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Abstract 

Traumatic spinal cord injury (SCI) is the most devastating injury that often causes 

the victim permanent paralysis and undergo a lifetime of therapy and care. It is caused 

by a mechanical impact that ultimately causes pathophysiological consequences which 

at this moment in time are an unresolved scientific challenge of great social impact. 

Scientists have long used animal contusion models to study the pathophysiology of SCI 

in the discovery of progressive secondary tissue degeneration, demyelination, and 

apoptosis. More importantly, most therapies that have gone to human clinical trial were 

first validated in spinal cord contusion models. 

Magnetic resonance imaging (MRI) is the modality of choice to noninvasively 

detect the soft tissue injury, particularly suitable for assessing the tissue integrity in SCI. 

However, the convention MRI lacks capability of detecting and evaluating the injury 

severity acutely, probably resulting in lost opportunities of effective prognostication or 

treatment stratification for SCI patients. Diffusion Tensor Magnetic Resonance Imaging 

(DTMRI, DTI) is an emerging technique known to provide dynamic contrast reflecting the 

progression of the underlying pathology in CNS tissues. In this study, we hypothesized 

that axial (||) and radial (λ) diffusivity derived from DTI is sensitive to the pathological 

alteration in spinal cord white matter (WM) tract and could be used as potential 

biomarkers detecting and characterizing the axonal and myelin damage in SCI. 

A mouse model of contusion SCI was examined using DTI, behavioral 

assessment, and histology to test our hypothesis. Techniques employed including the 

simplification of diffusion weighting scheme, the implementation of diffusion weighted 

multiple spin-echo sequence, and verified for setting up the experimental protocol and 

data processing procedures. Secondly, the hypothesis was test on the projects 

comparing the change of these biomarkers on both the myelinated and dysmyelinated 

shiverer mice cooperating with histological analysis, and behavioral assessment. Finally, 

a finite element analysis (FEA) of contusion SCI was deployed to provide evidences of 

injury mechanics correlated with the injury patterns detected by diffusion MRI for a better 

characterized animal model of contusion SCI.    
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Chapter 1. Introduction 

Spinal cord together with brain makes up the central nerve system (CNS). It is a 

tubular bundle of nerves that is encased in the bony vertebral column and is attached to 

the brain stem [1, 2]. The spinal cord connects the peripheral nervous system for 

transmitting neural signals between the brain and the rest of the body and also acts as a 

minor coordinating center responsible for some simple reflexes, such as the withdrawal 

reflex. The peripheral region of the cord contains sensory and motor white matter (WM) 

tracts. Internal to this peripheral region is the gray, butterfly shaped central region made 

up of nerve cell bodies [2]. WM is composed of myelinated axons, which connect various 

gray matter (GM) areas of the brain to the peripheral tissues. The three meninges 

covering the spinal cord, the outer dura, the middle arachnoid, and the inner pia mater, 

are continuous with that in the brainstem and cerebral hemispheres (Fig. 1-1). 

Cerebrospinal fluid (CSF) in the subarachnoid space is also a part of the brain CSF. The 

cord is stabilized within the dura mater by the connecting denticulate ligaments which 

extend from the enveloping pia mater laterally between the dorsal and ventral roots. The 

dural matter ends at the vertebral level of the second sacral vertebra. 
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Figure 1-1. Structure of human spinal cord (Figure is adapted from 

www.homebusinessandfamilylife.com/spinal_cord.html).  

1.1 Traumatic SCI and Animal Model 

Traumatic spinal cord injury (SCI) is one of the most devastating injuries a 

person can suffer. It is typically associated with major trauma from motor vehicle 

accidents (37%), violence (28%), falls (21%), sports-related (6%), and other (8%) [3-5]. 

The SCI occurs when a traumatic event causes damage to the cells in the spinal cord or 

when the nerve tracts are severed that relay signals within the spinal cord. Most 

commonly, cord injuries include contusions (a bruising of the spinal cord), compressions 

(pressure put on the spinal cord), lacerations (nerve fibers which are severed or torn), 

and central cord syndrome (damage to the corticospinal tracts in the cervical region of 

the spinal cord) [6].  

The estimated size of the population in the USA with traumatic spinal-cord injury 

is 183,000–230,000 with 11,000 cases of injury happen each year [3, 5, 7]. Average age 

at injury is 31 years, with the greatest frequency between 15 and 25 years; 82% of the 
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patient are male. Most human SCIs are caused by transient compression or contusion of 

the spinal cord, depending on where the spinal cord and nerve roots are damaged, the 

symptoms can vary widely, from pain to paralysis to incontinence. The average lifetime 

cost of treating an individual with traumatic spinal-cord injury is between US$500,000 

and $2 million, dependent on factors such as extent and location of injury [5]. Total direct 

costs of caring for individuals with spinal-cord injury exceed $7 billion per year in the 

USA. However, SCIs at this moment in time are an unresolved scientific challenge of 

great social impact. 

Scientists have long used animal spinal cord contusion models to study the 

pathophysiology of SCI [8-10]. Contusion models played a significant impact in the 

discovery of progressive secondary tissue damage, demyelination, and apoptosis in SCI. 

Most therapies that have gone to human clinical trial were first validated in spinal cord 

contusion models. In the model, spinal cord is compressed at the site of impact resulting 

in longitudinal lengthening of the neighboring segments mimicking the bruising of the 

spinal cord [11]. Tissue near the epicenter of the spinal cord is most vulnerable, 

suggesting that the mechanical loads are highest in this anatomical region. Large-caliber 

myelinated axons in the surrounding WM are highly susceptible to mechanical damage 

due to stress concentrated at the nodes of Ranvier [12]. The rate, magnitude, and 

duration of the biomechanical insult dictates the injury severity affecting functional 

outcome [10, 13].  

Three devices are currently widely used for the study of spinal cord contusion 

injuries in rodents [10]. One of the earlier devices is the New York University impactor 

[14-16], which is designed as a weight-drop model. The two newer contusion models, 

the Ohio State University Electromagnetic SCI Device (ESCID) [9, 17, 18] and the 

Precision Systems and Instrumentation Infinite Horizons (IH) [19] impactors, are 
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displacement- and force-defined devices, respectively. All these devices can provide 

read-outs of tissue displacement, while the IH and ESCID devices can also measure the 

actual force delivered to the spinal cord upon impact. The Washington University SCI 

device was designed by Prof. Philip Bayly modifying from the OSU device using an 

electromagnetic actuator and a cantilever beam to generate a more controllable 

displacement of the indentation (Fig. 1-2) [20]. Laser displacement sensor, force load 

cell and accelerometer can be installed on the device for measuring the mechanical 

parameters during the indentation. The calibration curves of these units are presented in 

Fig. 1-3. The location and procedure of T9 contusion SCI are illustrated in Fig. 1-4.  
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Figure 1-2. The Washington University impactor and functional components generating 

graded mouse SCI (a), the zoom-in picture of the laminectomy site and holding forceps 

(b). 
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Animal Holdera.
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Figure 1-3. The calibration curves of the mechanical measurement units on the 

Washington University impactor, (a) Distance measuring laser sensor, (b) Load cell and 

(c) Accelerometer. The calibration curves demonstrate linear relationships between 

mechanical measurements on displacement, force and acceleration and voltage outputs 

suggesting accurate control of the unit.   
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Figure 1-4. Surgical site (a) and sequential steps of SCI contusion (b). After dorsal 

laminectomy at the T9 vertebral level, mice received impact at 0.2 m/sec speed and 

displacement ranging from 0.3 – 1.0 mm utilizing Washington University impactor to 

generate graded contusion SCI. 

1.3 Methods of Studying Spinal Cord Injury 

Histological staining, behavioral assessment, computational simulation, and 

radiological imaging are the most common techniques for studying contusion SCI [8-13, 

19, 21, 22]. Histological staining provides the most detail structural and 

pathophysiological alterations after contusion SCI. However, histological staining is 

invasive which may not reveal the in vivo conditions. Behavioral assessment 

characterizes the injury severities in vivo by grading the functional outcomes, yet not 

able to provide detail changes in tissue level. Computational simulation allows a direct 

comparison of the tissue level states of stress and strain to injury patterns and outcomes 

[23-27]. Still, a successful computational analysis relies on the comprehensive 
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understanding of the underlying tissue biomechanical properties and boundary 

conditions [10, 23-30]. In this section, a brief introduction on methods employed in this 

dissertation work studying contusion SCI will be presented. The imaging methods, 

constituting the core of this dissertation, will be described in details in the following 

several sections.  

1.3.1 Behavioral Assessment: Basso Mouse Scale 

After the SCI, animals are scored by the hind limb motor function using Basso 

Mouse Scale (BMS) over a certain recovery period [31]. The BMS is an open field test, 

with no prior training required, thus no training effect on the score. It is a 4-minute test 

performed by two or more evaluators for scoring mouse behaviors following the 

established deficit rule. The BMS was developed using stringent psychometric 

techniques to ensure accurate prediction of locomotor outcome and good agreement 

within and across laboratories [31]. Mouse recovery is tested by coordination, paw 

position and trunk instability, overall scoring from 9 (best) to 1 (worst); subscores from 

11 (best) to 0 (worst) (Table 1-1). 
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Table 1-1. The standardized BMS scoring sheet used to record open field locomotor 

performance of mice. The score sheet is divided into seven locomotor categories for 

early (Ankle Movement), intermediate (Plantar Placement, Stepping), and late 

(Coordination, Paw Position, Trunk Instability, Tail) phases of recovery. The BMS score 

and subscore are calculated from data entered on the score sheet (Table is adapted 

from Basso, 2006). 

 

BMS scores for locomotion over the 21-day period showed a complete recovery 

in the control group, laminectomy only, while the SCI group showed only partial recovery 

(Fig. 1-5). Both groups reached plateaus of locomotion recovery around 7 days post 

injury (DPI). The impact distant at 0.8 mm induced a moderate SCI significantly lower 

BMS scores (BMS ~ 5) from the control value (BMS ~ 9).  
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Figure 1-5. Both control and SCI animals showed a significant decrease of hind limb 

motor function immediately after injury. The recovery from surgery and traumatic event 

on spinal cords was observed in the sub-acute phase. This steady-state BMS scores are 

required for precise evaluation of the preserved neuro-function in the contusion SCI. 

From 7 DPI till the end of the study, the observed BMS scores did not show a statistically 

significant difference over time.  

1.3.2 Histological Analysis 

When the animals are ready for histological analysis, they receive a trans-cardiac 

perfusion under deep anesthesia with 50 mL of 0.1 M phosphate-buffered saline (PBS) 

(pH 7.4) followed by 200 mL of 0.1 M PBS containing 4% paraformaldehyde (pH 7.4) [9, 

20, 32-36]. Following the fixation, the spine is excised, left in the fixative overnight, and 

decalcified for 48 hr, embedded in paraffin, and then sectioned on a sliding microtome (5 

μm). Immunocytochemically, phosphorylated neurofilament staining (SMI31) is 

performed for axons; myelin basic protein (MBP) or Laxol fast blue (LFB) is used to stain 

for myelin integrity (Fig. 1-6). Histological sections are examined by a Nikon Eclipse 80i 

microscope equipped with a 60× oil objective, and digital images will be captured with a 

Photometrics CCD digital camera using MetaMorph image acquisition software. A Zeiss 
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(Oberkochen, Germany) LSM510-META laser scanning confocal microscope is used for 

imaging axons of Ventral-lateral WM (VLWM) using the Z-stack mode (5 optical sections 

in the z-axis) using a 4x, 10x, and 20x (water immersion; numerical aperture, 1.2) lens 

with a 488 nm argon laser. 

 

Figure 1-6. Representative histological staining of the control (a, b, c) and injured (d, e, f) 

mouse spinal cords, (a, d) The SMI31 reacts with a phosphorylated epitope in 

extensively phosphorylated neurofilament in most mammalian species. (b, e) The Myelin 

basic protein (MBP) stains for the major constituent of the myelin sheath of 

oligodendrocytes in the central nervous system. (c, f) The Luxol fast blue stain (LFB) is a 

commonly used stain to observe myelin under light microscopy. It is the alcohol soluble 

counterpart of the water soluble alcian blue. The stain works via an acid-base reaction 

with the base of the lipoprotein in myelin replacing the base of the dye and causing a 

colour change. Under the stain, myelin fibers appear blue, neutrophil appears pink, and 

nerve cells appear purple. 

1.3.3 Computational Simulation  

Computational simulation, such as finite element analysis (FEA), is a numerical 

technique for finding approximate solutions of partial differential equations and integral 
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equations [37]. The solution is based on rendering the partial differential equations into 

an approximating system of ordinary differential equations to be numerically integrated 

using standard techniques, such as Euler's method and Runge-Kutta method. The FEA 

is a powerful tool for solving the partial differential equations over complicated domains, 

when the domain changes, when the desired precision varies over the entire domain, or 

when the solution lacks smoothness. In SCI, FEA offers a theoretical insight of the tissue 

level states of stress and strain to injury patterns and predicts injury outcomes [23, 25, 

38-40].  

FEA simulation in SCI research has been frequently conducted using 2D models 

due to the longitudinal uniformity of spinal cord structure [24, 30, 41, 42]. Recently, 

several 3D models have been proposed using simplified geometry of the spinal cord [23, 

25, 27]. The 3D model provides insight of the spatial distribution of stress and strain 

within the spinal cord. We contend that the current FEA model of SCI may be 

augmented by a noninvasive diagnostic technique that is capable of assessing structural 

and functional abnormalities in vivo. In this dissertation, a commercial FEA software 

package, Abaqus, was used for the contusion SCI simulation [37]. Abaqus is initially 

designed to address non-linear physical behavior in 1978. As a result, the package has 

an extensive range of material models such as hyperelastic material capabilities needed 

for tissue mechanics. The product is popular with academic and research institutions 

and has been extensively used in the automotive, aerospace, and industrial products 

industries.  

We started our FEA simulation from a simplified transverse 2D case, which 

assumed a tube uniform in the longitudinal direction. The impactor therefore became a 

slate of rigid solid body. The geometry and material property of the 2-D model was 



13 

simply a semicircle with hyperelastic and viscoelastic material (Fig. 1-7a). Another 2-D 

case was developed to show the von-Mises stress from sagittal view (Fig. 1-7b). The 

boundary conditions were encastred on the downward surface. The hyperelastic material 

allowed large deformation during the indentation. The 2D simulation provided an 

unsophisticated examination at the impact site though it failed to reveal the spatial 

transition. Further than the 2D cases, several more complex 3D cases were built to show 

the spatial distribution of the stress and strain. The indentation of a hyperelastic cube 

was first developed (Fig. 1-7c), following a case of a hyperelastic tube of gel placed on a 

rigid arc (Fig. 1-7d). This 3D case gave a closer look to simulate the indentation on the 

spinal cord in the vertebrae column. 

 

Figure 1-7. Progression of the indentation FEA modeling started from a (a) 2-D 

transverse case, (b) 2-D sagittal model, (c) 3-D cubic model, and (d) 3-D model of a tube 
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laying on top of an arc. These trials provided precious fundamentals and experience in 

developing a successful 3-D FEA SCI model. 

With the experience of building FEA indentation models, we then moved to a 

more complex 3-D modeling which considered more realistic elements in contusion SCI. 

Base on the in vivo high resolution diffusion tensor images, this model was constructed 

adapting the realistic spinal cord geometries. The model consisted of the mouse spinal 

cord, with distinct element sets for the GM and WM, the CSF, the dura mater, a rigid 

spinal cord column and a rigid impactor [23, 25]. The dura, CSF and spinal cord were 

merged together, while maintaining distinct boundaries. The dura and CSF were 

partitioned along boundaries of the spinal cord. The dura mater was meshed with 

reduced integration hexahedral elements, one-element thick, and comprised 1410 nodes 

and 336 elements. The GM, WM, CSF was meshed with wedge elements, comprised 

1530 nodes and 1840 elements. All parts had independent element sets with common 

nodes at the boundaries to maintain overall continuity with 1880 nodes and 2176 

elements in total. 

The spinal column is assumed to be a rigid body providing friction to the spinal 

cord. The coefficient of friction between spinal cord and spinal column was 0.6 and 0.15 

between spinal cord and impactor tip. The impactor was placed in direct contact with the 

exposed dura and prescribed a 0.8 mm displacement penetrating into the spinal cord 

with the speed of 0.2 m/s. The boundary condition for the spinal column was encastred. 

The setup of our preliminary FEA model is shown in Fig. 1-8. 
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Figure 1-8. The component of the spinal cord was defined based on in vivo DTI maps of 

a control mouse undergone laminectomy (a): dura (blue), CSF (gray), WM (black), GM 

(white), and central canal (gray at center). The mesh was generated on the defined 

component and displayed in transverse (b), longitudinal (c), and horizontal (e) and 

sagittal (f) cutout views. The region of green represents the spinal column. A friction 

between spinal column and spinal cord was assigned. A hole was extruded to expose 

the spinal cord simulating the effect of laminectomy.  

Impact tip trajectory was input by applying amplitude module as the moving tip of 

contusion SCI in Abaqus. The simulation successfully converges describing the process 

of impact. The resulting von Mises stress contour indicates that the stress concentrates 

at the impact epicenter. The representative results are shown in Fig. 1-9. 
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Figure 1-9. Isometric views of von Mises stress in the spinal cord: initial contact (a), at 

peak compression following simulation of a 0.2 m/s, 0.8 mm displacement impact 

experiment (b), transverse (c), coronal (d), and sagittal (e) views at the epicenter. The 

derived von Mises stress contour did not extend beyond the impact site elevating at the 

epicenter. Similar stress patterns were also seen in the recent published FEA study of 

rat [23]. 

1.4 Magnetic Resonance Imaging in SCI 

1.4.1 MRI of Spine Anatomy and Function 

Magnetic resonance imaging (MRI) is a noninvasive imaging method known to 

provide dynamic soft tissue contrast to visualize the underlying structure with exquisite 

details [43-48]. For example, physicians are able to differentiate SCI from 

musculoskeletal pain with the help of MRI [49]. MRI of the spine shows the anatomy of 

the vertebrae that make up the spine, as well as the disks, spinal cord and the spaces 

between the vertebrae through which nerves pass [50]. Furthermore, MRI is capable of 
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evaluating the extent of spinal cord compression and to stratify therapeutic interventions. 

