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ABSTRACT OF THE DISSERTATION 

 

Transient-state kinetic studies of the mechanisms of DNA unwinding  

and translocation of the E. coli RecBC and RecBCD helicases 

by 

Colin Galwun Wu 

Doctor of Philosophy in Biochemistry 

Washington University School of Medicine, 2010 

Professor Timothy M. Lohman (thesis advisor) 

 

This thesis presents mechanistic studies of the E. coli RecBC and RecBCD 

helicases using transient-state kinetic approaches to understand the relationship between 

DNA unwinding and ssDNA translocation.  RecBC initiates unwinding from duplex 

DNA ends with pre-existing 5’-(dT)6 and 3’-(dT)6 ssDNA tails using a series of repeated 

rate-limiting steps with a rate of 345 ± 8 bp/sec and an average kinetic step-size of ~4 bp 

(20 mM Mops-KOH, pH 7.0 at 25C, 30 mM NaCl, 10 mM MgCl2, 5% glycerol, 1 mM 

2-mercaptoethanol) while RecBCD unwinds these same DNA substrates with a rate of 

745 ± 18 bp/sec using a more complicated mechanism which involves the loading of the 

5’ ssDNA end onto the RecD subunit.  After DNA unwinding, RecBC can continue to 

translocate along a ssDNA extension in the 3’ to 5’ direction with a rate of 909 ± 51 

nt/sec, consistent with the directionality of the RecB motor subunit.  Surprisingly, RecBC 

also possesses a secondary translocase activity that enables it to move along a ssDNA 

extension of the opposite DNA strand with a similar rate (990 ± 49 nt/sec).  Both  

i 



translocase activities are coupled to ATP hydrolysis from the RecB motor, and the 

primary translocase is sensitive to the polarity of the ssDNA backbone while the 

secondary translocase is not.  RecBC can also translocate along two non-complementary 

ssDNA extensions simultaneously using both translocase activities.  During DNA 

unwinding, RecBC consumes an average of 0.95 ± 0.08 ATP/bp unwound.  The primary 

translocase activity utilizes 0.81 ± 0.05 ATP/nt translocated while its secondary 

translocase activity is less tightly coupled and requires 1.12 ± 0.06 ATP/nt.  

Translocation along two non-complementary ssDNA extensions has an ATP coupling 

stoichiometry of 1.07 ± 0.09 ATP/nt.  These data indicate that the large majority, possibly 

all, of the ATP hydrolyzed by RecBC during DNA unwinding is used to fuel RecBC 

translocation along the nucleic acid rather than to facilitate base pair melting.  These 

results suggest that RecBC uses a two step active mechanism to unwind DNA by first 

destabilizing the duplex using its binding free energy in an ATP-independent process, 

followed by ATP-dependent translocation along the resulting ssDNA. 
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 DNA helicases are a ubiquitous class of motor proteins that couple the energy 

from 5’-nucleoside triphosphate (NTP) binding and hydrolysis in order to separate 

double-stranded (ds) DNA into transient single-strand (ss) intermediates that are required 

for DNA replication, recombination, and repair (Matson, Bean et al. 1994; Lohman and 

Bjornson 1996; Patel and Picha 2000; Delagoutte and von Hippel 2002; Lohman, Hsieh 

et al. 2003; Patel and Donmez 2006; Singleton, Dillingham et al. 2007).  Since DNA 

helicase activity is essential for all aspects of DNA metabolism, defects and mutations in 

human enzymes are linked to a number of genetic disorders such as Bloom syndrome, 

Werner syndrome, xeroderma pigmentosum, and others as well (Ellis, Groden et al. 1995; 

Hickson, Davies et al. 2001; Hickson 2003; German, Sanz et al. 2007).  In addition, a 

number of viral helicases which are essential for the replication of viral nucleic acids 

have been identified, such as the hepatitis C NS3 enzyme (Serebrov and Pyle 2004); 

therefore, understanding the molecular basis by which helicases function is paramount in 

aiding the design of potential therapeutics.  To this end, this thesis describes mechanistic 

studies of DNA unwinding and translocation using the E. coli RecBCD and RecBC 

helicases as model systems. 

 RecBCD is a molecular motor possessing ATPase, DNA helicase, and nuclease 

activities (Smith 1990; Kowalczykowski, Dixon et al. 1994; Anderson and 

Kowalczykowski 1997).  This heterotrimeric enzyme is composed of the RecB (134 

kDa), RecC (129 kDa), and RecD (67 kDa) polypeptides, and is involved in the major 

pathway of recombination in E. coli by processing DNA ends at damaged induced 

dsDNA breaks (Finch, Storey et al. 1986; Finch, Storey et al. 1986; Finch, Wilson et al. 

1986).  To this date, there is a wealth of biochemical and genetic information available 
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for this system, which has facilitated a number of equilibrium binding and DNA 

unwinding studies (Lucius, Vindigni et al. 2002; Dillingham 2003; Taylor and Smith 

2003; Wong, Lucius et al. 2005).  For the remainder of this introduction, I will highlight a 

subset of these studies that have laid the groundwork and have provided the motivation 

for this research.  In addition, I will present any relevant background information 

regarding the structural features of RecBCD as well as its biochemical properties, and 

discuss its biological role in vivo.   

 

Common Features 

Helicases have been classified originally into superfamilies and families based on 

their amino acid patterns (Gorbalenya and Koonin 1993; Hall and Matson 1999).  The 

largest two superfamilies, the SF1 and SF2 helicases, are each defined by seven 

conserved motifs in the primary sequence although not all seven regions are identical 

between the two superfamilies (Lohman, Tomko et al. 2008).  Only motifs I and II, or the 

“Walker A” and “Walker B” boxes, are shared among all helicase superfamilies and 

familes; these motifs together form part of the NTP binding site required for nucleotide 

binding and hydrolysis.  Since this classification method of helicases is based solely on 

amino acid sequence similarity, enzymes within a particular superfamily or family do not 

necessarily share the same unwinding properties and can act on a variety of nucleic-acid 

substrates.  As a result, although still useful, this antiquated classification system 

provides no mechanistic information of how helicases function, and a refinement of 

classification has been suggested to differentiate between enzymes that translocate along 

ssDNA (type A) or dsDNA (type B) and is based also on the directionality of 
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translocation (3’ to 5’ (type α) or 5’ to 3’ (type β)) (Singleton, Dillingham et al. 2007).  

To avoid further confusion, enzymes possessing helicase motifs but with unknown 

biochemical properties should be referred as nucleic-acid stimulated NTPases. 

The E. coli RecBCD helicase is composed of two SF1 motor subunits: RecB (a 3’ 

to 5’ translocase or type Aα) and RecD (a 5’ to 3’ translocase or type Aβ) (Dillingham 

2003).  The RecC subunit lacks the amino acids that are required for ATP catalysis and 

functions instead as a processivity and regulatory factor (Singleton, Dillingham et al. 

2004; Rigden 2005).  Even though the RecB and RecD motor subunits have opposite 

strand translocation polarities, they function in unison within the RecBCD heterotrimer to 

unwind DNA in the same net direction by acting on opposite ends of the DNA duplex 

(Taylor and Smith 2003).  Interestingly, the RecBC enzyme can still function as a rapid 

and processive helicase albeit with only one motor subunit (Korangy and Julin 1993) and 

therefore has a single ATP binding site, presumably; as a result, systematic studies of the 

RecBCD and RecBC enzymes can provide some insight to how the individual motor 

subunits function during DNA unwinding and ssDNA translocation.   

  

Biological role and function of RecBCD 

 RecBCD is involved in the major pathway of homologous recombination in E. 

coli and functions to repair damaged induced dsDNA breaks (Figure 1).  RecBCD first 

binds to a damaged induced blunt or nearly blunt-end with high affinity (Wong, Lucius et 

al. 2005), and then it will initiate unwinding of the DNA duplex upon ATP binding and 

hydrolysis with RecD serving as the lead motor (Spies, Amitani et al. 2007) and RecB as 

the trailing motor.  Because the two motor subunits move with different rates, a ssDNA  
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Figure 1. Cartoon of 
RecBCD and RecBC 
mediated recombination in 
vivo. (left panel) RecBCD 
binds to a damaged DNA
and unwinds the duplex. 
RecBCD preferentially 
degrades the 3’ terminating 
DNA strand until Chi is 
recognized, after which 
RecBCD degrades the 5’ 
terminating strand and loads 
RecA onto the 3’ terminatin
ssDNA. The RecA
filament initiates 
recombinational repair of th
DNA break. (right pa
RecBC also mediates 
recombinational repair but 
RecA loading is constitutive 
and independent of the Chi 
regulatory sequence. (Arnold 

 end 

g 
-ssDNA 

e 
nel) 

nd Kowalczykowski 2000). 
 

loop is formed ahead of the slower RecB subunit as the duplex is unwound (Taylor and 

Smith 2003).  During unwinding, RecBCD will degrade preferentially the 3’ ended DNA 

strand (relative to the RecBCD loading site) while cleaving the 5’ ended strand 

infrequently (Yu, Souaya et al. 1998; Yu, Souaya et al. 1998).  This potent nuclease 

activity functions to degrade phage DNA which is devoid of a crossover hotspot 

instigator (Chi) regulatory sequence 5’-GCTGGTGG-3’ that is over represented in the E. 

coli genome.  RecBCD unwinding and nuclease activities will ensue until the complex 

encounters Chi, which is recognized by the RecC subunit, whereupon single-molecule 

studies have shown that RecBCD pauses for several seconds (Handa, Bianco et al. 2005; 

Spies, Amitani et al. 2007).  After Chi recognition, DNA unwinding slows, and RecB 

then serves as the lead motor and the RecD subunit is inactivated (Spies, Amitani et al. 

2007).   Furthermore, the nuclease activity instead targets the 5’ ended DNA strand, 

resulting in the formation of a 3’ ssDNA overhang onto which RecBCD can load the 

a
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RecA protein (Arnold and Kowalczykowski 2000).  The RecA coated ssDNA filament 

can then facilitate the invasion of a homologous piece of DNA and use it as a template to 

repair the original DNA break (Spies, Bianco et al. 2003; Spies, Dillingham et al. 2005) 

 The RecBC enzyme, although lacking the RecD motor subunit can still function 

as a processive and rapid helicase (Korangy and Julin 1993).  Interestingly, the nuclease 

activity of RecBC is greatly diminished even though the nuclease domain is a part of the 

RecB subunit.  Furthermore, DNA unwinding by the RecBC enzyme mimics a “post Chi” 

state since RecA loading is constitutive and independent of the Chi regulatory sequence.  

As a result, recD- E. coli cells are hyper-recombinogentic (Arnold and Kowalczykowski 

2000). 

 

Structural Features 

A crystal structure of RecBCD bound to a 19 bp DNA hairpin was determined in 

2004 (Singleton, Dillingham et al. 2004) (Figure 2).  This complex was formed in 

presence of Ca2+ in order to inhibit the inherent Mg2+ dependent nuclease activity of 

RecBCD.  The last 4 bp of the DNA duplex was observed to be “melted out,” and the 3’ 

end of the ssDNA was shown to interact with the RecB subunit, as expected for a 3’ to 5’ 

helicase, while the 5’ ssDNA end was poised to interact with the RecD subunit although 

the DNA substrate was not sufficient in length to engage the motor.  Equilibrium binding 

and DNA unwinding studies as well as computer modeling have suggested a 5’ ssDNA 

tail length of ten nucleotides is required for the DNA end to reach the RecD subunit 

(Wong, Lucius et al. 2005; Wong, Rice et al. 2006).  This is consistent with a more recent  
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Figure 2. Crystal structure of a RecBCD-DNA complex. RecBCD is bound to a 19 bp blunt ended DNA 
hairpin. RecB is shown in orange, RecC is shown in blue, and RecD is shown in green; the DNA is shown 
in red. The RecBCD-DNA complex was formed in the presence of Ca2+ in order to attenuate its nuclease 
activity. A calcium ion (shown in gray) is observed to be bound to the RecB nuclease domain and the last 4 
bp of the DNA substrate is observed to be melted. (Singleton, Dillingham et al. 2004) 

 

crystal structure of RecBCD bound to a 19 bp DNA hairpin which has a 10 nt overhang 

on the 5’-end (Saikrishnan, Griffiths et al. 2008).  An interesting structural feature to note 

is the “arm” region of RecB, which is shown to interact with the DNA duplex ahead of 

the unwinding fork; the implications of this arm domain on the mechanism of DNA 

unwinding and translocation will be discussed in Chapter 3 and Chapter 4.  The ~ 30 kDa 

nuclease domain of RecB is tethered to the helicase domain through a long and flexible 

linker region (Singleton, Dillingham et al. 2004).  Although this nuclease domain is 

observed to form many protein-protein interactions with RecC and RecD in the crystal 
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structure, it likely adopts other conformations in solution using the flexible linker since 

RecBCD is able to degrade either DNA strand before Chi is recognized. 

Interestingly, the RecC subunit, adopts a RecB-like fold even though the two 

polypetides share only 2-11% amino sequence identity and RecC does not possess any 

canonical catalytic helicase or nuclease residues; hence, it is considered motor and 

nuclease dead (Rigden 2005).  RecC not only forms many protein-protein interactions 

with the RecB and RecD subunits, but also contacts both strands of the unwound ssDNA.  

The 5’-terminated DNA strand interacts with the dead nuclease region of RecC while the 

3’-terminated strand, from which Chi is eventually recognized, interacts with the dead 

motor domain (Singleton, Dillingham et al. 2004; Rigden 2005; Saikrishnan, Griffiths et 

al. 2008).   

 

Binding of RecBCD and RecBC to DNA ends 

 RecBCD and RecBC bind with high affinity to DNA ends (Wong, Lucius et al. 

2005).  Upon DNA binding, both RecBCD and RecBC can “melt out” the last 5-6 base 

pairs in a Mg2+ dependent but ATP independent manner.  This was first demonstrated in 

footprinting studies by Farrah and Smith where they showed that the last 5-6 bases are 

susceptible to KMnO4 attack when RecBCD binds to a DNA end (Farah and Smith 1997) 

which suggests base pair melting.  In a crystal structure of a RecBCD-DNA complex, 

which is solved in presence of Ca2+ instead of Mg2+ in order to attenuate the nuclease 

activity of RecBCD, the last 4 base pairs are observed to be separated (Singleton, 

Dillingham et al. 2004; Saikrishnan, Griffiths et al. 2008).  Consistent with these results, 

Wong et al have examined the energetics of RecBCD and RecBC binding to different 
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DNA ends using fluorescence titration and isothermal titration calorimetry (Wong, 

Lucius et al. 2005; Wong, Rice et al. 2006; Wong and Lohman 2008).  These studies 

indicate that the affinity of RecBCD for a DNA end increases as the 5’ ssDNA tail length 

is increased from 0 to 10 nucleotides, after which further extension of the 5’ tail length 

does not influence the binding affinity.  Interestingly, when the 3’ ssDNA tail length is 

increased, the binding affinity increases from 0-6 nucleotides but decreases from 6-20 

nucleotides.  As a result, RecBCD binds with optimal affinity to a DNA end possessing 

pre-existing 5’-(dT)10 and 3’-(dT)6 ssDNA tails.  A similar trend was observed with 

equilibrium studies of the RecBC heterodimer; however, this enzyme binds tightest to a 

DNA end possessing pre-formed 5’-(dT)6 and 3’-(dT)6 ssDNA tails.  This result indicates 

that both RecBCD and RecBC can “melt out” ~ 6 bp upon DNA binding such that if 

either protein is presented with preformed ssDNA tails, it no longer has to melt out those 

base pairs resulting in an increase in binding affinity.  Wong et al. later showed that the 

decrease in binding affinity when the 3’ tail length is increased results from paying an 

unfavorable entropic cost for forming a ssDNA loop (Wong, Rice et al. 2006).  I will 

discuss in Chapter 2 the effects of various DNA end structures (and also the influence of 

this ssDNA loop) on the mechanism of DNA unwinding initiation by RecBC and 

RecBCD.   I note that the ssDNA loop Wong et al. observed is inherent to RecBC and 

RecBCD binding to DNA ends with a 3’ ssDNA tail length > 6 nucleotides and differ 

from those previously observed during RecBCD catalyzed DNA unwinding (Taylor and 

Smith 2003); these loops result from the asymmetry in the unwinding rates of the RecB 

and RecD motor subunits. 
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Methods for studying DNA unwinding and translocation 

 There are a variety of experimental approaches used to study DNA unwinding and 

translocation; I will highlight several in this introduction.  “All or none” experiments are 

especially powerful because they provide information not only on the rate/processivity of 

unwinding, but also yield an estimate of the kinetic step-size (Ali and Lohman 1997; 

Lucius, Vindigni et al. 2002).  This technique requires labeling a reporter DNA strand 

either fluorescently or radioactively, and the substrate is designed such that unwinding is 

not detected until the entire strand is unwound and displaced by the protein.  As a result, 

all or none unwinding time-courses display lag kinetics in which the initial lag phase is 

sensitive to the number of repeated steps similar rate constants the helicase must undergo 

(Lucius, Maluf et al. 2003).  Unwinding experiments are typically performed as a 

function of reporter strand length and an average kinetic step-size can be estimated by 

analyzing such a set of time-courses.  One disadvantage of this assay is that it is sensitive 

to re-annealing.  Since DNA unwinding is not detected until the duplex is completely 

unwound, the unwound DNA can re-anneal behind the helicase which will influence the 

final amplitude of unwinding.  Another type of unwinding assay commonly used involves 

intercalating agents (ie: YOYO-1 or Hoechst 33258) which have different fluorescence 

properties when bound to ssDNA versus dsDNA (Bianco, Brewer et al. 2001; 

Dillingham, Webb et al. 2005).  DNA unwinding is observed by monitoring changes in 

fluorescence signal as a function of time.  Alternatively, E. coli SSB binding to the newly 

unwound ssDNA can also be used as a signal to monitor DNA unwinding (Roman and 

Kowalczykowski 1989; Roman, Eggleston et al. 1992).  In these experiments, one can 
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either monitor changes in the intrinsic tryptophan fluorescence of SSB or SSB can be 

fluorescently labeled and yield a signal change when bound to ssDNA (Webb 2010). 

 

RecBCD and RecBC catalyzed DNA unwinding  

Previously, Lucius et al have determined the minimal kinetic mechanism by 

which RecBCD initiates DNA unwinding from blunt-ends using “all or none” pre-steady 

state rapid chemical quenched-flow and stopped-flow fluorescence approaches (Lucius, 

Vindigni et al. 2002; Lucius, Jason Wong et al. 2004; Lucius and Lohman 2004).  

RecBCD requires undergoing two to three initiation steps before DNA unwinding can 

proceed although the functional nature of these additional steps remains unclear.  

RecBCD unwinds DNA rapidly and processively (rates and conditions) with an average 

kinetic step-size of ~ 4 bp.  This value is the same within error over a range of [ATP] and 

temperature examined which indicates that the same rate-limiting step remains rate-

limiting over the range of conditions examined (Lucius and Lohman 2004).  Single-

molecule studies have revealed that upon recognizing the Chi sequence during DNA 

unwinding, RecBCD pauses for several seconds and then continues DNA unwinding 

albeit with a slower rate, and that RecBCD can undergo forward and reverse motions 

during DNA unwinding (Perkins, Li et al. 2004; Handa, Bianco et al. 2005).  The 

estimated ATP coupling stoichiometry during RecBCD unwinding is reported to be ~ 2-3 

ATP per base pair unwound, which equates to ~ 1-1.5 ATP per base pair per motor 

(Roman and Kowalczykowski 1989; Korangy and Julin 1994).  However, these 

measurements were obtained by taking the ratio of the steady-state rate of DNA 

11



unwinding and the steady-state rate of ATP hydrolysis, which is influenced by slower 

processes such as protein dissociation and re-binding.   

The RecBC enzyme, which possesses only the RecB ATPase motor, still 

functions as a helicase.  Therefore, this simpler system provides a good model for 

studying how ATP binding and hydrolysis is coupled to DNA unwinding and 

translocation.  However, to this date, the unwinding mechanism for RecBC remains 

unknown.  In one interesting study, Bianco and Kowalczykowski inferred that RecBC 

translocates with strictly 3’ to 5’ directionality through DNA unwinding experiments in 

which the DNA substrate possessed a ssDNA gap in between two duplex regions (Bianco 

and Kowalczykowski 2000).  When the intervening ssDNA is 3’ to 5’ relative to the 

RecBC loading site, the protein is able to bypass even a 30 nucleotide ssDNA gap and 

unwind a distal duplex with the same efficiency relative to when there is only a nick 

present.  On the other hand, when the ssDNA region is 5’ to 3’ of the RecBC loading site, 

the protein has difficulty bypassing a 30 nucleotide ssDNA gap and a decrease in 

unwinding efficiency is observed in the unwinding of a distal duplex relative to when 

only a nick is present.  The authors also observed that the gap size RecBC is able to 

traverse depends on the proximal duplex length and that on average RecBC takes a 23 nt 

step (Bianco and Kowalczykowski 2000).  This led them to propose a quantum inchworm 

mechanism for RecBC unwinding in which a leading domain takes a 23 nt translocation 

step forward and then a trailing domain catches up to the leading domain and unwinds the 

DNA duplex with a smaller step size (Bianco and Kowalczykowski 2000; Lucius, 

Vindigni et al. 2002). 
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Research goals 

The ultimate goal of this thesis research is to better understand the relationship 

between DNA unwinding and ssDNA translocation using the E. coli RecBC and 

RecBCD helicases.  This dissertation presents pre-steady state kinetic studies of the 

RecBC and RecBCD helicases so that a direct comparison of these two activities can be 

made with these enzymes.  Because RecBC is a processive helicase with only one motor 

subunit, it has a single ATP binding site (presumably) which will make the results from 

DNA unwinding and ssDNA translocation studies easier to interpret.  Similar mechanistic 

studies can then be performed with the more complex RecBCD enzyme in order to 

determine and to dissect the relative contributions of each motor subunit to unwinding 

and translocation.   

As stated in the beginning of this introduction, at the start of my research, the 

binding energetics of RecBC and RecBCD to different DNA ends was examined (Wong, 

Lucius et al. 2005; Wong, Rice et al. 2006; Wong and Lohman 2008) and the minimal 

kinetic mechanism required to describe RecBCD unwinding of DNA blunt ends was 

determined (Lucius, Vindigni et al. 2002; Lucius, Jason Wong et al. 2004; Lucius and 

Lohman 2004).  However, the mechanism by which simpler RecBC helicase unwinds 

DNA remains unclear.  My first goal will be to examine RecBC unwinding and compare 

these results with RecBCD in order to access whether RecBC unwinds DNA with the 

same rate and step-size as the RecBCD enzyme.  I will also examine how different DNA 

end structures affect DNA unwinding initiation by RecBC and RecBCD and determine 

whether these effects are correlated with previous equilibrium binding measurements (ie: 

related to formation of a ssDNA loop on the 3’ terminating DNA strand).   

13



Since the directionality of RecBC translocation has thus far only been inferred 

using DNA unwinding studies (Bianco and Kowalczykowski 2000), I will monitor the 

ssDNA translocation activities of the RecB monomer as well as the RecBC heterodimer 

directly so that the ssDNA translocation rates can be compared with those of DNA 

unwinding under the same solution conditions.  I will then determine the ATP coupling 

stoichiometry during unwinding as well as translocation, which will help us understand 

how ATP hydrolysis is coupled to fuel these two processes.   
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Preface to Chapter II 
 
 This chapter presents DNA unwinding studies of the E. coli RecBCD and RecBC 

helicases using pre-steady state kinetic approaches.  Previous unwinding experiments 

performed by Lucius et al (Lucius, Vindigni et al. 2002; Lucius, Jason Wong et al. 2004; 

Lucius and Lohman 2004) indicated that the RecBCD heterotrimer requires undergoing 

two to three initiation steps before it unwind DNA from a blunt-end, and that similar 

mechanistic studies were difficult to perform with the RecBC enzyme due to low 

unwinding amplitude.  Wong et al (Wong, Lucius et al. 2005) showed subsequently using 

equilibrium approaches that RecBCD binds with optimal affinity to a duplex DNA end 

possessing 5’-(dT)10, 3’-(dT)6 pre-existing ssDNA tails, while the simpler RecBC binds 

with highest affinity to a DNA end with pre-existing 5’-(dT)6, 3’-(dT)6 ssDNA tails, and 

that both helicases can “melt out” ~ 6 bp upon DNA binding.  Hence, the fundamental 

goals of the research described in this section are to determine the minimal kinetic 

mechanism which describes RecBC unwinding using its optimal binding substrate, and to 

investigate how various DNA end structures influence the mechanism by which RecBCD 

and RecBC initiate DNA unwinding.  This chapter is based on the manuscript published 

in 2008 in the Journal of Molecular Biology (Wu and Lohman 2008), and additional data 

not presented in the original article is also included in this chapter.   
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Escherichia coli RecBCD is a bipolar DNA helicase possessing two motor
subunits (RecB, a 3′-to-5′ translocase, and RecD, a 5′-to-3′ translocase) that is
involved in the major pathway of recombinational repair. Previous studies
indicated that the minimal kinetic mechanism needed to describe the ATP-
dependent unwinding of blunt-ended DNA by RecBCD in vitro is a se-
quential n-stepmechanismwith two to three additional kinetic steps prior to
initiating DNA unwinding. Since RecBCD can “melt out” ∼6 bp upon
binding to the end of a blunt-ended DNA duplex in a Mg2+-dependent but
ATP-independent reaction, we investigated the effects of noncomplemen-
tary single-stranded (ss) DNA tails [3′-(dT)6 and 5′-(dT)6 or 5′-(dT)10] on the
mechanism of RecBCD and RecBC unwinding of duplex DNA using rapid
kinetic methods. As with blunt-ended DNA, RecBCD unwinding of DNA
possessing 3′-(dT)6 and 5′-(dT)6 noncomplementary ssDNA tails is well
described by a sequential n-step mechanism with the same unwinding rate
(mkU=774±16 bp s−1) and kinetic step size (m=3.3±1.3 bp), yet two to three
additional kinetic steps are still required prior to initiation of DNA
unwinding (kC=45±2 s−1). However, when the noncomplementary 5′
ssDNA tail is extended to 10 nt [5′-(dT)10 and 3′-(dT)6], the DNA end
structure for which RecBCD displays optimal binding affinity, the addi-
tional kinetic steps are no longer needed, although a slightly slower
unwinding rate (mkU=538±24 bp s−1) is observed with a similar kinetic step
size (m=3.9±0.5 bp). The RecBC DNA helicase (without the RecD subunit)
does not initiate unwinding efficiently from a blunt DNA end. However,
RecBC does initiate well from a DNA end possessing noncomplementary
twin 5′-(dT)6 and 3′-(dT)6 tails, and unwinding can be described by a simple
uniform n-step sequential scheme, without the need for the additional kC
initiation steps, with a similar kinetic step size (m=4.4±1.7 bp) and un-
winding rate (mkobs=396±15 bp s−1). These results suggest that the
additional kinetic steps with rate constant kC required for RecBCD to initiate
unwinding of blunt-ended and twin (dT)6-tailed DNA reflect processes
needed to engage the RecD motor with the 5′ ssDNA.

© 2008 Elsevier Ltd. All rights reserved.

