF 

regulates cellular targets is through physical association.  Therefore, I hypothesized that ARF 

would interact with the STAT1 transcription factor to inhibit its ability to activate IFN-

responsive genes.  I performed immunoprecipitations with antibodies directed against ARF or 

STAT1 in dp53 MEFs 8 days post p53-excision.  As shown in Figure 5.4A, ARF and STAT1 are 

capable of interacting in these cells.  I also performed immunofluorescence staining of these cells 

to address the possibility that ARF might sequester STAT1 in the nucleolus, similar to its 

inhibition of NPM and MDM2.  However, I was unable to detect co-localization of ARF and 

STAT1 (Figure 5.4 B).  The observation that STAT1 and ARF can interact is certainly intriguing 

but further experiments are warranted.  For example, I do not know if ARF interacts with un-
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phosphorylated or phosphorylated STAT1.  I hypothesize that if ARF is inhibiting STAT1 

transcriptional function, then binding to phospho-STAT1 would be anticipated.  However, there 

is evidence that un-phosphorylated STAT1 is also capable of entering the nucleus and activating 

transcription of immune response genes (5).   

 Additional experiments would be required to directly demonstrate that ARF inhibits 

STAT1 through physical binding.  In particular, the amino acids that ARF utilizes to interact 

with STAT1 would be informative.  ARF requires its N-terminal 14 amino acids for interaction 

with NPM and MDM2, so it is possible that ARF utilizes the same residues to interact with 

STAT1.  I could therefore overexpress HA-tagged full length or Δ1-14 ARF in dp53 MEFs, 

perform IP’s with an antibody against the HA-tag, and assess whether full length or Δ1-14 

interacts with STAT1.  I hypothesize that only full length ARF would be able to interact with 

STAT1.  If Δ1-14 ARF is capable of interacting with STAT1, then a deletion panel of ARF 

would need to be generated to assess the required binding sites.  If only full length ARF can 

interact with STAT1, then I would perform rescue experiments in dp53R-shARF cells using 

“wobble” mutants of ARF and Δ1-14 to demonstrate that only wild type ARF can suppress the 

IFN response.  Additional studies such as STAT1 occupancy at IFN-responsive genes in the 

presence or absence of ARF would enhance my argument.  

 Of course, it is also possible that the ARF-STAT1 interaction is not biologically 

important.  If this is the case, then other avenues of ARF-mediated IFN inhibition would need to 

be explored.  I have already conducted an IP/Mass Spectrometry experiment in p53-null MEFs to 

discover novel ARF interacting proteins.  As seen in Table 5.1, ARF interacts with a wide 

variety of proteins in p53-deficient cells.  However, the experiment was clearly not exhaustive, 

as NPM and STAT1 are absent from the list of binding partners.   
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While none of the targets in Table 5.1 have established roles in the interferon response, 

the RNA helicases such as DDX50 and DHX30 are potentially interesting.  RNA helicases play a 

major role in sensing viral infections and initiating the anti-viral response.  Helicases such as 

RIG-1 and MDA-5 can bind to dsRNA, which allows them to interact with a mitochondrial 

associated protein called MAVS.  This interaction leads to the activation of TBK1 and 

subsequent phosphorylation of the transcription factors IRF3, IRF7, and NF-kB (16).  These 

transcription factors coordinate the upregulation of type I interferon, including IFNβ.  ARF is 

known to interact with one RNA helicase, DDX5, and it also functions to inhibit mRNA 

translation of another, DHX33 (38, 54).  DHX33 was recently shown to be involved in cytosolic 

viral RNA sensing, leading to the induction of NLRP3 inflammasome activation (27).  Perhaps 

ARF regulates the expression, localization of function of RIG1 or MDA5. This hypothesis could 

easily be tested by immunoprecipitations and Western blots.  The microarray data I generated by 

comparing dp53R-shSCR and dp53R-shARF MEFs shows a 2-fold induction of RIG1, but the 

standard deviation between my three experimental replicates was too high for it to be included in 

the final gene list.  Thus, RIG1 mRNA induction could be validated by qRT-PCR, and western 

blots could be performed to assess RIG1 protein levels.  If RIG1 mRNA and protein are both 

found to be elevated, then shRNAs targeting RIG1 could be used prior to ARF knockdown to 

test whether RIG1 induction is required for the IFN response.                    