Besides the clinical use for diagnosis of CNS diseases, functional assessments of SCI in 

animal models have also been reported [44, 45, 47]. The MR signal contribution from a 

specific tissue of interest may be emphasized by adjusting the MR parameters to 

dynamically change its contrast [51-53]. Multiple MR parameters, such as T1, T2, and 

diffusion weighted MRI (DWI) determined water apparent diffusion coefficient (ADC) and 

diffusion anisotropy, will change after tissue injury [54-58]. Among them, ADC is the 

most sensitive marker for early detection of tissue damage. For example, a decrease in 

ADC has been observed minutes after acute brain ischemia [59], correlating with 

ischemia induced cell edema.  

1.4.2 Diffusion MRI Assessing Spinal Cord WM Injury 

Diffusion MRI generates imaging contrast noninvasively based on measuring the 

random motion of water protons. The measured diffusion coefficient is anisotropic in the 

spinal cord WM. The diffusion anisotropy of WM tracts has been considered as reflective 

of its integrity. Diffusion MRI of the rodent SCI model has been previously described [58, 

60-62]. Its ability to assess the extent of normal WM has been demonstrated to 

effectively evaluate the secondary injury and to predict the functional outcome in the 

rodent model of SCI [11]. It is ultimately the best way to assess the suitability of an injury 

model for FEA analysis of SCI in this dissertation.  

1.4.3 Animal Preparation for in vivo DTI 

In order to obtain high resolution diffusion MRI, as well as to avoid physiological 

rundown during long scans, a custom-made animal holder has been designed and built 

in our lab (Fig. 1-10). The animal is first anesthetized with an isoflurane and oxygen 
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mixture (5% for induction and 0.7-1.5% for maintenance). Core body temperature is 

maintained at 37°C with a circulating warm-water pad. The respiratory exhaust line is 

connected to a pressure transducer to synchronize DTI data collection with the animal's 

respiratory rate. An actively decoupled surface coil covering vertebral segments T6 - T12 

(15 mm × 8 mm) was used as the RF receiver. A 9-cm i.d. actively decoupled Helmholtz 

coil was employed as the RF transmitter [32]. All experiments were conducted on a 4.7 T 

magnet (Oxford Instruments, Abingdon, UK) equipped with a 15-cm inner diameter, 

actively shielded Magnex gradient coil (60 G/cm, 270 μs rise time). The magnet, gradient 

coil, and IEC gradient power supply was interfaced with a Varian DirectDrive console 

(Varian, Inc., Palo Alto, CA) with a Linux operating system. 

 

 

Figure 1-10. (a) Spinal cord restraining device and RF coil configuration for in vivo DTI. 

(b) Sagittal view of the T1/T2 weighted image of mouse spinal cord.  

1.5 Dissertation Outline 

This dissertation is consisted of 6 chapters. Chapter one gives an overview of the 

basic methodology involved in the proposed work. Chapter two describes the basic 
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principle of diffusion tensor MRI. Chapter three to five describe my research projects 

addressing three specific aims:  

Aim 1: To improve the imaging efficiency of in vivo diffusion MRI allowing high resolution 

diffusion spinal cord imaging improving throughput.  

Aim 2: To study the capability of using DTI injury biomarkers to evaluate the role of 

myelin sheath in functional recovery in SCI.  

Aim 3: To correlate the contusion injury patterns of in vivo MRI with the biomechanical 

parameters generated using FEA to better understand the mechanism of concomitant 

distal vascular injury and proximal axonal injury in the acute SCI. 

In chapter three, I describe a simplified two-direction diffusion weighted MRI to 

effectively derive axial and radial diffusivities without the need of full tensor. To further 

improve the temporal resolution to further increase the throughput, I implemented a 

multiple-echo spin echo diffusion weighting sequence in Varian scanners. Both were 

applied to the project in chapter five. In chapter four, in vivo DTI biomarkers were 

employed to investigate the role of myelin in functional recovery after contusion SCI with 

comprehensive immunohistochemistry validation. Chapter five combines in vivo DTI with 

the biomechanical simulation to investigate how the axon and vascular injuries relate to 

biomechanical parameters.  
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Chapter 2. The Principle of Diffusion MRI and Its Application on 

Spinal Cord Injury 

2.1 The MRI Basics 

Protons of tissue water are the most abundant nuclear spins measured by MRI 

[63]. A MR image is proton densities measured under spatial encodings at different 

orientations. One of the commonly used pulse sequences is spin echo (SE) sequence 

(Fig. 2-1). The signal intensity (S0) may be expressed as:
  

, where Mz is longitudinal magnetization, TR is the repetition time, TE is the echo time, 

T1 is the spin-lattice relaxation time, and T2 is the spin-spin relaxation time. 

 

Figure 2-1. A schematic representation of spin echo pulse sequence. In this diagram, RF 

is the radio frequency pulse; a slice selective 90o pulse followed by an 180o refocusing 
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pulse. GS, GF, and GP are the slice selective, frequency encoding and phase encoding 

gradients, respectively. "Echo" represents the signal received from the slice of interest. A 

short TR and short TE will give a T1-weighted image, a long TR and short TE will give a 

proton density image, and a long TR and long TE will give a T2-weighted image. 

The diffusion-weighted imaging is widely used as a noninvasive and sensitive 

imaging modality for early detection of CNS injury [33, 58, 64, 65]. Herein, the 

measurement of diffusion coefficient is briefly reviewed.  

2.2 Measuring Diffusion Using MRI  

Diffusion is a physical process that involves the translational movement of 

molecules via thermally driven random Brownian motion [66-68]. The mobility of the 

molecules can be characterized by the diffusion coefficient, D, which is related to the 

root mean square (RMS) displacement of the molecules over a given time. The contrast 

of diffusion MRI originates from the random microscopic motion of water protons (i.e., 

water diffusion). The widely used Stejskal-Tanner pulse sequence places two diffusion 

gradient pulses along the direction measuring diffusion on each side of the 180° 

refocusing pulse in the SE sequence (16, 29–31). In a diffusion measurement, the 

Larmor frequencies are made spatially dependent by applying a magnetic field gradient 

along one direction (Fig. 2-2).  
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Figure 2-2.  A schematic representation of the one-direction (x) Stejskal-Tanner diffusion 

pulse sequence. Diffusion gradients Gx are applied after 90° pulse and on both sides of 

the 180° pulse in x direction. The gradients shown in the figure are trapezoidal, where  

is the time between the onset of a trapezoidal pulse and the end of its plateau,  is the 

rise time of the trapezoidal ramp, and  is the time between the onset of the first and 

second gradient pulses. The signal is read out as an echo sampled at TE. 

When the gradient is applied in the x direction, the Larmor frequency varies with 

position in the x direction. An identical gradient is placed on each side of the 180° 

refocusing pulse, so spins that have not moved will realign at the echo time [69]. If spins 

diffuse randomly, their precession frequency after the refocusing pulse will be different 

from the frequency before the pulse, and they will not realign perfectly. The faster spins 

diffuse in the x direction during the spin echo period, the more signal intensity decreases. 

The amount of signal loss depends on the strength and duration of the magnetic field 

gradient (represented by the letter b) and on the diffusion coefficient of the spin (D). The 

signal intensity (S) of the diffusion weighted image in homogeneous, isotropic systems 

decreases exponentially as b increases.  
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, where is the signal intensity without diffusion-sensitizing gradients; includes 

contributions from proton density and T2 relaxation. D is the diffusion coefficient, and b 

is the diffusion weighting factor. The b-value is determined by the strength and duration 

of the magnetic field gradient, and will be discussed in section 2.3. In biological systems, 

signal decay appears to be biexponential (34–37), but monoexponential decay is a 

reasonable model for b factors up to 2,500 s/mm2. The D can be calculated by making 

measurements at a low b factor, b1, and a higher b factor, b2, with all other pulse 

sequence parameters identical. 

 (2-3) 

  

 (2-4) 

  

 (2-5) 

  

 (2-6) 

2.3 Calculation of the b Factor with Gradient in One Dimension 

If we consider a diffusion measurement in a static B0 field, the diffusion-

sensitizing gradient,      , is applied in a single direction. The spatially dependent phase 

shift, , of a spin over time t is: 
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where  is the gyromagnetic ratio, and       is the location of the nuclear spin [70]. The 

first term represents the phase accrual due to the static B0 field, and the second term is 

due to the effect of a magnetic field gradient. The phase term of the second part is 

proportional to the strength of the field gradient, the duration of the gradient, and the 

spatial location of the spin. It is obvious that the magnetic field gradient can be used to 

locate a spin by means of the difference in the Larmor frequency. After the first diffusion 

weighting gradient (before 180 RF pulse), the accumulative phase shift : 

 (2-8) 

After 180 RF pulse, the second diffusion weighted gradient  will induce an inverse 

phase shift of the proton spin:  

 (2-9) 

During the spin echo period (TE), the total phase shift resulting from the diffusion- 

sensitizing gradient, 

 (2-10) 

If protons move between the two diffusion-sensitizing applications, the second gradient 
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variance of a Gaussian phase distribution, , which is equal to the product bD in 

equation (2-2). For the trapezoidal gradient scheme shown in Fig. 2-2 with finite ramping 

time: 

 (2-11) 

The value of the measured diffusion coefficient is dependent on the diffusion weighting 

parameters, such as the diffusion gradient strength and timing,  and , as well as the 

direction of the applied gradients.  

On account of the diffusion measurements along multiple directions, the accurate 

calculation of a b matrix for an imaging sequence requires the inclusion of all gradients 

including the static background, the imaging, and the diffusion weighting gradients. This 

makes the calculation of b matrix a complicated task. The imaging and background 

gradients have similar effects on the measurement. The following discussion refers both 

as imaging gradients.  

2.4 Diffusion and Apparent Diffusion Coefficient 

In an isotropic environment, such as pure water, diffusion coefficient of a 

molecule is the same in all directions. In an anisotropic environment, such as biological 

tissues, diffusion coefficient of a molecule is directionally dependent [64, 71, 72]. The 

underlying cellular microstructure of tissues complicates the situation and influences the 

measured diffusion coefficient of the diffusing molecules (e.g. intracellular, extracellular, 

neurons, glial cells, axons) within the tissue.  

The diffusion coefficient measured by nuclear magnetic resonance (NMR) is best 
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known as the apparent diffusion coefficient (ADC). It takes into account that it is not a 

true measure of the „intrinsic‟ diffusion, but rather that it depends on the interactions of 

the diffusing molecule within the cellular structures over a given diffusion time. By 

permitting enough time for the diffusing molecules to sample the local environment, the 

microstructural characteristics of the tissue can be inferred from the measured diffusion 

properties. 

2.5 Diffusion Tensor Model and Diffusion Tensor Images 

2.5.1 Diffusion Tensor Model 

The ADC value measured using the Stejskal-Tanner diffusion sequence depends 

on the direction of the sensitizing gradient [71, 73, 74]. The anisotropic diffusion as seen 

in biological tissues is characterized by a second ranked tensor. It can be described by 

an axially symmetric 3  3 matrix with six unknown parameters. Thus, six independent 

diffusion weighting measurements with independent and non-collinear gradients would 

be necessary to derive the diffusion tensor and the anisotropic diffusion characteristic 

[70, 75, 76].  

2.5.2 Calculation of b Matrix with Multiple Gradients 

A tensor is not "a matrix" or an "array", but a tensor can be represented by a 

matrix of its components with respect to a reference coordinate. The gradient direction 

must be similarly specified by three orthogonal components [66, 70, 75]. Thus, the 

diffusion weighting factor is also typically described by a 3×3 b matrix. The orthogonal 

directions are usually taken to be the x, y, and z axes of the magnet‟s gradient system 

(laboratory frame in Cartesian coordinates). The 3D b matrix consists of six distinct 

terms: bxx, byy, bzz, bxy, byx, bxz, bzx, byz, and bzy. To calculate the signal intensity, 
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the exponent bD in Eq. (2-2) is replaced by the generalized dot product between the b 

matrix and the diffusion tensor D: 

;  (2-12) 

 (2-13) 

 (2-14) 

, where b and D are matrices of the components in Cartesian coordinates. In the 

presence of multi-diffusion gradients and imaging gradients (i.e., background and 

imaging gradients), there are three gradient terms in the overall b matrix: Bd the diffusion 

gradients; Bi the imaging gradients; and Bdi the cross-terms involving both diffusion 

gradients and imaging gradients. The Bd terms are the desired diffusion measurement 

terms. The Bi terms also appear in images of different b values, and therefore will be 

canceled in the ratio S1/S2.  

2.5.3 DTI: Tensor Calculation 

The diffusion tensor can be calculated from DWI data collected with diffusion-

sensitizing gradients in six or more directions. For an experiment of total N diffusion 

measurements, M with b > 0 and N - M with b = 0. One approach is to represent the six 

distinct tensor elements and the logarithm of the b = 0 signal intensity as a seven-

element column vector α [75]: 
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, where  is the signal intensity with b = 0. Each b matrix is represented by a six-

element row vector bi: 

 (2-16) 

, the seven-element row vector Bi:  

 (2-17) 

These row vectors are combined into one large N × 7 B matrix: 

 (2-18) 

In the absence of noise, logarithms of the predicted signal intensities are given by an N 

× 7 column vectors: 

 (2-19) 
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 (2-21) 

The noisy data for each acquisition can then be expressed as:  

 

           (2-22) 

, where η is a noise vector. 

2.5.4 Measurement of Anisotropy 

The diffusion tensor in laboratory frame, D, can be transformed into a local frame 

by diagonalization to derive eigenvectors and eigenvalues:  

 (2-23) 

, where v is the principal directions ( ) and Λ can be used to represent the 

magnitudes of diffusivities ( ) along the principal directions. 

Many applications require a metric to assess diffusion anisotropy. Thus, a scalar 

of “diffusion anisotropy index” or DAI indicates the degree of anisotropy has been 

adopted to quantitatively evaluate WM integrity. Various forms of DAI have been 

employed. The most widely used is fractional anisotropy (FA), defined as the standard 

deviation of the three eigenvalues normalized to the tensor magnitude, Eq. [2-25]. The 
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relative anisotropy (RA), standard deviation of eigenvalues normalized to ADC, Eq. [2-

26], has also been used in the literature [70, 77]. 

    
                                

    
    

    
  

 (2-24) 

, where                 , is mean ADC. FA ranges from 0 (isotropic) to 1 

(anisotropic). 

    
                               

     
 (2-25) 

, where RA ranges from 0 (isotropic) to  (anisotropic). 

2.6 Beyond Apparent Diffusion Coefficient 

2.6.1 ADC and CNS WM Injury 

Water diffusion is sensitive to the underlying tissue microstructure providing a 

unique measure to assess the CNS tissue integrity. For example, the reduction in the 

ADC has been observed within minutes after the onset of cerebral ischemia [78], 

reflecting the underlying cytotoxic edema (cellular swelling). Since the conventional MRI 

parameters such as T1, T2 and proton density change relatively little at the acute phase 

of stroke, the decreased ADC has been widely employed to identify cerebral infarction in 

stroke patients [78]. The increased ADC has also been observed in WM lesions of 

multiple sclerosis (MS) patients [70, 79]. 

Characterization of the relation between MR diffusion measurements derived 

apparent diffusion coefficient and anisotropy (i.e. directional dependence) and the 

2
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underlying microstructure of CNS tissues has been a hotly pursued research area. 

Several biophysical mechanisms have been considered as the cause of anisotropic 

diffusion and its potential utility in the nervous system. However, a unified theory of 

connecting diffusion anisotropy and underlying tissue pathology has not been 

established [71].  

2.6.2 DTI in Rodent SCI  

For the application of DTI to detect pathophysiology, axial diffusivity (||) and 

radial diffusivity () derived using DTI have been used to assess the axonal and myelin 

damage in contusion SCI [32, 33, 58, 73, 74, 80-86]. They are defined as: 

 (2-26) 

, 
(2-27) 

where 
 
is the principal eigenvalue and  are the second and third eigenvalue of 

the diffusion tensor.  

In VLWM region, a decreased || in the hyper-acute phase and an increased λ in 

the chronic phase have been reported in the rodent contusion SCI. In this dissertation, 

the correlations of DTI biomarkers, biological outcome and underlying injury mechanism 

of contusion SCI is investigated. 

Immediately after contusion SCI, the GM to WM contrast was lost in || maps at 

the impact epicenter (Fig. 2-3). The decreased || reflects axonal damage in VLWM 

revealing temporal and spatial progression of the injury [32, 33, 58, 80]. 
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Figure 2-3. RA and || maps of (a) naïve and (b) injured mouse spinal cords at 

hyperacute phase. RA maps provide good contrast between GM and WM to distinguish 

the region of VLWM in control mice. GM-WM tissue contrast loss was observed in four 

slices of || map after injury (marked in red box), due to significantly decreased || (lower 

panel). 

Axonal injury is evidenced by the decreased || and microscopic findings in 

yellow fluorescent protein (YFP) mice. Swelling, beading, and fragmentation of YFP+ 

axons were observed in the injured cords, consistent with the decreased || (Fig. 2-4). 

Our findings suggest that || is a sensitive to axonal injury in the mouse model of 

contusion SCI allowing determination of the residual VLWM in the acute phase (Fig. 2-5).  
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Figure 2-4. Correlation between (a) || and (b) YFP axon integrity. After contusion SCI at 

T9 vertebral level, acute || maps suggest spatially dependent axon disintegration as 

evidenced by the decreased ||. Confocal microscopic images taken from the region 

marked in || maps clearly demonstrate the correlation between axonal integrity and || 

(numbers in b) where comparable || were seen in control cords. In contrast, at the 

injured cord, axons appear incoherently aligned with fragmented cytoskeletons. The 

extent of || decrease correlated with the extent of axonal swelling, beading, and 

cytoskeletal fragmentation.  

 

Figure 2-5. Properties of anisotropy (a) and || (b) in the acute SCI have potential to 

identify the regions of total WM and the axonal injury immediately after injury. The RA is 

mostly preserved in VLWM due to the unchanged λ, however, the || is sensitive to 

reflect the axonal integrity in the acute SCI.  