Edited by D. E. Draper Keywords: helicase; recombination; motor protein; fluorescence; kinetics

Introduction

DNA helicases are a diverse class of nucleic acid
motor proteins that function by coupling the binding

and hydrolysis of 5′-NTP to translocation along the
DNA filament and unwinding of duplex DNA in
order to form the single-stranded (ss) intermediates
required for DNA replication, recombination, and
repair.1–7 Some helicases can also displace other
proteins from the nucleic acid.8–12 Because helicase
function is involved in all aspects of DNA metabo-
lism, defects in human helicases can give rise to
genetic disorders, such as Bloom syndrome, Werner
syndrome, Rothmund–Thomson syndrome, and
xeroderma pigmentosum, among others.13–16
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Abbreviations used: ss, single stranded; ds, double

stranded; FRET, fluorescence resonance energy transfer;
NLLS, nonlinear least squares; BSA, bovine serum
albumin.
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In Escherichia coli, the RecBCD pathway is the
major pathway for homologous recombination and
repair of double-stranded (ds) DNA breaks. RecBCD
is an essential DNA helicase for this pathway and is
composed of the RecB (134 kDa), RecC (129 kDa),
and RecD (67 kDa) polypeptides.17–19 This hetero-
trimeric enzyme processes dsDNA breaks with its
dsDNA and ssDNA exonuclease, ssDNA endo-
nuclease, DNA-dependent ATPase, and helicase
activities, which are regulated by the crossover hot-
spot instigator (chi) regulatory sequence (5′-GCT-
GGTGG-3′).20–23 RecBCD first binds to the damaged
induced dsDNA break at a blunt or nearly blunt end
and then unwinds the duplex in an ATP-dependent
reaction. During DNA unwinding, its nuclease
activity preferentially degrades the 3′ terminating
DNA strandwhile cleaving the 5′ terminating strand
infrequently.24,25 These activities are modified when
RecBCD recognizes a chi sequence, whereupon
RecBCD first pauses and then continues to unwind
DNA with a reduced rate.26–28 Furthermore, the
nuclease activity is altered such that it acts instead on
the 5′ terminating strand preferentially. This gen-
erates a 3′ ssDNA overhang onto which RecBCD
loads the RecA protein,29 and the resulting RecA-
coated DNA filament forms a joint molecule with a
homologous piece of DNA and initiates recombina-
tional repair of the nucleic acid.
RecB and RecD are both superfamily-1 helicases/

translocases,30 with opposite ssDNA transloca-
tion directionalities. Although the two motor sub-
units have opposite ssDNA translocation polarities
(RecB is a 3′-to-5′ translocase, while RecD is a 5′-to-
3′ translocase), they function in unison to unwind
dsDNA in the same net direction within the RecBCD
heterotrimer by interacting with opposite strands of
the DNA end.31,32 Interestingly, the RecBC enzyme,
lacking the RecD subunit, is still a functional heli-
case. Both RecBCD and RecBC are processive heli-
cases26,33,34 that form stable heterotrimers and
heterodimers, respectively, in solution.35–37

Equilibrium binding studies have indicated that
RecBCD binds optimally to DNA ends possessing
noncomplementary 5′-(dT)10 and 3′-(dT)6 ssDNA
tails, while the RecBC binds optimally to DNA ends
with 5′-(dT)6 and 3′-(dT)6 tails.37 These results
indicate that both the RecBCD and RecBC helicases
are able to “melt out” 6 bp simply upon binding to a
blunt-ended duplex in a Mg2+-dependent but ATP-
independent reaction.38 In a crystal structure of a
RecBCD–DNA complex, the last 4 bp are observed to
be melted even though the complex was crystallized
in the presence of Ca2+.39 Furthermore, the equili-
brium binding studies suggest that additional 4 nt in
the noncomplementary 5′ ssDNA tail are needed to
facilitate interactions with the RecD subunit.37

Lucius et al.40–42 previously determined a minimal
kinetic mechanism by which RecBCD unwinds
blunt-ended DNA duplexes in vitro using rapid
kinetic methods under single-turnover conditions. A
simple uniform n-step sequential scheme was not
able to describe the time courses for RecBCD unwin-
ing of blunt-ended DNA. In fact, the minimal kinetic

mechanism required two to three additional kinetic
steps, which made determination of the average
DNA unwinding kinetic step size more difficult,
although a well-constrained kinetic step size of 3.9±
0.5 bp that was independent of ATP concentration
and temperature was determined.40 The number
(two to three) of these additional steps was found to
be independent of DNA duplex length, suggesting
that these steps are not associated with the repeated
cycles of DNA unwinding and likely precede or
occur at the early stages of DNA unwinding.42 Here,
we examine the effects of noncomplementary 3′ and
5′ ssDNA tails on the mechanism by which RecBCD
and RecBC initiate and processively unwind DNA
in order to probe the role of RecD in the initiation of
DNA unwinding.

Results

The DNA substrates used in this study are shown
schematically in Fig. 1, and the sequences of the
individual DNA strands are given in Table 1. They
consist of a DNA duplex containing two nicks with a
hairpin structure on one end and noncomplemen-
tary ssDNA tails [(dT)n] on the other that forms the
site at which RecBCD or RecBC will initiate unwind-
ing. With the exception of the DNA substrate used in
the experiments shown in Fig. 3, which possesses a
blunt end, the 3′ ssDNA tail length is 6 nt [(dT)6],
while the 5′ ssDNA length is either 6 nt [(dT)6] or
10 nt [(dT)10]. For the chemical quenched-flow
unwinding experiments (see Fig. 2a), strand “A” is
radiolabeled with 32P on its 5′ end (denoted as an
asterisk in Fig. 1a). Displacement of the radioactively
labeled DNA is used to monitor DNA unwinding in
a discontinuous assay (see Materials and Methods).
For the stopped-flow fluorescence experiments (see
Fig. 2b), Cy3 andCy5 fluorophores are positioned on
either side of a nick (see Fig. 1b) and changes in Cy3
and Cy5 fluorescence resulting from changes in
fluorescence resonance energy transfer (FRET) are
used to monitor DNA unwinding. Both assays are
“all-or-none” assays since DNA unwinding is not
detected until duplex “A” (see Figs. 1 and 2) is fully
unwound; however, information on intermediate
species present during unwinding can be obtained
by analyzing a series of unwinding experiments
performed as a function of DNA duplex length.43,44

RecBC initiates DNA unwinding poorly from a
blunt DNA end

Single-turnover chemical quenched-flow kinetic
studies were performed as described in Materials
andMethods.41 The kinetics of RecBC- and RecBCD-
catalyzed unwinding of a 24-bp blunt-ended DNA
[substrate I without the noncomplementary (dT)n
tails] used in our previous studies42 are shown
in Fig. 3. Whereas RecBCD is able to initiate un-
winding rapidly from a blunt DNA end, much less
unwinding is catalyzed by RecBC. These single-
turnover kinetic experiments were performed using
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the same preincubation concentration for RecBCD
and RecBC (40 nM). We note that in a multiple-
turnover experiment, our preparation of RecBC
enzyme shows DNA unwinding behavior similar
to that of a blunt-ended DNA substrate as reported

previously45 (see Materials and Methods). One
possibility is that the much lower amplitude of
DNA unwinding by RecBC may result from a
weaker affinity of RecBC for DNA blunt ends
compared with RecBCD.37 However, based on our

Table 1. Sequences of DNA unwinding substrates

DNA
Length
(nt)a DNA sequence

Strand “A”
Ia 24 5′-(dT)n CCATGG CTC CTG AGC TAG CTG CA(Cy3) G-3′
IIa 29 5′-(dT)n CCATGG CTC CTG AGC TAG CTG CAG TAG C(Cy3)C-3′
IIIa 30 5′-(dT)n CCATGG CTC CTG AGC TAG CTG CAG TAG CC(Cy3)T-3′
IVa 37 5′-(dT)n CCATGG CTC CTGAGC TAG CTG CAG TAG CCT AAA GGA (Cy3)T-3′
Va 40 5′-(dT)n CCATGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGATGA C(Cy3)A-3′
VIa 43 5′-(dT)n CCATGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGATGA AAC (Cy3)T-3′
VIIa 48 5′-(dT)n CCATGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGATGA AAC TAG GA (Cy3)T-3′
VIIIa 53 5′-(dT)n CCATGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGATGA AAC TAG GAT CTT A(Cy3)T-3′
IXa 60 5′-(dT)n CCATGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGATGA AAC TAG GAT CTT ATG

CTC CA(Cy3)T-3′

Strand “B”
Ib 56 5′-(Cy5) TAG CCT AAA GGATGA AAC TAG GAT CTT ATG CTC CAT GGATAC GTC GAG TCG CAT CC-3′
IIb 51 5′-(Cy5) TAA AGG ATG AAA CTA GGATCT TAT GCT CCATGG ATA CGT CGA GTC GCATCC-3′
IIIb 50 5′-(Cy5) AAA GGATGA AAC TAG GAT CTT ATG CTC CAT GGATAC GTC GAG TCG CAT CC-3′
IVb 43 5′-(Cy5) GAA ACT AGG ATC TTA TGC TCC ATG GAT ACG TCG AGT CGC ATC C-3′
Vb 40 5′-(Cy5) ACT AGG ATC TTA TGC TCC ATG GAT ACG TCG AGT CGC ATC C-3′
VIb 37 5′-(Cy5) AGG ATC TTA TGC TCC ATG GAT ACG TCG AGT CGC ATC C-3′
VIIb 32 5′-(Cy5) CTT ATG CTC CAT GCATAC GTC GAG TCG CAT CC-3′
VIIIb 27 5′-(Cy5) GCT CCATGG ATA CGT CGA GTC GCATCC-3′
IXb 20 5′-(Cy5) GGATAC GTC GAG TCG CAT CC-3′

Strand Hp
Hp 120 5′-AGATCC TAG TGC AGG TTT TCC TGC ACTAGG ATC TGG ATG CGA CTC GAC GTATCC ATG GAG CATAAG

ATC CTA GTT TCATCC TTT AGG CTA CTG CAG CTA GCT CAG GAG CCATGG TTT TTT-3′

Substrate I is formed by annealing strand Ia, strand Ib, and the bottom strandHp. Substrates II–IX are formed similarly. DNA strands “A”
and “B” are fluorescently labeled with Cy3 and Cy5, respectively, for use in stopped-flow experiments.

a The length of DNA strand “A” refers to the number of base pairs that will form when annealed with the bottom strand (Hp) and
therefore the DNA duplex length that is unwound in the kinetic experiment.

Fig. 1. Schematic representation
of DNA substrates used in unwind-
ing studies. Each DNA substrate is
composed of three oligodeoxynu-
cleotide strands, a constant bottom
strand containing a hairpin (Hp)
and two top strands—“A” and “B.”
These three DNA strands anneal to
form a hairpin duplex containing
two nicks. DNA substrates of dif-
ferent duplex lengths, L, are formed
by varying the lengths of strands
“A” and “B” while keeping their
combined length constant. Because
most substrates used in our un-
winding studies possess noncom-
plementary ssDNA tails, L refers to
the length of strand “A” that is base
paired with the bottom strand and
therefore must be unwound before
DNA unwinding can be detected.
(a) DNA substrates used in chemi-
cal quenched-flow unwinding ex-
periments. Strand “A” is radiola-

beled with 32P at its 5′ end (denoted by an asterisk), and the release of this strand is used to monitor DNA unwinding. (b)
DNA substrates used in stopped-flow fluorescence measurements. A Cy3 and Cy5 FRET pair is positioned across a nick
as depicted, and changes in FRET signal are used to monitor DNA unwinding.
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estimate of 2×107 M−1 for the equilibrium constant
for RecBC binding to a blunt end under these
conditions,37 ∼95% of the DNA ends should be
bound with RecBC. Consistent with this conclusion,
we observe no difference in the amplitude of
unwinding when these experiments are performed
using a 10-fold higher preincubation concentration
(400 nM) of RecBC. This suggests that the majority of
the RecBC enzyme must be bound in a nonproduc-
tive mode to a blunt duplex end. Previous studies
have shown that RecBC binds with highest affinity
to DNA ends possessing noncomplementary 5′-
(dT)6 and 3′-(dT)6 ssDNA tails, while RecBCD binds
optimally to DNA ends with noncomplementary 5′-
(dT)10 and 3′-(dT)6 ssDNA tails.37 Based on these,
we examined the effect of such noncomplementary
ssDNA tails on the kinetics and mechanism of DNA
unwinding by both RecBC and RecBCD enzymes.

Minimal kinetic mechanism of RecBC-catalyzed
DNA unwinding

We examined RecBC-catalyzed unwinding of a
series of DNA duplexes possessing noncomplemen-
tary 5′-(dT)6 and 3′-(dT)6 ssDNA tails using rapid
chemical quenched-flow and stopped-flow fluores-
cence techniques (see Materials and Methods).

Quenched-flow experiments were performed with
DNA substrates of the type shown in Fig. 1a, with
duplex region “A” varying in length [24, 30, 40, 48,
and 60 bp (substrates I, III, V, VII, and XI, res-
pectively)]. Three independent sets of measure-
ments were performed with each duplex length.
The average time courses are plotted in Fig. 4a and
were analyzed by global nonlinear least-squares
(NLLS) analysis using Scheme 1 (Eq. (2)). The con-
tinuous curves in Fig. 4a are simulated time courses
using Eq. (2) and the best-fit parameters (m=4.4±
1.7 bp, kobs = 90±25 s− 1; mkobs = 396±15 bp/s,
kNP=1.7±0.5 s−1). It is clear from the data in Fig.
4a that RecBC is able to initiate DNA unwinding
from a DNA end possessing the noncomplementary
5′-(dT)6 and 3′-(dT)6 ssDNA tails with much higher
efficiency than from a blunt DNA end (see Fig. 3).
As observed previously for RecBCD-catalyzed

unwinding of blunt-ended DNA duplexes, the
time courses all display a lag phase. This lag phase
results from the fact that the assays used are of the
all-or-none type and RecBC must proceed through a
series of sequential kinetic steps (with similar rate
constants, kU) in order to fully unwind each duplex.
The number of these unwinding steps, and thus the
duration of the lag phase, increases with duplex
length. In addition to this lag phase, we also observe
a slower unwinding phase that is much smaller in
amplitude. As discussed previously,41 we attribute
these two phases to DNA unwinding from two
populations of initially bound RecBC–DNA com-
plexes. One population of RecBC is bound in a
productive mode that can initiate DNA unwinding
rapidly upon the addition of ATP, while the other
population of RecBC is bound in a nonproductive
manner that must first undergo a slow isomeriza-
tion, with rate constant kNP, to form productive
complexes before DNA unwinding can initiate.
Since RecBC-catalyzed unwinding of duplex DNA

occurs via multiple (n) repeated steps, with the rate-
limiting rate constant, kU, the number of DNA
unwinding steps, n, is expected to increase in direct
proportion to the DNA duplex length, L. In fact, Fig.
4b shows that the values of n determined fromNLLS
fitting of the data to the simple Scheme 1 are directly
proportional to L. A summary of the kinetic para-
meters obtained from the NLLS fitting is given in
Table 2. In Scheme 1, productively bound RecBC can
unwind the DNA in uniform steps with rate cons-

Fig. 3. Comparison of the kinetics of DNAunwinding of
a 24-bp blunt-ended DNA substrate (substrate I without
noncomplementary dT tails) by RecBCD and RecBC. Single-
turnover time courses, obtained using the quenched-flow
assay, show that RecBCD (filled circles) initiates unwinding
from a blunt DNA end with much higher efficiency than
does RecBC (open squares).

Fig. 2. Design of all-or-none chemical quenched-flow and stopped-flow fluorescence experiments to study single-
turnover kinetics of DNA unwinding. (a) Quenched-flow assay. DNA substrates (radiolabeled with 32P on the 5′ end of
strand “A”) are incubated with excess RecBCD or RecBC helicase in one syringe. DNA unwinding is initiated by rapid
mixing with ATP and heparin. The unwinding reaction is quenched after a time interval (Δt) by rapid mixing with EDTA,
and the ssDNA product produced after each time interval is separated from the native duplex DNA using nondenaturing
PAGE and analyzed quantitatively after exposure to a phosphorimager (see Materials and Methods for details). (b)
Stopped-flow assay. A DNA substrate labeled with donor (Cy3) and acceptor (Cy5) fluorophores as indicated is incubated
with excess RecBCD or RecBC in one syringe, and DNA unwinding is initiated by rapid mixing with ATP and heparin.
When Cy3 and Cy5 fluorophores are in close proximity, Cy3 fluorescence is decreased and Cy5 fluorescence is increased
due to FRET. DNA unwinding is monitored in real time by the concomitant increase in Cy3 fluorescence and decrease in
Cy5 fluorescence accompanying DNA unwinding and release of strand “A”. Cy3 fluorescence is excited at 515 nm, and
Cy3 fluorescence emission is monitored at 570 nm using an interference filter, while Cy5 fluorescence emission is
monitored simultaneously at wavelengths above 665 nm using a long-pass filter.
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tant kU. The average kinetic step size,m, is defined as
the average number of base pairs that are unwound
between such two successive rate-limiting steps.
Based on the NLLS fitting of the data in Fig. 4a,
RecBC has an average kinetic step size of 4.4±1.7 bp
for DNA unwinding, with a stepping rate of 90±
25 s−1, resulting in a macroscopic unwinding rate
mkobs of 396±15 bp/s.

We also examined the kinetics of RecBC-catalyzed
unwinding of DNA duplexes possessing noncom-
plementary twin 3′-(dT)6 and 5′-(dT)6 ssDNA tails
using a stopped-flow fluorescence technique des-
cribed previously.42 These experiments were per-
formed using a series of DNA substrates of the type
shown in Fig. 1b, with duplex region “A” varying in
length [24, 29, 37, 40, 43, 48, 53, and 60 bp (substrates
I, II, IV, V, VI, VII, VIII, and IX, respectively)]. DNA
unwinding was monitored by the loss of FRET bet-
ween a Cy3 donor fluorophore and a Cy5 acceptor
fluorophore. As indicated in Fig. 2b, the stopped-
flow assay is also of the all-or-none type. When the
DNA duplex is fully unwound and the labeled DNA
strands are displaced, the two dyes become sepa-
rated and thus Cy3 fluorescence increases, while
there is a concomitant loss in Cy5 fluorescence due
to the loss of energy transfer from Cy3 to Cy5.
The time courses monitoring the increase in Cy3

fluorescence (averages of three independent mea-
surements) are plotted in Fig. 5a, and the continuous
curves are global NLLS fits to the simple Scheme 1
(Eq. (2)) (m=4.4±0.1 bp, kobs=79±11 s−1; mkobs=
348±5 bp/s, kNP=1.1±0.1 s−1). These time courses
are also well described by Scheme 1, and the number
of unwinding steps, n, determined from the data
fitting is directly proportional to duplex length, L
(Fig. 5b). The Cy5 fluorescence time courses (see
Supplementary Fig. 1), which are exactly anti-
correlated with the Cy3 fluorescence time courses,
can be analyzed as well using Scheme 1 (Eq. (2)),
yielding identical kinetic parameters. It is interesting
to note that in previous RecBCD stopped-flow
unwinding studies,42 the resulting Cy5 fluorescence
time courses showed a more complex time course
that was not fully anticorrelated with the Cy3 fluo-
rescence time course. This deviation42 was attri-
buted to the RecD subunit, which translocates along
the 5′ ending DNA strand in the 5′-to-3′ direction,
ultimately contacting the Cy3 fluorophore at the
nick, resulting in an enhancement of the Cy3 fluo-
rescence. This increase in Cy3 fluorescence was then
transferred via FRET to the Cy5 fluorophore before
the strands are separated, resulting in an additional
increase in Cy5 fluorescence. This effect is not
observed with the RecBC enzyme because of the
absence of the RecD translocating motor and since
RecB translocates along the 3′-ended strand in the
3′-to-5′ direction.
The advantage of the stopped-flow unwinding

assay is that it is a continuous assay and thus
many more time points can be obtained from a
single experiment. As such, significantly more data

Fig. 4. Single-turnover kinetics of RecBC-catalyzed
unwinding of DNA duplexes possessing noncomplemen-
tary 5′-(dT)6 and 3′-(dT)6 ssDNA tails. (a) Time courses as
a function of duplex length [L=24 bp (black circles);
L=30 bp (red squares); L=40 bp (green triangles); L=48 bp
(blue diamonds); L=60 bp (open inverted triangles)]
obtained using the quenched-flow assay. Data points
correspond to the average of three independent measure-
ments, and the error bars indicate the standard deviation
of the data. Smooth curves are simulated time courses
based on the global NLLS best fits to Scheme 1, with
mkobs=396±15 bp/s, m=4.4±1.7 bp, kobs=90±25 s−1, and
kNP=1.7±0.5 s−1. (b) The number of steps n determined
from global NLLS analysis using Scheme 1 plotted versus
DNA duplex length L. The continuous line shows the
linear least-squares fit through the data (n=0.23L+0.03).

Scheme 1.
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from many more duplex lengths can be analyzed,
yielding better estimates of the kinetic para-
meters. However, since the quenched-flow experi-
ment yields a direct measure of the extent of DNA

unwinding, we routinely perform and compare
the results from both chemical quenched-flow and
stopped-flow fluorescence studies. In this case, the
kinetic parameters determined using both methods

Table 2. Summary of chemical quenched-flow and stopped-flow fluorescence unwinding kinetic results

RecBCD

Quenched-flow results

mkU (bp/s) kU (s−1) m (bp) kC (s−1) h (steps) kNP (s−1) x

Blunt ends41 790±23 196±77 3.9±1.3 29±3 2.0±0.2 1.1±0.2 0.84±0.02
5′/3′ T6 774±16 240±56 3.3±1.3 45±2 3.2±0.2 1.1±0.3 0.89±0.04
5′ T10, 3′ T6 538±24 138±37 3.9±0.5 – 0 6.7±1.8 0.81±0.03

RecBC

Quenched-flow results

mkobs (bp/s) kobs (s
−1) m (bp) kC (s−1) h (steps) kNP (s−1) x

5′/3′ T6 396±15 90±25 4.4±1.7 – 0 1.7±0.5 0.81±0.02
5′ T10, 3′ T6 372±21 103±33 3.6±0.9 0 2.5±1.2 0.80±0.02

RecBCD

Stopped-flow results

mkU (bp/s) kU (s−1) m (bp) kC (s−1) h (steps) kNP (s−1) x

Blunt ends46 680±12 200±40 3.4±0.6 51±5 3.2±0.3 6.0±0.3 0.87±0.01
5′/3′ T6 745±18 220±28 3.4±0.5 58±2 3.2±0.1 6.7±0.3 0.83±0.01
5′ T10, 3′ T6 588±11 163±24 3.6±0.2 – 0 5.4±1.0 0.80±0.01

RecBC

Stopped-flow results

mkobs (bp/s) kobs (s
−1) m (bp) kC (s−1) h (steps) kNP (s−1) x

5′/3′ T6 348±5 79±11 4.4±0.1 – 0 1.1±0.1 0.79±0.03
5′ T10, 3′ T6 320±7 92±12 3.5±0.1 – – 1.9±0.6 0.81±0.02

Fig. 5. Single-turnover kinetics of RecBC-catalyzed unwinding of DNA duplexes possessing noncomplementary
5′-(dT)6 and 3′-(dT)6 ssDNA tails using the stopped-flow fluorescence assay. (a) Cy3 fluorescence time courses as a
function of duplex length (L=24, 29, 37, 40, 43, 48, 53, and 60 bp). Data points represent the average of three independent
measurements, and the error bars indicate the standard deviation of the data. Smooth curves are simulated time courses
based on the global NLLS best fits to Scheme 1, with mkobs=348±5 bp/s, m=4.4±0.1 bp, kobs=79±11 s−1, and kNP=1.1±
0.1 s−1. (b) The number of unwinding steps n determined from the global NLLS analysis using Scheme 1 plotted versus
DNA duplex length L. The continuous line shows the linear least-squares fit through the data (n=0.23L−0.02).
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are in good agreement, although some slight
differences in the parameters are observed (see
Table 2).

RecBCD-catalyzed unwinding of DNA duplexes
with twin (dT)6 ssDNA tails

We next compared RecBC and RecBCD unwind-
ing directly. However, since the previous RecBCD
experiments examined DNA unwinding from blunt
DNA ends,41,42 we needed to examine RecBCD
unwinding of duplexes possessing the noncomple-
mentary twin (dT)6 tails used in the RecBC studies.
Figure 6a shows the time courses determined using
the chemical quenched-flow assay (the time courses
determined using the stopped-flow assay are shown
in Supplementary Fig. 2a). The data in Fig. 6a were
analyzed by global NLLS analysis using the simple
Scheme 1 (Eq. (2)), and the continuous curves are
time courses simulated using Eq. (2) and the best-fit
parameters. Based on the poor quality of these fits,

Scheme 1 is not sufficient to describe these time
courses. Consistent with this conclusion, Fig. 6b
shows that a plot of the number of repeated rate-
limiting kinetic steps, n, versus duplex length, L,
exhibits a positive y-intercept. The fact that the fitted
value of n is not directly proportional to L and that a
positive y-intercept is observed suggest the presence
of additional kinetic steps in the mechanism that are
not directly associated with DNA unwinding.41,44

As a result, we reanalyzed these time courses using
the more complicated Scheme 2 (Eq. (4)), in which h
additional kinetic steps with rate constant kC are
included in the mechanism, although these steps are
not repeated within the series of DNA unwinding
cycles. Scheme 2 is the same kinetic scheme that
was used previously to analyze RecBCD-catalyzed
unwinding of a series of blunt-ended DNA dup-
lexes.41,42 The time courses are well described by
Scheme 2, as shown in Fig. 6c (m=3.3±1.3 bp,
kU=240±56 s−1; mkU=774±16 bp/s, h=3.2±0.2,
kC=45±2, kNP=1.1±0.3 s−1). Furthermore, after

Fig. 6. Single-turnover kinetics of RecBCD-catalyzed unwinding of DNA duplexes possessing noncomplementary
5′-(dT)6 and 3′-(dT)6 ssDNA tails. (a) Time courses as a function of duplex length [L=24 bp (black circles); L=30 bp (red
squares); L=40 bp (green triangles); L=48 bp (blue diamonds); L=60 bp (open inverted triangles)] obtained using the
quenched-flow assay. Data points correspond to the average of three independent measurements, and the error bars
indicate the standard deviation of the data. Smooth curves are simulated time courses based on the global NLLS best fits
to Scheme 1, with mkU=410±12 bp/s, m=10.1±0.9 bp, kU=39±23 s−1, and kNP=5.9±1.8 s−1. (b) The number of steps n
determined from global NLLS analysis using Scheme 1 plotted versus DNA duplex length L. The continuous line shows
the linear least-squares fit through the data (n=0.09L+3.88). (c) The same data from (a) were analyzed using Scheme 2,
which includes the additional kinetic steps with rate constant kC, which are not involved in DNA unwinding. Smooth
curves are simulated time courses based on the global NLLS best fits to Scheme 2, withmkU=774±16 bp/s,m=3.3±1.3 bp,
kU=240±56 s

−1, kNP=1.1±0.3 s
−1, h=3.2±0.2 steps, and kC=45±2 s

−1. (d) The number of unwinding steps n and additional
kinetic steps h determined from global NLLS analysis using Scheme 2 plotted versusDNAduplex length L. The continuous
line shows the linear least-squares fit through the data (n=0.27L−0.21; h=3.3).
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incorporating the additional kC steps into the mecha-
nism, the number of steps involved in unwinding, n,
is found to be directly proportional to duplex length,
L, while the number of additional steps, h, is
independent of L, as shown in Fig. 6d. A summary
of the kinetic parameters obtained from the fits of
the quenched-flow and fluorescence time courses to
Scheme 2 is given in Table 2.

RecBCD-catalyzed unwinding of DNA
possessing noncomplementary 5′-(dT)10 and
3′-(dT)6 ssDNA tails

Previous equilibrium binding experiments have
shown that RecBCD binds optimally to DNA duplex
ends possessing noncomplementary 5′-(dT)10 and
3′-(dT)6 ssDNA tails;37 hence, we next examined
RecBCD unwinding of DNA substrates possessing
this DNA end structure under the same solution
conditions used above. We first obtained time
courses for five duplex lengths using the chemical
quenched-flow unwinding assay. These time
courses, shown in Fig. 7a, also display lag kinetics
and are biphasic. Interestingly, in contrast to the
time courses obtained with the DNA substrates pos-
sessing twin (dT)6 ssDNA tails, these time courses
are well described by the simple n-step sequential
kinetic mechanism of Scheme 1 as shown by the
continuous curves in Fig. 7a (m=3.9±0.5 bp, kU=
138±37 s−1; mkU=538±24 bp/s, kNP=6.7±1.8 s−1).
Furthermore, Fig. 7b indicates that the number of
steps involved in unwinding, n, is directly propor-
tional to duplex length, L. The two to three addi-
tional steps, with rate constant kC, that are part of
Scheme 2 and required for RecBCD to initiate DNA
unwinding from blunt ends and duplexes with twin
(dT)6 tails are not necessary to describe these time
courses. This conclusion is also supported by time
courses obtained for eight duplex lengths using the
stopped-flow fluorescence assay (Supplementary
Fig. 3a and b). Table 2 provides a summary of the
kinetic parameters obtained from these experiments.
RecBCD has the same average kinetic step size for
unwinding (∼4 bp) all three of the DNA molecules,
independent of the end structure [blunt end, twin
(dT)6, and 5′-(dT)10 as well as 3′-(dT)6].

Discussion

In previous studies of the mechanism of RecBCD-
catalyzed unwinding of DNA using single-turnover
methods, Lucius et al.40–42 found that the time course

for RecBCD unwinding of blunt-ended DNA cannot
be described by a simple sequential n-step kinetic
model, such as that shown in Scheme 1. In fact,
Scheme 2, which includes additional kinetic steps,
was needed to describe the time courses for a range
of duplex DNA lengths. The need to include these
additional kinetic steps made it more difficult to

Scheme 2.