 

Develop a mouse tumor model of ARF/p53 co-inactivation 

 A mouse model of ARF/p53 co-inactivation would greatly accelerate our understanding 

of the pro-tumorigenic IFN signaling pathway that I have described in fibroblasts.  Specifically, I 

propose to generate p53Flox/Flox ; ArfFlox/Flox ; Kras LSL-G12D mice.  These mice will be compared to 
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p53+/+ ; Arf Flox/Flox ; Kras LSL-G12D , p53Flox/Flox ; Arf +/+ ; Kras LSL-G12D, or p53+/+ ; Arf +/+ ; Kras 

LSL-G12D controls.  The easiest mouse tumor model to assess the consequences of loss of p53, Arf, 

or both p53 and Arf would be to utilize intra-nasal delivery of Adeno-Cre which would result in 

the inactivation (or activation) of these genes in the lung epithelium (11).  This would mainly be 

due to the fact that we already have these animals at our facility.  Mice would be monitored for 

tumor formation, and I would hypothesize that loss of both ARF and p53 would greatly 

accelerate lung tumorigenesis.  Based on my in vitro data, I would predict that lung tumors that 

have lost both ARF and p53 would exhibit an upregulation of IFN signaling which could be 

measured by qRT-PCR and Western blot, as well as IHC.     

Alternatively, a pancreatic cancer model could be developed by breeding the above 

mentioned mice to tamoxifen inducible Pdx1-Cre ER mouse (52).  While this would obviously be 

a more complicated breeding scheme, this model would be ideal to test novel therapeutics as this 

combination of genetic events occurs quite frequently in pancreatic tumors (36).  Either of the 

above mentioned models would allow us to directly test whether loss of both p53 and ARF leads 

to enhanced tumorigenicity in vivo.  While I am confident the mouse models would mirror my in 

vitro studies, it is certainly possible that equivalent tumor formation would be seen in mice 

having lost p53 alone compared to p53/Arf.  If this is the case, I could still look to see if 

activation of the IFN pathway is preferentially activated in the p53/Arf mice and use the models 

to try therapeutics that specifically target IFNβ signaling.         

  

Determine how ISG15 promotes tumorigenesis in dp53R-shARF cells. 

 In chapter 4, I demonstrated that ISG15 was required for the pro-tumorigenic phenotype 

in dp53R-shARF cells.  However, I do not have a mechanistic understanding for how ISG15 can 
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promote this phenotype.  Additionally, while most work has characterized the roles of 

conjugated forms of ISG15, increasing evidence suggests a key role for free ISG15 in cells (3).  

In my system, I have observed increases in both free and conjugated forms of ISG15 (Figure 

4.12), so understanding which form of ISG15 is promoting proliferation is an important task.  

There are several ways in which this question could be addressed.  First, UBE1L is the only 

known E1 enzyme for ISG15 conjugation, so depleting UBE1L from dp53R-shARF MEFs using 

shRNAs would directly test if conjugated ISG15 is required for the pro-tumorigenic phenotype 

(22).  This approach could be challenging if the available shRNAs do not sufficiently reduce 

UBE1L levels.  An alternative approach would be to perform rescue experiments of ISG15 

depletion with ISG15 wild type or mutant cDNAs.  Precursor ISG15 proteins are cleaved at their 

C-terminus revealing an LGLRGG motif that is required for conjugation to lysine residues (32).  

Rescue experiments in dp53R-shARF-shISG15 cells performed with wild type ISG15-LRLRGG, 

or a non-conjugatable mutant ISG15-LRLRAA, would specifically address whether free or 

conjugated ISG15.  If the LRLRAA-ISG15 mutant is not capable of rescuing proliferation and 

growth in soft agar, then I would conclude the conjugated form of ISG15 is required. 

 ISG15 is also secreted from cells, although the physiological significance of this is not 

well understood (3).  In my in vitro system, I do not know whether ISG15 is secreted from 

dp53R-shARF cells, so I would first need to measure ISG15 levels in cell culture supernatants 

using either ELISA or Western bot.  If ISG15 is indeed secreted, then I would use neutralizing 

antibodies targeting ISG15 in dp53R-shARF cells to see if proliferation or soft agar growth was 

affected.   