2.6.3 Determination of Residual VLWM in Sub-Acute Phase 

Except using || to determine the axonal integrity in the acute phase, we also 

demonstrated that RA could be used to reflect the integrity of the residual myelinated 

axons in the sub-acute phase. The RA determined residual VLWM in sub-acute phase is 
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able to correlate with the chronic neurological outcomes assessed by the hind limb 

function.  

RA maps at acute (~3 hrs) and sub-acute (7 days) phases show the clear 

evolution after SCI (Fig. 2-6a) [33, 58]. After the segmentation of the residual VLWM, 

spatial volumes of residual WM for acute, sub- acute injury cord and control cord were 

calculated and normalized by control cord (Fig. 2-6b) to take into account of the effect of 

atrophy of the injured cords. The residual VLWM was determined by applying threshold 

of mean ± 2×SD of RA from control VLWM. 

 

Figure 2-6. The quantified RA of injured cord 7 DPI showed statistically significant 15 % 

decrease from the controls. (a) The RA map from the injured cord 7 DPI showed 

significant residual VLWM volume reduction. (b) Acutely, the preservation of RA in the 

injured cords results in no difference in residual WM compared to the control. 

We further examined the acute and sub-acute residual VLWM extent for the 

prediction of animal‟s long-term behavioral outcomes (Fig. 2-7). At the acute phase, 

anisotropy is largely preserved in the VLWM resulting in overestimating residual VLWM 

volume for accurate assessment of its correlation with animal‟s long term behavior. 
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However, at the sub-acute phase (7 DPI), we observed an excellent correlation between 

residual VLWM and the chronic (21 DPI) BMS score. Our results suggest that the 

anisotropy map derived from DTI measurements has potential to predict the long-term 

behavioral outcomes by accurately estimating the extent of the residual VLWM sub-

acutely (7-DPI) but not at the hyper-acute phase (less than a few hours). 

 

Figure 2-7. The normalized residual VLWM of acute (~3 hrs) and sub-acute (7 DPI) 

injury cord, including control, are shown with chronic phase (21 DPI) BMS. The 

correlation of residual VLWM to BMS is shown for between acute and control and 

between sub-acute (7 DPI) and control. 
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Chapter 3. Improving Image Quality of Mouse Spinal Cord 

Diffusion MRI 

This Chapter represents a modified version of a manuscript initially published in Journal 

of Neurotrauma. (Tu TW, Kim JH, Wang J, Song SK, “Full tensor diffusion imaging is not 

required to assess the white matter integrity in mouse contusion spinal cord injury.” 

Journal of Neurotrauma 2010 Jan; 27(1):253-62.) 

3.1 To Accelerate Scan: Assessing VLWM Integrity in Contusion SCI with 

Two-Directional DWIs 

Abstract 

In vivo DTI derived indices have been demonstrated to accurately quantify WM 

injury after contusion SCI in rodents. In general, a full diffusion tensor requires the 

acquisition of diffusion weighted images (DWI) along at least six independent directions 

of diffusion sensitizing gradients. Thus, DTI measurements of rodent central nervous 

system are time consuming. In this study, diffusion indices derived using the two-

direction DWI (parallel and perpendicular to axonal tracts) were compared with those 

obtained using six-direction DTI in a mouse model of SCI. It was hypothesized that the 

mouse spinal cord VLWM tracts, T8 – 10 in this study, aligned with the main magnet axis 

(z) allowing the apparent diffusion coefficient parallel and perpendicular to the axis of the 

spine to be derived with diffusion weighting gradients in the z and y axes of the magnet 

coordinate respectively. Compared with six-direction full tensor DTI, two-direction DWI 

provided comparable diffusion indices in mouse spinal cords. The measured extent of 

spared VLWM after injury estimated by anisotropy indices, using both six-direction DTI 

and two-direction DWI were in close agreement and correlated well with histological 



37 

staining and behavior assessment. The results suggest that the two-direction DWI 

derived indices may be used, with significantly reduced imaging time, to accurately 

estimate spared VLWM in mouse SCI. 

3.1.1 Introduction 

SCI results in devastating functional disabilities in patients. Due to the interference 

of spinal shock with functional assessment of SCI patients in the clinical setting, it is 

important to develop a noninvasive imaging technique for acute evaluation of spinal cord 

integrity after injury. Diffusion tensor imaging (DTI) has been applied in rodent models of 

SCI to assess the spinal cord VLWM tract integrity [33, 35, 58, 61, 62, 87-91]. The extent 

of spared VLWM may be estimated noninvasively using the DTI derived directional 

diffusivity, i.e. axial (||) and radial diffusivity (λ), following injury [33, 35, 88]. 

Multiple directions of diffusion weighting gradients are needed to accurately reflect 

WM structure in the human brain. The optimal number and orientations of unique 

gradients in estimating the diffusion tensor quantities has been extensively researched 

[92-94]. In general, when time is limited, at least six diffusion weighted images (DWI) are 

required to derive the diffusion tensor. The WM structure of spine is less complicated 

than that of the brain. Thus, it would be possible in the spine to choose a simpler 

sampling scheme, to minimize the scan time, while still obtaining adequate information 

to indentify WM structure [87, 90, 95, 96].  

Several ex vivo studies have characterized SCI by correlating apparent diffusion 

coefficient (ADC) values with the degree of injury [88, 89, 91, 95]. Ford et al. [91] 

measured diffusion coefficients along the longitudinal (z) and transverse (y) axes. They 

found significant decreases in longitudinal ADC value and increases in transverse ADC 
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value at 7 days after injury. Based on the assumption of cylindrical symmetry of the 

excised spinal cord, Gulani et al. [95] showed that four of the six unique elements (Dzz, 

Dxx, Dyy, Dxy) in the diffusion tensor were sufficient to study the spinal cord. Nevo et al. 

[88] and Schwartz et al. [89] used two orthogonal diffusion gradient directions (ADC|| and 

ADC┴) to demonstrate that the resulting diffusion anisotropy index (AI) was a simple and 

scalable parameter that documented the tissue degeneration and treatment effect after 

injury. Ex vivo samples offer the advantage of avoiding physiological noise allowing a 

more controlled data acquisition. However, fixed tissues suffer from complications 

including anatomic distortion resulting from fixation and the significantly reduced ADC 

values [90, 97].  

Fraidakis et al. [61] used longitudinal (ADCz) and transverse (ADCx or ADCy) 

diffusion gradients to assess the integrity of the rat spinal cord after injury in vivo. 

Significantly decreased longitudinal ADCz and increased transverse ADCx were 

observed. A quotient Qz/x (= ADCz/ADCx) was proposed as a marker reflecting the 

severity of WM tract degeneration. Clark et al. [96] showed that for a cylindrically 

symmetric spinal cord, appropriately oriented in the imaging gradient axes, it is possible 

to estimate the principal diffusivities and rotationally invariant measures by using a pair 

of diffusion-weighted scans. Gullapalli et al. [98] reported that the principal diffusivities of 

diffusion tensors reflect morphologic differences between WM tracts that are not well 

appreciated with either the trace (Tr) or the fractional anisotropy (FA). However, to the 

best of our knowledge, no studies to date have systematically compared measurements 

between simplified gradient-encoding schemes, such as two- or four-direction DWI, and 

the full tensor DTI scheme with appropriate validation using, the “gold-standard,” 

histology.  
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In the present study, the two-direction DWI and six-direction DTI measurements 

were employed to evaluate the extent of spared VLWM in mice after SCI. Results were 

correlated with histologicallly determined spared VLWM (Laxol Fast Blue, LFB) and open 

field tests of hindlimb locomotor function, evaluated using the BMS [31].  

3.1.2 Materials and Methods 

Spinal Cord Injury and Behavioral Assessment 

All surgical preparations and pre- and post-surgical care were provided in 

accordance with Public Health Service Policy on Humane Care and Use of Laboratory 

Animals and Guide for the Care and Use of Laboratory Animals (Institute of Laboratory 

Animal Resources, National Research Council, 1996), and with the approval of the 

Washington University Animal Studies Committee. 

Twelve 10 - 12 weeks old female C57BL/6 mice, weighing 18 - 22 g (Harlan Inc., 

Indianapolis, IN), were anesthetized with an isoflurane/oxygen mixture. Seven mice 

received mild contusion SCI utilizing a modified Ohio State University (OSU) impactor 

after dorsal laminectomy at the T9 vertebral level. The remaining five mice underwent a 

laminectomy without contusion and served as the control. The surgical site was closed in 

layers with 4-0 vicryl and nylon sutures. Injections of enrofloxacin (2.5 mg/kg) and 

lactated ringers (1.5 ml) were given subcutaneously. Manual bladder expression in 

injured mice was performed twice daily throughout the duration of the study [9]. Softened 

rodent chow was provided. Body weights were measured and compared with 

preoperative weight daily. High caloric nutrient paste (Nutrical; Evsco, Inc., Buena, NJ) 

was given to the mice to maintain body weights at 90% of preoperative values. All mice 

that received impact injuries exhibited partial paralysis with some spontaneous hindlimb 
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movements. In contrast, the sham-operated animals exhibited essentially normal over-

ground locomotion. All injured mice were evaluated by BMS scores daily from 1 to 14 

days after injury.  

Animal Preparation for in vivo Diffusion MRI 

Mice were anesthetized with an isoflurane/oxygen mixture (4.5 - 5% isoflurane for 

induction and 0.7 - 1.5% isoflurane for maintenance). Core body temperatures were 

maintained at 37°C with a circulating warm-water pad. The inhalant anesthetic was 

delivered to the mice through a custom-made nose cone. The respiratory exhaust line 

was connected to a pressure transducer to synchronize DTI data collection with the 

animal's respiratory rate [32]. 

An MRI-compatible device was utilized to stabilize the vertebral column as reported 

previously [32]. An inductively coupled surface receiver coil covering vertebral segments 

T6 - T12 (15 mm × 8 mm) was used as the receiver. A 9 cm (inner diameter) Helmholtz 

coil was employed as the RF transmitter. The alignment of spine segments to the 

magnet z-axis was carefully adjusted and confirmed by scout images. The entire 

preparation was placed in a 4.7 T magnet (Oxford Instruments plc, Abingdon, UK) 

equipped with a 15 cm (inner diameter), actively shielded Magnex gradient coil (60 G/cm, 

270 μs rise time). The magnet, gradient coil, and IEC gradient power supply was 

interfaced with a Varian DirectDrive console (Varian, Inc., Palo Alto, CA). 

in vivo Diffusion Tensor Imaging 

In vivo diffusion measurements were conducted at 14 days after injury for 

comparing injury severities among animals after stable functional recovery was reached. 

A spin-echo sequence, modified by adding Stejskal-Tanner diffusion-weighting gradient 
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[99], was used. Diffusion weighted images for both six- and two-direction diffusion 

measurements were performed in an interleaved fashion. The following parameters were 

used for all measurements: spin echo time (TE) = 38 ms, time between the application of 

gradient pulses () = 21 ms, diffusion gradient on time (δ) = 7 ms, diffusion gradient 

amplitude = 12.5 G/cm, number of averages = 8, field of view (FOV) = 1 x 1 cm, and 

data matrix = 128 x 128 (zero-filled to 256 x 256). The repetition time (TR ≈ 1.2 s) was 

varied according to the period of the respiratory cycle (~270 ms). A single line of k-space 

from each of three different image slices was collected with every breath.. Two diffusion-

sensitizing, b values of 0 and 1.02 ms/μm2, were used. Nine transverse images (slice 

thickness = 0.75 mm) were collected covering vertebral segments T8 - T10. 

Six diffusion sensitizing gradients were employed, corresponding to the 12 cube 

edges, for DTI analysis: (Gx,Gy,Gz) = (1,1,0), (1,0,1), (0,1,1), (-1,1,0), (0,-1,1), (1,0,-1). 

Three eigenvalues (λ1, λ2, λ3) were calculated from the diffusion tensor matrix. Mean 

diffusivity (<D>) was calculated by <D> = (λ1+λ2+λ3)/3. Axial diffusivity was defined as λ|| 

=λ1. Radial diffusivity was defined as λ┴ = (λ2+λ3)/2. The scaled relative anisotropy (Asd) 

was calculated as: 

Asd ranges from 0 to 1, for direct comparison with the anisotropy index (AI), were 

derived using the two-direction scheme [100]. 

Two diffusion sensitizing gradients were employed for the two-direction DWI: 

(Gx,Gy,Gz) = (1,1,0), and (0,0,1). Apparent diffusion coefficient parallel (D||) and 

perpendicular (D┴) to axonal tracts as well as the AI were directly obtained from the 

    
                              

         
 (3-1) 
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relationship of signal intensity (Sn(b)) to the b value given by equations (3-2) and (3-3) 

(independent of tensor analysis).  

 
(3-2) 

 (3-3) 

The AI was derived according to Eq. (3-4)  

 

(3-4) 

All parameters were derived from diffusion-weighted images using software written in 

Matlab (MathWorks, Natick, MA, USA). Three slices were averaged to obtain the value 

of each vertebral segment. The acquisition time was approximately 3.0 hrs for the six-

direction DTI and 1.3 hrs for the two-direction DWI. 

Region of Interest Analyses 

The boundary between VLWM and ventral gray matter (VGM) was identified on Asd 

and AI maps. Regions of interest (ROIs) encompassing the total VLWM were manually 

delineated for VLWM (control and injured cords) and VGM (control cords only) on 

anisotropy maps. The anisotropy distributions of both VGM and VLWM were obtained 

from five sham-operated control animals for a histogram analysis of Asd and AI 

respectively. The mean and standard deviation (SD) were determined and a threshold 

(mean ± 2 × SD) was used to define the spared VLWM in contusion injured cords on 

both Asd and AI maps (designated by ROIAsd and ROIAI) (Fig. 3-1). Spared VLWMs of 

injured cords were then normalized to the total VLWMs of control cords to remove the 
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atrophic effect of the injured cord for the comparison with the gold-standard histology 

defined spared VLWM extent.  

 

Figure 3-1. The manual (black) and threshold (white) segmentation of normal appearing 

VLWM in Asd (a) and AI (b) maps of a control cord. Two normal distributions of the pixel 

numbers of anisotropy were observed in manually defined VGM and VLWM in Asd (c) 

and AI (d) map. The mean ± 2×SD (95.4% confidence interval) of VLWM was used as 

threshold to define the region of normal appearing VLWM in the control and injured 

spinal cords, designated as ROIAsd and ROIAI. 

Overlap Index of ROIs 

To show that two- and six-direction diffusion measurements were detecting the 

same region of spared VLWM, an overlap index comparing ROIAsd and ROIAI was 

calculated to quantify the degree of overlap by: 
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,where ROIAsd ∩ ROIAI are the overlapping pixels. The formula estimates the mean 

overlap index for the partitions in ROIAsd and ROIAI. Kung et al. [101] performed a Monte 

Carlo simulation suggesting that this formula is less sensitive to the variation of ROI 

sizes (i.e. best suited for comparing different-sized ROIs). The index ranges from 0% 

(completely mismatching) to 100% (completely overlapping).  

Behavioral Assessment of Hindlimb Locomotor Function 

Animals were scored using BMS over the 14-day recovery period [31]. The test is 

taken by two or more evaluators for a scoring system from 1 (worst) to 9 (best), plus a 

subscore tally from 0 (worst) to 11 (best). Mouse hindlimb locomotor function is scored 

by angle movement, plantar placement, stepping, coordination, paw position, trunk 

instability, and tail position. In this study, the mild contusion SCIs resulted in BMS scores 

ranging from 6 to 9 on the injured mice and 9 on the laminectomy controls at 14 days 

after injury. 

Tissue Preparation and Histological Analysis  

Immediately after imaging, mice were perfusion fixed under deep anesthesia with 50 

mL of 0.1 M phosphate-buffered saline (PBS) (pH 7.4) followed by 200 mL of 0.1 M PBS 

containing 4% paraformaldehyde (pH 7.4). Following fixation, the spine was excised, left 

in the fixative overnight, decalcified for 48 hrs, embedded in paraffin, and sectioned on a 

sliding microtome (5 μm) with the decalcified vertebral column intact. For the 

examination of the extent of spared VLWM, LFB (Sigma, Saint Louis, MO) staining was 

conducted. After deparaffinization, rehydration, and immersion in 1% LFB in 95% 
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ethanol and 0.5% acetic acid, the excess stain was rinsed off and differentiated using 

0.05% LiCO3 solution (56°C). Tissue was then mounted for microscopic inspection after 

completion of differentiation.  

Stained sections at the injury epicenter were digitally imaged using a Nikon Eclipse 

80i microscope equipped with a 4× objective, and the images were captured with a 

Photometrics CCD digital camera using MetaMorph image acquisition software 

(Universal Imaging Corporation, Downington, PA). All images were captured within 1 

week following completion of histological staining. The area of positive staining was 

quantified by the pixel grayscale value threshold of 95.4% of the intensity from the intact 

nerve root. Spared VLWM area was then normalized to the total VLWM area. All images 

were calculated using NIH ImageJ v1.37 (Rasband, 1997-2005). All slides were 

assessed blindly with respect to the injury.  

Statistical Analysis 

Statistical analysis was performed with SAS version 9.1.3 (SAS Institute Inc., Cary, 

NC). Data were expressed as mean and standard deviation (SD). Paired student's t-test 

were performed comparing two- and six-direction diffusion measurements with p < 0.05 

regarded as statistically significant. Correlations between normalized normal appearing 

VLWM areas determined by AI, and Asd were examined with Pearson correlation using 

7 injured animals, each with 9 slices. The images correlated with LFB and BMS were 

obtained from one slice at the injury epicenter. Correlation coefficient (r) with p-value is 

reported. 
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3.1.3 Results 

Diffusion index maps, acquired from both DTI and DWI at 14 days after injury, 

provide similar tissue contrast in the control cords (Fig. 3-2). WM appeared bright in both 

Asd and AI maps. The less anisotropic gray matter appeared dark. In both maps, the 

distinct border between GM and WM enabled manual segmentation of dorsal WM 

(DWM), GM, and VLWM. Furthermore, the cerebrospinal fluid (CSF) is hyperintense in 

both λ┴ and D┴ maps facilitating segmentation of the parenchyma of the cord. Unlike the 

more complete diffusion information provided in the full tensor image, the two-direction 

DWI scheme only measured the diffusion perpendicular and parallel to the spinal cord 

tract. The alignment of the spinal cord to the magnet z-axis was reaffirmed by the 

consistency between the directions of principal diffusion in DTI (Fig. 3-2g) and the 

magnet z-axis.  