Fig. 7. Single-turnover kinetics of RecBCD-catalyzed
unwinding of DNA duplexes possessing noncomplemen-
tary 5′-(dT)10 and 3′-(dT)6 ssDNA tails obtained. (a) Time
courses obtained as a function of duplex length [L=24 bp
(black circles); L=30 bp (red squares); L=40 bp (green
triangles); L=48 bp (blue diamonds); L=60 bp (open
inverted triangles)] using the chemical quenched-flow
assay. Data points represent the average of three inde-
pendent measurements, and the error bars indicate the
standard deviation of the data. Smooth curves are si-
mulated time courses based on the global NLLS best fits to
Scheme 1, with mkU=538±24 bp/s, m=3.9±0.5 bp,
kU=138±37 s−1, and kNP=6.7±1.8 s−1. (b) Plot of the
number of unwinding steps n versus duplex length L. The
continuous line shows the linear least-squares fit through
the data (n=0.26L).
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estimate the DNA unwinding kinetic step size for
RecBCD, although a well-constrained kinetic step
size independent of ATP concentration and tempe-
rature of 3.9±0.5 bp was determined.40 The number
(two to three) of these additional steps with rate
constant kC was found to be independent of DNA
duplex length; hence, these steps do not appear to be
part of the repeated cycles of DNA unwinding and
likely precede DNA unwinding.42

The experiments described in our current study
show that these additional steps are still required for
RecBCD to initiate unwinding from a duplex end
possessing noncomplementary 5′-(dT)6 and 3′-(dT)6
ssDNA tails, yet they are not needed to describe the
unwinding of DNA possessing a noncomplemen-
tary 5′-(dT)10 tail in the presence of a 3′-(dT)6 ssDNA
tail. Interestingly, these additional steps are also not
needed to describe the time course of RecBC-
catalyzed unwinding of DNA duplexes possessing
noncomplementary twin (dT)6 ssDNA tails (Table
2). These results further support the conclusion that
the additional kC steps represent a real aspect of the
mechanism for RecBCD initiation of DNA unwind-
ing at a blunt-ended DNA. Furthermore, the less
complex kinetic traces for RecBCD unwinding of
duplex DNA possessing the noncomplementary 5′-
(dT)10 and 3′-(dT)6 ssDNA tails are well described
by the simple sequential n-step kinetic model
(Scheme 1) and yield the same average kinetic step
size (∼4 bp) as previously reported for RecBCD
unwinding of blunt-ended DNA, thus supporting
the previous analyses.40–42

Functional significance of the additional
kC steps

The results from the current study, along with re-
cent DNA binding37 and structural39 studies, sug-
gest a role for these additional kinetic steps with rate
constant kC. A crystal structure of RecBCD bound to
a blunt-ended duplex shows 4 bp melted from the
blunt end within the complex;39 however, the 4 nt
that are not base paired on the 5′ ssDNA end do not
contact any part of the RecD subunit. Equilibrium
DNA binding studies37 suggest that a 5′ ssDNA tail
of at least 10 nt [(dT)10] is needed to make full
contact with the RecD subunit within the RecBCD–
DNA complex. Computer modeling studies also
suggest that extension of the 5′ ssDNA tail to 10 nt is
needed to contact the RecD subunit.47 These find-
ings suggest that the additional kC steps that are
required to describe RecBCD-catalyzed unwinding
from a blunt-ended DNA duplex or a DNA duplex
possessing twin (dT)6 ssDNA tails reflect the process
of initiating binding of the RecD subunit with the 5′
ssDNA tail. This might involve pausing or mole-
cular rearrangement steps that take place after the 5′
ssDNA end becomes sufficient in length to reach
RecD, thereby enabling this subunit to initiate DNA
unwinding. In this scenario, upon ATP binding and
hydrolysis, the RecB motor in the RecBCD–DNA
complex acting on the 3′ ssDNA strand would begin
to unwind the duplex and translocate along the

DNA until it creates a 5′ ssDNA tail long enough, at
least 10 nt, so that RecD can interact with the 5′
ssDNA strand and initiate translocation. Studies of
the RecBK29QCD protein, where the RecB motor is
inactivated via a mutation in the ATP binding site,48

showed that a 4-nt 5′ ssDNA tail on the DNA end is
required for DNA unwinding. This observation is
consistent with our results since upon melting of the
6 bp at the duplex DNA end, this would yield a 10-
nt-long 5′ ssDNA tail, which would allow interac-
tion of RecD.
Interestingly, although the additional kC steps are

not needed to describe RecBCD unwinding of dup-
lex DNA possessing noncomplementary 5′-(dT)10
and 3′-(dT)6 ssDNA tails, the macroscopic rate of
DNA unwinding that we estimate is slightly slower
(538±24 bp s−1) than that for RecBCD unwinding of
a blunt-ended DNA (790±23 bp s−1) or a duplex
DNA possessing noncomplementary twin (dT)6 tails
(774±16 bp s−1). Currently, we cannot explain this
slower observed rate of DNA unwinding. However,
it has recently been shown that the rate of RecBCD
unwinding becomes slower after RecBCD interacts
with a “chi” sequence in the unwound ssDNAdue to
a switching of the leadmotor fromRecD toRecB.23 In
light of this, it is possible that when RecBCD initiates
unwinding froma blunt-endedDNAor a duplex end
possessing noncomplementary 3′-(dT)6 and 5′-(dT)6
tails, it starts in a “pre-chi” state with a faster rate.
However, when RecBCD initiates unwinding from a
duplex end possessing an extended 5′ ssDNA tail of
10 nt, it may initiate unwinding as if it were in a
“post-chi” state. Further experiments will be needed
to test this hypothesis.
We note that there is a potential ambiguity in the

analyses of the experiments reported here, specifi-
cally with regard to the actual length of duplex DNA
that should be considered unwound by RecBCD or
RecBC during its ATP-dependent unwinding (heli-
case) reaction. We find that the kinetic parameters
determined for RecBCD unwinding of a series of
blunt-ended DNA duplexes varying in length, L
(bp), are identical within experimental error with the
kinetic parameters determined for RecBCD unwind-
ing of a series of DNA duplexes possessing non-
complementary 5′- and 3′-(dT)6 tails. However,
when RecBCD forms an initiation complex with a
blunt duplex DNA end, the enzyme can melt out 5–
6 bp in a Mg2+- or Ca2+-dependent reaction;37–39

hence, the effective duplex length with prebound
RecBCD is potentially ∼5–6 bp shorter than the ac-
tual length of the duplex region. Yet, when RecBCD
binds to a DNA end possessing noncomplementary
twin (dT)6 ssDNA tails or 5′-(dT)10 and 3′-(dT)6
ssDNA tails, no additional base pair melting
presumably occurs.37 This becomes an issue when
we relate the number of kinetic steps, n, determined
from the NLLS analysis to the length of the duplex
DNA that is unwound, which in turn would
potentially affect the estimation of the kinetic step
size, m. In an attempt to assess the effects of this
ambiguity, we reanalyzed the time courses for
RecBCD-catalyzed unwinding of blunt-ended DNA
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in two ways. We assumed that each DNA duplex
length is actually (L−6) bp rather than L bp when
RecBCD is initially bound to the blunt-ended DNA
but before unwinding is initiated.We then compared
the plots of n versus (L−6) and n versus L for the
blunt-ended duplexes with the plot of n versus L for
RecBCD unwinding of the twin (dT)6-tailed DNA
substrate. We find that the kinetic parameters deter-
mined from these three analyses are identical within
our experimental uncertainty; hence, this potential
ambiguity has no influence on the kinetic para-
meters that we report here. On the other hand, even
though RecBCD melts out 5–6 bp upon binding to a
blunt DNA end, the enzyme may still need to pro-
ceed through the same number, n, of repeated rate-
limiting steps to fully unwind a blunt-ended DNA of
duplex length, L, or a DNA with duplex length
(L−6) bp that possesses noncomplementary twin
(dT)6 tails. This could result if the n repeated rate-
limiting kinetic steps are not associated with the
actual DNAunwinding process,whichmay bemuch
faster, but with a slower process (e.g., a protein
conformational change) that is repeated every∼4 bp
(on average) during the unwinding cycle. Hence,
even if 5–6 bp of a duplex end are premelted, the
“kinetic step” may not be complete until it pro-
ceeds through the rate-limiting step and thus the
total number of rate-limiting steps needed to fully
unwind the DNA could be unchanged.

RecBC and RecBCD display the same average
kinetic step size for DNA unwinding

We have shown that RecBC initiates DNA un-
winding poorly from a blunt DNA end and that its
ability to initiate unwinding is greatly enhanced
when RecBC is prebound to a duplex possessing
noncomplementary twin (dT)6 ssDNA tails. We have
recently shown that RecBC appears to be able tomelt
out at least 4 bp upon binding to a blunt DNAduplex
end in a Mg2+-dependent but ATP-independent re-
action,46 similar to the reaction demonstrated for
RecBCD.38 However, the kinetic results reported
here suggest that the complex formed by RecBC
upon binding to a blunt DNA end must differ in
some important functionalmanner from the RecBCD
complex. Yet, once initiated, RecBC unwinds DNA
with an average kinetic step size of ∼4 bp, which is
the same as the average kinetic step size for RecBCD
unwinding. RecBC unwinding studies performed
as a function ATP concentration (C. Wu and T. M.
Lohman, unpublished data) indicate that this aver-
age kinetic step size is also independent of ATP
concentration, as observed previously for RecBCD.40

These data suggest that the same rate-limiting kinetic
process is repeated every ∼4 bp on average during
DNA unwinding by both RecBCD and RecBC, al-
though the rate of this process is slower for RecBC.
It is not clear how the kinetic step size measured

in our single-turnover ensemble studies may relate
to a mechanical step size, as measured in a single-
molecule experiment. However, it is worth noting
that these should only be the same if the process that

limits the rate of DNA unwinding is the same as the
process that limits the rate of the mechanical step.
For example, Bianco and Kowalczykowski45 pro-
posed a “quantum-inch worm model” for RecBC
unwinding and translocation based on the obser-
vation that RecBC is able to bypass flexible ssDNA
gaps in duplex DNA as large as ∼23 nt. In this
model, the enzyme is viewed as having two DNA
binding sites such that DNA unwinding occurs in
a series of small steps of a few base pairs, whereas
larger translocation steps of ∼23 bp can also occur.
In this model, the unwinding step size could be
smaller than the translocation step size. Based on
the experiments reported here, we observe a smaller
(∼4 bp) kinetic step size for RecBC unwinding.
However, if translocation and unwinding occur
with different step sizes, the relative rates of the
steps limiting unwinding versus translocation would
determine which step is observed in a measurement
of a kinetic step size. Previous single-molecule stu-
dies of RecBCD unwinding49 were unable to resolve
individual steps, although those experiments placed
an upper limit for the step size of a few base pairs.

Materials and Methods

Buffers and reagents

Buffers were prepared with reagent-grade chemicals
and doubly distilled water that was deionized further
using a Milli-Q purification system (Millipore Corp.,
Bedford, MA). All buffers and reagents were filtered
using 0.2-μm filters after preparation. RecBCD storage
buffer is buffer C: 20 mM KPi, pH 6.8 at 25 °C, 0.1 mM
2-mercaptoethanol, 0.1 mM ethylenediaminetetraacetic acid
(EDTA), and 10% (v/v) glycerol. DNA unwinding reaction
buffer is buffer M: 20 mM Mops–KOH, pH 7.0 at 25 °C,
30 mMNaCl, 10 mMMgCl2, 1 mM 2-mercaptoethanol, and
5% (v/v) glycerol.
Heparin stock solutions were prepared by dissolving

heparin sodium salt (lot no. 114K1328; Sigma, St. Louis,
MO) in buffer M and dialyzing it further against buffer
M using a 3500-molecular-weight-cutoff dialysis tubing.
Heparin stock concentrations were determined by titra-
tion with Azure A as described previously50 and stored at
4 °C until use.
ATP stock solutions were prepared by dissolving ade-

nosine 5′-triphosphate sodium salt (lot no. 016K7008;
Sigma) in water and adjusting the pH to 7.0 with NaOH.
Stock aliquots were stored at −20 °C until use, and stock
concentrations were determined spectrophotometrcally
using an extinction coefficient of ε260=1.5×10

4 M−1 cm−1.51

Proteins

E. coli RecB and RecC were purified and stored in buffer
C at −80 °C as described previously.41,42 The RecBC
enzyme was reconstituted by mixing equimolar RecB and
RecC on ice. RecBC was dialyzed against buffer M at 4 °C
before use, and its concentration was determined spec-
trophotometrically using an extinction coefficient of
ε280=3.9×10

5 M−1 cm−1.37 We have examined and com-
pared our RecBC preparation with RecBC that was
purified from E. coli directly as the heterodimer [kindly
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provided by A. Taylor and G. Smith (Fred Hutchinson
Cancer Center, Seattle, WA)] and observed no difference
between the two preparations with respect to DNA
binding37 and single-turnover DNA unwinding. On the
other hand, in multiple-turnover experiments, Bianco
and Kowalczykowski45 observed that ∼65% of a blunt-
ended DNA substrate is unwound after 2 min. For com-
parison, we also performed multiple-turnover unwinding
experiments with a 24-bp blunt-ended DNA substrate
[substrate I without the noncomplementary (dT)n tails]
under the same solution conditions used in that study45
and observed similar results (∼56% unwinding after
2 min).
E. coliRecBCDwas purified as a heterotrimer and stored

in buffer C at −80 °C as described previously.36,41,52,53

RecBCD was dialyzed against buffer M at 4 °C before
use, and its concentration was determined spectrophoto-
metrically using an extinction coefficient of ε280=4.5×
105 M−1 cm−1.36,41,52,53 Dialyzed RecBCD and RecBC
were used immediately (within 1 day) since a loss of
activity (5%–15%) occurred after 5 days at 4 °C in
buffer M.36,37,41,52,53

Bovine serum albumin (BSA) was purchased from
Roche (Indianapolis, IN) and dialyzed against buffer M
at 4 °C. Dialyzed BSA stock was stored at 4 °C until use,
and stock concentration was determined spectropho-
tometrically using an extinction coefficient of ε280=
4.3×104 M−1 cm−1.37,54

Oligodeoxynucleotides

Oligodeoxynucleotides were synthesized using an ABI
model 391 synthesizer (Applied Biosystems, Foster City,
CA) as described previously.55 Unlabeled DNA was
purified using PAGE under denaturing conditions fol-
lowed by gel electroelution, while Cy3- and Cy5-labeled
DNAwas further purified by reversed-phase HPLC using
an XTerra MS C18 column (Waters, Milford, MA).55 The
concentrations of each stock of DNA strands were
determined by digesting each strand with phosphodiester-
ase I (Worthington, Lakewood, NJ) in 100 mM Tris–HCl,
pH 9.2 at 25 °C, and 3 mM MgCl2 and analyzing the re-
sultingmixture of mononucleotides spectrophotometrically
using the following extinction coefficients:51 ε260,AMP=
15,340 M−1 cm−1, ε260,CMP=7600 M−1 cm−1, ε260,GMP=
12,160 M−1 cm−1, ε260,TMP=8700 M−1 cm−1, ε260,Cy3=
5000 M−1 cm−1, and ε260,Cy5=10,000 M−1 cm−1.

DNA substrate design

The DNA substrates used for DNA unwinding studies
were composed of three DNA strands that form a hairpin
structure when annealed together with the exception of
two nicks as shown in Fig. 1.36,41,42 For chemical
quenched-flow experiments, strand “A” was radiolabeled
on its 5′ end as depicted in Fig. 1a with 32P using T4
polynucleotide kinase (USB, Cleveland, OH) and γ32P-
ATP (Perkin Elmer, Waltham, MA) as described
previously.55 The radiolabeled strand “A” was mixed
with an equal molar ratio of strand “B” and 25% excess of
the bottom strand. The resulting DNA stock solution was
heated to 94 °C for 5 min, followed by slow cooling to
25 °C to allow annealing. For stopped-flow unwinding
experiments, strand “A” was fluorescently labeled with a
Cy3 donor, while strand “B” was labeled with a Cy5
acceptor as depicted in Fig. 1b. These two fluorescently
labeled DNA strands were mixed and annealed to the
bottom strand as described above.

Rapid chemical quenched-flow DNA unwinding
kinetics

DNA unwinding experiments were performed at 25 °C
using a quenched-flow apparatus (KinTek RQF-3, Uni-
versity Park, PA) as described previously.41 RecBCD or
RecBC (20 nM) was preincubated with 32P-labeled DNA
substrate (2 nM) and BSA (6 μM) on ice for 20min in buffer
M, and this mixture was then loaded into one loop of the
quenched-flow apparatus. Equilibrium binding experi-
ments indicate that all unwinding substrates were satu-
rated under these solution conditions and at these protein
and DNA concentrations.37 A solution containing ATP
(10 mM) and heparin trap (15 mg/ml) in buffer M was
loaded into the other loop. After equilibration at 25 °C for
5 min, DNA unwinding was initiated by rapidly mixing
these solutions together (1:1) and quenching the reaction
after a predefined time interval (Δt) by mixing with 0.4 M
EDTA and 10% (v/v) glycerol; the zero time point was
determined by performing a “mock reaction” (without
ATP). Quenched reactions collected at each time point
were kept on ice until all samples were collected, and the
unwound ssDNA was separated from the native duplex
DNA using nondenaturing [10% (w/v)] PAGE. The gel
was exposed to a phosphor screen (Molecular Dynamics,
Sunnyvale, CA) for 1 h, after which the screen was
scanned using a Storm 840 phosphorimager (Molecular
Dynamics). The radioactivity of each band was quantified
using the ImageQuant software (Molecular Dynamics),
and the fraction of DNA molecules unwound at each time
point, fss(t), was calculated using Eq. (1):41

fss tð Þ =
CSðtÞ

CSðtÞ + CDðtÞ−
CS;0

CS;0 + CD;0

1− CS;0
CS;0 + CD;0

ð1Þ

where CS(t) and CD(t) reflect the radioactive counts for the
unwound ssDNA and the native duplex DNA, respec-
tively, at time t, while CS,0 and CD,0 represent the corres-
ponding quantities at time zero. Unwinding time courses
were collected as a function of duplex length (L=24, 30, 40,
48, and 60 bp), and the averages of three independent
unwinding time courses for each duplex length were
subjected to global NLLS analysis.

Stopped-flow fluorescence unwinding kinetics

Fluorescence DNA unwinding experiments were per-
formed at 25 °C using a stopped-flow apparatus
(SX.18MV, Applied Photophysics Ltd., Leatherhead, UK)
as described previously.40,42 RecBC or RecBCD (200 nM)
was preincubated with each Cy3- and Cy5-labeled DNA
substrate (40 nM) and BSA (6 μM) on ice for 20 min in
buffer M. Equilibrium binding experiments indicate that
all unwinding substrates were saturated under these
solution conditions and at these protein and DNA
concentrations.37 This mixture was then loaded into one
syringe of the stopped-flow apparatus, and a solution
containing ATP (10 mM) and heparin (15 mg/ml) in buffer
M was loaded into the other syringe of the device. Both
solutions were equilibrated to 25 °C for 5 min, after which
DNA unwinding was initiated by rapid mixing of the two
solutions (1:1). The Cy3 fluorophore was excited at
515 nm, and its emission was monitored at 570 nm with
an interference filter (Oriel Corp., Stradford, CT); Cy5
emission was monitored simultaneously at all wave-
lengths N665 nm using a long-pass filter (Oriel Corp.).
Ten individual Cy3 FRET time courses were collected and
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averaged, and unwinding experiments were performed as
a function of duplex length (L=24, 29, 37, 40, 43, 48, 53,
and 60 bp). The results from three independent measure-
ments were averaged and subjected to global NLLS
analysis. Since all Cy3 FRET time courses exhibit a lag
phase before fluorescence enhancement, this initial signal
was assumed to represent 100% duplex DNA and thus
reflect zero DNA unwinding. Hence, the first 10 data
points from each time course were averaged and sub-
tracted from all data points, thereby constraining each
time course to start at zero.42

Analysis of DNA unwinding kinetics

Global NLLS analysis of DNA unwinding kinetics was
performed as described previously41,42,44 using Conlin56

(kindly provided by Dr. JeremyWilliams and modified by
Dr. Chris Fischer) and IMSL CNumerical Libraries (Visual
Numeric Incorporated, Houston, TX). The uncertainties
reported reflect 68% confidence interval limits determined
from a 50-cycle Monte Carlo analysis as described
previously.41 Entire time courses with data collected out
to 10 s were used in the analysis, although only data out to
0.4 s were plotted here for clarity. Fitting of the time
courses to a particular kinetic scheme was performed by
obtaining the time-dependent formation of ssDNA, fss(t),
as the inverse Laplace transform of Fss(s) using numerical
methods as described previously.41,44 For Scheme 1, fss(t) is
given by Eq. (2):

fssðtÞ =ATL−1FssðsÞ

=ATL−1 knUðkNP + sxÞ
sðkNP + sÞðkU + sÞn
� �

ð2Þ

where Fss(s) is the Laplace transform of fss(t), L−1 is the
inverse Laplace transform operator with s as the Laplace
variable, AT is the total amplitude for a given duplex
length L, n is the number of unwinding steps with kU being
the rate constant in between two successive unwinding
steps, kNP is the rate constant for the isomerization
reaction from nonproductive, (RD)NP, to productive,
(RD)L, RecBC(D)–DNA complexes, and x is the fraction
of productively bound RecBC(D)–DNA complexes
defined by Eq. (3):

x =
ðRDÞL

ðRDÞL + ðRDÞNP
ð3Þ

fss(t) for Scheme 2 is given by Eq. (4) in which h
additional kinetic steps with rate constant kC that are not
directly associated with DNA unwinding have been
included in the mechanism:

fssðtÞ =ATL−1FssðsÞ

=ATL−1 khCk
n
UðkNP + sxÞ

sðkC + sÞhðkNP + sÞðkU + sÞn
 !

ð4Þ

In Figs. 4b–7b, AT, n, h (where appropriate), and x were
allowed to float for each duplex length, while kC (where
appropriate), kU, and kNP were constrained to be global
parameters. In Figs. 4a–7a, n in Eqs. (2) and (4) was
replaced with L/m, where L is duplex length in base pairs
and m is the average unwinding kinetic step size. In this
analysis, AT and x (as well as h, where appropriate) were
floated for each time course at every duplex length, while

kU, kNP, and m (as well as kC, where appropriate) were
constrained to be global parameters.
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Single-turnover kinetics of RecBC-catalyzed unwinding of DNA duplexes possessing 
noncomplementary 5′-(dT)  and 3′-(dT)  ssDNA tails. (a) Cy5 fluorescence time courses 
(inverted about the x-axis) as a function of duplex length (L = 24, 29, 37, 40, 43, 48, 53, 
and 60 bp) obtained using the stopped-flow fluorescence assay. Data points represent the 
average of three independent measurements, and the error bars indicate the standard 
deviation of the data. Smooth curves are simulated time courses based on the global 
NLLS best fits to 

6 6

Scheme 1, with mk  = 339 ± 9 bp/s, m = 4.3 ± 0.1 bp, 
k  = 77 ± 13 s , and k  = 1.0 ± 0.1 s . (b) The number of unwinding steps n 
determined from global NLLS analysis using 

obs

obs
− 1

NP
− 1

Scheme 1 plotted versus DNA duplex 
length L. The continuous line shows the linear least-squares fit through the data 
(n = 0.24L − 0.01). 
 
Single-turnover kinetics of RecBCD-catalyzed unwinding of DNA duplexes possessing 
noncomplementary 5′-(dT)  and 3′-(dT)  ssDNA tails. (a) Cy3 fluorescence time courses 
as a function of duplex length (L = 24, 29, 37, 40, 43, 48, 53, and 60 bp) obtained using 
the stopped-flow assay. Data points represent the average of three independent 
measurements, and the error bars indicate the standard deviation of the data. Smooth 
curves are simulated time courses based on the global NLLS best fits to 

6 6

Scheme 2, with 
mk  = 745 ± 18 bp/s, m = 3.4 ± 0.5 bp, k  = 220 ± 28 s , k  = 6.7 ± 0.3 s , 
h = 3.2 ± 0.1 steps, and k  = 58 ± 2 s . (b) The number of unwinding steps n and 
additional kinetic steps h determined from global NLLS analysis using 

U U
− 1

NP
− 1

C
− 1

Scheme 2 plotted 
versus DNA duplex length L. The continuous line shows the linear least-squares fit 
through the data (n = 0.29L − 0.06; h = 3.2). 
 
Single-turnover time courses of RecBCD-catalyzed unwinding of DNA duplexes 
possessing noncomplementary 5′-(dT)  and 3′-(dT)  ssDNA tails. (a) Cy3 fluorescence 
time courses as a function of duplex length (L = 24, 29, 37, 40, 43, 48, 53, and 60 bp) 
obtained using the stopped-flow assay. Data points represent the average of three 
independent measurements, and the error bars indicate the standard deviation of the data. 
Smooth curves are simulated time courses based on the global NLLS best fits to 

10 6

Scheme 
1, with mk  = 588 ± 11 bp/s, m = 3.6 ± 0.2 bp, k  = 163 ± 24 s , and 
k  = 5.4 ± 1.0 s . (b) The number of unwinding steps n as a function of duplex length
L. The continuous line shows the linear least-squares fit through the data 

U U
− 1

NP
− 1  

 = 0.28L − 0.01). 
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d using 
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Single-turnover kinetics of RecBC-catalyzed unwinding of DNA duplexes possessing 
noncomplementary 5′-(dT)  and 3′-(dT)  ssDNA tails. (a) Cy3 fluorescence time course
as a function of duplex length (L = 24, 29, 37, 40, 43, 48, 53, and 60 bp) obtaine
the stopped-flow assay. Data points represent the average of three independent 
measurements, and the error bars indicate the standard deviation of the data. Smooth 
curves are simulated time courses based on the global NLLS best fits to 

10 6

Scheme 1, with 
mk  = 320 ± 7 bp/s, m = 3.5 ± 0.1 bp, k  = 92 ± 12 s , and k  = 1.9 ± 0.6 s . (b) 
The number of unwinding steps n determined from global NLLS analysis using 

obs obs
− 1

NP
− 1

Scheme 1 
 continuous line shows the linear least-squares fit 

through the data (n = 0.29L − 0.41). 
as a function of duplex length L. The
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[NaCl] dependence on RecBC catalyzed DNA unwinding 
 

RecBC unwinding of a 24 bp duplex was examined as a function of NaCl 

concentration in order to test whether [NaCl] influences the rate of DNA unwinding or 

processivity.  Unwinding time courses collected at 30 mM NaCl, 60 mM, 120 mM, and 

250 mM NaCl (Figure 2-S5) are analyzed using Equation 1 (Chapter 2) based on the n-

step sequential mechanism shown in Scheme 1 (Chapter 2) with m = 5.0 bp 

(constrained).  These time courses not only show identical lag phases, but also kobs is the 

same within error across the range of NaCl concentration examined.  However, the final 

unwinding amplitude decreases with increasing NaCl concentration.  This indicates that 

although RecBC unwinds DNA with the same unwinding rate, it is less processive at 

higher NaCl concentrations.  One important note is that although the unwinding rate is 

invariant across the range of [NaCl] examined, the average unwinding kinetic step-size, 

m, was fixed in the analysis.  These experiments will ultimately have to be performed as a 

function of DNA duplex length in addition to [NaCl] in order to determine whether 

RecBC takes larger or smaller (or the same) steps at higher NaCl concentrations.   
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Figure 2-S5. RecBC unwinding of a 24 bp duplex with pre-formed twin dT6 ssDNA 

tails as a function of [NaCl].  200 nM RecBC pre-bound to 2 nM radiolabeled DNA 

substrate was rapidly mixed with 10 mM ATP and 15 mg/mL heparin. Time courses were 

analyzed using Equation 1 based on Scheme 1 (Chapter 2) with m = 5.0 bp (fixed) (J) 

Reaction in buffer M: 20 mM Mops-KOH pH 7.0 at 25C, 30 mM NaCl, 10 mM MgCl2, 

1 mM 2-mercaptoethanol, 5% (v/v) glycerol. x = 0.88  0.05, knp = 2.6  0.7 s-1, kobs = 58 

 6 s-1, A = 0.81  0.03. (J) Reaction in buffer M with 60 mM NaCl. x = 0.87  0.05, knp 

= 1.8  0.5 s-1, kobs = 59  3 s-1, A = 0.76  0.02. (J) Reaction in buffer M with 120 mM 

NaCl. x = 0.90  0.06, knp = 1.6  0.5 s-1, kobs = 60  3 s-1, A = 0.72  0.02. (J) Reaction 

in buffer M with 250 mM NaCl. x = 0.90  0.04, knp = 1.1  0.3 s-1, kobs = 59  4 s-1, A = 

0.65  0.02. Based on this data (only one duplex length) the unwinding rate is unaffected 

by [NaCl] but the overall extent of unwinding decreases with increasing [NaCl]. 
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Does the DNA re-anneal behind RecBC during unwinding? 

RecBC unwinding time courses shown in Figure 2-S6 exhibit a decrease in the 

final unwinding amplitude as duplex length increases.  There two potential explanations 

for this observation.  Either RecBC has limited processivity or the DNA substrates can 

re-anneal behind the protein as it unwinds the duplex.  Similar unwinding experiments 

with the RecBCD enzyme do not show this decrease in the extent of DNA unwinding as a 

function of duplex length because RecBCD is not only highly processive, but also DNA 

unwinding is coupled to nuclease activity, which prevents any re-annealing that may 

occur.  To test whether the DNA can re-anneal behind RecBC as it unwinds DNA, I 

performed an unwinding experiment at lower ATP concentration (10 µM ATP after 

mixing) and in the presence of E. coli SSB.  If transient ssDNA intermediates are formed, 

SSB will bind to it and prevent the two strands from re-annealing.  Figure 2-S6 shows 

that with a 60 bp DNA substrate, the final unwinding amplitude of RecBC is independent 

of E. coli SSB concentration.  This indicates that either re-annealing does not occur or 

that the transiently formed ssDNA intermediates are not long enough for SSB to bind and 

the two DNA strands are still able to re-anneal behind RecBC.  These experiments will 

need to be repeated using bacteriophage T4 g32 protein which has a smaller binding site 

size for ssDNA in order to test these two possibilities.  If SSB is assumed to bind to any 

available ssDNA formed transiently in these experiments, then these results indicate that 

RecBC has limited unwinding processivity under these assay conditions (Buffer M).  
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Figure 2-S6. Influence of E. coli SSB on RecBC unwinding. 20 nM RecBC was pre-

bound to 2 nM radiolabeled DNA (60 bp duplex with twin dT6 ssDNA tails) and 

unwinding was initiated by manual mixing with 20 µM ATP and 10 mg/mL heparin. 