 If the above mentioned experiments indicate that it is the conjugated form of ISG15 

which is required for enhanced tumorigenicity of dp53R-shARF MEFs, then I would propose to 
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uncover the important ISGylated proteins.  To accomplish this, I would perform ISG15 

immunoprecipitations from dp53R-shSCR or dp53R-shARF MEFs to pull down ISG15 

conjugated proteins.  I would then submit these complexes for LC/MS analysis.  Similar 

approaches have been used in the past to identify ISGylated proteins (12, 44).  Identified proteins 

would be sorted based on their potential to affect tumorigenic properties.  Since ISGylation can 

promote or inhibit protein function, both negative and positive regulators of tumorigenicity 

would be considered (51).  I would knockdown the tumor promoting proteins with shRNAs, and 

attempt to rescue the tumorigenic phenotype with wild-type or mutants that are not able to be 

ISGylated.  If ISGylation is inhibiting the function of a tumor suppressor protein, then 

overexpression of the protein should be able to reduce tumorigenicity.  Knockdown-rescue 

experiments could also employed with wild-type or mutant (unable to be ISGylated) proteins to 

test whether the non-ISGylated version is capable of reducing tumorigenicity.       

 

Explore other mechanisms to explain enhanced tumorigenicity mediated by IFN- 

signaling. 

 As shown in Figure 4.13B, depletion of ISG15 in dp53R-shARF MEFs does not reduce 

macroscopic colony number to levels seen in cells expressing ARF.  Thus, there are likely other 

contributing factors besides ISG15 to the enhanced tumorigenicity of dp53R-shARF MEFs.  One 

observation that I consider worth exploring further is the phosphorylation of STAT1 on serine-

727.  Phosphorylation of this residue has been shown to be important in promoting Wilm’s tumor 

growth (46), and has more recently been demonstrated to protect incipient cancer cells from NK-

mediated cytotoxicity (34).  Numerous kinases have been found to be capable of phosphorylating 

STAT1 on this site, including CDK8 (1), p38-MAPK (14), PI3K (28), and PKC-δ (48).  I 
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propose to determine which of these kinases is responsible for serine-727 phosphorylation in 

dp53R-shARF cells by using both pharmacological and genetic approaches.  I will first treat the 

dp53R-shARF MEFs with kinase inhibitors to see which of the above-mentioned pathways is 

responsible in my cell type.  Once a kinase is identified, I will use shRNAs to validate the 

specific kinase is responsible for serine-727 phosphorylation.   

My data suggests that serine-727 phosphorylation of STAT1 inversely correlates with 

ARF status in TNBC cell lines (Figure 5.5 A and B).  I propose to analyze tumor microarray 

samples by IHC to determine whether this correlation exists in human tumor samples.  

Additionally, it would be interesting to see whether treatment of the TNBC cell lines with the 

kinase inhibitor discussed above would inhibit cell proliferation.  These studies could uncover a 

potential therapeutic option for tumors lacking ARF and p53 function.      

Another area that I would like to explore is the concept of inflammation.  It is widely 

viewed that inflammation plays a vital role promoting tumorigenesis (9, 26).  A recent study 

described how loss of CKIα in the mouse gut epithelium activates WNT-signaling and can 

induce a low-level inflammatory response that is associated with cellular senescence.  The 

authors of this study went on to show that loss of p53 in these cells allows for local invasion and 

carcinogenesis, which could be completely abrogated by NSAID (Non-steroidal anti-

inflammatory drug) treatment (33).  This study suggests that cells respond differently to 

inflammatory signals depending on p53 status.  Perhaps dp53R-shARF cells are experiencing the 

effects of chronic inflammation and since they lack p53, the signaling is interpreted as pro-

proliferative.     

 My microarray data obtained from dp53R-shARF MEFs did not contain any established 

pro-inflammatory cytokines.  However, careful examination of the microarray data comparing 
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dp53R-shSCR to dp53R-shARF cells has revealed several interesting genes that were initially 

discarded due to stringent statistical approaches.  Two of the genes in the heat-map in Chapter 4 

(Figure 4.1), Usp18 and Irf7, were not part of the initial upregulated gene list, but I was able to 

validate their increased expression by qRT-PCR from three independent experiments.  Likewise, 

the pro-inflammatory chemokine, CXCL10, is 4-fold overexpressed in shARF cells, but was not 

included in the final list because the standard deviation value surpassed a stringent threshold.  