 

Figure 3-2. Representative control spinal cord images of T9 vertebra level obtained from 

DTI and DWI: diffusion anisotropy, Asd and AI (a, b); diffusivity transverse to the VLWM 

tract, ┴ and D┴ (c, d), and diffusivity parallel to the fiber tract, || and D||. (e, f). Cerebral 

spinal fluid (CSF) is clearly seen in the ┴, D┴, || and D|| maps enabling the identification 

of the cord parenchyma. Regions of DWM (DWM), VLWM and GM are readily visualized 

in the anisotropy maps, as well as in all other diffusion index maps. The manually 
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segmented ROI of GM and VLWM were used to quantify the group-averaged 

parameters of each region. The pixel-based whisker plots show the principal diffusion 

direction obtained by DTI scheme (g, with Asd background) based on the calculation of 

tensor eigenvectors in each pixel.  

The group-averaged diffusion parameters of the manually segmented VLWM and 

GM in the control spinal cord are listed in Table 3-1. Consistent with our previous reports, 

λ|| was higher in VLWM than in GM and λ was higher in GM than that in VLWM [32, 33, 

58]. The same trend was also seen in D|| and D. Overall, λ|| and D|| were approximately 

seven-fold the values of λ┴ and D┴ in VLWM, and two-fold those in GM. D|| was slightly 

lower than λ|| in both GM and VLWM (~10%, p < 0.01), while D┴ and λ┴ had no 

significant difference. AI was slightly higher than Asd in VLWM (~3%, p < 0.05). 

However, there was no difference between AI and Asd in GM except in the T10 vertebral 

segment (~10%, p < 0.05).  

Table 3-1 The group-averaged diffusion parameters from six-direction DTI and two-

direction DWI scheme of the manually segmented VLWM and GM in the control spinal 

cord. 

 

In the injured cord, the contrast between VLWM and GM were reduced in the 

diffusion index maps of both schemes (Fig. 3-3). The evolution of diffusion parameters 

from T8 to T10 was monitored by manual ROI analysis. The trends of AI, D||, and D┴ 

paralleled that of Asd, λ||, and λ┴ (Fig. 3-4). Both DTI and DWI detected a similar trend of 

ROI Segment Asd AI p λ (μm
2
/ms) D (μm

2
/ms) p λ|| (μm

2
/ms) D|| (μm

2
/ms) p

T8 0.70 ± 0.02 0.73 ± 0.04 < 0.05 0.28 ± 0.03 0.29 ± 0.04 0.59 2.07 ± 0.10 1.84 ± 0.14 < 0.01

T9 0.71 ± 0.02 0.75 ± 0.03 < 0.05 0.26 ± 0.02 0.26 ± 0.03 0.45 2.01 ± 0.07 1.80 ± 0.11 < 0.01

T10 0.71 ± 0.02 0.74 ± 0.02 < 0.05 0.24 ± 0.03 0.25 ± 0.03 0.19 1.93 ± 0.09 1.73 ± 0.08 < 0.01

T8 0.26 ± 0.04 0.26 ± 0.04 0.99 0.55 ± 0.06 0.57 ± 0.04 0.29 1.07 ± 0.08 0.98 ± 0.08 < 0.05

T9 0.22 ± 0.03 0.24 ± 0.05 0.37 0.59 ± 0.04 0.59 ± 0.04 0.97 1.03 ± 0.07 0.96 ± 0.08 < 0.05

T10 0.21 ± 0.03 0.17 ± 0.03 < 0.05 0.58 ± 0.04 0.60 ± 0.04 0.14 0.95 ± 0.05 0.85 ± 0.04 < 0.01

T8 2.75 ± 0.36 2.84 ± 0.31 0.45 0.45 ± 0.11 0.50 ± 0.05 0.16 1.94 ± 0.10 1.88 ± 0.13 0.16

T9 3.28 ± 0.42 3.27 ± 0.59 0.96 0.39 ± 0.09 0.45 ± 0.05 0.06 1.95 ± 0.09 1.87 ± 0.11 0.07

T10 3.56 ± 0.54 4.55 ± 0.68 < 0.01 0.39 ± 0.10 0.42 ± 0.04 0.89 2.04 ± 0.06 2.04 ± 0.06 0.27

VLWM/GM

GM

VLWM
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decreased diffusion anisotropy, decreased axial diffusivities, and increased radial 

diffusivities in the VLWM tract, indicating axonal injury and myelin damage. 

 

Figure 3-3. Representative images of the injured spinal cord from DTI (left column in 

each panel) and DWI (right column in each panel) covering segments of T8 (2.25 mm 

rostral), T9 (0 mm, epicenter), and T10 (2.25 mm caudal) are presented. Both schemes 

provide good quality images of the injured cords enabling easy ROI analysis. The 

manually segmented ROIs of total VLWM on the anisotropy maps at T8, T9 (epicenter), 

and T10 were used to quantify the group-averaged value of each slice (data shown in 

Fig. 3-4). In the Asd and AI maps, the residual normal appearing VLWM represents the 

spared VLWM, where the myelinated axons are mostly intact. 
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Figure 3-4. Spatial evolutions of DTI (a, c, e) and DWI (b, d, f) parameters from T8 to 

T10 in the control (■) and injured (□) cords. Decreased || and D|| (c, d), and increased ┴ 

and D┴ (e, f) are seen at the injury epicenter. At 14 days following the contusion SCI, 

both DTI and DWI measured the same trend of changing diffusion indices reflecting both 

axon and myelin damages at the site of impact. Group-averaged Asd and AI of a 

contusion injured spinal cord clearly demonstrate the spatial evolution of the injury. The 

quantification was done by manually defined ROIs of total VLWM. All parameters 

between the control and injured groups are statistically significantly different at all image 

slices except the first slice, marked with ×, of ┴ and D┴. 

After applying thresholds to the Asd (0.42) and AI (0.48) maps, the regions of 

normal appearing VLWM were compared and evaluated by the overlap index (Fig. 3-5a). 
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A greater than 93% agreement in Asd- and AI-detected normal appearing VLWM was 

evident with a significant ROI overlap. The difference between ROIAsd and ROIAI existed 

mainly at the border of VLWM where partial volume effect is inevitable transitioning 

between tissue types (Fig. 3-5b). The similar agreement was also seen in the normal 

appearing VLWM of the injured cords. However, the degrees of overlap at the injury 

epicenter (75.9  5.4 %) were relatively lower than that at sites 0.75 mm rostral (85.7  

2.2 %) or caudal (83.2  3.0 %) to the epicenter. The degrees of overlap of control cords 

showed no difference among all segments. The normalized area measured using Asd or 

AI from T8 to T10 was comparable (Figs. 3-6a and 3-6b). 

 

Figure 3-5. (a) Normal appearing VLWM of control (left panel) and injured cords (right 

panel) were estimated using Asd and AI thresholds. Three representative images from 

each cord (epicenter, i.e., 0 mm, and 0.75 mm rostral and caudal to the epicenter) at T9 

vertebra level were compared. (b) The pixels identified within both ROIAsd and ROIAI are 

color coded in green. The inconsistent pixels are marked in red (outside of ROIAsd) and 

blue (outside of ROIAI). The major discrepancy is seen at the border of GM-WM and 
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parenchyma-CSF. In general, the overlap index averaged ~94% for the control cords (n 

= 5), and ~80% for that of injured cords (n = 7). 

 

Figure 3-6. (a) The normal appearing VLWM areas of the injured cords were assessed 

using Asd and AI. The areas were normalized by the amount of total VLWM of the 

control cords (r = +0.89, n = 63, p < 0.0001). (b) Bland-Altman plot displays the 

difference of normal appearing VLWM areas determined by Asd and AI against the 

average of Asd and AI assessments from the 108 paired measurements in the study. 

The difference between normal appearing VLWM measurements using Asd and AI lies 

within the limit of agreement (95%, mean  2 x SD). 

The spinal cords were stained with LFB to assess the contents of spared VLWM 

from the epicenter at 14 days after injury. Myelinated tracts of the DWM, VLWM were 
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stained blue in normal controls (Fig. 3-7a). After the contusion SCI, the injury resulted in 

extensive loss of LFB stained area in the WM (control: 0.98  0.04 mm2, injury: 0.61  

0.15 mm2). The MR determined normal appearing VLWM and LFB determined spared 

VLWM were in close agreement (Fig. 3-7b). Furthermore, the spared VLWM areas also 

correlated with BMS (Fig. 3-7c).  

 

Figure 3-7. (a) Corresponding images of Asd, AI, and LFB staining. The gray-scaled LFB 

images are normalized by the LFB staining intensity of the uninjured nerve roots to 

quantify the extent of spared VLWM. In the control cords, images from DTI, DWI, and 

histological staining show a similar pattern across the region of VLWM, indicating the 

integrity of axons and myelin sheaths. For the injured cords, mild to moderate WM 
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injuries were observed in the histological maps at the impact epicenter at 14 DPI, 

consistent with the Asd and AI maps. (b) The correlation between the normalized LFB 

and Asd/AI assessed normal appearing VLWM. (LFB vs. Asd: r = +0.97, n = 7, p (correl) 

< 0.001; LFB vs. AI: r = +0.95, n = 7, p (correl) = 0.001). (C) Spared VLWM areas 

assessed using all three methods correlated well with the BMS scores at 14 DPI. (LFB 

vs. BMS: r = +0.86, n = 7, p (correl) = 0.01; Asd vs. BMS: r = +0.89, n = 7, p (correl) < 

0.01; AI vs. BMS: r = +0.87, n = 7, p (correl) = 0.01). 

3.1.4 Discussion 

In this study, the capability of detecting mouse spinal cord VLWM injury using six-

direction DTI and two-direction DWI was compared. Our results showed comparable 

image qualities from both schemes allowing segmentations of the region of DWM, GM, 

and VLWM. Fourteen days after injury, both λ|| and D|| decreased, while both λ and D 

increased suggestive of axonal and myelin damage respectively. Significant overlap of 

Asd and AI determined normal appearing VLWM was observed: ~93% for the control 

cords and ~80% for mild-to-moderately injured cords. The detected spared VLWM were 

validated by LFB staining and correlated with the BMS scores. The acquisition time for 

the two-direction DWI was 57% shorter than the time required for the six-direction DTI.  

The role of DTI parameters in evaluating the contusion SCI WM pathology was 

recently investigated [33, 35, 58, 61, 62, 88, 91]. The decreased λ|| correlated with 

axonal injury, while the increased λ reflected myelin damage. Loy et al. [58] further 

demonstrated that λ|| is able to differentiate the injury severity in the hyper-acute phase 

(within 6 hrs of injury). Our other reported studies also demonstrated that increased λ 

paralleled the myelin damage secondary to retinal ischemia in the mouse optic nerve [74, 

102]. The diffusion anisotropy reflects the combined effect of λ|| and λ, and is capable of 

detecting WM integrity (without distinguishing axonal vs. myelin damage) [33, 35]. 
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Similarly, the measured D|| and D┴, from the two-direction DWI, also reflected the axonal 

and myelin injury in the present study (Fig. 3-4). Although statistically significant 

differences were seen between λ|| and D|| (~10%) as well as Asd and AI (~3%) in the 

control animals, the two-direction DWI indices correctly reflected the injury extent in the 

SCI animals as assessed by DTI. At 14 days after injury, our data showed the decreased 

λ|| and D|| and the increased λ┴ and D┴ in the SCI animals without a significant difference 

between the two schemes of measurements. The difference between the λ|| and D|| in 

the control animals might be caused primarily by the inherently different signal 

attenuations between different diffusion encoding schemes (i.e. six-direction 12-cube-

edge and two-direction orthogonal encoding). The data from the injured cord group still 

demonstrated the adequacy of two-direction DWI in detecting axonal and myelin 

damages. 

The efficacy of therapeutic interventions on the functional recovery of rodent SCI 

has been evaluated by examining the extent of spared VLWM [8, 103, 104]. In a series 

of rat studies, Basso and colleagues [105] analyzed locomotor outcomes after mild, 

moderate, or severe spinal cord contusion with extensive (> 40%), intermediate (15% - 

40%), or minimal (1% - 14%) tissue sparing determined by LFB staining at the lesion 

epicenter. They found that locomotor recovery was extensive after mild SCI with 

extensive axonal sparing (> 40%), but was quite limited after severe SCI with little 

sparing (as low as 1% - 2%). Our recent study investigating the effect of different impact 

speeds ranging from 0.1 to 0.4 m/s on the severity of contusion SCI [35] demonstrated 

that in vivo DTI estimated spared VLWM content in the sub-acute phase correlated well 

with those determined using postmortem histology and behavioral test in the chronic 

phase.  
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In the present study, all the injured mice showed intermediate to extensive recovery, 

with 30% - 60% preserved normal appearing VLWM. Although LFB staining consistently 

estimated larger preserved VLWM areas than MR measurements, probably due to the 

residual myelin debris, the correlation between histology and MR images was 

statistically significant. Most importantly, the MR estimated extent of spared VLWM 

correlated with behavioral scores (Fig. 3-7c). These findings support that tissue sparing 

at the lesion epicenter determined in the sub-acute phase (7 - 14 day after injury) 

correlates with the chronic behavioral disability (14 - 21 days after injury) in the 

experimental spinal cord contusion. 

Early studies using two-direction DWI scheme to study the spinal cord have been 

performed by accurately aligning the cord to the magnet axes. This was easily achieved 

on ex vivo tissues. However, for an in vivo study, it is more difficult to align the spinal 

cord to the magnet axes of reference. If the segment of interest fails to align with an axis 

in the magnet frame of reference while the diffusion weighting gradient is still aligning 

with the magnet axes, the measured ADC values need to be corrected [96]. In the 

current study, we attempted to reproduce the literature finding with the spine and 

diffusion weighting gradients aligning with the magnet axes. The correct cord alignment 

was confirmed by the fact that the principal eigenvector of the WM tract (Figs. 3-2g and 

h) derived from the DTI were parallel to the magnet z-axis. However, when imaging of 

the entire human spinal cord is attempted, the curvature of the spine would make it 

difficult to align the axis of the spine with the magnet z-axis. To employ the two-direction 

DWI for ADC measurements in this instance, parallel and perpendicular diffusion 

weighting gradients would need to be aligned according to the curvature of different 

segments. As the gradients can be manipulated arbitrarily nowadays, small segments of 

spine could be imaged in this fashion by first assessing directionality with scout images 
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and then applying appropriate orthogonal gradients. The only drawback of using two-

direction DWI would be the need to group the spinal segments according to its curvature 

of the SCI patients during the planning of scout images. However, this will not prohibit its 

use since segmented imaging of a human spine is typically necessary even for the DTI 

data acquisition. 

3.2 To Gain SNR: Multiple Spin-Echo DTI and Phased Absorption Images 

Abstract  

Diffusion MRI using a Stejskal-Tanner spin-echo (SE) sequence remains one of the 

best approaches in the rodent central nervous system due to its unrivaled image quality 

and ease of use. Since diffusion weighted (DW) SE requires lengthy scan time, a DW 

multiple spin echo (MSE) variation has been introduced. In this design, images from 

multiple echoes are averaged in order to improve the signal-to-noise ratio (SNR) without 

increasing the imaging time. However, images averaged using complex data suffer from 

artifacts caused by phase variations resulting from the imperfect 180-pulse, diffusion 

weighting, and physiological motion; whereas images averaged using magnitude values 

suffer from non-Gaussian noise distributions reducing the SNR gain and measurement 

accuracy. Herein, we demonstrate the benefit of averaging DW MSE images using 

appropriately phased absorption mode images eliminating phase artifacts and noise 

correlations of DW MSE applications. Our data indicates that averaging through 

absorption mode MSE images could yield a 1.85-fold increase compared to the 

magnitude averaged MSE images and 2.4-folds increase in SNR compared to the single 

SE images. We applied this acquisition procedure to show its advantage in studying a 

mouse model of spinal cord injury (SCI). 
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3.2.1 Introduction 

A spin-echo (SE) sequence incorporating the Stejskal-Tanner diffusion-weighting 

(DW) gradient has been commonly used to achieve the needed high resolution and 

signal-to-noise ratio (SNR) for diffusion MRI of the rodent central nerve system [33, 58, 

74, 99]. However, DW SE is hindered by long acquisition times that can limit throughput 

and make the diffusion measurement more vulnerable to bulk movement such as 

respiratory motion as well as the within tissue motions [106]. These motion artifacts 

severely degrade data quality resulting in inaccurate diffusion coefficient estimation. One 

potential sequence design is to increase efficiency of data acquisition by applying a train 

of refocusing pulses following the radio frequency (RF) excitation to acquire multiple 

echoes [107, 108].  

Echo planar imaging is the fastest imaging sequence known using a gradient echo 

train to acquire an image in a fraction of second [109]. However, it cannot be used in the 

high resolution spinal cord imaging due to large susceptibility distortions. On the other 

hand, the spin-echo based multiple echo sequence, such as fast-spin-echo (FSE), 

retains the high spatial resolution of the spin-echo techniques while achieving a faster 

acquisition time through the use of multiple echoes [110-112]. The FSE multiple echo 

sequences are not without their own complications. Image blurring and ghosting are two 

common artifacts originated from amplitude and phase modulations of the FSE k-space 

data [106, 110, 112, 113]. The phase variation along the phase-encoded direction could 

become more complicated in the FSE when the diffusion gradients are applied.  

An alternative way of sampling multiple echo k-space data is a multiple-echo spin 

echo (MSE) type of sequence [95]. In MSE, each echo fills its own independent k-space 

before signal averaging. The advantage of MSE imaging scheme is to maximize the 
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signal averaging in each phase encode (PE) step without bringing in extra phase error 

due to PE gradient. This approach is expected to improve signal-to-noise ratio (SNR) 

and provide additional T2 estimation from a series of spin echo train [114]. MSE imaging 

schemes are usually the choice if high quality image is desired, while the FSE is better 

for a faster acquisition, but trading off some of the image quality. 

Ideally, signal averaging using complex data maximizes the SNR increase. In 

practice, however, the phase variations caused by motion or hardware imperfections 

often results in significant signal degradation when averaging multiple echoes [106, 113]. 