Single time point measurements were collected after 30 seconds (reaction quenched with 

0.4 M EDTA). The final unwinding amplitude is independent of [SSB] suggesting that no 

significant re-annealing occurs behind RecBC during DNA unwinding. 
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Heparin as a protein trap for RecBC during DNA unwinding 
 
 In a typical single-turnover unwinding experiment, RecBC is pre-bound to the 

DNA substrate and DNA unwinding is initiated by mixing with ATP and heparin.  

Heparin “traps” any RecBC molecules that are initially free in solution and also prevents 

any RecBC that dissociate during DNA unwinding from rebinding to the substrate and 

reinitiating the unwinding of the duplex.  A heparin “trap test” is performed routinely to 

access how much heparin is required in our unwinding experiments.  Instead of pre-

forming the RecBC-DNA complex, RecBC is mixed with a solution containing ATP, 

DNA substrate, and X mg/mL heparin.  If the amount of heparin in solution is 

insufficient to function as an effective trap, then RecBC will be able to bind to the DNA 

substrate and initiate DNA unwinding.  Figure 2-S7 shows that in the absence of heparin, 

RecBC can unwind ~30% of a 60 bp DNA substrate (at 10 µM ATP after mixing) but at 

3 mg/mL heparin (1.5 mg/mL after 1:1 mixing), the amount of DNA unwound is 

decreased significantly (~ 4%).  At 6 mg/mL heparin (3 mg/mL after 1:1 mixing), RecBC 

is unable to bind to DNA substrate and no DNA unwinding is observed.    
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Figure 2-S7. Trap test for RecBC unwinding. 20 nM RecBC was mixed with a solution 

containing 2 nM radiolabeled DNA substrate (60 bp DNA duplex with twin dT6 ssDNA 

tails), 20 µM ATP, and X mg/mL heparin. Single time point measurement was collected 

after 30 seconds. RecBC is unable to bind to the DNA substrate and initiate unwinding at 

[heparin] > 6 mg/mL. 
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Influence of 3’ ssDNA tail length on RecBC unwinding imitation 

 Wong et al. (Wong, Lucius et al. 2005) have observed that the binding affinity of 

RecBC and RecBCD for a DNA end increases when the 3’ ssDNA tail length increases 

from 0-6 nts but then the affinity decreases dramatically if the 3’ ssDNA tail length is 

extended beyond 6 nt (up to 20 nt).  This decrease in binding affinity results from paying 

an unfavorable entropic cost for forming a ssDNA loop on the 3’ terminating DNA strand 

(Wong, Rice et al. 2006).  I was therefore interested in whether the formation of this 

ssDNA loop influences RecBC unwinding.  Using a 24 bp DNA substrate with a pre-

formed 5’-(dT)6 ssDNA tail, I have examined the effects of the 3’ ssDNA tail length (3’-

(dT)L) on the initiation of DNA unwinding by RecBC.  The unwinding time courses 

collected for L = 0-30 nts are shown in Figure 2-S8A and the unwinding kinetics were 

analyzed using Equation 1 (Chapter 2) based on the n-step sequential mechanism shown 

in Scheme 1 (Chapter 2) with m = 5.0 bp (constrained).  The resulting best fit kinetic 

parameters are plotted versus 3’ ssDNA tail length in Figure 2-S8B: the total unwinding 

amplitude At (as well as the fast and slow phase components) along with kobs 

(microscopic unwinding rate), knp (isomerization rate for converting between productive 

and non-productive RecBC-DNA complexes), and x (fraction of productive RecBC-DNA 

complexes).   

Interestingly, the total unwinding amplitude increases as the 3’ ssDNA tail length 

is increased from 0-6 nts and decreases when the tail is extended beyond 6 nts.  This 

correlates well with the binding affinity measurements by Wong et al (Wong, Lucius et 

al. 2005).  A control unwinding experiment performed with the 5’ ssDNA tail extended to 

15 nts (while keeping the 3’ tail at 6 nts) indicate that the 5’ tail length has no effect on 
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unwinding initiation.  The unwinding contribution from the fast phase of unwinding 

(resulting from productive RecBC-DNA complexes) also correlates well with previous 

equilibrium studies and decreases when the 3’ ssDNA tail length is extended beyond 6 

nts.  This indicates that formation of the ssDNA loop on the 3’ terminating DNA strand 

promotes the formation of non-productive RecBC-DNA complexes.  Additional 

unwinding experiments employing a similar strategy as Wong et al (Wong, Rice et al. 

2006) by incorporating regions of PEG in the 3’ ssDNA tail can be used to test whether 

preventing loop formation rescues DNA unwinding by forming productive RecBC-DNA 

complexes. 
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Figure 2-S8. RecBC unwinding of a 24 bp substrate possessing pre-existing 5’-(dT6), 

and 3’-(dT)L ssDNA tails. Experiments were performed by pre-mixing 20 nM RecBC 

with 2 nM DNA substrate (radiolabeled with 32P) and unwinding was initiated by rapid 

mixing with 10 mM ATP and 15 mg/mL heparin. A.) Unwinding time courses for L = 2, 

4, 6, 8, 10, and 20 are shown.  Unwinding kinetics were analyzed using Equation 1 

(based on the n-step sequential mechanism shown in Scheme 1 in Chapter 2) with m = 

5.0 bp (fixed) and the smooth black curves are simulations based on the best fit 

parameters. B). The best fit parameters are plotted versus 3’ ssDNA tail length.  These 

include the total unwinding amplitude At (as well as the fast/slow phase components), 

kobs, knp, and x. (J) A control experiment in which the DNA substrate possesses pre-

formed 5’dT15, 3’dT6 tails. 
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Chapter III 

E. coli RecBC Helicase Has Two Translocase Activities 
Controlled by a Single ATPase Motor 
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Preface to Chapter III 

This chapter presents pre-steady state translocation kinetic studies of the RecBC 

enzyme to better understand the relationship between DNA unwinding and translocation.

Thus far, RecBC translocation activity and directionality have been inferred indirectly by 

Bianco and Kowalczykowski through a series of unwinding experiments in which the 

DNA substrate contains a ssDNA gap in between two duplex regions (Bianco and 

Kowalczykowski 2000).  When the 3’ to 5’ DNA strand (relative to the RecBC loading 

site) is continuous, then RecBC can bypass even a 30 nt gap and unwind the distal duplex 

with the same efficiency versus when there is a nick present.  If however the 5’ to 3’ 

ssDNA strand is continuous instead, then a decrease in efficiency is observed for the 

unwinding of the distal duplex when a 30 nt gap is present rather than a nick.  Based on 

these results, Bianco and Kowalczykowki concluded that RecBC unwinds and 

translocates strictly with 3’ to 5’ directionality using a quantum inchworm mechanism.  

To characterize this activity further, I first examined the translocation activity of the 

RecB monomer, and then I monitored RecBC translocation not only directly using a 

stopped-flow fluorescence assay, but also indirectly using a similar approach as Bianco 

and Kowalczykowski (Bianco and Kowalczykowski 2000).  This chapter is based on a 

manuscript that has been submitted in 2010 to Nature Structural and Molecular Biology 

(currently in press); translocation data not included in the original paper are also 

presented in this chapter.   
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Abstract

Escherichia coli RecBCD is a DNA helicase with two ATPase motors (RecB, a 3´ 

to 5´ translocase, and RecD, a 5´ to 3´ translocase) that functions in repair of double-

stranded DNA breaks. The RecBC heterodimer, with only the RecB motor, remains a 

processive helicase. Here we examined RecBC translocation along single stranded (ss) 

DNA. Surprisingly, we find that RecBC displays two translocase activities: the primary 

translocase moves 3´ to 5´, while the secondary translocase moves RecBC along the 

opposite strand of a forked DNA at a similar rate. The secondary translocase is 

insensitive to the ssDNA backbone polarity, and we propose that its function may be to 

fuel RecBCD translocation along double stranded DNA ahead of the unwinding fork, and 

to ensure that the unwound single strands move through RecBCD at the same rate after 

interaction with a Chi sequence. 
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Escherichia coli RecBCD is a molecular motor possessing ATPase, DNA 

helicase, and nuclease activities. This hetero-trimeric enzyme initiates repair of double 

strand (ds) DNA breaks via homologous recombination and degrades foreign DNA 1. 

RecBCD possesses two motor subunits, RecB (134 kDa), a 3´ to 5´ DNA helicase and 

nuclease, and RecD (67 kDa), a 5´ to 3´ DNA helicase 2-4. RecC (129 kDa) is a 

processivity and regulatory factor that interacts with both RecB and RecD and is 

structurally homologous to RecB but with non-functional helicase and nuclease domains 

5-6. Although RecB and RecD translocate with opposite directionalities along single 

stranded (ss) DNA, they function within RecBCD to unwind DNA in the same net 

direction by translocating along complementary DNA strands of the duplex 6, as depicted 

in Figure 1. To initiate recombinational DNA repair, RecBCD first binds to a dsDNA 

break and unwinds the DNA using its bipolar helicase activity.  At first, RecD is the 

faster motor 4,7 and the RecB nuclease activity preferentially degrades the 3´ ssDNA end 

until the complex recognizes a Chi (crossover hotspot instigator) sequence (5´–

GCTGGTGG) within the unwound 3´-ssDNA. At this point, the enzyme pauses then 

continues to unwind at a reduced rate with RecB as the faster motor. In addition, the 

nuclease selectivity switches to act exclusively on the 5´-ssDNA end, producing a 3´-

ssDNA end onto which RecA enzyme is loaded. The resulting RecA filament then 

initiates homologous recombination to repair of the dsDNA break 1. RecB and RecD are 

both superfamily 1 (SF1) DNA helicases, each with a functional ATPase motor2. In the 

absence of RecD, a stable heterodimeric RecBC complex retains highly processive and 

rapid helicase activity4,8-10.    
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The DNA binding 11-14 and helicase properties of RecBCD and RecBC 3-4,8,10,15-20 

have been studied, and structures of RecBCD bound to a duplex DNA end have been 

determined 6,21 (Fig. 1). Upon binding to a blunt ended DNA duplex, both RecBCD and 

RecBC 6,11,13,22 melt out 5–6 base pairs (bp) in a Mg2+-dependent, but ATP-independent 

reaction. However, RecBCD unwinds DNA more rapidly than RecBC 4; (774 ± 16 bp s-1 

vs. 348 ± 5 bp s-1) under the same conditions 10,18-19.  

To unwind DNA processively, a helicase must also translocate along DNA. From 

DNA unwinding experiments, Bianco and Kowalczykowski 8 inferred that RecBC 

translocates along ssDNA with 3´ to 5´ directionality, consistent with the directionality of 

the RecB motor 23-24. However, the ssDNA translocation properties of RecB, RecBC and 

RecBCD have not been examined directly, and thus, the relationship between ssDNA 

translocation and DNA unwinding is not established. Here, we examined ssDNA 

translocation of RecB and RecBC and show that RecBC not only possesses its expected 

primary 3´ to 5´ ssDNA translocase activity, but also a second previously undetected 

translocation activity, both of which are controlled by the RecB motor. This discovery 

has important implications for the mechanism and regulation of DNA unwinding 

activities by RecBC and RecBCD. 

 

Results 

RecB monomer translocation along ssDNA

A stopped-flow fluorescence approach 25 (see Methods) was used to monitor 

RecB translocation along a series of ss oligodeoxythymidylates, (dT)L, L nucleotides long 

with a fluorophore (Cy3 or Oregon Green (OG)) attached on the 5´- or the 3´-end. When 
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RecB reaches the ssDNA end labeled with Cy3 or OG, Cy3 fluorescence is enhanced, 

whereas OG fluorescence is quenched; hence, one can monitor the kinetics of RecB 

arrival at the ssDNA ends. Use of a two-fold molar excess of ssDNA over RecB ensures 

that no more than one RecB monomer is bound to each ssDNA. Translocation was 

initiated by mixing pre-formed RecB–(dT)L complexes with ATP and heparin, the latter 

serving as a trap to prevent rebinding to the DNA of any RecB that dissociates during 

translocation or that was initially free. Hence, a single round of translocation is 

monitored, although multiple rounds of ATP hydrolysis occur.  

The translocation time courses for different DNA lengths (Fig. 2a and 2b) 

indicate that RecB monomers bind randomly to (dT)L and translocate with 3´ to 5´ 

directionality 25. Identical experiments performed with a (dT)54 substrate with Cy3 on the 

3´ end of the ssDNA, show an exponential decrease in Cy3 fluorescence (Fig. 2c), the 

rate of which is independent of ssDNA length (data not shown) indicating RecB 

translocates away from the 3´-end.  These data indicate that RecB translocates along 

ssDNA with biased 3´ to 5´ directionality. 

The time courses in Figure 2a and 2b were analyzed using the n-step sequential 

translocation model in Scheme 1 (Eq. S1), to obtain fluorophore-independent estimates 

of the translocation kinetic parameters (Table 1).  A dissociation rate constant, kd = 7.5 ± 

0.3 s-1, determined from independent RecB–poly(dT) dissociation experiments (see 

Supplementary Fig. 1), was constrained in the analysis of the translocation time courses 

as described 26. This analysis indicates that RecB translocates along ssDNA in the 3´ to 5´ 

direction with a macroscopic rate of mtkt = 803 ± 13 nucleotides per second (nt s-1). The 
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smooth curves in Figure 2 show that the n-step sequential model provides a good 

description of the translocation kinetics.  

 

ssDNA translocation by RecBC

We next examined ssDNA translocation of RecBC using the same 5´–Cy3–(dT)L 

substrates; however, no translocation activity was detected. In fact, Figure 2d shows 

exponential decreases in Cy3 fluorescence when pre-bound RecBC–DNA complexes 

(5´–Cy3–(dT)54 or (dT)54–Cy3–3´) were mixed with ATP and heparin, suggesting that 

RecBC is unable to initiate translocation on ssDNA alone and instead dissociates from 

the ssDNA.  Based on the structures of RecBCD–DNA complexes 6,21 (Fig. 1), we 

hypothesize that it is difficult for ssDNA to be threaded into the RecBC complex to 

properly engage the RecB motor and designed a different DNA substrate to monitor 

RecBC translocation.   

RecBC binds weakly to ssDNA and blunt duplex DNA ends, but binds with high 

affinity to a DNA end possessing twin 5´-dT6 and 3´-dT6 tails 13 and RecBC can rapidly 

initiate DNA unwinding from such a site 10. Therefore, we hypothesized that once RecBC 

initiates DNA unwinding from this loading site, it might continue to translocate in the 3´ 

to 5´ direction along a (dT)L ssDNA extension. The modified DNA substrates used to test 

for RecBC translocation along ssDNA are shown schematically in Figure 3a and 3b. 

These substrates contain a 24 bp duplex with a high affinity RecBC loading site at one 

end. On the other end of the duplex is a ssDNA ((dT)L) extension of length, L, labeled on 

its 5´-end with either Cy3 or Fluorescein (F); these substrates should detect 3´ to 5´ 

translocation of RecBC along the ss-(dT)L extensions. To differentiate between the two 
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DNA strands in these molecules, we refer to them as the 3´-terminated strand and the 5´-

terminated strand, where the 3´ or 5´ denotes the duplex end containing the RecBC 

loading site.  Hence, in Figure 3a, the strand with the ssDNA extension is the 3´-

terminated strand. To ensure that RecBC initiates at the high affinity loading site, a two-

fold molar excess of DNA (200 nM) over RecBC (100 nM) was used. If all RecBC 

enzymes initiate DNA unwinding from this unique site, we expect a measurable lag time 

before RecBC arrives at the fluorophore-labeled 5´-ssDNA end 27.   

The results of experiments with RecBC and these DNA substrates show a lag 

phase (Fig. 3a–3b), the duration of which increases with ssDNA extension length, L, 

consistent with RecBC translocating along the extension in the 3´ to 5´ direction after 

unwinding the 24 bp duplex. For the 5´–Cy3–(dT)L extensions (Fig. 3a), Cy3 

fluorescence increases after the lag, reflecting arrival of RecBC at the 5´-end, after which 

Cy3 fluorescence decreases to its starting value after ~ 2 seconds, reflecting RecBC 

dissociation. The same trend, but with a transient quenching of fluorescein fluorescence 

is observed for DNA with 5´–F–(dT)L extensions (Fig. 3b).   

We analyzed these time courses using two approaches: an analysis of the “lag 

time” (defined in Supplementary Fig. 2) and an analysis of the complete time course 

(described in Supplementary Data). The “lag time” for each time course reflects the 

average time for RecBC to reach the 5´ end of the ssDNA and is linearly dependent on 

the (dT)L extension length, L (see Fig. 3e), consistent with directional translocation. The 

reciprocal slope of these plots yields an estimate of the 3´ to 5´ translocation rate, which 

is the same for both substrates (909 ± 51 nt s-1 (Cy3); 1,030 ± 53 nt s-1 (F)). Since all 
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DNA molecules contain the same 24 bp duplex, these rates only reflect ssDNA 

translocation.  

We also analyzed the full time courses in Figure 3a and 3b using Scheme 2 (Eq.

S2), which combines two tandem n-step sequential schemes, reflecting the unwinding of 

the 24 bp duplex by RecBC, followed by translocation of RecBC along the (dT)L 

extensions. In this analysis, the DNA unwinding kinetic parameters (kU and mU) were 

constrained to the values determined from a previous study of DNA unwinding by 

RecBC performed under the same solution conditions 10, allowing us to float only the 

kinetic parameters for RecBC translocation.  The resulting ssDNA translocation rate of 

920 ± 33 nt s-1 is the same within error as the rates determined from the “lag time” 

analyses. Both Cy3 and fluorescein time courses are well described by this mechanism 

and the parameters in Table 1, as shown by the simulated curves in Figure 3a and 3b. 

 

RecBC has a distinct secondary translocase activity

We next performed control experiments with RecBC using a similar set of partial 

duplex substrates but with the fluorophore-labeled (dT)L ssDNA extending from the 5´-

terminated strand. If RecBC translocates along ssDNA with strict 3´ to 5´ directionality, 

then no length dependent translocation signal should be observed on these substrates 

since the strand along which RecB translocates stops at the end of the duplex; therefore, 

RecBC would be expected to either dissociate or become stuck after unwinding the 24 bp 

duplex. To our great surprise, we observed the characteristic signature of ssDNA 

translocation (length-dependent lag, followed by a peak (trough) in fluorescence) (Fig.

3c–3d) indicating movement of RecBC in the unexpected 5´ to 3´ direction.   
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“Lag time” analyses (Fig. 3e) show linear dependences on ssDNA length, 

consistent with RecBC translocation in the 5´ to 3´ direction with rates of 990 ± 49 nt s-1 

(Cy3) and 1187 ± 61 nt s-1 (F), which are the same within error as the rates determined 

for RecBC translocation in the 3´ to 5´ direction.  Although the time courses observed for 

the two types of DNA substrates ((dT)L extensions on the 3´-terminated strand (Fig. 3a–

b) versus on the 5´-terminated strand (Fig. 3c–3d)) show the same qualitative 

characteristics, they differ in detail and are not superimposable (see Supplementary Fig. 

3). The amplitudes of the fluorescence changes (both Cy3 and F) are larger and the 

dissociation rates of RecBC are slower for the DNA substrates that monitor 3´ to 5´ 

translocation. Furthermore, the complete time courses for the DNA substrates that 

monitor 5´ to 3´ translocation are not described as well by the simple tandem n-step 

sequential model of Scheme 2, suggesting that additional steps (e.g., pausing or 

conformational rearrangement or multistep dissociation from the ssDNA end) may occur. 

From here on, we will refer to the 3´ to 5´ translocation activity as the “primary” RecBC 

translocase, and the apparent 5´ to 3´ translocation activity as the “secondary” RecBC 

translocase. 

We note that when RecB alone is examined using the DNA substrates in Figure

3a and 3c, we observe translocation profiles similar to those shown in Figure 2a and 2c 

(data not shown), indicating that RecB preferentially loads onto the ssDNA extensions at 

random sites and moves with 3´ to 5´ directionality. When RecC alone is examined with 

any of the DNA substrates described above, no translocation activity is observed. We 

also note that the RecBC used here was purified from E. coli strains that do not express 

RecD and thus the secondary translocase activity is not due to RecD contamination. 
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ATP-dependence of the primary and secondary translocase activities

 We next examined the effect of [ATP] on the primary and secondary translocase 

activities of RecBC. Cy3 time courses were obtained for all five (dT)L extension lengths 

at each [ATP]. Both primary and secondary translocation rates, determined from “lag 

time” analyses (see Supplementary Fig. 4), display hyperbolic dependences on [ATP] 

(Fig. 3f) and were fit to the Michaelis-Menton model (Eq. S4). The primary translocase 

has Vmax =  946 ± 64 nt s-1 and KM = 203 ± 32 μM while the secondary translocase has 

Vmax = 1,055 ± 75 nt s-1 and KM = 123 ± 28 μM; hence, both KM values are similar. 

Translocation by the RecB monomer alone has Vmax = 860 ± 53 nt s-1 and KM = 125 ± 38 

μM (Fig. 3f).  

The primary 3´ to 5´ translocation activity of RecBC was anticipated, but our 

discovery of a secondary 5´ to 3´ translocase activity was surprising. Both translocase 

rates are similar over a range of [ATP] and [NaCl] (Supplementary Fig. 6), suggesting 

that they are both driven by the same motor (RecB). Since RecB ATPase activity is 

strongly stimulated by binding ssDNA 23,28, it would seem necessary for the primary 

ssDNA binding site of RecB to remain bound to ssDNA during the course of both 

translocase activities. This suggests that in order for RecBC to translocate in the 5´ to 3´ 

direction after unwinding the 24 bp duplex (Fig. 3c), the primary ssDNA binding site 

within RecB must remain bound to the short unwound 3´-terminated ssDNA strand. If 

instead, RecBC translocated off the end of the unwound ssDNA, then RecB ATPase 

activity would decrease dramatically and would not support the secondary translocation 

activity. 
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We designed two DNA substrates (see Fig. 4a and 4b) to test whether the primary 

RecBC translocase stops and remains bound to the end of the short ssDNA after 

unwinding the 24 bp duplex. The ends of the (dT)60 extensions are labeled with Cy3, 

while the ends of the shorter strand that forms the 24 bp duplex are labeled with Cy5.  

The Cy3 (donor) and Cy5 (acceptor) fluorophores can undergo fluorescence resonance 

energy transfer (FRET) that can be monitored as a change in the Cy5 acceptor 

fluorescence when the Cy3 donor is excited.  Thus, if one of either translocase gets stuck 

at the end of the 24 bp duplex, the Cy3 will be brought closer to the Cy5 resulting in a 

transient increase in Cy5 fluorescence. However, if RecBC translocates past the Cy5 

donor and releases the short Cy5 labeled strand after unwinding, then a decrease in Cy5 

fluorescence should be observed.  

The results of the two FRET experiments are shown in Figure 4a and 4b. The 

substrate in Figure 4a shows a lag followed by a transient increase in Cy5 fluorescence 

and then a decrease, consistent with the primary translocase remaining bound to the end 

of the unwound duplex while the secondary translocase continues to move along the 

other strand. Superimposed on the Cy5 time course is the time course of arrival of RecBC 

at the 3´–Cy3 labeled end (determined using a DNA containing only the Cy3 

fluorophore).  The peak in Cy5 fluorescence occurs slightly before the peak in the Cy3 

fluorescence, as expected.  In contrast, the substrate in Figure 4b shows only a decay in 

Cy5 fluorescence, suggesting dissociation of the Cy5 labeled strand after the 24 bp 

duplex is unwound since the primary RecBC translocase can translocate uninterrupted on 

this DNA.  These results indicate that when RecBC reaches an end or gap in the 3´-

terminated DNA strand, the primary translocase stops and remains bound to the ssDNA 
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while continuing to hydrolyze ATP which drives the secondary translocase. Hence, we 

conclude that the RecB ATPase motor drives both the primary and secondary translocase 

activities. 

 

Simultaneous translocation of RecBC along both strands of ssDNA

Although both translocase activities are fueled by the RecB motor, we anticipate 

that RecBC uses two distinct DNA binding sites for the two translocation activities. 

Hence, we designed DNA substrates, shown schematically in Figure 5a, to examine 

whether RecBC can translocate along the two single strands simultaneously. These 

substrates possess the same 24 bp duplex with a RecBC loading site on one end, but two 

non-complementary ssDNA ((dT)L) extensions of equal length on the other. The (dT)L 

extensions are labeled either on the 5´-end or the 3´-end with Cy3 to independently 

monitor the primary or secondary translocase, respectively. RecBC shows identical time 

courses (when normalized to the peak fluorescence) for translocation along either strand, 

as shown in Figure 5a. In fact, only a slightly (~15%) larger Cy3 enhancement is 

observed when Cy3 is on the 5´-end of the DNA extension (Supplementary Fig. 5). The 

fact that the normalized translocation time courses are identical (for a given L), regardless 

of which strand is monitored, indicates that RecBC translocates along both DNA strands 

simultaneously and with identical rates.  

Consistent with directional translocation, we observe lag kinetics for all time 

courses and the lag times increase with increasing L (Fig. 5b). Interestingly, when RecBC 

translocates along both strands simultaneously, the rate of translocation is substantially 

slower (671 ± 47 nt s-1 (5´–Cy3), 621 ± 43 nt s-1 (3´–Cy3)) than when only one strand is 
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present (~900–1,100 nt s-1). This indicates that both strands participate in RecBC 

translocation.  Furthermore, the rates for both the primary and secondary ssDNA 

translocases are identical, and slightly faster than the DNA unwinding rate of RecBC 

measured under the same solution conditions (348 ± 5 bp s-1) 10. 

 

RecBC translocation on DNA with reversed polarity backbone linkages

 We next examined whether either translocase is affected by reversing the polarity 

of the phosphodiester backbone in the ssDNA extension.  Since the primary ssDNA 

binding site of the RecB motor (1A and 2A sub-domains) binds ssDNA with a distinct 

polarity 6,11,21 (see Fig. 1), the primary (3´ to 5´) translocase should stop if the motor 

encounters a 5´–5´ phosphodiester linkage within the ssDNA extension. We introduced a 

5´–5´ linkage in the lower (3´-terminated) strand just after the 24 bp duplex region (Fig.

5c), which reverses the backbone polarity of the (dT)75 extension in that strand.  The 

polarity of the 5´-terminated strand was not changed. We generated two DNA substrates 

(indicated I and II in Fig. 5c), differing only by which ssDNA extension was labeled with 

Cy3, so that translocation along each strand could be monitored independently. The time 

courses in Figure 5c indicate that reversing the backbone polarity of the bottom (3´-

terminated) strand (DNA II) blocks the primary RecBC translocase, as expected. 

However, the secondary translocase still moves along the top (5´-terminated) strand 

(DNA I).     

We then introduced a 3´–3´ linkage in the top (5´-terminated) strand (Fig. 5d, 

DNA III and IV). Since the backbone polarity of the bottom ssDNA extension is not 

interrupted there was no effect on the primary translocation activity. However, the 
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secondary translocase was also functional, even though the backbone polarity of the top 

(5´-terminated) strand was reversed. This indicates that the secondary translocase of 

RecBC is insensitive to the ssDNA backbone polarity. This surprising conclusion is 

further supported by comparisons of other variants of reversed polarity substrates (see 

Supplementary Fig. 5).  In all cases, the primary translocase is blocked by a polarity 

reversal in the 3´-terminated strand, whereas the secondary translocase is unaffected by a 

polarity reversal in the 5´-terminated strand.   

As a further test of whether RecBC translocates along both ssDNA extensions, we 

examined a DNA substrate with two ssDNA extensions that are both end labeled, one 

with Cy3 and one with Cy5 (Fig. 5e).  With this DNA, changes in FRET between Cy3 

and Cy5 should occur if the ends of the ssDNA extensions are brought closer together as 

RecBC translocates.  Figure 5e shows the anti-correlated Cy3 and Cy5 time courses 

consistent with FRET resulting from the simultaneous translocation of the DNA strands 

through the RecBC enzyme. Reversing the backbone polarity within the top (5´-

terminated) ssDNA extension does not affect the secondary translocase activity (Figure

5f).    