CXCL10 is a member of the CXC chemokine family, and binds to its receptor, CXCR3, to 

initiate a host of cellular responses.  CXCL10 can activate signaling pathways involved in 

promoting cell proliferation such as MAPK and PI3K (25).  Thus, I believe a more careful 

analysis of pro-inflammatory cytokines is warranted in dp53R-shARF MEFs.  This could be 

performed using a qPCR array or an ELISA array from Qiagen.   

 

Determine whether inhibitors of the IFN--STAT1-ISG15 signaling axis can inhibit 

proliferation of dp53R-shARF MEFs.     

I have demonstrated that the IFN-b-STAT1-ISG15 signaling axis is oncogenic in the 

absence of both ARF and p53.  Therefore, targeted inhibition of this pathway represents a 

potential therapeutic option for tumors harboring these specific genetic defects.  I have obtained 

a selective JAK1/JAK2 inhibitor called Baricitinib that is in phase II clinical trials for the 

treatment of rheumatoid arthritis.  Treatment of dp53R-shARF MEFs with increasing 

concentrations of Baricitinib reduces both phosphorylation of STAT1 and STAT3, validating its 

role as a JAK1/JAK2 inhibitor (Figure 5.7 B).  I propose to test the effects of Baricitinib 

treatment on the proliferation and tumorigenicity of dp53R-shARF MEFs.  I would perform 

these experiments in vitro and also utilize the mouse allograft model that I introduced in Chapter 
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2 (Figure 2.12).  If treatment with Baricitinib alone does not produce a therapeutic effect, then 

combination with other drugs could be tested, such as those inhibiting PI3K or ERK.  It would 

also be interesting to test the relative sensitivities of numerous cancer cell lines that exhibit 

activation of IFN signaling.        

The fact that Baricitinib treatment reduces phosphorylation of STAT1 clearly indicates 

that either JAK1 or JAK2 is responsible for STAT1 phosphorylation. However, I have been 

unable to demonstrate increased activation of JAK1 or JAK2 in dp53R-shARF cells (Figure 5.6 

A and Jason Forys unpublished observation).  To directly test which JAK is required for the IFN 

response in dp53R-shARF MEFs, I would use specific shRNAs to knockdown JAK1, JAK2, 

JAK3, and TYK2.   

 Another approach to inhibiting interferon signaling is the use of neutralizing antibodies. I 

have performed experiments using interferon alpha/beta receptor-1 (IFNAR-1) neutralizing 

antibodies that were generated in Robert Schreiber’s lab at Washington University (41).  As seen 

in Figure 5.7 A-B, treatment of dp53R-shARF MEFs with anti-IFNAR1 antibodies (MARI-5A3) 

greatly reduces phosphorylation of STAT1 and expression of interferon-responsive genes.  To 

our surprise, anti-IFNAR-1 treatment did not affect proliferation, growth in soft agar, or foci 

formation of the dp53R-shARF MEFs (Figure 5.7 C-E).  Further studies will be required to 

explain this phenomenon, including the selective neutralization of IFN-α and IFN-β.  It is 

possible that targeting the IFN signaling pathway this far upstream will not be an effective 

therapeutic approach.  Perhaps both pro- and anti-growth signals are occurring through the 

IFNAR receptor in these cells.  As a result, when all the receptors are blocked there is no net 

change in proliferation.  There is evidence suggesting interferon-alpha and -beta can activate 

distinct transcriptional programs even though they bind the same receptor (47).  I have not been 
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able to detect IFN-α with a pan-qRT-PCR primer, but I have observed an upregulation of the 

IFNα4 isoform in dp53R-shARF MEFs (unpublished observation).   

Clearly, there is much work to be done before my work can be translated into a clinical 

setting.  The experiments outlined in this section, as well as the other future directions that I have 

proposed, will provide insight into the selective advantage gained from IFN signaling.  My 

expectation is that this signaling pathway can function as a driver of tumorigenesis in many 

tumor types, and likely does not strictly depend on ARF and p53 co-inactivation.       
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FIGURES 

 

Figure 5.1  SNF5 is not required for ARF induction following p53 loss.   

p53Flox/Flox MEFs were infected with Adeno-LacZ or Adeno-Cre.  One day post Ad-Cre infection, 

cells were infected with the indicated shRNAs and selected with puromycin.  Six days post Cre-

infection, cells were harvested and analyzed by Western bot.   
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Figure 5.2  Upregulation of Arf transcriptional repressors occurs in p53 mutant lung 

squamous cell carcinoma tumors. 