Averaging multiple-echo images using absolute-value images, i.e. magnitude images, 

avoid the image-to-image phase variation. Multiple echo SE-EPI acquisition to improve 

the acquisition efficiency was investigated previously [114]. Theoretically, comparing to 

the SNR of a single echo image, a three-echo MSE image could achieve a 1.36-fold 

increase of SNR in the white matter (WM) region (T2=80ms). However, generating a 

magnitude image changes the noise of original complex image from a Gaussian to a 

Rician distribution. Upon averaging multiple magnitude images, the noise distribution 

reduces skewness but moves the mean to a non-zero offset. This results in elevating the 

measured pixel intensity and limiting the SNR gain through averaging. Although a non-

zero mean noise distribution has little effect at high SNR, it can bias measurements at 

low SNR (18-20, 34), a critical issue in diffusion-weighted images and the resulting 

diffusion tensor calculations [115-117].  

Alternatively, appropriately phasing the complex MSE data prior to averaging allows 

the theoretical gain in SNR of multiple echoes to be fully realized while eliminating phase 

artifacts. Herein, we demonstrate the advantage of averaging MSE data with absorption-

mode images phased using Bayesian probability theory. It eliminates phase artifacts, 

noise correlations, and improves SNR by nearly 1.85-fold compared to the conventional 
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magnitude averaged MSE images without additional increases in acquisition time. We 

applied this acquisition procedure to show its advantage in studying a mouse model of 

spinal cord injury (SCI). 

3.2.2 Materials and Methods 

Multiple Spin Echo Data Acquisition  

A conventional Stejskal-Tanner DW sequence was modified to acquire MSE by a 

variable-length Carr–Purcell–Meiboom–Gill (CPMG) train of 180° pulses (Fig. 3-8). Inter-

echo spacing (ΔTE) was minimized in order to maximize the signal from each of the 

echoes in T2 decay. Because this violates the CPMG conditions, suppression of 

secondary echoes was crucial [95, 118, 119]. Crusher gradients of alternating polarity in 

the slice-select direction were experimentally optimized in a water phantom. Modified 

sinc 180° pulses were used to compensate for pulse imperfection [95, 120]. All 

experiments were conducted on a 4.7 T magnet (Oxford Instruments, Abingdon, UK) 

equipped with a 15-cm inner diameter, actively shielded Magnex gradient coil (60 G/cm, 

270 μs rise time). The magnet, gradient coil, and IEC gradient power supply is interfaced 

with a Varian DirectDrive console (Varian, Inc., Palo Alto, CA) with a Linux operating 

system.  
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Figure 3-8. DW MSE pulse sequence diagram. A conventional pulsed gradient spin-echo 

diffusion preparation is followed by a multiple echo readout. The phase encode step and 

the diffusion gradient pair are outside the MSE acquisition loop ensuring each of the 

multi-slice MSE undergoing the same diffusion weighting in the same k-space line. A 

crusher gradient pair is added into the refocusing pulse to eliminate secondary echoes 

by alternating the sign for each successive echo.    

Absorption Mode Image Generation 

Absorption mode images were generated using Bayesian probability theory to 

independently estimate the phases for each echo from the multiple echo chain [121, 

122]. In the Bayesian analysis, given the standard deviation of the noise prior probability, 

 , all of the data, D, and the background information, I, the posterior probability for the 

phase,         , is used to estimate the phase,  . The appendix gives the details of the 

Bayesian calculation. The full derivation is given in Bretthorst‟s original papers [121, 

122]. Once the pixel-wise phase is estimated, the coherent signals are phased using:  

                  (3-6), 
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where the    is the original ith voxel signal,     is the value if the i'th voxel after phasing, 

and    is the estimated phase. Theoretically, the absorption mode image gives a    

increase in SNR since the full signal is recovered and only half of the noise is presented 

in the real channel [121, 122]. The phased diffusion weighted images (DWIs) were then 

averaged for least-square fitting the diffusion tensor [123]. 

Imaging Studies 

The DW MSE sequence was first applied on a cylindrical 1-cm diameter tube of 

water placed in a custom-made solenoid coil for imaging at 17o C. Six diffusion 

sensitizing gradients were employed for deriving diffusion tensor imaging (DTI): 

(Gx,Gy,Gz) = (1,1,0), (1,0,1), (0,1,1), (-1,1,0), (0,-1,1), (1,0,-1). The other acquisition 

parameters were: TR 1500 ms, TE 30 ms, ∆TE 12 ms, ∆ 15 ms, δ 5 ms, b-value 0 and 

1000 s/mm2, FOV 3 × 3 cm2, data matrix 128 × 128, number of echoes (ne) 16, number 

of averages 2, and acquisition time 30 min. 

The in vivo DW MSE data was acquired on the mouse spinal cord. Female C57BL/6 

mice, weighing 18 - 22 g, underwent T9 contusion SCI (n = 5) or sham operated control 

(n = 5) following previously reported procedures [33, 58, 124, 125]. All surgical 

preparations, pre-, and post-surgery care were provided in accordance with the Public 

Health Service Policy on Humane Care and Use of Laboratory Animals, Guide for the 

Care and Use of Laboratory Animals (Institute of Laboratory Animal Resources, National 

Research Council, 1996), and with the approval of the Washington University Animal 

Studies Committee. At seven days after surgery, all mice underwent in vivo DTI of spinal 

cord using DW SE and DW MSE sequences. Mice were anesthetized with an 

isoflurane/oxygen mixture (5% isoflurane for induction and 0.7 - 1.5% isoflurane for 

maintenance). Body temperature was maintained at 37° C by a circulating warm-water 
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pad. Actively decoupled Helmholtz volume coil and saddle-shape surface spine coil were 

used as the transmit-receive pair. DWIs were acquired with TR ~1200 ms, TE 31 ms, 

∆TE 12 ms, ∆ 15 ms, δ 5 ms, b-value 0 and 1000 s/mm2, FOV 1 × 1 cm2, data matrix 

128 × 128 (zero-filled to 256×256), slice thickness 1 mm, ne 4, number of averages 4, 

and the acquisition time was ~60 min. A crusher gradient pair of 10 G/cm with 1 ms 

duration was added in the slice selection direction for all experiments. The b-values of 

the diffusion gradient were taken into account for all imaging gradients by numerical 

integration of the following equation [75, 93]:  

               
 

  
 
  

 
   , (3-7) 

Averaging Method Comparison 

The multiple echoes, generated using MSE sequence, were averaged using 

magnitude images (MSE-Magnitude), or absorption mode images (MSE-Absorption). 

The comparison was first conducted on the phantom data. Three eigenvalues (λ1, λ2, λ3) 

were calculated from the diffusion tensor matrix. The eigenvalue-derived parameters 

including trace of the mean diffusivity (Tr), axial diffusivity (||), radial diffusivity (), and 

relative anisotropy (RA) were calculated as previously reported [74, 84]. Region-of-

interest (ROI) based comparisons between different methods of echo averaging were 

performed. The ROI of the phantom image encompassed the center portion of the tube; 

the ROI for the contusion SCI images encompassed the ventro-lateral white matter 

(VLWM). The estimated SNR was calculated according to the literature with 

consideration of the skewed Rician noise distribution for combining the sum-of-squares 

magnitude images [126-129]. Values of Tr and RA were reported for the phantom study. 

A paired student‟s t-test was performed to compare the DTI parameters between the 

control and the injured spinal cords. For statistical tests, both the probability of rejecting 



63 

the null hypothesis (p-values) and the standardized difference between means (Cohen‟s 

D) were reported as indicated [130]. Significance was set at p-value < 0.05. 

3.2.3 Results 

The effect of signal averaging through complex images, magnitude images and 

absorption mode images are illustrated in Fig. 3-9 and Fig. 3-10. The center of the k-

space, i.e. maximum signal, was shifted along both readout and phase encoding 

directions between the first and second echoes (Figs. 3-9b, f). This results in an obvious 

phase mismatch between the first and second echoes (Fig. 3-9c, g). Phasing using 

Bayesian probability theory to produce absorption mode images removes the phase 

difference between successive echoes (Figs. 3-9d, h). Phase artifacts can be avoided by 

adding magnitude images as opposed to complex images (Fig. 3-10a b). However, the 

resulting Rician noise reduced the SNR gain (Fig. 3-10e). The noise distribution of the 

complex averaging appeared to be a Rayleigh distribution (Fig. 3-10d, g), while that of 

the magnitude averaging was a Rician distribution with a non-zero offset (Fig. 3-10g). 

The absorption-mode image averaging provided the best tissue contrast while 

maintaining a Gaussian distributed noise (Fig. 3-10c, f). The noise distribution of the 

MSE images after phasing exhibited a mean zero and therefore there was no noise bias 

in these images (Fig. 3-10g). 

Phantom Study 

The difference of b-value between each echo was ~7s/mm2 in our imaging setting. 

Compared to the b-value of 1000s/mm2, it is less than 1% and could be neglected. The 

non-DW MSE images of water phantom are shown in the Figure 3-11. Images from odd 

and even echoes have a different phase pattern, which will lead to artifacts in complex 
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image averaging. After phasing, the absorption mode image averaging shows a superior 

   increase in SNR compared to the magnitude averaging methods (Fig. 3-11c). This 

increase of SNR improves to 1.84-fold when averaging up to 3 echoes. Table 3-2 lists 

the mean Tr and RA values in the phantom ROIs used for the SNR analysis. The 

measured Tr of a water phantom was not different between four acquisition procedures. 

However, the RA values of the MSE are smaller and closer to isotropic than those 

obtained with SE-Magnitude with one or two averaging. 

 

Figure 3-9. Phasing the images using Bayesian probability theory removes phase 

differences between successive echoes. In vivo mouse spinal cord images of the first 

(upper panel, a-d) and second echoes (lower panels, e-h). The k-space center (marked 

in black) is shifted along the geometric center of the image (marked in white) between 

the first and second echoes (b, f), as a result of phase variation seen in the MSE phase 

images (c, g). After appropriately phasing to generate the absorption-mode images, no 

such phase variation between echoes is seen in the absorption mode phase images (d, 

h). 
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Figure 3-10. Averaging absorption mode images removes phase artifacts and preserves 

the noise characteristics. (a) Averaging MSE images using complex values results in an 

artifact (white arrow) due to incoherent phases between successive echoes. (b) 

Averaging magnitude images removes the phase artifact but results in non-zero offset 

Rician noise distribution which reduces the SNR improvement and may bias the diffusion 

tensor parameter estimates. (c) Averaging absorption-mode images eliminates errors 

due to phase artifacts and Rician noise. These absorption mode images display the 

greatest SNR of the three reconstruction methods and provide excellent tissue contrast 

in the spinal cord. The noise level of each image is shown in the expanded rectangular 

region (d-f). The images shown here are on the same intensity scale. Note that the non-

zero mean Rician noise elevates the mean pixel intensity in the magnitude-averaged 

image (e). The noise distributions are measured in the noise-only region (g). The 

measured pixel intensity, M, is normalized by the noise standard deviation, σ. 

-4 -2 0 2 4 6 8 10 12

M / ζ

Complex

Magnitude

AbsorptionMSE-Absorption

MSE-Complex

MSE-Magnitude
1

s
t
e

c
h

o
 +

 2
n

d
e

c
h

o

MSE-Complex MSE-Magnitude MSE-Absorption

a b c

d e fM
a

g
n

if
ie

d

g



66 

 

Figure 3-11. Magnitude (a) and phase (b) multiple echo images of a water phantom. The 

SNRs of the averaged multiple echo images (c). MSE-absorption shows superior SNR 

compared to the MSE-Magnitude. 

 

Figure 3-12. SNR (a) and SNR increase ratio (b) of the averaged MSE images. Signals 

are obtained from the VLWM of the mouse spinal cord. MSE-Absorption images clearly 

show higher gain in both SNR and the relative SNR increase. 

in vivo Study on Mouse Spinal Cord Injury 

Measuring from the VLWM in the non-diffusion (b = 0) mouse spinal cord images, 

the ratios of SNR increase of three echo averaging to that of the single SE were 

1.30±0.08 for MSE-Magnitude image, and 1.85±0.06 for MSE-Absorption image; the 

measured SNRs were 21.77±1.42, and 40.34±1.72, respectively (Fig. 3-12). The 
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averaging methods of MSE data were compared between the control and injured spinal 

cords to test the sensitivity of detecting WM injury. The MSE-Absorption images 

provided the best image quality with the least noise in RA, Tr, ||, and  maps (Fig. 3-

13). The measured diffusion parameters of the VLWMs are listed in Table 3-3. 

Decreased || and increased  were evident in the injured VLWMs, suggestive of axonal 

injury and myelin damage respectively at seven days post injury [33, 124, 125]. The 

difference between the control and injured group was more apparent in the MSE-

Absorption maps than the MSE-Magnitude maps and in good agreement with those 

obtained with SE-Magnitude with four averaging. Correspondingly, the MSE-Absorption 

data showed statistically more significant changes (smallest p-value) with greater effect 

size (larger Cohan‟s d) between the control and injured groups. 

 

Figure 3-13. Diffusion index maps of spinal cords from the control (a) and contusion SCI 

(b) mice. The diffusion index maps are calculated from the average of two diffusion 

dataset and three echoes for MSE. The MSE-Absorption maps clearly show superior 

image quality of the mouse spinal cord facilitating the identification of both the control 

and injured spinal cord structure. 
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Table 3-2. Comparison between the mean RA and Tr values in a water phantom from 

the same dataset as in Fig. 3-11. 

 

Table 3-3 Comparison of SE-Magnitude, MSE-Magnitude and MSE-Absorption in 

diffusion parameters. Significant level (p-value) and effect size (Cohan‟s d) are reported 

between the control (n=5) and the injured spinal cords (n=5). All measurements except 

trace show significant difference (p < 0.05), and all measurements show a large effect 

(d > 0.8) between control and injury groups. MSE-Absorption measurements show the 

smallest p-value and the largest Cohan‟s d values. 

 

 

3.2.4 Discussion 

Signal averaging of complex data is a common practice to improve SNR. The 

effectiveness of this approach relies on the consistent phase of the acquired echoes, a 

condition not attainable in DW MSE dataset (Fig. 3-9b, f). Signal averaging of magnitude 

data has been widely employed in order to avoid the problems involved in incoherent 

phases of the MSE, [95, 118, 119]. Individual magnitude images are obtained as the 

Method

MSE-Magnitude

(NEX=1, Echoes=3)
0.048±0.025.83±0.08

MSE-Absoroption

(NEX=1, Echoes=3)
0.047±0.025.85±0.08

SE-Magnitude

(NEX=2)
0.064±0.025.77±0.11

SE-Magnitude

(NEX=1)
0.079±0.035.79±0.14

RATr (µm2/ms)

Method Group

Control 1.02±0.03 1.94±0.12 0.25±0.02 2.48±0.09

Injury 0.60±0.04 1.30±0.04 0.42±0.03 2.28±0.09

Control 0.93±0.04 1.80±0.14 0.31±0.03 2.68±0.15

Injury 0.62±0.08 1.38±0.10 0.46±0.07 2.48±0.18

Control 0.98±0.02 1.82±0.13 0.29±0.03 2.45±0.18

Injury 0.60±0.05 1.32±0.09 0.45±0.04 2.23±0.04

Control 1.03±0.03 1.96±0.13 0.28±0.02 2.42±0.17

Injury 0.59±0.04 1.29±0.06 0.43±0.02 2.27±0.06

Tr (µm
2
/ms)

p=0.07,

d=2.07

p=0.07,

d=1.35

RA λ|| (µm2/ms) λ  (µm2/ms)

SE-Magnitude

(NEX=2)

p<0.001,

d=5.33

p<0.001,

d=4.13

p<0.01,

d=3.01

SE-Magnitude

(NEX=4)

p<0.0001,

d=13.21

p<0.0001,

d=8.62

p<0.0001,

d=7.21

MSE-Absoroption

(NEX=2, Echoes=3)

p<0.0001,

d=15.06

p<0.0001,

d=8.14

p<0.0001,

d=8.26

MSE-Magnitude

(NEX=2, Echoes=3)

p<0.0001,

d=10.71

p<0.001,

d=5.27

p<0.0001,

d=5.03

p=0.19,

d=1.51

p=0.07,

d=2.12
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pixel-wise square root of the sum of squares of the real and the imaginary images. This 

operation results in the Rician distribution of the associated noise at low SNR [115, 116, 

126]. Averaging through the magnitude images increases the measured pixel intensity 

with a higher noise level.  

Absorption-mode images improve upon magnitude image averaging since the 

Gaussian noise distribution is preserved [121, 122]. If the phasing analysis was 

successful, only noise had left in the imaginary image. The coherent real signal, free of 

phase complication, was computed for each echo estimated independently from the 

multiple echo chain. Thus, the imaginary channel is not used in averaging: only the real 

images are averaged. As a result, averaging of phased absorption images from multiple 

echoes produces the SNR gain theoretically achievable when averaging without 

introducing phase artifacts. This solves both the phase incoherence problem, and the 

bias of the Rician noise distribution.  

Bayesian probability analysis relies on the correct prior knowledge of the signal 

amplitude phase, and noise. This prior information can influence the accuracy of the 

resulting phase parameter estimation. For instance, DW MRI can inherently have low 

SNR when high b-values or long echo times are employed. In such a case of very low 

SNR image (SNR < 3), there is insufficient information for accurate phase estimation 

[121, 122]. The estimated noise standard deviation might be significantly larger than the 

true noise distribution. Thus, the effects of very low SNR echoes from the multiple echo 

acquisition should not be considered when using absorption mode images, although the 

averaging of magnitude images in this case may lead to considerably less accuracy. 

Also, irregular bulk movement in the DWIs, which are highly sensitive to motion artifact, 

can also introduce bias affecting the determination the noise standard deviation. 
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Several other methods could also potentially be used to deal with these issues of 

averaging MSE dataset. First of all, the phase variation between even and odd echo 

could be minimized by applying a more complicate phase cycle of the RF pulse train, 

though the variation may not be completely eliminated for echo averaging through 

complex data [131]. Alternative approaches such as Rician noise removal [115], or 

using maximum likelihood [117] could also be used to estimate the diffusion tensor from 

the averaged magnitude MSE images. More complicated, a joint analysis of 

unaveraged echoes that incorporates both estimations of the diffusion measurements 

as well as effects of T2 decay may provide a further increase in accuracy of the 

parameter estimates than could otherwise be obtained [123, 132]. The comparison of 

these MSE data processing methods is beyond the scope of this study and worthy to 

do to facilitate the high resolution diffusion MRI applied not only in animal but also in 

human studies. 