Re-initiation of DNA unwinding after RecBC crosses a ssDNA gap

Previous studies inferred a 3´ to 5´ directionality for RecBC ssDNA translocation 

by examining its ability to unwind two DNA duplexes separated by ssDNA gaps 8.  We 

therefore performed experiments using similar gapped DNA substrates (Fig. 6), which 

contain a RecBC loading site on one end of a 24 bp (proximal) duplex, followed by a 

ssDNA ((dT)L) extension and then a 40 bp (distal) duplex. Two types of DNA substrates 

 14
63



were made such that a gap occurs in either strand of the duplex DNA, with gap lengths of 

L = 2, 21 or 41 nucleotides. The 5´-ends of one strand of both DNA duplexes were 

radiolabeled with 32P so that unwinding of both duplexes could be monitored in the same 

experiment10,18. RecBC initiates only from the high affinity loading site since it binds 

weakly and initiates unwinding poorly from blunt ends13,10. Because DNA was in excess 

over RecBC and single-round conditions were used, the maximum amount of DNA 

unwinding is limited by the RecBC concentration (2 nM).   

 In the substrates used in Figure 6a, the ssDNA connecting the proximal and distal 

duplexes is the strand along which the primary RecBC translocates (3´ to 5´).  For the 

substrates in Figure 6b, the ssDNA in the gap is the strand along which the secondary 

RecBC translocates.  For both substrates, RecBC unwinds ~85% of the 24 bp proximal 

duplex with time courses consistent with previous RecBC studies 10. Furthermore, RecBC 

can re-initiate unwinding of the distal 40 bp DNA duplex equally well for ssDNA gaps of 

different lengths, regardless of which strand spans the gap. The extent of the lag phase 

increases with increasing gap length, L.  Since the proximal (24 bp) and the distal (40 bp) 

duplexes are identical in all substrates, the shifts in lag times reflect only the additional 

time required for RecBC to traverse the progressively longer ssDNA gaps.   

We analyzed these time courses using Scheme 3 (Eq. S3), which assumes three 

stages, with RecBC starting from the high affinity loading site:  (1)-unwinding of the 

proximal duplex, (2)- translocation along the ssDNA region, and (3)- unwinding of the 

distal duplex.  The RecBC DNA unwinding rates were constrained to those determined 

previously (396 ± 15 bp s-1) 10, while the ssDNA translocation kinetic parameters were 

allowed to float. This analysis indicates that RecBC translocates along ssDNA in the 3´ to 
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5´ direction using its primary translocase with a rate of 928 ± 38 nt s-1, and along the 

other strand in the 5´ to 3´ direction using its secondary translocase with the same rate 

(919 ± 42 nt s-1). The observation that the primary and secondary translocases move with 

the same rates supports our earlier conclusions obtained using the fluorescently labeled 

DNA (Fig. 3a–d).   

Discussion

RecBC has two translocase activities, both controlled by the RecB motor

 To date, SF1 translocases containing only one ATPase motor have been observed 

to translocate uni-directionally along ssDNA29-33.  It was therefore unexpected to find that 

RecBC, possessing only a single canonical motor (RecB), displays two distinct 

translocase activities.  The primary translocase activity is sensitive to the phosphodiester 

backbone polarity and moves only in a 3´ to 5´ direction, consistent with the translocation 

properties of the isolated RecB motor. However, the secondary translocase, which moves 

at the same rate as the primary, is insensitive to the ssDNA backbone polarity.  Our 

studies with the RecB subunit alone show no evidence of the secondary translocase 

activity. Hence it appears that the interaction of RecB with RecC is needed to form the 

secondary ssDNA translocase site or to support its interactions with DNA.  

The regions of RecBC that form the channel for the unwound 5´-terminated 

ssDNA, and thus likely involved in the secondary translocase activity, are well removed 

from the ATP binding site of RecB and the channel for the unwound 3´-terminated 

ssDNA, along which the primary translocase moves (see Fig. 1)6. Thus, the DNA binding 

site associated with the secondary translocase must be distinct from the ssDNA binding 
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site responsible for the primary translocase, hence the concerted control of both 

translocase activities by the RecB motor must occur allosterically. Both RecBC 

translocases display the same rates of translocation and are ATP-dependent with KM 

values similar to that measured for RecB translocation, consistent with both activities 

being driven by the single RecB motor.  

Interestingly, when RecBC translocates along only one strand of DNA the rate is 

~1,000 nt s-1, whereas the rate is reduced to ~ 650 nt (or “bp”) s-1 when it translocates 

along both single strands simultaneously. However, this translocation rate is still faster 

than the DNA unwinding rate of RecBC under the same conditions (~350 bp s-1), 

although slower than the RecBCD unwinding rate (~750 bp s-1) 10.  Importantly, the 

primary and secondary translocation rates of RecBC are identical when both ssDNA 

extensions are present. Thus both DNA strands move through the enzyme at the same 

rates preventing any loop formation during unwinding. 

Implications for RecBC translocation and DNA unwinding mechanisms.

Bianco & Kowalczykowski8 previously examined the ability of RecBC to initiate 

unwinding of a short DNA duplex (proximal), followed by unwinding of a second (distal) 

DNA duplex separated by a ssDNA gap.  Using DNA substrates similar to those shown 

in Figure 6, they observed that the efficiency with which RecBC could traverse the 

ssDNA gap was lower when the gap was in the strand along which the primary RecBC 

translocase operates and concluded that RecBC translocation along ssDNA occurred 

strictly in the 3´ to 5´ direction. This differs from our conclusion that RecBC has two 

translocase activities. They8 also observed that RecBC could traverse ssDNA gaps in the 
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3´-terminated strand as large as 23 ± 2 nucleotides and proposed a “quantum inch-worm” 

unwinding model. However, RecBC was still observed to unwind ~16% of the distal 

DNA duplexes, even with a gap of 30 nucleotides in that strand. Our finding that RecBC 

can bypass ssDNA gaps in either strand and then re-initiate DNA unwinding is 

qualitatively consistent with this observation8.  However, we do not observe a difference 

in unwinding efficiency regardless of which strand contains the gap. These differences 

may be due to the absence of E. coli single stranded binding (SSB) protein in our 

experiments.  

Interestingly, Bianco & Kowalczykowski8 also observed that the ability to 

traverse a gap was dependent upon the length of the proximal duplex DNA that preceded 

the gap, and concluded that RecBC stepping was not only quantized with a periodicity of 

23 ± 2 nucleotides, but also that the placement of the next step was determined by where 

the enzyme initiated. Although our experiments do not address this result, it seems likely 

that the secondary translocase activity of RecBC that we report is related to this 

“quantum inch-worm” behavior8. 

Where in RecBC is the secondary translocase activity and what is its function?

The general view of the mechanism of ssDNA translocation by an SF1 helicase is 

that ATP-hydrolysis drives coupled motions between the two RecA-like sub-domains 

(1A and 2A) whose interface forms the ATP binding site (Fig. 1b).  One proposal is that 

these two sub-domains each contain a sub-site for binding ssDNA and these sub-sites 

cycle between high and low ssDNA affinity based on the nucleotide binding state (i. e.,  

ATP, ADP–Pi, ADP, etc.), resulting in an inch-worm mechanism that moves the motor 
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uni-directionally along the ssDNA backbone2. This type of motor activity is likely 

responsible for the primary translocase of RecBC.  However, the secondary RecBC 

translocase must involve a distinctly different region of the enzyme, but one that is 

controlled allosterically by the same ATPase motor within RecB. 

We suggest that the secondary translocase activity resides either in the arm region 

of RecB and (or) the dead nuclease domain of RecC (see Fig. 1b) 6.  These regions 

contact either the duplex DNA ahead of the fork or the 5´-terminated ssDNA. Although 

we detect the secondary translocase activity of RecBC as an ability to translocate along 

the 5´-terminated ssDNA, its actual function may be to interact with and translocate along 

the duplex DNA ahead of the fork. This would explain the lack of sensitivity of the 

secondary translocase activity to the backbone polarity of ssDNA. Hence, the RecB 

“arm” is a likely candidate since it contacts the dsDNA ahead of the fork. 

The function of this secondary translocase may be to load the other (5´-

terminated) single strand of DNA into the RecD motor.  When RecBCD binds to a blunt 

ended DNA duplex, 5–6 bp are melted in a Mg2+-dependent but ATP-independent 

process to form an initiation complex6,12-13,22.  In this initiation complex, the 3´-

terminated ssDNA is bound in a channel containing the RecB motor and thus is ready to 

be translocated upon ATP binding and hydrolysis. However, the initial length of the 5´-

terminated ssDNA (5–6 nt) is not long enough to reach the motor region of RecD, 

although RecD can be crosslinked to this strand 12.  In fact, a 5´-terminated ssDNA of at 

least 10 nucleotides is needed to functionally engage the RecD motor 10,13,20.  As such, the 

secondary RecBC translocase activity may function to load the 5´-terminated ssDNA into 

the RecD motor.  
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The secondary translocase activity may also function after RecBCD recognizes 

the recombination hotspot, Chi.  Following RecBCD initiation of unwinding at a blunt 

DNA end, the RecD motor moves faster than the RecB motor generating a ssDNA loop 

ahead of the fork, in the 3´-terminated ssDNA along which the primary RecB translocase 

operates 4.  During this time, the RecB nuclease preferentially digests the 3´-terminated 

strand.  However, once a Chi site is recognized by RecC, the relative speeds of the RecB 

and RecD motors switch 7 and the nuclease selectively degrades the 5´-terminated strand.  

After Chi, the now faster RecB motor will eventually catch up to the RecD motor.  At 

this point, if RecB remains faster than RecD, a different loop would form in the 5´-

terminated strand ahead of the enzyme; however, this has not been observed 4.   The 

existence of the secondary RecBC translocase may ensure that the two unwound single 

strands move through RecBCD at the same rates and thus prevent loop formation after 

Chi recognition. The existence of concerted translocase activities would also prevent 

dissociation of RecBCD if a ssDNA gap is encountered on either strand during DNA 

unwinding after Chi. 

In addition to RecBCD, two other classes of double strand DNA break resecting 

enzymes have been described that are hetero-dimeric and thus more similar to RecBC in 

that they do not possess a second RecD-like motor.  AddAB from Bacillus subtilis has 

one motor subunit, AddA, but two RecB-like nuclease domains, one each on AddA and 

AddB 34.  AdnAB from Mycobacterium smegmatis has two active motors and two active 

nuclease domains 35. It will be interesting to determine whether these hetero-dimeric 

enzymes also possess a secondary translocase activity similar to E. coli RecBC. 
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Figure Legends 

Figure 1. RecBCD and RecBC structures. RecB (orange), RecC (blue), and RecD 

(green) subunits are indicated. (a). Ribbon diagram of a RecBCD–DNA complex 6,21. (b). 

Cartoon depiction of a RecBC–DNA complex. RecB motor, nuclease, and arm domains 

are indicated along with the catalytically dead RecC motor and nuclease domains. The 

paths of the 3´- and 5´-terminated unwound ssDNA are shown. 
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Figure 2. RecB translocates with 3´ to 5´ directionality along ssDNA.

(a). RecB monomer translocation kinetics for a series of 5´–Cy3–(dT)L DNA 

(Supplementary Table 1, DNA I–VIII). Cy3 fluorescence from DNA alone (DNA I) is 

shown in filled black circles. (b). RecB monomer translocation kinetics for a series of  

5´–OG–(dT)L substrates. OG (Oregon Green) fluorescence from DNA alone (DNA I) is 

shown in filled black circles. Smooth black curves in panels A and B are simulated time 

courses using Equation S1 and the best fit kinetic parameters (Table 1). (c). Time course 

obtained with RecB and (dT)54 –Cy3–3´ (Supplementary Table 1, DNA IX). (d). Time 

course obtained with RecBC and 5´–Cy3–(dT)54 (filled circles) or (dT)54–Cy3–3´ 

(opened circles). 

 

Figure 3. RecBC displays both a primary (3´ to 5´) and secondary (5´ to 3´) 

translocase activity. RecBC translocation time courses obtained using the DNA 

substrates depicted which possesses a 24 bp duplex with a high affinity (twin-dT6) 

RecBC loading site on one end and either 5´– or 3´–(dT)L ssDNA extensions on the other 

end.  (a). DNA substrates labeled with Cy3 on the 5´ end of the (dT)L extension. (b). 

DNA substrates labeled with fluorescein (F) on the 5´ end of the (dT)L extension. (c). 

DNA substrates labeled with Cy3 on the 3´ end of the (dT)L extension. (d). DNA 

substrates labeled with fluorescein (F) on the 3´ end of the (dT)L extension. Smooth black 

curves in panels a–d are simulated time courses using Equation S2 and the kinetic 

parameters in Table 1. (e). Dependence of the lag time on ssDNA extension length, L. 

Cy3 data from panel a (opened circles) (Lag time = 0.00110 L + 0.0095) (909 ± 51 nt s-1). 

Fluorescein data from panel b (filled circles) (Lag time = 0.000971 L + 0.0110) (1,030 ± 
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53 nt s-1).  Cy3 data from panel c (opened squares) (Lag time = 0.00101 L + 0.0093) (990 

± 49 nt s-1). Fluorescein data from panel d (filled squares) (Lag time = 0.000843 L + 

0.0134) (1,187 ± 61 nt s-1). (f). [ATP] dependence of RecBC translocation rates (from lag 

time analyses) for the (circles)-primary (3´ to 5´) (Vmax = 946 ± 64 nt s-1, KM = 203 ± 32 

μM); and (squares)-secondary (5´ to 3´) (Vmax = 1,055 ± 75 nt s-1, KM = 123 ± 28 μM) 

translocases. (triangles)-Effects of [ATP] on RecB monomer translocation (Vmax = 860 ± 

53 nt s-1, KM = 125 ± 38 μM). Smooth curves represent fits to the Michaelis-Menton 

equation (Eq. S4) and the best fit parameters summarized in Table 1.  

 

Figure 4. The primary RecBC translocase site remains bound to ssDNA upon 

reaching a 5´-end, while its secondary translocase continues. (a). RecBC translocation 

along a partial duplex substrate with a 5´ to 3´ dT60 ssDNA extension, doubly labeled 

with Cy3 and Cy5 as shown. Time course monitoring FRET as Cy5 fluorescence (filled 

circles) (due to exciting Cy3 donor) shows that the 3´-terminated ssDNA remains bound 

to RecBC while the secondary translocase continues; x Translocation time course for the 

same DNA, but without the Cy5 label (opened squares). (b). RecBC translocation along a 

partial duplex substrate with a 3´ to 5´ dT60 ssDNA extension doubly labeled with Cy3 

and Cy5 as shown. Time course monitoring FRET as Cy5 fluorescence (filled circles) 

(due to exciting Cy3 donor) shows dissociation of the 5´-terminated ssDNA; 

Translocation time course for the same DNA, but without the Cy5 label (opened squares). 

Figure 5. primary and secondary RecBC translocases operate simultaneously along 

two ssDNA extensions. Translocation of RecBC along DNA substrates containing a 24 
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bp duplex region with high affinity RecBC loading site on one end and two (dT)L 

extensions of equal length (L = 15, 30, 45, 50, 75 nucleotides) and labeled with Cy3 on 

one of the two ends as depicted. (a). Normalized time courses for DNA substrates 5´–Cy3 

labeled DNA (filled circles) and 3´–Cy3 labeled DNA (opened circles) for L = 30, 45, 

and 75 nucleotides. (b). Lag time analyses of time courses; 5´–Cy3 labeled DNA (filled 

circles) (Lag time = 0.00149 L + 0.0098) (671 ± 47 nt s-1). 3´–Cy3 labeled DNA (opened 

circles) (Lag time = 0.00161 L + 0.0016) (621 ± 43 nt s-1). (c). Backbone polarity of the 

ssDNA extension along which the primary (3´ to 5´) translocase operates is reversed 

using a 5´–5´ linkage at the position indicated (red X). DNA I - top strand end-labeled 

with Cy3; DNA II - bottom strand end-labeled with Cy3. (d). Backbone polarity of the 

ssDNA extension along which the secondary translocase operates is reversed using a 5´–

5´ linkage at the position indicated (red X); DNA III - top strand end-labeled with Cy3; 

DNA IV - bottom strand end-labeled with Cy3. (e). FRET experiment monitoring Cy3 

(purple circles) and Cy5 fluorescence (blue circles) performed using the DNA substrate 

double labeled with Cy3 and Cy5 as depicted. Red and black squares show the time 

courses for a DNA possessing both ssDNA extensions, but containing only a Cy3 

fluorophore (as in panel (b) , with L = 60)). (f). FRET experiment monitoring Cy3 

(purple squares) and Cy5 fluorescence (blue squares) performed as in panel (e), but with 

a DNA substrate in which the backbone polarity of the top ssDNA extension was 

reversed using a 3´–3´ linkage at the position indicated (red X). 

 

Figure 6. RecBC re-initiation of DNA unwinding after a ssDNA  gap. DNA substrates 

contain a proximal 24 bp duplex with a RecBC loading site (twin dT6 fork), a ssDNA gap 
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of length, L = 2, 21 or 41 nucleotides, followed by a distal 40 bp duplex DNA. The 

ssDNA connecting the proximal and distal duplexes runs either 3´ to 5 (panel a) or 5´ to 

3´ (panel b) relative to the RecBC loading site.  (a). Single round time course for RecBC 

unwinding the proximal 24 bp duplex (diamonds) and the distal 40 bp duplex connected 

by a 3´ to 5´ ssDNA with L = 2 nt (circles), 21 nt (squares), or 41 nt (triangles). Smooth 

curves indicate fits to Scheme 3 (Eq. S3) using the parameters (mtkt = 928 ± 38 nt s-1; 

mUkU = 396 ± 15 bp s-1 (constrained)). (b). Single round time course for RecBC 

unwinding the proximal 24 bp duplex (diamonds) and the distal 40 bp duplex connected 

by a 5´ to 3´ ssDNA with L = 2 nt (circles), 21 nt (squares), or 41 nt (triangles). Smooth 

curves indicate fits to Scheme 3 (Eq. S3) using the parameters (mtkt = 919 ± 42 nt s-1; 

mUkU = 396 ± 15 bp s-1 (constrained)).  Models for re-initiation of DNA unwinding by 

RecBC after traversing a ssDNA gap in either strand are shown below each panel. 

 

Methods

Buffers and Reagents. Buffers were prepared with distilled, de-ionized water and 

filtered through 0.2 micron filters. Buffer M is 20 mM Mops-KOH (pH 7.0 at 25ºC), 30 

mM NaCl, 10 mM MgCl2, 1 mM 2-mercaptoethanol (2-ME), and 5% (v/v) glycerol. 

RecB and RecC storage buffer is Buffer C: 20 mM K phosphate (pH 6.8 at 25), 0.1 mM 

2-mercaptoethanol, 0.1 mM ethylenediaminetetraacetic acid (EDTA), and 10% (v/v) 

glycerol. Heparin stock solutions were prepared in Buffer M as described 32. ATP stock 

solutions were prepared and concentrations determined as described 10.   
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Proteins. E. coli RecB was overexpressed in E. coli strain V186 (which contains a 

deletion of the chromosomal recB, recC and recD genes 23 carrying pPB700 (recB+) and 

pNM52 (lacIq).  E. coli RecC was overexpressed E. coli strain V186 carrying pBP500 

(recC+) and pNM52. In this way we avoided any possible contamination of the RecBC 

prep with RecD. RecB and RecC proteins were expressed and purified separately, and 

stored in Buffer C as described 36. RecB was dialyzed versus Buffer M at 4ºC before use 

and its concentration determined using an extinction coefficient of �280 = 1.9 x 105 M-1 

cm-1 36. RecBC enzyme was reconstituted and dialyzed against Buffer M at 4ºC before 

use, and its concentration determined using �280 = 3.9 x 105 M-1 cm-1 36.   

DNA. Oligodeoxynucleotides, either unlabeled or labeled covalently with fluorescein, 

Cy3 or Cy5, or containing reversed polarity phosphodiester backbones were synthesized 

and purified and their concentrations determined as described 10; stock solutions were 

dialyzed versus Buffer M and stored at –20ºC. DNA labeled with Oregon Green was 

purchased (Integrated DNA Technologies, Coralville, IA).  The sequences of the DNA 

substrates used are given in Supplementary Tables 1–3. 

Stopped-flow fluorescence experiments. Translocation kinetics experiments were 

performed in Buffer M at 25ºC using an SX.18MV stopped-flow fluorescence instrument 

(Applied Photophysics Ltd., Leatherhead, UK). RecB (50 nM) or RecBC (100 nM) were 

pre-mixed with DNA present in excess (100 nM or 200 nM) in one syringe of the 

stopped-flow apparatus, and translocation was initiated by mixing with 10 mM ATP and 

8 mg mL-1 heparin in the other syringe. Heparin “trap tests” were performed by including 
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the DNA substrate with the ATP and heparin solution.  When mixed with RecBC no 

translocation signal was observed indicating that heparin trapped all of the free RecBC.  

Cy3 fluorescence was excited at 515 nm, and its emission was monitored at wavelengths 

> 570 nm using a long pass filter. Oregon Green fluorescence was excited at 508 nm, and 

its emission was monitored at wavelengths > 520 nm using a long pass filter. For FRET 

experiments, Cy3 fluorescence was excited at 515 nm and its emission was monitored at 

570 nm using an interference filter while Cy5 fluorescence was monitored at wavelengths 

> 665 nm using a long pass filer. Analysis of translocation time courses is described in 

Supplementary Data. 

 

DNA Unwinding. DNA unwinding kinetics was performed in Buffer M at 25ºC using a 

KinTek RQF-3 rapid quenched-flow instrument (University Park, PA). DNA substrates 

were composed of three DNA strands as depicted in Figure 6 (sequences in 

Supplementary Table 3, Supplementary Data) which when annealed together, form a 

proximal (24 bp) and distal (40 bp) duplex DNA regions that are separated by a ssDNA 

(dT)L region of length L nucleotides with either 3´ to 5´ or 5´ to 3´ polarity 8.  Reporter 

strands from the proximal and distal duplex were radiolabeled on the 5´ end with 32P as 

described 10. An excess of annealed DNA unwinding substrate (20 nM) was pre-

incubated with RecBC (2 nM) in one syringe and reactions were initiated by rapid mixing 

with an equal volume of 10 mM ATP and 8 mg mL-1 heparin, followed by mixing with 

an equal volume of 0.4 M EDTA and 10% (v/v) glycerol to quench the reaction after a 

predefined time interval (�t). Unwound DNA products were resolved from the native 

substrates using non-denaturing polyacrylamide gel electrophoresis (PAGE) and 

 27
76



quantified as described 10,18 Analysis of unwinding time courses is described in 

Supplementary Data. 
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Supplementary Information 

E. coli RecBC Helicase has Two Translocase Activities  

Controlled by a Single ATPase Motor 

Colin G. Wu, Christina Bradford and Timothy M. Lohman

Supplementary Methods 

Buffers and Reagents. RecB and RecC storage buffer is Buffer C: 20 mM K phosphate 

(pH 6.8 at 25ºC), 0.1 mM 2-mercaptoethanol, 0.1 mM ethylenediaminetetraacetic acid 

(EDTA), and 10% (v/v) glycerol. Poly-(dT) was purchased from Midland Certified 

Reagents Inc. (Midland, TX) and fractionated as described 1-2 to obtain a weight average 

length of 3.2 kb. 

RecB dissociation kinetics during ssDNA translocation. RecB dissociation kinetics 

during ssDNA translocation was examined by monitoring the increase in RecB intrinsic 

tryptophan fluorescence, which is quenched when RecB is bound to ssDNA1. 50 nM 

RecB was pre-mixed with 20 μM poly-(dT) (nucleotides concentration) in Buffer M on 

ice for five minutes and the mixture was loaded into one syringe of the stopped-flow 

apparatus. Translocation was initiated by mixing with 10 mM ATP and 8 mg mL-1

heparin. RecB tryptophan fluorescence was excited at 280 nm and fluorescence emission 

was monitored at 350 nm using an interference filter (Oriel Corp., Stratford, CT). RecB 
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dissociation time courses were fit to a single exponential function (  ; A = 

–0.21 ± 0.02 (AU), k

,(( ) d obsk tf t Ae �� )

d,obs = 7.5 ± 0.3 s-1) since photobleaching was not observed within 

the time scale of the experiment. We note that the value of kd,obs remains constant over a 

range constant [heparin] (up to 15 mg mL-1 after mixing, data not shown); therefore, 

heparin does not displace RecB monomers from the ssDNA during translocation.  

Analysis of ssDNA translocation and DNA unwinding kinetic time courses. RecB

monomer translocation kinetics along ssDNA was analyzed using non-linear least squares 

(NLLS) methods as described previously 1,3.  Cy3 and Oregon Green time courses were 

analyzed globally using Scheme 1 and Equation S1, where f(t) describes the time 

dependent fluorescence signal resulting from RecB monomer translocating to the 5´ end 

of the ssDNA. @-1 is the inverse Laplace transform operator and s is the Laplace variable.  

The fluorescence amplitude (A) and the

1 1( ) 1 1
1

n

t t

end d t d

k r kAf t
nr s k s k s k k

�
� �� �� �� �� �� ��� � 	 � � �� �� �� �	 	 	 	 	
 �
 �
 �
 �

@ �             (Equation S1)

number of translocation steps (n) were floated for each ssDNA length (L) while the 

microscopic translocation rate (kt), the end dissociation rate constant (kend), and r (which 

is the fraction of RecB bound to any position other than the 5´ end of the ssDNA to that 

of the 5´ end) were constrained to be global parameters.  The average kinetic step-size for 

translocation, mt, was determined by replacing n in Equation S1 with (L–d)/mt, where d

is the contact size of RecB in nucleotides.  The value for kd was fixed at 7.5 s-1 in the 

analysis, which was determined independently as described above. 
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The rates reported for RecBC translocation along ssDNA were estimated using 

two methods: examining the dependence of the lag phase of the translocation time 

courses on ssDNA extension length, or fitting the entire time courses to a kinetic scheme 

which describes the initial unwinding of the 24 bp duplex and subsequent ssDNA 

translocation. The duration of the lag phase was estimated as the intersection point of two 

linear fits (see Supplementary Fig. 2) which describe the lag phase and the initial 

increase (or decrease for fluorescein labeled substrates) in fluorescence signal. Simulated 

time courses have shown4 that a plot of the “time to reach the lag” as well as “peak 

position” versus ssDNA length always provides an accurate estimate of the macroscopic 

translocation rate if the translocase initiates from a unique site on the DNA as in this 

case. Such an analysis does not generally provide accurate estimates of the translocation 

rate if the translocase initiates from random sites on the DNA as is the case for RecB, 

UvrD, PcrA, and Rep monomer translocation on ssDNA1,4-6. In that case, the full time 

course must be analyzed to obtain accurate translocation rates 1,3.  We also analyzed the 

full time courses for RecBC translocation along ssDNA using Equation S2 based on the 

kinetic mechanism shown in Scheme 2, in which RecBC first unwinds a duplex region of 

length Lds followed by translocation along ssDNA of length Lss.  The DNA unwinding 

parameter Lds was fixed at 24 bp, and average kinetic step-size and microscopic rate 

constant for DNA unwinding were constrained to the values determined in previous 

stopped-flow fluorescence experiments under the same solution conditions (mU = 

4.4 ± 0.1 bp, kU = 79 ± 11 s-1; mkU = 348 ± 5 bp s-1) 7.  The fluorescence amplitude (A)

was floated at each ssDNA length (Lss) while the translocation step-size (mt),
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microscopic translocation rate (kt), and end dissociation rate constant (kend) were 

constrained to be global parameters.   

/ /
1

/ /( )
( ) ( ) ( )

@ � � �
� � � �	 	 	
 �

ss t ds U

ss t ds U

L m L m
t u

L m L m
t u

k kf t A
s k s k s kend

                    (Equation S2)

Analysis of DNA unwinding kinetics. DNA unwinding time courses from Figure 6

were analyzed using Equation S3 based on the kinetic mechanism shown in Scheme 3,

which describes the initial unwinding of a proximal duplex followed by translocation 

along a ssDNA gap and subsequent re-initiation of the unwinding of a 40 bp distal 

duplex.  As written in Scheme 3, the unwinding parameters for the proximal and distal 

duplexes are assumed to be the same, therefore, Lds was fixed at 64 bp (24 bp proximal, 

40 bp distal), and mU and kU

/ /
1

/( )
( ) ( )

@ � � �
� � � 	 	
 �

ds U ss t

ds U ss t

L m L m
U t

ss L m L m
U t

k kf t A
s k s k s / �

.