The cBioPortal search tool was used to interrogate genetic status/expression levels of the 

indicated genes.  Columns represent individual lung squamous cell carcinoma tumor samples.  

Green boxes indicate mutations, blue-filled boxes indicate homozygous deletions, red-filled 

boxes indicate amplification, and red outlined boxes indicate mRNA overexpression.     
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Figure 5.3  Complete p53 loss is required to induce IFN signaling in Arf depleted cells, and 

p53 does not directly suppress IFN expression. (A)  p53-heterozygous MEFs were infected 

with shSCR or shARF.  Cells were harvested six days post-infection and RNA was analyzed by 

qRT-PCR for the indicated target genes. (B)  A p53-null mouse leukemia cell line was 

transduced with empty-vector or a temperature sensitive p53-mutant.  Both cell lines were 

shifted to the permissive temperature of 32°C for the indicated number of hours.  RNA was 

extracted and qRT-PCR analysis for the indicated genes was performed.  Data is presented 

relative to empty vector and normalized to histone 3.3 mRNA. 
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Figure 5.4  ARF and STAT1 are capable of physically interacting, but ARF does not 

sequester STAT1 in the nucleolus (A)  Immunoprecipitation of ARF or STAT1 was performed 

using lysate from dp53 MEFs, 8 days post Cre-mediated p53 excision.  Immunoprecipitated 

complexes were analyzed by Western blot for the indicated proteins. (B)  dp53 MEFs were fixed 

in methanol:acetone and stained using immunofluorescence.  Blue=Dapi, Red=STAT1, 

Green=ARF.   
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Table 5.1  List of ARF binding partners in dp53 MEFs  
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Figure 5.5  STAT signaling in a panel of TNBC cell lines. (A)  Western blot analysis of a 

panel of TNBC cell lines.  Normal human mammary epithelial cells were used as a control.  (B)  

Western blot analysis of same cell line panel described in (A).  Phospho-STAT1 Ser-727  levels 

were quantified by first normalizing to GAPDH and then to total STAT1 levels.   
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Figure 5.6  Analysis of JAK1 activation and Baricitinib treatment in dp53R-shARF MEFs. 

(A)  Western blot analysis of JAK1 phosphorylation in four independent experiments comparing 

dp53R-shSCR and dp53R-shARF MEFs.  As a positive control, dp53 MEFs were treated with 

500U/mL recombinant IFN-β for one hour.  (B)  dp53R-shARF MEFs were treated with the 

indicated amounts of Baricitinib overnight.  Equivalent amounts of DMSO were added to cells as 

a control.  Western blot analysis was performed to assess the phosphorylation status of STAT1 

and STAT3.   
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Figure 5.7  IFNAR-1 neutralizing antibodies do not affect the tumorigenesis of dp53R-

shARF MEFs. (A)  Western blot analysis of dp53R-shARF MEFs treated for 24 hours with 

10µg/mL of a control IgG (GIR-203) or antibodies specific to IFNAR-1 (MARI-5A3). (B)  Cells 

described in (A) were harvested and RNA was extracted. qRT-PCR analysis was performed to 

determine mRNA expression of the indicated genes.  mRNA levels were normalized to histone 

3.3 mRNA and fold-changes are relative to shSCR controls.  (C)  dp53R MEFs expressing 

shsCR or shARF were plated in 6-well dishes.  Where indicated, cells were treated with 

10µg/mL of GIR-203 or MARI-5A3.  Antibodies were replenished every 2 days, and cell 
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number was measured by trypsinization and counting with a hemocytometer.  (D)  Cells (3000) 

were plated in 10 cm dishes and treated with antibodies as described in (C).  10 days post plating, 

colonies were fixed with methanol and stained with Giemsa.  (E)  Cells (1.5x104) were plated in 

soft agar that contained 50µg/mL of the indicated neutralizing antibodies.  Fresh media 

containing 10µg/mL of antibody was replenished every 3 days.  After incubating for 21 days, the 

soft agar plates were stained with crystal violet and macroscopic colonies were quantified.  Error 

bars represent s.d. of n=3.     
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