In the present study, the SNR gain in VLWM was achieved by averaging up to three 

echoes. The optimal number of echoes to be added is determined by both the T2 

relaxation of sample of interest and the hardware capabilities [118]. Clearly, short T2 

relaxation time constants limit the number of echoes that can be utilized. Furthermore, 

the number of echoes is also limited by the RF refocusing pulse durations, imaging 

gradient rise times, and acquisition bandwidth. Since the goal of the MSE sequence was 

to gain SNR, ∆TE was minimized resulting in a non-CPMG condition. Sufficient crusher 

gradient pairs surrounding the refocusing pulses were necessary to reduce stimulated 

echoes [107, 108, 110]. In our Varian NMR spectrometer, the maximum gradient is 62 

G/cm with 270ms rise time. In a typical data matrix of 128×128 with a 1 cm2 field of view, 

the minimum achievable ΔTE was 12 ms, allowing 3 echoes for signal averaging to gain 

SNR in the VLWM region. This additional increase in SNR comes without an increase in 
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acquisition time. The gain in SNR led to a greater sensitivity to differences in diffusion 

properties between control mice and those with a spinal cord contusion injury. The effect 

sizes between the two groups were greatest with the MSE-Absorption for all DTI 

parameters. Therefore, the MSE absorption-mode averaging will allow either the use of 

smaller number of animals to achieve the same significance or detection of smaller 

differences. Our results indicate that the averaged absorption mode MSE images yields 

a SNR increase about 185% compared to the magnitude averaged MSE images. Using 

the absorption-mode multi-echo averaging and the DW MSE sequence affords the 

generation of in vivo DTI with significant time saving and image quality improvement. 

3.2.5 Conclusion 

We have implanted an MSE-Absorption acquisition procedure and demonstrated 

the advantage in improving the SNR without an increase in imaging time, phase artifacts 

or correlated noise compared to magnitude averaging. Our results indicate that 

averaging through absorption mode MSE images could yield a 2.4-fold increase in SNR 

compared to the single SE images. Thus, the proposed method should benefit the DWI 

by substantially improving throughput or increasing spatial resolution. 

3.2.6 Appendix: Phasing the images using Bayesian probability theory 

If    represents the i'th pixel in a complex image, then the pixels are related to 

the phase through a model given by: 

                         , (3-8) 
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where    is the amplitude of the ith pixel and   is the phase,    represents the complex 

noise, with total number of complex data value, N. Separating the complex model into its 

real parts,    , and imaginary parts,    , one has 

                 (3-9) 

                 (3-10) 

where     and     represent the real and imaginary parts of the complex noise. Given the 

standard deviation of the noise prior probability,  , all of the data, D, and the 

background information I, the posterior probability for the phase,         , is computed 

by applying Bayes‟ theorem: 

         
               

       
  (3-11) 

where the prior probability for the phase,        , represents what is known about the 

phase before acquiring the data; the direct probability for the data,         , is a 

marginal probability from which the dependence on the amplitudes has been removed, 

and         is a normalization constant. If this probability density function is normalized 

at the end of the calculation, one obtains 

                       , (3-12) 

Applying the sum and product rules of the probability theory and omitting constant terms 

that will cancel upon normalization, the posterior probability can be rewritten as:  

                                     (3-13) 
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where         is the joint prior probability for the amplitudes. The probability for the 

data, i.e. the likelihood, given the parameters is represented by          . The prior 

probability for   will be assigned a uniform bounded prior: 

        
 

  
            

                    

 ,  (3-14) 

The amplitude prior will be assigned as a generalized Gaussian of the form: 

                 
  

   
         

 
   

 
       (3-15) 

where the hyperparameter,  , part of I, expresses how strongly this prior information is 

believed, and the matrix,     specifies how the amplitudes are related to each other. The 

derivations of the estimated amplitudes and the posterior probabilities are given in 

Bretthorst, here we just give the results: the image voxels are given by: 

                       
 
      (3-16) 

where  

                (3-17) 

where     is a Kronecker delta function. Equation (3-16) can be rewritten as: 

  
                 ,  (3-18) 

where     and     are the coefficients in equation (3-16) multiplying through by the inverse 

of the     matrix. The posterior probability for the phase then has the form of: 

             
                

    ,  (3-19) 
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where W, X are given by, 

                   
 
     (3-20) 

                    
 
     (3-21) 

and 

       
 

 
.  (3-22) 

Talyor expanding Eq. (3-19) around           , the estimated phase is given by: 

         
   

      
.  (3-23) 

Finally, the absorption mode images can be generated according to the following 

equation:  

                    (3-24), 

where the     is the phased signal,    is the original signal, and    is the estimated voxel-

wise phase. The phased signals can be projected entirely to the real channel.  
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Chapter 4. The impact of Myelination on Axon Sparing and 

Locomotor Functional Recovery 

Abstract 

The dysmyelinated axons of shiverer mice exhibit characteristics similar to early 

postnatal axons before myelination. Except lacking of compact myelin sheath, the 

patterns of neuronal activity and axonal connectivity are relatively comparable to those 

of wild-type myelinated axons. Their unique white matter environment is of our interest to 

study the impact of myelin sheath on functional recovery in response to traumatic spinal 

cord injury (SCI). We applied in vivo DTI and immunohistochemistry analysis to 

investigate the role of compact myelin sheath affecting axon integrity and the resultant 

locomotor function in a time series. The current study to date is the first to document the 

injury response on shiverer mice. We found that myelin sheath is critical to present in a 

high level hind limb function. However, when the functional outcome is limited, such as, 

in the chronic phase after injury, the amount of spared axon plays the role. Our data also 

support that the DTI biomarkers, axial and radial diffusivities, are capable of 

noninvasively detecting the axon and myelin integrities in response to the injuries on 

both myelinated and dysmyelinated white matter environments.  

4.1 Introduction 

Dysmyelinated shiverer mutants (shi) lack the essential myelin basic protein 

(MBP) required to form the major dense line of myelin sheath [133]. The compact myelin 

is absent in shiverer mice when the MBP level is less than 25% of normal [134]. The 

tremor of shiverer mice starts about 12 days after birth; progresses leading to increased 

frequency and duration of tonic seizures with age [135]. Shiverer mice have a shorter life 
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span ranging between 50 and 100 days. Interestingly, shiverer mice exhibit neither 

axonal degeneration nor inflammation besides dysmyelination [136]. Although shiverer 

mice exhibit slightly deteriorated axonal conduction, the patterns of neuronal activity and 

functional connectivity in shiverer mice remain comparable to those of wild-type 

myelinated axons [137]. Thus, shiverer mice represent a unique model to investigate the 

effect of myelin sheath on axonal damages after spinal cord injury (SCI).  

Diffusion tensor imaging (DTI) measures the diffusion property of water 

molecules in the living tissues. It has been applied to assess the integrity of white matter 

tracts in rodent models of SCI [20, 33, 34, 36, 58, 62, 138]. The extent of axon and 

myelin damages has been estimated noninvasively using the DTI derived axial (||, 

describing water diffusion along fiber tracts) and radial diffusivity (λ┴, describing water 

diffusion across the fiber tract) respectively where decreased || was associated with 

axonal injury and increased  reflected myelin damages [33, 83, 84, 139, 140]. These 

DTI derived biomarkers have successfully assessed axon and myelin integrities in both 

myelinated and dysmylinated white matters [83, 141-143].  

The objective of this study is to examine the effect of dysmyelination on the in 

vivo DTI biomarkers of the white matter injury and to investigate its impact on locomotor 

function during the course of SCI. The extent of spared axon and myelin sheath after 

contusion SCI was assessed longitudinally using in vivo DTI followed by the end-point 

histology on dysmyelinated shiverer mice and the heterozygous littermates. Both DTI 

and histological findings were correlated with their locomotor function assessed using 

Basso mouse scale (BMS). Results suggest that myelin sheath is critical to maintain the 

higher hind limb function performance before SCI. At the chronic phase of SCI where 

significant myelin loss was severe, the hind limb function was primarily correlated with 

the extent of spared axons. 
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4.2 Materials and Methods 

All surgical preparations and pre- and postsurgical cares were provided in 

accordance with Public Health Service Policy on Humane Care and Use of Laboratory 

Animals and Guide for the Care and Use of Laboratory Animals (Institute of Laboratory 

Animal Resources, National Research Council, 1996), and with the approval of the 

Washington University Animal Studies Committee. 

Animals and Spinal Cord Injury 

Adult (8 to10-week-old) female shiverer mice (shi-/-), and their heterozygous 

littermates (shi +/-) were used in this study. Spinal cord injury and sham operation were 

performed on both shiverer and heterozygous mice (N = 6, each group). The injury 

groups of mice were anesthetized with an isoflurane/oxygen mixture and received 

severe contusion SCI (displacement: 1.1mm, velocity: 0.2m/s) utilizing a modified Ohio 

State University (OSU) impacter after dorsal laminectomy at the T9 vertebral level. All 

mice showed complete paralysis with no ankle movement after injury. The sham-

operated animals underwent a laminectomy without contusion and served as the control. 

The surgical site was closed in layers with 4-0 vicryl and nylon sutures. Injections of 

enrofloxacin (2.5 mg/kg) and lactated ringers (1.5 ml) were given subcutaneously. 

Manual bladder expression of the injured mice was performed twice daily throughout the 

duration of the study ([9]. Softened rodent chow was provided. Body weights were 

measured and compared daily with the preoperative weight. High-calorie nutrient paste 

(Nutrical; Evsco, Inc., Buena, NJ) was given to the mice to maintain body weights at 90% 

of their preoperative values. Daily BMS scoring was performed on all mice from 1 to 21 

days post injury (DPI). 
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in vivo DTI 

An MRI-compatible device was utilized to stabilize the vertebral column as reported 

previously [32]. Mice were anesthetized with an isoflurane/oxygen mixture (4.5 – 5% for 

induction and 0.7 – 1.5% for maintenance) to be placed in the MRI scanner. Core body 

temperatures were maintained at 37°C with a circulating warm-water pad. The inhalant 

anesthetic was delivered to the mice through a custom-made nose cone. The respiratory 

exhaust line was connected to a pressure transducer to synchronize DTI data collection 

with the respiratory rate. An inductively coupled surface receiver coil covering vertebral 

segments T6 – T12 (15 mm × 8 mm) was used as the receiver. A 9-cm (inner diameter) 

Helmholtz coil was employed as the RF transmitter. The entire preparation was placed in 

a 4.7 T magnet (Oxford Instruments plc, Abingdon, UK) equipped with a 15-cm (inner 

diameter) actively shielded Magnex gradient coil (60 G/cm, 270 μs rise time). The 

magnet, gradient coil, and IEC gradient power supply were interfaced with a Varian 

DirectDrive console (Varian, Inc., Palo Alto, CA). 

In vivo DTI were conducted on all mice at five time-points: naïve, hyperacute 

(~3hrs), sub-acute (7 DPI), sub-chronic (14 DPI), and chronic (21 DPI) phases. A spin-

echo sequence, modified by adding Stejskal–Tanner diffusion-weighting gradient [99], 

was used with the following parameters: echo time (TE) = 38 ms, diffusion gradient 

interval (Δ) = 18 ms, diffusion gradient time (δ) = 6 ms, diffusion gradient amplitude = 8.5 

G/cm, b value = 1.02 ms/μm2, six diffusion-sensitizing gradients: (Gx,Gy,Gz) = (1,1,0), 

(1,0,1), (0,1,1), (-1,1,0), (0,-1,1), and (1,0,-1), number of averages = 4, field of view (FOV) 

= 1 × 1 cm, and data matrix = 128 × 128 (zero-filled to 256 × 256). The repetition time 

(TR ≈ 1.2s) was varied according to the period of the respiratory cycle (≈270 ms). Nine 

transverse images (slice thickness = 0.75 mm) were collected covering vertebral 

segments T8 – T10. The acquisition time was approximately 2.5 hrs. Three eigenvalues 
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(λ1, λ2, λ3) were calculated from the diffusion tensor matrix by least square regression. 

The eigenvalue-derived parameters including mean diffusivity (MD), Trace (Tr), axial 

diffusivity (||), radial diffusivity (), and relative anisotropy (RA) were calculated as 

previously reported. All parameters were derived from diffusion-weighted images using 

software written in Matlab (MathWorks, Natick, MA).  

Region of Interest Analyses 

Previous literatures have reported that the || may be used to determine the integrity 

of axons allowing the assessment of the area of spared axons (ASA) non-invasively [34, 

36, 58]. Clear contrast between the GM and VLWM was seen in the λ|| maps of both 

heterozygous and shiverer spinal cords (Fig. 4-2). The distribution of || in both GM and 

VLWM were obtained from five sham-operated control animals of each group for a 

histogram analysis. The mean and standard deviation (SD) were determined and a 

threshold (mean ± 2 × SD) was used to define the ASA in the injured cords (Fig. 4-2). ASA 

of injured cords were then normalized to the total spinal cord area and total VLWM area 

of the control cords to remove the atrophy effect for comparing between groups and with 

the gold-standard histology. The RA maps show the extent of spared VLWMs 

accounting for both axonal and myelin integrity allowing the region of interest (ROI) 

determination of group averaged DTI biomarkers. Statistical analysis was performed by 

one-way ANOVA comparing shiverer and heterozygous mice with p <0.05 regarded as 

statistically significant. Data were expressed as mean  standard deviation (SD).  

Behavioral Assessment of Hindlimb Locomotor Function 

The mouse hind limb locomotor function was assessed daily using BMS over the 

21-day recovery period [31] by two raters scoring from 0 (worst) to 9 (best) with a sub-
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score tally from 0 (worst) to 11 (best) to evaluate angle movement, plantar placement, 

stepping, coordination, paw position, trunk instability, and tail position.  

Immunohistochemistry Analysis 

Immediately after imaging at 21DPI, mice were perfusion fixed under deep 

anesthesia with 50 mL of 0.1 M phosphate-buffered saline (PBS) (pH 7.4) followed by 

200 mL of 0.1 M PBS containing 4% paraformaldehyde (pH 7.4). Following fixation, the 

spine was excised, left in the fixative overnight, decalcified for 48h, embedded in paraffin, 

and sectioned on a sliding microtome (5 μm) with the decalcified vertebral column intact. 

Tissues were stained for Erithryna cristagalli/Crystal Violet (EC/CV) for myelin/neuron 

survival, myelin basic protein (MBP) for the myelin integrity, and phosphorylated 

neurofilament protein (SMI31) for spared axon. Tissue was then mounted for 

microscopic inspection after completion of differentiation. Stained sections at the injury 

epicenter were digitally imaged using a Nikon Eclipse 80i microscope (Nikon Corporation, 

Tokyo, Japan) equipped with a 4× objective, and the images were captured with a 

Photometrics CCD digital camera using MetaMorph image acquisition software 

(Universal Imaging Corporation, Downington, PA). All images were captured within 1 

week following completion of histological staining. The spared axon area was normalized 

to the total cord size area and total VLWM area of the control cords on account of 

atrophic effect and shrinkage during fixation. All slides were assessed blindly with 

respect to the injury. 

4.3 Results 

Due to the profound tremors, the naïve shiverer mice exhibited impaired hind limb 

function with consistent plantar stepping, some to most coordination, and rotated paws 



81 

at initial contact and lift off (BMS = 6). The naïve heterozygous controls showed normal 

hind limb function (BMS = 9) (Fig. 4-1). Severe contusion injury resulted in complete 

paralysis (BMS = 0) on both heterozygous and shiverer mice. Both groups of animals 

showed similar hind limb function deficits throughout the time course after SCI. Though a 

slightly faster recovery and better hindlimb function was seen in shiverer mice, the 

difference was not significant.  

 

Figure 4-1. The control shiverer and heterozygous mice behave differently in hind limb 

function. The naïve heterozygous controls showed normal hind limb function, and the 

naïve shiverer had impaired hind limb function with severe tremor affecting their 

locomotor function. After contusion SCI, both shiverer and heterzygous mice showed a 

significant decrease of hind limb motor function and recovery in the sub-acute phase 

(7~9 DPI). The BMS scores, however, did not show significant difference between the 

injured shiverer and heterzygous mice. N=6 in each group. 

The || map provided clear GM to WM contrast in both heterozygous and shiverer 

mice enabling the segmentation of normal appearing from the injured axons (Fig. 4-2). 

The λ|| threshold allowed determining the extent of spared axons longitudinally after SCI. 
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Longitudinal T2W images show the spinal cord and hemorrhages areas to confirm the 

location of injury epicenter (Fig. 4-3). The λ maps clearly revealed the difference in 

myelination between the heterozygous (Fig. 4-3a) and shiverer mice (Fig. 4-3b). 

Contrast in RA maps exhibited the GM to WM contrast resulting from the combined 

effect of axon and myelin sparing after injury.  

 

Figure 4-2. λ|| maps show clear tissue contrast both in heterozygous and shiverer spinal 

cords (a, b). Two normal distributions are seen in manually defined GM and VLWM 

allowing segmentation of the spared VLWM (c, d). Smaller mean and standard deviation 

in λ|| are observed in shiverer VLWM. The mean±2SD of λ|| is used as threshold to define 

the region of normal-appearing VLWM in the control and injured spinal cords of shiverer 

and heterozygous mice.  
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Figure 4-3. Longitudinal DTI maps of the contusion injured spinal cords of heterozygous 

(a) and shiverer (b) mice. Originally, the heterozygous cords show clear tissue contrast 

between GM and VLWM in λ||,  and RA maps. Comparing to the heterozygous spinal 

cord, the shiverer spinal cord shows lower tissue contrast originated from the 

dysmelinated VLWM that increases  and decreases λ||, and RA. The contrast is not 

clear in the  map. After contusion SCI, T1W images show profound hemorrhage and 

tissue swelling in the acute phase, and tissue shrinkage in the secondary injury phases. 

Spared axons along the injury progress are clearly demonstrated in the λ|| maps 

(delineated in yellow ROIs). The myelin integrity shown in  maps indicates that 

heterozygous cords experience extensive demylination, while the tissue contrast in the 

shiverer cords is not apparent throughout the injury progress. The RA maps show the 

effects of both axonal injury and demyelination allowing determining the total VLWM 

area along the injury (delineated in green ROIs).  