                        (Equation S3)

were constrained to values determined previously using chemical quenched-flow under 

the same solution conditions (mU = 4.4 ± 1.7 bp, kU = 90 ± 25 s-1; mUkU = 396 ± 15 bp s-

1).  The extent of DNA unwinding (A) was floated for each ssDNA gap length (Lss), while 

mt and kt were constrained to be global parameters

The RecBC translocation rates determined from “lag time” analysis as a function 

of [ATP] were fit to the Michaelis-Menton equation (Equation S4).

max[ ]
[ ]t t

M

V ATPm k
K ATP

�
	

                                            (Equation S4)
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Supplementary Figure 3. Comparison of RecBC primary and secondary translocase time courses. (a–e). Data from Figure 3a 

and 3c are overlaid for L = 15, 30, 45, 60, and 75 nucleotides. Closed squares (B) indicate primary translocase time courses shown in 

Figure 3a and opened squares (G) denote secondary translocase kinetics shown in Figure 3c. Although the duration of the lag phase 

and initial increase of fluorescence intensity are similar for each L, the translocation kinetics differ in the peak positions of 

fluorescence as well as the dissociation rates from the ssDNA ends. (f). Overlay of the raw fluorescence intensity for the data shown in 

Figure 5a (L = 30). The two time courses are obtained from DNA substrates possessing two (dT)30 ssDNA extensions and are labeled 

either on the 3´-end (E) or 5´-end with Cy3 (J). Although the normalized translocation kinetics are identical for the two substrates 

(see Fig. 5a), the total extent of fluorescence increase is ~ 15% larger for the 5´-end labeled DNA substrate.  
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Michaelis-Menton Equation (Eq. S4) (see Fig. 3f). (J) 3´ to 5´ primary translocase data; (E) 5´ to 3´ secondary translocase data. (a). 
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0.0043L + 0.0068 (secondary). (c). 75 μM ATP (after mixing). Smooth curves indicate linear fits: “time” = 0.0039L + 0.0171 

(primary), “time” = 0.0024L + 0.0146 (secondary). (d). 120 μM ATP (after mixing). Smooth curves indicate linear fits: “time” = 
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activity was examined using the DNA substrates shown in Figure 3a at 30, 100, 250, and 400 mM NaCl. (b). Secondary translocase 

activity was examined using the DNA substrates shown in Figure 3c at 30, 100, 250, and 400 mM NaCl. (c). lag time analysis of the 

primary translocase at different [NaCl]. (J) 30 mM NaCl: “time” = 0.0011L + 0.0064; (J) 100 mM NaCl: “time”= 0.0011L + 0.0117; 

(J) 250 mM NaCl: “time”= 0.0011L + 0.0133; (J) 400 mM NaCl: “time”= 0.0012L + 0.0088. (d). lag time analysis of the secondary 

translocase at different [NaCl]. (J) 30 mM NaCl: “time” = 0.0007L + 0.0275; (J) 100 mM NaCl: “time”= 0.0008L + 0.0247; (J) 250 

mM NaCl: “time”= 0.0009L + 0.021; (J) 400 mM NaCl: “time”= 0.0007L + 0.0272. 
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Apparent 5’ to 3’ translocation is RecBC specific 

 In Chapter 3, I have shown that the RecBC enzyme possesses two distinct 

translocase activities which are controlled by a single ATPase motor (RecB).  RecBC 

uses its secondary translocase activity to move along a 5’ to 3’ ssDNA extension after 

unwinding a 24 bp duplex. Since this is a novel and provocative observation, we have 

tested whether this is reproducible with another helicase.  Figure 3-S7 shows similar 

translocation experiments presented in Chapter 3 using the E. coli UvrD enzyme.  The 

DNA substrate possesses a 24 bp duplex with 5’-(dT)6,3’(dT)6 on one end of the duplex, 

and a dT60 nucleotide ssDNA extension (fluorescently labeled with Cy3 at the 3’ or 5’ 

end) from either the 5’ or 3’-erminating DNA strand as depicted in Figure 3-S7.  No 5’ 

to 3’ translocation is not observed with a UvrD monomer since Cy3 fluorescence 

intensity decreases when the ssDNA extension on the 5’-terminating DNA strand.  This 

decrease indicates that UvrD can bind to the ssDNA tail and translocate away from the 

fluorescently labeled 3’ end with 3’ to 5’ directionality, as expected of the UvrD 

monomer (Tomko, Fischer et al. 2007; Tomko 2010).  A control experiment where the 

ssDNA extension is on the 3’-terminating strand was performed and 3’ to 5’ translocation 

is observed as predicted.  These experiments served as an initial control to show that the 

apparent 5’ to 3’ translocation activity observed for RecBC is specific for that system and 

that the DNA substrates are not mislabeled. 
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Figure 3-S7. E. coli UvrD translocation on a partial duplex substrate. 200 nM DNA 

substrate (24 bp duplex with twin dT6 ssDNA tails on one end and either a 3’ to 5’ (E) or 

5’ to 3’ (J) dT60 Cy3 end-labeled ssDNA extension on the other) was pre-bound to 40 

nM UvrD. Translocation was initiated by mixing with 10 mM ATP and 8 mg/mL 

heparin. No apparent 5’ to 3’ translocation activity was detected. UvrD binds to the ds/ss 

junction and translocates towards the 5’ end. 
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Influence of DNA length on RecBC primary translocase activity when the polarity 

of the ssDNA backbone is reversed 

 Since RecBC uses its primary translocase activity to move along a ssDNA 

extension in the 3’ to 5’ direction, I have tested whether reversing the polarity of the 

ssDNA backbone influences translocation along this strand.  As presented in Chapter 3, 

the DNA substrate contains a 24 bp duplex with a high affinity RecBC loading site and a 

ssDNA extension along which the primary translocase normally operates (3’-

terminating).  The DNA substrate is designed such that after DNA unwinding, RecBC 

can continue to translocate along the ssDNA extension for 30 nts using its primary 

translocase activity, after which the polarity of the ssDNA backbone is reversed with a 

5’-5’ linker.  The length of this “reversed” region is varied from 30-75 nucleotides.  The 

translocation time courses shown in Figure 3-S8A indicate that the kinetics of 

translocation is identical for the different DNA substrates although the final amplitude 

decreases as the length of the reversed region increases.  This is further illustrated in 

Figure 3-S8B in which the time courses are normalized and all the traces are 

superimposable and have identical kinetics.  These results indicate that after RecBC 

unwinds the 24 bp duplex, it can translocate along the 30 nt ssDNA extension but then it 

becomes stuck when it encounters the 5’-5’ linkage in the ssDNA backbone; however, it 

is still able to influence the fluorescence intensity of Cy3 from a distance.  As the length 

of the reversed region is lengthened, RecBC unwinds, translocates, and then becomes 

stuck at the same location (after translocating 30 nts with its primary translocase activity) 

but since the Cy3 labeled DNA end is further away, the overall fluorescence amplitude is 

decreased.   
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Figure 2-S8. Influence of the length of reverse polarity backbone on RecBC primary 

translocase activity. A). RecBC translocation time courses from DNA substrates with a 

dT30 ssDNA extension on the 3’-terminating strand (along which the primary translocase 

operates) after a 24 bp duplex. The backbone polarity of this DNA strand is reversed after 

the dT30 extension and is further extended for L nucleotides (L = 30, 45, 60, 75). (E) 

RecBC translocation along a dT30 control substrate (no 5’-5’ linker). B). Fluorescence 

intensities from the time courses in panel A are normalized. The kinetics are identical 

between the time courses and are superimposable. 
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RecB monomer dissociation kinetics from internal sites 

 Results from RecB monomer translocation along ssDNA were presented in 

Chapter 3.  The translocation time courses were analyzed using an n-step sequential 

mechanism as discussed in that chapter.  Since this model requires a large number of 

kinetic parameters, I have determined the value of the dissociation rate of RecB from 

internal sites of the DNA (kd) independently and constrained it during data analysis.  

RecB monomer dissociation experiments were performed by pre-forming the RecB-DNA 

complex and then initiating translocation by mixing with ATP and heparin.  When RecB 

is bound to ssDNA, its tryptophan fluorescence is quenched; hence, when RecB 

dissociates from the DNA during translocation, an increase in tryptophan fluorescence 

intensity is observed.  For these experiments, a long DNA substrate is typically required 

so that the signal change is not dominated by RecB dissociation from the end of the 

DNA.  To that end (no pun intended), I have used m13ssDNA which is closed-circular 

DNA of mixed sequences (7249 nts), poly(dT) with a weight average length of 3200 nts, 

and dT114.  RecB dissociation time courses collected from all three DNA substrates well 

described by a single exponential function since little to no photobleaching is observed 

within the timescale of the experiment, as shown in Figure 3-S9.  The value of kd,obs 

obtained from m13ssDNA is 6.8 � 0.4 sec-1 (Figure 3-S9A) while the value of kd,obs 

obtained from poly(dT) is 7.5 � 0.3 sec-1 (Figure 3-S9B) The value of kd,obs determined 

from dT114 is 10.2 � 0.4 sec-1 (Figure 3-S9C) indicating that there is a significant end 

effect when a shorter oligo is used to determine the dissociation rate relative to poly(dT) 

or m13ssDNA.    
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Figure 3-S9. RecB monomer dissociation kinetics during ssDNA translocation. RecB 

(50 nM) monomer is pre-bound to DNA substrate (20 μM nucleotides) and translocation 

is initiated by mixing with ATP (10 mM) and heparin (10 mg/mL). Intrinsic tryptophan 

fluorescence is monitored to examine RecB dissociation during translocation. Time 

courses are fit to a single exponential function d( k t)e � �� . A). Dissociation experiment 

from m13ssDNA (A = -0.20 � 0.03, kd = 6.8 � 0.4 sec-1). B). Dissociation experiment 

from poly(dT) with a weight average length of 320 nts (A = -0.21 � 0.02, kd = 7.5 � 0.3 

sec-1). C). Dissociation experiment from dT114 (A = -0.21 � 0.02, kd = 10.2 � 0.4 sec-1). 
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RecB�2B�Nuc monomer translocation kinetics along ssDNA 

Studies of E. coli Rep have shown that the Rep monomer is able to translocate 

along ssDNA but is unable to unwind dsDNA processively (Brendza, Cheng et al. 2005).  

However, when the 2B subdomain is removed, thus forming the Rep�2B monomer, this 

enzyme can not only move along ssDNA with a faster translocation rate, but also 

Rep�2B is able to unwind longer DNA duplexes as a monomer; hence, this 2B 

subdomain is autoinhibitory in Rep and removing alleviates the inhibition and stimulates 

both translocation and unwinding activities (Brendza, Cheng et al. 2005).  I have tested 

whether the 2B subdomain plays a similar role in E. coli RecB since both Rep and RecB 

are SF1 helicases.  Constructs of RecB�2B were poorly expressed but I was able to 

express and purify the RecB�2B�Nuc protein in which the nuclease domain is also 

removed.   RecB�2B�Nuc translocation along ssDNA was monitored as described in 

Chapter 3 using a series of DNA oligos of varying length (dTL) and the 5’ ssDNA end is 

fluorescently labeled with Cy3.  Similar to RecB monomer translocation experiments, 

RecB�2B�Nuc monomer translocation along ssDNA is also well described by Equation 

1 (Chapter 3) and Scheme 1 (Chapter 3).  The macroscopic translocation rate is 1310 � 

11 nt/sec which is faster than RecB monomer translocation (mkt = 803 � 13 nt/sec).  

However, these experiments will need to be repeated with DNA oligos labeled another 

fluorophore (Oregon Green or fluorescein) so that the time courses can be analyzed 

globally in order to obtain fluorophore independent measurements of the kinetic 

parameters.   
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Figure 3-S10. RecB�2B�nuc translocation along ssDNA. 5’-Cy3-dTL (100 nM) was 

mixed with 50 nM protein and translocation was initiated by mixing with ATP (10 mM) 

and heparin (10 mg/mL). Time courses are fit to Scheme 1 using Equation 1 described 

in Chapter 3. m = 5.8 � 0.6 nt, kt = 228 � 19 sec-1, mkt = 1310 � 11 nt/sec, kd = 8.2 � 1.3 

sec-1, kend = 65 � 10 sec-1, r = 0.9 � 0.3, d = 3 � 1 nt. 
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Can the RecBC primary or secondary translocase activity displace SSB during 

ssDNA translocation? 

 Since RecBC unwinding and translocation can be synchronized to initiate from a 

unique loading site using the partial duplex substrates described in Chapter 3,  I have 

investigated whether the RecBC primary or secondary translocase activities can displace 

E. coli SSB during ssDNA translocation.  Preliminary studies shown in Figure 3-S11A 

suggests that RecBC may be able to displace SSB as it translocates along the ssDNA 

extension using its primary translocase activity, since a peak in fluorescence intensity is 

observed when SSB is present (Figure 3-S11A, blue time course) and this peak occurs at 

a later time when compared with a time course without SSB (Figure 3-S11A, black time 

course).  However, these results are difficult to interpret for several reasons.  First, SSB 

binding to the Cy3 containing ssDNA also has an effect on Cy3 fluorescence intensity.  

Also, under these solution conditions (Buffer M), SSB binds to ssDNA in the 65 binding 

mode which wraps the around the DNA molecule, binging the ds/ss junction close to the 

Cy3 labeled DNA end.  It is unclear whether the ds/ss junction influences Cy3 

fluorescence when SSB is bound.  Similar translocation experiments monitoring RecBC 

secondary translocase activity is interesting in that a peak in fluorescence intensity is not 

observed when SSB is present (Figure 3-S11B, blue time course).  However, interpreting 

this data is also difficult because it is unclear to which process the initial decrease in 

fluorescence intensity corresponds.  Additional work characterizing how SSB binding to 

the ssDNA and how the junction influences Cy3 fluorescence will be necessary to better 

understand these results. 
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Figure 3-S11. Effect of SSB on the RecBC primary and secondary translocases. A). 

Primary translocase data. (J) translocation time course of a dT75 ssDNA extension (24 

bp duplex with a twin dT6 RecBC loading site) collected with 100 nM RecBC and 200 

nM DNA (as described in Chapter 3). (J) Fluorescence intensity of the DNA substrate 

alone. (J) 500 nM SSB (tetramer) binding to 200 nM DNA substrate. (J) translocation 

experiment in presence of 500 nM SSB. (J) SSB-DNA complex mixed with ATP and 

heparin. B). Secondary translocase data. (J) translocation time course of a dT75 

ssDNA extension (24 bp duplex with a twin dT6 RecBC loading site) collected with 1

nM RecBC and 200 nM DNA (as described in Chapter 3). (J) Fluorescence intensity of 

the DNA substrate alone. (J) 500 nM SSB (tetramer) binding to 200 nM DNA substrate. 

(J) translocation experiment in presence of 500 nM SSB. (J) SSB-DNA complex mixed 

with ATP and heparin. 
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Chapter IV 
 

Comparison of ATP Hydrolysis During DNA Unwinding and 
ssDNA Translocation by the E. coli RecBC Helicase 
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Preface to Chapter IV 
 

In Chapter 3, I have shown that the RecBC helicase not only possesses a primary 

translocase activity with an expected 3’ to 5’ directionality, but also has a distinct 

secondary translocase activity which enables it to move along the opposite DNA strand.  

Although RecBC has two different translocase activities, they are both controlled by the 

RecB ATPase motor, and it remains unclear how ATP binding and hydrolysis is utilized 

to fuel DNA unwinding and translocation.  Thus far, an ATP coupling stoichiometry for 

RecBCD catalyzed DNA unwinding has been estimated to be ~ 2-3 ATP/bp (1-1.5 

ATP/bp for each motor) and the efficiency of ATP hydrolysis during RecBC unwinding 

is estimated to be ~ 1.2-1.4 ATP/bp (Roman and Kowalczykowski 1989; Korangy and 

Julin 1994).  These measurements were obtained using steady state approaches and under 

multiple turnover conditions by taking the ratio of the steady state unwinding rate and the 

steady state rate of ATP hydrolysis, and as a result, these values can be influenced by 

slower processes such as protein dissociation and protein rebinding rather than DNA 

unwinding.  In an effort to overcome such limitations and to potentially obtain a more 

accurate estimate of the efficiency of ATP hydrolysis during DNA unwinding and 

translocation by RecBC, this chapter describes pre-steady state phosphate release kinetic 

studies, which measure the amount of inorganic phosphate that is released during ATP 

hydrolysis.  These experiments were performed with DNA unwinding substrates and also 

with substrates that monitor only the primary translocase, the secondary translocase, or 

translocation along both strands of ssDNA.  This chapter is based on a manuscript which 

will soon be submitted for publication in the Journal of Molecular Biology (2010).  
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Abstract 

We have shown that the E. coli RecBC helicase possesses two distinct, but 

coupled ssDNA translocase activities controlled by the RecB ATPase motor.  In order to 

better understand the relationship between RecBC translocation along ssDNA and its 

DNA unwinding activity, we have examined the efficiency of ATP hydrolysis during 

RecBC unwinding of DNA as well as during ssDNA translocation using stopped-flow 

fluorescence and a phosphate release assay.  DNA unwinding by RecBC consumes an 

average of 0.95 ± 0.08 ATP/bp unwound while its primary translocase activity, which 

enables RecBC to translocate along ssDNA in the 3’ to 5’ direction, utilizes an average of 

0.81 ± 0.05 ATP/nt translocated.  The secondary translocase activity, which enables 

RecBC translocation along the opposite DNA strand, is less tightly coupled to ATP 

hydrolysis and uses an average of 1.12 ± 0.06 ATP/nt.  When RecBC uses its two 

translocase activities to move along two non-complementary strands of ssDNA 

simultaneously, it consumes an average of 1.07 ± 0.09 ATP/nt, which is the same within 

error as the amount of ATP consumed during RecBC unwinding.  The relative rate of 

DNA unwinding by RecBC is only about two fold slower than the rate of ssDNA 

translocation.  Taken together, these results indicate that the large majority, possibly all, 

of the ATP hydrolyzed by RecBC during DNA unwinding is used to fuel translocation 

along the nucleic acid rather than to facilitate base pair melting.  These results suggest 

that RecBC uses a two step active mechanism to unwind DNA by first using its binding 

free energy to destabilize multiple base pairs within the duplex in an ATP-independent 

process, followed by ATP-dependent translocation along the resulting ssDNA.   
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Introduction 

DNA helicases are a ubiquitous class of motor proteins that function by coupling 

nucleoside triphosphate (NTP) binding and hydrolysis to unwind duplex DNA in order to 

produce the transient single stranded (ss) DNA intermediates required for all aspects of 

DNA metabolism (Abdel-Monem, Durwald et al. 1976; Abdel-Monem and Hoffmann-

Berling 1976; Abdel-Monem, Durwald et al. 1977; Scott, Eisenberg et al. 1977; 

Kornberg, Scott et al. 1978; Yarranton, Das et al. 1979; Matson, Bean et al. 1994; Patel 

and Picha 2000; Delagoutte and von Hippel 2002; Lohman, Tomko et al. 2008).  The E. 

coli RecBCD enzyme is a molecular motor possessing DNA helicase, ATPase, and 

nuclease activities, and is involved in the major pathway of homologous recombination in 

E. coli (Smith 1990; Kowalczykowski, Dixon et al. 1994; Anderson and 

Kowalczykowski 1997).  In particular, RecBCD functions to repair damaged induced 

double stranded (ds) DNA breaks in E. coli.  This heterotrimer possesses two 

superfamily-1 (SF1) motor subunits: RecB (134 kDa), a 3’ to 5’ helicase, and RecD (67 

kDa), a 5’ to 3’ helicase (Finch, Storey et al. 1986; Finch, Wilson et al. 1986; Dillingham 

2003; Taylor and Smith 2003).  RecC (129 kDa) while structurally homologous to the 

RecB subunit, is devoid of the amino acids required for ATP hydrolysis and functions 

instead as a processivity and regulatory factor (Rigden 2005).  Although the two motor 

subunits have opposite single strand translocation directionalities, they function in unison 

within the RecBCD heterotrimer and unwind dsDNA in the same net direction by 

translocating along the complementary strands of the duplex (Dillingham 2003; Taylor 

and Smith 2003).  RecBCD first binds to the damaged DNA at a blunt or nearly blunt end 

and then unwinds the duplex in an ATP-dependent manner with RecD serving as the 
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leading motor (Spies, Amitani et al. 2007).  During unwinding, RecBCD preferentially 

degrades the 3’ terminating DNA strand while cleaving the 5’ terminating strand 

infrequently (Yu, Souaya et al. 1998; Yu, Souaya et al. 1998).  These activities ensue 

until RecBCD recognizes the crossover hotspot instigator (chi) regulatory sequence (5’-

GCTGGTGG-3’) within the unwound DNA, whereupon RecBCD first pauses and then 

continues to unwind the DNA with a slower rate with RecB now as the leading motor 

(Handa, Bianco et al. 2005).  The nuclease activity after chi recognition is modified such 

that it degrades instead the 5’ terminating strand, thereby creating a 3’ ssDNA overhang 

onto which RecBCD can load the RecA protein (Arnold and Kowalczykowski 2000; 

Spies, Bianco et al. 2003).  The resulting RecA coated ssDNA filament forms a joint 

molecule with a homologous piece of DNA and initiates recombinational repair of the 

break.   

Interestingly, the RecBC enzyme, without the RecD subunit, still functions as a 

rapid and processive helicase but its nuclease activity is greatly attenuated (Korangy and 

Julin 1993).  Since RecBC possesses a single ATPase motor, this simpler enzyme is a 

good model system with which to study how ATP binding and hydrolysis is coupled to 

DNA unwinding and translocation.  RecBC binds with optimal affinity to DNA ends with 

pre-existing 5’-(dT)6 and 3’-(dT)6 ssDNA tails since RecBC can “melt-out” six base 

pairs upon DNA binding in a Mg2+ dependent but ATP independent manner (Farah and 

Smith 1997; Singleton, Dillingham et al. 2004; Wong, Lucius et al. 2005).  RecBC can 

initiate DNA unwinding from this “pre-melted” DNA end structure using a simple 

sequential mechanism with an average kinetic step-size of 4.4 ± 0.1 bp and a macroscopic 

n-step 
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unwinding rate of 348 ± 5 bp/sec (20 mM Mops-KOH, pH 7.0 at 25ºC, 10 mM NaCl, 10 

mM MgCl2, 5% (v/v) glycerol, 1 mM 2-mercaptoethanol) (Wu and Lohman 2008) 

We have shown that RecBC possesses two distinct translocase activities that are 

controlled by the single ATPase motor within RecB.  The primary translocase activity 

enables RecBC to translocate along ssDNA in the expected 3’ to 5’ direction while the 

secondary translocase activity facilitates translocation along the other DNA strand, but 

surprisingly is not sensitive to the polarity of the ssDNA backbone.  RecBC can use its 

two translocase activities to move along two non-complementary strands of ssDNA 

simultaneously.  To better understand the relationship between DNA unwinding and 

translocation, we have compared the ATP coupling stoichiometry of RecBC catalyzed 

DNA unwinding with that of its translocase activities using a stopped-flow fluorescence 

phosphate release assay.  This method utilizes the E. coli phosphate binding protein 

(PBP) A197C mutant, which can be labeled fluorescently with coumarin (MDCC) 

(Brune, Hunter et al. 1998).  The resulting protein, PBP-MDCC, exhibits a large increase 

in fluorescence intensity when it binds to inorganic phosphate and therefore functions as 

a phosphate sensor by detecting the amount of phosphate released in solution; this probe 

has been used to examine the ATPase activity of a number of helicases (Dillingham, 

Wigley et al. 2000; Dillingham, Wigley et al. 2002; Kim, Narayan et al. 2002; Tomko, 

Fischer et al. 2007).  Previous studies of the efficiency of ATP hydrolysis during DNA 

unwinding by RecBCD has estimated ~ 2-3 ATP/bp unwound or ~ 1-1.5 ATP/bp per 

motor, and the ATP coupling stoichiometry during RecBC unwinding is estimated to be 

~1.2-1.4 ATP/bp unwound (Roman and Kowalczykowski 1989; Korangy and Julin 

1994).  Using a stopped-flow fluorescence phosphate release assay, we have examined 
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the pre-steady kinetics of ATP hydrolysis during both RecBC unwinding and ssDNA 

translocation under single-turnover conditions, which allows us to examine the relative 

contributions of ATP hydrolysis to each activity.     

 

Results 

RecBC-catalyzed DNA unwinding kinetics as a function of [ATP] 

 We have determined previously the minimal kinetic mechanism to describe 

RecBC unwinding at saturating ATP concentration (5 mM after 1:1 mixing) (Wu and 

Lohman 2008).  Here we examine the kinetics of DNA unwinding as a function of 

[ATP].  These studies are needed to allow us to compare DNA unwinding rates with 

phosphate release studies, which had to be performed at 75 µM ATP in order to minimize 

the amount of PBP-MDCC used in those experiments.   

Stopped-flow fluorescence unwinding experiments were performed as described 

in Materials and Methods and also previously (Lucius, Jason Wong et al. 2004; Wu and 

Lohman 2008) using the DNA substrates depicted in Figure 1 and also presented in 

Chapter 2 (DNA sequences are given in Table S1). These DNA substrates are composed 

of three strands and possess a Cy3-Cy5 FRET pair when annealed together (Figure 1).  

Initially, in the duplex DNA, Cy3 fluorescence is quenched by the Cy5 fluorophore due 

to its close proximity.  After RecBC unwinds and displaces the Cy3 containing DNA 

strand, Cy3 fluorescence intensity increases.  The opposite trend is observed for Cy5 

fluorescence intensity since initially FRET efficiency is high with the Cy3 labeled strand 

in close proximity, and FRET efficiency decreases when the Cy3 containing strand is 

displaced.  RecBC unwinding experiments were performed at 10 µM, 37.5 µM, 75 µM, 
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120 µM, 416 µM, 1.4 mM, and 5 mM ATP, and the resulting time courses are shown in 

Figure 1A-G.  The DNA unwinding kinetics at all [ATP] are described well by 

Equation 1 based on the simple n-step sequential model shown in Scheme 1.  The solid 

curves are simulations based on the best fit kinetic parameters in Table 1.  Consistent 

with previous unwinding studies (Wu and Lohman 2008), the number of unwinding 

steps, n, is directly proportional to duplex length, L, at all [ATP] examined as shown in 

Figure 2A-G.  The average kinetic step-size as well as the macroscopic unwinding rate 

determined at each [ATP] (Table 1) is plotted versus [ATP] and shown in Figure 3A and 

3B.  As observed for RecBCD (Lucius, Jason Wong et al. 2004; Lucius and Lohman 

2004), the average kinetic step-size for DNA unwinding is independent of [ATP] (4.0 ± 

0.3 bp) and the macroscopic unwinding rate exhibits a hyperbolic dependence with 

[ATP] as shown in Figure 3B.  Fitting this data to the Michaelis-Menton equation 

(Equation 2) yields KM = 131 ± 23 µM and Vmax = 317 ± 14 bp/s, which is consistent 

with the unwinding rate determined for RecBC under saturating ATP concentration (5 

mM ATP, 347  5 bp/sec) (Wu and Lohman 2008).  In comparison, RecBC translocates 

along two non-complementary ssDNA extensions with a rate 671  47 nt/sec under the 

same solution conditions (Chapter 3) (20 mM Mops-KOH, pH 7.0 at 25C, 30 mM NaCl, 

10 mM MgCl2, 5% (v/v) glycerol, 1 mM 2-mercaptoethanol, 5 mM ATP); hence, RecBC 

has a Vun/Vtrans ≈ 0.52 where Vun and Vtrans are the DNA unwinding and ssDNA

translocation rates, respectively. 

 

 

ATP coupling stoichiometry during DNA unwinding by RecBC 
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Phosphate release experiments were performed as described in Materials and 

Methods.  The DNA hairpin substrates used to study DNA unwinding were not used for 

these experiments since RecBC can unwind beyond the reporter strand and continue to 

unwind the rest of the substrate and hydrolyze ATP.  We have therefore used DNA 

substrates which possess a high affinity RecBC loading site followed by a duplex region 

of length L and a 40 nt 3’ ssDNA overhang as depicted in Figure 4A.  RecBC binds and 

initiates unwinding preferentially at the 5’-(dT)6, 3’-(dT)6 loading site when DNA is 

present in excess (200 nM) over RecBC (20 nM).  Furthermore, the binding affinity of 

RecBC for a DNA end decreases dramatically for ends with a 3’ ssDNA tail length 

greater than six nucleotides (Wong, Rice et al. 2006), thus favoring initiation at the DNA 

end possessing the high affinity loading site.  DNA unwinding is initiated by 1:1 mixing 

with 150 µM ATP, 10 mg/mL heparin trap, and 40 µM PBP-MDCC.  Final conditions 

therefore are 100 nM DNA, 10 nM RecBC, 75 µM ATP, 5 mg/mL heparin, and 20 µM 

PBP-MDCC.  A mock phosphate release experiment was performed the same way but in 

the absence of the DNA substrate to determine the amount of phosphate contamination 

within the buffers and reagents, and also to measure any background ATP hydrolysis that 

may occur when RecBC is not bound to DNA.  PBP-MDCC was calibrated as described 

in Materials and Methods by mixing the same ATP, heparin, and PBP-MDCC solution 

with known concentrations of phosphate standard in order to relate the observed 

fluorescence intensity to the amount of phosphate present (Supplementary Figure 1).  

Calibrated phosphate release time-courses corrected for phosphate contamination are 

shown in Figure 4A.  Control experiments indicate that under these conditions, PBP-
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MDCC binding to phosphate is not rate limiting, and heparin does not stimulate the 

ATPase activity of RecBC (data not shown).   

When RecBC unwinds the DNA substrate, there is a burst of phosphate released 

followed by a slower steady-state release of phosphate.  We have shown that after RecBC 

unwinds a duplex, it can remain bound to the ds/ss junction and use its secondary 

translocase activity to reel in a 5’ to 3’ ssDNA extension.  As a result, the burst phase 

reflects the amount of ATP consumed during the unwinding of L (L = 24, 29, 37, 40, 43, 

48, 53, and 60 bp) and also the translocation along the 40 nt ssDNA extension; an overlay 

of an unwinding time course collected also at 75 µM ATP (Figure 1, L = 40) and the 

phosphate release time course for a L = 40 substrate is shown in Supplementary Figure 

2.   The long lived steady-state phase of phosphate release corresponds to futile ATP 

hydrolysis which occurs due to RecBC molecules remaining bound to the DNA substrate 

after DNA unwinding and ssDNA translocation.  The time-courses in Figure 4A are 

analyzed using Equation 3 which describes the initial burst phase followed by the slower 

linear phase, and the resulting parameters are summarized in Table 2.  The burst 

amplitudes determined from this analysis for each DNA substrate (L = 24, 29, 37, 40, 43, 

48, 53, and 60 bp) are plotted versus the corresponding duplex length (Figure 4B).  Since 

each DNA substrate has the same 40 nt ssDNA extension, the slope of this plot reflects 

the amount of ATP hydrolyzed during RecBC catalyzed DNA unwinding only, which 

indicating an average of 0.95 ± 0.08 ATP/bp unwound. 

 

ATP coupling stoichiometry during ssDNA translocation by RecBC 
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 We have shown that after unwinding a DNA duplex, RecBC can use its primary 

translocase activity to translocate along a 3’ to 5’ ssDNA extension and/or also use its 

secondary translocase activity to move along a 5’ to 3’ ssDNA extension.  In fact, these 

two activities enable RecBC to translocate simultaneously along substrates with two 

strands of non-complementary ssDNA.  We have performed phosphate release 

experiments to determine the ATP coupling stoichiometry during these RecBC 

translocation activities.  The DNA substrates used in these studies (shown schematically 

in Figure 5A, 6A, and 7A) possess a 24 bp duplex region with a 5’-(dT)6, 3’-(dT)6 

RecBC loading site on one end of the duplex.  Flanking the other end of the duplex are 

either a series of 3’ to 5’ ssDNA extensions, 5’ to 3’ ssDNA extensions, or twin 

extensions of length L (L = 15, 30, 45, or 60 nts).   

Phosphate release time courses examining the primary translocase activity of 

RecBC (3’ to 5’ ssDNA translocation) are shown in Figure 5A.  A burst phase of release 

of phosphate is observed followed by a slower linear phase as was observed for RecBC 

unwinding.  This burst phase also represents the amount of ATP hydrolyzed during 

RecBC unwinding of the initial duplex followed by translocation along the ssDNA 

extension; an overlay of a time course monitoring 3’ to 5’ ssDNA translocation (L = 45)  

and the phosphate release time course (L = 45) is shown in Supplementary Figure 3.  

The time courses in Figure 5A were fit to Equation 3 and a summary of the resulting 

kinetic parameters are given in Table 2.  Since all the DNA substrates possess the 24 bp 

initial duplex, the burst amplitudes are plotted versus ssDNA extension length in Figure 

5B and the slope of this plot reflect the amount of ATP hydrolyzed during RecBC 

translocation only.  The primary RecBC translocase uses an average of 0.81 ± 0.05 
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ATP/nt.  Similar experiments were performed to monitor the release of phosphate 

associated with the secondary translocase activity of RecBC, and the results are plotted in 

Figure 6A.  An overlay of the translocation kinetics of the RecBC secondary translocase 

and the phosphate release kinetics are shown in Supplementary Figure 4 (L = 45).  The 

time courses in Figure 6A are also well described by Equation 3 (parameters 

summarized in Table 2).  A plot of the burst amplitude versus ssDNA extension length is 

shown in Figure 6B and the slope of this plot indicates that on average, the secondary 

translocase of RecBC consumes 1.12 ± 0.06 ATP/nt translocated, which is slightly larger 

than the value determined for the primary translocase.   

Since RecBC can utilize both translocase activities to move along two non-

complementary ssDNA extensions simultaneously, we have also examined the phosphate 

release kinetics using the substrates depicted in Figure 7A.  These phosphate release time 

courses analyzed using Equation 3 (parameters given in Table 2) and analysis of the 

burst amplitude as a function of the length of the two non-complementary strands of 

ssDNA extensions (Figure 7B) indicates that on average RecBC utilizes 1.07 ± 0.09 

ATP/nt translocated on these substrates.   

 

Discussion 

RecBC-catalyzed DNA unwinding as a function of [ATP] 

My previous RecBC-catalyzed DNA unwinding studies performed under the 

same solution conditions but at 5 mM ATP (final concentration after 1:1 mixing) 

indicated that RecBC initiates DNA unwinding from duplexes with pre-existing 5’-(dT)6, 

3’-(dT)6 ssDNA tails using a simple n-step sequential mechanism with a macroscopic 
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unwinding rate of 348 ± 5 bp/sec and an average kinetic step-size of 4.4 ± 0.1 bp (Wu 

and Lohman 2008).  Here we show that  DNA unwinding time courses collected over a 

wide range of [ATP] are also well described by this simple n-step sequential model and 

the average unwinding kinetic step-size is not sensitive to [ATP] (4.0  0.3 bp).  Similar 

unwinding experiments conducted by Lucius et al. (Lucius and Lohman 2004) have 

shown that the average kinetic step-size for RecBCD unwinding is independent of both 

[ATP] and temperature (~ 4 bp).  Taken together, these results suggest that in between 

two successive rate-limiting steps during the repeated DNA unwinding cycles, RecBC 

and RecBCD unwind an average of 4 base pairs.  However, it remains unclear what 

process is reflected in this repeated slow step such as protein conformational change, 

product release, and so forth.  Because RecBC and RecBCD have a similar average 

kinetic step-size for DNA unwinding, the same process(es) likely contribute to the 

repeated slow step, which remains rate-limiting over the range of [ATP] examined for 

both helicases.  We can conclude at a minimum, based on simulations of unwinding data 

(Lucius and Lohman 2004), that this repeated slow step is coupled to ATP binding and 

that there cannot be any additional fast steps in between the ATP binding step and the 

repeated step; otherwise, a transition would occur in the apparent kinetic step-size 

(Lucius and Lohman 2004), which was not observed experimentally. 

We note the caveat that the step-size analysis of our DNA unwinding experiments 

will be affected by the presence of static heterogeneity (or “static disorder”) if present in 

the protein population since our analysis assume a homogenous protein population.  

Based on single-molecule unwinding and translocation studies of the RecBCD (Bianco, 

Brewer et al. 2001; Handa, Bianco et al. 2005) and UvrD (Lionnet, Dawid et al. 2006) 
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helicases, significant variations in the rate of DNA unwinding and ssDNA translocation 

have been observed in the protein population although any given helicase molecule has a 

characteristic rate which persists throughout the reaction.  As a result, although the 

average rate of unwinding for many single molecules is comparable to the ensemble 

measured average, these large variations in the kinetic rates in the population can lead to 

an overestimate of the apparent step-size for DNA unwinding using our methods.  It is 

unclear whether static disorder is present in our protein molecules or what may be the 

source of this heterogeneity; as a result, we conclude that the average kinetic step-size for 

RecBC and RecBCD unwinding can be no greater than ~ 4 bp.        

 

RecBC unwinds DNA using an active mechanism 

Two limiting cases have been considered for mechanisms of helicase-catalyzed 

DNA unwinding, namely a passive and an active mechanism (Lohman 1992).  In an 

active mechanism, the helicase lowers the activation energy for duplex DNA separation 

by direct participation in destabilizing the duplex DNA (Betterton and Julicher 2005; 

Manosas, Xi et al. 2010).  As a result, the unwinding rate of a fully active helicase is 

limited by how quickly it can translocate along the newly generated ssDNA and is not 

limited by base pair melting (Vun/Vtrans ≈ 1 where Vun and Vtrans are the unwinding and

ssDNA translocation rates, respectively) (Manosas, Xi et al. 2010).  On the other hand, a 

passive helicase must instead wait for the duplex DNA to open transiently through 

thermal fluctuations and then advance into the fork using its unidirectional translocation 

activity thereby preventing the two DNA strands from reannealing (Lohman 1992).  

Since a passive helicase does not influence the height of the energy barrier required to 
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separate the DNA duplex, the unwinding rate of a passive helicase is expected to be much 

slower than its translocation rate.  Based on a model from Betterton and Julicher 

(Betterton and Julicher 2005), Manosas et al (Manosas, Xi et al. 2010) define a passive 

helicase to have Vun/Vtrans < 0.25, and an active helicase to have Vun/Vtrans ≥ 0.25; this is 

based upon the assumption that the helicase has a step size of 1 bp and can lower the free 

energy of the fork by 1 KBT.  The macroscopic unwinding rate of RecBC at 5 mM ATP 

is 348  5 bp/sec (Wu and Lohman 2008) and the rate at which RecBC translocates along 

two non-complementary strands of ssDNA at 5 mM ATP is 671  47 nt/sec (Chapter 3).  

Hence, Vun/Vtrans = 0.52 which suggests that RecBC unwinds DNA using an active 

mechanism.   

In a crystal structure of a RecBCD-DNA complex, the “arm” region of the RecB 

motor subunit is observed to interact with the duplex DNA ahead of the unwinding fork 

(Singleton, Dillingham et al. 2004; Saikrishnan, Griffiths et al. 2008).  This arm domain 

could potentially be involved in destabilizing dsDNA during RecBC unwinding.  Also, 

both RecBC and RecBCD can “melt-out” ~ 6 bp upon DNA binding in a Mg2+ dependent 

but ATP independent manner, further suggesting that RecBC is able to influence the 

stability of the duplex and can therefore unwind DNA using an active mechanism (Farah 

and Smith 1997; Wong, Lucius et al. 2005; Wong and Lohman 2008).  For comparison, 

the E. coli RecQ protein has been shown to unwind DNA using an active mechanism and 

has a Vun (~80 bp/sec)/Vtrans (~90 nt/sec) > 0.7 under a variety of experimental conditions 

(0-80% GC content and 3 to 11 pN external force), while the T4 gp41 helicase unwinds 

DNA using a passive mechanism and has a Vun (30-40 bp/sec)/Vtrans (350-500 nt/sec) < 

0.1 (Manosas, Xi et al. 2010). 
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Efficiency of ATP hydrolysis during RecBC catalyzed DNA unwinding and ssDNA 

translocation 

 Since we have been able to examine RecBC catalyzed DNA unwinding and 

translocation independently, we have determined the ATP coupling stoichiometry during 

these two processes in order to better understand the relationship between DNA 

unwinding and ssDNA translocation.  The ATP coupling stoichiometry during RecBCD 

unwinding has been estimated to be ~ 2-3 ATP/bp unwound or 1-1.5 ATP/bp per motor, 

and for RecBC it has been estimated to be ~ 1.2-1.4 ATP/bp (Roman and 

Kowalczykowski 1989; Korangy and Julin 1994).  Our result of 0.95 ± 0.08 ATP/bp 

unwound for RecBC is consistent with these observations.  During ssDNA translocation, 

the RecBC primary translocase uses 0.81 ± 0.05 ATP/nt translocated while the secondary 

translocase consumes 1.12 ± 0.06 ATP/nt.  These values suggest that the primary 

translocase activity uses ATP more efficiently than DNA unwinding while the secondary 

translocase activity uses ATP less efficiently than DNA unwinding; however, these 

differences likely result from the fact that the DNA substrates used to examine ATP 

hydrolysis during the RecBC primary and secondary translocase activities are different.  

When only the secondary translocase activity is monitored, RecBC remains bound to the 

ds/ss junction after DNA unwinding and uses its secondary translocase activity to reel in 

a 5’ to 3’ ssDNA extension whereas when only the primary translocase activity is 

monitored, RecBC can continue translocation along a 3’ to 5’ ssDNA extension 

uninterrupted (Chapter 3).    
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Interestingly, RecBC translocation along two non-complementary ssDNA 

extensions has an ATP coupling stoichiometry of 1.07 ± 0.09 ATP/nt.  These substrates 

mimic those of DNA unwinding except the bases have been “pre-melted” and as a result, 

RecBC would not need to unwind the duplex.  The fact that this value is the same within 

error as the value determined during DNA unwinding indicates that most of the energy, 

possibly all, obtained from ATP binding and hydrolysis is used to fuel RecBC 

translocation rather than to catalyze the strand separation reaction during DNA 

unwinding.  This may be unique to the RecBC and perhaps RecBCD enzyme since either 

helicase can “melt-out” ~ 5-6 bp upon binding to DNA ends (Farah and Smith 1997; 

Wong, Lucius et al. 2005; Saikrishnan, Griffiths et al. 2008), and that the average kinetic 

step-size for RecBC and RecBCD unwinding is also ~ 4 bp (Lucius, Vindigni et al. 2002; 

Wu and Lohman 2008) with the potential caveat of static disorder.   

We offer two potential unwinding models based on our observation that RecBC 

uses ~ 1 ATP/bp unwound and also ~ 1 ATP/nt translocated during DNA unwinding and 

ssDNA translocation.  In one case, DNA unwinding is separate from ssDNA 

translocation (Figure 8A).  If the hydrolysis state of the nucleotide is able to modulate 

RecBC between high and low affinity states for DNA binding, then RecBC can use its 

binding free energy to melt out 4-6 bp at once, and then translocation occurs 

subsequently using ~ 1 ATP/nt.  An alternative model is that both DNA unwinding and 

ssDNA translocation occur simultaneously (Figure 8B) using 1 ATP/bp (or nt) and that 

the duplex is unwound as the DNA fork is translocated past the “separation pin” within 

the RecC subunit (Singleton, Dillingham et al. 2004; Rigden 2005).  One way to discern 

between these two unwinding models is to examine RecBC unwinding in a single-
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molecule experiment using high resolution optical traps (Cheng, Dumont et al. 2007; 

Johnson, Bai et al. 2007).  If DNA unwinding and translocation occur separately as 

depicted in Figure 8A and RecBC can melt out 4-6 bp at a time, then one would be able 

to observe bursts or steps of 4-6 bp during DNA unwinding.  If however, DNA 

unwinding and translocation occur simultaneously using 1 ATP/bp as depicted in Figure 

8B, then smaller bursts or steps of ~ 1 bp would be observed.  These experiments will 

need to be conducted as a function of GC content, applied force, and ATP concentration 

in order to access whether the observed 4-6 bp steps are composed of smaller sub steps.    

 

Comparison with other DNA helicases 

The efficiency of ATP hydrolysis during ssDNA translocation of two other SF1 

helicases, E. coli UvrD and B. stereothermophilus PcrA is estimated to be ~ 1 ATP/nt 

translocated using ensemble fluorescence approaches (Dillingham, Wigley et al. 2000; 

Tomko, Fischer et al. 2007).  Based on structural studies of these two enzymes (Velankar, 

Soultanas et al. 1999; Lee and Yang 2006), the ATP coupling stoichiometry during DNA 

unwinding was inferred to be ~ 1 ATP/bp unwound although a direct comparison 

between the efficiency of ATP hydrolysis during DNA unwinding and ssDNA 

translocation has not been made for UvrD and PcrA.  Such a comparison has been made 

for the ring-shaped hexameric bacteriophage T7 helicase (Kim, Narayan et al. 2002).  

During DNA unwinding, T7 unwinds 3-4 bp per molecule of dTTP hydrolyzed if the 

DNA substrate is rich in AT sequences (< 50% GC content) but only 1-2 bp are unwound 

per dTTP hydrolyzed if the DNA substrate is rich in GC sequences (Donmez and Patel 

2008).  During ssDNA translocation, T7 uses one dTTP to move along 2-3 bases of 
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ssDNA (Kim, Narayan et al. 2002); hence the efficiency of dTTP hydrloysis during DNA 

unwinding and ssDNA translocation are comparable for the T7 helicase.  Our 

measurement of ~ 1 ATP/bp unwound and also ~ 1 ATP/nt translocated for the RecBC 

enzyme indicates that T7 is uses dTTP more effciently for both DNA unwinding and 

ssDNA translocation.  We have not at this time examined the influence of DNA base 

sequence composition on the efficiency of ATP hydrolysis during unwinding and 

translocation, and our unwinding experiments were performed using mixed sequence 

DNA substrates with ~40% GC content.  It will be interesting to test whether RecBC 

would have the same ATP coupling stoichiometry when uniwnding DNA duplexes with 

higher or lower GC content.  It has been shown that RecBCD can undergo forward and 

reverse motion during DNA unwinding (Perkins, Li et al. 2004).  It is possible that 

RecBCD and perhaps RecBC may undergo futile ATP hydrolysis as a result of 

backwards motion and/or pausing and therefore does not utilize ATP as effciently as T7.  

The rates of T7-catalyzed DNA unwinding and of ssDNA translocation have also been 

compared directly.  Although T7 translocates along ssDNA processively with a rate of 

130-300 nt/sec, it unwinds dsDNA with a rate of only 15-30 bp/sec (Kim, Narayan et al. 

2002; Jeong, Levin et al. 2004; Johnson, Bai et al. 2007).  Hence, Vun/Vtrans for T7 is ~ 

0.1, which suggests that it uses a passive mechanism to unwind DNA.  In fact, a strand 

exclusion model for DNA unwinding model has been proposed in which T7 translocates 

rapidly and processively along ssDNA with the ssDNA strand going through the center 

cavity of the hexameric ring (Ahnert and Patel 1997; Patel and Picha 2000).  When T7 

encounters a DNA duplex, it slows and must await for the bases to open transiently 

through thermal fluctuations before it can continue translocation, and the DNA strand 

133



along which T7 does not translocate is excluded from the center channel thereby 

preventing the two ssDNA strands from reannealing.  Even though T7 uses dTTP 

effciently to unwind and to translocate along DNA, it unwinds DNA using a passive 

mechanism.  It will be interesting to be similar comparisons between the rates of DNA 

unwinding and ssDNA translocation and also of the efficiency of ATP hydrolysis during 

these two processes for other ring-shaped hexameric helicases and non-hexameric SF1 

enzymes. 
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Materials and Methods 

Buffers and Reagents 

 All buffers were prepared with reagent grade chemicals and doubly-distilled water 

that was deionized further using a Milli-Q purification system (Millipore Corp., Bedford, 

MA).  Solutions were filtered through 0.2 micron filters after preparation.  Buffer M is 20 

mM Mops-KOH (pH 7.0 at 25°C), 30 mM NaCl, 10 mM MgCl2, 1 mM 2-ME, 5% (v/v) 

glycerol.  Heparin stock solution was prepared by dissolving heparin sodium salt (Sigma, 

St. Louis, MO) in Buffer M and dialyzing the mixture extensively against Buffer M using 

3500 molecular weight cut-off dialysis tubing.  Heparin stock solution was stored at 4ºC 
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until use and its concentration was determined by titration with Azure A as described 

(Tomko, Fischer et al. 2007).  ATP stock solution was prepared as described previously 

and stored at -20ºC until use (Wu and Lohman 2008). 

 

Proteins 

 E. coli RecB and RecC were purified separately and stored at -80°C as described 

(Lucius, Jason Wong et al. 2004).  The RecBC heterodimer was reconstituted by mixing 

equal molar ratios of RecB and RecC on ice.  RecBC was dialyzed against Buffer M at 

4°C before use and its concentration was determined spectrophotometrically using an 

extinction coefficient of ε280 = 3.9×105 M-1cm-1 (Wu and Lohman 2008).  E. coli 

phosphate binding protein (PBP) was purified, labeled with coumarin (MDCC) 

(Invitrogen, Carlsbad, CA), and stored at -80ºC until use as described (Tomko, Fischer et 

al. 2007). 

 

Oligodeoxynucleotides 

 DNA oligos, either unlabeled or labeled covalently with Cy3 or Cy5, were 

synthesized, purified, and their concentrations were determined as described (Wu and 

Lohman 2008).  DNA stock solutions were stored at -20°C until use.  The sequences of 

the DNA substrates are given in Supplemental Table 1. 

 

Stopped-flow fluorescence experiments 
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 All stopped-flow fluorescence measurements were collected using an SX.18MV 

stopped-flow apparatus (Applied Photophysics Ltd., Leatherhead, UK).  All experiments 

were performed in Buffer M at 25°C.  

DNA unwinding experiments were performed by incubating DNA substrate (40 

nM) (L = 24, 29, 37, 40, 43, 48, 53, and 60 bp) with RecBC (200 nM) in one syringe of 

the apparatus and DNA unwinding was initiated by 1:1 mixing with ATP (20 µM, 75 

µM, 150 µM, 240 µM, 832 µM, 2.8 mM, and 10 mM) and heparin (15 mg/mL) as 

described (Wu and Lohman 2008).  Cy5 fluorescence was excited at 515 nm and its 

emission was collected at 570 nm using an interference filter (Oriel Corp., Stradford, CT) 

while Cy5 fluorescence was monitored simultaneously at all wavelengths > 665 nm using 

a cutoff filter (Oriel Corp., Stradford, CT). 

 Phosphate release experiments were performed by incubating DNA substrate (200 

nM) with RecBC (20 nM) in one syringe of the instrument and the reaction was initiated 

by 1:1 mixing with ATP (150 µM), heparin (10 mg/mL), and PBP-MDCC (40 µM).  

Final conditions are therefore: 100 nM DNA, 10 nM RecBC, 75 µM ATP, 5 mg/mL 

heparin, and 20 µM PBP-MDCC in Buffer M.  Identical experiments were performed 

without the DNA substrate to access the amount of phosphate contamination in buffers 

and reagents and also any background hydrolysis that may occur with RecBC.  PBP-

MDCC fluorescence was excited at 430 nm and its emission was collected at all 

wavelengths > 450 nm using a cutoff filter (Oriel Corp., Stradford, CT). 

 PBP-MDCC was calibrated by mixing the same ATP solution used in phosphate 

release experiments (150 µM ATP, 10 mg/mL heparin, and 40 µM PBP-MDCC) with 
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various phosphate standards of 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 5 µM as described 

previously (Tomko, Fischer et al. 2007).   

 

Analysis of DNA unwinding time courses 

Global NLLS analysis of DNA unwinding time courses was performed using 

Conlin (kindly provided by Dr. Jeremy Williams and modified by Dr. Aaron Lucius) and 

IMSL C Numerical Libraries (Visual Numeric Incorporated, Houston, TX) as described 

previously (Wu and Lohman 2008).  The uncertainties reported reflect 68% confidence 

interval limits determined from a 50 cycle Monte Carlo analysis as described (Lucius, 

Vindigni et al. 2002; Fischer and Lohman 2004; Fischer, Maluf et al. 2004; Lucius, Jason 

Wong et al. 2004)).  Unwinding time courses were fit to Equation 1 based on mechanism 

shown in Scheme 1, by obtaining the time-dependent formation of ssDNA, fss(t), as the 

inverse Laplace transform of Fss(s) using numerical methods as described (Wu and 

Lohman 2008).  For Scheme 1, fss(t) is given by Equation 1: 
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e 

                             (Equation 1) 

where Fss(s) is the Laplace transform of fss(t), @
-1 is the inverse Laplace transform 

operator with s as the Laplace variable, AT is the total amplitude for a given duplex 

length L, n is the number of unwinding steps with kobs being the rate constant in betwee

two successive unwinding steps, kNP is the isomerization rate constant for the conversion

of non-productive, (RD)NP, to productive, (RD)L, RecBC-DNA complexes, and x is th

fraction of productively bound RecBC-DNA complexes.  The average kinetic step-size, 
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m, can be determined by NLLS analysis by replacing n in Equation 1 with L/m.  

Alternatively, m can be determined from the slope of a plot of n vs L.  

 The plot of the macroscopic unwinding rate (mkobs) versus [ATP] was fit to the 

Michaelis-Menton equation (Equation 2) 

                                                        max[


obs
M

V ATP
mk

K AT

]

P

ss

                                   (Equation 2) 

Analysis of phosphate release kinetics 

In order to determine the amount of phosphate released from the fluorescence 

signal obtained from phosphate release time courses, a calibration experiment was 

performed as described above by mixing the ATP, heparin, and PBP-MDCC solution 

with known concentrations of phosphate standard.  These resulting traces were fit to a 

single exponential function (Ae-kx + C) and the plateau value, C, was plotted versus 

phosphate standard concentration to obtain a calibration curve (Supplemental Figure 1).  

The fluorescence values from the phosphate release experiments fall within the linear 

region of the calibration curve and these time courses were analyzed using Equation 3 

which describes a burst of phosphate released followed by a steady-state phase of 

phosphate released.     

                                                                                  (Equation 3) ( ) (1 )  bk t
bPi t A e k t

 

Figure Legends 

Figure 1. [ATP] dependence on RecBC catalyzed DNA unwinding. A-G). Unwinding 

time courses collected at 10 µM, 37.5 µM, 75 µM, 120 µM, 416 µM, 1.4 mM, and 5 mM 

ATP (L = 24, 29, 37, 40, 43, 48, 53, and 60 bp). Solid lines are simulations based on the 
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best fit parameters determined from NLLS analysis using Equation 1.  The kinetic 

parameters are summarized in Table 1.  

 

Figure 2. “n vs. L” plots. The number of unwinding steps “n” is plotted versus duplex 

length “L” at 10 µM, 37.5 µM, 75 µM, 120 µM, 416 µM, 1.4 mM, and 5 mM ATP. A). 

10 µM ATP: line of best fit is n = 0.2433L + 0.0528. B). 37.5 µM ATP: line of best fit is 

n = 0.2311L - 0.0027. C). 75 µM ATP: line of best fit is n = 0.2437L - 0.0023. D). 120 

µM ATP: line of best fit is n = 0.2483L + 0.0037. E). 416 µM ATP: line of best fit is n = 

0.2666L - 0.001. F). 1.4 mM ATP: line of best fit is n = 0.2530L + 0.0008. G). 5 mM 

ATP: line of best fit is n = 0.2514L + 0.1913. 

 

Figure 3. [ATP] dependence on RecBC unwinding summary. A). Average kinetic 

step-size, m, determined from NLLS analysis of the time courses in Figure 1A-G using 

Equation 1 and also from the slope of the “n vs. L” plots shown in Figure 2A-G, is 

plotted versus [ATP]. The solid curve reflect an average of the values determined at each 

[ATP] (mavg = 4.0 ± 0.3 bp). B). Macroscopic unwinding rate, mkobs, determined from 

NLLS analysis of the time courses in Figure 1A-G using Equation 1 is plotted versus 

[ATP]. Solid curves are simulations based on the best fit parameters fitting the data to the 

Michaelis-Menton Equation (Equation 2) (KM = 131 ± 23 µM and Vmax = 317 ± 14 

bp/s). 

 

Figure 4. ATP coupling stoichiometry during RecBC unwinding. A). Phosphate 

release time courses collected from DNA substrates with duplex length L = 24, 29, 37, 
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40, 43, 48, 53, and 60 bp.  Phosphate release kinetics is fit to Equation 3 and smooth 

curves are simulations based on the best fit parameters given in Table 2. B). Plot of the 

burst amplitude as a function of duplex DNA length.  Smooth line is a linear fit to the 

data (y = 0.9549x + 45.079). 

 

Figure 5. ATP coupling stoichiometry of the RecBC primary translocase. A). 

Phosphate release time courses collected from DNA substrates with ssDNA extension 

length L = 15, 30, 45, 60, and 75 nt.  Phosphate release kinetics is fit to Equation 3 and 

smooth curves are simulations based on the best fit parameters given in Table 2.  B). Plot 

of the burst amplitude as a function of ssDNA extension length.  Smooth line is a linear 

fit to the data (y = 0.8132x + 32.16). 

 

Figure 6. ATP coupling stoichiometry of the RecBC secondary translocase. A). 

Phosphate release time courses collected from DNA substrates with ssDNA extension 

length L = 15, 30, 45, 60, and 75 nt.  Phosphate release kinetics is fit to Equation 3 and 

smooth curves are simulations based on the best fit parameters given in Table 2.  B). Plot 

of the burst amplitude as a function of ssDNA extension length.  Smooth line is a linear 

fit to the data (y = 1.1233x + 43.14). 

 

Figure 7. ATP coupling stoichiometry during RecBC translocation along twin 

ssDNA extensions. A). Phosphate release time courses collected from DNA substrates 

with twin ssDNA extensions of length L = 15, 30, 45, 60, and 75 nt.  Phosphate release 

time courses collected from DNA substrates with ssDNA extension length L = 15, 30, 45, 
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60, and 75 nt.  Phosphate release kinetics is fit to Equation 3 and smooth curves are 

simulations based on the best fit parameters given in Table 2.  B). Plot of the burst 

amplitude as a function of ssDNA extension length.  Smooth line is a linear fit to the data 

(y = 1.0696x + 33.76). 

 

Figure 8. Two potential models of RecBC catalyzed DNA unwinding. A). DNA 

unwinding occurs separately from ssDNA translocation. RecBC first binds and melts out 

4-6 bp of a DNA end and translocation then follows using 1 ATP/nt. RecBC is able to use 

its binding free energy to melt out 4-6 bp to repeat the cycle. B). DNA unwinding and 

translocation occur simultaneously. RecBC first binds and melts out 4-6 bp of a DNA 

end. DNA unwinding and translocation occur simultaneously using 1 ATP/bp unwound. 