Significant differences in the total cord area were observed between heterozygous 

and shiverer mice at 7 and 21DPI (Fig. 4-4a). Except naïve cords, no significant 

difference was seen in areas of the spared axons between heterozygous and shiverer 

mice (Fig. 4-4b). The area of spared axons normalized to the total cord area exhibited no 

significant differences between the heterozygous and shiverer mice throughout the time 

course of the study (Fig. 4-4c). When normalized to the area of VLWM, the more 
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significant atrophic change was seen in both strains of mice (Fig. 4-4d). The 

heterozygous mice showed a more rapid decrease of spared axon area normalized to 

VLWM than that of the shiverer mice. There were no statistically significant differences in 

normalized areas of spared axons between the two strains of mice from 7 DPI through 

the end of the time course.  

 

Figure 4-4. Evolution of total cord size area (ATC) (a), spared axon area (ASA) (b), percent 

spared axon proportion to total VLWM (c), and percent spare axon proportion to total 

cord size area. The cord sizes are similar between the shiverer and non-shiverer mice 

before and immediately after SCI. Both groups suffered severe whole cord atrophy, 

severer in shiverer than heterpzygous mice (a). The shiverer mice have smaller VLWM 

initially. After SCI, however, both groups show similar amounts of spared VLWM area (b). 

When taking into account of atrophy effect of the ATC, the percent spared VLWM is no 

difference between heterozygous and shiverer mice throughout the injury progress (c). 

The difference patterns of VLWM degeneration become obvious when taking into 

account the VLWM atrophy only. The heterozygous shows drastic decrease of the 

percent spared VLWM areas immediately after SCI, while the shiverer preserves more 

spared VLWM. But shiverer mice experience more secondary degeneration in the sub-

acute phase (7DPI) than the heterozygous, so that the percent spared VLWM areas 

become the same in the chronic phase (d). (* p<0.05)  
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Prior to SCI, the λ|| was lower in naïve shiverer than that of the heterozygous mice 

(Fig. 4-5a). After SCI, the time course of λ|| did not statistically differ between 

heterozygous and shiverer mice (Fig. 4-5a) exhibiting the most significant decrease at 3 

hrs after injury, statistically indistinguishable from the lowest value at 7 days after injury. 

At baseline, the VLWM  of shiverer mice was 0.4  0.07 µm2/ms, significantly higher 

than that of the heterozygous mice (0.2  0.03x m2/ms) (Fig. 4-5b). After SCI, the 

VLWM  in shiverer mice remained unchanged up to 14 DPI. In contrast, the VLWM  

of heterozygous mice increased but not exceeding the baseline value of shiverer mice 

from 3 hrs after injury up to 14 DPI. Both shiverer and heterozygous VLWM  increased 

above the baseline shiverer mice value at 21 DPI. The diffusion anisotropy of VLWM 

from heterozygous mice was higher than that of the shiverer mice at the baseline. After 

injury, the differential reduced becoming equal from 7DPI until the end of the time course 

at 21 DPI (Fig. 4-5c).  
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Figure 4-5. Group averaged λ|| (a),  (b) and RA (c) in the SWM at each injury phase. 

The λ|| is lower in naïve shiverer mice. After SCI, the λ|| show no significant difference 

between heterzygous and shiverer mice. Originally, the  of the shiverer mice is 1.5 

folds of that of heterzygous mice. The  of the shiverer mice does not change 

throughout the injury progress, indicating no demyelination occurred. Meanwhile, the  

of the heterzygous mice shows continuous increase suggesting severe demyelination in 

the myelinated VLWM. Two groups of mice show the same  in the chronics phase. 

Significant difference of RAs is seen between two groups of mice. The VLWM of the 

shiverer mice has smaller axon, more microstructures, and incomplete myelin sheath 

that are reflecting on the smaller RA. The RAs change insensitively due to the slow 

process of demyelination. After 7DPI, there is no significant difference between 

heterozygous and shiverer mice. (* p<0.05) 
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The BMS score of shiverer mice was 6 before SCI, a significantly worse function 

than the heterozygous mice (Fig. 4-1). After 21 DPI, the BMS of shiverer and 

heterozygous mice was below 6 and indistinguishable between the two groups of mice 

(Fig. 4-6a). It is also worth noting that  of shiverer and heterozygous mice were also 

comparable and larger than the control values of the shiverer mice before injury (Fig. 4-

6a). The area of axon sparing revealed that near 100% of axons in both shiverer and 

heterozygous mice were normal (Fig. 4-6b). The BMS data suggested that the extent of 

axon sparing played a critical role in the hindlimb function after SCI.  

 

Figure 4-6. Correlation plots between BMS vs  (a), and BMS vs ASA% by AVLWM (b) at 

21DPI. The heterzygous control mice show significantly low  than the other groups of 

mice. Both shiverer and heterozygous control mice show similar amount of ASA% by 

AVLWM, but their BMS scores are significantly different. A positive correlation between 

BMS vs ASA% by AVLWM is found in the injured group of mice when their hindlimb function 

is limited below BMS=6.  

Histological analyses of myelin/neuron integrity of control and injured cords from 

both groups of mice were performed using EC/CV staining respectively (Fig. 4-7a-h). 

The area of the total cord area was comparable in control shiverer and heterozygous 

mice. After injury, shiverer mice endured more severe atrophy than that of the 

heterozygous mice (Fig. 4-7i). The VLWM of the control shiverer mice was significantly 
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smaller than that of the heterozygous mice (Fig. 4-7j). After injury, significant atrophy of 

VLWM was seen in both groups of mice (Fig. 4-7j). The VLWM area normalized to the 

total cord area was not changed in heterozygous mice after injury, while significant 

decrease in normalized VLWM area was seen in the shiverer mice (Fig. 4-7k). Lesions in 

shiverer mice occupied a larger proportion of ATC than that in heterozygous (Fig. 4-7l). 

Normal MBP staining was seen in heterozygous mice (Fig. 4-8a, e, i) while shiverer mice 

exhibited negative MBP staining (Fig. 4-8c, g, i). At 21 DPI, heterozygous mice showed 

significant loss of MBP staining intensity indicating severe myelin loss (Fig. 4-8b, f, i). 

The shiverer mice cords remained MBP negative at 21 DPI (Fig. 4-8d, h, j). Control 

cords of both shiverer and heterzygous showed comparable amount of SMI-31 staining 

(Fig. 4-9a, c). The axonal caliber was larger in heterozygous cord (Fig 4-9e, g). SMI-31 

staining was largely lost at 21 DPI in both groups (Fig. 4-9b, d), suggesting severe 

axonal loss (Fig. 4-9f, h). After corrected for tissue shrinkage, ~40% loss of SMI-31 

positive area was seen in both groups (Fig. 4-10i, j). 
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Figure 4-7. EC/CV stain for myelin/neuron survival of heterozygous control (a, e), 

heterozygous injury (b, f), shiverer control (c, g), and shiverer injury (d, h). The total cord 

size areas of two control groups are comparable. The injured cord of shiverer mice 

endure significantly more atrophy than that of heterozygous (i). The VLWM areas of the 

control shiverer mice is significantly smaller than that of the heterozygous and further 

shrink more after injury (j). On account of the atrophy of the initial ATC, two groups of 

injured cords show similar percent VLWM area (k). Lesions in shiverer mice occupy a 

larger proportion of CS areas than that in heterozygous after corrected for shrinkage (l). 
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Figure 4-8. MBP stain for myelin basic protein in heterozygous control (a, e), 

heterozygous injury (b, f), shiverer control (c, g), and shiverer injury (d, h). Heterozygous 

mice show normal for MBP stain (a, e, i). Shiverer mice congenitally lack of MBP and 

show almost no positive stain for MBP (c, g, i). At the chronic stage of SCI, heterozygous 

mice show significant loss of stain intensity indicating severe demylination (b, f, i). The 

stain intensity does not change between the shiverer control and injured cords (d, h, j).   
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Figure 4-9. SMI31 stain for phosphorylated neurofilament protein in heterozygous control 

(a, e), heterozygous injury (b, f), shiverer control (c, g), and shiverer injury (d, h). Control 

cords of both shiverer and heterzygous show comparable amount of SMI31 stains in the 

low power images. The heterozygous cord, however, has larger axon caliber (e, g). 

SMI31 stains are greatly lost after injury in both groups, suggesting severe axonal loss in 

the chronic phase (i). After corrected for shrinkage, the percent SMI31 areas show a ~40% 

loss in both groups. SMI31 stain in the heterozygous is lost more than that in the 

shiverer without significance (j). 

4.4 Discussion 

Without compact myelin, the dysmyelinated axons exhibit decreased axonal 

caliber, increased cytoskeletal densities, reduced slow axonal transport rates, reduced 

neurofilament phosphorylation, increased mitocondria stability, irregular axoglial 
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junctions and scattered distribution of axonal K+ channel in shiverer mice [137, 144-146]. 

As a result, deteriorated axonal conduction is seen in shiverer spinal cord as evidenced 

by decreased amplitude, increased latency and decreased conduction velocity [147]. 

The deficient myelin sheath was also evidenced by the increased λ compared to the 

myelinated controls [83, 142]. The dysmyelinated axons showed lower λ|| contributing 

from more axon counts, smaller axon calibers, more microstructures (e.g. mitochondria, 

microtubule, and neurofilament) and less extracellular space [137, 144-147].  

In a traumatic event, axons and glia suffer direct mechanical injury. The ensuing 

secondary injury leads to the necrotic and apoptotic death of neurons. The myelinating 

oligodendrocytes partly contribute to the glutamatergic excitotoxicity, free radical 

damage, and inflammation [148-151]. On the other hand, myelin sheath provides a 

protection of axon from the excessive glutamate activity [152, 153] and the essential 

neurotrophin for neuron survival [136, 154, 155]. In the present study, dysmyelinated 

shiverer and normally myelinated heterozygous mcie were examined to investigate the 

effect of myelination on axonal integrity after SCI. Both heterozygous and shiverer mice 

underwent the identical degree of contusion injury resulting in comparable acute axonal 

damage indicated by the decreased λ||. Interestingly, the peak severity of axonal injury 

was reached immediately after contusion suggesting that the primary damage to the 

axon resulted from the direct mechanical insult. The secondary axonal degeneration 

progressed slowly over time leading to significant axonal loss 21 DPI as seen in 

postmortem histology. The slow secondary degeneration was also evident by the 

gradual elevation of  reflecting the slow myelin loss after axonal damage. The pattern 

of the injury to myelinated and dysmyelinated VLWM in response to contusion SCI 

suggested that dysmyelinated axons in shiverer mice suffered lesser, although not 

statistically significant, primary injury than the myelinated axons after the mechanical 
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insult. However, faster secondary axonal degeneration is seen in the dysmyelinated 

axon in the later time points indicating that compact myelin may be required to support 

the axonal survival from the detrimental secondary degeneration. 

Through the serial in vivo DTI, the noninvasive detections of white matter injury 

allow direct correlation of white matter damage with the animal‟s locomotor function. In 

the hyper-acute to sub-acute phase, BMS scoring did not show a significant difference 

between the two groups due to the effects of spinal shock and profound inflammation. In 

the chronic phase when the inflammation receded, the DTI and histology results 

suggested that the spared axons of the heterozygous and shiverer mice were 

comparable as well as the resultant locomotor function. In our previous study of graded 

contusion SCI [34], we demonstrated that the locomotor function nearly linearly 

correlated to the area when spared white matter area was below 50% of the baseline. 

The locomotor function was not affected if the spared white matter area was above 50% 

of the baseline. In the current study, we further demonstrated that the area of spared 

axons correlated with the hindlimb locomotor function at 21 DPI in both shiverer and 

heterozygous mice with BMS less than 6 (Fig. 6a, b). However, full myelination is 

required for high locomotor function, i.e., BMS > 6, in mice.  

Axonal loss is the primary reason for atrophy in the white matter diseases [156, 

157]. However, the heterozygous and shiverer mice showed different atrophic patterns in 

response to the same contusion SCI. In the first place after the primary mechanical 

injury, the spinal cords of the heterozygous and shiverer mice swelled to the similar size 

(Fig. 4a), but more axon was injured in the heterozygous VLWM due to stress 

accumulation at node of Ranvier in their myelinated axon [11]. As indicated by λ|| in the 

acute phase (Fig. 5a), a rapid decrease was seen in the injured heterozygous VLWM 

and lesser axon was spared (Fig. 4d). Secondly in the sub-acute phase, compared to 

the mild atrophy of the heterozygous mice, the shiverer cord exhibited more severe 
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atrophy in this period with mild shrinkage afterward suggesting that severe axonal loss in 

the this phase. Finally in the chronic phase, the heterozygous mice cord size was larger 

with comparable amount of axons spared as that in shiverer mice. These injury patterns 

were consistent with previous literature reports indicating that the dysmyelinated axon 

was more vulnerable to the secondary degeneration [153, 158]. Although the responses 

to the injury were in different timing, when the injury degrees were the same, both 

heterozygous and shiverer cords eventually concluded to the same injury degree.  

Myelin sheath provides neurotrophin for neuron protection and also inhibitor 

against neuron regeneration. In the current experiment shiverer mice did not show 

severe tremors after injury. It seems that the reaction of dysmyelinated white matter to 

SCI eased the unstable synaptic connectivity in shiverer mice. In chronic phase, the 

shiverer mice preserved more spared axon, though not significantly, suggesting that the 

myelin deficiency may benefit the axon preservation or the axonal regeneration. The 

underlying mechanism for the better recovery in shiverer mice is unknown. One 

speculation may be that the dysmyelinated axon acts like an immature axon in which the 

tubulin protein is elevated to increase the density of axonal microtubules [137]. In 

addition, the mitochondrial activity is also elevated in the dysmyelinated axon to provide 

more energy in maintaining conduction [144]. These alterations in response to the 

absence of myelin, plus less myelin inhibitors presented in shiverer VLWM may 

somehow facilitate the axon regeneration. On the contrary, the lack of myelin is also not 

sufficient to keep those regenerated axon healthy and may end up with immature axonal 

cytoskeleton. Besides the abundant of literatures that use shiverer mice to study the 

interaction of myelination and axon maturation [137, 145], myelination interacting with 

axonal structure and conduction [144, 147], distribution and expression of the K+ 

channel subunits Kv1.l and Kv1.2 [159, 160] and remyelination therapy [146], it is 
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worthwhile to conduct further studies using shiverer mice to elucidate the insufficiency of 

less protection, and the conjectural sufficiency of better regeneration. 

4.5 Conclusion 

The role of spared axon and myelin integrity in locomotor function was investigated 

by in vivo DTI on dysmyelinated shiverer mice and their heterozygous controls 

littlermates. Since the shiverer mice have neither axonal injury nor inflammation, the 

lower hind limb function may be mainly ascribed to the deficient myelin sheath as 

evidenced by the higher λ and lesser MBP staining with relatively normal λ|| and SMI31 

staining. After severe SCI, however, the hind limb locomotor function became no 

difference between the heterozygous and shiverer mice. Although in the chronic phase, 

there is still certain amount of myelin sheath in the heterozygous VLWM, the contribution 

of such impaired myelin sheath to the locomotor function was not obvious. We found that 

myelin sheath is critical for a higher hind limb function. When the locomotor function is 

limited, such as the chronic phase after SCI, the amount of spared axon plays the role. 
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Chapter 5. Vascular and Axonal Injuries in Contusion SCI  

Abstract 

In contusion SCI, vascular disruption has been observed proximally and distally 

resulting in intra-parenchymal hemorrhage to exacerbate the secondary injury. Scarce 

evidence has been reported to explain such injury patterns. In present study, in vivo 

diffusion- and T2*-weighted MRI, combined with FE biomechanical simulations, provide 

evidence that explains the causes of concomitant proximal and distal vascular injury with 

focal axonal injury. Our study indicates that the unexpected, distally-dominated, vascular 

injury could significantly affect the characteristics of the injury animal model via 

hemorrhage-induced secondary injury. Structures, such as nerve roots, narrower rostral 

area, and the size of laminectomy may contribute to the stress accumulation. Injury 

severity should be carefully characterized first, using, for example, in vivo MRI, to 

provide a consistent and reproducible platform on trials of preclinical therapeutic 

intervention. 

5.1 Introduction 

Rodent model of SCI has been used widely to study the pathophysiological 

changes and the herein therapeutic intervention [10]. Therapy in the acute phase is 

directed toward preventing the progression of these changes and confining the injury to 

the region that was directly traumatized [9]. However, models of cord injury have been 

limited by inability to precisely control the injury patterns and the evolution of pathologic 

changes in a given anima [10]l.  
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In experimental SCI, for instance, the WM injury is usually localized around the 

traumatic epicenter, while the proximal and distal vascular disruption has been reported 

in many studies to expand the WM injury in a later time point resulting from the 

intraparenchymal hemorrhage [9, 60, 150]. The early vascular damage and the resulting 

edema, necrosis, demyelination, cyst formation, and infarction greatly impact the 

neurological function after SCI [161]. The uncontrollable factors occurred when 

generating the experimental SCI by the impact device could eventually affect the 

consistency of the injury severity in the secondary injury process [8, 11, 105]. The 

efficacy of the therapeutic intervention therefore may not be able to assess accordingly, 

and the conclusion is skeptical. Nevertheless, scarce evidence has been reported 

regarding the origin of concomitant distal vascular disruption on the proximal WM injury. 