 

Supplemental Data 

Supplemental Figure 1. PBP-MDCC calibration curve. A). PBP-MDCC calibration 

time courses obtained by mixing ATP, heparin, and PBP-MDCC solution with 0, 0.5, 1.0, 

1.5, 2.0, 2.5, 3.0, and 5 µM phosphate standard.  Time courses are fit to an exponential 

function and the plateau values are plotted in panel B. B). Plateau values determined in 

panel A are plotted versus phosphate standard concentration in order to construct a 

calibration curve.  The smooth line is a linear fit to the data (y = 0.6804x + 5.9469) and 

this curve is used to relate fluorescence intensities to the amount of phosphate released.   
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Supplemental Figure 2. Overlay of DNA unwinding and phosphate release kinetics.  

Phosphate release time course shown in Figure 4A (L = 40) is superimposed to the DNA 

unwinding time course shown in Figure 1C (L = 40) 

 

Supplemental Figure 3. Overlay of translocation (primary) and phosphate release 

kinetics.  Phosphate release time course shown in Figure 5A (L = 45) is superimposed to 

a translocation time course determined previously. 

 

Supplemental Figure 4. Overlay of translocation (secondary) and phosphate release 

kinetics.  Phosphate release time course shown in Figure 6A (L = 45) is superimposed to 

a translocation time course determined previously. 
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Table 1. RecBC unwinding kinetics summary 
mk[ATP] (after 1:1 mixing) obs 
(bp/s) 

kobs (s
-1) m (bp) knp (s-1) x 

10 µM 19 ± 1 5 ± 2 4.1 ± 0.3 0.35 ± 0.13 0.85 ± 0.04 
3  7.5 µM 61 ± 3 14 ± 4 4.3 ± 0.3 0.60 ± 0.10 0.84 ± 0.03 
75 µM 114 ± 4 28 ± 5 4.1 ± 0.1 0.79 ± 0.21 0.84 ± 0.03 

120 µM 162 ± 3 40 ± 7 4.0 ± 0.2 0.76 ± 0.17 0.82 ± 0.04 
416 µM 
1  

239 ± 7 64 ± 11 3.8 ± 0.4 1.06 ± 0.25 0.81 ± 0.05 
.4 mM
5 mM 

295 ± 5 
305 ±  6 

75 ± 8 
79 ± 10 

4.0 ± 0.1 
4.0 ± 0.2 

1.54 ± 0.14 
2.19 ± 0.28 

0.83 ± 0.01 
0.82 ± 0.02 

 V ) max (bp/s KM (µM)    
 317 ± 14 131 ±  23    
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Table 2. Summary of phosphate release kinetics during RecBC unwinding and translocation 
RecBC Unwinding Aburst (Pi/RecBC) kburst (s

-1) kss (s
-1) c = 0.95   0.08 ATP/bp 

L = 24 bp 72  2 1.99  0.13 3.98  0.14  
29 bp 78  3 1.81  0.06 4.27  0.11  
37 bp 85  1 1.53  0.09 4.65  0.08  
40 bp 87  1 1.32  0.05 5.56  0.17  
43 bp 90  2 1.14  0.06 5.92  0.14  
48 bp 95  3 1.12  0.04 6.29  0.15  
53 bp 103  4 0.90  0.05 7.83  0.08  
60 bp 113  3 0.82  0.03 7.96  0.11  

Primary RecBC 
translocase 

Aburst (Pi/RecBC) kburst (s
-1) kss (s

-1) c = 0.81   0.05 ATP/nt 

L = 15 nt 44  1 2.41  0.16 4.51  0.17  
30 nt 55  1 2.34  0.09 4.98  0.12  
45 nt 71  2 2.21  0.06 5.75  0.06  
60 nt 81  3 2.13  0.05 6.28  0.15  
75 nt 92  2 2.07  0.03 7.13  0.08  

Secondary RecBC 
translocase 

Aburst (Pi/RecBC) kburst (s
-1) kss (s

-1) c = 1.12   0.06 ATP/nt 

L = 15 nt 56  1 2.51  0.14 4.64  0.09  
30 nt 81  2 2.46  0.07 5.02  0.07  
45 nt 95  1 2.31  0.05 5.85  0.16  
60 nt 108  3 2.23  0.03 6.57  0.13  
75 nt 127  3 2.10  0.05 7.22  0.15  

Translocation along twin 
ssDNA extensions 

Aburst (Pi/RecBC) kburst (s
-1) kss (s

-1) c = 1.07   0.09 ATP/nt 

L = 15 nt 48  1 2.48  0.17 4.09  0.14  
30 nt 69  2 2.31  0.06 4.57  0.11  
45 nt 82  2 2.28  0.05 5.05  0.07  
60 nt 95  1 2.15  0.06 5.54  0.18  
75 nt 115  7 2.08  0.09 6.03  0.13  
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Table S1. Sequences of DNA unwinding substrates 
Substrate Length (nt)* DNA Sequence of Strand “A” 

Ia 24 5’-(dT)6  CCA TGG CTC CTG AGC TAG CTG CA(Cy3) G-3’ 
IIa 29 5’-(dT)6  CCA TGG CTC CTG AGC TAG CTG CAG TAG C(Cy3)C-3’ 
IIIa 37 5’-(dT)6  CCA TGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGA (Cy3)T-3’ 
IVa 40 5’-(dT)6 CCA TGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGA TGA (Cy3)A-3’ 
Va 43 5’-(dT)6 CCA TGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGA TGA AAC (Cy3)T-3’ 
Via 48 5’-(dT)6 CCA TGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGA TGA AAC TAG GA(Cy3) T-3’ 
VIIa 53 5’-(dT)6 CCA TGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGA TGA AAC TAG GAT CTT zzzzzzzz 

zzzzzzzzzzzz A(Cy3) T-3’ 
VIIIa 60 5’-(dT)6 CCA TGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGA TGA AAC TAG GAT CTT ATG       

zzzzzzzzzzzz CTC CA(Cy3) T-3’ 

 Length (nt) DNA Sequence of Strand “B” 
Ib 56 5’-(Cy5) TAG CCT AAA GGA TGA AAC TAG GAT CTT ATG CTC CAT GGA TAC GTC GAG TCG CAT     

zzzzzzzzzzzzddCC-3’ 
IIb 51 5’-(Cy5) TAA AGG ATG AAA CTA GGA TCT TAT GCT CCA TGG ATA CGT CGA GTC GCA TCC-3’   
IIIb 43 5’-(Cy5) GAA ACT AGG ATC TTA TGC TCC ATG GAT ACG TCG AGT CGC ATC C-3’  
IVb 40 5’-(Cy5) ACT AGG ATC TTA TGC TCC ATG GAT ACG TCG AGT CGC ATC C-3’ 
Vb 37 5’-(Cy5) AGG ATC TTA TGC TCC ATG GAT ACG TCG AGT CGC ATC C-3’ 
VIb 32 5’-(Cy5) CTT  ATG CTC CAT GGA TAC GTC GAG TCG CAT CC-3’ 
VIIb 27 5’-(Cy5) GCT CCA TGG ATA CGT CGA GTC GCA TCC-3’ 

VIIIb 20 5’-(Cy5) GGA TAC GTC GAG TCG CAT CC-3’ 

 Length (nt) DNA Sequence of Strand “Hp” 
X 120 5’-AGA TCC TAG TGC AGG TTT TCC TGC ACT AGG ATC TGG ATG CGA CTC GAC GTA TCC ATG 

zzzzGAG CAT AAG ATC CTA GTT TCA TCC TTT AGG CTA CTG CAG CTA GCT CAG GAG CCA TGG  
zzzzTTT TTT-3’ 

 
DNA substrate I is formed by annealing DNA strands Ia, Ib, and X; DNA substrate II is formed by annealing DNA strands IIa, IIb, 
and X, etc.   
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Table S2. DNA substrate sequences used to determine the ATP coupling stoichiometry of RecBC catalyzed unwinding 
Substrate Annealed  

DNA Duplex 
Length (bp) 

DNA Sequence 

I 24 5’-(dT)6  CCA TGG CTC CTG AGC TAG CTG CAG-3’-(dT)40 
II 29 5’-(dT)6  CCA TGG CTC CTG AGC TAG CTG CAG TAG CC-3’-(dT)40 
III 37 5’-(dT)6  CCA TGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGA T-3’-(dT)40 
IV 40 5’-(dT)6 CCA TGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGA TGA A-3’-(dT)40 
V 43 5’-(dT)6 CCA TGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGA TGA AAC T-3’-(dT)40 
VI 48 5’-(dT)6 CCA TGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGA TGA AAC TAG GAT-3’-(dT)40 
VII 53 5’-(dT)6 CCA TGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGA TGA AAC TAG GAT CTT zzzzzzzz 

zzzzzzzzzzzz AT-3’-(dT)40 
VIII 60 5’-(dT)6 CCA TGG CTC CTG AGC TAG CTG CAG TAG CCT AAA GGA TGA AAC TAG GAT CTT ATG       

zzzzzzzzzzzz CTC CAT-3’-(dT)40 

DNA substrate I is formed by annealing strand I with a corresponding complementary DNA strand, which base pairs with only the 
mixed sequence in between the 5’-(dT)6  and 3’-(dT)40 ssDNA tails.  DNA substrate II-VIII are formed in the same manner.    
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A 30 5’-(dT)6 CCA TGG CTC CTG AGC TAG CTG CAG-3’

Ia 45 5’-(dT)15 CTG CAG CTA GCT CAG GAG CCA TGG (dT)6 -3’

IIa 60 5’-(dT)30 CTG CAG CTA GCT CAG GAG CCA TGG (dT)6 -3’

IIIa 75 5’-(dT)45 CTG CAG CTA GCT CAG GAG CCA TGG (dT)6 -3’

IVa 90 5’-(dT)60 CTG CAG CTA GCT CAG GAG CCA TGG (dT)6 -3’

Va 105 5’-(dT)75 CTG CAG CTA GCT CAG GAG CCA TGG (dT)6 -3’

B 30 5’-CTG CAG CTA GCT CAG GAG CCA TGG (dT)6 -3’

Ib 45 5’-(dT)6 CCA TGG CTC CTG AGC TAG CTG CAG (dT)15 -3’

IIb 60 5’-(dT)6 CCA TGG CTC CTG AGC TAG CTG CAG (dT)30 -3’

IIIb 75 5’-(dT)6 CCA TGG CTC CTG AGC TAG CTG CAG (dT)45 -3’

IVb 90 5’-(dT)6 CCA TGG CTC CTG AGC TAG CTG CAG (dT)60 -3’

Vb 105 5’-(dT)6 CCA TGG CTC CTG AGC TAG CTG CAG (dT)75 -3’

Length 
DNA (nt) DNA sequence

Table S3. DNA substrate sequences used to determine the ATP coupling stoichiometry of RecBC catalyzed ssDNA translocation

DNA substrates from Figure 5A-5B are formed by annealing DNA strand A with strands Ia-Va
DNA substrates from Figure 6A-6B are formed by annealing DNA strand B with strands Ib-Vb
DNA substrates from Figure 7A-7B are formed by annealing DNA strands Ia-Va with strands Ib-Vb
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E. coli SSB binding to a ssDNA tail prevents RecBC loading 

 The hairpin containing DNA substrates used to examine DNA unwinding first 

presented in Chapter 2 are not suitable for examining phosphate release kinetics as 

discussed in Chapter 4.  Therefore, I have used the DNA substrates shown in Figure 4-

S5A and S5B and characterized RecBC’s ability to initiate DNA unwinding from these 

DNA ends.  I reasoned that a DNA substrate with a long 3’ ssDNA tail (3’-dT40), the end 

structure to which RecBC binds with weak affinity, and also having SSB binding to this 

tail will prevent RecBC from loading to the DNA end and therefore no DNA unwinding 

will be observed.  As shown in Figure 4-S5A, when both DNA ends are blocked with 

SSB, RecBC cannot bind to the ds/ss junction and initiate DNA unwinding.  If however, 

only one DNA end is occupied by SSB and the other end contains a high affinity RecBC 

loading site (Figure 4-S5B), RecBC is able to initiate DNA unwinding from the twin 

(dT)6 junction.  In fact, the time course of RecBC unwinding of a 24 bp DNA substrate 

shown in Figure 4-S5B is identical to the time course of RecBC unwinding of a 24 bp 

hairpin substrate presented in Chapter 2.  I have used these DNA substrates and 

performed RecBC unwinding experiments as a function of DNA duplex length (time 

courses shown in Figure 4-S6) in order to determine the unwinding rate as well as the 

average kinetic step-size for DNA unwinding.  Again, the best fit parameters shown in 

Figure 4-S6 are in good agreement from those determined using the hairpin substrates.  

Alternatively, I have shown in Chapter 3 and Chapter 4 that RecBC will initiate 

unwinding from the unique loading site if DNA is present in excess of RecBC 

concentration. 
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Figure 4-S5. E. coli SSB binding to the ssDNA tail prevents RecBC loading. A. a 24 

bp substrate (2 nM) with a 3’-dT40 ssDNA tail on either end of the duplex is pre-bound to 

SSB (20 nM tetramer). RecBC (20 nM) is then added to the mixture and DNA unwinding 

is initiated by mixing with ATP (150 µM) and heparin (10 mg/mL). No unwinding is 

observed. B. The same experiment was performed with a DNA substrate as depicted, 

which only has one 3’-dT40 tail and a twin dT6 RecBC loading site. Even in presence of 

SSB, RecBC is able to bind to the twin dT6 junction and initiate DNA unwinding. The 

time course of DNA unwinding using this substrate (DNA 1) is identical to that obtained 

using a 24 bp hairpin substrate as shown in Chapter 2 (DNA 2).  
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Figure 4-S6. RecBC unwinding at 150 µM ATP. 20 nM SSB is pre-bound to 

radiolabeled DNA substrate shown in Figure 4-S5 (2 nM) to prevent RecBC loading 

onto the 3’-dT40 tail. 20 nM RecBC is then added to the mixture and DNA unwinding is 

initiated by mixing with 150 µM ATP and 10 mg/mL heparin. Unwinding time courses 

are analyzed using Scheme 1: m = 4.2  0.3 bp, kobs = 34  5 sec-1, mkobs = 145  3 

bp/sec, knp = 1.0  0.3 sec-1.  
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This thesis is part of a comprehensive study to dissect the mechanisms of DNA 

unwinding and translocation and also to understand the relationship between these two 

processes, using the E. coli RecBCD and RecBC helicases as model systems.  Since 

RecBCD features two SF1 helicase motors (RecB and RecD) that function in unison in 

order to unwind DNA duplexes, mechanistic studies of this enzyme may provide 

information on any potential coupling or “cross talk” between the two motors.  The 

individual subunits can be purified and characterized biochemically and either motor can 

be inactivated selectively in the holoenzyme by mutating a conserved lysine residue in 

the ATP binding site into a glutamine (RecBK29QCD and RecBCDK177Q) (Dillingham 

2003; Taylor and Smith 2003; Dillingham, Webb et al. 2005).  Furthermore, the RecBC 

heterodimer, which only possesses the RecB motor, still functions as a rapid and 

processive helicase (Korangy and Julin 1993); therefore, RecBCD and RecBC are good 

candidates with which to examine how ATP binding and hydrolysis is used to fuel DNA 

unwinding and translocation.   

At the start of my thesis research, the minimal kinetic mechanism required to 

describe RecBCD catalyzed DNA unwinding had been determined (Lucius, Vindigni et 

al. 2002; Lucius, Jason Wong et al. 2004).  In order for RecBCD to initiate DNA 

unwinding from a blunt end, it must first undergo two to three slow steps, and then 

unwinding occurs with a series of repeated limiting steps until the duplex is completely 

unwound.  The functional significance of these additional initiation steps was not clear, 

and thus similar mechanistic studies have been performed with the RecBC enzyme to test 

whether it uses the same unwinding mechanism; however, unwinding experiments were 

difficult with RecBC due to low amplitude presumably because RecBC binds poorly to 
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blunt ends.  More recently, the energetics of RecBCD and RecBC binding to different 

DNA end structures were examined (Wong, Lucius et al. 2005).  These studies indicate 

that RecBCD binds with optimal affinity to DNA ends possessing pre-existing 5’-(dT)10 

and 3’-(dT)6 ssDNA tails while RecBC binds tightest to ends with pre-formed 5’-(dT)6 

and 3’-(dT)6 ssDNA tails.  Consistent with biochemical and structural studies, both 

RecBCD and RecBC can “melt out” ~ 6 bp upon binding to a DNA end in a Mg2+ 

dependent but ATP independent reaction (Farah and Smith 1997; Singleton, Dillingham 

et al. 2004; Saikrishnan, Griffiths et al. 2008; Wong and Lohman 2008). 

In Chapter 2, I examined how various DNA end structures influence the 

mechanisms by which RecBCD and RecBC initiate DNA unwinding.  First, I performed 

RecBC unwinding studies with its optimal binding substrate using techniques which were 

previously developed in the lab (Lucius, Maluf et al. 2003).  When RecBC binds to DNA 

duplexes with pre-existing 5’-(dT)6 and 3’-(dT)6 tails, it can initiate DNA unwinding 

using a simple n-step sequential mechanism without the need for any additional initiation 

steps.  NLLS analysis of these time courses indicate that RecBC unwinds DNA with an 

average kinetic step-size of 4.4 ± 0.1 bp and with an unwinding rate of 348 ± 5 bp/s (20 

mM Mops-KOH, pH 7.0 at 25ºC, 10 mM NaCl, 10 mM MgCl2, 5% (v/v) glycerol, 1 mM 

2-mercaptoethanol).  This is about two fold slower than the rate previously measured for 

RecBCD unwinding of blunt-ends (790 ± 23 bp/sec) (Lucius, Vindigni et al. 2002).  

Using the same methods, I also measured the rate of RecBCD unwinding from these twin 

(dT)6 duplexes so the kinetic parameters could be compared directly with those of 

RecBC.  These results are the same within error compared to those previously determined 

for blunt-end unwinding, which require two to three additional initiation steps (Wu and 
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Lohman 2008).  Interestingly, when the 5’ ssDNA tail length at the loading site is 

extended to ten nucleotides, RecBCD unwinding can be described by a simple n-step 

model without the need for any additional initiation steps.  RecBC unwinding of these 5’-

(dT)10, 3’-(dT)6 substrates with the same unwinding rate and also step-size when 

compared to RecBC unwinding of the twin (dT)6 duplexes.  Taken together, these data 

indicate the additional steps needed to describe RecBCD unwinding of blunt-ends and 

twin (dT)6 duplexes involve the loading of the 5’ DNA end onto the RecD subunit.  If the 

5’ ssDNA end is pre-loaded into RecD using a longer 5’ tail or if RecD is not present 

(RecBC unwinding), then these initiation steps are not observed (Wu and Lohman 2008).   

Additional experiments, however, will be necessary to dissect these minimal 

DNA unwinding mechanisms further.  For example, the RecBCD and RecBC unwinding 

kinetics are biphasic (Lucius, Vindigni et al. 2002; Wu and Lohman 2008).  The simplest 

explanation for this observation is that RecBC(D)-DNA complexes exist in both 

productive and non-productive forms and that the non-productive complexes must first 

isomerize into the productive form before unwinding can occur (Ali and Lohman 1997; 

Lucius, Maluf et al. 2003).  Although we can detect this isomerization step kinetically, 

the functional and structural basis of this isomerization remains unclear.  Preliminary 

studies of the length of the 3’ ssDNA tail on RecBC unwinding indicate that the 

unwinding contribution from productive RecBC-DNA complexes decreases when the 3’ 

ssDNA tail is extended beyond six nucleotides.  These data correlate well with 

equilibrium experiments which showed that when RecBC binds to a DNA end with a 3’ 

tail length greater than six nucleotides, a ssDNA loop is formed (Wong, Rice et al. 2006).  

This looped structure may be associated with a non-productive complex and inhibit DNA 
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unwinding by RecBC.  Also, the mechanism by which RecBC and RecBCD “melt-out” 

DNA ends upon DNA binding has not been examined.  It is possible that some fraction of 

RecBC(D)-DNA complexes are not melted (or only partially melted) and are giving rise 

to these non-productive complexes.  To test this hypothesis, the DNA melting mechanism 

can be investigated by pre-forming RecBC(D)-DNA complexes in the absence of Mg2+ 

and initiating melting by rapid mixing with a buffer containing Mg2+ ions.  The 

conformation of the DNA end can be monitored by either labeling the DNA end 

fluorescently or by incorporating nucleotide analogs such as 2-aminopurine or 6-methyl-

isoxanthopterin into the last 4-6 nucleotides, which have different spectroscopic 

signatures when in ssDNA or dsDNA (Bjornson, Wong et al. 1996; Singleton, Roca et al. 

2007).  DNA unwinding experiments can also be performed as a function of MgCl2 

concentration or alternatively, DNA unwinding can be initiated by addition of Mg2+ in 

order to probe the influence of Mg2+ and DNA melting on this isomerization step.   

In Chapter 3, I examined the translocation mechanisms of the RecB monomer and 

the RecBC heterodimer to better understand the relationship between DNA unwinding 

and translocation.  RecB initiates translocation from random sites within ssDNA and 

moves with a rate of 803 ± 13 nt/sec in the 3’ to 5’ direction, as expected for a 3’ to 5’ 

helicase.  This is about two times faster than the RecBC unwinding rate (348 ± 5 bp/sec) 

determined under the same solution conditions.  After RecBC unwinds a 24 bp initiation 

duplex, it can continue to move along the ssDNA extension in the 3’ to 5’ direction with 

a rate of 909 ± 51 nt/sec (Cy3) or 1030 ± 53 nt/sec (Fluorescein), which is slightly faster 

than RecB monomer translocation.  Interestingly, in performing these experiments, I have 

discovered that RecBC also possesses a secondary translocase activity which enables it 
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translocate along the opposite DNA strand (i.e.: along a 5’ to 3’ ssDNA extension) with a 

similar rate (990 ± 49 nt/sec (Cy3), 1187 ± 61 (Fluorescein)).  In fact, RecBC can utilize 

these two translocase activities to move along two non-complementary ssDNA 

extensions simultaneously albeit with a slower rate (671 ± 47 nt/sec).   

The structural basis for the secondary translocase is still unclear.  However, based 

on a RecBCD-DNA crystal structure, there are two regions within RecBC which comes 

in contact of the 5’ terminating DNA strand: the “arm” domain of RecB and the “dead” 

nuclease domain of RecC (Singleton, Dillingham et al. 2004; Rigden 2005).  The RecB 

arm is observed to come in contact of the DNA ahead of the unwinding fork while the 

RecC dead nuclease is observed to interact with the unwound 5’-terminating ssDNA 

strand, the strand opposite of which RecB operates.  Therefore, RecB ATPase activity 

can potentially control either of these regions allosterically in order to drive the 

secondary translocase.  Future mutation and deletion studies can be employed to test this 

hypothesis and to examine the structural basis for this secondary translocase activity.  

This novel discovery and the use of these partial duplex substrates will facilitate 

subsequent translocation studies of the RecBCD enzyme and its single motor mutants 

(RecBK29QCD and RecBCDK177Q).  These experiments will enable us to examine ssDNA 

translocation of the RecB and RecD motors independently so that we can compare these 

results with those of DNA unwinding in order to better understand the relationship 

between these two processes.   

Since RecBC and RecBCD can be synchronized to initiate translocation from a 

unique site, we can examine whether these proteins can displace protein blocks on the 

DNA during translocation.  For example, I have performed preliminary studies to test 
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whether either the primary or secondary RecBC translocase activities can displace E. coli 

SSB bound to a ssDNA extension.  However, additional work will be necessary since the 

results are inconclusive.  This is because the translocation kinetics are difficult to 

interpret due to the fact that both SSB and RecBC can influence Cy3 fluorescence 

intensity as described in Chapter 3.  Alternatively, instead of labeling the ssDNA end 

fluorescently with Cy3, it can be labeled with biotin and the DNA substrate can be 

radiolabeled with 32P and bound to streptavidin, and similar translocation and protein 

displacement experiments can be performed (Morris and Raney 1999).  The relative 

mobility shift of the DNA substrate with streptavidin bound versus those with 

streptavidin displaced by RecBC on a native polyacrylamimde gel could potentially be 

used to observe translocation by the RecBC primary and secondary translocases.  Using 

this type of assay could overcome the complicated fluorescence signal changes observed 

with RecBC, SSB, and Cy3.   

We do not know at this time whether the secondary translocase within RecBC is 

functional when RecD is present (ie: in the RecBCD enzyme).  Because RecD unwinds 

DNA with 5’ to 3’ translocation directionality, this motor subunit translocates along the 

ssDNA strand along which the RecBC secondary translocase operates.  This can be 

addressed by examining the ssDNA translocation kinetics of RecBCD and RecBCDK177Q 

(and also RecBK29QCD) using the approaches presented in Chapter 3.  In this way, RecBC 

will be in complex with RecD but this subunit will be catalytically dead.  These 

translocation experiments will also allow us to determine whether the RecB and RecD 

motor subunits function as independent motors or whether there is some sort of coupling 

or communication between these two SF helicases mediated through RecC.    
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In Chapter 4, I examined the efficiency of ATP hydrolysis during DNA 

unwinding and translocation by RecBC using a phosphate release assay (Brune, Hunter et 

al. 1998; Dillingham, Wigley et al. 2000; Dillingham, Wigley et al. 2002; Tomko, 

Fischer et al. 2007).  The ATP coupling stoichiometry for both DNA unwinding and 

ssDNA translocation can be compared independently, which will help us better 

understand the relationship between these two processes.  Thus far, an ATP coupling 

stoichiometry of ~ 1 ATP/nt translocated has been estimated for the UvrD and PcrA 

helicases (Dillingham, Wigley et al. 2000; Tomko, Fischer et al. 2007).  Based on 

structural studies, the efficiency of ATP hydrolysis during DNA unwinding by these 

helicases has been inferred to be 1 ATP/bp unwound (Velankar, Soultanas et al. 1999; 

Lee and Yang 2006), although this has yet to be shown biochemically.  An estimate of ~ 

2-3 ATP/bp unwound was estimated for RecBCD unwinding by taking the ratio of the 

steady-state unwinding rate and the steady-state rate of ATP hydrolysis (Korangy and 

Julin 1993; Korangy and Julin 1994).  The efficiency of ATP hydrolysis during RecBC 

unwinding is estimated to be 1.2-1.4 ATP/bp with a similar approach (Korangy and Julin 

1993; Korangy and Julin 1994).  Using a phosphate release assay, I was able to monitor 

the pre-steady state rate of ATP hydrolysis under single turnover conditions.  During 

DNA unwinding, RecBC consumes on average 0.95 ± 0.08 ATP/bp unwound, which is 

similar to the ~ 1 ATP/bp unwound proposed for other SF1 enzymes.  RecBC 

translocation along ssDNA in the 3’ to 5’ direction using its primary translocase activity 

utilizes on average 0.81 ± 0.05 ATP/nt translocated while its secondary translocase 

requires on average 1.12 ± 0.06 ATP/nt.  Simultaneous translocation along two non-

complementary strands has a ATP coupling stoichiometry of 1.07 ± 0.09 ATP/nt, which 
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is the same within error as the value determined for RecBC unwinding.  These results 

indicate that the large majority of ATP hydrolyzed, possibly all, is used to fuel RecBC 

translocation rather than the strand separation reaction during DNA unwinding.  This 

may be unique to the RecBC and RecBCD enzymes since either protein can “melt-out” 5-

6 bp upon DNA binding (Farah and Smith 1997; Singleton, Dillingham et al. 2004; 

Wong, Lucius et al. 2005; Wong and Lohman 2008).  Therefore, if the nucleotide state 

can modulate the relative affinity of RecBC(D) for DNA, then the melting of 5-6 bp can 

occur when RecBC(D) switches between tight and loose DNA binding states while 

ATPase activity is used to drive unidirectional translocation.  This model suggests then 

that RecBC(D) would melt out 5-6 base pairs at once, and then translocation follows 

using 1 ATP/nt.  We cannot at this point rule out an alternative model in which DNA 

unwinding and translocation occur concurrently, and that translocation occurs using 1 

ATP/nt but unwinding occurs simultaneously as the two DNA strands are pulled into the 

“separation-pin” on the RecC subunit (Singleton, Dillingham et al. 2004).  In order to 

discern between these two unwinding models, single molecule unwinding experiments 

using high resolution optical traps can determine whether DNA unwinding (consequently 

base pair melting) occurs in 4-6 bp steps.  Similar to the future directions outlined in 

Chapter 2, studies of the mechanism of DNA melting in addition to mutation studies of 

the separation pin on the unwinding properties of RecBC and also RecBCD will also help 

us access the validity of these two DNA unwinding models. 

In summary, the thesis outlines mechanistic unwinding and translocation studies 

of the E. coli RecBC and RecBCD helicases.  Hopefully, this research will facilitate 

subsequent studies of the RecBC and RecBCD enzymes or other motor proteins which 
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will help us better understand how these molecular motors can convert the chemical 

energy from NTP binding and hydrolysis to mechanical energy and drive nucleic acid 

unwinding and translocation.   
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