Finite element analysis (FEA) overcomes the limit of direct measurement to study 

the biomechanics of SCI [162, 163]. In cooperating with appropriate material properties 

and boundary conditions, the FEA simulation provides the best mean to elucidate the 

crucial biomechanical factors of the injury mechanics in the traumatic SCI. On the other 

hand, Magnetic Resonance (MR) imaging of the central nervous system (CNS) has 

shown high sensitivity for detecting hemorrhage and yields quality anatomic details [33, 

58, 61, 91]. MR imaging also provides a non-invasively method for detecting the 

pathological changes of SCI in vivo: T2*-weighted MRI is known sensitive for detecting 

hemorrhage from the susceptibility effect of deoxygenated hemoglobin; the parallel 

diffusivity is capable for detecting the axonal injury in the hyperacute phase [36, 58]. In 

the present study, in vivo T2*- and diffusion-weighted MRI, combined with FEA 

biomechanical simulations, provide strong evidence that explains the causes of 

concomitant proximal and distal vascular injury with focal axonal injury. 
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5.2 Materials and Methods 

Contusion Spinal Cord Injury 

T9-contusion was generated on fourteen to sixteen-week-old YFP C57BL/6 mice 

weighing 25-29 g by a modified-OSU impacter with at a depth of 0.3mm (mild), 0.5mm 

(moderate), or 0.8mm (severe) injuries (n = 5 each group). Age and gender matched 

mice (n = 3) were sham-operated as controls. The profiles of indentation displacement, 

acceleration, and force were measured in-situ for monitoring the indentation as well as 

for the FEA model verification. The force profiles were calibrated by the measured force 

subtracting the inertia force generated from the mass of the impactor tip. The injured 

animals were imaged hyper-acutely (~3 hrs) to evaluate the patterns of WM and 

vascular disruption.  

MRI 

T2*-weighted 3D data sets were acquired usng a gradient-echo sequence. 

Acquisition parameters were: FOV: 11 × 11 × 11 mm3, image matrix = 96 × 96 × 96, 

TR/TE = 12/6 ms, excitation pulse angle = 20°. Image resolution was 114 µm × 114 µm 

× 114 µm. In vivo diffusion MRI was acquired by two-direction DWI, (Gx,Gy,Gz) = (1,1,0), 

(0,0,1), using a multiple spin echo diffusion weighted sequence with 45 slices at 94 µm × 

94 µm × 200 µm resolution with respiratory gating. Other imaging parameters were: 

TR/TE= 2000/27 ms, ∆TE 13ms, ∆ 15 ms, δ 5 ms; b-value 0 and 1200 s/mm2, FOV 0.9 

× 0.9 cm2, data matrix 96 × 96 zero-filled to 192×192, and 3 echoes averaged. The total 

scan time was ~2 hrs. 

The parallel diffusivity was calculated by equation (3-3) to determine the region of 

axonal injury; the T2*-weighted images were used to assess the extent of hemorrhage. 
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The 3D injury patterns were outlined by the ROI analysis of threshold hypointensity 

regions in T2*-weighted and D|| maps using the averaged values of the control group. 

Finite Element Analysis 

The commercial FEA software package, Abaqus, was used to create the FEA 

model based on in vivo DWI geometry. The anatomical structures of mouse spinal cord 

from T6 to T11 were distinctly segmented in the in vivo transverse D map (Fig. 5-1a). 

The DWI maps not only benefit the determination of SCI components for the FEA model 

generation, but also facilitate the ease of ROI analysis and. Five transverse slices 

(2.25mm spacing between) were picked for extruding the 3D structure (Fig. 5-1b-d). 

Comparing to the previous FEA models considering only identical trans-axial sections in 

the longitudinal direction, the current study reconstructed the actual varied trans-axial 

sections from T6 to T11 by using in vivo DWI images to generate the FEA model.  

 

Figure 5-1. Radial diffusivity map clearly demonstrates the structures of in vivo mouse 

spinal cord. Starting from cerebrospinal fluid, an alternating bright--dark-bright pattern 

was observed.  

Three parts of the contusion SCI components were generated in the model, 

including the impactor tip of rigid body, vertebrae using tetrahedron mesh, and spinal 

cord using hexahedron mesh (Fig. 5-2a, b, c). Distinct element sets were meshed to 

represent vertebrae, dura matter, CSF, pia matter, GM, DWM and VLWM (Fig. 5-2d).  

a. b. c. d.
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Figure 5-2. Three parts of element are generated in the FEA model (a-c). Six distinct 

element sets are composed to represent the six fundamental components in the mouse 

spinal cord.  

Constitution Model, Material Properties and Boundary Condition  

The Ogden hyperelastic model was used to calculate the biomechanical behavior 

of spinal cord tissue, which has previously been used to model both spinal cord and 

brain tissue [23, 164-166]. The Ogden hyperelastic strain energy density function, U, is 

defined by: 

   
   

  
     

      
      

     

 

   

  
 

  

 

   

       
  

 (5-1) 

, where     are the deviatoric principal stretches           ;    are the principal stretches; 

N is complexity of the material law;   ,    and    are temperature-dependent material 

parameters;     is the elastic volume ratio between current and reference configurations. 

The initial shear modulus,   , and bulk modulus,   , for the Odgen form are given by: 

Impactor Tip Vertebrae Spinal Cord

Vertebrae Dura CSF Pia GM WM

a. b. c.

d.

e.
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 (5-2) 

, where   is equivalent to shear modulus when N=1,   is Poisson‟s ratio. The viscoelastic 

portion described with a Prony series exponential decay is defined by: 

                        

 

   

  (5-3) 

, where the instantaneous shear modulus is multiplied by a normalized function that 

includes relative relaxations,   , at characteristic time constant,   . 

The CSF were modeled with solid element with low shear-to-bulk modulus to 

introduce fluid-like beahavior, [167] using a Mooney-Rivlin hyperelastic model with a 300 

times lesser shear modulus than the spinal cord [23]. The Mooney-Rivlin hyperelastic 

model is defined by: 

                        
 

  
          (5-4) 

where         in this model are temperature-dependent material parameters;     and     

are the first and second deviatoric strain invariants defined as: 

       
     

     
  and        

    
    

    
    

    
  (5-5) 

The initial shear modulus is given by: 
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,

 
(5-6) 

The impact tip was set as rigid body, and the vertebrae were applied as elastic 

material. Material properties applied in literatures were first applied in the calculation, 

and fine-tuned to fit the in-situ force measurements as listed in Table 5-1. The boundary 

conditions used previously in the literature were adapted  

Table 5-1. The material properties adapted from the literature are applied in the FEA 

model. 

 

The spinal column is assumed to be an encastre rigid body providing friction to 

the spinal cord. The coefficient of friction between spinal cord and spinal column was 0.6; 

between spinal cord and impact tip was 0.15. The impact was placed in direct contact 

with the exposed dura and prescribed the in-situ displacement profiles of 0.8mm, 05mm 

and 0.3mm penetrating into the spinal cord with the speed of 0.2m/s. The model was 

symmetric at the sagittal midlines of the spinal cord and vertebrae to save computational 

cost. 

Model Model Constants Viscoelasticity Law Constant Relaxation Time

Spinal 

Cord
Ogden (N=1)

G∞=15 kPa

α=4.7

v =0.45

d=1050 kg/m3

Three-term Prony 

series decay

G1=163.2 kPa

G2=35.3 kPa

G3=12.1 kPa

τ1=1 msec

τ2=10 msec

τ3=100 msec

Dura Ogden (N=1)

G∞=1205 kPa

α=16.2 

v =0.45

d=1000 kg/m3

Four-term Prony 

series decay

G1=1069 kPa

G2=416 kPa

G3=335 kPa

G4=335 kPa

τ1=9 msec

τ2=81 msec

τ3=564 msec

τ4=4690 msec

CSF Mooney-Rivlin

G=0.134 kPa

C01=C10=0.0335 kPa

d=1000 kg/m3

Bone Linear Elastic
G= 2.5106 kPa

d=1360 kg/m3

Persson

(2010)

Pia Linear Elastic
G= 793 kPa

d=1040 kg/m3

Ozawa

(2004)

Not considered

Not considered

Ref.Tissue
Viscoelasticity

Maikos

(2008)

Not considered

Hyperelasticity
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Convergence Test and Model Validation  

The convergence test was first conducted to determine the most efficient and 

accurate mesh for further calculation. Once the best mesh had been determined, the 

models ran with material properties of the literatures to compare with in-situ force profiles. 

The material properties of the spinal cord were then adjusted accordingly to fall within 95% 

confidence interval of the in-situ force profiles. The whole model has 19,422 nodes and 

22,590 elements. 

5.3 Results 

Three injury severities at mild (0.3 mm), moderate (0.5 mm), and severe (0.8mm) 

were generated (Fig. 5-3a). Distinct force profiles of the indentation were seen in three 

injury groups showing highly viscoelastic properties of the spinal cord tissue (Fig. 5-3b). 

Compared to the sham-operated controls, all three injury groups displayed obvious WM 

injuries in the parallel diffusivity maps and vascular disruptions in the T2*W images 

(Fig.5-4). All WM injury patterns distributed evenly from the injury epicenter to the distal 

regions. However, the hemorrhage pattern distributes differently between three injury 

groups (Fig. 5-5). The Mild injured group exhibited only local hemorrhage and WM injury 

at the epicenter. The moderately injured group exhibited vascular and WM injury 

patterns coexisting in the epicenter and significant rostral WM injury with less prominent 

but noticeable rostral vascular damage. The severe group displayed a prominent focal 

hemorrhage and WM damage both in the epicenter and rostral regions. Both 

hemorrhage and axonal injury extended more in the rostral than caudal direction. 

The convergence test of the FEA model shows that the seeding size 0.007 could 

be the best mesh design considering both efficiency and accuracy (Fig. 5-6). The model 
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chosen for further calculation contained 19,422 nodes and 22,590 elements .The 

validation curves show good match between the FEA model force estimations and the 

in-situ force measurements (Fig. 5-7).  

In the simulation, the initial indentation produced a focal stress and stretch in the 

epicenter resulting proximal hemorrhage and axonal injury (5-8b, c, d). During the 

indentation, the strain rate propagated from the epicenter, heavily extending to the 

rostral direction, consistent with the more severe rostral hemorrhage away from the 

epicenter. The stress and stretch was confined focally at the epicenter resulting in the 

even injury distribution. The primary mechanical factor to cause the vascular disruption 

may be the strain rate. The FEA results confirmed the MRI injury pattern of distal 

hemorrhage increasing with injury severities. On the other hand, the axonal injury is 

mainly strain related. The axonal injuries identified in D|| maps correspond to the focally 

centered but evenly spreading von Mises stress and MPS. 
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Figure 5-3. The averaged profiles of indentation displacement and force measured in-

situ when the spinal cords injured (n=5 each group). Mild (0.3mm), moderate (0.5), and 

severe (0.8mm) injuries generates three distinguishable profiles of displacements and 

forces. 
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Figure 5-4. The transverse views of the parallel diffusivity map and T2* images show the 

axonal injury and hemorrhage patterns of sham, mild, moderate, and severe injury 

groups. The regions of spared axon are encompassed in the ROIs in green in the D|| 

map. The hemorrhage regions are delineated by the ROIs in red in the T2* weighted 

images.  

 

Figure 5-5. Longitudinal projections of the lesion volumes show different patterns in (a) 

hemorrhage and (b) WM injury. Averaged data are shown with standard deviation (n=3). 
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The severity of the epicenter vascular injury correlated with the severity of impact. In 

addition to the epecenter pattern, a distinct distal vascular injury is apparent at 2 mm 

rostral to the epicenter in the moderate and severe injury cords. In contrast, the WM 

injuries extend uniformly throughout the injury region with further extension rostrally. 

 

Figure 5-6. Results of the convergence test. Meshes and the contour maps of the 

maximum principal strain (MPS) are plotted in (a). Seeding sizes, number of node and 

element contained in each mesh (b). The MPS in the convergence test is plotted versus 

the number of node in Abaqus (c). The data is getting from the region indicated in each 

contour map. The less the seeding size in a model, the finer the mesh is. The MPS 

converges at seeding size 0.007.  
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Figure 5-7. The force validation curves are plotted between the in-situ measurements 

and FEA results in the groups of 0.8mm (a), 0.5mm (b), and 0.3mm (c). 

 

Figure 5-8. Comparison of coronal T2*W images, D|| maps and FEA stress, strain, and 

strain rate contour maps on three injury degrees. Hemorrhage areas are outlined in red 

in T2*W images and the axonal injury is outlined in green in D|| maps (a). The dashed 

circles indicate the injury epicenter. The von Mises stress and MPS distributions at 10 

ms and 15 ms after impact show localized at the epicenter and slightly extend to the 

rostral sites (b, c). The MPS strain rate shows accumulated at the epicenter at 6ms, 

however, the strain rate extends to the distal site, especially to the rostral site, at 7ms (d).  
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5.4 Discussions 

The neural and vascular injury patterns in the epicenter and distal sites were first 

examined by diffusion- and T2*- weighted images. The acute vascular and WM damage 

extended more significantly rostrally, and the injury patterns show increasing distal 

damage with increasing injury severity. These acute injury patterns correspond to our 

FEA simulation results suggesting that the vascular disruption is caused by the strain 

rate accumulation and propagation while the axon damage is more related to the evenly 

spreading strain field.  

The possible reasons for causing concomitant proximal and distal injury, 

especially toward the rostral side, may mainly originate from the spine structures, such 

as narrower rostral area and nerve root locations [8, 9]. The CSF, occupying the 

subarachnoid space between the arachnoid mater and the pia mater, acts a cushion or 

buffer for spinal cord. The spinal cord essentially floats inside the vertebrae to prevent 

the basic mechanical insult [25]. In the rodent spinal cord, the narrowest segment of the 

spinal cord is at T2~T3, where the largest size of cord is at T12~L1, the lumbar 

enlargement. The CSF space at the narrower region is also much thinner and not able to 

provide enough degree of freedom allowing absorbing the impact. In our simulation 

study, the stress and strain tend to accumulate at the narrower rostral section. The 

effects are clearly seen in the in vivo MR images with more axonal injury and 

hemorrhage extending to the rostral side  

Another important factor has not been considered in the FEA model is the 

anchoring effect of the nerve roots. In the dorsal region, the spinal nerve roots emerge 

from the dorsal horn through an opening intervertebral foramen between adjacent 

vertebrae [12, 19]. The denticulate ligaments, the attachment to the arachnoid and dura 
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mater, provide stability for the spinal cord against motion within the vertebral column. 

The spinal cord indentation causes the denticulate ligaments to present a stress on the 

spinal cord, and cause more damage near the dorsal root. The segments of the T7/T8 

regions rostral to the epicenter are much shorter than the segments of the T10/T11 such 

that the nerve roots are more closely distributed in the rostral region contributing to the 

stronger anchoring effect. Though, it is believed that the nerve roots are particularly 

susceptible to be injured, due to the lack of protective epineurium and perineurium to aid 

in absorbing large tensile and compressive forces making the effect of nerve root 

ambiguous in the experimental SCI. Even without considering the anchoring effect, our 

MR imaging and FEA simulation still show strong evidence that the distal injury is 

apparent and could be an important issue in controlling the injury severity in the 

experimental SCI.  

It is noticeable that in our experiments, the force profile of the spinal cord 

indentation shows highly viscoelastic behavior that the force rapidly dissipated 40kdyne 

in 10ms (Fig. 5-3b). This fast stress relaxation property measured from the lateral 

indentation is somewhat different from what has been reported in the previous 

indentation experiment [9]. Besides the behavior of the material properties itself, we 

speculate that the reason of the fast stress relaxation may come from the fluid-solid 

interaction within the spinal cord, since the in vivo spinal cord is full of interstitial fluid and 

soaked in the CSF. The movement of these fluids within the spinal cord may induce a 

time difference expelling the CSF and the interstitial fluid away from the epicenter when 

the impact is given fast. The effect of this biphasic fluid-solid interaction may also affect 

the stress and strain distribution within the spinal cord [168]. Further investigation is 

needed to elucidate and characterize the actual cause and effect of the fast relaxation 

property.  
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Our FEA simulation showed that the WM is more sensitive to the strain, which 

spreads widely along the longitudinal direction. However, the vascular disruption is more 

related to the propagating strain rate distribution. Another possible explanation for the 

distal vascular injury pattern may come from the stress and stain rate induced excessive 

pressure in micro-vascular leading to the Blood Spinal Cord Barrier breakdown or the 

direct burst of micro vessels, since the endothelial wall of the blood vessel is known to 

be able to sustain large stretch without injury [41]. On the other hand, the fiber-like axon 

structure is known sensitive to the longitudinal deformation that is related to the strain 

distribution. Thus, any alteration during the surgical procedure, such as the size of 

laminectomy, and the impact location, which eventually leads to the change of stress 

and strain distribution of the impact may be responsible to the inconsistency of the injury 

model. A more accurate assessment of the injury severity may be achieved using in vivo 

MRI acutely to reduce inter-animal variation on trials of preclinical therapeutic 

intervention. 
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Chapter 6. Conclusions and Future Work 

SCI is the most devastating injury that often causes the victim permanent 

paralysis and undergo a lifetime of therapy and care. There are 11,000 people across 

the country that suffers from these types of injuries every year. Over 200,000 people are 

living with these serious debilitating injuries. The medical expenses associated with SCI 

are huge, costing victims a hundred of thousands of dollars a year. 

Lots of researches from various fields are devoted to investigate the effective 

diagnosis and therapy for the traumatic injury by using animal model of the traumatic SCI. 

The research in this dissertation covers a wide range of SCI studies from studying MR 

imaging, neuropathology, and biomechanics. We apply the knowledge and technique of 

every discipline to accomplish the complex SCI studies, and also connect the 

multidisciplinary perspectives for providing thought to deal with the difficulties in the 

pathophysiological system. We improve the efficiency of spinal cord imaging, validate 

the imaging biomarkers in the dysmyelinating WM for detecting axonal injury and myelin 

damage, and elucidate the biomechanical factors to cause inconsistent mouse model of 

contusion injury. The contribution of our works to the neurotrauma society is to provide 

efficient and accurate in vivo detection of spinal cord WM injury, as well as to understand 

the injury biomechanics in the animal model of contusion SCI.  

In the future, the direction of our imaging research should focus on providing 

imaging biomarkers in reflecting the various stages of SCI, such as inflammation in the 

sub-acute phase, mitochondria activation in the sub-chronic phase, and neuronal 

conductivity in the chronic phase. Also, in cooperating with in vivo MR imaging methods 

detecting various detail information of the contusion SCI, the FEA model could 

potentially be used to determine the material properties by correlating the mechanical 
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parameters (from FEA) and the injury pattern (from in vivo MRI). Combining the 

advantage of FEA and diffusion MRI, the biomechanical properties could be more 

accurately determined non-invasively. The relationship between these mechanical 

property distributions and specific injury severity and pattern plays the crucial role to 

facilitate developing the simulation of neurosurgery and spine-related protection gear 

and intervention.  
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